
Anne Canteaut
Yuval Ishai (Eds.)

LN
CS

 1
21

06

39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II

Advances in Cryptology –
EUROCRYPT 2020

Lecture Notes in Computer Science 12106

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Anne Canteaut • Yuval Ishai (Eds.)

Advances in Cryptology –

EUROCRYPT 2020
39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, May 10–14, 2020
Proceedings, Part II

123

Editors
Anne Canteaut
Équipe-projet COSMIQ
Inria
Paris, France

Yuval Ishai
Computer Science Department
Technion
Haifa, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45723-5 ISBN 978-3-030-45724-2 (eBook)
https://doi.org/10.1007/978-3-030-45724-2

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2020, corrected publication 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6292-8336
https://doi.org/10.1007/978-3-030-45724-2

Preface

Eurocrypt 2020, the 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Zagreb, Croatia, during May 10–14,
2020.1 The conference was sponsored by the International Association for Cryptologic
Research (IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan
Picek (Delft University of Technology, The Netherlands) were responsible for the local
organization. They were supported by a local organizing team consisting of Marin
Golub and Domagoj Jakobovic (University of Zagreb, Croatia). Peter Schwabe acted as
the affiliated events chair and Simona Samardjiska helped with the promotion and local
organization. We are deeply indebted to all of them for their support and smooth
collaboration.

The conference program followed the now established parallel-track system where
the works of the authors were presented in two concurrently running tracks. The invited
talks and the talks presenting the best paper/best young researcher spanned over both
tracks.

We received a total of 375 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 57 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 81 papers. The revised versions of these papers are included in these three
volume proceedings, organized topically within their respective track.

The PC decided to give the Best Paper Award to the paper “Optimal Broadcast
Encryption from Pairings and LWE” by Shweta Agrawal and Shota Yamada and the
Best Young Researcher Award to the paper “Private Information Retrieval with
Sublinear Online Time” by Henry Corrigan-Gibbs and Dmitry Kogan. Both papers,
together with “Candidate iO from Homomorphic Encryption Schemes” by Zvika
Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta, received invitations for
the Journal of Cryptology.

The program also included invited talks by Alon Rosen, titled “Fine-Grained
Cryptography: A New Frontier?”, and by Alice Silverberg, titled “Mathematics and
Cryptography: A Marriage of Convenience?”.

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of very good papers
which did not find a slot in the sparse number of accepted papers. We sincerely hope
that these works eventually get the attention they deserve.

We are also indebted to the members of the PC and all external reviewers for their
voluntary work. The PC work is quite a workload. It has been an honor to work with

1 This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions related to the coronavirus.

everyone. The PC’s work was simplified by Shai Halevi’s submission software and his
support, including running the service on IACR servers.

Finally, we thank everyone else – speakers, session chairs, and rump-session
chairs – for their contribution to the program of Eurocrypt 2020. We would also like to
thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2020 Anne Canteaut
Yuval Ishai

vi Preface

Eurocrypt 2020

The 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research (IACR)

May 10–14, 2020
Zagreb, Croatia

General Co-chairs

Lejla Batina Radboud University, The Netherlands
Stjepan Picek Delft University of Technology, The Netherlands

Program Co-chairs

Anne Canteaut Inria, France
Yuval Ishai Technion, Israel

Program Committee

Divesh Aggarwal National University of Singapore, Singapore
Benny Applebaum Tel Aviv University, Israel
Fabrice Benhamouda Algorand Foundation, USA
Elette Boyle IDC Herzliya, Israel
Zvika Brakerski Weizmann Institute of Science, Israel
Anne Broadbent University of Ottawa, Canada
Nishanth Chandran MSR India, India
Yilei Chen Visa Research, USA
Aloni Cohen Boston University, USA
Ran Cohen Boston University and Northeastern University, USA
Geoffroy Couteau CNRS, IRIF, Université de Paris, France
Joan Daemen Radboud University, The Netherlands
Luca De Feo IBM Research Zurich, Switzerland
Léo Ducas CWI Amsterdam, The Netherlands
Maria Eichlseder Graz University of Technology, Austria
Thomas Eisenbarth University of Lübeck and WPI, Germany
Thomas Fuhr ANSSI, France
Romain Gay Cornell Tech, USA
Benedikt Gierlichs KU Leuven, Belgium
Rishab Goyal UT Austin, USA

Vipul Goyal Carnegie Mellon University, USA
Tim Güneysu Ruhr-Universität Bochum and DFKI, Germany
Jian Guo Nanyang Technological University, Singapore
Mohammad Hajiabadi UC Berkeley, USA
Carmit Hazay Bar-Ilan University, Israel
Susan Hohenberger Johns Hopkins University, USA
Pavel Hubáček Charles University Prague, Czech Republic
Abhishek Jain Johns Hopkins University, USA
Marc Joye Zama, France
Bhavana Kanukurthi IISc Bangalore, India
Nathan Keller Bar-Ilan University, Israel
Susumu Kiyoshima NTT Research, USA
Eyal Kushilevitz Technion, Israel
Gregor Leander Ruhr-Universität Bochum, Germany
Tancrède Lepoint Google, USA
Tal Malkin Columbia University, USA
Alexander May Ruhr-Universität Bochum, Germany
Bart Mennink Radboud University, The Netherlands
Kazuhiko Minematsu NEC Corporation, Japan
María Naya-Plasencia Inria, France
Ryo Nishimaki NTT Secure Platform Laboratories, Japan
Cécile Pierrot Inria and Université de Lorraine, France
Sondre Rønjom University of Bergen, Norway
Ron Rothblum Technion, Israel
Alessandra Scafuro North Carolina State University, USA
Peter Schwabe Radboud University, The Netherlands
Adam Smith Boston University, USA
François-Xavier Standaert KU Leuven, Belgium
Yosuke Todo NTT Secure Platform Laboratories, Japan
Gilles Van Assche STMicroelectronics, Belgium
Prashant Nalini Vasudevan UC Berkeley, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Frederik Vercauteren KU Leuven, Belgium
Damien Vergnaud Sorbonne Université and Institut Universitaire

de France, France
Eylon Yogev Technion, Israel
Yu Yu Shanghai Jiao Tong University, China
Gilles Zémor Université de Bordeaux, France

viii Eurocrypt 2020

External Reviewers

Aysajan Abidin
Ittai Abraham
Thomas Agrikola
Navid Alamati
Nils Albartus
Martin Albrecht
Ghada Almashaqbeh
Joël Alwen
Miguel Ambrona
Ghous Amjad
Nicolas Aragon
Gilad Asharov
Tomer Ashur
Thomas Attema
Nuttapong Attrapadung
Daniel Augot
Florian Bache
Christian Badertscher
Saikrishna

Badrinarayanan
Shi Bai
Josep Balasch
Foteini Baldimtsi
Marshall Ball
Zhenzhen Bao
James Bartusek
Lejla Batina
Enkhtaivan Batnyam
Carsten Baum
Gabrielle Beck
Christof Beierle
Amos Beimel
Sebastian Berndt
Dan J. Bernstein
Francesco Berti
Ward Beullens
Rishabh Bhadauria
Obbattu Sai Lakshmi

Bhavana
Jean-Francois Biasse
Begül Bilgin
Nina Bindel
Nir Bitansky

Olivier Blazy
Naresh Boddu
Koen de Boer
Alexandra Boldyreva
Xavier Bonnetain
Carl Bootland
Jonathan Bootle
Adam Bouland
Christina Boura
Tatiana Bradley
Marek Broll
Olivier Bronchain
Ileana Buhan
Mark Bun
Sergiu Bursuc
Benedikt Bünz
Federico Canale
Sébastien Canard
Ran Canetti
Xavier Caruso
Ignacio Cascudo
David Cash
Gaëtan Cassiers
Guilhem Castagnos
Wouter Castryck
Hervé Chabanne
André Chailloux
Avik Chakraborti
Hubert Chan
Melissa Chase
Cong Chen
Hao Chen
Jie Chen
Ming-Shing Chen
Albert Cheu
Jérémy Chotard
Arka Rai Choudhuri
Kai-Min Chung
Michele Ciampi
Benoit Cogliati
Sandro Coretti-Drayton
Jean-Sébastien Coron
Adriana Suarez Corona

Alain Couvreur
Jan-Pieter D’Anvers
Bernardo David
Thomas Decru
Claire Delaplace
Patrick Derbez
Apoorvaa Deshpande
Siemen Dhooghe
Denis Diemert
Itai Dinur
Christoph Dobraunig
Yevgeniy Dodis
Jack Doerner
Jelle Don
Nico Döttling
Benjamin Dowling
John Schank
Markus Duermuth
Orr Dunkelman
Fréderic Dupuis
Iwan Duursma
Sébastien Duval
Stefan Dziembowski
Aner Moshe Ben Efraim
Naomi Ephraim
Thomas Espitau
Andre Esser
Brett Hemenway Falk
Antonio Faonio
Serge Fehr
Patrick Felke
Rex Fernando
Dario Fiore
Ben Fisch
Marc Fischlin
Nils Fleischhacker
Cody Freitag
Benjamin Fuller
Ariel Gabizon
Philippe Gaborit
Steven Galbraith
Chaya Ganesh
Juan Garay

Eurocrypt 2020 ix

Rachit Garg
Pierrick Gaudry
Nicholas Genise
Essam Ghadafi
Satrajit Ghosh
Kristian Gjøsteen
Aarushi Goel
Junqing Gong
Alonso Gonzalez
Lorenzo Grassi
Jens Groth
Aurore Guillevic
Berk Gulmezoglu
Aldo Gunsing
Chun Guo
Qian Guo
Siyao Guo
Shai Halevi
Shuai Han
Abida Haque
Phil Hebborn
Brett Hemenway
Shoichi Hirose
Dennis Hofheinz
Justin Holmgren
Akinori Hosoyamada
Senyang Huang
Paul Huynh
Kathrin Hövelmanns
Andreas Hülsing
Ilia Iliashenko
Laurent Imbert
Takanori Isobe
Tetsu Iwata
Håkon Jacobsen
Tibor Jager
Aayush Jain
Samuel Jaques
Jéremy Jean
Yanxue Jia
Zhengzhong Jin
Thomas Johansson
Kimmo Järvinen
Saqib Kakvi
Daniel Kales
Seny Kamara

Gabe Kaptchuk
Martti Karvonen
Shuichi Katsumata
Raza Ali Kazmi
Florian Kerschbaum
Dakshita Khurana
Jean Kieffer
Ryo Kikuchi
Eike Kiltz
Sam Kim
Elena Kirshanova
Fuyuki Kitagawa
Dima Kogan
Lisa Kohl
Markulf Kohlweiss
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Lucas Kowalczyk
Karel Kral
Ralf Kuesters
Ashutosh Kumar
Ranjit Kumaresan
Srijita Kundu
Peter Kutasp
Thijs Laarhoven
Gijs Van Laer
Russell Lai
Virginie Lallemand
Baptiste Lambin
Julien Lavauzelle
Phi Hung Le
Eysa Lee
Hyung Tae Lee
Jooyoung Lee
Antonin Leroux
Gaëtan Leurent
Xin Li
Xiao Liang
Chengyu Lin
Huijia (Rachel) Lin
Wei-Kai Lin
Eik List
Guozhen Liu
Jiahui Liu
Qipeng Liu

Shengli Liu
Tianren Liu
Pierre Loidreau
Alex Lombardi
Patrick Longa
Sébastien Lord
Julian Loss
George Lu
Atul Luykx
Vadim Lyubashevsky
Fermi Ma
Varun Madathil
Roel Maes
Bernardo Magri
Saeed Mahloujifar
Christian Majenz
Eleftheria Makri
Giulio Malavolta
Mary Maller
Alex Malozemoff
Nathan Manohar
Daniel Masny
Simon Masson
Takahiro Matsuda
Noam Mazor
Audra McMillan
Lauren De Meyer
Peihan Miao
Gabrielle De Micheli
Ian Miers
Brice Minaud
Pratyush Mishra
Ahmad Moghimi
Esfandiar Mohammadi
Victor Mollimard
Amir Moradi
Tal Moran
Andrew Morgan
Mathilde de la Morinerie
Nicky Mouha
Tamer Mour
Pratyay Mukherjee
Marta Mularczyk
Koksal Mus
Pierrick Méaux
Jörn Müller-Quade

x Eurocrypt 2020

Yusuke Naito
Mridul Nandi
Samuel Neves
Ngoc Khanh Nguyen
Anca Nitulescu
Ariel Nof
Sai Lakshmi Bhavana

Obbattu
Maciej Obremski
Tobias Oder
Frédérique Oggier
Miyako Ohkubo
Mateus de Oliveira

Oliveira
Tron Omland
Maximilian Orlt
Michele Orrù
Emmanuela Orsini
Morten Øygarden
Ferruh Ozbudak
Carles Padro
Aurel Page
Jiaxin Pan
Omer Paneth
Lorenz Panny
Anat Paskin-Cherniavsky
Alain Passelègue
Sikhar Patranabis
Michaël Peeters
Chris Peikert
Alice Pellet-Mary
Olivier Pereira
Léo Perrin
Edoardo Persichetti
Thomas Peters
George Petrides
Thi Minh Phuong Pham
Duong-Hieu Phan
Krzysztof Pietrzak
Oxana Poburinnaya
Supartha Podder
Bertram Poettering
Antigoni Polychroniadou
Claudius Pott
Bart Preneel
Robert Primas

Luowen Qian
Willy Quach
Ahmadreza Rahimi
Somindu Ramannai
Matthieu Rambaud
Hugues Randriam
Shahram Rasoolzadeh
Divya Ravi
Mariana P. Raykova
Christian Rechberger
Ling Ren
Joost Renes
Leonid Reyzin
Joao Ribeiro
Silas Richelson
Peter Rindal
Francisco

Rodríguez-Henríquez
Schuyler Rosefield
Mélissa Rossi
Mike Rosulek
Dragos Rotaru
Lior Rotem
Arnab Roy
Paul Rösler
Reihaneh Safavi-Naini
Amin Sakzad
Simona Samardjiska
Antonio Sanso
Yu Sasaki
Pascal Sasdrich
Or Sattath
John Schanck
Sarah Scheffler
Tobias Schneider
Markus Schofnegger
Peter Scholl
Jan Schoone
André Schrottenloher
Sven Schäge
Adam Sealfon
Jean-Pierre Seifert
Gregor Seiler
Sruthi Sekar
Okan Seker
Karn Seth

Yannick Seurin
Ido Shahaf
Ronen Shaltiel
Barak Shani
Sina Shiehian
Omri Shmueli
Jad Silbak
Thierry Simon
Luisa Sinischalchi
Veronika Slivova
Benjamin Smith
Yifan Song
Pratik Soni
Jessica Sorrell
Nicholas Spooner
Akshayaram Srinivasan
Damien Stehlé
Ron Steinfeld
Noah

Stephens-Davidowitz
Martin Strand
Shifeng Sun
Ridwan Syed
Katsuyuki Takashima
Titouan Tanguy
Stefano Tessaro
Enrico Thomae
Jean-Pierre Tillich
Benjamin Timon
Junichi Tomida
Deniz Toz
Rotem Tsabary
Daniel Tschudi
Yiannis Tselekounis
Yi Tu
Dominique Unruh
Bogdan Ursu
Vinod Vaikuntanathan
Kerem Varici
Philip Vejre
Marloes Venema
Daniele Venturi
Fernando Virdia
Vanessa Vitse
Damian Vizár
Chrysoula Vlachou

Eurocrypt 2020 xi

Mikhail Volkhov
Satyanarayana Vusirikala
Hendrik Waldner
Alexandre Wallet
Michael Walter
Haoyang Wang
Meiqin Wang
Weijia Wang
Xiao Wang
Yohei Watanabe
Hoeteck Wee
Mor Weiss
Weiqiang Wen
Benjamin Wesolowski
Jan Wichelmann
Daniel Wichs

Friedrich Wiemer
Christopher Williamson
Jonas Wloka
Wessel van Woerden
Lennert Wouters
David J. Wu
Shai Wyborski
Brecht Wyseur
Keita Xagawa
Xiang Xie
Chaoping Xing
Sophia Yakoubov
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Kang Yang

Kevin Yeo
Arkady Yerukhimovich
Øyvind Ytrehus
Aaram Yun
Mohammad Zaheri
Mark Zhandry
Jiayu Zhang
Liangfeng Zhang
Ren Zhang
Zhenfei Zhang
Zhongxiang Zheng
Hong-Sheng Zhou
Vassilis Zikas
Giorgos Zirdelis
Vincent Zucca

xii Eurocrypt 2020

Contents – Part II

Generic Models

Separate Your Domains: NIST PQC KEMs, Oracle Cloning
and Read-Only Indifferentiability . 3

Mihir Bellare, Hannah Davis, and Felix Günther

On the Memory-Tightness of Hashed ElGamal . 33
Ashrujit Ghoshal and Stefano Tessaro

Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic
Group Model . 63

Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin

On Instantiating the Algebraic Group Model from Falsifiable Assumptions . . . 96
Thomas Agrikola, Dennis Hofheinz, and Julia Kastner

Secure Computation I

Resource-Restricted Cryptography: Revisiting MPC Bounds
in the Proof-of-Work Era . 129

Juan Garay, Aggelos Kiayias, Rafail M. Ostrovsky,
Giorgos Panagiotakos, and Vassilis Zikas

Efficient Constructions for Almost-Everywhere Secure Computation 159
Siddhartha Jayanti, Srinivasan Raghuraman, and Nikhil Vyas

The Price of Active Security in Cryptographic Protocols 184
Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,
and Mor Weiss

Succinct Non-interactive Secure Computation . 216
Andrew Morgan, Rafael Pass, and Antigoni Polychroniadou

Quantum I

Finding Hash Collisions with Quantum Computers by Using Differential
Trails with Smaller Probability than Birthday Bound 249

Akinori Hosoyamada and Yu Sasaki

Implementing Grover Oracles for Quantum Key Search
on AES and LowMC. 280

Samuel Jaques, Michael Naehrig, Martin Roetteler,
and Fernando Virdia

Optimal Merging in Quantum k-xor and k-sum Algorithms 311
María Naya-Plasencia and André Schrottenloher

On the Quantum Complexity of the Continuous Hidden
Subgroup Problem. 341

Koen de Boer, Léo Ducas, and Serge Fehr

Foundations

Formalizing Data Deletion in the Context of the Right to Be Forgotten 373
Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan

OptORAMa: Optimal Oblivious RAM. 403
Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak,
Enoch Peserico, and Elaine Shi

On the Streaming Indistinguishability of a Random Permutation
and a Random Function . 433

Itai Dinur

Isogeny-Based Cryptography

He Gives C-Sieves on the CSIDH. 463
Chris Peikert

Quantum Security Analysis of CSIDH . 493
Xavier Bonnetain and André Schrottenloher

Rational Isogenies from Irrational Endomorphisms 523
Wouter Castryck, Lorenz Panny, and Frederik Vercauteren

Lattice-Based Cryptography

Hardness of LWE on General Entropic Distributions 551
Zvika Brakerski and Nico Döttling

Key-Homomorphic Pseudorandom Functions from LWE
with Small Modulus . 576

Sam Kim

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats . . . 608
Léo Ducas, Steven Galbraith, Thomas Prest, and Yang Yu

xiv Contents – Part II

Symmetric Cryptography II

TNT: How to Tweak a Block Cipher. 641
Zhenzhen Bao, Chun Guo, Jian Guo, and Ling Song

On a Generalization of Substitution-Permutation Networks:
The HADES Design Strategy . 674

Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger,
Dragos Rotaru, and Markus Schofnegger

Lightweight Authenticated Encryption Mode Suitable
for Threshold Implementation . 705

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara

Secure Computation II

PSI from PaXoS: Fast, Malicious Private Set Intersection. 739
Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai

Two-Round Oblivious Transfer from CDH or LPN 768
Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny,
and Daniel Wichs

Private Aggregation from Fewer Anonymous Messages 798
Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker

Broadcast-Optimal Two-Round MPC. 828
Ran Cohen, Juan Garay, and Vassilis Zikas

Correction to: Optimal Merging in Quantum k-xor and k-sum Algorithms . . . C1
María Naya-Plasencia and André Schrottenloher

Author Index . 859

Contents – Part II xv

Generic Models

Separate Your Domains: NIST PQC
KEMs, Oracle Cloning and Read-Only

Indifferentiability

Mihir Bellare1(B), Hannah Davis1(B), and Felix Günther2(B)

1 Department of Computer Science and Engineering,
University of California San Diego, San Diego, USA

{mihir,h3davis}@eng.ucsd.edu
2 Department of Computer Science, ETH Zürich, Zürich, Switzerland

mail@felixguenther.info
https://cseweb.ucsd.edu/˜mihir/, https://cseweb.ucsd.edu/˜mihir/,

https://www.felixguenther.info

Abstract. It is convenient and common for schemes in the random ora-
cle model to assume access to multiple random oracles (ROs), leaving
to implementations the task—we call it oracle cloning—of constructing
them from a single RO. The first part of the paper is a case study of oracle
cloning in KEM submissions to the NIST Post-Quantum Cryptography
standardization process. We give key-recovery attacks on some submis-
sions arising from mistakes in oracle cloning, and find other submissions
using oracle cloning methods whose validity is unclear. Motivated by
this, the second part of the paper gives a theoretical treatment of oracle
cloning. We give a definition of what is an “oracle cloning method” and
what it means for such a method to “work,” in a framework we call read-
only indifferentiability, a simple variant of classical indifferentiability that
yields security not only for usage in single-stage games but also in multi-
stage ones. We formalize domain separation, and specify and study many
oracle cloning methods, including common domain-separating ones, giv-
ing some general results to justify (prove read-only indifferentiability of)
certain classes of methods. We are not only able to validate the oracle
cloning methods used in many of the unbroken NIST PQC KEMs, but
also able to specify and validate oracle cloning methods that may be
useful beyond that.

1 Introduction

Theoretical works giving, and proving secure, schemes in the random oracle (RO)
model [11], often, for convenience, assume access to multiple, independent ROs.
Implementations, however, like to implement them all via a single hash function
like SHA256 that is assumed to be a RO.

The transition from one RO to many is, in principle, easy. One can use
a method suggested by BR [11] and usually called “domain separation.” For
example to build three random oracles H1, H2, H3 from a single one, H, define

H1(x) = H(〈1〉‖x), H2(x) = H(〈2〉‖x) and H3(x) = H(〈3〉‖x) , (1)
c© International Association for Cryptologic Research 2020

A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 3–32, 2020.
https://doi.org/10.1007/978-3-030-45724-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_1

4 M. Bellare et al.

where 〈i〉 is the representation of integer i as a bit-string of some fixed length,
say one byte. One might ask if there is justifying theory: a proof that the above
“works,” and a definition of what “works” means. A likely response is that it is
obvious it works, and theory would be pedantic.

If it were merely a question of the specific domain-separation method of
Eq. (1), we’d be inclined to agree. But we have found some good reasons to
revisit the question and look into theoretical foundations. They arise from the
NIST Post-Quantum Cryptography (PQC) standardization process [35].

We analyzed the KEM submissions. We found attacks, breaking some of
them, that arise from incorrect ways of turning one random oracle into many,
indicating that the process is error-prone. We found other KEMs where methods
other than Eq. (1) were used and whether or not they work is unclear. In some
submissions, instantiations for multiple ROs were left unspecified. In others, they
differed between the specification and reference implementation.

Domain separation as per Eq. (1) is a method, not a goal. We identify and
name the underlying goal, calling it oracle cloning—given one RO, build many,
independent ones. (More generally, given m ROs, build n > m ROs.) We give
a definition of what is an “oracle cloning method” and what it means for such
a method to “work,” in a framework we call read-only indifferentiability, a sim-
ple variant of classical indifferentiability [29]. We specify and study many oracle
cloning methods, giving some general results to justify (prove read-only indif-
ferentiability of) certain classes of them. The intent is not only to validate as
many NIST PQC KEMs as possible (which we do) but to specify and validate
methods that will be useful beyond that.

Below we begin by discussing the NIST PQC KEMs and our findings on
them, and then turn to our theoretical treatment and results.

NIST PQC KEMs. In late 2016, NIST put out a call for post-quantum crypto-
graphic algorithms [35]. In the first round they received 28 submissions targeting
IND-CCA-secure KEMs, of which 17 remain in the second round [37].

Recall that in a KEM (Key Encapsulation Mechanism) KE, the encapsulation
algorithm KE.E takes the public key pk (but no message) to return a symmetric
key K and a ciphertext C∗ encapsulating it, (C∗, K) ←$KE.E(pk). Given an
IND-CCA KEM, one can easily build an IND-CCA PKE scheme by hybrid
encryption [18], explaining the focus of standardization on the KEMs.

Most of the KEM submissions (23 in the first round, 15 in the second round)
are constructed from a weak (OW-CPA, IND-CPA, ...) PKE scheme using either
a method from Hofheinz, Hövelmanns and Kiltz (HHK) [24] or a related method
from [21,27,40]. This results in a KEM KE4, the subscript to indicate that it
uses up to four ROs that we’ll denote H1,H2,H3,H4. Results of [21,24,27,40]
imply that KE4 is provably IND-CCA, assuming the ROs H1,H2,H3,H4 are
independent.

Next, the step of interest for us, the oracle cloning: they build the multiple
random oracles via a single RO H , replacing Hi with an oracle F[H](i, ·), where
we refer to the construction F as a “cloning functor,” and F[H] means that F
gets oracle access to H . This turns KE4 into a KEM KE1 that uses only a single

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 5

RO H , allowing an implementation to instantiate the latter with a single NIST-
recommended primitive like SHA3-512 or SHAKE256 [36]. (In some cases, KE1
uses a number of ROs that is more than one but less than the number used by
KE4, which is still oracle cloning, but we’ll ignore this for now.)

Often the oracle cloning method (cloning functor) is not specified in the
submission document; we obtained it from the reference implementation. Our
concern is the security of this method and the security of the final, single-RO-
using KEM KE1. (As above we assume the starting KE4 is secure if its four ROs
are independent.)

Oracle cloning in submissions. We surveyed the relevant (first- and second-
round) NIST PQC KEM submissions, looking in particular at the reference code,
to determine what choices of cloning functor F was made, and how it impacted
security of KE1. Based on our findings, we classify the submissions into groups
as follows.

First is a group of successfully attacked submissions. We discover and specify
attacks, enabled through erroneous RO cloning, on three (first-round) submis-
sions: BIG QUAKE [8], DAGS [7] and Round2 [22]. (Throughout the paper, first-
round submissions are in gray, second-round submissions in bold.) Our attacks
on BIG QUAKE and Round2 recover the symmetric key K from the ciphertext C∗

and public key. Our attack on DAGS succeeds in partial key recovery, recovering
192 bits of the symmetric key. These attacks are very fast, taking at most about
the same time as taken by the (secret-key equipped, prescribed) decryption algo-
rithm to recover the key. None of our attacks needs access to a decryption oracle,
meaning we violate much more than IND-CCA.

Next is submissions with questionable oracle cloning. We put just one in this
group, namely NewHope [2]. Here we do not have proof of security in the ROM
for the final instantiated scheme KE1. We do show that the cloning methods
used here do not achieve our formal notion of rd-indiff security, but this does
not result in an attack on KE1, so we do not have a practical attack either. We
recommend changes in the cloning methods that permit proofs.

Next is a group of ten submissions that use ad-hoc oracle cloning methods—
as opposed, say, to conventional domain separation as per Eq. (1)—but for which
our results (to be discussed below) are able to prove security of the final single-
RO scheme. In this group are BIKE [3], KCL [44], LAC [28], Lizard [16],
LOCKER [4], Odd Manhattan [38], ROLLO-II [30], Round5 [6], SABER [19] and
Titanium [43]. Still, the security of these oracle cloning methods remains brittle
and prone to vulnerabilities under slight changes.

A final group of twelve submissions did well, employing something like Eq. (1).
In particular our results can prove these methods secure. In this group are
Classic McEliece [13], CRYSTALS-Kyber [5], EMBLEM [41], FrodoKEM [34],
HQC [32], LIMA [42], NTRU-HRSS-KEM [25], NTRU Prime [14], NTS-KEM [1],
RQC [31], SIKE [26] and ThreeBears [23].

This classification omits 14 KEM schemes that do not fit the above frame-
work. (For example they do not target IND-CCA KEMs, do not use HHK-style
transforms, or do not use multiple random oracles.)

6 M. Bellare et al.

Lessons and response. We see that oracle cloning is error-prone, and that it
is sometimes done in ad-hoc ways whose validity is not clear. We suggest that
oracle cloning not be left to implementations. Rather, scheme designers should
give proof-validated oracle cloning methods for their schemes. To enable this,
we initiate a theoretical treatment of oracle cloning. We formalize oracle cloning
methods, define what it means for one to be secure, and specify a library of
proven-secure methods from which designers can draw. We are able to justify
the oracle cloning methods of many of the unbroken NIST PQC KEMs. The
framework of read-only indifferentiability we introduce and use for this purpose
may be of independent interest.

The NIST PQC KEMs we break are first-round candidates, not second-round
ones, and in some cases other attacks on the same candidates exist, so one may
say the breaks are no longer interesting. We suggest reasons they are. Their value
is illustrative, showing not only that errors in oracle cloning occur in practice, but
that they can be devastating for security. In particular, the extensive and long
review process for the first-round NIST PQC submissions seems to have missed
these simple attacks, perhaps due to lack of recognition of the importance of
good oracle cloning.

Indifferentiability background. Let SS,ES be sets of functions. (We will
call them the starting and ending function spaces, respectively.) A functor F: SS
→ ES is a deterministic algorithm that, given as oracle a function s ∈ SS, defines
a function F[s] ∈ ES. Indifferentiability of F is a way of defining what it means
for F[s] to emulate e when s, e are randomly chosen from SS,ES, respectively.
It permits a “composition theorem” saying that if F is indifferentiable then use
of e in a scheme can be securely replaced by use of F[s].

Maurer, Renner and Holenstein (MRH) [29] gave the first definition of
indifferentiability and corresponding composition theorem. However, Ristenpart,
Shacham and Shrimpton (RSS) [39] pointed out a limitation, namely that it only
applies to single-stage games. MRH-indiff fails to guarantee security in multi-
stage games, a setting that includes many goals of interest including security
under related-key attack, deterministic public-key encryption and encryption of
key-dependent messages. Variants of MRH-indiff [17,20,33,39] tried to address
this, with limited success.

Rd-indiff. Indifferentiability is the natural way to treat oracle cloning. A
cloning of one function into n functions (n = 4 above) can be captured as a
functor (we call it a cloning functor) F that takes the single RO s and for each
i ∈ [1..n] defines a function F[s](i, ·) that is meant to emulate a RO. We will
specify many oracle cloning methods in this way.

We define in Sect. 4 a variant of indifferentiability we call read-only indif-
ferentiability (rd-indiff). The simulator—unlike for reset-indiff [39]—has access
to a game-maintained state st, but—unlike MRH-indiff [29]—that state is read-
only, meaning the simulator cannot alter it across invocations. Rd-indiff is a
stronger requirement than MRH-indiff (if F is rd-indiff then it is MRH-indiff)
but a weaker one than reset-indiff (if F is reset-indiff then it is rd-indiff). Despite
the latter, rd-indiff, like reset-indiff, admits a composition theorem showing that

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 7

an rd-indiff F may securely substitute a RO even in multi-stage games. (The
proof of RSS [39] for reset-indiff extends to show this.) We do not use reset-
indiff because some of our cloning functors do not meet it, but they do meet
rd-indiff, and the composition benefit is preserved.
General results. In Sect. 4, we define translating functors. These are simply
ones whose oracle queries are non-adaptive. (In more detail, a translating functor
determines from its input W a list of queries, makes them to its oracle and, from
the responses and W , determines its output.) We then define a condition on a
translating functor F that we call invertibility and show that if F is an invertible
translating functor then it is rd-indiff. This is done in two parts, Theorems 1
and 2, that differ in the degree of invertibility assumed. The first, assuming
the greater degree of invertibility, allows a simpler proof with a simulator that
does not need the read-only state allowed in rd-indiff. The second, assuming the
lesser degree of invertibility, depends on a simulator that makes crucial use of
the read-only state. It sets the latter to a key for a PRF that is then used to
answer queries that fall outside the set of ones that can be trivially answered
under the invertibility condition. This use of a computational primitive (a PRF)
in the indifferentiability context may be novel and may seem odd, but it works.

We apply this framework to analyze particular, practical cloning functors,
showing that these are translating and invertible, and then deducing their rd-
indiff security. But the above-mentioned results are stronger and more general
than we need for the application to oracle cloning. The intent is to enable further,
future applications.
Analysis of oracle cloning methods. We formalize oracle cloning as the
task of designing a functor (we call it a cloning functor) F that takes as oracle
a function s ∈ SS in the starting space and returns a two-input function e =
F[s] ∈ ES, where e(i, ·) represents the i-th RO for i ∈ [1..n]. Section 5 presents
the cloning functors corresponding to some popular and practical oracle cloning
methods (in particular ones used in the NIST PQC KEMs), and shows that
they are translating and invertible. Our above-mentioned results allow us to then
deduce they are rd-indiff, which means they are safe to use in most applications,
even ones involving multi-stage games. This gives formal justification for some
common oracle cloning methods. We now discuss some specific cloning functors
that we treat in this way.

The prefix (cloning) functor Fpf(p) is parameterized by a fixed, public vec-
tor p such that no entry of p is a prefix of any other entry of p. Receiving
function s as an oracle, it defines function e = Fpf(p)[s] by e(i, X) = s(p[i]‖X),
where p[i] is the ith element of vector p. When p[i] is a fixed-length bitstring
representing the integer i, this formalizes Eq. (1).

Some NIST PQC submissions use a method we call output splitting. The
simplest case is that we want e(i, ·), . . . , ε(n, ·) to all have the same output
length L. We then define e(i, X) as bits (i − 1)L + 1 through iL of the given
function s applied to X. That is, receiving function s as an oracle, the split-
ting (cloning) functor Fspl returns function e = Fspl[s] defined by e(i, X) =
s(X)[(i − 1)L+1..iL].

8 M. Bellare et al.

An interesting case, present in some NIST PQC submissions, is trivial
cloning: just set e(i, X) = s(X) for all X. We formalize this as the identity
(cloning) functor Fid defined by Fid[s](i, X) = s(X). Clearly, this is not always
secure. It can be secure, however, for usages that restrict queries in some way.
One such restriction, used in several NIST PQC KEMs, is length differentiation:
e(i, ·) is queried only on inputs of some length li, where l1, . . . , ln are chosen
to be distinct. We are able to treat this in our framework using the concept of
working domains that we discuss next, but we warn that this method is brittle
and prone to misuse.

Working domains. One could capture trivial cloning with length differenti-
ation as a restriction on the domains of the ending functions, but this seems
artificial and dangerous because the implementations do not enforce any such
restriction; the functions there are defined on their full domains and it is, appar-
ently, left up to applications to use the functions in a way that does not get them
into trouble. The approach we take is to leave the functions defined on their full
domains, but define and ask for security over a subdomain, which we called
the working domain. A choice of working domain W accordingly parameterizes
our definition of rd-indiff for a functor, and also the definition of invertibility of
a translating functor. Our result says that the identity functor is rd-indiff for
certain choices of working domains that include the length differentiation one.

Making the working domain explicit will, hopefully, force the application
designer to think about, and specify, what it is, increasing the possibility of
staying out of trouble. Working domains also provide flexibility and versatility
under which different applications can make different choices of the domain.

Working domains not being present in prior indifferentiability formalizations,
the comparisons, above, of rd-indiff with these prior formalizations assume the
working domain is the full domain of the ending functions. Working domains
alter the comparison picture; a cloning functor which is rd-indiff on a working
domain may not be even MRH-indiff on its full domain.

Application to KEMs. The framework above is broad, staying in the land of
ROs and not speaking of the usage of these ROs in any particular cryptographic
primitive or scheme. As such, it can be applied to analyze RO instantiation in
many primitives and schemes. In the full version of this paper [10], we exemplify
its application in the realm of KEMs as the target of the NIST PQC designs.

This may seem redundant, since an indifferentiability composition theorem
says exactly that once indifferentiability of a functor has been shown, “all” uses of
it are secure. However, prior indifferentiability frameworks do not consider work-
ing domains, so the known composition theorems apply only when the working
domain is the full one. (Thus the reset-indiff composition theorem of [39] extends
to rd-indiff so that we have security for applications whose security definitions
are underlain by either single or multi-stage games, but only for full working
domains.)

To give a composition theorem that is conscious of working domains, we
must first ask what they are, or mean, in the application. We give a definition of
the working domain of a KEM KE. This is the set of all points that the scheme

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 9

algorithms query to the ending functions in usage, captured by a certain game
we give. (Queries of the adversary may fall outside the working domain.) Then
we give a working-domain-conscious composition theorem for KEMs that says
the following. Say we are given an IND-CCA KEM KE whose oracles are drawn
from a function space KE.FS. Let F: SS → KE.FS be a functor, and let KE be
the KEM obtained by implementing the oracles of the KE via F. (So the oracles
of this second KEM are drawn from the function space KE.FS = SS.) Let W
be the working domain of KE, and assume F is rd-indiff over W. Then KE is
also IND-CCA. Combining this with our rd-indiff results on particular cloning
functors justifies not only conventional domain separation as an instantiation
technique for KEMs, but also more broadly the instantiations in some NIST
PQC submissions that do not use domain separation, yet whose cloning functors
are rd-diff over the working domain of their KEMs. The most important example
is the identity cloning functor used with length differentiation.

A key definitional element of our treatment that allows the above is, follow-
ing [9], to embellish the syntax of a scheme (here a KEM KE) by having it name
a function space KE.FS from which it wants its oracles drawn. Thus, the scheme
specification must say how many ROs it wants, and of what domains and ranges.
In contrast, in the formal version of the ROM in [11], there is a single, scheme-
independent RO that has some fixed domain and range, for example mapping
{0, 1}∗ to {0, 1}. This leaves a gap, between the object a scheme wants and what
the model provides, that can lead to error. We suggest that, to reduce such
errors, schemes specified in standards include a specification of their function
space.

2 Oracle Cloning in NIST PQC Candidates

Notation. A KEM scheme KE specifies an encapsulation KE.E that, on input a
public encryption key pk returns a session key K, and a ciphertext C∗ encapsu-
lating it, written (C∗, K) ←$KE.E(pk). A PKE scheme PKE specifies an encryp-
tion algorithm PKE.E that, on input pk, message M ∈ {0, 1}PKE.ml and random-
ness R, deterministically returns ciphertext C ← PKE.E(pk, M ; R). For neither
primitive will we, in this section, be concerned with the key generation or decap-
sulation/decryption algorithm. We might write KE[X1, X2, . . .] to indicate that
the scheme has oracle access to functions X1, X2, . . ., and correspondingly then
write KE.E[X1, X2, . . .], and similarly for PKE.

2.1 Design Process

The literature [21,24,27,40] provides many transforms that take a public-key
encryption scheme PKE, assumed to meet some weaker-than-IND-CCA notion
of security we denote Spke (for example, OW-CPA, OW-PCA or IND-CPA), and,
with the aid of some number of random oracles, turn PKE into a KEM that is
guaranteed (proven) to be IND-CCA assuming the ROs are independent. We’ll
refer to such transforms as sound. Many (most) KEMs submitted to the NIST

10 M. Bellare et al.

Post-Quantum Cryptography standardization process were accordingly designed
as follows:

(1) First, they specify a Spke-secure public-key encryption scheme PKE.
(2) Second, they pick a sound transform T and obtain KEM KE4[H1,H2,H3,H4]

= T[PKE,H2,H3,H4]. (The notation is from [24]. The transforms use up to
three random oracles that we are denoting H2,H3,H4, reserving H1 for pos-
sible use by the PKE scheme.) We refer to KE4 (the subscript refers to its
using 4 oracles) as the base KEM, and, as we will see, it differs across the
transforms.

(3) Finally—the under-the-radar step that is our concern—the ROs H1, . . . ,H4
are constructed from cryptographic hash functions to yield what we call the
final KEM KE1. In more detail, the submissions make various choices of cryp-
tographic hash functions F1, . . . ,Fm that we call the base functions, and, for
i = 1, 2, 3, 4, specify constructions Ci that, with oracle access to the base
functions, define the Hi, which we write as Hi ← Ci[F1, . . . ,Fm]. We call this
process oracle cloning, and we call Hi the final functions. (Common values
of m are 1, 2.) The actual, submitted KEM KE1 (the subscript because m is
usually 1) uses the final functions, so that its encapsulation algorithm can be
written as:

KE1.E[F1, . . . ,Fm](pk)
For i = 1, 2, 3, 4 do Hi ← Ci[F1, . . . ,Fm]
(C∗, K) ←$KE4.E[H1,H2,H3,H4](pk)
Return (C∗, K)

The question now is whether the final KE1 is secure. We will show that,
for some submissions, it is not. This is true for the choices of base functions
F1, . . . ,Fm made in the submission, but also if these are assumed to be ROs. It is
true despite the soundness of the transform, meaning insecurity arises from poor
oracle cloning, meaning choices of the constructions Ci. We will then consider
submissions for which we have not found an attack. In the latter analysis, we are
willing to assume (as the submissions implicitly do) that F1, . . . ,Fm are ROs,
and we then ask whether the final functions are “close” to independent ROs.

2.2 The Base KEM

We need first to specify the base KE4 (the result of the sound transform, from
step (2) above). The NIST PQC submissions typically cite one of HHK [24],
Dent [21], SXY [40] or JZCWM [27] for the sound transform they use, but our
examinations show that the submissions have embellished, combined or mod-
ified the original transforms. The changes do not (to best of our knowledge)
violate soundness (meaning the used transforms still yield an IND-CCA KE4
if H2,H3,H4 are independent ROs and PKE is Spke-secure) but they make a
succinct exposition challenging. We address this with a framework to unify the

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 11

designs via a single, but parameterized, transform, capturing the submission
transforms by different parameter choices.

Figure 1 (top) shows the encapsulation algorithm KE4.E of the KEM that our
parameterized transform associates to PKE and H1, H2, H3, H4. The parameters
are the variables X, Y, Z (they will be functions of other quantities in the algo-
rithms), a boolean D, and an integer k∗. When choices of these are made, one

Fig. 1. Top: Encapsulation algorithm of the base KEM scheme produced by our
parameterized transform. Bottom: Choices of parameters X,Y, Z,D, k∗ resulting in
specific transforms used by the NIST PQC submissions. Second-round submissions are
in bold, first-round submissions in gray. Submissions using different transforms in the
two rounds appear twice.

12 M. Bellare et al.

gets a fully-specified transform and corresponding base KEM KE4. Each row in
the table in the same Figure shows one such choice of parameters, resulting in
15 fully-specified transforms. The final column shows the submissions that use
the transform.

The encapsulation algorithm at the top of Fig. 1 takes input a public key pk
and has oracle access to functions H1, H2, H3, H4. At line 1, it picks a random
seed M of length the message length of the given PKE scheme. Boolean D being
true (as it is with just one exception) means PKE.E is randomized. In that case,
line 2 applies H2 to X (the latter, determined as per the table, depends on M
and possibly also on pk) and parses the output to get coins R for PKE.E and
possibly (if the parameter k∗ �= 0) an additional string K ′. At line 3, a ciphertext
C is produced by encrypting the seed M using PKE.E with public key pk and
coins R. In some schemes, a second portion of the ciphertext, Y , often called
the “confirmation”, is derived from X or M , using H3, as shown in the table,
and line 4 then defines C∗. Finally, H4 is used as a key derivation function to
extract a symmetric key K from the parameter Z, which varies widely among
transforms.

In total, 26 of the 39 NIST PQC submissions which target KEMs in either
the first or second round use transforms which fall into our framework. The
remaining schemes do not use more than one random oracle, construct KEMs
without transforming PKE schemes, or target security definitions other than
IND-CCA.

2.3 Submissions We Break

We present attacks on BIG QUAKE [8], DAGS [7], and Round2 [22]. These attacks
succeed in full or partial recovery of the encapsulated KEM key from a ciphertext,
and are extremely fast. We have implemented the attacks to verify them.

Although none of these schemes progressed to Round 2 of the competition
without significant modification, to the best of our knowledge, none of the attacks
we described were pointed out during the review process. Given the attacks’
superficiality, this is surprising and suggests to us that more attention should be
paid to oracle cloning methods and their vulnerabilities during review.

Randomness-based decryption. The PKE schemes used by BIG QUAKE and
Round2 have the property that given a ciphertext C ← PKE.E(pk, M ; R) and
also given the coins R, it is easy to recover M , even without knowledge of
the secret key. We formalize this property, saying PKE allows randomness-
based decryption, if there is an (efficient) algorithm PKE.DecR such that
PKE.DecR(pk,PKE.E(pk, M ; R), R) = M for any public key pk, coins R and
message m. This will be used in our attacks.

Attack on BIG QUAKE. The base KEM KE1[H1, H2, H3, H4] is given by the
transform T9 in the table of Fig. 1. The final KEM KE2[F] uses a single func-
tion F to instantiate the random oracles, which it does as follows. It sets
H3 = H4 = F and H2 = W [F] ◦ F for a certain function W (the rejection
sampling algorithm) whose details will not matter for us. The notation W [F]

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 13

meaning that W has oracle access to F . The following attack (explanations
after the pseudocode) recovers the encapsulated KEM key K from ciphertext
C∗ ←$KE1.E[F](pk)—

Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F

1. C‖Y ← C∗ // Parse C∗ to get PKE ciphertext C and Y = H3(M)
2. R ← W [F](Y) // Apply function W [F] to Y to recover coins R
3. M ← PKE.DecR(pk, C, R) // Use randomness-based decryption for PKE
4. K ← F (M) ; Return K

As per T9 we have Y = H3(M) = F (M). The coins for PKE.E are
R = H2(M) = (W [F] ◦ F)(M) = W [F](F (M)) = W [F](Y). Since Y is in the
ciphertext, the coins R can be recovered as shown at line 2. The PKE scheme
allows randomness-based decryption, so at line 3 we can recover the message
M underlying C using algorithm PKE.DecR. But K = H4(M) = F (M), so K
can now be recovered as well. In conclusion, the specific cloning method cho-
sen by BIG QUAKE leads to complete recovery of the encapsulated key from the
ciphertext.
Attack on Round2. The base KEM KE1[H2, H3, H4] is given by the transform
T11 in the table of Fig. 1. The final KEM KE2[F] uses a single base function
F to instantiate the final functions, which it does as follows. It sets H4 = F .
The specification and reference implementation differ in how H2, H3 are defined:
In the former, H2(x) = F (F (x)) ‖ F (x) and H3(x) = F (F (F (x))), while, in the
latter, H2(x) = F (F (F (x))) ‖ F (x) and H3(x) = F (F (X)). These differences
arise from differences in the way the output of a certain function W [F] is parsed.

Our attack is on the reference-implementation version of the scheme. We need
to also know that the scheme sets k∗ so that R‖K ′ ← H2(X) with H2(X) =
F (F (F (X)))‖F (X) results in R = F (F (F (X))). But Y = H3(X) = F (F (X)),
so R = F (Y) can be recovered from the ciphertext. Again exploiting the fact
that the PKE scheme allows randomness-based decryption, we obtain the fol-
lowing attack that recovers the encapsulated KEM key K from ciphertext C∗

←$KE1.E[F](pk)—

Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F

1. C‖Y ← C∗; R ← F (Y)
2. M ← PKE.DecR(pk, C, R) ; K ← F (M) ; Return K

This attack exploits the difference between the way H2, H3 are defined across
the specification and implementation, which may be a bug in the implementa-
tion with regard to the parsing of W [F](x). However, the attack also exploits
dependencies between H2 and H3, which ought not to exist when instantiating
what are required to be distinct random oracles.

Round2 was incorporated into the second-round submission Round5, which
specifies a different base function and cloning functor (the latter of which uses
the secure method we call “output splitting”) to instantiate oracles H2 and H3.
This attack therefore does not apply to Round5.

14 M. Bellare et al.

Attack on DAGS. If x is a byte string we let x[i] be its i-th byte, and if x is a bit
string we let xi be its i-th bit. We say that a function V is an extendable output
function if it takes input a string x and an integer � to return an �-byte output,
and �1 ≤ �2 implies that V (x, �1) is a prefix of V (x, �2). If v = v1v2v3v4v5v6v7v8
is a byte then let Z(v) = 00v3v4v5v6v7v8 be obtained by zeroing out the first
two bits. If y is a string of � bytes then let Z ′(y) = Z(y[1])‖ · · · ‖Z(y[�]). Now let
V ′(x, �) = Z ′(V (x, �)).

The base KEM KE1[H1, H2, H3, H4] is given by the transform T8 in the
table of Fig. 1. The final KEM KE2[V] uses an extendable output function V
to instantiate the random oracles, which it does as follows. It sets H2(x) =
V ′(x, 512) and H3(x) = V ′(x, 32). It sets H4(x) = V (x, 64).

As per T8 we have K = H4(M) and Y = H3(M). Let L be the first 32
bytes of the 64-byte K. Then Y = Z ′(L). So Y reveals 32 · 6 = 192 bits of K.
Since Y is in the ciphertext, this results in a partial encapsulated-key recovery
attack. The attack reduces the effective length of K from 64 · 8 = 512 bits to
512 − 192 = 320 bits, meaning 37.5% of the encapsulated key is recovered. Also
R = H2(M), so Y , as part of the ciphertext, reveals 32 bytes of R, which does
not seem desirable, even though it is not clear how to exploit it for an attack.

2.4 Submissions with Unclear Security

For the scheme NewHope [2], we can give neither an attack nor a proof of secu-
rity. However, we can show that the final functions H2, H3, H4 produced by the
cloning functor FNewHope with oracle access to a single extendable-output func-
tion V are differentiable from independent random oracles. The cloning functor
FNewHope sets H1(x) = V (x, 128) and H4 = V (x, 32). It computes H2 and H3 from
V using the output splitting cloning functor. Concretely, KE2 parses V (x, 96) as
H2(x) ‖ H3(x), where H2 has output length 64 bytes and H3 has output length
32 bytes. Because V is an extendable-output function, H4(x) will be a prefix of
H2(x) for any string x.

We do not know how to exploit this correlation to attack the IND-CCA
security of the final KEM scheme KE2[V], and we conjecture that, due to the
structure of T10, no efficient attack exists. We can, however, attack the rd-
indiff security of functor FNewHope, showing that that the security proof for the
base KEM KE1[H2, H3, H4] does not naturally transfer to KE2[V]. Therefore, in
order to generically extend the provable security results for KE1 to KE2, it seems
advisable to instead apply appropriate oracle cloning methods.

2.5 Submissions with Provable Security but Ambiguous
Specification

In their reference implementations, these submissions use cloning functors which
we can and do validate via our framework, providing provable security in the
random oracle model for the final KEM schemes. However, the submission docu-
ments do not clearly specify a secure cloning functor, meaning that variant imple-
mentations or adaptations may unknowingly introduce weaknesses. The schemes

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 15

BIKE [3], KCL [44], LAC [28], Lizard [16], LOCKER [4], Odd Manhattan [38],
ROLLO-II [30], Round5 [6], SABER [19] and Titanium [43] fall into this group.

Length differentiation. Many of these schemes use the “identity” func-
tor in their reference implementations, meaning that they set the final func-
tions H1 = H2 = H3 = H4 = F for a single base function F . If the scheme
KE1[H1, H2, H3, H4] never queries two different oracles on inputs of a single
length, the domains of H1, . . . , H4 are implicitly separated. Reference imple-
mentations typically enforce this separation by fixing the input length of every
call to F . Our formalism calls this query restriction “length differentiation” and
proves its security as an oracle cloning method. We also generalize it to all meth-
ods which prevent the scheme from querying any two distinct random oracles on
a single input.

In the following, we discuss two schemes from the group, ROLLO-II and
Lizard, where ambiguity about cloning methods between the specification and
reference implementation jeopardizes the security of applications using these
schemes. It will be important that, like BIG QUAKE and RoundTwo, the PKE
schemes defined by ROLLO-II and Lizard allow randomness-based decryption.

The scheme ROLLO-II [30] defines its base KEM KE1[H1, H2, H3, H4] using
the T9 transform from Fig. 1. The submission document states that H1, H2, H3,
and H4 are “typically” instantiated with a single fixed-length hash function F ,
but does not describe the cloning functors used to do so. If the identity functor
is used, so that H1 = H2 = H3 = H4 = F , (or more generally, any functor that
sets H2 = H3), an attack is possible. In the transform T9, both H2 and H3 are
queried on the same input M . Then Y = H3(M) = F (M) = H2(M) = R leaks
the PKE’s random coins, so the following attack will allow total key recovery
via the randomness-based decryption.

Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F

1. C‖Y ← C∗ ; M ← PKE.DecR(pk, C, Y) // (Y = R is the coins)
2. K ← F (M ‖ C ‖ Y) ; Return K

In the reference implementation of ROLLO-II, however, H2 is instantiated
using a second, independent function V instead of F , which prevents the above
attack. Although the random oracles H1, H3 and H4 are instantiated using the
identity functor, they are never queried on the same input thanks to length dif-
ferentiation. As a result, the reference implementation of ROLLO-II is provably
secure, though alternate implementations could be both compliant with the sub-
mission document and completely insecure. The relevant portions of both the
specification and the reference implementation were originally found in the cor-
responding first-round submission (LOCKER).

Lizard [16] also follows transform T9 to produce its base KEM KE1[H2, H3,
H4]. Its submission document suggests instantiation with a single function F as
follows: it sets H3 = H4 = F , and it sets H2 = W ◦ F for some postprocessing
function W whose details are irrelevant here. Since, in T9, Y = H3(M) = F (M)
and R = H2(M) = W ◦ F (M) = W (Y), the randomness R will again be leaked

16 M. Bellare et al.

through Y in the ciphertext, permitting a key-recovery attack using randomness-
based decryption much like the others we have described. This attack is pre-
vented in the reference implementation of Lizard, which instantiates H3 and
H4 using an independent function G. The domains of H3 and H4 are separated
by length differentiation. This allows us to prove the security of the final KEM
KE2[G, F], as defined by the reference implementation.

However, the length differentiation of H3 and H4 breaks down in the chosen-
ciphertext-secure PKE variant specification of Lizard, which transforms KE1.
The PKE scheme, given a plaintext M , computes R = H2(M) and Y = H3(M)
according to T9, but it computes K = H4(M), then includes the value B =
K ⊕ M as part of the ciphertext C∗. Both the identity functor and the functor
used by the KEM reference implementation set H3 = H4, so the following attack
will extract the plaintext from any ciphertext–

Adversary A(pk, C∗) // Input public key and ciphertext
1. C‖B‖Y ← C∗ // Parse C∗ to get Y and B = M ⊕ K
2. M ← Y ⊕ B ; Return M // Y = H3(M) = H4(M) = K is the mask.

The reference implementation of the public-key encryption schemes prevents
the attack by cloning H3 and H4 from G via a third cloning functor, this one
using the output splitting method. Yet, the inconsistency in the choice of cloning
functors between the specification and both implementations underlines that ad-
hoc cloning functors may easily “get lost” in modifications or adaptations of a
scheme.

2.6 Submissions with Clear Provable Security

Here we place schemes which explicitly discuss their methods for domain separa-
tion and follow good practice in their implementations: Classic McEliece [13],
CRYSTALS-Kyber [5], EMBLEM [41], FrodoKEM [34], HQC [32], LIMA [42],
NTRU-HRSS-KEM [25], NTRU Prime [14], NTS-KEM [1], RQC [31], SIKE [26] and
ThreeBears [23]. These schemes are careful to account for dependencies between
random oracles that are considered to be independent in their security mod-
els. When choosing to clone multiple random oracles from a single primitive,
the schemes in this group use padding bytes, deploy hash functions designed
to accommodate domain separation, or restrictions on the length of the inputs
which are codified in the specification. These explicit domain separation tech-
niques can be cast in the formalism we develop in this work.

HQC and RQC are unique among the PQC KEM schemes in that their specifica-
tions warn that the identity functor admits key-recovery attacks. As protection,
they recommend that H2 and H3 be instantiated with unrelated primitives.

Signatures. Although the main focus of this paper is on domain separation
in KEMs, we wish to note that these issues are not unique to KEMs. At least
one digital signature scheme in the second round of the NIST PQC competition,
MQDSS [15], models multiple hash functions as independent random oracles in its

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 17

security proof, then clones them from the same primitive without explicit domain
separation. We have not analyzed the NIST PQC digital signature schemes’
security to see whether more subtle domain separation is present, or whether
oracle collisions admit the same vulnerabilities to signature forgery as they do
to session key recovery. This does, however, highlight that the problem of random
oracle cloning is pervasive among more types of cryptographic schemes.

3 Preliminaries

Basic notation. By [i..j] we abbreviate the set {i, . . . , j}, for integers i ≤ j.
If x is a vector then |x| is its length (the number of its coordinates), x[i] is its
i-th coordinate and [x] = {x[i] : i ∈ [1..|x|]} is the set of its coordinates. The
empty vector is denoted (). If S is a set, then S∗ is the set of vectors over S,
meaning the set of vectors of any (finite) length with coordinates in S. Strings
are identified with vectors over {0, 1}, so that if x ∈ {0, 1}∗ is a string then |x|
is its length, x[i] is its i-th bit, and x[i..j] is the substring from its i-th to its
j-th bit (including), for i ≤ j. The empty string is ε. If x, y are strings then we
write x � y to indicate that x is a prefix of y. If S is a finite set then |S| is its
size (cardinality). A set S ⊆ {0, 1}∗ is length closed if {0, 1}|x| ⊆ S for all x ∈ S.

We let y ← A[O1, . . .](x1, . . . ; r) denote executing algorithm A on inputs
x1, . . . and coins r, with access to oracles O1, . . ., and letting y be the result. We
let y ←$ A[O1, . . .](x1, . . .) be the resulting of picking r at random and letting
y ← A[O1, . . .](x1, . . . ; r). We let OUT(A[O1, . . .](x1, . . .)) denote the set of all
possible outputs of algorithm A when invoked with inputs x1, . . . and access to
oracles O1, Algorithms are randomized unless otherwise indicated. Running
time is worst case. An adversary is an algorithm.

We use the code-based game-playing framework of [12]. A game G (see Fig. 2
for an example) starts with an init procedure, followed by a non-negative number
of additional procedures, and ends with a fin procedure. Procedures are also
called oracles. Execution of adversary A with game G consists of running A with
oracle access to the game procedures, with the restrictions that A’s first call must
be to init, its last call must be to fin, and it can call these two procedures at
most once. The output of the execution is the output of fin. We write Pr[G(A)]
to denote the probability that the execution of game G with adversary A results
in the output being the boolean true. Note that our adversaries have no output.
The role of what in other treatments is the adversary output is, for us, played by
the query to fin. We adopt the convention that the running time of an adversary
is the worst-case time to execute the game with the adversary, so the time taken
by game procedures (oracles) to respond to queries is included.

Functions. As usual g: D → R indicates that g is a function taking inputs
in the domain set D and returning outputs in the range set R. We may denote
these sets by Dom(g) and Rng(g), respectively.

We say that g: Dom(g) → Rng(g) has output length � if Rng(g) = {0, 1}�.
We say that g is a single output-length (sol) function if there is some � such

18 M. Bellare et al.

that g has output length � and also the set D is length closed. We let SOL(D, �)
denote the set of all sol functions g: D → {0, 1}�.

We say g is an extendable output length (xol) function if the following are
true: (1) Rng(g) = {0, 1}∗ (2) there is a length-closed set Dom∗(g) such that
Dom(g) = Dom∗(g)×N (3) |g(x, �)| = � for all (x, �) ∈ Dom(g), and (4) g(x, �) �
g(x, �′) whenever � ≤ �′. We let XOL(D) denote the set of all xol functions
g: D → {0, 1}∗.

4 Read-Only Indifferentiability of Translating Functors

We define read-only indifferentiability (rd-indff) of functors. Then we define a
class of functors called translating, and give general results about their rd-indiff
security. Later we will apply this to analyze the security of cloning functors, but
the treatment in this section is broader and, looking ahead to possible future
applications, more general than we need for ours.

4.1 Functors and Read-Only Indifferentiability

A random oracle, formally, is a function drawn at random from a certain space of
functions. A construction (functor) is a mapping from one such space to another.
We start with definitions for these.
Function spaces and functors. A function space FS is simply a set of func-
tions, with the requirement that all functions in the set have the same domain
Dom(FS) and the same range Rng(FS). Examples are SOL(D, �) and XOL(D).
Now f ←$FS means we pick a function uniformly at random from the set FS.

Sometimes (but not always) we want an extra condition called input inde-
pendence. It asks that the values of f on different inputs are identically and
independently distributed when f ←$FS. More formally, let D be a set and let
Out be a function that associates to any W ∈ D a set Out(W). Let Out(D) be
the union of the sets Out(W) as W ranges over D. Let FUNC(D, Out) be the
set of all functions f : D → Out(D) such that f(W) ∈ Out(W) for all W ∈ D.
We say that FS provides input independence if there exists such a Out such that
FS = FUNC(Dom(FS), Out). Put another way, there is a bijection between FS
and the set S that is the cross product of the sets Out(W) as W ranges over
Dom(FS). (Members of S are |Dom(FS)|-vectors.) As an example the function
space SOL(D, �) satisfies input independence, but XOL(D) does not satisfy input
independence.

Let SS be a function space that we call the starting space. Let ES be another
function space that we call the ending space. We imagine that we are given
a function s ∈ SS and want to construct a function e ∈ ES. We refer to the
object doing this as a functor. Formally a functor is a deterministic algorithm F
that, given as oracle a function s ∈ SS, returns a function F[s] ∈ ES. We write
F: SS → ES to emphasize the starting and ending spaces of functor F.
Rd-indiff. We want the ending function to “emulate” a random function from
ES. Indifferentiability is a way of defining what this means. The original definition

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 19

Fig. 2. Game defining read-only indifferentiability.

of MRH [29] has been followed by many variants [17,20,33,39]. Here we give
ours, called read-only indifferentiability, which implies composition not just for
single-stage games, but even for multi-stage ones [20,33,39].

Let ES and SS be function spaces, and let F: SS → ES be a functor. Our
variant of indifferentiability mandates a particular, strong simulator, which can
read, but not write, its (game-maintained) state, so that this state is a static
quantity. Formally a read-only simulator S for F specifies a setup algorithm
S.Setup which outputs the state, and a deterministic evaluation algorithm S.Ev
that, given as oracle a function e ∈ ES, and given a string st ∈ OUT(S.Setup)
(the read-only state), defines a function S.Ev[e](st, ·): Dom(SS) → Rng(SS).

The intent is that S.Ev[e](st, ·) play the role of a starting function s ∈ SS
satisfying F[s] = e. To formalize this, consider the read-only indifferentiability
game Grd-indiff

F,SS,ES,W,S of Fig. 2, where W ⊆ Dom(ES) is called the working domain.
The adversary A playing this game is called a distinguisher. Its advantage is
defined as

Advrd-indiff
F,SS,ES,W,S(A) = 2 · Pr

[
Grd-indiff

F,SS,ES,W,S(A)
] − 1.

To explain, in the game, b is a challenge bit that the distinguisher is trying to
determine. Function eb is a random member of the ending space ES if b = 0 and
is F[s](·) if b = 1. The query W to oracle priv is required to be in Dom(ES).
The oracle returns the value of eb on W , but only if W is in the working domain,
otherwise returning ⊥. The query U to oracle pub is required to be in Dom(SS).
The oracle returns the value of s on U in the b = 1 case, but when b = 0, the
simulator evaluation algorithm S.Ev must answer the query with access to an
oracle for e0. The distinguisher ends by calling fin with its guess b′ ∈ {0, 1} of
b and the game returns true if b′ = b (the distinguisher’s guess is correct) and
false otherwise.

The working domain W ⊆ Dom(ES), a parameter of the definition, is included
as a way to allow the notion of read-only indifferentiability to provide results
for oracle cloning methods like length differentiation whose security depends on
domain restrictions.

20 M. Bellare et al.

The S.Ev algorithm is given direct access to e0, rather than access to priv as
in other definitions, to bypass the working domain restriction, meaning it may
query e0 at points in Dom(ES) that are outside the working domain.

All invocations of S.Ev[e0] are given the same (static, game-maintained) state
st as input, but S.Ev[e0] cannot modify this state, which is why it is called
read-only. Note init does not return st, meaning the state is not given to the
distinguisher.

Discussion. To compare rd-indiff to other indiff notions, we set W = Dom(ES),
because prior notions do not include working domains. Now, rd-indiff differs
from prior indiff notions because it requires that the simulator state be just
the immutable string chosen at the start of the game. In this regard, rd-indiff
falls somewhere between the original MRH-indiff [29] and reset indiff [39] in the
sense that our simulator is more restricted than in the first and less than in
the second. A construction (functor) that is reset-indiff is thus rd-indiff, but not
necessarily vice-versa, and a construct that is rd-indiff is MRH-indiff, but not
necessarily vice-versa. Put another way, the class of rd-indff functors is larger
than the class of reset-indiff ones, but smaller than the class of MRH-indiff ones.
Now, RSS’s proof [39] that reset-indiff implies security for multi-stage games
extends to rd-indiff, so we get this for a potentially larger class of functors. This
larger class includes some of the cloning functors we have described, which are
not necessarily reset-indiff.

4.2 Translating Functors

Translating functors. We focus on a class of functors that we call translat-
ing. This class includes natural and existing oracle cloning methods, in particular
all the effective methods used by NIST KEMs, and we will be able to prove gen-
eral results for translating functors that can be applied to the cloning methods.

A translating functor T: SS → ES is a functor that, with oracle access to s
and on input W ∈ Dom(ES), non-adaptively calls s on a fixed number of inputs,
and computes its output T[s](W) from the responses and W . Its operation can
be split into three phases which do not share state: (1) a pre-processing phase
which chooses the inputs to s based on W alone (2) the calls to s to obtain
responses (3) a post-processing phase which uses W and the responses collected
in phase 2 to compute the final output value T[s](W).

Proceeding to the definitions, let SS,ES be function spaces. A (SS,ES)-query
translator is a function (deterministic algorithm) QT: Dom(ES) → Dom(SS)∗,
meaning it takes a point W in the domain of the ending space and returns
a vector of points in the domain of the starting space. This models the pre-
processing. A (SS,ES)-answer translator is a function (deterministic algorithm)
AT: Dom(ES) × Rng(SS)∗ → Rng(ES), meaning it takes the original W , and a
vector of points in the range of the starting space, to return a point in the range
of the ending space. This models the post-processing. To the pair (QT,AT), we
associate the functor TFQT,AT: SS → ES, defined as follows:

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 21

Algorithm TFQT,AT[s](W) // Input W ∈ Dom(ES) and oracle s ∈ SS
U ← QT(W)
For j = 1, . . . , |U | do V [j] ← s(U [j]) // U [j] ∈ Dom(SS)
Y ← AT(W,V) ; Return Y

The above-mentioned calls of phase (2) are done in the second line of the code
above, so that this implements a translating functor as we described. Formally
we say that a functor F: SS → ES is translating if there exists a (SS,ES)-query
translator QT and a (SS,ES)-answer translator AT such that F = TFQT,AT.

Inverses. So far, query and answer translators may have just seemed an unduly
complex way to say that a translating oracle construction is one that makes non-
adaptive oracle queries. The purpose of making the query and answer translators
explicit is to define invertibility, which determines rd-indiff security.

Let SS and ES be function spaces. Let QTI be a function (deterministic
algorithm) that takes an input U ∈ Dom(SS) and returns a vector W over
Dom(ES). We allow QTI to return the empty vector (), which is taken as an
indication of failure to invert. Define the support of QTI, denoted sup(QTI), to
be the set of all U ∈ Dom(SS) such that QTI(U) �= (). Say that QTI has full
support if sup(QTI) = Dom(SS), meaning there is no U ∈ Dom(SS) such that
QTI(U) = (). Let ATI be a function (deterministic algorithm) that takes U ∈
Dom(SS) and a vector Y over Rng(ES) to return an output in Rng(SS). Given
a function e ∈ ES, we define the function P[e]QTI,ATI: Dom(SS) → Rng(SS) by

Function P[e]QTI,ATI(U) // U ∈ Dom(SS)
W ← QTI(U) ; Y ← e(W) ; V ← ATI(U,Y) ; Return V

Above, e is applied to a vector component-wise, meaning e(W) is defined as
the vector (e(W [1]), . . . , e(W [|W |])).

We require that the function P[e]QTI,ATI belong to the starting space SS.
Now let QT be a (SS,ES)-query translator and AT a (SS,ES)-answer translator.
Let W ⊆ Dom(ES) be a working domain. We say that QTI,ATI are inverses of
QT,AT over W if two conditions are true. The first is that for all e ∈ ES and
all W ∈ W we have

TFQT,AT[P[e]QTI,ATI](W) = e(W) . (2)

This equation needs some parsing. Fix a function e ∈ ES in the ending space.
Then s = P[e]QTI,ATI is in SS. Recall that the functor F = TFQT,AT takes a
function s in the starting space as an oracle and defines a function e′ = F[s]
in the ending space. Equation (2) is asking that e′ is identical to the original
function e, on the working domain W. The second condition (for invertibility)
is that if U ∈ {QT(W)[i] : W ∈ W}—that is, U is an entry of the vector U
returned by QT on some input W—then QTI(U) �= (). Note that if QTI has
full support then this condition is already true, but otherwise it is an additional
requirement.

22 M. Bellare et al.

Fig. 3. Game defining translation indistinguishability.

Fig. 4. Simulators for Theorem 1 (top) and Theorem 2 (bottom).

We say that (QT,AT) is invertible over W if there exist QTI,ATI such that
QTI,ATI are inverses of QT,AT over W, and we say that a translating functor
TFQT,AT is invertible over W if (QT,AT) is invertible over W.

In the rd-indiff context, function P[e]QTI,ATI will be used by the simulator.
Roughly, we try to set S.Ev[e](st, U) = P[e]QTI,ATI(U). But we will only be able
to successfully do this for U ∈ sup(QTI). The state st is used by S.Ev to provide
replies when U �∈ sup(QTI).

Equation (2) is a correctness condition. There is also a security metric. Con-
sider the translation indistinguishability game Gti

SS,ES,QTI,ATI of Fig. 3. Define the
ti-advantage of adversary B via

Advti
SS,ES,QTI,ATI(B) = 2 · Pr

[
Gti

SS,ES,QTI,ATI(B)
] − 1.

In reading the game, recall that () is the empty vector, whose return by QTI
represents an inversion error. TI-security is thus asking that if e is randomly
chosen from the ending space, then the output of P[e]QTI,ATI on an input U is
distributed like the output on U of a random function in the starting space, but
only as long as QTI(U) was non-empty. We will see that the latter restriction
creates some challenges in simulation whose resolution exploits using read-only

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 23

state. We say that (QTI,ATI) provides perfect translation indistinguishability if
Advti

SS,ES,QTI,ATI(B) = 0 for all B, regardless of the running time of B.
Additionally we of course ask that the functions QT,AT,QTI,ATI all be effi-

ciently computable. In an asymptotic setting, this means they are polynomial
time. In our concrete setting, they show up in the running-time of the simulator
or constructed adversaries. (The latter, as per our conventions, being the time
for the execution of the adversary with the overlying game.)

4.3 Rd-Indiff of Translating Functors

We now move on to showing that invertibility of a pair (QT,AT) implies rd-
indifferentiability of the translating functor TFQT,AT. We start with the case
that QTI has full support.

Theorem 1. Let SS and ES be function spaces. Let W be a subset of Dom(ES).
Let QT,AT be (SS,ES) query and answer translators, respectively. Let QTI,ATI
be inverses of QT,AT over W. Assume QTI has full support. Define read-only
simulator S as per the top panel of Fig. 4. Let F = TFQT,AT. Let A be any
distinguisher. Then we construct a ti-adversary B such that

Advrd-indiff
F,SS,ES,W,S(A) ≤ Advti

SS,ES,QTI,ATI(B) .

Let � be the maximum output length of QT. If A makes qpriv, qpub queries to its
priv,pub oracles, respectively, then B makes � · qpriv + qpub queries to its pub

oracle. The running time of B is about that of A.

Proof (Theorem 1). Consider the games of Fig. 5. In the left panel, line 1 is
included only in G0 and line 2 only in G1, and this is the only way the games
differ. Game G0 is the real game, meaning the case b = 1 in game Grd-indiff

F,SS,ES,W,S. In
game G2, oracle priv is switched to a random function e0. From the description
of the simulator in Fig. 4 we see that

S.Ev[e0](ε, U) = P[e0]QTI,ATI(U)

for all U ∈ Dom(SS) and all e0 ∈ ES, so that oracle pub in game G2 is responding
according to the simulator based on e0. So game G2 is the case b = 0 in game
Grd-indiff

F,SS,ES,W,S. Thus

Advrd-indiff
F,SS,ES,W,S(A) = Pr[G0(A)] − Pr[G2(A)]

= (Pr[G0(A)] − Pr[G1(A)]) + (Pr[G1(A)] − Pr[G2(A)]) .

We define translation-indistinguishability adversary B in Fig. 5 so that

Pr[G0(A)] − Pr[G1(A)] ≤ Advti
SS,ES,QTI,ATI(B) .

Adversary B is playing game Gti
SS,ES,QTI,ATI. Using its pub oracle, it presents

the interface of G0 and G1 to A. In order to simulate the priv oracle, B runs

24 M. Bellare et al.

Fig. 5. Top: Games for proof of Theorem 1. Bottom: Adversary for proof of Theorem 1.

TFQT,AT[pub]. This is consistent with G0 and G1. If b = 1 in Gti
SS,ES,QTI,ATI, then

B perfectly simulates G0 for A. If b = 1, then B correctly simulates G1 for A.
To complete the proof we claim that

Pr[G1(A)] = Pr[G2(A)] .

This is true by the correctness condition. The latter says that if s ← P[e0]QTI,ATI
then F[s] is just e0 itself. So e1 in game G1 is the same as e0 in game G2, making
their priv oracles identical. And their pub oracles are identical by definition. ��
The simulator in Theorem 1 is stateless, so when W is chosen to be Dom(ES)
the theorem is establishing reset indifferentiability [39] of F.

For translating functors where QTI does not have full support, we need an
auxiliary primitive that we call a (SS,ES)-oracle aided PRF. Given an ora-
cle for a function e ∈ ES, an (SS,ES)-oracle aided PRF G defines a function
G[e]: {0, 1}G.kl × Dom(SS) → Rng(SS). The first input is a key. For C an adver-
sary, let Advprf

G,SS,ES(C) = 2 Pr[Gprf
G,SS,ES(C)] − 1, where the game is in Fig. 6. The

simulator uses its read-only state to store a key st for G, then using G(st, ·) to
answer queries outside the support sup(QTI).

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 25

Fig. 6. Game to define PRF security of (SS,ES)-oracle aided PRF G.

We introduce this primitive because it allows multiple instantiations. The
simplest is that it is a PRF, which happens when it does not use its oracle.
In that case the simulator is using a computational primitive (a PRF) in the
indifferentiability context, which seems novel. Another instantiation prefixes st
to the input and then invokes e to return the output. This works for certain
choices of ES, but not always. Note G is used only by the simulator and plays
no role in the functor.

The proof of the following is in [10].

Theorem 2. Let SS and ES be function spaces, and assume they provide input
independence. Let W be a subset of Dom(ES). Let QT,AT be (SS,ES) query
and answer translators, respectively. Let QTI,ATI be inverses of QT,AT over W.
Define read-only simulator S as per the bottom panel of Fig. 4. Let F = TFQT,AT.
Let A be any distinguisher. Then we construct a ti-adversary B and a prf-
adversary C such that

Advrd-indiff
F,SS,ES,W,S(A) ≤ Advti

SS,ES,QTI,ATI(B) + Advprf
G,SS(C) .

Let � be the maximum output length of QT and �′ the maximum output length of
QTI. If A makes qpriv, qpub queries to its priv,pub oracles, respectively, then B
makes �·qpriv+qpub queries to its pub oracle and C makes at most �·�′ ·qpriv+qpub
queries to its RO oracle and at most qpub + � · qpriv queries to its FnO oracle.
The running times of B, C are about that of A.

5 Analysis of Cloning Functors

Section 4 defined the rd-indiff metric of security for functors and give a framework
to prove rd-indiff of translating functors. We now apply this to derive security
results about particular, practical cloning functors.

Arity-n function spaces. The cloning functors apply to function spaces where
a function specifies sub-functions, corresponding to the different random oracles
we are trying to build. Formally, a function space FS is said to have arity n if its
members are two-argument functions f whose first argument is an integer i ∈

26 M. Bellare et al.

[1..n]. For i ∈ [1..n] we let fi = f(i, ·) and FSi = {fi : f ∈ FS}, and refer to the
latter as the i-th subspace of FS. We let Domi(FS) be the set of all X such that
(i, X) ∈ Dom(FS).

We say that FS has sol subspaces if FSi is a set of sol functions with domain
Domi(FS), for all i ∈ [1..n]. More precisely, there must be integers OL1(FS), . . . ,
OLn(FS) such that FSi = SOL(Domi(FS),OLi(FS)) for all i ∈ [1..n]. In this case,
we let Rngi(FS) = {0, 1}OLi(FS). This is the most common case for practical uses
of ROs.

To explain, access to n random oracles is modeled as access to a two-argument
function f drawn at random from FS, written f ←$FS. If FS has sol subspaces,
then for each i, the function fi is a sol function, with a certain domain and
output length depending only on i. All such functions are included. This ensures
input independence as we defined it earlier. Thus if f ←$FS, then for each i
and any distinct inputs to fi, the outputs are independently distributed. Also
functions f1, . . . , fn are independently distributed when f ←$FS. Put another
way, we can identify FS with FS1 × · · · × FSn.

Domain-separating functors. We can now formalize the domain separation
method by seeing it as defining a certain type of (translating) functor.

Let the ending space ES be an arity n function space. Let F: SS → ES be a
translating functor and QT,AT be its query and answer translations, respectively.
Assume QT returns a vector of length 1 and that AT((i, X),V) simply returns
V [1]. We say that F is domain separating if the following is true: QT(i1, X1) �=
QT(i2, X2) for any (i1, X1), (i2, X2) ∈ Dom(ES) that satisfy i1 �= i2.

To explain, recall that the ending function is obtained as e ← F[s], and
defines ei for i ∈ [1..n]. Function ei takes input X, lets (u) ← QT(i, X) and
returns s(u). The domain separation requirement is that if (ui) ← QT(i, Xi)
and (uj) ← QT(j, Xj), then i �= j implies ui �= uj , regardless of Xi, Xj . Thus if
i �= j then the inputs to which s is applied are always different. The domain of
s has been “separated” into disjoint subsets, one for each i.

Practical cloning functors. We show that many popular methods for ora-
cle cloning in practice, including ones used in NIST KEM submissions, can be
cast as translating functors.

In the following, the starting space SS = SOL({0, 1}∗,OL(SS)) is assumed
to be a sol function space with domain {0, 1}∗ and an output length denoted
OL(SS). The ending space ES is an arity n function spaces that has sol subspaces.

Prefixing. Here we formalize the canonical method of domain separation.
Prefixing is used in the following NIST PQC submissions: ClassicMcEliece,
FrodoKEM, LIMA, NTRU Prime, SIKE, QC-MDPC, ThreeBears.

Let p be a vector of strings. We require that it be prefix-free, by which we
mean that i �= j implies that p[i] is not a prefix of p[j]. Entries of this vector will
be used as prefixes to enforce domain separation. One example is that the entries
of p are distinct strings all of the same length. Another is that a p[i] = E(i) for
some prefix-free code E like a Huffman code.

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 27

Assume OLi(ES) = OL(SS) for all i ∈ [1..n], meaning all ending functions
have the same output length as the starting function. The functor Fpf(p): SS →
ES corresponding to p is defined by Fpf(p)[s](i, X) = s(p[i]‖X). To explain,
recall that the ending function is obtained as e ← Fpf(p)[s], and defines ei for
i ∈ [1..n]. Function ei takes input X, prefixes p[i] to X to get a string X ′, applies
the starting function s to X ′ to get Y , and returns Y as the value of ei(X).

We claim that Fpf(p) is a translating functor that is also a domain-separating
functor as per the definitions above. To see this, define query translator QTpf(p)
by QTpf(p)(i, X) = (p[i]‖X), the 1-vector whose sole entry is p[i]‖X. The answer
translator ATpf(p), on input (i, X),V , returns V [1], meaning it ignores i, X and
returns the sole entry in its 1-vector V .

We proceed to the inverses, which are defined as follows:

Algorithm QTIpf(p)(U)
W ← ()
For i = 1, . . . , n do

If p[i] � U then p[i]‖X ← U ; W [1] ← (i, X)
Return W

Algorithm ATIpf(p)(U,Y)
If Y �= () then V ← Y [1]
Else V ← 0OL(SS)

Return V

The working domain is the full one: W = Dom(ES). We now verify Eq. (2).
Let QT,QTI,AT,ATI be QTpf(p),QTIpf(p),ATpf(p),ATIpf(p), respectively. Then
for all W = (i, X) ∈ Dom(ES), we have:

TFQT,AT[P[e]QTI,ATI](W) = P[e]QTI,ATI(p[i]‖X)
= ATI(p[i]‖X, (e(i, X)))
= e(i, X) .

We observe that (QTIpf(p),ATIpf(p)) provides perfect translation indistinguisha-
bility. Since QTIpf(p) does not have full support, we can’t use Theorem 1, but
we can conclude rd-indiff via Theorem 2.

Identity. Many NIST PQC submissions simply let ei(X) = s(X), meaning the
ending functions are identical to the starting one. This is captured by the identity
functor Fid: SS → ES, defined by Fid[s](i, X) = s(X). This again assumes
OLi(ES) = OL(SS) for all i ∈ [1..n], meaning all ending functions have the
same output length as the starting function. This functor is translating, via
QTid(i, X) = X and ATid((i, X),V) = V [1]. It is however not, at least in general,
domain separating.

Clearly, this functor is not, in general, rd-indiff. To make secure use of
it nonetheless, applications can restrict the inputs to the ending functions to
enforce a virtual domain separation, meaning, for i �= j, the schemes never query
ei and ej on the same input. One way to do this is length differentiation. Here,
for i ∈ [1..n], the inputs to which ei is applied all have the same length li, and
l1, . . . , ln are distinct. Length differentiation is used in the following NIST PQC
submissions: BIKE, EMBLEM, HQC, RQC, LAC, LOCKER, NTS-KEM, SABER, Round2,

28 M. Bellare et al.

Round5, Titanium. There are, of course, many other similar ways to enforce the
virtual domain separation.

There are two ways one might capture this with regard to security. One is
to restrict the domain Dom(ES) of the ending space. For example, for length
differentiation, we would require that there exist distinct l1, . . . , ln such that for
all (i, X) ∈ Dom(ES) we have |X| = li. For such an ending space, the identity
functor would provide security. The approach we take is different. We don’t
restrict the domain of the ending space, but instead define security with respect
to a subdomain, which we called the working space, where the restriction is
captured. This, we believe, is better suited for practice, for a few reasons. One
is that a single implementation of the ending functions can be used securely
in different applications that each have their own working domain. Another
is that implementations of the ending functions do not appear to enforce any
restrictions, leaving it up to applications to figure out how to securely use the
functions. In this context, highlighting the working domain may help application
designers think about what is the working domain in their application and make
this explicit, which can reduce error.

But we warn that the identity functor approach is more prone to misuse and
in the end more dangerous and brittle than some others.

As per the above, inverses can only be given for certain working domains.
Let us say that W ⊆ Dom(ES) separates domains if for all (i1, X1), (i2, X2) ∈ W
satisfying i1 �= i2, we have X1 �= X2. Put another way, for any (i, X) ∈ W
there is at most one j such that X ∈ Domj(ES). We assume an efficient inverter
for W. This is a deterministic algorithm InW that on input X ∈ {0, 1}∗ returns
the unique i such that (i, X) ∈ W if such an i exists, and otherwise returns ⊥.
(The uniqueness is by the assumption that W separates domains.)

As an example, for length differentiation, we pick some distinct integers
l1, . . . , ln such that {0, 1}li ⊆ Domi(ES) for all i ∈ [1..n]. We then let W =
{(i, X) ∈ Dom(ES) : |X| = li}. This separates domains. Now we can define
InW(X) to return the unique i such that |X| = li if |X| ∈ {l1, . . . , ln}, otherwise
returning ⊥.

The inverses are then defined using InW , as follows, where U ∈ Dom(SS) =
{0, 1}∗:

Algorithm QTIid(U)
W ← () ; i ← InW(U)
If i �= ⊥ then W [1] ← (i, U)
Return W

Algorithm ATIid(U,Y)
If Y �= () then V ← Y [1]
Else V ← 0OL(SS)

Return V

The correctness condition of Eq. (2) over W is met, and since InW(X)
never returns ⊥ for X ∈ W, the second condition of invertibility is also met.
(QTIid,ATIid) provides perfect translation indistinguishability. Since QTIid does
not have full support, we can’t use Theorem 1, but we can conclude rd-indiff via
Theorem 2.

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 29

Fig. 7. Adversary against the rd-indiff security of FNewHope.

Output-splitting. We formalize another method that we call output splitting.
It is used in the following NIST PQC submissions: FrodoKEM, NTRU-HRSS-KEM,
Odd Manhattan,QC-MDPC, Round2, Round5.

Let �i = OL1(ES)+ · · ·+OLi(ES) for i ∈ [1..n]. Let � = OL(SS) be the output
length of the sol functions s ∈ SS, and assume � = �n. The output-splitting
functor Fspl: SS → ES is defined by Fspl[s](i, X) = s(X)[�i−1 +1..�i]. That is,
if e ← Fspl[s], then ei(X) lets Z ← s(X) and then returns bits �i−1+1 through
�i of Z. This functor is translating, via QTspl(i, X) = X and ATspl((i, X),V) =
V [1][�i−1+1..�i]. It is however not domain separating.

The inverses are defined as follows, where U ∈ Dom(SS) = {0, 1}∗:

Algorithm QTIspl(U)
For i = 1, . . . , n do W [i] ← (i, U)
Return W

Algorithm ATIspl(U,Y)
V ← Y [1]‖ · · · ‖Y [n]
Return V

The correctness condition of Eq. (2) over W = ES is met, and (QTIspl,ATIspl)
provides perfect translation indistinguishability. Since QTIspl has full support,
we can conclude rd-indiff via Theorem 1.

Rd-indiff of NewHope. We next demonstrate how read-only indifferentiability
can highlight subpar methods of oracle cloning, using the example of NewHope [2].
The base KEM KE1 defined in the specification of NewHope relies on just two
random oracles, G and H4. (The base scheme defined by transform T10, which
uses 3 random oracles H2, H3, and H4, is equivalent to KE1 and can be obtained
by applying the output-splitting cloning functor to instantiate H2 and H3 with
G. NewHope’s security proof explicitly claims this equivalence [2].)

The final KEM KE2 instantiates these two functions through SHAKE256
without explicit domain separation, setting H4(X) = SHAKE256(X, 32) and
G(X) = SHAKE256(X, 96). For consistency with our results, which focus on sol
function spaces, we model SHAKE256 as a random member of a sol function
space SS with some very large output length L, and assume that the adversary
does not request more than L bits of output from SHAKE256 in a single call.
We let ES be the arity-2 sol function space defining sub-functions G and H4. In
this setting, the cloning functor FNewHope : SS → ES used by NewHope is defined
by FNewHope[s](1, X) = s(X)[1..256] and FNewHope[s](2, X) = s(X)[1..768]. We will
show that this functor cannot achieve rd-indiff for the given oracle spaces and
the working domain W = {0, 1}∗. In Fig. 7, we give an adversary A which has
high advantage in the rd-indiff game Grd-indiff

FNewHope,SS,ES,W,S for any indifferentiability

30 M. Bellare et al.

simulator S. When b = 1 in game Grd-indiff
FNewHope,SS,ES,W,S, we have that

yd[1..256] = FNewHope[s](d, 0)[1..256] = s(0)[1..256] = y[1..256],

so adversary A will always call fin on the bit 1 and win. When b = 0 in game
Grd-indiff

FNewHope,SS,ES,W,S, the two strings y1 = e0(1, X) and y2 = e0(2, X) will have
different 256-bit prefixes, except with probability ε = 2−256. Therefore, when A
queries pub(0), the simulator’s response y can share the prefix of most one of the
two strings y1 and y2. Its response must be independent of d, which is not chosen
until after the query to pub, so Pr[y[1..256] = yd[1..256]] ≤ 1/2 + ε, regardless of
the behavior of S. Hence, A breaks the indifferentiability of QNewHope with prob-
ability roughly 1/2, rendering NewHope’s random oracle functor differentiable.

The implication of this result is that NewHope’s implementation differs notice-
ably from the model in which its security claims are set, even when SHAKE256 is
assumed to be a random oracle. This admits the possibility of hash function col-
lisions and other sources of vulnerability that are not eliminated by the security
proof. To claim provable security for NewHope’s implementation, further justifica-
tion is required to argue that these potential collisions are rare or unexploitable.
We do not claim that an attack on read-only indifferentiability implies an attack
on the IND-CCA security of NewHope, but it does highlight a gap that needs to
be addressed. Read-only indifferentiability constitutes a useful tool for detecting
such gaps and measuring the strength of various oracle cloning methods.

Acknowledgments. The authors were supported in part by NSF grant CNS-1717640
and a gift from Microsoft. Günther was additionally supported by Research Fellowship
grant GU 1859/1-1 of the German Research Foundation (DFG).

References
1. Albrecht, M., Cid, C., Paterson, K.G., Tjhai, C.J., Tomlinson, M.: NTS-KEM.

NIST PQC Round 2 Submission (2019)
2. Alkim, E., et al.: NewHope: algorithm specifications and supporting documenta-

tion. NIST PQC Round 2 Submission (2019)
3. Aragon, N., et al.: BIKE: bit flipping key encapsulation. NIST PQC Round 2

Submission (2019)
4. Aragon, N., et al.: LOCKER: low rank parity check codes encryption. NIST PQC

Round 1 Submission (2017)
5. Avanzi, R., et al.: CRYSTALS-Kyber: algorithm specifications and supporting doc-

umentation. NIST PQC Round 2 Submission (2019)
6. Baan, H., et al.: Round5: KEM and PKE based on (ring) learning with rounding.

NIST PQC Round 2 Submission (2019)
7. Banegas, G., et al.: DAGS: key encapsulation from dyadic GS codes. NIST PQC

Round 1 Submission (2017)
8. Bardet, M., et al.: BIG QUAKE: binary goppa quasi-cyclic key encapsulation.

NIST PQC Round 1 Submission (2017)
9. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and

its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016,
Part I. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49890-3 22

https://doi.org/10.1007/978-3-662-49890-3_22
https://doi.org/10.1007/978-3-662-49890-3_22

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 31

10. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability. Cryptology ePrint Archive (2020)

11. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

12. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

13. Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryptography.
NIST PQC Round 2 Submission (2019)

14. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime. NIST PQC Round 2 Submission (2019)

15. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: MQDSS
specifications. NIST PQC Round 2 Submission (2019)

16. Cheon, J.H., et al.: Lizard public key encryption. NIST PQC Round 1 Submission
(2017)

17. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

19. D’Anvers, J.-P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER: Mod-LWR
based KEM. NIST PQC Round 2 Submission (2019)

20. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
664–683. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 39

21. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40974-8 12

22. Garcia-Morchon, O., Zhang, Z.: Round2: KEM and PKE based on GLWR. NIST
PQC Round 1 Submission (2017)

23. Hamburg, M.: Post-quantum cryptography proposal: ThreeBears. NIST PQC
Round 2 Submission (2019)

24. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2 12

25. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-HRSS-KEM: algo-
rithm specifications and supporting documentations. NIST PQC Round 1 Submis-
sion (2017)

26. Jao, D., et al.: Supersingular isogeny key encapsulation. NIST PQC Round 2 Sub-
mission (2019)

27. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 96–125.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 4

28. Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z.: LAC: Lattice-based cryptosys-
tems. NIST PQC Round 2 Submission (2019)

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-540-40974-8_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-96878-0_4

32 M. Bellare et al.

29. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

30. Melchor, C.A., et al.: ROLLO: rank-ouroboros, LAKE, & LOCKER. NIST PQC
Round 2 Submission (2018)

31. Melchor, C.A., et al.: Rank quasi-cyclic (RQC). NIST PQC Round 2 Submission
(2019)

32. Melchor, C.A., et al.: Hamming quasi-cyclic (HQC). NIST PQC Round 2 Submis-
sion (2019)

33. Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 33

34. Naehrig, M., et al.: FrodoKEM: learning with errors key encapsulation. NIST PQC
Round 2 Submission (2019)

35. NIST. Post-Quantum Cryptography Standardization Process. https://csrc.nist.
gov/projects/post-quantum-cryptography

36. NIST. Federal Information Processing Standard 202, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, August 2015

37. NIST. PQC Standardization Process: Second Round Candidate Announcement,
January 2019. https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-
round-candidates

38. Plantard, T.: Odd Manhattan’s algorithm specifications and supporting documen-
tation. NIST PQC Round 1 Submission (2017)

39. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

40. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 520–551. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 17

41. Seo, M., Park, J.H., Lee, D.H., Kim, S., Lee, S.-J.: Proposal for NIST post-quantum
cryptography standard: EMBLEM and R.EMBLEM. NIST PQC Round 1 Submis-
sion (2017)

42. Smart, N.P., et al.: LIMA: a PQC encryption scheme. NIST PQC Round 1 Sub-
mission (2017)

43. Steinfeld, R., Sakzad, A., Zhao, R.K.: Titanium: proposal for a NIST post-quantum
public-key encryption and KEM standard. NIST PQC Round 1 Submission (2017)

44. Zhao, Y., Jin, Z., Gong, B., Sui, G.: A modular and systematic approach to key
establishment and public-key encryption based on LWE and its variants. NIST
PQC Round 1 Submission (2017)

https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-55220-5_33
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates
https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-319-78372-7_17

On the Memory-Tightness of Hashed
ElGamal

Ashrujit Ghoshal(B) and Stefano Tessaro(B)

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA

{ashrujit,tessaro}@cs.washington.edu

Abstract. We study the memory-tightness of security reductions in
public-key cryptography, focusing in particular on Hashed ElGamal. We
prove that any straightline (i.e., without rewinding) black-box reduction
needs memory which grows linearly with the number of queries of the
adversary it has access to, as long as this reduction treats the underly-
ing group generically. This makes progress towards proving a conjecture
by Auerbach et al. (CRYPTO 2017), and is also the first lower bound
on memory-tightness for a concrete cryptographic scheme (as opposed
to generalized reductions across security notions). Our proof relies on
compression arguments in the generic group model.

Keywords: Public-key cryptography · Memory-tightness · Lower
bounds · Generic group model · Foundations · Compression arguments

1 Introduction

Security proofs rely on reductions, i.e., they show how to transform an adversary
A breaking a scheme into an adversary B solving some underlying assumed-to-
be-hard problem. Generally, the reduction ought to be tight – the resources used
by B, as well as the attained advantage, should be as close as possible to those of
A. Indeed, the more resources B needs, or the smaller its advantage, the weaker
the reduction becomes.

Auerbach et al. [2] were the first to explicitly point out that memory resources
have been ignored in reductions, and that this leads to a loss of quality in security
results. Indeed, it is conceivable that A’s memory is naturally bounded (say, at
most 264 bits), and the underlying problem is very sensitive to memory. For
example, the best-known algorithm for discrete logarithms in a 4096-bit prime
field runs in time (roughly) 2156 using memory 280. With less memory, the best
algorithm is the generic one, requiring time Θ(

√
p) ≈ 22048. Therefore, if B also

uses memory at most 264, we can infer a larger lower bound on the necessary
time complexity for A to break the scheme, compared to the case where B uses
2100 bits instead.

What can be memory-tight? One should therefore target reductions that
are memory-tight, i.e., the memory usage of B is similar to that of A.1 The work
1 Generally, B = RA for a black-box reduction R, and one imposes the slightly stronger

requirement that R uses small memory, independent of that of A.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 33–62, 2020.
https://doi.org/10.1007/978-3-030-45724-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_2

34 A. Ghoshal and S. Tessaro

of Auerbach et al. [2], and its follow-up by Wang et al. [13], pioneered the study
of memory-tight reductions. In particular, and most relevant to this work, they
show negative results (i.e., that certain reductions cannot be memory tight) using
streaming lower bounds.

Still, these lower bounds are tailored at general notions (e.g., single- to multi-
challenge reductions), and lower bounds follow from a natural connection with
classical frequency problems on streams. This paper tackles the more ambi-
tious question of proving impossibility of memory-tight reductions for concrete
schemes, especially those based on algebraic structures. This was left as an open
problem by prior works.

Hashed ElGamal. Motivated by a concrete open question posed in [2], we
consider here the CCA-security of Hashed ElGamal. In its KEM variant, the
scheme is based on a cyclic group G = 〈g〉 – the secret key sk is a random
element from Z|G|, whereas the public key is pk = gsk. Then, encapsulation
produces a ciphertext-key pair

C ← gr , K ← H(pkr).

for r ← Z|G| and a hash function H : G → {0, 1}�. Decapsulation occurs by
computing K ← H(Csk).

The CCA-security of Hashed ElGamal in the random-oracle model was
proved by Abdalla, Bellare, and Rogaway [1] based on the Strong Diffie-Hellman
(SDH) assumption (also often called GapDH), and we briefly review the proof.2

First, recall that in the SDH assumption, the attacker is asked to compute guv

from gu and gv, given additionally access to a decision oracle Ov which on input
h, y ∈ G, tells us whether hv = y.

The reduction sets the Hashed ElGamal public-key to pk = gv (setting implic-
itly sk = v), the challenge ciphertext to be C∗ = gu, and the corresponding key
K∗ to be a random string. Then, it simulates both the random oracle and the
decapsulation oracle to the adversary A (which is run on inputs pk, C∗ and K∗),
until a random-oracle query for guv is made (this can be detected using the Ov

oracle). The challenge is to simulate both oracles consistently: As the reduction
cannot compute discrete logarithms, it uses the oracle Ov to detect whether a
random-oracle query X and a decapsulation query Ci satisfy Ov(Ci,X) = true,
and, if this is the case, answers them with the same value.

This reduction requires memory to store all prior decapsulation and random-
oracle queries. Unlike other reductions, the problem here is not to store the
random-oracle output values (which could be compressed using a PRF), but
the actual inputs to these queries, which are under adversarial control. This
motivates the conjecture that a reduction using little memory does not exist,
but the main challenge is of course to prove this is indeed the case.
2 Abdalla et al. [1] do not phrase their paper in terms of the KEM/DEM paradigm

[6,12], which was introduced concurrently – instead, they prove that an intermediate
assumption, called Oracle Diffie-Hellman (ODH), follows from SDH in the ROM.
However, the ODH assumption is structurally equivalent to the CCA security of
Hashed ElGamal KEM for one challenge ciphertext.

On the Memory-Tightness of Hashed ElGamal 35

Our result, in summary. We provide a memory lower bound for reductions
that are generic with respect to the underlying group G. Specifically, we show
the existence of an (inefficient) adversary A in the generic group model (GGM)
which breaks the CCA security of Hashed ElGamal via O(k) random oracle/de-
capsulation queries, but such that no reduction using less than k · λ bits of
memory can break the SDH assumption even with access to A, where λ is the
bit-size of the underlying group elements.

Our lower bound is strong in that it shows we do not even have a trade-off
between advantage and memory, i.e., if the memory is smaller than k ·λ, then the
advantage is very small, as long as the reduction makes a polynomial number of
queries to Ov and to the generic group oracle. It is however also important to
discuss two limitations of our lower bound. The first one is that the reduction
– which receives g, gv in the SDH game – uses pk = gv as the public key to the
Hashed ElGamal adversary. The second one is that the reduction is straightline,
i.e., it does not perform any rewinding.

We believe that our impossibility result would extend even when the reduc-
tion is not straightline. However, allowing for rewinding appears to be out of
reach of our techniques. Nonetheless, we do conjecture a lower bound on the
memory of Ω(k log k) bits, and discuss the reasoning behind our conjecture in
detail in the full version.

We stress that our result applies to reductions in the GGM, but treats the
adversary as a black box. This captures reductions which are black-box in their
usage of the group and the adversary. (In particular, the reduction cannot see
generic group queries made by the adversary, as in a GGM security proofs.)
Looking at the GGM reduces the scope of our result. However, it is uncommon
for reductions to depend on the specifics of the group, although our result can
be bypassed for specific groups, e.g., if the group has a pairing.

Concurrent related work. Concurrently to our work, Bhattacharyya [4]
provides memory-tight reductions of KEM-CCA security for variants of Hashed
ElGamal. At first glance, the results seem to contradict ours. However, they
are entirely complementary – for example, a first result shows a memory tight
reduction for the KEM-CCA security of the “Cramer-Shoup” variant of Hashed
ElGamal – this variant differs from the (classical) Hashed ElGamal we consider
here and is less efficient. The second result shows a memory-tight reduction for
the version considered in this paper, but assumes that the underlying group has
a pairing. This is a good example showing our result can be bypassed for specific
groups i.e. groups with pairings, but we also note that typical instantiations of
the scheme are on elliptic curves for which no pairing exists.

1.1 Our Techniques

We give a high-level overview of our techniques here. We believe some of these
to be novel and of broader interest in providing other impossibility results.

36 A. Ghoshal and S. Tessaro

The shuffling game. Our adversary against Hashed ElGamal3 A first
attempts to detect whether the reduction is using a sufficient amount of memory.
The adversary A is given as input the public key gv, as well as gu, as well as a
string C∗ ∈ {0, 1}�, which is either a real encapsulation or a random string. It
first samples k values i1, . . . , ik from Zp. It then:

(1) Asks for decapsulation queries for Cj ← gij , obtaining values Kj , for j ∈ [k]
(2) Picks a random permutation π : [k] → [k].
(3) Asks for RO queries for Hj ← H(Vj) for j ∈ [k], where Vj ← gv·iπ(j) .

After this, the adversary checks whether Kj = Hπ(j) for all j ∈ [k], and if so, it
continues its execution, breaking the ODH assumption (inefficiently). If not, it
just outputs a random guess.

The intuition here is that no reduction using substantially less than k · log p
bits succeeds in passing the above test – in particular, because the inputs Cj

and Vj are (pseudo-)random, and thus incompressible. If the test does not pass,
the adversary A is rendered useless, and thus not helpful to break SDH.

Remark 1. The adversary here is described in a way that requires secret ran-
domness, not known to the reduction, and it is easier to think of A in this way.
We will address in the body how to generically make the adversary deterministic.

Remark 2. We stress that this adversary requires memory – it needs to remember
the answers C1, . . . , Ck. However, recall that we adopt a black-box approach to
memory-tightness, where our requirement is that the reduction itself uses little
memory, regardless of the memory used by the adversary. We also argue this is
somewhat necessary – it is not clear how to design a reduction which adapts its
memory usage to the adversary, even if given this information in a non-black-box
manner. Also, we conjecture different (and much harder to analyze) memory-
less adversaries exist enabling a separation. An example is multi-round variant,
where each round omits (2), and (3) only asks a single query H(Vj) for a random
j ←$ [k], and checks consistency. Intuitively, the chance of passing each round is
roughly k log p/s, but we do not know how to make this formal.

Introducing the GGM. Our intuition is however false for an arbitrary group.
For instance, if the discrete logarithm (DL) problem is easy in the group, then
the reduction can simply simulate the random oracle via a PRF, as suggested
in [2]. Ideally, we could prove that if the DL problem is hard in G, then any
PPT reduction given access to A and with less than k · log p bits of memory
fails to break SDH.4 Unfortunately, it will be hard to capture a single hardness
property of G sufficient for our proof to go through. Instead, we will model the
group via the generic group model (GGM) [9,11]: We model a group of prime
3 The paper will in fact use the cleaner formalization of the ODH assumption, so we

stick to Hashed ElGamal only in the introduction.
4 This statement is somewhat confusing, so note that in general, the existence of a

reduction is not a contradiction with the hardness of DL, as the reduction is meant
to break SDH only given access to an adversary breaking the scheme, and this does
not imply the ability to break SDH without access to the adversary.

On the Memory-Tightness of Hashed ElGamal 37

order p defined via a random injection σ : Zp → L. An algorithm in the model
typically has access to σ(1) (in lieu of g) and an evaluation oracle which on input
a,b ∈ L returns σ(σ−1(a) + σ−1(b)). (We will keep writing gi instead of σ(i) in
the introduction, for better legibility.)

The permutation game. In order to fool A, the reduction can learn informa-
tion about π via the Ov oracle. For example, it can try to input Cj = gij and
Vj′ = gviπ(j′) (both obtained from A’s queries), and Ov(Cj , Vj′) = true if and only
if π(j′) = j. More generally, the reduction can compute, for any �a = (a1, . . . , ak)
and �b = (b1, . . . , bk),

C∗ = g
∑k

j=1 ajij =
k∏

j=1

C
aj

j , V ∗ = g
∑k

j=1 bjv·iπ(j) =
k∏

j=1

V
bj

j ,

and the query Ov(C∗, V ∗) returns true iff bj = aπ(j) for all j ∈ [k], which we
write as �b = π(�a). We abstract this specific strategy in terms of an information-
theoretic game – which we refer to as the permutation game – which gives the
adversary access to an oracle O which takes as inputs pairs of vectors (�a,�b) from
Z

k
p, and returns true iff �b = π(�a) for a secret permutation π. The goal of the

adversary is to recover π.
Clearly, a strategy can win with O(k2) oracle queries (�ei, �ej) for all i, j, where

�ei ∈ Z
k
p is the unit vector with a 1 in the i-th coordinate, and 0 elsewhere. This

strategy requires in particular querying, in its first component, vectors which
have rank k. Our first result will prove that this is necessary – namely, assume
that an adversary makes a sequence of q queries (�x1, �y1), . . . , (�xq, �yq) such that
the rank of �x1, . . . , �xp is at most �, then the probability to win the permutation
game is of the order O(q�/k!). We will prove this via a compression argument.

Note that roughly, this bound tells us that to win with probability ε and q
queries to the oracle, the attacker needs

� = Ω

(
k log k − log(1/ε)

log(q)

)
.

A reduction to the permutation game. We will think of the execution
of the reduction against our adversary as consisting of two stages – we refer to
them as R1 and R2. The former learns the decapsulation queries gi1 , . . . , gik ,
whereas the latter learns the RO queries giπ(1)v, . . . , giπ(k)v, and (without loss of
generality) attempts to guess the permutation π. We will lower bound the size of
the state φ that R1 passes on to R2. Both stages can issue Ov and Eval queries.

Note that non-trivial Ov queries (i.e., those revealing some information about
the permutation), are (except with very small probability) issued by R2, since no
information about π is ever revealed to R1. As one of our two key steps, we will
provide a reduction from the execution of R1,R2 against A in the GGM to the
permutation game – i.e., we build an adversary D for the latter game simulating
the interaction between R1,R2 and A, and such that R1,R2 “fooling” A results
in D guessing the permutation.

38 A. Ghoshal and S. Tessaro

Memory vs. rank. The main question, however, is to understand the com-
plexity of D in the permutation game, and in particular, the rank � of the first
component of its queries – as we have seen above, this affects its chance of
winning the game.

To do this, we will take a slight detour, and specifically consider a set Z ⊆ L
of labels (i.e., outputs of σ) that the reduction R2 comes up with (as inputs to
either of Eval or Ov) on its own (in the original execution), i.e., no earlier Eval
query of R2 returned them, and that have been previously learnt by R1 as an
output of its Eval queries. (The actual definition of Z is more subtle, and this is
due to the ability of the adversary to come up with labels without knowing the
corresponding pre-image.)

Then, we will show two statements about Z:

(i) On the one hand, we show that the rank � of the oracle queries of the
adversary D is upper bound by |Z| in its own simulation of the execution
of R1,R2 with A.

(ii) On the other hand, via a compression argument, we prove that the size of
Z is related to the length of φ, and this will give us our final upper bound.

This latter statement is by itself not very surprising – one can look at the execu-
tion of R2, and clearly every label in Z that appears “magically” in the execution
must be the result of storing them into the state φ. What makes this different
from more standard compression arguments is the handling of the generic group
model oracle (which admits non-trivial operations). In particular, our compres-
sion argument will compress the underlying map σ, and we will need to be able
to figure out the pre-images of these labels in Z. We give a very detailed technical
overview in the body explaining the main ideas.

Memory-Tight AGM Reduction. The Algebraic Group Model (AGM) was
introduced in [8]. AGM reductions make strong extractability assumptions, and
the question of their memory-tightness is an interesting one. In the full version we
construct a reduction to the discrete logarithm problem that runs an adversary
against the KEM-CCA security of Hashed ElGamal in the AGM such that the
reduction is memory-tight but not tight with respect to advantage. We note
that the model of our reduction is different than a (full-fledged) GGM reduction
which is not black-box, in that it can observe the GGM queries made by the
adversary. Our result does not imply any impossibility for these. In turn, AGM
reductions are weaker, but our results do not imply anything about them, either.

2 Preliminaries

In this section, we review the formal definition of the generic group model. We
also state ODH and SDH as introduced in [1] in the generic group model.

Notation. Let N = {0, 1, 2, · · · } and, for k ∈ N, let [k] = {1, 2, · · · , k}. We
denote by InjFunc(S1, S2) the set of all injective function from S1 to S2.

We also let ∗ denote a wildcard element. For example ∃t : (t, ∗) ∈ T is true
if the set T contains an ordered pair whose first element is t (the type of the

On the Memory-Tightness of Hashed ElGamal 39

wildcard element shall be clear from the context). Let Sk denote the set of all
permutations on [k]. We use f : D → R ∪ {⊥} to denote a partial function,
where f(x) = ⊥ indicates the value of f(x) is undefined. Define in particular
D(f) = {d ∈ D : f(d) �= ⊥} and R(f) = {r ∈ R : ∃d ∈ D : σ(d) = r}.
Moreover, we let D(f) = D \ D(f) and R(f) = R \ R(f).

We shall use pseudocode descriptions of games inspired by the code-based
framework of [3]. The output of a game is denoted using the symbol ⇒. In all
games we assume the flag bad is set to false initially. In pseudocode, we denote
random sampling using ←$, assignment using ← and equality check using =. In
games that output boolean values, we use the term“winning” the game to mean
that the output of the game is true.

We also introduce some linear-algebra notation. Let S be a set vectors with
equal number of coordinates. We denote the rank and the linear span of the
vectors by rank(S) and span(S) respectively. Let �x, �y be vectors of dimension k.
We denote �z of dimension 2k which is the concatenation of �x, �y as �z = (�x, �y).
We denote the element at index i of a vector �x as �x[i].

2.1 Generic Group Model

The generic group model [11] captures algorithms that do not use any special
property of the encoding of the group elements, other than assuming every
element of the group has a unique representation, and that the basic group
operations are allowed. This model is useful in proving lower bounds for some
problems, but we use it here to capture reductions that are not specific to the
underlying group.

More formally, let the order of the group be a large prime p. Let Zp =
{0, 1, 2, · · · , p − 1}. Let L ⊂ {0, 1}∗ be a set of size p, called the set of labels. Let
σ be a random injective mapping from Zp to L. The idea is that now every group
element in Zp is represented by a label in L. An algorithm in this model takes
as input σ(1), σ(x1), σ(x2), · · · , σ(xn) for some x1, · · · , xn ∈ Zp (and possibly
other inputs which are not group elements). The algorithm also has access to
an oracle named Eval which takes as input two labels a,b ∈ L and returns c =
σ(σ−1(a)+σ−1(b)). Note that for any d, given σ(xi), σ(d ·xi) can be computed
using O(log d) queries to Eval. We denote this operation as Exp(σ(xi), d). We
assume that all labels queried by algorithms in the generic group model are
valid i.e. all labels queried by algorithms in the generic group model are in L.5

Oracle Diffie-Hellman assumption (ODH). We first formalize the Oracle
Diffie-Hellman Assumption (ODH) [1], which we are going to use in lieu of the
CCA security of Hashed ElGamal. Suppose, a group has generator g and order
p. The domain of hash function H is all finite strings and range is {0, 1}hLen.
The assumption roughly states for u, v ←$Zp,W ←$ {0, 1}hLen, the distributions
(gu, gv,H(guv)) and (gu, gv,W) are indistinguishable to an adversary who has
access to the oracle Hv where Hv(gx) returns H(gxv) with the restriction that it
is not queried on gu.
5 We stress that we assume a strong version of the model where the adversary knows L.

40 A. Ghoshal and S. Tessaro

Fig. 1. Games for ODH and SDH assumptions

We give a formalization of this assumption in the random-oracle and generic
group models. For a fixed hLen ∈ N, let ΩhLen be the set of hash functions map-
ping {0, 1}∗ to {0, 1}hLen. In Fig. 1, we formally define the Games G

ODH-REAL-GG
L,p,hLen ,

G
ODH-RAND-GG
L,p,hLen . The advantage of violating ODH is defined as

AdvODH-GG
L,p,hLen(A) =

∣∣Pr
[
G

ODH-REAL-GG
L,p,hLen (A) ⇒ 1

] − Pr
[
G

ODH-RAND-GG
L,p,hLen (A) ⇒ 1

]∣∣ .

Strong Diffie-Hellman Assumption (SDH). This is a stronger version of
the classical CDH assumption. This assumption roughly states that CDH is hard
even in the presence of a DDH-oracle Ov where Ov(gx, gy) is true if and only if
x · v = y.

We formally define the game G
SDH-GG in the generic group model in Fig. 1.

The advantage of violating SDH is defined as

AdvSDH-GG
L,p,hLen(A) =

∣∣Pr
[
G

SDH-GG
L,p,hLen(A) ⇒ true

]∣∣ .

Note in particular that one can upper bound this advantage unconditionally.
We shall drop the L from the subscript of advantages and games henceforth
since the set of labels L remains the same throughout our paper.

Black Box reductions in the GGM. We consider black-box reductions in
the generic group model. We will limit ourselves to an informal description, but
this can easily be formalized within existing formal frameworks for reductions
(see e.g. [10]). We let the reduction R access an adversary A, and denote by RA

the resulting algorithm – understood here is that R supplies inputs, answers

On the Memory-Tightness of Hashed ElGamal 41

queries, etc. In addition, we let R and A access the Eval oracle available in the
GGM. We stress that the GGM oracle is not under the reduction’s control here –
typically, the reduction itself will break a (hard) problem in the GGM with help
of A. We will allow (for simplicity) A to be run depending on some secret private
coins6 not accessible by R. Reductions can run A several times (with fresh private
coins). We call a reduction straigthline if it only runs A once.

In our case, the reduction R will be playing G
SDH-GG
p,hLen . It receives as inputs

σ(1), U = σ(u), V = σ(v), and has access to the Eval, Ov oracles, as well as an
adversary A for GODH-REAL-GG

p,hLen or GODH-RAND-GG
p,hLen . The reduction needs therefore to

supply inputs (σ(1), U ′, V ′,W) to A, and to answer its queries to the oracles Hv,
as well as queries to H. We will call such a reduction restricted if it is straightline
and V ′ = V .

2.2 Compression Lemma

In our lower bound proof we use the compression lemma that was formalized
in [7] which roughly means that it is impossible to compress every element in
a set with cardinality c to a string less than log c bits long, even relative to a
random string. We state the compression lemma here as a proposition.

Proposition 1. Suppose, there is a (not necessarily efficient) procedure
Encode : X × R → Y and a (not necessarily efficient) decoding procedure
Decode : Y × R → X such that

Pr
x∈X ,r∈R

[Decode(Encode(x, r), r) = x] � ε ,

then log |Y| � log |X | − log(1/ε).

2.3 Polynomials

Let p(X1, · · · ,Xn) be a n variate polynomial. We denote by p(x1, · · · , xn) the
evaluation of p at the point (x1, · · · , xn) throughout the paper. The polynomial
ring in variables X1, · · · ,Xn over the field Zp is denoted by Zp[X1, · · · ,Xn].

2.4 Key Encapsulation Mechanism (KEM)

A key-encapsulation mechanism (KEM) consists of three probabilistic polyno-
mial time (PPT) algorithms Gen,Encap,Decap. The key generation algorithm
Gen is probabilistic and outputs a key-pair (pk, sk). The encapsulation algo-
rithm Encap is a probabilistic algorithm that takes pk as input and outputs a
ciphertext c and a key K where K ∈ K for some non-empty set K. The decapsu-
lation algorithm Decap is a deterministic algorithm that takes as input the secret
key sk and a ciphertext c outputs a key K ∈ K if (sk, c) is a valid secret key-
ciphertext pair and ⊥ otherwise. For correctness, it is required that for all pairs
6 If we want to allow the reduction to control random bits, we model them explicitly as

an additional input.

42 A. Ghoshal and S. Tessaro

(pk, sk) output by Gen, if (K, c) is output by Encap(pk) then K is the output of
Decap(sk, c).

Single challenge KEM-CCA security. The single challenge CCA security
of a KEM is defined by a pair of games called G

KEM-CCA-REAL,GKEM-CCA-RAND. In
both games a (pk, sk) pair is generated by Gen, and (c,K) is output by the encap-
sulation algorithm Encap on input pk. The adversary is provided with (pk, c,K)
in G

KEM-CCA-REAL and with (pk, c,K ′) in G
KEM-CCA-RAND where K ′ is a randomly

sampled element of K. The adversary has access to the decapsulation oracle
with sk as the secret key and it can make decapsulation queries on any cipher-
text except the ciphertext c and has to output a bit. We define the advantage of
violating single challenge KEM-CCA security is defined as the absolute value of
the difference of probabilities of the adversary outputting 1 in the two games. A
KEM is single challenge CCA-secure if for all non-uniform PPT adversaries the
advantage of violating single challenge KEM-CCA security is negligible.

Single challenge KEM-CCA of Hashed ElGamal. We describe the KEM
for Hashed ElGamal in a group with order p and generator g and a hash functionH.
The function Gen samples v at random from Zp, and returns (gv, v) as the (pk, sk)
pair. The function Encap on input v, samples u at random from Zp and returns
gu as the ciphertext and H(guv) as the key K. The function Decap on input c,
returns H(cv). Note that Decap in KEM of Hashed ElGamal is identical to the Hv

function as defined in the ODH assumption. It follows that the single challenge
KEM-CCA security of Hashed ElGamal is equivalent to the ODH assumption. In
particular, in the generic group model when H is modeled as a random oracle, the
single challenge KEM-CCA security of Hashed ElGamal is equivalent to the ODH
assumption in the random oracle and generic group model.

3 Memory Lower Bound on the ODH-SDH Reduction

3.1 Result and Proof Outline

In this section, we prove a memory lower bound for restricted black-box reduc-
tions from ODH to SDH. We stress that the restricted reduction has access only
to the H,Hv queries of the adversary. As discussed above, the ODH assumption
is equivalent to the single-challenge KEM-CCA security of Hashed ElGamal,
this proves a memory lower-bound for (restricted) black-box reductions of single
challenge KEM-CCA security of Hashed ElGamal to the SDH assumption.

Theorem 1 (Main Theorem). In the generic group model, with group order
p, there exists an ODH adversary A that makes k H queries and k Hv queries
(where k is a polynomial in log p), a function ε1(p, hLen) which is negligible in
log p, hLen, and a function ε2(p) which is negligible in log p, such that,

1. AdvODH-GG
p,hLen (A) = 1 − ε1(p, hLen).

On the Memory-Tightness of Hashed ElGamal 43

2. For all restricted black-box reductions R, with s bits of memory and making
a total of q (assuming q � k) queries to Ov, Eval,

AdvSDH-GG
p,hLen (RA) � 2 · 2

s
2

(
48q3

p

) k
8c

(
1 +

6q

p

)q

+
4q2 log p + 13q2 + 5q

p
+ ε2(p) ,

where c = 4� log q
log k �.

This result implies that if AdvSDH-GG
p,hLen (RA) is non-negligible for a reduction

R making q queries where q is a polynomial in log p, then s = Ω(k log p) i.e. the
memory required by any restricted black-box reduction grows with the number
of queries by A. Hence, there does not exist any efficient restricted black-box
reduction from ODH to SDH that is memory-tight.

In the full version, we discuss how rewinding can slightly improve the memory
complexity to (roughly) O(k log k), with heavy computational cost (essentially,
one rewinding per oracle query of the adversary). We conjecture this to be opti-
mal, but a proof seems to evade current techniques.

De-randomization. Before we turn to the proof – which also connects several
technical lemmas presented across the next sections, let us discuss some aspects
of the results. As explained above, our model allows for the adversary A to be
run with randomness unknown to R. This aspect may be controversial, but we
note that there is a generic way for A to be made deterministic. Recall that
A must be inefficient for the separation to even hold true. For example, A can
use the injection σ from the generic group model to generate its random coin
– say, using σ−1(ai) as coins a priori fixed labels a1,a2, It is a standard –
albeit tedious and omitted – argument to show that unless the reduction ends
up querying the pre-images (which happens with negligible probability only),
the σ−1(ai)’s are good random coins.

Strengthening beyond SDH. We would like to note that our result can
be strengthened without much effort to a reduction between ODH and a more
general version of SDH. Informally, we can extend our result to every problem
which is hard in the generic group model in presence of an Ov oracle. For example,
this could be a problem where given g, gu, and gv, the attacker needs to output
gf(u,v), where f is (a fixed) two-variate polynomial with degree at least 2. We
do not include the proof for the strengthened version for simplicity. However, it
appears much harder to extend our result to different types of oracles than Ov,
as our proof is tailored at this oracle.

Proof. Here, we give the overall structure, the key lemmas, and how they are
combined – quantitatively – to obtain the final result.

First off, Lemma 1 establishes that there exists an adversary A such that
AdvODH-GG

p,hLen (A) is close to 1, which we will fix (i.e., when we refer to A, we refer
to the one guaranteed to exist by the lemma). The proof of Lemma 1 is in
Sect. 4.1 and the proof of Lemma 2 is in Sect. 4.2.

44 A. Ghoshal and S. Tessaro

Lemma 1. There exists an adversary A and a function ε1(p, hLen) such that is
negligible in log p, hLen, and

AdvODH-GG
p,hLen (A) = 1 − ε1(p, hLen).

After that, we introduce a game, called G1 and described in Fig. 3 in Sect. 4.2.
Very informally, this is a game played by a two-stage adversary R1,R2 which can
pass a state to each other of size s bits and have access to the Eval,Ov oracles.
The game captures the essence of the reduction R the adversary A of having a
sufficient amount of memory. This is made formal in Lemma 2, where we show
that the probability of the reduction R winning the SDH-GG game while running
A is bounded by the probability of winning G1.

Lemma 2. For every restricted black box reduction R to SDH-GG that runs A,
there exist adversaries R1,R2 playing G1, such that the number of queries made
by R1,R2 to Eval,Ov is same as the number of queries made by R to Eval,Ov,
the state passed from R1 to R2 is upper bounded by the memory used by R and,

AdvSDH-GG
p,hLen (RA) � Pr [G1 ⇒ true] +

4k2(log p)2

p
+

4qk log p + q2

p
.

We introduce Games G2,G3 in Fig. 4 in Sect. 4.2. These games are identical
to G1 except for the condition to output true. The condition to output true in
these games are disjoint and the disjunction of the two conditions is equivalent
to the condition to output true in G1. A little more specifically, both games
depend on a parameter l, which can be set arbitrarily, and in G3 and G2 the
winning condition of G1 is strengthened by additional ensuring that a certain set
defined during the execution of the game is smaller or larger than l, respectively.
Therefore, tautologically,

Pr [G1 ⇒ true] = Pr [G2 ⇒ true] + Pr [G3 ⇒ true] . (1)

We now prove the following two lemmas below, in Sects. 4.3 and 4.4,

Lemma 3. For the game G2,

Pr [G2 ⇒ true] � ql

k!
+

2q(2k + 3q + 2)
p

+
5q

p
+

k2 + k + 2
p

.

Lemma 4. If the size of the state φ output by R1 is s bits and (R1,R2) make
q queries in total in G3, then

Pr [G3 ⇒ true] � 2 · 2
s
2

(
8q2(2k + 2 + 3q)

p

) l
2

(
1 +

6q

p

) 2q−l
2

+
k2 + k + 2

p
.

Combining (1) and the result of Lemmas 3 and 4 we get,

Pr [G1 ⇒ true] � 2 · 2
s
2

(
8q2(2k + 2 + 3q)

p

) l
2

(
1 +

6q

p

) 2q−l
2

+

2(k2 + k + 2)
p

+
ql

k!
+

2q(2k + 3q + 2)
p

+
5q

p
. (2)

On the Memory-Tightness of Hashed ElGamal 45

Since
(
1 + 6q

p

) 2q−l
2 �

(
1 + 6q

p

)q

, combining Lemma 2, (2) we get,

AdvSDH-GG
p,hLen (RA) �2 · 2

s
2

(
8q2(2k + 2 + 3q)

p

) l
2

(
1 +

6q

p

)q

+
2(k2 + k + 2)

p
+

2q(2k + 3q + 2)
p

+
5q

p
+

4k2(log p)2

p
+

4qk log p + q2

p
+

ql

k!
.

We let,

ε2(p) =
ql

k!
+

2(k2 + k + 2)
p

+
4k2(log p)2

p
.

Setting c = � log q
log k � and l = k

4c , ql

k! � kk/4

k! . By Sterling’s approximation k! �
kk+1/2e−k. Therefore,

kk/4

k!
=

kk/4

kk/4

ek

kk/4

1
kk/2+1/2

.

For k > e4 (we can set k > e4), ql

k! � 1
kk/2+1/2 i.e. ql

k! is negligible in log p for k

polynomial in log p. Also, 2(k2+k+2)
p + 4k2(log p)2

p is negligible in log p (since k is
a polynomial in log p). So, ε2(p) is negligible in log p. We have that,

AdvSDH-GG
p,hLen (RA) �2 · 2

s
2

(
8q2(2k + 2 + 3q)

p

) k
8c

(
1 +

6q

p

)q

+

2q(2k + 3q + 2)
p

+
5q

p
+

4qk log p + q2

p
+ ε2(p).

where c = 4� log q
log k �. Assuming q � k (and thus q > e4 > 2), we get,

AdvSDH-GG
p,hLen (RA) � 2 · 2

s
2

(
48q3

p

) k
8c

(
1 +

6q

p

)q

+
4q2 log p + 13q2 + 5q

p
+ ε2(p).

��

4 Proof of Theorem

4.1 Adversary A Against ODH

In this section, we construct the ODH adversary A needed for the proof.

Lemma 1. There exists an adversary A and a function ε1(p, hLen) such that is
negligible in log p, hLen, and

AdvODH-GG
p,hLen (A) = 1 − ε1(p, hLen).

46 A. Ghoshal and S. Tessaro

Fig. 2. The adversary A

The adversary A is formally defined in Fig. 2. The proof of Lemma 1 itself is
deferred to the full version. Adversary A samples i1, · · · , ik fromZp, and computes
σ(ij), σ(ij · v) for all j in [k]. It then makes Hv queries on σ(ij)’s for all j in [k].
Adversary A then samples a permutation π on [k] → [k], and then makesH queries
on σ(iπ(j) · v)’s for all j in [k]. If answers of all the H queries are distinct and the
answers of all theHv queries are distinct and for all j in [k],Hv(σ(ij)) = H(σ(ij ·v)),
A computes the discrete logarithm of V outputs the correct answer. Otherwise
it returns a bit uniformly at random. Note that A is inefficient, but only if it is
satisfied from the responses it gets from the reduction using it.

4.2 The Shuffling Games

The Game G1. We first introduce the two-stage game G1 played by a pair of
adversaries R1 and R2. (With some foresight, these are going to be two stages
of the reduction.) It is formally described in Fig. 3. Game G1 involves sampling
σ, i1, · · · , ik, v from Zp, then running R1, followed by sampling permutation π
from Sk and then running R2. The first stage R1 has inputs σ(i1), · · · , σ(ik) and
it outputs a state φ of s bits along with k strings in {0, 1}hLen. The second stage
R2 has inputs φ, σ(iπ(1) ·v), · · · , σ(iπ(k) ·v) and it outputs k strings in {0, 1}hLen.
Both the stages R1,R2 have access to oracles Eval,Ov. Game G1 outputs true
if all the k strings output by R1 are distinct, and if all the k strings output by
R2 are distinct, and if for all j ∈ [k], the jth string output by R2 is identical
to the π(j)th string output by R1. Additionally, G1 involves some bookkeeping.
The Eval,Ov oracles in G1 take an extra parameter named from as input which
indicates whether the query was from R1 or R2.

On the Memory-Tightness of Hashed ElGamal 47

Fig. 3. Game G1. We use the phrase R1, R2 win G1 to mean G1 ⇒ true. We shall use
this convention for all games in the paper that output boolean values.

We introduce the phrase “seen by” before describing the bookkeeping. A label
has been “seen by” R1 if it was an input to R1, queried by R1 or an answer to
a previously made Eval(., ., 1) query. A label has been “seen by” R2 if it was an
input to R2, queried by R2 or an answer to a previously made Eval(., ., 2) query.
We describe the sets X ,Y1,Y2,Z which are used for bookkeeping in G1.

– The labels in X are answers to Eval(., ., 1) queries such that it has not yet
been “seen by” R1 before the query.

– Y1 contains all the labels that are input to R1, queried by R1 or answers to
Eval(., ., 1) queries i.e. it is the set of labels “seen by” R1.

– Y2 contains all the labels that are input to R2, queried by R1 or answers to
Eval(., ., 2) queries i.e. it is the set of labels “seen by” R2.

– All labels in Z are queried by R2 and have not been “seen by” R2 before the
query and are in X
The following lemma tells us that we can (somewhat straightforwardly) take

a reduction as in the theorem statement, and transform it into an equivalent
pair R1,R2 of adversaries for G1. The point here is that the reduction is very
unlikely to succeed in breaking the SDH assumption without doing an effort
equivalent to winning G1 to get A’s help – otherwise, it is left with breaking
SDH directly in the generic group model, which is hard. The proof is deferred
to the full version.

48 A. Ghoshal and S. Tessaro

Fig. 4. Games G2,G3. The Eval, Ov oracles in G2,G3 are identical to those in G1

and hence we do not rewrite it here. The newly introduced changes compared to G1

are highlighted. The statement within the thinner box is present only in G3 and the
statement within the thicker box is present only in G2.

Lemma 2. For every restricted black box reduction R to SDH-GG that runs A,
there exist adversaries R1,R2 playing G1, such that the number of queries made
by R1,R2 to Eval,Ov is same as the number of queries made by R to Eval,Ov,
the state passed from R1 to R2 is upper bounded by the memory used by R and,

AdvSDH-GG
p,hLen (RA) � Pr [G1 ⇒ true] +

4k2(log p)2

p
+

4qk log p + q2

p
.

The Games G2 and G3. In Fig. 4 we define G2,G3 which have an added check
on the cardinality of Z to output true. Everything else remains unchanged (in
particular Eval,Ov are unchanged from G1 and we do not specify them again
here). The statement within the thinner box is present only in G3 and statement
within the thicker box is present only in G2. The changes from G1 have been
highlighted. We shall follow these conventions of using boxes and highlighting
throughout the paper.

The games G2,G3 are identical to G1 except for the condition to output true.
Since this disjunction of the conditions to output true in G2,G3 is equivalent to
the condition to output true in G1, and the conditions to output true in G2,G3

are disjoint, we have,

Pr [G1 ⇒ true] = Pr [G2 ⇒ true] + Pr [G3 ⇒ true] .

4.3 Proof of Lemma 3

Recall we are going to prove the following lemma.

Lemma 3. For the game G2,

Pr [G2 ⇒ true] � ql

k!
+

2q(2k + 3q + 2)
p

+
5q

p
+

k2 + k + 2
p

.

On the Memory-Tightness of Hashed ElGamal 49

Fig. 5. The permutation game PG being played by adversary A is denoted by PG(A)

We introduce a new game – called the permutation game and denoted PG –
in order to upper bound Pr [G2 ⇒ true]. In the rest of this proof, we are going to
first define the game, and upper bound the winning probability of an adversary.
Then, we are going to reduce an adversary for G2 to one for PG.

The Permutation Game. In Game PG, an adversary has to guess a randomly
sampled permutation π over [k]. The adversary has access to an oracle that
takes as input two vectors of length k and returns true if the elements of the first
vector, when permuted using π, results in the second vector and false otherwise.
Figure 5 formally describes the game PG.

In the following, we say an adversary playing PG is a (q, l)-query adversary
if it makes at most q queries to O, and the rank of the vectors that were the first
argument to the O queries returning true is at most l.

The following lemma – which we prove via a compression argument – yields an
upper bound on the probability of winning the game for a (q, l)-query adversary.

Lemma 5. For a (q, l)-query adversary A playing PG the following is true.

Pr [PG(A) ⇒ true] � ql

k!
.

Proof. We construct an encoding of π by running adversary A. In order to
run A, all the O queries need to be correctly answered. This can be naively
done by storing the sequence number of queries whose answers are true. In fact,
of all such queries, we need to just store the sequence number of just those
whose first argument is not in the linear span of vectors which were the first
argument of previous such queries i.e. we store the sequence number of only
those O queries returning true whose first argument form a basis of the first
argument of all O queries returning true. This approach works because for every
vector �x, there is only a unique vector �y such that O(�x, �y) = 1. The random tape
of the adversary can be derived using the common randomness of Encode,Decode
and hence the adversary produces identical queries and output. For simplicity,
we do not specify this explicitly in the algorithms and treat A as deterministic.
The formal description of the algorithms Encode,Decode are in Fig. 6.

Observe that S is a basis of vectors �x such that O(�x, �y) = true. Note that
for an O(�x, �y) query returning true, if �x ∈ S then the sequence number of the
query is stored in enc. Therefore, (�x, �y) ∈ S′ in Decode. Again, for an O(�x, �y)
query returning true, if �x �∈ S then the sequence number of the query is not
stored in enc and therefore (�x, �y) �∈ S′. So, for an O(�x, �y) query returning true,

50 A. Ghoshal and S. Tessaro

Fig. 6. Encoding and decoding π using A

(�x, �y) ∈ S′ iff �x ∈ S. Since, for all (�x, �y) such that O(�x, �y) = true we have that
for all i ∈ [k], �y[i] = �x[π−1(i)], it follows that S′ forms a basis of vectors (�x, �y)
such that O(�x, �y) = true.

In Decode(enc), the simulation of O(�x, �y) is perfect because

– If c is in enc, then �x ∈ S in Encode. From the definition of S in Encode, it
follows that O(�x, �y) should return true.

– Otherwise we check if (�x, �y) ∈ span(S′) and return true if the check succeeds,
false otherwise. This is correct since in S′ is a basis of vectors (�x, �y) such that
O(�x, �y) = true.

The encoding is a set of |S| query sequence numbers. Since there are at most
q queries, the encoding space is at most

(
q

|S|
)
. Using X to be the set Sk, Y to be

the set of all possible encodings, R to be the set of random tapes of A, it follows
from Proposition 1 that,

Pr [Decoding is sucessful] �
(

q
|S|

)

k!
.

Since the simulation of O(�x, �y) is perfect in Decode, decoding is successful if
PG(A) ⇒ true. Therefore,

Pr [PG(A) ⇒ true] �
(

q
|S|

)

k!
� q|S|

k!
.

Since A is a (q, l)-query adversary, |S| � l. Thus, we have,

Pr [PG(A) ⇒ true] � ql

k!
(3)

��

On the Memory-Tightness of Hashed ElGamal 51

Fig. 7. Subroutines PopulateSetsEval, PopulateSetsOv

Reduction to PG. We next show that the Pr [G2 ⇒ true] is upper bounded in
terms of the probability of a (q, l)-query adversary winning the game PG.

Lemma 6. There exists a (q, l)-query adversary D against the permutation
game PG such that

Pr [G2 ⇒ true] � Pr [PG(D) ⇒ true] +
2q(2k + 3q + 2)

p
+

5q

p
+

k2 + k + 2
p

.

Proof. We transform R1,R2 playing G2 to an adversary D playing the game PG

through a sequence of intermediate games and use the upper bound on the prob-
ability of winning the game PG established previously to prove an upper bound
on Pr [G2 ⇒ true]. In order to make the pseudocode for subsequent games com-
pact we define the two subroutines PopulateSetsEval,PopulateSetsOv and invoke
them from Eval,Ov. The subroutines PopulateSetsEval,PopulateSetsOv are for-
mally described in Fig. 7.

The game G4. We next describe game G4 where we introduce some additional
bookkeeping. In G4, every valid label that is an input to R1,R2 or queried
by R1,R2 or an answer to a query of R1,R2, is mapped to a polynomial in
Zp[I1, · · · , Ik, V, T1, · · · , T2q] where q is the total number of Eval,Ov queries made
by R1,R2. The polynomial associated with label a is denoted by pa. Similarly,
we define Λ to be a mapping from polynomials to labels. For all labels a ∈ L,
Λ(pa) = a. The mapping from labels to polynomials is done such that for every
label a mapped to pa,

σ−1(a) = pa(i1, · · · , ik, v, t1, · · · , t2q).

For compactness, let us denote (i1, · · · , ik, v, t1, · · · , t2q) by �i. Before running
R1, pσ(1), pσ(v), pσ(i1), · · · , pσ(ik), pσ(i1·v), · · · , pσ(ik·v) are assigned polynomials
1, V, I1, · · · , Ik, I1V, · · · , IkV respectively and for all other labels a ∈ L, pa = ⊥.
The function Λ is defined accordingly. For labels a queried by R1,R2 that have
not been previously mapped to any polynomial (i.e. pa = ⊥), pa is assigned Tnew

(new starting from 1 and being incremented for every such label queried), the

52 A. Ghoshal and S. Tessaro

Fig. 8. G4 introduces additional bookkeeping. The newly introduced changes compared
to G2 are highlighted.

variable tnew is assigned the pre-image of the label and Λ(Tnew) is assigned a.
Since there are q queries (each with two inputs), there can be at most 2q labels
that had not previously been mapped to any polynomial. Hence, the polynomials
have variables I1, · · · , Ik, V, T1, · · · , T2q.

For an Eval(a,b, .) query where c = σ(σ−1(a) + σ−1(b)), let p′ = pa + pb.
From the definition of p, we have that p′(�i) = σ−1(a) + σ−1(b). If Λ(p′) �= ⊥,

On the Memory-Tightness of Hashed ElGamal 53

then by definition of Λ, we have Λ(p′) = c. If Λ(p′) = ⊥, then exactly one of the
following two must be true.

1. The label c has been mapped to a polynomial which is different from p′. In
this case pc(�i) = p′(�i) and Λ(p′) is assigned c.

2. The label c has not been mapped to any polynomial. In this case, pc is
assigned p′ and Λ(p′) is assigned c.

The label Λ(p′) is returned as the answer of the Eval query. Note that the output
of Eval is c = σ(σ−1(a) + σ−1(b)) in all cases, i.e. it is the same as the output
of Eval in G2.

For an Ov(a,b, .) query, we first assign the boolean value V pa = pb to ans.
Note that if ans is true, then v · σ−1(a) = σ−1(b). However, we might have
that v · σ−1(a) = σ−1(b) and V pa �= pb. When this happens, the boolean value
v(pa(�i) = pb(�i)) is assigned to ans. Oracle Ov returns ans. From the definition of
p, it follows that the value returned by Ov in G4 is (v · σ−1(a) = σ−1(b)) i.e. it
is the same as the output of Ov in G2.

Figure 8 formally describes G4. The changes in G4 compared to G2 have
been highlighted. We have already pointed out that the outputs of Ov,Eval in
G4 are identical to those in G2. Since the other changes involve only additional
bookkeeping, the outputs of G2,G4 are identical. Therefore

Pr [G4 ⇒ true] = Pr [G2 ⇒ true] . (4)

The game G11.We introduce a new game named G11 in Fig. 9. Initially, for
all polynomials p, Λ(p) = ⊥. In this game Λ(1), Λ(V), Λ(Ij)’s, and Λ(V Ij)’s
are assigned distinct labels sampled from L. Adversary R1 is run with input
labels Λ(1), Λ(V), Λ(I1), · · · , Λ(Ik) and R2 has input labels Λ(1), Λ(V), Λ(Iπ(1) ·
V), · · · , Λ(Iπ(k) · V). The bookkeeping is identical to that in G4. Observe from
the pseudocode that the mapping Λ is injective in this game and hence Λ−1 is
well defined.

For every Eval or Ov query, if for the input label l, Λ−1(l) is ⊥, then l is
assigned to Λ(Tnew). For every such input label, new is incremented. For an
Eval(a,b, .) query, if Λ(Λ−1(a) + Λ−1(b)) is not defined, then it is assigned a
random label in R(Λ). The label Λ(Λ−1(a) + Λ−1(b)) is returned as answer.
For Ov(a,b, .), query true is returned iff V Λ−1(a) and Λ−1(b) are the same
polynomials.

We next upper bound Pr [G4 ⇒ true] in terms of Pr [G11 ⇒ true] in Lemma 7.

Lemma 7. For the games G4,G11, we have,

Pr [G4 ⇒ true] � Pr [G11 ⇒ true] +
2q(2k + 3q + 2)

p
+

5q

p
+

k2 + k + 2
p

.

The proof of Lemma 7 has been deferred to the full version.

The Adversary D. Next, we construct the adversary D that plays PG by
simulating G11 to R1,R2, where the permutation π is the secret permutation

54 A. Ghoshal and S. Tessaro

Fig. 9. Game G11

Fig. 10. Subroutine PolyMultCheck for simulating Ov. In particular,
coefficient(p, M) returns the coefficient of the monomial M in the polynomial p.
The sets S and Z ′ have no effect on the behavior, and are only used in the analysis of
D. The symbol ABORT indicates that D aborts and outputs ⊥.

from PG. As we will discuss below, the core of the adversary D will boil down
to properly simulating the Ov oracle using the O oracle from PG and simulating
the labels σ(iπ(j)) (and the associated polynomials) correctly without knowing
π. After a correct simulation, D will simply extract the permutation π.

On the Memory-Tightness of Hashed ElGamal 55

Fig. 11. Adversary D which plays the permutation game PG. The changes in D com-
pared to G11 have been highlighted.

To see how this can be done, let us first have a closer look at G11. Let
us introduce the shorthand Kj = V Iπ(j) for j ∈ [k]. With this notation, every
polynomial input to or output from Eval is a linear combination of the monomials
1, I1, . . . , Ik, V,K1, . . . , Kk, T1, T2, Now, it is convenient to slightly rethink
the check of whether V pa = pb within Ov with this notation. First off, we observe
that if either of the polynomial contains a monomial of the form Ti, the check
fails. In fact, it is immediately clear that the check can only possibly succeed is

56 A. Ghoshal and S. Tessaro

if pa is a linear combination of 1 and the Ij ’s and pb is a linear combination of
V and the Kj ’s. Now, assume that

pa(I1, . . . , Ik) = a0 +
k∑

j=1

�x[j] · Ij ,

pb(V,K1, . . . Kk) = b0 · V +
k∑

j=1

�y[j] · Kj .

Then, V · pa = pb if and only if a0 = b0 and �y[j] = �x[π(j)] for all j ∈ [k]. If we
are now in Game PG, and π is the chosen permutation, then this is equivalent
to O(�x, �y) = true and a0 = b0.

This leads naturally to the adversary D, which we formally describe in Fig. 11.
The adversary will simply sample labels f1, . . . , fk for σ(v · iπ(1)), . . . , σ(v · iπ(k)),
and associate with them polynomials in the variables K1, . . . , Kj . Other than
that, it simulates the game G11, with the exception that the check V ·pa = pb is
not implemented using the above approach – summarized in Fig. 10. Note that
D aborts when |S| = l and makes at most q queries to O. Thus D is a-query
adversary against PG. If D does not abort, then its simulation of G11 is perfect.
If G11 ⇒ true and D does not abort, then win′ shall be true and D will output
the correct π.

The rest of the proof will now require proving that whenever G11 outputs true
our adversary D will never abort due to the check |S| = l. Since G11 ⇒ true only
if |Z| < l, the following lemma implies that D does not abort if G11 ⇒ true.

Lemma 8. Let (�x1, �y1), · · · , (�xu, �yu) be the queries made by D to O which return
true. Then,

rank(�x1, · · · , �xu) � |Z|.
The proof of Lemma 8 has been deferred to the full version.

We have established that if G11 outputs true, then D will not abort and
hence D simulates G11 to R1,R2 perfectly. If win = true in G11, the checks by
D succeed and D outputs the correct permutation and wins PG. Therefore, D is
a (q, l)-query adversary such that PG(D) ⇒ true if G11 ⇒ true. Hence,

Pr [G11 ⇒ true] � Pr [PG(D) ⇒ true] . (5)

Combining Lemma 7 and (4), (5) we get,

Pr [G2 ⇒ true] � Pr [PG(D) ⇒ true] +
2q(2k + 3q + 2)

p
+

5q

p
+

k2 + k + 2
p

. (6)

��
Combining (3) and (6), we get,

Pr [G2 ⇒ true] � ql

k!
+

2q(2k + 3q + 2)
p

+
5q

p
+

k2 + k + 2
p

.

On the Memory-Tightness of Hashed ElGamal 57

Fig. 12. Games G12,G13. The Eval, Ov oracles in G12,G13 are identical to those in G3

and hence we do not rewrite it here. The statement within the thinner box is present
only in G12 and the statement within the thicker box is present only in G13. The newly
introduced changes compared to G3 are highlighted.

4.4 Memory Lower Bound When |Z| � l (Proof of Lemma 4)

Recall that we need to prove the following lemma, which we do by using a
compression argument.

Lemma 4. If the size of the state φ output by R1 is s bits and (R1,R2) make
q queries in total in G3, then

Pr [G3 ⇒ true] � 2 · 2
s
2

(
8q2(2k + 2 + 3q)

p

) l
2

(
1 +

6q

p

) 2q−l
2

+
k2 + k + 2

p
.

Proof. Our proof does initial game hopping, with easy transitions. It first intro-
duces a new game, G12 (Fig. 12) whose minor difference from game G3 is that it
samples i1, · · · , ik, v using RestrictedSample which was previously used in game
G11. It adds a bad flag while sampling i1, · · · , ik, v which is set to true if v is
in {0, 1} or if |1, v, i1, · · · , ik, i1 · v, · · · , ik · v| < 2k + 2. The bad event does not
affect the output of G12 in any way. Observe that even though the sampling of
i1, · · · , ik, v is written in a different manner in G12, it is identical to that in G3.
In all other respects these two games are identical.

Pr [G3 ⇒ true] = Pr [G12 ⇒ true]. (7)

Games G12,G13 differ in the procedure RestrictedSample and the condition to
return true. Note that the conditions of bad being set to true is identical in

58 A. Ghoshal and S. Tessaro

G12,G13 and given that bad is not set to true, G13 returns true whenever G12

returns true. Therefore,

Pr [G12 ⇒ true] � Pr [G13 ⇒ true] + Pr [bad = true in G13] .

It is not hard to show (details in the full version) that the probability of bad
being set to true in RestrictedSample is at most k2+k+2

p . Since in G13 bad is set
only in RestrictedSample, the probability of bad being set to true is the same.
Hence, we get,

Pr [G12 ⇒ true] � Pr [G13 ⇒ true] +
k2 + k + 2

p
. (8)

The compression argument. We assume Pr [G13 ⇒ true] = 2ε. We say a σ is
“good” in G13 if

Pr
[
G13 ⇒ true

∣∣ σ was sampled in G13

]
� ε.

It follows from Markov’s inequality that at least ε fraction of σ’s are “good”.
The following lemma captures the essence of our compression argument.

Lemma 9. If the state output by R1 has size s bits, all the “good” σ’s can be
encoded in an encoding space of size at most

2sp!
(

1 +
6q

p

)(2q−l)(
p

8q2(2k + 2 + 3q)

)−l

,

and decoded correctly with probability ε.

We next give some intuition regarding how we achieve compression and defer
the formal proof of Lemma 9 to the full version.

Intuition regarding compression. Observe in G13, the labels in Z were
queried by R2 (these labels were not seen by R2 before they were queried) and
were answers to R1 and were not seen by R1 before the query. The core idea is
that for all a ∈ L \ Z, we store exactly one of a or its pre-image in the encoding
and for all labels in Z, we store neither the label nor its pre-image. Since R2 queries
all the labels in Z, these labels can be found by running R2 while decoding. Since
all the labels in Z are answers to queries of R1 and were not seen by R1 before the
query, their pre-images can be figured out while running R1.

High level outlines of Encode, Decode. In Encode, we simulate the steps
of G13 to R1,R2, including bookkeeping and then run R1 again assuming the
particular σ we are compressing is sampled in G13. In Decode, we run R2 and
then R1 to recover σ. We treat the values i1, · · · , ik, v, π as part of the common
randomness provided to Encode,Decode (we assume they are sampled from the
same distribution they are sampled from in G13). The random tapes of R1,R2

On the Memory-Tightness of Hashed ElGamal 59

can also be derived from the common randomness of Encode,Decode. For sim-
plicity, we do not specify this explicitly in the algorithms and treat R1,R2 as
deterministic.

Running R2. First off, we assume that R1 queries labels that it has “seen”
before and R2 queries labels that R1 has “seen” or it has “seen” before. We
shall relax this assumption later. Ideally, we would want to just store only φ, the
inputs labels to R2 and the labels that are answers to R2’s queries. We append
the input labels of R2 and labels that are answers to its Eval queries that it has
not “seen” before to a list named Labels. However, it is easy to see that this
information is not enough to answer Ov queries during decoding, as answering
Ov queries inherently requires knowledge about pre-images of R2. This naturally
leads to the idea of maintaining a mapping of all the labels “seen by” R2 to their
pre-images.

The mapping T of labels to pre-image expressions. The pre-images of
input labels and the labels that were results of sequence of Eval queries on its
input labels by R2, are known. However, R2 might query labels which were
neither an input to it nor an answer to one of its Eval queries. Such a label
is in Z since we have assumed that all labels queried by R2 were “seen by”
R1 or “seen by” R2 before. We represent the pre-images of labels in Z using a
placeholder variable Xn where n is incremented for every such label. Note that
the pre-image of every label seen by R2 can be expressed as a linear polynomial
in the Xn’s (these linear polynomials are referred to as pre-image expressions
from hereon). Therefore we maintain a mapping of all labels “seen by” and their
pre-image expressions in a list of tuples named T. Our approach is inspired by a
similar technique used by Corrigan-Gibbs and Kogan in [5]. Like in [5], we stress
that the mapping T is not a part of the encoding.

For Eval queries, we can check if there is a tuple in T whose pre-image expres-
sion is the sum of the pre-image expressions of the input labels. If that is the
case, we return the label of such a tuple. Otherwise, we append the answer label
to Labels. For Ov queries, we can return true if the pre-image expression of the
first input label multiplied by v gives the pre-image expression of the second
input label. Otherwise we return false.

Surprises.There is a caveat, however. There might arise a situation that the
label which is the answer to the Eval query is present in T but its pre-image
expression is not the sum of the pre-image expressions of the input labels. We
call such a situation a “surprise” and we call the answer label in that case a
“surprise label”. For Ov queries, there might be a surprise when the answer
of the Ov query is true but the pre-image expression of the first input label
multiplied by v is different pre-image expression of the second input label. In
this case we call the second input label the surprise label. We assign a sequence
number to each query made by R2, starting from 1 and an index to each tuple
in T, with the indices being assigned to tuples in the order they were appended
to T. To detect the query where the surprise happens, we maintain a set named
Srps1 that contains tuples of query sequence numbers and indices of the surprise

60 A. Ghoshal and S. Tessaro

label in T. This set Srps1 is a part of the encoding. Note that whenever there is a
surprise, it means that two different pre-image expressions evaluate to the same
value. Since these two pre-image expressions are linear polynomials, at least one
variable can be eliminated from T by equating the two pre-image expressions.

Running R1. Now that we have enough information in the encoding to run R2,
we consider the information we need to add to the encoding to run R1 after R2 is
run. First, we need to provide R1 its input labels. Our initial attempt would be
to append the input labels of R1 (except σ(1), σ(v), which are already present)
to Labels. However, some of these input labels to R1 might have already been
“seen by” R2. Since all labels “seen by” R2 are in T, we need a way to figure out
which of σ(ij)’s are in T. Note that such a label was either queried by R2 or an
answer to a query of R2 (cannot have been an input to R2 given the restrictions
on i1, · · · , ik, v). Suppose q was the sequence number of the query in which σ(ij)
was queried or an answer. The tuple (q, b, j) is added to the set Inputs where b
can take values {1, 2, 3} depending on whether σ(ij) was the first input label,
the second input label or the answer label respectively. This set Inputs is a part
of the encoding. The rest of the labels σ(ij), which do not appear in T, are added
to T with their pre-images and the labels are appended to Labels. Note that for
all queries of R1, it follows from our assumption that the input labels will be in
T. For every surprise, we add a tuple of sequence number and an index in T to
the set Srps2.

Relaxing the assumption. When we allow R2 to query labels it has not seen
before or R1 has not seen, there are two issues. First, we need to add a tuple for
the label in T (since T, by definition contains a tuple for all labels queried by
R2). We solve this issue by adding the tuple made of the label and its pre-image.
We have no hope of recovering the pre-image later, hence, we append the pre-
image to a list named Vals. This list needs to be a part of the encoding since the
pre-image of the label needs to be figured out to be added to T during decoding.
For queries of R1, if the input label is not present in T, we do the same thing.
The second issue that comes up when we relax the assumption is that we need
to distinguish whether an input label was in Z or not. We solve this issue by
maintaining a set of tuples named Free. For all labels in Z that are not an input
label to R1, we add the tuple consisting of the sequence number of the query of
R2 and b to Free where b set to 1 indicates it was the first input label and b set
to 2 indicates it was the second input label.

The final steps. The labels the are absent in T are appended to a list named
RLabels. If |Z| < l, a fixed encoding D (the output of Encode for some fixed
σ when |Z| � l) is returned. Otherwise the encoding of σ consisting of Labels,
RLabels, Vals, Inputs, Srps1, Srps2, Free, φ is returned.

Wrapping up.The set of all “good” σ’s has size at least εp! (where we have
used that the total number of injective functions from Zp → L is p!). Using X
to be the set of the “good” σ’s, Y to be the set of encodings, R to be the set of
cartesian product of the domains of i1, · · · , ik, v, π, the set of all random tapes
of R1 the set of all random tapes of R2 and L, it follows from Lemma 9 and

On the Memory-Tightness of Hashed ElGamal 61

Proposition 1 that

log (Pr [Decoding is correct]) �s + (2q − l) log
(

1 +
6q

p

)

− l log
(

p

8q2(2k + 2 + 3q)

)
− log ε .

We have from Lemma 9 that Pr [Decoding is correct] � ε. Therefore,

2 log ε � s + (2q − l) log
(

1 +
6q

p

)
− l log

(
p

8q2(2k + 2 + 3q)

)
.

Since Pr [G13] = 2ε, using (7) and (8) we have,

Pr [G3 ⇒ true] � 2 · 2
s
2

(
8q2(2k + 2 + 3q)

p

) l
2

(
1 +

6q

p

) 2q−l
2

+
k2 + k + 2

p
.

��

5 Conclusions

Despite a clear restriction of our result to straightline reductions, we believe the
main contribution of this work is the introduction of novel techniques for proving
lower bounds on the memory of reductions that will find wider applicability. In
particular, we clearly departed from the framework of prior works [2,13] tailored
at the usage of lower bounds for streaming algorithms, and provided the first
lower bound for “algebraic” proofs in the public-key domain. The idea of a
problem-specific proof of memory could be helpful elsewhere.

Of course, there are several open problems. It seems very hard to study the
role of rewinding for such reductions. In particular, the natural approach is to
resort to techniques from communication complexity (and their incarnation as
streaming lower bounds), as they are amenable to the multi-pass case. The simple
combinatorial nature of these lower bounds however is at odds with the heavily
structured oracles we encounter in the generic group model. Another problem we
failed to solve is to give an adversary A in our proof which uses little memory –
we discuss a candidate in the body, but analyzing it seems to give us difficulties
similar to those of rewinding.

This latter point makes a clear distinction, not discussed by prior works,
between the way in which we prove memory-tightness (via reductions using small
memory), and its most general interpretation, as defined in [2], which would allow
the reduction to adapt its memory usage to that of A.

Acknowledgements. We thank the anonymous reviewers of EUROCRYPT 2020 for
helpful comments. This work was partially supported by NSF grants CNS-1553758
(CAREER), CNS-1719146, and by a Sloan Research Fellowship.

62 A. Ghoshal and S. Tessaro

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman assumptions
and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-
9 12

2. Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 101–132. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 4

3. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

4. Bhattacharyya, R.: Memory-tight reductions for practical key encapsulation mech-
anisms. In: PKC (2020)

5. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocess-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol.
10821, pp. 415–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 14

6. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

7. De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against one-
way functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 649–665. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 35

8. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

9. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

10. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1

11. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

12. Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112 (2001). http://eprint.iacr.org/2001/112

13. Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of reduc-
tions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I.
LNCS, vol. 10820, pp. 61–90. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 3

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-319-63688-7_4
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/3-540-69053-0_18
http://eprint.iacr.org/2001/112
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-78381-9_3

Blind Schnorr Signatures and Signed
ElGamal Encryption in the Algebraic

Group Model

Georg Fuchsbauer1(B), Antoine Plouviez2,3(B), and Yannick Seurin4

1 TU Wien, Vienna, Austria
georg.fuchsbauer@tuwien.ac.at

2 Inria, Paris, France
3 ENS, CNRS, PSL, Paris, France

antoine.plouviez@ens.fr
4 ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. The Schnorr blind signing protocol allows blind issuing of
Schnorr signatures, one of the most widely used signatures. Despite its
practical relevance, its security analysis is unsatisfactory. The only known
security proof is informal and in the combination of the generic group
model (GGM) and the random oracle model (ROM) assuming that the
“ROS problem” is hard. The situation is similar for (Schnorr-)signed
ElGamal encryption, a simple CCA2-secure variant of ElGamal.

We analyze the security of these schemes in the algebraic group model
(AGM), an idealized model closer to the standard model than the GGM.
We first prove tight security of Schnorr signatures from the discrete log-
arithm assumption (DL) in the AGM+ROM. We then give a rigorous
proof for blind Schnorr signatures in the AGM+ROM assuming hardness
of the one-more discrete logarithm problem and ROS.

As ROS can be solved in sub-exponential time using Wagner’s algo-
rithm, we propose a simple modification of the signing protocol, which
leaves the signatures unchanged. It is therefore compatible with sys-
tems that already use Schnorr signatures, such as blockchain protocols.
We show that the security of our modified scheme relies on the hard-
ness of a problem related to ROS that appears much harder. Finally, we
give tight reductions, again in the AGM+ROM, of the CCA2 security
of signed ElGamal encryption to DDH and signed hashed ElGamal key
encapsulation to DL.

Keywords: Schnorr signatures · Blind signatures · Algebraic group
model · ElGamal encryption · Blockchain protocols

1 Introduction

Schnorr Signatures. The Schnorr signature scheme [Sch90,Sch91] is one of
the oldest and simplest signature schemes based on prime-order groups. Its adop-
tion was hindered for years by a patent which expired in February 2008, but it
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 63–95, 2020.
https://doi.org/10.1007/978-3-030-45724-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_3

64 G. Fuchsbauer et al.

is by now widely deployed: EdDSA [BDL+12], a specific instantiation based
on twisted Edward curves, is used for example in OpenSSL, OpenSSH, GnuPG
and more. Schnorr signatures are also expected to be implemented in Bitcoin
[Wui18], enabling multi-signatures supporting public key aggregation, which will
result in considerable scalability and privacy enhancements [BDN18,MPSW19].

The security of the Schnorr signature scheme has been analyzed in the
random oracle model (ROM) [BR93], an idealized model which replaces cryp-
tographic hash functions by truly random functions. Pointcheval and Stern
[PS96b,PS00] proved Schnorr signatures secure in the ROM under the discrete
logarithm assumption (DL). The proof, based on the so-called Forking Lemma,
proceeds by rewinding the adversary, which results in a loose reduction (the
success probability of the DL solver is a factor qh smaller than that of the adver-
sary, where qh is the number of the adversary’s random oracle queries). Using the
“meta reduction” technique, a series of works showed that this security loss is
unavoidable when the used reductions are either algebraic [PV05,GBL08,Seu12]
or generic [FJS19]. Although the security of Schnorr signatures is well under-
stood (in the ROM), the same cannot be said for two related schemes, namely
blind Schnorr signatures and Schnorr-signed ElGamal encryption.

Blind Schnorr Signatures. A blind signature scheme allows a user to obtain
a signature from a signer on a message m in such a way that (i) the signer is
unable to recognize the signature later (blindness, which in particular implies
that m remains hidden from the signer) and (ii) the user can compute one sin-
gle signature per interaction with the signer (one-more unforgeability). Blind
signature schemes were introduced by Chaum [Cha82] and are a fundamental
building block for applications that guarantee user anonymity, e.g. e-cash [Cha82,
CFN90,OO92,CHL05,FPV09], e-voting [FOO93], direct anonymous attestation
[BCC04], and anonymous credentials [Bra94,CL01,BCC+09,BL13a,Fuc11].

Constructions of blind signature schemes range from very practical schemes
based on specific assumptions and usually provably secure in the ROM [PS96a,
PS00,Abe01,Bol03,FHS15,HKL19] to theoretical schemes provably secure in the
standard model from generic assumptions [GRS+11,BFPV13,GG14].

The blind Schnorr signature scheme derives quite naturally from the Schnorr
signature scheme [CP93]. It is one of the most efficient blind signature schemes
and increasingly used in practice. Anticipating the implementation of Schnorr
signatures in Bitcoin, developers are already actively exploring the use of
blind Schnorr signatures for blind coin swaps, trustless tumbler services, and
more [Nic19].

While the hardness of computing discrete logarithms in the underlying
group G is obviously necessary for the scheme to be unforgeable, Schnorr [Sch01]
showed that another problem that he named ROS, which only depends on the
order p of the group G, must also be hard for the scheme to be secure. Infor-
mally, the ROS� problem, parameterized by an integer �, asks to find � + 1 vec-
tors �ρi = (ρi,j)j∈[�] such that the system of � + 1 linear equations in unknowns
c1, . . . , c� over Zp ∑�

j=1 ρi,jcj = Hros(�ρi), i ∈ [� + 1]

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 65

has a solution, where Hros : (Zp)� → Zp is a random oracle. Schnorr showed
that an attacker able to solve the ROS� problem can produce � + 1 valid sig-
natures while interacting (concurrently) only � times with the signer. Slightly
later, Wagner [Wag02] showed that the ROS� problem can be reduced to
the (� + 1)-sum problem, which can solved with time and space complexity
O

(
(� + 1)2λ/(1+�lg(�+1)�)), where λ is the bit size of p. For example, for λ = 256,

this attack yields 16 valid signatures after � = 15 interactions with the signer
in time and space close to 255. For � + 1 = 2

√
λ, the attack has sub-exponential

time and space complexity O(22
√

λ), although the number of signing sessions
becomes arguably impractical. Asymptotically, this attack can be thwarted by
increasing the group order, but this would make the scheme quite inefficient.

From a provable-security point of view, a number of results [FS10,Pas11,
BL13b] indicate that blind Schnorr signatures cannot be proven one-more
unforgeable under standard assumptions, not even in the ROM. The only posi-
tive result by Schnorr and Jakobsson [SJ99] and Schnorr [Sch01] states that blind
Schnorr signatures are secure in the combination of the generic group model and
the ROM assuming hardness of the ROS problem.

The recent analysis by Hauck, Kiltz, and Loss [HKL19] of blind signatures
derived from linear identification schemes does not apply to Schnorr. The reason
is that the underlying linear function family F : Zp → G, x �→ xG lacks the
property of having a pseudo torsion-free element from the kernel (see [HKL19,
Def. 3.1]). In particular, F is one-to-one, whereas Hauck et al. reduce blind
signature unforgeability to collision resistance of the underlying function family.

The Algebraic Group Model. The generic group model (GGM) [Nec94,
Sho97] is an idealized model for the security analysis of cryptosystems defined
over cyclic groups. Instead of receiving concrete group elements, the adversary
only gets “handles” for them and has access to an oracle that performs the group
operation (denoted additively) on handles. This implies that if the adversary is
given a list of (handles of) group elements (X1, . . . , Xn) and later returns (a
handle of) a group element Z, then by inspecting its oracle calls one can derive
a “representation” �z = (z1, . . . , zn) such that Z =

∑n
i=1 ziXi.

Fuchsbauer, Kiltz, and Loss [FKL18] introduced the algebraic group model
(AGM), a model that lies between the standard model and the GGM. On the one
hand, the adversary has direct access to group elements; on the other hand, it is
assumed to only produce new group elements by applying the group operation
to received group elements. In particular, with every group element Z that it
outputs, the adversary also gives a representation �z of Z in terms of the group
elements it has received so far. While the GGM allows for proving information-
theoretic guarantees, security results in the AGM are proved via reductions to
computationally hard problems, like in the standard model.

Our starting point is the observation that in the combination1 AGM+ROM
Schnorr signatures have a tight security proof under the DL assumption. This is
because we can give a reduction which works straight-line, i.e., unlike the forking-

1 This combination was already considered when the AGM was first defined [FKL18].

66 G. Fuchsbauer et al.

lemma-based reduction [PS96b,PS00], which must rewind the adversary, it runs
the adversary only once.2 Motivated by this, we then turn to blind Schnorr
signatures, whose security in the ROM remains elusive, and study their security
in the AGM+ROM.

Our Results on Blind Schnorr Signatures. Our first contribution is a
rigorous analysis of the security of blind Schnorr signatures in the AGM+ROM.
Concretely, we show that any algebraic adversary successfully producing � + 1
forgeries after at most � interactions with the signer must either solve the one-
more discrete logarithm (OMDL) problem or the ROS� problem. Although this
is not overly surprising in view of the previous results in the GGM [SJ99,Sch01],
this gives a more satisfying characterization of the security of this protocol.
Moreover, all previous proofs [SJ99,Sch01] were rather informal; in particular,
the reduction solving ROS was not explicitly described. In contrast, we provide
precise definitions (in particular for the ROS problem, whose exact specification
is central for a security proof) and work out the details of the reductions to both
OMDL and ROS, which yields the first rigorous proof.

Nevertheless, the serious threat by Wagner’s attack for standard-size group
orders remains. In order to remedy this situation, we propose a simple mod-
ification of the scheme which only alters the signing protocol (key generation
and signature verification remain the same) and thwarts (in a well-defined way)
any attempt at breaking the scheme by solving the ROS problem. The idea is
that the signer and the user engage in two parallel signing sessions, of which
the signer only finishes one (chosen at random) in the last round. Running this
tweak takes thus around twice the time of the original protocol. We show that
an algebraic adversary successfully mounting an (� + 1)-forgery attack against
this scheme must either solve the OMDL problem or a modified ROS problem,
which appears much harder than the standard ROS problem for large values of
�, which is precisely when the standard ROS problem becomes tractable.

Our results are especially relevant to applications that impose the signature
scheme and for which one then has to design a blind signing protocol. This is the
case for blockchain-based systems where modifying the signature scheme used
for authorizing transactions is a heavy process that can take years (if possible
at all). We see a major motivation for studying blind Schnorr signatures in its
real-world relevance for protocols that use Schnorr signatures or will in the near
future, such as Bitcoin. For these applications, Wagner’s attack represents a
significant risk, which can be thwarted by using our modified signing protocol.

Chosen-Ciphertext-Secure ElGamal Encryption. Recall the ElGamal
public-key encryption (PKE) scheme [ElG85]: given a cyclic group (G,+) of
prime order p and a generator G, a secret/public key pair is of the form
(y, yG) ∈ Zp × G. A message M ∈ G is encrypted as (X := xG,M + xY)

2 A similar result [ABM15] shows that Schnorr signatures, when viewed as non-
interactive proofs of knowledge of the discrete logarithm of the public key, are
simulation-sound extractable, via a straight-line extractor. Our proof is much simpler
and gives a concrete security statement.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 67

for a random x ←$Zp. This scheme is IND-CPA-secure under the decisional
Diffie-Hellman (DDH) assumption [TY98], that is, no adversary can distinguish
encryptions of two messages. Since the scheme is homomorphic, it cannot achieve
IND-CCA2 security, where the adversary can query decryptions of any ciphertext
(except of the one it must distinguish). However, ElGamal has been shown to be
IND-CCA1-secure (where no decryption queries can be made after receiving the
challenge ciphertext) in the AGM under a “q-type” variant of DDH [FKL18].3

A natural way to make ElGamal encryption IND-CCA2-secure is to add a
proof of knowledge of the randomness x used to encrypt. (Intuitively, this would
make the scheme plaintext-aware [BR95].) The reduction of IND-CCA2 security
can then extract x to answer decryption queries. Since x together with the first
part X of the ciphertext form a Schnorr key pair, a natural idea is to use a
Schnorr signature [Jak98,TY98], resulting in (Schnorr-)signed ElGamal encryp-
tion. This scheme has a number of attractive properties: ciphertext validity can
be checked without knowledge of the decryption key, and one can work homo-
morphically with the “core” ElGamal ciphertext (a property sometimes called
“submission-security” [Wik08]), which is very useful in e-voting.

Since Schnorr signatures are extractable in the ROM, one would expect
that signed ElGamal can be proved IND-CCA2 under, say, the DDH assump-
tion (in the ROM). However, turning this intuition into a formal proof has
remained elusive. The main obstacle is that Schnorr signatures are not straight-
line extractable in the ROM [BNW17]. As explained by Shoup and Gennaro
[SG02], the adversary could order its random-oracle and decryption queries in a
way that makes the reduction take exponential time to simulate the decryption
oracle.

Schnorr and Jakobsson [SJ00] showed IND-CCA2 security in the
GGM+ROM, while Tsiounis and Yung [TY98] gave a proof under a non-
standard “knowledge assumption”, which amounts to assuming that Schnorr
signatures are straight-line extractable. On the other hand, impossibility results
tend to indicate that IND-CCA2 security cannot be proved in the ROM
[ST13,BFW16].

Our Results on Signed ElGamal Encryption. Our second line of con-
tributions is twofold. First, we prove (via a tight reduction) that in the
AGM+ROM, Schnorr-signed ElGamal encryption is IND-CCA2-secure under
the DDH assumption. While intuitively this should follow naturally from the
straight-line extractability of Schnorr proofs of knowledge for algebraic adver-
saries, the formal proof is technically quite delicate: since messages are group
elements, the “basis” of group-element inputs in terms of which the adversary

3 [FKL18] showed IND-CCA1 security for the corresponding key-encapsulation mecha-
nism, which returns a key K = xY and an encapsulation X = xG. The ElGamal PKE
scheme is obtained by combining it with the one-time-secure DEM M �→ M + K.
Generic results on hybrid schemes [HHK10] imply IND-CCA1 security of the PKE.

68 G. Fuchsbauer et al.

provides representations contains not only the three group elements of the chal-
lenge ciphertext but also grows as the adversary queries the decryption oracle.4

We finally consider the “hashed” variant of ElGamal (also known as DHIES)
[ABR01], in which a key is derived as k = H(xY). In the ROM, the correspond-
ing key-encapsulation mechanism (KEM) is IND-CCA2-secure under the strong
Diffie-Hellman assumption (i.e., CDH is hard even when given a DDH oracle)
[CS03]. We propose to combine the two approaches: concretely, we consider the
hashed ElGamal KEM together with a Schnorr signature proving knowledge of
the randomness used for encapsulating the key and give a tight reduction of the
IND-CCA2 security of this scheme to the DL problem in the AGM+ROM.

2 Preliminaries

General Notation. We denote the (closed) integer interval from a to b by [a, b]
and let [b] := [1, b]. A function μ : N → [0, 1] is negligible (denoted μ = negl) if
∀ c ∈ N ∃λc ∈ N ∀λ ≥ λc : μ(λ) ≤ λ−c. A function ν is overwhelming if
1 − ν = negl. The logarithm in base 2 is denoted lg and x ≡p y denotes x ≡ y
(mod p). For a non-empty finite set S, sampling an element x from S uniformly
at random is denoted x ←$ S. All algorithms are probabilistic unless stated
otherwise. By y ← A(x1, . . . , xn) we denote running algorithm A on inputs
(x1, . . . , xn) and uniformly random coins and assigning the output to y. If A has
oracle access to some algorithm Oracle, we write y ← AOracle(x1, . . . , xn). A
list �z = (z1, . . . , zn), also denoted (zi)i∈[n], is a finite sequence. The length of a
list �z is denoted |�z|. The empty list is denoted ().

A security game GAMEpar (see e.g. in Fig. 1) indexed by a set of parameters
par consists of a main and oracle procedures. The main procedure has input the
security parameter λ and runs an adversary A, which interacts with the game by
calling the provided oracles. When the adversary stops, the game computes its
output b, which we write b ← GAMEA

par(λ). For truth values we identify false
with 0 and true with 1. Games are either computational or decisional. The
advantage of A in GAMEpar is defined as Advgame

par,A(λ) := Pr[1 ← GAMEA
par(λ)]

if the game is computational and as Advgame
par,A(λ) := 2 · Pr[1 ← GAMEA

par(λ)] − 1
if it is decisional, where the probability is taken over the random coins of the
game and the adversary. We say that GAMEpar is hard if Advgame

par,A(λ) = negl(λ)
for any probabilistic polynomial-time (p.p.t.) adversary A.

Algebraic Algorithms. A group description is a tuple Γ = (p,G, G) where p
is an odd prime, G is an abelian group of order p, and G is a generator of G. We
will use additive notation for the group law throughout this paper, and denote
group elements (including the generator G) with italic uppercase letters. We
assume the existence of a p.p.t. algorithm GrGen which, on input the security

4 Bernhard et al. [BFW16] hastily concluded that, in the AGM+ROM, IND-CCA2-
security of signed ElGamal followed from straight-line extractability of Schnorr sig-
natures showed in [ABM15]. Our detailed proof shows that this was a bit optimistic.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 69

parameter 1λ in unary, outputs a group description Γ = (p,G, G) where p is
of bit-length λ. Given an element X ∈ G, we let logG(X) denote the discrete
logarithm of X in base G, i.e., the unique x ∈ Zp such that X = xG. We write
log X when G is clear from context.

An algebraic security game (w.r.t. GrGen) is a game GAMEGrGen that
(among other things) runs Γ ← GrGen(1λ) and runs the adversary on input
Γ = (p,G, G). An algorithm Aalg executed in an algebraic game GAMEGrGen is
algebraic if for all group elements Z that it outputs, it also provides a repre-
sentation of Z relative to all previously received group elements: if Aalg has so
far received �X = (X0, . . . , Xn) ∈ G

n+1 (where by convention we let X0 = G),
then Aalg must output Z together with �z = (z0, . . . , zn) ∈ (Zp)n+1 such that
Z =

∑n
i=0 ziXi. We let Z[�z] denote such an augmented output. When writing

�z explicitly, we simply write Z[z0,...,zn] (rather than Z[(z0,...,zn)]) to lighten the
notation.

Fig. 1. The DL and OMDL problems.

Algebraic Algorithms in the Random Oracle Model.The original paper
[FKL18] considered the algebraic group model augmented by a random oracle and
proved tight security of BLS signatures [BLS04] in this model. The random oracle
in that work is of type H : {0, 1}∗ → G, and as the outputs are group elements, the
adversary’s group element representations could depend on them.

In this work the RO is typically of type H : G × {0, 1}∗ → Zp. Thus, an
algebraic adversary querying H on some input (Z,m) must also provide a rep-
resentation �z for the group-element input Z. In a game that implements the
random oracle by lazy sampling, to ease readability, we will define an auxiliary
oracle H̃, which is used by the game itself (and thus does not take representations
of group elements as input) and implements the same function as H.

The One-More Discrete Logarithm Problem. We recall the discrete log-
arithm (DL) problem in Fig. 1. The one-more discrete logarithm (OMDL) prob-
lem, also defined in Fig. 1, is an extension of the DL problem and consists in
finding the discrete logarithm of q group elements by making strictly less than

70 G. Fuchsbauer et al.

q calls to an oracle solving the discrete logarithm problem. It was introduced
in [BNPS03] and used for example to prove the security of the Schnorr identifi-
cation protocol against active and concurrent attacks [BP02].

3 Schnorr Signatures

3.1 Definitions

A signature scheme SIG consists of the following algorithms:

– par ← SIG.Setup(1λ): the setup algorithm takes as input the security para-
meter λ in unary and outputs public parameters par;

– (sk,pk) ← SIG.KeyGen(par): the key generation algorithm takes parameters
par and outputs a secret key sk and a public key pk;

– σ ← SIG.Sign(sk,m): the signing algorithm takes as input a secret key sk and
a message m ∈ {0, 1}∗ and outputs a signature σ;

– b ← SIG.Ver(pk,m, σ): the (deterministic) verification algorithm takes pk, a
message m, and a signature σ; it returns 1 if σ is valid and 0 otherwise.

Fig. 2. The EUF-CMA security game for a signature scheme SIG.

Correctness requires that for any λ and any message m, when running
par ← SIG.Setup(1λ), (sk,pk) ← SIG.KeyGen(par), σ ← SIG.Sign(sk,m), and
b ← SIG.Ver(pk,m, σ), one has b = 1 with probability 1. The standard security
notion for a signature scheme is existential unforgeability under chosen-message
attack (EUF-CMA), formalized via game EUF-CMA, which we recall in Fig. 2.
The Schnorr signature scheme [Sch91] is specified in Fig. 3.

3.2 Security of Schnorr Signatures in the AGM

As a warm-up and to introduce some of the techniques used later, we reduce
security of Schnorr signatures to hardness of DL in the AGM+ROM.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 71

Fig. 3. The Schnorr signature scheme Sch[GrGen] based on a group generator GrGen.

Theorem 1. Let GrGen be a group generator. Let Aalg be an algebraic adversary
against the EUF-CMA security of the Schnorr signature scheme Sch[GrGen] run-
ning in time at most τ and making at most qs signature queries and qh queries
to the random oracle. Then there exists an algorithm B solving the DL problem
w.r.t. GrGen, running in time at most τ + O(qs + qh), such that

Adveuf-cma
Sch[GrGen],Aalg

(λ) ≤ AdvdlGrGen,B(λ) +
qs(qs + qh) + 1

2λ−1
.

We start with some intuition for the proof. In the random oracle model,
Schnorr signatures can be simulated without knowledge of the secret key by
choosing random c and s, setting R := sG − cX and then programming the
random oracle so that H(R,m) = c. On the other hand, an adversary that
returns a signature forgery (m∗, (R∗, s∗)) can be used to compute the discrete
logarithm of the public key X. In the ROM this can be proved by rewinding the
adversary and using the Forking Lemma [PS96b,PS00], which entails a security
loss.

In the AGM+ROM, extraction is straight-line and the security proof thus
tight: A valid forgery satisfies R∗ = s∗G − c∗X, with c∗ := H(R∗,m∗). On
the other hand, since the adversary is algebraic, when it made its first query
H(R∗,m∗), it provided a representation of R∗ in basis (G,X), that is (γ∗, ξ∗)
with R∗ = γ∗G + ξ∗X. Together, these equations yield

(ξ∗ + c∗)X = (s∗ − γ∗)G.

Since c∗ was chosen at random after the adversary chose ξ∗, the probability
that ξ∗ + c∗ �≡p 0 is overwhelming, in which case we can compute the discrete
logarithm of X from the above equation.

Proof of Theorem 1. Let Aalg be an algebraic adversary in EUF-CMASch[GrGen]

and making at most qs signature queries and qh RO queries. We proceed by a
sequence of games specified in Fig. 4.

72 G. Fuchsbauer et al.

Game0. The first game is EUF-CMA (Fig. 2) for the Schnorr signature scheme
(Fig. 3) with a random oracle H. The game maintains a list Q of queried messages
and T of values sampled for H. To prepare the change to Game1, we have written
the finalization of the game in an equivalent way: it first checks that m∗ /∈ Q and
then runs Sch.Ver(pk,m∗, (R∗, s∗)), which we have written explicitly. Since the
adversary is algebraic, it must provide a representation (γ∗, ξ∗) for its forgery
(m∗, (R∗

[γ∗,ξ∗], s
∗) such that R∗ = γ∗G + ξ∗X, and similarly for each RO query

H(R[γ,ξ],m). By definition,

Adv
game0
Aalg

(λ) = Adveuf-cma
Sch[GrGen],Aalg

(λ). (1)

Fig. 4. Games in the proof of Theorem 1. Game0 is defined by ignoring all boxes; boxes

are included in Game1 and Game2; Gray boxes are only included in Game2.

Game1. We introduce an auxiliary table U that for each query H(R[γ,ξ],m)
stores the representation (γ, ξ) of R. Second, when the adversary returns its
forgery (m∗, (R∗

[γ∗,ξ∗], s
∗)) and previously made a query H(R∗

[γ′,ξ′],m
∗) for some

(γ′, ξ′), then we consider this previous representation of R∗, that is, we set

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 73

(γ∗, ξ∗) := (γ′, ξ′). The only actual difference to Game0 is that Game1 returns
0 in case ξ∗ ≡p −T(R∗,m∗) (line (I)).

We show that this happens with probability 1/p ≤ 1/2λ−1. First note that
line (I) is only executed if m∗ /∈ Q, as otherwise the game would already have
returned 0. Hence T(R∗,m∗) can only have been defined either (1) during a call
to H or (2), if it is still undefined when Aalg stops, by the game when defining
c∗. In both cases the probability of returning 0 in line (I) is 1/p:

(1) If T(R∗,m∗) was defined during a H query of the form H(R∗
[γ′,ξ′],m

∗)
then T(R∗,m∗) is drawn uniformly at random and independently from ξ′. Since
then U(R∗,m∗) �= ⊥, the game sets ξ∗ := ξ′ and hence ξ∗ ≡p −T(R∗,m∗) holds
with probability exactly 1/p. (2) If T(R∗,m∗) is only defined after the adversary
output ξ∗ then again we have ξ∗ ≡p −T(R∗,m∗) with probability 1/p. Hence,

Adv
game1
Aalg

(λ) ≥ Adv
game0
Aalg

(λ) − 1
2λ−1

. (2)

Game2. In the final game we use the standard strategy of simulating the Sign

oracle without the secret key x by programming the random oracle. Game1 and
Game2 are identical unless Game2 returns 0 in line (II). For each signature query,
R is uniformly random, and the size of table T is at most qs + qh, hence the
game aborts in line (II) with probability at most (qs + qh)/p ≤ (qs + qh)/2λ−1.
By summing over the at most qs signature queries, we have

Adv
game2
Aalg

(λ) ≥ Adv
game1
Aalg

(λ) − qs(qs + qh)
2λ−1

. (3)

Reduction to DL. We now construct an adversary B solving DL with the same
probability as Aalg wins Game2. On input (p,G, G) and X, the adversary runs
Aalg on input (p,G, G,X) and simulates Game2, which can be done without
knowledge of logG(X). Assume that the adversary wins Game2 by returning
(m∗, R∗, s∗) and let c∗ := T(R∗,m∗) and (γ∗, ξ∗) be defined as in the game.
Thus, ξ∗ �= −c∗ mod p and R∗ = γ∗G + ξ∗X; moreover, validity of the forgery
implies that s∗G = R∗+c∗X. Hence, (s∗−γ∗)G = (ξ∗+c∗)X and B can compute
log X = (s∗ − γ∗)(ξ∗ + c∗)−1 mod p. Combining this with Eqs. (1)–(3), we have

AdvdlGrGen,B(λ) = Adv
game2
Aalg

(λ) ≥ Adveuf-cma
Sch[GrGen],Aalg

(λ) − qs(qs + qh) + 1
2λ−1

.

Assuming that scalar multiplications in G and assignments in tables T and U
take unit time, the running time of B is τ + O(qs + qh). �

4 Blind Schnorr Signatures

4.1 Definitions

We start with defining the syntax and security of blind signature schemes and focus
on schemes with a 2-round (i.e., 4 messages) signing protocol for concreteness.

74 G. Fuchsbauer et al.

Syntax. A blind signature scheme BS consists of the following algorithms:

– par ← BS.Setup(1λ) and (sk,pk) ← BS.KeyGen(par) and b ← BS.Ver(pk,
m, σ) are defined as for regular signature schemes (Sect. 3.1).

– (b, σ) ← 〈BS.Sign(sk),BS.User(pk,m)〉: an interactive protocol is run between
the signer with private input a secret key sk and the user with private input
a public key pk and a message m; the signer outputs b = 1 if the interaction
completes successfully and b = 0 otherwise, while the user outputs a signa-
ture σ if it terminates correctly, and ⊥ otherwise. For a 2-round protocol the
interaction can be realized by the following algorithms:

(msgU,0, stateU,0) ← BS.User0(pk,m)
(msgS,1, stateS) ← BS.Sign1(sk,msgU,0)

(msgU,1, stateU,1) ← BS.User1(stateU,0,msgS,1)
(msgS,2, b) ← BS.Sign2(stateS ,msgU,1)

σ ← BS.User2(stateU,1,msgS,2)

(Typically, BS.User0 just initiates the session, and thus msgU,0 = () and
stateU,0 = (pk,m).)

Correctness requires that for any λ and m, when running par ←
BS.Setup(1λ), (sk,pk) ← BS.KeyGen(par), (b, σ) ← 〈BS.Sign(sk),BS.User(pk,
m)〉, and b′ ← BS.Ver(pk,m, σ), we have b = 1 = b′ with probability 1.

Fig. 5. The (strong) unforgeability game for a blind signature scheme BS with a 2-
round signing protocol.

Unforgeability. The standard security notion for blind signatures demands
that no user, after interacting arbitrary many times with a signer and k of these
interactions were considered successful by the signer, can produce more than k

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 75

signatures. Moreover, the adversary can schedule and interleave its sessions with
the signer in any arbitrary way.

In game UNFA
BS defined in Fig. 5 the adversary has access to two oracles

Sign1 and Sign2 corresponding to the two phases of the interactive protocol.
The game maintains two counters k1 and k2 (initially set to 0), where k1 is used
as session identifier, and a set S of “open” sessions. Oracle Sign1 takes the user’s
first message (which for blind Schnorr signatures is empty), increments k1, adds
k1 to S and runs the first round on the signer’s side, storing its state as statek1 .
Oracle Sign2 takes as input a session identifier j and a user message; if j ∈ S,
it runs the second round on the signer’s side; if successful, it removes j from S
and increments k2, which thus represents the number of successful interactions.

BS satisfies unforgeability if AdvunfBS,A(λ) is negligible for all p.p.t. adver-
saries A. Note that we consider “strong” unforgeability, which only requires
that all pairs (m∗

i , σ
∗
i) returned by the adversary (rather than all messages m∗

i)
are distinct.

Blindness. Blindness requires that a signer cannot link a message/signature
pair to a particular execution of the signing protocol. Formally, the adversary
chooses two messages m0 and m1 and the experiment runs the signing protocol
acting as the user with the adversary, first obtaining a signature σb on mb and
then σ1−b on m1−b for a random bit b. If both signatures are valid, the adversary
is given (σ0, σ1) and must determine the value of b. A formal definition can be
found in the full version [FPS19].

Fig. 6. The signing protocol of the blind Schnorr signature scheme.

Blind Schnorr signatures. A blind signature scheme BlSch is obtained from
the scheme Sch in Fig. 3 by replacing Sch.Sign with the interactive protocol
specified in Fig. 6 (the first message msgU,0 from the user to the signer is empty
and is not depicted). Correctness follows since a signature (R′, s′) obtained by
the user after interacting with the signer satisfies Sch.Ver:

s′G = sG + αG = (r + cx)G + αG = R + αG + βX + (−β + c)X
= R′ + c′X = R′ + H(R′,m)X.

Moreover, Schnorr signatures achieve perfect blindness [CP93].

76 G. Fuchsbauer et al.

4.2 The ROS Problem

The security of blind Schnorr signatures is related to the ROS (Random inhomo-
geneities in an Overdetermined, Solvable system of linear equations) problem,
which was introduced by Schnorr [Sch01]. Consider the game ROSGrGen,�,Ω in
Fig. 7, parameterized by a group generator GrGen,5 an integer � ≥ 1, and a set Ω
(we omit GrGen and Ω from the notation when they are clear from context). The
adversary A receives a prime p and has access to a random oracle Hros taking
as input (�ρ, aux) where �ρ ∈ (Zp)� and aux ∈ Ω. Its goal is to find � + 1 dis-
tinct pairs (�ρi, auxi)i∈[�+1] together with a solution (cj)j∈[�] to the linear system
∑�

j=1 ρi,jcj ≡p Hros(�ρi, auxi), i ∈ [� + 1].6

The lemma below, which refines Schnorr’s observation [Sch01], shows how
an algorithm A solving the ROS� problem can be used to break the one-more
unforgeability of blind Schnorr signatures. The proof is deferred to the full ver-
sion [FPS19] due to space constraints.

Lemma 1. Let GrGen be a group generator. Let A be an algorithm for game
ROSGrGen,�,Ω, where Ω = (Zp)2 ×{0, 1}∗, running in time at most τ and making
at most qh random oracle queries. Then there exists an (algebraic) adversary B
running in time at most τ + O(� + qh), making at most � queries to Sign1 and
Sign2 and qh random oracle queries, such that

AdvunfBlSch[GrGen],B(λ) ≥ AdvrosGrGen,�,Ω,A(λ) − q2h + (� + 1)2

2λ−1
.

The hardness of ROS critically depends on �. In particular, for small values
of �, ROS is statistically hard, as captured by the following lemma.

Fig. 7. The ROS game, where Hros : (Zp)� × Ω → Zp is a random oracle.

5 The group generator GrGen is only used to generate a prime p of length λ; the group
G is not used in the game.

6 The original definition of the problem by Schnorr [Sch01] sets Ω := ∅. Our more
general definition does not seem to significantly modify the hardness of the problem
while allowing to prove Theorem 2.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 77

Lemma 2. Let GrGen be a group generator, � ≥ 1, and Ω be some arbitrary set.
Then for any adversary A making at most qh queries to Hros,

AdvrosGrGen,�,Ω,A(λ) ≤
(

qh
�+1

)
+ 1

2λ−1
.

Proof. Consider a modified game ROS*
GrGen,�,Ω that is identical to ROS, except

that it returns 0 when the adversary outputs ((�ρi, auxi)i∈[�+1], (cj)j∈[�]) such
that for some i ∈ [� + 1] it has not made the query Hros(�ρi, auxi). Games ROS
and ROS∗ are identical unless in game ROS the adversary wins and has not
made the query Hros(�ρi, auxi) for some i, which happens with probability at
most 1/p ≤ 1/2λ−1. Hence,

AdvrosGrGen,�,Ω,A(λ) ≤ Advros
∗

GrGen,�,Ω,A(λ) +
1

2λ−1
.

In order to win the modified game ROS∗, A must in particular make �+1 distinct
random oracle queries (�ρi, auxi)i∈[�+1] such that the system

∑�
j=1 ρi,jcj ≡p Hros(�ρi, auxi), i ∈ [� + 1] (4)

with unknowns c1, . . . , c� has a solution. Consider any subset of � + 1 queries
(�ρi, auxi)i∈[�+1] made by the adversary to the random oracle and let M denote
the (� + 1) × � matrix whose i-th row is �ρi and let t ≤ � denote its rank. Then,
Eq. (4) has a solution if and only if the row vector �h := (Hros(�ρi, auxi))Ti∈[�+1]

is in the span of the columns of M . Since �h is uniformly random, this happens
with probability pt/p�+1 ≤ 1/p ≤ 1/2λ−1. By the union bound,

Advros
∗

GrGen,�,Ω,A(λ) ≤
(

qh
�+1

)

2λ−1
,

which concludes the proof. �
On the other hand, the ROS� problem can be reduced the (� + 1)-sum prob-

lem, for which Wagner’s generalized birthday algorithm [Wag02,MS12,NS15]
can be used. More specifically, consider the (� + 1) × � matrix

(ρi,j) =

⎡

⎣

1 0 ··· 0
0 1 ··· 0

. . .
0 ··· 0 1
1 ··· ··· 1

⎤

⎦

and let �ρi denote its i-th line, i ∈ [� + 1]. Let q := 2λ/(1+�lg(�+1)�). The
solving algorithm builds lists Li = (Hros(�ρi, auxi,k))k∈[q] for i ∈ [�] and
L�+1 = (−Hros(�ρ�+1, aux�+1,k))k∈[q] for arbitrary values auxi,k and uses Wag-
ner’s algorithm to find an element ei in each list Li such that

∑�+1
i=1 ei ≡p 0.

Then, it is easily seen that ((�ρi, auxi)i∈[�+1], (ej)j∈[�]), where auxi is such that
ei = Hros(�ρi, auxi), is a solution to the ROS problem. This algorithm makes
qh = (� + 1)2λ/(1+�lg(�+1)�) random oracle queries, runs in time an space
O((� + 1)2λ/(1+�lg(�+1)�)), and succeeds with constant probability.

78 G. Fuchsbauer et al.

4.3 Security of Blind Schnorr Signatures

We now formally prove that blind Schnorr signatures are unforgeable assuming
the hardness of the one-more discrete logarithm problem and the ROS problem.

Theorem 2. Let GrGen be a group generator. Let Aalg be an algebraic adversary
against the UNF security of the blind Schnorr signature scheme BlSch[GrGen]
running in time at most τ and making at most qs queries to Sign1 and qh queries
to the random oracle. Then there exist an algorithm Bros for the ROSqs problem
making at most qh + qs + 1 random oracle queries and an algorithm Bomdl for
the OMDL problem w.r.t. GrGen making at most qs queries to its oracle DLog,
both running in time at most τ + O(qs + qh), such that

AdvunfBlSch[GrGen],Aalg
(λ) ≤ Advomdl

GrGen,Bomdl
(λ) + Advros�,Bros

(λ).

We start with explaining the proof idea. Consider an adversary in the unforge-
ability game, let X be the public key and R1, . . . , R� be the elements returned
by the oracle Sign1 and let (R∗

i , s
∗
i) be the adversary’s forgeries on messages m∗

i .
As Aalg is algebraic, it must also output a representation (γi, ξi, �ρi) for R∗

i w.r.t.
the group elements received from the game: R∗

i = γiG + ξiX +
∑�

j=1 ρi,jRj .
Validity of the forgeries implies another representation, namely R∗

i = s∗
i G−c∗

i X
with c∗

i = H(R∗
i ,m

∗
i). Together, these yield

(c∗
i + ξ∗

i)X +
∑�

j=1 ρ∗
i,jRj = (s∗

i − γ∗
i)G, (5)

which intuitively can be used to compute log X.
However, the reduction also needs to simulate Sign2 queries, for which,

contrary to the proof for standard Schnorr signatures (Theorem1), it cannot
rely on programming the random oracle. In fact, the reduction can only win
OMDL, which is an easier game than DL. In particular, the reduction obtains
X,R1, . . . , Rq from its challenger and must compute their logarithms. It can
make q logarithm queries, which it uses to simulate the Sign2 oracle: on input
(j, cj), it simply returns sj ← DLog(Rj + cjX).

But this means that in Eq. (5) the reduction does not know the logarithms
of the Rj ’s; all it knows is Rj = sjG − cjX, which, when plugged into Eq. (5)
yields (

c∗
i + ξ∗

i − ∑�
j=1 ρ∗

i,jcj
︸ ︷︷ ︸

=:χi

)
X =

(
s∗

i − γ∗
i − ∑�

j=1 ρ∗
i,jsj

)
G.

Thus, if for some i, χi �= 0, the reduction can compute x = log X, and derive
rj = log Rj = sj − cj x. Together, x, r1, . . . , rq constitute an OMDL solution.

On the other hand, we can show that if χi = 0 for all i, then the adversary
has actually found a solution to the ROS problem (Fig. 7): A reduction to ROS
would answer the adversary’s queries H(R[γ,ξ,�ρ],m) by Hros(�ρ, (γ, ξ,m))−ξ; then
χi = 0 implies (recall that c∗

i = H(R∗
i ,m

∗))

0 = χi = H(R∗
i ,m

∗
i) + ξ∗

i − ∑�
j=1 ρ∗

i,jcj = Hros(�ρ∗
i , (γ

∗
i , ξ∗

i ,m∗
i)) − ∑�

j=1 ρ∗
i,jcj ,

meaning
(
(�ρ ∗

i , (γ∗
i , ξ∗

i ,m∗
i))i, (cj)j

)
is a solution to ROS.

To simplify the proof we first show the following lemma.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 79

Lemma 3. Let GrGen be a group generator and let A be an adversary against
the UNF security of the blind Schnorr signature scheme BlSch[GrGen] running
in time at most τ and making at most qs queries to Sign1 and qh queries to the
random oracle. Then there exists an adversary B that makes exactly qs queries to
Sign1 and qs queries to Sign2 that do not return ⊥, and returns qs+1 forgeries,
running in time at most τ + O(qs), such that

AdvunfBlSch[GrGen],A(λ) = AdvunfBlSch[GrGen],B(λ).

Proof. We construct the following adversary that plays game UNF (Fig. 5). On
input pk, adversary B runs A(pk) and relays all oracle queries and responses
between its challenger and A. Let q be the number of A’s Sign1 queries, let
R1, . . . , Rq be the answers, and let C be the completed sessions, that is, the set
of values j such that A queried Sign2 on some input (j, ∗) and Sign2 did not
reply ⊥. Let (m∗

i , (R
∗
i , s

∗
i))i∈[n] be A’s output, for which we must have k = |C| <

n when A wins.
B then makes qs − q queries to Sign1 to receive Rq+1, . . . , Rqs . Next, B

completes all qs − k open signing sessions for distinct messages by following
the protocol in Fig. 6: for every j ∈ S := [1, . . . , qs] \ C, adversary B picks a
fresh message mj /∈ {m∗

i }i∈[n] ∪ {mi}i∈S\[j] and αj , βj ←$Zp, computes R′
j :=

Rj + αjG + βjX, queries H(R′,mj) to get c′
j , computes cj := c′

j + βj mod p and
queries (j, cj) to Sign2. Upon receiving sj , B computes s′

j := sj + αj mod p,
which yields a signature (R′

j , s
′
j) on message mj .

Finally, B concatenates A’s output with qs+1−n ≤ qs−k signatures: let S =
{j1, . . . , jqs−k}; then B returns (m∗

i , (R
∗
i , s

∗
i))i∈[n] ‖ (mji

, (R′
ji

, s′
ji

))i∈[qs+1−n].
When A wins the game, all tuples (m∗

i , (R
∗
i , s

∗
i)) are different; as all remain-

ing messages also differ, all tuples output by B are distinct. By correctness of
the scheme, B’s signatures are valid. Thus whenever A wins, then so does B. �
Proof of Theorem 2. Let Aalg be an algebraic adversary making at most qs
queries to Sign1 and qh random oracle queries. By the above lemma, we can
assume that Aalg makes exactly � := qs queries to Sign1, closes all sessions, and
returns � + 1 valid signatures. We proceed with a sequence of games defined in
Fig. 8.

Game0. The first game is the UNF game (Fig. 5) for scheme BlSch[GrGen] played
with Aalg in the random oracle model. We have written the finalization of the
game in a different but equivalent way. In particular, instead of checking that
(m∗

i , (R
∗
i , s

∗
i)) �= (m∗

i′ , (R∗
i′ , s∗

i′)) for all i �= i′ ∈ [� + 1], we simply check that
(m∗

i , R
∗
i) �= (m∗

i′ , R∗
i′). This is equivalent since for any pair (m,R), there is a

single s ∈ Zp such that (R, s) is a valid signature for m. Hence, if the adversary
returns (m∗

i , (R
∗
i , s

∗
i)) and (m∗

i′ , (R∗
i′ , s∗

i′)) with (m∗
i , R

∗
i) = (m∗

i′ , R∗
i′) and s∗

i �=
s∗

i′ , at least one of the two forgeries is invalid. Thus,

Adv
game0
Aalg

(λ) = AdvunfBlSch[GrGen],Aalg
(λ). (6)

80 G. Fuchsbauer et al.

Fig. 8. Games used in the proof of Theorem 2. Game0 ignores all boxes. The light-gray
comments in Game1 and oracle H show how reduction Bros solves ROS; the comments
in the Sign oracles show how Bomdl embeds its challenges and simulates Game1.

Game1. In Game1, we make the following changes (which are analogous to those in
the proof ofTheorem 1). First, we introduce an auxiliary tableU that for each query
H(R[γ,ξ,�ρ],m) stores the representation (γ, ξ, �ρ) of R. Second, when the adversary
returns its forgeries (m∗

i , (R
∗
i [γi,ξi,�ρi]

, s∗
i))i∈[�+1], then for each i ∈ [�+1] for which

T(R∗
i ,m

∗
i) is undefined, we emulate a call to H(R∗

i [γi,ξi,�ρi]
,m∗

i). Again, this does
not change the output of the game, since in Game0, the value T(R∗

i ,m
∗
i) would be

randomly assigned when the game calls H̃ to check the signature. Finally, for each
i ∈ [� + 1], we retrieve (γ∗

i , ξ∗
i , �ρ ∗

i) := U(R∗
i ,m

∗
i) (which is necessarily defined at

this point) and return 0 if
∑�

i=1 ρ∗
i,jcj ≡p c∗

i + ξ∗
i for all i ∈ [� + 1], where cj is the

(unique) value submitted to Sign2 together with j and not answered by ⊥.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 81

Game0 and Game1 are identical unless Game1 returns 0 in line (I). We reduce
indistinguishability of the games to ROS by constructing an algorithm Bros solv-
ing the ROS� problem whenever Game1 stops in line (I). Algorithm Bros, which
has access to oracle Hros, runs Aalg and simulates Game1 in a straightforward
way, except for using its Hros oracle to define the entries of T.

In particular, consider a query H(R[γ,ξ,�ρ],m) by Aalg such that T(R,m) = ⊥.
Then Bros pads the vector �ρ with 0’s to make it of length � (at this point, not
all R1, . . . , R� are necessarily defined, so �ρ might not be of length �), and assigns
T(R,m) := Hros(�ρ, (γ, ξ,m)) − ξ (cf. comments in Fig. 8). Similarly, when Aalg

returns its forgeries (m∗
i , (R

∗
i [γi,ξi,�ρi]

, s∗
i))i∈[�+1], then for each i ∈ [� + 1] with

T(R∗
i ,m

∗
i) = ⊥, reduction Bros assigns T(R∗

i ,m
∗
i) := Hros(�ρi, (γi, ξi,m

∗
i)) − ξi.

Since Hros returns uniformly random elements in Zp, the simulation is perfect.
If Game1 aborts in line (I), Bros returns ((�ρ ∗

i , (γ∗
i , ξ∗

i ,m∗
i))i∈[�+1], (cj)j∈[�]),

where (γ∗
i , ξ∗

i , �ρ ∗
i) := U(R∗

i ,m
∗
i). We show that this is a valid ROS solution.

First, for all i �= i′ ∈ [�+1]: (�ρ ∗
i , (γ∗

i , ξ∗
i ,m∗

i)) �= (�ρ ∗
i′ , (γ∗

i′ , ξ∗
i′ ,m∗

i′). Indeed, oth-
erwise we would have (m∗

i , R
∗
i) = (m∗

i′ , R∗
i′) and the game would have returned 0

earlier. Second, since the game returns 0 in line (I), we have
∑�

j=1 ρ∗
i,jcj ≡p c∗

i +ξ∗
i

for all i ∈ [� + 1]. Hence, to show that the ROS solution is valid, it is sufficient
to show that for all i ∈ [� + 1], c∗

i = Hros(�ρ ∗
i , (γ∗

i , ξ∗
i ,m∗

i)) − ξ∗
i . This is clearly

the case if T(R∗
i ,m

∗
i) = ⊥ when the adversary returns its forgeries. Indeed, in

that case (γ∗
i , ξ∗

i , �ρ ∗
i) = (γi, ξi, �ρi) and

c∗
i = T(R∗

i ,m
∗
i) = Hros(�ρi, (γi, ξi,m

∗
i)) − ξi = Hros(�ρ ∗

i , (γ∗
i , ξ∗

i ,m∗
i)) − ξ∗

i .

Otherwise, T(R∗
i ,m

∗
i) was necessarily assigned during a call to H, and this

call was of the form H(R∗
i [γ∗

i ,ξ∗
i ,�ρ ∗

i],m
∗
i), which implies that c∗

i = T(R∗
i ,m

∗) =
Hros(�ρ ∗

i , (γ∗
i , ξ∗

i ,m∗
i)) − ξ∗

i . Hence,

Adv
game1
Aalg

(λ) ≥ Adv
game0
Aalg

(λ) − Advros�,Bros
(λ). (7)

Moreover, it is easy to see that Bros makes at most qh + �+1 queries to Hros and
runs in time at most τ + O(� + qh), assuming scalar multiplications in G and
table assignments take unit time.

Reduction to OMDL. In our last step, we construct an algorithm Bomdl solv-
ing OMDL whenever Aalg wins Game1. Algorithm Bomdl, which has access to two
oracles Chal and DLog (see Fig. 1) takes as input a group description (p,G, G),
makes a first query X ← Chal(), and runs Aalg on input (p,G, G,X), simulat-
ing Game1 as follows (cf. comments in Fig. 8). Each time Aalg makes a Sign1()
query, Bomdl queries its Chal oracle to obtain Rj . It simulates Sign2(j, c) with-
out knowledge of x and rj by querying sj ← DLog(Rj + cX).

Assume that Game1 returns 1, which implies that all forgeries (R∗
i , s

∗
i)

returned by Aalg are valid. We show how Bomdl solves OMDL. First, note that
Bomdl made exactly � calls to its oracle DLog in total (since it makes exactly
one call for each (valid) Sign2 query made by Aalg).

Since Game1 did not return 0 in line (I), there exists i ∈ [� + 1] such that
∑�

j=1 ρ∗
i,jcj �≡p c∗

i + ξ∗
i . (8)

82 G. Fuchsbauer et al.

For all i, the adversary returned a representation (γ∗
i , ξ∗

i , �ρ ∗
i) of R∗

i , thus

R∗
i = γ∗

i G + ξ∗
i X +

∑�
j=1 ρ∗

i,jRj . (9)

On the other hand, validity of the i-th forgery yields another representation:
R∗

i = s∗
i G + c∗

i X. Combining these two, we get

(c∗
i + ξ∗

i)X +
∑�

j=1 ρ∗
i,jRj = (s∗

i − γ∗
i)G. (10)

Finally, for each j ∈ [�], sj was computed with a call sj ← DLog(Rj + cjX),
hence

Rj = sjG − cjX. (11)

Injecting Eq. (11) in Eq. (10), we obtain
(
c∗
i + ξ∗

i − ∑�
j=1 ρ∗

i,jcj

)
X =

(
s∗

i − γ∗
i − ∑�

j=1 ρ∗
i,jsj

)
G. (12)

Since by Eq. (8) the coefficient in front of X is non-zero, this allows Bomdl to
compute x := log X. Furthermore, from Eq. (11) we have rj := log Rj = sj − cjx
for all j ∈ [�]. By returning (x, r1, . . . , r�), Bomdl solves the OMDL problem
whenever Aalg wins Game1, which implies

Advomdl
GrGen,Bomdl

(λ) = Adv
game1
Aalg

(λ). (13)

The theorem now follows from Eqs. (6), (7) and (13). �

Fig. 9. The clause blind Schnorr signing protocol.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 83

5 The Clause Blind Schnorr Signature Scheme

We present a variation of the blind Schnorr signature scheme that only modifies
the signing protocol. The scheme thus does not change the signatures themselves,
meaning that it can be very smoothly integrated in existing applications.

The signature issuing protocol is changed so that it prevents the adversary
from attacking the scheme by solving the ROS problem using Wagner’s algorithm
[Wag02,MS12]. The reason is that, as we show in Theorem 3, the attacker must
now solve a modified ROS problem, which we define in Fig. 10.

We start with explaining the modified signing protocol, formally defined in
Fig. 9. In the first round the signer and the user execute two parallel runs of
the blind signing protocol from Fig. 6, of which the signer only finishes one at
random in the last round, that is, it finishes (Run1 ∨ Run2): the clause from
which the scheme takes its name.

This minor modification has major consequences. In the attack against the
standard blind signature scheme (see Sect. 4.2), the adversary opens � signing
sessions, receiving R1, . . . , R�, then searches a solution �c to the ROS problem and
closes the signing sessions by sending c1, . . . , c�. Our modified signing protocol
prevents this attack, as now for every opened session the adversary must guess
which of the two challenges the signer will reply to. Only if all its guesses are
correct is the attack successful. As the attack only works for large values of �,
this probability vanishes exponentially.

Fig. 10. The modified ROS problem.

In Theorem 3 we make this intuition formal; that is, we define a modified ROS
game, which we show any successful attacker (which does not solve OMDL) must
solve.

We have used two parallel executions of the basic protocol for the sake of
simplicity, but the idea can be straightforwardly generalized to t > 2 parallel
runs, of which the signer closes only one at random in the last round, that is, it

84 G. Fuchsbauer et al.

closes (Run1 ∨ . . .∨ Runt). This decreases the probability that the user correctly
guesses which challenges will be answered by the signer in � concurrent sessions.

The Modified ROS Problem. Consider Fig. 10. The difference to the origi-
nal ROS problem (Fig. 7) is that the queries to the Hros oracle consist of two
vectors �ρ0, �ρ1 and additional aux information. Analogously, the adversary’s task
is to return � + 1 tuples (�ρi,0, �ρi,1, auxi), except that the ROS solution c∗

1, . . . , c
∗
�

is selected as follows: for every index j ∈ [�] the adversary must query an addi-
tional oracle Select(j, cj,0, cj,1), which flips a random bit bj and sets the j-th
coordinate of the solution to c∗

j := cj,bj
.

Up to now, nothing really changed, as an adversary could always choose �ρi,0 =
�ρi,1 and cj,0 = cj,1 for all indices, and solve the standard ROS problem. What
complicates the task for the adversary considerably is the additional winning
condition, which demands that in all tuples returned by the adversary, the ρ
values that correspond to the complement of the selected bit must be zero, that
is, for all i ∈ [�+1] and all j ∈ [�]: ρi,1−bj ,j = 0. The adversary thus must commit
to the solution coordinate c∗

j before it learns bj , which then restricts the format
of its ρ values.

We conjecture that the best attack against this modified ROS problem is to
guess the � bits bj and to solve the standard ROS problem based on this guess
using Wagner’s algorithm. Hence, the complexity of the attack is increased by a
factor 2� and requires time

O
(
2� · (� + 1)2λ/(1+�lg(�+1)�)).

lg()

50 100

50

100

150

200

Fig. 11. Estimated complexity τ of conjectured best attack against the modified ROS
problem as a function of parameter � for λ = 256 (solid line) and λ = 512 (dashed
line).

This estimated complexity is plotted for λ ∈ {256, 512} in Fig. 11. This should
be compared to the standard Wagner attack with � + 1 = 2

√
λ running in time

232 and 245, respectively, for the same values of the security parameter.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 85

Unforgeability of Clause Blind Schnorr Signatures. We now prove
that the Schnorr signature scheme from Fig. 3, with the signing algorithm
replaced by the protocol in Fig. 9 is secure under the OMDL assumption for
the underlying group and hardness of the modified ROS problem.

Theorem 3. Let GrGen be a group generator. Let Aalg be an algebraic adver-
sary against the UNF security of the clause blind Schnorr signature scheme
CBlSch[GrGen] running in time at most τ and making at most qs queries to
Sign1 and qh queries to the random oracle. Then there exist an algorithm Bmros

for the MROSqs problem making at most qh+qs+1 random oracle queries and an
algorithm Bomdl for the OMDL problem w.r.t. GrGen making at most qs queries
to its oracle DLog, both running in time at most τ + O(qs + qh), such that

AdvunfBlSch[GrGen],Aalg
(λ) ≤ Advomdl

GrGen,Bomdl
(λ) + Advmros

�,Bmros
(λ).

The theorem follows by adapting the proof of Theorem2; we therefore discuss
the changes and refer to Fig. 12, which compactly presents all the details.

The proof again proceeds by one game hop, where an adversary behaving
differently in the two games is used to break the modified ROS problem; the only
change to the proof of Theorem2 is that when simulating Sign2, the reduction
Bmros calls Select(j, cj,0, cj,1) to obtain bit b instead of choosing it itself. By
definition, Game1 aborts in line (I) if and only if Bmros has found a solution for
MROS.

The difference in the reduction to OMDL of the modified game is that the
adversary can fail to solve MROS in two ways: (1) its values ((ρi,bj ,j)i,j , (cj)j)
are not a ROS solution; in this case the reduction can solve OMDL as in the
proof of Theorem 2; (2) these values are a ROS solution, but for some i, j, we
have ρi,1−bj ,j �= 0. We show that in this case the OMDL reduction can compute
the discrete logarithm of one of the values Rj,1−bj

.
More in detail, the main difference to Theorem2 is that the representation

of the values R∗
i in the adversary’s forgery depend on both the Rj,0 and the Rj,1

values; we can thus write them as

R∗
i = γ∗

i G + ξ∗
i X +

∑�
j=1 ρ∗

i,bj ,jRj,bj
+

∑�
j=1 ρ∗

i,1−bj ,jRj,1−bj

(this corresponds to Eq. (9) in the proof of Theorem2). Validity of the forgery
implies R∗

i = s∗
i G − c∗

i X, which together with the above yields

(c∗
i + ξ∗

i)X +
∑�

j=1 ρ∗
i,bj ,jRj,bj

= (s∗
i − γ∗

i)G − ∑�
j=1 ρ∗

i,1−bj ,jRj,1−bj

(cf. Eq. (10)). By definition of sj , we have Rj,bj
= sjG − cjX for all j ∈ [�]; the

above equation becomes thus

(
c∗
i + ξ∗

i − ∑�
j=1 ρ∗

i,bj ,jcj

)
X (14)

=
(
s∗

i − γ∗
i − ∑�

j=1 ρ∗
i,bj ,jsj

)
G − ∑�

j=1 ρ∗
i,1−bj ,jRj,1−bj

86 G. Fuchsbauer et al.

Fig. 12. Games used in the proof of Theorem 3. The comments in light gray show how
Bmros solves MROS; the dark comments show how Bomdl solves OMDL.

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 87

(which corresponds to Eq. (12) in Theorem 2). In Theorem 2, not solving ROS
implied that for some i, the coefficient of X in the above equation was non-zero,
which allowed computation of log X.

However, if the adversary sets all these coefficients to 0, it could still fail to
solve MROS if ρ∗

i∗,1−bj∗ ,j∗ �= 0 for some i∗, j∗ (this is case (2) defined above). In
this case Game1 does not abort and the OMDL reduction Bomdl must succeed.
Since in this case the left-hand side of Eq. (14) is then 0, Bomdl can, after querying
DLog(Rj,1−bj

) for all j �= j∗, compute DLog(Rj∗,1−bj∗), which breaks OMDL.
We finally note that the above case distinction was merely didactic, as the

same OMDL reduction can handle both cases simultaneously, which means that
our reduction does not introduce any additional security loss. In particular, the
reduction obtains X and all values (Rj,0, Rj,1) from its OMDL challenger, then
handles case (2) as described, and case (1) by querying R1,1−b1 , . . . , R�,1−b�

to
its DLog oracle. In both cases it made 2� queries to DLog and computed the
discrete logarithms of all 2� + 1 challenges.

Figure 12 presents the unforgeability game and Game1, which aborts if the
adversary solved MROS. The gray and dark gray comments also precisely define
how a reduction Bmros solves MROS whenever Game1 aborts in line (I), and how
a reduction Bomdl solves OMDL whenever Aalg wins Game1.

Blindness of the Clause Blind Schnorr Signature Scheme. Blindness
of the “clause” variant in Fig. 9 follows via a hybrid argument from blindness
of the standard scheme (Fig. 6). In the game defining blindness the adversary
impersonates a signer and selects two messages m0 and m1. The game flips a
bit b, runs the signing protocol with the adversary for mb and then for m1−b.
If both sessions terminate, the adversary is given the resulting signatures and
must determine b.

In the blindness game for scheme CBlSch, the challenger runs two instances
of the issuing protocol from BlSch for mb of which the signer finishes one, as
determined by its message (βb, sb) in the third round (βb corresponds to b in
Fig. 9), and then two instances for m1−b.

If b = 0, the challenger thus asks the adversary for signatures on m0,m0,m1

and then m1. We define a hybrid game where the order of the messages is
m1,m0,m0,m1; this game thus lies between the blindness games for b = 0 and
b = 1, where the messages are m1,m1,m0,m0. The original games differ from
the hybrid game by exactly one message pair; intuitively, they are thus indistin-
guishable by blindness of BlSch.

A technical detail is that the above argument only works when β0 = β1, as
otherwise both reductions (between each original game and the hybrid game)
abort one session and do not get any signatures from its challenger. The reduc-
tions thus guess the values β0 and β1 (and return a random bit if the guess
turns out wrong). The hybrid game then replaces the β0-th message of the first
two and the β1-th of the last two (as opposed to the ones underlined as above).
Following this argument, in the full version [FPS19] we prove the following:

Theorem 4. Let A be a p.p.t. adversary against blindness of the scheme
CBlSch. Then there exist two p.p.t. algorithms B1 and B2 against blindness of

88 G. Fuchsbauer et al.

BlSch such that

AdvblindCBlSch,A(λ) ≤ 4 · (
AdvblindBlSch,B1

(λ) + AdvblindBlSch,B2
(λ)

)
.

Since the (standard) blind Schnorr signature scheme is perfectly blind [CP93],
by the above, our variant also satisfies perfect blindness.

6 Schnorr-Signed ElGamal Encryption

A public key for the ElGamal public-key encryption (PKE) scheme is a group
element Y ∈ G. Messages are group elements M ∈ G and to encrypt M under
Y , one samples a random x ∈ Zp and derives an ephemeral key K := xY to
blind the message: C := xY + M . Given in addition the value X := xG, the
receiver that holds y = log Y can derive K := yX and recover M := C − K.

Fig. 13. The DDH problem.

Fig. 14. The Schnorr-Signed ElGamal PKE scheme SEG[GrGen].

Under the decisional Diffie-Hellman (DDH) assumption (see Fig. 13), cipher-
texts of different messages are computationally indistinguishable: replacing K

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 89

by a random value K ′ makes the ciphertext C perfectly hide the message. In the
AGM, ElGamal, viewed as a key-encapsulation mechanism (KEM) was shown
to satisfy CCA1-security (where the adversary can only make decryption queries
before seeing the challenge key) under a parametrized variant of DDH [FKL18].

The idea of Schnorr-signed ElGamal is to accompany the ciphertext by a
proof of knowledge of the randomness x = log X used to encrypt, in particular,
a Schnorr signature on the pair (X,C) under the public key X. The scheme
is detailed in Fig. 14. (Note that we changed the argument order in the hash
function call compared to Sect. 3 so that it is the same as in ciphertexts.)

The strongest security notion for PKE is indistinguishability of ciphertexts
under adaptive chosen-ciphertext attack (IND-CCA2), where the adversary can
query decryptions of ciphertexts of its choice even after receiving the challenge.
The (decisional) game IND-CCA2 is defined in Fig. 15.

When ephemeral keys are hashed (that is, defined as k := H′(xY)) and
the scheme is viewed as a KEM, then CCA2-security can be reduced to the
strong Diffie-Hellman (SDH) assumption7 [ABR01,CS03] in the ROM. In the
full version [FPS19] we show that when key hashing is applied to the Schnorr-
signed ElGamal scheme from Fig. 14, then in the AGM+ROM we can directly
reduce CCA2-security of the corresponding KEM to the DL assumption (Fig. 1);
in particular, we do so using a tight security proof (note that SDH is equivalent
to DL in the AGM [FKL18] but the reduction from DL to SDH is non-tight).
Here we prove that the Schnorr-signed ElGamal PKE is IND-CCA2-secure in
the AGM+ROM under the DDH assumption.

Fig. 15. The IND-CCA2 security game for a PKE scheme PKE.

Theorem 5. Let GrGen be a group generator. Let Aalg be an algebraic adversary
against the IND-CCA2 security of the Schnorr-signed ElGamal PKE scheme
SEG[GrGen] making at most qd decryption queries and qh queries to the random
oracle. Then there exist two algorithms B1 and B2 solving respectively the DL
problem and the DDH problem w.r.t. GrGen, such that

7 SDH states that given X = xG and Y it is infeasible to compute xY even when given
access to an oracle which on input (Y ′, Z′) returns 1 if Z′ = xY ′ and 0 otherwise.

90 G. Fuchsbauer et al.

Advind-cca2SEG[GrGen],Aalg
(λ) ≤ 2 · AdvddhGrGen,B2

(λ) + AdvdlGrGen,B1
(λ) +

qd + 1
2λ−1 (qd + qh)

2λ−1
.

We start with the proof idea. The full proof can be found in the full ver-
sion [FPS19]. Let Y be the public key, let P0 and P1 denote the challenge plain-
texts, and let (X∗ = x∗G,C∗ = x∗Y + Pb, R

∗, s∗) be the challenge ciphertext.
Under the DDH assumption, given Y and X∗, the value x∗Y looks random.
We can thus replace x∗Y by a random group element Z∗, which perfectly hides
Pb and leads to a game where the adversary gains no information about the
challenge bit b.

It remains to show how the reduction can simulate the game without knowl-
edge of log X∗ (needed to sign the challenge ciphertext) and log Y (needed to
answer decryption queries). The Schnorr signature under X∗ contained in the
challenge ciphertext can be simulated by programming the random oracle H as
for Theorem 1.

Decryption queries leverage the fact that the Schnorr signature contained in
a queried ciphertext (X,C,R, s) proves knowledge of x with X = xG. Thus,
intuitively, the reduction should be able to answer a query by extracting x and
returning M = C − xY . However, this extraction is a lot trickier than in the
proof of Theorem1: During the game the adversary obtains group elements Y ,
X∗, C∗, and R∗, as well as the answers M1, . . . ,Mqd to its queries to Dec.
The adversary’s representations of group elements can thus depend on all these
elements. In particular, since Dec on input (X,C, . . .) computes M := C − yX,
by successive calls to Dec, the adversary can obtain arbitrary powers of y.

In our proof we first show that from a representation given by the adversary,
we can always (efficiently) derive a representation in basis

(G,X∗, Y = yG, . . . , yqd+1G, x∗yG, . . . , x∗yqd+1G).

Now consider a decryption query (X,C,R, s), each group element represented as

X = γxG + ξxX∗ +
∑qd+1

i=1 υ
(i)
x yiG +

∑qd+1
i=1 ζ

(i)
x x∗yiG, R = γrG + . . . (15)

We show that each query falls into one of three categories:

(1) The choice of c = H(X,C,R) was unlucky, which only happens with negli-
gible probability

(2) The representation of X is independent of Y, that is, X = γxG+ξxX∗. Then
xY (and hence the answer M = C − xY to the query) can be computed as
xY := γxY + ξxZ∗ (where Z∗ := x∗Y is known by the reduction).

(3) Otherwise we show that the adversary has computed log Y If the Dec query
was valid then sG = R+ cX, which, by plugging in the representations (15)
yields

0 = (γr + cγx −s)G+(ξr + cξx)X∗ +
qd+1∑

i=1

(
(υ(i)

r + x∗ζ(i)r) + c (

=:β(i)

︷ ︸︸ ︷
υ(i)

x + x∗ζ(i)x)
︸ ︷︷ ︸

=:α(i)

)
yiG

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 91

If β(i) ≡p 0 for all i, we are in case (2). If β(j) �≡p 0 for some j and α(i) ≡p 0 for
all i, then c ≡p −(υ(j)

r +x∗ζ(j)r) · (β(j))−1 was an unlucky choice (made after the
adversary chose its representations from (15)) (case (1)). Otherwise α(j) ≡p 0
for some j and

0 = γr + cγx − s + (ξr + cξx)x∗ +
∑qd+1

i=1 α(i)yi

can be solved for y. (Note that the reduction to DL chooses x∗ itself.)

Acknowledgements. The first author is supported by the Vienna Science and Tech-
nology Fund (WWTF) through project VRG18-002. Parts of this work were done
while he was visiting the Simons Institute for the Theory of Computing. This is work
is funded in part by the MSR–Inria Joint Centre.

References

[Abe01] Abe, M.: A secure three-move blind signature scheme for polynomially
many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 136–151. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44987-6 9

[ABM15] Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE
password-authenticated key exchange protocol. In: 2015 IEEE Symposium
on Security and Privacy, pp. 571–587 (2015)

[ABR01] Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assump-
tions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45353-9 12

[BCC04] Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In:
ACM CCS 2004, pp. 132–145 (2004)

[BCC+09] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous credentials.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 7

[BDL+12] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed
high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.
org/10.1007/s13389-012-0027-1

[BDN18] Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part
II. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03329-3 15

[BFPV13] Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Short blind sig-
natures. J. Comput. Secur. 21(5), 627–661 (2013)

[BFW16] Bernhard, D., Fischlin, M., Warinschi, B.: On the hardness of proving
CCA-security of signed ElGamal. In: Cheng, C.-M., Chung, K.-M., Per-
siano, G., Yang, B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 47–69.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7 3

[BL13a] Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: ACM
CCS 2013, pp. 1087–1098 (2013)

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-662-49384-7_3

92 G. Fuchsbauer et al.

[BL13b] Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind sig-
nature schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 82–99. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-42045-0 5

[BLS04] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pair-
ing. J. Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-
004-0314-9

[BNPS03] Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-
more-RSA-inversion problems and the security of Chaum’s blind signa-
ture scheme. J. Cryptol. 16(3), 185–215 (2003). https://doi.org/10.1007/
s00145-002-0120-1

[BNW17] Bernhard, D., Nguyen, N.K., Warinschi, B.: Adaptive proofs have straight-
line extractors (in the random oracle model). In: Gollmann, D., Miyaji, A.,
Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 336–353. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 17

[Bol03] Boldyreva, A.: Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 3

[BP02] Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs
of security against impersonation under active and concurrent attacks. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 11

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)

[BR95] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis,
A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Hei-
delberg (1995). https://doi.org/10.1007/BFb0053428

[Bra94] Brands, S.: Untraceable off-line cash in wallet with observers: extended
abstract. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–
318. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-
2 26

[CFN90] Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer,
New York (1990). https://doi.org/10.1007/0-387-34799-2 25

[Cha82] Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203.
Springer, Boston (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

[CHL05] Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 18

[CL01] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44987-6 7

[CP93] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 7

[CS03] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM J.
Comput. 33(1), 167–226 (2003)

https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/978-3-319-61204-1_17
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-48071-4_7

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 93

[ElG85] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

[FHS15] Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind
signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 233–253. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48000-7 12

[FJS19] Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for
Schnorr signatures. J. Cryptol. 32(2), 566–599 (2019). https://doi.org/10.
1007/s00145-019-09311-5

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its
applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96881-0 2

[FOO93] Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for
large scale elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992.
LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-57220-1 66

[FPS19] Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and
signed ElGamal encryption in the algebraic group model. Cryptology
ePrint Archive, Report 2019/877 (2019). https://eprint.iacr.org/2019/877

[FPV09] Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable constant-size
fair e-cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 226–247. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10433-6 15

[FS10] Fischlin, M., Schröder, D.: On the impossibility of three-move blind signa-
ture schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 197–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 10

[Fuc11] Fuchsbauer, G.: Commuting signatures and verifiable encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-
4 14

[GBL08] Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reduc-
tions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85174-5 6

[GG14] Garg, S., Gupta, D.: Efficient round optimal blind signatures. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 27

[GRS+11] Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal
blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 630–648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 36

[HHK10] Herranz, J., Hofheinz, D., Kiltz, E.: Some (in)sufficient conditions for
secure hybrid encryption. Inf. Comput. 208(11), 1243–1257 (2010)

[HKL19] Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures
from identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019, Part III. LNCS, vol. 11478, pp. 345–375. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 12

https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/3-540-57220-1_66
https://eprint.iacr.org/2019/877
https://doi.org/10.1007/978-3-642-10433-6_15
https://doi.org/10.1007/978-3-642-10433-6_15
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-030-17659-4_12

94 G. Fuchsbauer et al.

[Jak98] Jakobsson, M.: A practical mix. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 448–461. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0054145

[MPSW19] Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-
signatures with applications to Bitcoin. Des. Codes Crypt. 87(9), 2139–
2164 (2019). https://doi.org/10.1007/s10623-019-00608-x

[MS12] Minder, L., Sinclair, A.: The extended k-tree algorithm. J. Cryptol. 25(2),
349–382 (2012). https://doi.org/10.1007/s00145-011-9097-y

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete
logarithm. Math. Notes 55(2), 165–172 (1994). https://doi.org/10.1007/
BF02113297

[Nic19] Nick, J.: Blind signatures in scriptless scripts. Presentation given at Build-
ing on Bitcoin 2019 (2019). Slides and video. https://jonasnick.github.io/
blog/2018/07/31/blind-signatures-in-scriptless-scripts/

[NS15] Nikolić, I., Sasaki, Y.: Refinements of the k -tree algorithm for the gener-
alized birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part II. LNCS, vol. 9453, pp. 683–703. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 28

[OO92] Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-46766-1 27

[Pas11] Pass, R.: Limits of provable security from standard assumptions. In: 43rd
ACM STOC, pp. 109–118 (2011)

[PS96a] Pointcheval, D., Stern, J.: Provably secure blind signature schemes.
In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol.
1163, pp. 252–265. Springer, Heidelberg (1996). https://doi.org/10.1007/
BFb0034852

[PS96b] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 33

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.
1007/s001450010003

[PV05] Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiv-
alent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

[Sch90] Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 22

[Sch91] Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

[Sch01] Schnorr, C.P.: Security of blind discrete log signatures against interactive
attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS,
vol. 2229, pp. 1–12. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45600-7 1

[Seu12] Seurin, Y.: On the exact security of Schnorr-type signatures in the random
oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 33

https://doi.org/10.1007/BFb0054145
https://doi.org/10.1007/BFb0054145
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/s00145-011-9097-y
https://doi.org/10.1007/BF02113297
https://doi.org/10.1007/BF02113297
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/
https://doi.org/10.1007/978-3-662-48800-3_28
https://doi.org/10.1007/3-540-46766-1_27
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33

Blind Schnorr Signatures and Signed ElGamal Encryption in the AGM 95

[SG02] Shoup, V., Gennaro, R.: Securing threshold cryptosystems against cho-
sen ciphertext attack. J. Cryptol. 15(2), 75–96 (2002). https://doi.org/10.
1007/s00145-001-0020-9

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[SJ99] Schnorr, C.-P., Jakobsson, M.: Security of discrete log cryptosystems in the
random oracle and the generic model (1999). https://core.ac.uk/download/
pdf/14504220.pdf

[SJ00] Schnorr, C.P., Jakobsson, M.: Security of signed ElGamal encryption.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 7

[ST13] Seurin, Y., Treger, J.: A robust and plaintext-aware variant of signed ElGa-
mal encryption. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779,
pp. 68–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36095-4 5

[TY98] Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption.
In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054019

[Wag02] Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 19

[Wik08] Wikström, D.: Simplified submission of inputs to protocols. In: Ostro-
vsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229,
pp. 293–308. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85855-3 20

[Wui18] Wuille, P.: Schnorr signatures for secp256k1. Bitcoin Improve-
ment Proposal (2018). https://github.com/sipa/bips/blob/bip-schnorr/
bip-schnorr.mediawiki

https://doi.org/10.1007/s00145-001-0020-9
https://doi.org/10.1007/s00145-001-0020-9
https://doi.org/10.1007/3-540-69053-0_18
https://core.ac.uk/download/pdf/14504220.pdf
https://core.ac.uk/download/pdf/14504220.pdf
https://doi.org/10.1007/3-540-44448-3_7
https://doi.org/10.1007/978-3-642-36095-4_5
https://doi.org/10.1007/978-3-642-36095-4_5
https://doi.org/10.1007/BFb0054019
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/978-3-540-85855-3_20
https://doi.org/10.1007/978-3-540-85855-3_20
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki

On Instantiating the Algebraic Group
Model from Falsifiable Assumptions

Thomas Agrikola1(B), Dennis Hofheinz2(B), and Julia Kastner2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
thomas.agrikola@kit.edu

2 ETH Zürich, Zürich, Switzerland
{hofheinz,julia.kastner}@inf.ethz.ch

Abstract. We provide a standard-model implementation (of a relax-
ation) of the algebraic group model (AGM, [Fuchsbauer, Kiltz, Loss,
CRYPTO 2018]). Specifically, we show that every algorithm that uses
our group is algebraic, and hence “must know” a representation of its
output group elements in terms of its input group elements. Here, “must
know” means that a suitable extractor can extract such a representation
efficiently. We stress that our implementation relies only on falsifiable
assumptions in the standard model, and in particular does not use any
knowledge assumptions.

As a consequence, our group allows to transport a number of results
obtained in the AGM into the standard model, under falsifiable assump-
tions. For instance, we show that in our group, several Diffie-Hellman-like
assumptions (including computational Diffie-Hellman) are equivalent to
the discrete logarithm assumption. Furthermore, we show that our group
allows to prove the Schnorr signature scheme tightly secure in the ran-
dom oracle model.

Our construction relies on indistinguishability obfuscation, and hence
should not be considered as a practical group itself. However, our results
show that the AGM is a realistic computational model (since it can be
instantiated in the standard model), and that results obtained in the
AGM are also possible with standard-model groups.

Keywords: Indistinguishability obfuscation · Algebraic group model ·
Schnorr signatures

1 Introduction

The generic group model. In order to analyze the plausibility and relative strength
of computational assumptions in cyclic groups, Shoup [38] and Maurer [31] have

Work done while all authors were at Karlsruhe Institute of Technology.
T. Agrikola and J. Kastner—Supported by ERC Project PREP-CRYPTO 724307.
D. Hofheinz—Supported by ERC Project PREP-CRYPTO 724307, and by DFG
project GZ HO 4534/4-2.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 96–126, 2020.
https://doi.org/10.1007/978-3-030-45724-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_4

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 97

proposed the generic group model (GGM). In the GGM, any adversary can only
interact with the modeled group through an oracle. In particular, all computa-
tions in that group must be explicitly expressed in terms of the group operation.
To prevent an adversary from locally performing computations, that adversary
gets to see only truly random strings (in [38]) or independent handles (in [31]) as
representations of group elements.1

The discrete logarithm and even many Diffie-Hellman-style problems are hard
generically (i.e., when restricting group operations in the above way) [32,38].
Hence, the only way to break such a generically hard assumption in a con-
crete group is to use the underlying group representation in a nontrivial way. In
that sense, the GGM can be very useful as a sanity check for the validity of a
given assumption, or even the security of a given cryptographic scheme. How-
ever, generic groups cannot be implemented: there exist cryptographic schemes
that are secure in the GGM, but insecure when instantiated with any concrete
group [15].

The algebraic group model. The algebraic group model (AGM, [21]) is a relax-
ation of the GGM that tries to avoid impossibilities as in [15] while preserving
the GGM’s usefulness. Specifically, the AGM only considers algebraic (rather
than generic) adversaries. An algebraic adversary A can make arbitrary use of
the representation of group elements, but must supply an explicit decomposi-
tion for any of its output group elements in terms of input group elements. In
other words, A must also output an explanation of how any group element in
its output was computed from its input using the group operation.

Now [21] show that many GGM proofs only use this type of algebraicity of an
adversary, and carry over to the AGM. At the same time, GGM impossibilities
like [15] do not apply to the AGM, since algebraic adversaries are able to work
with the actual group (and not only with random or abstract representations of
group elements).

The AGM and knowledge assumptions. The AGM is closely related to the
notions of knowledge assumptions and extractability. To illustrate, assume that
for any (possibly non-algebraic) adversary A, we can find an extractor E that
manages to extract from A a decomposition of A’s output in terms of A’s input.
Then, composing E and A yields an algebraic adversary Aalg. In this situation,
we can then say that without loss of generality, any adversary can be assumed to
be algebraic.2 Conversely, any algebraic adversary by definition yields the results
of such an extraction in its output.

This observation also provides a blueprint to instantiating the AGM: simply
prove that any adversary A can be replaced by an algebraic adversary Aalg, pos-
sibly using an extraction process as above. If this extraction requires A’s code

1 Other black-box abstractions of groups with similar ramifications exist [6,34].
2 This observation about algebraic adversaries has already been made in [9,35]. Also,

similar but more specific knowledge assumptions have been used to prove concrete
cryptographic constructions secure, e.g., [4,14,16,25].

98 T. Agrikola et al.

and randomness but no other trapdoor, we obtain an AGM instantiation based
on a knowledge assumption such as the knowledge of exponent assumption [14].
Indeed, this was recently done by [30] under a very strong generalized version of
the knowledge of exponent assumption. Unfortunately, such knowledge assump-
tions are not falsifiable in the sense of Naor [33]. It is thus not entirely clear
how to assess the plausibility of such a universal and strong knowledge assump-
tion. Naturally, the question arises whether an AGM implementation inherently
requires such strong and non-falsifiable assumptions. Or, more generally:

Can we achieve knowledge-type properties
from falsifiable assumptions?

Note that in the AGM, the discrete logarithm assumption implies the existence
of extractable one-way functions (EOWFs) with unbounded auxiliary input. The
existence of such EOWFs, however, conflicts with the existence of indistinguisha-
bility obfuscation, [5]. Due to this barrier, we can only hope for an instantiation
of some suitably relaxed variant of the AGM from falsifiable assumptions.

Our strategy: private extraction. There is also another way to instantiate the
AGM: show that it is possible to extract a decomposition of A’s outputs from
these outputs and a suitable (secret) extraction trapdoor. In other words, our idea
is to avoid non-falsifiable knowledge assumptions by assuming that extraction
requires a special trapdoor that can be generated alongside the public parameters
of the group. This entails a number of technical difficulties (see below), but allows
us to rely entirely on falsifiable assumptions.

Specifically, our main result is an algebraic wrapper that transforms a given
cyclic group into a new one which allows for an extraction of representations.
More specifically, an element of the new group carries an encrypted representa-
tion of this group element relative to a fixed basis (i.e., set of group elements).
Upon group operations, this representation is updated, and a special trapdoor
(generated alongside the public parameters) allows to extract it.

Our results. Our strategy allows us to retrieve several AGM results (from [21,22])
in the standard model, in the sense that the group can be concretely implemented
from falsifiable assumptions.3 In particular, we show that in our group,

– the discrete logarithm assumption, the computational Diffie-Hellman assump-
tion, the square Diffie-Hellman assumption, and the linear-combination Diffie-
Hellman assumption (see [21]) are all equivalent,

3 Note that by “standard model”, we mean that the group itself is formulated without
idealizations and can be concretely implemented. While our construction itself does
not rely on the ROM, we still can transfer some ROM proofs in the AGM to ROM
proofs using our concrete group instantiation. We stress that a standard model
instantiation of the (full-fledged) AGM from very strong non-falsifiable assumptions
is already known due to [30].

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 99

– the security of the Schnorr signature scheme [37] can be tightly reduced to
the discrete logarithm assumption escaping impossibility results due to [19].4

While, on a technical level, the AGM proofs from [21,22] need to be adapted,
the general AGM proof strategies (that rely on extraction) can be replicated.

Limitations. We note that not all known AGM proofs can be transported to
the standard model. For instance, [21] also prove the Boneh-Lynn-Shacham [7]
signature scheme tightly secure in the AGM. Their reduction relies on the fact
that the view of a signature forger is statistically independent of how simulated
signatures are prepared by the reduction. However, with our algebraic wrapper,
group elements (and thus BLS signatures) always carry an encrypted represen-
tation of how they were generated. In this case, our private extraction strategy
also reveals additional (statistical, computationally hidden) information to an
adversary. This additional information is problematic in the AGM-based BLS
proof of [21]. We believe it is an interesting open problem to obtain a tight
security proof for the BLS scheme with our group.5

Furthermore, as we will detail below, the amount of information we can
extract from a group element is limited by the size of that group element. In
particular, in settings in which no a-priori bound on the size of a desired algebraic
representation is known, our techniques do not apply. This can be problematic,
e.g., for constructions that depend on q-type assumptions.

Our assumptions. We stress that our algebraic wrapper relies on a strong (but
falsifiable) computational assumption: the existence of subexponentially strong
indistinguishability obfuscation (subexp-iO).6 Additionally, we assume a re-
randomizable encryption scheme. Together with subexp-iO, this implies a num-
ber of other strong primitives that we use: a variant of probabilistic iO (see [11]),
fully homomorphic encryption (see [11]), and dual-mode non-interactive zero-
knowledge (see [27]).

Interpretation. Due to their inefficiency, we view algebraic wrappers not as a tool
to obtain practical cryptographic primitives. Rather, we believe that algebraic
wrappers show that the AGM is a useful and realistic abstraction and not merely
an idealized model which heuristically captures known adversaries: we show that
AGM proofs can be replicated in the standard model, and even without resorting
to knowledge assumptions.

4 Tight security reductions provide a tight relation between the security of crypto-
graphic schemes and the hardness of computational problems. Apart from their
theoretical importance, tight reductions are also beneficial for practice, since they
allow smaller keylength recommendations.

5 We note that impossibility results for tight reductions of schemes like BLS (e.g., [12])
do not apply in our case, as the representation of our group elements is not unique.

6 We note that iO and knowledge assumptions contradict each other [5]. However, we
stress that the notion of private extractability we obtain does not contradict iO.

100 T. Agrikola et al.

On implementing idealized models. Replacing idealized (heuristic) models with
concrete standard-model implementations is a widely studied intriguing prob-
lem. A well-known example for this is the line of work on programmable hash
functions. A programmable hash function due to [26] is a cryptographic primitive
which can be used to replace random oracles in several cryptographic schemes.
Following their introduction, a line of work [20,28,29] leveraged multi-linear
maps or indistinguishability obfuscation to transport proofs from the random
oracle model to the standard model. Our results can be interpreted as following
this endeavor by leveraging indistinguishability obfuscation to replace the AGM
with a standard model implementation (from falsifiable assumptions). From this
angle, our algebraic wrapper relates to the AGM as programmable hash func-
tions relate to the ROM.

1.1 Technical Overview

Algebraic wrappers. In the following, we speak of group schemes ([3], also called
encoding schemes in [23]) as a generalization of groups with potentially non-
unique encodings of group elements. This implies that a dedicated algorithm
is required to determine if two given group elements are equal.7 Our algebraic
wrapping process takes a group G (which we call “base group”) as input, and
outputs a new group scheme H which allows for an efficient extraction process.
Concretely, every H-element ̂h can be viewed as a G-element h ∈ G, plus auxil-
iary information aux .

Intuitively, aux carries (encrypted) information that allows to express h as
a linear combination of fixed base elements b1, . . . , bn ∈ G. The corresponding
decryption key (generated alongside the group parameters) allows to extract this
information, and essentially yields the information any algebraic adversary (in
the sense of the AGM) would have to provide for any output group element.
However, we are facing a number of technical problems:

(a) The group operation algorithm should update aux (in the sense that the
linear combinations encrypted in the input elements should be added).

(b) Validity of aux should be ensured (so that no adversary can produce an
H-element from which no valid linear combination can be extracted from
aux).

(c) It should be possible to switch the basis elements b1, . . . , bn to an
application-dependent basis. (For instance, to prove a signature scheme like
Schnorr’s [37] secure, one would desire to set the basis vectors to elements
from an externally given computational challenge.)

(d) To preserve tightness of reductions from the AGM (which is necessary in
some of our applications), it should be possible to re-randomize group ele-
ment encodings statistically.

7 That is, formally, the group is defined as the quotient set of all well-formed bitstrings
modulo the equivalence relation induced by the equality test.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 101

Our solution largely follows the group scheme from [3]. In particular, (a) will be
solved by encrypting the coefficients z1, . . . , zn with h =

∑

i bzi
i using a homo-

morphic encryption scheme in aux . Hence, such coefficient vectors can be added
homomorphically during the group operation. For (b), we will add a suitable
non-interactive zero-knowledge proof of consistency in aux .8 For (c), we adapt
a “switching” lemma from [3]. In [3], that lemma allows to switch between two
different representations of the same group element, but under a fixed basis. In
our case, we show that similar techniques allow to also switch the group elements
that form this basis. This switching property already implies a notion of com-
putational re-randomizability. Finally, for (d), we introduce a re-randomization
lemma using techniques from (c) in conjunction with a novel notion for proba-
bilistic iO.

At this point, one main conceptual difference to the line of work [1,3,17] is
that the basis elements b1, . . . , bn appear as part of the functionality of the new
group scheme H, not only in a proof. In particular, our construction must be able
to deal with arbitrary bi that are not necessarily randomly chosen. This issue is
dealt with by additional linear randomization of the base group elements.

Another main conceptual difference to [1,3,17] is the notion of statistical
re-randomizability of group elements. The group schemes from [1,3,17] do not
satisfy this property. This will be resolved by developing a stronger notion of
statistically correct probabilistic iO which may be of independent interest.

We note, however, that our techniques are inherently limited in the following
sense: our extraction can only extract as much information as contained in (the
auxiliary information of) group elements. Technically speaking, we cannot treat
settings in which the size of the basis b1, . . . , bn is not known in advance (e.g.,
in case of constructions based on q-type assumptions).

Applications. The applications we consider have already been considered for the
AGM in [21,22]. Hence, in this description, we focus on the technical differences
that our extraction approach entails for these proofs.

First, recall that in the AGM by [21], an adversary outputs an algebraic rep-
resentation of each output group element to the basis of its input group elements.
Therefore, this basis depends also on the respective security game. On the other
hand, in security proofs with our algebraic wrapper, a reduction needs to select
such a basis in advance. The appropriate selection of such a basis is one of the
main challenges when transferring proofs from the AGM to our setting. Namely,
even though the basis as well as the representation of each group element is hid-
den, the choice of representations will still be information-theoretically known to
the adversary. Therefore, security games that are identically distributed in the
AGM might only be computationally indistinguishable in the wrapper, depend-
ing on the choice of a basis.

When transferring proofs from the AGM to our new group scheme, we thus
use a technique we call symmetrization to extend the basis in such a way that

8 Note that this approach is related to [8] in the sense that we restrict the homomorphic
operations an adversary can perform on encodings by requiring a consistency proof.

102 T. Agrikola et al.

security games are identically distributed in the relevant situations. In a nutshell,
symmetrization achieves a uniform way to express challenge elements across most
games of a security proof, and yields statistical security guarantees.

Another challenge is the implementation of tight security reductions in the
wrapper. In some security reductions, the basis of the group and the algebraic
representations of oracle responses need to be switched in order to be able to
extract a useful algebraic representation. However, as we only achieve compu-
tationally indistinguishable group element representations, switching the rep-
resentations of q oracle responses would lead to a q-fold computational loss,
compromising the tightness of the reduction.

We show that it is possible to circumvent this loss by constructing oracle
responses via the group operation from so-called origin elements, reducing the
number of elements whose representation gets switched to a constant. In a nut-
shell, we derive many coordinated oracle answers from just few group elements
(the “origin elements”), such that switching these origin elements affects (and
changes) all oracle answers.

1.2 Related Work

This work builds upon the line of work [1,3,17] who build group schemes from iO.
[3] lays the conceptual foundations for the construction of group schemes with
non-unique encodings from iO and uses this framework to equip groups with
multilinear maps. [17] extends this approach by allowing partial evaluations of
the multilinear map yielding a graded encoding scheme. In contrast to [1,3,17]
does not extend the functionality of an underlying group, but builds a group
scheme with reduced functionality (group elements lack a unique representation).
The resulting group scheme allows to mimic commonly used proof techniques
from the generic group model. This is demonstrated by proving the validity of
an adaptive variant of the Uber assumption family [10] in the constructed group
scheme. Our results can hence be viewed as an extension of [1].

[30] make a first step towards instantiating the AGM. The authors identify
an equivalence between the AGM and a very strong generalized version of the
knowledge of exponent assumption [14], thus giving rise to the first instantiation
of the AGM.

Roadmap

In Sect. 2, we recall some preliminaries and develop the mentioned variant of
probabilistic iO. In Sect. 3, we present our notion of algebraic wrappers and give
an iO-based instantiation. Section 4 contains results transported from the AGM
to our wrapper setting, along with a description of how AGM proof techniques
can be adapted. In the full version of this paper [2], we provide (besides further
standard definitions and more motivation) an analysis of the Schnorr-signed
ElGamal encryption scheme with our algebraic wrapper.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 103

2 Preliminaries

Notation

Throughout this paper λ denotes the security parameter. For a natural number
n ∈ N, [n] denotes the set {1, . . . , n}. A function negl : N → R is negligible in
λ if for every constant c ∈ N, there exists a bound nc ∈ R, such that for all
n ≥ nc, |negl(n)| ≤ n−c. Given a finite set S, the notation x ← S means a
uniformly random assignment of an element of S to the variable x. Given an
algorithm A, the notation y ← A(x) means evaluation of A on input of x with
fresh random coins and assignment to the variable y. The notation AO indicates
that the algorithm A is given oracle access to O. Given a random variable B,
supp(B) denotes the support of B.

Let G be a finite cyclic group with generator g and order p. For x ∈ Zp, the
notation [x]

G
denotes the group element gx. Note that using this notation does

not imply knowledge of x. Let K be a field and V be a vector space over K of
finite dimension n. For i ∈ [n], ei denotes the vector which carries 1 in its i-th
entry and 0 in all other entries.

In game based proofs, out i denotes the output of game Gi.

2.1 Subset Membership Problem

Let L = (Lλ)λ∈N be a family of families of languages L ⊆ Xλ in a universe
Xλ = X. Further, let R be an efficiently computable witness relation, such that
x ∈ L if and only if there exists a witness w ∈ {0, 1}poly(|x|) with R(x,w) = 1 (for
a fixed polynomial poly). We assume that we are able to efficiently and uniformly
sample elements from L together with a corresponding witness, and that we are
able to efficiently and uniformly sample elements from X \ L.

Definition 1 (Subset membership problem, [13]). A subset membership
problem L ⊆ X is hard, if for any PPT adversary A, the advantage

Advsmp
L,A (λ) := Pr[x ← L : A(1λ, x) = 1] − Pr[x ← X \ L : A(1λ, x) = 1]

is negligible in λ.

We additionally require that for every L and every x ∈ L, there exists exactly
one witness r ∈ {0, 1}∗ with R(x,w) = 1. Note that given a cyclic group G of
prime order p in which DDH is assumed to hold, the Diffie-Hellman language
L[(1,x)]

G
:= {[(y, xy)]

G
| y ∈ Zp} (for randomly chosen generators [1]

G
, [x]

G
)

satisfies this definition. Another instantiation of Definition 1 is the language con-
taining all commitments to a fixed value using a perfectly binding commitment
scheme with unique opening.

104 T. Agrikola et al.

2.2 Dual-mode NIWI

A dual-mode NIWI proof system is a variant of NIWI proofs [18] offering two
computationally indistinguishable modes to setup the common reference string
(CRS). A binding mode CRS provides perfect soundness guarantees whereas a
hiding mode CRS provides perfect witness indistinguishability guarantees.

Definition 2 (Dual-mode NIWI proof system (syntax), [3,24]). A dual
mode non-interactive witness-indistinguishable (NIWI) proof system for a rela-
tion R is a tuple of PPT algorithms Π = (Setup,HSetup,Prove,Verify,Ext).

Setup(1λ). On input of 1λ, Setup outputs a perfectly binding common reference
string crs and a corresponding extraction trapdoor td ext.

HSetup(1λ). On input of 1λ, HSetup outputs a perfectly hiding common reference
string crs.

Prove(crs, x, w). On input of the CRS crs, a statement x and a corresponding
witness w, Prove produces a proof π.

Verify(crs, x, π). On of the CRS crs, a statement x and a proof π, Verify outputs
1 if the proof is valid and 0 otherwise.

Ext(td ext, x, π). On input the extraction trapdoor td ext, a statement x and a proof
π, Ext outputs a witness w.

We require Π to satisfy the CRS indistinguishability, perfect completeness, per-
fect soundness, perfect extractability and perfect witness-indistinguishability.

For a more detailed definition, we refer the reader to the full version [2].
There are several instantiations of dual-mode NIWI proof systems satisfying the
above definition (or statistical variants), [24,27,36].

2.3 Probabilistic Indistinguishability Obfuscation

Let C = (Cλ)λ∈N be a family of sets Cλ of probabilistic circuits. A circuit sampler
for C is defined as a family of (efficiently samplable) distributions S = (Sλ)λ∈N,
where Sλ is a distribution over triplets (C0, C1, z) with C0, C1 ∈ Cλ such that
C0 and C1 take inputs of the same length and z ∈ {0, 1}poly(λ).

Definition 3 (X-ind sampler, [11]). Let X(λ) be a function upper bounded
by 2λ. The class SX-ind of X-ind samplers for a circuit family C contains all
circuit samplers S = (Sλ)λ∈N for C such that for all λ ∈ N, there exists a set
Xλ ⊆ {0, 1}∗ with |X | ≤ X(λ), such that

X-differing inputs. With overwhelming probability over the choice of
(C0, C1, z) ← Sλ, for every x �∈ Xλ, for all r ∈ {0, 1}m(λ), C0(x; r) = C1(x; r).

X-indistinguishability. For all (non-uniform) adversaries A, the advantage

X(λ) ·
(

Pr[Expsel-ind
S,A (λ) = 1] − 1

2

)

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 105

is negligible, where Expsel-ind
S,A (λ) requires A to statically choose an input,

samples circuits C0, C1 (and auxiliary information z) afterwards, evaluates
the circuit Cb (for randomly chosen b) on the adversarially chosen input (let
the output be y) and outputs 1 if A on input of (C0, C1, z, y) guesses b cor-
rectly.

Definition 4 (Probabilistic indistinguishability obfuscation for a class
of samplers S (syntax), [11]). A probabilistic indistinguishability obfuscator
(pIO) for a class of samplers S is a uniform PPT algorithm piO, such that
correctness and security with respect to S hold.

For a more detailed definition, we refer the reader to the full version [2].
[11] present the to date only known construction of pIO for X-ind samplers

over the family of all polynomial sized probabilistic circuits.

2.4 Re-randomizable and Fully Homomorphic Encryption

We define an IND-CPA secure PKE scheme as a tuple of PPT algorithms PKE =
(KGen,Enc,Dec) in the usual sense. Furthermore, without loss of generality, we
assume that sk is the random tape used for key generation. Therefore, making
the random tape of KGen explicit, we write (pk , sk) = KGen(1λ; sk).

A re-randomizable PKE scheme additionally provides an algorithm Rerand
which re-randomizes a given ciphertext perfectly.

Finally, a fully homomorphic PKE scheme additionally provides an algorithm
Eval which given the public key pk , an circuit C (expecting a inputs from the
message space) and a ciphertexts C1, . . . , Ca, produces a ciphertext encrypting
C(Dec(sk , C1), . . . ,Dec(sk , Ca)).

Due to [11], probabilistic indistinguishability obfuscation in conjunction
with (slightly super-polynomially secure) perfectly correct and perfectly re-
randomizable public-key encryption yields a perfectly correct and perfectly re-
randomizable fully homomorphic encryption scheme.

We refer the reader to the full version [2] for more detailed definitions.

2.5 Statistically Correct Input Expanding pIO

Looking ahead, instead of computationally correct pIO, we require a notion
of statistically correct pIO, i.e. statistical closeness between evaluations of the
original (probabilistic) circuit and the obfuscated (deterministic) circuit. Clearly,
in general, this is impossible since the obfuscated circuit is deterministic and
hence has no source of entropy other than its input. However, as long as a
portion of the circuit’s input is guaranteed to be outside the view of the adversary
(and has sufficiently high min-entropy), the output of the obfuscated circuit and
the actual probabilistic circuit can be statistically close. Therefore, we compile
probabilistic circuits such that they receive an auxiliary input aux but simply
ignore this input in their computation. Even though the obfuscated circuit is
deterministic, the auxiliary input can be used as a source of actual entropy.

106 T. Agrikola et al.

First try. We recall that the pIO construction from [11] obfuscates a probabilistic
circuit C by using IO to obfuscate the deterministic circuit C(x) := C(x;FK(x)).
A natural idea to achieve statistical correctness is to modify this construction
such that the auxiliary input aux is directly XORed on the random tape which
is derived using F , i.e. to obfuscate the circuit C(x, aux ;FK(x) ⊕ aux). For uni-
form auxiliary input aux , statistical correctness follows immediately. However,
security breaks down. Consider two circuits C1 and C2 such that C1 outputs
the first bit on its random tape and C2 outputs the second bit on its random
tape. Since C1 and C2 produce identical output distributions, it is desirable that
a probabilistic indistinguishability obfuscator conceals which of the two circuits
was obfuscated. However, this construction admits a successful attack. An adver-
sary can evaluate the obfuscated circuit Λ on inputs (x, aux) and (x, aux ⊕ 1).
If both evaluations yield identical outputs, C2 was obfuscated, otherwise C1 was
obfuscated.

Using an extracting PRF. Our construction of statistically correct pIO applies an
extracting puncturable PRF on the entire input (including the auxiliary input) of
the circuit to derive the random tape for the probabilistic circuit. An extracting
PRF guarantees that PRF outputs are uniformly distributed (even given the
PRF key) as long as the input has high min-entropy. This is achieved using a
universal hash function and the leftover hash lemma. For more details, we refer
the reader to the full version [2].

Let {Cλ}λ∈N be a family of sets Cλ of probabilistic circuits of polynomial size
p(λ) expecting inputs from {0, 1}n′(λ) and randomness from {0, 1}r(λ). Let E�

denote a compiler which on input of a probabilistic circuit C ∈ Cλ appends �(λ)
input gates (without any additional edges) to the original circuit. The expanded
circuit ̂C is of size p′(λ) = p(λ) + �(λ), expects inputs from {0, 1}n′(λ)+�(λ) and
randomness from {0, 1}r(λ). We refer to these additional input bits as auxiliary
input aux ∈ {0, 1}�(λ).

Our input expanding pIO scheme satisfies similar correctness and security
properties as defined in [11] but additionally guarantees statistical correctness.

Definition 5 (�-expanding pIO for the class of samplers S). An �-
expanding probabilistic indistinguishability obfuscator for the class of samplers
S over C = (Cλ)λ∈N is a uniform PPT algorithm piO�

� , satisfying the following
properties.

Input expanding correctness. For all PPT adversaries A, all circuits C ∈ C,
∣

∣

∣Pr[AOC(·,·)(1λ, C) = 1] − Pr[Λ ← piO�
� (1

p(λ), C) : AOΛ(·,·)(1λ, C) = 1]
∣

∣

∣

is negligible, where the oracles must not be called twice on the same input
(x, aux).

OC(x, aux)
r ← {0, 1}m

return C(x; r)

OΛ(x, aux)
return Λ(x, aux)

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 107

Security with respect to S. For all circuit samplers S ∈ S, for all PPT
adversaries A, the advantage

Advpio-ind(�)
piO�

� ,S,A (λ) :=
∣

∣

∣ Pr
[

(C0, C1, z) ← S(1λ) : A(1λ, C0, C1, z, piO�
� (1

p(λ), C0)) = 1
]

−Pr
[

(C0, C1, z) ← S(1λ) : A(1λ, C0, C1, z, piO�
� (1

p(λ), C1)) = 1
] ∣

∣

∣

is negligible in λ.
Support respecting. For all circuits C ∈ Cλ, all inputs x ∈ {0, 1}n′(λ), all

aux ∈ {0, 1}�(λ), all Λ ∈ supp(piO�
� (1

p(λ), C)), Λ(x, aux) ∈ supp(C(x)).
Statistical correctness with error 2−e(λ). For all C ∈ Cλ and all joint

distributions (X1,X2) over {0, 1}n′(λ) × {0, 1}�(λ) with average min-entropy
�(λ) ≥ ˜H∞(X2 | X1) > m(λ) + 2e(λ) + 2, the statistical distance between

{

Λ ← piO�
� (1

p(λ), C) : (Λ,Λ(X1,X2))
}

and
{

Λ ← piO�
� (1

p(λ), C) : (Λ,C(X1;Um(λ)))
}

is at most 2−e(λ).

We note that setting � := 0 recovers the original definition of pIO for
X-ind samplers due to [11]. Looking ahead, our application does not require
input expanding correctness.

Let S be a circuit sampler and let ̂S denote the circuit sampler which calls S
and outputs �-expanded circuits. Unfortunately, if S is an X-ind sampler does
not imply that ̂S also satisfies the requirements to be an X-ind sampler. On
a high level this is because ̂X(λ) := X(λ) · 2�(λ) is necessary for ̂S to satisfy
the X-differing inputs property. Then, however, X-indistinguishability of S does
not suffice to prove ̂X-indistinguishability of ̂S. Thus, we introduce the notion
of �-expanding X-ind samplers.

Definition 6 (�-expanding X-ind sampler). Let S be a circuit sampler.
With ̂S we denote the circuit sampler which on input of 1p(λ)+�(λ) samples
(C0, C1, z) ← S(1p(λ)) and outputs the circuits ̂C0 := E�(C0), ̂C1 := E�(C1)
and auxiliary information ẑ := (C0, C1, z). The class SX-(�)-ind

� of �-expanding
X-ind samplers for a circuit family C contains all circuit samplers S = (Sλ)λ∈N

for C such that the circuit sampler ̂S is an X-ind sampler according to Defini-
tion 3, i.e. ̂S ∈ SX-ind.

On a high level, we instantiate the construction of pIO for X-ind samplers due
to [11] with a suitably extracting puncturable pseudorandom function (pPRF).
By suitably extracting we mean that the PRF output is guaranteed to be sta-
tistically close to uniform randomness as long as the average min-entropy of
the input of the PRF is sufficiently high. Such a pPRF can be constructed by
composing a pPRF with a universal hash function.

108 T. Agrikola et al.

Theorem 1. Let e be an efficiently computable function. Let F be a sub-
exponentially secure special extracting PRF family with distinguishing advantage
2−λε

(for some constant ε) and error 2−e(λ) mapping n(λ) = n′(λ) + �(λ) bits
to m(λ) bits which is extracting if the input average min-entropy is greater than
m(λ) + 2e(λ) + 2. Then, there exists a statistically correct input expanding pIO
piO�

� for the class of samplers SX-(�)-ind
� .

For additional explanations and a formal proof, we refer the reader to the
full version [2].

3 How to Simulate Extraction – Algebraic Wrappers

In order to instantiate the AGM, we need to first find a way to conceptualize what
it means to be a group in a cryptographic sense. This is captured by the notion of
a group scheme or encoding scheme, [23]. In a nutshell, a group scheme provides
an interface of algorithms abstracting the handling of a cryptographic group. As
we want to prove hardness of certain problems based on hardness assumptions
in an already existing base group, we incorporate this existing group into our
group scheme.

More specifically, we introduce the concept of an algebraic wrapper, i.e. a
group scheme that allows to extract a representation which – similar to the
AGM – can be used in a security reduction. A similar approach has already
been taken by [30]. [30] define their group scheme as a linear subspace of G × G

for an existing group G in such a way that the Generalized Knowledge of Expo-
nent Assumption (GKEA) can be used to extract a representation (membership
can for instance be tested via a symmetric pairing). Hence, that group scheme
can also be viewed as an extension, or a wrapper, for the underlying base group.
However, [30] relies on GKEA in the base group which more or less directly yields
an equivalence between algebraic groups and GKEA. The existence of algebraic
groups, however, implies the existence of extractable one-way functions with
unbounded auxiliary input (since the AGM allows an additional unstructured
input from {0, 1}∗) which in turn conflicts with the existence of indistinguisha-
bility obfuscation, [5]. Due to this contradiction and the difficulty to assess the
plausibility of knowledge-type assumptions, we strive for a weaker model which
can purely be based on falsifiable assumptions.

Extraction trapdoors. In [30], extraction is possible as long as the code and the
randomness which where used to produce a group element are known. Since we
strive to avoid knowledge-type assumptions, we need to find a different mecha-
nism of what enables extraction. We observe that in order to reproduce proof
strategies from the algebraic group model, extraction is only necessary during
security reductions. Since the reduction to some assumption in the base group
is in control of the group parameters of the wrapper, the reduction may use
corresponding trapdoor information which we define to enable extraction. We
call this notion private extractability.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 109

3.1 Group Schemes

A group scheme or encoding scheme [23] abstracts the properties of mathemat-
ical groups used in cryptography. Group schemes have recently been studied in
[1,3,17,30]. In contrast to traditional groups, group elements are not bound to
be represented by a unique bitstring (henceforth referred to as encoding). This
allows to encode auxiliary information inside group elements.

Formally, a group scheme H consists of the algorithms (GGenH,SamH,
ValH,AddH,EqH,GetIDH). A group generation algorithm GGenH, which given 1λ,
samples group parameters ppH. A sampling algorithm SamH, given the group
parameters and an additional parameter determining the exponent of the desired
group element, produces an encoding corresponding to that exponent. A valida-
tion algorithm ValH, given the group parameters and a bitstring, decides whether
the given bitstring is a valid encoding. The algorithm AddH implements the group
operation, i.e. expects the group parameters and two encodings as input and pro-
duces an encoding of the resulting group element. Since group elements do not
necessarily possess unique encodings, the equality testing algorithm EqH enables
to test whether two given encodings correspond to the same group element (with
respect to the given group parameters). Note that EqH(ppH, ·) defines an equiv-
alence relation on the set of valid bitstrings. Finally, again compensating for
the non-unique encodings, a group scheme describes a “get-identifier” algorithm
which given the group parameters and an encoding of a group element, pro-
duces a bitstring which is unique for all encodings of the same group element.9

Note that EqH(ppH, a, b) can be implemented using GetIDH by simply comparing
GetIDH(ppH, a) and GetIDH(ppH, b) as bitstrings. The “get-identifier” algorithm
compensates for the potential non-uniqueness of encodings and allows to extract,
for instance, symmetric keys from group elements.

For a group scheme it is required that the quotient set

{a ∈ {0, 1}∗ | ValH(ppH, a) = 1}/EqH(ppH, ·)

equipped with the operation defined via AddH(ppH, ·, ·) defines a mathematical
group (with overwhelming probability over the choice of ppH ← GGenH(1λ)). We
say that an a is (an encoding of) a group element (relative to ppH), written as
a ∈ H, if and only if ValH(ppH, a) = 1.

A group scheme requires that encodings corresponding to the same group
element are computationally indistinguishable as formalized by the “Switching
Lemma(s)” in [1,3,17].

Due to the non-uniqueness of encodings, we henceforth use the notation ̂h to
denote an encoding of a group element.

3.2 An Algebraic Wrapper

Given a cyclic group, an algebraic wrapper is a group scheme which equips
a given group G with a notion of extractability while preserving its group
9 Previous work refers to this algorithm as “extraction algorithm”. However, in order

not to overload the word “extraction”, we rename this algorithm in this work.

110 T. Agrikola et al.

structure and complexity theoretic hardness guarantees. In particular, we achieve
a property which we refer to as “private extractability” with respect to a given
set of group elements in the base group. More precisely, the group generation
algorithm expects group parameters ppG of the base group together with a set
of group elements [b]

G
∈ G

n in that base group, henceforth referred to as basis,
and produces group parameters ppH of the wrapper group together with a cor-
responding trapdoor τH. This trapdoor enables to extract a representation with
respect to the basis [b]

G
from every encoding. Looking ahead, this property will

allow to implement proof strategies of the algebraic group model, [21].
More precisely, encodings can be seen to always carry computationally hid-

den representation vectors with respect to the basis [b]
G
. The private extraction

recovers this representation vector. Given the trapdoor, we require that it is
possible to “privately” sample encodings which carry a specific dictated rep-
resentation vector. We require that publicly sampled encodings and privately
sampled encodings are computationally indistinguishable. We refer to this prop-
erty as “switching”. In order to preserve tightness of security reductions when
implementing AGM proofs with our algebraic wrapper, we require a statistical
re-randomization property. Furthermore, we require that representation vectors
compose additively (in Z

n
p) with the group operation and do not change when

encodings are re-randomized.
Let Bn

pp
G

:= {([1]
G

, [x2]G , . . . , [xn]
G
)ᵀ ∈ G

n | x2, . . . , xn ∈ Z
×
p } be the set

of what we call “legitimate basis vectors”. Note that we require the first group
element to be the generator of the group. This is necessary to allow public
sampling.

Definition 7 (Algebraic wrapper for G). An algebraic wrapper H for G

is a tuple of PPT algorithms (GGenH,SamH,ValH,AddH,EqH,GetIDH,RerandH,
PrivSamH,PrivExtH,UnwrapH) such that (GGenH,SamH,ValH,AddH,EqH,GetIDH)
constitutes a group scheme and the following properties are satisfied.

G-wrapping. The algorithm UnwrapH(ppH, ·) is deterministic and for all ppG ∈
supp(GGenG(1λ)), all [b]

G
∈ Bn

pp
G
, all (ppH, τH) ∈ supp(GGenH(ppG, [b]

G
)),

UnwrapH(ppH, ·) defines a group isomorphism from H to G.
Extractability. The algorithm PrivExtH is deterministic. Furthermore, for all

ppG ∈ supp(GGenG(1λ)), all [b]
G

∈ Bn
pp

G
, all (ppH, τH) ∈ supp(GGenH(ppG,

[b]
G
)), all ̂h ∈ H, we require that PrivExtH always extracts a representa-

tion of [x]
G

with respect to [b]
G
, i.e. for z := PrivExtH(τH,̂h), [zᵀ · b]

G
=

UnwrapH(ppH,̂h).
Correctness of extraction. For all ppG ∈ supp(GGenG(1λ)), all [b]

G
∈

Bn
pp

G
, all (ppH, τH) ∈ supp(GGenH(ppG, [b]

G
)), all ̂h0, ̂h1 ∈ H, we require

that private extraction respects the group operation in the sense that for
all ̂h2 ∈ supp(AddH(ppH, ̂h0, ̂h1)), z(i) := PrivExtH(τH, ̂hi) satisfy z(2) =
z(0) + z(1). Furthermore, for all ppG ∈ supp(GGenG(1λ)), all [b]

G
∈ Bn

pp
G
,

all (ppH, τH) ∈ supp(GGenH(ppG, [b]
G
)), all ̂h ∈ H, we require that re-

randomization does not interfere with private extraction in the sense that
for all ̂h′ ∈ supp(RerandH(ppH,̂h)), PrivExtH(τH,̂h) = PrivExtH(τH, ̂h′).

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 111

Correctness of sampling. For all ppG ∈ supp(GGenG(1λ)), all [b]
G

∈ Bn
pp

G
, all

(ppH, τH) ∈ supp(GGenH(ppG, [b]
G
)), we require that

– for all v ∈ Z
n
p , Pr[PrivExtH(τH,PrivSamH(τH,v)) = v] = 1, and

– for all x ∈ Zp, Pr[PrivExtH(τH,SamH(ppH, x · e1)) = x · e1] = 1.
k-Switching. We say a PPT adversary A is a legitimate k-switching adversary

if on input of base group parameters ppG, A outputs two bases ([b](j)
G

)j∈{0,1}
and two lists comprising k representation vectors (v(j),(i))i∈[k],j∈{0,1} (and an
internal state st) such that [b](0)

G
, [b](1)

G
∈ Bn

pp
G

and v(0),(i),v(1),(i) ∈ Z
n
p for

some n ∈ N and all i ∈ [k] and
[

(v(0),(i))ᵀ · b(0)
]

G
=

[

(v(1),(i))ᵀ · b(1)
]

G
for

all i ∈ [k].
For all legitimate k-switching PPT adversaries A,

Advk-switching
H,A (λ) :=

∣

∣

∣Pr[Expk-switching
H,A,0 (λ) = 1] − Pr[Expk-switching

H,A,1 (λ) = 1]
∣

∣

∣

is negligible, where Expk-switching
H,A,b (λ) (for b ∈ {0, 1}) is defined in Fig. 1.

Statistically re-randomizable. We say an unbounded adversary A is a legit-
imate re-randomization adversary if on input of base group parameters ppG,
A outputs [b]

G
and a state st such that [b]

G
∈ Bn

pp
G

and, in a second phase,

A on input of (ppH, τH, st) outputs two valid encodings ̂h0, ̂h1 (and a state st)
such that PrivExtH(τH, ̂h0) = PrivExtH(τH, ̂h1).
For all unbounded legitimate re-randomization adversaries A,

Advrerand
H,A (λ) :=

∣

∣Pr[Exprerand
H,A,0 (λ) = 1] − Pr[Exprerand

H,A,1 (λ) = 1]
∣

∣ ≤ 1
2λ

,

where Exprerand
H,A,b (λ) (for b ∈ {0, 1}) is defined in Fig. 1.

Exprerand
H,A,b (λ)

pp
G

← GGenG(1λ)
([b]

G
, st) ← A(1λ, pp

G
)

(pp
H
, τH) ← GGenH(ppG, [b]

G
)

(ĥ0, ĥ1, st) ← A(pp
H
, τH, st)

h ← RerandH(ppH, hb)
return (h, st)

Expk-switching
H,A,b (λ)

pp
G

← GGenG(1λ)
([b](j)

G
)j∈{0,1},

(v(j),(i))i∈[k],j∈{0,1}, st
)

← A(1λ, pp
G
)

(pp
H
, τH) ← GGenH(ppG, b

G
)

h∗
i ← PrivSamH(τH,v(b),(i))

Fig. 1. The re-randomization and k-switching games.

For simplicity we require that encodings are always in {0, 1}penc(λ) for a fixed
polynomial penc(λ).

The k-switching property allows to simultaneously switch the representation
vectors of multiple group element encodings. It is necessary to switch all encod-
ings simultaneously since private sampling can only be simulated knowing the
trapdoor τH which is not the case in Expk-switching

H,A,b (λ).

112 T. Agrikola et al.

3.3 Construction

Our construction follows the ideas from [1,3,17]. Let GGenG be a group generator
for a cyclic group G. Let T D be a family of hard subset membership problems.
Let FHE = (KGen,Enc,Dec,Eval,Rerand) be a perfectly correct and perfectly
re-randomizable fully homomorphic public-key encryption scheme. Let ppG be
group parameters for G and [Ω]

G
∈ G

n for some n ∈ N. Let TD ⊆ X be a
subset membership problem from T D and y ← X \ TD and pk be a public
key for FHE. For ease of notation, we define pars := (ppG, TD, y, pk , [Ω]

G
). Let

Π := (Setup,Prove,Verify,HSetup,Ext) be a perfectly complete, perfectly sound
and perfectly witness-indistinguishable dual-mode NIZK proof system for the
language

L :=
{

y := (pars, [x]
G

, C)
∣

∣ ∃w : (y, w) ∈ R := R1 ∨ R2 ∨ R3

}

.

The relations R1,R2,R3 are defined as follows.

R1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

(pars, [x]
G

, C), (sk ,v)
)

∣

∣

∣

∣

∣

∣

∣

∣

KGen(1λ; sk) = (pk , sk)
∧ Dec(sk , C) = v
∧ [Ωᵀ · v]

G
= [x]

G

⎫

⎪

⎪

⎬

⎪

⎪

⎭

R2 =

{

(

(pars, [x]
G

, C), (r,v)
)

∣

∣

∣

∣

∣

Enc(pk ,v; r) = C
∧ [Ωᵀ · v]

G
= [x]

G

}

R3 =
{ (

(pars, [x]
G

, C), (wy)
) ∣

∣

∣ (y, wy) ∈ RTD

}

With m′(λ) we denote a polynomial upper bound on the number of random
bits FHE.Rerand(1λ, ·, ·) expects and with m′′(λ) we denote a polynomial upper
bound on the number of random bits Π.Prove(1λ, ·, ·, ·) expects. Let �(λ) :=
m′(λ) + m′′(λ) + 2(λ + 1) + 3. Let piO be a pIO scheme for the class of samplers
SX-ind and let piO�

� be an �-expanding pIO scheme for the class of samplers
SX-(�)-ind

� . Further, let padd(λ) denote a polynomial upper bound on the size of
addition circuits and prerand(λ) denote a polynomial upper bound on the size of
re-randomization circuits which are used during the proof, see the full version
[2] for details.

Our algebraic wrapper H is composed of the PPT algorithms (GGenH,
SamH,ValH,AddH,EqH,RerandH,PrivExtH,PrivSamH,GetIDH,UnwrapH) which
are defined in Figs. 2a and 2b. We note that the algorithm ValH which is evalu-
ated inside CAdd and Crerand only requires a certain part of the public parameters
as input. In particular, ValH does not depend on ΛAdd and Λrerand.

During “honest” use of our algebraic wrapper, encodings carry proofs pro-
duced for relation R1 or relation R2. Relation R2 enables sampling without
knowledge of any trapdoors. Re-randomized encodings always carry proofs for
relation R1. Relation R3 is a trapdoor branch enabling simulation. Note that
during “honest” use of the algebraic wrapper y �∈ TD and, hence, due to perfect
soundness of Π, there exists no proof for relation R3.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 113

GGenH(ppG, [b]
G
= [(b1, . . . , bn)ᵀ]G)

α1 := 1, α2, . . . , αn ← Z
×
p

[Ω]
G
:= ([b1]α1

G
, . . . , [bn]αn

G
)ᵀ

(pk , sk) ← FHE.KGen(1λ)
crs ← Π.Setup(1λ),TD ← T D, y ← TD

ΛAdd ← piO(1padd(λ), CAdd)
Λrerand ← piO�

� (1
prerand(λ), Crerand)

pars := (pp
G
, TD, y, pk , [Ω]

G
)

pp
H
:= (crs, pars, ΛAdd, Λrerand)

τH := (pp
H
, sk , α1, . . . , αn, [b]

G
)

return (pp
H
, τH)

SamH(ppH,v ∈ Z
n
p)

C = Enc(pk ,v; r)
[x]

G
:= [Ωᵀ · v]

G

π = Prove(crs, (pars, [x]
G

, C), (r,v))
return ĥ := ([x]

G
, C, π)H

ValH(ppH, ĥ)
parse x̂ =: ([x]

G
, C, π)H

return Π.Verify(crs, (pars, [x]
G

, C), π)

Unwrap
H
(pp

H
, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]
G

, C, π)H
return [x]

G

Eq
H
(pp

H
, ĥ1, ĥ2)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
return [x1]G = [x2]G

GetIDH(ppH, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]
G

, C, π)H
return [x]

G

AddH(ppH, ĥ1, ĥ2)

return ΛAdd(ĥ1, ĥ2)

CAdd[pars, crs, sk](ĥ1, ĥ2; r)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk , C(+)[Zn

p], C1, C2)
// C(+)[Zn

p] computes addition in Z
n
p

vi ← Dec(sk , Ci)
vout := v1 + v2

πout ← Prove(crs,
(pars, [xout]G , Cout), (sk ,vout))

return ĥout := ([xout]G , Cout, πout)

(a) Definition of the algorithms GGenH, SamH,ValH,Eq
H
,GetIDH,AddH,Unwrap

H
and the

circuit CAdd.

PrivSamH(τH,v ∈ Z
n
p)

v∗ := (v1 · α−1
1 , . . . , vn · α−1

n)ᵀ

[x]
G
:= [bᵀ · v]

G
= [Ωᵀ · v∗]

G

C = Enc(pk ,v∗; r)
π = Prove(crs, (pars, [x]

G
, C), (sk ,v∗))

return ([x]
G

, C, π)H

PrivExtH(τH, ĥ)

if ¬ValH(ppH, ĥ) then
return ⊥

parse ĥ =: ([x]
G

, C, π)H
(v1, . . . , vn)ᵀ =: v = Dec(sk , C)
return (v1 · α1, . . . , vn · αn)ᵀ

RerandH(ppH, ĥ)

u ← {0, 1}�(λ)

return Λrerand(ĥ, u)

Crerand[pars, crs, sk](ĥ; r1, r2)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]
G

, C, π)H
v := Dec(sk , C)
Cout := FHE.Rerand(pk , C; r1)
πout ← Prove(crs,

(pars, [x]
G

, Cout), (sk ,v); r2)
return ĥout := ([x]

G
, Cout, πout)H

(b) Definition of the algorithms PrivSamH,PrivExtH,RerandH and the circuit Crerand.

Fig. 2. Algorithms of our algebraic wrapper construction.

114 T. Agrikola et al.

Differences to [1,3,17]. [3,17] introduce similar constructions of a group scheme
featuring a multilinear map and of a graded encoding scheme, respectively. More
precisely, [3,17] equip a base group with encodings carrying auxiliary information
which can be used (in an obfuscated circuit) to “multiply in the exponent”. We
observe that these constructions already wrap a given base group in the sense
that “unwrapping” encodings yields a group isomorphism to the base group.

Our construction builds upon these group schemes. In order to enable
extractability with respect to a dynamically chosen basis10, our group parame-
ters must be generated depending on that basis.

This modification, however, comes at the cost of the multilinear map func-
tionality. This is because any implementation of a multilinear map requires
knowledge of discrete logarithms of each group element encoding to a fixed gen-
erator. This is undesirable for our purposes, since we want to be able to use
sets of group elements as basis which we do not know discrete logarithms of (for
instance group elements provided by a reduction). Thus, we have to give up the
multiplication functionality.

Furthermore, looking ahead, we crucially require that the basis can be altered
via computational game hops during proofs. We solve this problem by linearly
perturbing the given basis [b]

G
(except for its first entry to enable meaningful

public sampling). We refer to this perturbed basis as [Ω]
G
. Our group element

encodings are defined to carry representation vectors with respect to [Ω]
G
. By

construction of CAdd, these representation vectors are treated homomorphically
by the group operation.

To preserve tightness of security reductions, we additionally introduce a sta-
tistical re-randomization mechanism.

As opposed to [1,3,17] uses a quite different approach. In [1], the group
scheme is constructed from scratch, meaning there is no necessity for an under-
lying group. The consequences are twofold. On one hand, very strong decisional
assumptions can be proven to hold in the resulting group scheme. On the other
hand, however, the group scheme from [1] lacks a GetIDH algorithm limiting its
applicability.

Theorem 2. Let (i) GGenG be a group generator for a cyclic group G,
(ii) T D be a family of hard subset membership problems, (iii) FHE =
(KGen,Enc,Dec,Eval,Rerand) be a perfectly correct and perfectly re-randomizable
fully homomorphic public-key encryption scheme, (iv) Π := (Setup,Prove,Verify,
HSetup,Ext) be a perfectly complete, perfectly sound and perfectly witness-
indistinguishable dual-mode NIZK proof system for the language L, (v) piO be a
pIO scheme for the class of samplers SX-ind and (vi) piO�

� be an �-expanding pIO
scheme for the class of samplers SX-(�)-ind

� . Then, H defined in Figs. 2a and 2b
is an algebraic wrapper.

Here we provide a formal proof of the statistical re-randomization property
and a high-level idea for the remaining properties. For a formal analysis of the
remaining properties, we refer the reader to the full version [2].
10 With basis we mean a set of group elements in the base group.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 115

Proof (sketch). Since piO is support respecting, the algorithms defined in Fig. 2a
equip the base group G with non-unique encodings but respect its group struc-
ture. Thus, the tuple (GGenH,SamH,ValH,EqH,AddH,GetIDH) forms a group
scheme such that UnwrapH(ppH, ·) defines a group isomorphism from H to G.
Therefore, H satisfies G-wrapping. Extractability follows (more or less) directly
by the soundness of the consistency proof and correctness of FHE. Correctness of
extraction follows by construction and the correctness of FHE and the fact that
piO and piO�

� are support respecting. Correctness of sampling follows directly by
correctness of FHE.

Since our construction builds upon techniques developed in [3], we also
employ similar strategies to remove information about the secret decryption
key from the public group parameters ppH. To prove k-switching, we next use
the IND-CPA security of FHE to remove all information about the basis from
the group element encodings. Finally, the only remaining information about the
basis used to setup the group parameters resides in [Ω]

G
which thus looks uni-

formly random to even an unbounded adversary.
A crucial technical difference to previous work [1,3,17] is the ability to sta-

tistically re-randomize encodings. The key ingredient enabling this is our statis-
tically correct pIO scheme due to Theorem 1.

Lemma 1. The group scheme H defined in Figs. 2a and 2b satisfies statistical
re-randomizability.

Proof (of Lemma 1). The circuit Crerand takes inputs from {0, 1}penc(λ) and
expects a randomness from {0, 1}m′(λ) × {0, 1}m′′(λ). We recall that piO�

� is an
�-expanding pIO scheme for �(λ) = m′(λ)+m′′(λ)+2(λ+1)+3. Since for every
distribution X1 over {0, 1}penc(λ), ˜H∞(U�(λ) | X1) = �(λ) > m′(λ) + m′′(λ) +
2(λ + 1) + 2, the statistical distance between

{

Λrerand ← piO�
� (Crerand) : (Λrerand, Λrerand(X1,X2))

}

and
{

Λrerand ← piO�
� (Crerand) : (Λrerand, Crerand(X1;Um′(λ)+m′′(λ)))

}

is at most 2−(λ+1).
Let ̂h0 =: ([x0]G , C0, π0)H, ̂h1 =: ([x1]G , C1, π1)H ∈ H be the encodings cho-

sen by the adversary A. Since A is a legitimate re-randomization adversary,
PrivExtH(τH, ̂h0) = PrivExtH(τH, ̂h1). Due to perfect correctness of FHE and since
α1, . . . , αn ∈ Z

×
p are invertible, Dec(sk , C0) = Dec(sk , C1). Due to perfect re-

randomizability of FHE, the ciphertexts produced by Crerand(̂h0) and Crerand(̂h1)
are identically distributed. Furthermore, since Crerand(̂hb) produces the consis-
tency proof using the witness (sk ,Dec(sk , Cb)), the distributions produced by
Crerand(̂h0) and Crerand(̂h1) are identical. Therefore, Advrerand

H,A (λ) ≤ 2 · 2−(λ+1) =
2−λ.

Note that since G has unique encodings, A is unable to extract auxiliary
information from the encodings of UnwrapH(ppH,̂h). This is crucial since such
auxiliary information may be used to distinguish whether ̂h0 or ̂h1 was used to
derive ̂h. �

116 T. Agrikola et al.

4 How to Use Algebraic Wrappers – Implementing
Proofs from the AGM

In the following, we demonstrate how proof techniques from the algebraic group
model can be implemented with our algebraic wrapper. Mainly, we want to use
the extracted representation provided by the algebraic wrapper in a similar way
as in AGM proofs. We adapt the proofs of Diffie-Hellman assumptions from [21]
in Sect. 4.1 as well as the proof for the EUF-CMA security of Schnorr signatures
from [22] in Sect. 4.2. Before we demonstrate how to use the algebraic wrapper,
we sketch two modifications which will be necessary when we replace the AGM
with the algebraic wrapper.

The symmetrization technique. Information-theoretically, the basis11 the alge-
braic wrapper enables extraction for, as well as the representation vectors inside
group element encodings are known to the adversary. However, several security
reductions in [21] employ case distinctions where different reduction algorithms
embed their challenge in different group elements. For instance, in the CDH
game, the discrete logarithm challenge Z can be embedded either in [x]

H
or [y]

H
,

leading to two different security reductions. Due to the ideal properties of the
AGM, both reductions simulate identically distributed games.

However, transferring this strategy directly using algebraic wrappers fails,
since the two reductions are information-theoretically distinguishable depending
on the choice of basis. An unbounded adversary who knows which game he is
playing could therefore influence the representation of his output in such a way
that it always becomes impossible for the reduction to use the representation
to compute the discrete logarithm. We call such a situation a bad case. It is
necessary that the different reduction subroutines have mutually exclusive bad
cases, so that extraction is always possible in at least one game type. Thus, we
need find a way that even these representations (and the basis used to generate
ppH) are identically distributed.

We therefore introduce a proof technique which we call symmetrization. We
extend the basis and group element representations in such a way that the games
played by different reduction subroutines are identically distributed (as they
would be in the AGM). This is done by choosing additional base elements to
which the reduction knows the discrete logarithm (or partial logarithms), so that
these additional base elements do not add any unknowns when solving for the
discrete logarithm. With this technique, we achieve that the games defined by
the different reduction algorithms are identically distributed but entail different
mutually-exclusive bad cases. For the CDH reduction, this means that both
challenge elements [x]

H
and [y]

H
are contained in the basis, so that it is not

known to the adversary which one is the reduction’s discrete logarithm challenge.
This allows to adopt the proofs from AGM.

11 With basis we mean the set of group elements in the base group to which we can
extract.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 117

The origin element trick. Applying the algebraic wrapper to AGM proofs where
an oracle (e.g. a random oracle or a signing oracle) is present, entails the need
to change the representation vectors of all oracle responses. One possibility to
realize this is to apply Q-switching, where Q denotes a polynomial upper bound
on the number of oracle queries. However, as the switching property only provides
computational guarantees, this naive approach results in a non-tight reduction.
Since we are interested in preserving the tightness of AGM proofs when applying
the algebraic wrapper, we use so-called origin elements from which we construct
the oracle responses using the group operation. This enables to use n-switching
for a constant number n of origin elements instead of Q-switching for Q oracle
responses.

Limitations of our techniques. While our algebraic wrapper provides an extrac-
tion property that is useful for many proofs in the AGM, it also has its limi-
tations. Mainly, the base elements to which the PrivExt algorithm can extract
need to be fixed at the time of group parameter generation. Therefore, we cannot
mimic reductions to assumptions with a variable amount of challenge elements,
where extraction needs to be possible with respect to all these challenge elements.
For instance, q-type assumptions which are used in [21] to prove CCA1-security
of ElGamal and the knowledge-soundness of Groth’s ZK-SNARK.

Furthermore, there are security proofs in the AGM that rely on the rep-
resentation used by the reduction being information-theoretically hidden from
the adversary. An example for this is the tight reduction for the BLS scheme
from [21]. As the reduction can forge a signature for any message, it relies on
the representations provided by the adversary being different from what the
reduction could have computed on its own. In the AGM, it is highly unlikely
that the adversary computes the forged signature in the exact same way as the
reduction simulates the signing oracle, because the reduction does not provide
the adversary with an algebraic representation. However, since we need to be
able to extract privately from group element encodings, the group elements out-
put by the reduction information theoretically contain algebraic representations.
Therefore, information-theoretically, an adversary sees how the reduction sim-
ulates hash responses and signatures, and thus could provide signatures with a
representation that is useless to the reduction.

This problem is circumvented in the Schnorr proof in Sect. 4.2 due to the
representation provided by the adversary already being fixed by the time it
receives a challenge through the Random Oracle. We leave it as an open problem
to transfer the BLS proof to the algebraic wrapper.

Another limitation is that due to the reduction being private, we cannot use
the extraction in reductions between problems in the same group. That is, our
wrapper does not allow for “multi-step” reductions as in the AGM.

4.1 Diffie-Hellman Assumptions

We show how to adapt the security reductions for Diffie-Hellman problems from
[21] to our algebraic wrapper (see Fig. 3 for the definitions). The main proof

118 T. Agrikola et al.

idea, namely to use the representation of the adversary’s output to compute the
discrete logarithm, stays the same; however, due to the nature of our wrapper,
we need to apply the symmetrization technique to achieve the same distributions
as in the AGM.

cdh

x, y ← Zp

s ← A([1]
G

, [x]
G

, [y]
G
)

return s = [xy]
G

sqdh

x ← Zp

s ← A([1]
G

, [x]
G
)

return s = x2

lcdh

x, y ← Zp

u, v, w, s ← A([1]
G

, [x]
G

, [y]
G
)

return s = u x2 + v xy + w y2

Fig. 3. The different types of Diffie-Hellman games shown in [21]

Theorem 3. Let G be a group where the discrete logarithm is hard. Then, the
computational Diffie-Hellman assumption holds in an algebraic wrapper H for G

of dimension ≥ 3.

We sketch the proof here and refer the reader to the full version [2] for the
full proof.

G0

pp
G

← GGenG(1λ)
β2, β3 ← Zp

(pp
H
, τH) ← GGenH(ppG, ([1]

G
, [β2]G , [β3]G)

ᵀ)
x, y ← Zp

1̂ = RerandH(ppH, SamH(ppH, 1))
x̂ = RerandH(ppH, SamH(ppH, x))
ŷ = RerandH(ppH, SamH(ppH, y))
s ← A(pp

H
, 1̂, x̂, ŷ)

return Eq
H
(x̂y, s)

G1

pp
G

← GGenG(1λ)
X ← G

z ← Zp

(pp
H
, τH) ← GGenH(ppG, ([1]

G
, [x]

G
, [y]

G
)ᵀ)

1̂ = RerandH(ppH, SamH(ppH, 1))
x̂ = RerandH(ppH,PrivSamH(τH, (0, 1, 0)ᵀ))
y = RerandH(ppH,PrivSamH(τH, (0, 0, 1)ᵀ))
s ← A(pp

H
, 1, x, y)

Fig. 4. The CDH games used in the security proof. G0 corresponds to the honest CDH-
game. Games of type G1 allow the reduction to embed its discrete logarithm challenge
and extract a useful representation.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 119

Proof (sketch). We use an algebraic wrapper with basis [1]
G

, [x]
G

, [y]
G
. Initially,

we perform game hops starting from the CDH game (where every encoding
carries representation vectors in the first component), see G0 in Fig. 4 and reach
a game, where the encodings produced as CDH challenge carry representation
vectors of e1, e2 and e3, respectively, see G1 in Fig. 4. These game hops are
justified by 2-switching and rerand.

The reduction flips a coin whether to embed the DLOG challenge Z as [x]
G

or [y]
G
, i.e. it applies the symmetrization technique. In both cases, the view of

the CDH adversary is identical. When the CDH adversary outputs a solution,
the reduction is able to compute the discrete logarithm of the embedded DLOG
challenge from the representation vector extracted from the solution. �

We additionally show the following in the full version [2].

Theorem 4. Let G be a group where the discrete logarithm is hard. Then, the
square Diffie-Hellman assumption holds in an algebraic wrapper H of dimension
≥ 2 for G.

Theorem 5. Let G be a group where DLOG is hard and H be an algebraic
wrapper of dimension ≥ 3 for G. Then, the linear-combination Diffie-Hellman
problem is hard in H.

4.2 Schnorr Signatures

We apply the algebraic wrapper to mimic the proof of tight EUF-CMA security
of Schnorr Signatures from [22].

Theorem 6. Let GGenG be a group generator for a cyclic group G such that
DLOG is hard relative to GGenG and let H be an algebraic wrapper of dimension
≥ 2 for G. Then, the Schnorr signature scheme in H (Fig. 5) is tightly EUF-
CMA secure in the random oracle model.

More precisely, for all PPT adversaries A, there exists a PPT adversary B
and a legitimate switching adversary A′′ both running in time T (B) ≈ T (A) +
(qs + qh) · poly(λ) and T (A′′) ≈ T (A) + (qs + qh) · poly(λ) such that

Adveuf-cma
Σschnorr,A (λ) ≤ AdvDLOG

B,G (λ) + Adv1-switching
A′′,H (λ) +

O(qs(qs + qh))
2λ

,

where qh is a polynomial upper bound on the number of random oracle queries,
qs is a polynomial upper bound on the number of signing queries and poly is a
polynomial independent of qs and qh.

120 T. Agrikola et al.

KGen(pp
H
)

x ← Zp

1̂ := RerandH(ppH, SamH(ppH, 1))
X̂ := RerandH(ppH, SamH(ppH, x))
pk := (pp

H
, 1̂, X̂)

sk := (pk , x)
return (pk , sk)

Sign(sk , m)
r ← Zp

R̂ ← RerandH(ppH, SamH(ppH, r))
c := H(R̂, m)
s := r + c · x mod p
return σ := (R̂, s)

Ver(pk = (pp
H
, 1, X), m, σ = (R, s))

c := H(R, m)

Fig. 5. The Schnorr signature scheme Σschnorr. Note that to compensate for the non-
uniqueness of group element encodings, the (random oracle) hash value of a group
element encoding is computed for the unique identifier produced by GetIDH(pp

H
, ·).

Expeuf-cma
Σschnorr,A(λ)

pp
G

← GGenG(1λ)
(pp

H
, τH) ← GGenH(ppG, ([1]

G
, [β2]G)

ᵀ)
x ← Zp

ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 ← RerandH(ppH, SamH(ppH, x))
pk := (pp

H
, ξ1, ξ2)

Q := ∅, T := []
(m∗, R̂∗, s∗) ← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R∗, m∗)

H(R̂, m)

if T [(GetIDH(ppH, R̂), m)] = ⊥ then
T [(GetIDH(ppH, R̂), m)] ← Zp

return T [(GetIDH(ppH, R̂), m)]

Sign(m)
r ← Zp

R̂ ← RerandH(ppH, SamH(ppH, r))
c := H(R, m)
s := r + cx

:

Fig. 6. The EUF-CMA game for Schnorr signatures. Note that β2 can be chosen arbi-
trarily.

Proof. We use the origin element trick to avoid using qs-switching (see
Definition 7) which would compromise tightness of the reduction. Figure 6 shows
the EUF-CMA game with Schnorr signatures instantiated with the algebraic
wrapper. We note that for groups with non-unique encodings, the hash function
hashes the unique identifier returned by GetIDH, hence, encodings corresponding
to the same group element are mapped to the same hash value. The reduction
uses a table T to keep track of previously made hash queries and their responses,
as well as a set Q to keep track of the messages the adversary has requested sig-
natures for.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 121

G1 G2 G3 G4 G5

pp
G

← GGenG(1λ)
(pp

H
, τH) ← GGenH(ppG, ([1]

G
,

[β2]G [x]
G
)ᵀ)

x ← Zp

ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 ← RerandH(ppH, SamH(ppH, x)

PrivSamH(τH, (x, 0)))
pk := (pp

H
, ξ1, ξ2)

Q := ∅, T := [] U := []

(m∗, R̂∗, s∗) ← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0

if U [(GetIDH(ppH, R̂∗), m∗)] �= ⊥ then

(γ∗, ζ∗) := U [(GetIDH(ppH, R̂∗), m∗)]

if ζ∗ = −T [(GetIDH(ppH, R̂∗), m∗)] then return 0

c∗ = H(R̂∗, m∗)
return Eq

H
(pp

H
, SamH(ppH, s), R̂∗ · ξc∗

2)

H(R̂, m)

if T [(GetIDH(ppH, R̂), m)] = ⊥ then
T [(GetIDH(ppH, R̂), m)] ← Zp

U [(GetIDH(ppH, R̂), m)] = PrivExtH(τH, R̂)

return T [(GetIDH(ppH, R̂), m)]

Sign(m)
r c, s ← Zp

R̂1 ← SamH(ppH, r)

c := H(R̂1, m)

s := r + cx

R̂2 ← RerandH(ppH, SamH(ppH, s − cx))

R̂2 ← RerandH(ppH, ξs
1 · ξ−c

2)

R̂2 = RerandH(ppH, ξs
1 · ξ−c

2)

if T [(GetIDH(ppH, R̂2), m)] = ⊥ then

T [(GetIDH(ppH, R̂2), m)] := c

else
abort

Fig. 7. Games G1, G2, G3. Boxed content happens in the corresponding games and
following games if no replacement is defined. The randomness for signatures is drawn
using an x-component in G1. G1 is identically distributed to Expeuf-cma

Σschnorr,A(λ). In G2,
the second origin element is sampled through private sampling and the random part of
the signatures is generated through origin elements. G2 is statistically close to G1 due
to re-randomizability. In G3, we switch the basis and representation of ξ2; this hop is
justified by 1-switching.

Game hop from Expeuf-cma
Σschnorr,A(λ) � G1. Since r = s − cx mod p and hence

GetIDH(ppH, ̂R1) = GetIDH(ppH, ̂R2), these two games are identically distributed.

Game hop G1 � G2. In G2 (see Fig. 7), we construct ̂R2 from origin elements
through the group operation instead of sampling. This game hop is justified
by the re-randomizability of the algebraic wrapper. A reduction to this property
works as a series of qs +1 hybrids where H0 is G1, where qs denotes a polynomial
upper bound on the number of signing queries. In Hi, the first i signature queries
are answered as in G2 and the i+1-th to qs-th signature queries are answered as
in G1. In the last hybrid, the public key is also changed to private sampling. If
there is an (unbounded) adversary that distinguishes Hi and Hi+1, the reduction
A′ uses this adversary to attack the re-randomizability as follows. On input of

122 T. Agrikola et al.

base group parameters ppG, A′ picks a basis ([1]
G

, [β2]G) and gives it to the
rerand challenger. It receives public parameters and the trapdoor. Then, it
simulates Hi to the adversary for the first i signature queries, i.e. it samples
̂R2,j ← RerandH(ppH, ξ

sj

1 · ξ
−cj

2) for j < i. For the i + 1-th signature query, A′

sends the two elements ̂h0 = SamH(ppH, si+1 − ci+1 · x) and ̂h1 = ξ
si+1
1 · ξ

−ci+1
2

to the challenger and receives a challenge ̂C. It uses this challenge ̂C as R̂2,i+1

to answer the i + 1-th hash query and responds to the remaining queries as in
Hi+1, i.e. it samples ̂Rj ← RerandH(ppH,SamH(ppH, sj − cj · x)) for j > i + 1.
Depending on the challenge encoding ̂C, A′ either simulates Hi or Hi+1 perfectly
and outputs the output of the corresponding game.

In hybrid Hqs
, all signature queries are answered as in game G2. The last step

to game Hqs+1 = G2 changes how ξ2 (which is part of the public key) is sampled.
An adversary distinguishing Hqs

and Hqs+1 can be used to build an adversary
A′ in rerand similarly as above. More precisely, A′ outputs the encodings ̂h0 ←
SamH(ppH, x) and ̂h1 ← PrivSamH(τH, x) (note that τH is known during the
rerand game) and uses the challenge encoding from the rerand challenger as
ξ2. We note that this last game hop paves the way to apply 1-switching.

Due to correctness of sampling and correctness of extraction, the representa-
tion vectors of the elements used in the rerand game are identical and hence A′

is a legitimate adversary in the rerand game and its advantage is upper bounded
by 1

2λ . Therefore,

|Pr [out1 = 1] − Pr [out2 = 1]| ≤ qs + 1
2λ

.

Game hop G2 � G3. In game G3 (see Fig. 7) we switch the basis and the rep-
resentation of the origin element ξ2. This game hop is justified by 1-switching.
Let A be an adversary distinguishing G2 and G3. We construct an adversary A′′

on 1-switching as follows. Initially, A′′ on input of ppG, outputs [b](G2)
G

=
[(1, β2)ᵀ]

G
and [b](G3)

G
= [(1, x)ᵀ]

G
and the representation vectors v(G2) :=

(x, 0)ᵀ and v(G3) := (0, 1)ᵀ. In return, A′′ receives public parameters ppH and an
encoding ̂C and samples ξ2 ← RerandH(ppH, ̂C). The trapdoor τH is not necessary
to simulate G3 and G4 (except for sampling ξ2). Hence, A′′ perfectly simulates
G3 or G4 for A depending on the challenge provided by the 1-switching chal-
lenger. Thus, |Pr[out3 = 1] − Pr[out2 = 1]| ≤ Adv1-switching

H,A′′ (λ). Note that A′′ is
a legitimate switching adversary since [(1, β2)]G ·(x, 0)ᵀ = [x]

G
= [(1, x)]

G
·(0, 1)ᵀ

and hence Adv1-switching
H,A′′ (λ) is negligible.

Game hop G3 � G4. In G4 (see Fig. 7), we introduce a list U to keep track of
the representations of group elements used in Random Oracle queries. The games
G3 and G4 differ in the fact that G4 extracts the representation vectors contained
in the encoding of a group element when this group element message tuple is
queried for the first time and stores this representation in a list. Furthermore,
G4 introduces an abort condition which is triggered if the representation of ̂R∗
originally used to query the random oracle on (̂R∗,m∗) already contained the

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 123

response in the second component ζ∗. This corresponds to the game hop from
G0 to G1 in [22]. The game only aborts if the hash T [(GetIDH(ppH, ̂R∗),m∗)] is
the same as the second component ζ∗ of the representation extracted from ̂R∗.
Since the hash T [(GetIDH(ppH, ̂R∗),m∗)] is chosen uniformly at random after the
representation (γ∗, ζ∗) is fixed, the probability that an unbounded adversary
can find such an (̂R∗,m∗) is upper bounded by qh

p ≤ qh

2λ , where qh denotes
a polynomial upper bound on the number of random oracle queries. Hence,
|Pr[out4 = 1] − Pr[out3 = 1]| ≤ qh

2λ .

Game hop G4 � G5. In game G5 (see Fig. 7), we change how signature queries
are answered such that it is not necessary anymore to know the discrete logarithm
of the public key. This game hop corresponds to the hop from G1 to G2 in [22]. On
one hand, since GetIDH(ppH, ̂R1) = GetIDH(ppH, ̂R2), replacing ̂R1 with ̂R2 does
not change the distribution. On the other hand, as we are only able to answer
a signing query if we can program the random oracle at (̂R2,m) (for randomly
chosen ̂R2), the signing oracle has to abort in case the hash was already queried
before. Since ̂R2 is a independently sampled uniformly random group element,
this happens only with probability 1

p ≤ 1
2λ . Hence, by a union bound, this abort

occurs at most with probability qs(qs+qh)
2λ cases, where qs denotes a polynomial

upper bound on the number of signing queries and qh denotes a polynomial upper
bound on the number of random oracle queries. Conditioned on the event that
no abort occurs, G4 and G5 are distributed identically. Hence, by the Difference
Lemma due to Shoup [39], we have |Pr[out5 = 1] − Pr[out4 = 1]| ≤ qs(qs+qh)

2λ .
As in [22], on extraction of the initial representation (γ∗, ζ∗) of ̂R∗ from a valid
signature (̂R∗, s∗) output by the adversary, the reduction can use that ̂R∗ =
[γ∗]

H
· [ζ∗ · z]

H
= [s∗ − c∗ · z]

H
. Therefore,

z =
s∗ − γ∗

ζ∗ − c∗ .

Due to the added check in G4, an adversary can only win G4 or G5 when
ζ∗ − c∗ �= 0 which concludes the proof. �

Acknowledgments. We would like to thank the anonymous reviewers of EC20 for
many helpful comments and for pointing out an error in previous versions of Lemma 1
and the proof of the switching property.

References

1. Agrikola, T., Hofheinz, D.: Interactively secure groups from obfuscation. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 341–
370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 12

2. Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic group model
from falsifiable assumptions. Cryptology ePrint Archive, Report 2020/070 (2020).
https://eprint.iacr.org/2020/070

https://doi.org/10.1007/978-3-319-76581-5_12
https://eprint.iacr.org/2020/070

124 T. Agrikola et al.

3. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part
I. LNCS, vol. 9562, pp. 446–473. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49096-9 19

4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

5. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 505–514. ACM
Press, May/June 2014

6. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 22

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

8. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: Goldwasser, S. (ed.) ITCS 2012, pp. 350–366. ACM,
January 2012

9. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

10. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

11. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 19

12. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

14. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

15. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 6

16. Dent, A.W.: The cramer-shoup encryption scheme is plaintext aware in the stan-
dard model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
289–307. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 18

17. Farshim, P., Hesse, J., Hofheinz, D., Larraia, E.: Graded encoding schemes
from obfuscation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS,
vol. 10770, pp. 371–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76581-5 13

18. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC, pp. 416–426. ACM Press, May 1990

https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/11761679_18
https://doi.org/10.1007/978-3-319-76581-5_13
https://doi.org/10.1007/978-3-319-76581-5_13

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 125

19. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566–599 (2019). https://doi.org/10.1007/s00145-019-
09311-5

20. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4 28

21. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

22. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures in the algebraic
group model. Cryptology ePrint Archive, Report 2019/877 (2019). http://eprint.
iacr.org/2019/877

23. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

25. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055744

26. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J.
Cryptol. 25(3), 484–527 (2012). https://doi.org/10.1007/s00145-011-9102-5

27. Hofheinz, D., Ursu, B.: Dual-mode NIZKs from obfuscation. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
311–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 12.
https://eprint.iacr.org/2019/475

28. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 27

29. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 12

30. Kastner, J., Pan, J.: Towards instantiating the algebraic group model. Cryptology
ePrint Archive, Report 2019/1018 (2019). https://eprint.iacr.org/2019/1018

31. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

32. Maurer, U., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054118

33. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

34. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Math. Notes 55(2), 165–172 (1994). https://doi.org/10.1007/BF02113297

https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-319-96881-0_2
http://eprint.iacr.org/2019/877
http://eprint.iacr.org/2019/877
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/s00145-011-9102-5
https://doi.org/10.1007/978-3-030-34578-5_12
https://eprint.iacr.org/2019/475
https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-642-55220-5_12
https://eprint.iacr.org/2019/1018
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/BFb0054118
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/BF02113297

126 T. Agrikola et al.

35. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

36. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 4

37. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

38. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

39. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/2004/
332

https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-69053-0_18
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

Secure Computation I

Resource-Restricted Cryptography:
Revisiting MPC Bounds in the

Proof-of-Work Era

Juan Garay1, Aggelos Kiayias2(B), Rafail M. Ostrovsky3,
Giorgos Panagiotakos4(B), and Vassilis Zikas2

1 Department of Computer Science and Engineering,
Texas A&M University, College Station, USA

garay@cse.tamu.edu
2 School of Informatics, University of Edinburgh & IOHK, Edinburgh, UK

{akiayias,vzikas}@inf.ed.ac.uk
3 Department of Computer Science and Department of Mathematics,

UCLA, Los Angeles, USA
rafail@cs.ucla.edu

4 School of Informatics, University of Edinburgh, Edinburgh, UK
giorgos.pan@inf.ed.ac.uk

Abstract. Traditional bounds on synchronous Byzantine agreement
(BA) and secure multi-party computation (MPC) establish that in
absence of a private correlated-randomness setup, such as a PKI, proto-
cols can tolerate up to t < n/3 of the parties being malicious. The intro-
duction of “Nakamoto style” consensus, based on Proof-of-Work (PoW)
blockchains, put forth a somewhat different flavor of BA, showing that
even a majority of corrupted parties can be tolerated as long as the
majority of the computation resources remain at honest hands. This
assumption on honest majority of some resource was also extended to
other resources such as stake, space, etc., upon which blockchains achiev-
ing Nakamoto-style consensus were built that violated the t < n/3 bound
in terms of number of party corruptions. The above state of affairs begs
the question of whether the seeming mismatch is due to different goals
and models, or whether the resource-restricting paradigm can be gener-
ically used to circumvent the n/3 lower bound.

In this work we study this question and formally demonstrate how the
above paradigm changes the rules of the game in cryptographic defini-
tions. First, we abstract the core properties that the resource-restricting
paradigm offers by means of a functionality wrapper, in the UC frame-
work, which when applied to a standard point-to-point network restricts
the ability (of the adversary) to send new messages. We show that such
a wrapped network can be implemented using the resource-restricting
paradigm—concretely, using PoWs and honest majority of computing
power—and that the traditional t < n/3 impossibility results fail when
the parties have access to such a network. Our construction is in the fresh
Common Reference String (CRS) model—i.e., it assumes a CRS which
becomes available to the parties at the same time as to the adversary.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 129–158, 2020.
https://doi.org/10.1007/978-3-030-45724-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_5

130 J. Garay et al.

We then present constructions for BA and MPC, which given access to
such a network tolerate t < n/2 corruptions without assuming a private
correlated randomness setup. We also show how to remove the freshness
assumption from the CRS by leveraging the power of a random oracle.
Our MPC protocol achieves the standard notion of MPC security, where
parties might have dedicated roles, as is for example the case in Obliv-
ious Transfer protocols. This is in contrast to existing solutions basing
MPC on PoWs, which associate roles to pseudonyms but do not link
these pseudonyms with the actual parties.

1 Introduction

Byzantine agreement (BA), introduced by Lamport, Shostak, and Pease [31], is
a fundamental primitive in distributed computing and is at the core of many
secure multi-party computation (MPC) protocols. The problem comes in two
main flavors, Consensus and Broadcast—although a number of relaxations have
also been proposed. Consensus considers a set of n parties P = {P1, . . . , Pn} each
of whom has an input xi, and who wish to agree on an output y (Consistency)
such that if xi = x for all honest parties then y = x (Validity), despite the
potentially malicious behavior of up to t of them. In the Broadcast version, on
the other hand, only a single party, often called the sender has an input xs, and
the goal is to agree on an output y (Consistency) which, when the sender is
honest equals x (Validity).

The traditional setting in which the problem was introduced and investigated
considers synchronous communication and protocol execution. In a nutshell, this
means that the protocol advances in rounds such that: (1) parties have a con-
sistent view of the current round—i.e., no party advances to round ρ + 1 before
all other parties are finished with their round ρ instructions; and (2) all mes-
sages sent in round ρ are delivered to their respective recipients by the beginning
of round ρ + 1. Furthermore, the underlying communication network is a com-
plete point-to-point authenticated channels network, where every pair (Pi, Pj)
of parties is connected by a channel, such that when Pj receives a message on
this channel it knows it was indeed sent by Pi (or the adversary, in case Pi is
corrupted). We refer to the above setting as the (standard) LSP setting.

In this model, Lamport et al. [21,31] proved that there exists no Consensus or
Broadcast protocol which can tolerate t ≥ n/3 Byzantine parties, i.e., parties con-
trolled by a (central) active and malicious adversary. The original formulation con-
sidered perfect security (i.e., information-theoretic security with zero error proba-
bility) and no correlated randomness shared among the parties.1 This impossibil-
ity result was later extended by Borcherding [7] to computational security—i.e., it
was proved to hold even under strong computational assumptions, such as one-way

1 Lamport et al. also considered the case of “signed messages.” The information-
theoretic setting was referred to as the “oral messages” setting.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 131

permutations.2 Furthermore, it applies evenwhen the point-to-point channels used
by the parties are secure, i.e., both authenticated andprivate, and even ifwe assume
an arbitrary public correlated randomness setup and/or a random oracle (RO).3
(A public correlated randomness setup can be viewed as a functionality which sam-
ples a string and distributes it to all parties, e.g, a common reference string (CRS).
This is in contrast to a private correlated randomness setup which might keep part
of the sampled string private and distribute different parts of it to different parties,
e.g., a PKI.) For ease of reference we state the above as a corollary:

Corollary 1 (Strong t ≥ n/3 impossibility [7]). In the synchronous point-
to-point channels setting, there exists no Broadcast protocol tolerating t ≥ n/3
corrupted parties. The statement holds both in the authenticated and in the
secure channels settings, both for unconditional adversaries and assuming (even
enhanced) trapdoor permutations, and even assuming an arbitrary public corre-
lated randomness setup and/or a random oracle.

Finally, Cohen et al. [16], show that this line of impossibility results can be
extended to the case of symmetric functionalities, i.e., functionalities where all
parties receive the same output.

The effect of BA lower bounds on MPC. MPC allows a set of parties to compute
an arbitrary function of their (potentially private) inputs in a secure way even
in the presence of an adversary. Ben-Or, Goldwasser and Wigderson [5] pre-
sented a protocol which computes any function with perfect security in the syn-
chronous setting while tolerating t < n/3 malicious parties assuming the parties
have access to a complete network of instant delivery point-to-point secure—i.e.,
authenticated and private—channels (we shall refer to this model as the BGW
communication model). The lower bound holds even if a Broadcast channel—i.e.,
an ideal primitive guaranteeing the input/output properties of Broadcast—is
available to the parties. Rabin and Ben-Or [34] proved that if we allow for a
negligible error probability and assume broadcast, then there exists a general
MPC protocol tolerating up to t < n/2 of the parties being corrupted, even if
the adversary is computationally unbounded.

Observe, however, that just allowing negligible error probability is not suf-
ficient for circumventing the t < n/3 barrier. Indeed, it is straightforward to
verify that fully secure MPC as considered in [26,34]—with fairness and guar-
anteed output delivery—against malicious/Byzantine adversaries implies Broad-
cast: Just consider the function which takes input only from a designated party,
the sender, and outputs it to everyone.4 In fact, using the above observation
2 The original result by Borcherding just treats the case of assumptions sufficient for

the existence of existentially unforgeable signatures, but it can easily be extended
to arbitrary cryptographic hardness assumptions.

3 As usual, the implicit assumption here is that no party of adversary can query the
RO more times than its running time.

4 There are some delicate matters to handle when capturing Broadcast as MPC, which
will become relevant for our results, but for clarity we defer discussing them for when
they are needed.

132 J. Garay et al.

and Corollary 1 directly implies that t < n/3 is tight even assuming a computa-
tional adversary, secure point-to-point channels, an arbitrary public correlated
randomness setup, e.g., a CRS, and/or a random oracle.

The public-key infrastructure (PKI) model. With the exception of perfect secu-
rity5, the above landscape changes if we assume a private correlated randomness
setup, such as a PKI. Indeed, in this case Dolev and Strong [19] proved that
assuming a PKI and intractability assumptions implying existentially unforge-
able digital signatures (e.g., one way functions) Broadcast tolerating arbitrarily
many (i.e., t < n) malicious corruptions is possible. We refer to this protocol as
Dolev-Strong Broadcast. In fact, as shown later by Pfitzmann and Waidner [33],
by assuming more complicated correlations—often referred to as a setup for
information-theoretic (pseudo-)signatures—it is also possible to obtain an uncon-
ditionally (i.e., information-theoretically) secure protocol for Broadcast tolerat-
ing. Clearly, by plugging the above constructions in [34], we obtain a computa-
tionally or even i.t. secure MPC protocol tolerating any dishonest minority in
the private correlated randomness setting. Recall that this task was impossible
for honest majorities in the public correlated randomness setting.

The blockchain revolution. The introduction and systematic study of blockchains
in the permissionless setting, such as the Bitcoin blockchain, demonstrated how
Consensus and Broadcast can be reached even in settings where a majority of
the participants might be adversarial (as long as the majority of the comput-
ing power remains honest) and even without a private correlated randomness
setup. And although it was proven that such constructions work under the differ-
ent assumption of honest-majority computing power, a confusion still remained
driven mainly by the fact that the investigation of the type of consensus achieved
by Bitcoin (“Nakamoto consensus”) considered more involved models that closer
capture its execution parameters (e.g., “partial synchrony” [20]), and that the
Bitcoin backbone protocol [23,32] was shown to achieve eventual consensus, a
property closer to the traditional state-machine replication problem from dis-
tributed computing [35]6. In fact, similar approaches were also used for alter-
native blockchains that relied on assumptions about restricting other resource,
such as for example a majority of honest stake (“proof of stake”—PoS) [6,25,30],
a majority of honest space [3,6,15,18,30], etc., which were however also analyzed
in more complex network settings; see also Remark 1.

The resource-restricting paradigm. We will use this general term to refer to all
the above approaches. Thus, an intriguing question remained:

Does Corollary 1 still apply to the standard LSP model (of instant delivery
authenticated channels and full synchrony) under the resource-restricting
paradigm?

5 Since perfect security allows no error probability, a setup does not help.
6 Although it was also shown in [23] how to achieve the standard version of Consensus,

as defined above, but in a way radically different from the existing protocols.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 133

In this work we first answer this question in the negative by abstracting the
essence of the above resource-restricting paradigm as an access restriction on
the underlying communication network. Intuitively, the assumption of restricting
(the adversary’s access to) the relative resource can be captured by disallowing
any party—and in particular any adversarial party—to send unboundedly many
more new messages than any other party. To avoid ambiguity and allow using the
related assumption in higher level constructions, we choose to work on Canetti’s
Universal Composition framework [10]. In particular, we describe the assumption
induced by restricting the resources available to the adversary by means of a
functionality wrapper, which wraps a communication network and restricts the
ability of parties (or the adversary) to send new messages through this network.

We then demonstrate how our wrapper, when applied to the standard instant-
delivery synchronous network, makes it impossible for the adversary to launch
the attack from [7]. In particular, the classical impossibilities (or even their
extension stated in Corollary 1) in the same model as the one they were proven,
and with the required properties from the target primitive, do not apply to
protocols in this new restricted network. We note in passing that the idea of
restricting the resources available to the adversary compared to those available to
the parties in order to limit the adversary’s attacking power was also previously
explored in [8,24].

In order to prove that our network restriction is an appropriate abstraction
of the mechanisms implied by the resource-restricting paradigm, we focus on the
case of proofs of work (PoW) and prove how to implement the wrapped LSP-style
network from a public correlated randomness setup (in particular, any high min-
entropy CRS) and an access-restricted random oracle. Concretely, along the lines
of the composable analyses of Bitcoin [4], we capture the assumption of honest
majority of hashing power by means of a wrapped RO, which allows each party
(honest or corrupted) at most q queries per communication round (cf. [23]) for
any given q (polynomial in the security parameter).7 An important consideration
of our transformation is the need for a freshness property on the assumed CRS.
Specifically, our protocol for realizing the wrapped network assumes that the
adversary gets access to the CRS at the same time as honest parties do (and
crucially relies on this fact). Intuitively, the reason is that our protocol will rely
on PoW-style hash puzzles in order to restrict the ability of the adversary to
create many new valid messages. Clearly, if the adversary has access to the initial
CRS—which will play the role of the genesis block—way before the honest parties
do, then he can start potentially precomputing valid messages thus making the
implementation of communication restriction infeasible.

We note that such freshness of the CRS might be considered a non-standard
assumption and seems relevant only in combination with the resource-restricting
paradigm. Nonetheless, in Sect. 6, we discuss how this freshness can be replaced
using PoWs on challenges exchanged between parties, along the lines of [1]. The
absence of freshness yields a somewhat relaxed wrapper which offers analogous

7 The wrapper actually puts a restriction to adversarial parties as honest parties can
be restricted by their protocol (cf. [4]).

134 J. Garay et al.

restrictions as our original wrapper, but guarantees only limited transferability
of the messages sent, and is not as strict towards the adversary as our original
one (i.e., adversarial messages can be transferred more times than honest ones).
Still, as we argue, this relaxed wrapper is sufficient for obtaining all the positive
results in this work.

The above sheds light on the seemingly confusing landscape, but leaves open
the question of how powerful the new assumption of the resource-restricting
wrapper (and hence the resource-restricting paradigm in general) is. In partic-
ular, although the above demonstrates that the resource-restricting paradigm
allows to circumvent the limitation of Corollary 1, it still leaves open the ques-
tion:

Does the resource-restricting methodology allow for fully secure MPC in the
public correlated randomness model, and if so, under what assumptions on
the ‘number of corrupted parties?

We investigate the question of whether we can obtain honest majority MPC
in this setting, and answer it in the affirmative. (Recall that without the resource-
restricting methodology and associated assumptions this is impossible since MPC
implied Broadcast.) Note that a consensus impossibility due to Fitzi [22] proved
that the t < n/2 bound is actually necessary for Consensus in the standard LSP
communication model. And the lower bound holds even if we assume a broadcast
primitive. In fact, by a simple inspection of the results one can observe that the
underlying proof uses only honest strategies (for different selections of corrup-
tion sets) and therefore applies even under the resource-restricting paradigm—
where, as above, this paradigm is captured by wrapping the network with our
communication-restricting wrapper.

Towards the feasibility goal, we provide a protocol which allows us to establish
a PKI assuming only our resource-restricted (wrapped) LSP network and one-
way functions (or any other assumption which allows for existentially unforgeable
signatures). More specifically, we show that our PKI establishment mechanism
implements the key registration functionality Freg from [11]. Our protocol is
inspired by the protocol of Andrychowicz and Dziembowski [1]. Their protocol,
however, achieved a non-standard notion of MPC in which inputs are associated
to public-keys/pseudonyms. In particular, in the standard MPC setting, com-
puting a function f(x1, . . . , xn) among parties P1, . . . , Pn means having each Pi

contribute input xi and output f(x1, . . . , xn)—this is reflected both in the origi-
nal definitions of MPC [26,36] and in the UC SFE functionality Fsfe [10] and the
corresponding standalone evaluation experiment from [9]. Instead, in the MPC
evaluation from [1], every party Pi is represented by a pseudonym ji, which is
not necessarily equal to i and where the mapping between i and ji is unknown
to the honest participants.8 Then the party contributing the �th input to the
computation of f is Pi such that ji = �. This evaluation paradigm was termed
pseudonymous MPC in [29].

8 In fact, (j1, . . . , jn) is a permutation of (1, . . . , n).

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 135

It is not hard to see, however, that the above evaluation paradigm makes the
corresponding solution inapplicable to classical scenarios where MPC would be
applied, where parties have distinguished roles. Examples include decentralized
auctions—where the auctioneer should not bid—and asymmetric functionali-
ties such as oblivious transfer. We note in passing that the above relaxation of
traditional MPC guarantees seems inherent in the permissionless peer-to-peer
setting setting of [1,29]. Instead, our protocol adapts the techniques from [1] in
a white-box manner to leverage the authenticity of our underlying communica-
tion network—recall that our protocol is in the (wrapped) BGW communication
setting—in order to ensure that the registered public keys are publicly linked to
their respective owners. This allows us to evaluate the standard MPC function-
ality.

Getting from an implementation of Freg where the keys are linked to their
owners to standard MPC is then fairly straightforward by using the modular-
ity of the UC framework. As proved in [11], Freg can be used to realize the
certified signature functionality (aka certification functionality) Fcert which, in
turn, can be used to realize a Broadcast functionality against even adaptive
adversaries [27]. By plugging this functionality into the honest-majority proto-
col (compiler) by Cramer et al. [17]—an adaptation of the protocol from [34] to
tolerate adaptive corruptions—we obtain an MPC protocol which is adaptively
secure.

Organization of the paper. In Sect. 2 we discuss our model. In Sect. 3 we intro-
duce our wrapper-based abstraction of the resource-restricting paradigm and
demonstrate how the impossibility from Corollary 1 fails when parties can use
it. Section 4 presents our implementation of this wrapper from PoWs and a fresh
CRS, and Sect. 5 discusses how to use it to obtain certified digital signatures and
MPC. Finally in Sect. 6 we discuss how to remove the freshness assumption by
leveraging PoWs.

2 Model

To allow for a modular treatment and ensure universal composition of our results,
we will work in Canetti’s UC model [9]. We assume some familiarity of the
reader with UC but we will restrict the properties we use to those that are
satisfied by any composable security framework. In fact, technically speaking,
our underlying framework is the UC with global setups (GUC) [12], as we aim
to accurately capture a global notion of time (see below). Nonetheless, the low
level technicalities of the GUC framework do not affect our arguments and the
reader can treat our proofs as standard UC proofs.

Parties, functionalities, and the adversary and environment are (instances
of) interactive Turing machines (ITMs) running in probabilistic polynomial time
(PPT). We prove our statements for a static active adversary; however, the static
restriction is only for simplicity as our proofs can be directly extended to handle
adaptive corruptions. In (G)UC, security is defined via the standard simulation

136 J. Garay et al.

paradigm: In a nutshell, a protocol π realizes a functionality F (in UC, this
is described as emulation of the dummy/ideal F-hybrid protocol φ) if for any
adversary attacking π there exists a simulator attacking φ making the executions
of the two protocols indistinguishable in the eyes of any external environment.
Note that π might (and in our cases will, as discussed below) have access to its
own hybrid functionalities.

Synchrony. We adopt the global clock version of the synchronous UC model
by Katz et al. [28] as described in [4]. Concretely, we assume that parties have
access to a global clock functionality which allows them to advance rounds at
the same pace. For generality, we will allow the clock to have a dynamic party
set, as in [4].

The functionality manages the set P of registered identities, i.e, parties
P = (pid, sid). It also manages the set F of registered functionalities (together with
their session identifier). Initially, P = ∅ and F = ∅. For each session sid the clock
maintains a variable τsid. For each identity P = (pid, sid) ∈ P it manages variable
dP . For each pair (F , sid) ∈ F it manages variable d(F,sid) (all integer variables are
initially set to 0).

Synchronization:
Upon receiving (clock-update, sidC) from some party P ∈ P set dP := 1;
execute Round-Update and forward (clock-update, sidC , P) to A.
Upon receiving (clock-update, sidC) from some functionality F ∈ F in a
session sid such that (F , sid) ∈ F , set d(F,sid) = 1, execute Round-Update and
return (clock-update, sidC , F) to A.
Upon receiving (clock-read, sidC) from any participant (including the
environment, the adversary, or any ideal—shared or local—functionality)
return (clock-read, sidC , τsid) to the requestor.

Procedure Round-Update: For each session sid do: If d(F,sid) = 1 for all F ∈ F and
dP = 1 for all honest P = (·, sid) in P, then set τsid = τsid + 1 and reset dF = 0 and
dP = 0 for all parties P = (·, sid) ∈ P.

Global Functionality Gclock

Communication network. We capture point-to-point authenticated commu-
nication, modeling the LSP channels in UC, by means of a multi-party multi-use
version of the authenticated channel functionality with instant delivery along
the lines of [4]. (The original network from [4] had bounded delay; hence here
we need to set this bound to 1.) Note that in this network once an honest party
Pi inserts a message to be sent to Pj , the message is buffered, and it is deliv-
ered after at most Δ attempts from the receiver (here Δ = 1). Syntactically, we
allow the simulator to query the network and learn if a buffered message was
received by the respective receiver. This step—despite being redundant in most

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 137

cases as the simulator should be able to defer this fact by observing the acti-
vations forwarded to him—is not only an intuitive addition, as it captures that
the adversary is aware of delivery of message, but will also simplify the proto-
col description and simulation. For completeness, we include the authenticated
network functionality below.

Note that the BGW-style secure point-to-point network functionality can
be trivially derived by the authenticated one by replacing in the message
(sent, sid,m, Pi, Pj ,mid) which the adversary receives upon some m being
inserted to the network, the value of m by ⊥ (of by |m| if this is implemented
by standard encryption).

The functionality is parameterized by a set of possible senders and receivers,
denoted by P, a list M , and integer variables of the form Dz, where z ∈ {0, 1}∗,
that are dynamically created. For every party P ∈ P it maintains a fetch counter
fP . Initially, M := ∅ and fP := 0, for every P ∈ P.

Upon receiving (send, sid, m, Pj) from Pi ∈ P, set Dmid := 1 and
M = M ||(m, Pi, Pj , mid), where mid is a unique message-ID, and send
(sent, sid, m, Pi, Pj , mid) to A.
Upon receiving (fetch, sid) from some honest party Pj ∈ P, increment fP by
1, set M ′ = ∅, and do the following:
1. For all tuples (m, Pi, Pj , mid) ∈ M , set Dmid := Dmid − 1,
2. for all tuples (m, Pi, Pj , mid) ∈ M , where Dmid ≤ 0, delete

(m, Pi, Pj , mid) from M , and add (m, Pi) to M ′.
3. Send (sent, sid, M ′) to Pj .
Upon receiving (fetch-requests, sid, P) from A, output
(fetch-requests, sid, fP).

Functionality Fauth

The random oracle functionality. As is typical in the proof-of-work litera-
ture, we will abstract puzzle-friendly hash functions by means of a random oracle
functionality.

The functionality is parameterized by a security parameter λ and a set of parties
P. It maintains a (dynamically updatable) map H that is initially empty.

Upon receiving (Eval, sid, x) from some party P ∈ P (or from A on behalf of
a corrupted P), do the following:
1. If H[x] = ⊥, sample a value y uniformly at random from {0, 1}λ, and set

H[x] := y.
2. Return (Eval, sid, x, H[x]) to the requestor.

Functionality FRO

138 J. Garay et al.

Furthermore, following [4], we will use the wrapper to capture the assumption
that no party gets more than q queries to the RO per round. This wrapper in
combination with the honest majority of parties captures the assumption that
the adversary does not control a majority of the systems hashing power.

The wrapper functionality is parameterized by a set of parties P, and an upper
bound q which restricts the F-evaluations of each corrupted party per round. (To
keep track of rounds the functionality registers with the global clock Gclock.) The
functionality manages the variable τ and the current set of corrupted miners P.
For each party P ∈ P it manages variables qP . Initially, τ = 0.
General:

The wrapper stops the interaction with the adversary as soon as the
adversary tries to exceed its budget of q queries per corrupted party.

Relaying inputs to the random oracle:
Upon receiving (Eval, sid, x) from A on behalf of a corrupted party P ∈ P ′,
then first execute Round Reset. Then, set qP := qP + 1 and only if qP ≤ q
forward the request to FRO and return to A whatever FRO returns.
Any other request from any participant or the adversary is simply relayed to
the underlying functionality without any further action and the output is
given to the destination specified by the hybrid functionality.

Standard UC Corruption Handling:
Upon receiving (corrupt, sid, P) from the adversary, set P ′ := P ′ ∪ P. If P
has already issued t > 0 random oracle queries in this round, set qP := t.
Otherwise set qP := 0.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from
Gclock. If |τ ′ − τ | > 0 (i.e., a new round started), then set qP := 0 for each
participant P ∈ P and set τ := τ ′.

Wrapper Functionality Wq
ro(F)

Correlated randomness setup. Finally, we make use of the CRS functional-
ity [13], which models a public correlated randomness setup.

When activated for the first time on input (Retrieve, sid), choose a value d ← D,
and send (Retrieve, d) back to the activating party. In each other activation
return the value d to the activating party.

Functionality FD
crs

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 139

3 Inapplicability of Strong BA Impossibility

In this section we present our abstraction of the resource-restricting paradigm
as a communication-restricting wrapper for the underlying communication net-
work, and show that the strong BA impossibility (Corollary 1) does not apply
to this wrapped network. In particular, as we discussed, in [7] it was argued
that assuming 3t ≥ n, no private correlated randomness setup, the existence
of signatures, and authenticated point-to-point channels, no protocol solves the
broadcast problem. In this section, we show that if parties have access to a simple
channel that is restricted in such a way that spam or sybil attacks are infeasible,
the impossibility proof of [7] does not go through.

3.1 Modeling a Communication-Restricted Network

Our filtering wrapper restricts the per-round accesses of each party to the func-
tionality, in a probabilistic manner. In more detail, for parameters p, q, each
party has a quota of q send requests per round, each of them succeeding with
probability p. Note that after a message has been sent through the filter, the
sender, as well as the receiver, can re-send the same message for free. This fea-
ture captures the fact that if a message has passed the filtering mechanism once,
it should be freely allowed to circulate in the network. We explicitly differentiate
this action in our interface, by introducing the resend request; parties have to
use resend to forward for free messages they have already received.

The wrapper functionality is parameterized by p ∈ [0, 1] and q ∈ N, which restrict
the probability of success and number of F-evaluations of each party per round,
respectively, and a set of parties P. It registers with the global clock Gclock. It
manages the round integer variable τ , the current set of corrupted parties P̃, and a
list T . For each party P ∈ P, it manages the integer variable tP .
Initially τ := 0, T := ∅, and tP := 0, for each P ∈ P.
Filtering:
– Upon receiving (send, sid, m, Pj) from party Pi ∈ P, execute Round-Reset, and

do the following:
• Set tPi := tPi + 1. If tPi ≤ q, with probability p, do:

1. Add (m, Pi) to T and output (success, sid) to Pi.
2. On response (continue, sid, m) from Pi, forward (send, sid, m, Pj) to F .
In any other case, send (fail, sid) to Pi.

– Upon receiving (resend, sid, m, Pj) from honest party Pi ∈ P \ P̃, if
(m, Pi) ∈ T then forward (send, sid, m, Pj) to F .

– Upon receiving (resend, sid, m, PJ) from A on behalf of corrupted Pi ∈ P̃, if
(m, P) ∈ T for some P ∈ P, then forward (send, sid, m, Pj) to F .

– Upon F sending (sent, sid, m, Pi) to Pj , add (m, Pj) to T and forward the
message to Pj .

Wrapper Functionality Wp,q
flt (F)

140 J. Garay et al.

Standard UC Corruption Handling:

– Upon receiving (corrupt, sid, P) from the adversary, set P̃ ← P̃ ∪ P.

General:

– Any other request from (resp. towards) any participant or the adversary, is
simply relayed to the underlying functionality (resp . any participant of the
adversary) without any further action.

Procedure Round-Reset:
– Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from

Gclock.
– If |τ ′ − τ | > 0, then set tP := 0 for each P ∈ P and set τ := τ ′.

3.2 The Impossibility Theorem, Revisited

Next, we show that if parties have access to Wp,q
flt(Fauth), for some noticeable

p and q ≥ 1, the BA attack from the impossibility proof of [7] does not go
through. The proof relies on the fact that the adversary can simulate the behavior
of multiple honest parties. In a nutshell, we describe a protocol where parties
send messages through Wp,q

flt(Fauth), and due to the restricted number of send
attempts the adversary has at his disposal, it is impossible for him to simulate
multiple parties running this protocol.

Lemma 1. Let n = 3, t = 1, p be a noticeable function, and q ≥ 1. There exists
a polynomial time protocol in the (Gclock,Fauth,Wp,q

flt(Fauth),Fsig)-hybrid model
that invalidates the t ≥ n/3 BA attack from the impossibility theorem of [7].

Proof. The impossibility proof considers the class of full information protocols,
where if some party receives a message at some round r, it signs the message
with its own signing key, and sends it to all other parties. We are going to show
a subclass of protocols that use Wp,q

flt(Fauth) and are not captured by the proof.
We first briefly recall the proof in [7] for the case n = 3 and t = 1. The

proof is based on constructing three scenarios σ1, σ2, σ3, where broadcast cannot
possibly be achieved. Let the sender be P1. We proceed to describe σ1, σ2, σ3. In
σ1, P1 has input 0 and P2 is corrupted. In σ2, P1 has input 1 and P3 is corrupted.
In σ3, P1 is corrupted.

By Validity, it follows that in σ1 P3 should output 0, and in σ2 P2 should out-
put 1, no matter the behavior of the adversary. Moreover, due to the Agreement
(Consistency) property, the output of P2 and P3 in σ3 must be the same. The
proof then proceeds to describe a way of making the view of P3 (resp. P2) indis-
tinguishable in scenarios σ1 (resp. σ2) and σ3, and thus reaching a contradiction
since they are going to decide on different values in σ3.

The main idea is for P2 in σ1 to behave as if P1 had input 1, by creating a set
of fake keys and changing the signatures of P1 to the ones with the fake keys and

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 141

different input where possible. Since there is no PKI, P3 cannot tell whether: (i)
P1 is corrupted and sends messages signed with different keys to P2, or (ii) P2

is corrupted. Symmetrically, P3 in σ2 simulates P1 with input 0. Finally, P1 in
σ3 simulates both behaviors, i.e., P1 running the protocol honestly with input 1
in its communication with P2, and P1 with input 0 in its communication with
P3. This is exactly where the impossibility proof does not go through anymore.

For the moment, assume that we are in the setting where p = 1−negl(λ) and
q = 1. Let Π be a full information protocol, where in the first round the sender
P1 uses W1−negl(λ),1

flt (Fauth) to transmit its message to the other two parties.
Further, assume that this message is different for the cases where the sender
input is 0 and 1, with probability α. It follows that P1 has to send two different
messages to parties P2 and P3 at the first round of σ3, with probability α. How-
ever, this is not possible anymore, as the network functionality only allows for
one new message to be send by P1 at each round, with overwhelming probability.
Hence, with probability α the impossibility proof cannot go through anymore.

For the case where p is noticeable and q ≥ 1, we can design a similar protocol
that cannot be captured by the proof. The protocol begins with a first “super
round” of size λ

pq regular rounds, where each party should successfully send its
first message m at least 3λ

4 times using Wp,q
flt(Fauth) for it to be considered

valid. Since the functionality allows sending the same message twice for free, the
sequence of 3λ

4 messages is encoded as follows: (m, 1), . . . , (m, 3λ
4).

Next, we analyze the probability that A can use the strategy described in
the impossibility proof in [7]. Note that each party can query Wp,q

flt(Fauth) up to
λ/p times during the super round. We will show that: (i) honest parties will
be able to send 3λ

4 messages with overwhelming probability, and (ii) that the
adversary in σ3 will not be able to send the 2 · 3λ

4 messages it has to. Let random
variable Xi be 1 if the i-th query to Wp,q

flt(Fauth) of some party P succeeds, and
0 otherwise. Also, let X =

∑λ/p
i=1 Xi. It holds that E[X] = p · λ/p = λ. By an

application of the Chernoff bound, for δ = 1
4 , it holds that

Pr[X ≤ (1 − δ)E[X]] = Pr[X ≤ 3λ

4
] ≤ e−Ω(λ).

Hence, with overwhelming probability each party will be able to send at least
3λ
4 messages in the first λ

pq rounds. On the other hand, we have that

Pr[X ≥ (1 + δ)E[X]] = Pr[X ≥ 5λ

4
] ≤ e−Ω(λ).

Hence, no party will be able to send more than 5λ
4 messages in the first super

round. This concludes the proof, since the adversary, in order to correctly follow
the strategy described before, must send in total 6λ

4 (> 5λ
4) messages in the

first super round. Thus, with overwhelming probability it is going to fail to do
so. Finally, note that the length of the super round is polynomial, since 1/p is
bounded by some polynomial. Thus, the theorem follows. ��

The proof of Corollary 1 works along the same lines as the proof of [7]; since
only public correlated randomness is assumed, nothing prevents the adversary

142 J. Garay et al.

from simulating an honest party. Finally, we note that the same techniques used
above can also be used to refute an appropriate adaptation of Corollary 1, where
parties have access to Wp,q

flt(Fauth).

4 Implementing a Communication-Restricted Network

In this section we describe our implementation of Wp,q
flt(Fauth) that is based on

the resource-restricted RO functionality Wq
ro(FRO) and a standard authenticated

network. As discussed in the introduction, we also make use of an enhanced ver-
sion of the Fcrs functionality, where it is guaranteed that the adversary learns the
shared string after the honest parties. We capture this restriction in a straight-
forward way: A wrapper Wfresh(FD

crs) which does not allow the adversary to
learn the CRS before the round honest parties are spawned. W.l.o.g., in the rest
of the paper we are going to assume that all parties are spawned at round 1.

Our protocol makes uses of the proof-of-work construction of [2]. Every time a
party wants to send a new message, it tries to find a hash of the message and some
nonce, that is smaller than some target value D, and if successful it forwards this
message through Fauth to the designated recipient. Moreover, if it has received
such a message and nonce, it can perform a resend by forwarding this message
through Fauth. To be sure that the adversary does not precompute small hashes
before the start of the protocol, and thus violates the send quota described in
the wrapper, parties make use of the string provided by WD

fresh(Fcrs), where D
will be a distribution with sufficient high min-entropy. They use this string as
a prefix to any hash they compute, thus effectively disallowing the adversary to
use any of the small hashes it may have precomputed.

Initialization:
– We assume that P is in the party set of Wq

ro(FRO), Fauth, and Wfresh(FD
crs),

and is registered with Gclock. The protocol maintains a list of valid
message/nonce/hash tuples T , initially empty, and a counter t initially set to 0.
When P is first activated, it gets the CRS from Wfresh(FD

crs), and uses it as a
prefix of all messages it sends to Wq

ro(FRO). For simplicity, we avoid explicitly
including this term bellow.

Message Exchange:
– Upon receiving (send, sid, m, P ′), execute Round-Reset, set t := t + 1, and if

t > q output (fail, sid) to P . Otherwise, do the following:
1. Send (eval, sid, (m, r)) to Wq

ro(FRO), where r ← {0, 1}λ.
2. On response (eval, sid, (m, r), v), if (v > D), output (fail, sid) to P .
3. Otherwise, if no entry of the form (m, r′, v′) exists in T , store (m, r, v) in T .

Then, send (success, sid) to P . On response (continue, sid), pick r′, v′ such
that (m, r′, v′) is an entry in T , and send (send, sid, (m, r′, v′), P ′) to Fauth.

– Upon receiving (resend, sid, m, P ′), if r, v exist such that (m, r, v) is an entry
in T , send (send, sid, (m, r, v), P ′) to Fauth. Otherwise, output (fail, sid) to P .

Protocol Wrapped-ChannelD,q(P)

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 143

– Upon receiving (fetch, sid), forward the message to Fauth.
– Upon receiving (sent, sid, (m, r, v), P ′) from Fauth, send (eval, sid, (m, r)) to

Wq
ro(FRO). On response (eval, sid, (m, r), v′), if (v ≤ D) and (v′ = v), remove

any entry of the form (m, r′, v′) from T and instead add (m, r, v), and output
(sent, sid, m, P ′).

– Upon receiving (fetch-requests, sid), forward the message to Fauth, and
output its response.

Clock Update:
Upon receiving (clock-update, sidC), send (clock-update, sidC) to Gclock.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from
Gclock. If |τ ′ − τ | > 0, then set t := 0 and τ := τ ′.

Next, we prove that Wrapped-ChannelD,q UC realizes the Wp,q
flt(Fauth) func-

tionality, for appropriate values of p. The main idea of the proof is that the
simulator is going to simulate new messages sent through the ideal functionality
in the eyes of A, by appropriately programming the random oracle. All other
actions can be easily simulated.

Lemma 2. Let p := D
2λ , and D be a distribution with min-entropy at least

ω(log(λ)). Protocol Wrapped-ChannelD,q UC-realizes functionality Wp,q
flt(Fauth)

in the (Gclock,Wq
ro(FRO),Fauth,Wfresh(FD

crs))-hybrid model.

Proof. We consider the following simulator that is parameterized by some real-
world adversary A:

The simulator manages a set of parties P . It sets up an empty network buffer M ,
an empty random oracle table H, and a table of received messages T . The
simulator also manages integer variables of the form Dz, where z ∈ {0, 1}∗, that
are dynamically created, and fP , for P ∈ P. Initially, M is empty, and fP := 0,
for P ∈ P.

Simulating the CRS:
– Sample a value from D once, and only output it after the round the protocol

starts.

Simulating the Random Oracle:
– As in the protocol above, we always include the CRS value as a prefix of all

messages to Wq
ro(FRO). Again, for clarity we avoid explicitly including this

term bellow.
– Upon receiving (eval, sid, u) for Wq

ro(FRO) from A on behalf of corrupted
P ∈ P, do the following:
1. If H[u] is already defined, output (eval, sid, u, H[u]),

Simulator S1

144 J. Garay et al.

2. If u is of the form (m, r), send (send, sid, m, P) to Wp,q
flt (Fauth) on behalf of

P . On response (fail, sid), set H[u] to a uniform value in {0, 1}λ larger than
D. On response (success, sid), set H[u] to a uniform value in {0, 1}λ

smaller or equal to D. Output (eval, sid, v, H[u]).
3. Otherwise, set H[u] to a uniform value in {0, 1}λ and output

(eval, sid, u, H[u]).

Simulating the Network:
– Upon receiving (send, sid, u, P ′) for Fauth from A on behalf of corrupted

P ∈ P, do the following:
1. If u is of the form (m, r, v), H[(m, r)] is defined, H[(m, r)] = v, and v ≤ D,

add (u, P) to T , and send (resend, sid, m, P ′) to Wp,q
flt (Fauth) on behalf of

P . On response (sent, sid, m, P, P ′, mid), set Dmid = 1 and
M = M ||(u, P, P ′, mid), and send (sent, sid, u, P, P ′, mid) to A.

2. Otherwise, send (sent, sid, u, P, P ′, mid) to A, where mid is a unique
message-ID.

– Upon receiving (fetch-requests, sid, P) for Fauth from A, execute
Network-Update and output (fetch-requests, sid, P, fP).

Interaction with Wp,q
flt (Fauth):

– Upon receiving (sent, sid, m, P, P ′, mid) from Wp,q
flt (Fauth), execute

Network-Update, and do the following :
1. If (� ∃(r′, v′) : ((m, r′, v′), P) ∈ T), pick an r uniformly at random from

{0, 1}λ and set H[(m, r)] := v, where v is a uniform value in {0, 1}λ smaller
or equal to D. Then, add ((m, r, v), P) to T .

2. Otherwise, pick r, v such that ((m, r, v), P) is an entry in T .
Add ((m, r, v), P, P ′, mid) to M , set Dmid = 1, and output
(sent, sid, (m, r, v), P, P ′, mid) to A.

Procedure Network-Update: For each P ∈ P, send (fetch-requests, sid, P) to
Wp,q

flt (Fauth). On response (fetch-requests, sid, P, f ′
P), if f ′

P > fP , set fP := f ′
P

and do the following

1. For all tuples ((m, r, v), P ′, P, mid) ∈ M , set Dmid := Dmid − 1.
2. For all tuples ((m, r, v), P ′, P, mid) ∈ M , where Dmid ≤ 0, delete

((m, r, v), P ′, P, mid) from M , delete any entry of the form ((m, r′, v′), Pj)
from T , and add ((m, r, v), Pj) to T .

We will argue that for every PPT adversary A in the real world, no PPT
environment Z can distinguish between the real execution against A and the
ideal execution against S1.

First, let E1 denote the event where honest parties in the real world, and on
input send, repeat a query to the random oracle. Each time an honest party
issues a new RO query, a random string of size λ bits is sampled. The probability
that the same string is sampled twice in a polynomial execution is negligible in
λ. Moreover, E1 implies this event. Hence, the probability of E1 happening in
a polynomially bounded execution is at most negl(λ). Note, that if E1 does not
occur, the distribution of send commands invoked by honest parties that succeed
is identical in the real and the ideal world.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 145

Next, we turn our attention to adversarial attempts to send a new message.
Let E2 be the event where A sends a message of the form (m, r, v) to Fauth,
such that it hasn’t queried (m, r) on the random oracle and H[(m, r)] = v. The
probability of this event happening, amounts to trying to guess a random value
sampled uniformly over an exponential size domain, and is negl(λ). Moreover,
if E2 does not occur, the adversary can only compute new “valid” messages by
querying the RO. Define now E3 to be the event where the adversary makes a
query to the RO containing the CRS value, before round 1. By the fact that
the CRS value is sampled by a high min-entropy distribution, and that A is
PPT, it is implied that Pr[E3] ≤ negl(λ). Hence, if E2 and E3 do not occur, the
distribution of adversarially created messages is identical in both worlds.

Now if E1, E2, E3 do no occur, the view of the adversary and the environment
in both worlds is identical, as all requests are perfectly simulated. By an appli-
cation of the union bound, it is easy to see that ¬(E1∨E2∨E3) occurs with only
negligible probability. Hence, the real and the ideal execution are statistically
indistinguishable in the eyes of Z, and the theorem follows. ��

Regarding the round and communication complexity of our protocol, we note
the following: It takes on expectation 1/p send requests to send a message,
i.e., 1/pq rounds, and the communication cost is only one message. Regarding
implementing Wp,q

flt(Fauth) using virtual resources, we point to Remark 1.

Corollary 2. Let n = 3, t = 1, p be a noticeable function, q ≥ 1, and any
distribution D with min-entropy at least ω(log(λ)). Then, there exist a polynomial
time protocol in the (Gclock,Wq

ro(FRO),Fauth,Wfresh(FD
crs),Fsig)-hybrid model,

that invalidates the proof of the impossibility theorem of [7].

Remark 1. The resource-restricted crypto paradigm can be also applied to vir-
tual resources. For PoS, the implicit PKI associated with PoS blockchains seems
sufficient for a simple implementation of our resource-restricted wrapper using
a verifiable random function (VRF). However, this PoS-implicit PKI typically
assigns keys to coins instead of parties. Thus, a transformation, e.g. through
our wrapper (see Sect. 5), would be needed that shifts from the honest majority
assumption on coins to parties. This validates the generality of our abstraction;
however, with PoS in the permissioned setting, there might be more direct ways
of getting standard MPC by leveraging the implicit coin-PKI.

5 Implementing a Registration Functionality

In this section, we show how to implement a key registration functionality
(cf. [11]) in the resource-restricted setting, and in the presence of an honest
majority of parties.

5.1 The Registration Functionality

The registration functionality allows any party to submit a key, which all other
parties can later retrieve. Our specific formulation Fr

reg, is parameterized by an

146 J. Garay et al.

integer r that specifies the round after which key retrieval becomes available.9
Note, that Freg does not guarantee that the keys submitted belong to the corre-
sponding parties, i.e., a corrupted party can submit a key it saw another party
submit.

Following the paradigm of [4] to deal with synchrony, Freg also has a
Maintain command, which is parameterized by an implementation dependent
function predict-time. We use this mechanism, to capture the behavior of the
real world protocol with respect to Gclock, and appropriately delay Freg from
sending its clock update until all honest parties get enough activations. In
more detail, predict-time takes as input a timed honest input sequence of tuples
IT

H = (. . . , (xi, idi, τi), . . .), where xi is the i-th input provided to Freg by honest
party idi at round τi. We say that a protocol Π has a predictable synchronization
pattern, if there exists a function predict-time such that for any possible execu-
tion of Π, with timed honest input sequence IT

H , predict-time(IT
H) = τ + 1 if all

honest parties have received enough activations to proceed to round τ + 1.

The functionality is parameterized by a set of parties P, and an integer r. It
maintains integer variables τ, du, and a owner/key set T . Initially, T is empty and
τ is equal to 0.

Upon receiving any input I from any party or the adversary, send
(clock-read, sidC) to Gclock. On response (clock-read, sidC , t′), if |τ ′ − τ | > 0,
set τ := τ ′, du := 0. Then, if I was received from an honest party P ∈ P \ P̃, set
IT

H := IT
H ||(I, Pi, τ). Depending on the input I and the ID of the sender, execute

the respective code:
On input I = (Submit, sid, v) from honest party P , if there is no v′ such that
(P, v′) ∈ T , add (P, v) to T and send (Submit, sid, v) to A.
On input I = (Submit, sid, v) from corrupted party P , if τ ≤ r and there is a
v′ such that (P, v′) ∈ T , delete it and add (P, v) instead. Then, send
(Submit, sid, v) to A.
On input I = (Retrieve, sid) from party P , if τ > r, output
(Retrieve, sid, T) to P .
Upon receiving (Maintain, sid) from honest party P , if predict-time(IT

H) > τ ,
and du = 0, set du := 1 and send (clock-update, sidC) to Gclock. Otherwise,
send (I,ID) to A.

Functionality Fr
reg

5.2 The Identity-Assignment Protocol

To implement the above functionality we follow an adaptation of the protocol
from [1], with the difference that instead of relating keys to pseudonyms, parties
are able to create a PKI relating keys to identities. First, we deal with a technical
issue.
9 We sometimes omit r when it is clear from the context.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 147

Our protocol contains commands that perform a sequence of operations. It
is possible that during the execution of this operation, the party will lose the
activation. Following the formulation of [4], we perform some of the commands
in an interruptible manner. That is, a command I is I-interruptible executed, if
in case activation is lost, an anchor is stored so that in the next invocation of
this command it continues from the place it stopped in the previous activation.
For more details on how implement this mechanism, we refer to [4].

Next, we give an informal description of the protocol, which makes use of
Wflt(Fauth), Fauth, Gclock, and the signature functionality Fsig of [11], adapted
for many signers and being responsive, i.e., the one who is issuing a command is
not losing its activation, as for example is done in the context of the key evolving
signature functionality Fkes of [3].

The protocol is structured in 2 different phases. In the first phase, lasting
up to round r + n + 1, parties use Wflt(Fauth) to partially agree on a “graded”
PKI. In more detail, for the first r rounds (procedure PoWGeneration) they
attempt to send through Wflt(Fauth) messages containing a verification key pk
and an increasing counter c. A key is going to be taken in account, only if a
sufficient number of messages related to this key and with different counter val-
ues are sent. This way keys are linked to resource accesses. And since resource
accesses are restricted, so is going to be the number of generated keys. Unlike [1],
to establish that keys are linked to identities, at round r parties sign the sub-
mitted key p̂k and their identity with their verification key pk, and multicast it
to all other parties.

For the remaining n+1 rounds (procedure KeyAgreement), parties depending
on when they received the messages related to some key, assign it a grade from 0
for the earliest, to n for the latest. To ensure that these grades differ by at most
one for the same key, they immediately send the relevant messages they received
to all other parties. This allows them to establish a form of a graded PKI, denoted
by K in the protocol, where parties are proportionally represented, and which
is going to be later used for broadcast. Finally, key/identity pairs received that
have been signed with a key in K of grade 0 are added to a separate set M. This
set is going to be used in the second phase, which we describe next, to correctly
relate keys to identities.

Starting at round r + n + 2, parties use an adaptation of the “Dolev-Strong”
protocol to reliably broadcast M (procedure Broadcast). The way the protocol
works, is by accepting messages as correctly broadcast only if a progressively
bigger number of keys of sufficient grade in K have signed it. At the last round
of the protocol, round r + 2n + 2, it is ensured that if an honest party accepts a
message, then so do all other honest parties. Finally, by using a simple majority
rule on the key/identity pairs contained in the broadcast sets M, parties are
able to agree on a key/identity set, denoted by N in the protocol, where each
party is related to exactly one key and honest parties are correctly represented.
N is output whenever a Retrieve command is issued. Next, we give a formal
description of protocol Graded-Agreement.

148 J. Garay et al.

Initialization:
– We assume that P is registered to Gclock and is in the party sets of Wq

flt(FRO),
Fauth and Fsig. The protocol maintains a list K of key/grade pairs, a list M of
key/owner tuples, a list N of key/owner pairs, and a list T of message/key
pairs, all initially empty, keys pk, p̂k, initially set to ⊥, and integer variables
τ := 0, r := 4n2λ

min(1,pq)
, c := 1.

Upon receiving any input I from any party or the adversary, send (clock-read,
sidC) to Gclock. On response (clock-read, sidC , t′), if |τ ′ − τ | > 0, set τ := τ ′ and
dr, du := 0, and do the following:
– On input I = (Maintain, sid), if dr = 0 execute in a

(Maintain, sid)-interruptible manner the following:
1. If 1 ≤ τ ≤ r, execute PowGeneration.
2. Else if r < τ ≤ r + n + 1, execute KeyAgreement.
3. Else, if r + n + 1 < τ ≤ r + 2n + 2, execute Broadcast.
4. Finally, if du = 1, send (clock-update, sidC) to Gclock. Set dr := 1.

– On input I = (Submit, sid, v), if p̂k = ⊥, set p̂k := v.
– On input I = (Retrieve, sid), if τ > r + 2n, output N .
– On input I = (clock-update, sidC), if dr = 1 and du = 0, send

(clock-update, sidC) to Gclock. Set du := 1.

Procedure PoWGeneration:
If pk = ⊥, then send (KeyGen, sid) to Fsig, and on response
(Verification Key, sid, v), set pk := v. If p̂k = ⊥, give the activation to Z, and
in the next activation repeat this step. Otherwise, do the following:
1. Repeat q times: Send (send, sid, (pk, c), P) to Wp,q

flt (Fauth). On response
(success, sid), increase c by 1, and for each P ′ ∈ P send
(resend, sid, (pk, c − 1), P ′) through Wp,q

flt (Fauth).
2. If τ = r, send (Sign, sid, pk, (p̂k, P)) to Fsig. On response,

(Signed, sid, pk, (p̂k, P ′), σ), for each P ′ ∈ P send (send, sid, (pk, p̂k, σ), P ′) to
Fauth.

Procedure KeyAgreement:
1. Send (fetch, sid) to Wp,q

flt (Fauth).
2. On response, (sent, sid,M) from Wp,q

flt (Fauth), for every subset of messages in
M of the form M ′ = {(sent, sid, (pk′, i), P ′

i)}i∈[�(1−δ)pqr�], for δ equal to 1/4t,
if no entry of the form (pk′, ·) exists in K, add (pk′, τ − (r + 1)) to K and
forward the messages in M ′ to all other parties through Wp,q

flt (Fauth).
3. If τ = r + 1, send (fetch, sid) to Fauth. On response (sent, sid,M ′) from

Fauth, for every message in M of the form (sent, sid, (pk′, p̂k
′
, σ), P ′), if there

exists a entry of the form (pk′, ·) in K, send (Verify, sid, pk′, (p̂k
′
, P ′), σ) to

Fsig. On response (Verified, sid, pk′, (p̂k
′
, P ′), σ, f), if f = 1, add (p̂k′, P ′) to

M.

Protocol Graded-Agreement(P)

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 149

Procedure Broadcast:
1. If τ = r + n + 2, send (Sign, sid, pk, (M, pk)) to Fsig. On response,

(Signed, sid, pk, (M, pk), σ), send (send, sid, ((M, pk), (pk, σ)), P ′) to every
party P ′ ∈ P through Fauth.

2. If r + n + 2 < τ ≤ r + 2n + 2, send (fetch, sid) to Fauth. On response,
(sent, sid,M) from Fauth, do the following:

(a) For every message in M of the form
(sent, sid, ((m, pk1), (pk1, σ1), . . . , (pkk, σk)), P

′), for k = τ − (r + n + 2),
send (Verify, sid, pki, (m, pk1), σi) to Fsig, for i ∈ [k]. If for all responses of
the form (Verified, sid, pki, (m, pk1), σi, fi), for i ∈ [k], it holds that fi = 1,
pk1, . . . , pkk are all different, and (pki, gi) ∈ K for gi ≤ k, add (m, pk1) to T .

(b) For every new entry (m, pk1) in T , send (Sign, sid, pk, (m, pk1)) to Fsig. On
response, (Signed, sid, pk, (m, pk1), σ), add (pk, σ) to the relevant message
received, and forward it to all other parties through Fauth.

3. If τ = r + 2n + 2, do the following:
(a) For every pki, where ∃m �= m′ : (m, pki), (m

′, pki) ∈ T , delete all entries of
the form (·, pki) from T .

(b) For every P ′ ∈ P, if there exists a unique key p̂k′, where at least n/2 entries
of T contain an entry of the form (p̂k

′
, P ′) and do not contain any other

entry of the form (·, P ′), add (p̂k′, P ′) to N .

We are going to show that protocol Graded-Agreement implements function-
ality Freg. First, note that there exists a function predict-time for our protocol
that successfully predicts when honest parties are done for the round; honest
parties lose their activation in a predictable manner when they get Maintain
as input. Moreover, a simulator can easily simulate the real world execution in
the eyes of Z, since it has all the information it needs to simulate honest parties’
behavior and functionalities Wflt(Fauth), Fauth, and Fsig. Finally, due to the
properties of the protocol, also proved in [1], all parties are going to agree on the
same key/identity set N , and thus provide the same responses on a Retrieve
command from Z. We proceed to state our theorem.

Theorem 1. Let n > 2t, p be a noticeable function, q ∈ N
+. The proto-

col Graded-Agreement UC-realizes functionality F
4n2λ

min(1,pq)+2n+3
reg in the (Gclock,

Fauth, Wp,q
flt(Fauth), Fsig)-hybrid model.

Proof. Let r = 4n2λ
min(1,pq) and w.l.o.g., let p · q ≤ 1. We start by making some

observations about the protocol.

Claim. The set K of each honest party, at the end of round r + 1, will contain
the keys of all other honest parties, with overwhelming probability in λ.

Proof. We first show that the claim holds for a single honest party. Let random
variable Xi be equal to 1, if the i-th invocation of send to Wp,q

flt(Fauth) by some
honest party P is successful, and 0 otherwise. It holds that Pr[Xi = 1] = p, and
that X1, . . . , Xr·q is a set of independent random variables; each party invokes

150 J. Garay et al.

send exactly r · q times up to round r. Let X =
∑rq

i=1 Xi. By an application of
the Chernoff bound, it holds that:

Pr[X ≤ (1 − 1
4t

)pqr] = Pr[X ≤ (1 − 1
4t

)E[X]] ≤ e−Ω(λ)

Since X is an integer, with overwhelming probability each honest party will send
at least 	(1− 1

4t)pqr
 messages to each other party. Hence, its key will be included
in K. By an application of the union bound the claim follows. �

In addition to the previous claim, we also note two things: (i) The grade of
each such key will be 0, and (ii) due to the correctness of the signature scheme,
all honest parties will add the associated key p̂k and the correct owner of key pk
in M. These two facts will be useful later, when we will argue that all honest
keys make it to the final list of keys N , along with their correct owner.

Next, we show that the total number of keys generated will be at most n.

Claim. The set K of each honest party contains at most n elements, with over-
whelming probability.

Proof. As before let Z =
∑qt(r+n)

i=1 Zi, denote the successful attempts of the
adversary to send a message through Wflt(Fauth). Note that, starting from
round 1, she has r + n rounds in her disposal to send messages. After some
computations we can show that:

(1 +
1
4t

)E[Z] = (1 +
1
4t

)pqt(r + n) ≤ (1 − 1
4t

)pqr(t + 1)

By the Chernoff bound, it holds that:

Pr[Z ≥ (1 − 1
4t

)pqr(t + 1)] ≤ Pr[Z ≥ (1 +
1
4t

)E[Z]] ≤ e−Ω(λ)

Note now, that 	(1− 1
4t)pqr
 different messages are required for a new key to be

added to K. It follows, that the adversary will add at most t keys of its choice
to K. Moreover, by the design of the protocol, honest parties will add at most
n − t keys to K. Thus, the set K of any honest party will contain at most n keys
with overwhelming probability. �

Next, note that if an honest party adds a key to K with grade g < n, due to
the fact that the relevant messages for this key are multicast to all other parties
in the network together with an additional valid signature, all honest parties will
add the same key in K with grade at most g + 1.

Using all facts proved above, we can now proceed and show that during the
Broadcast phase of the protocol, all honest parties will reliably broadcast set M.
Moreover, the adversary will not be able to confuse them about her broadcast
input, if any. We start by arguing about the values broadcast by honest parties.

Claim. At the end of round r + 2n + 2, the set N of each honest party will
contain the keys of all honest parties, along with their correct identity, with
overwhelming probability.

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 151

Proof. Let P be some honest party, (pk, p̂k) be her public keys, K′,M′ be her
key sets, and m = (M′, pk). By our previous claim, all honest parties will have
added (pk, 0) to their key set K. Moreover, they will all receive the message
(p̂k, P) signed w.r.t. pk at round r + 1 by party P , and thus include (p̂k, P) in
M. Note, that no honest party will include another entry related to P , as P will
not send any other such message. Moreover, all parties will receive (m, (pk, σ)),
where σ is a valid signature for m. Hence, they will all add m to T . Again, due
to unforgeability, they will not add any other entry related to pk in T . Hence,
since T has at most n elements (one for each key) and 2n > t, (p̂k, P) will be
the only entry that appears exactly once with respect to P in at least n/2 sets
of T . Thus, all honest parties will add (pk, P) in N , and the claim follows. �

Next, we argue that the key sets N of all honest parties will be the same.

Claim. At the end of round r + 2n + 2, all honest parties will have the same set
N , with at most one entry per party, with overwhelming probability.

Proof. First, we argue that all honest parties have same set T at the end of round
r+2n+2. For the sake of contradiction assume that the opposite was true. This
would imply that some honest party P has added (m, pk) ∈ T at some round r′,
while some other party P ′ has not. We take two cases. If r′ < r +2n+2, then P
will forward the message relevant to entry (m, pk) together with its own signature
to all other parties. Since its key has grade 0, all other honest parties will add
(m, pk) to T in the next round. On the other hand, if r′ = r+2n+2, it holds that
(m, pk) is signed by n keys in the set K of P , and by our previous claims at least
one of these keys was of an honest party. Thus, this party must have accepted
this message earlier, and by our previous argument all other honest parties will
also receive and add this message to T . This is a contradiction. Hence, honest
parties agree on their entries in T .

Now, since all parties agree on T , and N is a deterministic function of T , it
is implied that they will also agree on N . Moreover, by construction each party
P is associated with at most one key in N . The claim follows. �

Our last two claims imply that all parties agree on N , all honest parties will
be represented, and at most one key will be assigned to each identity.

Having established these properties of the protocol, we next give a sketch of
the simulator, which we denote by S2. The first thing the simulator must deal
with is clock updates. In the ideal world, clock updates sent by Z to honest
parties, are directly forwarded to Gclock, which in turn notifies S2. This is not
the case in the real world. Parties send updates to Gclock only after a sufficient
number of Maintain and clock-update inputs have been provided by Z. The
way we simulate this behavior, is by having S2 deduce exactly when honest
parties will send their updates in the real world, by keeping track of when Freg
will send its clock update in the ideal world, as well as the activations it gets after
a Maintain command has been issued to Freg or a clock-update command
has been issued to Gclock. Note, that a new round starts only after either of the
two commands has been issued, and thus S2 has been activated.

152 J. Garay et al.

Since S2 can tell when parties are done for each round, it can also simulate
the interaction of A with Wflt(Fauth), Fauth and Fsig. It does that by simulating
the behavior of honest parties. All information needed to do this are public, or
in the case of the honest parties’ signatures can be faked by the simulator itself.
Note, that care has been taken so that S2 never throughout the protocol has to
sign anything with the keys submitted to Freg for honest parties; it only signs
with the keys generated by the parties themselves. This is the reason that each
party uses two different keys, pk and p̂k.

Finally, at round r + 2n + 2 the simulator submits to Freg the keys that
corrupted parties choose based on key set N ; with overwhelming probability
this set is the same for all honest parties. Thus, the response of Freg to any
Retrieve query after this round is N . It follows that the view of Z in the two
executions is going to be indistinguishable, and the theorem follows. ��

As discussed in the introduction, getting from an implementation of Freg
where the keys are linked to their owners to standard MPC is fairly straightfor-
ward by using the modularity of the UC framework. As proved in [11], Freg can
be used to realize the certified signature functionality (aka certification func-
tionality) Fcert which, in turn, can be used to realize a Broadcast functionality
against even adaptive adversaries [27] if we additionally assume the existence of
secure channels; for details about implementing the secure channel functionality
Fsc from Fauth we point to [14]. By plugging the Broadcast functionality into
the honest-majority protocol (compiler) by Cramer et al. [17]—an adaptation
of the protocol from [34] to tolerate adaptive corruptions—we obtain an MPC
protocol which is adaptively secure.

Corollary 3. Let n > 2t, p be a noticeable function, and q ∈ N
+. Then,

there exists a protocol that UC-realizes functionality Fmpc in the (Gclock, Fsc,
Wp,q

flt(Fauth), Fsig)-hybrid model.

6 Removing the Freshness Assumption

So far, we have assumed that all parties, including the adversary, get access to
the CRS at the same time, i.e., when the protocol starts. In this section, we give
a high level overview of how our analysis can be adapted to the case where we
remove the fresh CRS and instead assume the existence of a random oracle. The
protocol we devise is based on techniques developed initially in [1].

The main function of the CRS in the implementation of Wflt(Fauth), is to
ensure that all parties agree on which hash evaluations are “fresh”, i.e., performed
after the CRS became known. Consequently, sent messages are fully transferable,
in the sense that they can be forwarded an arbitrary number of times and still be
valid. Without a CRS we have to sacrifice full transferability and instead settle
with a limited version of the property (cf. [33]).

Next, we describe the filtering functionality we implement in this setting,
denoted Wflt-lim(Fauth). The functionality has the same syntax as Wflt(Fauth),
with one difference: each message sent is accompanied by a grade g, which signi-
fies the number of times that this message can be forwarded by different parties

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 153

and is also related to when the message was initially sent. For example, if party
P1 receives a message with grade 2, the message can be forwarded to party P2

with grade 1, and party P2 can forward to party P3 with grade 0. Party P3

cannot forward the message any further, while party P2 can still forward the
message to any other party it wants to. Moreover, the initial grade assigned to
a message sent using the send command is equal to the round that this com-
mand was issued minus 1, i.e., messages with higher grades can be computed at
later rounds, for honest parties. The adversary has a small advantage: the initial
grade of messages he sends is equal to the current round. Finally, we enforce the
participation of honest parties the same way we do for the Freg functionality in
Sect. 5. Next, we formally describe Wflt-lim.

The wrapper functionality is parameterized p ∈ [0, 1] and q ∈ N, which restrict the
probability of success and number of F-evaluations of each party per round,
respectively, and a set of parties P. It manages the round integer variable τ , a
boolean flag du, the current set of corrupted parties P̃, and a list T . For each
party P ∈ P, it manages the integer variable tP .
Initially τ, du := 0, T := ∅, and tP := 0, for each P ∈ P.

Upon receiving any input I from any party or the adversary, send
(clock-read, sidC) to Gclock. On response (clock-read, sidC , t′), if |τ ′ − τ | > 0,
set τ := τ ′, du := 0 and tP := 0 for each P ∈ P. Then, if I was received from an
honest party P ∈ P \ P̃, set IT

H := IT
H ||(I, Pi, τ). Depending on the input I and

the ID of the sender, execute the respective code.

Filtering:

– Upon receiving (send, sid, m, Pj) from party Pi ∈ P, do the following:
• Set tPi := tPi + 1. If tPi ≤ q, with probability p, do:

1. If Pi is honest, let local variable g := τ − 1. Otherwise, let g := τ .
2. Add (m, Pi, g) to T , and output (success, sid) to Pi,
3. On response (continue, sid, m) from Pi, forward (send, sid, (m, g), Pj)

to F .
In any other case, send (fail, sid) to Pi.

– Upon receiving (resend, sid, m, g, Pj) from honest party Pi ∈ P \ P̃, if
(m, Pi, g) ∈ T and g > 0, then forward (send, sid, (m, g), Pj) to F .

– Upon receiving (resend, sid, m, g, Pj) from A on behalf of corrupted Pi ∈ P̃, if
for some g′ ≥ g and some P ∈ P, (m, P, g′) ∈ T , and g > 0, forward
(send, sid, (m, g), Pj) to F .

– Upon F sending (sent, sid, (m, g), Pi) to Pj , add (m, Pj , g − 1) to T and
forward the message to Pj .

Ensure Honest Participation:

– Upon receiving (Maintain, sid) from honest party P , if predict-time(IT
H) > τ

and du = 0, set du := 1 and send (clock-update, sidC) to Gclock. Otherwise,
send (I,ID) to A.

Wrapper Functionality Wp,q
flt-lim(F)

154 J. Garay et al.

Standard UC Corruption Handling:

– Upon receiving (corrupt, sid, P) from the adversary, set P̃ ← P̃ ∪ P.

General:

– Any other request from (resp. towards) any participant or the adversary, is
simply relayed to the underlying functionality (resp . any participant of the
adversary) without any further action.

The way we implement this functionality is by introducing a repeated
challenge-exchange procedure to protocol Wrapped-Channel: at each round par-
ties sample a random string, which they then hash together with the challenges
sent by other parties at the previous round to compute a new challenge, that
they multicast to the network. The new challenge computed at each round is
used as a prefix to the queries they are making to the restricted RO function-
ality. If a query is successful, they send the query value along with a pre-image
of the challenge, in order for other parties to be sure that the challenge they
multicast earlier was used in the computation, and thus ensure freshness. The
receiving party can forward the message by also including a pre-image of its own
challenge, thus ensuring all honest parties will accept it as valid. Obviously, in
the first round of the protocol parties cannot send any message as they haven’t
yet exchanged any random challenges, in the second round the messages cannot
be transferred, in the third they can be transferred once, and so on. We formally
describe the new protocol and state our lemma next. The relevant security proof
proceeds as that of Lemma 2, except that we have to show the that the adversary
cannot precomputes hashes that are related to some challenge at a round earlier
than the one that this challenge was generated. Due to lack of space we omit it.

Initialization:
– We assume that P is in the party set of Wq

ro(FRO), Fauth, FRO. The protocol
maintains a list of valid message/nonce/hash tuples T , initially empty, a
counter t initially set to 0, flags dn, du, dr all set to 0, a set M buf , and
sequences of sets M j and integers cj , for j ∈ N.

Upon receiving any input I from any party or the adversary, send (clock-read,
sidC) to Gclock. On response (clock-read, sidC , t′), if |τ ′ − τ | > 0, set τ := τ ′ and
t, dr, du, dn := 0, and do the following:
Message Exchange:
– Upon receiving (send, sid, m, P ′), set t := t + 1, and if t > q output (fail, sid)

to P . Otherwise, do the following:

Protocol Wrapped-Channel-LimD,q(P)

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 155

1. If dn = 0, execute MaintainNetwork.
2. Send (eval, sid, (cτ , m, r)) to Wq

ro(FRO), where r ← {0, 1}λ.
3. On response (eval, sid, (cτ , m, r), v), if (v > D), output (fail, sid) to P .
4. Otherwise, if no entry of the form (τ − 1, M ′, m, r′, v′) exists in T , store

(τ − 1, (M τ), m, r, v) in T . Then, send (success, sid) to P . On response
(continue, sid), pick M ′, r′, v′ such that (τ − 1, M ′, m, r′, v′) is an entry in
T , and send (send, sid, (τ − 1, M ′, m, r′, v′), P ′) to Fauth.

– Upon receiving (resend, sid, m, g, P ′), if g > 0 and M, r, v exists such that
(g, M, m, r, v) ∈ T , send (send, sid, (g, M, m, r, v), P ′) to Fauth.

– Upon receiving (fetch, sid), if dn = 0, then execute MaintainNetwork. Set
M ′ = ∅, and for each message of the form (sent, sid, (g, M, m, r, v), P ′) in
M buf , do the following:
1. Let M = (Mi, Mi−1, . . . , Mg+1). For j ∈ {g + 1, . . . , i}, sent (eval, sid, Mj).

On response (eval, sid, Mj , v), initialize variable H[Mj] := v.
2. If cg �∈ Mg+1 or H[Mj] �∈ M(j + 1), for j ∈ {g + 1, . . . , i − 1}, do nothing.

(Ensure freshness.)
3. Send (eval, sid, (H[Mi], m, r)) to Wq

ro(FRO).
4. On response (eval, sid, (H[Mi], m, r), v′), if (v ≤ D) and (v′ = v), remove

any entries of the form (g − 1, M ′′, m, r′′, v′′) from T and add
(g − 1, M ∪ Mg, m, r, v) instead. Set M ′ := M ′ ∪ ((g − 1, m), P ′).

Finally, empty M buf and output (sent, sid, M ′).
– Upon receiving (fetch-requests, sid), forward the message to Fauth, and

output its response.
– Upon receiving (Maintain, sid), if dr = 0, execute in a

(Maintain, sid)-interruptible manner the following:
1. If dn = 0, then execute MaintainNetwork.
2. Send (send, sid, (challenge, cτ), Pi), to all Pi ∈ P.
3. Set dr := 1. If du = 1, send (clock-update, sidC) to Gclock.

– Upon receiving (clock-update, sidC), if dr = 1 and du = 0, send
(clock-update, sidC) to Gclock. Set du := 1.

Procedure MaintainNetwork :
1. Send (fetch, sid) to Fauth.
2. On response (sent, sid,M), do the following:

(a) Sample rτ ← {0, 1}λ, and let M τ := {rτ}.
(b) For any tuple of the form ((challenge, c), P ′) ∈ M , for P ′ ∈ P, set

M τ := M τ ∪ {c}, and remove this message from M .
(c) Set M buf := M .

3. Send (eval, sid,M τ) to FRO. On response (eval, sid,M τ , v), set cτ := v.
4. Set dn := 1.

Lemma 3. Let p := D
2λ . The protocol Wrapped-Channel-LimD,q UC-

realizes functionality Wp,q
flt-lim(Fauth) in the (Gclock,Wq

ro(FRO),Fauth,FRO)-
hybrid model.

Next, we observe that Wflt-lim(Fauth) is sufficient to implement Freg. The
protocol is similar to protocol Graded-Agreement, with two differences: (i) parties

156 J. Garay et al.

start sending messages through Wflt-lim(Fauth) after n + 2 rounds have passed,
and (ii) during the KeyAgreement phase of the protocol, parties take in account
messages with grade bigger than n at the first round, n − 1 at the second, . . . , 0
at the last one. The rest of the protocol is exactly the same. Note, that parties
can always forward the messages received during the KeyAgreement phase, since
the grade of the relevant messages is bigger than 0. The analysis of [1] is built
on the same idea.

As a result, we are able to implement Freg, and subsequently Fmpc, with-
out having to assume a “fresh” CRS. With the techniques described above, the
following theorem can be proven.

Theorem 2. Let n > 2t and q ∈ N
+. Then, there exists a protocol that UC-

realizes functionality Fmpc in the (Gclock, Fsc, Wq
ro(FRO), Fsig,FRO)-hybrid

model.

Acknowledgements. Juan Garay, Rafail Ostrovsky and Vassilis Zikas were sup-
ported in part by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via 2019-1902070008. This work was
performed in part while Juan Garay was consulting for Stealth Software Technologies,
Inc., and supported in part by DARPA/SPAWAR N66001-15-C-4065. Aggelos Kiayias
was supported in part by EU Project No.780477, PRIVILEDGE. Rafail Ostrovsky
was also supported in part by NSF-BSF Grant 1619348, DARPA/SPAWAR N66001-
15-C-4065, US-Israel BSF grant 2012366, JP Morgan Faculty Award, Google Faculty
Research Award, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, and Lockheed-Martin Corporation Research Award. This work was done in
part while Vassilis Zikas was visiting the Simons Institute for the Theory of Comput-
ing, UC Berkeley, and UCLA. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
views or policies, either expressed or implied, of the Department of Defense, DARPA,
ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

References

1. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with no
trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7_19

2. Back, A.: Hashcash (1997). http://www.cypherspace.org/hashcash
3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:

composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 913–930 (2018)

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_11

https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19
http://www.cypherspace.org/hashcash
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11

Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era 157

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 1–10. ACM (1988)

6. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. Cryptol-
ogy ePrint Archive, Report 2016/919 (2016). http://eprint.iacr.org/2016/919

7. Borcherding, M.: Levels of authentication in distributed agreement. In: Babaoğlu,
Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 40–55. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-61769-8_4

8. Cachin, C., Maurer, U.M.: Unconditional security against memory-bounded adver-
saries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

9. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136–145. IEEE Computer Society Press, October 2001

11. Canetti, R.: Universally composable signature, certification, and authentication.
In: 17th IEEE Computer Security Foundations Workshop (CSFW-17 2004), Pacific
Grove, CA, USA, 28–30 June 2004, p. 219 (2004)

12. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_2

14. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_22

15. Chen, J., Micali, S.: Algorand. arXiv preprint arXiv:1607.01341 (2016)
16. Cohen, R., Haitner, I., Omri, E., Rotem, L.: Characterization of secure multiparty

computation without broadcast. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016,
Part I. LNCS, vol. 9562, pp. 596–616. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49096-9_25

17. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48910-X_22

18. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8_3

19. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

20. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM (JACM) 35(2), 288–323 (1988)

21. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. In: Malcolm, M.A., Strong, H.R. (eds.) 4th ACM Sympo-
sium Annual on Principles of Distributed Computing, pp. 59–70. Association for
Computing Machinery, August 1985

http://eprint.iacr.org/2016/919
https://doi.org/10.1007/3-540-61769-8_4
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-46035-7_22
http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-662-49096-9_25
https://doi.org/10.1007/978-3-662-49096-9_25
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/978-3-319-78375-8_3

158 J. Garay et al.

22. Fitzi, M.: Generalized communication and security models in Byzantine agreement.
Ph.D. thesis, ETH Zurich (2002)

23. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6_10

24. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. J. Cryptol. 24(4), 615–658 (2011)

25. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling
Byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454 (2017). http://eprint.iacr.org/2017/454

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New York
(1987)

27. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5_24

28. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27

29. Katz, J., Miller, A., Shi, E.: Pseudonymous broadcast and secure computation
from cryptographic puzzles. Cryptology ePrint Archive, Report 2014/857 (2014).
http://eprint.iacr.org/2014/857

30. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7_12

31. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

32. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_22

33. Pfitzmann, B., Waidner, M.: Unconditional Byzantine agreement for any number of
faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577,
pp. 339–350. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55210-
3_195

34. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st Annual ACM Symposium on Theory
of Computing, pp. 73–85. ACM Press, May 1989

35. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

36. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Com-
puter Society Press, November 1982

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2017/454
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-36594-2_27
http://eprint.iacr.org/2014/857
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/3-540-55210-3_195
https://doi.org/10.1007/3-540-55210-3_195

Efficient Constructions
for Almost-Everywhere
Secure Computation

Siddhartha Jayanti(B), Srinivasan Raghuraman, and Nikhil Vyas(B)

Massachusetts Institute of Technology (CSAIL MIT), Cambridge, USA
{jayanti,srirag,nikhilv}@mit.edu

Abstract. We study the problem of almost-everywhere reliable message
transmission; a key component in designing efficient and secure Multi-
party Computation (MPC) protocols for sparsely connected networks.
The goal is to design low-degree networks which allow a large fraction
of honest nodes to communicate reliably even when a small constant
fraction of nodes experience byzantine corruption and deviate arbitrarily
from the assigned protocol.

In this paper, we achieve a log-degree network with a polylogarithmic
work complexity protocol, thereby improving over the state-of-the-art
result of Chandran et al. (ICALP 2010) who required a polylogarithmic-
degree network and had a linear work complexity. In addition, we also
achieve:

• A work efficient version of Dwork et al.’s (STOC 1986) butterfly
network.

• An improvement upon the state of the art protocol of Ben-or and
Ron (Information Processing Letters 1996) in the randomized cor-
ruption model—both in work-efficiency and in resilience.

1 Introduction

Many real world applications involve computing functions on large data sets that
are distributed across machines in a global network. For instance, hospitals across
the world have confidential patient data that can be used to create accurate
disease models and improve treatment plans. Data held by any particular agent
may need to be kept private. The ubiquitous need for such distributed private
computations has motivated research on efficient multiparty computation (MPC)
[2,9,14,22]. MPC protocols enable a set of parties to compute a joint function on
their inputs while keeping them private [6]. MPC protocols for various important
tasks, such as elections, were discovered in the twentieth century, but most of
these protocols have not seen practical application as they were designed for
densely connected networks. For MPC to see widespread use, it is important for

Siddhartha Jayanti was supported by an NDSEG Fellowship from the United States
Department of Defense, and Nikhil Vyas was supported by NSF CCF-1909429.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 159–183, 2020.
https://doi.org/10.1007/978-3-030-45724-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_6

160 S. Jayanti et al.

protocols to rely only on the sparse connectivity that is available in modern large
scale networks while simultaneously meeting the efficiency needs of practice. In
this paper, we focus on designing sparse networks, and secure communication
protocols for these networks that are resilient to large fractions of the machines
being hacked, and thereby deviating arbitrarily from the assigned protocols.

All secure distributed protocols rely on the ability of machines to commu-
nicate. In particular, if A and B are two nodes in a network, A must be able
to send a message to B in a way that satisfies the following two properties: (1)
reliable transmission: B receives the message that A intended to send, and (2)
authentication: B must be able to confirm that A was indeed the sender of the
received message [1]. The first—reliable transmission—is the focus of our paper.
Reliable transmission becomes trivial if we assume every pair of nodes has a
dedicated secure link to pass messages over. However, it is impractical to create
pairwise secure links in modern large scale networks—a network on even just a
thousand nodes would need half a million secure links!

In a seminal work, Dwork et al. [12] considered the question of designing
sparse networks that are tolerant to nodes experiencing byzantine failures—
nodes that fail can deviate arbitrarily from the protocol. The problem is to
design a network G of degree d on n nodes in which honest nodes can continue
to communicate and execute protocols, even after t nodes are corrupted, i.e.,
experience byzantine failures. The challenge is to make the degree d as small
as possible (ideally constant), even while allowing up to t = εn corruptions for
some constant ε. Since we allow many more corruptions, t, than the degree of the
graph, d, any set of Ω(t/d) honest nodes can be isolated from the other nodes if
all of their neighbors are corrupted. Thereby, it is impossible for all the honest
nodes to communicate with each other in this failure model. So, Dwork et al.
allow x honest nodes to become doomed, and only require that a set of n − t − x
honest nodes be able to pairwise communicate with each other after t corrup-
tions occur. This set of honest nodes are called privileged nodes, and the class
of primitives that work on these privileged nodes in the presence of byzantine
failures are called almost-everywhere (AE) primitives. Our paper’s main result,
is the design of a new sparse graph and a corresponding communication protocol
that improve the state of the art in AE reliable message transmission.

Our protocol for AE reliable message transmission immediately implies an
improved protocol for AE Secure Multi-party Computation (MPC) in the follow-
ing way. The problem of byzantine agreement [18,20] is one where nodes start
with an initial value but wish to agree, at the end of execution of some protocol,
on some value, despite malicious or byzantine behavior of some subset of nodes.
Prior to [12], this problem was considered assuming all pairs of nodes had a
secure link for communication [10,18,20]. Dwork et al. introduced the notion of
almost-everywhere agreement where only privileged nodes need to reach agree-
ment. We note that AE reliable message transmission, which would guarantee
that a large subset of the network can transmit messages to each other reliably,
implies a protocol for AE agreement, and an AE agreement protocol implies a
protocol for AE secure MPC that is unconditionally or information-theoretically
secure as formulated in the work of Garay and Ostrovsky [13].

Efficient Constructions for Almost-Everywhere Secure Computation 161

1.1 Previous Work

AE reliable transmission protocols are generally compared by the following three
properties:

1. degree: the degree, d, of graph of secure links needed for the protocol.
2. resilience: a protocol is (f(n), g(t))-resilient if it can sustain up to t = f(n)

corruptions while dooming at most x = g(t) nodes when t nodes are cor-
rupted.

3. work complexity: the total amount of work (both local and message passing)
required for a single communication from node u to node v in the network.

The ideal solution would give a protocol on a constant degree graph that is
(εn,O(t))-resilient for a small constant ε ∈ (0, 1), and have low work complexity.
This ideal remains an open problem. In the remainder of this section, we discuss
the three previous results which are mutually incomparable, and thereby, jointly
form the state-of-the-art for the AE reliable transmission problem. We remark
that ε continues to be used in resilience guarantees throughout the paper, and
it simply represents some constant in (0, 1) when it appears.

Dwork et al.’s seminal work introduced the AE reliable transmission problem,
and gave the first solution to the problem [12]. Their famous Butterfly network
is a constant degree graph and their protocol is (εn/ log n,O(t))-resilient, and
has linear work complexity. While the Butterfly network is a simple network and
Dwork et al.’s protocol, the possibility of increasing the resilience of the network
to be resistant to a linear number of corruptions spurred further research into
the AE reliable transmission.

Upfal showed the remarkable result that both optimal graph degree and
optimal resilience were simultaneously possible [21]. He produced a constant
degree graph and a protocol that is (εn,O(t))-resilient on that graph. While
these advantages make Upfal’s work of great information theoretic importance,
his protocol is practically intractable, since it requires nodes to do an exponential
amount of computation. In particular, when a node u is sending a message to
a node v, Upfal’s algorithm requires v to loop through all possible subsets of
corrupted nodes before it can correctly decipher the message it has received
(even when u and v are both privileged). Thus, the work complexity of Upfal’s
algorithm is the exponential O

((
n
t

))
.

The third work at the frontier of the field was Chandran et al.’s protocol.
This work tries to combine the work efficiency of Dwork et al.’s protocol with the
resiliency of Upfal’s work. Chandran et al. succeed in getting a linear work pro-
tocol, and in fact achieve the very strong property of (εn,O(t/ log n))-resilience.
However, the significant weakness of their work is the complexity and degree of
their graph. Unlike the other two works, their protocol is designed for a graph
of polylogarithmic-degree.

In summary, the state-of-the-art on the AE reliable transmission problem
consisted of three incomparable results: Dwork et al.’s linear work protocol with
low resiliency on a constant degree graph, Upfal’s exponential work protocol
with high resiliency on a constant degree graph, and Chandran et al.’s linear
work protocol with high resiliency on a polylogarithmic degree graph.

162 S. Jayanti et al.

1.2 Our Contributions

The primary contribution of our paper is an AE reliable transmission pro-
tocol on a graph of logarithmic degree that is (εn,O(t/ log n))-resilient while
requiring only polylogarithmic work per communication. The significance of our
result lies in the low degree of the graph and the work-efficiency of the pro-
tocol. Our result is a strict improvement over Chandran et al.’s result, as our
graph’s degree is smaller—only logarithmic, compared to polylogarithmic—and
our protocol’s work complexity is polylogarithmic as opposed to linear, while
our protocol’s resiliency is the same as their protocol’s. Also, our protocol is the
first AE reliable transmission protocol to achieve sublinear work complexity. In
particular, the small work complexity of our message-passing protocol enables us
to simulate any protocol on a (dense) complete graph with only polylogarithmic
multiplicative overhead on our nearly-sparse logarithmic degree graph, while all
previous protocols required at least linear multiplicative overhead. The primary
result of our paper is stated as Theorem1 below.

Theorem 1 (Main Theorem: Efficient Worst-case Corruptions). For
sufficiently large n, there exists an n-node network Gwc = (V,E), a protocol
Πwc,eff for message transmission on it, and constants α and β, such that:

1. The network Gwc is of degree O(log n).
2. The Work complexity of Πwc,eff is O(polylog(n)).
3. Πwc,eff is (αn, βt/ log n)-resilient.

Remark 1. The protocoled-network (Gwc,Πwc,eff) of Theorem 1 is efficiently
constructible in the following sense. In the paper, we give an efficient proba-
bilistic construction that takes the number of nodes n and outputs a protocoled-
network satisfying the conditions of the theorem with all but exponentially small
probability. However, we do not know how to efficiently verify that the obtained
construction indeed satisfies the conditions of the theorem.

We compare our work to previous works in Table 1.

Table 1. In general, total work can be further broken down into message passing
work and internal computations of the nodes. For Upfal’s protocol the message passing
work is linear, and internal computations take exponential work. For the rest of the
protocols, message passing work and internal computation work are identical.

Result Degree Corruptions Doomed Total Work

Dwork et al. [12] O(1) εn/ log n O(t) O(n)

Upfal [21] O(1) εn O(t) O
((

n
t

))

Chandran et al. [7] polylog(n) εn O(t/ log n) O(n)

This paper O(log n) εn O(t/ log n) polylog(n)

Efficient Constructions for Almost-Everywhere Secure Computation 163

A secondary contribution of our work is an improvement over the state of the
art in AE reliable transmission when the adversary corrupts nodes at random.
Ben-or and Ron [3] introduced the random corruption model in which nodes
are corrupted independently and at random and the protocol only needs to be
resilient with some large probability, called the probability of resiliency. So, algo-
rithms in this model are evaluated by four parameters: degree, resiliency, work
complexity, and probability of resiliency. (If the probability of resiliency becomes
equal to one, then the protocol is resilient in the standard model.) Ben-or and
Ron exhibited a constant degree network that is (εn,O(t))-resilient with high
probability, and thereby almost resolved the random corruption model [3]. En
route to our main construction, we produce a different constant degree network
that has the same (εn,O(t))-resilience, just with even higher probability than
Ben-or and Ron’s construction. Interestingly, the improvement in probability that
we attain for the random corruption model drives our ability to get such a low
degree graph in the standard model of corruption.

1.3 Our Techniques

In this section, we describe the main ideas in the paper and how they fit together
to build our main result.

At a high level, our AE transmission protocol is constructed in two parts: the
first part yields a network and protocol that have the (εn,O(t/ log n))-resilience
and logarithmic-degree; this immediately yields an improvement over Chandran
et al.’s protocol, which has the same resiliency but polylogarithmic degree. Our
construction in the first part, uses the protocol of Dwork et al. on the Butterfly
Network as a black box.

In the second part, we improve this communication protocol significantly—
reducing the linear work to only polylogarithmic work, while maintaining the
resiliency parameters. Modularly replacing the Dwork et al. protocol with the
new efficient protocol immediately yields our main theorem: a logarithmic degree
graph and a polylogarithmic work protocol with (εn,O(t/ log n))-resilience.

Better Resilience. We achieve a highly resilient graph with low degree in two
steps. In the first step, we combine the ideas of Dwork et al. and Upfal to con-
struct a constant degree graph that is resilient to a linear number of corruptions
with high probability in the random corruption model. Upfal constructed an
exponential work protocol ΠUpfal on a constant degree expander graph GUpfal.
We notice that while Upfal’s protocol is too slow to be run on a full sized graph
of n nodes, it can be run on committees of sub-logarithmic size, and thereby split
the n nodes into disjoint committees of size O(log log n) each. In order for nodes
in one committees to communicate with nodes in other committees, we view the
individual committees as super-nodes, and connect these super-nodes through
the butterfly network, GBut, of Dwork et al. An important theorem we prove
at the end of this step shows that this construction (which we fully specify in
Sect. 3) along with a carefully constructed protocol gives high resilience in the
random corruption model with high probability.

164 S. Jayanti et al.

Theorem 2 (Random Corruptions). For sufficiently large n, there exists
an n-node network Grand = (V,E), a protocol Πrand for message transmission
on it, and constants α3 and β3, such that:

1. The network Grand is of constant degree.
2. If a subset of nodes T ⊂ V is randomly corrupt, where |T | ≤ α3n, with

probability 1 − (t/n)α2t/(4 log(n)), there exists a set of nodes S ⊂ V where
|S| ≥ n − β3|T | such that every pair of nodes in S can communicate reliably
with each other by invoking Πrand.

In the second step, we strengthen the graph from the first step by adding
multiple (perturbed) copies of the edges to it and modify the protocol to get a
graph that is resilient to linearly many worst-case corruptions. In particular, let
Gi

rand = (V,Ei) be graphs of the type constructed in the first step where the
vertex labels are permuted randomly and independently for each 1 ≤ i ≤ f(n)
for some f(n) = O(log n). Our graph in the second step is the union of all
of these graphs, i.e., Gwc =

(
V,

⋃f(n)
i=1 Ei

)
. Since O(log n) different edge sets

are combined to form this graph, the degree of the graph goes up to O(log n).
However, the graph now has very high probability of being resilient to linearly
many worst-case corruptions. Intuitively, this resilience is built from the fact
that the protocol from the first step can be executed independently on each set
of edges Ei, and it suffices if a majority of these protocols succeed. Since there is
some probability of success, i.e. that the random graph Gwc is indeed resilient to
linearly many worst-case corruptions, the probabilistic method yields Theorem3
(stated below) which strictly improves over the construction of Chandran et al.

Theorem 3. For sufficiently large n, there exists an n-node network Gwc =
(V,E), a protocol Πwc for message transmission on it, and constants α4 and β4,
such that:

1. The network Gwc is of degree O(log n).
2. Πwc is (α4n, β4t/ log n)-resilient.

Better Efficiency. Our protocols for network resiliency used the GBut and
Dwork et al.’s protocol designed for the graph as primitives. In this part of the
paper we design a communication protocol on the Butterfly Network that is
more work-efficient than Dwork et al.’s protocol. A communication from node
u to node v in Dwork et al.’s protocol floods many paths between u and v in
GBut with the message and makes v take the majority of the messages it receives
to decipher the true message reliably. In this step of our work, we show that if
paths are chosen correctly, it suffices to use only polylogarithmically many paths
per pair of nodes. Once again, our result goes through the probabilistic method
to show that such paths exist.

Efficient Constructions for Almost-Everywhere Secure Computation 165

Theorem 4. For the n = m2m-node network GBut = (V,E) there is a protocol
Π∗

Eff for message transmission on it such that the following holds:

1. The network GBut has degree 11.
2. The total work of the protocol Π∗

Eff is O(polylog(n)).
3. There is a constant ε ∈ (0, 1) such that Π∗

Eff is (εn/ log n,O(t log t))-resilient.

Getting Efficient and Resilient Networks. Modularly substituting the more
efficient protocol on the Butterfly graph from the second part for Dwork et al.’s
protocol in the highly resilient network from the first part yields the main result
of our paper:

Reminder of Theorem 1. For sufficiently large n, there exists an n-node net-
work Gwc = (V,E), a protocol Πwc,eff for message transmission on it, and con-
stants α and β, such that:

1. The network Gwc is of degree O(log n).
2. The Work complexity of Πwc,eff is O(polylog(n)).
3. Πwc,eff is (αn, βt/ log n)-resilient.

1.4 Related Work

There have been a plethora of works asking for various different measures of
quality of an agreement or MPC protocol. A sequence of works seek to improve
the round complexity of protocols for byzantine consensus [4,5]. Another goal
is to optimize the communication complexity of byzantine agreement protocols
[11,15–17]. Another model of corruptions is that of edge corruptions [8]. As
observed in the work of Chandran et al., an almost-everywhere secure computa-
tion protocol for node corruptions can be readily transformed into a correspond-
ing almost-everywhere protocol also tolerating edge corruptions, for a reduced
fraction of edge corruptions (by a factor of d, the degree of the network). We
note that all our results hence also extend to the edge corruption model, both
worst-case and random.

1.5 Organization

We discuss preliminary notation and definitions in Sect. 2. Next, we describe
our network for the randomized corruption model in Sect. 3. We describe our
solution in the face of worst-case corruptions in Sect. 4. Our polylogarithmic
efficiency protocol on the Butterfly Network is specified in Sect. 5, and our main
result which combines resiliency in the face of worst-case corruptions with work
efficiency is described in Sect. 5.

2 Preliminaries

2.1 Notation

For n ∈ N, let [n] = {1, 2, . . . , n}. We assume that all logarithms are taken to
the base 2.

166 S. Jayanti et al.

2.2 Approximation and Concentration Inequalities

Chernoff bound. Let X be a random variable with E[X] = μ. For 0 ≤ δ ≤ 1,

Pr[X ≥ (1 + δ)μ] ≤ e− δ2μ
3 (1)

Stirling’s approximation. For any n, t ∈ N with t ≤ n,
(

n

t

)
≤

(en

t

)t

2.3 Expanders

Definition 1. A graph G = (V,E) is an expander if there exists a constant
θ < 1 such that for every subset U ⊂ V of vertices of size |U | ≤ |V |

2 , the set of
vertices outside U that have at least one neighbor in U is at least θ|U |.
Constructions of expanders of constant degree are known [19].

2.4 Network Parameters

Given a graph G = (V,E), a message transmission protocol or simply protocol
Π on the graph, is a specification for how messages are routed between every
pair of nodes. In particular, Π(u, v) is the protocol for node u ∈ V to transmit
to node v ∈ V . A protocol is comprised of discrete synchronous rounds. In each
round, we allow each node w ∈ V to perform local computations and pass a
different one bit message to each of its neighbors in G.

We call a pair N = (G,Π) a protocoled-network (or simply a network) if Π is
a protocol for graph G. We define the following properties of the network, where
u and v are two different nodes in G:

1. Work complexity, or, Total work: The total work of Π(u, v) is the number
computations, W (u, v), performed across all processors in the network in a
transmission from u to v. The total work of Π is W = maxu,v∈V W (u, v).

2. Graph degree: The degree of u is the number of neighbors, d(u), that u has
in G. The degree of G is d = maxu∈V d(u).

3. Resilience: We say a network (G,Π) is resilient to a set of nodes T , of size
t = |T |, being corrupted while dooming only x nodes if there is a subset S ⊆ V
of n − t − x privileged nodes that can reliably transmit messages between each
other, after the nodes in T experience byzantine failure. Nodes in set S are called
privileged, nodes in X = V − (S ∪ T) are called doomed, and nodes in X ∪ T
are called unprivileged. We say a network is (f(n), g(t))-resilient if it can sustain
an arbitrary set of up to t ≤ f(n) corruptions while dooming at most x = g(t)
nodes.When corruptions are randomized (see Sect. 2.7),we say that anetwork is
(f(n), g(t))-resilientwith probability p, if it can sustain a random subset of up to
t ≤ f(n) corruptions, and at most x = g(t) nodes get doomed with probability
at least p. Informally speaking, a network is highly resilient if f(n) is large
while g(t) is not too large, and thus the set of privileged nodes is large.

Our goal is to design a highly resilient low degree network of low work complexity.

Efficient Constructions for Almost-Everywhere Secure Computation 167

2.5 Notion of Almost-Everywhere Security

The notion of almost-everywhere secure primitives was introduced by Dwork
et al. [12]. In this setting, we consider a sparse communication network on the
nodes. We assume a synchronous network and that the communication is divided
into rounds. In every round, each node can send (possibly different) messages on
its incident edges; these messages are delivered before the next round. Suppose
a certain subset of the nodes may be adversarially corrupt, in particular adap-
tive, rushing and computationally unbounded. This implies that a protocol for
any task on this network must “give up” a certain number of honest nodes on
account of their poor connectivity to other honest nodes. We set up the following
notation. Consider a network of n nodes connected by a communication network
G = (V,E) of degree d. On executing a protocol Π on this network in the pres-
ence of a subset T ⊂ V of adversarial or corrupt nodes, let X ⊂ V be the set of
honest nodes that are given up, or doomed, and let P ⊂ V be the set of honest
nodes for whom the protocol requirements of correctness and security hold, or
privileged nodes. The nodes that are not privileged are unprivileged nodes. Let
|T | = t, |X| = x and |S| = s. We have t + x + s = n.

2.6 Almost-Everywhere Reliable Message Transmission

We present some prior networks for almost-everywhere reliable message trans-
mission that will be useful in our constructions.

Dwork, Peleg, Pippenger, Upfal [12]. Dwork et al. define the butterfly
protocol-network.

Definition 2. The butterfly network (GBut,ΠBut) is as follows.

Graph: GBut = (VBut, EBut) where VBut = {(i, j)} where 0 ≤ i ≤ m − 1 and
j ∈ {0, 1}m is a set of n = m2m nodes, and EBut = {(i, j), (i′, j′)} is the set of
edges where i′ = (i + 1) mod m and j and j′ only possibly differ in the ith bit.
Protocol: Let u and v be distinct vertices in VBut. There exists as set of
paths Pu,v from u to v such that |Pu,v| = 2m = Θ(n/ log n). The message
transmission protocol Π from u to v in GBut is as follows: u sends the message
along all paths Pu,v, v receives all the messages and takes majority.

Theorem 5 ([12]). For the n = m2m-node network GBut = (V,E) and the
protocol ΠBut for message transmission on it, there exists constants α1 and β1, such
that:

1. The network GBut is of constant degree, namely 11.
2. The work complexity is Õ(n).
3. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ α1n/ log n, there exists

a set of nodes S ⊂ V where |S| ≥ n − β1|T | log |T |1 such that for every pair
of nodes (u, v) in S, (2/3)rd of the paths in Pu,v have no corrupted nodes in
them which implies that all pairs of nodes in S can communicate reliably with
each other by invoking ΠBut.

1 [12] also achieved an improved theorem with |S| ≥ n − β1|T | but we use this version
as GBut is a simpler graph.

168 S. Jayanti et al.

Upfal [21]

Theorem 6. For sufficiently large n, there exists an n-node network GUpfal =
(V,E), a protocol ΠUpfal for message transmission on it, and constants α2 and
β2, such that:

1. The network GUpfal is of constant degree2.
2. The work complexity is ΠUpfal is O(2n).
3. ΠUpfal is (α2n, β2t)-resilient.

2.7 Corruption Models

We consider two models where a subset T of size t in the n node network can
be corrupted.

Worst-case Model. The worst-case model is the strongest of our adversary
models. In this model, the subset of T corrupt nodes can be chosen adversarially
after the network topology and protocol for communication have been fixed.

Random Model. The randomized adversary model assumes that the t cor-
rupted nodes are chosen uniformly at random from the set of n nodes. We call
this model of picking a random subset of size t the Hamming Random Model or
corruption. Alternately, a randomized adversary may make each node corrupt
with probability t/n; we call this the Shannon model. Basic Chernoff bounds
show that the Shannon and Hamming models are equivalent up to a constant
factor difference in t with all but exponentially small probability. Thus, we freely
switch between the two models in our exposition. While this model of corrup-
tion is primarily good for simulating phishing and password guessing attacks,
our probabilistic approaches show that it can be the starting point for state of
the art protocols against random and worst-case adversaries.

3 Constant-Degree Networks in the Random Model

In this section we will build a network that is resistant to linearly many random
corruptions with an improved success probability as compared to Ben-or and
Ron’s work [3].

We turn our attention to the protocol of Chandran et al. [7]. Their protocol
builds on the following observation. Consider the protocols of Dwork et al. [12]
and Upfal [21] where if node A wishes to communicate with node B, A floods all
paths from A to B (possibly of a bounded length) with the message. In Dwork
et al. [12], the parameters are set to ensure that a majority of such paths con-
tain no corrupt nodes (for most pairs of nodes A, B) while Upfal [21] employs an

2 GUpfal is an n node Ramanjuan graph, and we know such graphs with large enough
constant degree.

Efficient Constructions for Almost-Everywhere Secure Computation 169

exhaustive search to determine which paths may have contained corrupt nodes.
These protocols face the disadvantage that paths that pass through even one cor-
rupt node are lost. The work of Chandran et al. [7] introduced the idea of local
correction through the use of Bracha committees. If we were able to create com-
mittees that had the ability to locally correct the message transmission, we can
potentially tolerate a lot more corruptions than in Dwork et al. [12] and perform
the final decoding more efficiently than in Upfal [21]. Chandran et al. [7] however
considers many overlapping committees in order to ensure that even if a constant
fraction of the nodes are corrupt, a sub-constant fraction of the committees are
corrupt, where a committee is considered corrupt if a certain fraction of its nodes
is corrupt. This calls for a larger degree. We show in this section that in our model
of random corruptions, it suffices to construct fewer committees to achieve the
same goal. Going forward, we refer to the networks (protocol, resp.) of Upfal [21]
by GUpfal (ΠUpfal resp.) respectively.

Let the set of nodes that wish to communicate be V = [n] for n ∈ N. We
arbitrarily divide the nodes of V into n/s committees of size s = (2/α2) log log n
where α2 is from Theorem 6. Within each committee, we instantiate GUpfal,
which is an expander of constant degree d = O(1). We then connect the n/s
committees using the network GBut from Theorem 5, where in order to connect
two committees, we connect them by means of a perfect matching between the
two sets of s nodes.

Definition 3.

Graph: Our graph that is resistant to random errors is Grand = (V,E), where
V = [n]. The edge set is as follows. Arbitrarily partition the nodes of V into
n/s committees of size s = (2/α2) log log n. We let Cv denote the committee
containing node v, where Cu = Cv if u and v are in the same committee.
Within each committee, we instantiate GUpfal, which is an expander of con-
stant degree d = O(1). We then connect the n/s committees using the network
GBut, where in order to connect two committees, we connect them by means
of a perfect matching between the two sets of s nodes.
Protocol: We now describe the communication protocol Πrand over this net-
work. To this end, we first describe two building block protocols Πedge and
Πmaj.
– Πedge is the protocol that is invoked when we wish to send a message from

one committee, C to another C ′ that are connected in the GBut network
(connected by means of a perfect matching). We will assume that each
node in C is initialized with some message. In the protocol Πedge, each
node in C sends its message to the node it is matched to in C ′.

– Πmaj is a majority protocol invoked within a committee C. We will assume
that each node i in C is initialized with some message mi. The goal of
the Πmaj protocol is for each node in C to compute the majority function
m = maj{mi}i. The protocol proceeds as follows: every node in C invokes
ΠUpfal to send its message to every other node in C. Each node then
simply computes (locally) the majority of the messages it received.

170 S. Jayanti et al.

Now, if a node A wishes to send a message m to node B:
(a) If A and B are in the same committee C, then A simply sends the message

to B by invoking ΠUpfal within the committee C.
(b) If A and B are in different committees, CA and CB respectively, then:

i. A invokes ΠUpfal to send m to every other node in its committee CA.
ii. The committee CA then invokes ΠBut to send a message to the com-

mittee CB. In the invocation of ΠBut, whenever two committees C
and C ′ connected by GBut wish to communicate with each other, they
invoke Πedge and then C ′ invokes Πmaj.

iii. Finally, every node other than B in committee CB invokes ΠUpfal to
send the message they received to B. B computes (locally) the majority
of the messages it received.

Degree. The network constructed is of constant degree, namely D = d + 11.

We now wish to argue that in the presence of a set T ⊂ V of randomly
corrupt nodes with |T | ≤ α3n, there exists a set S ⊂ V with |S| ≥ n − β3|T |
such that every pair of nodes in S can communicate reliably with each other,
for appropriately chosen universal constants α3, β3 to be determined later. The
proof proceeds as follows. Under these choices of α3, β3, we first show that most
committees must in fact contain less than an α2-fraction of corrupt nodes. In such
committees, ΠUpfal works successfully for all but an ε = O(α2)-fraction of nodes
in that committee by Theorem 6. Call such committees as good committees.
From Theorem 6, in good committees there exists a set of privileged nodes of
size at least s − O(α2s) that can communicate reliably with each other.

We now consider nodes A, B that wish to communicate with each other, and
are privileged nodes in good committees. Hence, all but an ε-fraction of the nodes
in CA (the committee containing A) receive A’s message correctly on executing
ΠUpfal. On any execution of Πedge between CA and another committee C ′, all
but at most an ε-fraction of the nodes in C ′ receive the correct value. Now,
if C ′ is good, in the execution of the Πmaj protocol in C ′, all but at most a
ε + α2 = O(α2)-fraction of the nodes begin with the correct value and ΠUpfal

works successfully for all but an ε-fraction of nodes. This ensures that as long as
ε + α2 < 1/2, all but at most an ε-fraction of the nodes compute the majority
of the incoming messages correctly. Inductively, this would show that at the end
of the emulation of the ΠBut protocol, all but an ε-fraction of the nodes in the
committee containing B receive A’s message correctly and since CB is a good
committee and ε+α2 < 1/2, B receives A’s message correctly as B is privileged.

We now formalize this argument. We call a committee good if the fraction
of corrupt nodes in it is at most α2 and bad otherwise. Let T ⊂ V be a set of
randomly corrupt nodes with |T | = t = α3n where α3 ≤ min{α1, (α2/e)2} where
the constant α2 is from Theorem 6.

Efficient Constructions for Almost-Everywhere Secure Computation 171

Lemma 1. The probability that a committee is good is at least 1− (t/n)log log n.

Proof. The probability that a committee is bad is

Pr[A committee is bad] ≤
(

s

α2s

) (
t

n

)α2s

≤
(

es

α2s

)α2s (
t

n

)α2s

≤
(

et

α2n

)α2s

Taking α3 ≤ (α2/e)2 which implies eα3
α2

≤ √
α3, i.e., et

α2n ≤
√

t
n , we get

Pr[A committee is bad] ≤
(

t

n

)α2s
2

≤
(

t

n

)log log(n)

as s = (2/α2) log log(n).

Lemma 2. The number of bad committees is at most t/s
log(n) with probability at

least 1 − (t/n)α2t/(4 log(n)).

Proof. Let ζ = (t/n)log log n. Note that

1/
√

ζ = (t/n)− log log n/2

= (1/α3)log log n/2

= (1/α3)(1/α3)log log n/2−1

≥ (1/α3) · (8)log log n/2−1

= (1/α3) · 21.5 log log n−3

	 (1/α3) · 2log log n+log2(e)

= (1/α3) · e log(n) = en log(n)/t (2)

The probability that the number of bad committees is more than t/s
log(n) is

≤
(

n/s

t/(s log(n))

)
ζt/(s log(n))

≤
(

en/s

t/(s log(n))

)t/(s log(n))

ζt/(s log(n))

172 S. Jayanti et al.

=
(

ζ · en log(n)
t

)t/(s log(n))

≤
(√

ζ
)t/(s log(n))

from (2)

=
(

t

n

) log log(n)t
2s log(n)

=
(

t

n

) α2t

4 log(n)

= (t/n)α2t/(4 log(n))

We have that if C is a good committee with t′ ≤ α2s corrupt nodes, from
Theorem 6, there exists a set SC (privileged nodes) of at least s − β2t

′ nodes
in C that can communicate reliably with each other. We say that a committee
holds value v if all the privileged nodes in the committee hold value v.

Lemma 3. If C and C ′ are good committees connected by an edge in GBut and
if C holds value v, after invoking Πedge and Πmaj, C ′ holds value v.

Proof. Since C holds value v, at least s − β2α2s nodes in C ′ receive the value
v after invoking Πedge. Since C ′ is good at most α2s nodes in C ′ are corrupt.
Hence, at least s− (β2 +1)α2s nodes in C ′ begin with the value v while invoking
Πmaj in C ′. Consider a node Z in the set SC′ of privileged nodes in C ′. As
C ′ is good, we have |SC′ | ≥ s − β2α2s. Nodes in SC′ receive messages reliably
from each other. Out of the messages received by Z from nodes in SC′ during
the execution of Πmaj , at most (β2 + 1)α2s may be unequal to v. The messages
received by Z from the β2α2s non-privileged nodes may not be equal to v. Still
each node in SC′ will receive at least s − (2β2 + 1)α2s copies of v. Hence, if
(2β2 + 1)α2 < 1/2, the claim follows. We note from [21] that it is possible to
take α2 = 1/72 and β2 = 6 which satisfies (2β2 + 1)α2 < 1/2.

Considering the bad committees as corrupt nodes in GBut, there are at most
t/s

log n of them with overwhelming probability by Lemma2. From Theorem 5, there
exists a set of committees P (privileged committees) that can communicate with
each other reliably.

Lemma 4. Let A and B be two nodes in privileged (good) committees CA ∈ P
and CB ∈ P respectively. If A ∈ SCA

and B ∈ SCB
, then the above protocol

guarantees reliable message transmission from A to B.

Proof. Note that if CA = CB , we are done by Theorem 6 as A and B are privi-
leged. We consider the case CA
= CB . Since A ∈ SCA

, all nodes in SCA
receive

A’s message, m, correctly and CA holds m. Since CA, CB ∈ P , after the invo-
cation of ΠBut, CB holds m. Since B ∈ SCB

, it receives m from each node in
SC′ . Hence B will receive at least s−β2α2s copies of v. If β2α2 < 1/2, the claim
follows. We note from [21] that it is possible to take α2 = 1/72 and β2 = 6 which
satisfies β2α2 < 1/2.

Efficient Constructions for Almost-Everywhere Secure Computation 173

Lemma 5. With probability 1 − (t/n)α2t/(4 log(n)), there exists a set of nodes
S ⊂ V where |S| ≥ n−β3|T | such that every pair of nodes in S can communicate
reliably with each other.

Proof. The set S consists of nodes that are privileged nodes in privileged com-
mittees. We have that the total number of committees is NC = n/s. Let tC
denote the number of bad committees. Note that with probability at least
1−(t/n)α2t/(4 log(n)), tC ≤ t/s

log n . Furthermore, since t = α3n ≤ α1n (by the choice

of α3 ≤ min{α1, (α2/e)2}), tC ≤ t/s
log n ≤ α1 · n/s

log n ≤ α1 · NC

log NC
. This implies

that Theorem 5 is now applicable. From Theorem 5, the number of unprivileged
committees is bounded by O(tC log tC) = O(t/s). Thus, the number of nodes in
unprivileged committees is bounded by s · O(t/s) = O(t). Finally, we consider
the unprivileged nodes in privileged committees. Let ti denote the number of
corrupt nodes in committee Ci for i ∈ [n/s]. The number of unprivileged nodes
in privileged committees is upper bounded by

∑

i

O(ti) = O

(
∑

i

ti

)

= O(t)

from Theorem 6. Thus, |S| ≥ n − β3t for some constant β3.

We summarize the result from this section in the theorem below.

Reminder of Theorem 2. For sufficiently large n, there exists an n-node net-
work Grand = (V,E), a protocol Πrand for message transmission on it, and con-
stants α3 and β3, such that:

1. The network Grand is of constant degree.
2. If a subset of nodes T ⊂ V is randomly corrupt, where |T | ≤ α3n, with

probability 1 − (t/n)α2t/(4 log(n)), there exists a set of nodes S ⊂ V where
|S| ≥ n − β3|T | such that every pair of nodes in S can communicate reliably
with each other by invoking Πrand.

Note that at t = Θ(n) we get that the protocol works with probability

1 − 2−Ω(n
log(n)) which improves upon [3] which achieved 1 − 2−Ω

(
n

log2(n)

)
.

We end this section with the following remark. Let |T | = t. Note that in [7],
the number of nodes that can communicate with each other reliably is n − t −
O(t/ log n), that is, we give up at most O(t/ log n) = o(t) nodes. We remark that
this is not achievable in networks of constant degree even in the random model.
In an adversarial corruption setting, one can corrupt the neighbors of O(t/d)
nodes, and hence if d = O(1), any protocol must give up O(t) nodes. This is true
even in the random corruption model: a node has corrupt neighbors with some con-
stant probability if t = O(n) and hence any protocol must give up O(t) nodes. Sim-
ilarly, in networks of log log n degree, any protocol must give up O(t/(log n)Θ(1))
nodes.

174 S. Jayanti et al.

4 Logarithmic Degree Networks in the Worst-Case Model

In the worst-case model, the current best networks are those constructed by
Chandran, Garay and Ostrovsky [7]. They construct a graph with degree
d = logq n for some fixed constant q > 1, that is resilient to t = O(n) adver-
sarial corruptions. We show using a probabilistic argument the existence of a
network of degree O(log n) that is resilient to t = O(n) adversarial corruptions.
Furthermore, the probabilistic construction works with all but negligibly small
probability.

Our construction is also rather simple, and uses our network that is resilient
to random errors as a black box. This style of our argument provides further
motivation for studying the random corruption model, even if the ultimate goal
is to be resilient to adversarial corruptions.

Definition 4.

Graph: Our graph that is resistant to worst-case errors is Gwc = (V,E),
where V = [n]. The edge set is as follows. Let {Gi

rand}i = {(V R
i , Ei)}i be our

network, Grand, resilient to random corruptions on a randomly permutation
V R

i of the vertex set V , for 1 ≤ i ≤ z � k · log n for k = 40/α2, where α2 is
the constant from Theorem6. Define E �

⋃z
i=1 Ei.

Protocol: We now describe the communication protocol Πwc over this net-
work. Let Πi

rand be the reliable transmission protocol associated with the net-
work Gi

rand as described in Definition 3, for each 1 ≤ i ≤ z. Now, if a node
A wishes to send a message m to node B:
(a) A will invoke the protocol Πi

rand to transmit the message m to B over the
network Gi

rand.
(b) B receives z messages, corresponding to the z executions of Πi

rand for
1 ≤ i ≤ z. B takes the majority of all these messages.

Degree. The network constructed is of degree O(log n), since the network is
constructed using z = O(log n) copies of the constant degree network Grand

from Definition 3.
We proceed to prove resiliency of the protocol. We will first consider an

arbitrary fixed adversary T ⊂ V , estimate the probability of resilience against
it and finally perform a union bound over all adversaries. Consider an arbitrary
fixed adversary. We will say that the ith layer is bad for this fixed adversary if
the conditions in Theorem 2 do not hold for Gi

rand. Correspondingly we call a
layer good for this adversary if the conditions in Theorem2 hold. In Lemma 6,
we prove that with high probability only at most (1/5)th of the layers are bad.

Consider a good layer i, for some 1 ≤ i ≤ z. We define Di to be set of
doomed nodes in protocol Πi

rand. By Theorem 2, |Di| ≤ β3|T |. For an arbitrary
fixed adversary, we will show that the set Di behaves as a small random set
as a result of permuting the vertex set V to obtain V R

i over which Gi
rand is

constructed. For any honest node v ∈ V , let LD
v denote the set of all good layers

i such that v ∈ Di, that is, v is doomed in layer i. We will finally show that,
with high probability, for most nodes v, |LD

v | is small.

Efficient Constructions for Almost-Everywhere Secure Computation 175

To wrap up the proof, we designate a node v ∈ V as doomed for Πwc with
respect to this fixed adversary if |LD

v | > (1/10)z. Consider a pair of privileged
nodes (nodes that are honest and not designated as doomed for Πwc) A,B ∈
V . Since, with high probability, at most (1/5)th of the layers are bad and, by
definition, A,B are doomed in at most (1/10)th of the good layers, A,B are both
privileged in at least (3/5)th of the good layers with respect to this adversary.
Hence a majority of the messages sent by A in Πwc reach B correctly and B’s
majority is computed correctly. By our earlier claim, with high probability, the
number of doomed nodes is small, that is, most nodes are privileged and can
hence communicate reliably in the presence of this fixed adversary with high
probability. Performing a union bound over all possible adversaries, we get our
final result.

We now formalize this argument. Let T ⊂ V be an arbitrary set of corrupt
nodes with |T | = t = α4n where α4 ≤ min{α3, 1/10, 1

114/3e3/2β
4/3
3

≈ .01

β
4/3
3

} where

the constant α3 is from Theorem 2.

Lemma 6. For a fixed adversary, with probability at least 1 − n
32
α2 · (

n
t

)−2t, at
most δ = 1

5 fraction of the layers are bad.

Proof. Note that the ith layer is constructing by randomly and independently per-
muting the vertex set V to obtain V R

i over which Gi
rand is constructed. This is

equivalent to constructing Gi
rand over V and thinking of the adversary as being

a random subset of V of size |T |. This enables to apply Theorem2. By Theo-
rem 2, for a fixed adversary, the ith layer is bad independently with probability
≤ (t/n)α2t/(4 log n). So the probability that δz out of the z layers are bad is

Pr[δz out of the z layers are bad] ≤
(

z

δz

)((
t

n

)α2t/(4 log n)
)δz

≤
(ez

δz

)δz
((

t

n

)α2t/(4 log n)
)δk log n

=
(e

δ

)δk log n
((

t

n

)α2t/4
) 8

α2

= (5e)(8/α2)·log n

(
t

n

)2t

= (5e)(8/α2)·log n
(n

t

)−2t

= n(8/α2)·log(5e)
(n

t

)−2t

≤ n32/α2 ·
(n

t

)−2t

176 S. Jayanti et al.

Lemma 7. For a fixed adversary and a fixed layer i, the probability that Di =
S ⊂ V \ T only depends on |S|.
Proof. Consider a fixed adversary and a fixed layer i. Let πi be a permutation
of V and let πi(V) = V R

i . Also, let πi(T) = TR
i . Let DR

i ⊂ V R
i \ TR

i be the
doomed nodes in V R

i with respect to this adversary. Note that DR
i is fixed by

the choice of TR
i , or equivalently, by the choice of πi(T). Let Di ⊂ V \ T be the

set of doomed nodes in V . Note that πi(Di) = DR
i . By symmetry, for any two

subsets S1, S2 ⊂ V \ T with |S1| = |S2| = |DR
i |, the number of permutations π

such that:

– π(T) = TR
i and π(S1) = DR

i

– π(T) = TR
i and π(S2) = DR

i

is the same, and is equal to the number of permutations of the remaining |V | −
|T | − |DR

i | nodes. Hence, the probability that Di = S ⊂ V \ T only depends on
|S|.

For a fixed adversary and a fixed honest node v ∈ V \ T , let LD
v denote the

set of all good layers i such that v ∈ Di, that is, v is doomed in layer i.

Lemma 8. For a fixed adversary, with probability 1 −
(

11eβ3t
n

)8t

, the number

of honest nodes v such that |LD
v | ≥ z/10 is at most β4t/ log n. (β4 = 2α2)

Proof. Let layer i be good. This implies that |Di| ≤ β3t by Theorem 2. Without
loss of generality we can assume that |Di| = β3t as more doomed nodes is worse
for us. Let v be an arbitrary honest node. By Lemma7,

Pr[v ∈ Di] =
β3t

n − t

as all subsets of honest nodes of size β3t are equally likely and the number of
honest nodes is n − t.

As all layers are sampled independently, we have

Pr[|LD
v | ≥ z/10] ≤

(
z

z/10

)(
β3t

n − t

)z/10

≤
(

ez

z/10

)z/10 (
β3t

n − t

)z/10

≤
(

10eβ3t

n − t

)z/10

≤
(

11eβ3t

n

)z/10

where the last inequality follows from t ≤ n/10.

Efficient Constructions for Almost-Everywhere Secure Computation 177

Let u, v be two honest nodes. We have that Pr[v ∈ Di] = β3t
n−t , while

Pr[u ∈ Di|v ∈ Di] = β3t−1
n−t−1 < β3t

n−t . Hence the events u ∈ Di and v ∈ Di

are anti-correlated. This implies that |LD
v | ≥ z/10 and |LD

u | ≥ z/10 are also
anti-correlated. As we want to upper bound the number of nodes A which sat-
isfy |LD

A | ≥ z/10, we can assume that the events |LD
v | ≥ z/10 and |LD

u | ≥ z/10
are independent.

The probability that for more than β4t/ log n honest nodes |LD
v | ≥ z/10 with

β4 = α2/2 is

Pr
[
For over t/ log n honest nodes, |LD

v | ≥ z/10
] ≤

((
11eβ3t

n

)z/10
)β4t/ log n

=
(

11eβ3t

n

)kβ4t/10

=
(

11eβ3t

n

)4β4t/α2

=
(

11eβ3t

n

)8t

Reminder of Theorem 3. For sufficiently large n, there exists an n-node net-
work Gwc = (V,E), a protocol Πwc for message transmission on it, and constants
α4 and β4, such that:

1. The network Gwc is of degree O(log n).
2. Πwc is (α4n, β4t/ log n)-resilient.

Proof. For a fixed adversary A, let EA
1 be the event that less than z/5 of the

layers are bad. Then by Lemma6, Pr[EA
1] ≥ 1 − n

32
α2 · (

n
t

)−2t. Let E1 be the
event that EA

1 holds for all adversaries A with t corruptions. By a union bound
over all such adversaries,

Pr[E1] ≥ 1 −
(

n

t

)
· n

32
α2 ·

(n

t

)−2t

≥ 1 −
(en

t

)t

·
(n

t

)−2t

· n
32
α2

= 1 −
(

et

n

)t

· n
32
α2

≥ 1 −
(

t

n

).5t

· n
32
α2 As t = n/10 which implies e ≤

√
n

t

≥ 1 − 1/nω(1) [For t = ω(1)]3

178 S. Jayanti et al.

Let EA
2 be the event that the number of honest nodes v such that |LD

v | ≥
z/10 is at most β4t/ log n. Then by Lemma 8 for a fixed adversary Pr[EA

2] ≥
1 −

(
11eβ3t

n

)8t

. Let E2 be the event that EA
2 holds for all adversaries A with t

corruptions. By a union bound over all such adversaries,3

Pr[E2] ≥ 1 −
(

n

t

)(
11eβ3t

n

)8t

≥ 1 −
(en

t

)t

·
(

11eβ3t

n

)8t

≥ 1 −
(

118 · e9 · β8
3 · t7

n7

)t

≥ 1 −
(

t

n

)t

As t ≤ n

114/3e3/2β
4/3
3

≥ 1 − 1/nω(1) [For t = ω(1)]

Hence by union bound Pr[E1 ∧ E2] ≥ 1 − 1/nω(1) − 1/nω(1) = 1 − 1/nω(1).
E1 implies that for any adversary ≤ 1/5 fraction of the layers are bad. E2

implies that for any adversary there exists a set of honest nodes S, |S| ≥ n − t −
β4t log n such that for all v ∈ S LD

v ≤ z/10. Hence for any two nodes A,B ∈ S
they are both privileged in at least 1 − 1/5 − 1/10 − 1/10 > 1/2 fraction of
the layers. Hence the message from A to B will be correctly delivered on > 1/2
fraction of the layers hence B will find the correct message after taking majority.
The set S behaves as the privileged set for the network Gwc,Πwc.

5 Low-Work Protocols in the Worst-Case Model

It is our goal to design low degree graphs with efficient communication proto-
cols for AE reliable message transmission. Our final networks are constructed by
composing several simpler graph structures. An important graph that our work
builds on is Dwork et al.’s butterfly network [12]. The diameter of a graph is
a fundamental lower bound on the amount of work required for message trans-
mission. Any graph with constant degree will necessarily have work complexity
Ω(log n). Thus, the logarithmic diameter of the butterfly network is optimal
up to constant factors. Since the diameter is a fundamental lower bound on the
work complexity of point to point transmissions in a network, we think of a poly-
nomial work complexity in the diameter—polylogarithmic work complexity—as
a reasonable definition for work-efficient in this context. Dwork et al.’s protocol
which requires Ω(n) work complexity for a single point to point message trans-
mission is thereby work-inefficient. Another weakness of Dwork et al.’s protocol,

3 The case of t = O(1) is trivial and can be handled by Theorem 5.

Efficient Constructions for Almost-Everywhere Secure Computation 179

is that it floods the network, and thus nearly every node in the network is neces-
sarily involved in every point to point message transmission. It would aid both
efficiency and parallelizability of higher level protocols to significantly limit the
number of nodes used for a point to point transmission.

We make simple modifications to Dwork et al.’s ideas to achieve a work-
efficient protocol that requires only polylogarithmically many nodes to be active
in any point to point communication in this section. Our main observation is that
a u to v transmission over the Butterfly network need not flood all Θ(n/ log n)
paths in the network to ensure reliable transmission. In fact, we show that picking
a set of just Θ(log n) paths between every pair of vertices, and sending the
message only over those paths suffices. This reduces both the number of nodes
used per point to point transmission and total work to O(log2 n).

Definition 5. The efficient Butterfly protocoled-network NEff = (GBut,ΠEff)
is as follows:

Graph: We use the Butterfly graph GBut = (V,E) as defined in Definition 2
such that |V | = n = m2m. For every pair u, v of distinct vertices in V , there
exists a set of paths Pu,v as defined in Definition 2 between u and v. Let Qu,v

be a random subset of Pu,v of size Θ(log n). The subset Qu,v is sampled before
the protocol and is fixed, in particular it is known to all the nodes as well as
the adversary.
Protocol: The message transmission protocol ΠEff from u to v in GEff is
as follows: u sends the message along all paths in Qu,v, v receives all the
messages and takes majority.

Lemma 9. For the n = m2m-node network GBut = (V,E) and the protocol
ΠEff for message transmission on it the following statements hold:

1. The network GBut has degree 11.
2. The total work is O(polylog(n)).
3. There is a constant ε ∈ (0, 1) such that ΠEff is (εn/ log n,O(t log t))-resilient

with probability 1 − o(1).

Proof. It is clear that the degree of the network is 11 and that the work com-
plexity in the protocol are O(polylog(n)) as we send Θ(log n) messages on paths
of length Θ(log n).

We now prove the resilience guarantee. Consider any fixed subset T ⊂ V
with t = |T | ≤ α1n/ log n, where α1 is that of Theorem 5. By Theorem 5, we
know that there is a set V ′ of size n − β1t log t that can communicate reliably
with each other by invoking ΠBut. For any pair of vertices u, v ∈ V ′, we let Pu,v

be the set of paths used in message transmissions from u to v by protocol ΠBut.
By Theorem 5 property (3) we know that at least a 2/3 fraction of the paths
in each Pu,v contain no corrupt node. We will assume that exactly 2/3 fraction
of the paths in each Pu,v contain no corrupt node as that is only worse for us.
If a message is sent through a path with no corrupt nodes, the correct message

180 S. Jayanti et al.

reaches v. Let Qu,v be a random sample of h = 144 loge(n) ≈ 100 log n paths
from Pu,v. The protocol ΠEff sends a message from u to v as follows:

1. u sends the message along all the paths Qu,v,
2. v receives all h messages that were sent along the paths in Qu,v and takes the

majority.

We now argue when this majority will be the correct message with high
probability. Fix two nodes u, v ∈ V ′ and fix an adversary (the subset of corrupted
nodes). We look at the paths Qu,v in a communication from u to v. The expected
number of paths, μ, in Qu,v with a corrupted node is μ = h/3. So, we define
δ = 1/2

1/3−1 and by the Chernoff bound from Eq. 1, the probability that a majority
of the paths Qu,v contain a corrupt node is:

Pr[majority of paths Qu,v are incorrect] ≤ e−δ2μ/3

≤ e−(1/2)2·(h/9)

[As δ =
1/2
1/3

− 1 and μ = h/3]

= e−h/36

= e−4 loge(n)

= 1/n4

We call a pair of vertices {u, v} a doomed-pair if a majority of paths between
them contain a corrupt node. For a fixed adversary, the probability that there
are more than g doomed-pairs is bounded above by

(
n2

g

)(
1
n4

)g

≤
(

en2

g

)g (
1
n4

)g

<
(e

n2

)g

since the probability of pair corruptions is independent conditioned on the adver-
sary. To show that the construction works for an adversarially chosen set of cor-
ruptions, we take a union bound over all adversaries. The probability that there
is an adversary with t corruptions for which the number of doomed-pairs is at
least g is bounded above by:

(
n

t

)(e

n2

)g

Setting g = t we get
(
n
t

) (
e

n2

)g ≤ (
en
t

)t (
e

n2

)t ≤
(

e2

n

)t

= o(1). Hence the number
of doomed-pairs u, v ∈ V ′ is ≤ t w.p. 1 − o(1). Let S be the set of vertices
v ∈ V ′ which are not in any doomed-pair. The set S is privileged for Neff as
for any A,B ∈ S the majority of paths QA,B have no corrupt nodes and hence
B decodes the correct message by taking majority. As w.p. 1 − o(1) the number
of doomed-pairs is ≤ t which implies that number of nodes in any doomed-pair
is ≤ 2t. Hence |S| ≥ |V ′| − 2t w.p. 1 − o(1). By Theorem 5, |V ′| ≥ n − β1t log t
hence |S| ≥ n − (β1 + 2)t log t w.p. 1 − o(1) which implies that the number of
doomed nodes is O(t log t).

Efficient Constructions for Almost-Everywhere Secure Computation 181

Lemma 9 shows that the network NEff = (GBut,ΠEff) satisfies resilience
only with high probability—not deterministically. We now show, via the proba-
bilistic method, that the resilience guarantee can be made deterministic; yet we
state it explicitly, because this is the protocol that we use to enable our main
theorem.

Reminder of Theorem 4. For the n = m2m-node network GBut = (V,E)
there is a protocol Π∗

Eff for message transmission on it such that the following
holds:

1. The network GBut has degree 11.
2. The total work of the protocol is O(polylog(n)).
3. There is a constant ε ∈ (0, 1) such that Π∗

Eff is (εn/ log n,O(t log t))-resilient.

Proof. Since Lemma 9 holds with probability greater than 0, and the randomness
is just over the protocol ΠEff , there is some specific protocol Π∗

Eff in the support
of ΠEff that has properties (1–3).

5.1 Resilient and Efficient Networks

We now show how to modularly substitute-in our work-efficient protocol on the
Butterfly network, in order to get work-efficient versions of Theorems 2 and 3.
The high level idea is simple. The protocol Πrand uses ΠBut as a blackbox, and
the protocol Πwc uses a Πrand as a blackbox. Substituting the efficient protocol
Π∗

Eff in for ΠBut into Πrand creates an efficient version of Πrand, which we call
Πrand,eff below; and substituting Πrand,eff into Πwc creates an efficient version
of Πwc, which we call Πwc,eff below. We describe the details of these subsitutions
in the following theorems.

We substitute Π∗
Eff in for ΠBut in Πrand to strengthen Theorem 2 to the

following:

Theorem 7. For sufficiently large n, there exists an n-node network Grand =
(V,E), a protocol Πrand,eff for message transmission on it, and constants α3

and β3, such that:

1. The network Grand,eff is of constant degree.
2. The Work complexity of GΠrand,eff is O(polylog(n)).
3. If a subset of nodes T ⊂ V is randomly corrupt, where |T | ≤ α3n, with

probability 1 − (t/n)α2t/(4 log(n)), there exists a set of nodes S ⊂ V where
|S| ≥ n − β3|T | such that every pair of nodes in S can communicate reliably
with each other by invoking Πrand,eff .

Proof. In Theorem 2 we note that work done inside a single committee was expo-
nential in the size of the committee as we instantiate GUpfal (from Theorem 6)
inside every committee. But as the size of the committee is s = O(log log(n)) this
is only O(polylog(n)). Thinking of committees as super-nodes we had instanti-
ated GBut over super-nodes. The total number of super-nodes used in a single
message transmission was Ω(n/s) as we have n/s super-nodes. By using Πeff

182 S. Jayanti et al.

instead of ΠBut we can bring this down to polylog(n/s) ≤ polylog(n), Send-
ing a single message from a super-node to its neighbor requires running GUpfal

inside the committee which takes O(polylog(n)) work. Thus the total work is
O(polylog(n) · polylog(n)) = O(polylog(n)).

Finally, we substitute Π∗
rand,eff in for Πrand in Πwc to strengthen Theorem 3

to our main theorem:

Reminder of Theorem 1. For sufficiently large n, there exists an n-node net-
work Gwc = (V,E), a protocol Πwc,eff for message transmission on it, and con-
stants α and β, such that:

1. The network Gwc is of degree O(log n).
2. The Work complexity of Πwc,eff is O(polylog(n)).
3. Πwc,eff is (αn, βt/ log n)-resilient.

Proof. The protocol Πwc uses Πrand as a blackbox O(log n) times, one for each
layer. We substitute Πrand with Πrand,eff . This brings down the work complexity
to O(log n · polylogn) = polylogn.

References

1. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 22

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago,
Illinois, USA, 2–4 May 1988, pp. 1–10 (1988)

3. Ben-Or, M., Ron, D.: Agreement in the presence of faults, on networks of bounded
degree. Inf. Process. Lett. 57(6), 329–334 (1996)

4. Berman, P., Garay, J.A.: Asymptotically optimal distributed consensus. In:
Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 80–94. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035753

5. Berman, P., Garay, J.A.: Fast consensus in networks of bounded degree. In:
van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 321–333.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54099-7 22

6. Canetti, R.: Security and composition of cryptographic protocols: a tutorial (part
I). SIGACT News 37(3), 67–92 (2006)

7. Chandran, N., Garay, J., Ostrovsky, R.: Improved fault tolerance and secure com-
putation on sparse networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp.
249–260. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-
1 21

8. Chandran, N., Garay, J., Ostrovsky, R.: Edge fault tolerance on sparse networks.
In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part
II. LNCS, vol. 7392, pp. 452–463. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31585-5 41

https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/BFb0035753
https://doi.org/10.1007/BFb0035753
https://doi.org/10.1007/3-540-54099-7_22
https://doi.org/10.1007/978-3-642-14162-1_21
https://doi.org/10.1007/978-3-642-14162-1_21
https://doi.org/10.1007/978-3-642-31585-5_41
https://doi.org/10.1007/978-3-642-31585-5_41

Efficient Constructions for Almost-Everywhere Secure Computation 183

9. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 11–19 (1988)

10. Dolev, D., Fischer, M.J., Fowler, R.J., Lynch, N.A., Strong, H.R.: An efficient
algorithm for byzantine agreement without authentication. Inf. Control 52(3), 257–
274 (1982)

11. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
In: ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Ottawa, Canada, 18–20 August 1982, pp. 132–140 (1982)

12. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree (preliminary version). In: Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, Berkeley, California, USA, 28–30 May 1986,
pp. 370–379 (1986)

13. Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart, N.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 18

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: 1987 Proceedings of the
19th Annual ACM Symposium on Theory of Computing, New York, New York,
USA, pp. 218–229 (1987)

15. King, V., Saia, J.: From almost everywhere to everywhere: Byzantine agreement
with Õ(n3/2) bits. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 464–478.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04355-0 47

16. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2006, Miami, Florida, USA, 22–26 January 2006, pp. 990–999 (2006)

17. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation
in peer-to-peer networks. In: Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2006), Berkeley, California, USA, 21–24
October 2006, pp. 87–98 (2006)

18. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

19. Lubotzky, A., Phillips, R., Sarnak, P.: Explicit expanders and the Ramanujan
conjectures. In: Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, Berkeley, California, USA, 28–30 May 1986, pp. 240–246 (1986)

20. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

21. Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In:
Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed
Computing, Vancouver, British Columbia, Canada, 10–12 August 1992, pp. 83–89
(1992)

22. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5
November 1982, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-540-78967-3_18
https://doi.org/10.1007/978-3-642-04355-0_47

The Price of Active Security
in Cryptographic Protocols

Carmit Hazay1(B), Muthuramakrishnan Venkitasubramaniam2(B),
and Mor Weiss3

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 University of Rochester, Rochester, USA
vmuthu@gmail.com

3 IDC Herzliya, Herzliya, Israel

Abstract. We construct the first actively-secure Multi-Party Computa-
tion (MPC) protocols with an arbitrary number of parties in the dishon-
est majority setting, for an arbitrary field F with constant communica-
tion overhead over the “passive-GMW” protocol (Goldreich, Micali and
Wigderson, STOC ‘87). Our protocols rely on passive implementations of
Oblivious Transfer (OT) in the boolean setting and Oblivious Linear func-
tionEvaluation (OLE) in the arithmetic setting. Previously, such protocols
were only known over sufficiently large fields (Genkin et al. STOC ‘14) or
a constant number of parties (Ishai et al. CRYPTO ‘08).

Conceptually, our protocols are obtained via a new compiler from a
passively-secure protocol for a distributed multiplication functionality
FMULT, to an actively-secure protocol for general functionalities. Roughly,
FMULT is parameterized by a linear-secret sharing scheme S, where it takes
S-shares of two secrets and returns S-shares of their product.

We show that our compilation is concretely efficient for sufficiently
large fields, resulting in an overhead of 2 when securely computing nat-
ural circuits. Our compiler has two additional benefits: (1) it can rely on
any passive implementation of FMULT, which, besides the standard imple-
mentation based on OT (for boolean) and OLE (for arithmetic) allows
us to rely on implementations based on threshold cryptosystems (Cramer
et al. Eurocrypt ‘01); and (2) it can rely on weaker-than-passive (i.e.,
imperfect/leaky) implementations, which in some parameter regimes yield
actively-secure protocols with overhead less than 2.

Instantiating this compiler with an “honest-majority” implementations
of FMULT, we obtain the first honest-majority protocol with optimal cor-
ruption threshold for boolean circuits with constant communication over-
head over the best passive protocol (Damg̊ard and Nielsen, CRYPTO ‘07).

1 Introduction

The problem of Secure Multi-party Computation (MPC) considers a set of par-
ties with private inputs that wish to jointly compute a function of their inputs
while simultaneously preserving correctness of the outputs, and guaranteeing
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 184–215, 2020.
https://doi.org/10.1007/978-3-030-45724-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_7

The Price of Active Security in Cryptographic Protocols 185

privacy of the inputs, i.e., nothing but the output is revealed. These properties
are required to hold in the presence of an adversary that controls a subset of the
parties, and attacks the protocol in an attempt to breach its security, e.g., learn
more than it should about the honest parties’ inputs.

Secure computation was first defined and explored in the mid 80s [5,7,19,50],
and has been the focus of intensive study ever since. In the first two decades,
research focused mainly on theoretical foundations, establishing the boundaries
of feasibility and complexity. More recently, the focus has shifted to making
MPC efficient and reducing its overhead over insecure implementations, both in
terms of asymptotic and concrete efficiency (See [14,20,27,32,33,37,48,49], and
references therein.)

A basic classification in MPC considers protocols in which security is guar-
anteed with: (1) an honest majority, namely when the adversary corrupts a
minority of the participants; or (2) a dishonest majority, where the adversary
can corrupt arbitrarily many parties. The second category, which captures two-
party protocols as a special case, has the advantage that any single party need
not trust anyone but itself. Designing protocols from the second category is sig-
nificantly more challenging, and they can only guarantee computational security,
i.e., against computationally-bounded adversaries. On the other hand, the first
category admits conceptually simpler solutions with statistical (or even perfect)
security, namely against computationally-unbounded adversaries.

An orthogonal classification of MPC protocols is based on the adversarial
behavior: (1) passive adversaries that follow the protocol’s instructions but try
to learn more than the prescribed information; and (2) active adversaries that
may arbitrarily deviate from the protocol. A common paradigm in MPC is to
design first a passively-secure protocol, and then compile it into an actively-
secure one.

Hence, an important efficiency metric for MPC protocols is the overhead of
actively-secure protocols over (the best) passively-secure ones. A primary goal in
MPC today is to reduce this overhead, and specifically to design actively-secure
protocols with constant overhead over state-of-the-art passively-secure protocols.
That is, to design protocols whose communication and computation overheads
grow only by a constant factor compared to the underlying passive protocols.

This work focuses on one of the most challenging MPC settings: active secu-
rity with an arbitrary number of parties. Ideally, we would like the price of
achieving active security to be minimal compared to the passively-secure coun-
terparts.

The past decade has seen tremendous progress in the design of concretely-
efficient actively-secure protocols for arbitrary functions, specified as boolean or
arithmetic circuits, in either the two-party [21,26,29,35,37,38,40–44,46–48,51],
or the multi-party setting with an arbitrary number of parties [12,14,27,32,34,
39,49]. See Sect. 1.2 below for more details.

Despite this impressive progress there still remains important gaps between
what is achievablewithpassive andactive security. Indeed, noprotocols for boolean
computations with an arbitrary number of parties and constant communication

186 C. Hazay et al.

overhead (even asymptotically) are known, both in the honest and the dishonest
majority settings. For arithmetic computations with an arbitrary number of par-
ties and over sufficiently large fields, the best concrete overhead (of 12x [17]) still
seems large. In the honest majority setting an overhead of 2 has been achieved only
for large fields [9].

Given this state of affairs, in this work we set out to answer the following
fundamental open problem:

Can actively-secure protocols over an arbitrary field match the complexity of
passively-secure protocols, in the dishonest and honest majority settings, with an
arbitrary number of parties?

We resolve this open problem in terms of communication complexity in
the affirmative, designing an asymptotically-efficient actively-secure protocol for
boolean circuits (as well as arithmetic circuits over any field) in both the honest
majority and dishonest majority settings, with constant communication overhead
over the (best known) passively-secure counterparts.

We note that constant-overhead protocols are known based on general zero-
knowledge proofs [19], but these solutions rely on “heavy” tools and are practi-
cally inefficient. Instead, we focus on designing protocols that make black-box use
of simpler (and lightweight) primitives such as One-Way Functions (OWFs), and
parallel Oblivious-Transfer (OT) or parallel Oblivious Linear function Evalua-
tion (OLE) in the boolean and arithmetic settings (resp.). Relying on OTs/OLEs
is, in a sense, necessary since these are special cases of secure computation in their
respective settings. Moreover, since our protocols make black-box use of these
primitives, they will benefit from future improvements in the costs of OT/OLE
implementations, which have been steadily decreasing.

Moreover, to frame a clean theoretical question, we focus on designing
modular protocols in which the (relatively) computationally-expensive “cryp-
tographic” component is separated from the rest of the protocol, and abstracted
as an ideal functionality. Specifically, the “cryptographic” abstraction we con-
sider in this work is a (constant-round) parallel protocol for computing dis-
tributed multiplication. Relying on a general multiplication functionality instead
of OT/OLE allows us to simultaneously capture many settings of interest
(boolean/arithmetic computations, two/multi-party, honest/dishonest majority)
in a unified way. More specifically, we abstract distributed multiplication as an
FMULT functionality that is parameterized by a secret sharing scheme S over some
field F, takes S-shares of two secrets, and produces S-shares of their product. It
is easy to see that one can use a general reduction from OT (resp. OLE) to a
random instance FRMULT of FMULT (which generates additive shares of random
multiplication triples in the sense of Beaver’s triples [3]) for boolean (resp. arith-
metic) computations. In the multi-party setting, one can also realize FMULT using
more general protocols based on threshold additively-homomorphic encryption
schemes [10].

The Price of Active Security in Cryptographic Protocols 187

Given the previous discussion, we can rephrase our motivating question:
Can actively-secure protocols over an arbitrary field match the complexity of

passively-secure implementations of FMULT, in the dishonest and honest majority
settings, with an arbitrary number of parties?

1.1 Our Results – A New Framework

In this work we answer the open problem stated above with respect to com-
munication complexity on the affirmative, introducing the first actively-secure
protocol with constant communication overhead over passive GMW [19], for any
number of parties and over any field, in the FMULT-hybrid model.

We obtain our result via a new compiler which transforms a passively-secure
protocol for FMULT into an actively-secure protocol for arbitrary functionali-
ties, while inheriting the setting of the FMULT protocol (i.e., boolean/arithmetic,
two/multi-party, and honest/dishonest majority). Specifically, the compiler is
described in the FMULT-hybrid model, and using different instantiations of FMULT

we obtain actively-secure protocols with constant communication overhead in the
boolean and arithmetic, two-party and multi-party, and honest and dishonest
majority settings. Moreover, the overhead of our protocols is 2 for large fields
and “typical” circuits (i.e., that have sufficiently many parallel multiplication
gates; for our asymptotic result, it suffices for this width to be Ω(s), where s is
a statistical security parameter).

Working in the FMULT-hybrid model allows us to preserve a clear separation
between the “passive” (alternatively, cryptographic) components of our protocol,
namely the implementation of FMULT, which relies on cryptographic assumptions;
and the “correctness-enforcing” (alternatively, non-cryptographic) components
which involve tools from the literature of honest-majority protocols, employing
consistency tests to enforce honest behavior. Besides scalability (and reduced
communication complexity), we believe our approach is simple and modular.

Our compiler improves over the state-of-the-art in several settings; see Table 1
for a summary, and Sect. 6 for a detailed discussion.

Table 1. Asymptotic communication overheads of our results in both the dishonest and
honest majority settings for boolean and arithmetic computations. The “best passive”
column refers to the passively-secure protocol over which the overhead is computed.
The “theorem number” column specifies the theorem which implies the corresponding
result.

Corruption
Threshold

Number of
Parties

Field Size Hybrid
Model

Asymptotic
Overhead

Best
Passive

Theorem
Number

t < n Arbitrary O(1) OT Constant [19] Theorem 3

t < n Arbitrary Arbitrary OLE Constant∗ [19] Theorem 5

t < n/2∗∗ Arbitrary Arbitrary — Constant [5] Theorem 6
∗Concretely, this constant is 2 for moderately wide circuits.
∗∗We note that though in the honest majority setting guaranteed output delivery
is achievable, our protocol only guarantees security with abort.

188 C. Hazay et al.

New protocols in the dishonest majority setting. Our compiler exhibits
the most substantial improvements in the dishonest majority setting, yielding
the first constant-overhead actively-secure protocol with a dishonest majority
over an arbitrary number of parties for boolean circuits. The concrete constants
of our compiler are yet unknown since they depend on the concrete efficiency of
Algebraic Geometric (AG) secret sharing schemes over constant-size fields [8].
The result is summarized in the following informal theorem; see Theorem 3 for
the formal statement.

Theorem 1 (Informal). Any m-party function f over a constant-size field
(resp., arbitrary size field) can be securely realized by an O(d)-round protocol
in the OT-hybrid (resp., OLE-hybrid) model against an active adversary cor-
rupting an arbitrary number of parties with total communication O(m2 |C|) +
poly(κ, d,m) field elements, where C is a depth-d circuit for f , and κ is a com-
putational security parameter.

For arithmetic computations, we can concretely analyze the constants intro-
duced by our compiler, and show that they can be as small as 2 for moderately
wide circuits and sufficiently large fields. This improves over [17] in two aspects.
First, their work requires at least 12 invocations of an active implementation
of FMULT, while ours requires only two invocation of a passive implementation.
This allows us to instantiate our compiler with passive implementations of FMULT

based on threshold additively homomorphic encryption schemes [6,10]. Second,
their result is only useful for computations over sufficiently large fields (where
the statistical error O (|C| / |F|) is small), whereas our result applies to fields of
arbitrary size.

Building on the recent result of Hazay et al. [25], we can extend our compiler
to rely on a weaker-than-passive (e.g., imperfect or leaky) implementation of
FMULT. Consequently FMULT can be instantiated with lattice-based protocols with
“aggressive” (weaker) parameters, yielding actively-secure compiled protocols
whose communication cost almost matches that of the best passive protocols,
namely, essentially achieving active security at the cost of passive!

Additionally, we achieve an interesting corollary in the constant-round regime
for boolean computations. By viewing distributed garbling [4] as an arithmetic
functionality over GF(2κ), we can instantiate our compiler for arithmetic circuits
to achieve constant-overhead over that passive variant of [4] instantiated with
FMULT over GF(2κ). See the full version [28] for details.

We believe our protocols can also be made to tolerate adaptive corruptions
by instantiating the underlying cryptographic primitives (namely, FMULT and
FCOM) with their adaptively-secure counterparts, and leave this to future work.

New protocols in the honest majority setting. In the honest majority
regime for t < n/2, our compiler gives an actively-secure protocol for boolean
circuits with constant overhead over a variant of passive-BGW [5] that is instan-
tiated using AG secret sharing schemes. This result improves over the recent pro-
tocol by Chida et al. [9], which only achieves constant overhead for large fields
(introducing an extra statistical security parameter s for small fields with an

The Price of Active Security in Cryptographic Protocols 189

overhead of s/ log2(|F|)), and over Ishai et al. [31] who achieve constant-overhead
for arbitrary fields, but only for few parties. We note that [11] achieves constant-
rate secure protocols, but only for suboptimal corruption thresholds. For boolean
computation with an arbitrary number of parties and optimal threshold, the best
protocols are due to Genkin et al. [18] and achieve a poly log(|C| , s) overhead,
where |C| is the circuit size.

1.2 Related Work

We give a brief overview of recent efficient protocols, summarized in Table 2.

The state-of-the-art: Boolean multi-party setting. For boolean circuits,
secure protocol against a dishonest majority with an (asymptotic) constant over-
head over passively-secure protocols, was achieved for constant number of par-
ties by Ishai, Prabhakaran and Sahai [32] (referred to as the “IPS-compiler”).
Their protocol operates in the OT-hybrid model, achieving constant overhead
over passive-GMW. It also achieves constant rate, namely the communication
complexity of evaluating a circuit C is O (|C|) + poly (log |C| , d,m, κ), where
d,m, κ are the depth of C, the number of parties, and a security parameter,
respectively. For an arbitrary number of parties, the protocol of Genkin et al.
[18] obtains poly log (|C| , s) overhead over passive-GMW, where s is a statisti-
cal security parameter. This result is obtained by converting a boolean circuit
C into a functionally-equivalent randomized circuit C′ that is immune against
so called “additive attacks”, and evaluating C′ using the semi-honest protocol
of [19]. (This technique was originally introduced by [17], but was essentially
only useful over large fields, see discussion below.)

The state-of-the-art: arithmetic multi-party setting. In the arithmetic
setting in which the computation is performed over an arbitrary field F, Genkin
et al. [17] designed MPC protocols in the OLE-hybrid model, with a statistical
error of O(|C|/F), and constant communication overhead compared to an alge-
braic variant of passive-GMW [19], for sufficiently large fields F. As described
above, their result is obtained by converting a circuit C over some field F into its
additively-secure variant C′, and evaluating C′ using passive-GMW and actively
secure implementation of OLE. In practice, the constant in the communication
overhead of their protocol is 12, and moreover their protocol is only useful for
circuits over large fields (for which O(|C|/F) is sufficiently small). For arbitrary
fields, the work of Döttling et al. [15] give an actively secure protocol where the
overhead is 22 invocations of an actively secure implementation of FMULT per
multiplication gate of the circuit. A practical implementation for arbitrary num-
ber of parties was given in [34] based on “tailor-made” zero-knowledge proofs to
achieve active security.

We note that in the honest majority setting, the recent work by Chida
et al. [9] presents a new actively-secure protocol for arithmetic circuits that
obtains overhead 2 over passive protocols for sufficiently large fields. Similar to
our protocol, their protocol is in the FMULT-hybrid model, where FMULT can be
instantiated with any passively-secure protocol that further guarantees a notion

190 C. Hazay et al.

of “security up to additive attacks” in the presence of active adversaries. It
is unclear whether their paradigm extends to the dishonest majority setting,
since their model of additive attacks is weaker than the standard one formulated
in [17], where in all natural candidates an active attack translates into an addi-
tive attack in the latter (stronger) attack model, and is therefore not protected
against by the framework of [9].

In an orthogonal vein, we note that Applebaum et al. [2] designed the first
(variant of) passively-secure OLE based on LPN-style assumptions, implying
secure arithmetic computation with asymptotic constant computational over-
head over an insecure evaluation of the circuit.

The state-of-the-art: two-party setting. In the boolean setting, the proto-
cols of [32] and [26] achieve (asymptotic) constant communication overhead over
the passive protocols of [19] and [50], respectively. The latter has the added ben-
efit of matching the number of OT calls in [50], which (unlike [19]) is sublinear in
the circuit size. Practical implementations of [32] have been studied in [36], who
identified bottlenecks in obtaining concretely-efficient protocols based on the IPS
protocol due to the implementation of the so-called “watchlist channels”. In the
arithmetic setting, a recent work by Hazay et al. [25] instantiated the frame-
work of [32] with a concretely-efficient honest majority protocol, obtaining small
multiplicative overheads (between 2–8) compared to the passive protocol of [19].

Table 2. Asymptotic and concrete communication overheads of state-of-the-art 2PC
and MPC protocols in the dishonest majority setting. The overhead is measured as the
number of calls to the underlying (passively or actively secure) OT or OLE functional-
ity, compared to the number of calls made by the passive-GMW to the corresponding
(passively secure) functionality (OT or OLE). The concrete overhead column is spec-
ified only when the overhead is constant, and holds over sufficiently large fields. s
denotes a statistical security parameter, and C is the circuit being evaluated.

Construction Number of
Parties

Hybrid Model Asymptotic
Overhead

Concrete
Overhead

[32] Constant OT (passive) Constant∗ Unexplored

[41] Two OT∗∗ (active) O (s/ log s) —

[17] Arbitrary OLE (active) Constant 12∗∗∗

[15] Two OLE (active) Constant 22†

[49] Arbitrary OT∗∗ (active) O (s/ log |C|) —

This work Arbitrary FMULT

(passive)
Constant 2

∗In terms of asymptotic complexity, we note that [32] also achieves constant rate.
∗∗Security is proven in the random oracle model.
∗∗∗Based on personal communication with the authors.
†This constant holds for a particular instantiation of OLE based on noisy encoding.

The Price of Active Security in Cryptographic Protocols 191

2 Our Techniques

We first recall the so-called “IPS framework” of Ishai, Prabhakaran and
Sahai [32], that constructs actively-secure m-party protocols for a function f
using the following two weaker ingredients as a black-box: (1) an actively-secure
honest-majority protocol (the “outer protocol”) for f with m clients and n
servers, tolerating active corruption of a minority t < n/2 of the servers and
an arbitrary number of clients; and (2) a passively secure m-party protocol (the
“inner protocol”) for a “simpler” functionality, tolerating an arbitrary number
of corruptions.

Using appropriate instantiations of the outer and inner protocols, this frame-
work yields a constant-overhead (in fact, constant-rate) actively-secure protocol
for boolean functionalities in the dishonest majority setting with a constant
number of parties m. However, it does not obtain constant overhead for a super-
constant m, as we now explain.

To watch or not to watch? The high-level idea of the IPS compiler it to
have the m parties “virtually” execute the outer protocol by emulating its n
servers. Specifically, the parties first obtain (through some joint computation)
secret shares of the initial server states, then use the inner protocol on the
shared states to generate (secret shares) of the outputs of the “next message”
functions of each server. Since the outer protocol is only secure when a majority
of the servers are honest, the parties must insure that most servers were cor-
rectly emulated, for which it suffices to verify that the parties behave honestly
in sufficiently many of the inner protocol executions. The IPS compiler intro-
duces a novel “watchlist” mechanism in which parties “watch” each other to
enforce such honest behaviour. More precisely, every party Pi picks a random
subset of t servers for which it learns the entire internal state throughout the
computation. Consequently, Pi can check that all parties honest emulated the
t servers, and abort if some party misbehaves. The identity of servers watched
by honest parties remains hidden from the adversary, thus even a single honest
party forces the adversary to honestly emulate most (specifically, a majority)
of the servers. In terms of parameters, obtaining a 2−Ω(s) soundness error for a
statistical security parameter s requires t, n = Ω(s). Since each corrupted party
can choose an arbitrary subset of t watched servers, and there could be m − 1
corrupted parties, privacy is only preserved when (m−1)t < n/2. Since achieving
constant-overhead requires n = O(s), this is only possible for m = O(1).

Compute first, check later. To solve this problem, our first idea is to have
a single random subset of t servers which are simultaneously watched by all
parties. Of course, now that the identity of the watched servers is known to
all parties, it cannot be revealed before the computation has been completed.
Instead, the subset is chosen using joint coin-tossing after the circuit has been
evaluated, but before the output is reconstructed from the output shares. Cor-
rectness is preserved similarly to the original IPS compiler, but checking honest
behavior after-the-fact might violate privacy. Indeed, unlike the IPS compiler we
can no longer “catch” the adversary as soon as it deviates from the protocol,

192 C. Hazay et al.

which raises two privacy concerns. First, by actively deviating from the proto-
col, the adversary can potentially violate the inner protocol privacy, and learn
intermediate values during the circuit evaluation. Second, the adversary can
potentially violate the privacy of the outer protocol, by “corrupting” a majority
of the servers in the outer protocol (i.e., by not emulating them correctly). We
note that even if the inner protocol has the stronger guarantee of remaining
private even against active adversaries, this does not resolve the second issue
because as long as the inner protocol is not actively-secure, active corruptions
in it might violate correctness, which corresponds to corrupting servers in the
outer protocol. Thus, an active adversary might still violate privacy in the outer
protocol by violating correctness in the inner protocol (thus, in effect, corrupting
possibly a majority of the servers).

Our approach. Due to these issues, we take a step back, and (instead of extend-
ing the IPS framework) focus on designing a new compiler that amplifies the
security of a passively-secure inner protocol via a tailor-made outer protocol.
Since we use different instantiates of the inner protocol, we model it more gen-
erally, assuming the parties have oracle access to an ideal multiplication func-
tionality FMULT that works over some agreed-upon secret sharing scheme S. We
note that in our compiler, we will not refer to “servers” (or an “outer” protocol),
but rather think of these as “copies” of the circuit.

The combined protocol. To highlight the main components of our framework,
we describe a basic MPC variant that will loosely rely on the passive BGW [5]
protocol. Though this does not yield our asymptotic results, it will serve as
a good starting point, which we build on to obtain our final framework (as
described towards the end of the section).

At the onset of the computation each party Pi secret shares its input xi using
Shamir’s secret sharing scheme with privacy parameter t, to obtain the shares(
X1, . . . , Xn

)
(as in the passive-BGW protocol). Then, Pi generates additive

shares
(
xl

j

)
of each Shamir share X l, and sends

(
xl

j

)
l∈[n]

to Pj . The protocol
will evaluates the circuit gate-by-gate as in passive-BGW, where addition gates
are locally computed. We will preserve the invariant that when parties evaluate
a gate G, they collectively hold additive shares of Shamir shares of the values of
its input wires. That is, if G’s inputs are values a, b which in the passive-BGW
protocol have Shamir shares

(
A1, . . . , An

)
,
(
B1, . . . , Bn

)
(respectively), then for

every l ∈ [n], party Pi holds values al
i, b

l
i such that

∑
i al

i = Al and
∑

i bl
i = Bl.

In passive-BGW, multiplications are performed by having each party locally
multiply its Shamir shares Al, Bl, followed by all parties jointly running a degree-
reduction sub-protocol on these products. However, in our modified protocol
parties can no longer locally compute the products Al · Bl, because no party
knows Al, Bl (parties only know additive shares of these values). To solve this
issue, we use an ideal distributed-multiplication functionality FMULT which takes
as input additive shares of two values x, y, and outputs a (fresh) additive sharing
of their product x·y. (We discuss FMULT instantiations below.) This allows parties
to learn additive shares of each product Al · Bl.

The Price of Active Security in Cryptographic Protocols 193

Once (additive shares of) the products Al · Bl have been computed, degree
reduction should be performed. In the classical passive-BGW protocol, degree
reduction requires expensive communication, which is improved by protocols
such as [13]. We use a new approach that significantly reduces the communication
complexity, leveraging the fact that degree-reduction is a linear operation over
the Shamir shares.

Local degree-reduction. Each party locally performs degree reduction over
its additive shares of the Shamir shares. Across all parties, the additive shares
obtained as a result of this procedure constitute a valid Shamir sharing of the
“right” value, due to the linearity properties of Shamir’s secret sharing scheme.
Intuitively, the second secret-sharing layer allows parties to locally perform
degree reduction, because it gives each party a global “view” of the protocol
execution, as an additive share of the global view of the protocol execution.

Enforcing correctness. Once the computation is completed in all copies, we
ensure it was performed correctly by incorporating a “correctness-enforcing”
mechanism into the protocol. Specifically, before opening the output shares
obtained at the outputs of all copies, we first run some correctness tests which
will check that (with high probability) all parties honestly executed the com-
putation. The output shares are revealed (and the output is reconstructed from
these shares) only if all correctness tests pass.

To explain our correctness tests, we first analyze possible malicious strategies
of corrupted parties. Roughly, a corrupted party can deviate from the protocol in
one of four ways. First, it can incorrectly share its input (i.e., the “sharing” isn’t
of the right degree t). Second, it can incorrectly perform the degree-reduction
procedure, by generating a fresh sharing that either isn’t of the right degree
(i.e., t), or doesn’t share the right value (i.e., the value shared before degree
reduction). Third, when evaluating a multiplication gate (i.e., computing the
product of Shamir shares as described above), it can use different values than
the ones provided by FMULT. Fourth, it can incorrectly perform the local linear
computations.

To handle such deviations from the protocol, we introduce three tests. The
first is a degree test, which checks that the secrets sharings used by all parties,
either to share their inputs or as input to multiplication gates, have the right
degree. The second is an equality test, which checks that the secret sharings
before and after degree reduction share the same value. The degree and equality
tests jointly guarantee that with overwhelming probability, the input sharings
are valid, and the degree reduction procedure was executed correctly (in most
copies). Similar degree and equality tests were used in [1,25] to check similar
conditions. The last test is a consistency test, which verifies that (with high
probability) parties correctly performed the local computations in (most) copies
of the circuit. This checks that the values used by the parties when evaluating
a multiplication gate are consistent with the values they obtained from FMULT,
that the local linear operations were performed correctly, and will also guarantee
the soundness of the degree and equality tests. For this test, a random subset
of copies is chosen, each party reveals its local view of the computation in those

194 C. Hazay et al.

copies, and all parties check that the views are consistent with each other. Similar
tests were used in the context of MPC-in-the-head [30,32].

We note that this high-level overview omits important details (see Sect. 4).
For example, the order in which parties commit and reveal the correctness tests’
values is crucial to preserving privacy even when the computations in most copies
are incorrect. Using this combination of correctness tests, and proving the secu-
rity of this approach is novel to our work, and requires subtle analysis.

Achieving constant communication overhead. Our basic MPC protocol
does not achieve constant communication overhead since it increases the com-
munication complexity of the underlying BGW protocol [5] by O(s), where s is
a security parameter. We reduce this overhead to constant by replacing [5] with
the protocol of Franklin and Yung [16] that uses packed secret sharing.

Loosely speaking, packed secret sharing extends Shamir’s secret sharing,
allowing a block of B secrets to be shared within a single set of shares. To
exploit the advantages of packed secret sharing, we will assume the circuit is
arranged in layers that contain only one type (addition/multiplication) of gates,
where each phase of the protocol evaluates the gates in one layer.

Using packed secret sharing introduces two main differences from the basic
protocol. First, before evaluating a specific layer the parties need to rearrange
(repack) the shared secrets corresponding to the input wire values of that layer,
to align the packing in blocks with the order of gates within the layer. Then,
the layer can be evaluated similarly to the basic protocol (where additions are
computed locally, and multiplications involve a call to FMULT, followed by a local
degree-reduction step). The second difference from the basic protocol is that to
insure correctness we must now check that the parties correctly rearranged the
shared secrets between layers. This is checked through an additional “permuta-
tion test” [1,11]. See Sect. 5 for further details.

This protocol reduces the amortized per-gate communication overhead to
constant, because in effect the packed secret sharing allows us to evaluate many
gates in one “shot”. In particular, the wider the circuit to be evaluated, the
larger the gains from employing packed secret sharing.

Instantiating the multiplication functionality FMULT. We instantiate
FMULT through a reduction to a simpler functionality FRMULT which generates
(unauthenticated) random triples. All prior protocols that relied on this abstrac-
tion (apart from [32]), used actively-secure multiplication protocols to instantiate
FMULT. Interestingly, we can greatly weaken the security of the multiplication
protocol, requiring only a passively-secure instantiation, together with a coin
tossing protocol to ensure correctly-sampled randomness. Moreover, our proto-
col can benefit from a preprocessing stage in an offline/online setting, where
the triples are generated in the offline phase, and used in the online phase. The
consistency test (described for our basic MPC protocol) will ensure, at the cost
of a small overhead, that the triples were correctly generated with respect to the
tossed coins. We note that unlike prior works, our security analysis can tolerate
a small number of ill-formed triples without violating secrecy.

The Price of Active Security in Cryptographic Protocols 195

Related techniques. Conceptually, our consistency test can be viewed as a
combination of the cut-and-choose approach [37] and the watchlist mechanism
of [32]. Indeed, on the one hand we maintain multiple copies of the computed
circuit, yet unlike the cut-and-choose technique the checked copies are not dis-
carded, but rather used in the remainder of the computation to reconstruct the
outputs. On the other hand, the purpose of our consistency test is similar to the
watchlist channels, which add privacy and correctness to passively-secure proto-
cols. The main difference between our tests and the watchlists of [32] is that in
IPS these channels are used to constantly enforce correct behaviour throughout
the protocol execution (and consequently also cause a high overhead), whereas
we perform a single consistency test after the protocol execution has (essentially)
ended, right before the output is reconstructed. These correctness enforcement
mechanisms are known to have limitations to achieving scalable MPC. Specif-
ically, the asymptotic limit of cut-and-choose is O(s/ log |C|) [49], whereas the
watchlists mechanism requires O(s ·n) virtual servers for the outer protocol [36].
In both cases, the communication grows with some statistical parameter, and is
hence neither constant-overhead nor scalable.

3 Preliminaries

In this section we provide necessary preliminaries. Further preliminaries are
deferred to the full version [28].

Basic notations. We denote a security parameter by κ. We say that a function
μ : N → N is negligible if for every positive polynomial p(·) and all sufficiently
large κ’s it holds that μ(κ) < 1

p(κ) . We use the abbreviation PPT to denote
probabilistic polynomial-time and denote by [n] the set of elements {1, . . . , n}
for some n ∈ N. We assume functions to be represented by an arithmetic circuit
C (with addition and multiplication gates of fan-in 2), and denote the size of C
by |C|. By default we define the size of the circuit to include the total number of
gates including input gates. For a random variable X, we use Supp(X) to denote
the set of values which X takes with positive probability.

3.1 Layered Arithmetic Circuits

An arithmetic circuit defined over a finite field F is a directed acyclic graph,
where nodes (or gates) are labelled either as input gates, output gates or com-
putation gates. Input gates have no incoming edges (or wires), while output
gates have a single incoming wire and no outgoing wires. Computation gates are
labelled with a field operations (either addition or multiplication),1 and have
exactly two incoming wires, which we denote as the left and right wire. A cir-
cuit with i input gates and o output gates over a field F represents a function

1 Subtraction gates can be handled analogously to addition gates, and we ignore them
here for simplicity.

196 C. Hazay et al.

Functionality MULT

Functionality MULT communicates with parties P1, . . . , Pm and adversary S
corrupting a subset I ⊂ [m] of parties. It is parameterized by a secret sharing
scheme S = (Share,Recon) (see Section 3.3 below).

1. Upon receiving the input (sid, aj , bj) from Pj record (sid, (aj , bj)).
2. If a tuple is recorded from all parties continue as follows:

(a) Compute c = Recon(a1, . . . , am) · Recon(b1, . . . , bm).
(b) Receive corrupted parties’ shares {cj}j∈I .
(c) Sample a secret sharing (c′

1, . . . , c
′
m) uniformly at random from

Supp(Share(c)) subject to the constraint that c′
j = cj for every j ∈ I.

For every j /∈ I, set cj = c′
j .

(d) Forward cj to party Pj .

Fig. 1. The multiplication functionality.

f : Fi → F
o whose value on input x = (x1, . . . , xi) can be computed by assigning

a value to each wire of the circuit. Note that this abstraction captures boolean
circuits as well, by setting F = GF(2). In this work, we will exploit an addi-
tional structure of the circuit. Specifically, the gates of an arithmetic circuit can
be partitioned into ordered layers L1, . . . ,Ld, such that i) a layer only consists
of gates of the same type (i.e., addition, multiplication, input or output gates
belonging to the same party), and ii) the incoming wires of all gates of layer i
originate from gates in layers 0 to i − 1.

3.2 Multiplication Functionalities

A core building block in our protocols is a multiplication functionality FMULT

shown in Fig. 1, that takes additive shares of two secrets over some field F and
produces additive shares of their product. In fact, we will reduce FMULT to a
random instance FRMULT, shown in Fig. 2, where all shares are chosen uniformly
at random from F. The reduction, due to Beaver [3], is as follows. Denote by [a]
the additive sharing of some value a ∈ F, namely, the tuple (a1, . . . , am). Then,
given a random triple [a], [b], [c] obtained as the output of FRMULT, and inputs
[x], [y] for FMULT, we can compute [xy] by first reconstructing e = [x + a] and
d = [y + b]. Next, the parties compute a (trivial) secret sharing [ed] of ed by
having P1 set its share to ed, and the rest of the parties set their shares to 0.
Finally, the parties compute the following equation (each party locally computes
the equation on its own shares)

[xy] = [c] + e[y] + d[x] − [ed] = [ab] + (x + a)[y] + (y + b)[x] − (x + a)(y + b).

The Price of Active Security in Cryptographic Protocols 197

Functionality RMULT

Functionality RMULT communicates with parties P1, . . . , Pm and adversary S
corrupting the subset of parties in I ⊂ [m]. It is parameterized by a secret
sharing scheme S = (Share,Recon) (see Section 3.3 below).

1. Receive corrupted parties’ shares {aj , bj , cj}j∈I .
2. Sample secret shares (a′

1, . . . , a
′
m) and (b′

1, . . . , b
′
m) uniformly at random

from Supp(Share(·)) subject to the constraint that a′
j = aj and b′

j = bj for
every j ∈ I. For every j /∈ I, set aj = a′

j and bj = b′
j .

3. Compute c = Recon(a1, . . . , am) · Recon(b1, . . . , bm).
4. Sample a secret sharing (c′

1, . . . , c
′
m) uniformly at random from

Supp(Share(c)) subject to the constraint that c′
j = cj for every j ∈ I.

For every j /∈ I, set cj = c′
j .

5. Forward aj , bj , cj to party Pj .

Fig. 2. The random multiplication functionality.

3.3 Secret-Sharing

A secret-sharing scheme allows a dealer to distribute a secret among n parties,
where each party receives a share (or piece) of the secret during a sharing phase.
In its simplest form, the goal of (threshold) secret-sharing is to allow only subsets
of players of size at least t + 1 to reconstruct the secret. More formally a t + 1-
out-of-n secret sharing scheme comes with a sharing algorithm that on input a
secret s outputs n shares s1, . . . , sn and a reconstruction algorithm that takes as
input ((si)i∈S , S) where |S| > t and outputs either a secret s′ or ⊥. In this work,
we will use Shamir’s secret sharing scheme [45] with secrets in F = GF(2κ). We
present the sharing and reconstruction algorithms below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial p(·) of
degree t in the polynomial-field F[x] with the condition that p(0) = s and
output p(1), . . . , p(n).

Reconstruction algorithm: For any input (s′
i)i∈S where none of the s′

i are ⊥
and |S| > t, compute a polynomial g(x) such that g(i) = s′

i for every i ∈ S.
This is possible using Lagrange interpolation where g is given by

g(x) =
∑

i∈S

s′
i

∏

j∈S/{i}

x − j

i − j
.

Finally the reconstruction algorithm outputs g(0).

Packed secret-sharing. The concept of packed secret-sharing was introduced by
Franking and Yung in [16] in order to reduce the communication complexity
of secure multi-party protocols, and is an extension of standard secret-sharing.

198 C. Hazay et al.

In particular, the authors considered Shamir’s secret sharing with the difference
that the number of secrets s1, . . . , s� is now � instead of a single secret, where
the secrets are represented as the evaluations of a polynomial p(·) at � distinct
points. To ensure privacy in case of t colluding corrupted parties, p(·) must have
degree at least t + �. Packed secret sharing inherits the linearity property of
Shamir’s secret sharing, with the added benefit that it supports batch (block-
wise) multiplications. This was used to design secure computation protocols with
an honest majority and constant amortized overhead [11]. For this reason, we use
this tool in our honest majority MPC protocol embedded within our dishonest
majority protocol from Sect. 4, leveraging its advantages to improve the overhead
of the former protocol.

3.4 Error Correcting Codes

A crucial ingredient in our construction is the use of Reed-Solomon codes as a
packed secret sharing scheme [16] (as defined in Sect. 3.3). In what follows, we
provide our coding notations and related definitions.

Coding notation. For a code C ⊆ Σn and vector v ∈ Σn, we denote by d(v, C) the
minimal distance of v from C, namely the number of positions in which v differs
from the closest codeword in C, and by Δ(v, C) the set of positions in which v
differs from such a closest codeword (in case of a tie, take the lexicographically
first closest codeword). For any k ≤ d(v, C), we say that v is k-close to C,
and for every k > d(v, C), we say that v is k-far from C. We further denote
by d(V,C) the minimal distance between a vector set V and a code C, namely
d(V,C) = minv∈V {d(v, C)}.

Definition 1 (Reed-Solomon code). For positive integers n, k, finite field F,
and a vector η = (η1, . . . , ηn) ∈ F

n of distinct field elements, the code RSF,n,k,η

is the [n, k, n− k +1]-linear code2 over F that consists of all n-tuples (p(η1), . . . ,
p(ηn)) where p is a polynomial of degree < k over F.

Definition 2 (Encoded message). Let L = RSF,n,k,η be an RS code and ζ =
(ζ1, . . . , ζw) be a sequence of distinct elements of F for w ≤ k. For u ∈ L we define
the message Decodeζ(u) to be (pu(ζ1), . . . , pu(ζw)), where pu is the polynomial
(of degree < k) corresponding to u. For U ∈ Lm with rows u1, . . . , um ∈ L, we
let Decodeζ(U) be the length mw vector x = (x11, . . . , x1w, . . . , xm1, . . . , xmw)
such that (xi1, . . . , xiw) = Decodeζ(ui) for i ∈ [m]. We say that u L-encodes x
(or simply encodes x) if x = Decodeζ(u).

Moreover, we recall that Decodeζ(·) is a linear operation, i.e. for any a, b ∈ F
n

(even if a, b are not in L), Decodeζ(a + b) = Decodeζ(a) + Decodeζ(b).
It will be convenient to view m-tuples of codewords in L as codewords in an

interleaved code Lm. We formally define this notion below.
2 We denote by [n, k, d]-linear code a linear code of length n, rank k and minimum

distance d, where the minimum distance of the code is the minimal weight of a
codeword in the code.

The Price of Active Security in Cryptographic Protocols 199

Definition 3 (Interleaved code). Let L ⊂ F
n be an [n, k, d] linear code over

F. We let Lm denote the [n,mk, d] (interleaved) code over F
m whose codewords

are all m × n matrices U such that every row Ui of U satisfies Ui ∈ L. For
U ∈ Lm and j ∈ [n], we denote by U [j] the j’th symbol (column) of U .

4 Basic MPC Protocol

In this section we describe a simple variant of our MPC protocol, which we build
on in Sect. 5 to achieve constant overhead.

Our starting point is a passively-secure variant of the BGW protocol [5],
which we amplify to the actively-secure dishonest-majority setting. Amplifying
the security of this protocol requires facing three challenges: (1) high overhead
due to the degree-reduction sub-protocol; (2) security holds only with a dishonest
minority; and (3) security holds only against passive corruptions.

Our strategy towards addressing the first issue is to have parties locally per-
form the degree-reduction procedure which the degree-reduction sub-protocol
implements, thus (almost) eliminating the interaction it requires. This is achieved
by using a second layer of secret-sharing.

Concretely, our MPC protocol with m parties relies on two layers of secret
sharing schemes: (1) first layer sharing: Reed-Solomon codes (which can be
thought of as Shamir’s secret sharing), denoted by L-encoding, where L =
RSF,n,k,η (cf. Sect. 3.4); and (2) second layer sharing: additive secret sharing.3

Throughout the execution, the parties hold additive shares of the L-encodings of
the wires of the evaluated circuit C. We note that using this two-layer secret shar-
ing decouples the number of parties m from the length of the encoding n, since
(unlike passive-BGW) parties no longer hold the symbols of the L-encodings. In
fact, it will be useful to have m �= n. Intuitively, this can be though of as having
the parties emulate n copies of C, where the wires of the l’th copy carry the
l’th symbol in the L-encodings of the wire values of C, and these symbols are
additively shared among the parties. The execution maintains the invariant that
when evaluating the gates in layer L, the parties hold for each copy l additive
shares of the l’th symbols in the L-encodings of the outputs of previous layers.

Our protocol is described in the FRMULT-hybrid model (cf. Sect. 3.2) which
generates m additive shares of random triples, and is used to execute multipli-
cations. In more detail, the parties evaluate the n copies of C layer by layer,
locally performing additions, substractions and multiplications by a constant
(this is possible due to the linear nature of our secret sharing schemes), whereas
multiplication gates require communication.

Roughly, a multiplication gate G in the l’th copy of C is evaluated as follows.
The parties hold additive shares of the l’th symbols Al, Bl at the inputs of G,

3 We note that the second layer sharing is added “on top” of the secret sharing used
in BGW, and differs from the resharing performed in BGW (in which Shamir shares
are reshared using Shamir ’s scheme). This additional layer of additive sharing allows
us to exploit the linearity of BGW’s degree reduction procedure to perform degree
reduction locally.

200 C. Hazay et al.

and use FRMULT (and a reduction from FMULT to FRMULT, described in Sect. 3.2)
to obtain additive shares of the product AlBl. Across all copies, these products
form an L̃-encoding of the output wire of G, where L̃ = RSF,n,2k,η. To obtain a
fresh L-encoding of the output wire, each party interprets its additive shares of
the L̃-encoding (across all copies) as an encoding in RSF,n,n,η, decodes it, and
then generates a fresh L-encoding of this decoded value. The additive shares
obtained through this procedure reconstruct to the correct value because degree
reduction is a linear operation.

Employing a second secret-sharing layer solves the second challenge (that
passive-BGW is only private in the honest majority setting) since a subset of
parties learn only a strict subset of additive shares. The third challenge (passive-
BGW is only secure against passive corruptions) is handled by incorporating
correctness-enforcing tests into the protocol, as described in Sect. 2.

Our detailed protocol is given in Figs. 3, 4 and 5. We next state the following
theorem; its proof appears in the full version [28].

Theorem 1. Protocol Φ described in Figs. 3, 4 and 5 securely realizes F in the
(FCOM,FRMULT,FCOIN)-hybrid model, tolerating m−1 active (static) corruptions,
with statistical security error

(1 − e/n)δ +
n − k + 2

|F| + 2−Ω(e)

where k > δ + 4e,n > 2k + 4e and e ≤ (n − k + 1)/3.

Proof sketch. The simulation follows by having the simulator Sim execute
the protocol with the adversary, emulating the ideal functionalities for it, and
emulating the honest parties on dummy 0-inputs. Before executing the output
decommitment step, Sim performs several checks regarding the actions of the
corrupted parties. Specifically, the simulator determines the set E of copies for
which, if they were chosen during the consistency test, the test would fail. It also
identifies the set E′ of copies in which the FRMULT values the corrupted parties
committed to are inconsistent with the ones Sim provided to them. Then, it
verifies that |E| ≤ e, |E|′ ≤ 3e, and that there exist Û , X̂i, i ∈ [m], and ẑ
which are valid encodings in the appropriate (interleaved) codes that agree with∑

i∈[m] Ui,Xi, i ∈ [m], and
∑

i∈[m] zi (respectively) except for the copies in E. It
also verifies that there exists a V̂ in the interleaved code over L̃ that agrees with∑

i∈[m] Vi except for the copies in E ∪ E′. We note that Sim can perform these
checks because it emulated the internal ideal functionalities for the adversary,
whereas the honest parties in the protocol cannot perform these checks. If all
checks pass then Sim can extract effective inputs for the corrupted parties, and
use them to obtain the output from the trusted party. Finally, Sim “corrects”
the output shares of the honest parties to share the correct outputs.

Next, we highlight some of the challenges we face when proving indistin-
guishability of the simulated and real views. Recall that unlike [32] we run a
single consistency test, right before output reconstruction. Thus, we essentially

The Price of Active Security in Cryptographic Protocols 201

Protocol Φ.

– Inputs. Pi’s input is xi for all i ∈ [m]. The parties share a description of an
arithmetic circuit C with fan-in 2 which contains h multiplication gates and
implements functionality .

– Initialization.
The parties invoke the RMULT functionality hn times. Each invocation yields
additive shares r11, . . . , r

1
m

)
, r21, . . . , r

2
m

)
and r31, . . . , r

3
m

)
, with party Pi

holding (r1i , r2i , r3i), such that rj =
∑m

i=1 rj
i for j ∈ {1, 2, 3}, and r3 = r1 · r2.

Each party Pi generates a random L-encoding γi = (γ1
i , . . . , γn

i) of a random
value, a random L encoding νi = (ν1

i , . . . , νn
i) of 0, and a random L̃ encoding

γ̃i = (γ̃1
i , . . . , γ̃n

i) of 0. Pi samples a tuple (ψ1
i , . . . , ψ

m
i) such that ψj

i ∈ F
n

and
∑m

j=1 ψj
i is the all-0 vector. Pi sends ψj

i to party Pj . These “blinding”
encodings are used in the degree and equality tests of Figure 4.
Then, for every copy l ∈ [n], Pi commits using COM to:

• The triples obtained from the (l − 1) · h + 1, . . . , hl’th invocations of the
RMULT oracle.

• γl
i, ν

l
i , γ̃

l
i and ψj,l

i (i.e., the l’th element of ψj
i) for every j.

– Input sharing. Each party Pi generates a random L-encoding
Xi = X1

i , . . . , Xn
i

)
of its input xi (where Xl

i will be used in the evaluation of
the l’th copy of C), and commits to X1

i , . . . , Xn
i using COM. For every

1 ≤ l ≤ n, Pi generates an additive sharing xl
i,1, . . . , x

l
i,m

)
of Xl

i , and sends
xl

i,j

)
l∈[n]

to Pj . Each party Pi uses the shares xl
j,i (j ∈ [n]) as its inputs to

the l’th copy.

– Emulating the computation. For every copy l ∈ [n] of C, every layer
L ∈ [d] in C, and every gate G ∈ [w] in layer L (where w is the width of C), do:
1. Additions/subtractions. If G is an addition or subtraction gate, each

Pi performs the gate operation by applying it locally on the additive
shares maintained as the inputs of that gate in the l’th copy.

2. Multiplications. To compute a multiplication gate, the parties invoke
the following multiplication protocol, where each party uses as inputs its
l’th-copy shares of the inputs of G.

• For every i, let al
i, b

l
i denote the shares of the inputs of G which Pi

holds in the l’th copy of C. Then the parties compute additive shares
c̃l
1, . . . , c̃

l
m

)
of (

∑m
i=1 al

i)(
∑m

i=1 bl
i), where Pi receives c̃l

i, via the
reduction from MULT to RMULT (described in Section 3.2), using the
first unused triple obtained from RMULT in the (next unused portion
of the) randomness generation phase above.

• Then, Pi locally performs degree reduction on its shares c̃1i , . . . , c̃
n
i as

follows: it interprets c̃1i , . . . , c̃
n
i

)
as an encoding in RSF,n,n,η, and

applies the decoding procedure to obtain a value oi. It then generates
a fresh L-encoding c1i , . . . , c

n
i

)
of oi, which it uses as the additive

shares of the output of G across the n copies. (We note that c̃1i , . . . , c̃
n
i

are additive shares of a purported L̃-encoding where L̃ = RSF,n,2·k,η,
but as a length-n encoding it is always consistent with valid
encoding in RSF,n,n,η.)

– Output commitments. For the output wire z, let wi be the additive shares
held by party Pi for the output. Then, Pi computes zi = wi + νi where νi is
the L-encoding of 0 committed to during the initialization step. Then, Pi

Fig. 3. Actively secure MPC Φ – Part 1 (circuit emulation).

202 C. Hazay et al.

Correctness tests. The following tests are performed to verify that the parties
correctly evaluated the n copies of C (including the degree reduction step
executed after each multiplication gate).

– Commit to degree test. This test checks that the input encodings and the
shares produced by all parties at the end of every degree reduction step are
valid L-encodings. This is done by checking that a random linear combination
of the sum of all these shares is a valid encoding in L = RSF,n,k,η.
More precisely, the parties first obtain from COIN random vectors r ∈ F

h,
r′ ∈ F

m, and r′′ ∈ F (recall that h is the number of multiplication gates in
C, and m is the number of inputs — one from each party). Next, each party
Pi constructs the matrix Ui ∈ F

h×n that contains the L-encodings obtained
after the degree reduction step of all multiplication gates (arranged in some
arbitrary order, agreed upon by all parties). Then, Pi locally computes

qi = rT Ui + r′
iXi + r′′νi + γi,

where Xi is the L-encoding of Pi’s input xi committed at the input sharing
step, νi is the L-encoding of 0 committed to by Pi at the initialization step
and γi is the blinding L-encoding committed to at the initialization step. Pi

then commits to each element of qi, and each column of Ui, using COM.

– Commit to equality test. This test checks that the degree reduction step
was performed correctly. This is done by checking that a random linear
combination of the sum of differences of shares before and after the degree
reduction step (performed as part of evaluating a multiplication gate) is a
valid encoding of 0 in L̃ = RSF,n,2k,η.
Specifically, the parties obtain from COIN a random vector
α = (α1, . . . , αh) ∈ F

h and random element β ∈ F. Pi sets Vi to contain the
additive shares which Pi obtains from the MULT to RMULT reduction
computed during the evaluation of multiplication gates. Next, Pi locally
computes:

q̃i = αT (Vi − Ui) + βνi + γ̃i + bi

where bl
i =

∑m
j=1 ψi,l

j , γ̃i is the L̃-encoding of 0 from the initialization step.
Finally, Pi commits to each element of q̃i using COM.

Fig. 4. Actively secure MPC Φ – Part 2 (correctness tests commitments).

have one “shot” to catch the adversary, causing the test to be more involved.
Another challenge is that parties are only committed to small portions of the
execution, whereas in [32] parties commit to all their messages via the watchlists
channels. Consequently, Sim cannot verify correct behavior directly by checking
the messages, and instead we need to show that the messages can be extracted
from the partial information which parties commit to. Fortunately, we show that
correctness can be defined based on the FRMULT inputs, and the transcript of the
reduction from FMULT to FRMULT. Finally, correctness is guaranteed by the com-
bination of local and global checks in our protocol. Specifically, the consistency

The Price of Active Security in Cryptographic Protocols 203

– Consistency test. This test checks that the parties correctly executed the
local computations in each copy.
P1, . . . , Pm obtain from COIN a random subset Γ ⊂ [n] of size δ. For every
l ∈ Γ , each Pi opens its entire view of the execution of the l’th copy of C.
Specifically, Pi decommits Xl

i , and the randomness (including all components
of the commitments generated in the initialization step) it used in the
execution of the l’th copy. It also opens the commitments to the degree and
equality tests, and the additive shares of the final outputs of the l’th copy.
Then, Pi checks (as described next) that all local computations in the copies
in Γ were performed correctly, aborting if an inconsistency is detected.
To check the l’th copy, Pi first checks that for every j ∈ [m],∑

j′∈[m] ψ
j′,l
j = 0. Then, it obtains the l’th column of Uj and zj from the

decommitments of Pj , and uses the decommitments to RMULT values to
determine the multiplication triples used by all parties for the l’th copy.
Using these triples, Pi determines the inputs and outputs each party used in
each multiplication gate of the l’th copy. Having determined the outputs of
multiplication gates, Pj can reconstruct the l’th column of Vj . Moreover,
since the final output is a linear combination of outputs of multiplication
gates and parties’ inputs,

∑
j wl

j can be obtained by computing this linear
combination over the corresponding rows in

∑
j Uj ’s and the Xj ’s.

Since addition gates are evaluated locally, correct execution of addition gates
can be verified by checking that the inputs to all multiplication gates were
computed correctly. Recall that an input to a multiplication gate is a linear
combination of outputs of previous multiplication gates and parties’ inputs.
Thus, correctness can be checked by verifying that the sum of additive
shares used as inputs to multiplication gates by all parties (as inferred from
the RMULT triples, and the transcript), and the linear combination of the
corresponding rows in

∑
j Uj and the Xj ’s, are equal. Parties also verify

that the reduction from MULT to RMULT was computed correctly in the
l’th copy, and that zl

i = wl
i + νl

i for every i.
– Degree test check. The parties decommit the degree test commitments for

all remaining copies l /∈ Γ , namely each Pi opens the commitment to the
value qi computed in Figure 4. (Note that the parties do not decommit the
remaining columns of Ui.) Each party computes the vector
q = (q1 + . . . + qm) and aborts if q is not a valid L-encoding.

– Equality test check. The parties decommit their equality test
commitments for all copies l /∈ Γ , namely each Pi opens the commitment to
the value q̃i computed in Figure 4. Each party computes q̃ = (q̃1 + . . . + q̃m),
and aborts if either q̃ �∈ L̃ or q̃ does not decode to the value 0.

– Output decommitments. If the consistency, degree and equality tests
pass correctly, then every party Pi decommits its output commitments for
all copies l /∈ Γ . The parties then locally reconstruct z =

∑
i zi, and if it is

an L-encoding, decode the output of C from the encoding.

Fig. 5. Actively secure MPC Φ – Part 3 (correctness tests).

204 C. Hazay et al.

test verifies local correctness of the computation within each copy, by inspect-
ing a subset of copies; and the degree and equality tests verify that some global
relation holds over all copies (i.e., all additive shares).

In the proof, we show that if all the protocol tests pass then except with neg-
ligible probability, all the conditions checked by the simulator before the output
reconstruction phase hold, and moreover the output is consistent with the outputs
of the honest parties, and the effective outputs that Sim extracts for the corrupted
parties. Thus, it suffices to prove indistinguishability of the simulated distribu-
tion and a hybrid distribution which is obtained from the real execution by per-
forming Sim’s checks, and aborting if they are violated. The difference between
the hybrid and simulated distributions is that the honest parties use their real
inputs in the former, and 0-inputs in the latter. We prove indistinguishability by
a case analysis based on which tests pass. Intuitively, the views revealed during the
consistency tests are identically distributed due to the secrecy of Shamir’s secret
sharing scheme (alternatively, Reed-Solomon codes). The degree test values are
indistinguishable because the honest parties’ values are valid L-encodings, which
are uniformly random due to the masking by the γi’s. The equality test values are
indistinguishable because the sum of honest parties’ values are valid L̃-encodings
of 0, which are uniformly random subject to this constraint due to the masking
by the γ̃i’s. Since the equality test values are masked by additive shares of 0, the
values themselves are identically distributed. Finally, conditioned on all tests pass-
ing, the output shares are uniformly random L-encodings whose sum encodes the
correct output, due to the masking by the νi’s.

Communication complexity of protocol Φ. Assuming the existence of a
PRG, parties can commit to their FRMULT triples by committing (during the
initialization step) to a PRG seed for each copy (the other initialization-phase
commitments are generated as in Fig. 3). Consequently, the total communication,
assuming rate-1 commitments, is:

n · m · (κ + (3 + m) · log2 |F|)
︸ ︷︷ ︸

rnd/blind com.

+ m · n · log2 |F|
︸ ︷︷ ︸

input commitments

+ m2 · n · log2 |F|
︸ ︷︷ ︸

input sharing

+ n · h · CCMULT
︸ ︷︷ ︸

multiplication

+ |Γ | · m · (κ + (4 + m) · log2 |F|)
︸ ︷︷ ︸

consistency test

+ 2 · m · n · log2 |F|
︸ ︷︷ ︸

degree test com. and dec.

+ 2 · m · n · log2 |F|
︸ ︷︷ ︸

equality test com. and dec.

+ 2 · n · m · log2 |F|
︸ ︷︷ ︸

output com. and dec.

where CCMULT is the communication complexity of the m-party multiplication
protocol (implementing FRMULT and the FMULT to FRMULT reduction), and h is
the number of multiplication gates in the circuit. (We note that the degree and
equality test commitments revealed during the consistency test are counted as
part of the degree and equality test terms, resp.) In order to get 2−Ω(s) soundness,
we need to set n = O(s). Assuming s ≤ κ, the overall communication complexity
can be bounded by O(s · h · CCMULT) + poly(m,κ, log2 |F|). Since h represents
the size of the circuit (i.e. number of multiplication gates), the best passive
protocol in the FMULT-hybrid can be bounded by O(h) · CCMULT. Therefore, the
communication overhead of our basic variant is O(s).

The Price of Active Security in Cryptographic Protocols 205

4.1 Instantiating FRMULT

Recall from Sect. 4.1 that FRMULT is the multiplication functionality that outputs
three tuples of additive shares a, b, c such that the “inputs” a, b share random
values a, b, and the “output” c shares the product a ·b. In this section we discuss
how to realize this functionality, while identifying the minimal security properties
required from it.

Our first observation is that we do not need an actively-secure implemen-
tation of the FRMULT functionality. In fact, it suffices to consider a protocol
that is only “private” against active adversaries, in the sense that throughout
the protocol execution, an actively corrupted party cannot violate the privacy of
the honest parties’ inputs. In particular, the underlying implementation does not
have to retain correctness in this case, or provide a mechanism for extracting the
adversary’s inputs. Extraction in our protocol is achieved by requiring the adver-
sary to commit to its input and randomness used for the FRMULT-functionality.
Correctness, on the other hand, is enforced through our consistency test that
ensures correctness of the computations in most of the copies, by checking a
random subset of δ copies.

When computing a boolean circuit, the pairwise products of the shares can be
computed using Oblivious Transfer (OT) [3,41]. Based on the discussion above,
it suffices to use a private OT protocol [24]. Indeed, consistency between the dif-
ferent OT executions will be verified during the consistency test of our protocol,
as discussed above.4 Intuitively, privacy is guaranteed because an OT sender has
no output in the execution, and the security/privacy of OT ensures that even if
the sender cheats it learns nothing about the receiver’s input. Moreover, though
an OT receiver can use inconsistent inputs in the OT executions with different
honest parties, this can only violate correctness, and not privacy, since the out-
put of each OT execution is an additive share of the cross product (e.g., ai · bj),
which reveals nothing about the other party’s share. Similarly, when working
over large fields, FRMULT can be realized using private OLE, where private OLE
can be defined analogously to private OT, requiring that parties do not infer
any additional information (except what can be inferred from their inputs and
outputs).

Relaxing to passive implementation of the FRMULT-functionality. We
can further weaken the security requirement on the FRMULT implementation,
by incorporating the reduction from defensible privacy to passive security. We
first informally review the notion of defensible privacy which was introduced
by Haitner in [22,23]; see [23] for the formal definitions. Let π be a two-party
protocol between P1 and P2, and let trans = (q1, a1, . . . , q�, a�) be a transcript
of an execution of π when P1 is controlled by an adversary A, where qi denotes
the i’th message from P1, and ai denotes the i’th message from P2 (that is,
ai is the response to qi). Informally, a defence of A relative to trans, which is

4 More specifically, we use OT between pairs of parties to compute a 2-out-of-2 additive
secret sharing of the product they should compute. Then. we perform the consistency
check, and reconstruct the outputs of OTs only if this test passes.

206 C. Hazay et al.

provided after the protocol execution ends, is a pair (x, r) of input and random
tape for P1. We say that a defence (x, r) of A relative to trans is good if the
transcript generated by running the honest P1 with input x and random tape
r against P2’s messages a1, . . . , a� results exactly in trans. Intuitively, a defense
(x, r) is good relative to trans if, whenever Pi uses (x, r) in an honest execution
of π, the messages sent by Pi are identical to the messages sent by the adversary
in trans. Thus, in essence, a defense serves as a “proof” of honest behavior.
Defensible privacy guarantees that when the adversary provides a good defence,
then it learns nothing beyond what can be inferred from its input and prescribed
output.5

The security of a passive protocol can be amplified to defensible privacy by
adding a coin tossing phase (which, in our case, samples the inputs to FRMULT),
and ensuring that these coins were indeed used in the passive execution. The
latter can be checked as part of our consistency test, however to guarantee pri-
vacy we cannot postpone this check until the consistency test is performed at
the end of the circuit emulation, since by that time the adversary could have
already violated privacy by using badly-sampled randomness. Thus, we include
in our protocol two consistency tests: the first is the consistency test described
in Fig. 4, and the second checks consistency of FRMULT inputs and the tossed
coins, and is executed during the initialization phase. This second consistency
test ensures that with overwhelming probability, all but (possibly) a small subset
of random triples are correct (namely, the aggregated parties’ shares correspond
to c = a · b), and consistent with the random coins. This will suffice for our secu-
rity analysis, because the number of copies will be sufficiently large such that by
cheating in a small number (< k) of copies, the adversary learns nothing.

Relaxing further to weaker than passive. Following ideas from [25], our
protocol can, in fact, tolerate an imperfect passive OLE, namely one that has a
non-negligible statistical privacy or correctness error. This security feature can
be turned into an efficiency advantage. For example, imperfect FRMULT can be
implemented more efficiently by aggressively setting the parameters in existing
LWE-based OLE constructions, see the full version [28] for details.

5 Actively Secure MPC with Constant Communication
Overhead

In this section we present our main result, namely, an MPC protocol for an
arbitrary number of parties that achieves constant communication overhead over
the passive GMW protocol.

5 For instance, an OT protocol is defensibly private with respect to a corrupted sender
if any adversary interacting with an honest receiver with input u, and providing a
good defence at the end of the execution, does not learn u. Similarly, an OT protocol
is defensibly private with respect to a corrupted receiver if for any input u, and any
inputs (v0, v1) for the sender, any adversary interacting with the honest sender with
input (v0, v1), that is able to provide a good defense for input u, does not learn v1−u.

The Price of Active Security in Cryptographic Protocols 207

On a high-level, we will incorporate a variant of the protocol of Frankling and
Yung [16] instead of [5] in our basic MPC protocol. Recall that the main overhead
in the basic MPC protocol is caused by the n = O(s) copies of the circuit
used to perform the computation, where s is a statistical security parameter.
Then, similar to [16] we improve the communication overhead, achieving constant
overhead, by having all copies evaluate multiple gates in parallel using packed
secret sharing. Our protocol will achieve constant-overhead for moderately wide
circuits (See Sect. 6 for a more detailed discussion.)

In more detail, given a circuit C, and block-width parameter B, the par-
ties agree on a divisions of the circuit evaluation into layers, where at most B
multiplication gates are evaluated in parallel in each layer, and arbitrary linear
operations are performed between layers. During the evaluation of the proto-
col on a specific input, we can associate with each layer of gates G a vector
(block) BG

O of B values whose i’th position contains the output value assigned
to the i’th gate in the layer (or 0 if the block has less than B gates). For each
layer (except blocks of input gates), we will associate two additional blocks: a
“left” block BG

L and “right” block BG
R whose i’th position contains the value of

the left input wire and right input wire of the i’th gate, respectively. In other
words, the value of the i’th gate of a multiplication block can be expressed as
(BG

O)i = (BG
L)i(BG

R)i. In the protocol, the parties will collectively operate on
an efficient (constant-rate) Reed-Solomon encoding (equivalently, packed secret
shares) of each block. The protocol parameters include a description of the Reed-
Solomon code L = RSF,n,k,η, and a vector of elements ζ = (ζ1, . . . , ζB) ∈ F

B

which is used for decoding.
Next, we describe our protocol, simulation and proof by specifying the main

differences from the description of the basic protocol from Sect. 4.

– Initialization. Recall that each party generates γi,νi, γ̃i and (ψ1
i , . . . ,ψ

m
i).

The parties generate the same vectors except that γi is a random L-encoding
of a random block of values, and νi and γ̃i are random L and L̃ encodings of
the all 0’s block. In addition, the parties generate a random L′-encoding γ′i =
(γ′i

1, . . . , γ
′i
n) of a block of values that are random subject to the condition

that they add up to 0, where L′ = RSF,n,k+B,η.
– Input sharing. The parties share a block rather than a single element.

Namely, the parties embed their input value(s) into a block of length B, and
generates a packed secret sharing L-encoding for this block, distributing the
outcome as in the basic protocol.

– Emulating the computation. The computation proceed in layers of mul-
tiplication gates, where for each layer, we maintain the invariant that the
parties hold additive shares of the inputs to the (at most) B multiplication
gates in the layer. The difference from the basic protocol is that before evalu-
ating a layer, the parties need to repack the inputs to the layer. (See discussion
below on why repacking might be needed.)
Concretely, to evaluate a layer, each party first rearranges the left wire values
and right wire values of the multiplication gates in the layer into blocks BL

and BR, and generates an L-encoding of each block. For every i, let al
i, b

l
i

208 C. Hazay et al.

denote Pi’s shares of BL, BR (respectively) corresponding to the l’th copy.
Then the parties compute (via the reduction from FMULT to FRMULT) addi-
tive shares

(
c̃l
1, . . . , c̃

l
m

)
of (

∑m
i=1 al

i)(
∑m

i=1 bl
i), where Pi receives c̃l

i, just as in
the basic MPC protocol. Then, each Pi locally performs the degree reduction
procedure as in the basic MPC protocol, with the difference that Pi decodes
(c̃1i , . . . , c̃

n
i) to obtain a block of values which it uses as the additive shares of

the outputs of the multiplication gates in the layer.
Why repacking is needed. To see why rearranging the values within and
between blocks might be necessary, consider a circuit that has a wire con-
necting the 3’rd value in the 2’nd block in layer 1 with the 5’th value in the
3’rd block in layer 2; or a wire connecting the 4’th value in the 1’st block in
layer 1 with the 2’nd value in the 1’st block in layer 2.6

– Correctness tests. We will employ the equality test as before, modify
the degree test to also check the repacked encodings, and add an additional
permutation test, as described next.

– The modified degree test. As in the basic protocol, the degree test will
compute a random linear combination of the tested encodings. These encod-
ings include the blocks Xi encoding the parties’ inputs (which were com-
mitted in the input sharing step), the block of 0s encoded in νi (which was
committed in the initialization step), and the matrix Ui which contains L-
encodings of the blocks of additive shares that were obtained from the degree
reduction step following a multiplication step (Ui was committed to during
the commit to degree test step). The difference from the degree test of the
basic MPC protocol is that the linear combination will now also include an
additional matrix U ′′

i which contains the L-encodings of the repacked blocks
of additive shares that were used as inputs to multiplication gates. (We note
that these values are never committed to, but as explained in the proof of
Corollary 2 below, can be extracted by the simulator from the transcript of
the execution.) More formally, the parties will obtain from FCOIN random
vectors r, r′, r′′′, and a random value r′′, and party Pi will compute

qi = rT Ui + r′′′T U ′′
i + r′

iXi + r′′νi + γi.

Permutation test: This test verifies that the parties correctly permute (i.e.,
rearrange) the additive shares of wire values between layers. In particular,
the test verifies that the encodings of the left and right input blocks of each
computation layer correctly encode the values from the previous layers (and
similarly for the output blocks). Note that the set of constraints that the
blocks of values have to satisfy can be expressed as a set of linear equations in
at most mB equations and mB variables (where w is the width, d is the depth
of the computed circuit, and m = dw/B), where variable xi,j represents the
j’th value in the i’th block. (For example, if the circuit has a wire between

6 Addition gates do not require repacking: they can be computed locally (because par-
ties hold additive shares of the wire values), then repacked for the next multiplication
layer.

The Price of Active Security in Cryptographic Protocols 209

the 3’rd value of the 2’nd block and the 5’th value in the 3’rd block, the
corresponding constraint would be x2,3−x3,5 = 0.) These linear equations can
be represented in matrix form as Ax = 0mB, where A ∈ F

mB×mB is a public
matrix which only depends on the circuit being computed. The permutation
test simply picks a random vector r ∈ F

mB and checks that (rT A)x = 0.
To check these constraints, the parties obtain from FCOIN a random vector
r ∈ F

mB and compute

rT A = (r′
11, . . . , r

′
1B, . . . , r′

m1, . . . , r
′
mB).

Now, let rj(·) be the unique polynomial of degree < B such that rj(ζQ) = r′
jQ

for every Q ∈ [B] and j ∈ [m]. Then party Pi locally computes q′
i =

(r1(ζi), . . . , rm(ζi))T U ′
i + γ′

i, where γ′
i is the blinding encoding from the ini-

tialization step (that encode in RSF,n,k+B,η random blocks of values that sum
to 0), and U ′

i is the matrix obtained by concatenating the rows of Ui and U ′′
i

from the degree test. Notice that the rows of U ′
i consist of the L-encodings

which Pi obtained at the output of multiplication layers (after degree reduc-
tion), and the L-encodings it used as inputs to multiplication layers (after
repacking). Finally, Pi commits to each element of q′

i using FCOM.
– Consistency test check. In the consistency test, we also check for all

l ∈ Γ that the permutation test values of copy l were computed correctly.
Specifically, each party checks that for every i ∈ [m], the l’th element of q′

i is
consistent with the l’th element of γ′

i, the l’th column of U ′
i , and r (the coins

obtained from FCOIN for the permutation test).
– Permutation test check. The parties decommit their permutation test

commitments for all copies l /∈ Γ , namely each Pi opens the commitment
to the value q′

i computed above. Each party computes q′
i = (q′

1 + . . . + q′
m),

and aborts if q′ = (q′
1, . . . , q

′
n) �∈ RSF,n,k+B,η or x1 + · · · + xw �= 0 where

x = (x1, . . . , xw) = Decodeζ(q′).

The following Theorem follows from Theorem 1 and the discussion above; its
proof appears in the full version [28].

Theorem 2. The packed variant of protocol Φ of Figs. 3, 4 and 5 securely real-
izes F in the (FCOM,FRMULT,FCOIN)-hybrid model, tolerating m−1 active (static)
corruptions, with statistical security error

(1 − e/n)δ + ((e + k + B)/n)δ + (n − k + 3)/ |F| + 2−Ω(e)

where k > δ + 4e + B, n > 2k + 4e, and e < (n − k + 1)/3.

Assuming that each layer of the circuit has at least B parallel multiplications,
the communication complexity of this variant is given by O(n · h

B · CCMULT) +
poly(m,κ, log2 |F|) since we amortize over B multiplications. By setting n = O(s),
the amortized communication overhead of this protocol becomes O(1) per copy.
Circuits of an arbitrary structure can be easily handled at a worst-case additional
cost of poly(s, d). The statistical error can be improved by repeating the tests.
The analysis presented above works for fields of size larger than n, for smaller
fields, we can rely on the analysis from [11].

210 C. Hazay et al.

6 Corollaries and Applications

In this section we consider several different instantiations of the FRMULT func-
tionality, thus obtaining our main results in the different settings as instances of
the generic protocol of Sect. 5.

6.1 Constant Overhead MPC for Constant-Size Fields

Dishonest majority. Our main result is obtained by replacing the Reed-
Solomon codes in our protocol with Algebraic Geometric (AG) secret sharing
over fields of constant size [8], instantiating the FRMULT functionality with pair-
wise calls to a passively-secure implementation of the FOT functionality, and
instantiating commitments using a pseudorandom generator. Formally:

Theorem 3 (Theorem 1, restated). Let κ, s denote computational and sta-
tistical security parameters (resp.), m denote the number of parties, and F be a
constant-size field. Then there exists a protocol compiler that, given a pseudoran-
dom generator G with seed length κ, s, a constant-round implementation of the
FOT functionality with total communication complexity CCOT, and a description
of an m-party functionality expressed as a depth-d circuit C with constant fan-in,
outputs a UC-secure O(d)-round m-party protocol realizing f with communica-
tion complexity O(m2 |C| CCOT) + poly(m,κ, d), where security holds against an
active adversary corrupting an arbitrary number of parties.

We note that the exact constants in the overhead of Theorem 3 depend on the
concrete constants of the underlying AG code, which have not been studied
before. The communication complexity of our protocol using a bit-OT protocol
for the boolean setting asymptotically matches the communication complexity
of the best known passively-secure protocol, namely [19] using a passively-secure
OT protocol. The best known previous result for active security is due to Genkin
et al. [18] who achieve O(m2 |C| poly log(s)) communication complexity, i.e., a
multiplicative factor of poly log(s) over GMW.

Honest majority. To obtain our main result for the honest majority setting,
we need to slightly modify our protocol in two ways. First, we will rely on the
passive variant of a protocol of Damg̊ard and Nielsen [13], instantiated with
secret-sharing based on AG codes over constant-size finite fields, to instantiate
the parallel FRMULT functionality (i.e., to generate the triples in the initializa-
tion phase). To achieve this, we replace the additive secret sharing used in our
protocol with secret sharing based on AG codes for constant-size fields. We note
that the passively-secure honest-majority m-party protocol of [13] can generate
T = Ω(m) random triples with total communication complexity O(mT). Sec-
ond, we will consider FRMULT and FMULT whose underlying secret sharing scheme
is based on the same AG secret sharing scheme. Specifically, parallel FRMULT dis-
tributes secret-shares of many triples a, b and c such that a · b = c. Then the
FMULT to FRMULT reduction works essentially as in the basic protocol, where the

The Price of Active Security in Cryptographic Protocols 211

only difference is that the values e, d are reconstructed using the reconstruc-
tion procedure of the AG secret sharing scheme. Consequently, we obtain the
following theorem.

Theorem 4. Let κ, s denote computational and statistical security parameters
(resp.), m denote the number of parties, and F be a constant-size field. Then
there exists a protocol compiler that, given a pseudorandom generator G with seed
length κ, s, and a description of an m-party functionality expressed as a depth-d
circuit C with constant fan-in, outputs a UC-secure O(d)-round m-party protocol
realizing f with O(m|C|)+poly(m,κ, d) bits total communication complexity, and
security against a static adversary corrupting a minority of parties.

We remark that this improves over the result of Chida et al. [9] that achieves
O(s) overhead for binary fields, and generalizes the result of Ishai et al. [31] that
achieves the same result, but only for a constant number of parties. We remark
that the latter protocol additionally achieve constant-rate, while our protocol
only achieves constant-overhead.

6.2 Constant Overhead MPC over Fields of Arbitrary Size

Dishonest majority. To obtain our result for fields of arbitrary size, we realize
the FRMULT functionality using a passively-secure OLE protocol. For fields of size
≤ s we rely on AG sharing, whereas for fields of size Ω(s) we use Reed-Solomon
codes. Thus, we can re-derive a result of Genkin et al. [17] (Theorem 5.7 in the
full version), who construct an actively-secure m-party protocol for arbitrary
functionalities (represented by an arithmetic circuit C), in the dishonest majority
setting, using O(m2 |C|) calls to an OLE oracle. More precisely, we have the
following theorem:

Theorem 5. Let κ, s denote computational and statistical security parameters
(resp.), m denote the number of parties, and F be a field. Then there exists a
protocol compiler that, given a pseudorandom generator G with seed length κ,
s, a constant-round implementation of the FOLE functionality over F with total
communication complexity CCOLE, and a description of an m-party functionality
expressed as a depth-d arithmetic circuit C over F with constant fan-in, outputs
a UC-secure O(d)-round m-party protocol realizing f with communication com-
plexity O(m2 |C| CCOLE) + poly(m,κ, d) field elements, with security against an
active adversary corrupting an arbitrary number of parties.

This result asymptotically matches the communication complexity of the
best known passively-secure protocol [19] using a passively-secure OLE protocol.
Furthermore, for sufficiently wide circuits, we can show that the overhead of our
protocols is 2. We present the concrete parameters in the full version [28].

Honest majority. Just as in Sect. 6.1, we can obtain constant overhead over
the best passively-secure protocol in the honest majority setting:

212 C. Hazay et al.

Theorem 6. Let κ, s denote computational and statistical security parameters
(resp.), m denote the number of parties, and F be a field. Then there exists a
protocol compiler that, given a pseudorandom generator G with seed length κ, s,
and a description of an m-party functionality expressed as a depth-d arithmetic
circuit C over F with constant fan-in, outputs a UC-secure O(d)-round m-party
protocol realizing f with total communication complexity O(m|C|)+poly(m,κ, d)
bits, where security holds against a static adversary corrupting a minority of
parties.

Applying the analysis of concrete parameters (see above and the full ver-
sion [28]) we re-derive the result of Chida et al. [9] who show an overhead-2
actively-secure honest-majority protocol. Their result applies to arbitrary cir-
cuits over sufficiently large fields, whereas ours achieves overhead of 2 for suffi-
ciently wide circuits.

Acknowledgments. The first author is supported by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office, and by ISF grant 1316/18. The second
author is supported by Google Faculty Research Grant, NSF Award CNS-1618884 and
Intelligence Advanced Research Projects Activity (IARPA) via 2019-19-020700009. The
views expressed are those of the author and do not reflect the official policy or position
of Google, the Department of Defense, the National Science Foundation, or the U.S.
Government. The third author is supported by ISF grants 1861/16 and 1399/17, and
AFOSR Award FA9550-17-1-0069.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: CCS, pp. 2087–2104 (2017)

2. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 8

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

6. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure proto-
cols (abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, p. 462.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 43

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/3-540-48184-2_43

The Price of Active Security in Cryptographic Protocols 213

8. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 31

9. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

10. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

11. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 30

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

13. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

14. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

15. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient
actively secure two-party computation from oblivious linear function evaluation.
In: CCS, pp. 2263–2276 (2017)

16. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: STOC, pp. 699–710 (1992)

17. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC, pp. 495–504
(2014)

18. Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty
computation. In: Hirt, M., Smith, A. (eds.) TCC-B 2016. LNCS, vol. 9985, pp.
336–366. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 14

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game acomplete-
ness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

20. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with
guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11693, pp. 85–114. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26951-7 4

21. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. In: CCS, pp. 567–578 (2015)

22. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 23

23. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box construc-
tions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)

https://doi.org/10.1007/11818175_31
https://doi.org/10.1007/11818175_31
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-53641-4_14
https://doi.org/10.1007/978-3-662-53641-4_14
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-540-78524-8_23

214 C. Hazay et al.

24. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol. 25(1), 158–193 (2012). https://doi.org/10.1007/s00145-010-
9092-8

25. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: Leviosa:
Lightweight secure arithmetic computation. In: CCS, pp. 327–344 (2019)

26. Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits
with constant communication overhead in the plain model. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 3–39. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70503-3 1

27. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

28. Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active security
in cryptographic protocols. IACR Cryptology ePrint Archive 2019, 1250 (2019).
https://eprint.iacr.org/2019/1250

29. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 458–475. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 26

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30 (2007)

31. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

32. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

33. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

34. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

35. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

36. Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: optimizations, variants and
concrete efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
259–276. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 15

37. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

38. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. J. Cryptol. 25(4), 680–722 (2012). https://doi.org/10.1007/s00145-011-
9107-0

https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/978-3-319-70503-3_1
https://doi.org/10.1007/978-3-319-70503-3_1
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://eprint.iacr.org/2019/1250
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-22792-9_15
https://doi.org/10.1007/978-3-642-22792-9_15
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/s00145-011-9107-0
https://doi.org/10.1007/s00145-011-9107-0

The Price of Active Security in Cryptographic Protocols 215

39. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

40. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: CCS, pp. 579–590 (2015)

41. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

42. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

43. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with
online/offline dual execution. In: 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, 10–12 August 2016, pp. 297–314 (2016)

44. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the condi-
tional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 10

45. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
46. Shelat, A., Shen, C.: Fast two-party secure computation with minimal assumptions.

In: CCS, pp. 523–534 (2013)
47. Wang, X., Malozemoff, A.J., Katz, J.: Faster secure two-party computation in the

single-execution setting. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 399–424. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 14

48. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: CCS, pp. 21–37 (2017)

49. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
CCS, pp. 39–56 (2017)

50. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

51. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-540-30539-2_10
https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-662-46803-6_8

Succinct Non-interactive Secure
Computation

Andrew Morgan1(B), Rafael Pass2(B), and Antigoni Polychroniadou3

1 Cornell University, Ithaca, USA
asmorgan@cs.cornell.edu

2 Cornell Tech, New York City, USA
rafael@cornell.edu

3 J.P. Morgan AI Research, New York City, USA
antigonipoly@gmail.com

Abstract. We present the first maliciously secure protocol for suc-
cinct non-interactive secure two-party computation (SNISC): Each player
sends just a single message whose length is (essentially) independent of
the running time of the function to be computed. The protocol does
not require any trusted setup, satisfies superpolynomial-time simulation-
based security (SPS), and is based on (subexponential) security of the
Learning With Errors (LWE) assumption. We do not rely on SNARKs
or “knowledge of exponent”-type assumptions.

Since the protocol is non-interactive, the relaxation to SPS security is
needed, as standard polynomial-time simulation is impossible; however, a
slight variant of our main protocol yields a SNISC with polynomial-time
simulation in the CRS model.

R. Pass—Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846,
and AFOSR Award FA9550-18-1-0267. This research is based upon work supported
in part by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright annota-
tion therein.
A. Polychroniadou—This paper was prepared in part for information purposes by the
Artificial Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the information contained herein. This docu-
ment is not intended as investment research or investment advice, or a recommenda-
tion, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would
be unlawful. c© 2020 JPMorgan Chase & Co. All rights reserved.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 216–245, 2020.
https://doi.org/10.1007/978-3-030-45724-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_8

Succinct Non-interactive Secure Computation 217

1 Introduction

Protocols for secure two-party computation (2PC) allow two parties to compute
any function (f) of their private inputs (x and y) without revealing anything
more than the output f(x, y) of the function. Since their introduction by Yao
[42] and Goldreich, Micali and Wigderson [22], they have become one of the
most central tools in modern cryptography. In this work, our focus is on 2PC
in a setting with a non-interactivity requirement: each player sends just a single
message. The first player—typically referred to as the receiver (or R)—computes
some message m1 based on its input x and sends m1 to the second player. The
second player—referred to as the sender (S)—next computes a response m2

(based on its input y and the message m1 it received) and sends it back to the
receiver. Upon receiving the response m2, the receiver can finally compute and
output f(x, y). (Note that in such a non-interactive scenario, it is essential that
only the receiver obtains the output—in other words, that the functionality is
“one-sided”; otherwise, since the protocol only has two rounds, the sender will
be able to compute the output given only m1, meaning that it could obtain
f(x, y∗) on any number of inputs y∗ of its choice.)

SNISC: Succinct Non-interactive Secure Computation. As far as we know, this
notion of non-interactive 2PC was first formally studied in [30] under the name
non-interactive secure computation (NISC); however, informal versions of it
became popular in connection with Gentry’s breakthrough result on fully homo-
morphic encryption (FHE) [21]. One of the original applications of FHE was the
private outsourcing of some computation to a remote party: for instance, consider
a scenario where a client (the receiver) has some secret input x and wishes a pow-
erful server (the sender) to compute some potentially time-consuming function f
on x (and potentially another input y belonging to the server). Using FHE, the
client/receiver simply lets m1 be an FHE encryption of x; the server/sender can
next use homomorphic evaluation to obtain an encryption m2 of f(x, y) to send
back, which can be decrypted by the client/receiver. Indeed, an FHE scheme not
only directly yields a NISC, but it also yields a succinct NISC (SNISC)—where
both the communication complexity of the protocol and the running time of an
honest receiver are “essentially” independent of the running time of f . More
formally, we define a SNISC as a NISC where the communication complexity
and receiver running time depend only on the length of the inputs and outputs,
and polylogarithmically on the running time of the function f to be computed
(where we assume that f is given as a Turing machine).

The problem with this folklore approach towards “private outsourcing” or
succinct NISC is that using FHE alone only satisfies semi-honest security, as
opposed to fully malicious security. For instance, a malicious sender could decide
to compute any other function of its choice instead of the correct f ! Of course, we
could always extend the protocol using ZK-SNARKs (succinct non-interactive
arguments of knowledge) [6,8,20,27,32] to prove correctness of the messages
m1 and m2, but doing so comes at a cost. First, we now need to assume some
trusted setup, such as a common reference string (CRS). Additionally, all known

218 A. Morgan et al.

constructions of SNARKs are based on knowledge- or extractability-type
assumptions, which in general are known to be problematic with respect to
arbitrary auxiliary input [7,9].1 Thus, the question as to whether succinct non-
interactive secure computation with malicious security is possible in the plain
model remains open:

Does there exist a succinct non-interactive secure computation protocol
without any trusted setup (and without using extractability assumptions)?

NISC protocols in models with trusted setup have been extensively studied.
There exist known constructions of NISC in the OT-hybrid model [30], in the
CRS model based on cut-and-choose [1,33], assuming tamper-proof stateful [26]
and stateless [4,29] hardware tokens, and in the global random oracle model [15].
As far as we know, none of the above protocols are succinct.

The plain model, however, presents additional issues: Goldreich-Oren’s [23]
classic impossibility result for two-round zero-knowledge proofs immediately
shows that even a non-succinct (let alone succinct) NISC with malicious secu-
rity cannot satisfy the standard polynomial-time simulation-based notion of
security.2 Thus, to get any NISC, let alone a succinct one, we need to use
some relaxed notion of simulatability for the definition of secure computation.
Superpolynomial-time simulation-based security (SPS) [36,38] has emerged as
the standard relaxation of simulation-based security: under SPS security, the
attacker is restricted to be a non-uniform polynomial time algorithm, but the
simulator (in the definition of secure computation) is allowed to run in (slightly)
superpolynomial time (e.g., in quasi-polynomial time). Non-succinct NISC pro-
tocols with SPS simulation are known under various standard assumptions
[3,36,41]. Most notably, the work of [3] constructs a maliciously secure (non-
succinct) NISC with quasi-polynomial simulation in the plain model which can
securely compute any functionality based on the subexponential security of var-
ious standard hardness assumptions; we return to this result in more detail later
on. However, all previous works only construct NISC protocols that are non-
succinct.

Towards achieving succinctness for NISC, a very recent work by Brakerski
and Kalai [13] takes us a step on the way: they focus on a notion of “private del-
egation” where the receiver’s/client’s input x is publicly known (and thus does
not need to be kept hidden) but the input y of the sender/server is considered
private. The authors present a delegation protocol that achieves witness indis-
tinguishability (WI) for the sender—as shown in [36], WI is a strict relaxation of

1 Finally, even forgetting about the issues with extractability assumptions, formalizing
this approach requires dealing with some subtle issues, which we will discuss later
on. Works where this has been done (in the orthogonal setting of “laconic” function
evaluation) include [16,39].

2 Furthermore, if we restrict to black-box simulation, [19,31] proved that four rounds
are necessary and sufficient for secure one-sided 2PC in the plain model.

Succinct Non-interactive Secure Computation 219

SPS security.3 While their protocol achieves the desired notion of succinctness,
it still falls short of the goal of producing a succinct NISC protocol due to the
fact that its only considers privacy for one of the players (namely, the sender);
this significantly simplifies the problem. Additionally, their notion of privacy
(witness indistinguishability) is also weaker than what we are aiming to achieve
(i.e., simulation-based SPS security).

1.1 Our Results

In this work, we provide an affirmative answer to the above question, presenting
the first SNISC for general functionalities. Our protocol is in the plain model (i.e.,
no trusted setup), and we do not rely on any extractability-based assumptions.

Theorem 1 (Informally stated). Assuming subexponential security of the
LWE assumption, there exists a maliciously SPS-secure SNISC for any effi-
cient functionality. Furthermore, the simulator of the protocol runs in quasi-
polynomial time.

Our protocol relies on three primitives:

– A (leveled) FHE scheme [21] with quasi-polynomial security. For our purposes,
we additionally require the FHE to satisfy perfect correctness. Such schemes
can be based on the (quasi-polynomial security of the) LWE (Learning With
Errors) assumption [40], as shown in [11,24].

– A (non-private) delegation scheme for polynomial time computations with
quasi-polynomial security. For our purpose, we require a scheme that satisfies
perfect completeness and allows the sender to adaptively choose the function-
ality (i.e., we need what is referred to as an “adaptive delegation scheme”).
Such schemes can in fact be based on the above notion of quasi-polynomial
FHE, and hence in turn on the quasi-polynomial security of the LWE assump-
tion [12].

– A (non-succinct) SPS-secure NISC for general functionalities f with a quasi-
polynomial simulator. Such a scheme exists based on the existence of a
subexponentially-secure “weak oblivious transfer” protocol4 [3]5; this in turn
can be based on the subexponential security of any one of the DDH [35],
Quadratic Residuosity, or N th Residuosity [28] assumptions, or (as shown in
[10]) on subexponential security of the LWE assumption.

3 In the context of interactive proofs, WI is equivalent to a relaxed form of SPS secu-
rity where the simulator’s running time is unbounded (as opposed to some “small”
superpolynomial time).

4 Roughly speaking, a weak oblivious transfer protocol is an OT protocol that sat-
isfies SPS-security against a malicious receiver, but only indistinguishability-based
(“game-based”) security against a malicious sender.

5 While [3] claim a construction of SPS NISC from just the existence of a weak OT
protocol, their security proof additionally relies on the existence of an onto one-way
function. As far as we know, onto one-way functions are not known based on the
existence of Weak OT. Consequently, in the full version [34] we present a variant of
their protocol that dispenses of this additional assumption.

220 A. Morgan et al.

More precisely, if the underlying NISC protocol has a T (n) · poly(n)-time
simulator, and if all the other primitives are secure against T (n) · poly(n) time
attackers, the final protocol is secure and has a T (n) · poly(n)-time simulator:

Theorem 2 (Informally stated). Assuming the existence of a T (n)-time sim-
ulatable NISC protocol, a subexponentially sound adaptive delegation scheme for
polynomial-time computations with perfect completeness, and a subexponentially
secure leveled FHE scheme with perfect correctness, there exists T (n) · poly(n)-
time simulatable SNISC for any efficient functionality.

As a corollary, we can directly instantiate our protocol using a NISC with
polynomial-time simulation in the CRS model based on a two-round universally
composable OT protocol (in the CRS model), which [37] shows can be based on
the polynomial security of LWE. Hence:

Corollary 1 (Informally stated). Assuming the polynomial security of the
LWE assumption, there exists a maliciously-secure SNISC (with a polynomial-
time simulator) in the CRS model for any efficient functionality.

We defer the proof of this corollary to the full version of our paper [34].

1.2 Technical Overview

At a high level, our approach begins with the semi-honestly secure approach of
using FHE (which we detailed in the introduction) and attempts to compile it to
become secure with respect to malicious attackers. Instead of using ZK-SNARKs
(which rely on non-standard assumptions and trusted setup), we will instead use
an adaptive delegation scheme and a non-succinct NISC. For our approach to
work, we will strongly rely on perfect correctness/completeness properties of
both the FHE and the delegation scheme; as far as we know, perfect correctness
of these types of primitives has not previously been used to enable applications
(where the goal itself isn’t perfect correctness).6 Despite this, though, recent con-
structions (or slight variants) of both FHE and delegation protocols fortunately
do provide these guarantees.

Adaptive Delegation: A Starting Point. To explain the approach, we shall start
from a (flawed) candidate which simply combines an FHE scheme and an adap-
tive delegation scheme. In an adaptive delegation scheme (as given in [12]), a
verifier generates a public/secret key-pair (pk, sk) and sends pk to the prover.
The prover next picks some statement x̃ and function g, computes the output
ỹ = g(x̃), and produces a “short” proof π of the validity of the statement that
ỹ = g(x̃). The prover finally sends (x̃, g, ỹ, π) to the verifier, who can use its
secret key sk to check the validity of the proof. We will rely on an adaptive
delegation scheme satisfying perfect completeness—that is, for all public keys in

6 The only work we are aware that uses perfect correctness of a FHE is a very recent
work [2] which uses perfectly correct FHE as a tool to get perfectly correct iO.

Succinct Non-interactive Secure Computation 221

the range of the key generation algorithm, the prover can convince the verifier
with probability 1.

The candidate SNISC leverages delegation to “outsource” the computation
of the homomorphic evaluation to the sender: specifically, the receiver first gen-
erates a public/secret key-pair (pkFHE, skFHE) for the FHE, encrypts its input x
using the FHE (obtaining a ciphertext ctx), generates a public/secret key pair
(pkDel, skDel) for the delegation scheme, and finally sends (ctx, pkFHE, pkDel) to the
sender. The sender in turn encrypts its input y, obtaining a ciphertext cty; next,
it lets g be the function for homomorphically evaluating f on two ciphertexts,
computes g(ctx, cty) (i.e., homomorphically evaluates f on ctx and cty) to obtain
a ciphertext ctout, and computes a delegation proof π (with respect to pkDel) of
the validity of the computation of g. Finally, the sender sends (cty, ctout, π) to
the receiver, who verifies the proof and, if the proof is accepting, decrypts ctout
and outputs it.

Intuitively, this approach hides the input x of the receiver, but clearly fails
to hide the input y of the sender, as the receiver can simply decrypt cty to
obtain y. So, rather than providing cty and π in the clear (as even just the
proof π could leak things about cty), we instead use the (non-succinct) NISC
to run the verification procedure of the delegation scheme. That is, we can add
to the protocol a NISC instance where the receiver inputs skDel, the sender
inputs ctx, cty, ctout, π, and the functionality runs the verification algorithm for
the delegation scheme, outputting either ⊥ if verification fails or, otherwise, ctout
(which can be decrypted by the receiver).

Input Independence: Leveraging Perfect Correctness of FHE. The above app-
roach intuitively hides the inputs of both players, and also ensures that the func-
tion is computed correctly. But there are many problems with it. For instance,
while it guarantees that the sender does not learn the receiver’s input x, it does
not guarantee “input independence”, or that the sender’s input does not depend
on the receiver’s somehow: for instance, the sender can easily maul ctx into,
say, an encryption cty of x + 1 and use that as its input. On a more technical
level, simulation-based security requires the simulator to be able to extract the
inputs of malicious players, but it is not clear how this can be done here—in fact,
a simulator cannot extract the sender’s input y due to the above malleability
attack.

To overcome this issue, we again leverage the non-succinct NISC to enable
extractability: we add x and the randomness, rx, needed to generate ctx as
an input from the receiver, and we add ctx (i.e., the ciphertext obtained from
the receiver), y, and the randomness needed to generate cty as input from the
sender. The functionality additionally checks that the ciphertexts ctx, cty respec-
tively are valid encryptions of the inputs x, y using the given randomness. (It is
actually essential that the sender includes the ciphertext ctx from the receiver
as part of its input, as opposed to having the receiver input it, as otherwise
we could not guarantee that the receiver is sending the same ciphertext to the
sender as it is inputting to the NISC). If we have perfect correctness for the
underlying FHE scheme with respect to the public-keys selected by the receiver,

222 A. Morgan et al.

this approach guarantees that we can correctly extract the inputs of the players.
The reason that we need perfect correctness is that the NISC only guarantees
that the ciphertexts have been honestly generated using some randomness, but
we have no guarantees that the randomness is honestly generated. Perfect cor-
rectness ensures that all randomness is “good” and will result in a “well-formed”
ciphertext on which homomorphic computation, and subsequently decryption,
will always lead to the correct output.

Dealing with a Malicious Receiver: Interactive Witness Encryption and Perfectly
Correct Delegation. While the above protocol suffices to deal with a malicious
sender (although, as we shall discuss later on, even this is not trivial due to the
potential for “spooky interactions” [17]), it still does not allow us to deal with
a malicious receiver. The problem is that the receiver could send invalid public
keys, either for the FHE or for the delegation scheme. For instance, if the public
key for the FHE is invalid, perfect correctness may no longer hold, and we may
not be able to extract a correct input for the receiver. Likewise, if the public key
for the delegation scheme is invalid, we will not be able to determine whether the
verification algorithm of the delegation scheme will be accepting, and thus cannot
carry out a simulation. Typically, dealing with a malicious receiver would require
adding a zero-knowledge proof of well-formedness of its messages; however, given
that the receiver is sending the first message, this seems problematic since, even
with SPS-security, one-message ZK is impossible (with respect to non-uniform
attackers [5,36]).

To explain our solution to this problem, let us first assume that we have
access to a witness encryption scheme [18]. Recall that a witness encryption
scheme enables encrypting a message m with a statement x̃ so that anyone hav-
ing a witness w to x̃ can decrypt the message; if the statement is false, however,
the encryption scheme conceals the message m. If we had access to such a wit-
ness encryption scheme, we could have the functionality in the NISC compute a
witness encryption of ctout with the statement being that the public keys have
been correctly generated. This method ensures that the receiver does not get
any meaningful output unless it actually generated the public keys correctly. Of
course, it may still use “bad” randomness—we can only verify that the public
keys are in the range of the key generating function. But, if the delegation scheme
also satisfies a “perfect correctness” property (specifically, both correctness of
the computation and perfect completeness of the generated proof), this enables
us to simulate the verification of the delegation scheme (as once again, in this
case, perfect correctness guarantees that there is no “bad” randomness).

We still have an issue: perfect correctness of the FHE will ensure that the
decryption of the output is correct, but we also need to ensure that we can
simulate the ciphertext output by the NISC. While this can be handled using an
FHE satisfying an appropriate rerandomizability/simulatability property (also
with respect to maliciously selected ciphertext), doing so introduces additional
complications. Furthermore, while we motivated the above modification using
witness encryption, currently known constructions of witness encryption rely on

Succinct Non-interactive Secure Computation 223

non-standard, and less understood, hardness assumptions; as such, we would like
to altogether avoid using it as an underlying primitive.

So, to circumvent the use of witness encryption—while at the same time
ensuring that the output of the NISC is simulatable—we realize that in our
context, it in fact suffices to use a two-round version of witness encryption,
where the receiver of the encryption chooses the statement and can first send a
message corresponding to the statement. And such a non-interactive version of
witness encryption can be readily implemented using a NISC! As we are already
running an instance of a NISC, we can simply have the NISC also implement
this interactive witness encryption. More precisely, we now additionally require
the receiver to provide its witness—i.e., the randomness for the key generation
algorithms—as an input to the NISC, while the sender additionally provides
the public keys pkFHE and pkDel which it receives. The functionality will now
only release the output ctout if it verifies that the keys input by the sender are
correctly generated from the respective randomness input by the receiver. Better
still, since the randomness used to generate the public/secret key-pair is now an
input to the functionality, the functionality can also recover the secret key for
the FHE, and next also decrypt ctout and simply output plain text corresponding
to ctout. This prevents the need for rerandomizing ctout, since it is now internal to
the NISC instance (and is no longer output). With all of the above modifications,
we can now prove that the protocol satisfies SPS security.

The Final Protocol. For clarity, let us summarize the final protocol.

– The Receiver generates (pkFHE, skFHE) and (pkDel, skDel) using randomness
rFHE and rDel (respectively) and generates an encryption ctx of its input x
using randomness rx. It then sends (pkFHE, pkDel, ctx) and the first message
msg1 of a NISC using the input x′ = (x, rFHE, rDel, rx) (for a functionality to
be specified shortly).

– The Sender, upon receiving pkFHE, pkDel,msg1 generates an encryption cty of
its input y using randomness ry, applies the homomorphic evaluation of f to
ctx and cty to obtain a ciphertext ctout = g(ctx, cty), generates a proof π using
the delegation scheme (w.r.t. pkDel) of the correctness of the computation that
ctout = g(ctx, cty), and finally sends the second message msg2 of the NISC
using the input y′ = (y, pkFHE, pkDel, ctx, cty, ctout, π, ry).

– Finally, the receiver, upon getting msg2, computes the output z of the NISC
protocol and outputs it.

– The functionality computed by the NISC on input x′ = (x, rFHE, rDel, rx) and
y′ = (y, pkFHE, pkDel, ctx, cty, ctout, π, ry) does the following: it checks that:
1. the public keys pkFHE, pkDel were respectively generated using randomness

rFHE, rDel;
2. the ciphertexts ctx, cty are respectively encryptions of x, y using random-

ness rx, ry; and,
3. π is a valid proof of ctout = g(ctx, cty) w.r.t. (pkDel, skDel) (as generated

from rDel).

224 A. Morgan et al.

If the checks pass, it decrypts ctout (by first generating skFHE from rFHE),
obtaining the plaintext z, and finally outputs z. (If any of the checks fail, it
instead outputs ⊥.)

A summary of the message flow can be found in Fig. 1.

Sender(y)

(pkFHE, skFHE) ← GenFHE(rFHE)

(pkDel, skDel) ← GenDel(rDel)

ctx ← EncFHE(pkFHE, x; rx)

msg1 ← NISC1(x, rFHE, rDel, rx)

z ← NISC3(msg2) ; output z

pkFHE, pkDel, ctx,msg1

Receiver(x)

msg2

cty ← EncFHE(pkFHE, y; ry)

(π, ctout) ← CompDel(pkDel, g, ctx, cty)

msg2 ← NISC2(y, pkFHE, pkDel, ctx, cty,

ctout, π, ry)

Fig. 1. The final SNISC protocol. (NISC1,NISC2,NISC3) denotes the underlying (non-
succinct) NISC protocol and the functionality g denotes the homomorphic evaluation
g(c1, c2) = EvalFHE(pkFHE, f, c1, c2).

A Subtlety in the Security Proof. One subtle point that arises in the proof of
security is that, to simulate a malicious sender, we need to simulate the ciphertext
ctx without knowledge of x. But the functionality of the underlying NISC takes
as input the randomness used for both the key generation of pkFHE and for
encrypting ctx, and thus the functionality implicitly knows how to decrypt ctx. A
similar issue has arisen in the related context of constructing delegation schemes
from FHE and related primitives (see [17]), where it was shown that so-called
“spooky interactions” can arise, where a malicious sender (even though it does
not how to decrypt the ciphertext) can in fact use this dependence to make the
receiver output values that correlate in undesirable ways with the input x (in
particular, in ways that would not have been possible if using an “idealized”
FHE). Fortunately, in our context, we are able to overcome this issue by using
the perfect correctness of the FHE scheme and soundness of our underlying
delegation scheme to perform a carefully designed hybrid argument.

A bit more precisely, the key point is that when simulating a malicious sender
in communication with an honest receiver, the receiver’s public key and cipher-
text ctx will always be correctly generated (as such, we do not have to perform
the checks involving the receiver to simulate the underlying NISC’s output); fur-
thermore, by soundness of delegation and the perfect correctness of the FHE,
the decryption of ctout must equal f(x, y) (with overwhelming probability) if π
is accepting, so we can use this fact to show that decrypting ctout is actually also
unnecessary. As such, we do not need to use either rFHE or rx to emulate the exper-
iment for a malicious sender, and we can create (and prove security in) a hybrid

Succinct Non-interactive Secure Computation 225

functionality for the underlying NISC which is independent of this randomness
(and only depends on pkFHE).

2 Preliminaries

2.1 Fully Homomorphic Encryption

Definition 1 (based on [21]). A fully homomorphic encryption (or FHE)
scheme consists of a tuple of algorithms (Gen,Enc,Eval,Dec), where Gen, Enc
are PPT and Eval, Dec are (deterministic) polynomial-time algorithms, such
that:

– (pk, sk) ← Gen(1n; ρ): takes the security parameter n as input and outputs a
public key pk and secret key sk.

– ct ← Enc(pk,m; ρ): takes as input a public key pk and a message m ∈ {0, 1},
and outputs a ciphertext ct. (For multi-bit messages −→m ∈ {0, 1}p(n), we let−→
ct ← Enc(pk,−→m) be such that cti = Enc(pk,mi).)

– ct′ = Eval(pk, C,
−→
ct): takes as input a list of ciphertexts −→

ct and a circuit
description C of some function to evaluate and outputs a ciphertext ct′.

– m′ ← Dec(sk, ct): takes as input a ciphertext ct and outputs a message m′.

We furthermore require that the following properties are satisfied:

1. Full homomorphism: There exist sets of boolean circuits {Cn}n∈N, negligi-
ble function ε(n), and polynomial p(·) such that C =

⋃
n Cn includes the set

of all arithmetic circuits over GF(2)7, and, for any n ∈ N, we have that, for
all C ∈ Cn and −→m ∈ {0, 1}p(n):

Pr[z �= C(−→m) : (pk, sk) ← Gen(1n),−→ct ← Enc(pk,−→m),

z ← Dec(sk,Eval(C, pk,
−→
ct))] < ε(n),

Furthermore, if this probability is identically zero, we refer to the scheme as
having perfect correctness.

2. Compactness: There exists a polynomial q(·) such that the output length of
Eval given (any number of) inputs generated with security parameter n is at
most q(n).

Definition 2 (based on [25]). We say that an FHE (Gen,Enc,Eval,Dec) is
secure if, for all non-uniform PPT D, there exists a negligible ε(·) such that for
any n ∈ N:

|Pr[D(1n, pk,Enc(pk, 0)) = 1] − Pr[D(1n, pk,Enc(pk, 1)) = 1]| < ε(n)

over (pk, sk) ← Gen(1n). If this condition holds also with respect to subexpo-
nential size distinguishers D (i.e., algorithms implemented by circuits of size
poly(2nε

) for some ε > 0), we refer to the scheme as being subexponentially
secure.
7 GF(2) is the set of arithmetic circuits consisting only of + and × gates over the field
F2.

226 A. Morgan et al.

We have the following consequence for encryptions of poly(n)-bit messages −→m0

and −→m1:

Fact 1. If an FHE scheme (Gen,Enc,Eval,Dec) is secure (resp., subexponen-
tially secure), then, for any polynomial p(·) and for any non-uniform PPT (resp.,
subexponential-size) (A,D) where A outputs messages −→m0,

−→m1 ∈ {0, 1}p(n) for
polynomial p(·), there exists a negligible ε(·) such that for any n ∈ N:

|Pr[D(1n, pk,Enc(pk,−→m0)) = 1] − Pr[D(1n, pk,Enc(pk,−→m1)) = 1]| < ε(n)

where

(pk, sk) ← Gen(1n), (−→m0,
−→m1) ← A(1n, pk)

We can construct an FHE scheme with all of the above properties based on the
Learning With Errors (LWE) assumption:

Theorem 3 ([2,11,24]). Based on computational (resp., subexponential) hard-
ness of the Learning With Errors assumption, there exists a secure (resp., subex-
ponentially secure) fully homomorphic encryption scheme satisfying perfect cor-
rectness.

2.2 Adaptive Delegation Schemes

A delegation scheme allows for the effective “outsourcing” of computation from
one party to another; that is, using delegation, the sender can compute both the
correct result of some (possibly expensive) computation on a receiver’s input and
a (short) proof which can convince the receiver of the correctness of the com-
putation without requiring the receiver to perform the computation themselves.
We consider a notion of delegation with the additional property, formalized in
[12], that the functionality f(·) whose computation is to be delegated can be
decided adaptively after the keys pk, sk are computed (i.e., the key-generation
algorithm Gen is independent from f). Formally:

Definition 3 (based on [12]). An adaptive delegation scheme is given by
a triple of algorithms (Gen,Comp,Ver), where Comp and Ver are (deterministic)
polynomial-time algorithms and Gen is PPT, such that:

– (pk, sk) ← Gen(1n; ρ) takes as input a security parameter n and probabilisti-
cally outputs a public key pk and secret key sk.

– (y, π, 1T) ← Comp(pk, f,−→x) takes as input a Turing machine description of
the functionality f to be computed, as well as the inputs −→x to f , and pro-
duces a result y which the sender claims to be the result of the computation,
a poly(n)-size proof π of its correctness, and the running time T of the com-
putation in unary.

– {Accept,Reject} ← Ver(sk, f,−→x , y, π, T) takes as input the functionality f to
be computed, inputs −→x , result y, proof π, and running time T , and returns
Accept or Reject depending on whether π is a valid proof of f(−→x) = y.

Succinct Non-interactive Secure Computation 227

Furthermore, we require the following properties:

1. Completeness: There exists a negligible function ε(·) such that, for any
n ∈ N, any f computable by a Turing machine that runs in time at most 2n,
and any −→x in the domain of f :

Pr
[
(pk, sk) ← Gen(1n); (π, y, 1T) = Comp(pk, f,−→x) :

Ver(sk, f,−→x , π, y, T) = Reject] < ε(n)

In addition, if the above probability is identically zero, we say that the adaptive
delegation scheme satisfies perfect completeness.

2. Correctness: For any n ∈ N, any f computable by a Turing machine that
runs in time at most 2n, and any −→x in the domain of f :

Pr [(pk, sk) ← Gen(1n) : Comp(pk, f,−→x) = (f(−→x), ·, ·)] = 1

3. Soundness: For any non-uniform PPT adversary A, there exists a negligible
function ε(·) such that, for any n ∈ N:

Pr
[
(pk, sk) ← Gen(1n), (f,−→x , y1, y2, π1, π2, 1T1 , 1T2) ← A(1n, pk) :

T < 2n ∧ Ver(sk, f,−→x , y1, π1, T1) = Accept

∧Ver(sk, f,−→x , y2, π2, T2) = Accept ∧ y1 �= y2] < ε(n)

Furthermore, if this condition holds with respect to subexponential-size adver-
saries, we say that the scheme is subexponentially sound.

A construction of an adaptive delegation scheme with perfect completeness
can be found in the work of Brakerski et al. [12], and is based on a secure private
information retrieval (PIR) scheme, which in turn can be constructed based on
a leveled FHE scheme (including the one presented in Theorem 3). Hence:

Theorem 4 ([2,11,12,24]). Given computational (resp., subexponential) hard-
ness of the Learning With Errors assumption, there exists a sound (resp., subex-
ponentially sound) adaptive delegation scheme satisfying perfect completeness.

2.3 Non-interactive Secure Computation

Definition 4 (based on [3,22,42]). A non-interactive two-party compu-
tation protocol for computing some functionality f(·, ·) (we assume f to be
computable by a polynomial-time Turing machine) is given by three PPT algo-
rithms (NISC1,NISC2,NISC3) defining an interaction between a sender S and a
receiver R, where only R will receive the final output. The protocol will have com-
mon input 1n (the security parameter); the receiver R will have input x, and the
sender will have input y. The algorithms (NISC1,NISC2,NISC3) are such that:

– (msg1, σ) ← NISC1(1n, x) generates R’s message msg1 and persistent state σ
(which is not sent to S) given the security parameter n and R’s input x.

228 A. Morgan et al.

– msg2 ← NISC2(msg1, y) generates S’s message msg2 given S’s input y and
R’s message msg1.

– out ← NISC3(σ,msg2) generates R’s output out given the state σ and S’s
message msg2.

Furthermore, we require the following property:

– Correctness. For any parameter n ∈ N and inputs x, y:

Pr [(msg1, σ) ← NISC1(1n, x) : NISC3(σ,NISC2(msg1, y)) �= f(x, y)] ≤ ε(n)

Defining non-interactive secure computation will require us to add a security
definition, which we formalize as follows:

Security. We adopt a standard notion of simulation-based security, with the
relaxation that we allow superpolynomial-time simulation (as originally proposed
in [36,38]). We define security by comparing two experiments conducted between
the sender and receiver, either of whom may be corrupted and act arbitrarily
(while the other is honest and follows the protocol). In the real experiment, the
two parties will perform the actual protocol; in the ideal experiment, the two
parties will instead send their inputs to a “trusted third party” who performs the
computation and returns the result only to, in this case (because the protocol is
one-sided), the receiver. Informally, we say that a protocol is secure if, for any
adversary A against the real experiment, acting either as the sender or receiver,
there is a simulated adversary S in the ideal experiment which produces a near-
identical (i.e., computationally indistinguishable) result; intuitively, if this is the
case, we can assert that the real adversary cannot “learn” anything more than
they could by interacting with a trusted intermediary. Let us formalize this
notion for the case of SNISC:

– Let the real experiment be defined as an interaction between a sender S with
input y and a receiver R with input x, defined as follows:

• R computes (msg1, σ) ← NISC1(1n, x), stores σ, and sends msg1 to S.
• S, on receiving msg1, computes msg2 ← NISC2(msg1, y) and sends msg2

to R.
• R, on receiving msg2 computes out ← NISC3(σ,msg2) and outputs out.

In this interaction, one party I ∈ {S,R} is defined as the corrupted party;
we additionally define an adversary, or a polynomial-time machine A, which
receives the security parameter 1n, an auxiliary input z, and the inputs of the
corrupted party I, and sends messages (which it may determine arbitrarily)
in place of I.
Letting Π denote the protocol to be proven secure, we shall denote by
OutΠ,A,I(1n, x, y, z) the random variable, taken over all randomness used by
the honest party and the adversary, whose output is given by the outputs
of the honest receiver (if I = S) and the adversary (which may output an
arbitrary function of its view).

– Let the ideal experiment be defined as an interaction between a sender S, a
receiver R, and a trusted party Tf , defined as follows:

Succinct Non-interactive Secure Computation 229

• R sends x to Tf , and S sends y to Tf .
• Tf , on receiving x and y, computes out = f(x, y) and returns it to R.
• R, on receiving out, outputs it.

As with the real experiment, we say that one party I ∈ {S,R} is corrupted
in that, as before, their behavior is controlled by an adversary A. We shall
denote by Out

Tf

Πf ,A,I(1
n, x, y, z) the random variable, once again taken over

all randomness used by the honest party and the adversary, whose output is
again given by the outputs of the honest receiver (if I = S) and the adversary.

Given the above, we can now formally define non-interactive secure compu-
tation:

Definition 5 (based on [3,22,36,38,42]). Given a function T (·), a non-inter-
active two-party protocol Π = (NISC1,NISC2,NISC3) between a sender S and
a receiver R, and functionality f(·, ·) computable by a polynomial-time Turing
machine, we say that Π securely computes f with T (·)-time simulation,
or that Π is a non-interactive secure computation (NISC) protocol (with
T (·)-time simulation) for computing f , if Π is a non-interactive two-party
computation protocol for computing f and, for any polynomial-time adversary
A corrupting party I ∈ {S,R}, there exists a T (n) · poly(n)-time simulator S
such that, for any T (n) ·poly(n)-time algorithm D : {0, 1}∗ → {0, 1}, there exists
negligible ε(·) such that for any n ∈ N and any inputs x, y ∈ {0, 1}n, z ∈ {0, 1}∗,
we have:
∣
∣
∣Pr [D(OutΠ,A,I(1n, x, y, z)) = 1] − Pr

[
D(OutTf

Πf ,S,I(1
n, x, y, z)) = 1

]∣
∣
∣ < ε(n)

where the experiments and distributions Out are as defined above.
Furthermore, if Π securely computes f with T (·)-time simulation for T (n) =

nlogc(n) for some constant c, we say that Π securely computes f with quasi-
polynomial simulation.

Succinctness. The defining feature of our construction will be a notion of suc-
cinctness; specifically, for functionality f(·, ·) with Turing machine description
M and running time bounded by Tf , we show the existence of a NISC proto-
col Π = (NISC1,NISC2,NISC3) for computing f whose message length (i.e., the
combined output length of NISC1 and NISC2) and total receiver running time on
input 1n are relatively short and essentially independent of the running time of
f . Formally:

Definition 6. We say that a NISC protocol Π = (NISC1,NISC2,NISC3) has
communication complexity ρ(·) if, for any n ∈ N, x, y ∈ {0, 1}n, and z ∈
{0, 1}∗, the outputs of NISC1(1n, x) and NISC2(1n, y, z) contain at most ρ(n)
bits.

We shall define a NISC protocol which, given functionality f : {0, 1}n×{0, 1}n ←
{0, 1}�(n) computable by a Turing machine M with running time Tf (n), fea-
tures communication complexity and receiver running time bounded above by
p(n, log(Tf (n)), |M |, �(n)) for an a priori fixed polynomial p.

230 A. Morgan et al.

There exist non-succinct non-interactive secure computation protocols in the
standard model based on a notion of “weak oblivious transfer” [3], which in turn
can be based on subexponential security of the Learning With Errors assumption
[10]:

Theorem 5 ([3,10]). Assuming subexponential hardness of the Learning With
Errors assumption, for any functionality f(·, ·) computable by a polynomial-time
Turing machine there exists a (non-succinct) non-interactive secure computation
protocol with quasi-polynomial simulation for computing f .

We note that this theorem essentially follows from [3,10]; however, [3]
required as an additional assumption the existence of an onto one-way function.
In the full version of our paper [34], we present a variant which demonstrates
how to prove Theorem 5 without this added assumption.

3 Protocol

We state our main theorem:

Theorem 6. Assuming subexponential hardness of the Learning With Errors
assumption, there exists polynomial p(·, ·, ·, ·) such that, for any polynomials
Tf (·) and �(·) and any Turing machine M with running time bounded by
Tf (·) computing functionality f(·, ·) : {0, 1}n × {0, 1}n ← {0, 1}�(n), there
exists a non-interactive secure computation protocol for computing f with quasi-
polynomial simulation which is additionally succinct in that both its commu-
nication complexity and the running time of the honest receiver are at most
p(n, log(Tf (n)), |M |, �(n)).

We propose the protocol Π given in Fig. 2 for secure non-interactive secure
computation of a function f(x, y) given a receiver input x and sender input y,
where Π shall use the following primitives:

– Let π = (NISC1,NISC2,NISC3) be a non-succinct NISC protocol with T (n)-
time simulation for T (n) = nlogc(n) (i.e., quasi-polynomial simulation), for
which the functionality h will be determined in the first round of the pro-
tocol. (The existence of such a primitive is guaranteed by Theorem 5 under
subexponential LWE.)

– Let (GenFHE,EncFHE,DecFHE,EvalFHE) be a fully homomorphic encryption
scheme satisfying perfect correctness, compactness, and subexponential secu-
rity (in particular, with respect to T (n) ·poly(n)-time adversaries). (The exis-
tence of such a primitive is guaranteed by Theorem 3 under subexponential
LWE.)

– Let (GenDel,CompDel,VerDel) be an adaptive delegation scheme with perfect
completeness, correctness, and subexponential soundness (in particular, with
respect to T (n) ·poly(n)-time adversaries). (The existence of such a primitive
is guaranteed by Theorem 4 under subexponential LWE.)

Succinct Non-interactive Secure Computation 231

Input: The receiver R and the sender S are given input x, y ∈ {0, 1}n, respec-
tively, and both parties have common input 1n.
Output: R receives f(x, y).

Round 1: R proceeds as follows:

1. Generate random coins rFHE ← {0, 1}∗ and compute (pkFHE, skFHE) =
GenFHE(1n; rFHE).

2. Let Tg denote the running time of the functionality g(c1, c2) =
EvalFHE(pkFHE, f, c1, c2), and let λ = max(n, log(Tg)). Generate random
coins rDel ← {0, 1}∗ and compute (pkDel, skDel) = GenDel(1λ; rDel).

3. Generate random coins rEnc(x) ← {0, 1}∗ and compute ctx =
EncFHE(pkFHE, x; rEnc(x)).

4. Generate messagemsg1 ← NISC1(x, rFHE, rDel, rEnc(x)) to compute the func-
tionality h described in Figure 3.

5. Send (pkFHE, pkDel, ctx,msg1) to S.

Round 2: S proceeds as follows:

1. Generate random coins rEnc(y) ← {0, 1}∗ and compute cty =
EncFHE(pkFHE, y; rEnc(y)).

2. Compute (ctout, πDel, 1T) = CompDel(pkDel, g, ctx, cty) for the functionality
g(c1, c2) = EvalFHE(pkFHE, f, c1, c2).

3. Generate message msg2 ← NISC2(y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y),
T) to compute the functionality h described in Figure 3.

4. Send msg2 to R.

Output phase: R computes out = NISC3(msg2) and returns the result.

Fig. 2. Protocol Π for succinct non-interactive secure computation.

4 Proof

Overview. After first proving the succinctness and correctness of the protocol,
we turn to proving its security. We do this in two steps. In the first step, we
consider a “hybrid” model in which the underlying NISC protocol is replaced by
an “ideal” third party Th. If the underlying protocol were universally composable
[14], this step would be trivial; unfortunately, it is not, so we need to take care
to formally reduce this transformation to the simulation-based security of the
underlying protocol. Crucially, this will rely on the fact that we restrict our
attention to two-round protocols.

Next, in the second step, we can create and prove the respective simula-
tors for a corrupted sender and corrupted receiver in the Th-hybrid model. The
corrupted receiver case follows in a fairly straightforward way, relying on the
perfect correctness and completeness of the delegation and FHE schemes. The
corrupted sender case, however, has some interesting subtleties in the reduction,

232 A. Morgan et al.

Input: The receiver R has input (x, rFHE, rDel, rEnc(x)), and the sender S has
input (y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y), T)
Output: Either a message out or the special symbol ⊥.

Functionality:

1. Verify that all of the following checks hold. If any fail, return ⊥.
(a) (pkFHE, ·) = GenFHE(1n; rFHE)
(b) (pkDel, ·) = GenDel(1λ; rDel)
(c) ctx = EncFHE(pkFHE, x; rEnc(x))
(d) cty = EncFHE(pkFHE, y; rEnc(y))

2. Compute (·, skFHE) = GenFHE(1n; rFHE) and (·, skDel) = GenDel(1λ; rDel).
3. If VerDel(skDel, g, ctx, cty, ctout, πDel, T) = Reject for the functionality

g(c1, c2) = EvalFHE(pkFHE, f, c1, c2), then return ⊥.
4. Compute out = DecFHE(skFHE, ctout) and return the result.

Fig. 3. Functionality h used for the underlying 2PC protocol π.

and in fact will require another hybrid with a slightly different third party Th′ to
complete; we discuss these subtleties in more detail when they arise during the
proof. We begin the formal proof by proving that the protocol Π is succinct :

Lemma 1. There exists polynomial p(·, ·, ·, ·) such that, for any polynomials
Tf (·) and �(·) and any Turing machine M with running time bounded by Tf (·)
computing functionality f(·, ·) : {0, 1}n × {0, 1}n ← {0, 1}�(n), the respective
non-interactive secure computation protocol Π has communication complexity
and honest receiver running time bounded above by p(n, log(Tf (n)), |M |, �(n)).

Proof. We begin by analyzing the communication complexity, as succinctness of
the receiver’s running time will follow immediately from this analysis. Aside from
messages msg1 and msg2 for the underlying NISC π, the only communication
consists of the public keys pkFHE and pkDel and the ciphertext ctx. pkFHE has
length poly(n) since GenFHE is a polynomial-time algorithm running on input
1n, and the ciphertext ctx (which consists of a ciphertext for each bit in x ∈
{0, 1}n) also has length poly(n) since EncFHE is polynomial-time and is run on
inputs of length poly(n). pkDel will have length poly(n, log(Tf)); specifically, its
length is given to be poly(λ) = poly(n, log(Tg)), where Tg is the running time of
the functionality g(c1, c2) = EvalFHE(pkFHE, f, c1, c2) with inputs generated from
common input 1n. However, since pkFHE has poly(n) length, the input ciphertexts
both have poly(n) length by the efficiency of EncFHE, and f in this case is given as
a circuit description, which will have size poly(Tf (n)), we have by the efficiency
of EvalFHE that Tg = poly(n, Tf (n)), implying poly(λ) = poly(n, log(Tf (n))).

So it suffices now to bound the length of the NISC messages msg1 and msg2.
Specifically, even for a non-succinct NISC protocol π, the honest sender and
receiver must be efficient, and so the message length is still at most polynomial

Succinct Non-interactive Secure Computation 233

in the input length and running time of the functionality h. We argue that these
are poly(n, log(Tf (n)), |M |, �(n)) to complete the proof of the claim:

– The input length to π is given as the size of the inputs (x, rFHE, rDel, rEnc(x))
from the receiver and (y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y), T) from the
sender. x and y have length n by assumption. pkFHE, ctx, and cty have length
poly(n) as argued above, and ctout (which consists of a ciphertext output
from EvalFHE for each bit of f(x, y) ∈ {0, 1}�(n)) has length poly(n, �(n))
by the compactness of the FHE scheme. pkDel has length poly(n, log(Tf (n)))
as argued above, and πDel also has length poly(λ) = poly(n, log(Tf (n))); T
will have size λ = poly(n, log(Tf (n))) as T ≤ 2λ is required by the proper-
ties of the delegation scheme. Lastly, the randomness rFHE, rDel, rEnc(x), rEnc(y)
cannot have length greater than the running times of the respective algo-
rithms GenFHE,GenDel,EncFHE, all of which we have already noted are at most
poly(n, log(Tf (n))).

– To bound the running time of the functionality h, notice that it consists of
the following:

• GenFHE (run twice), EncFHE (run 2n times, once for each bit of x and
y), EvalFHE (run �(n) times, once for each bit of out), all of which are
efficient algorithms run on inputs of at most length poly(n) (and hence
have running time poly(n));

• DecFHE (run �(n) times), which has inputs skFHE with size poly(n) and
ctout with size poly(n, �(n)), and hence has running time poly(n, �(n));

• GenDel (run twice), which runs in time poly(λ) = poly(n, log(Tf (n)));
• VerDel (run once), which, given inputs skDel, πDel of size poly(λ) =
poly(n, log(Tf (n))), ctx, cty of size poly(n), ctout of size poly(n, �(n)), g
(the description of g(c1, c2) = EvalFHE(pkFHE, f, c1, c2), where we here
interpret f as the Turing machine M) of size poly(|M |), and T ≤ 2λ

of size at most λ = poly(n, log(Tf (n))), has running time which is at
most poly(n, log(Tf (n)), |M |, �(n));

and a poly(n) number of comparisons between input values and function out-
puts which have already been established to have at most poly(n, log(Tf (n)))
length.

The above shows that the communication complexity of Π is succinct. Fur-
thermore, as the honest receiver runs only GenFHE, GenDel, EncFHE, and the (effi-
cient) receiver protocol for the underlying NISC on the aforementioned inputs,
and as we have already established that all of these algorithms have running
time poly(n, log(Tf (n)), |M |, �(n)), the receiver will inherit the same running
time bound. 	

Towards proving security for Π, let OutΠ,A,I(1n, x, y, z) denote the ran-
dom variable, taken over all randomness used by the honest party and the
adversary, of the outputs of the honest receiver (if I = S) and the adversary
in the execution of protocol Π given adversary A controlling corrupted party
I ∈ {S,R}, receiver input x, sender input y, and adversary auxiliary input z.
Let ExecΠ,A,I(1n, x, y, z) denote the respective experiment.

234 A. Morgan et al.

Let us also define the “ideal” execution by letting Tf denote the ideal func-
tionality corresponding to the computation target f(x, y) and letting Πf be the
“ideal” version of the protocol where R sends x to Tf , S sends y to Tf , and then
R finally outputs the result out output by Tf . We want to show the following
theorem:

Theorem 7. Assume, given functionality f(·, ·), the respective protocol Π
described in Fig. 2 and the assumptions required in Theorem 6, and let T (·)
be such that the underlying NISC π is secure with T (·)-time simulation. For any
efficient adversary A corrupting party I ∈ {S,R}, there exists a T (n) · poly(n)-
time simulator S such that, for any non-uniform polynomial-time distinguisher
D, there exists a negligible function ε(·) such that, for all n ∈ N, x, y ∈ {0, 1}n,
and auxiliary input z, D distinguishes the distributions OutΠ,A,I(1n, x, y, z) and
Out

Tf

Πf ,S,I(1
n, x, y, z) with at most probability ε(n).

Notice that correctness of Π holds trivially from the perfect correctness of
the underlying FHE, the correctness and perfect completeness of the underlying
adaptive delegation scheme, and the correctness of the underlying NISC protocol
π; hence, Theorem 7, which proves security, and Lemma 1, which proves suc-
cinctness, will in conjunction directly imply Theorem 6 (where quasi-polynomial
simulation results from our use of an underlying NISC protocol with quasi-
polynomial simulation, as given in Theorem 5). The remainder of the section,
then, is devoted to proving Theorem 7.

We begin by defining a “trusted third party” Th which executes the ideal
functionality for h—that is, given the corresponding sender and receiver inputs,
Th outputs the correct value of h computed on those inputs. Our first task is
to show, then, that the “real” experiment’s outputs OutΠ,A,I(1n, x, y, z) cannot
be distinguished from those of a “hybrid” experiment, which we shall denote by
OutTh

Πh,A′,I(1
n, x, y, z).

Formally, we let Πh denote a protocol which is identical to Π with the excep-
tion that, in rounds 1 and 2, rather than generating msg1 and msg2, R and S
instead send the respective inputs to Th, and, in the output phase, R receives
and returns the output from Th rather than unpacking msg2. We then state the
following lemma, the proof of which is deferred to the full version of our paper
[34] as it is rather straightforward.

Lemma 2. For any efficient adversary A corrupting party I ∈ {S,R}, there is
a T (n) · poly(n)-time adversary A′ such that, for any non-uniform polynomial-
time distinguisher D, there exists a negligible function ε(·) such that, for all
n ∈ N, x, y ∈ {0, 1}n, and auxiliary input z, D distinguishes the distributions
OutΠ,A,I(1n, x, y, z) and OutTh

Πh,A′,I(1
n, x, y, z) with at most probability ε(n).

4.1 Comparing Hybrid and Ideal Executions

Next, we need to compare the hybrid execution ExecTh

Πh,A′,I(1
n, x, y, z) to the

“ideal” execution Exec
Tf

Πf ,S,I(1
n, x, y, z) to finish the proof of Theorem 7.

Succinct Non-interactive Secure Computation 235

Lemma 3. For any T (n) · poly(n)-time adversary A′ corrupting some party
I ∈ {S,R}, there exists a T (n) ·poly(n)-time simulator S such that, for any non-
uniform polynomial-time distinguisher D, there exists a negligible function ε(·)
such that, for all n ∈ N, x, y ∈ {0, 1}n, and auxiliary input z, D distinguishes
the distributions OutTh

Πh,A′,I(1
n, x, y, z) and Out

Tf

Πf ,S,I(1
n, x, y, z) with at most

probability ε(n).

Proof. We again separate into two cases, based on whether I = R (the receiver
is corrupted) or I = S (the sender is corrupted).

Corrupted Receiver. In this case, define a T (n) ·poly(n)-time simulator SR which
does as follows:

1. Run the corrupted receiver A′. A′, in the first round, will output a message
(x, rFHE, rDel, rEnc) to be sent to Th. Send x to the ideal functionality Tf .

2. Receive an output message out from the ideal functionality Tf . If out is ⊥,
return ⊥ to A′ (as the output of Th).

3. Verify the following. If any checks fail, return ⊥ to A′.
(a) (pkFHE, ·) = GenFHE(1n; rFHE)
(b) (pkDel, ·) = GenDel(1λ; rDel)
(c) ctx = EncFHE(pkFHE, x; rEnc(x))

4. If all checks in the previous step pass, return out to A′. Finally, output what-
ever A′ outputs.

It suffices here to argue that the output which SR returns to A′ in the ideal
experiment is identically distributed to the output which Th would return to A′ in
the hybrid experiment, as this, combined with the observation that the only input
A′ receives (aside from the auxiliary input z) is the output from Th, allows us to
conclude that A′’s views in ExecTh

Πh,A′,R(1n, x, y, z) and Exec
Tf

Πf ,SR,R(1n, x, y, z)
(and hence A′’s outputs) are likewise identically distributed. We can argue this
using the following claims:

Claim 1. If S is honest, then, given the messages (x, rFHE, rDel, rEnc) and
(pkFHE, pkDel, ctx) from A′, step (4) of SR succeeds (i.e., does not return ⊥)
in Πf if and only if all checks in step (1) of the functionality h described in
Fig. 3 succeed in the respective instance of Πh.

Proof. The “if” direction is trivial since the checks in step (4) of SR are a strict
subset of the checks in step (1) of h.

The “only if” direction follows from the assumption that S is honest, and will
hence compute cty = EncFHE(pkFHE, y; rEnc(y)) correctly using the correct inputs.
	

Claim 2. If S is honest and all checks in step (1) of the functionality h described
in Fig. 3 succeed in Πh, then, with probability 1, step (3) of the functionality h
will not return ⊥.

236 A. Morgan et al.

Proof. Since step (1) is successful, we know that (pkDel, skDel) = GenDel(1λ, rDel);
moreover, since S is honest, we know that it must have computed
(ctout, πDel, 1T) = CompDel(pkDel, g, ctx, cty) correctly (and using the correct pkDel

and ctx, since the checks in step (1) passed). It follows by perfect completeness
of the delegation scheme (GenDel,CompDel,VerDel) that

VerDel(skDel, g, ctx, cty, ctout, πDel, T) = Accept

as desired. 	

Claim 3. If S is honest and, in Πh, all checks in step (1) of the functionality
h described in Fig. 3 succeed, and step (3) of the functionality h does not return
⊥, then the value of out returned by step (4) of h will be equal to f(x, y) with
probability 1.

Proof. Since S is honest and step (1) is successful, we know, as in the previous
claim, that (pkDel, skDel) = GenDel(1λ, rDel) and furthermore (ctout, πDel, 1T) =
CompDel(pkDel, g, ctx, cty). It follows by correctness of the delegation scheme
(GenDel,CompDel,VerDel) that

ctout = g(ctx, cty) = EvalFHE(pkFHE, f, ctx, cty)

It suffices to show that this will decrypt to the correct output out = f(x, y).
This holds due to perfect correctness of (GenFHE,EncFHE,DecFHE,EvalFHE); specif-
ically, since ctx and cty are encryptions of x and y, respectively:

DecFHE(skFHE, ctout) = DecFHE(skFHE,EvalFHE(pkFHE, f, ctx, cty)) = f(x, y)

	

Chaining together Claims 1, 2, and 3 leads us to the conclusion that (by Claim 1),
SR returns ⊥ in Exec

Tf

Πf ,SR,R(1n, x, y, z) if and only if Th would return ⊥ (from

step (1)) in the respective execution of ExecTh

Πh,A′,R(1n, x, y, z), and furthermore,
if this event does not occur, then (by Claims 2 and 3 as well as the definition
of SR) both SR (in Exec

Tf

Πf ,SR,R(1n, x, y, z)) and Th (in the respective execution

of ExecTh

Πh,A′,R(1n, x, y, z)) will return an output out that is precisely equal to
f(x, y), where x is the value sent by the adversary to Th and y is the (honest)
sender’s input. This completes the argument for the case I = R.

Corrupted Sender. In the case I = S, define a T (n) · poly(n)-time simulator SS

which does as follows:

1. Generate rFHE, rDel, rEnc(x) ← {0, 1}∗, (pkFHE, ·) = GenFHE(1n; rFHE), (pkDel, ·)
= GenDel(1λ; rDel), ctx = EncFHE(pkFHE, 0; rEnc(x)).

2. Run the corrupted sender A′ using input (pkFHE, pkDel, ctx). A′ will generate a
message (y′, pk′

FHE, pk
′
Del, ct

′
x, ct′y, ct′out, π

′
Del, r

′
Enc(y), T

′) to send to Th. Perform
the following checks to verify this message, and return ⊥ to Tf (causing it to
output ⊥) if any of them fail.

Succinct Non-interactive Secure Computation 237

(a) pkFHE = pk′
FHE, pkDel = pk′

Del, ctx = ct′x.
(b) ct′y = EncFHE(pkFHE, y′; r′

Enc(y))
(c) VerDel(skDel, g, ctx, cty, ct′out, π

′
Del, T

′) = Accept for the functionality given
by g(c1, c2) = EvalFHE(pkFHE, f, c1, c2).

3. Otherwise (if the above checks pass), send y′ to Tf . Finally, output whatever
A′ outputs.

As this case has interesting subtleties, we lead the formal proof with a brief
overview. Recall that, for this case, we need not only to verify that the adversary
A′’s views in the experiments ExecTh

Πh,A′,S(1n, x, y, z) and Exec
Tf

Πf ,SS ,S(1n, x, y, z)
(and hence A′’s outputs) cannot be distinguished, but also that the honest
receiver R’s outputs cannot be distinguished between the two experiments.

The natural way to do this would be to begin by creating a hybrid protocol
Π ′

h where the receiver, instead of sending a ciphertext of their input x in the
first round, sends the corresponding ciphertext of 0 (as the simulator does when
running A′ in Πf). Ostensibly, this would allow us to show that the output
distributions between Πh and Π ′

h are close by using the CPA-security of the
underlying FHE protocol to assert that the ciphertexts, and hence the views
of A′, are indistinguishable between the two experiments. And while this does
indeed directly imply that the adversary’s outputs are close, we run into an issue
the moment we consider the receiver’s output; specifically, the receiver’s output
is the output from the ideal functionality Th, which among other things depends
on the secret key skFHE and the randomness rFHE used to generate it. In fact, this
makes a reduction from Π ′

h to the security of the FHE scheme impossible (using
current techniques), since a hypothetical adversary simulating this functionality
would only know pkFHE.

Instead we will have to consider an alternate functionality h′ which only
depends on the public key pkFHE and does not use the randomness or secret key.
Specifically, rather than decrypting the final result ctout, h′ will instead simply
return f(x, y′). We then show that the output distribution of Πh′ is statistically
close to that of Πh. Specifically, they are identical except when the adversary
A′ can force the ideal functionality h′ to verify a proof πDel of an incorrect
ciphertext ctOut—this implies that their statistical distance must be at most
the (negligible) soundness error of delegation.8 Now, given Πh′ , we can finally
consider a protocol Π ′

h′ where the receiver uses a ciphertext of 0; now that h′

no longer depends on skFHE, the reduction to the CPA-security will go through
(for both the adversary’s and receiver’s outputs), and we can lastly compare
ExecTh

Π′
h′ ,A′,S(1n, x, y, z) and Exec

Tf

Πf ,SS ,S(1n, x, y, z) to show that, actually, the
output distributions are identically distributed.

8 An attentive reader might wonder at this point why, in doing this, we are not simply
backing ourselves into the same corner, since indeed Th and even Th′ are very much
dependent on the randomness rDel and secret key skDel. The intuitive answer is that,
unlike with the reduction to FHE, we are able to “outsource” the dependence on skDel

in Th′ to the security game for the soundness of delegation, allowing us to effectively
emulate h′ without said secret key in the adversary we construct.

238 A. Morgan et al.

We continue to the formal proof. Let h′ be the functionality defined as h, but
with four key differences:

– h′, instead of taking input rFHE from the receiver, takes input pkFHE.
– In step (1), instead of verifying that (pkFHE, ·) = GenFHE(1n, rFHE), h′ verifies

that the sender’s and receiver’s inputs pkFHE match.
– In step (2), h′ no longer computes (·, skFHE) = GenFHE(1n; rFHE).
– In step (4), h′ returns f(x, y) rather than DecFHE(skFHE, ctout).

Let Πh′ be defined identically to Πh except that both parties use the ideal
functionality Th′ in place of Th and the receiver inputs pkFHE to Th′ instead of
rFHE as specified above. We state the following claim:

Claim 4. There exists negligible ε(·) such that, for all n ∈ N and inputs x, y, z,
the output distributions OutTh

Πh,A′,S(1n, x, y, z) and Out
Th′
Πh′ ,A′,S(1n, x, y, z) are

ε(n)-statistically close.

Proof. Intuitively, this will follow from the soundness of the delegation scheme
(GenDel,CompDel,VerDel). First, observe that the adversary’s views in experi-
ments ExecTh

Πh,A′,S(1n, x, y, z) and Exec
Th′
Πh′ ,A′,S(1n, x, y, z), and thus the adver-

sary’s outputs, are identically distributed; hence, it suffices to argue about the
honest receiver’s output, i.e., the output of Th or Th′ .

Second, since the receiver R is honest, the fact that h′ verifies that the
sender’s and receiver’s inputs pkFHE match is equivalent to the verification in
h of the sender’s pkFHE (that (pkFHE, ·) = GenFHE(1n, rFHE)), since the receiver’s
input pkFHE will always be equal to GenFHE(1n, rFHE). So the only change that
can possibly affect the output of Th′ compared to Th in the corrupted sender
case is the fact that h′ returns f(x, y) rather than DecFHE(skFHE, ctout).

Now, assume for the sake of contradiction that there is some polyno-
mial p(·) such that, for infinitely many n ∈ N, there exist x, y, z so that the
ideal functionality’s output is different between ExecTh

Πh,A′,S(1n, x, y, z) and

Exec
Th′
Πh′ ,A′,S(1n, x, y, z) with probability 1/p(n). We shall use this to construct

a T (n) · poly(n)-time adversary ADel to break the soundness of the delegation
scheme with probability 1/p(n). Specifically, let ADel do as follows on input
(1n, pkDel):

1. Generate rFHE, rEnc(x) ← {0, 1}∗ and (pkFHE, ·) = GenFHE(1n; rFHE), ctx
= EncFHE(pkFHE, x; rEnc(x)).

2. Run the corrupted sender A′ on input y, auxiliary input z, and
first-round message (pkFHE, pkDel, ctx). A′ will generate the message
(y′, pk′

FHE, pk
′
Del, ct

′
x, ct′y, ct′out, π

′
Del, r

′
Enc(y), T

′) to send to the ideal function-
ality (Th or Th′).

3. Run (ctout, πDel, 1T) ← CompDel(pkDel, g, ctx, ct′y) for the functionality given
by g(c1, c2) = EvalFHE(pkFHE, f, c1, c2)

4. Verify the following and abort if any are false.
(a) pkFHE = pk′

FHE, pkDel = pk′
Del, ctx = ct′x

(b) ct′y = EncFHE(pkFHE, y′; r′
Enc(y))

Succinct Non-interactive Secure Computation 239

5. Otherwise, return (g, ctx, ct′y, ctout, ct
′
out, πDel, π

′
Del, 1

T , 1T ′
).

We claim that ADel returns a tuple (g, ctx, ct′y, ctout, ct
′
out, πDel, π

′
Del, 1

T , 1T ′
)

such that ctout �= ct′out but VerDel(skDel, g, ctx, ct′y, ctout, πDel, T) = VerDel(skDel,
g, ctx, ct′y, ct′out, π

′
Del, T

′) = Accept—that is, ADel breaks soundness of the dele-
gation scheme—precisely when h decrypts a ciphertext that is not equal to ctout
as returned by CompDel(pkDel, g, ctx, cty) for the corresponding functionality and
inputs; furthermore, we claim that this is the only case where h and h′ may not
be identically distributed.

To verify this, we start by observing that the input to A′ in step (2) of ADel

is identically distributed to the inputs in the experiments ExecTh

Πh,A′,S(1n, x, y, z)

and Exec
Th′
Πh′ ,A′,S(1n, x, y, z), since pkDel is honestly generated and the receiver

is honest. Furthermore, given the message from A′ to the ideal functionality, as
well as the fact that R is honest, we can assert that the checks in step (4) of
ADel are equivalent to the checks in step (1) of h or h′, since the receiver’s inputs
pkFHE, pkDel, ctx are guaranteed to be honestly generated. So, comparing Th and
Th′ for a particular interaction, there are four possible outcomes, which we shall
analyze:

1. Step (1) of h or h′ fails, in which case both return ⊥ (and ADel will abort).
2. Step (1) succeeds, but the verification in step (3) fails, in which case

both will return ⊥ (and ADel will produce output (g, ctx, ct′y, ctout, ct
′
out, πDel,

π′
Del, 1

T , 1T ′
) which is rejected because (ct′out, π

′
Del) fails to verify).

3. Steps (1) and (3) succeed, and ct′out given by the adversary is the same as the
correct (ctout, ·, ·) = CompDel(pkDel, g, ctx, ct′y), in which case the outputs of h
and h′ are identical and not ⊥ by perfect correctness of Enc and Eval, as well
as correctness of the delegation scheme.
Specifically, considering the inputs to h, we know by correctness of delega-
tion that, since (ct′out, ·, ·) = CompDel(pkDel, g, ctx, ct′y), ct′out = g(ctx, ct′y) =
EvalFHE(pkFHE, f, ctx, ct′y). Furthermore, by perfect correctness of the FHE
scheme and the fact that ctx and ct′y are encryptions of x and y, respec-
tively:

DecFHE(skFHE, ctout) = DecFHE(skFHE,EvalFHE(pkFHE, f, ctx, ct′y)) = f(x, y′)

that is, the output of h will be identical to the output f(x, y′) of h′. In this
case, ADel will produce output (g, ctx, ct′y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T ′
) which

is rejected because ct′out = ctout.
4. Steps (1) and (3) succeed, and ct′out given by the adversary is not the

same as the correct (ctout, ·, ·) = CompDel(pkDel, g, ctx, ct′y), in which case
the outputs of h and h′ may be different (and ADel will produce output
(g, ctx, ct′y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T ′
) which is accepted because ct′out �=

ctout and (ct′out, π
′
Del, 1

T ′
) verifies successfully).

The above implies that the probability over possible interactions that the out-
puts of h and h′ are different—which, as we have argued above, is equal to

240 A. Morgan et al.

the statistical distance between the distributions OutTh

Πh,A′,S(1n, x, y, z) and

Out
Th′
Πh′ ,A′,S(1n, x, y, z)—is no greater9 than the probability with which ADel’s

output is accepted. In particular, by our assumption that, for infinitely many
n ∈ N, there were x, y, z such that this statistical distance was greater than
1/p(n), this implies that the probability that ADel’s output is accepted (for the
corresponding inputs) must be greater than 1/p(n) for infinitely many n ∈ N.
But this contradicts the soundness of delegation, so the claim is proven. 	

Now let Π ′
h′ be identical to Πh′ , with the sole exception that the

receiver’s first-round message to the sender replaces the correctly gener-
ated ctx = EncFHE(pkFHE, x; rEnc(x)) with the simulated encryption ctx =
EncFHE(pkFHE, 0; rEnc(x)) of 0. We present the following claim comparing
Exec

Th′
Πh′ ,A′,S(1n, x, y, z) and Exec

Th′
Π′

h′ ,A′,S(1n, x, y, z):

Claim 5. For any polynomial-time non-uniform distinguisher D, there exists
negligible ε(·) such that, for any n ∈ N and inputs x, y, z, the distributions
Out

Th′
Πh′ ,A′,S(1n, x, y, z) and Out

Th′
Π′

h′ ,A′,S(1n, x, y, z) cannot be distinguished by D

with probability greater than ε(n).

Proof. Intuitively, this follows from the CPA-security of the FHE scheme with
respect to T (n) ·poly(n)-time adversaries and the fact that both h′ and the view
of A′ are independent of rFHE and skFHE.

Formally, assume for contradiction that there exist some non-uniform
polynomial-time distinguisher D and polynomial p(·) such that, for infinitely
many n ∈ N, there are inputs x, y, z such that D is able to distinguish the
distributions OutTh′

Πh′ ,A′,S(1n, x, y, z) and Out
Th′
Π′

h′ ,A′,S(1n, x, y, z) with probability
1/p(n). We define a tuple of T (n) · poly(n)-time algorithms (AFHE,D

′) that can
break the CPA-security of the FHE scheme (GenFHE,EncFHE,EvalFHE,DecFHE)
with probability 1/p(n) as follows:

– AFHE, on input 1n, outputs (0, x).
– D′, on input (1n, pkFHE, ctx), where c is given as either ct0x = EncFHE(pkFHE, 0)

or ct1x = EncFHE(pkFHE, x), does the following:
1. Generate rDel ← {0, 1}∗ and (pkDel, skDel) = GenDel(1λ; rDel).
2. Run the corrupted sender A′ with sender input y, auxiliary input z,

and first-round message (pkFHE, pkDel, ctx). A′ will generate a message
(y′, pk′

FHE, pk
′
Del, ct

′
x, ct′y, ct′out, π

′
Del, r

′
Enc(y), T

′) to send to Th′ and output
outA′ . Store outA′ .

3. Verify the following and set outR = ⊥ if any are false. Otherwise, set
outR = f(x, y′).
(a) pkFHE = pk′

FHE, pkDel = pk′
Del, ctx = ct′x

(b) ct′y = EncFHE(pkFHE, y′; r′
Enc(y))

9 Note that equality is not guaranteed, as h could possibly accept a ciphertext ct′out �=
ctout that still decrypts to f(x, y).

Succinct Non-interactive Secure Computation 241

(c) VerDel(skDel, g, ctx, ct′y, ct′out, π
′
Del, T

′) = Accept for the functionality
given by g(c1, c2) = EvalFHE(pkFHE, f, c1, c2)

4. Return D(1n, (outA′ , outR)).

First, notice that (given that the inputs pkFHE and ctx = EncFHE(pkFHE,m) for
either m = 0 or m = x are generated correctly) the inputs to A′ in step (2) of
D′ are identically distributed to either the inputs in Exec

Th′
Πh′ ,A′,S(1n, x, y, z) (if

m = x) or the inputs in Exec
Th′
Π′

h′ ,A′,S(1n, x, y, z) (if m = 0). Hence, the view of
A′ in D′ is identically distributed to the corresponding view in the respective
experiment, which implies that the output outA′ must be as well, as must the
message sent to Th′ .

It remains to argue about the receiver’s output outR; recall that the hon-
est receiver’s output in either experiment is given by the output of the ideal
functionality Th′ . However, outR as defined in step (3) of D′ can easily be seen
to be identically distributed to the output of h′ in the respective experiment
Exec

Th′
Πh′ ,A′,S(1n, x, y, z) (if m = x) or Exec

Th′
Π′

h′ ,A′,S(1n, x, y, z) (if m = 0). This
holds because, since R is honest, R’s inputs (pkFHE, pkDel, ctx) are honestly gener-
ated and so the verifications in steps (3a) and (3b) are identical to the respective
checks in step (1) of h. Furthermore, the verification in step (3c) of D′ is identical
to the verification in step (3) of h, so it follows that outR = ⊥ exactly when h′ in
the respective experiment would return ⊥, and that, otherwise, outR = f(x, y′),
which by the definition of h′ is identical to what h′ would return if not ⊥.

So we have argued that the distribution (outA′ , outR) is identical to the distri-
bution Out

Th′
Πh′ ,A′,S(1n, x, y, z) when m = x and to Out

Th′
Π′

h′ ,A′,S(1n, x, y, z) when
m = 0. But we have assumed that for infinitely many n ∈ N there exist x, y, z

so that D can distinguish Out
Th′
Πh′ ,A′,S(1n, x, y, z) and Out

Th′
Π′

h′ ,A′,S(1n, x, y, z)
with probability 1/p(n), i.e., that there is at least a 1/p(n) difference between
the probability that D(1n, (outA′ , outR)) returns 1 in the m = x case and
the respective probability in the m = 0 case. But, since D′ returns precisely
D(1n, (outA′ , outR)), this gives us

|Pr[D(1n, pkFHE,EncFHE(pkFHE, 0)) = 1]
−Pr[D(1n, pkFHE,EncFHE(pkFHE, x)) = 1]| ≥ 1/p(n)

which, since AFHE always returns (0, x), means that (AFHE,D
′) is able to break

the CPA-security of the underlying FHE scheme (w.r.t. T (n)·poly(n)-time adver-
saries) with probability 1/p(n) for infinitely many n ∈ N, a contradiction. 	

It remains to compare Out
Th′
Π′

h′ ,A′,S(1n, x, y, z) and Out
Tf

Πf ,SS ,S(1n, x, y, z); we
claim that in fact these distributions are already identical. First, observe that
the input provided to A′ in SS is identically distributed to the input provided to
A′ in Exec

Th′
Π′

h′ ,A′,S(1n, x, y, z); in both cases this consists of an honestly gener-
ated pkFHE, pkDel, ctx such that ctx is the respective encryption of 0. So it follows
that the adversary’s output, as well as the message sent by the adversary to

242 A. Morgan et al.

the ideal functionality, must be identically distributed between the two experi-
ments. Demonstrating that the receiver’s outputs are identical—that is, that the
output of h′ in Exec

Th′
Π′

h′ ,A′,S(1n, x, y, z) is always equal to the output f(x, y) in

Exec
Tf

Πf ,SS ,S(1n, x, y, z)—will follow from the following claim, to which we have
already alluded in the previous two reductions:

Claim 6. If R is honest, then, given messages (x, pkFHE, rDel, rEnc) sent to Th′ ,
(pkFHE, pkDel, ctx) sent to A′, and (y′, pk′

FHE, pk
′
Del, ct

′
x, ct′y, ct′out, π

′
Del, r

′
Enc(y), T

′)
sent by A′ to Th′ , the checks in step (2) of SS succeed if and only if all checks
in steps (1) and (3) of the functionality h′ succeed.

Proof. If R is honest, it must be the case that (pkDel, ·) = GenDel(1λ; rDel) and
ctx = EncFHE(pkFHE, x; rEnc(x)); hence step (2a) of SS is equivalent to verifying
pk′

FHE = pkFHE, (pk′
Del, ·) = GenDel(1λ; rDel), and ct′x = EncFHE(pk′

FHE, x; rEnc(x)),
i.e., the first three checks of step (1) of h′. Step (2b) is trivially equivalent to the
last check in step (1) of h′ and step (2c) is trivially equivalent to the check in
step (3) of h′, completing the argument. 	

This implies that the receiver in Exec
Th′
Π′

h′ ,A′,S(1n, x, y, z) will return ⊥ as the
output from h′ precisely when SS will return ⊥ to the ideal functionality (based
on the checks in step (2)) and cause the receiver in Exec

Tf

Πf ,SS ,S(1n, x, y, z) to
return ⊥. However, when Tf does not output ⊥, it will always output f(x, y′)
on the respective inputs x from the honest receiver and y′ from SS ; similarly,
when Th′ does not return ⊥, it will, by definition, also always output f(x, y′)
on the respective input x from the honest receiver and y′ from A′. The above,
then, is sufficient to conclude that the distributions Out

Th′
Π′

h′ ,A′,S(1n, x, y, z) and

Out
Tf

Πf ,SS ,S(1n, x, y, z) are identical.
We conclude the proof of the lemma with a standard hybrid argument; specif-

ically, if there exists some non-uniform polynomial-time distinguisher D and
polynomial p(·) such that, for infinitely many n ∈ N, there are inputs x, y, z

so that D can distinguish OutTh

Πh,A′,S(1n, x, y, z) and Out
Tf

Πf ,S,S(1n, x, y, z) with
probability 1/p(n), then D must likewise be able to distinguish one of the fol-
lowing pairs with probability 1/p′(n) for some polynomial p′(·):

– OutTh

Πh,A′,S(1n, x, y, z) and Out
Th′
Πh′ ,A′,S(1n, x, y, z)

– Out
Th′
Πh′ ,A′,S(1n, x, y, z) and Out

Th′
Π′

h′ ,A′,S(1n, x, y, z)

– Out
Th′
Π′

h′ ,A′,S(1n, x, y, z) and Out
Tf

Πf ,S,S(1n, x, y, z)

The first case would contradict Claim 4, the second case would contradict
Claim 5, and the third case is impossible because we showed the distributions
to be identical. Therefore, such a distinguisher D cannot exist. 	

By the same logic, a standard hybrid argument shows that Lemmas 2 and 3
imply Theorem 7: if there were some non-uniform polynomial-time distinguisher
D and polynomial p(·) such that, for infinitely many n ∈ N, there were inputs

Succinct Non-interactive Secure Computation 243

x, y, z so that D could distinguish OutΠ,A,I(1n, x, y, z) and Out
Tf

Πf ,S,I(1
n, x, y, z)

with probability 1/p(n), then D would be able to distinguish either:

– OutΠ,A,I(1n, x, y, z) and OutTh

Πh,A′,I(1
n, x, y, z), or

– OutTh

Πh,A′,I(1
n, x, y, z) and Out

Tf

Πf ,S,I(1
n, x, y, z)

with probability 1/p′(n) for some polynomial p′(·). The first case would contra-
dict Lemma 2 and the second Lemma 3; hence, Theorem 7 is proven.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Asharov, G., Ephraim, N., Komargodski, I., Pass, R.: On perfect correctness
without derandomization. Cryptology ePrint Archive, Report 2019/1025 (2019).
https://eprint.iacr.org/2019/1025

3. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 10

4. Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive secure
computation from one-way functions. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part III. LNCS, vol. 11274, pp. 118–138. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 5

5. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24638-1 7

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press, June 2013.
https://doi.org/10.1145/2488608.2488623

7. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 505–514. ACM
Press, May/June 2014. https://doi.org/10.1145/2591796.2591859

8. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

9. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional aux-
iliary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS,
vol. 9453, pp. 236–261. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 10

10. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol.
11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03810-6 14

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://eprint.iacr.org/2019/1025
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-030-03332-3_5
https://doi.org/10.1007/978-3-540-24638-1_7
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2591796.2591859
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14

244 A. Morgan et al.

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM, January 2012. https://doi.org/10.1145/2090236.2090262

12. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch NP
verification from standard computational assumptions. In: Hatami, H., McKenzie,
P., King, V. (eds.) 49th ACM STOC, pp. 474–482. ACM Press, June 2017. https://
doi.org/10.1145/3055399.3055497

13. Brakerski, Z., Kalai, Y.T.: Monotone batch NP-delegation with applications to
access control. Cryptology ePrint Archive, Report 2018/375 (2018). https://eprint.
iacr.org/2018/375

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001. https://doi.org/10.1109/SFCS.2001.959888

15. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM
Press, November 2014. https://doi.org/10.1145/2660267.2660374

16. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 2

17. Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct proofs for
NP and spooky interactions (2004)

18. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488667

19. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 16

20. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009. https://doi.
org/10.1145/1536414.1536440

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987. https://doi.org/10.1145/28395.28420

23. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

24. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June
2013. https://doi.org/10.1145/2488608.2488678

25. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

26. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 19

https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/3055399.3055497
https://doi.org/10.1145/3055399.3055497
https://eprint.iacr.org/2018/375
https://eprint.iacr.org/2018/375
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/BF00195207
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19

Succinct Non-interactive Secure Computation 245

27. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

28. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol. 25(1), 158–193 (2012)

29. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53641-4 15

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

31. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

32. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Com-
puter Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746

33. Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online and
batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 425–455. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 15

34. Morgan, A., Pass, R., Polychroniadou, A.: Succinct non-interactive secure compu-
tation (full version). Cryptology ePrint Archive, Report 2019/1341 (2019). https://
eprint.iacr.org/2019/1341

35. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457
(2001)

36. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

37. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

38. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC, pp. 242–251.
ACM Press, June 2004. https://doi.org/10.1145/1007352.1007394

39. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press, October
2018. https://doi.org/10.1109/FOCS.2018.00086

40. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005. https://doi.org/10.1145/1060590.1060603

41. Schröder, D., Unruh, D.: Round optimal blind signatures. Cryptology ePrint
Archive, Report 2011/264 (2011). https://eprint.iacr.org/2011/264

42. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp.
160–164 (1982)

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-319-56617-7_15
https://eprint.iacr.org/2019/1341
https://eprint.iacr.org/2019/1341
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1145/1007352.1007394
https://doi.org/10.1109/FOCS.2018.00086
https://doi.org/10.1145/1060590.1060603
https://eprint.iacr.org/2011/264

Quantum I

Finding Hash Collisions with Quantum
Computers by Using Differential Trails

with Smaller Probability
than Birthday Bound

Akinori Hosoyamada1,2(B) and Yu Sasaki1(B)

1 NTT Secure Platform Laboratories, Tokyo, Japan
{akinori.hosoyamada.bh,yu.sasaki.sk}@hco.ntt.co.jp

2 Nagoya University, Nagoya, Japan
hosoyamada.akinori@nagoya-u.jp

Abstract. In this paper we spot light on dedicated quantum collision
attacks on concrete hash functions, which has not received much atten-
tion so far. In the classical setting, the generic complexity to find colli-
sions of an n-bit hash function is O(2n/2), thus classical collision attacks
based on differential cryptanalysis such as rebound attacks build differ-
ential trails with probability higher than 2−n/2. By the same analogy,
generic quantum algorithms such as the BHT algorithm find collisions
with complexity O(2n/3). With quantum algorithms, a pair of messages
satisfying a differential trail with probability p can be generated with
complexity p−1/2. Hence, in the quantum setting, some differential trails
with probability up to 2−2n/3 that cannot be exploited in the classical
setting may be exploited to mount a collision attack in the quantum
setting. In particular, the number of attacked rounds may increase. In
this paper, we attack two international hash function standards: AES-
MMO and Whirlpool. For AES-MMO, we present a 7-round differential
trail with probability 2−80 and use it to find collisions with a quantum
version of the rebound attack, while only 6 rounds can be attacked in
the classical setting. For Whirlpool, we mount a collision attack based
on a 6-round differential trail from a classical rebound distinguisher with
a complexity higher than the birthday bound. This improves the best
classical attack on 5 rounds by 1. We also show that those trails are
optimal in our approach. Our results have two important implications.
First, there seems to exist a common belief that classically secure hash
functions will remain secure against quantum adversaries. Indeed, sev-
eral second-round candidates in the NIST post-quantum competition use
existing hash functions, say SHA-3, as quantum secure ones. Our results
disprove this common belief. Second, our observation suggests that dif-
ferential trail search should not stop with probability 2−n/2 but should
consider up to 2−2n/3. Hence it deserves to revisit the previous differen-
tial trail search activities.

Keywords: Symmetric key cryptography · Hash function ·
Cryptanalysis · Collision · Quantum attack · AES-MMO · Whirlpool ·
Rebound attack

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 249–279, 2020.
https://doi.org/10.1007/978-3-030-45724-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_9

250 A. Hosoyamada and Y. Sasaki

1 Introduction

Recently, post-quantum security has received a lot of attention from the cryp-
tographic community. The security of public-key cryptographic schemes is often
reduced to some mathematically difficult problem, which can be affected by
quantum machines directly. In contrast, symmetric-key cryptographic schemes
may not have such a security reduction and post-quantum security of symmetric-
key cryptographic schemes has not been discussed until recently. In 2010,
Kuwakado and Morii [28] pointed out that the 3-round Feistel network would be
distinguished only with polynomially many queries by using Simon’s algorithm
[40] in the quantum setting. After their discovery, a lot of researchers have tried
to apply Simon’s algorithm to symmetric-key schemes to obtain a drastic reduc-
tion of the complexity in the quantum setting, e.g. key-recovery attacks against
the Even-Mansour construction [29] and universal forgery attacks on various
message authentication codes (MACs) [24].

Simon’s algorithm allows to find a “hidden period” by only polynomially
many queries. From its nature, all the previous applications of Simon’s algorithm
are keyed primitives. Namely, a key or a key-dependent secret value takes a role of
the hidden period. Then, queries need to be made in a quantum manner, which
is called “superposition queries.” (An exception is a recently published paper
that utilizes Simon’s algorithm without superposition queries [6], but this is the
only exception.) Superposition queries can still be practical if one considers the
situation that keyed primitives are implemented in a keyless manner, white-box
implementation for example. Meanwhile, there seems to exist consensus that to
make superposition queries is more difficult than to make classical queries.

In contrast, the analysis of the keyless primitives does not require any online
queries because all computations can be done offline. In this work, we are tar-
geting hash functions, and thus do not make any superposition queries to keyed
oracles.

To find collisions of hash functions in the quantum setting is indeed impor-
tant. Recently many public-key schemes have been proven to be post-quantum
secure in the quantum random oracle model (QROM) [5], which is an analogue
of the random oracle model in the classical setting. These schemes include many
second-round candidates in the NIST post-quantum public-key standardization
process [36]. A quantum random oracle is an ideal model of concrete hash func-
tions that allows superposed quantum queries for adversaries, and the QROM
implicitly assumes that there exists a concrete hash function that behaves like
a random oracle against adversaries that make quantum superposed queries. In
particular, if a hash function is used to instantiate a quantum random oracle,
there should not exist any dedicated quantum collision attack on the hash func-
tion that is faster than the generic quantum collision attack. When the best
collision attack on a hash function is the generic one in the classical setting, it
is often believed to be also the case in the quantum setting. Thus, to find ded-
icated quantum collision attacks on classically collision-resistant hash functions
will give significant impacts in the real world.

Finding Hash Collisions with Quantum Computers 251

In the classical setting, the generic attack complexity to find collisions against
an n-bit hash function is O(2n/2) by the birthday paradox. Therefore any dedi-
cated attack that finds collisions with less than O(2n/2) complexity is regarded
as a meaningful attack. In the quantum setting, the generic attack complexity
depends on the model (or assumptions) of the actual quantum machines. Irre-
spective of the model, the lower bound of the query complexity is proven to be
Ω(2n/3) [45] and there is an attack matching this bound if O(2n/3) qubits are
available (BHT) [11]. By the same analogy, any dedicated attack with less than
O(2n/3) quantum complexity should be regarded as a meaningful attack.

However, in the quantum setting, dedicated attacks need to be compared
with the generic attack complexity very carefully because the generic attack
complexity depends on the model of the quantum computations. For example,
BHT cannot be better than the classical computations by considering the fact
that each qubit can behave as either processor or memory [4]. (By running
2n/3 processors in parallel, collisions can be found in time O(2n/6) even with
classical machines.) However, if a quantum computer of polynomial size with
exponentially large quantum random access memory (qRAM) is available, BHT
is the best collision attack. It is hard to predict which model is more likely to be
realized in the future than others, and it would be useful to discuss advantages
of attacks in various models with various generic attack complexities.

While there are various generic attacks, we observe that there does not exist
any dedicated quantum attack against hash functions. This is a strange tendency
especially considering the fact that there are many attempts to speed up dedi-
cated cryptanalysis against block ciphers e.g. differential and linear cryptanalysis
[25], impossible differential cryptanalysis [44], meet-in-the-middle attacks [8,20],
slide attacks [7], and so on. In this paper, we explore dedicated collision attacks
against hash functions to find collisions faster than generic quantum attacks.

Here we briefly review dedicated collision attacks in the classical setting.
Some of famous collision attacks are ones presented by Wang et al. against SHA-
1 [41] and MD5 [42]. In short, they first derive the differential trail, and then
efficiently find message pairs which satisfy the first part of the differential trail
by using a “message modification” technique. The generated message pairs are
simply propagated to the last round to probabilistically satisfy the differential
trail of the remaining part. When the cost of message modification is 1, the latter
part of the differential trail can be up to 2−n/2 (if the differential probability is
smaller than 2−n/2, the attack becomes worse than the birthday attack). Another
important direction is the rebound attack by Mendel et al. [31,32] which is
particularly useful against hash functions based on the substitution-permutation
network (SPN). In short, it divides the computation into three parts (outbound,
inbound, and another outbound), and derives a differential trail such that the
probability of the differential propagation in the outbound parts is high. Then,
pairs of messages to satisfy the inbound part are found with average cost 1 and
those are propagated to outbound parts. Hence, the probability of the outbound
differential trail can be up to 2−n/2 to be faster than the birthday attack.

252 A. Hosoyamada and Y. Sasaki

1.1 Our Contribution

This paper gives an observation that dedicated quantum collision attacks based
on differential cryptanalysis may break hash functions that are secure in the clas-
sical setting, and shows that we can actually mount quantum versions of rebound
attacks that find collisions of 7-round AES-MMO and 6-round Whirlpool, on
which there has not been found any dedicated collision attack that is faster than
the generic collision attack in the classical setting.

An observation on quantum differential cryptanalysis. In the classical
setting, if we mount an attack that uses a differential trail with differential prob-
ability p, the attack requires at least 1/p operations. Thus, the trail cannot be
used to find hash collisions if p < 2−n/2. On the other hand, in the quantum
setting, Kaplan et al. [25] showed that we can find a message pair that satisfies
the differential in time around

√
1/p. Thus, if we have a differential trail with

probability p, we can mount a collision attack in time around
√

1/p. Such an
attack is faster than the generic attack (BHT) if

√
1/p < 2n/3, or equivalently

p > 2−2n/3 (in the quantum setting where a small quantum computer with expo-
nentially large qRAM is available). In particular, if we find a differential trail for
a hash function with probability 2−n/2 > p > 2−2n/3, we can make a dedicated
quantum collision attack that is faster than the quantum generic attack.

Observations without qRAM. So far we have discussed the setting where
qRAM is available and the best generic attack is BHT. The generic attack
changes in other settings where qRAM of exponential size is not available. In
this paper we consider two settings in which qRAM is not available, and observe
that we can still use differential trails with smaller differential probabilities than
2−n/2 to find collisions: In the first setting, the efficiency of quantum algorithms
is measured by the tradeoff between time T and space S (the maximum of the
size of quantum computer and classical memory) and parallelizations are taken
into account. Since qubits for computation and qubits for quantum memory may
be realized in physically the same way, if a quantum algorithm requires lots of
qubits for quantum memory, it is plausible to compare the algorithm to other
algorithms that use the same amount of qubits for parallelization [18]. In the
second setting, a small quantum computer of polynomial size and exponentially
large classical memory are available (and we do not consider parallelizations).

In the first setting of time-space tradeoff, the generic collision finding algo-
rithm is the parallel rho method [37] that gives the tradeoff T = 2n/2/S even
in the quantum setting, as observed by Bernstein [4]. Thus, in this setting, we
have to compare the efficiency of dedicated quantum attacks to the parallel rho
method. As briefly introduced before, rebound attacks consist of inbound phase
and outbound phase. Intuitively, if we use a differential trail of probability pout

for the outbound phase, the time complexity for the outbound phase becomes
about

√
1/pout with the Grover search. The inbound phase can be done in a

constant time if large memory (and qRAM) is available, but here we aim to

Finding Hash Collisions with Quantum Computers 253

construct space-efficient attacks since now we are in the setting without qRAM
where quantum memory is usually quite expensive. Suppose that we can con-
struct a quantum circuit of size S0 that performs the inbound phase in time Tin.
Then the rebound attack runs in time T = Tin ·√1/pout on a quantum computer
of size around S0. We observe that this attack is more efficient than the generic
attack (the parallel rho method) if pout > T 2

inS2
02−n holds. In addition, if a quan-

tum computer of size S(≥S0) is available, by parallelizing the Grover search for
the outbound phase we obtain the tradeoff T = Tin · √

1/pout

√
S0/S, which is

better than the generic tradeoff T = 2n/2/S as long as S < 2n · pout/(T 2
in · S0).

In the second setting that a small computer of polynomial size and expo-
nentially large classical memory is available, the best collision-finding algorithm
is the one by Chailloux et al. [13] that runs in time Õ(22n/5) with a quantum
computer of size Õ(1) and classical memory of size O(2n/5). We observe that
our rebound attack is faster than this algorithm if pout > T 2

in2−4n/5 holds.

Rebound attacks on 7-round AES-MMO and 6-round Whirlpool

Rebound attacks on 7-round AES-MMO. AES-MMO is an AES-based compres-
sion function that is widely considered for practical use. AES-MMO is stan-
dardized by Zigbee [1] and used to be standardized by IETF [12]. In addition,
due to its efficiency with a support by AES-NI, many multi-party computa-
tion protocols are implemented by using AES-MMO, e.g. [19,27]. Here, the
Matyas-Meyer-Oseas (MMO) construction [26, Section 9.4] makes a compres-
sion function hE : {0, 1}n × {0, 1}n → {0, 1} from an n-bit block cipher Ek(m)
as hE(iv,m) := Eiv(m)⊕m. The compression function can be used to construct
hash functions by using the Merkle-Damg̊ard construction [15,33].

In the classical setting, the best collision attacks on AES-MMO are for 6
rounds [16,30]. Here, the goal of collision attacks on the compression function is
to find messages m,m′ ∈ {0, 1}n such that hE(iv,m) = hE(iv,m′) (E is AES-
128), given iv ∈ {0, 1}n arbitrarily. If we can mount such a collision attack on
hE , we can extend it to the entire hash function.

In this paper, we give a new 7-round differential trail of AES with the dif-
ferential probability pout = 2−80(> 2−128·2/3) and show that it can be used to
mount rebound attacks in the quantum settings: In the setting that a small com-
puter with qRAM is available, we can mount a rebound attack that is slightly
faster than the generic attack (BHT) by using large classical and quantum mem-
ory.1 In the setting that the efficiency of quantum algorithms is measured by the
tradeoff between time and space, we can also mount a rebound attack and its
time-tradeoff is better than the generic one. However, in the setting that a small

1 Our attack in this setting is just a demonstration that differential trails with such a
small probability can actually be used to mount rebound attacks that are comparable
to the generic attack. We assume that 1 memory access is faster than 1 execution
of the entire function, which allows a memory size (248) to be larger than the time
complexity (242.5) counted by the unit time (see also Table 1). Since some readers
may disagree this counting and the advantage of our attack over BHT is small, we
do not claim that 7-round AES-MMO is broken by our attack in this setting.

254 A. Hosoyamada and Y. Sasaki

Table 1. Comparison of dedicated attacks against AES hashing modes and Whirlpool

AES-MMO and AES-MP

Attack Rounds Time Space Setting Model Ref.

collision 5 256 24 classic [32]
collision 6 256 232 classic [16,30]
collision 7 242.5 (248) quantum qRAM Ours

collision 7 259.5/
√

S/23 23 ≤ S < 26 quantum time-space Ours

preimage 7 2120 28 classic [38]

Whirlpool

Attack Rounds Time Space Setting Model Ref.

collision 4 2120 216 classic [32]
collision 5 2120 264 classic [16,30]

collision 6 2228/
√

S/28 28 ≤ S < 248 quantum time-space Ours

semi-free-start coll 5 2120 216 classic [32]
semi-free-start coll 7 2184 28 classic [30]
free-start collision 8 2120 28 classic [39]

preimage 5 2504 28 classic [38]
preimage 5 2481.5 264 classic [43]
preimage 6 2481 2256 classic [39]

distinguisher 9 2368 264 classic [23]
distinguisher 10 2188 28 classic [30]

Semi-free-start collisions, free-start collisions, and differential distinguishers are attacks
on the compression function and cannot be applied to real Whirlpool with fixed IV.

quantum computer of polynomial size and exponentially large classical mem-
ory is available, our rebound attack is lower than the best attack by Chailloux
et al. See Table 1 for details on attack complexities and comparisons. As well as
the best classical attack, in which the Super-Sbox technique [16,30] is used to
perform inbound phases.

Our attacks are also valid for AES-MP, where the Miyaguchi-Preneel (MP)
construction [26, Section 9.4] makes a compression function hE : {0, 1}n ×
{0, 1}n → {0, 1}n from a block cipher Ek(m) as hE(iv,m) = Eiv(m) ⊕ m ⊕ iv.

A Rebound Attack on 6-round Whirlpool. Whirlpool is a hash function of 512-
bit output designed by Barreto and Rijmen [3], which is recommended by the
NESSIE project and adopted by ISO/IEC 10118-3 standard [22]. Whirlpool is
a block cipher based hash function that uses a 10-round AES-like cipher as the
underlying block cipher. Both of the block and key lengths of the block cipher
are 512 bits. Unlike AES, it performs MixColumns in the last round.

In this paper, we show that a technique for the classical distinguishing attack
[23], which covers three full active rounds for the inbound phase can be used
to find collisions of 6-round Whirlpool in the quantum setting. The attack on
6-round Whirlpool is only valid in the setting that the efficiency of quantum

Finding Hash Collisions with Quantum Computers 255

algorithms is measured by the tradeoff between time and space, and the attack
is worse than generic attacks in other quantum settings. See Table 1 for details.

Optimality. We also show that our 7-round differential trail for AES and 6-
round differential trail for Whirlpool are optimal from the view point of rebound
attacks to find collisions. We show the optimality by using MILP.

Future work. An important future work is to search for more differential trails
of which differential probabilities are too small in the classical setting but large
enough in the quantum settings. The number of attacked rounds of other concrete
hash functions may be improved in the quantum settings.

1.2 Paper Outline

Section 2 gives preliminaries on AES-like block ciphers and quantum computa-
tions. Section 3 reviews generic quantum collision attacks in various settings.
Section 4 reviews the framework of classical rebound attacks. Section 5 gives our
main observation on quantum computation and differential trails with smaller
differential probabilities than the birthday bound. Sections 6 and 7 show our
rebound attacks in the quantum settings on 7-round AES-MMO and 6-round
Whirlpool, respectively. Section 8 shows optimality of our differential trails given
in Sects. 6 and 7. Section 9 concludes the paper.

2 Preliminaries

2.1 AES-like Ciphers

An AES-like cipher is a (c · r2)-bit block cipher based on Substitution-
Permutation Network (SPN) such that its internal states consist of r × r c-bit
cells (each cell is regarded as an element in GF (2c)) and each round transfor-
mation consists of the four operations SubBytes (SB), ShiftRows (SR), Mix-
Columns (MC), and AddRoundKey (AK). SubBytes is the non-linear operation
that applies a c-bit S-box to each cell. ShiftRows is the linear operation that
rotates the i-th row by i cells to the left. MixColumns is the linear operation
that multiplies an r × r matrix over GF (2c) to each column vector. AddRound-
Key is the operation that adds a round key to the state. Given an input message
to encrypt, an AES-like cipher first adds a pre-whitening key to message, and
then applies the round transformation iteratively.

In this paper, when we consider attacks on compression functions based on
AES-like ciphers, the keys of the ciphers are fixed to constants (initialization
vectors). Thus, we call the operation of adding a round key AddConstant instead
of AddRoundKey.

256 A. Hosoyamada and Y. Sasaki

AES. The original AES is a 128-bit block cipher designed by Daemen and
Rijmen [14]. The parameters r and c are set as r = 4 and c = 8. The key length
k can be chosen from 128, 192, or 256, and the number of rounds r is specified
depending on k as r = 6 + (k/32). AES uses 4 × r S-box applications in its key
schedules. Thus one encryption with AES requires 20 × r S-box applications in
total. In particular, one encryption with AES-128 requires 200 S-box applications
in total. An important feature of the original AES is that MixColumns is skipped
in the last round. In our attacks in later sections, whether or not MixColumns
in the last round is skipped impacts to the number of attacked rounds.

Whirlpool. Whirlpool is a hash function designed by Barreto and Rijmen [3].
It is constructed from an AES-like 512-bit block cipher E2 with Merkle-Damg̊ard
and Miyaguchi-Preneel constructions [26, Section 9.4]. The parameters r and c
of the underlying block cipher E are set as r = 8 and c = 8. The key length k
and the number of rounds r are specified as k = 512 and r = 10, respectively.
The key schedule of E is the same as the round transformations for internal
states except that fixed constants are added instead of round keys. Thus, one
encryption with E requires (64 + 64) × r = 1280 S-box applications. Unlike
AES, E does not skip MixColumns in the last round.

2.2 Quantum Computation

We use the standard quantum circuit model [35] and adopt the basic gate set
{H,CNOT, T} (Clifford+T gates). Here, H is the single qubit Hadamard gate
H : |b〉 �→ 1√

2
(|0〉 + (−1)b |1〉), CNOT is the two-qubit CNOT gate CNOT :

|a〉 |b〉 �→ |a〉 |b ⊕ a〉, and T is the π/8 gate defined as T : |0〉 �→ |0〉 and T : |1〉 �→
eiπ/4 |1〉. We denote the identity operator on n-qubit states by In. The quantum
oracle of a function f : {0, 1}m → {0, 1}n is modeled as the unitary operator Uf

defined by Uf : |x〉 |y〉 �→ |x〉 |y ⊕ f(x)〉 . We also use an alternative model for
the quantum oracle of f , which is the unitary operator defined as Ũf : |x〉 |y〉 �→
(−1)y·f(x) |x〉 |y〉 . When f is a Boolean function, Ũf = (In ⊗ H)Uf (In ⊗ H)
holds. Thus Ũf can be simulated with one application of Uf , and vice versa.

When we estimate time complexity of an attack on a primitive, we assume
unit of time to be the time required to run the primitive once (e.g., the time
required for one encryption if the primitive is a block cipher). The actual time
to run a quantum attack will depend on hardware architectures of quantum
computers, but we just consider the simple computational model that each pair
of qubits in a quantum computer can interact with one another. Based on this
model, we evaluate the time of dedicated attacks on a primitive to discuss if it
is more efficient than the generic attacks in this model. In addition, when we
estimate space complexity of a quantum attack on a primitive, we regard the
number of qubits to implement the target primitive as the unit of space size.
2 In the specification of Whirlpool [3] Shift “Columns” and Mix “Rows” operations are

used instead of ShiftRows and MixColumns, but they are mathematically equivalent
up to transposition of internal states.

Finding Hash Collisions with Quantum Computers 257

Grover’s algorithm. Consider the following database search problem.

Problem 1. Let F : {0, 1}n → {0, 1} be a Boolean function. Suppose that F is
given as a black-box. Then, find x such that F (x) = 1.

Let a := |f−1(1)|/2n, which is the probability that we obtain x such that F (x) =
1 when we randomly choose x ∈ {0, 1}n. Suppose that a > 0. In the classical
setting, we have to make 1/a queries to find x such that F (x) = 1. On the other
hand, in the quantum setting, when F is given as a quantum black-box oracle
and a > 0, Grover’s algorithm finds x by making Θ(

√
1/a) quantum queries to

F [9,10,17]. That is, Grover’s algorithm achieves a quadratic speed up compared
to classical algorithms. Below we review Grover’s algorithm and its variants.

Let SF and S0 be the unitary operators that act on n-qubit states defined as
SF |x〉 = (−1)F (x) |x〉 for x ∈ {0, 1}n, and S0 |x〉 = |x〉 if x 	= 0n and S0 |0n〉 =
− |0n〉, respectively. (Note that SF can be simulated by using the operator ŨF

since (SF |x〉) ⊗ |1〉 = ŨF (|x〉 ⊗ |1〉) holds.) Let VF := −H⊗nS0H
⊗nSF . Then

the following proposition holds.

Proposition 1 (Grover’s algorithm [10,17]). Let θ be the parameter such
that 0 ≤ θ ≤ π/2 and sin2 θ = a. Set m := �π/4θ�. When we compute
V m

F H⊗n |0n〉 and measure the resulting state, we will obtain x ∈ {0, 1}n such
that F (x) = 1 with a probability at least max{1 − p, p}.3

Grover’s algorithm with certainty. Grover’s algorithm can be modified so that it
will return the solution with certainty by slightly changing the last application
of VF and doing some rotations [10]. In this case we will obtain the superposi-
tion

∑
x∈f−1(1)

1√
|f−1(1)| |x〉 before the final measurement. In particular, if there

exists only a single x0 such that f(x0) = 1, we will obtain the state |x0〉.4

Parallelization. Suppose that P classical processors can be used for paralleliza-
tion to solve Problem 1. Then, by dividing {0, 1}n into P subspaces X1, . . . , XP

such that |Xi| = 2n/P for each i and using the i-th classical processor to search
in Xi, we can solve Problem 1 in time 1/(a · P) (provided a > 0). On the other
hand, when Q quantum processors (small quantum computers) can be used for
parallelization, by using the i-th quantum processor to run Grover search on Xi,
we can solve Problem 1 in time O(

√
1/(a · P)).

3 Here we are assuming that the probability a is known in advance. However, even if
we do not know the probability a in advance, we can find x such that F (x) = 1 with
O(

√
1/a) quantum queries by introducing some intermediate measurements.

4 To be more precise, in the real world, we will still have some small errors since we
can only approximate unitary operators by using Clifford + T gates. However, since
we can efficiently make such approximation errors sufficiently small, we ignore these
errors.

258 A. Hosoyamada and Y. Sasaki

3 Generic Quantum Collision-Finding Algorithms

This section reviews generic quantum collision-finding algorithms and their com-
plexities in various settings. Here we consider finding collisions of a random
function with range {0, 1}n and sufficiently large domain (e.g., {0, 1}n).

The BHT algorithm (the setting with qRAM). The first important
generic quantum collision-finding algorithm is the BHT algorithm (BHT) devel-
oped by Brassard, Høyer, and Tapp [11]. It finds a collision in time Õ(2n/3)
by making O(2n/3) quantum queries when exponentially large quantum random
access memory (qRAM) is available.

Here, qRAM is a quantum analogue of random access memory (RAM), which
allows us to efficiently access stored data in quantum superpositions. Suppose
that there is a list of classical data L = (x0, . . . , x2m−1), where xi ∈ {0, 1}n

for each i. Then, the qRAM for L is modeled as an unitary operator UqRAM(L)
defined by

UqRAM(L) : |i〉 ⊗ |y〉 �→ |i〉 ⊗ |y ⊕ xi〉 (1)

for i ∈ {0, 1}m and y ∈ {0, 1}n. When we say that qRAM is available, we
assume that a quantum gate that realizes the unitary operation (1) (for a list L
of classical data) is available in addition to basic quantum gates.

BHT consists of two steps. Suppose that our current goal is to find a collision
of a random function f : {0, 1}n → {0, 1}n. The first step performs a classical
precomputation that chooses a subset X ⊂ {0, 1}n of size |X| = 2n/3 and com-
putes the value f(x) for all x ∈ X (which requires queries and time in O(2n/3)).
The 2n/3 pairs L = {(x, f(x))}x∈X are stored into qRAM so that they can be
accessed in quantum superpositions. Then, the second step performs the Grover
search to find x′ ∈ {0, 1}n \X such that (x, f(x)) ∈ L and f(x) = f(x′) for some
x ∈ X, which runs in time O(

√
2n/|L|) = O(2n/3) on average. If we find such

an x′ ∈ {0, 1}n \ X (and x ∈ X), it implies that we find a collision for f since
f(x′) = f(x).

Consider the model that a small quantum computer of polynomial size and
a qRAM that allows us to access exponentially many classical data in quantum
superposition are available. Here we do not consider any parallelized computa-
tions. In this model, the best collision-finding algorithm is BHT since we can
implement it with qRAM (of size O(2n/3)) and its time complexity matches the
tight quantum query complexity Θ(2n/3).

Tradeoffs between time and space. BHT achieves time complexity Õ(2n/3),
however, it also uses a large qRAM of size Õ(2n/3). The model that each adver-
sary can use a small quantum computer with qRAM is simple and theoretically
worth studying since it generalizes the classical attack model that each adversary
can use a single processor and large memory, but it is not clear whether such
qRAM will be available in some future. Even if qRAM of size O(2n/3) is not
available, we can simulate it with a quantum circuit of size O(2n/3). However,

Finding Hash Collisions with Quantum Computers 259

such a usage of exponentially large number of qubits causes discussions on par-
allelizations: When we evaluate the efficiency of a quantum algorithm that uses
exponentially many qubits to realize quantum memory, it is plausible to compare
the algorithm to other quantum algorithms that may use the same amount of
qubits for parallel computations.

As observed by Bernstein [4], from the view point of time-space complexity,
BHT is worse than the classical parallel rho method by Oorschot and Wiener
[37]: Roughly speaking, when P classical processors are available, the parallel
rho method finds a collision in time O(2n/2/P). Thus, if a quantum computer of
size 2n/3 is available but qRAM is not available, by just running the parallel rho
method on the quantum computer, we can find a collision in time 2n/6, which is
much faster than BHT.5

In the classical setting, there exists a memory-less collision finding algorithm
that finds a collision in time O(2n/2), which matches the classical tight bound
for query complexity. On the other hand, in the quantum setting, there has not
been known any memory-less quantum collision finding algorithm such that its
time complexity matches the optimal query complexity 2n/3.

Let S denote the size of computational resources required for a quantum algo-
rithm (i.e., S is the maximum size of quantum computers and classical memory)
and T denote its time complexity. Then the tradeoff T · S = 2n/2 given by the
parallel rho method is the best one even in the quantum setting.

Small quantum computer with large classical memory. Next, suppose
that only a small quantum computer of polynomial size is available but we can
use a exponentially large classical memory. In this situation, Chailloux et al. [13]
showed that we can find a collision in time Õ(22n/5) with a quantum computer
of size Õ(1) and Õ(2n/5) classical memory. The product of T and S becomes
around 23n/5, which is larger than 2n/2, but it is quite usual to consider a classical
memory of size Õ(2n/5), which is usually available. The algorithm by Chailloux
et al. shows that we can obtain another better tradeoff between time and space
if we treat the sizes of quantum hardware and classical hardware separately.

Remark 1. To be precise, it is not clear what the term “quantum computer of
polynomial size” means in practical settings since the security parameter n is
usually fixed to a constant in concrete primitives. For convenience, by “quantum
computer of polynomial size” we arbitrarily denote a quantum computer of size
at most n2. (Note that we regard the space (the number of qubits) required to
implement the target primitive as the unit of space.)

4 Previous Works in the Classical Setting

In this section, we briefly review the previous work of collision attacks against
AES-like hash functions. Note that whether or not the MixColumns operation
5 Here we are considering the model that is called free communication model by Bane-

gas and Bernstein [2].

260 A. Hosoyamada and Y. Sasaki

in the last round is omitted impacts on the number of attacked rounds with
respect to the collision attack, which is different from the number of attacked
rounds for differential distinguishers.

4.1 Framework of Collision Attacks

Our target constructions are the MMO and Miyaguchi-Preneel modes that com-
pute the output as Ek(p) ⊕ p or Ek(p) ⊕ p ⊕ k respectively, where Ek is AES or
an AES-like cipher and p is a plaintext input to the cipher. Moreover, we assume
that the key input k is fixed to an initial value iv. Namely, for a 1-block message
m, the hash value is computed as Eiv(m) ⊕ m or Eiv(m) ⊕ m ⊕ iv, respectively.

Given the above target, the attackers’ strategy is to inject a non-zero differ-
ence Δ on the plaintext input m and to process m and m⊕Δ with fixed iv with
zero difference. If the ciphertext difference matches the plaintext difference, i.e.
Eiv(m) ⊕ Eiv(m ⊕ Δ) = Δ, two hash values collide because the differences are
canceled through the feed-forward operation.

AES-like ciphers with r rows and r columns (with MixColumns in the last
round) is known to allow the 4-round differential propagation with the following
number of active S-boxes per round: 1 −→ r −→ r2 −→ r −→ 1, where the
second, third, and fourth rounds have r active bytes in a column, fully active,
and have r active bytes in a diagonal, respectively. If the active-byte positions
at the beginning and the end, as well as the actual difference, are identical,
collisions are obtained.

For AES (with r = 4, without MixColumns in the last round), one more
rounds can be attacked by the following pattern of the number of active S-boxes:
1 −→ 4 −→ 16 −→ 4 −→ 1 −→ 1.

The most interesting part of hash function analysis is to find the minimum
complexity to find a pair of values that satisfies such differential propagation
patterns. Owing to the nature of the keyless primitives, the attacker can first
choose pairs such that the most difficult part (unlikely to be satisfied by ran-
domly chosen pairs) is satisfied, and then the remaining propagation is satisfied
probabilistically. This strategy, in particular for AES-like ciphers, was explored
by Mendel et al. [32] as the “rebound attack” framework. Very intuitively, the
differential propagation is designed to be dense in the middle and sparse at the
beginning and the end. The attacker first efficiently collects paired values satis-
fying the middle part. This procedure is called “inbound phase” and the paired
values are called “starting points.” Then, starting points are simply propagated
to the beginning and the end to check if the sparse propagation is probabilisti-
cally satisfied or not. This procedure is called “outbound phase.”

Mendel et al. showed that a pair of values satisfying the 2-round transfor-
mation r −→ r2 −→ r can be generated with complexity 1 on average. Hence,
4-round collisions can be generated only by satisfying the differential transfor-
mation r −→ 1 twice and 1-byte cancellation for the feed-forward operation.

Finding Hash Collisions with Quantum Computers 261

Fig. 1. Inbound phase of Super-Sbox cryptanalysis.

4.2 Super-Sbox Cryptanalysis

There are many previous works that improve or extend the rebound attack. An
important improvement is the Super-Sbox cryptanalysis presented by Gilbert
and Peyrin [16] and independently observed by Lamberger et al. [30], which
generates a pair of values satisfying the 3-round transformation r −→ r2 −→
r2 −→ r with complexity 1 on average.

Inbound Phase. The involved states are depicted in Fig. 1 for the case of r = 4.
The procedure is iterated for all the choices of the difference at state #Zi. Hence
for each iteration, the difference at #Zi is fixed. Because MixColumns is a linear
operation, the corresponding difference at state #Xi+1 is uniquely computed.
From the opposite side, the number of possible differences at state #W i+2 is 2rc

and those are handled in parallel. The attacker computes the corresponding 2rc

differences at state #Y i+2 and stores them in a list L.
The attacker then searches for the paired values that connect #Xi+1 and

#Y i+2. The core observation is that this part can be computed independently
for each group of r bytes, which is known to the Super-Sbox. One of the r-byte
groups is highlighted by thick squares in Fig. 1. For each of 2rc input values to a
Super-Sbox at #Xi+1, the corresponding difference (along with paired values) at
#Y i+2 is computed. Each difference in L will be hit once on average because L
contains 2rc differences. The same analysis is applied for r Super-Sboxes. Then,
each of the 2rc difference in L can be produced once on average from all the
Super-Sboxes.

Complexity of the Inbound Phase. L requires a memory of size 2rc. Each
Super-Sbox is computed for 2rc distinct inputs. Considering that the size of
each Super-Sbox is 1/r of the entire state, computations of r Super-Sboxes are
regarded as a single computation for the entire construction. After the analysis,
the attacker obtains 2rc starting points, hence the average complexity to obtain
a starting point is 1. The inbound phase can be iterated up to 2rc times by

262 A. Hosoyamada and Y. Sasaki

choosing 2rc differences at State #Zi. Hence the degrees of freedom to satisfy
the outbound phase is up to 22rc.

Outbound Phase. The extension of the inbound phase increases the number
of attacked rounds by one as follows.

1 2−(r−1)c

←− r — r2 — r2 — r
2−(r−1)c

−→ 1 for AES-like ciphers,

1
2−24

←− 4 — 16 — 16 — 4 2−24

−→ 1 1−→ 1 for AES.

The probability for the outbound phase stays unchanged from the original
rebound attack, which is 2−2(r−1)c to satisfy the transformation r −→ 1 twice
and 2−c for the cancellation at the feed-forward operation. Hence, collisions of
5-round Whirlpool are generated with complexity 2120(= 22(8−1)8×28) and colli-
sions of 6-round AES-MMO are generated with complexity 256(= 22(4−1)8 ×28).

4.3 Covering Three Full Active Rounds on 8 × 8 State

Jean et al. presented another extension of the rebound attack, which covers one
more fully active state for the inbound phase [23], namely

r ←− 1 2−(r−1)c

←− r — r2 — r2 — r2 — r
2−(r−1)c

−→ 1 −→ r −→ L(r),

where L(r) is a linear subspace of dimension 2rc. However the drawback of this
analysis is that the amortized cost to find a starting point is 2r2c/2, which reaches
the complexity of the birthday paradox. This is significantly more expensive than
the amortized cost 1 for the original rebound attack and the Super-Sbox analysis.
Owing to its complexity, the technique cannot be used for finding collisions, while
it is still sufficient to mount a differential distinguisher up to 9 rounds. Here
we briefly explain the procedure to satisfy the inbound phase with complexity
2r2c/2 and omit the explanation of the outbound phase and advantages of the
distinguisher because our goal is to find collisions.

The involved states are depicted in Fig. 2 for the case of r = 8. The analysis
of the inbound phase starts with a fixed pair of difference at state #Zi and
#W i+3. Similarly to the Super-Sbox cryptanalysis, the corresponding differences
at #Xi+1 and #Y i+3 are linearly computed. The attacker then computes r
Super-Sboxes that cover from #Xi+1 to #Y i+2. The results for the i-th Super-
Sbox are stored in a list Lf

j , where 0 ≤ j < r. To be precise, each Lf
j contains

2rc pairs of r-byte values (2r-byte values) at #Y i+2. Similarly, the attacker
computes r inverse Super-Sboxes from #Y i+3 to #Y i+2, and the results are
stored in a list Lb

j , where 0 ≤ j < r.
The attacker then finds a match of those 2r lists. The attacker exhaustively

tries r2/2-byte values at #Y i+2 that can be fixed by choosing the entries of
Lf
0 , Lf

1 , . . . , Lf
r/2−1 (a half of the Super-Sboxes). As shown in Fig. 2, this will

fix a pair of values for r2/2 bytes at #Y i+2, i.e. r2-byte values are fixed for

Finding Hash Collisions with Quantum Computers 263

Fig. 2. Inbound phase for covering three rounds with fully active states.

the left-half of #Y i+2. The attacker then checks if those fixed values can be
produced from Lb

j . For each Lb
j , r-byte values have already been fixed, and those

play a role of the rc-bit filter. Considering that the degrees of freedom in each
Lb

j is 2rc, the attacker can expect one match on average for each Lb
j , and the

state #Y i+2 is now fully fixed. The attacker finally checks if the paired values at
#Y i+2 for the remaining r2/2-byte value (right-half of #Y i+2) can be produced
from Lf

r/2, L
f
r/2+1, . . . , L

f
r−1. The number of the constraints is 2r2c while the

total degrees of freedom in r/2 Super-Sboxes is 2r2c/2. Therefore, a match will
be found with probability 2−r2c/2, and by exhaustively testing 2r2c/2 choices of
Lf
0 , Lf

1 , . . . , Lf
r/2−1 at the beginning, a solution can be found.

The procedure of the inbound phase can be summarized as follows.

1. For exhaustive combinations of the values of Lf
0 , . . . , Lf

r/2−1, do as follows.
2. Find an entry of Lb

j for each 0 ≤ j < r.
3. Check if the fixed state can be produced by Lf

r/2, . . . , L
f
r−1.

The attacker can find a starting point after 2r2c/2 iterations of the first step.
Note that the computation of each Lf

j and Lb
j only requires 2rc computations

and memory. The bottleneck is to find a match in the middle, which requires
2r2c/2 computations, while the required memory is negligible in the context of
finding a match.

A memoryless variant. The technique for the inbound phase introduced above
can easily converted into a memoryless variant by increasing the running time

264 A. Hosoyamada and Y. Sasaki

by a factor of 2rc (actually we use the memoryless variant in a later section
rather than the original technique). That is, given the differences at state #Zi

and #W i+3, we can find a starting point in time 2r2c/2+rc by using negligible
memory by just doing the exhaustive search for inputs or outputs of the Super-
Sboxes corresponding to Lf

0 , . . . , Lf
r/2−1 (parallelly, which costs time 2r2c/2) and

Lb
j for each 0 ≤ j < r (sequentially, which costs time 2rc). See Section A in this

paper’s full version [21] for more details.

5 New Observation

This section gives a new observation: when quantum computers are available,
differential trails with probability even smaller than the birthday bound can be
used to find hash collisions faster than the generic quantum collision attacks.

Section 5.1 observes that the probability of differential trails that can be used
in classical rebound attacks is up to the birthday bound. Section 5.2 shows that
small quantum computers with qRAM can break the classical barrier. Section 5.3
shows that we can break the classical barrier even if qRAM is not available.

5.1 Birthday Bound Barrier for Classical Differential Probabilities

Recall that rebound attacks consist of inbound phase and outbound phase (see
Sect. 4). Roughly speaking, for an input difference Δin and output difference
Δout for some intermediate rounds of E (Δin and Δout correspond to the differ-
ences at state #Zi and #W i+2 in Fig. 1, respectively), firstly the inbound phase
searches for an input pair (M,M ′) and an output pair (M̃, M̃ ′) that satisfy the
differential propagation Δin −→ Δout (i.e., starting points). Then the outbound
phase checks whether the pairs (M,M ′) and (M̃, M̃ ′) satisfy differential trans-
formations for the remaining rounds (which implies that we find a collision of
the target compression function).

Let pout be the probability that the pairs (M,M ′) and (M̃, M̃ ′) satisfy the
differential transformations for the outbound phase (including the cancellation
for the feed-forward operation). Then, since the inbound phase can usually be
done in a constant time by doing some precomputations and using some classical
memory, the whole time complexity of the attack becomes T = 1/pout.

If pout > 2−n/2, T < 2n/2 holds and the rebound attack is faster than the
classical generic collision finding algorithm. However, the attack is worse than
the generic attack if 2−n/2 > pout. Thus, a differential trail for the outbound
phase can be used only if pout > 2−n/2 holds. In other words, 2−n/2 is the
barrier for differential probabilities to be used in classical rebound attacks.

5.2 Breaking the Barrier with Quantum Computers and qRAM

Below we explain how the attack complexity and the limitation for differential
probability pout changes in the quantum setting. To simplify explanations, here

Finding Hash Collisions with Quantum Computers 265

we consider the theoretically simple setting that a small quantum computer of
polynomial size and exponentially large qRAM is available.

In the quantum setting, to implement rebound attacks on quantum comput-
ers, we use the Grover search on a Boolean function F (Δin,Δout) defined as
F (Δin,Δout) = 1 if and only if both of the following conditions hold.

1. In the inbound phase, there exists an input pair (M,M ′) and output pair
(M̃, M̃ ′) that satisfies the differential trail Δin −→ Δout (i.e., starting points),
and

2. The pairs (M,M ′) and (M̃, M̃ ′) satisfy the differential transformation in the
outbound phase.

(Here, without loss of generality we assume that M < M ′. We ignore the pos-
sibility that two or more starting points exist in the inbound phase, to sim-
plify explanations.) For each input (Δin,Δout), we have to perform the inbound
and outbound phases to compute the value F (Δin,Δout). Once we find a pair
(Δin,Δout) such that F (Δin,Δout) = 1, we can easily find a collision by per-
forming the inbound and outbound phases again.

Small quantum computer with qRAM. Recall that, the generic collision
finding attack in this setting (a small quantum computer of polynomial size
and exponentially large qRAM is available) is BHT that finds a collision in
time O(2n/3). (See Sect. 3. We do not consider any parallelized computations in
this setting.) Therefore, dedicated attacks that can find collisions in time less
than O(2n/3) with a small quantum computer of polynomial size and qRAM
are regarded to be valid. To mount rebound attacks, we perform some classical
precomputations and store the results into qRAM so that we can perform the
inbound phase in a constant time. Then the time complexity for the Grover
search becomes

√
1/pout. Let Tpre denote the time required for the classical

precomputation.
Recall that BHT performs 2n/3 classical precomputations and then does 2n/3

iterations in the Grover search. Suppose that the time for our classical precom-
putation Tpre satisfies Tpre ≤ 2n/3, for simplicity. Then, our rebound attack is
more efficient than the generic attack (BHT) if

√
1/pout < 2n/3, or equivalently

pout > 2−2n/3 holds. Thus, roughly speaking, even if a compression function is
secure in the classical setting, if there exists a differential trail for the outbound
phase with 2−n/2 > pout > 2−2n/3, there exists a collision attack for the function
that is more efficient than the generic attack in this setting. In other words, we
can break the birthday bound barrier 2−n/2 for the differential probability with
quantum computers and qRAM.

5.3 Breaking the Barrier Without qRAM

Here we show that the barrier of the birthday bound can be broken even if
qRAM is not available.

266 A. Hosoyamada and Y. Sasaki

If we perform heavy precomputations for the inbound phase, it may use huge
quantum memory. When qRAM is not available, quantum memory is usually
very expensive and sometimes only a small number of qubits can be used to store
data. To reduce the amount of quantum memory required, when we implement
rebound attacks on quantum computers without qRAM, we do not perform
heavy precomputations and increase the time to perform the inbound phase if
necessary. Let Tin denote the time to perform the inbound phase.

Tradeoffs between time and space. Consider the setting that efficiency of
a quantum algorithm is measured by the tradeoff between time T and space S
(S is the maximum of the size of quantum computer and the size of classical
memory), and parallelized computations are taken into account. In this setting,
the generic collision finding algorithm is the parallel rho method (see Sect. 3),
which gives the tradeoff T · S = 2n/2, or equivalently T = 2n/2/S.

Suppose that the inbound phase of a rebound attack can be done in time
Tin by using a quantum circuit of size S0, where S0 may be exponentially large.
Then the rebound attack runs in time T = Tin · √

1/pout. When we measure
the efficiency of a quantum algorithm by tradeoff between time and space, this
rebound attack is more efficient than the generic attack (that uses a quantum
computer and classical memory of size at most S0) if T = Tin · √

1/pout <
2n/2/S0, or equivalently pout > T 2

inS0
22−n holds.

In other words, even if a compression function is secure in the classical setting,
if we can construct a quantum algorithm that performs the inbound phase in time
Tin by using a quantum circuit of size S0 and there exists a differential trail for
the outbound phase with probability pout such that 2−n/2 > pout > T 2

inS0
22−n,

there exists a collision attack for the function that is more efficient than the
generic attack in this setting.

Parallelization of the rebound attack. If a quantum computer of size S(≥S0) is
available, we can use it to parallelize the Grover search in the rebound attack,
which leads to the time-memory tradeoff T = Tin · √

1/pout · √
S0/S. Since the

time-memory tradeoff for the generic attack in this setting is T = 2n/2/S, our
rebound attack works if a quantum computer of size S ≥ S0 is available and it is
more efficient than the generic attack as long as Tin ·√1/pout ·

√
S0/S < 2n/2/S,

or equivalently S < 2n · pout/(T 2
in · S0).

Small quantum computer with large classical memory. Consider the
setting that a small quantum computer of polynomial size and exponentially
large classical memory are available (here we do not consider parallelization). In
this setting, the generic collision finding algorithm is the one by Chailloux et al.
that finds a collision in time Õ(22n/5) (see Sect. 3).

Suppose that the outbound phase can be done in time Tin by using a quantum
circuit of size S0, where S0 is relatively small (polynomial in n). When we are
in the situation that a quantum computer of polynomial size and large classical
memory is available, this rebound attack is more efficient than the generic attack

Finding Hash Collisions with Quantum Computers 267

(the algorithm by Chailloux et al.) if T = Tin · √1/pout < 22n/5, or equivalently
pout > T 2

in2−4n/5 holds.
In other words, even if a compression function is secure in the classical setting,

if we can construct a quantum algorithm that performs the inbound phase in
time Tin with a quantum circuit of polynomial size and there exists a differential
trail for the outbound phase with probability pout such that 2−n/2 > pout >
T 2

in2−4n/5, there exists a collision attack for the compression function that is
more efficient than the generic attack in this setting.

6 Finding Collisions for 7-Round AES-MMO

This section gives a new differential trail for 7-round AES and shows how to
use the trail to mount rebound attacks on 7-round AES-MMO in the quantum
settings.

6.1 New Differential Trail for 7-Round AES

Here we give a new differential trail with the differential probability pout = 2−80

for 7-round AES that can be used to find collisions for 7-round AES-MMO: With
some effort, we can come up with a differential trail shown in Fig. 3. Here, each
4 × 4 square in Fig. 3 shows the active byte pattern at the beginning of each
round except for the square on the right hand side. The square on the right
hand side shows the active byte pattern at the end of the last round. (See Fig. 4
in Section B.1 in this paper’s full version [21] for more details on the differential
transformations.) This trail gives pout = 2−80 since the probability for the 8-byte
cancellation for the feed-forward operation is 2−64.

Fig. 3. A new differential trail for 7-round AES. The numbers over arrows are the
probabilities for differential transformations.

The cancellation probability 2−64 is too small to be used in classical rebound
attacks since it reaches the classical birthday bound barrier, but it can be used
when quantum computers are available. We use this trail to mount rebound
attacks on 7-round AES-MMO in the quantum settings.

In a later section (Sect. 8) we show that there exists no trail with pout > 2−80

for 7-round AES and there exist another trail with pout = 2−80.

268 A. Hosoyamada and Y. Sasaki

6.2 Demonstration: An Attack with qRAM

Here we consider to use the above differential trail with probability 2−80 to
implement a rebound attack on a small quantum computer with qRAM. Note
that here we do not consider any parallelized computations. Our attack is based
on the framework in Sect. 5.2, but here we give more detailed discussions to
analyze attack complexities precisely. The attack in this section is just a demon-
stration that we can use very small differential probability (less than 2−n/2) to
mount attacks that are comparable to the generic collision-finding algorithm. In
particular, we do not intend to claim that 7-round AES-MMO is “broken” by
our attack.

Detailed settings and remarks. Since the S-box can be implemented by using
random access memory, we regard that 1 random access to a classical memory
or qRAM is equivalent to 1 application of the S-box, which is further equivalent
to 1/140 encryption with 7-round AES (recall that 7-round AES requires 140
S-box applications). We assume that the cost for sequential accesses to classical
data is negligible.

Let Δin,Δout ∈ {0, 1}128 be the input and output differences for the inbound
phase (i.e., the difference just after the SubBytes of the 3rd round (#Y 3 in
Fig. 4 in Section B.1 of this paper’s full version [21]) and at the beginning of
the 6-th round (#X6 in Fig. 4 in Section B.1 of this paper’s full version [21]),
respectively). Note that 4 cells (232 bits) and 8 cells (264 bits) are active in Δin

and Δout, respectively. Since now the differential probability is 2−80, we have to
make 280 starting points. As well as classical rebound attacks, we expect that
one starting point exists for each pair (Δin,Δout) on average. Thus we check
216 values for Δin and 264 values for Δout. Then we can expect that there exists
1 starting point that leads to a collision of 7-round AES-MMO among the 280

pairs of (Δin,Δout).
Recall that an initialization vector iv ∈ {0, 1}128 is given before we start

attacks on 7-round AES-MMO. We precompute and store all the round con-
stants that are derived from iv and added in the AddConstant phase in each
round. Since the cost to compute the round constants is negligible and we need
the constants only for sequential applications of AddConstant in our attack (in
particular, we do not need random accesses to the round constants in quantum
super positions), we ignore the cost to precompute and store the round constants.

Precomputation for the inbound phase. We label the 4 Super-Sboxes
involved in the inbound phase as SSB(1), . . . ,SSB(4). We perform the follow-
ing precomputations and store the results in qRAM so that the inbound phase
can be done efficiently.

1. For 1 ≤ i ≤ 4, do the following Steps 2–9.
2. Let Li and L′

i be empty lists.
3. Compute SSB(i)(x) for each x ∈ {0, 1}32 and store the pair (x,SSB(i)(x)) into

L′
i.

Finding Hash Collisions with Quantum Computers 269

4. For each x ∈ {0, 1}32, do Steps 5–9.
5. Compute y := SSB(i)(x) by accessing to the stored list L′

i.
6. For each value of Δin (from 216 values), do the following Steps 7–9:
7. Compute the corresponding input difference δ

(i)
in for SSB(i).

8. If x ≤ x ⊕ δ
(i)
in , do Step 9:

9. Compute y′ := SSB(i)(x ⊕ δ
(i)
in) and δ

(i)
out := y ⊕ y′ by accessing to the stored

list L′
i, and add ((δ(i)in , δ

(i)
out), {x, x⊕δ

(i)
in }, {y, y′}) into the list Li (each element

of Li is indexed by (δ(i)in , δ
(i)
out)).

Analysis for the precomputation for the inbound phase. Here we give an analysis
for the time Tpre required to perform the precomputation. First, we estimate the
cost of Steps 2–9 for each i: Step 3 requires 8 · 232 = 235 S-box applications. Each
iteration of Step 5 requires 1 random memory access. Each iteration of Step 9
requires around 1 random memory access (here we regard the combination of
reading data from L′

i and writing data into Li as a single random memory
access). Since there exists around 232 · 216/2 = 247 pairs of (x,Δin) such that
x ≤ x ⊕ δ

(i)
in , Step 9 is performed 247 times in total for each i. In addition, Step

5 is performed 232 times in total. Therefore, Steps 5–9 require 232 + 247 ≈ 247

random memory accesses in total. This is equivalent to 247 S-box applications.
Thus the cost for Steps 2–8 is around (235 + 247) ≈ 247 S-box applications for
each i.

Since a single S-box application is equivalent to 1/140 single encryption by
7-round AES and we have to treat 4 Super-Sboxes, the total cost for these
precomputations is equal to the cost of 4×247/140 < 242 encryptions.6 Therefore
we have Tpre < 242.

Precomputations for the outbound phase. We also perform some addi-
tional precomputations so that the outbound phase will run efficiently. We com-
pute input-output tables of the Super-Sboxes for the 2nd and 3rd rounds, and
6th and 7th rounds, in advance. We also precompute the entire table of the
4-parallel S-box applications (x, y, z, w) �→ (SB(x),SB(y),SB(z),SB(w)) so that
the computation for the 1st round in the outbound phase can be done efficiently.
These computations require time 232 × c for a small constant c, which is negli-
gible compared to Tpre.

Application of the Grover search. Recall that, when we mount rebound
attacks in the quantum setting, we define a function F (Δin,Δout) so that
F (Δin,Δout) = 1 if and only if there exists a starting point corresponding to
(Δin,Δout) that satisfies the differential transformations for the outbound phase,
and we apply the Grover search on F . Here Δin and Δout are chosen from 216

and 264 values, respectively.
6 Because the entire truth table of the Super-Sbox is computed and stored in qRAM

in the precomputation phase, we assume that the time for a single qRAM access is
equivalent to a single S-box evaluation.

270 A. Hosoyamada and Y. Sasaki

Given a pair (Δin,Δout), if there exists one input-output pair (x, x′) and
(y, y′) that satisfies the differential trail δ

(i)
in −→ δ

(i)
out for SSB(i) for each 1 ≤ i ≤ 4,

there exist (2 · 2 · 2 · 2)/2 = 8 choices for starting points for each (Δin,Δout).
To simplify the explanations, temporarily we assume that there exist exactly 8
starting points for each (Δin,Δout) under the condition that at least one starting
point exists for (Δin,Δout). We slightly modify the definition of F so that it will
take additional 3-bit input α as inputs that specify which starting point we
choose among 8 choices. Since here we check 216 values for Δin and 264 values
for Δout, the size of the domain of F (Δin,Δout;α) becomes 216 · 264 · 23 = 283.

We implement the function F (Δin,Δout;α) on quantum computers as fol-
lows:

1. (Inbound phase.) Given an input (Δin,Δout) (in addition to the 3-bit addi-
tional input α), we obtain the corresponding starting point (pairs of messages
(M,M ′) and (M̃, M̃ ′) that satisfies the differential trail Δin −→ Δout) by
accessing the precomputed lists L1, . . . , L4 stored in qRAM.

2. (Outbound phase.) Propagate (M,M ′) and (M̃, M̃ ′) to the beginning and
the end of the cipher to check whether the differential transformations are
satisfied, and compute the value of F (Δin,Δin;α).

3. Uncompute Steps 1 and 2.

Analysis for the Grover search. Step 1 (inbound phase) of F requires 4 qRAM
accesses. Step 2 (outbound phase) of F can be done with 2×((4+4)+4) = 24 ran-
dom access to the precomputed tables (recall that we precomputed the tables
of the Super-Sboxes and the 4-parallel S-box applications). Then the compu-
tational cost for F is around 2 × (4 + 24) = 56 qRAM accesses, which is
equivalent to 56/140 = 2/5 7-round AES encryptions. Since we can expect there
exists exactly 1 input (Δin,Δout;α) such that F (Δin,Δout;α) = 1, the Grover
search requires about π

4

√
283 = π

4 241.5 evaluations of F , of which cost is around
π
4 · 2

5 · 241.5 ≤ 240 encryptions.
Even if there exist more than 8 starting points for some (Δin,Δout), we can

still find collisions in time 241 by slightly modifying the definition of F . See
Section B.2 in this paper’s full version [21] for details on how to find collisions
in such a general setting.

Summary. Our rebound attack requires Tpre < 242(< 2128/3) classical precom-
putations and 241(< 2128/3) costs for the Grover search. On the other hand, the
generic collision finding attack in the current setting (BHT) performs 2128/3 clas-
sical precomputations and requires time 2128/3 for the Grover search on quantum
computers. Therefore, our rebound attack is slightly faster than the generic col-
lision finding attack in this setting and it runs in time around 242.5. It uses large
memory of size 248.

6.3 Attack Without qRAM: A Time-Space Tradeoff

Here we show a rebound attack that is more efficient than the current generic
attack in the setting that efficiency of a quantum algorithm is measured by

Finding Hash Collisions with Quantum Computers 271

tradeoff between time T and space S (S is the maximum of the size of quantum
computer and classical memory), and parallelized computations are taken into
account. We again use the differential trail of pout = 2−80 for the outbound phase.
Recall that the generic collision finding algorithm in this setting is the parallel
rho method (see Sect. 3), which gives the tradeoff T · S = 2n/2, or equivalently
T = 2n/2/S. Recall that we regard the size (the number of qubits) required to
implement the attack target (here, 7-round AES) as the unit of space size.

Again, let Δin,Δout ∈ {0, 1}128 be the input and output differences for the
inbound phase. Unlike Sect. 6.2, here we check 232 values for Δin and 248 values
for Δout. (Again we expect that there exists 1 starting point that leads to a col-
lision of 7-round AES-MMO among the 280 pairs of (Δin,Δout).) As in Sect. 6.2,
we precompute and store all the round constants that are derived from iv and
added in the AddConstant phase in each round, and ignore the costs related to
those constants.

We again assume that there exist exactly 8 starting points for each
(Δin,Δout) under the condition that at least one starting point exists for
(Δin,Δout), temporarily, to simplify explanations. We define the function
F (Δin,Δout;α) in the same way as we did in Sect. 6.2, but here we implement the
function F on quantum computers without heavy precomputation. To reduce the
amount of quantum memory required, instead of doing heavy precomputation,
we just use the Grover search to find a starting point for each (Δin,Δout;α)
to perform the inbound phase in F . Explanations on how to deal with pairs
(Δin,Δout) with more than 8 starting points will be given later.

Implementation of F with the Grover search. Here we carefully explain
how to implement F on quantum computers, or equivalently, how to imple-
ment the unitary operator UF that is defined by UF : |Δin,Δout;α〉 |y〉 �→
|Δin,Δout;α〉 |y ⊕ F (Δin,Δout;α)〉. First, to solve the equation SSB(i)(xi) ⊕
SSB(i)(xi ⊕ δ

(i)
in) = δ

(i)
out for xi in the inbound phase in F , we define additional

functions G(i) for 1 ≤ i ≤ 4.
For 1 ≤ i ≤ 3, let us define a Boolean function G(i)(δ(i)in , δ

(i)
out, αi;xi) (here

δ
(i)
in , δ

(i)
out, xi ∈ {0, 1}32 and αi ∈ {0, 1}) by G(i)(δ(i)in , δ

(i)
out, αi;xi) = 1 if and only if:

xi < xi ⊕δ
(i)
in (if αi = 0) or xi > xi ⊕δ

(i)
in (if αi = 1) and SSB(i)(xi)⊕SSB(i)(xi ⊕

δ
(i)
in) = δ

(i)
out holds. In addition, we define a Boolean function G(4)(δ(4)in , δ

(4)
out;x4) by

G(4)(δ(4)in , δ
(4)
out;x4) = 1 if and only if xi < xi ⊕ δ

(i)
in and SSB(4)(x4) ⊕ SSB(4)(x4 ⊕

δ
(4)
in) = δ

(4)
out holds.

Note that the following unitary operator UF is defined regardless of whether
or not we assume there exists exactly 8 starting points for each (Δin,Δout) under
the condition that there exists at least one starting point for (Δin,Δout).

Implementation of UF .

1. Suppose that |Δin,Δout;α〉 |y〉 is given as an input (α = α1‖α2‖α3 and
αi ∈ {0, 1}).

272 A. Hosoyamada and Y. Sasaki

2. Compute the corresponding differences δ
(i)
in −→ δ

(i)
out for SSB(i) for 1 ≤ i ≤ 4

from (Δin,Δout).
3. Do Step 4 for 1 ≤ i ≤ 3.
4. Run the Grover search with certainty on the function G(i)(δ(i)in , δ

(i)
out, αi; ·) :

{0, 1}32 → {0, 1}. Let xi be the output and set x′
i := xi ⊕ δ

(i)
in .

5. Run the Grover search with certainty on the function G(4)(δ(4)in , δ
(4)
out, ·) :

{0, 1}32 → {0, 1}. Let x4 be the output and set x′
4 := x4 ⊕ δ

(4)
in .

6. Set M := x1‖ · · · ‖x4 and M ′ := x′
1‖ · · · ‖x′

4 (now (M,M ′) is chosen as a
candidate for the starting point for (Δin,Δout;α)).

7. Check if the (M,M ′) is in fact a starting point for (Δin,Δout) (i.e., it satisfies
the differential Δin −→ Δout). If so, set a 1-bit flag flag1 as flag1 := 1. If
not, set the flag as flag1 := 0.

8. Do the outbound phase with the starting point (M,M ′) to check whether
(M,M ′) leads to a collision. If so, set a 1-bit flag flag2 as flag2 := 1. If not,
set the flag as flag2 := 0.

9. Return 1 as the value for F (Δin,Δout;α) (i.e., add the value 1 into the |y〉
register) if flag1 = flag2 = 1. Return 0 (i.e., do nothing for the |y〉 register)
otherwise.

10. Uncompute Steps 2–8.

Properties and the cost estimation for UF are summarized in the following
lemma.

Lemma 1. UF |Δin,Δout;α〉 |y〉 = |Δin,Δout;α〉 |y ⊕ F (Δin,Δout;α)〉 holds
for all y if there does not exist any starting point for (Δin,Δout) that leads to a
collision of 7-round AES-MMO. If (Δin,Δout;α) is a tuple such that there exists
exactly 8 starting points for (Δin,Δout) and (Δin,Δout;α) leads to a collision of
7-round AES-MMO, UF |Δin,Δout;α〉 |y〉 = |Δin,Δout;α〉 |y ⊕ F (Δin,Δout;α)〉
holds for all y. We can implement UF on a quantum circuit in such a way that
it runs in time around 216.5 encryptions with 7-round AES, by using ancillary
quantum register of size around 23.

See Section B.3 in this paper’s full version [21] for a proof of Lemma 1.

Our rebound attack in the current setting. Finally we describe our
rebound attack and give its complexity analysis in the current setting that effi-
ciency of a quantum algorithm is measured by the tradeoff between time T and
space S. Recall that 4 cells (232 bits) and 8 cells (264 bits) are active in Δin and
Δout, respectively. In addition, recall that we consider to check 232 values and
248 values for Δin and Δout, respectively, when we perform the Grover search
on F . In particular, 248 values for Δout are randomly chosen among 264 possible
values.

Description of the rebound attack.

1. Iterate the following Steps 2 and 3 until a collision of 7-round AES-MMO is
found (change the choice of 248 values for Δout completely (among possible
264 values), for each iteration):

Finding Hash Collisions with Quantum Computers 273

2. Apply the Grover search on F and let (Δin,Δout;α) be the output.
3. Apply the inbound and outbound phases again for the obtained tuple

(Δin,Δout;α) and check if it leads to a collision of 7-round AES-MMO.

Analysis. First, assume that there exist exactly 8 starting points for each
(Δin,Δout). Then, there exists exactly one tuple (Δin,Δout;α) such that
F (Δin,Δout;α) = 1 holds, and thus we can find a collision with only one itera-
tion of Steps 2 and 3, from Lemma 1.

Since the domain size of F is 283, it follows that Step 2 runs in time around
π
4 · 241.5 · 216.5 ≈ 258 encryptions with 7-round AES by using ancillary quantum
register of size around 23 from Lemma 1. The time required for Step 3 is negligible
compared to Step 2, and Step 3 can be done by using almost the same number
of qubits as used in Step 2. Thus each iteration of Steps 2 and 3 runs in time
around 258 encryptions with AES, and uses a quantum circuit of size around 23.

Even if we consider the general case in which there exist more than 8 starting
points for some (Δin,Δout), we can show that only 3 iterations of Steps 2 and
3 find a collision with a high probability. (See Section B.4 in this paper’s full
version [21] for a detailed proof.) Therefore our attack runs in time around
3 · 258 ≈ 259.5 encryptions with AES-MMO, by using a quantum circuit of size
23. When a quantum computer of size S (S ≥ 23) is available, by parallelizing
the Grover search for F we can mount the attack in time T = 259.5/

√
S/23.

Summary. When the efficiency of a quantum algorithm is measured by the
tradeoff between time T and space S, the generic attack gives time-space tradeoff
T = 264/S. On the other hand, when a quantum computer of size S is available,
our rebound attack runs in time around T = 259.5/

√
S/23 ≈ 261/

√
S. Therefore

our attack works for S ≥ 23 and it is more efficient than the generic attack as
long as S < 26.

6.4 Small Quantum Computer with Large Classical Memory

When a small (polynomial size) quantum computer and large (exponential size)
classical memory is available, the generic collision finding attack is the one by
Chailloux et al., which runs in time around 22n/5 = 251.2 encryptions with 7-
round AES when we apply the algorithm on 7-round AES-MMO. Since our
rebound attack in Sect. 6.3 requires time 259.5 (if it is not parallelized), it is
slower than the generic attack in this setting. We do not know whether we can
mount a quantum attack that is better than the generic attack in this setting.

7 Finding Collisions for 6-Round Whirlpool

This section shows a quantum rebound attack that finds collisions for 6-round
Whirlpool. Basically this section considers the setting that the efficiency of quan-
tum algorithms are measured by the tradeoff of time and space. (Our attack is
worse than the generic attack in other settings.)

274 A. Hosoyamada and Y. Sasaki

Recall that there exists a 5-round differential propagation

1 2−(r−1)c

←− r — r2 — r2 — r
2−(r−1)c

−→ 1

for Whirlpool, which can be used to mount a classical rebound attack with
Super-Sboxes (see Sect. 4.2). Here we use the 6-round differential propagation

1 2−(r−1)c

←− r — r2 — r2 — r2 — r
2−(r−1)c

−→ 1

with the technique that covers three active rounds on 8 × 8 state introduced
in Sect. 4.3, instead of usual Super-Sboxes (See Fig. 5 in Section C.1 in this
paper’s full version [21]). We use the memoryless variant rather than the original
technique, which runs in time 2r2c/2+rc. The technique can be used for classical
distinguishing attacks but cannot be used for classical collision attacks since its
time complexity reaches the birthday bound 2r2c/2 = 2n/2. However, the power
of quantum computation enables us to use the technique. The optimality of the
6-round differential trail is shown in Sect. 8.

When we implement the rebound attack with the above 6-round differen-
tial propagation and the memoryless variant of the technique from Sect. 4.3 in
the classical setting, the attack time complexity becomes 2(r−1)c · 2(r−1)c · 2c ·
2r2c/2+rc = 2(r

2+6r−2)c/2 = 2440 (here r = 8 and c = 8). This attack is essen-
tially a combination of an exhaustive search on differences in the two internal
states (the difference just after the SubBytes application in the 2nd round (#Y 2

in Fig. 5 in Section C.1 of this paper’s full version [21]) and the difference at
the beginning of the 6th round (#X6 in Fig. 5 in Section C.1 of this paper’s full
version [21])) with the exhaustive search for the inbound phase (the memoryless
variant introduced in Sect. 4.3). Since we can obtain the quadratic speed up for
exhaustive searches with Grover’s algorithm in the quantum setting, roughly
speaking, we can implement the attack so that it runs in time around 2220 on
a small size quantum computer. Roughly speaking, if S quantum computers are
available, we will obtain a time-space tradeoff T = 2220/

√
S, which is better

than the generic time-space tradeoff T = 2n/2/S = 2256/S for S ≤ 272. Note
that this rough cost analysis gives just an underestimation since it ignores addi-
tional costs such as uncomputations and ancilla qubits to implement Boolean
functions for the Grover search. The precise tradeoff will be somewhat worse
than T = 2220/

√
S in practice, but T ≤ 2232/

√
S holds. (See Section C.2 in this

paper’s full version [21] for detailed discussions on precise analysis.) We assume
that our attack follows the worst-case tradeoff T = 2232/

√
S.

Summary. Our rebound attack on 6-round Whirlpool runs in time T = 2228 on
a quantum computer of size S0 = 28. When a large quantum computer of size
S (S ≥ 28) is available and we use them to parallelize the Grover search, our
rebound attack runs in time T = 2232/

√
S. It is better than the generic attack

in the setting where the efficiency of a quantum algorithm is measured by the
tradeoff between time T and space S as long as 28 ≤ S < 248, but it is worse
than the generic attack in other settings. (See Section C.3 in this paper’s full
version [21] for detailed discussions in other settings.)

Finding Hash Collisions with Quantum Computers 275

8 Optimality of Differential Trails

MILP Model. We checked the optimality of the differential trail by using the
Mixed Integer Linear Programming (MILP) based tool. The MILP model to
derive the minimum number of active S-boxes for AES was described by Mouha
et al. [34]. We modify the model by Mouha et al. to minimize the complexity
of the collision attack. The model by Mouha et al. describes valid differential
propagation patterns according to the AES diffusion. The model can simply be
converted to the collision search by adding the constraints such that the active
byte patterns of the first round input and the last round output are identical.

The objective function of the model by Mouha et al. is to minimize the num-
ber of active S-boxes, while we need a different objective function to minimize the
complexity of the collision attack in the rebound attack framework. Regarding
AES-MMO, we assume the usage of the Super-Sbox analysis, which generates a
pair of values satisfying MixColumns in three consecutive rounds by cost 1 per
starting point. For each model, we fix a position of the inbound phase. Namely
we fix the round index r in which MixColumns in rounds r, r + 1, and r + 2 are
satisfied with cost 1. Because the last round does not have MixColumns, we only
have 4 choices in the case of the 7-round attack: r ∈ {1, 2, 3, 4} by starting the
round counting from 1. For example, the 7-round trail introduced in Sect. 6.1 is
the case with r = 3. The probability of the outbound phase is affected by two
factors.

1. the number of difference cancellation in MixColumns
2. the number of difference cancellation in the feed-forward

The latter can be simply counted by counting the number of active S-boxes in
the first round. Let x0, x1, . . . , x15 be 16 binary variables to denote whether the
ith byte of the initial state is active or not. Then, the number of canceling bytes
in the feed-forward is x0 + x1 + · · · + x15. The impact of the former is evaluated
by counting the number of inactive bytes in active columns in MixColumns.
Suppose that xi0, xi1, xi2, xi3 are 4 binary variables to denote whether each of 4
input bytes to a MixColumns is active or not. Similarly yi0, yi1, yi2, yi3 denote
the same for output bytes. Also let d be a binary variable to denote whether
the column is active or not. Note that the model proposed by Mouha et al.
satisfies this configuration. We introduce an integer variable b, 0 ≤ b ≤ 3 for
each column to count the number of inactive bytes in active columns. Then,
proper relationships can be modeled in the following equality.

{−xi0 − xi1 − xi2 − xi3 + 4d = b for backward outbound,
−yi0 − yi1 − yi2 − yi3 + 4d = b for forward outbound.

For the rounds located before the Super-Sbox (the first round to round r−1) we
compute in backwards, hence we use the first equation. For the rounds located
after the Super-Sbox (round r + 3 to the last round) we compute in forwards,
hence we use the second equation. When the column is inactive, all of xi, yi

and d are 0, thus b becomes 0. When column is active, b is set to 4 minus the

276 A. Hosoyamada and Y. Sasaki

sum of the number active bytes, which is the number of bytes with difference
cancellation. In the end, the objective function can be to minimize the sum of
x0 to x15 for the feed-forward and b for all the columns.

Regarding the Whirlpool, the only difference from the AES-MMO is the num-
ber of rounds covered by the inbound phase (and the last round transformation).
The extension is straightforward and thus we omit the details.

Search Results. The resulted system of linear inequalities can be solved easily
by using a standard laptop in a few seconds. The result shows that the minimum
number of difference cancellation to derive 7-round collisions is 10, i.e. probability
2−80. Hence the trail introduced in Sect. 6.1 is one of the best.

As noted before, we generated different models depending on the starting
round of the Super-Sbox. An interesting result is that besides r = 3 (the trail
introduced in Sect. 6.1), r = 2 also achieves the trail with probability 2−80. (No
such trail for r = 1 and r = 4.) To the completeness, we show the detected trail
in Fig. 6 in Section D in this paper’s full version [21].

We also verified the optimality for Whirlpool and difficulty of attacking 1
more round with the approaches considered in this paper.

9 Concluding Remarks

This paper observed that there is a possibility that differential trails of which dif-
ferential probabilities are smaller than the birthday bound can be used to mount
collision attacks in the quantum settings and classically secure hash functions
may be broken in the quantum settings. In fact we showed the quantum versions
of rebound attacks on 7-round AES-MMO and 6-round Whirlpool, on which
there has not been found any dedicated collision attack that is faster than the
generic one in the classical setting.

An important future work is to find differential trails (that are suitable to
mount collision-finding attacks) such that the differential probabilities are too
small to be used for collision finding attacks in the classical setting but large
enough to be used in the quantum settings. Our observation suggests that dif-
ferential trail search should not stop with probability 2−n/2 but should consider
up to 2−2n/3 or more. By revisiting previous differential trail search activities,
we will be able to construct more and more dedicated quantum collision-finding
attacks.

References

1. ZigBee Alliance: ZigBee -2007 Specification (2007). https://zigbee.org/. Document
053474r17

2. Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target
preimage search. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719,
pp. 325–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-
9 16

https://zigbee.org/
https://doi.org/10.1007/978-3-319-72565-9_16
https://doi.org/10.1007/978-3-319-72565-9_16

Finding Hash Collisions with Quantum Computers 277

3. Barreto, P.S., Rijmen, V.: The WHIRLPOOL Hashing Function. Submitted to
NESSIE (2000). Accessed 24 May 2003

4. Bernstein, D.J.: Cost analysis of hash collisions: will quantum computers make
SHARCS obsolete? In: SHARCS (2009)

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

6. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline Simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921,
pp. 552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-
5 20

7. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 492–519.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5 20

8. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

9. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4–5), 493–505 (1998)

10. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

11. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

12. Campagna, M., Zaverucha, G., Corp, C.: A Cryptographic Suite for Embedded
Systems (SuiteE). Internet-Draft, October 2012

13. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 211–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

14. Daemen, J., Rijmen, V.: The Design of Rijndeal: AES – The Advanced Encryption
Standard (AES). Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-
04722-4

15. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

16. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 21

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: ACM
STOC 1996, pp. 212–219. ACM (1996)

18. Grover, L.K., Rudolph, T.: How significant are the known collision and element
distinctness quantum algorithms? Quantum Inf. Comput. 4(3), 201–206 (2004)

19. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. IACR Cryptology ePrint Archive 2019/74 (2019)

20. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks:
applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco,
R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 21

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/978-3-030-38471-5_20
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-642-13858-4_21
https://doi.org/10.1007/978-3-319-98113-0_21

278 A. Hosoyamada and Y. Sasaki

21. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. IACR Cryp-
tology ePrint Archive 2020/213 (2020)

22. ISO: IT Security techniques - Hash-functions - Part 3: Dedicated hash-functions,
ISO/IEC 10118–3:2018 (2018)

23. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist
Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 7

24. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

25. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

26. Katz, J., Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied
Cryptography. CRC Press, Boca Raton (1996)

27. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM SIGSAC 2016, pp. 830–842 (2016)

28. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: ISIT 2010, pp. 2682–2685. IEEE (2010)

29. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012, pp. 312–316. IEEE (2012)

30. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full Whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 8

31. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound
attack and subspace distinguishers: application to Whirlpool. J. Cryptol. 28(2),
257–296 (2015). https://doi.org/10.1007/s00145-013-9166-5

32. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03317-9 16

33. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

34. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

36. NIST: Post-quantum cryptography standardization, 26 September 2019. See
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-
Cryptography-Standardization

37. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash
functions and discrete logarithms. In: ACM CCS 1994, pp. 210–218. ACM (1994)

38. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 22

https://doi.org/10.1007/978-3-642-34047-5_7
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-642-10366-7_8
https://doi.org/10.1007/s00145-013-9166-5
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-642-21702-9_22

Finding Hash Collisions with Quantum Computers 279

39. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on Whirlpool: improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34961-4 34

40. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

41. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

42. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

43. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) preimage attack
on round-reduced Grøstl hash function and others. In: Canteaut, A. (ed.) FSE
2012. LNCS, vol. 7549, pp. 127–145. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34047-5 8

44. Xie, H., Yang, L.: Quantum impossible differential and truncated differential crypt-
analysis. CoRR abs/1712.06997 (2017)

45. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7–8), 557–567 (2015)

https://doi.org/10.1007/978-3-642-34961-4_34
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/978-3-642-34047-5_8
https://doi.org/10.1007/978-3-642-34047-5_8

Implementing Grover Oracles
for Quantum Key Search

on AES and LowMC

Samuel Jaques1(B), Michael Naehrig2(B), Martin Roetteler3,
and Fernando Virdia4

1 Department of Materials, University of Oxford, Oxford, UK
samuel.jaques@materials.ox.ac.uk

2 Microsoft Research, Redmond, WA, USA
mnaehrig@microsoft.com

3 Microsoft Quantum, Redmond, WA, USA
4 Information Security Group, Royal Holloway, University of London, Egham, UK

Abstract. Grover’s search algorithm gives a quantum attack against
block ciphers by searching for a key that matches a small number of
plaintext-ciphertext pairs. This attack uses O(

√
N) calls to the cipher to

search a key space of size N . Previous work in the specific case of AES
derived the full gate cost by analyzing quantum circuits for the cipher,
but focused on minimizing the number of qubits.

In contrast, we study the cost of quantum key search attacks under a
depth restriction and introduce techniques that reduce the oracle depth,
even if it requires more qubits. As cases in point, we design quantum
circuits for the block ciphers AES and LowMC. Our circuits give a lower
overall attack cost in both the gate count and depth-times-width cost
models. In NIST’s post-quantum cryptography standardization process,
security categories are defined based on the concrete cost of quantum
key search against AES. We present new, lower cost estimates for each
category, so our work has immediate implications for the security assess-
ment of post-quantum cryptography.

As part of this work, we release Q# implementations of the full Grover
oracle for AES-128, -192, -256 and for the three LowMC instantiations
used in Picnic, including unit tests and code to reproduce our quantum
resource estimates. To the best of our knowledge, these are the first two
such full implementations and automatic resource estimations.

Keywords: Quantum cryptanalysis · Grover’s algorithm · AES ·
LowMC · Post-quantum cryptography · Q# implementation

S. Jaques—Partially supported by the University of Oxford Clarendon fund.
S. Jaques and F. Virdia—This work was done while Fernando and Sam were interns
at Microsoft Research.
F. Virdia—Partially supported by the EPSRC and the UK government as part of
the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of
London (EP/P009301/1).

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 280–310, 2020.
https://doi.org/10.1007/978-3-030-45724-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_10

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 281

1 Introduction

The prospect of a large-scale, cryptographically relevant quantum computer has
prompted increased scrutiny of the post-quantum security of cryptographic primi-
tives. Shor’s algorithm for factoring and computing discrete logarithms introduced
in [45] and [46] will completely break public-key schemes such as RSA, ECDSA and
ECDH. But symmetric schemes like block ciphers and hash functions are widely
considered post-quantum secure. The only caveat thus far is a security reduction
due to key search or pre-image attacks with Grover’s algorithm [22]. As Grover’s
algorithm only provides at most a square root speedup, the rule of thumb is to sim-
ply double the cipher’s key size to make it post-quantum secure. Such conventional
wisdom reflects the asymptotic behavior and only gives a rough idea of the security
penalties that quantum computers inflict on symmetric primitives. In particular,
the cost of evaluating the Grover oracle is often ignored.

In their call for proposals to the standardization of post-quantum cryptogra-
phy [37], the National Institute of Standards and Technology (NIST) proposes
security categories for post-quantum public-key schemes such as key encapsula-
tion and digital signatures. Categories are defined by the cost of quantum algo-
rithms for exhaustive key search on the block cipher AES and collision search for
the hash function SHA-3, and measure the attack cost in the number of quantum
gates. Because the gate count of Grover’s algorithm increases with paralleliza-
tion, they impose a total upper bound on the depth of a quantum circuit, called
MAXDEPTH, and account for this in the gate counts. An algorithm meets the
requirements of a specific security category if the best known attack uses more
resources (gates) than are needed to solve the reference problem. Hence, a con-
crete and meaningful definition of these security categories depends on precise
resource estimates of the Grover oracle for key search on AES. Security cat-
egories 1, 3 and 5 correspond to key recovery against AES-128, AES-192 and
AES-256, respectively. The NIST proposal derives gate cost estimates from the
concrete, gate-level descriptions of the AES oracle by Grassl et al. [21]. Grassl
et al. aim to minimize the circuit width, i.e. the number of qubits needed.

Prior Work. Since the publication of [21], other works have studied quan-
tum circuits for AES, the AES Grover oracle and its use in Grover’s algorithm.
Almazrooie et al. [3] improve the quantum circuit for AES-128. As in [21], the
focus is on minimizing the number of qubits. The improvements are a slight
reduction in the total number of Toffoli gates and the number of qubits by using
a wider binary field inversion circuit that saves one multiplication. Kim et al. [29]
discuss time-space trade-offs for key search on block ciphers in general and use
AES as an example. They discuss NIST’s MAXDEPTH parameter and hence study
parallelization strategies for Grover’s algorithm to address the depth constraint.
They take the Toffoli gate depth as the relevant metric for the MAXDEPTH bound
arguing that it is a conservative approximation.

Recently, independent and concurrent to parts of this work, Langenberg et al.
[31] developed quantum circuits for AES that demonstrate significant improve-
ments over those presented in [21] and [3]. The main source of optimization is a

282 S. Jaques et al.

different S-box design derived from work by Boyar and Peralta in [10] and [11],
which greatly reduces the number of Toffoli gates in the S-box as well as its Tof-
foli depth. Another improvement is that fewer auxiliary qubits are required for the
AES key expansion. Again, this work aligns with the objectives in [21] to keep the
number of qubits small.

Bonnetain et al. [9] study the post-quantum security of AES within a new
framework for classical and quantum structured search. The work cites [21] for
deducing concrete gate counts for reduced-round attacks.

Our Contributions. We present implementations of the full Grover oracle for
key search on AES and LowMC in Q# [49], including full implementations of
the block ciphers themselves. In contrast to previous work [3,21] and [31], having
a concrete implementation allows us to get more precise, flexible and automatic
estimates of the resources required to compute these operations. It also allows
us to unit test our circuits, to make sure that the implementations are correct.

The source code is publicly available1 under a free license. We hope that it
can serve as a useful starting point for cryptanalytic work to assess the post-
quantum security of other schemes.

We review the literature on the parallelization of Grover’s algorithm [13,23,
29,55] to explore the cost of attacking AES and LowMC in the presence of a
bound on the total depth, such as MAXDEPTH proposed by NIST. We conclude
that using parallelization by dividing the search space is advantageous. We also
give a rigorous justification for the number of plaintext-ciphertext blocks needed
in Grover’s oracle in the context of parallelization. Smaller values than those
proposed by Grassl et al. [21] are sufficient, as is also pointed out in [31].

Our quantum circuit optimization approach differs from those in the previ-
ous literature [3,21] and [31] in that our implementations do not aim for the
lowest possible number of qubits. Instead, we designed them to minimize the
gate-count and depth-times-width cost metrics for quantum circuits under a
depth constraint. The gate-count metric is relevant for defining the NIST secu-
rity categories and the depth-times-width cost metric is a more realistic mea-
sure of quantum resources when quantum error correction is deployed. Favoring
lower depth at the cost of a slightly larger width in the oracle circuit leads to
costs that are smaller in both metrics than for the circuits presented in [3,21]
and [31]. Grover’s algorithm does not parallelize well, meaning that minimizing
depth rather than width is crucial to make the most out of the available depth.

To the best of our knowledge, our work results in the most shallow quantum
circuit of AES so far, and the first ever for LowMC. We chose to also implement
LowMC as an example of a quantum circuit for another block cipher. It is used
in the Picnic signature scheme [14,56], a round-2 candidate in the NIST stan-
dardization process. Thus, our implementation can contribute to more precise
cost estimates for attacks on Picnic and its post-quantum security assessment.

We present our results for quantum key search on AES in the context of the
NIST post-quantum cryptography standardization process and derive new and
1 https://github.com/microsoft/grover-blocks.

https://github.com/microsoft/grover-blocks

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 283

lower cost estimates for the definition of the NIST security strength categories.
We see a consistent gate cost reduction between 11 and 13 bits, making it easier
for submitters to claim a certain quantum security category.

2 Finding a Block Cipher Key with Grover’s Algorithm

Given plaintext-ciphertext pairs created by encrypting a small number of mes-
sages under a block cipher, Grover’s quantum search algorithm [22] can be used
to find the secret key [54]. This section provides some preliminaries on Grover’s
algorithm, how it can be applied to the key search problem and how it parallelizes
under depth constraints.

2.1 Grover’s Algorithm

Grover’s algorithm [22] searches through a space of N elements; for simplicity, we
restrict to N = 2k right away and label elements by their indices in {0, 1}k. The
algorithm works with a superposition |ψ〉 = 2−k/2

∑
x∈{0,1}k |x〉 of all indices,

held in a register of k qubits. It makes use of an operator Uf for evaluating a
Boolean function f : {0, 1}k → {0, 1} that marks solutions to the search problem,
i.e. f(x) = 1 if and only if the element corresponding to x is a solution. When
applying the Grover oracle Uf to a state |x〉 |y〉 for a single qubit |y〉, it acts
as |x〉 |y〉 �→ |x〉 |y ⊕ f(x)〉 in the computational basis. When |y〉 is in the state
|ϕ〉 = (|0〉−|1〉)/√

2, then this action can be written as |x〉 |ϕ〉 �→ (−1)f(x) |x〉 |ϕ〉.
This means that the oracle applies a phase shift to exactly the solution indices.

The algorithm first prepares the state |ψ〉 |ϕ〉 with |ψ〉 and |ϕ〉 as above. It
then repeatedly applies the so-called Grover iteration G = (2 |ψ〉〈ψ| − I)Uf , an
operator that consists of the oracle Uf followed by the operator 2 |ψ〉〈ψ| − I,
which can be viewed as an inversion about the mean amplitude. Each iteration
can be visualized as a rotation of the state vector in the plane spanned by two
orthogonal vectors: the superposition of all indices corresponding to solutions
and non-solutions, respectively. The operator G rotates the vector by a constant
angle towards the superposition of solution indices. Let 1 ≤ M ≤ N be the
number of solutions and let 0 < θ ≤ π/2 such that sin2(θ) = M/N . Note that if
M 	 N , then sin(θ) is very small and θ ≈ sin(θ) =

√
M/N .

When measuring the first k qubits after j > 0 iterations of G, the success
probability p(j) for obtaining one of the solutions is p(j) = sin2((2j + 1)θ) [13],

which is close to 1 for j ≈ π
4θ . Hence, after

⌊
π
4

√
N
M

⌋
iterations, measurement

yields a solution with overwhelming probability of at least 1 − M
N .

Grover’s algorithm is optimal in the sense that any quantum search algorithm
needs at least Ω(

√
N) oracle queries to solve the problem [13]. In [55], Zalka

shows that for any number of oracle queries, Grover’s algorithm gives the largest
probability to find a solution.

284 S. Jaques et al.

2.2 Key Search for a Block Cipher

Let C be a block cipher with block length n and key length k; for a key K ∈
{0, 1}k denote by CK(m) ∈ {0, 1}n the encryption of message block m ∈ {0, 1}n

under the key K. Given r plaintext-ciphertext pairs (mi, ci) with ci = CK(mi),
we aim to apply Grover’s algorithm to find the unknown key K [54]. The Boolean
function f for the Grover oracle takes a key K as input, and is defined as
f(K) = 1 if CK(mi) = ci for all 1 ≤ i ≤ r, and f(K) = 0 otherwise.

Possibly, there exist other keys than K that encrypt the known plaintexts to
the same ciphertexts. We call such keys spurious keys. If their number is known
to be, say M − 1, the M -solution version of Grover’s algorithm has the same
probability of measuring each spurious key as measuring the correct K.

Spurious Keys. We assume that under a fixed key K, the map {0, 1}n →
{0, 1}n,m �→ CK(m) is a pseudo-random permutation; and under a fixed mes-
sage block m, the map {0, 1}k → {0, 1}n,K �→ CK(m) is a pseudo-random func-
tion. Now let K be the correct key, i.e. the one used for the encryption. It follows
that for a single message block of length n, PrK �=K′ (CK(m) = CK′(m)) = 2−n.

This probability becomes smaller when the equality condition is extended to
multiple blocks. Given r distinct messages m1, . . . , mr ∈ {0, 1}n, we have

Pr
K �=K′

((CK(m1), . . . , CK(mr)) = (CK′(m1), . . . , CK′(mr))) =
r−1∏

i=0

1
2n − i

, (1)

which is ≈2−rn for r2 	 2n. Since the number of keys different from K is
2k − 1, we expect the number of spurious keys for an r-block message to be
≈(2k − 1)2−rn. Choosing r such that this quantity is very small ensures with
high probability that there is a unique key and we can parameterize Grover’s
algorithm for a single solution.

Remark 1. Grassl et al. [21, §3.1] work with a similar argument. They take the
probability over pairs (K ′,K ′′) of keys with K ′ �= K ′′. Since there are 22k − 2k

such pairs, they conclude that about (22k − 2k)2−rn satisfy the above condition
that the ciphertexts coincide on all r blocks. But this also counts pairs of keys for
which the ciphertexts match each other, but do not match the images under the
correct K. Thus, using the number of pairs overestimates the number of spurious
keys and hence the number r of message blocks needed to ensure a unique key.

Based on the above heuristic assumptions, one can determine the probability
for a specific number of spurious keys. Let X be the random variable whose
value is the number of spurious keys for a given set of r message blocks and
a given key K. Then, X is distributed according to a binomial distribution:
Pr(X = t) =

(
2k−1

t

)
pt(1 − p)2

k−1−t, where p = 2−rn. We use the Poisson limit
theorem to conclude that this is approximately a Poisson distribution with

Pr(X = t) ≈ e− 2k−1
2rn

(2k − 1)t(2−rn)t

t!
≈ e−2k−rn 2t(k−rn)

t!
. (2)

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 285

The probability that K is the unique key consistent with the r plaintext-
ciphertext pairs is Pr(X = 0) ≈ e−2k−rn

. Thus we can choose r such that rn is
slightly larger than k; rn = k + 10 gives Pr(X = 0) ≈ 0.999. In a block cipher
where k = b · n is a multiple of n, taking r = b + 1 will give the unique key K
with probability at least 1 − 2−n, which is negligibly close to 1 for typical block
sizes. If rn < k, then K is almost certainly not unique. Even rn = k − 3 gives
less than a 1% chance of a unique key. Hence, r must be at least k/n�.

The case k = rn, when the total message length is equal to the key length,
remains interesting if one aims to minimize the number of qubits. The probability
for a unique K is Pr(X = 0) ≈ 1/e ≈ 0.3679, and the probability of exactly one
spurious key is the same. Kim et al. [29, Equation (7)] describe the success
probability after a certain number of Grover iterations when the number of
spurious keys is unknown. The optimal number of iterations gives a maximum
success probability of 0.556, making it likely that the first attempt will not find
the correct key and one must repeat the algorithm.

Depth Constraints for Cryptanalysis. In this work, we assume that any
quantum adversary is bounded by a constraint on its total depth for running
a quantum circuit. In its call for proposals to the post-quantum cryptography
standardization effort [37], NIST introduces the parameter MAXDEPTH as such a
bound and suggests that reasonable values are between 240 and 296. Whenever an
algorithm’s overall depth exceeds this bound, parallelization becomes necessary.
We do assume that MAXDEPTH constitutes a hard upper bound on the total depth
of a quantum attack, including possible repetitions of a Grover instance.

In general, an attacker can be assumed to have a finite amount of resources,
in particular a finite time for an attack. This is equivalent to postulating an
upper bound on the total depth of a quantum circuit as suggested by NIST.
Unlike in the classical case, the required parallelization increases the gate cost
for Grover’s algorithm, which makes it important to study attacks with bounded
depth.

We consider it reasonable to expect that the overall attack strategy is guar-
anteed to return a solution with high probability close to 1 within the given
depth bound. E.g., a success probability of 1/2 for a Grover instance to find the
correct key requires multiple runs to increase the overall probability closer to 1.
These runs, either sequentially or in parallel, need to be taken into account for
determining the overall cost and must respect the depth limit. While this setting
is our main focus, it can be adequate to allow and cost a quantum algorithm
with a success probability noticeably smaller than 1. Where not given in this
paper, the corresponding analysis can be derived in a straightforward manner.

2.3 Parallelization

There are different ways to parallelize Grover’s algorithm. Kim et al. [29] describe
two, which they denote as inner and outer parallelization. Outer paralleliza-
tion runs multiple instances of the full algorithm in parallel. Only one instance

286 S. Jaques et al.

must succeed, allowing us to reduce the necessary success probability, and hence
number of iterations, for all. Inner parallelization divides the search space into
disjoint subsets and assigns each subset to a parallel machine. Each machine’s
search space is smaller, so the number of necessary iterations shrinks.

Zalka [55] concludes that in both cases, one only obtains a factor
√

S gain in
the number of Grover iterations when working with S parallel Grover oracles, and
that this is asymptotically optimal. Compared to many classical algorithms, this
is an inefficient parallelization, since we must increase the width by a factor of S
to reduce the depth by a factor of

√
S. Both methods avoid any communication,

quantum or classical, during the Grover iterations. They require communication
at the beginning, to distribute the plaintext-ciphertext pairs to each machine
and to delegate the search space for inner parallelization, and communication at
the end to collect the measured keys and decide which one, if any, is the true
key. The next section discusses why our setting favours inner parallelization.

Advantages of Inner Parallelization. Consider S parallel machines that we
run for j iterations, using the notation of Sect. 2.1, and a unique key. For a
single machine, the success probability is p(j) = sin2 ((2j + 1)θ). Using outer
parallelization, the probability that at least one machine recovers the correct
key is pS(j) = 1 − (1 − p(j))S . We hope to gain a factor

√
S in the number

of iterations, so instead of iterating
⌊

π
4θ

⌋
times, we run each machine for jS =⌊

π
4θ

√
S

⌋
iterations.

Considering some small values of S, we get S = 1 : p1(j1) ≈ 1, S = 2 :
p2(j2) ≈ 0.961 and S = 3 : p3(j3) ≈ 0.945. As S gets larger, we use a series
expansion to find that

pS(jS) ≈ 1 −
(

1 − π2

4S
+ O

(
1
S2

))S
S→∞−−−−→ 1 − e− π2

4 ≈ 0.915. (3)

This means that by simply increasing S, it is not possible to gain a factor
√

S
in the number of iterations if one aims for a success probability close to 1. In
contrast, with inner parallelization, the correct key lies in the search space of
exactly one machine. With jS iterations, this machine has near certainty of
measuring the correct key, while other machines are guaranteed not to measure
the correct key. Overall, we have near-certainty of finding the correct key. Inner
parallelization thus achieves a higher success probability with the same number
S of parallel instances and the same number of iterations.

Another advantage of inner parallelization is that dividing the search space
separates any spurious keys into different subsets and reduces the search prob-
lem to finding a unique key. This allows us to reduce the number r of mes-
sage blocks in the Grover oracle and was already observed by Kim et al. [29]
in the context of measure-and-repeat methods. In fact, the correct key lies
in exactly one subset of the search space. If the spurious keys fall into dif-
ferent subsets, the respective machines measure spurious keys, which can be
discarded classically after measurement with access to the appropriate number

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 287

of plaintext-ciphertext pairs. The only relevant question is whether there is a
spurious key in the correct key’s subset of size 2k/S. The probability for this is

SKP(k, n, r, S) =
∑∞

t=1 Pr(X = t) ≈ 1−e− 2k−rn

S , using Eq. (2) with 2k replaced
by 2k/S. If k = rn, this probability is roughly 1/S when S gets larger. In general,
high parallelization makes spurious keys irrelevant, and the Grover oracle can
simply use the smallest r such that SKP(k, n, r, S) is less than a desired bound.

3 Quantum Circuit Design

Quantum computation is usually described in the quantum circuit model. This
section describes our interpretation of quantum circuits, methods and criteria
for quantum circuit design, and cost models to estimate quantum resources.

3.1 Assumptions About the Fault-Tolerant Gate Set
and Architecture

The quantum circuits we are concerned with in this paper operate on qubits.
They are composed of so-called Clifford+T gates, which form a commonly
used universal fault-tolerant gate set exposed by several families of quantum
error-correcting codes. The primitive gates consist of single-qubit Clifford gates,
controlled-NOT (CNOT) gates, T gates, and measurements. We make the stan-
dard assumption of full parallelism, meaning that a quantum circuit can apply
any number of gates simultaneously so long as these gates act on disjoint sets of
qubits [8,23].

All quantum circuits for AES and LowMC described in this paper were
designed, tested, and costed in the Q# programming language [49], which sup-
ports all assumptions discussed here. We adopt the computational model pre-
sented in [25]. The Q# compiler allows us to compute circuit depth automatically
by moving gates around through a circuit if the qubits it acts on were previously
idle. In particular, this means that the depth of two circuits applied in series may
be less than the sum of the individual depths of each circuit. The Q# language
allows the circuit to allocate auxiliary qubits as needed, which adds new qubits
initialized to |0〉. If an auxiliary qubit is returned to the state |0〉 after it has been
operated on, the circuit can release it. Such a qubit is no longer entangled with
the state used for computation and the circuit can now maintain or measure it.

Grover’s algorithm is a far-future quantum algorithm, making it difficult
to decide on the right cost for each gate. Previous work assumed that T gates
constitute the main cost [3,21,31]. They are exceptionally expensive for a surface
code [19]; however, for a future error-correcting code, T gates may be transversal
and cheap while a different gate may be expensive. Thus, we present costs for
both counting T gates only, and costing all gates equally. For most of the circuits,
these concerns do not change the optimal design.

We ignore all concerns of layout and communication costs for the Grover
oracle circuit. Though making this assumption is unrealistic for a surface code,
where qubits can only interact with neighboring ones, other codes may not have

288 S. Jaques et al.

these issues. A single oracle circuit uses relatively few logical qubits (<220),
so these costs are unlikely to dominate. This allows us to compare our work
with previous proposals, which also ignore these costs. This also implies that
uncontrolled swaps are free, since the classical controller can simply track such
swaps and rearrange where it applies subsequent gates.

While previous work on quantum circuits for AES such as [3,21] and [31]
mainly uses Toffoli gates, we use AND gates instead. A quantum AND gate
has the same functionality as a Toffoli gate, except the target qubit is assumed
to be in the state |0〉, rather than an arbitrary state. We use a combination2

of Selinger’s [44] and Jones’ [28] circuits to express the AND gate in terms of
Clifford and T gates. This circuit uses 4 T gates and 11 Clifford gates in T -depth
1 and total depth 8. It uses one auxiliary qubit which it immediately releases,
while its adjoint circuit is slightly smaller.

3.2 Automated Resource Estimation and Unit Tests

One incentive for producing full implementations of the Grover oracle and its
components is to obtain precise resource estimates automatically and directly
from the circuit descriptions. Another incentive is to test the circuits for correct-
ness and to compare results on classical inputs against existing classical software
implementations that are known (or believed) to be correct. Yet quantum circuits
are in general not testable, since they rely on hardware yet to be constructed.
To partially address this issue, the Q# compiler can classically simulate a subset
of quantum circuits, enabling partial test coverage. We thus designed our cir-
cuits such that this tool can fully classically simulate them, by using X, CNOT,
CCNOT, SWAP, and AND gates only, together with measurements (denoted
throughout as M “gates”). This approach limits the design space since we cannot
use true quantum methods within the oracle. Yet, it is worthwhile to implement
components that are testable and can be fully simulated to increase confidence
in the validity of resource estimates deduced from such implementations.

As part of the development process, we first implemented AES (resp.
LowMC) in Python3, and tested the resulting code against the AES implemen-
tation in PyCryptodome 3.8.2 [39] (resp. the C++ reference implementation
in [33]). Then, we proceeded to write our Q# implementations (running on the
Dotnet Core version 2.1.507, using the Microsoft Quantum Development Kit
version 0.7.1905.3109), and tested these against our Python3 implementations,
by making use of the IQ# interface (see [35,36]. For the Q# simulator to run,
we are required to use the Microsoft QDK standard library’s Toffoli gate for
evaluating both Toffoli and AND gates, which results in deeper than necessary
circuits. We also have to explicitly SWAP values across wires, which costs 3
CNOT gates, rather than simply keeping track of the necessary free rewiring.
Hence, to mitigate these effects, our functions admit a Boolean flag indicating
whether the code is being run as part of a unit test by the simulator, or as part

2 We thank Mathias Soeken for providing the implementation of the AND gate circuit.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 289

of a cost estimate. In the latter case, Toffoli and AND gate designs are auto-
matically replaced by shallower ones, and SWAP instructions are disregarded as
free (after manually checking that this does not allow for incompatible circuit
optimizations). All numbers reporting the total width of a circuit include the
initial number of qubits plus the maximal number of temporarily allocated aux-
iliary qubits within the Q# function. For numbers describing the total depth,
all gates such as Clifford gates, CNOT and T gates as well as measurements are
assigned a depth of 1.

The AND and Toffoli gate designs we chose use measurements, hence CNOT,
1-qubit Clifford, measurement and depth counts are probabilistic. The Q# sim-
ulator does not currently support PRNG seeding for de-randomizing the mea-
surements,3 which means that estimating differently sized circuits with the same
or similar depth (or re-estimating the same circuit multiple times) may result in
slightly different numbers. We also note that the compiler is currently unable to
optimize a given circuit by, e.g., searching through small circuit variations that
may result in functionally the same operation at a smaller cost (say by allowing
better use of the circuit area).

3.3 Reversible Circuits for Linear Maps

Linear maps f : Fn
2 → F

m
2 for varying dimensions n and m are essential building

blocks of AES and LowMC. In general, such a map f , expressed as multiplication
by a constant matrix Mf ∈ F

m×n
2 , can be implemented as a reversible circuit

on n input wires and m additional output wires (initialized to |0〉), by using an
adequate sequence of CNOT gates: if the (i, j)-th coefficient of Mf is 1, we set
a CNOT gate targeting the i-th output wire, controlled on the j-th input wire.

Yet, if a linear map g : Fn
2 → F

n
2 is invertible, one can reversibly compute

it in-place on the input wires via a PLU decomposition of Mg, Mg = P · L ·
U [51, Lecture 21]. The lower- and upper-triangular components L and U of the
decomposition can be implemented as described above by using the appropriate
CNOT gates, while the final permutation P does not require any quantum gates
and instead, is realized by appropriately keeping track of the necessary rewiring.
While rewiring is not easily supported in Q#, the same effect can be obtained by
defining a custom REWIRE operation that computes an in-place swap of any two
wires when testing an implementation, and that can be disabled when costing it.
We note that such decompositions are not generally unique, but it is not clear
whether sparser decompositions can be consistently obtained with any particular
technique. For our implementations, we adopt the PLU decomposition algorithm
from [51, Algorithm 21.1], as implemented in SageMath 8.1 [48].

3.4 Cost Metrics for Quantum Circuits

For a meaningful cost analysis, we assume that an adversary has fixed constraints
on its total available resources, and a specific cost metric they wish to minimize.
Most importantly, we assume a total depth limit Dmax as explained in Sect. 2.2.
3 https://github.com/microsoft/qsharp-runtime/issues/30, visited 2019-08-24.

https://github.com/microsoft/qsharp-runtime/issues/30

290 S. Jaques et al.

In this paper, we use the two cost metrics that are considered by Jaques and
Schanck in [25]. The first is the total number of gates, the G-cost. It assumes
non-volatile (“passive”) quantum memory, and therefore models circuits that
incur some cost with every gate, but no cost is incurred in time units during
which a qubit is not operated on.

The second cost metric is the product of circuit depth and width, the DW -
cost. This is a more realistic cost model when quantum error correction is neces-
sary. It assumes a volatile (“active”) quantum memory, which incurs some cost
to correct errors on every qubit in each time step, i.e. each layer of the total cir-
cuit depth. In this cost model, a released auxiliary qubit would not require error
correction, and the cost to correct it could be omitted. But we assume an efficient
strategy for qubit allocation that avoids long idle periods for released qubits and
thus choose to ignore this subtlety. Instead, we simply cost the maximum width
at any point in the oracle, times its total depth. For both cost metrics, we can
choose to count only T -gates towards gate count and depth, or count all gates
equally.

The Cost of Grover’s Algorithm. As in Sect. 2.1, let the search space have
size N = 2k. Suppose we use an oracle G such that a single Grover iteration
costs GG gates, has depth GD, and uses GW qubits. Let S = 2s be the number of
parallel machines that are used with the inner parallelization method by dividing
the search space in S disjoint parts (see Sect. 2.3). In order to achieve a certain
success probability p, the required number of iterations can be deduced from
p ≤ sin2((2j + 1)θ) which yields jp =

⌈
(arcsin

(√
p
)
/θ − 1)/2

⌉ ≈ arcsin
(√

p
)
/2 ·

√
N/S. Let cp = arcsin

(√
p
)
/2, then the total depth of a jp-fold Grover

iteration is
D = jpGD ≈ cp

√
N/S · GD = cp2

k−s
2 GD cycles. (4)

Note that for p ≈ 1 we have cp ≈ c1 = π
4 . Each machine uses jpGG ≈ cp

√
N/S ·

GG = cp2
k−s
2 GG gates, i.e. the total G-cost over all S machines is

G = S · jpGG ≈ cp

√
N · S · GG = cp2

k+s
2 GG gates. (5)

Finally, the total width is W = S ·GW = 2sGW qubits, which leads to a DW -cost

DW ≈ cp

√
N · S · GDGW = cp2

k+s
2 GDGW qubit-cycles. (6)

These cost expressions show that minimizing the number S = 2s of parallel
machines minimizes both G-cost and DW -cost. Thus, under fixed limits on depth,
width, and the number of gates, an adversary’s best course of action is to use the
entire depth budget and parallelize as little as possible. Under this premise, the
depth limit fully determines the optimal attack strategy for a given Grover oracle.
Limits on width or the number of gates simply become binary feasibility criteria
and are either too tight and the adversary cannot finish the attack, or one of the
limits is loose. If one resource limit is loose, we may be able to modify the oracle
to use this resource to reduce depth, lowering the overall cost.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 291

Optimizing the Oracle Under a Depth Limit. Grover’s full algorithm
parallelizes so badly that it is generally preferable to parallelize within the oracle
circuit. Reducing its depth allows more iterations within the depth limit, thus
reducing the necessary parallelization.

Let Dmax be a fixed depth limit. Given the depth GD of the oracle, we are
able to run jmax = �Dmax/GD� Grover iterations of the oracle G. For a target
success probability p, we obtain the number S of parallel instances to achieve
this probability in the instance whose key space partition contains the key from
p ≤ sin2((2jmax + 1)

√
S/N) as

S =

⌈
N · arcsin2

(√
p
)

(2 · �Dmax/GD� + 1)2

⌉

≈ c2
p2

k G2
D

D2
max

. (7)

Using this in Eq. (5) gives a total gate count of

G = c2
p2

k GDGG

Dmax
gates. (8)

It follows that for two oracle circuits G and F, the total G-cost is lower for G if
and only if GDGG < FDFG. That is, we wish to minimize the product GDGG.
Similarly, the total DW -cost under the depth constraint is

DW = c2
p2

k G
2
DGW

Dmax
qubit-cycles. (9)

Here, we wish to minimize G2
DGW of the oracle circuit to minimize total DW -

cost.

4 A Quantum Circuit for AES

The Advanced Encryption Standard (AES) [15,16] is a block cipher standardized
by NIST in 2001. Using the notation from [15], AES is composed of an S-box, a
Round function (with subroutines ByteSub, ShiftRow, MixColumn, AddRound-
Key; with the last round slightly differing from the others), and a KeyExpansion
function (with subroutines SubByte, RotByte). Three different instances of AES
have been standardized, for key lengths of 128, 192 and 256 bits. Grassl et al. [21]
describe their quantum circuit implementation of the S-box and other compo-
nents, resulting in a full description of all three instances of AES (but no testable
code has been released). Grassl et al. take care to reduce the number of auxiliary
qubits required, i.e. reducing the circuit width as much as possible. The recent
improvements by Langenberg et al. [31] build on the work by Grassl et al. with
similar objectives.

In this section, we describe our implementation of AES in the quantum pro-
gramming language Q# [49]. Some of the components are taken from the descrip-
tion in [21], while others are implemented independently, or ported from other
sources. We take the circuit description from [21] as the basis for our work and

292 S. Jaques et al.

compare to the results in [31]. In general, we aim at reducing the depth of the
AES circuit, while limitations on width are less important. Width restrictions
are not explicitly considered by the NIST call for proposals [37, § 4.A.5].

The internal state of AES contains 128 bits, arranged in four 32-bit (or 4-byte)
words. In the rest of this section, when referring to a ‘word’, we intend a 4-byte
word. In all tables below, we denote by #CNOT, the number of CNOT gates, by
#1qCliff the number of 1-qubit Clifford gates, by #T the number of T gates, by
#M the number of measurement operations and by width the number of qubits.

S-box, ByteSub and SubByte. The AES S-box is a transformation that
inverts the input as an element of F256, and maps 0 to 0. The S-box is the only
source of T gates in a quantum circuit of AES. On classical hardware, it can be
implemented easily using a lookup-table. Yet, on a quantum computer, this is not
efficient (see [5,32] and [20]). Alternatively, the inversion can be computed either
by using some variant of Euclid’s algorithm (taking care of the special case of 0),
or by applying Lagrange’s theorem and raising the input to the (|F×

256| − 1)th

power (i.e. the 254th power), which incidentally also takes care of the 0 input.
Grassl et al. [21] suggest an Itoh-Tsujii inversion algorithm [24], following [4],
and compute all required multiplications over F2[x]/(x8 + x4 + x3 + x + 1). This
idea had already been extensively explored in the vast4 literature on hardware
design for AES, and requires a different construction of F256 to be most effective.
Following this lead, we port the S-box circuit by Boyar and Peralta from [11] to
Q#. The specified linear program combining AND and XOR operations can be
easily expressed as a sequence of equivalent CNOT and AND operations (we use
cheaper T -depth-1 AND gates [28,44] instead of T -depth-1 CCNOT gates [44]).
Cost estimates for the AESS-box are in Table 1. We compare to our own Q#
implementation of the S-box circuits from [21] and [31]. ByteSub is a state-wide
parallel application of the S-box, requiring new output auxiliary qubits to store
the result, while SubByte is a similar word-wide application of the S-box.

Table 1. Comparison of our reconstruction of the original [21] S-box circuit with the
one from [10] as used in [31] and the one in this work based on [11]. In our implemen-
tation of [10] from [31], we replace CCNOT gates with AND gates to allow a fairer
comparison.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

[21] S-box 8683 1028 3584 0 217 1692 44

[10] S-box 818 264 164 41 35 497 41

[11] S-box 654 184 136 34 6 101 137

4 E.g. see [10,12,27,38,40–43,52,53].

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 293

Remark 2. Langenberg et al. [31] independently introduced a new AES quantum
circuit design using the S-box circuit proposed in [10]. They also present a Pro-
jectQ [47] implementation of the S-box, albeit without unit tests. We ported their
source code to Q#, tested and costed it. For a fairer comparison, we replaced
their CCNOT gates with the AND gate design that our circuits use. Cost esti-
mates can be found in Table 1. Overall, the [11] S-box leads to a more cost
effective circuit for our purposes in both the G-cost and DW -cost metrics, and
hence we did not proceed further in our analysis of costs using the [10] design.
Note that the results obtained here differ from the ones presented in [31, §3.2].
This is due to the difference in counting gates and depth. While [31] counts Tof-
foli gates, the Q# resource estimator costs at a lower level of T gates and also
counts all gates needed to implement a Toffoli gate.

ShiftRow and RotByte. ShiftRow is a permutation on the full 128-bit AES
state, happening across its four words [15, §4.2.2]. As a permutation of qubits, it
can be entirely encoded as rewiring. As in [21], we consider rewiring as free and
do not include it in our cost estimates. Similarly, RotByte is a circular left shift
of a word by 8 bits, and can be implemented by appropriate rewiring as well.

MixColumn. The operation MixColumn interprets each word in the state as
a polynomial in F256[x]/(x4 + 1). Each word is multiplied by a fixed polynomial
c(x) [15, § 4.2.3]. Since the latter is coprime to x4 + 1, this operation can be
seen as an invertible linear transformation, and hence can be implemented in
place by a PLU decomposition of a matrix in F

32×32
2 . To simplify this tedious

operation, we use SageMath [48] code that performs the PLU decomposition, and
outputs equivalent Q# code. Note that [21] describes the same technique, while
achieving a significantly smaller design than the one we obtain (ref. Table 2),
but we were not able to reproduce these results. However, highly optimized,
shallower circuits have been proposed in the hardware design literature such
as [7,18,26,30,50]. Hence, we chose to use one of those and experiment with a
recent design by Maximov [34]. Both circuits are costed independently in Table 2.
Maximov’s circuit has a much lower depth, but it only reduces the total depth,
does not reduce the T -depth (which is already 0) and comes at the cost of an
increased width. Our experiments show that without a depth restriction, it seems
advantageous to use the in-place version to minimize both G-cost and DW -cost
metrics, while for a depth restricted setting, Maximov’s circuit seems better due
to the square in the depth term in Eq. (9).

Table 2. Comparison of an in-place implementation of MixColumn (via PLU decom-
position) versus the recent shallow out-of-place design in [34].

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

In-place MixColumn 1108 0 0 0 0 111 128

[34] MixColumn 1248 0 0 0 0 22 318

294 S. Jaques et al.

AddRoundKey. AddRoundKey performs a bitwise XOR of a round key to the
internal AES state and can be realized with a parallel application of 128 CNOT
gates, controlled on the round key qubits and targeted on the state qubits. Grassl
et al. [21] and Langenberg et al. [31] use the same approach.

KeyExpansion. Key expansion is one of the two sources of T gates in the
design of AES, and hence might have a strong impact on the overall efficiency
of the circuit. A simple implementation of KeyExpansion would allocate enough
auxiliary qubits to store the full expanded key, including all round keys. This is
easy to implement with relatively low depth, but uses more qubits than necessary.
The authors of [21] amortize this width cost by caching only those key bytes that
require S-box evaluations. Instead, we minimize width by not requiring auxiliary
qubits at all. At the same time, we reduce the depth in comparison with the naive
key expansion using auxiliary qubits for all key bits as described above.

Let |k〉0 denote the AES key consisting of Nk ∈ {4, 6, 8} key words and |k〉i

the i-th set of Nk consecutive round key words. The first such block |k〉1 can
be computed in-place as shown in the appropriately sized circuit in Fig. 1. This
circuit produces the i-th set of Nk key words from the (i − 1)-th set. Note that
for AES-128, these sets correspond to the actual round keys as the key size is

|k0〉i−1

|k1〉i−1

|k2〉i−1

|k3〉i−1 RotByte

� SubByte

RotByte†

RC |k0〉i
|k1〉i
|k2〉i
|k3〉i

(a) AES-128 in-place key expansion step producing the i-th round key.

|k0〉i−1

|k1〉i−1

|k2〉i−1

|k3〉i−1

|k4〉i−1

|k5〉i−1

|k6〉i−1

|k7〉i−1 RotByte

� SubByte

RotByte†

RC

SubByte

|k0〉i
|k1〉i
|k2〉i
|k3〉i
|k4〉i
|k5〉i
|k6〉i
|k7〉i

(b) AES-256 in-place key expansion step producing the i-th set of 8 round key words.

Fig. 1. In-place AES key expansion for AES-128 and AES-256, deriving the ith set of
Nk round key works from the (i − 1)th. AES-192 is identical to AES-128, but with 6 key
words. Each |kj〉i represents the jth word of |k〉i. SubByte takes the input state on the
top wire, and returns the output on the bottom wire, while � SubByte takes inputs on
the bottom wire, and returns outputs on the top. Dashed lines indicate wires that are
not used in the � SubByte operation. RC is the round constant addition, implemented
by applying X gates as appropriate.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 295

equal to the block size, for AES-192 and AES-256, each round key set generates
more words than needed in a single round key. The full operation mapping
|k〉i−1 �→ |k〉i is denoted by KE. As for the two larger key sizes, each round only
needs parts of these sets of round key words, we specify KEl

j to denote the part
of the operation KE that produces the words j . . . l of the new set, disregarding
other words. KEl

j can be used as part of the round strategy described below
to only compute as many words of the round key as necessary, resulting in an
overall narrower and shallower circuit.

Remark 3. In addition to improving the S-box circuit over [21], Langenberg et al.
[31, §4] demonstrate significant savings by reducing the number of qubits and the
depth of key expansion. This is achieved by an improved scheduling of key expan-
sion during AES encryption, namely by computing round key words only at the
time they are required and un-computing them early. While their method is based
on the one in [21] using auxiliary qubits for the round keys, our approach works
completely in place and reduces width and depth at the same time.

Round, FinalRound and Full AES. To encrypt a message block using AES-
128 (resp. -192, -256), we initially XOR the input message with the first 4 words
of the key, and then execute 10 (resp. 12, 14) rounds consisting of ByteSub,
ShiftRow, MixColumn (except in the final round) and AddRoundKey. The quan-
tum circuits for AES we propose follow the same blueprint with the exception
that key expansion is interleaved with the algorithm in such a way that the
operations KEl

j only produce the key words that are immediately required.
The resulting circuits are shown in Fig. 2. For formatting reasons, we omit

the repeating round pattern and AES-256, and only represent a subset of the
full set of qubits used. In AES-128, each round is identical until round 9. In
AES-192 rounds 5, 8 and 11 use the same KE call and order as round 2; rounds
6 and 9 do as round 3; rounds 7 and 10 do as round 4. In AES-256, rounds 4,
6, 8, 10, 12 (resp. 5, 7, 9, 11, 13) use the same KE call and order as round 2
(resp. 3). Cost estimates for the resulting AES encryption circuits are in Table 3.
In contrast to [21] and [31], we aim to reduce circuit depth, hence un-computing
of rounds is delayed until the output ciphertext is produced. For easier testability
and modularity, the Round circuit is divided into two parts: a ForwardRound
operator that computes the output state but does not clean auxiliary qubits, and
its adjoint. For unit-testing Round in isolation, we compose ForwardRound with
its adjoint operator. For testing AES, we first run all ForwardRound instances
without auxiliary qubit cleaning, resulting in a similar ForwardAES operator,
copy out the ciphertext, and then undo the ForwardAES operation.

Table 3 presents results for the AES circuit for both versions of MixColumn,
the in-place implementation using a PLU decomposition as well as Maximov’s
out-of-place, but lower depth circuit. We use both because each has advantages
for different applications. The full depth corresponds to GD as in Sect. 3.4 and
Sect. 2.3, while width corresponds to GW . While for AES-128 and AES-192,
GDGW is smaller for the in-place implementation, G2

DGW is smaller for Maxi-
mov’s circuit. Hence, Sect. 2.3 indicates Maximov’s circuit gives a lower DW -cost

296 S. Jaques et al.

under a depth restriction. If there is no depth restriction, the in-place design has
a lower DW -cost.

Table 3. Circuit cost estimates for the AES operator, using the [11] S-box and for Mix-
Column design (“MC”) either in-place (“IP”) or Maximov’s [34] (“M”). The apparently
inconsistent T -depth is discussed under T -depth.

Operation MC #CNOT #1qCliff #T #M T -depth Full depth Width

AES-128 IP 291150 83116 54400 13600 120 2827 1785

AES-192 IP 328612 93160 60928 15232 120 2987 2105

AES-256 IP 402878 114778 75072 18768 126 3353 2425

AES-128 M 293730 83236 54400 13600 120 2094 2937

AES-192 M 331752 93280 60928 15232 120 1879 3513

AES-256 M 406288 114318 75072 18768 126 1955 4089

T -depth. Every round of AES (as implemented in Fig. 2) computes at least
one layer of S-boxes as part of ByteSub, which must later be uncomputed. We
would thus expect the T -depth of n rounds of AES to be 2n times the T -depth
of the S-box. Instead, Table 3 shows smaller depths. We find this effect when
using either the AND circuit or the unit-testable CCNOT implementation. To
test if this is a bug, we used a placeholder S-box circuit which has an arbitrary
T -depth d and which the compiler cannot parallelize. This “dummy” AES design
had the expected T -depth of 2n ·d. Thus we believe the Q# compiler found non-
trivial parallelization between components of the S-box and the surrounding
circuit. This provides a strong case for full explicit implementations of quantum
cryptanalytic algorithms in Q# or other languages that allow automatic resource
estimates and optimizations; in our case the T -depth of AES-256 is 25% less than
naively expected. Unfortunately, Q# cannot yet generate full circuit diagrams,
so we do not know exactly where the parallelization takes place5.

5 A Quantum Circuit for LowMC

LowMC [1,2] is a family of block ciphers aiming for low multiplicative complexity
circuits. Originally designed to reduce the high cost of binary multiplication in
the MPC and FHE scenarios, it has been adopted as a fundamental component
by the Picnic signature scheme (see [14] and [56]) proposed for standardization
as part of the NIST process for standardizing post-quantum cryptography.

To achieve low multiplicative complexity, LowMC uses an S-box layer of
AND-depth 1, which contains a user-defined number of parallel 3-bit S-box com-
putations. In general, any instantiation of LowMC comprises a specific number
of rounds. Each round calls an S-box layer, an affine transformation, and a

5 https://github.com/microsoft/qsharp-runtime/issues/31, visited 2019-09-03.

https://github.com/microsoft/qsharp-runtime/issues/31

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 297

|k〉
0

|m
〉 |0〉 |0〉
. . .

|0〉 |0〉

K
E

N
k
−
1

0 B
S

SR
M
C

K
E

N
k
−
1

0 B
S

SR
M
C

. .
.

K
E

N
k
−
1

0 B
S

SR

|k〉
1
0

. . . |c〉

R
ou

nd
1

R
ou

nd
2

R
ou

nd
10

(a
)
A
E
S-
12

8
op

er
at
io
n.

|k〉
0 | m
〉 |0〉 | 0〉 | 0〉 |0〉 | 0〉 |0〉 |0〉 | 0〉
. . .

|0〉 | 0〉

K
E

1 0

B
S

SR
M
C

K
E

5 2

B
S

SR
M
C

K
E

3 0

B
S

SR
M
C

K
E

5 4

B
S

K
E

1 0

SR
M
C

. .
.

K
E

3 0

B
S

SR

|k〉
1
2

. . . |c 〉

R
ou

nd
1

R
ou

nd
2

R
ou

nd
3

R
ou

nd
4

R
ou

nd
12

(b
)
A
E
S-
19

2
op

er
at
io
n.

F
ig
.
2
.
C

ir
cu

it
sk

et
ch

es
fo

r
th

e
A

E
S
-1

2
8

a
n
d

A
E

S
-1

9
2

o
p
er

a
ti

o
n
.
E

a
ch

w
ir

e
u
n
d
er

th
e

|k〉
0

la
b
el

re
p
re

se
n
ts

4
w

o
rd

s
o
f
th

e
k
ey

fo
r
A

E
S
-1

2
8

a
n
d

2
w

o
rd

s
fo

r
A

E
S
-1

9
2
.
E

a
ch

su
b
se

q
u
en

t
w

ir
e

(i
n
it

ia
ll
y

la
b
el

ed
|m

〉a
n
d

|0〉
)

re
p
re

se
n
ts

4
w

o
rd

s.
C

N
O

T
g
a
te

s
b
et

w
ee

n
w

o
rd

-s
iz

ed
w

ir
es

sh
o
u
ld

b
e

re
a
d

a
s

m
u
lt

ip
le

p
a
ra

ll
el

C
N

O
T

g
a
te

s
a
p
p
li
ed

b
it
w

is
e

(e
.g

.
a
t

th
e

b
eg

in
n
in

g
o
f

A
E

S
-1

9
2

th
e

in
te

n
ti

o
n

is
o
f

X
O

R
in

g
1
2
8

b
it

s
fr

o
m

|k〉
0

o
n
to

th
e

st
a
te

).
B

S
st

a
n
d
s

fo
r

B
y
te

S
u
b
,
S
R

fo
r

S
h
if
tR

ow
a
n
d

M
C

fo
r

M
ix

C
o
lu

m
n
.
F
o
r

A
E

S
-1

2
8
,
th

e
ci

rc
u
it

sh
ow

s
a
n

in
-p

la
ce

im
p
le

m
en

ta
ti

o
n

o
f
M

ix
C

o
lu

m
n
,
w

h
il
e

fo
r

A
E

S
-1

9
2
,
it

u
se

s
a
n

o
u
t-

o
f-
p
la

ce
v
er

si
o
n

li
k
e

M
a
x
im

ov
’s

M
ix

C
o
lu

m
n

li
n
ea

r
p
ro

g
ra

m
[3

4
].

298 S. Jaques et al.

round key addition. Key-scheduling can either be precomputed or computed on
the fly. In this work, we study the original LowMC design. This results in a
sub-optimal circuit, which can clearly be improved by porting the more recent
version from [17] instead. Even for the original LowMC, our work shows that the
overhead from the cost of the Grover oracle is very small, in particular under the
T -depth metric. Since LowMC could be standardized as a component of Picnic,
we deem it appropriate to point out the differences in Grover oracle cost between
different block ciphers and that generalization from AES requires caution.

In this section we describe our Q# implementation of the LowMC instances
used as part of Picnic. In particular, Picnic proposes three parameter sets, with
(key size,block size, rounds) ∈ {(128, 128, 20), (192, 192, 30), (256, 256, 38)}, all
with 10 parallel S-boxes per substitution layer.

S-box and S-boxLayer. The LowMCS-box can be naturally implemented
using Toffoli (CCNOT) gates. In particular, a simple in-place implementation
with depth 5 (T -depth 3) is shown in Fig. 3, alongside a T -depth 1 out-of-place
circuit, both of which were produced manually. Costs for both circuits can be
found in Table 4. We use the CCNOT implementation with no measurements
from [44]. For LowMC inside of Picnic, the full S-boxLayer consists of 10 parallel
S-boxes run on the 30 low order bits of the state.

|a〉
|b〉
|c〉

|a+ bc〉
|a+ b+ ac〉
|a+ b+ c+ ab〉

(a) LowMC in-place S-box.

|a〉
|b〉
|c〉
|0〉
|0〉
|0〉
|x〉
|y〉
|z〉

|a〉
|b〉
|c〉
|0〉
|0〉
|0〉
|x+ a+ bc〉
|y + a+ b+ ac〉
|z + a+ b+ c+ ab〉

(b) LowMC T -depth 1 S-box.

Fig. 3. Alternative quantum circuit designs for the LowMCS-box. The in-place design
requires auxiliary qubits as part of the concrete CCNOT implementation.

Table 4. Cost estimates for a single LowMCS-box circuit, following the two designs
proposed in Fig. 3. We note that the circuit size may seem different at first sight due
to Fig. 3 not displaying the concrete CCNOT implementation.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

In-place S-box 50 6 21 0 3 23 7

Shallow S-box 60 6 21 0 1 11 13

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 299

LinearLayer, ConstantAddition and AffineLayer. AffineLayer is an affine
transformation applied to the state at every round. It consists of a matrix mul-
tiplication (LinearLayer) and the addition of a constant vector (ConstantAd-
dition). Both matrix and vector are different for every round and are prede-
fined constants that are populated pseudo-randomly. ConstantAddition is imple-
mented by applying X gates for entries of the vector equal to 1. In Picnic, for
every round and every parameter set, all LinearLayer matrices are invertible
(due to LowMC’s specification requirements), and hence we use a PLU decom-
position for matrix multiplication (Sect. 3.3). Cost estimates for the first round
affine transformation in LowMC as used in Picnic are in Table 5.

Table 5. Costs for in-place circuits implementing the first round (R1) AffineLayer
transformation for the three instantiations of LowMC used in Picnic.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

AffineLayer L1 R1 8093 60 0 0 0 2365 128

AffineLayer L3 R1 18080 90 0 0 0 5301 192

AffineLayer L5 R1 32714 137 0 0 0 8603 256

KeyExpansion and KeyAddition. To generate the round keys rki, in each
round i the LowMC key k is multiplied by a different key derivation pseudo-
random matrix KMi. For Picnic, each KMi is invertible, so we compute rki

from rki−1 as rki = KMi · KM−1
i−1 · rki−1. We compute this in-place using

a PLU decomposition of KMi · KM−1
i−1. This saves matrix multiplications and

qubits compared to computing rki directly. We call this operation KeyExpansion.
KeyAddition is equivalent to AddRoundKey in AES, and is implemented the
same way. Cost estimates for the first round key expansion in LowMC as used
in Picnic can be found in Table 6.

Table 6. Costs for in-place circuits implementing the first round (R1) KeyExpansion
operation for the three instantiations of LowMC used in Picnic.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

KeyExpansion L1 R1 8104 0 0 0 0 2438 128

KeyExpansion L3 R1 18242 0 0 0 0 4896 192

KeyExpansion L5 R1 32525 0 0 0 0 9358 256

Round and LowMC. The LowMC round sequentially applies S-boxLayer,
AffineLayer and KeyAddition to the state. Our implementation also runs Key-
Expansion before AffineLayer. For a full LowMC encryption, we first add the
LowMC key k to the message to produce the initial state, then run the specified
number of rounds on it. Costs of the resulting encryption circuit are in Table 7.

300 S. Jaques et al.

Table 7. Costs for the full encryption circuit for LowMC as used in Picnic.

Operation #CNOT #1qCliff #T #M T -depth Full depth Width

LowMC L1 689944 4932 8400 0 40 98699 991

LowMC L3 2271870 9398 12600 0 60 319317 1483

LowMC L5 5070324 14274 15960 0 76 693471 1915

6 Grover Oracles and Key Search Resource Estimates

Equipped with Q# implementations of the AES and LowMC encryption cir-
cuits, this section describes the implementation of full Grover oracles for both
block ciphers. Eventually, based on the cost estimates obtained automatically
from these Q# Grover oracles, we provide quantum resource estimates for full key
search attacks via Grover’s algorithm. Beyond comparing to previous work, our
emphasis is on evaluating algorithms that respect a total depth limit, for which we
consider NIST’s values for MAXDEPTH from [37]. This means we must parallelize.
We use inner parallelization via splitting up the search space, see Sect. 2.3.

6.1 Grover Oracles

As discussed in Sect. 2.2 and Sect. 2.3, we must determine the parameter r, the
number of known plaintext-ciphertext pairs that are required for a successful
key-recovery attack. The Grover oracle encrypts r plaintext blocks under the
same candidate key and computes a Boolean value that encodes whether all r
resulting ciphertext blocks match the given classical results. A circuit for the
block cipher allows us to build an oracle for any r by simply fanning out the
key qubits to the r instances and running the r block cipher circuits in parallel.
Then a comparison operation with the classical ciphertexts conditionally flips
the result qubit and the r encryptions are un-computed. Figure 4 shows the
construction for AES and r = 2, using the ForwardAES operation from Sect. 4.

|k〉0
|m1〉

|m2〉

|−〉

|0〉
|0〉

|0〉

FwAES

FwAES

FwAES†

FwAES†
|0〉
|0〉

|0〉

|k〉0
|m1〉

|m2〉

|−〉

Fig. 4. Grover oracle construction from AES using two message-ciphertext pairs.
FwAES represents the ForwardAES operator described in Sect. 4. The middle operator
“=” compares the output of AES with the provided ciphertexts and flips the target
qubit if they are equal.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 301

The Required Number of Plaintext-Ciphertext Blocks. The explicit
computation of the probabilities in Eq. (1) shows that using r = 2 (resp. 2,
3) for AES-128 (resp. -192, -256) guarantees a unique key with overwhelming
probability. The probabilities that there are no spurious keys are 1 − ε, where
ε < 2−128, 2−64, and 2−128, respectively. Grassl et al. [21, § 3.1] used r = 3,
r = 4 and r = 5, respectively. Hence, these values are too large and the Grover
oracle can work correctly with fewer full AES evaluations.

If one is content with a success probability lower than 1, it suffices to use
r = k/n� blocks of plaintext-ciphertext pairs. In this case, it is enough to use
r = 1, 2, and 3 for AES-128, -192, -256, respectively. Langenberg et al. [31] also
propose these values. As an example, if we use r = 1 for AES-128, the probability
of not having spurious keys is 1/e ≈ 0.368, which could be a high enough chance
for a successful attack in certain scenarios, e.g., when there is a strict limit on
the width of the attack circuit. Furthermore, when a large number of parallel
machines are used in an instance of the attack, as discussed in Sect. 2.3, even the
value r = 1 can be enough in order to guarantee with high probability that the
relevant subset of the key space contains the correct key as a unique solution.

The LowMC parameter sets we consider here all have k = n. Therefore, r = 2
plaintext-ciphertext pairs are enough for all three sets (k ∈ {128, 192, 256}).
Then, the probability that the key is unique is 1 − ε, where ε < 2−k, i.e. this
probability is negligibly close to 1. With high parallelization, r = 1 is sufficient
for a success probability very close to 1.

Grover Oracle Cost for AES. Table 8 shows the resources needed for the
full AES Grover oracle for the relevant values of r ∈ {1, 2, 3}. Even without
parallelization, more than 2 pairs are never required for AES-128 and AES-192.
The same holds for 4 or more pairs for AES-256.

Table 8. Costs for the AES Grover oracle operator for r = 1, 2 and 3 plaintext-
ciphertext pairs. “MC” is the MixColumn design, either in-place (“IP”) or Maxi-
mov’s [34] (“M”).

Operation MC r #CNOT #1qCliff #T #M T -depth Full depth Width

AES-128 IP 1 292313 84428 54908 13727 121 2816 1665

AES-192 IP 1 329697 94316 61436 15359 120 2978 1985

AES-256 IP 1 404139 116286 75580 18895 126 3353 2305

AES-128 IP 2 585051 169184 109820 27455 121 2815 3329

AES-192 IP 2 659727 188520 122876 30719 120 2981 3969

AES-256 IP 2 808071 231124 151164 37791 126 3356 4609

AES-256 IP 3 1212905 347766 226748 56687 126 3347 6913

AES-128 M 1 294863 84488 54908 13727 121 2086 2817

AES-192 M 1 332665 94092 61436 15359 120 1879 3393

AES-256 M 1 407667 116062 75580 18895 126 1951 3969

AES-128 M 2 589643 168288 109820 27455 121 2096 5633

AES-192 M 2 665899 188544 122876 30719 120 1890 6785

AES-256 M 2 815645 231712 151164 37791 126 1952 7937

AES-256 M 3 1223087 346290 226748 56687 126 1956 11905

302 S. Jaques et al.

Grover Oracle Cost for LowMC. The resources for our implementation of
the full LowMC Grover oracle for the relevant values of r ∈ {1, 2} are shown in
Table 9. No setting needs more than r = 2 plaintext-ciphertext pairs.

Table 9. Cost estimates for the LowMC Grover oracle operator for r = 1 and 2
plaintext-ciphertext pairs. LowMC parameter sets are as used in Picnic.

Operation r #CNOT #1qCliff #T #M T -depth Full depth Width

LowMC L1 1 690961 5917 8908 191 41 98709 1585

LowMC L3 1 2273397 10881 13364 286 61 319323 2377

LowMC L5 1 5072343 16209 16980 372 77 693477 3049

LowMC L1 2 1382143 11774 17820 362 41 98707 3169

LowMC L3 2 4547191 21783 26732 576 61 319329 4753

LowMC L5 2 10145281 32567 33964 783 77 693483 6097

6.2 Cost Estimates for Block Cipher Key Search

Using the cost estimates for the AES and LowMC Grover oracles from Sect. 6.1,
this section provides cost estimates for full key search attacks on both block
ciphers. For the sake of a direct comparison to the previous results in [21] and [31],
we first ignore any limit on the depth andpresent the same setting as in theseworks.
Then, we provide cost estimates with imposed depth limits and the consequential
parallelization requirements.

Comparison to Previous Work. Table 10 shows cost estimates for a full
run of Grover’s algorithm when using

⌊
π
4 2k/2

⌋
iterations of the AES Grover

operator without parallelization. We only take into account the costs imposed
by the oracle operator Uf (in the notation of Sect. 2.1) and ignore the costs of
the operator 2 |ψ〉〈ψ| − I. If the number of plaintext-ciphertext pairs ensures a
unique key, this number of operations maximizes the success probability psucc to
be negligibly close to 1. For smaller values of r such as those proposed in [31],
the success probability is given by the probability that the key is unique.

The G-cost is the total number of gates, which is the sum of the first three
columns in the table, corresponding to the numbers of 1-qubit Clifford and CNOT
gates, T gates and measurements. Table 10 shows that the G-cost is always better
in our work when comparing values for the same AES instance and the same value
for r. The same holds for the DW -cost as we increase the width by factors less than
4 and simultaneously reduce the depth by more than that.

Table 11 shows cost estimates for LowMC in the same setting. Despite
LowMC’s lowermultiplicative complexity and a relatively lower number ofT gates,
the large number of CNOT gates leads to overall higher G-cost and DW -cost than
AES, as we count all gates.

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 303

Cost Estimates Under a Depth Limit. Tables 13a and b show cost estimates
for running Grover’s algorithm against AES and LowMC under a given depth
limit. This restriction is proposed in the NIST call for proposals for standardiza-
tion of post-quantum cryptography [37]. We use the notation and example values
for MAXDEPTH from the call. Imposing a depth limit forces the parallelization of
Grover’s algorithm, which we assume uses inner parallelization, see Sect. 2.3.

The values in the table follow Sect. 3.4. Given cost estimates GG, GD and
GW for the oracle circuit, we determine the maximal number of Grover iterations
that can be carried out within the MAXDEPTH limit. Then the required number S
of parallel instances is computed via Eq. (7) and the G-cost and DW -cost follow
from Eqs. (8) and (9). The number r of plaintext-ciphertext pairs is the minimal
value such that the probability SKP for having spurious keys in the subset of
the key space that holds the target key is less than 2−20.

Table 10. Comparison of cost estimates for Grover’s algorithm with
⌊

π
4
2k/2

⌋
AES ora-

cle iterations for attacks with high success probability, disregarding MAXDEPTH. CNOT
and 1-qubit Clifford gate counts are added to allow easier comparison to the previous
work from [21,31], who report both kinds of gates under “Clifford”. [31] uses the S-box
design from [10]. “IP MC” (resp. “M’s MC”) means the oracle uses an in-place (resp.
Maximov’s [34]) MixColumn design. The circuit sizes for AES-128 (resp. -192, -256) in
the second block have been extrapolated from Grassl et al. by multiplying gate counts
and circuit width by 1/3 (resp. 1/2, 2/5), while keeping depth values intact. ps reports
the approximate success probability.

Grassl et al. [21]

Scheme r #Clifford #T #M T -depth Full depth Width G-cost DW -cost ps

AES-128 3 1.55 · 286 1.19 · 286 0 1.06 · 280 1.16 · 281 2 953 1.37 · 287 1.67 · 292 1

AES-192 4 1.17 · 2119 1.81 · 2118 0 1.21 · 2112 1.33 · 2113 4 449 1.04 · 2120 1.44 · 2125 1

AES-256 5 1.83 · 2151 1.41 · 2151 0 1.44 · 2144 1.57 · 2145 6 681 1.62 · 2152 1.28 · 2158 1

Extrapolation of Grassl et al. [21] to lower r

AES-128 1 1.03 · 285 1.59 · 284 0 1.06 · 280 1.16 · 281 984 1.83 · 285 1.11 · 291 1/e

AES-192 2 1.17 · 2118 1.81 · 2117 0 1.21 · 2112 1.33 · 2113 2 224 1.04 · 2119 1.44 · 2124 1

AES-256 2 1.46 · 2150 1.13 · 2150 0 1.44 · 2144 1.57 · 2145 2 672 1.30 · 2151 1.02 · 2157 1/e

Langenberg et al. [31]

AES-128 1 1.46 · 282 1.47 · 281 0 1.44 · 277 1.39 · 279 865 1.10 · 283 1.17 · 289 1/e

AES-192 2 1.71 · 2115 1.68 · 2114 0 1.26 · 2109 1.23 · 2111 1 793 1.27 · 2116 1.08 · 2122 1

AES-256 2 1.03 · 2148 1.02 · 2147 0 1.66 · 2141 1.61 · 2143 2 465 1.54 · 2148 1.94 · 2154 1/e

This work (with “in-place” MixColumn)

AES-128 1 1.13 · 282 1.32 · 279 1.32 · 277 1.48 · 270 1.08 · 275 1665 1.33 · 282 1.76 · 285 1/e

AES-128 2 1.13 · 283 1.32 · 280 1.32 · 278 1.48 · 270 1.08 · 275 3329 1.34 · 283 1.75 · 286 1

AES-192 2 1.27 · 2115 1.47 · 2112 1.47 · 2110 1.47 · 2102 1.14 · 2107 3969 1.50 · 2115 1.11 · 2119 1

AES-256 2 1.56 · 2147 1.81 · 2144 1.81 · 2142 1.55 · 2134 1.29 · 2139 4609 1.84 · 2147 1.45 · 2151 1/e

AES-256 3 1.17 · 2148 1.36 · 2145 1.36 · 2143 1.55 · 2134 1.28 · 2139 6913 1.38 · 2148 1.08 · 2152 1

This work (with “in-place” MixColumn), using Grassl et al. [21] values for r

AES-128 3 1.69 · 283 1.97 · 280 1.97 · 278 1.48 · 270 1.09 · 275 4993 1.00 · 284 1.32 · 287 1

AES-192 4 1.27 · 2116 1.47 · 2113 1.47 · 2111 1.47 · 2102 1.15 · 2107 7937 1.50 · 2116 1.11 · 2120 1

AES-256 5 1.95 · 2148 1.13 · 2146 1.13 · 2144 1.55 · 2134 1.28 · 2139 11521 1.15 · 2149 1.81 · 2152 1

304 S. Jaques et al.

Table 11. Cost estimates for Grover’s algorithm with
⌊

π
4
2k/2

⌋
LowMC oracle itera-

tions for attacks with high success probability, without a depth restriction.

Scheme r # CNOT #1qCliff #T #M T -depth Full depth Width G-cost DW -cost ps

LowMC L1 1 1.04 · 283 1.13 · 276 1.71 · 276 1.17 · 271 1.01 · 269 1.18 · 280 1585 1.06 · 283 1.83 · 290 1/e

LowMC L3 1 1.70 · 2116 1.04 · 2109 1.28 · 2109 1.75 · 2103 1.50 · 2101 1.91 · 2113 2377 1.72 · 2116 1.11 · 2125 1/e

LowMC L5 1 1.90 · 2149 1.55 · 2141 1.63 · 2141 1.14 · 2136 1.89 · 2133 1.04 · 2147 3049 1.91 · 2149 1.55 · 2158 1/e

LowMC L1 2 1.04 · 284 1.13 · 277 1.71 · 277 1.11 · 272 1.01 · 269 1.18 · 280 3169 1.06 · 284 1.83 · 291 1

LowMC L3 2 1.70 · 2117 1.04 · 2110 1.28 · 2110 1.77 · 2104 1.50 · 2101 1.91 · 2113 4753 1.72 · 2117 1.11 · 2126 1

LowMC L5 2 1.90 · 2150 1.56 · 2142 1.63 · 2142 1.20 · 2137 1.89 · 2133 1.04 · 2147 6097 1.91 · 2150 1.55 · 2159 1

The impact of imposing a depth limit on the key search algorithm can directly
be seen by comparing, for example Table 13a with Table 10 in the case of AES.
Key search against AES-128 without depth limit has a G-cost of 1.34 · 283 gates
and a DW -cost of 1.75 · 286 qubit-cycles. Now, setting MAXDEPTH = 240 increases
both the G-cost and the DW -cost by a factor of roughly 234 to 1.07 · 2117 gates
and 1.76 · 2120 qubit-cycles. For MAXDEPTH = 264, the increase is by a factor of
roughly 210. We note that for MAXDEPTH = 296, key search on AES-128 does not
require any parallelization.

Implications for Post-quantum Security Categories. The security
strength categories 1, 3 and 5 in the NIST call for proposals [37] are defined
by the resources needed for key search on AES-128, AES-192 and AES-256,
respectively. For a cryptographic scheme to satisfy the security requirement at
a given level, the best known attack must take at least as many resources as key
search against the corresponding AES instance.

As guidance, NIST provides a table with gate cost estimates via a formula
depending on the depth bound MAXDEPTH. This formula is deduced as follows:
assume that non-parallel Grover search requires a depth of D = x ·MAXDEPTH for
some x ≥ 1 and the circuit has G gates. Then, about x2 machines are needed
that each run for a fraction 1/x of the time and use roughly G/x gates in order
for the quantum attack to fit within the depth budget given by MAXDEPTH while
attaining the same attack success probability. Hence, the total gate count for
a parallelized Grover search is roughly (G/x) · x2 = G · D/MAXDEPTH. The cost
formula reported in the NIST table (also provided in Table 12 for reference) is
deduced by using the values for G-cost and depth D from Grassl et al. [21].

The above formula does not take into account that parallelization often allows
us to reduce the number of required plaintext-ciphertext pairs, resulting in a
G-cost reduction for search in each parallel Grover instance by a factor larger
than x. Note also that [37, Footnote 5] mentions that using the formula for very
small values of x (very large values of MAXDEPTH such that D/MAXDEPTH < 1,
where no parallelization is required) underestimates the quantum security of
AES. This is the case for AES-128 with MAXDEPTH = 296.

In Table 12, we compare NIST’s numbers with our gate counts for parallel
Grover search. Our results for each specific setting incorporate the reduction

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 305

of plaintext-ciphertext pairs through parallelization, provide the correct cost if
parallelization is not necessary and use improved circuit designs. The table shows
that for most situations, AES is less quantum secure than the NIST estimates
predict. For each category, we provide a very rough approximation formula that
could be used to replace NIST’s formula. We observe a consistent reduction in
G-cost for quantum key search by 11–13 bits.

Since NIST clearly defines its security categories 1, 3 and 5 based on the
computational resources required for key search on AES, the explicit gate counts
should be lowered to account for the best known attack. This would mean that
it is now easier for submitters to claim equivalent security, with the exception of
category 1 with MAXDEPTH = 296. A possible consequence of our work is that some
of the NIST submissions might profit from slightly tweaking certain parameter
sets to allow more efficient implementations, while at the same time satisfying
the (now weaker) requirements for their intended security category.

Remark 4. The G-cost results in Table 13b show that key recovery against the
LowMC instances we implemented requires at least as many gates as key recovery
against AES with the same key size. If NIST replaces its explicit gate cost
estimates for AES with the ones in this work, these LowMC instances meet the
post-quantum security requirements as defined in the NIST call [37]. On the
other hand, the same results show that they do not meet the explicit gate count
requirements for the original NIST security categories. For example, LowMC L1
can be broken with an attack having G-cost 1.25 · 2123 when MAXDEPTH = 240,
while the original bound in category 1 requires a scheme to not be broken by an
attack using less than 2130 gates. In all settings considered here, a LowMC key
can be found with a slightly smaller G-cost than NIST’s original estimates for
AES, again with the exception when no parallelization is needed. The margin
is relatively small. We cannot finalize conclusions about the relative security of
LowMC and AES until quantum circuits for LowMC are optimized as much as
the ones for AES.

Table 12. Comparison of our cost estimate results with NIST’s approximations based
on Grassl et al. [21]. The approximation column displays NIST’s formula from [37]
and a rough approximation to replace the NIST formula based on our results. Under
MAXDEPTH = 296, AES-128 is a special case as the attack does not require any paral-
lelization and the approximation underestimates its cost.

NIST security G-cost for MAXDEPTH (log2)

Category Source 240 264 296 Approximation

1 AES-128 [37] 130.0 106.0 74.0 2170/MAXDEPTH

This work 117.1 93.1 ∗83.4 ≈2157/MAXDEPTH

3 AES-192 [37] 193.0 169.0 137.0 2233/MAXDEPTH

This work 181.1 157.1 126.1 ≈2221/MAXDEPTH

5 AES-256 [37] 258.0 234.0 202.0 2298/MAXDEPTH

This work 245.5 221.5 190.5 ≈2285/MAXDEPTH

306 S. Jaques et al.

Table 13. Cost estimates for parallel Grover key search against block ciphers under
a depth limit MAXDEPTH with inner parallelization (see Sect. 2.3). MD is MAXDEPTH, r is
the number of plaintext-ciphertext pairs used in the Grover oracle, S is the number of
subsets into which the key space is divided, SKP is the probability that spurious keys
are present in the subset holding the target key, W is the qubit width of the full circuit
and D the full depth. Each of the S candidate keys measured from the Grover search
are classically checked against plaintext-ciphertext pairs. AES-128, -192, and -256 need
2, 2, and 3 such pairs, respectively, while LowMC needs 2 pairs for all sizes.

Scheme MD r S log2 (SKP) D W G-cost DW -cost

AES-128 240 1 1.28 · 269 −69.36 1.00 · 240 1.76 · 280 1.07 · 2117 1.76 · 2120

AES-192 240 1 1.04 · 2133 −69.05 1.00 · 240 1.72 · 2144 1.09 · 2181 1.72 · 2184

AES-256 240 1 1.12 · 2197 −69.16 1.00 · 240 1.08 · 2209 1.39 · 2245 1.08 · 2249

AES-128 264 1 1.28 · 221 −21.36 1.00 · 264 1.76 · 232 1.07 · 293 1.76 · 296

AES-192 264 1 1.04 · 285 −21.05 1.00 · 264 1.72 · 296 1.09 · 2157 1.72 · 2160

AES-256 264 1 1.12 · 2149 −21.16 1.00 · 264 1.08 · 2161 1.39 · 2221 1.08 · 2225

AES-128* 296 2 1.00 · 20 −∞ 1.08 · 275 1.63 · 211 1.34 · 283 1.75 · 286

AES-192 296 2 1.05 · 221 −∞ 1.00 · 296 1.74 · 233 1.09 · 2126 1.74 · 2129

AES-256 296 2 1.12 · 285 −85.16 1.00 · 296 1.09 · 298 1.39 · 2190 1.09 · 2194

(a) Grover oracle for AES

Scheme MD r S log2 (SKP) D W G-cost DW -cost

LowMC L1 240 1 1.40 · 280 −80.48 1.00 · 240 1.08 · 291 1.25 · 2123 1.08 · 2131

LowMC L3 240 1 1.83 · 2147 −147.87 1.00 · 240 1.06 · 2159 1.65 · 2190 1.06 · 2199

LowMC L5 240 1 1.08 · 2214 −214.11 1.00 · 240 1.61 · 2225 1.99 · 2256 1.61 · 2265

LowMC L1 264 1 1.40 · 232 −32.48 1.00 · 264 1.08 · 243 1.25 · 299 1.08 · 2107

LowMC L3 264 1 1.83 · 299 −99.87 1.00 · 264 1.06 · 2111 1.65 · 2166 1.06 · 2175

LowMC L5 264 1 1.08 · 2166 −166.11 1.00 · 264 1.61 · 2177 1.99 · 2232 1.61 · 2241

LowMC L1 296 2 1.00 · 20 −∞ 1.18 · 280 1.55 · 211 1.06 · 284 1.83 · 291

LowMC L3 296 1 1.83 · 235 −35.87 1.00 · 296 1.06 · 247 1.65 · 2134 1.06 · 2143

LowMC L5 296 1 1.08 · 2102 −102.11 1.00 · 296 1.61 · 2113 1.99 · 2200 1.61 · 2209

(b) Grover oracle for LowMC

7 Future Work

This work’s main focus is on exploring the setting proposed by NIST where quan-
tum attacks are limited by a total bound on the depth of quantum circuits. Previ-
ous works [3,21,31] aim to minimize cost under a tradeoff between circuit depth
and a limit on the total number of qubits needed, say a hypothetical bound
MAXDEPTH. Depth limits are not discussed when choosing a Grover strategy. Since
it is somewhat unclear what exact characteristics and features a future scalable

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 307

quantum hardware might have, quantum circuit and Grover strategy optimiza-
tion with the goal of minimizing different cost metrics under different constraints
than MAXDEPTH could be an interesting avenue for future research.

We have studied key search problems for a single target. In classical crypt-
analysis, multi-target attacks have to be taken into account for assessing the
security of cryptographic systems. We leave the exploration of estimating the
cost of quantum multi-target attacks, for example using the algorithm by
Banegas and Bernstein [6] under MAXDEPTH (or alternative regimes), as future
work.

Further, implementing quantum circuits for cryptanalysis in Q# or another
quantum programming language for concrete cost estimation is worthwhile to
increase confidence in the security of proposed post-quantum schemes. For exam-
ple, quantum lattice sieving and enumeration appear to be prime candidates.

Acknowledgements. We thank Chris Granade and Bettina Heim for their help with
the Q# language and compiler, Mathias Soeken and Thomas Häner for general discus-
sions on optimizing quantum circuits and Q#, Mathias Soeken for providing the AND
gate circuit we use, and Daniel Kales and Greg Zaverucha for their input on Picnic
and LowMC.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. Cryptology ePrint Archive, Report 2016/687 (2016)

3. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Inf. Process. 17(5), 1–30 (2018). https://doi.org/10.
1007/s11128-018-1864-3

4. Amento, B., Steinwandt, R., Roetteler, M.: Efficient quantum circuits for binary
elliptic curve arithmetic: reducing T-gate complexity. arXiv:1209.6348 (2012)

5. Babbush, R., et al.: Encoding electronic spectra in quantum circuits with linear T
complexity. Phys. Rev. X 8(4), 041015 (2018)

6. Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target
preimage search. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719,
pp. 325–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-
9 16

7. Banik, S., Funabiki, Y., Isobe, T.: More results on shortest linear programs. Cryp-
tology ePrint Archive, Report 2019/856 (2019)

8. Beals, R., et al.: Efficient distributed quantum computing. Proc. Roy. Soc. A Math.
Phys. Eng. Sci. 469, 20120686 (2013)

9. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

10. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 178–
189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13193-6 16

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/s11128-018-1864-3
https://doi.org/10.1007/s11128-018-1864-3
http://arxiv.org/abs/1209.6348
https://doi.org/10.1007/978-3-319-72565-9_16
https://doi.org/10.1007/978-3-319-72565-9_16
https://doi.org/10.1007/978-3-642-13193-6_16

308 S. Jaques et al.

11. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-Box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 287–298.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30436-1 24

12. Boyar, J., Find, M.G., Peralta, R.: Small low-depth circuits for cryptographic appli-
cations. Crypt. Commun. 11(1), 109–127 (2018). https://doi.org/10.1007/s12095-
018-0296-3

13. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschr. Phys. 46(4–5), 493–505 (1998)

14. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: ACM CCS 2017. ACM (2017)

15. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)
16. Daemen, J., Rijmen, V.: Specification for the advanced encryption standard (AES).

Federal Information Processing Standards Publication 197 (2001)
17. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear equiv-

alence of block ciphers with partial non-linear layers: application to LowMC. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 343–372.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 12

18. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream cipher
called SNOW-V. Cryptology ePrint Archive, Report 2018/1143 (2018)

19. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
towards practical large-scale quantum computation. Phys. Rev. A 86, 032324
(2012)

20. Gidney, C.: Windowed quantum arithmetic. arXiv preprint arXiv:1905.07682
(2019)

21. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC
1996. ACM (1996)

23. Grover, L.K., Rudolph, T.: How significant are the known collision and element
distinctness quantum algorithms? QIC 4(3), 201–206 (2004)

24. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

25. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

26. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique for
bit-serial implementations of SPN-based primitives. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 687–707. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 33

27. Jeon, Y.-S., Kim, Y.-J., Lee, D.-H.: A compact memory-free architecture for the
AES algorithm using resource sharing methods. JCSC 19, 1109–1130 (2010)

28. Jones, C.: Low-overhead constructions for the fault-tolerant Toffoli gate. Phys.
Rev. A 87(2), 022328 (2013)

29. Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algo-
rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf.
Process. 17(12), 1–39 (2018). https://doi.org/10.1007/s11128-018-2107-3

30. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line pro-
grams for MDS matrices. IACR Trans. Symm. Cryptol. 2017(4), 188–211 (2017)

https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/s12095-018-0296-3
https://doi.org/10.1007/s12095-018-0296-3
https://doi.org/10.1007/978-3-030-17653-2_12
http://arxiv.org/abs/1905.07682
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/s11128-018-2107-3

Implementing Grover Oracles for Quantum Key Search on AES and LowMC 309

31. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
AES as a quantum circuit. Cryptology ePrint Archive, Report 2019/854 (2019)

32. Low, G.H., Kliuchnikov, V., Schaeffer, L.: Trading T-gates for dirty qubits in state
preparation and unitary synthesis. arXiv preprint arXiv:1812.00954 (2018)

33. LowMC: LowMC/lowmc at e847fb160ad8ca1f373efd91a55b6d67f7deb425 (2019).
https://github.com/LowMC/lowmc/tree/e847fb160ad8ca1f373efd91a55b6d67f7deb425

34. Maximov, A.: AES MixColumn with 92 XOR gates. Cryptology ePrint Archive,
Report 2019/833 (2019)

35. Microsoft: Getting started with Python and Q# — Microsoft Docs (2019). https://
docs.microsoft.com/en-us/quantum/install-guide/python

36. Microsoft: microsoft/iqsharp: Microsoft’s IQ# server (2019). https://github.com/
microsoft/iqsharp

37. NIST: Submission requirements and evaluation criteria for the Post-Quantum
Cryptography standardization process (2016)

38. Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed bases for
efficient inversion in F((22)2)2 and conversion matrices of SubBytes of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 234–247.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 16

39. PyCryptodome: Welcome to PyCryptodome’s documentation - PyCryptodome
3.8.2 documentation (2019). https://pycryptodome.readthedocs.io/en/stable/
index.html

40. Reyhani-Masoleh, A., Taha, M., Ashmawy, D.: New area record for the AES com-
bined S-box/inverse S-box. In: ARITH. IEEE (2018)

41. Reyhani-Masoleh, A., Taha, M., Ashmawy, D.: Smashing the implementation
records of AES S-box. TCHES 2018, 298–336 (2018)

42. Rijmen, V.: Efficient implementation of the Rijndael S-box. Katholieke Universiteit
Leuven, Dept. ESAT, Belgium (2000)

43. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45682-1 15

44. Selinger, P.: Quantum circuits of T -depth one. Phys. Rev. A 87, 042302 (2013)
45. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-

ing. In: FOCS 1994, pp. 124–134. IEEE Computer Society (1994)
46. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
47. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework

for quantum computing. Quantum 2(49), 10–22331 (2018)
48. Stein, W., et al.: Sage Mathematics Software Version 8.1 (2017)
49. Svore, K.M., et al.: Q#: enabling scalable quantum computing and development

with a high-level DSL. In: RWDSL@CGO 2018 (2018)
50. Tan, Q.Q., Peyrin, T.: Improved heuristics for short linear programs. Cryptology

ePrint Archive, Report 2019/847 (2019)
51. Trefethen, L., Bau, D.: Numerical Linear Algebra. Other Titles in Applied Math-

ematics. SIAM, Philadelphia (1997)
52. Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF (28)

inversion circuit based on redundant GF arithmetic and its application to AES
design. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp.
63–80. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 4

http://arxiv.org/abs/1812.00954
https://github.com/LowMC/lowmc/tree/e847fb160ad8ca1f373efd91a55b6d67f7deb425
https://docs.microsoft.com/en-us/quantum/install-guide/python
https://docs.microsoft.com/en-us/quantum/install-guide/python
https://github.com/microsoft/iqsharp
https://github.com/microsoft/iqsharp
https://doi.org/10.1007/978-3-642-15031-9_16
https://pycryptodome.readthedocs.io/en/stable/index.html
https://pycryptodome.readthedocs.io/en/stable/index.html
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/978-3-662-48324-4_4

310 S. Jaques et al.

53. Wei, Z., Sun, S., Hu, L., Wei, M., Boyar, J., Peralta, R.: Scrutinizing the tower
field implementation of the F28 inverter - with applications to AES, Camellia, and
SM4. Cryptology ePrint Archive, Report 2019/738 (2019)

54. Yamamura, A., Ishizuka, H.: Quantum cryptanalysis of block ciphers (algebraic sys-
tems, formal languages and computations), vol. 1166, pp. 235–243 (2000). https://
repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/64334/1/1166-29.pdf

55. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4),
2746 (1999)

56. Zaverucha, G., et al.: Picnic. Technical report, NIST (2017)

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/64334/1/1166-29.pdf
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/64334/1/1166-29.pdf

Optimal Merging in Quantum k-xor
and k-sum Algorithms

Maŕıa Naya-Plasencia(B) and André Schrottenloher(B)

Inria, Paris, France
{maria.naya plasencia,andre.schrottenloher}@inria.fr

Abstract. The k-xor or Generalized Birthday Problem aims at finding,
given k lists of bit-strings, a k-tuple among them XORing to 0. If the
lists are unbounded, the best classical (exponential) time complexity has
withstood since Wagner’s CRYPTO 2002 paper. If the lists are bounded
(of the same size) and such that there is a single solution, the dissection
algorithms of Dinur et al. (CRYPTO 2012) improve the memory usage
over a simple meet-in-the-middle.

In this paper, we study quantum algorithms for the k-xor problem.
With unbounded lists and quantum access, we improve previous work
by Grassi et al. (ASIACRYPT 2018) for almost all k. Next, we extend
our study to lists of any size and with classical access only.

We define a set of “merging trees” which represent the best known
strategies for quantum and classical merging in k-xor algorithms, and
prove that our method is optimal among these. Our complexities are
confirmed by a Mixed Integer Linear Program that computes the best
strategy for a given k-xor problem. All our algorithms apply also when
considering modular additions instead of bitwise xors.

This framework enables us to give new improved quantum k-xor algo-
rithms for all k and list sizes. Applications include the subset-sum prob-
lem, LPN with limited memory and the multiple-encryption problem.

Keywords: Generalized Birthday Problem · Quantum cryptanalysis ·
List-merging algorithms · k-list problems · Approximate k-list
problem · Multiple encryption · MILP · LPN · Subset-sum

1 Introduction

As constant progress is being made in the direction of quantum computing
devices with practical applications, the inherent threat to cryptography has led
to massive amounts of research in designing secure post-quantum primitives. To
design these cryptosystems and justify their parameters, one must rely on generic
levels of quantum security. Therefore a precise study of the query and time com-
plexities of quantum algorithms for relevant problems is needed. Furthermore,

The original version of this chapter was revised: The title has been corrected as “Opti-
mal Merging in Quantum k-xor and k-sum Algorithms”. The correction to this chapter
is available at https://doi.org/10.1007/978-3-030-45724-2 29

c© International Association for Cryptologic Research 2020, corrected publication 2021
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 311–340, 2020.
https://doi.org/10.1007/978-3-030-45724-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_11
https://doi.org/10.1007/978-3-030-45724-2_29

312 M. Naya-Plasencia and A. Schrottenloher

improved quantum algorithms may increase the vulnerabilities of some cryp-
tosystems. In this work, we study, from a quantum point of view, an ubiquitous
generic problem with many variants and applications: the Generalized Birthday
Problem, or k-xor problem.

Generalized Birthday Problem. The birthday problem, or collision problem, may
be formulated as the following: given a random oracle H : {0, 1}n → {0, 1}n,
find a collision pair, i.e. x, y ∈ {0, 1}n such that H(x) = H(y). It is well-known
that Ω(2n/2) classical queries are necessary and sufficient. In a seminal paper,
Wagner [32] generalized a method credited to Camion and Patarin [15] to solve
a variant of this problem for k-tuples:

Given some lists L1, . . . , Lk of n-bit strings, find a k-tuple x1, . . . , xk of
L1 × . . . × Lk such that x1 ⊕ x2 ⊕ . . . ⊕ xk = 0.

Although Wagner studied the case of unbounded lists, many cryptographic
applications are concerned with lists of limited size. For example, if the lists (of
uniformly random n-bit strings) have size 2�n/k�, we expect a single solution with
constant probability. The best classical algorithms for this case are given in [18],
and apply e.g. to the multiple-encryption or subset-sums problems. Alternatively,
if the lists have size 2�n/(k−1)� we may want to find all the expected 2�n/(k−1)�

solutions.

Extension to Other Operations. We choose to focus on the bitwise XOR oper-
ation ⊕ for simplicity. In all algorithms studied throughout this paper, it can
be replaced by modular additions. We provide more details in the full version of
the paper [28].

Classical Complexity of k-xor. Intuitively, increasing k can only make the prob-
lem easier on average, since new degrees of freedom are available. The optimal
query complexity of k-xor is ˜Ω(2n/k) queries: with them it is possible to build
O (2n) k-tuples, and retrieve a XOR to zero with constant probability. The main
contribution of Wagner in [32] is to give an algorithm which, although far from
optimal in queries, reaches an efficient time complexity for any k. Its time com-
plexity is ˜O

(

2n/(�log2(k)�+1)
)

, using k lists of size 2n/(�log2(k)�+1).

Quantum Complexity. The optimal quantum query complexity of k-xor is known
to be Ω

(

2n/(k+1)
)

[5]. In [20] some quantum algorithms for solving the k-xor
problem with quantum oracle access are given. For a general k, a time complexity
of ˜O

(

2n/(�log2(k)�+2)
)

is obtained in the MNRS quantum walk framework [26]. As
for Wagner’s algorithm, the exponent decreases only at powers of 2. However, the
authors also observed an exponential separation between the quantum collision
and 3-xor time complexities. While collision search requires provably Ω(2n/3)
quantum queries, they present a 3-xor algorithm running in time O

(

23n/10
)

. A
natural question is whether this extends to all k.

Furthermore, this previous work for general k covers only the case of
unbounded lists. As highlighted above, in many applications we would like to
consider a general k and lists of bounded size, as in [18,27].

This paper. In this work, we first answer the open questions stated in [20], which
were far from intuitive or trivial as explained in Sect. 3. We introduce for this the

Optimal Merging in Quantum k-xor and k-sum Algorithms 313

“merging trees”, that describe in a systematic way merging strategies to solve
the quantum k-xor problem. This enables us to reach better exponential time
complexities than [20], with exponents that decrease strictly at each new value
of k. With poly(n) qubits and without qRAM, we give quantum speedups for
half of the values of k. We prove that our results are optimal among all merging
trees.

While [20] studied the problem with quantum oracle access, we extend our
framework to classically given lists and lists of limited size, up to the case where
k lists of size only 2n/k are given as input, improving the best algorithms for
most values of k. We give the first quantum k-list algorithms applicable for
all bicomposite problems as defined in [18]. We obtain also the first quantum
time-memory product below 2n/2 for a generic k-list problem with lists of size
2n/k.

We provide several applications of these algorithms, improving the best
known quantum algorithms for subset sums, the BKW algorithm, multiple-
encryption and the approximate k-list problem.

Outline. In Sect. 2, we recall some preliminaries of quantum computing, state
the different problems that we will solve and recall previous results. Section 3
summarizes our main algorithmic results. Sections 4 and 5 concern the case of
unbounded lists. In Sect. 4, we present Wagner’s algorithm and show how to gen-
eralize its idea with the concept of merging trees, which can be adapted to the
quantum setting. These strategies cover all the previously known quantum algo-
rithms for k-xor and the new ones in this paper. Our results were first obtained
experimentally with the help of Mixed Integer Linear Programming, as the com-
plexity of a merging tree appears naturally as the solution to a simple linear
optimization problem. This is why our definition focuses on variables and con-
straints. In Sect. 5, we give the optimal merging trees for quantum k-xor and
prove their optimality among all strategies of our framework. We also compare
our new results with the ones from [20]. Next, in Sect. 6, we extend to limited
input domains, i.e. smaller lists. Finally, in Sect. 7, we give some applications,
using our new k-list algorithms as black boxes: subset-sums, LPN, the approxi-
mate k-list and multiple-encryption problems. We conclude the paper with some
open questions.

2 Preliminaries

In this section we introduce the problems under study, cover some basic required
notions of quantum computing and summarize the state-of-the-art of algorithms
for these k-xor problems.

2.1 Variants of the k-xor Problem

All algorithms in this paper have exponential time complexities in n, written
˜O (2αkn) for some αk depending only on k. We consider k as a constant and
neglect the multiplicative factors in k and n.

314 M. Naya-Plasencia and A. Schrottenloher

The k-xor problem has two main variants: the input data can be accessed via
input lists or via an oracle. Classically, this does not make any (more than con-
stant in k) difference. Quantumly, it implicitly determines whether we authorize
quantum access or only classical access to the data.

Problem 1 (k-xor with lists). Given L1, . . . Lk lists of uniformly random n-bit
strings, find x1, . . . , xk ∈ L1 × . . . × Lk such that x1 ⊕ . . . ⊕ xk = 0 in minimal
time.

Problem 1 is the original problem solved by Wagner in [32], in which the sizes
of the lists is arbitrary, and not a concern. In that case, there exists an optimal
list size, which is exponential in n (otherwise we wouldn’t expect a solution) and
the same for all lists (otherwise we could increase the size of the non-maximal
lists and simply drop the additional elements). The oracle version of this problem
is as follows.

Problem 2 (k-xor with an oracle). Given oracle access to a random n-bit to n-bit
function H, find x1, . . . , xk ∈ L1 × . . . × Lk such that H(x1) ⊕ . . . ⊕ H(xk) = 0.

Alternatively, one can define Problem 2 with k different random functions,
or Problem 1 with a single input list. These formulations are equivalent up to a
constant factor in k and both will be used in the rest of this paper.

Problem 2 is the one studied in [20], when quantum oracle access to H is
allowed. In that case, instead of querying H for a fixed input x, we are allowed
superposition queries to a quantum oracle OH . This models a situation in which
the production of the lists is entirely controlled by the adversary, and can be
easily implemented on a quantum computer.

Finally, we will allow a limitation of the domain of H, or alternatively, of the
sizes of the lists Li. The limit case happens when there is on average a single
k-tuple with a XOR to zero. We name these problems “unique k-xor”.

Problem 3 (Unique k-xor with an oracle). Given query access to a random
�n/k�-bit to n-bit function H, expecting that there exists a single k-tuple
x1, . . . , xk such that H(x1) ⊕ H(x2) ⊕ . . . ⊕ H(xk) = 0, find it.

Although we choose to focus on these limit cases, our framework will encom-
pass all intermediate cases where the domain size of H (or the size of Li) is
restricted to 2d with

⌈

n
k

⌉

≤ d ≤ n.

Problem 4 (Unique k-xor with lists). Given classical data as k lists L1, . . . , Lk

of uniformly random n-bit strings, of size 2n/k, find a k-tuple x1, . . . , xk ∈ L1 ×
. . . × Lk such that x1 ⊕ . . . ⊕ xk = 0, if it exists.

2.2 Quantum Computing Model and Preliminaries

We use the quantum circuit model. However, as we are only interested in expo-
nential time complexities, we allow ourselves a level of abstraction which should

Optimal Merging in Quantum k-xor and k-sum Algorithms 315

make our algorithms and complexities understandable even for a non-expert
audience. For the interested reader, a thorough introduction to quantum com-
puting can be found in [29].

The quantum circuit model is a universal way of describing a quantum com-
putation. We compute with a set of qubits, which are two-dimensional quantum
systems. Their state is described by a vector in a Hilbert space H, of the form
α |0〉+β |1〉, where |0〉 , |1〉 is the canonical basis of H (named the computational
basis), α, β are complex numbers and |α|2 + |β|2 = 1. A quantum circuit starts
with a system of (possibly many) qubits in the state |0〉; then a sequence of
unitary operators (formed of operators known as quantum gates), possibly inter-
leaved with oracle calls, is applied. At the end of the computation, the qubits
are measured.

A widely known example of quantum algorithm is Grover’s algorithm [21].
From a uniform superposition over a search space X, it creates the superposition
over the subset G = {x ∈ X, f(x) = 1} for some function f , assuming that a
superposition oracle for f is given: Of (|x〉 |b〉) = |x〉 |b ⊕ f(x)〉. As this procedure
consists in iterating

√

|X|2−t times the same unitary, we speak of “iterations”.
Grover search is known to be optimal when the test f is a black-box oracle [6].

Lemma 1 (Grover Search, from [21]). Let X be a search space, whose ele-
ments are represented on �log2(|X|)� qubits, such that the uniform superposition

1√
|X|

∑

x∈X |x〉 is computable in ˜O (1) time. Assume that we can implement

a superposition oracle Of for f in ˜O (1) time. Let G = {x ∈ X, f(x) = 1}.
Then there exists a quantum algorithm using �log2(|X|)� qubits, running in time
˜O(

√

|X|/|G|) that returns some x ∈ G. In particular, if |G| = 1, the running
time is ˜O(

√

|X|).

Amplitude Amplification. A generalization of Grover search given in [12] enables
to run a search with a structured search space: if there are 2t partial solutions
amongst the search space X, and if the superposition of elements of X can be
constructed with a quantum algorithm A of complexity |A|, we can recover the
superposition of all preimages of 1 with total time ˜O

(

√

|X|2−t(|A| + |Of |)
)

.
In the rest of this paper, we use Grover search as a subroutine. We perform

sequences of Grover searches, and also, nested instances, using Amplitude Ampli-
fication. We do the complexity estimates as if Grover’s algorithm ran in exact
time

√

|X|/|G| and with success probability 1. More justification is provided in
the full version of the paper [28].

Benchmarking. We focus on the single-processor model, and count the asymp-
totic quantum time complexity (the number of gates in the circuit), quantum
space complexity (the number of qubits in the circuit) and, when necessary,
classical time and space. This is contrary to works which focus primarily on
quantum query complexity (e.g. [23]), or detailed quantum gate counts. When
an oracle is given, we consider oracle calls in time O (1) and suppose a constant
quantum space overhead. Asymptotically, we consider that one quantum gate

316 M. Naya-Plasencia and A. Schrottenloher

is equivalent to one classical gate. In practice, there should be a massive (but
constant) factor in-between.

qRAM Models. Classical random-access memory authorizes a constant-time
access to memory cell whose indices are known only at runtime. However, dur-
ing a quantum computation, the index register of such a query, since it depends
on previous computations, is likely to be in superposition. This is why many
quantum algorithms require quantum RAM.

A qRAM authorizes superposition access to its contents, using so-called
“qRAM gates”, an add-on to a traditional universal gate set. Assume that the
quantum circuit holds qubit registers x0 . . . x2n−1 . Then on input:

⎛

⎝

⊗

j∈{0,1}n

|xj〉

⎞

⎠ ⊗ |i〉 |0〉 we compute

⎛

⎝

⊗

j∈{0,1}n

|xj〉

⎞

⎠ ⊗ |i〉 |xi〉

in a single time step, realizing superposition access to the qubit registers. Using
qRAM gates, it is possible to obtain quantum data structures with fast lookups
(for example the combination of a skip list and a hash table in [2] or the radix
trees of [7]). The access time is generally logarithmic and often neglected as a
global multiplicative factor.

In this paper, we will extensively refer to three settings.

• “Low-qubits”: the quantum computation uses only O (n) qubits and there
are no qRAM gates. The quantum computer can still make use of a classical
memory of exponential size, by performing classically controlled operations.
This model was already considered in [20] and [16].

• QACM (quantum-accessible classical memory): there are qRAM gates, but
the data accessed must be classical. This is the model required by the collision-
finding algorithm of [13] or the QBKW algorithm of [19]. Some authors [25]
consider it more relevant than the QAQM model.

• QAQM (quantum-accessible quantum memory): the quantum computation
can use as many qubits as needed. The data accessed in superposition can be
quantum. This model is obviously the most powerful. The unique collision-
finding algorithm of [2] and the quantum algorithms for subset-sum of [7,22]
require QAQM, as do all cryptographic applications of the MNRS quantum
walk framework [26].

2.3 Overview of Previous Related Work

Classical Algorithms for the k-xor Problem. In Sect. 4, we will describe
in detail Wagner’s algorithm [32], that provides the current best classical expo-
nential time complexity of ˜O

(

2n/(�log2(k)�+1)
)

for any k (there are logarithmic
improvements for non-powers of 2). Many subsequent works have improved the
memory consumption and given new trade-offs [8,30].

Minder and Sinclair [27] study the success probability and limit the sizes of
the lists at the first level of Wagner’s k-tree. This corresponds to taking an oracle

Optimal Merging in Quantum k-xor and k-sum Algorithms 317

H : {0, 1}dn → {0, 1}n with d < 1. The authors use MILP to derive the optimal
list sizes depending on the domain restriction. Their optimal algorithms roughly
run in two steps: in the first levels of the binary tree, all pairs of elements are
produced, increasing the list sizes; after that, classical merging is used. They also
perform a precise estimation of the success probability of Wagner’s algorithm.

In [18], the authors study a family of bicomposite problems with a single
solution, which include hard knapsacks, multiple-encryption, and k-xor with a
single solution. They generalize the technique of Schroeppel and Shamir [31]
to improve the memory complexity of these problems. Their method consists
in guessing some intermediate values, then producing efficiently lists of partial
guesses, before matching them. A bigger meet-in-the-middle instance is broken
down into smaller ones.

Later on, more generalized frameworks have appeared, like [3] in the context
of the Short Integer Solution problem, or [17], in which Dinur gives a memory
improvement for some values of k and better time-memory tradeoffs in gen-
eral, by combining parallel collision search, which is used in [30], with dissec-
tion [18,31]. Although we have considered various potential improvements, our
best algorithms for k-xor combine merging (as done by Wagner in [32]) and
guessing intermediate values (as done in [18]), which is why we focus only on
these techniques.

Quantum Algorithms for k = 2. The first algorithm to find quantum colli-
sions was found by Brassard, Høyer and Tapp in 1998 [13,14]. With a two-to-one
function H : {0, 1}n → {0, 1}n, it runs in time ˜O

(

2n/3
)

, using as much quantum
queries. The bound Ω

(

2n/3
)

was later proven to be optimal [1] and extended to
random functions [33]. This corresponds to the 2-xor problem with no bound on
the list size. This algorithm also requires a QACM of size 2n/3.

When all 2n outputs of H are distinct, except two of them, Ambainis’ cele-
brated algorithm [2], based on a quantum walk, finds the pair in time ˜O

(

22n/3
)

using 22n/3 QAQM. This corresponds to the 2-xor problem with a single solu-
tion. In the QACM model, there is, to date, no quantum algorithm with better
time than the classical meet-in-the-middle.

Chailloux et al. [16] showed that the unbounded 2-xor problem could be
solved in quantum time O

(

22n/5
)

in the low-qubits setting. The uses a classical
memory of size 2n/5. Indeed, a superposition query to a QACM of size 2n/5 can
be emulated by 2n/5 sequential quantum computations. The cost of these queries
is mitigated by the fact that the algorithm makes only 2n/5 of them.

Quantum Algorithms for Bigger k . Given a random function H : {0, 1}n →
{0, 1}n, the classical (information-theoretic) query lower bound of the k-xor
problem is Ω(2n/k). The quantum query lower bound is Ω(2n/(k+1)) [5].

Unbounded Domain Size. Grassi et al. [20] proposed quantum algorithms for
solving the k-xor problem with a quantum oracle for a random function H :

318 M. Naya-Plasencia and A. Schrottenloher

{0, 1}n → {0, 1}n, hence in the case of unbounded lists, as in [32]. They proposed
a quantum analogue of Wagner’s algorithm based on a quantum walk, running
in the QAQM model, in time ˜O

(

2n 1
2+�log2 k�

)

and obtained some quantum time
speedups in the low-qubits model. They also obtained a 3-xor QACM algorithm
of quantum time complexity ˜O

(

20.3n
)

, with an exponential improvement over
quantum collision search. In this paper, we subsume and improve all these results.
Notably, our new algorithms in this case require QACM only.

Restricted Domain and Unique k-xor. To the best of our knowledge, the k-xor
problem with limited domain size, including Problem3, has never been studied
for a general k from a quantum algorithmic perspective. For k = 4, a quantum
walk algorithm (originally designed for solving subset sums) is given in [7]. It
solves Problem 3 in time ˜O

(

20.3n
)

, using ˜O
(

20.2n
)

QAQM. This represents an
exponential quantum time and memory improvement with respect to k = 2.
However, for other values of k, e.g. k = 5, we must revert to a simple meet-in-
the-middle strategy using Ambainis’ algorithm.

Moreover, while Ambainis’ algorithm gives a general meet-in-the-middle
result, the 4-list algorithm of [7] is not a general 4-dissection algorithm; it does
not apply to 4-encryption (we will explain this in Sect. 7).

3 Summary of Our Main Results

In this section we summarize the optimal time complexities, in our merging tree
framework, for solving Problems 1, 2, 3 and 4, with XORs and modular additions.
The details will be given in the following sections.

The origin of this work was realizing that for some values of k, we were able to
obtain merging algorithms that were more efficient than the ones from [20]. This
could be done by decomposing the original k-xor problem on n bits in smaller
problems, with smaller values of k′ and a smaller number of bits, and merging
them together. At the beginning, we did not find an intuitive way to predict the
best merging strategies for a given k. We decided to implement a Mixed Integer
Linear program1 that gave us the best possible algorithms for k ≤ 20. From
these results, we were able to understand the optimal methods and extrapolate
the results given below

New quantum algorithms for LPN, subset-sums, multiple-encryption and the par-
ity check problem. Whenever a classical algorithm makes use of a black-box k-
xor procedure, we can replace this inner machinery with a quantum merging
algorithm and optimize the strategy using MILP. We have identified various
cryptographic applications of our framework. However, we defer the details to
Sect. 7 and concentrate here only on the black-box k-xor problems.

1 Our code is available at https://project.inria.fr/quasymodo/files/2019/05/merging
kxor eprint.tar.gz.

https://project.inria.fr/quasymodo/files/2019/05/merging_kxor_eprint.tar.gz
https://project.inria.fr/quasymodo/files/2019/05/merging_kxor_eprint.tar.gz

Optimal Merging in Quantum k-xor and k-sum Algorithms 319

3.1 Quantum Algorithms for Problem 2

In the QACM setting, we prove Theorem 1 and, answering one of the open ques-
tions of [20], show that the time complexity exponent of our method decreases
strictly for each k (see Fig. 1 for a comparison).

Theorem 1. Let k ≥ 2 be an integer and κ = �log2(k). The best quantum
merging tree finds a k-xor on n bits in quantum time and memory ˜O (2αkn)
where αk = 2κ

(1+κ)2κ+k . For c ≤ 1, the same method finds 2nc k-xor with a
quantum (time and memory) complexity exponent of nmax (αk + 2αkc, c).

5 10 15
0.1

0.2

0.3

0.4

0.5

k

α
k

[20]
Classical
New

(a) QACM setting

5 10 15

k

(b) with O (n) qubits only.

Fig. 1. Comparison of time complexity exponents between the classical case, the algo-
rithms of [20] and our new results. The complexities are ˜O (2αkn).

In the low-qubits setting, we find the following. Except in the cases k = 3
and k = 5, quantum optimal merging trees give an exponential time speedup for
half of the values of k, where the merging is mostly done classically. This also
answers a question in [20] (see Fig. 1 for a comparison).

Theorem 2. Let k > 2, k �= 3, 5 be an integer and κ = �log2(k). The best
quantum merging tree finds a k-xor on n bits in quantum time and classical
memory ˜O (2αkn) where:

αk =

{

1
κ+1 if k < 2κ + 2κ−1

2
2κ+3 if k ≥ 2κ + 2κ−1

The same method finds 2nc k-xor with a (quantum time and classical memory)
complexity exponent of nmax (αk + αkc, c).

320 M. Naya-Plasencia and A. Schrottenloher

3.2 Quantum Algorithms for Unique k-xor

For Problems 4 and 3, we give algorithms in the QAQM model starting from
k = 3. We improve over the previously known techniques for all k that are not
multiples of 4. Our time complexity is given by Theorem3.

Theorem 3. Let k > 2 be an integer. The best merging tree finds, given k
lists of uniformly distributed n-bit strings, of size 2n/k each, a k-xor on n bits
(if it exists) in quantum time ˜O

(

2βkn
)

where βk = 1
k

k+�k/5�
4 . In particular, it

converges towards a minimum 0.3, which is reached by multiples of 5. For k ≥ 5
the memory (QAQM) used is 2γkn with γk ≤ 0.2.

3.3 k-xor with Classical Lists

In the QAQM setting, we give the first quantum speedups for Problem1 for a
general k. We prove Proposition 1.

Proposition 1. Let k > 2 which is not a power of 2, let κ = �log2 k. The
quantum time complexity of k-xor with classical lists is ˜O (2αkn) with αk ≤

1
2+�log2 k� .

4 Introducing the k-Merging Trees

In this section, we first present Wagner’s algorithm [32] in two ways: first, as
introduced in [32], second, as an alternative way, which will appear much more
compliant with quantum exhaustive search.

Wagner’s algorithm is a recursive generalization of an idea introduced by
Camion and Patarin [15]. The description in [32] uses lists, but to emphasize
the translation to a quantum algorithm, we will start by considering Problem 2
instead, with a random function H : {0, 1}n → {0, 1}n.

We will next introduce and define the context of k-merging trees. They pro-
vide a unified framework for merging quantumly (and classically) and enable
automatic search of optimal merging strategies. We will show how to use these
trees in the quantum case, and how to optimize them.

4.1 Wagner’s Binary Tree in a Breadth-First Order

We now fix the constant k. Wagner notices that given two sorted lists L1 and
L2 of random n-bit elements, it is easy to “merge” L1 and L2 according to some
prefix of length u. Let Lu be the lists of pairs x1 ∈ L1, x2 ∈ L2 such that x1 ⊕x2

has its first u bits to zero. We say that such x1 and x2 partially collide on u bits.
Then Lu can be produced in time max (|Lu|,min(|L1|, |L2|)).

For example, if L1 and L2 contain 2u elements and we want the merged list
of partial collisions on the first u bits, then this list will have a size of around 2u

and can be obtained in time 2u.
If k is given, and if H is a random oracle, Wagner’s algorithm is a strategy

of successive merges building a sequence of lists of partial �-xor on u bits, for
increasing values of u < n and � < k, culminating into a single k-xor.

Optimal Merging in Quantum k-xor and k-sum Algorithms 321

Example: 4-xor. The strategy for 4-xor is depicted on Fig. 2. We start from 4
lists of 2n/3 random elements each. At the second level of the tree, we build two
lists of 2n/3 partial n

3 -bit collisions (2-xors on u = n/3 bits), by merging the two
pairs of lists in time 2n/3. At the root, we merge the two lists of collisions. There
are 22n/3 4-tuples to form, with 2n/3 remaining bits to put to zero.

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

Fig. 2. Structure of Wagner’s 4-xor-tree

General k. If k is a power of 2, we write k = 2κ. In the remaining of this paper,
when k is an integer, we write κ = �log2(k) for ease of notation. In the context
of Wagner’s algorithm, if k is not a power of 2, we first take k − 2κ arbitrary
elements z1, . . . , zk−2κ and then find a 2κ-xor on their sum. So assume without
loss of generality that k = 2κ. All the lists in the tree will have size 2

n
κ+1 .

• At the lowest level of the tree (level 0), we build k lists of 2
n

κ+1 single elements,
making random queries to H.

• At level 1, we merge the lists by pairs, obtaining 2κ−1 lists, each one containing
2

n
κ+1 collisions on n

κ+1 bits.
• At level i (0 ≤ i ≤ κ − 1), we have 2κ−i lists of 2i-tuples which XOR to

zero on in
κ+1 bits: each level puts n

κ+1 new bits to zero. Notice that all these
bit-positions are arbitrary and fixed, for example prefixes of increasing size.

• At the final level, we merge two lists of 2κ−1-tuples which XOR to zero on
(κ−1)n

κ+1 bits, both lists having size 2
n

κ+1 . We expect on average one 2κ-tuple
to entirely XOR to zero.

4.2 Building a k-tree in a Depth-First Order

To build a node of the tree, it suffices to have built its children; not necessarily
all nodes of bigger depth. Wagner [32] already remarks that this allows to reduce
the memory requirement of his algorithm from 2κ lists to κ.

On Fig. 3, we highlight the difference between these two strategies, by con-
sidering the 4-xor tree of Fig. 2. In a breadth-first manner, we go from one level
to the other by building all the nodes (the new nodes are put in bold). Four lists
need to be stored (the whole lower level). In a depth-first manner, only two lists
need to be stored.

322 M. Naya-Plasencia and A. Schrottenloher

List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements

List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements

(a) Step 1

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements

(b) Step 2

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

(c) Step 3

Fig. 3. Building the 4-xor tree of Fig. 2 in a breadth-first (above) or depth-first manner
(below). At each new step, new lists are built (in bold). We put in dotted the lists which
are either discarded at this step, or do not need to be stored.

Single 4-xor
on n bits

New collisions

New queries
to H

List L2 of 2n/3

elements

List L1 of 2n/3 collisions
on n/3 bits

New queries
to H

List L0 of 2n/3

elements

Fig. 4. Depth-first order in which to build the lists.

Example: 4-xor. We illustrate this depth-first tree traversal with the 4-xor exam-
ple of before. Lists are numbered as in Fig. 4.

1. We build and store the list L0 of 2n/3 elements.
2. We build the list L1 of pairs x, x0 such that x0 ∈ L0, x is a new queried

element, and x ⊕ x0 is 0 on n/3 bits. To build a list of 2n/3 elements, we
need time 2n/3, as each new x has on average one partial collision (n/3-bit
condition) with some x0 in L0 (2n/3 elements).

3. We discard L0. We build and store the list L2 of 2n/3 elements.
4. We find a 4-xor on n bits as follows: we make new queries x. Given an

element x, we expect a partial n/3-bit collision with some x2 ∈ L2 (if there is
none, abort). Given x ⊕ x2, we expect a partial 2n/3-bit collision with some
(x′ ⊕ x0) ∈ L1 (if there is none, abort). Then value x ⊕ x2 ⊕ (x′ ⊕ x0) has
2n/3 bits to zero. It remains to nullify n/3 remaining bits, which is why we
repeat this operation for 2n/3 values of x.

Ensuring a Success Probability of 1. Minder and Sinclair [27] provided a study of
the probability of failure in Wagner’s algorithm. By building the tree in a depth-
first manner, we can easily ensure an exponentially high success probability, that

Optimal Merging in Quantum k-xor and k-sum Algorithms 323

will hold in the quantum setting as well as in the classical. The idea is to always
ensure that, given a candidate, a list will yield at least one partially colliding
element on the bits that we wish to put to zero. This makes our analysis simpler,
but we must pay a logarithmic overhead. The details can be found in the full
version of the paper.

4.3 Limitations of the Extension to Quantum k-trees

In the breadth-first variant of Wagner’s algorithm, it does not seem easy to use
Grover’s algorithm as a subroutine, as the initial lists are all fixed (although this
is proposed in [17]). Since the time complexity depends on the size of the output
list, the necessity to write this list in memory forbids a quantum improvement.

This fundamental problem is the main limitation on the quantum k-xor algo-
rithms of [20]. In their quantum walk approach, they mimic Wagner’s algorithm.
Given a set of queries to H, one reproduces the k-tree and moves from one set
to another in the MNRS quantum walk framework [26]. The inherent limitation
of this procedure is that it reproduces the classical steps, and cannot yield a
better time when k is not a power of 2. In their low-qubits approach, they use
trees of depth 1: the leaf nodes are produced using some (classical or quantum)
precomputation, and then, they do a Grover search for the final element.

However, in the depth-first variant, each new step corresponds to some new
exhaustive search. New elements x are queried and matched (not merged) against
the currently stored lists. Hence, classical search can easily be replaced with
quantum search. We apply this idea in the next section.

4.4 Examples of Quantum Merging

In the depth-first tree traversal for 4-xor of Fig. 4, we now allow quantum compu-
tations. Each new node in the tree will be potentially built using quantum queries
to H and lookups to the previously computed nodes. We reuse the numbering
of lists of Fig. 4.

1. We build and store classically the list L0 of 2n/3 elements.
2. We build the list L1 of pairs x, x0 such that x0 ∈ L0, x is a new queried

element, and x⊕x0 is 0 on n/3 bits. Since the list is of size 2n/3, and it needs
to be written down, we still need time 2n/3.

3. We discard the list L0. We build and store the list L2 of 2n/3 elements.
4. To find the final 4-xor, we are testing 2n/3 values of x, after which we expect

that the partial collision with a candidate in L2 and a candidate in L1 also
nullifies the last n/3 bits. This step can be done using Grover search, in time
2n/6.

At this point, it becomes clear that the tree of Fig. 2 must be re-optimized,
so that all steps, including the last Grover search, take the same time. This
new strategy is specific to the quantum setting. We obtain a time complexity of
˜O

(

2n/4
)

, which is that of [20] for 4-xor. We don’t use a quantum walk anymore,

324 M. Naya-Plasencia and A. Schrottenloher

but the procedure still requires ˜O
(

2n/4
)

QACM to hold the intermediate lists
L2 and L1 during the final Grover search.

Moreover, the example of 3-xor shows that there exists inherently quantum
merging strategies. In Algorithm 1, which also improves over [20], the corre-
sponding “3-xor-tree” is of depth one. Classically, it does not yield a speedup
over the collision exponent 1

2 .

Algorithm 1. Quantum 3-xor Algorithm with QACM
1: Store a list L0 of 22n/7 elements;
2: Using Grover subroutines, build a list L1 of 2n/7 elements with a 2n

7 -bit zero
prefix;

3: Use Grover’s algorithm to find an element x such that f(x) = 1, where f is
defined as:

• Find x0 ∈ L0 which collides with x on the first 2n
7 bits, in time ˜O (1),

with probability of success 1,
• Find x1 ∈ L1 such that x0 ⊕ x1 ⊕ x is zero on 3n

7 bits,
• If x0 ⊕ x1 ⊕ x = 0, return 1, else 0.

This requires
√

24n/7 iterations, as x0 ⊕ x1 ⊕ x has always 3n
7 bits to zero;

there remains 4n
7 bits to nullify.

4.5 Definition of Merging Trees

In order to emphasize that our trees are constructed in a depth-first manner,
and to make their definition more suitable, we start from now on to represent
them as unbalanced trees where each node introduces a new exhaustive search,
as on Fig. 5.

Single 4-xor
on n bits

List L2 of 2n/4

elements
List L1 of 2n/4 collisions

on n/4 bits

List L0 of 2n/4

elements

Fig. 5. Tree of Fig. 4 as an unbalanced quantum merging tree.

Since all the complexities throughout this paper are exponential in the output
bit-size n and we focus on the exponent, we write them in log2 as αkn for some αk

which depends only on k. We notice that n is a common factor in all complexities,

Optimal Merging in Quantum k-xor and k-sum Algorithms 325

so it can actually by removed. Next, we define our unbalanced merging trees. A
tree represents a possible strategy for computing a k-xor; due to our specific
writing, its number of nodes is k. Each node corresponds to computing a new
list, starting from the leaves, computing the root last.

Definition 1. A k-merging tree is defined recursively as follows:

• If k = 1, it has no children: this corresponds to “simple queries” to H.
• If k > 1, it can have up to k − 1 children T0, . . . , T�−1, which are ki-merging

trees respectively, with the constraint k0 + . . . + k�−1 = k − 1.

In other words, a k-sum to zero can be obtained by summing some ki-sums,
such that the ki sum to k (here a +1 comes from the exhaustive search at the
root of the tree).

Next, we label each node of the tree with some variables, which represents
the characteristics of the list computed:

• The number � of nodes of the subtree
• The number u of bits to zero (relatively to n)
• The size s of this list: s represents a size of 2sn

• The (time) cost c of producing this list: c represents a time complexity of 2cn

We obtain the general shape of a tree represented on Fig. 6.

T 0
0

Single k-xor
on n bits

T 1
0

2s1
0 k1

0-xors
on u1

0 bits

T 1
1

2s1
1 k1

1-xors
on u1

1 bits

. . .

. . .

T j
i

2sj
i kj

i -xors
on uj

i bits

T j+1
0

2sj+1
0 kj+1

0 -xors
on uj+1

0 bits

T j+1
1

2sj+1
1 kj+1

1 -xors
on uj+1

1 bits

. . .

T 1
�−1

2s1
�−1 k1

�−1-xors
on u1

�−1 bits

. . .

Fig. 6. k-merging tree

326 M. Naya-Plasencia and A. Schrottenloher

The Merging Strategy. We now consider a k-node T and the � subtrees (of
children) T0, . . . , T�−1 attached to it. We suppose that they are ordered by their
number of nodes (hence the lists will contain k0-xors, k1-xors, . . . , k�−1-xors,
with k0 + . . . + k�−1 + 1 = k). The merging strategy is inherent to the definition
of merging trees, and independent of the computation model. It generalizes the
depth-first examples of Sect. 4.

Each element of T is built using exhaustive search, with T0, . . . , T�−1 as inter-
mediate data. We impose that the zero-prefixes of T0, . . . , T�−1 are contained in
one another. Let u0, u1, . . . u�−1 be the sizes of these prefixes and s0, s1, . . . , s�−1

the sizes of the lists. Given x in the search space of T , the test proceeds in �
steps. First, we make sure that x has zero-prefix u0. Then we can match it with
the first child T0. Since this child contains 2s0 elements, we can expect to find
x0 ∈ T0 such that x ⊕ x0 has u0 + s0 bits to zero. Now we search T1 for some x1

which increases the number of zeroes in x ⊕ x0 ⊕ x1. We would like T1 to have a
zero-prefix of size u1 = u0 +s0. Then x⊕x0 ⊕x1 will have u1 +s1 = u0 +s0 +s1
zero, and so on.

We see that for this depth-first merging strategy to work, we need a constraint
relating the sizes of the lists and of the prefix of each node. It must hold at any
non-leaf node in the tree.

Constraint 1 (A pyramid of zeroes). Let T0, . . . , T�−1 be the � sub-
trees attached to a given k-node T , ordered by their number of nodes. Let
u0, u1, . . . , u�−1 be their prefix sizes and s0, s1, . . . , s�−1 be their sizes. We have:

∀1 ≤ i ≤ � − 1, ui = ui−1 + si−1.

In other words, given x in the search space for node T , having u0 zeroes,
we expect only one candidate x0 ∈ T0 such that x0 ⊕ x1 has u1 zeroes, one
candidate in T1, etc. This constraint also ensures a success probability of 1 by
the argument of Sect. 4.2. Since the list of node Ti is responsible for putting
ui+1 −ui bits to zero exactly, we ensure that it takes all the values in this range.
Notice that at this point, our definition of merging trees encompasses the binary
tree of Wagner’s algorithm, created in a depth-first manner.

Computation of the cost of a Tree. Since the goal of our strategy is to obtain the
best time complexity for merging, we enforce computational constraints, which
relate the cost of a k-node T with his size and zero-prefix and that of its children.
These constraints depend on the computation model used; whether we authorize
classical or quantum computation, QACM or not.

Constraint 2 (Cost of a leaf node). A leaf node T with size s and zero prefix
u has a cost c such that classically c = u + s and quantumly c = s + u

2 .

Classically, finding a single x with a prefix of u bits requires 2u queries to H.
Quantumly, it requires 2u/2 superposition queries with Grover’s algorithm.

Constraint 3 (Cost of a non-leaf node). A k-node T with size s and zero
prefix u, with children T0, . . . , T�−1 having sizes s0, . . . , s�−1 and prefix sizes
u0, . . . , u�−1 has a cost c such that:

Optimal Merging in Quantum k-xor and k-sum Algorithms 327

• Classically c = s + u + u0 − u�−1 − s�−1

• Quantumly, with QACM: c = s + 1
2 (u + u0 − u�−1 − s�−1)

• Quantumly, low-qubits: c = s + 1
2 (u − u�−1 − s�−1) + max

(

u0
2 , s0, . . . , s�−1

)

In the classical setting, there are 2s elements in the node to build and u
zeroes to obtain. We must start from an element with u0 zeroes, which requires
already 2u0 queries. Next, we traverse all intermediate lists, which give us a k-xor
on u�−1 + s�−1 zeroes. There remains u − u�−1 − s�−1 zeroes to obtain, so we
have to repeat this 2u−u�−1−s�−1 times. Quantumly, if we have quantum random
access to the previously computed children, we use Grover’s algorithm. We take
the square root of the classical complexity for finding one element and multiply
it by 2s, the total number of elements in the node. If we don’t have quantum
random access, we can emulate a QACM by a sequential lookup of classically
stored data. This was done in [16] in the case of quantum collision search (2-
xor) and further used in [20] for low-qubit k-xor algorithms. Checking whether
x ∈ Ti can be done in time n2si using a sequence of comparisons. Finding a
partially colliding element on some target takes the same time. Since each child
list is queried this way, for each iteration of Grover search, the time complexity
becomes:

2s+ 1
2 (u−u�−1−s�−1)

(

2
u0
2 + 2s0 + . . . + 2s�

)

.

We approximate the right sum by 2max(u0
2 ,s0,...,s�). This remains valid up to

a constant factor in k. In the quantum setting, we will also authorize to fall back
on classical computations if there is no better choice.

Finally, the size and number of zeroes of the final list (the root node) are
parameters of the problem.

Constraint 4 (Final number of solutions). The root T of the tree has zero-
prefix u = 1 (since it requires n zeroes). Its size s is 0 if we want a single tuple,
or γ if we want 2γn of them for some constant γ.

Example. We can take as example Algorithm 1, which builds a 3-xor using two
intermediate lists. We have a merging tree T , where the root has children T0 and
T1. At T0, we build a list of 22n/7 elements: u0 = 0, s0 = 2

7 . At T1 we build a list
of 2n/7 elements with a 2n

7 -bit zero prefix: u1 = 2
7 , s1 = 1

7 . At the root we have
s = 0 and u = 1. The costs of all nodes are c0 = c1 = c = 2

7 . We can verify that
u1 = u0 + s0 and c = s + 1

2 (u + u0 − u1 − s1) = 0 + 1
2 (1 − 1/7 − 2/7) = 2

7 .

4.6 Optimization of Merging Trees

The description of merging trees that we have given above has two purposes: first,
to provide a unified framework for merging quantumly and classically; second,
to enable automatic search of optimal merging strategies. Given a tree structure,
minimizing the total time complexity (the maximum of ci for all Ti) is a linear
problem, that we can solve with Mixed Integer Linear Programming (MILP).
Given k, we can try different possible tree structures and find an optimal one.

328 M. Naya-Plasencia and A. Schrottenloher

Linear Program. We minimize the total time complexity of the merging tree.
By definition of ci, this is the sum of all 2nci for all nodes Ti, starting from the
leaf nodes (which are traversed first) up to the root (which is produced last). We
approximate it to 2nmaxi(ci), up to a constant factor in k. Hence we minimize
c = maxi(ci) under the constraints outlined above.

Adaptations. The constraints of Sect. 4.5 are the only ones required to solve
efficiently Problem 2. We will amend the framework in Sect. 6 to solve efficiently
Problems 1, 4 and 3.

5 Optimal Merging Trees

In this section, we present our main results regarding Problem 2. We first describe
the shape of the optimal trees, and next, the complexities in the QACM and in
the low-qubit setting. Our results are compared with the ones from [20] on Fig. 1
and Table 3 in the full version of the paper [28].

5.1 Description of the Optimal Trees

By testing the different possible merging trees, and optimizing each tree with
a MILP solver, we obtained optimal merging-tree strategies for solving the k-
xor problem in the quantum setting, improving on [20] for many values of k.
Furthermore, the quantum walk of [20] uses QAQM, while our method relies
only on QACM. For non-powers of 2, we reach new and strictly better complexity
exponents for all k. In the low-qubits case, we obtain non-trivial improvements
for k = 5, 6, 7 and a new quantum speedup for half the values of k.

Optimal Trees. First of all, we define a family of trees Tk which will repre-
sent some optimal strategies for k-xor. The root of Tk (a k-xor) has �log2(k)�
children. The first child contains

⌊

k
2

⌋

-xors on some bits, the second contains
⌊

1
2

(

k −
⌊

k
2

⌋)⌋

-xors. In general, child i contains ki-xors, and child i + 1 contains

ki+1 =
⌊

1
2

(

k −
∑i

j=1 kj

)⌋

. The children subtrees are all Tki
.

If the Tk trees are solved with the classical constraints, we recover the com-
plexities of Wagner’s algorithm. Quantumly, we can make use of the additional
nodes when k is not a power of 2. Indeed, Grover’s algorithm allows to create ele-
ments with some zero-prefix quadratically faster. This is the source of the 3-xor
quantum speedup (see Algorithm 1), and it can be generalized. We point out that
Tk provides the optimal complexity both in the QACM and low-qubits setting
(for k > 5) however it is not the only merging tree with such optimization.

QACM Setting. In the QACM case, each node that has a non-empty zero pre-
fix is produced using Grover search. We note κ = �log2(k) and αk = 2κ

(1+κ)2κ+k .
In the optimization of Tk, all the nodes have exactly the same cost (so all the

Optimal Merging in Quantum k-xor and k-sum Algorithms 329

lists are generated in the same quantum time). For all nodes of the tree, the
optimal values of si and ui are multiples of 1

(1+κ)2κ+k . The whole description
of the optimal tree is easily derived from the constraints, but we do not have
a clear description of it for a given k. We give the tree and constraints in the
example of 11-xor in the full version of the paper [28].

Low-qubits Setting. In the low-qubits case, for k �= 2, 3, 5, the best strategy
is always to use classical searches, except at some leaves of the tree, where some
elements with zero-prefixes are produced using Grover search. This gives one
intermediate level of complexity between two successive powers of 2. For collision
search, we obtain the algorithm of [16] with α2 = 2

5 . For k = 3, we obtain the
algorithm of [20] with α3 = 5

14 , showing that it remains optimal in our extended
framework (contrary to 3-xor with QACM, see Algorithm1). The case k = 5 is
the last using Grover search at the root of the tree, with a surprisingly non-trivial
α5 = 14

45 . We describe it in full detail in the full version of the paper [28].

Memory. The memory used by our algorithms, for an equal time, is always
equal or better than the one from [20], in both settings. Notice that the low-
qubits variants use classical memory only (it can be seen as a quantum-classical
tradeoff), its O (n) qubits being dedicated to computing. For a time ˜O (2αkn),
the QACM variant requires ˜O (2αkn) QACM (it is needed to store the leaf lists).

5.2 Optimality in the QACM Setting

The MILP experiments helped us find the time complexity exponents αk for
k ≤ 20, and acquire an intuition of the optimal algorithms for any k. We can
prove this optimality in the QACM setting among all merging trees.

Theorem 1. Let k ≥ 2 be an integer and κ = �log2(k). The best quantum
merging tree finds a k-xor on n bits in quantum time (and memory) ˜O (2αkn)
where αk = 2κ

(1+κ)2κ+k . The same method finds 2nc k-xor with a quantum (time
and memory) complexity exponent of nmax (αk + 2αkc, c).

Furthermore, for every k, the optimum is realized by Tk.

One can verify that αk gives the expected exponent for powers of 2, where it
is equal to 1

κ+2 .
The idea of the proof is an induction on k. It is possible to prove that, if the

last child of the root node is a list of partial k�-xors, then the optimal exponent
αk satisfies: 1

αk
≤ 1 + 1

2αk−k�

+ 1
2αk�

.
This is where the structure Tk appears naturally. Since αk is a decreasing

function of k, to minimize the sum on the right, we need k� equal to �k/2. By
plugging in this value and using the recurrence hypothesis, we obtain immedi-
ately the formula for αk, and show that it is attained by Tk. The full proof is
given in the full version of the paper [28].

330 M. Naya-Plasencia and A. Schrottenloher

5.3 Theoretical Result in the Low-Qubits Setting

In the low-qubits setting, we can explain why Theorem2 gives the optimal com-
plexities.

Theorem 2. Let k > 2, k �= 3, 5 be an integer and κ = �log2(k). The best
quantum merging tree finds a k-xor on n bits in quantum time and classical
memory ˜O (2αkn) where:

αk =

{

1
κ+1 if k < 2κ + 2κ−1

2
2κ+3 if k ≥ 2κ + 2κ−1

The same method finds 2nc k-xors with a (quantum time and classical memory)
complexity exponent of max (αkn + αkc, c).

Furthermore, for every k �= 3, 5, the optimum is realized by Tk.

Informally, when k is bigger than 6, the merging operation at the root of the
tree is performed using classical search. Grover search cannot be used anymore,
as each iteration requires to pay the full length of the children (to emulate the
qRAM lookups). In that case, we single out the first child T0. We can rewrite
the k-tree as a single merge between T0, which is a k0-tree, and a k − k0-tree.
The costs of producing these trees should be balanced, hence we should have
k0 = �k/2 as before, and we obtain the tree Tk. Now we can remark that if
k < 2κ +2κ−1, then �k/2 < 2κ−1 +2κ−2; and conversely, if k ≥ 2κ +2κ−1, then
�k/2 ≥ 2κ−1 + 2κ−2. In other words, we fall back very easily on the recurrence
hypothesis.

6 Extended Merging Trees and Quantum Dissections

In this section, we extend merging trees to a much broader setting. We limit the
input domain size, solving Problems 3 and 4 with time complexities better than
the previous algorithms for most of the values of k. All new algorithms in this
section run in the QAQM model.

First we will show how to adapt the merging trees of Sect. 4 to this new
situation. We will present some examples of algorithms and our general results.
Recall that in our formulation of Problems 4 and 3, the input domain of the
oracle H is restricted to n/k bits and the codomain is n bits; alternatively, the
input lists are of size 2n/k.

6.1 Generalized Merging Trees for Problems 1, 3 and 4

Our observation is that the dissection technique of [18, Section 3] finds a very
simple analogue in terms of merging trees.

We remark that a merging tree as defined in Sect. 4 has many unused
degrees of freedom. Indeed, suppose that we are building a tree T with chil-
dren T0, . . . T�−1. Each Ti has a zero-prefix of ui bits. We deliberately used the

Optimal Merging in Quantum k-xor and k-sum Algorithms 331

term “zero-prefix”, but we can actually take any value for these bits. During
a search for a new element of T , we still look for successive collisions, but the
values required depend on the prefixes of each child. All the prefixes are ours to
choose, except for the root, since we still want the final k-tuple to XOR to zero.

This allows to repeat the node T up to 2u0 × 2u1 × . . . × 2u�−1 times, and
to overcome a limitation in the domain size. We write a merging tree as before,
but expect only a small probability of success for the search at the root; so we
interleave this tree with repetitions. The root search can be performed many
more times, by changing the children.

The final time complexity depends on the complexity of the children, and
the number of times that they are repeated. Indeed, suppose that the children
T0, . . . , T�−1 are built in time t0, . . . , t�−1 (all of this in log2 and multiples of
n). Suppose also that the root search requires time t. With a total number of
repetitions r before we find a solution, the children will respectively be repeated
r0, . . . , r�−1 times (up to the choices they have in their prefixes) with r0 + . . . +
r�−1 = r. We can write the time complexity as:

r0(t0 + r1(t1 + . . .) . . . + t)

by taking an arbitrary order for the children and writing the algorithm as �
nested loops:

0. The first loop iterates r0 times on child T0

1. Inside the first loop, after building T0, the second loop iterates r1 times on
child T1

. . .
� − 1 Inside all � − 1 previous loops, after building T0, . . . , T�−2, the �-th loop

iterates on child T�−1. Inside this loop:
• We build the child T�

• We perform the exhaustive search of the root T , using the children
T0, . . . , T�−1

In particular, this method subsumes the algorithms of [18, Section 3] in a clas-
sical setting. It also generalizes the idea of guessing intermediate values (which
are the prefixes of the children Ti) and running an exhaustive search of these,
and extends [18, Section 3] to all intermediate domain sizes.

The quantum correspondence works in a very simple way: these � nested loops
become � nested Grover searches. We search among choices for Ti, i.e. choices for
the fixed prefix. The setup (producing the superposition over the whole search
space) remains easy. The test of a choice performs the nested computations:
creating the list Ti itself and running the other searches.

Example: Quantum and Classical 4-dissection. We take the example of
Problem 3. We suppose quantum access to a random function H : {0, 1}n/4 →
{0, 1}n. Classically, the best algorithm is Algorithm 2, from [31], in time 2n/2 and
memory 2n/4. Quantumly, the best algorithm is in [7], in time 20.3n using 20.2n

QAQM. Our method is Algorithm3. It runs in quantum time 20.3125n, smaller

332 M. Naya-Plasencia and A. Schrottenloher

than a simple meet-in-the-middle, and QAQM 20.25n. It is worse than [7] for
Problems 4 and 3, but we will see in Sect. 7 that it can be used to attack the
4-encryption problem, contrary to [7].

Algorithm 2. Classical 4-dissection
1: Query H and store all the elements H(x) in a list L0

2: for each u ∈ {0, 1}0.25n do
3: Create the list L1 of pairs x, y with x ⊕ y = u|∗. This takes time 20.25n,

L1 contains 20.25n elements (indeed, for each element x ∈ L0 we expect a
partial collision on 0.25n bits with some other element y ∈ L0).

4: for each z ∈ L0 do
5: Find t ∈ L0 such that t ⊕ z = u|∗.
6: Find x ⊕ y ∈ L1 such that x ⊕ y ⊕ z ⊕ t gives a 0.5n-bit zero prefix.
7: If x ⊕ y ⊕ z ⊕ t is all-zero and all are distinct, then return this result.
8: end for
9: end for

10: Return the 4-tuple that XORs to zero.

Algorithm 3. Optimal merging tree algorithm for Problems 4 and 3 with k = 4
1: Query H and store all the elements H(x) in a list L0

2: for each u ∈ {0, 1}0.25n do
3: for 20.125n repetitions do
4: Build a list L1 of 20.125n partial collisions x⊕y = u|∗, in time 20.125n,

using exhaustive search with L0 as intermediate (if we take any element, we
expect a partial collision on 0.25n bits with some other in L0)

5: for each z ∈ L0 do
6: Find t ∈ L0 such that z ⊕ t = u|∗
7: Find x ⊕ y ∈ L1 that collides with z ⊕ t on 0.25n more bits
8: If x ⊕ y ⊕ z ⊕ t = 0 and all are distinct, then return this result
9: end for

10: end for
11: end for
12: Return the 4-tuple that XORs to zero.

The classical time complexity of Algorithm 3 would be:

20.25n
︸ ︷︷ ︸

choice of u

(

20.125n

(

20.125n
︸ ︷︷ ︸

Intermediate
list L1

+ 20.25n
︸ ︷︷ ︸

Exhaustive
search

))

= 20.625n

which is not optimal. However, as a quantum algorithm with nested Grover
searches, it optimizes differently, since exhaustive search factors are replaced by
their square roots:

Optimal Merging in Quantum k-xor and k-sum Algorithms 333

20.125n/2 × 20.125n/2
(

20.125n + 20.25n/2
)

= 20.3125n.

6.2 Quantum Algorithms for Unique k-xor

In what follows, we solve together Problems 4 and 3 in the QAQM model, with
the same time complexities. The reason why there is little difference between
these problems is that, as long as quantum random-access is allowed (QACM
or QAQM), it allows to simulate quantum oracle queries. It suffices to store the
input data in QACM and replace an oracle query by a query to the whole mem-
ory. For k ≥ 4, the cost of storing the whole domain of size 2n/k is not dominant.
For k = 3, there is a difference in the memory complexity. For completeness, the
two procedures for k = 3 are given in the full version of the paper [28].

From our observations, we derive the optimal merging-tree time complexity
for Problems 4 and 3. When k is a multiple of 5, we can just apply our 5-xor
algorithm with an increased domain size, and obtain an exponent 0.3. For other
values of k, a good combination of Grover searches allows to approach it.

Theorem 3. Let k > 2 be an integer. The best merging tree finds, given k
lists of uniformly distributed n-bit strings, of size 2n/k each, a k-xor on n bits
if it exists in quantum time ˜O

(

2βkn
)

where βk = 1
k

k+�k/5�
4 . In particular, it

converges towards a minimum 0.3, which is reached by multiples of 5. For k ≥ 5
the memory (QAQM) used is 2γkn with γk ≤ 0.2.

Memory Usage. One of the advantages of the Dissection technique is its mem-
ory consumption. On Fig. 7, we compare the time complexities of the classical
Dissection [18, Section 3] and of our quantum algorithm, for increasing k, when
the memory available is limited to 2n/k. We remark that our technique often
reaches a square root speedup upon [18, Section 3].

Without QAQM. Problem 4 becomes more difficult if QAQM is replaced by
QACM. Indeed, assume that we are making a loop on a prefix of u bits, under
which we build and store a list L of elements with u-prefix (before moving to
other computations). It is crucial for our technique to be able to loop over this
prefix with Grover search, in 2u/2 iterations. However, the list L written in each
iteration is now in superposition as well, since it depends on u: it cannot be
stored in classical memory. The solution would be to iterate classically on the
prefix, in 2u iterations. But then, we seem to loose the advantage over classical
computations.

An algorithm for Problem4 without QAQM can be obtained for k = 3 (and
any multiple of 3) as follows: we store classically one of the lists and we do a
Grover search on the product of the two others. The time complexity is always
˜O

(

2n/3
)

. We leave as an open problem to find QACM algorithms for unique
k-xor (for any k ≥ 3) with a factor less than 1/3 in the complexity exponent, or
even to find algorithms in the low-qubits model.

334 M. Naya-Plasencia and A. Schrottenloher

5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.5

0.7

k

α
k

Classical
Quantum

k Classical αk Quantum αk

3 2/3 1/3
4 1/2 5/16
5 3/5 3/10
6 2/3 1/3
7 4/7 9/28
8 5/8 5/16
9 2/3 1/3
10 7/10 7/20
11 7/11 15/44
12 2/3 1/3
13 9/13 9/26

Fig. 7. Smallest classical (using [18, Section 3]) and quantum time (using our algo-
rithms) for merging k lists of size 2n/k for a single solution, with a memory limit of

2n/k (RAM or QAQM). The complexities are ˜O (2αkn).

7 Applications

In this section, we elaborate on various applications of our new algorithms. The
common point of all the problems below is their k-list or bicomposite structure.

7.1 Improved Quantum Time – Memory Tradeoff for Subset-sums

Using the extended merging trees for Problem 3, we reach a better quantum
time – memory product with respect to the current literature for low-density
knapsacks, as was the case in [18] for classical algorithms.

Let a1, . . . , an, t be randomly chosen integers on � bits. We are looking for a
subset of indices I ⊂ {1, . . . , n} such that

∑

i∈I ai ≡ t mod 2�. The hardness
of this problem is related to the density n/�. When � = poly(n), and we expect
a single solution with high probability, the best classical algorithm [4], runs in
time and memory ˜O

(

20.291n
)

. The current best quantum algorithm [22] takes
time ˜O

(

20.226n
)

, using as much QAQM.
A subset-sum problem can easily be translated to a k-sum problem with a

single solution. Indeed, it suffices to separate the set {1, . . . , n} into k disjoint
parts J1 ∪ . . . ∪ Jk and to start from the lists L1, . . . , Lk, with list Lj containing
all the sums

∑

i∈I ai for I ⊂ Jj .
Both the quantum time and memory (QAQM) complexities of the k-xor (or

k-sum) problem with a single solution vary with k. Optimizing the time-memory
product (more details are given in the full version of the paper), we find that
k = 12 seems the most interesting, with a time ˜O

(

2n/3
)

and a memory 2n/12.
The product is ˜O

(

25n/12
)

= ˜O
(

20.412n
)

, which is less than the previous 0.452n.

Optimal Merging in Quantum k-xor and k-sum Algorithms 335

7.2 New Quantum Algorithms for LPN and LWE

We consider the LPN problem in dimension n with constant error rate 0 ≤ p <
1/2. Given a certain number of samples of the form (a, a ·s+e) where a ∈ {0, 1}n

is chosen uniformly at random and e ∈ {0, 1} is a Bernoulli noise: e ∼ Berp i.e.
P (e = 1) = p. The LWE problem is the generalization from F2 to Fq for some
prime q.

In [9], Blum, Kalai and Wasserman introduced an algorithm solving LPN in
time O

(

2n/ log n
)

, using 2n/ log n samples. Their idea is to combine samples: given
(a1, a1 ·s+e1) and (a2, a2 ·s+e2) one can compute (a1⊕a2, (a1⊕a2) ·s+e1+e2).
When summing k Bernoulli errors of correlation ε = 1 − 2p, one obtains a
Bernoulli error of correlation εk by the Piling-Up Lemma. Hence, the goal is to
produce sufficiently many sums of ai with almost all bits to zero, with sufficiently
few ai summed, so that one can obtain a bit of s from the samples gathered.
The same principle applies to LWE, although we focus on LPN for simplicity.

In its original version, the BKW algorithm uses 2n/ log n samples and mem-
ory. It starts from the list of samples and repeatedly finds partial collisions,
cancelling n/ log n bits in the ai, until it produces a list of 2n/ log n samples with
a single nonzero bit. In [19], the authors find that there are many advantages
of combining c > 2 samples at a time, that is, using a c-list algorithm in place
of a simple 2-list merge operation. First of all, this reduces the memory used,
which is crucial for practical implementations of the BKW algorithm. Second,
this reduces the number of samples: we start from a smaller list. Finally, they
give the first quantum version of the BKW algorithm.

The c-sum-BKW algorithm is build upon the c-Sum-Problem as defined
in [19, Definition 3.1]: given a list L of N uniformly random b-bit strings, given
t ∈ {0, 1}n find at least N distinct c-tuples of elements of L that xor to t.

They prove that, given an algorithm solving this problem in time Tc,N and
memory Mc,N with overwhelming probability, for b = log cn(1+ε)

log n and N ≥
2

b+c log c+1
c−1 , then their adapted BKW algorithm solves LPN in dimension n in

time T
1+o(1)
c,N and memory M

1+o(1)
c,N .

The authors study the solving of this c-sum problem via the Dissection
method [18] and obtain new time-memory trade-offs. They also study a quan-
tum version of this algorithm, hereby using a naive Grover search in the QACM
model: we store L in QACM and perform a Grover search on all c−1 tuples of L,
for those who xor to an element of L. The memory used is N . As the parameters
are tailored for N solutions in total, the quantum time complexity is N c/2−1 for
a single solution and N c/2 for all of them. They leave as an open question (end
of Sect. 1) whether a quantum k-list algorithm could be used in replacement.

New Trade-Offs. We are in a situation in which the input list is of size Nc and
there are Nc solutions to recover. It is as if we were solving a c-xor problem on b
bits with c lists of size Nc = 2b/(c−1) each, and wanted all the 2b/(c−1) expected
solutions. Furthermore, we limit the memory (QAQM) used to Nc. We simply
solve the problem ˜O

(

2b/(c−1)
)

times, as in the naive Grover case (Table 1).

336 M. Naya-Plasencia and A. Schrottenloher

Table 1. Improvements on the quantum-BKW algorithm of [19] (see Table 1 in [19])

Previous (naive + Grover) This paper
c Memory Time Memory Time Time exponent

3 Nc N
3/2
c Nc N

5/3
c 5/3 = 1.667

4 Nc N2
c Nc N

13/7
c 13/7 = 1.857

5 Nc N
5/2
c Nc N2

c 2
6 Nc N3

c Nc N
5/2
c 5/2 = 2.5

7 Nc N
7/2
c Nc N

11/4
c 11/4 = 2.75

8 Nc N4
c Nc N3

c 3

7.3 New Quantum Algorithms for the Multiple-Encryption
Problem

The multiple-encryption problem is an example of a bicomposite problem exten-
sively studied in [18]. Consider a block cipher Ek with message space and key
space of size n both. We consider the encryption by Ek1 ◦. . .◦Ekr

with a sequence
of independent keys k1, . . . , kr. Given r plaintext-ciphertext pairs (enough to
discriminate the good sequence with high probability), we want to retrieve
k1, . . . , kr. Classically, the best time complexity to date is essentially 2�r/2�n

and the question is to obtain better time-memory trade-offs, as it is the case
in [18]. We do not know of any r-list algorithm that wouldn’t be applicable to
r-encryption as well.

In [24], Kaplan proves that 2-encryption is (quantumly) equivalent to element
distinctness2. However, already for r = 4, we remark that the 4-xor algorithm
of [7] cannot be used to attack 4-encryption. Indeed, in the quantum optimization
of [7], the size of the “intermediate value” that is guessed is not a multiple of
n bits. This has no consequence on Problem 3, but if we try to translate the
algorithm to attack multiple-encryption, we cannot solve efficiently the smaller
meet-in-the middle problems. It would require to produce efficiently (in time
20.8n), from 20.8n choices of k1 and k2, the list of 20.8n pairs k1, k2 such that
Ek1 ◦ Ek2(P) has some fixed 0.8n-bit prefix.

We remark that all our r-xor algorithms (on nr bits) can be naturally con-
verted to r-encryption: the size of the prefixes guessed is always a multiple of
n, so we remain in a similar situation as [18], while this was not the case for
quantum-walk based methods. For example, Algorithm 3 provides the best quan-
tum time for 4-encryption that we know of, in quantum time 21.25n and QAQM
2n to obtain the 4n-bit key. Theorem3 gives the best quantum time complex-
ities for r-encryption for r ≥ 4 and also shows an exponential decrease in the
quantum time complexity with respect to 2-encryption.

2 Kaplan [24] also gives an algorithm for 4-encryption, but we could not verify its time
complexity.

Optimal Merging in Quantum k-xor and k-sum Algorithms 337

7.4 Approximate k-list Problem

In [10], Both and May introduce and study the approximate k-list problem. It
is a generalization of k-xor in which the final n-bit value only needs to have a
Hamming weight lower than αn for some fraction 0 ≤ α ≤ n

2 (so the k-xor is
the special case α = 0). Its main application is solving the parity check problem:
given an irreducible polynomial P (X) ∈ F2[X] of degree n, find a multiple Q(X)
of P (X) of a certain weight and degree. This is used in fast correlation attacks on
stream ciphers. For this application, we can consider quantum oracle access (the
lists actually contain polynomials of the form Xa mod P (X) for many choices
of a).

The match-and-filter algorithm of [10, Section 3] consists in running a k-xor
algorithm with a restricted number of bits to put to zero, and to tailor the
length of the final list so that it will contain one element of low Hamming weight
with certainty. With a quantum k-merging tree, we can always improve on this
classical method in the QACM model. Let αk be the k-xor optimal QACM time
exponent as defined in Theorem 1. We cut the tree at its root: in time ˜O (2αkun),
we can obtain a tuple of lists L1, . . . Lt such that, given an n-bit element x, we
can find x1 ∈ L1, . . . , xt ∈ Lt such that x ⊕ x1 . . . ⊕ xt has (1 − 2αk)un bits to
zero. Indeed, the Grover search at the root of the tree has also cost ˜O (2αkun)
since everything is balanced, so it eliminates 2αkun bits.

Hence, if we want to be able to eliminate un bits for some fraction 0 ≤ u ≤ 1,
we build all these lists in time ˜O

(

2
αk

(1−2αk)un
)

.
Now we do a modified Grover search at the root: given any n-bit element x,

the structure puts un bits to zero. There remains (1 − u)n (random) bits. We
want the Hamming weight of the result to be less than a target cwn. The propor-
tion of (1 − u)n-bit strings of Hamming weight less than cwn is approximately:
(

(1 − u)n
cwn

)

/2(1−u)n � 2(1−u)n(H(cw/(1−u))−1)) if c ≤ (1 − u) and 1 otherwise,

where H is the binary entropy function. Hence the number of Grover iterations
in this last step is: 2

1
2 (1−u)n(1−He(cw/(1−u)))) where He(x) = 0 if x ≥ 1. It suffices

to look for 0 ≤ u ≤ 1 which optimizes the sum of the time complexities of the
two steps:

2
αk

(1−2αk)un + 2
1
2 (1−u)n(1−He(cw/(1−u)))).

We obtain the results of Table 2 by numerical optimization.

8 Conclusion

Better Quantum k-xor Algorithms. In this paper, we proposed new algorithms
improving the complexities from [20] for most values of k in both the QACM
and low-qubits settings. We gave quantum algorithms for the k-xor problem with
limited input size. This enabled us to gave algorithms for k-encryption running
exponentially faster than double-encryption and to reach the best quantum time
– memory product known for solving the subset-sum problem. All our algorithms
can be used by replacing xors by sums modulo 2n.

338 M. Naya-Plasencia and A. Schrottenloher

Table 2. Quantum speedup of the approximate k-list problem of [10], in the QACM
model.

k = 2 k = 3 k = 4

cw log T/n log T/n

(classical) (quantum)

0 0.5000 0.3333

0.1 0.2920 0.1876

0.2 0.1692 0.1046

0.3 0.0814 0.0481

0.4 0.0232 0.0129

cw log T/n log T/n

(classical) (quantum)

0 0.5000 0.2857

0.1 0.2769 0.1641

0.2 0.1590 0.0935

0.3 0.0778 0.0440

0.4 0.0221 0.0122

cw log T/n log T/n

(classical) (quantum)

0 0.3333 0.2500

0.1 0.2040 0.1460

0.2 0.1238 0.0846

0.3 0.0630 0.0407

0.4 0.0195 0.0116

k = 8 k = 32 k = 1024

cw log T/n log T/n

(classical) (quantum)

0 0.2500 0.2000

0.1 0.1576 0.1200

0.2 0.0984 0.0714

0.3 0.0518 0.0355

0.4 0.0170 0.0106

cw log T/n log T/n

(classical) (quantum)

0 0.1667 0.1429

0.1 0.1091 0.0889

0.2 0.0704 0.0548

0.3 0.0387 0.0284

0.4 0.0914 0.0091

cw log T/n log T/n

(classical) (quantum)

0 0.1667 0.1429

0.1 0.1091 0.0889

0.2 0.0704 0.0548

0.3 0.0387 0.0284

0.4 0.0914 0.0091

Optimal Strategies from MILP. We defined the framework of merging trees,
which allows to write strategies for solving k-list problems (classically and
quantumly) in an abstract and systematic way. Our optimization results were
obtained using Mixed Integer Linear Programming. We used this experimental
evidence to move on to actual proofs and systematic descriptions of our opti-
mums.

Future Work. The merging trees we defined might be extended with more
advanced techniques, inspired by the classical literature on k-list problems. We
tried some of these techniques and could not find a quantum advantage so far.
There are also many cryptographic applications for quantum k-list algorithms
(e.g. lattice algorithms or decoding random linear codes [11]) that we did not
cover yet.

Open Questions. We have proven some optimality results among all merging
trees, which is a set of strategies that we carefully defined, but we do not know
whether an extended framework could be suitable to improve the quantum algo-
rithms. In particular, the time complexity of our merging tree algorithms for
r-encryption encounters a limit 20.3n. Whether an extended framework could
allow to break this bound remains unknown to us. It would also be interesting
to obtain better algorithms for Problem4 (unique k-xor) without QAQM, or
even in the low-qubits model.

Optimal Merging in Quantum k-xor and k-sum Algorithms 339

Acknowledgments. The authors would like to thank Xavier Bonnetain, André Chail-
loux, Lorenzo Grassi, Marc Kaplan and Yu Sasaki for helpful discussions and comments.
This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment no. 714294 - acronym QUASYModo).

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput.
37(1), 210–239 (2007)

3. Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved combinatorial algorithms
for the inhomogeneous short integer solution problem. J. Cryptol. 32(1), 35–83
(2019). https://doi.org/10.1007/s00145-018-9304-1

4. Becker, A., Coron, J., Joux, A.: Improved generic algorithms for hard knapsacks. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 21

5. Belovs, A., Spalek, R.: Adversary lower bound for the k-sum problem. In: Innova-
tions in Theoretical Computer Science, ITCS 2013, pp. 323–328. ACM (2013)

6. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weak-
nesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997). https://
doi.org/10.1137/S0097539796300933

7. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.
16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 2

8. Bernstein, D.J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P.: FSBday.
In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 18–38.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10628-6 2

9. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

10. Both, L., May, A.: The approximate k-list problem. IACR Trans. Symmetric Cryp-
tol. 2017(1), 380–397 (2017). https://doi.org/10.13154/tosc.v2017.i1.380-397

11. Both, L., May, A.: Decoding linear codes with high error rate and its impact
for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3 2

12. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

13. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

14. Brassard, G., Høyer, P., Tapp, A.: Quantum algorithm for the collision problem.
In: Encyclopedia of Algorithms, pp. 1662–1664 (2016)

15. Camion, P., Patarin, J.: The knapsack hash function proposed at Crypto’89 can
be broken. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 39–53.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 3

https://doi.org/10.1007/s00145-018-9304-1
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-642-10628-6_2
https://doi.org/10.13154/tosc.v2017.i1.380-397
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/3-540-46416-6_3

340 M. Naya-Plasencia and A. Schrottenloher

16. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 211–240. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

17. Dinur, I.: An algorithmic framework for the generalized birthday problem. Cryp-
tology ePrint Archive, Report 2018/575 (2018). https://eprint.iacr.org/2018/575

18. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 42

19. Esser, A., Heuer, F., Kübler, R., May, A., Sohler, C.: Dissection-BKW. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 638–
666. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 22

20. Grassi, L., Naya-Plasencia, M., Schrottenloher, A.: Quantum algorithms for the
k-xor problem. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11272, pp. 527–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03326-2 18

21. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Comput-
ing 1996, pp. 212–219. ACM (1996). http://doi.acm.org/10.1145/237814.237866

22. Helm, A., May, A.: Subset sum quantumly in 1.17n. In: TQC. LIPIcs, vol. 111,
pp. 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

23. Hosoyamada, A., Sasaki, Y., Xagawa, K.: Quantum multicollision-finding algo-
rithm. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp.
179–210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 7

24. Kaplan, M.: Quantum attacks against iterated block ciphers. CoRR abs/1410.1434
(2014). http://arxiv.org/abs/1410.1434

25. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC. LIPIcs, vol. 22, pp. 20–34. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2013)

26. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
J. Comput. 40(1), 142–164 (2011)

27. Minder, L., Sinclair, A.: The extended k-tree algorithm. J. Cryptol. 25(2), 349–382
(2012)

28. Naya-Plasencia, M., Schrottenloher, A.: Optimal merging in quantum k-xor and
k-sum algorithms. IACR Cryptology ePrint Archive 2019, 501 (2019)

29. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
30. Nikolić, I., Sasaki, Y.: Refinements of the k -tree algorithm for the generalized

birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 683–703. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 28

31. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

32. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

33. Zhandry, M.: A note on the quantum collision and set equality problems.
Quantum Inf. Comput. 15(7–8), 557–567 (2015). http://dl.acm.org/citation.cfm?
id=2871411.2871413

https://doi.org/10.1007/978-3-319-70697-9_8
https://eprint.iacr.org/2018/575
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-319-96881-0_22
https://doi.org/10.1007/978-3-030-03326-2_18
https://doi.org/10.1007/978-3-030-03326-2_18
http://doi.acm.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-319-70697-9_7
http://arxiv.org/abs/1410.1434
https://doi.org/10.1007/978-3-662-48800-3_28
https://doi.org/10.1007/978-3-662-48800-3_28
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
http://dl.acm.org/citation.cfm?id=2871411.2871413
http://dl.acm.org/citation.cfm?id=2871411.2871413

On the Quantum Complexity of the
Continuous Hidden Subgroup Problem

Koen de Boer1(B), Léo Ducas1, and Serge Fehr1,2(B)

1 Cryptology Group, Centrum Wiskunde & Informatica (CWI),
Amsterdam, The Netherlands

{K.de.Boer,serge.fehr}@cwi.nl
2 Mathematical Institute, Leiden University, Leiden, The Netherlands

Abstract. The Hidden Subgroup Problem (HSP) aims at capturing all
problems that are susceptible to be solvable in quantum polynomial time
following the blueprints of Shor’s celebrated algorithm. Successful solu-
tions to this problems over various commutative groups allow to effi-
ciently perform number-theoretic tasks such as factoring or finding dis-
crete logarithms.

The latest successful generalization (Eisenträger et al. STOC 2014)
considers the problem of finding a full-rank lattice as the hidden sub-
group of the continuous vector space R

m, even for large dimensions
m. It unlocked new cryptanalytic algorithms (Biasse-Song SODA 2016,
Cramer et al. EUROCRYPT 2016 and 2017), in particular to find mildly
short vectors in ideal lattices.

The cryptanalytic relevance of such a problem raises the question
of a more refined and quantitative complexity analysis. In the light of
the increasing physical difficulty of maintaining a large entanglement of
qubits, the degree of concern may be different whether the above algo-
rithm requires only linearly many qubits or a much larger polynomial
amount of qubits.

This is the question we start addressing with this work. We propose a
detailed analysis of (a variation of) the aforementioned HSP algorithm,
and conclude on its complexity as a function of all the relevant param-
eters. Our modular analysis is tailored to support the optimization of
future specialization to cases of cryptanalytic interests. We suggest a
few ideas in this direction.

Keywords: Quantum algorithm · Hidden subgroup · Period finding ·
Fourier transform · Cryptanalysis

1 Introduction

The Hidden Subgroup Problem. Among all quantum algorithms, Shor’s
algorithm [32] for factoring and finding discrete logarithms stands out as

All three authors were supported by the European Union H2020 Research and Inno-
vation Program Grant 780701 (PROMETHEUS). Additionally, K.d.B. was supported
by the ERC Advanced Grant 740972 (ALGSTRONGCRYPTO) and L.D. was sup-
ported by the Veni Innovational Research Grant from NWO under project number
639.021.645.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 341–370, 2020.
https://doi.org/10.1007/978-3-030-45724-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_12

342 K. de Boer et al.

demonstrating the largest complexity gap between classical and quantum com-
puting. It is also singular by its cryptanalytic implications, and, due to progress
toward the realization of large quantum computers, this celebrated algorithm is
now motivating the standardization of quantum-resistant schemes [23], in prepa-
ration of a global update of widely deployed encryption and authentication pro-
tocols.

The core idea of quantum period finding from [32] is not limited to factoring
and discrete logarithm, and the Hidden Subgroup Problem formalized in [22]
serves as a convenient interface between the quantum-algorithmic techniques
for period finding, and applications to solve other computational problems, in
particular problems arising from number theory. We will here discuss only the
case of commutative groups. The cases of non-abelian groups such as dihedral
groups are very interesting as well and have fascinating connections with lattice
problems [29]; however, no polynomial time algorithm is known for those cases,
and the best known algorithm has sub-exponential complexity [19], using very
different techniques.

The simplest version of the Hidden Subgroup Problem consists of finding a
hidden subgroup H in a finite abelian group G, when given access to a strictly
H-periodic function f : G → R. Here, in the language of representation theory,
the off-the-shelf period-finding quantum algorithm finds a uniformly random
character χ ∈ Ĝ that acts trivially on H. Shor’s original algorithm [32] for integer
factoring finds a hidden subgroup H in the ambient group Z. The infiniteness of
Z induces some “cut-off” error; nevertheless, the distribution of the algorithm’s
output is still concentrated around the multiples of the inverse period.

A generalization to the real line H = R was given by Hallgren [16] and allows
to solve Pell’s equation. The case of real vector space of constant dimension
H = R

c has also been studied in [15,31], and permits the computation of unit
groups of number fields of finite degree.

The Continuous Hidden Subgroup Problem in Large Dimension. The
latest generalization of the HSP algorithm, given by Eisenträger, Hallgren,
Kitaev and Song in an extended abstract [11], targets the ambient group G = R

m

(for a non-constant dimension m) with a hidden discrete subgroup H = Λ, i.e.
a lattice. Next to the ambient group R

m being continuous, an additional special
feature is that the Λ-periodic function f is assumed to produce a “quantum out-
put”. More formally, f : R

m → S, x �→ |f(x)〉, where S is the state space of a
quantum system, and the HSP algorithm is given access to a unitary that maps
|x〉|0〉 to |x〉|f(x)〉. A crucial observation here is that |f(x)〉 and |f(y)〉 are not
necessarily orthogonal (or even distinct) for distinct x and y modulo Λ. In other
words, it is not assumed that f is strictly periodic, but merely that |f(x)〉 and
|f(y)〉 are “somewhat orthogonal” for x and y that are “not too close” modulo
Λ, and that f is Lipschitz continuous.

More specifically they consider a variation of the standard HSP algorithm in
order to tackle the Continuous Hidden Subgroup Problem (CHSP). In order to
deal with the continuous nature of the domain R

m of f , the given HSP algo-
rithm acts on a bounded “grid” of points within R

m. Additionally, the algorithm

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 343

is modified in the following ways: (1) The initial state is not a uniform super-
position (over the considered grid points in R

n) but follows a trigonometric
distribution, and (2) the quantum Fourier transform is done “remotely”, i.e.,
rather than applying it to the actual register, the register is entangled with an
ancilla and the quantum Fourier transform is then applied to the ancilla instead.
According to [11], applying the quantum Fourier transform directly would make
the resulting approximation errors difficult to analyze.

As an application, the work of [11] also gave a quantum polynomial time
algorithm for computing the unit group of a number field in their article [11].
This was generalized by Biasse and Song [2] to the computation of S-unit groups,
and therefore to the computation of class groups and to finding a generator of
a principal ideals. This led to solving the short vector problem in certain ideal
lattices for non-trivial approximation factors [7,8,27]. While the cryptanalytic
consequences for ideal-lattice based cryptography seems limited so far [10], these
results demonstrate a hardness gap between ideal lattices and general ones.

The algorithm of [11] has proved itself to be a key tool in quantum crypt-
analysis, and, as such, the question of its precise range of application, and of its
practical efficiency are therefore of cryptographic interest. Unfortunately, [11]
offers only an informal treatment of the algorithm, both in terms of the analysis
and in terms of the formulation of the result. Also, at the time of preparing this
article, there was no full version publicly available.1

The extended abstract [11] explains convincingly that in the limit of choos-
ing an unbounded and infinitely fine grid in R

m the algorithm does what it is
supposed to do; however, the “rate of convergence” and thus the quantitative
aspects of their result are not provided. Furthermore, it was not clear to us
what “polynomial-time” formally meant when the input is an oracle, specified
by various parameters. For example, in an application of the Continuous HSP
algorithm it may be critical to know whether the running time grows polyno-
mially in the Lipschitz constant of f (which is one of the 3 parameters of the
Continuous HSP), or polynomially in its logarithm.

In an email from September 2018, Fang Song [33] partially answered early
questions we had; technically his comments corresponds to a claim on the error
term εlip in Part 2 Step 2 of our analysis of the Dual Lattice Sampling step
(Sect. 5.2). We found that this claim could be related to Yudin-Jackson The-
orem [37]. To make the analysis tighter, we found it preferable to generalize
Yudin-Jackson Theorem to multi-dimensional ranges (see Appendix D of the
full version [3]).

The urge to understand the security post-quantum cryptography motivates
the elevation of the powerful result of [11] into an open and lively research topic.

Our Work. The goal of this paper is to provide a complete, modular, and
quantitative analysis of (a slightly modified version of) the Continuous HSP

1 The STOC 2014 submitted version [11] has been made publicly available online on
November 2019 (after submissison of this paper) http://www.cse.psu.edu/∼sjh26/
units-stoc-submission.pdf. A full version is announced to be in preparation.

http://www.cse.psu.edu/~sjh26/units-stoc-submission.pdf
http://www.cse.psu.edu/~sjh26/units-stoc-submission.pdf

344 K. de Boer et al.

quantum algorithm given by [11]. More concretely, we provide an explicit bound
on the number of qubits needed by the algorithm, clarifying the dependency on
the parameters of the Continuous HSP instance and on the required precision
and success probability. This shows explicitly in what parameters the algorithm
is polynomial time and with what exponent.

The algorithm that we consider and analyze differs from the one consid-
ered [11] in the following points:

– First, we specify the initial state of the algorithm to have Gaussian ampli-
tudes, while [11, Sec. 6.2] suggests to use a cropped trigonometric function;
as far as we can see, our choice makes the analysis simpler and tighter thanks
to the well known tail-cut and smoothness bounds of Banaszczyk [1] and
Micciancio and Regev [20].

– Secondly, we do not make use of a “remote” Fourier transform but instead
follow the blueprint of Shor’s original algorithm in that respect; the claimed
advantage of the “remote” Fourier transform is unclear to us.

These modifications simplify the algorithm and its analysis. Due to the lack of
details given in [11], we can not state a complexity comparison, but we think
this variation is at least as efficient as the original algorithm.

Our analysis is divided into four parts, each summarized by a formal state-
ment given in Sects. 2.3 to 2.6, leading to the main theorem (Sect. 2.2). We insist
on this modular presentation, so as to enable future work on optimization and
specialization of this algorithm to instances of interests; specific suggestions fol-
low.

In the first part (Dual Lattice Sampling), which is the technically more
involved one, we show that the appropriately discretized and finitized, but oth-
erwise (almost) standard HSP quantum algorithm produces sample points in
R

m that lie close to the dual lattice Λ∗ with high probability. More precisely,
and more technically speaking, we show that the algorithm’s output is a sample
point close to �∗ ∈ Λ∗ with probability close to 〈c�∗ |c�∗〉, where the vectors |c�∗〉
are the Fourier coefficients of the function f . This is in line with the general
HSP approach, where for instance Shor’s algorithm for period finding over Z

produces a point that is close to a random multiple of the inverse period, except
with bounded probability.

In this first part (Sect. 4 and Sect. 5), we bound the complexity of the core
algorithm in terms of the error that we allow in the above context of a sampling
algorithm, and depending on the Lipschitz constant of f . In particular, we show
that the number of qubits grows as mQ, where Q, the “number of qubits per
dimension”, grows linearly in the logarithm of the Lipschitz constant of f , the
logarithm of the inverse of the error probability and the logarithm of the inverse
of the (absolute) precision, and quasi-linearly in m. The running time of the
algorithm is then bounded2 by O(m2Q2).

2 This complexity estimate can be lowered to O(mQ log(kmQ)) if we allow an error
in the L2-distance of < 1/k2 [14], see Remark 1.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 345

In the second part (Full Dual Recovery, Sect. 6), we then relate the parameters
of the Continuous HSP instance to the number of sample points, and thus to
how often the core algorithm needs to be repeated, necessary in order to have
an approximation of the entire dual lattice Λ∗.

In the third part (Primal Basis Reconstruction, see Appendix B of the full
version [3]), we study the numerical stability of reconstructing an approximate
basis of the primal lattice Λ from a set of approximate generators of the dual
lattice Λ∗. This is based on the Buchmann-Pohst algorithm [4] already mentioned
in [11]. The claim of [11] involves intricate quantities related to sublattices of Λ,
making the final complexity hard to derive; we provide a simpler statement with
a detailed proof.

Finally, in the last part (see Appendix C of the full version [3]), we revisit
the quantum poly-time algorithm for Gaussian State Preparation [13,18] used
as a black-box in our first part, and provide its precise complexity.

These four parts leads to our formal and quantitative version of the informal
CHSP Theorem of [11, Theorem 6.1], stated as Theorem 1 in Sect. 2.2.

Conclusion and Research Directions. Our conclusion is that, in its generic
form, the Continuous Hidden Subgroup Problem is rather expensive to solve; not
accounting for other parameters than the dimension m, it already requires Õ(m3)
qubits and Õ(m7) quantum gates (or, Õ(m4) quantum gates if an approximate
quantum Fourier transform is used). However, this inefficiency seems to be a
consequence of its genericness. In particular, the core algorithm for Dual Lattice
Sampling would only need Õ(m2) qubits, if it wasn’t for accommodating for the
terrible numerical stability of the Primal Basis Reconstruction step. Similarly,
we expect the number of samples needed to generate the dual lattice to be
significantly smaller for smoother oracle functions.

All in all, our modular analysis of the generic steps of the CHSP algorithm
sets the stage for analyzing and optimizing its specializations, in particular to
cryptanalytic applications [7,8]. We propose as few research directions towards
this objective:

– Study the costs (qubits, quantum gates) and the parameters of the oracle
functions from [2,11,34] for solving the Unit Group Problem, the Principal
Ideal Problem (PIP), and for the computation of the class-group.

– Find stronger hypotheses satisfied by the above oracle functions (or by variant
thereof) that improve this generic analysis of the CHSP algorithm; or resort
to an ad-hoc analysis of the Full Dual Recovery step by directly studying the
spectrum of these oracle functions.

– Explore the possibility of a trade-off between the (classical) Primal Basis
Reconstruction step and the (quantum) Dual Lattice Sampling step, possi-
bly up to small sub-exponential classical complexity. More specifically, does
replacing LLL by BKZ with an medium block-size substantially improve the
numerical stability of Buchmann-Pohst algorithm?

– Exploit prior knowledge of sublattices (potentially close to full-rank) of the
hidden lattice to accelerate or skip the Full Dual Recovery and Primal Basis

346 K. de Boer et al.

Reconstruction steps. This is for example the case when solving PIP [2] while
already knowing the unit group and the class group of a given number field.
This would be applicable in the context of [7,8].

– Exploit known symmetries of the hidden sublattice to improve the Full Dual
Recovery and Primal Basis Reconstruction steps. Such symmetries are for
example induced by the Galois action on the log-unit lattice and the lattice
of class relation, in particular in the case of the cyclotomic number fields.
This would again be applicable in the context of [7,8].

2 Problem Statements and Results

2.1 Notation and Set-Up

Here and throughout the paper, H is a complex Hilbert space of dimension
N = 2n, and S is the unit sphere in H; thus, a vector in S describes the state of
a system of n qubits. For an arbitrary positive integer m, we consider a function

f : R
m → S ⊂ H , x �→ |f(x)〉

that is periodic with respect to a full rank lattice Λ ⊂ R
m; hence, f may be

understood as a function R
m/Λ → S. The function f is assumed to be Lipschitz

continuous with Lipschitz constant

Lip(f) = inf{L > 0 | ‖|f(x)〉 − |f(y)〉‖H ≤ L ‖x − y‖2,Tm}.

Later, we will also require f to be “sufficiently non-constant”. One should think
of f as an oracle that maps a classical input x to a quantum state over n qubits,
which is denoted |f(x)〉.

We write Λ∗ for the dual lattice of Λ. By λ1(Λ) we denote the length of a
shortest non-zero vector of Λ, and correspondingly for λ1(Λ∗). Since Λ is typically
clear from the context, we may just write λ1 and λ∗

1 instead of λ1(Λ) and λ1(Λ∗).
We denote by Br(x) = {y ∈ R

m | ‖y − x‖ < r} the open Euclidean ball
with radius r around x, and by Br(x) = Br(x) ∩ Z

m its integer analogue. For
the open ball around 0 we just denote Br, and for a set X ⊂ R

m we write
Br(X) =

⋃
x Br(x) and Br(X) =

⋃
x Br(x) where the union is over all x ∈ X.

Definition 1 (Definition 1.1 from [11]). A function f : R
m → S ⊂ H is said

to be an (a, r, ε)-HSP oracle of the full-rank lattice Λ ⊂ R
m if

– f is Λ-periodic,
– f is a-Lipschitz: Lip(f) ≤ a,
– For all x, y ∈ R

m such that dRm/Λ(x, y) ≥ r, it holds that |〈f(x)|f(y)〉| ≤ ε,

where dRm/Λ(x, y) = minv∈Λ ‖x − y − v‖ denotes the distance induced by the
Euclidean distance of R

n modulo Λ.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 347

2.2 Main Theorem: Continuous Hidden Subgroup Problem

Theorem 1. There exists a quantum algorithm that, given access to an (a, r, ε)-
HSP oracle with period lattice Λ, r < λ1(Λ)/6 and ε < 1/4, computes, with
constant success probability, an approximate basis B̃ = B +ΔB of this lattice Λ,
satisfying ‖ΔB‖ < τ .

This algorithm makes k quantum oracle calls to the (a, r, ε)-HSP oracle, and
uses mQ+n qubits, O(km2Q2) quantum gates and poly(m, log a

λ∗
1
, log a

τ) classical
bit operations, where

Q = O(mk) + O

(

log
a

λ∗
1

)

+ O

(

log
1

λ∗
1 · τ

)

, (1)

k = O
(
m · log

(√
m · a · (det Λ)1/m

))
(2)

Remark 1. The quantum gate complexity in this theorem can be lowered to
O(kmQ log(kmQ)) if we approximate the quantum Fourier transform [14] over
Z/qm

Z. For example, an approximation that is 1/k2-close in the induced
matrix norm – which is sufficient for our purposes – can be computed using
O(mQ log(kmQ)) quantum gates (where Q = log q). Repeating this approximate
Fourier transform k times, one arrives at the complexity O(kmQ log(kmQ)).

Remark 2. Note that the quantities inside logarithms are homogeneous. In par-
ticular, scaling the lattice Λ by a factor f , also scales τ , 1/a and 1/λ∗

1 by the
same factor f , leaving the complexity parameters Q and k unaffected.

Remark 3. The expert reader may expect the “distortion” parameter λ1 · λ∗
1 of

the lattice Λ to have a bearing on the complexity of this algorithm. It is indeed
implicitly the case: the assumption the HSP definition implies that ar ≥ 1 − ε2,
and therefore the theorem’s hypothesis requires a ≥ 45

8λ1
.

Proof. This is obtained by instantiating Theorems 2 to 5. First, we obtain k sam-
ples close to the dual lattice by invoking k times Algorithm 1, whose correctness
and complexity is given in Theorem2. Samples whose Euclidean length exceed
a certain threshold R are rejected. The approximate samples are collected into
a matrix G̃.

The above step requires to prepare Gaussian states with parameter s over a
grid of granularity q; this is obtained by k calls to Algorithm 1, whose cost and
correctness is stated in Theorem 5. The cost of this subroutine is dominated by
the cost of Algorithm 1.

According to Theorem 3, the approximated dual samples generate the dual
lattice Λ∗ with constant probability. Finally, one applies the Buchmann-Pohst
algorithm [4,5] and matrix inversion to G̃, in order to recover an approximate
basis of the primal lattice Λ. The loss of precision induced by this computation
is given in Theorem 4. The parameters are instantiated as follows:

• the failure probability η of dual lattice sampling is set to η = 1/k2,
• the parameter α driving the success of dual reconstruction is set to α = 1,

348 K. de Boer et al.

• the relative error on dual lattice sample is set to

δ =
(λ∗

1)
2 · det(Λ∗)

2O(mk) · ‖G̃‖m+1∞
· τ,

• the maximal entry size of the dual samples is ‖G̃‖∞ ≤ R where R =
√

m · a,
• the discretization granularity is set to q = 2Q,
• the Gaussian windowing parameter s is set to s = O(

√
m log(η−1)).

We defer the detailed bookkeeping for deriving the parameters Q and k to
Appendix A of the full version [3]. �

2.3 Dual Lattice Sampling Problem

Following our modular approach as outlined in the introduction, we first con-
sider the following Dual Lattice Sampling Problem instead. Informally, the task
is to sample points in R

m that are respectively close to points �∗ ∈ Λ∗ that fol-
low the distribution Dideal(�∗) = 〈c�∗ |c�∗〉, where |c�∗〉 are the vectorial Fourier
coefficients of f : R

m/Λ → S (see Sect. 3).

Problem 1 (Dual Lattice Sampling Problem). Given error parameter η > 0
and a relative distance parameter 1

2 > δ > 0, and given oracle access to an
HSP oracle f as above, sample according to a (finite) distribution D on R

m

that satisfies, for any S ⊆ Λ∗,

pS := D(Bδλ∗
1
(S)

) ≥
(

∑

�∗∈S

〈c�∗ |c�∗〉
)

− η . (3)

In the problem statement above, D(Bδλ∗
1
(S)

)
denotes the cumulative weight

of the set Bδλ∗
1
(S) with respect to the distribution D.

Theorem 2. Algorithm1 solves the Dual Lattice Sampling Problem with param-
eters η and δ; it uses m calls to the Gaussian superposition subroutine (see The-
orem5), one quantum oracle call to f , mQ + n qubits, and O(m2Q2) quantum
gates, where

Q = O

(

m log
(

m log
1
η

))

+ O

(

log
(

Lip(f)
η · δλ∗

1

))

. (4)

Remark 4. Note that this step only requires smoothness of the HSP oracle (via
the Lipchitz constant), but does not rely on the “separability” assumption (third
item of Definition 1). Indeed this third assumption will only play a role to ensure
that those samples are actually non-trivial and usable.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 349

2.4 Full Dual Lattice Recovery

Recovering the full lattice (or equivalently its dual) requires an extra assumption
on the oracle function f , as captured by the third condition in the following
definition, reformatted from Definition 1.1 of [11].

According to Eisenträger et al. [11], for (some undetermined) adequate
parameters, Definition 1 ensures that the distribution on the dual lattice Λ∗

is not concentrated on any proper sublattice, hence sufficiently many samples
will generate the lattice fully. We formalize and quantify this proof strategy, and
obtain the following quantitative conclusion. We note that the constraints on r
and ε are milder that one could think, for example ε does not need to tend to 0
as a function of n or m.

Theorem 3. Let f : R
m → S be an (a, r, ε)-HSP oracle with r ≤ λ1(Λ)/6

and ε ∈ [0, 1/3), and let Dideal be the distribution described above, given by
Dideal(�∗) = 〈c�∗ |c�∗〉 for �∗ ∈ Λ∗. Furthermore, denote by S the random variable
defined by the number of samples that need to be drawn from Dideal such that the
samples together generate Λ∗ as a lattice. Then, for any α > 0,

Pr
[

S > (2 + α)
t + m

1
2 − 1

4π2 − ε

]

≤ exp(−α(t + m)/2)

where t = m log2(
√

m · a) + log2(det(Λ)).

The above Theorem is obtained by combining Lemmata 5 and 8 from Sect. 6,
instantiating the parameter R to R2 = ma2. This choice is somewhat arbi-
trary and given for concreteness, however it does not have a critical quantitative
impact.

2.5 Primal Basis Reconstruction

Theorem 4. There exists a polynomial time algorithm, that, for any matrix
G ∈ R

k×m of k generators of a (dual) lattice Λ∗, and given an approximation
G̃ = G + ΔG ∈ Q

k×n, computes an approximation B̃ = B + ΔB of a basis B of
the primal lattice Λ, such that

‖ΔB‖∞ ≤ 2O(mk) · ‖G̃‖m+1
∞

(λ∗
1)3 · det(Λ∗)

· ‖ΔG‖∞,

under the assumption that ‖ΔG‖∞ <
min(1,(λ∗

1)
2)·det(Λ∗)

2O(km)·‖G̃‖m+1
∞

.

Remark 5. More specifically, the algorithm from Theorem4 essentially consists
of the Buchmann-Pohst algorithm [4,5] and a matrix inversion. Its complexity
is dominated by two calls to LLL on matrices of dimension (m + k) × k and
entry bitsize O(k2 log(‖G̃‖/λ∗

1)) (see the discussion before [4, Cor. 4.1]). One can
optimize the final running time by choosing the adequate variant of LLL [24,26]
depending on the relative dimension and bitsizes of these inputs.

Our contribution on this step is merely a completed numerical analysis, with
the help of a theorem from [6]. A claim with a similar purpose is given in [11],
yet involves more intricate lattice quantities.

350 K. de Boer et al.

2.6 Gaussian State Preparation

The main algorithm of this paper requires the preparation of a multidimensional
Gaussian initial state, which can be obtained by generating the one-dimensional
Gaussian state on m parallel quantum registers. This task is known to be poly-
nomial time [13,18], and we provide a quantitative analysis in Appendix C of
the full version [3]. The precise running time of preparing this Gaussian state is
summarized below.

Theorem 5. For any positive integers q, p and for any s > 1, there exists a
quantum algorithm that prepares the one-dimensional Gaussian state

1
√

ρ1/s(1q [q]c)

∑

x∈ 1
q [q]c

√
ρ1/s(x)|x〉 (5)

up to trace distance se−πs2/8 + Q · 2−p using O(Q + p) qubits and O(Q · p3/2 ·
polylog(p)) quantum gates, where Q = log(q) and 1

q [q]c = [− 1
2 , 1

2) ∩ 1
q Z.

The above theorem is obtained by instantiating Theorem 12 in Appendix
C of the full version [3] with parameters μ = q/2, k = p and σ =

√
2q/s and

relabeling the basis states. Whenever above theorem is used as a subroutine in
Theorem 2, choosing p = log(mQ/η2) is sufficient, causing merely an extra error
of η2.

Remark 6. In Theorem 1, we chose η to be 1/k2, yielding p = log(mk4Q). There-
fore, one call to the one-dimensional Gaussian state preperation with the param-
eters of Theorem 1 takes O(Q) qubits and O(Q log(kmQ)) quantum gates. As
Theorem 1 requires k subsequent preparations of the m-dimensional Gaussian
state, the total costs of the Gaussian state preparation steps are O(mQ) qubits
and Õ(kmQ) quantum gates. As this is negligible to the overall complexity of
Theorem 1, we can ignore these costs.

3 Preliminaries

We start with a brief introduction to Fourier analysis over arbitrary locally
compact Abelian groups. Our general treatment allows us to then apply the
general principles to the different groups that play a role in this work. For the
reader that is unfamiliar with such a general treatment, it is useful—and almost
sufficient—to think of R, of T = R/Z, and a finite group. For more details and
for the proofs we refer to [9].

3.1 Groups

Here and below we consider a locally compact Abelian group G. Such a group
admits a Haar measure μ that is unique up to a normalization factor. The crucial
property of such a Haar measure is that it is invariant under the group action.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 351

Simple examples are G = R with μ the Lebesgue measure λ, or a finite group G
with μ the counting measure #.

The dual group Ĝ, consisting of the continuous group homomorphisms χ from
G into the multiplicative group of complex numbers of absolute value 1, is again
a locally compact Abelian group. As we shall see soon, for a fixed choice of the
normalization factor of the Haar measure μ for G, there is a natural choice for
the normalization factor of the Haar measure μ̂ for Ĝ.

Examples of locally compact Abelian groups that play an important role
in this work are: the m-dimensional real vector space R

m; the m-fold torus
T

m := R
m/Z

m and more generally R
m/Λ for an arbitrary lattice Λ in R

m; and
the finite group D

m := 1
q Z

m/Z
m ⊂ T

m (which is isomorphic to Z
m/qZ

m) for a
positive integer q. Figure 1 below shows the corresponding dual groups as well
as the respective (dual) Haar measures as used in this paper.

G μ Ĝ μ̂

R
m λ R̂

m � R
m λ

T
m := R

m/Z
m λ T̂

m � Z
m #

D
m := 1

q
Z

m/Z
m 1

qm# D̂
m � Z

m/qZ
m #

R
m/Λ 1

det(Λ)
λ ̂(Rm/Λ) � Λ∗ #

Fig. 1. Some groups G and their respective dual groups Ĝ, plus the considered (dual)
Haar measures μ and μ̂. Here, λ denotes the Lebesgue and # the counting measure.

In some cases it will be useful to identify the quotient groups T
m = R

m/Z
m

and D
m = 1

q Z
m/Z

m with the respective representing sets

T
m
rep := [− 1

2 , 1
2)m ⊂ R

m and D
m
rep := 1

q Z
m ∩ T

m
rep,

and similarly D̂
m � Z

m/qZ
m with

D̂
m
rep := [q]mc := Z

m ∩ [− q
2 , q

2)m.

It will be useful to understand that if H ⊂ G is a closed subgroup then G/H
and H have dual groups that satisfy the following natural isomorphisms.

Ĝ/H � H⊥ := {χ ∈ Ĝ | χ(h) = 1∀h ∈ H} ⊂ Ĝ and Ĥ � Ĝ/H⊥.

As we shall see soon, for any choice of the Haar measure μH for H there is a
natural choice for the Haar measure μG/H for G/H, and vice versa.

3.2 Norms and Fourier Transforms

Let G be as above with a fixed choice for the Haar measure μ. For any p ∈ [1,∞],
Lp(G) denotes the vector space of measurable functions f : G → C with finite

352 K. de Boer et al.

norm ‖f‖p (modulo the functions with vanishing norm), where

‖f‖p
p :=

∫

g∈G

|f(g)|pdμ for p < ∞,

and
‖f‖∞ := ess sup

g∈G
|f(g)|,

the essential supremum of |f |. We write ‖f‖p,G if we want to make G explicit.
For any function f ∈ L1(G), the Fourier transform of f is the function

FG{f} : Ĝ → C, χ �→
∫

g∈G

f(g)χ̄(g)dμ,

also denoted by f̂ when G is clear from the context. The Fourier transform of
f ∈ L1(G) is continuous, but not necessarily in L1(Ĝ).

For example, for the group D
m := 1

q Z
m/Z

m with the Haar measure as fixed
in Fig. 1, the L2-norm and the Fourier transform are respectively given by

‖f‖22 =
1

qm

∑

x∈Dm

|f(x)|2 and F{f}(y) =
1

qm

∑

x∈Dm

f(x)e−2πi〈x,y〉 .

We note that we use a different convention on the scaling than what is common
in the context of the quantum Fourier transform.

Given the Haar measure μ for G, there exists a unique dual Haar measure μ̂
for Ĝ with the property that, for any f ∈ L1(G), if f̂ = FG{f} ∈ L1(Ĝ), then
f = F−1

G {f̂}, where

F−1
G {f̂} : G → C, g �→

∫

χ∈Ĝ

f̂(χ)χ(g)dμ̂

is the inverse Fourier transform. From now on it is always understood that the
Haar measure of the dual group is chosen to be the dual of the Haar measure of
the primal group. With this choice, we also have the following well known fact
[9, Thm. 3.4.8].

Theorem 6 (Plancherel’s Identity). For all f ∈ L1(G) ∩ L2(G),

‖f‖2,G = ‖FG{f}‖2,Ĝ .

Finally, we recall the convolution theorem, which states that f̂g = f̂ � ĝ =∫
x∈G

f̂(x)ĝ(· − x)dμ(x) for all functions f, g ∈ L1(G) that have Fourier trans-
forms f̂ , ĝ ∈ L1(G). This extends to functions f ∈ L1(G/H) and g ∈ L1(G),
with f understood as an H-periodic function on G. Tailored to G = R

m and
H = Λ, where R

m/Λ has dual group Λ∗, it then states that

FRm{fg}(y) = FRm/Λ{f} � FRm{g}(y) =
∑

�∗∈Λ∗
FRm/Λ{f}(�∗)FRm{g}(y − �∗)

for any y ∈ R
m.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 353

3.3 The Poisson Summation Formula

Poisson summation formula is well-known for the group G = R, where it states
that

∑
k∈Z

f̂(k) =
∑

x∈Z
f(x). In the case G = Z/NZ, it states that

N/s∑

i=0

f̂(is) =
s∑

j=1

f(j N
s)

for any integer s that divides N . In order to formulate the Poisson summation
formula for an arbitrary locally compact Abelian group G, we need to introduce
the notion of restriction and periodization of functions.

Definition 2 (Restriction). Let H ⊆ G be a subset or a subgroup. For any
continuous function f : G → C we define f

∣
∣
H

: H → C, h �→ f(h).

Definition 3 (Periodization). Let H be a closed subgroup of G with Haar
measure μH . For any function f ∈ L1(G), we define

f |G/H : G/H → C, g + H �→
∫

h∈H

f(g + h)dμH .

For any closed subgroup of G with some fixed Haar measure μ and any choice
of the Haar measure μH for H, there exists a Haar measure μG/H for G/H such
that the quotient integral formula

∫

G/H

(∫

H

f(g + h)dμH(h)
)

dμG/H(g + H) =
∫

G

f(g)dμ(g) (6)

holds for any continuous function f : G → C with compact support (see [9,
Section 1.5]).

With this choice of Haar measure for G/H, and with the dual measures for
the respective dual groups, we are ready to state the general form of the Poisson
summation formula (obtained from [9, Section 3.6], see also Fig. 2).

Theorem 7 (Poisson Summation Formula). For continuous f ∈ L1(G),

FH{f
∣
∣
H

} = FG{f}|Ĥ and FG/H{f |G/H} = FG{f}∣∣
Ĝ/H

.

Fig. 2. Informal illustration of Theorem 7 by means of a diagram that commutes when-
ever the maps are well defined.

354 K. de Boer et al.

Applied to G = R
m and H = Z

m, so that G/H = T
m and Ĝ/H � Z

m; and
applied to G = T

m and H = D
m below, we obtain the following.

Corollary 1. For continuous h ∈ L1(Rm), we have FTm{h|Tm} = FRm{h}∣∣
Zm .

Corollary 2. For continuous t ∈ L1(Tm), we have FDm

{
t
∣
∣
Dm

}
= FTm{t}|D̂m

.

3.4 The Fourier Transform of Vector-Valued Functions

The Fourier transform as discussed above generalizes to vector-valued functions
f : G → C

N simply by applying F to the N coordinate functions, resulting in
a function F{f} : Ĝ → C

N . By fixing an orthonormal basis, this extends to
functions f : G → H for an arbitrary finite-dimensional complex Hilbert space,
where, by linearity of the Fourier transform, F{f} : Ĝ → H is independent of
the choice of the basis.

The norm ‖·‖2,G on functions G → C generalizes to vector-valued func-
tions f : G → H, as well, by defining ‖f‖2,G to be the norm of the scalar
function x �→ ‖f(x)‖H =

√〈f(x)|f(x)〉. The vectorial Fourier transforms and
norms are compatible with each other, in the sense that Plancherel’s identity (see
Theorem 6) still holds; that is,

‖f‖2,G = ‖FG{f}‖2,Ĝ .

Also the Poisson summation formula (see Theorem 7) is still valid, as well as the
convolution theorem whenever one of the functions in the product is scalar:

FG{fg} = FG{f} � FG{g}.

An important example is the case f : R
m/Λ → H. Spelling out the above, we

get

FRm/Λ{f} : Λ∗ → H, �∗ �→ |c�∗〉 :=
1

det Λ

∫

x∈Rm/Λ

|f(x)〉e−2πi〈x,�∗〉dx,

where the vectors |c�∗〉 are also referred to as the (vectorial) Fourier coefficients
of f . The Parseval-Plancherel identity then becomes

∑

�∗∈Λ∗
〈c�∗ |c�∗〉 = ‖f‖22,Rm/Λ :=

1
det Λ

∫

x∈Rm/Λ

〈f(x)|f(x)〉dx.

3.5 Trigonometric Approximation

As another application of the Poisson summation formula, we derive a relation
between the Lipschitz constant of a function on T

m and the ‘error of discretiza-
tion’ in the Fourier transform when restricting the function to D

m.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 355

Theorem 8. For any Lipschitz function h : T
m → H with Lipschitz constant

Lip(h), and any subset C ⊆ D̂
m, we have

∣
∣ ‖1C · FDm {h}‖2,D̂m − ‖1C · FTm{h}‖2,Zm

∣
∣ ≤ 4π

√
m Lip(h)

q

Here and below, we slightly abuse notation and use 1C as indicator function
acting on D̂

m and on Z
m, justified by identifying D̂

m with D̂
m
rep = [q]mc ⊂ Z

m.
Also, we write FDm {h} instead of FDm {h|Dm}, taking it as understood that h
is restricted to D

m when applying FDm .

Proof. Using a result of Yudin ([37, Example I after Theorem 2], see also3

Appendix D of the full version [3]), there exists a trigonometric approximation
t of h, i.e. a function t : T

m → C with t̂(x) := FTm{t}(x) = 0 for all x �∈ [q]mc so
that ‖h − t‖∞ ≤ π

√
m Lip(h)/q. Recalling that D̂

m � Z
m/qZ

m, the fact that
t̂ : Z

m → C vanishes outside of [q]mc implies for all x ∈ [q]mc that

t̂(x) =
∑

d∈qZm

t̂(x + d) = t̂|D̂m

(x + qZ
m) = FDm {t} (x + qZ

m),

where the last equality holds by Corollary 2 (and our convention of omit-
ting the restriction to D

m). In particular, we have ‖1C · FDm {t} ‖2,D̂m =
‖1C · FTm{t}‖2,Zm . Therefore, by the (reverse) triangle inequality and the lin-
earity of the Fourier transform, one obtains

∣
∣ ‖1C · FDm {h}‖2,D̂m − ‖1C · FTm{h}‖2,Zm

∣
∣

≤ ‖1C · FDm {h − t}‖2,D̂m + ‖1C · FTm{h − t}‖2,Zm .

We now observe that

‖1C · FG{h − t}‖2,Ĝ ≤ ‖FG{h − t}‖2,Ĝ = ‖h − t‖2,G ≤
√

μ(G) ‖h − t‖∞

where μ(G) =
∫

G
dμ denotes the total measure of G. We conclude by noting that

μ(G) = 1 for both groups at hand G = D
m and G = T

m. �

3.6 The Gaussian Function and Smoothing Errors

Let m be a fixed positive integer. For any parameter σ > 0, we consider the
m-dimensional Gaussian function

ρσ : R
m → C, x �→ e− π‖x‖2

σ2 ,

which is well known to satisfy the following basic properties.
3 In Appendix D of the full version [3], we provide a slight generalization of Yudin’s

paper [37] to functions with vectorial output. In principle the bound of Theorem 8
can also derived without this generalization, but at the cost of an undesirable extra
factor dim H = 2n.

356 K. de Boer et al.

Lemma 1. For all σ > 0, m ∈ N and x, y ∈ R
m, we have

∫
z∈Rm ρσ(z)dz = σm,

FRm{ρσ} = σmρ1/σ,
√

ρσ(x) = ρ√
2σ(x) and ρσ(x)ρσ(y) = ρ σ√

2
(x+y

2)ρ σ√
2
(x−y

2).

Remark 7. From these properties it follows that the integral of the L2-norm of
x �→ σm/2 · √ρ1/σ(x) equals 1, i.e.,

∥
∥σm/2 · √ρ1/σ(x)

∥
∥2

2,Rm = 1.

The following two results (and the variations we discuss below) will play an
important role and will be used several times in this paper: Banaszczyk’s bound,
originating from [1], and the smoothing error4 , as introduced by Micciancio and
Regev [20]. They allow us to control

ρσ(X) :=
∑

x∈X

ρσ(x),

for certain discrete subsets X ⊆ R
m. For ease of notation, we let

β(m)
z :=

(
2πez2

m

)m/2

e−πz2
,

which decays super-exponentially in z (for fixed m). The following formulation
of Banaszczyk’s lemma is obtained from [21, Equation (1.1)].

Lemma 2 (Banaszczyk’s Bound). Whenever r/σ ≥ √
m
2π ,

ρσ

(
(Λ + t) \ Br

) ≤ β
(m)
r/σ · ρσ(Λ) ,

where Br = Br(0) = {x ∈ R
m

∣
∣ |x| < r}.

Imitating techniques from [20, Lemma 3.2], we have:

Lemma 3. Let σ ≥
√

m
λ1(Λ∗) . Then ρ1/σ(Λ∗\0) ≤ 2 · β

(m)
σλ1(Λ∗).

As a direct corollary, we have the following result.

Corollary 3. Let σ ≥ 2
√

m, and let x ∈ R
m with ‖x‖∞ ≤ 1/2. Then

ρ1/σ

(
Z

m\{0} + x
) ≤ 2β

(m)
σ/2 .

Proof. We have ρ1/σ

(
Z

m\{0} + x
) ≤ ρ1/σ

(
(Zm + x)\B 1

2

) ≤ β
(m)
σ/2ρ1/σ(Zm),

where the second inequality follows from Lemma 2. Using Lemma 3 to argue
that ρ1/σ(Zm) = 1 + ρ1/σ(Zm\0) ≤ 1 + 2β(m)

σ ≤ 2 then proves the claim. �
The following lemma, which combines [20, Lemma 4.1] and [20, Lemma 3.2],

controls the fluctuation of the sum ρs(Λ + t) for varying t ∈ R
m.

4 Although most literature on lattices analyze smoothing errors in terms of the smooth-
ing parameter ηε, we chose not to do so. Instead, this paper addresses smoothing
errors in a reversed and more direct way, making the errors occurring in the later
analysis more easy to describe.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 357

Lemma 4 (Smoothing Error). Let Λ ∈ R
m be a full rank lattice, and let

σ ≥ √
m/λ1(Λ∗). Then, for any t ∈ R

m,

(1 − 2β
(m)
σλ1(Λ∗))

σm

det Λ
≤ ρσ(Λ + t) ≤ (1 + 2β(m)

σλ1(Λ∗))
σm

det Λ
. (7)

Corollary 4. For σ ≥
√

m
λ1(Λ∗) and for any t ∈ R

m, we have ρσ(Λ + t) ≤ 2 σm

detΛ .

Proof. Using Lemma 4 and noticing 2β(m)
σλ1(Λ∗) ≤ 2β

(m)√
m

≤ 1 yields the result. �

3.7 Lipschitz Condition

Theorem 9 (Rademacher’s theorem). A Lipschitz function f : R
m/Λ → H

has weak partial derivatives ∂xj
f : R

m/Λ → H lying in L2(Rm/Λ). In particular,
∑m

j=1

∥
∥∂xj

f
∥
∥2

2,Rm/Λ
≤ Lip(f)2.

Proof. Combining the proof of [17, Theorem 4.1 and 4.9] and [35, Theorem 2]
on measures of compact sets, we obtain this result. �
Corollary 5. Let f : R

m/Λ → H be a Lipschitz-continuous function, and
denote by |c�∗〉 the vectorial Fourier coefficients of f . Then,

∑

�∗∈Λ∗
‖�∗‖≥B

〈c�∗ |c�∗〉 ≤ Lip(f)2

4π2B2
.

Proof. Since f is Lipschitz, we can apply Theorem 9. Furthermore, the identity
|f(x)〉 =

∑
�∗∈Λ∗ |c�∗〉e2πi〈x,�∗〉 implies |∂xj

f(x)〉 = 2πi
∑

�∗∈Λ∗ �∗
j |c�∗〉e2πi〈x,�∗〉

almost everywhere ([36, Lemma V.2.11] or [30, Lemma 2.16]). Finally, given that
∑m

j=1

∥
∥∂xj

f
∥
∥2

2,Rm/Λ
≤ Lip(f)2, Plancherel’s identity implies that

Lip(f)2 ≥
m∑

j=1

∥
∥∂xj

f
∥
∥2

2,Rm/Λ
= 4π2

∑

�∗∈Λ∗
‖�∗‖22 〈c�∗ |c�∗〉

≥ 4π2
∑

�∗∈Λ∗
‖�∗‖2≥B

‖�∗‖22 〈c�∗ |c�∗〉 ≥ 4B2π2
∑

�∗∈Λ∗
‖�∗‖2≥B

〈c�∗ |c�∗〉,

from which the claim follows. �

4 Algorithm

4.1 The Algorithm

Given a Λ-periodic function f : R
m → S as discussed in Sect. 2, which maps a

classical input x to a quantum state |f(x)〉, we consider the following quantum
algorithm (see Fig. 3). The algorithm has oracle access to f , meaning that it has

358 K. de Boer et al.

access to a unitary that maps |x〉|0〉 to |x〉|f(x)〉. As a matter of fact, we may
obviously assume the algorithm to have oracle access to a unitary that maps
|x〉|0〉 to |x〉|f(V x)〉 for a parameter V ∈ R chosen by the algorithm. Per se, x
may be arbitrary in R

m; for any concrete algorithm it is of course necessary to
restrict x to some finite subset of R

m.
The algorithm we consider follows the blueprint of the standard hidden-

subgroup algorithm. Notable differences are that we need to discretize (and
finitize) the continuous domain R

m of the function, and the algorithm starts off
with a superposition that is not uniform but follows a (discretized and finitized)
Gaussian distribution. The reason for the latter choice is that Gaussian distri-
butions decay very fast and behave nicely under the Fourier transform (as they
are eigenfunctions of the Fourier transform).

The algorithm is given in Fig. 3 below. It uses two quantum registers, each
one consisting of a certain number of qubits. Associated to the first register are
orthonormal bases {|x〉Dm}x∈Dm and {|y〉

D̂m}y∈D̂m where the basis vectors are
labeled by x ∈ D

m and y ∈ D̂
m, respectively, which we identify with elements

x ∈ D
m
rep and y ∈ D̂

m
rep (see Sect. 3.1). The second register has state space H.

The algorithm is parameterized by q ∈ N (which determines D
m), s > 0 and

V > 0. Intuitively, the fraction s
V is tightly related to the absolute precision of

the output, whereas q is connected with the number of qubits needed.

Algorithm 1 : Quantum algorithm for the dual lattice sampling problem

1 Prepare the Gaussian state |ψ◦〉 :=
∑

x∈Dm

√
ρ1/s(x) · |x〉Dm |0〉 ;

2 Apply the f-oracle, yielding
∑

x∈Dm

√
ρ1/s(x) · |x〉Dm |f(V x)〉 ;

3 Apply the quantum Fourier transform on the first register, yielding

the unnormalized state
∑

x∈Dm

∑
y∈D̂m

√
ρ1/s(x) · e−2πi〈x,y〉 · |y〉

D̂m |f(V x)〉 ;

4 Measure the first register in the D̂
m
rep-basis yielding some y ∈ D̂

m
rep, and

output y
V

;

Fig. 3. The continuous-hidden-subgroup quantum algorithm.

The description and Analysis of Step 1 is deferred to Appendix C of the
full version [3]. It will be shown (as summarized in Theorem 5) that its cost is
negligible compared to the main cost of Algorithm1, while contributing an error
of at most o(η) in the trace distance.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 359

4.2 The Figure of Merit

Recall that N = dimH = 2n. Then the state after step (2) of Algorithm 1 equals,
up to normalization,

|ψ〉 := sm/2
∑

x∈Dm

√
ρ1/s(x) |x〉Dm |f(V x)〉

which we can rewrite as

|ψ〉 =
∑

x∈Dm

|x〉Dm |h(x)〉

where
h(x) := sm/2

√
ρ1/s(x) · |f(V x)〉.

Applying the quantum Fourier transform in step (3) maps this to

|ψ̂〉 = q−m/2
∑

x∈Dm

∑

y∈D̂m

e−2πi〈x,y〉|y〉
D̂m |h(x)〉 = qm/2

∑

y∈D̂m

|y〉
D̂m |FDm {h} (y)〉,

where the factor qm/2 comes from the fact that, by our convention, the Fourier
transform FDm is scaled with the factor q−m, while the quantum Fourier trans-
form comes with a scaling factor q−m/2.

Up to normalization, the probability to observe outcome y in step (4) thus is

〈ψ̂|(|y〉〈y| ⊗ I)|ψ̂〉 = qm ‖FDm {h} (y)‖2H ,

and so, for any “target” subset C ⊂ D̂
m, the probability for the algorithm to

produce an outcome y ∈ C equals

D(C) =
∑

y∈C

〈ψ̂|(|y〉〈y| ⊗ I)|ψ̂〉
〈ψ◦|ψ◦〉 =

‖1C · FDm {h}‖22,D̂m

sm

qm

∑
x∈Dm ρ1/s(x)

. (8)

Intuitively, in the limit q → ∞, the grid 1
q Z

m becomes R
m; thus, neglecting

constant factors, the function FDm {h} is expected to converge to

FRm{ρ√
2/sf(V ·)} = ρs/

√
2 � FRm{f(V ·)}.

Furthermore, when V is large enough compared to s then, relative to the dual
lattice V Λ∗, the Gaussian function behaves as a Dirac delta function. Thus, the
above function is then supported by V Λ∗ and takes on the values |c�∗〉. Hence,
by taking square norms, we get the claimed 〈c�∗ |c�∗〉.

Below, we prove that this intuition is indeed correct, and we work out the
actual “rate of convergence”.

360 K. de Boer et al.

5 Analysis

5.1 Proof Overview

In the overview here and in the formal analysis in the next section, we consider
the case V = 1. This is without loss of generality; in order to deal with an
arbitrary V we simply apply our analysis to the function fV := f(V ·), with the
effect that in the error term, Λ∗ becomes V Λ∗ and Lip(fV) becomes V Lip(f).

The error analysis (for V = 1) is divided into three parts. The first part
consists of showing that the denominator from Eq. (8) satisfies

sm

qm

∑

x∈Dm

ρ1/s(x) ≈ 1.

In the second part, which is the most technical one, we show that for any
C ⊂ D̂

m, also understood as a subset of D̂
m
rep = [q]mc ⊂ Z

m,

‖1C · FDm {h}‖22,D̂m �
∑

�∗∈Λ∗
Bδλ∗

1
(�∗)⊆C

〈c�∗ |c�∗〉. (9)

We recall that |c�∗〉 are the vectorial Fourier coefficients of f and Bδλ∗
1
(�∗) =

Bδλ∗
1
(�∗) ∩ Z

m. This approximation (9) is divided into the following five steps:

‖1CFDm {h}‖22,D̂m

(1)≈
∥
∥
∥1CFDm

{
h|Tm

}∥
∥
∥
2

2,D̂m

(2)≈
∥
∥
∥1CFTm{h|Tm}

∥
∥
∥
2

2,Zm

(3)
= ‖1CFRm{h}‖22,Zm

(4)≈
∑

�∗∈Λ∗
〈c�∗ |c�∗〉 · ιC(�∗)

(5)

≥
∑

�∗∈Λ∗
Bδλ∗

1
(�∗)⊆C

〈c�∗ |c�∗〉.

It thus follows that
D(C) �

∑

�∗∈Λ∗
Bδλ∗

1
(�∗)⊆C

〈c�∗ |c�∗〉,

and therefore, applied to C := Bδλ∗
1
(S), that for any S ⊂ Λ∗ for which Bδλ∗

1
(S) ⊂

[q]mc , requirement (3) is satisfied.
The third part of the analysis is to show that (3) is satisfied also for S ⊂ Λ∗

for which Bδλ∗
1
(S) is not fully contained in [q]mc . For such S, it is then sufficient to

show that
∑

�∗∈S\S0
〈c�∗ |c�∗〉 ≈ 0 then, where S0 = {�∗ ∈ S | Bδλ∗

1
(�∗) ⊆ [q]mc }.

We prove this by means of Corollary 5.
We emphasize that in the formal proof below, we explicitly follow this 3-part

structure of the proof, with part 2 being divided into 5 steps as indicated above.

5.2 Formal Analysis

Part 1. By Lemma 4, we have (whenever q/s ≥ √
m),

sm

qm

∑

x∈Dm

ρ1/s(x) ≤ sm

qm
· ρ1/s

(
1
q

Z
m

)

≤ 1 + 2β(m)
q/s . (10)

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 361

Therefore,

‖1C · FDm {h}‖22,D̂m

sm

qm

∑
x∈Dm ρ1/s(x)

≥ ‖1C · FDm {h}‖22,D̂m − εdenom (11)

with εdenom = 2β
(m)
q/s .

Part 2. Recall that h = sm/2 ·f ·ρ√
2/s is a function h : R

m → H. In the follow-
ing, by slightly abusing notation, we also understand h as a function h : T

m → H
by considering the restriction of h to T

m
rep = [− 1

2 , 1
2)m. Similarly, we understand

h as a function h : D
m → H by considering its restriction to D

m
rep = T

m
rep ∩ 1

q Z
m.

Step 1. Observe that
∥
∥
∥1C · FDm {h} − 1C · FDm

{

h|Tm
}∥

∥
∥
2,D̂m

≤
∥
∥
∥FDm

{

h − h|Tm
}∥

∥
∥
2,D̂m

=
∥
∥
∥h|Tm − h

∥
∥
∥
2,Dm

.

Writing out the definition of h|Tm

and h, we obtain (provided that s
2
√
2

≥ √
m)

∥
∥
∥h|Tm − h

∥
∥
∥
2

2,Dm
=

1
qm

∑

x∈Dm

∥
∥
∥
∥
∥
∥

∑

z∈Zm\0
h(x + z)

∥
∥
∥
∥
∥
∥

2

H

≤ ‖f‖2∞ sm

qm

∑

x∈Dm

(
∑

z∈Zm\0
ρ√

2/s(x + z)

)2

≤ 4sm(β(m)
s

2
√

2
)2,

as ρ√
2/s

(
Z

m\{0} + x
) ≤ 2β

(m)
s

2
√

2
, from Corollary 3, combining with the fact that

‖f‖∞ = 1. Taking square roots and using the reverse triangle inequality yields
∣
∣
∣
∣‖1C · FDm {h}‖2,D̂m −

∥
∥
∥1C · FDm

{
h|Tm

}∥
∥
∥
2,D̂m

∣
∣
∣
∣ ≤ 2sm/2β

(m)
s

2
√

2
=: εper

Step 2. Using Theorem 8 with h|Tm

, one obtains
∣
∣
∣
∣

∥
∥
∥1C · FDm

{
h|Tm

}∥
∥
∥
2,D̂m

−
∥
∥
∥1C · FTm{h|Tm}

∥
∥
∥
2,Zm

∣
∣
∣
∣ ≤ εlip,

where εlip = 4π
√

mLip(h|Tm
)

q . Recall that we use 1C as indicator function acting

on Z
m and on D̂

m � Z
m/qZ

m in the obvious way.
The Lipschitz constant of h|Tm

can be obtained by taking the maximum value
of the absolute value of the derivative.

∂

∂xj

(
h|Tm

)
= sm/2

∑
z∈Zm

(
∂

∂xj
f (x + z) · ρ√

2/s(x + z) + f (x + z)
∂

∂xj
ρ√

2/s(x + z)

)

362 K. de Boer et al.

The norm of ∇
(
h|Tm

)
is therefore bounded by

sm/2

(

Lip(f)ρ√
2/s(x + Z

m) + πs2 ‖f‖∞
∑

z∈Zm

‖x + z‖ ρ√
2/s(x + z)

)

≤ sm/2
(
2Lip(f) + 2πs2

)

where we used ‖∇f‖ =

√
∑m

j=1

∥
∥
∥ ∂

∂xj
f
∥
∥
∥
2

H
≤ Lip(f), ‖f‖∞ ≤ 1, ∇ρ√

2/s(x) =

πs2x · ρ√
2/s(x), ρ√

2/s(x + Z
m) ≤ 2 and

∑
z∈Zm ‖x + z‖ ρ√

2/s(x + z) ≤ 2. The
second last inequality follows from ρ√

2/s(x + Z
m) ≤ 1 + ρ√

2/s(Z
m\{0} + x) ≤

1 + 2β
(m)

s
2

√
2

≤ 2, see Corollary 3. The last inequality can be obtained by the fact

that ‖x + z‖ ρ√
2/s(x+z) ≤ ρ√

2/(s−1)(x+z), and repeating the former argument.
Step 3. Apply Corollary 1 to conclude that

∥
∥
∥1C · FTm{h|Tm}

∥
∥
∥
2,Zm

= ‖1C · FRm{h}‖2,Zm ,

where we continue to abuse notation here by identifying FRm{h} with its restric-
tion to Z.

Using |a2 − b2| = |a + b||a − b| ≤ (|a − b| + 2|a|)|a − b| and the fact that
‖1C · FDm {h}‖2,D̂m ≤ 2 (which follows from Eq. (8) and Eq. (10)), we conclude
that ∣

∣
∣‖1C · FDm {h}‖22,D̂m − ‖1C · FRm{h}‖22,Zm

∣
∣
∣ ≤ 5(εper + εlip),

where we assume that εper + εlip < 1.
Step 4. By applying the convolution theorem as outlined in Sect. 3.2, we see that

FRm{h}[y] = FRm/Λ{f}�FRm{sm/2ρs/
√
2}(y) =

(
2
s

)m/2∑

�∗∈Λ∗
|c�∗〉ρs/

√
2(y − �∗)

where |c�∗〉 are the vectorial Fourier coefficients of f . Therefore,

‖FRm{h}[y]‖2H =
(

2
s

)m ∑

k∗∈Λ∗

∑

�∗∈Λ∗
〈c�∗ |ck∗〉ρs/

√
2(y − �∗)ρs/

√
2(y − k∗)

=
(

2
s

)m ∑

u∗∈ 1
2Λ∗

∑

v∗∈u∗+Λ∗
〈cv∗+u∗ |cv∗−u∗〉ρs/2(u∗)ρs/2(y − v∗),

where the latter is obtained by the variable substitution u∗ = �∗−k∗
2 , v∗ = �∗+k∗

2 ,
and using Lemma 1. Summing over y ∈ C, setting

ιC(�∗) :=
(

2
s

)m ∑

y∈C

ρs/2(y − �∗),

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 363

and splitting into u∗ = 0 and u∗ �= 0, we obtain

‖1CFRm{h}‖22,Zm =
∑

v∗∈Λ∗
〈cv∗ |cv∗〉 · ιC(v∗)

+
∑

u∗∈ 1
2Λ∗\0

ρs/2(u∗)
∑

v∗∈u∗+Λ∗
〈cv∗+u∗ |cv∗−u∗〉 · ιC(v∗)

We now bound the second term. Assuming s ≥ √
m, we have that ιC(v∗) ≤(

2
s

)m
ρs/2(Zm + t) ≤ 2 (see Corollary 4). Furthermore, by the Cauchy-Schwartz

inequality,
∣
∣
∣
∣
∣

∑

v∗∈u∗+Λ∗
〈cv∗+u∗ |cv∗−u∗〉

∣
∣
∣
∣
∣
≤

∑

v∗∈Λ∗

√
〈cv∗+2u∗ |cv∗+2u∗〉〈cv∗ |cv∗〉

≤
∑

v∗∈Λ∗
(〈cv∗+2u∗ |cv∗+2u∗〉 + 〈cv∗ |cv∗〉) = 2 ‖f‖22,Rm/Λ = 2

Finally, using Lemma 3, we have
∑

u∗∈ 1
2Λ∗\0

ρs/2(u∗) = ρs (Λ∗ \ 0) ≤ 2 · β
(m)
λ∗
1

s

.

Putting all together, we obtain that
∣
∣
∣
∣
∣
‖1CFRm{h}‖22,Zm −

∑

�∗∈Λ∗
〈c�∗ |c�∗〉ιC(�∗)

∣
∣
∣
∣
∣
≤ εdiag ,

where εdiag = 8 · β
(m)
λ∗
1/s.

Step 5. Recall the notation Bδλ∗
1
(�∗) = {x ∈ Z

m | |x − �∗| < δλ∗
1}. Whenever

Bδλ∗
1
(�∗) ⊆ C, it obviously holds that

ιC(�∗) =
(

2
s

)m ∑

y∈C

ρs/2(y − v∗) ≥
(

2
s

)m ∑

y∈Bδλ∗
1
(�∗)

ρs/2(y − �∗)

≥
(

2
s

)m

ρs/2(Zm)
(
1 − β

(m)
2δλ∗

1/s

)
≥ (1 − 2 · β

(m)
s/2)(1 − β

(m)
2δλ∗

1/s),

where the second inequality follows from Banaszczyk’s bound (see Lemma 2) and
the last from Lemma 4. It follows then that

∑

�∗∈Λ∗
〈c�∗ |c�∗〉ι(�∗) ≥ (1 − εsmooth)

∑

�∗∈Λ∗
BV δ(V �∗)⊆C

〈c�∗ |c�∗〉.

where εsmooth = 2 · β
(m)
s/2 + β

(m)
2δλ∗

1/s

364 K. de Boer et al.

Finalizing. By collecting all the error terms, we obtain that

‖1C · FDm {h}‖22,D̂m

≥
∑

�∗∈Λ∗
Bδλ∗

1
(�∗)⊆C

〈c�∗ |c�∗〉 − εsmooth − εdiag − 5(εper + εlip)

whenever s, δ and λ∗
1 satisfy the following:

2δλ∗
1

s
≥ √

m and
s

2
√

2
≥ √

m. (12)

Part 3. Let D be the distribution defined by the output y of Algorithm 1 (recall
that we assumed V = 1); note that D has support only on [q]mc . Throughout
this part of the analysis, S denotes a subset of Λ∗.

By above analysis, we can conclude that whenever Bδλ∗
1
(S) ⊆ [q]mc , we have

(putting C = Bδλ∗
1
(S)),

pS := D(Bδλ∗
1
(S)) ≥

∑

�∗∈S

〈c�∗ |c�∗〉 − η′,

where η′ = εsmooth + εdiag + εdenom + 5(εper + εlip).

For general S ⊆ Λ∗, write S = S0 ∪ S1 as a disjoint union, where S0 =
{�∗ ∈ S | Bδλ∗

1
(�∗) ⊆ [q]mc }. Then it is evident that S1 ⊆ Λ∗\[− q

4 , q
4]m. Then,

putting εtail = 4mLip(f)2

π2q2 ≥ ∑
�∗∈Λ∗\[− q

4 , q
4]

m〈c�∗ |c�∗〉 ≥ ∑
�∗∈S1

〈c�∗ |c�∗〉, (see
Corollary 5), we have

D(Bδλ∗
1
(S)) ≥ D(Bδλ∗

1
(S0)) ≥

∑

�∗∈S0

〈c�∗ |c�∗〉 − η′ ≥
∑

�∗∈S

〈c�∗ |c�∗〉 − εtail − η′,

=
∑

�∗∈S

〈c�∗ |c�∗〉 − εsmooth − εdiag − εdenom − 5(εper + εlip) − εtail (13)

5.3 Tuning Parameters

The left hand side of the table in Fig. 4 collects the different error terms obtained
above, considering V = 1. The general case is obtained simply by applying the
above analysis to the function fV := f(V ·). The hidden lattice of fV is 1

V Λ,
which has V Λ∗ as its dual, and the Lipschitz constant of fV is V Lip(f). Thus,
the requirements on the parameters (see Eq. (12)) change to

2δV λ∗
1

s
≥ √

m and
s

2
√

2
≥ √

m, (14)

and the different error terms become as listed in the table in Fig. 4.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 365

Error V = 1 V arbitrary

εdenom 2β(m)

q/s 2β(m)

q/s

εsmooth 2 · β
(m)

s/2 + β
(m)

2δλ∗
1/s 2 · β

(m)

s/2 + β
(m)

2δV λ∗
1/s

εdiag 8β(m)

λ∗
1/s 8β(m)

V λ∗
1/s

εper 2sm/2β
(m)

s
2

√
2

2sm/2β
(m)

s
2

√
2

εlip
4π

√
msm/2(2 Lip(f)+2πs2)

q

4π
√

msm/2(2V Lip(f)+2πs2)
q

εtail
m Lip(f)2

π2q2
mV 2 Lip(f)2

π2q2

Fig. 4. Change of the errors when applying the analysis to fV

Recall that β
(m)
z :=

(
2πez2

m

)m/2
e−πz2

and N = 2n. We can now choose the
parameters s, V and q of the algorithm appropriately to enforce all the error
terms to be small. In detail, we can select:

– s ∈ O(
√

m log(η−1)) so that 5εper ≤ η/6, and 2β(m)
s/2 ≤ η/12 in εsmooth.

– V ∈ O(
√

m log(η−1)s

δλ∗
1

) = O(m log(η−1)
δλ∗

1
) so that εsmooth, εdiag ≤ η/6.

– Q = log(q) ∈ O(m log(s)+log(V)+log(Lip(f))+log(η−1)) so that 5εlip ≤ η/6
and εtail ≤ η/6.

With the above choice of parameters, εsmooth + εdiag + εdenom + 5(εper + εlip) +
εtail ≤ η in Eq. (13). Unrolling the expression of Q = log(q) and recalling that
the quantum Fourier transform requires a quadratic number of gates [25, Ch. 5],
we obtain the main theorem.

Theorem 10. Algorithm1 solves the Dual Lattice Sampling Problem with
parameters η and δ; it uses m calls to the Gaussian superposition subroutine
(see Theorem5), one quantum oracle call to f , mQ + n qubits, and O(m2Q2)
quantum gates, where

Q = O

(

m log
(

m log
1
η

))

+ O

(

log
(

Lip(f)
η · δλ∗

1

))

. (4)

6 From Sampling to Full Dual Lattice Recovery

We have so far focused on approximate sampling dual lattice points following
weights 〈c�∗ |c�∗〉 for �∗ ∈ Λ∗, regardless of how useful this distribution may be.
Indeed, until now, it could be that the function f : R

m/Λ → S is constant,

366 K. de Boer et al.

and therefore that the weight is concentrated on 0 ∈ Λ∗. We would like now
make sure we can reconstruct (approximately) Λ∗ from such samples, i.e., that
a sufficient number of sampled vectors from Λ∗ will generate it. Informally, an
equivalent condition is that the weight 〈c�∗ |c�∗〉 is not concentrated on any proper
sublattice M∗

� Λ∗. More formally, we give the following sufficient conditions.

Definition 4. Let L ⊆ R
m be a full-rank lattice. A distribution D on L is

called p-evenly distributed whenever Prv←D[v ∈ L′] ≤ p for any proper sublattice
L′

� L.

Definition 5. Let L ⊆ R
m be a full-rank lattice. A distribution D on L is called

(R, q)-concentrated whenever Prv←D[‖v‖ ≥ R] ≤ q.

Lemma 5. Let L ⊆ R
m be a full-rank lattice with a p-evenly distributed and

(R, q)-concentrated distribution D. Denote by S the random variable defined by
the number of samples that needs to be drawn from D such that the samples
together generate L as a lattice. Then, for all α > 0,

Pr
[

S > (2 + α) · (t + m)
1 − p − q

]

≤ exp(−α(t + m)/2)

where t = m log2(R) − log2(det(L)).

Proof. First, we define the following sublattices of L, for any v1, . . . , vj−1 ∈ L.

Lv1,...,vj−1 =
{

span
R
(v1, . . . , vj−1) ∩ L if dim(span

R
(v1, . . . , vj−1)) < m

〈v1, . . . , vj−1〉 otherwise.

Consider a sequence of samples (vi)i>0 (from D). We call vj ‘good’ whenever
‖vj‖ ≤ R and vj /∈ Lv1,...,vj−1 . We argue that we need at most m+t good vectors
to generate L.

Denote L′ for the lattice generated by the m + t good vectors. Then the first
m good vectors ensure that L′ is of rank m, whereas the last t good vectors will
reduce the index of the L′ lattice in L. Calculating determinants, using the fact
that all good vectors are bounded by R, we have det(L′) ≤ Rm/2t ≤ det(L).
This yields L′ = L.

Denote by X the random variable having the negative binomial distribution
with success probability p + q and number of ‘failures’ m + t. That is, X is the
number of independent samples from a (p+ q)-Bernoulli distribution until m+ t
‘failures’5 are obtained. We argue that the random variable S is dominated by
the random variable X, i.e., Pr[S > x] ≤ Pr[X > x] for every x ∈ N.

Again, consider a sequence of samples (vi)i>0 (from D). The probability of
vj being a ‘good’ vector is at least 1 − p − q, by the fact that D is (R, q)-
concentrated and p-evenly distributed. Because at most m+ t ‘good’ vectors are
needed to generate the whole lattice, S is indeed dominated by X. Therefore,
for any k ∈ N,
5 In our case, the failures are the ‘good’ vectors. We nonetheless chose the word ‘failure’

because it is standard nomenclature for the negative binomial distribution.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 367

Pr
[

S >
t + m + k

1 − p − q

]

≤ Pr
[

X >
t + m + k

1 − p − q

]

≤ Pr [B < m + t] (15)

≤ exp
(

−1
2

k2

t + m + k

)

where B is binomially distributed with � t+m+k
1−p−q � trials and success probability

1 − p − q. The first inequality follows from the fact that S is upper bounded by
X. The second inequality comes from the close relationship between the negative
binomial distribution and the binomial distribution [12, Ch. 8, Ex. 17]. The last
inequality follows from Chernoff’s bound. Putting k = (1+α)(t+m) into Eq. (15)
yields the claim. �

We conclude by relating the parameters (a, r, ε) of the HSP oracle
(Definition 1) f : R

m/Λ → S and the assumption used in the above Lemma 5.

Lemma 6. Let Λ be a lattice, and let M � Λ a proper super-lattice of Λ. Then
there exists a v ∈ M such that d(v, Λ) ≥ λ1(Λ)/3.

Proof. Let w ∈ M be the shortest non-zero vector in M and write ‖w‖ = αλ1(Λ)
for α < 1. We show that v = � 1

3α� · w ∈ M suffices. If α ≥ 1/3 this is certainly
true. For α < 1/3 it is clear that ‖v‖ ≥ λ1(Λ)/3 and ‖v‖ ≤ λ1(Λ)/3 + ‖w‖ ≤
2
3λ1(Λ). In particular, for any � ∈ Λ \ {0}, ‖v − �‖ ≥ λ1(Λ) − ‖v‖ ≥ λ1(Λ)/3.
Therefore, d(v, Λ) ≥ λ1(Λ)/3. �
Lemma 7. Let Λ be a lattice and M � Λ a proper super-lattice of Λ. Then the
number N =

∣
∣
{
c ∈ M/Λ | d(c, Λ) < 1

6λ1(Λ)
}∣
∣ of close cosets is at most 1

2 ·|M/Λ|.
Proof. By Lemma 6 there exists a v ∈ M such that d(v, Λ) ≥ 1

3λ1(Λ). Denoting
T =

{
c ∈ M/Λ | d(c, Λ) < 1

6λ1(Λ)
}
, we can deduce that T ∪ (T + v) is a disjoint

union in M/Λ. Indeed, elements c ∈ T satisfy d(c, Λ) ≤ 1
6λ1(Λ), whereas c′ ∈

T + v satisfy d(c′, Λ) ≥ d(v, Λ) − 1
6λ1(Λ) ≥ 1

6λ1(Λ). Therefore N = |T | ≤
1
2 |M/Λ|. �
Lemma 8. Let f : R

m → S be an (a, r, ε)-HSP oracle of the full-rank lattice
Λ ⊂ R

m, with r ≤ λ1(Λ)/6. Let Dideal be the distribution supported by Λ∗, with
weight 〈c�∗ |c�∗〉 at �∗ ∈ Λ∗, where |c�∗〉 are the vectorial Fourier coefficients of
the function f . Then Dideal is both (12 + ε)-evenly distributed and (R, ma2

4π2R2)-
concentrated for any R > 0.

Proof. The distribution Dideal being (R, ma2

4π2R2)-concentrated for any R > 0 is
a direct consequence of Corollary 5. For the (12 + ε)-evenly distributed part,
we argue as follows. Let M∗ be any strict sublattice of Λ∗, and let M be its
dual, which is then a superlattice of Λ. Put f |Rm/M (x) = 1

|M/Λ|
∑

v∈M/Λ f(x +
v), the periodization of f with respect to R

m/M (c.f. Definition 3). We have
the following sequence of equalities, of which the first follows from the Poisson
summation formula (see Theorem 7).

368 K. de Boer et al.

∑

v∗∈M∗
〈cv∗ |cv∗〉 =

∥
∥
∥f |Rm/M

∥
∥
∥
2,Rm/M

=
1

det M

∫

x∈Rm/M

〈
f |Rm/M ∣

∣f |Rm/M〉
dx,

=
1

|M/Λ|2
∑

v,w∈M/Λ

1
det M

∫

x∈Rm/M

〈f(x + v)| f(x + w)〉 dx

︸ ︷︷ ︸
Iv,w

=
1

|M/Λ|2
∑

v,w∈M/Λ
dRm/Λ(v,w)<r

Iv,w +
1

|M/Λ|2
∑

v,w∈M/Λ
dRm/Λ(v,w)≥r

Iv,w

By the definition of an (a, r, ε)-oracle, we have that |Iv,w| ≤ ε whenever
dRm/Λ(v, w) ≥ r. In the rest of the cases we have |Iv,w| ≤ 1, because f maps to
the unit sphere. Above expression is therefore bounded by |M/Λ ∩ Br|

|M/Λ| + ε, where

Br is the open unit ball with radius r. By Lemma 7, we have |M/Λ ∩ rB|
|M/Λ| ≤ 1

2 for
r ≤ λ1(Λ)/6. Summarizing all results, we conclude that

∑

v∗∈M∗
〈cv∗ |cv∗〉 ≤ 1

2
+ ε.

Since M∗ was chosen arbitrarily, we can conclude that Dideal is (12 + ε)-evenly
distributed. �
Remark 8. A similar reasoning happens in [28, Lecture 12], though it specifi-
cally targets the discrete Gaussian distribution on lattices. Despite being not
general enough for our purposes, it may well be helpful for optimizing a future
specialization.

Acknowledgments. We would like to thank Stacey Jeffery, Oded Regev and Ronald
de Wolf for helpful discussions on the topic of this article.

References

1. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(4), 625–636 (1993). http://eudml.org/doc/
165105

2. Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 893–902. Society for Industrial and Applied Mathematics (2016)

3. de Boer, K., Ducas, L., Fehr, S.: On the quantum complexity of the continuous
hidden subgroup problem. Cryptology ePrint Archive, Report 2019/716 (2019).
https://eprint.iacr.org/2019/716

4. Buchmann, J., Kessler, V.: Computing a reduced lattice basis from a generating
system, August 1996

5. Buchmann, J., Pohst, M.: Computing a lattice basis from a system of gen-
erating vectors. In: Davenport, J.H. (ed.) EUROCAL 1987. LNCS, vol. 378,
pp. 54–63. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51517-8 89.
http://dl.acm.org/citation.cfm?id=646658.700556

http://eudml.org/doc/165105
http://eudml.org/doc/165105
https://eprint.iacr.org/2019/716
https://doi.org/10.1007/3-540-51517-8_89
http://dl.acm.org/citation.cfm?id=646658.700556

On the Quantum Complexity of the Continuous Hidden Subgroup Problem 369

6. Chang, X., Stehlé, D., Villard, G.: Perturbation analysis of the QR factor R in the
context of LLL lattice basis reduction. Math. Comput. 81(279), 1487–1511 (2012).
https://doi.org/10.1090/S0025-5718-2012-02545-2

7. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

8. Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and appli-
cation to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 12

9. Deitmar, A., Echterhoff, S.: Principles of Harmonic Analysis, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-0-387-85469-4

10. Ducas, L., Plançon, M., Wesolowski, B.: On the shortness of vectors to be found
by the ideal-SVP quantum algorithm. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 322–351. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 12

11. Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for com-
puting the unit group of an arbitrary degree number field. In: Proceedings of the
Forty-Sixth Annual ACM Symposium on Theory of Computing, pp. 293–302. ACM
(2014)

12. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1994)

13. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently
integrable probability distributions. arXiv preprint quant-ph/0208112 (2002)

14. Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and
applications. In: Proceedings 41st Annual Symposium on Foundations of Computer
Science, pp. 515–525, November 2000. https://doi.org/10.1109/SFCS.2000.892139

15. Hallgren, S.: Fast quantum algorithms for computing the unit group and class
group of a number field. In: Proceedings of the Thirty-Seventh Annual ACM Sym-
posium on Theory of Computing, pp. 468–474. ACM (2005)

16. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the prin-
cipal ideal problem. J. ACM (JACM) 54(1), 4 (2007)

17. Heinonen, J.: Lectures on Lipschitz analysis. http://www.math.jyu.fi/research/
reports/rep100.pdf

18. Kitaev, A., Webb, W.A.: Wavefunction preparation and resampling using a quan-
tum computer. arXiv preprint arXiv:0801.0342 (2008)

19. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

20. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaus-
sian measures. SIAM J. Comput. 37(1), 267–302 (2007). https://doi.org/10.1137/
S0097539705447360

21. Miller, S.D., Stephens-Davidowitz, N.: Generalizations of Banaszczyk’s transfer-
ence theorems and tail bound. arXiv preprint arXiv:1802.05708 (2018)

22. Mosca, M., Ekert, A.: The hidden subgroup problem and eigenvalue estimation on
a quantum computer. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp.
174–188. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49208-9 15

23. National Institute of Standards and Technology: Post-quantum cryptography stan-
dardization (2017). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization

https://doi.org/10.1090/S0025-5718-2012-02545-2
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-319-56620-7_12
https://doi.org/10.1007/978-3-319-56620-7_12
https://doi.org/10.1007/978-0-387-85469-4
https://doi.org/10.1007/978-3-030-26948-7_12
https://doi.org/10.1007/978-3-030-26948-7_12
https://doi.org/10.1109/SFCS.2000.892139
http://www.math.jyu.fi/research/reports/rep100.pdf
http://www.math.jyu.fi/research/reports/rep100.pdf
http://arxiv.org/abs/0801.0342
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
http://arxiv.org/abs/1802.05708
https://doi.org/10.1007/3-540-49208-9_15
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

370 K. de Boer et al.

24. Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J.
Comput. 39(3), 874–903 (2009)

25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,
10th edn. Cambridge University Press, New York (2011)

26. Novocin, A., Stehlé, D., Villard, G.: An LLL-reduction algorithm with quasi-linear
time complexity. In: Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, pp. 403–412. ACM (2011)

27. Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with pre-
processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477,
pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-
3 24

28. Regev, O.: Lecture notes in ‘lattices in computer science’, November 2004
29. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33(3),

738–760 (2004)
30. Reiter, M., Arthur, S.: Fourier transform & solobev spaces (lecture notes) (2008).

https://www.mat.univie.ac.at/∼stein/teaching/SoSem08/sobolev fourier.pdf
31. Schmidt, A., Vollmer, U.: Polynomial time quantum algorithm for the computation

of the unit group of a number field. In: Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing, pp. 475–480. ACM (2005)

32. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

33. Song, F.: Email, from September 2018
34. Song, F.: Quantum computing: a cryptographic perspective. Ph.D. thesis, The

Pennsylvania State University (2013). https://etda.libraries.psu.edu/files/final
submissions/8820

35. Villani, A.: Another note on the inclusion lp(μ) ⊂ lq(μ). Am. Math. Monthly 92(7),
485–487 (1985). http://www.jstor.org/stable/2322503

36. Werner, D.: Funktionalanalysis. Springer, Heidelberg (2007)
37. Yudin, V.A.: The multidimensional Jackson theorem. Math. Notes Acad. Sci. USSR

20(3), 801–804 (1976). https://doi.org/10.1007/BF01097255

https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/978-3-030-17656-3_24
https://www.mat.univie.ac.at/~stein/teaching/SoSem08/sobolev_fourier.pdf
https://etda.libraries.psu.edu/files/final_submissions/8820
https://etda.libraries.psu.edu/files/final_submissions/8820
http://www.jstor.org/stable/2322503
https://doi.org/10.1007/BF01097255

Foundations

Formalizing Data Deletion in the Context
of the Right to Be Forgotten

Sanjam Garg1(B), Shafi Goldwasser2, and Prashant Nalini Vasudevan1(B)

1 Department of Electrical Engineering and Computer Sciences,
University of California Berkeley, Berkeley, USA

{sanjamg,prashvas}@berkeley.edu
2 Simons Institute for the Theory of Computing,
University of California Berkeley, Berkeley, USA

shafi@theory.csail.mit.edu

Abstract. The right of an individual to request the deletion of their per-
sonal data by an entity that might be storing it – referred to as the right
to be forgotten – has been explicitly recognized, legislated, and exercised
in several jurisdictions across the world, including the European Union,
Argentina, and California. However, much of the discussion surrounding
this right offers only an intuitive notion of what it means for it to be
fulfilled – of what it means for such personal data to be deleted.

In this work, we provide a formal definitional framework for the right
to be forgotten using tools and paradigms from cryptography. In par-
ticular, we provide a precise definition of what could be (or should be)
expected from an entity that collects individuals’ data when a request
is made of it to delete some of this data. Our framework captures most,
though not all, relevant aspects of typical systems involved in data pro-
cessing. While it cannot be viewed as expressing the statements of current
laws (especially since these are rather vague in this respect), our work
offers technically precise definitions that represent possibilities for what
the law could reasonably expect, and alternatives for what future ver-
sions of the law could explicitly require.

Finally, with the goal of demonstrating the applicability of our frame-
work and definitions, we consider various natural and simple scenarios
where the right to be forgotten comes up. For each of these scenarios, we
highlight the pitfalls that arise even in genuine attempts at implementing
systems offering deletion guarantees, and also describe technological solu-
tions that provably satisfy our definitions. These solutions bring together
techniques built by various communities.

S. Garg and P. N. Vasudevan—Supported in part from AFOSR Award FA9550-19-1-
0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA and SPAWAR under
contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foun-
dation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The
views expressed are those of the authors and do not reflect the official policy or position
of the funding agencies.
S. Goldwasser—Supported in part by the C. Lester Hogan Chair in EECS, UC Berkeley,
and Fintech@CSAIL.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 373–402, 2020.
https://doi.org/10.1007/978-3-030-45724-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_13

374 S. Garg et al.

1 Introduction

Everything we do in our lives leaves (or will soon leave) a digital trace, which
can be analyzed. Recent advances in capturing and analyzing big data help us
improve traffic congestion, accurately predict human behavior and needs in vari-
ous situations, and much more. However, this mass collection of data can be used
against people as well. Simple examples of this would be to charge individuals
higher auto insurance premiums or decline mortgages and jobs based on an indi-
vidual’s profile as presented by the collected data. In the worst case, this wealth
of information could be used by totalitarian governments to persecute their citi-
zens years after the data was collected. In such ways, vast collection of personal
data has the potential to present a serious infringement to personal liberty. Indi-
viduals could perpetually or periodically face stigmatization as a consequence
of a specific past action, even one that has already been adequately penalized.
This, in turn, threatens democracy as a whole, as it can force individuals to
self-censor personal opinions and actions for fear of later retaliation.

One alternative for individuals wanting to keep personal information secret
is to simply stay offline, or at least keep such information hidden from entities
that are likely to collect it. Yet, this is not always desirable or possible. These
individuals might want to share such information with others over an internet-
based platform, or obtain a service based on their personal information, such
as personalized movie recommendations based on previous movie watching his-
tory, or simply driving directions to their destination based on where they want
to go. In such cases, it is reasonable to expect that an individual might later
change their mind about having this data available to the service provider they
sent it to. In order to provide useful functionality while keeping in mind the
aforementioned perils of perennial persistence of data, an individual’s ability to
withdraw previously shared personal information is very important. For exam-
ple, one might want to request deletion of all personal data contained in one’s
Facebook account.

However, in many cases, an individual’s desire to request deletion of their
private data may be in conflict with a data collector’s1 interests. In particular,
the data collector may want to preserve the data because of financial incentives
or simply because fulfilling these requests is expensive. It would seem that, in
most cases, the data collector has nothing to gain from fulfilling such requests.

Thus, it seems imperative to have in place legal or regulatory means to grant
individuals control over what information about them is possessed by different
entities, how it is used, and, in particular, provide individuals the rights to
request deletion of any (or all) of their personal data. And indeed, the legitimacy
of this desire to request deletion of personal data is being increasingly widely
discussed, codified in law, and put into practice (in various forms) in, for instance,
the European Union (EU) [GDP16], Argentina [Car13], and California [CCP18].
The following are illustrative examples:

1 Throughout this paper, we refer to any entity collecting individuals’ data as a “data
collector”, and often refer such indivisuals whose data is collected as “users”.

Formalizing Data Deletion in the Context of the Right to Be Forgotten 375

– The General Data Protection Regulation (GDPR) [GDP16], adopted in 2016,
is a regulation in the EU aimed at protecting the data and privacy of indi-
viduals in the EU. Article 6 of the GDPR lists conditions under which an
entity may lawfully process personal data. The first of these conditions is
when “the data subject has given consent to the processing of his or her
personal data for one or more specific purposes”. And Article 7 states that,
“The data subject shall have the right to withdraw his or her consent at any
time”. Further, Article 17 states that, “The data subject shall have the right
to obtain from the controller the erasure of personal data concerning him or
her without undue delay and the controller shall have the obligation to erase
personal data without undue delay” under certain conditions listed there.

– The California Consumer Privacy Act (CCPA), passed in 2018, is a law with
similar purposes protecting residents of California. Section 1798.105 of the
CCPA states, “A consumer shall have the right to request that a business
delete any personal information about the consumer which the business has
collected from the consumer”, and that “A business that receives a verifiable
request from a consumer . . . shall delete the consumer’s personal information
from its records.”

Thus, if a data collector (that operates within the jurisdictions of these laws)
wishes to process its consumers’ data based on their consent, and wishes to do
so lawfully, it would also need to have in place a mechanism to stop using any
of its consumers’ data. Only then can it guarantee the consumers’ right to be
forgotten as the above laws require. However, it is not straightforward to nail
down precisely what this means and involves.

Defining Deletion: More that Meets the Eye. Our understanding of what it means
to forget a user’s data or honor a user deletion request is rather rudimentary, and
consequently, the law does not precisely define what it means to delete some-
thing. Further, this lack of understanding is reflected in certain inconsistencies
between the law and what would naturally seem desirable. For example, Article 7
of the GDPR, while describing the right of the data subject to withdraw consent
for processing of personal data, also states, “the withdrawal of consent shall not
affect the lawfulness of processing based on consent before its withdrawal.” This
seems to suggest that it is reasonable to preserve the result of processing per-
formed on user data even if the data itself is requested to be deleted. However,
processed versions of user data may encode all or most of the original data, per-
haps even inadvertently. For instance, it is known that certain machine learning
models end up memorizing the data they were trained on [SRS17,VBE18].

Thus, capturing the intuitive notion of what it means to truly delete some-
thing turns out be quite tricky. In our quest to do so, we ask the following
question:

How does an honest data collector know whether it is in compliance with the
right to be forgotten?

Here, by honest we mean a data collector that does in fact intend to guarantee
its users’ right to be forgotten in the intuitive sense – it wishes to truly forget all

376 S. Garg et al.

personal data it has about them. Our question is about how it can tell whether
the algorithms and mechanisms it has in place to handle deletion requests are
in fact working correctly.

Honest Data-Collectors. In this work, we focus on the simple case where the
data-collector is assumed to be honest. In other words, we are only interested in
the data-collectors that aim to faithfully honor all legitimate deletion requests.
Thus, we have no adversaries in our setting. This deviates from many cryp-
tographic applications where an adversary typically attempts to deviate from
honest execution. Note that even in the case of semi-honest adversaries in mul-
tiparty computation, the adversary attempts to learn more than what it is sup-
posed to learn while following protocol specification. In our case, we expect the
data-collector to itself follow the prescribed procedures, including deleting any
stored information that it is directed to delete.

With the above view, we do not attempt to develop methods by which a data
collector could prove to a user that it did indeed delete the user’s data. As a
remark, we note here that this is in fact impossible in general, as a malicious
data collector could always make additional secret copies of user data.2 Finally,
we note that even for this case of law-abiding data-collectors, the problem of
defining what it means to delete data correctly is relevant. The goal of our
definitions is to provide such data-collectors guidance in designing systems that
handle data deletion, and a mechanism to check that any existing systems are
designed correctly and are following the law (or some reasonable interpretation
of it).

When is it Okay to Delete? Another challenge a data-collector faces in handling
deletion requests is in establishing whether a particular deletion request should
be honored. Indeed, in some cases a data collector may be legally required to
preserve certain information to satisfy legal or archival needs, e.g. a data collector
may be required to preserve some payment information that is evidence in a case
in trial. This raises the very interesting question of how to determine whether
a particular deletion request should indeed be honored, or even what factors
should be taken into consideration while making this decision. However, this is
not the focus of this work. Instead, we are only interested in cases where the
data-collector does intend (or has already decided) to honor a received deletion
request, after having somehow found it legitimate. In such cases, we aim to
specify the requirements this places on the data-collector.

Our Contributions. In this work, we provide the first precise general notions of
what is required of an honest data-collector trying to faithfully honor deletion
requests. We say that a data-collector is deletion-compliant if it satisfies our
requirements. Our notions are intended to capture the intuitive expectations

2 Certifying deletion could be possible in specific settings though, such as under
assumptions on the amount of storage available to the data collector [PT10,DKW11,
KK14], or in the presence of quantum computers and data [CW19,BI19].

Formalizing Data Deletion in the Context of the Right to Be Forgotten 377

a user may have when issuing deletion requests. Furthermore, it seems to sat-
isfy the requirements demanded, at least intuitively, by the GDPR and CCPA.
However, we note that our definition should not be seen as being equivalent to
the relevant parts of these laws – for one, the laws themselves are somewhat
vague about what exactly they require in this respect, and also there are certain
aspects of data-processing systems that are not captured by our framework (see
Sect. 2.2 for a discussion). Instead, our work offers technically precise definitions
for data deletion that represent possibilities for interpretations of what the law
could reasonably expect, and alternatives for what future versions of the law
could explicitly require.

Next, armed with these notions of deletion-compliance, we consider various
natural scenarios where the right to be forgotten comes up. For each of these sce-
narios, we highlight the pitfalls that arise even in genuine attempts at writing laws
or honest efforts in implementing systems with these considerations. Our defini-
tions provide guidance towards avoiding these pitfalls by, for one, making them
explicit as violations of the definitions. In particular, for each of the considered sce-
narios, we describe technological solutions that provably satisfy our definitions.
These solutions bring together techniques built by various communities.

1.1 Our Notions

In this subsection, we explain our notions of deletion-compliance at a high level,
building them up incrementally so as to give deeper insights. The formal def-
initions are in terms of building blocks from the UC framework [Can01], and
details are provided in Sect. 2.1.

The Starting Challenge. We start with the observation that a deletion request
almost always involves much more than the process of just erasing something
from memory. In fact, this issue comes up even in the most seemingly benign dele-
tion requests. For example, consider the very simple case where a user requests
deletion of one of her files stored with a data-collector. In this setting, even if
the server was to erase the file from its memory, it may be the case that not
all information about it has been deleted. For example, if the files are stored
contiguously in memory, it might be possible to recover the size of the file that
was deleted. Furthermore, if the files of a user are kept on contiguous parts of the
memory, it might be possible to pin-point the owner of the deleted file as well,
or in most cases at least be able to tell that there was a file that was deleted.

Our Approach: Leave No Trace. In order to account for the aforementioned
issues, we take the leave-no-trace approach to deletion in our definitions. In
particular, a central idea of our definition is that execution of the deletion request
should leave the data collector and the rest of the system in a state that is
equivalent (or at least very similar) to one it would have been in if the data that
is being deleted was never provided to the data-collector in the first place.

The requirement of leave-no-trace places several constraints on the data-
collector. First, and obviously, the data that is requested to be deleted should no
longer persist in the memory of the data-collector after the request is processed.

378 S. Garg et al.

Second, as alluded to earlier, the data-collector must also remove the dependen-
cies that other data could have on the data that is requested for deletion. Or at
least, the data-collector should erase the other stored information which depends
on this data. We note that we diverge from the GDPR in this sense, as it only
requires deletion of data rather than what may have been derived from it via
processing. Third, less obvious but clearly necessary demands are placed on the
data-collector in terms of what it is allowed to do with the data it collects. In
particular, the data-collector cannot reveal any data it collects to any external
entity. This is because sharing of user data by the data-collector to external
entities precludes it from honoring future deletion requests for the shared data.
More specifically, on sharing user data with an external entity, the data-collector
loses its the ability to ensure that the data can be deleted from everywhere where
it is responsible for the data being present or known. That is, if this data were
never shared with the data collector, then it would not have found its way to the
external entity, and thus in order for the system to be returned to such a state
after a deletion request, the collector should not reveal this data to the entity.

A more concrete consequence of the third requirement above is that the
data-collector cannot share or sell user data to third parties. Looking ahead, in
some settings this sharing or selling of user data is functionally beneficial and
legally permitted as long as the collector takes care to inform the recipients of
such data of any deletion requests. For instance, Article 17 of the GDPR says,
“Where the controller has made the personal data public and is obliged . . . to
erase the personal data, the controller . . . shall take reasonable steps, including
technical measures, to inform controllers which are processing the personal data
that the data subject has requested the erasure by such controllers of any links
to, or copy or replication of, those personal data.” We later see (in Sect. 2.3) how
our definition can be modified to handle such cases and extended to cover data
collectors that share data with external entities but make reasonable efforts to
honor and forward deletion requests.

The Basic Structure of the Definition. In light of the above discussion, the basic
form of the definition can be phrased as follows. Consider a user Y that shares
certain data with a data-collector and later requests for the shared data to be
deleted. We refer to this execution as a real world execution. In addition to this
user, the data-collector might interact with other third parties. In this case, we
are interested in the memory state of the data-collector post-deletion and the
communication between the data-collector and the third parties. Next, we define
the ideal world execution, which is same as the real world execution except that
the user Y does not share anything with the data-collector and does not issue
any deletion requests. Here again we are interested in the memory state of the
data-collector and the communication between the data-collector and the third
parties. More specifically, we require that the joint distribution of memory state
of the data-collector and the communication between the data-collector and the
third parties in the two worlds is identically distributed (or is at least very close).
Further, this property needs to hold not just for a specific user, but hold for every
user that might interact with the data-collector as part of its routine operation

Formalizing Data Deletion in the Context of the Right to Be Forgotten 379

where it is interacting with any number of other users and processing their data
and deletion requests as well. Note that the data-collector does not a priori know
when and for what data it will receive deletion requests.

A More Formal Notion. Hereon, we refer to the data-collector as X , and the
deletion requester as Y. In addition to these two entities, we model all other
parties in the system using Z, which we also refer to as the environment. Thus,
in the real execution, the data-collector X interacts arbitrarily with the envi-
ronment Z. Furthermore, in addition to interactions with Z, X at some point
receives some data from Y which Y at a later point also requests to be deleted.
In contrast, in the ideal execution, Y is replaced by a silent Y0 that does not
communicate with X at all. In both of these executions, the environment Z rep-
resent both the rest of the users in the system under consideration, as well as
an adversarial entity that possibly instructs Y on what to do and when. Finally,
our definition requires that the state of X and the view of Z in the real execu-
tion and the ideal execution are similar. Thus, our definition requires that the
deletion essentially has the same effect as if the deleted data was never sent to
X to begin with. The two executions are illustrated in Fig. 1.

Fig. 1. The real and ideal world executions. In the real world, the deletion-requester
talks to the data collector, but not in the ideal world. In the real world, π1 and π2

are interactions that contain data that is asked to be deleted by the deletion-requester
through the interactions πD,1 and πD,2, respectively.

While Y above is represented as a single user sending some data and a cor-
responding deletion request, we can use the same framework for a more general
modeling. In particular, Y can be used to model just the part of a user that
contains the data to be deleted, or of multiple users, all of whom want some or
all of their data to be deleted.

Dependencies in Data. While the above definition makes intuitive sense, certain
user behaviors can introduce dependencies that make it impossible for the data-
collector to track and thus delete properly. Consider a data-collector that assigns
a pseudonym to each user, which is computed as the output of a pseudo-random

380 S. Garg et al.

permutation P (with the seed kept secret by the data-collector) on the user
identity. Imagine a user who registers in the system with his real identity id and
is assigned the pseudonym pd. Next, the user re-registers a fresh account using pd
as his identity. Finally, the user requests deletion of the first account which used
his real identity id. In this case, even after the data-collector deletes the requested
account entirely, information about the real identity id is still preserved in its
memory, i.e. P−1(pd) = id. Thus, the actions of the user can make it impossible
to keep track of and properly delete user data. In our definition, we resolve this
problem by limiting the communication between Y and Z. We do not allow Y
to send any messages to the environment Z, and require that Y ask for all (and
only) the data it sent to be deleted. This implicitly means that the data that is
requested to be deleted cannot influence other information that is stored with
the data-collector, unless that is also explicitly deleted by the user.

Requirement that the Data-Collector Be Diligent. Our definitions of deletion
compliance place explicit requirements on the data collector only when a deletion
request is received. Nonetheless, these explicit requirements implicitly require
the data-collector to organize (or keep track of the collected data) in a way that
ensures that deletion requests can be properly handled. For example, our defi-
nitions implicitly require the data-collector to keep track of how it is using each
user’s data. In fact, this book-keeping is essential for deletion-compliance. After
all, how can a data-collector delete a user’s data if it does not even know where
that particular user’s data is stored? Thus, a data-collector that follows these
implicit book-keeping requirements can be viewed as being diligent. Furthermore,
it would be hard (if not impossible) for a data-collector to be deletion-compliant
if it is not diligent.

As we discuss later, our definition also implies a requirement on the data-
collector to have in place authentication mechanisms that ensure that it is shar-
ing information only with the legitimate parties, and that only the user who
submitted a piece of data can ask for it to be deleted.

Composition Properties. Finally, we also show, roughly, that under an assump-
tion that different users operate independently of each other, a data collector
that is deletion-compliant under our definition for a deletion request from a sin-
gle user is also deletion-compliant for requests from (polynomially) many users
(or polynomially many independent messages from a single user). This makes our
definition easier to use in the analysis of certain data collectors, as demonstrated
in our examples in Sect. 3.

1.2 Lessons from Our Definitions

Our formalization of the notion of data deletion enables us to design and analyze
mechanisms that handle data obtained from others and process deletion requests,
as demonstrated in Sect. 3. This process of designing systems that satisfy our
definition has brought to light a number of properties such a mechanism needs

Formalizing Data Deletion in the Context of the Right to Be Forgotten 381

to have in order to be deletion-compliant that may be seen as general principles
in this respect.

To start with, satisfying our definition even while providing very simple func-
tionalities requires a non-trivial authentication mechanism that uses randomness
generated by the server. Otherwise many simple attacks can be staged that lead
to observable differences based on whether some specific data was stored and
deleted or never stored. The easier case to observe is when, as part of its func-
tionality, the data collector provides a way for users to retrieve data stored with
it. In this case, clearly if there is no good authentication mechanism, then one
user can look at another user’s data and be able to remember it even after
the latter user has asked the collector to delete it. More broadly, our definition
implicitly requires the data collector to provide certain privacy guarantees – that
one user’s data is not revealed to others.

But even if such an interface is not provided by the collector, one user may
store data in another user’s name, and then if the latter user ever asks for its
data to be deleted, this stored data will also be deleted, and looking at the
memory of the collector after the fact would indicate that such a request was
indeed received. If whatever authentication mechanism the collector employs
does not use any randomness from the collector’s side, such an attack may be
performed by any adversary that knows the initial state (say the user name and
the password) of the user it targets.

Another requirement that our definition places on data collectors is that they
handle metadata carefully. For instance, care has to be taken to use implemen-
tations of data structures that do not inadvertently preserve information about
deleted data in their metadata. This follows from our definition as it talks about
the state of the memory, and not just the contents of the data structure. Such
requirements may be satisfied, for instance, by the use of “history-independent”
implementations of data structures [Mic97,NT01], which have these properties.

Further, this kind of history-independence in other domains can also be
used to provide other functionalities while satisfying our definition. For instance,
recent work [CY15,GGVZ19,Sch20,BCC+19,BSZ20] has investigated the ques-
tion of data deletion in machine learning models, and this can be used to con-
struct a data collector that learns such a model based on data given to it, and
can later delete some of this data not just from its database, but also from the
model itself.

Finally, we observe that certain notions of privacy, such as differential pri-
vacy [DMNS06], can sometimes be used to satisfy deletion requirements without
requiring any additional action from the data collector at all. Very roughly, a dif-
ferentially private algorithm guarantees that the distribution of its output does
not change by much if a small part of its input is changed. We show that if a
data collector runs a differentially private algorithm on data that it is given, and
is later asked to delete some of the data, it need not worry about updating the
output of the algorithm that it may have stored (as long as not too much data
is asked to be deleted). Following the guarantee of differential privacy, whether

382 S. Garg et al.

the deleted data was used or not in the input to this algorithm essentially does
not matter.

1.3 Related Work

Cryptographic treatment of legal terms and concepts has been undertaken in
the past. Prominent examples are the work of Cohen and Nissim [CN19] that
formalizes and studies the notion of singling-out that is specified in the GDPR
as a means to violate privacy in certain settings, and the work of Nissim et al.
[NBW+17] that models the privacy requirements of FERPA using a game-based
definition.

Recently, the notion of data deletion in machine learning models has been
studied by various groups [CY15,GGVZ19,Sch20,BCC+19,BSZ20]. Closest to
our work is the paper of Ginart et al. [GGVZ19], which gives a definition for
what it means to retract some training data from a learned model, and shows
efficient procedures to do so in certain settings like k-means clustering. We dis-
cuss the crucial differences between our definitions and theirs in terms of scope
and modelling in Sect. 2.2.

There has been considerable past work on notions of privacy like differential
privacy [DMNS06] that are related to our study, but very different in their con-
siderations. Roughly, in differential privacy, the concern is to protect the privacy
of each piece of data in a database – it asks that the output of an algorithm
running on this database is roughly the same whether or not any particular
piece of data is present. We, in our notion of deletion-compliance, ask for some-
thing quite different – unless any piece of data is requested to be deleted, the
state of the data collector could depend arbitrarily on it; only after this deletion
request is processed by the collector do the requirements of our definition come
in. In this manner, while differential privacy could serve as a means to satisfy
our definition, our setting and considerations in general are quite different from
those there. For similar reasons, our definitions are able to require bounds on
statistical distance without precluding all utility (and in some cases even perfect
deletion-compliance is possible), whereas differential privacy has to work with a
different notion of distance between distributions (see [Vad17, Section 1.6] for a
discussion).

While ours is the first formal definition of data deletion in a general setting,
there has been considerable work on studying this question in specific contexts,
and in engineering systems that attempt to satisfy intuitive notions of data
deletion, with some of it being specifically intended to support the right to be
forgotten. We refer the reader to the comprehensive review article by Politou
et al. [PAP18] for relevant references and discussion of such work.

2 Our Framework and Definitions

In this section we describe our framework for describing and analyzing data
collectors, and our definitions for what it means for a data collector to be

Formalizing Data Deletion in the Context of the Right to Be Forgotten 383

deletion-compliance. Our modeling uses building blocks that were developed
for the Universal Composability (UC) framework of Canetti [Can01]. First, we
present the formal description of this framework and our definitions. Explana-
tions of the framework and definitions, and how we intend for them to be used
are given in Sect. 2.1. In Sect. 2.2, we discuss the various choices made in our
modelling and the implicit assumptions and restrictions involved. In Sect. 2.3,
we present a weakening of our definition that covers data collectors that share
data with external entities, and in Sect. 2.4 we demonstrate some composition
properties that our definition has.

The Model of Execution. Looking ahead, our approach towards defining deletion-
compliance of a data collector will be to execute it and have it interact with
certain other parties, and at the end of the execution ask for certain prop-
erties of what it stores and its communication with these parties. Following
[GMR89,Gol01,Can01], both the data collector and these other parties in our
framework are modelled as Interactive Turing Machines (ITMs), which repre-
sent the program to be run within each party. Our definition of an ITM is very
similar to the one in [CCL15], but adapted for our purposes.

Definition 1 (Interactive Turing Machine). An Interactive Turing
Machine (ITM) is a (possibly randomized) Turing Machine M with the following
tapes: (i) a read-only identifier tape; (ii) a read-only input tape; (iii) a write-
only output tape; (iv) a read-write work tape; (v) a single-read-only incoming
tape; (vi) a single-write-only outgoing tape; (vii) a read-only randomness tape;
and (viii) a read-only control tape.

The state of an ITM M at any given point in its execution, denoted by
stateM , consists of the content of its work tape at that point. Its view, denoted
by viewM , consists of the contents of its input, output, incoming, outgoing, ran-
domness, and control tapes at that point.

The execution of the system consists of several instances of such ITMs run-
ning and reading and writing on their own and each others’ tapes, and sometimes
instances of ITMs being created anew, according to the rules described in this
subsection. We distinguish between ITMs (which represent static objects, or
programs) and instances of ITMs, or ITIs, that represent instantiations of that
ITM. Specifically, an ITI is an ITM along with an identifier that distinguishes
it from other ITIs in the same system. This identifier is written on the ITI’s
identifier tape at the point when the ITI is created, and its semantics will be
described in more detail later.

In addition to having the above access to its own tapes, each ITI, in certain
cases, could also have access to read from or write on certain tapes of other ITI.
The first such case is when an ITI M controls another ITI M ′. M is said to
control the ITIs whose identifiers are written on its control tape, and for each
ITI M ′ on this tape, M can read M ′’s output tape and write on its input tape.
This list is updated whenever, in the course of the execution of the system, a
new ITI is created under the control of M .

384 S. Garg et al.

The second case where ITIs have access to each others’ tapes is when they are
engaged in a protocol. A protocol is described by a set of ITMs that are allowed
to write on each other’s incoming tapes. Further, any “message” that any ITM
writes on any other ITM’s incoming tape is also written on its own outgoing
tape. As with ITMs, a protocol is just a description of the ITMs involved in it
and their prescribed actions and interactions; and an instance of a protocol, also
referred to as a session, consists of ITIs interacting with each other (where indeed
some of the ITIs may deviate from the prescribed behavior). Each such session
has a unique session identifier (sId), and within each session each participating
ITI is identified by a unique party identifier (pId). The identifier corresponding
to an ITI participating in a session of a protocol with session identifier sId and
party identifier pId is the unique tuple (sId, pId).

There will be small number of special ITIs in our system, as defined below,
whose identifiers are assigned differently from the above. Unless otherwise spec-
ified, all ITMs in our system are probabilistic polynomial time (PPT) – an ITM
M is PPT if there exists a constant c > 0 such that, at any point during its run,
the overall number of steps taken by M is at most nc, where n is the overall
number of bits written on the input tape of M during its execution.

The Data Collector. We require the behavior of the data collector and its inter-
actions with other parties to be specified by a tuple (X , π, πD), where X speci-
fies the algorithm run by the data collector, and π, πD are protocols by means
of which the data collector interacts with other entities. Here, π could be an
arbitrary protocol (in the simplest case, a single message followed by local pro-
cessing), and πD is the corresponding deletion protocol – namely, a protocol to
undo/reverse a previous execution of the protocol π.

For simplicity, in this work, we restrict to protocol π, πD to the natural case
of the two-party setting.3 Specifically, each instance of the protocol π that is
executed has specifications for a server-side ITM and a client-side ITM. The
data collector will be represented in our system by a special ITI that we will
also refer to as X . When another ITI in the system, call it W for now, wishes
to interact with X , it does by initiating an instance (or session) of one of the
protocols π or πD. This initiation creates a pair of ITIs – the client and the
server of this session – where W controls the client ITI and X the server ITI.
W and X then interact by means of writing to and reading from the input and
output tapes of these ITIs that they control. Further details are to be found
below.

The only assumption we will place on the syntax of these protocols is the
following interface between π and πD. We require that at the end of any par-
ticular execution of π, a deletion token is defined that is a function solely of
the sId of the execution and its transcript, and that π should specify how this
token is computed. The intended interpretation is that a request to delete this
instance of π consists of an instance of πD where the client-side ITI is given this

3 However, our model naturally generalizes to protocols with more parties.

Formalizing Data Deletion in the Context of the Right to Be Forgotten 385

deletion token as input. As we will see later, this assumption does not lose much
generality in applications.

Recipe for Describing Deletion-Compliance. Analogous to how security is defined
in the UC framework, we define deletion-compliance in three steps as follows.
First, we define a real execution where certain other entities interact with the
data collector ITI X by means of instances the protocols π and πD. This is similar
to the description of the “real world” in the UC framework. In this setting, we
identify certain deletion requests (that is, executions of πD) that are of special
interest for us – namely, the requests that we will be requiring to be satisfied.
Next, we define an ideal execution, where the instances of π that are asked to
be deleted by these identified deletion requests are never executed in the first
place. The “ideal execution” in our setting is different from the “ideal world”
in the UC framework in the sense that we do not have an “ideal functionality”.
Finally, we say that (X , π, πD) is deletion-compliant if the two execution process
are essentially the same in certain respects. Below, we explain the model of the
real execution, the ideal execution, and the notion of deletion-compliance.

Real Execution. The real execution involves the data collector ITI X , and two
other special ITIs: the environment Z and the deletion requester Y. By intention,
Y represents the part of the system whose deletion requests we focus on and will
eventually ask to be respected by X , and Z corresponds to the rest of the world
– the (possibly adversarial) environment that interacts with X . Both of these
interact with X via instances of π and πD, with X controlling the server-side of
these instances and Z or Y the client-side.

The environment Z, which is taken to be adversarial, is allowed to use arbi-
trary ITMs (ones that may deviate from the protocol) as the client-side ITIs
of any instances of π or πD it initiates. The deletion-requester Y, on the other
hand, is the party we are notionally providing the guarantees for, and is required
to use honest ITIs of the ITMs prescribed by π and πD in the instances it initi-
ates, though, unless otherwise specified, it may provide them with any inputs as
long as they are of the format required by the protocol.4 In addition, we require
that any instance of πD run by Y is for an instance of π already initiated by
Y.5 Finally, in our modeling, while Z can send arbitrary messages to Y (thereby
influencing its executions), we do not allow any communication from Y back
to Z. This is crucial for ensuring that the X does not get any “to be deleted”
information from other sources.

At any point, there is at most one ITI in the system that is activated, meaning
that it is running and can reading from or writing to any tapes that it has
access to. Each ITI, while it is activated, has access to a number of tapes that
it can write to and read from. Over the course of the execution, various ITIs

4 Note that it is essential that Y follow the honest protocol specifications to ensure
that the deletion requests are successful.

5 This corresponds to providing guarantees only for entities that do not (maliciously
or otherwise) ask for others’ data to be deleted.

386 S. Garg et al.

are activated and deactivated following rules described below. When an ITI is
activated, it picks up execution from the point in its “code” where it was last
deactivated.

Now we provide a formal description of the real execution. We assume that all
parties have a computational/statistical security parameter λ ∈ N that is written
on their input tape as 1λ the first time they are activated.6 The execution consists
of a sequence of activations, where in each activation a single participant (either
Z, Y, X or some ITM) is activated, and runs until it writes on the incoming tape
of another (at most one other) machine, or on its own output tape. Once this
write happens, the writing participant is deactivated (its execution is paused),
and another party is activated next—namely, the one on who incoming tape the
message was written; or alternatively, if the message was written to the output
tape then the party controlling the writing ITI is activated. If no message is
written to the incoming tape (and its own output tape) of any party, then Z
is activated. The real execution proceeds in two phases: (i) the alive phase, and
(ii) the termination phase.

Alive Phase: This phase starts with an activation of the environment Z, and Z
is again activated if any other ITI halts without writing on a tape. The various
ITIs run according to their code, and are allowed to act as follows:

– The environment Z when active is allowed to read the tapes it has access to,
run, and perform any of the following actions:

• Write an arbitrary message on the incoming tape of Y.
• Write on the input tape of any ITI that it controls (from protocol

instances initiated in the past).
• Initiate a new protocol instance of π or πD with X , whereupon the

required ITIs are created and Z is given control of the client-side ITI
of the instance and may write on its input tape. At the same time, X is
given control of the corresponding server-side ITI that is created.

• Pass on activation to X or Y.
• Declare the end of the Alive Phase, upon which the execution moves to

the Terminate Phase. This also happens if Z halts.
– The deletion-requester Y on activation can read the tapes it has access to,

run, and perform any of the following actions:
• Write on the input tape of any ITI that it controls.
• Initiate a new instance of π or πD with X , and write on the input tape

of the created client-side ITI.
– The data collector X on activation can read the tapes it has access to, run,

and write on the input tape of any ITI that it controls.
– Any other ITI that is activated is allowed to read any of the tapes that it

has access to, and write to either the incoming tape of another ITI in the
protocol instance it is a part of, or on its own output tape.

6 We remark that this is done merely for convenience and is not essential for the model
to make sense. In particular, in the perfect security case, no security parameter is
needed.

Formalizing Data Deletion in the Context of the Right to Be Forgotten 387

Terminate Phase: In this phase, the various ITIs are allowed the same actions
as in the Alive phase. The activation in this phase proceeds as follows:

1. First, each client-side ITI for π that was initiated by Y in the Alive phase is
sequentially activated enough times until each one of them halts.

2. For any instance of π for which a client-side ITI was initiated by Y and which
was executed to completion, an instance of πD is initiated with input the
deletion token for that instance of π (except if such an instance of πD was
already initiated).

3. Each client-side ITI for instances of πD that were initiated by Y in the Alive
phase or in the previous step is sequentially activated enough times until each
one of them halts.

We denote by EXECX ,π,πD

Z,Y (λ) the tuple (stateX , viewX , stateZ , viewZ)
resulting at the end of above-described real execution with security parameter λ.

Ideal Execution. Denote by Y0 the special Y that is completely silent – whenever
it is activated, it simply halts. In particular, it does not initiate any ITIs and
does not write on the incoming tape of any other machine. A real execution using
such a Y0 as the deletion-requester is called an ideal execution. We denote by
EXECX ,π,πD

Z,Y (λ) the tuple (stateX , viewX , stateZ , viewZ) resulting at the end of
an ideal execution with data collector X and environment Z, and with security
parameter λ.

We are now ready to present our definition for the deletion-compliance of
data collectors, which is as follows.

Definition 2 (Statistical Deletion-Compliance). Given a data-collector
(X , π, πD), an environment Z, and a deletion-requester Y, let (stateR,λ

X , viewR,λ
Z)

denote the corresponding parts of the real execution EXECX ,π,πD

Z,Y (λ), and let
(stateI,λ

X , viewI,λ
Z) represent those of the ideal execution EXECX ,π,πD

Z,Y0
(λ). We

say that (X , π, πD) is statistically deletion-compliant if, for any PPT environ-
ment Z, any PPT deletion-requester Y, and for all unbounded distinguishers D,
there is a negligible function ε such that for all λ ∈ N:

∣
∣
∣Pr[D(stateR,λ

X , viewR,λ
Z) = 1] − Pr[D(stateI,λ

X , viewI,λ
Z) = 1]

∣
∣
∣ ≤ ε(λ)

In other words, the statistical distance between these two distributions above
is at most ε(λ). If D above is required to be computationally bounded (allowed
to run only in PPT time in λ), then we get the weaker notion of computational
deletion-compliance. Analogously, if ε(λ) is required to be 0, then we get the
stronger notion of perfect deletion-compliance.

388 S. Garg et al.

2.1 Explanation of the Definition

As indicated earlier, the central idea our definition is built around is that the
processing of a deletion request should leave the data collector and the rest of
the system in a state that is similar to one it would have been in if the data that
was deleted was never given to the collector in the first place. This ensures that
there is no trace left of deleted data, even in metadata maintained by some of
the entities, etc.

The first question that arises here is which parts of the system to ask this
of. It is clear that the deleted data should no longer persist in the memory of
the data collector. A less obvious but clearly necessary demand is that the data
collector also not reveal this data to any user other than the one it belongs to.
Otherwise, unless whomever this data is revealed to provides certain guarantees
for its later deletion, the data collector loses the ability to really delete this data
from locations it reached due to actions of the data collector itself, which is
clearly undesirable.7

Once so much is recognized, the basic form of the definition is clear from a
cryptographic standpoint. We fix any user, let the user send the collector some
data and then request for it to be deleted, and look at the state of the collector
at this point together with its communication with the rest of the system so
far. We also look at the same in a world where this user did not send this data
at all. And we ask that these are distributed similarly. We then note that this
property needs to hold not just when the collector is interacting solely with this
user, but is doing so as part of its routine operation where it is interacting with
any number of other users and processing their data and deletion requests as
well.

The UC Framework. In order to make this definition formal, we first need to
model all entities in a formal framework that allows us to clearly talk about the
“state” or the essential memory of the entities, while also being expressive enough
to capture all, or at least most, data collectors. We chose the UC framework for
this purpose as it satisfies both of these properties and is also simple enough
to describe clearly and succinctly. In this framework, the programs that run are
represented by Interactive Turing Machines, and communication is modelled as
one machine writing on another’s tape. The state of an entity is then captured
by the contents of the work tape of the machine representing it, and its view
by whatever was written on its tapes by other machines. This framework does
impose certain restrictions on the kind of executions that it captures, though,
and this is discussed later, in Sect. 2.2.

Protocols and Interaction. Another choice of formality motivated by its useful-
ness in our definition is to have all communication with the data collector X
7 Of course, if the entity this data is revealed to does provide some guarantees for

later deletion, then we may reasonably expect the data collector to provide deletion
guarantees even while revealing data to this entity. In Sect. 2.3, we present a weaker
definition of deletion-compliance that captures this.

Formalizing Data Deletion in the Context of the Right to Be Forgotten 389

be represented by instances of a protocol π. It should be noted that the term
“protocol” here might belie the simplicity of π, which could just involve the
sending of a piece of data by a user of the system to the data collector X . This
compartmentalisation of communication into instances of π is to let us (and the
users) refer directly to specific instances later and request their deletion using
instances of the deletion protocol πD. As the reference to instances of π, we use
a “deletion token” that is computable from the transcript of that instance – this
is precise enough to enable us to refer to specific pieces of data that are asked
to be deleted, and loose enough to capture many natural systems that might be
implemented in reality for this purpose.

The Deletion-Requester Y and the Environment Z. The role of the user in the
above rudimentary description is played by the deletion-requester Y in our frame-
work. In the “real” execution, Y interacts with the data collector X over some
instances of π, and then asks for all information contained in these instances
to be deleted. In the “ideal” execution, Y is replaced by a silent Y0 that does
not communicate with X at all. And both of these happen in the presence of
an environment Z that interacts arbitrarily with X (through instances of π and
πD) – this Z is supposed to represent both the rest of the users in the system
that X interacts with, as well as an adversarial entity that, in a sense, attempts
to catch X if it is not handling deletions properly. By asking that the state of
X and the view of Z in both these executions be similar, we are asking that the
deletion essentially have the same effect on the world as the data never being
sent.

It is to be noted that while Y here is represented as a single entity, it does
not necessarily represent just a single “user” of the system or an entire or single
source of data. It could represent just a part of a user that contains the data to
be deleted, or represent multiple users, all of whom want their data to be deleted.
In other words, if a data collector X is deletion-compliant under our definition,
and at some point in time has processed a certain set of deletion requests, then
as long as the execution of the entire world at this point can be separated into Z
and Y that follow our rules of execution, the deletion-compliance of X promises
that all data that was sent to X from Y will disappear from the rest of the world.

Using the Definition. Our framework and definition may be used for two pur-
poses: (i) to guide the design of data collectors X that are originally described
within our framework (along with protocols π and πD) and wish to handle dele-
tion requests well, and (ii) to analyse the guarantees provided by existing sys-
tems that were not designed with our framework in mind and which handle data
deletion requests.

In order to use Definition 2 to analyze the deletion-compliance of pre-existing
systems, the first step is to rewrite the algorithm of the data collector to fit
within our framework. This involves defining the protocols π and πD representing
the communication between “users” in the system and the data collector. This
part of the process involves some subjectivity, and care has to be taken to not
lose crucial but non-obvious parts of the data collector, such as metadata and

390 S. Garg et al.

memory allocation procedures, in this process. The examples of some simple
systems presented in Sect. 3 illustrate this process) though they do not talk
about modelling lower-level implementation details). Once the data collector
and the protocols are described in our framework, the rest of the work in seeing
whether they satisfy our definition of deletion-compliance is well-defined.

2.2 Discussion

A number of choices were made in the modelling and the definition above, the
reasons for some of which are not immediately apparent. Below, we go through
a few of these and discuss their place in our framework and definition.

Modelling Interactions. The first such choice is to include in the model the entire
communication process between the data collector and its users rather than look
just at what goes on internally in the data collector. For comparison, a natural
and simpler definition of data deletion would be to consider a data collector that
has a database, and maintains the result of some computation on this database.
It then receives requests to delete specific rows in the database, and it is required
to modify both the database and the processed information that it maintains so
as to make it look like the deleted row was never present. The definition of data
deletion in machine learning by Ginart et al. [GGVZ19], for instance, is of this
form.

The first and primary reason for this choice is that the intended scope of our
definitions is larger than just the part of the data collector that maintains the
data. We intend to analyze the behavior of the data collector as a whole, includ-
ing the memory used to implement the collector’s algorithm and the mechanisms
in place for interpreting and processing its interactions with external agents. For
instance, as we discuss in Sect. 3, it turns out that any data collector that wishes
to provide reasonable guarantees to users deleting their data needs to have in
place a non-trivial authentication mechanism. This requirement follows easily
from the requirements of our definition, but would not be apparent if only the
part of the collector that directly manages the data is considered.

The second reason is that while the simpler kind of definition works well
when the intention is to apply it to collectors that do indeed have such a static
database that is given to them, it fails to capture crucial issues that arise in a
more dynamic setting. Our inclusion of the interactions between parties in our
definition enables us to take into account dependencies among the data in the
system, which in turn enables us to keep our demands on the data collector more
reasonable. Consider, for example, a user who sends its name to a data collector
that responds with a hash of it under some secret hash function. And then the
user asks the same collector to store a piece of data that is actually the same
hash, but there is no indication given to the collector that this is the case. At
some later time, the user asks the collector to delete its name. To a definition that
only looks at the internal data storage of the collector, the natural expectation
after this deletion request is processed would be that the collector’s state should
look as though it never learnt the user’s name. However, this is an unreasonable

Formalizing Data Deletion in the Context of the Right to Be Forgotten 391

demand – since the collector has no idea that the hash of the name was also given
to it, it is not reasonable to expect that it also find the hash (which contains
information about the name) and delete it. And indeed, under our definition,
the collector is forgiven for not doing so unless the user explicitly asks for the
hash also to be deleted. If our modelling had not kept track of the interactions
between the collector and the user, we would not have been able to make this
relaxation.

Restrictions on Y. Another conspicuous choice is not allowing the deletion-
requester Y in our framework to send messages to the environment Z. This is,
in fact, how we handle cases like the one just described where there are depen-
dencies between the messages that the collector receives that are introduced on
the users’ side. By requiring that Y does not send messages to Z and that all
interaction between Y and X are asked to be deleted over the course of the exe-
cution, we ensure that any data that depends on X ’s responses to Y’s messages
is also asked to be deleted. This admits the case above where both the name
and the hash are requested to be deleted, and requires X to comply with such
a request; but it excludes the case where only the name is asked to be deleted
(as then the hash would have to be sent by Z, which has no way of learning it),
thus excusing X for not deleting it.

Also note that this restriction does not lose any generality outside of exclud-
ing the above kind of dependency. Take any world in which a user (or users) asks
for some of its messages to be deleted, and where the above perverse dependency
does not exist between these and messages not being asked to be deleted. Then,
there is a pair of environment Z and deletion-requester Y that simulates that
world exactly, and the deletion-compliance guarantees of X have the expected
implications for such a deletion request. The same is true of the restriction that
all of the messages sent by Y have to be requested to be deleted rather than just
some of them – it does not actually lose generality. And also of the fact that Y is
a single party that is asking for deletion rather than a collection – a set of users
asking for deletion can be simulated by just one Y that does all their work.

The Ideal Deletion-Requester. An interesting variant of our definition would be
one in which the Y is not replaced by a silent Y0 in the ideal world, but by another
Y ′ that sends essentially the same kinds of messages to X , but with different
contents. Currently, our definition says that, after a deletion request, the collector
does not even remember that it had some data that was deleted. This might be
unnecessarily strong for certain applications, and this modification would relax
the requirement to saying that it is fine for the collector to remember that it had
some data that was deleted, just not what the data was. The modification is not
trivial, though, as in general the number and kinds of messages that Y sends
could depend on the contents of its messages and the responses from X , which
could change if the contents are changed. Nevertheless, under the assumption
that Y behaves nicely in this sense, such an alternative definition could be stated
and would be useful in simple applications.

392 S. Garg et al.

Choices that Lose Generality. There are certain assumptions in our modelling
that do break from reality. One of these is that all machines running in the sys-
tem are sequential. Due to this, our definition does not address, for instance, the
effects of race conditions in the data collector’s implementation. This assump-
tion, however, makes our definition much simpler and easier to work with, while
still keeping it meaningful. We leave it as an open question to come up with a
reasonable generalization of our definition (or an alternative to it) that accounts
for parallel processing.

Another such assumption is that, due to the order of activations and the fact
that activation is passed on in the execution by ITIs writing on tapes, we do not
give Z the freedom to interlace its messages freely with those being sent by Y to
X . It could happen, for instance, that X is implemented poorly and simply fails
to function if it does not receive all messages belonging to a particular protocol
instance consecutively. This failure is not captured by our definition as is, but
this is easily remedied by changing the activation rules in the execution to pass
activation back to Z after each message from (an ITI controlled by) Y to X is
sent and responded to. We do not do this for the sake of simplicity.

Finally, our modelling of the data collector’s algorithm being the entire ITM
corresponds to the implicit assumption of reality that the process running this
algorithm is the only one running on the system. Or, at least, that the distin-
guisher between the real and ideal worlds does not get to see how memory for
this process is allocated among all the available memory in the system, does not
learn about scheduling in the system, etc. Side-channel attacks involving such
information and definitions that provide protection against these would also be
interesting for future study, though even more exacting than our definition.

2.3 Conditional Deletion-Compliance

As noted in earlier sections, any data collector that wishes to be deletion-
compliant under Definition 2 cannot reveal the data that is given to it by a
user to any other entity. There are several situations, however, where such an
action is desirable and even safe for the purposes of deletion. And rules for how
the collector should act when it is in fact revealing data in this way is even
specified in some laws – Article 17 of the GDPR, for instance, says, “Where
the controller has made the personal data public and is obliged . . . to erase the
personal data, the controller, taking account of available technology and the cost
of implementation, shall take reasonable steps, including technical measures, to
inform controllers which are processing the personal data that the data sub-
ject has requested the erasure by such controllers of any links to, or copy or
replication of, those personal data.”

Consider, for instance, a small company X that offers storage services using
space it has rented from a larger company W. X merely stores indexing infor-
mation on its end and stores all of its consumers’ data with W, and when a user
asks for its data to be deleted, it forwards (an appropriately modified version
of) this request to the W. Now, if W is deletion-compliant and deletes whatever
data X asks it to, it could be possible for X to act in way that ensures that state

Formalizing Data Deletion in the Context of the Right to Be Forgotten 393

of the entire system composed of X and W has no information about the deleted
data. In other words, conditioned on some deletion-compliance properties of the
environment (that includes W here), it is reasonable to expect deletion guaran-
tees even from collectors that reveal some collected data. In this subsection, we
present a definition of conditional deletion-compliance that captures this.

Specifically, we consider the case where the environment Z itself is deletion-
compliant, though in a slightly different sense than Definition 2. In order to
define this, we consider the deletion-compliance of a data collector X running
its protocols (π, πD) in the presence of other interaction going on in the system.
So far, in our executions involving (X , π, πD), we essentially required that Y
and Z only interact with X by means of the protocols π and πD. Now we relax
this requirement and, in both phases of execution, allow an additional set of
protocols Φ = {φ1, . . .} that can be initiated by X to be run between X and Z
(but not Y) during the execution. We denote an execution involving X , Z and
Y under these rules by EXECX ,π,πD

Z,Y,Φ .
Finally, we also consider executions where, additionally, we also let X write on

the incoming tape of Y.8 We call such an execution an auxiliary execution, and
denote it by AEXECX ,π,πD

Z,Y,Φ . We define the following notion of auxiliary deletion-
compliance that we will be the condition we will place on the environment in
our eventual definition of conditional deletion-compliance.

Definition 3 (Auxiliary Deletion-Compliance). Given a data-collector
denoted by (X , π, πD), an environment Z, a deletion-requester Y, and a set of
protocols Φ, let (stateR,λ

X , viewR,λ
Z) denote the corresponding parts of the auxiliary

execution AEXECX ,π,πD

Z,Y,Φ (λ), and (stateI,λ
X , viewI,λ

Z) the corresponding parts of
the ideal auxiliary execution AEXECX ,π,πD

Z,Y0,Φ (λ). We say that (X , π, πD) is sta-
tistically auxiliary-deletion-compliant in the presence of Φ if, for any PPT envi-
ronment Z, any PPT deletion-requester Y, and for all unbounded distinguishers
D, there is a negligible function ε such that for all λ ∈ N:

∣
∣
∣Pr[D(stateR,λ

X , viewR,λ
Z) = 1] − Pr[D(stateI,λ

X , viewI,λ
Z) = 1]

∣
∣
∣ ≤ ε(λ)

Note that we do not ask X for any guarantees on being able to delete exe-
cutions of the protocols in Φ. It may be seen that any data collector (X , π, πD)
that is deletion-compliant is also auxiliary deletion-compliant in the presence of
any Φ, since it never runs any of the protocols in Φ.

We say that a data collector X is conditionally deletion-compliant if, when-
ever it is interacting with an environment that is auxiliary-deletion-compliant,
it provides meaningful deletion guarantees.

8 This weakens the definition of deletion-compliance, as it allows X to send to Y
anything it wants, since the view or state of Y is not scrutinized by the requirements
of deletion-compliance. And though as a definition of deletion-compliance this is not
meaningful on its own, it is a property that, if the environment Z possesses it, seems
necessary and sufficient to allow a data collector X to safely reveal data to Z that
it may wish to delete later.

394 S. Garg et al.

Definition 4 (Conditional Deletion-Compliance). Given a data-collector
(X , π, πD), an environment Z, a deletion-requester Y, and a pair of protocols
Φ = (φ, φD), let (stateR,λ

X , stateR,λ
Z) denote the corresponding parts of the real

execution EXECX ,π,πD

Z,Y,Φ (λ), and (stateI,λ
X , stateI,λ

Z) the corresponding parts of
the ideal execution EXECX ,π,πD

Z,Y0,Φ (λ). We say that (X , π, πD) is conditionally
statistically deletion-compliant in the presence of Φ if, for any PPT environment
Z such that (Z, φ, φD) is statistically auxiliary-deletion-compliant in the presence
of (π, πD), any PPT deletion-requester Y, and for all unbounded distinguishers
D, there is a negligible function ε such that for all λ ∈ N:

∣
∣
∣Pr[D(stateR,λ

X , stateR,λ
Z) = 1] − Pr[D(stateI,λ

X , stateI,λ
Z) = 1]

∣
∣
∣ ≤ ε(λ)

One implication of X being conditionally deletion-compliant is that if, in
some execution, it is found that data that was requested of X to be deleted is still
present in the system in some form, then this is not due to a failure on the part
of X , but was because the environment Z was not auxiliary-deletion-compliant
and hence failed to handle deletions correctly. A setup like the one described
at the beginning of this subsection is studied as an example of a conditionally
deletion-compliant data collector in Sect. 3.1.

2.4 Properties of Our Definitions

In this section, we demonstrate a few properties of our definition of deletion-
compliance that are meaningful to know on their own and will also make analyses
of data collectors we design in later sections simpler. In order to describe them,
we first define certain special classes of deletion-requesters. The first is one where
we limit the number of protocol instances the deletion-requester Y is allowed to
initiate.

Definition 5. For k ∈ N, a deletion-requester Y is said to be k-representative
if, when interacting with a data collector X running (π, πD), it initiates at most
k instances of π with X .

The other is a class of deletion-requesters intended to represent the collected
actions of several 1-representative deletion-requesters operating independently of
each other. In other terms, the following represents, say, a collection of users that
interact with a data collector by sending it a single message each, and further
never interact with each other. This is a natural circumstance that arises in
several situations of interest, such as when people respond to a survey or submit
their medical records to a hospital, for example. Hence, even deletion-compliance
guarantees that hold only in the presence of such deletion-requesters are already
meaningful and interesting.

Definition 6. A deletion-requester Y is said to be oblivious if, when interacting
with a data collector X running (π, πD), for any instance of π that it initiates, it
never accesses the output tape of the corresponding client-side ITI except when
running πD to delete this instance, whereupon it merely computes the deletion
token and provides it as input to πD.

Formalizing Data Deletion in the Context of the Right to Be Forgotten 395

Note that the deletion-requester Y not accessing the output tapes does not
necessarily mean that the entities or users that it notionally represents similarly
do not look at the responses they receive from the data collector – as long as each
user in a collection of users does not communicate anything about such responses
to another user, the collection may be faithfully represented by an oblivious Y.
Similarly, an oblivious Y could also represent a single user who sends multiple
messages to the data collector, under the condition that the content of these
messages, and whether and when the user sends them, does not depend on any
information it receives from the data collector.

We also quantify the error that is incurred by a data collector in its deletion-
compliance as follows. In our definition of deletion-compliance (Definition 2), we
required this error to be negligible in the security parameter.

Definition 7 (Deletion-Compliance Error). Let k ∈ N. Given a data-
collector (X , π, πD), an environment Z and a deletion-requester Y, denote by
(stateR,λ

X , viewR,λ
Z) the corresponding parts of EXECX ,π,πD

Z,Y (λ), and denote by
(stateI,λ

X , viewI,λ
Z) the corresponding parts of EXECX ,π,πD

Z,Y0
(λ). The (statistical)

deletion-compliance error of (X , π, πD) is a function ε : N → [0, 1] where for
λ ∈ N, the function value ε(λ) is set to be the supremum, over all PPT environ-
ments Z, all PPT deletion-requesters Y, and all unbounded distinguishers D, of
the following quantity when all parties are given λ as the security parameter:

∣
∣
∣Pr[D(stateR,λ

X , viewR,λ
Z) = 1] − Pr[D(stateI,λ

X , viewI,λ
Z) = 1]

∣
∣
∣

The oblivious deletion-compliance error is defined similarly, but only quantifying
over all oblivious PPT deletion-requesters Y. And the k-representative deletion-
compliance error is defined similarly by quantifying over all k-representative PPT
Y’s.

We show that, for oblivious deletion-requesters, the deletion-compliance error
of any data collector (X , π, πD) grows at most linearly with the number of
instances of π that are requested to be deleted. In other words, if k different
users of X ask for their information to be deleted, and they all operate inde-
pendently in the sense that none of them looks at the responses from X to any
of the others, then the error that X incurs in processing all these requests is at
most k times the error it incurs in processing one deletion request.

Apart from being interesting on its own, our reason for proving this theorem
is that in the case of some data collectors that we construct in Sect. 3, it turns
out to be much simpler to analyze the 1-representative deletion-compliance error
than the error for a generic deletion-requester. The following theorem then lets
us go from the 1-representative error to the error for oblivious deletion-requesters
that make more deletion requests.

Theorem 1. For k ∈ N and any data collector (X , π, πD), the k-representative
oblivious deletion-compliance error is no more than k times its 1-representative
deletion-compliance error.

396 S. Garg et al.

We defer the proof of the above theorem to the full version. We also show that,
given two data collectors that are each deletion-compliant, their combination
is also deletion-compliant, assuming obliviousness of deletion-requesters. To be
more precise, given a pair of data collectors (X1, π1, π1,D) and (X2, π2, π2,D), con-
sider the “composite” data collector ((X1,X2), (π1, π2), (π1,D, π2,D)) that works
as follows:

– An instance of (π1, π2) is either an instance of π1 or of π2. Similarly, an
instance of (π1,D, π2,D) is either an instance of π1,D or of π2,D.

– The collector (X1,X2) consists of a simulation of X1 and of X2, each running
independently of the other.

– When processing an instance of π1 or π1,D, it forwards the messages to and
from its simulation of X1, and similarly X2 for π2 or π2,D.

– The state of (X1,X2) consists of the states of its simulations of X1 and X2.

Such an X would represent, for instance, two data collectors that operate
separately but deal with the same set of users. We show that, if the constituting
data collectors are deletion-compliant, then under the condition of the deletion-
requester being oblivious, the composite data collector is also deletion-compliant.

Theorem 2. If (X1, π1, π1,D) and (X2, π2, π2,D) are both statistically deletion-
compliant, then the composite data collector ((X1,X2), (π1, π2), (π1,D, π2,D)) is
statistically deletion-compliant for oblivious deletion-requesters.

We prove Theorem 2 in the full version. The above theorem extends to the
composition of any k data collectors in this manner, where there is a loss of a
factor of k in the oblivious deletion-compliance error (this will be evident from
the proof below).

Proof of Theorem 2. The theorem follows by first showing that the compos-
ite collector is deletion-compliant for 1-representative data collectors, and then
applying Theorem1. Any 1-representative deletion-requester Y interacts either
only with (the simulation of) X1 or with X2. And since both of these are deletion-
compliant, the state of (X1,X2) and the view of the environment are similarly dis-
tributed in both real and ideal executions. Thus, ((X1,X2), (π1, π2), (π1,D, π2,D))
is 1-representative deletion-compliant. Applying Theorem 1 now gives us the
theorem. ��

3 Scenarios

In this section, we present examples of data collectors that satisfy our definitions
of deletion-compliance with a view to illustrate both the modelling of collectors
in our framework, and the aspects of the design of such collectors that are neces-
sitated by the requirement of such deletion-compliance. In interest of space, we
only present two of our data collectors here, and defer discussion of the ones
based employing differential privacy and data deletion in machine learning to
the full version.

Formalizing Data Deletion in the Context of the Right to Be Forgotten 397

3.1 Data Storage and History-Independence

Consider the following ostensibly simple version of data storage. A company
wishes to provide the following functionality to its users. A user can ask the
company to store a single piece of data, say their date-of-birth or a password.
At a later point, the user can ask the company to retrieve this data, whence the
company sends this stored data back to the user. And finally, the user can ask
for this data to be deleted, at which point the company deletes any data the
user has asked to be stored.

While a simple task, it is still not trivial to implement the deletion here cor-
rectly. The natural way to implement these functionalities is to use a dictionary
data structure that stores key-value pairs and supports insertion, deletion and
lookup operations. The collector could then store the data a user sends as the
value and use a key that is somehow tied to the user, say the user’s name or some
other identifier. Unless care is taken, however, such data structures could prove
insufficient – data that has been deleted could still leave a trace in the memory
implementing the data structure. A pathological example is a dictionary that,
to indicate that a certain key-value pair has been deleted, simply appends the
string “deleted” to the value – note that such a dictionary can still provide valid
insertion, deletion and lookup. While actual implementations of dictionaries do
not explicitly maintain “deleted” data in this manner, no special care is usually
taken to ensure that information about such data does not persist, for instance,
in the metadata.

The simplest solution to this problem is to use an implementation of such a
data structure that explicitly ensures that the above issue does not occur. History
independent data structures, introduced by Micciancio [Mic97], are implemen-
tations of data structures that are such that their representation in memory at
any point in time reveals only the “content” of the data structure at that point,
and not the history of the operations (insertion, deletion, etc.) performed that
resulted in this content. In particular, this implies that an insertion of some
data into such a data structure followed by a deletion of the same data would
essentially have the same effect on memory as not having done either in the first
place.

More formally, these are described as follows by Naor and Teague [NT01].
Any abstract data structure supports a set of operations, each of which, without
loss of generality, returns a result (which may be null). Two sequences of opera-
tions S1 and S2 are said to produce the same content if for any sequence T , the
results returned by T with the prefix S1 is the same as the results with the prefix
S2. An implementation of a data structure takes descriptions of operations and
returns the corresponding results, storing what it needs to in its memory. Naor
and Teague then define history independence as a property of how this memory
is managed by the implementation.

Definition 8. An implementation of a data structure is history independent if
any two sequences of operations that produce the same content also induce the
same distribution on the memory representation under the implementation.

398 S. Garg et al.

If data is stored by the data collector in a history independent data structure
that supports deletion, then being deletion-compliant becomes a lot simpler, as
the property of history independence helps satisfy much of the requirements.
In our case, we will make us of a history-independent dictionary, a data struc-
ture defined as follows. History-independent dictionaries were studied and con-
structed by Naor and Teague [NT01].

Definition 9. A dictionary is a data structure that stores key-value pairs,
denoted by (key, value), and supports the following operations:

– Insert(key, value): stores the value value under the key key. If the key is
already in use, does nothing.

– Lookup(key): returns the value previously stored under the key key. If there
is no such key, returns ⊥.

– Delete(key): deletes the key-value pair stored under the key key. If there is
no such key, does nothing.

Our current approach, then, is to implement the data storage using a history-
independent dictionary as follows. When a user sends a (key, value) pair to be
stored, we insert it into the dictionary. When a user asks for the value stored
under a key key, we look it up in the dictionary and return it. When a user
asks to delete whatever is stored under the key key, we delete this from the
dictionary. And the deletion, due to history-independence, would remove all
traces of anything that was deleted.

There is, however, still an issue that arises from the fact that the channels
in our model are not authenticated. Without authentication, any entity that
knows a user’s key could use it to learn from the data collector whether this
user has any data stored with it. And later if the user asks for deletion, the data
might be deleted from the memory of the collector, but the other entity has
already learnt it, which it could not have done in an ideal execution. In order to
deal with this, the data collector has to implement some form of authentication;
and further, this authentication, as seen by the above example, has to use some
randomness (or perhaps pseudorandomness) generated on the data collector’s
side. We implement the simplest form of authentication that suffices for this,
and the resulting data collector H is described informally as follows.

. .

The data collector H maintains a history-independent dictionary Dict. Below, any
information that is not required explicitly to be stored is erased as soon as each
message is processed. It waits to receive a message from a user that is parsed as
(instruction, auth, key, value), where either of auth or value could be ⊥, and processed
as follows:

– If instruction = insert,
• it samples a new random authentication string auth.
• it runs Dict.Insert((key, auth), value) to add value to the dictionary under the

key (key, auth).
• it responds to the message with the string auth.

Formalizing Data Deletion in the Context of the Right to Be Forgotten 399

– If instruction = lookup,
• it recovers the value stored under the key (key, auth) by running the lookup

algorithm Dict.Lookup((key, auth)), and responds with value (if the key is not
in use, value will be ⊥).

– If instruction = delete,
• it deletes any entry under the key (key, auth) by running the deletion algorithm

Dict.Delete((key, auth)).

. .

The formal description of the above data collector in our framework, along
with the associated protocols π and πD, is presented in the full version. We show
that this collector is indeed statistically deletion-compliant.

Informal Theorem 1. The data collector H presented above is statistically
deletion-compliant.

We present the formal version of the above theorem and its proof in the
full version. The approach is to first observe that, due to the authentication
mechanism, the probability that the environment Z will ever see any data that
was stored by the deletion-requester Y is negligible in the security parameter. If
this never happens, then the view of Z in the real and ideal executions (where
Y does not store anything) is identical. And when the view is identical, the
sequence of operations performed by Z in the two executions are also identical.
Thus, since whatever Y asks to store it also asks to delete, the state of X at
the end of the execution, due to its use of a history-independent dictionary,
depends only on the operations of Z, which are now the same in the real and
ideal executions.

In summary, the lessons we learn from this process of constructing a deletion-
compliant data collector for data storage are as follow:

1. Attention has to be paid to the implementation of the data structures used,
which needs to satisfy some notion of independence from deleted data.

2. Authentication that involves some form of hardness or randomness from the
data collector’s side has to be employed even to support simple operations.

Outsourcing Data Storage. Next, we present a data collector that outsources
its storage to an external system, maintaining only bookkeeping information in
its own memory. As it actively reveals users’ data to this external system, such
a data collector cannot be deletion-compliant. However, we show that history-
independence can be used to make it conditionally deletion-compliant. Again, it
turns out to be crucial to ensure that an authentication mechanism is used, for
reasons similar to that for the previously constructed data collector. This data
collector H2 is informally described as follows, and is quite similar to H.

. .

The data collector H2 maintains a history-independent dictionary Dict, and inter-
acts with another collector W that uses the same syntax for messages as the col-
lector H from earlier in this section. It waits to receive a message that is parsed as

400 S. Garg et al.

(instruction, auth, key, value), where either of auth or value could be ⊥, and processed
as follows:

– If instruction = insert,
• It samples a new authentication string auth and a new “external key” exkey

at random.
• It sends the message (insert, exkey, value) to W and waits to receive a response

exauth.
• It runs Dict.Insert((key, auth), (exkey, exauth)) to add (exkey, exauth) to the

dictionary under the key (key, auth).
• It responds to the initial message with the string auth.

– If instruction = lookup,
• It recovers the (exkey, exauth) stored under the key (key, auth) by running

Dict.Lookup((key, auth)). If the lookup fails, it responds with ⊥.
• It sends the message (lookup, exkey, exauth) to W and waits to receive a

response value.
• It responds to the initial message with value.

– If instruction = delete,
• It recovers the (exkey, exauth) stored under the key (key, auth) by running

Dict.Lookup((key, auth)). If the lookup fails, it halts.
• If not, it sends the message (delete, exkey, exauth) to W.
• It deletes any entry under the key (key, auth) by running the deletion algo-

rithm Dict.Delete((key, auth)).

. .

The formal description of the above data collector in our framework, along
with the associated protocols π and πD, is presented in the full version. We show
that this collector is conditionally deletion-compliant.

Informal Theorem 2. The data collector H2 described above is conditionally
statistically deletion-compliant.

The formal version of this theorem and its proof is presented in the full ver-
sion. The approach is again to first condition on Z not being able to guess any of
the authentication strings given to Y, an event that happens with overwhelming
probability. After this, we show that the history-independence of the dictionary
used by X can be used to effectively split X into two parts – one that handles
protocols with Y, and the other than handles protocols with Z – without affect-
ing what essentially happens in the execution. At this point, we switch to looking
at the execution as an auxiliary execution with Z as the data collector, the first
part of X as the deletion-requester, and the second part as the environment, and
apply the auxiliary deletion-compliance of Z to show that the states of Z and
X are unchanged if Y is replaced with a silent Y0.

References

[BCC+19] Bourtoule, L., et al.: Machine unlearning. CoRR, abs/1912.03817 (2019)
[BI19] Broadbent, A., Islam, R.: Quantum encryption with certified deletion.

arXiv preprint arXiv:1910.03551 (2019)

http://arxiv.org/abs/1910.03551

Formalizing Data Deletion in the Context of the Right to Be Forgotten 401

[BSZ20] Baumhauer, T., Schöttle, P., Zeppelzauer, M.: Machine unlearning: linear
filtration for logit-based classifiers. CoRR, abs/2002.02730 (2020)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd Annual Symposium on Foundations of Com-
puter Science, pp. 136–145. IEEE Computer Society Press, October 2001

[Car13] Carter, E.L.: Argentina’s right to be forgotten. Emory Int’l L. Rev. 27,
23 (2013)

[CCL15] Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally com-
posable security for standard multiparty computation. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 3–22.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 1

[CCP18] California Consumer Privacy Act (CCPA) (2018). https://oag.ca.gov/
privacy/ccpa

[CN19] Cohen, A., Nissim, K.: Towards formalizing the GDPR’s notion of singling
out. CoRR, abs/1904.06009 (2019)

[CW19] Coiteux-Roy, X., Wolf, S.: Proving erasure. In: IEEE International Sym-
posium on Information Theory, ISIT 2019, Paris, France, 7–12 July 2019,
pp. 832–836. IEEE (2019)

[CY15] Cao, Y., Yang, J.: Towards making systems forget with machine unlearn-
ing. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, 17–21 May 2015, pp. 463–480. IEEE Computer Society
(2015)

[DKW11] Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-
erasing functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
125–143. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 9

[DMNS06] Dwork, C., McSherry, F., Nissim, K., Smith, A.D.: Calibrating noise to
sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://
doi.org/10.1007/11681878 14

[GDP16] Regulation (EU) 2016/679 of the European parliament and of the council
of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing directive 95/46 (general data protection regulation). Official J.
Eur. Union (OJ) 59(1–88), 294 (2016)

[GGVZ19] Ginart, A., Guan, M.Y., Valiant, G., Zou, J.: Making AI forget you: data
deletion in machine learning. CoRR, abs/1907.05012 (2019)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[Gol01] Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cam-
bridge University Press, Cambridge (2001)

[KK14] Karvelas, N.P., Kiayias, A.: Efficient proofs of secure erasure. In: Abdalla,
M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 520–537.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 30

[Mic97] Micciancio, D.: Oblivious data structures: applications to cryptography.
In: Leighton, F.T., Shor, P.W. (eds.) Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, El Paso, Texas,
USA, 4–6 May 1997, pp. 456–464. ACM (1997)

[NBW+17] Nissim, K., et al.: Bridging the gap between computer science and legal
approaches to privacy. Harv. JL Tech. 31, 687 (2017)

https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://doi.org/10.1007/978-3-642-19571-6_9
https://doi.org/10.1007/978-3-642-19571-6_9
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-319-10879-7_30

402 S. Garg et al.

[NT01] Naor, M., Teague, V.: Anti-presistence: history independent data struc-
tures. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) Proceedings
on 33rd Annual ACM Symposium on Theory of Computing, Heraklion,
Crete, Greece, 6–8 July 2001, pp. 492–501. ACM (2001)

[PAP18] Politou, E.A., Alepis, E., Patsakis, C.: Forgetting personal data and revok-
ing consent under the GDPR: challenges and proposed solutions. J. Cyber-
secur. 4(1), tyy001 (2018)

[PT10] Perito, D., Tsudik, G.: Secure code update for embedded devices via
proofs of secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M.
(eds.) ESORICS 2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15497-3 39

[Sch20] Schelter, S.: “Amnesia” - machine learning models that can forget user
data very fast. In: 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, 12–15 January 2020 (2020).
Online Proceedings. www.cidrdb.org

[SRS17] Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that
remember too much. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–
03 November 2017, pp. 587–601. ACM (2017)

[Vad17] Vadhan, S.P.: The complexity of differential privacy. In: Lindell, Y. (ed.)
Tutorials on the Foundations of Cryptography. ISC, pp. 347–450. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 7

[VBE18] Veale, M., Binns, R., Edwards, L.: Algorithms that remember: model
inversion attacks and data protection law. CoRR, abs/1807.04644 (2018)

https://doi.org/10.1007/978-3-642-15497-3_39
www.cidrdb.org
https://doi.org/10.1007/978-3-319-57048-8_7

OptORAMa: Optimal Oblivious RAM

Gilad Asharov1(B), Ilan Komargodski2, Wei-Kai Lin3, Kartik Nayak4,
Enoch Peserico5, and Elaine Shi3

1 Bar-Ilan University, 52900 Ramat Gan, Israel
gilad.asharov@biu.ac.il

2 NTT Research, Palo Alto, CA 94303, USA
ilan.komargodski@ntt-research.ac.il

3 Cornell University, Ithaca, NY 14850, USA
w1572@cornell.edu, runting@gmail.com

4 Duke University, Durham, NC 27708, USA
kartik@cs.duke.edu

5 Università degli Studi di Padova, Padova, PD, Italy
enoch@dei.unipd.it

Abstract. Oblivious RAM (ORAM), first introduced in the ground-
breaking work of Goldreich and Ostrovsky (STOC ’87 and J. ACM ’96)
is a technique for provably obfuscating programs’ access patterns, such
that the access patterns leak no information about the programs’ secret
inputs. To compile a general program to an oblivious counterpart, it is
well-known that Ω(log N) amortized blowup is necessary, where N is the
size of the logical memory. This was shown in Goldreich and Ostrovksy’s
original ORAM work for statistical security and in a somewhat restricted
model (the so called balls-and-bins model), and recently by Larsen and
Nielsen (CRYPTO ’18) for computational security.

A long standing open question is whether there exists an optimal
ORAM construction that matches the aforementioned logarithmic lower
bounds (without making large memory word assumptions, and assuming
a constant number of CPU registers). In this paper, we resolve this prob-
lem and present the first secure ORAM with O(log N) amortized blowup,
assuming one-way functions. Our result is inspired by and non-trivially
improves on the recent beautiful work of Patel et al. (FOCS ’18) who
gave a construction with O(log N · log log N) amortized blowup, assum-
ing one-way functions.

One of our building blocks of independent interest is a linear-time
deterministic oblivious algorithm for tight compaction: Given an array
of n elements where some elements are marked, we permute the ele-
ments in the array so that all marked elements end up in the front of the
array. Our O(n) algorithm improves the previously best known deter-
ministic or randomized algorithms whose running time is O(n · log n) or
O(n · log log n), respectively.

Keywords: Oblivious RAM · Randomized algorithms · Tight
compaction

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 403–432, 2020.
https://doi.org/10.1007/978-3-030-45724-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_14

404 G. Asharov et al.

1 Introduction

Oblivious RAM (ORAM), first proposed by Goldreich and Ostrovsky [22,23],
is a technique to compile any program into a functionally equivalent one, but
whose memory access patterns are independent of the program’s secret inputs.
The overhead of an ORAM is defined as the (multiplicative) blowup in runtime
of the compiled program. Since Goldreich and Ostrovsky’s seminal work, ORAM
has received much attention due to its applications in cloud computing, secure
processor design, multi-party computation, and theoretical cryptography (for
example, [7,19–21,34–36,39,44,46,47,51–53]).

For more than three decades, the biggest open question in this line of work
is regarding the optimal overhead of ORAM. Goldreich and Ostrovsky’s original
work [22,23] showed a construction with O(log3 N) blowup in runtime, assuming
the existence of one-way functions, where N denotes the memory size consumed
by the original non-oblivious program. On the other hand, they proved that any
ORAM scheme must incur at least Ω(log N) overhead, but their lower bound
is restricted to schemes that treat the contents of each memory word as “indi-
visible” (see Boyle and Naor [8]) and make no cryptographic assumptions. In a
recent work, Larsen and Nielsen [30] showed that Ω(log N) overhead is necessary
for all online ORAM schemes,1 even ones that use cryptographic assumptions
and might perform non-trivial encodings on the contents of the memory. Since
Goldreich and Ostrovsky’s work, a long line of research has been dedicated to
improving the asymptotic efficiency of ORAM [10,25,29,45,48,50]. Prior to our
work, the best known scheme, allowing computational assumptions, is the ele-
gant work by Patel et al. [40]: they showed the existence of an ORAM with
O(log N · log log N) overhead, assuming one-way functions. In comparison with
Goldreich and Ostrovksy’s original O(log3 N) result, Patel’s result seems tanta-
lizingly close to matching the lower bound, but unfortunately we are still not
there yet and the construction of an optimal ORAM continues to elude us even
after more than 30 years.

1.1 Our Results: Optimal Oblivious RAM

We resolve this long-standing problem by showing a matching upper bound
to Larsen and Nielsen’s [30] lower bound: an ORAM scheme with O(log N)
overhead and negligible security in λ, where N is the size of the memory and
λ is the security parameter, assuming one-way functions. More concretely, we
show:2

1 An ORAM scheme is online if it supports accesses arriving in an online manner, one
by one. Almost all known schemes have this property.

2 Note that for the (sub-)exponential security regime, e.g., failure probability of 2−λ

or 2−λε

for some ε ∈ (0, 1), perfectly secure ORAM schemes [12,16] asymptotically
outperform known statistically or computationally secure constructions assuming
that N = poly(λ).

OptORAMa: Optimal Oblivious RAM 405

Theorem 1.1. Assume that there is a PRF family that is secure against any
probabilistic polynomial-time adversary except with a negligible small probability
in λ. Assume that λ ≤ N ≤ T ≤ poly(λ) for any fixed polynomial poly(·), where
T is the number of accesses. Then, there is an ORAM scheme with O(log N)
overhead and whose security failure probability is upper bounded by a suitable
negligible function in λ.

In the aforementioned results and throughout this paper, unless otherwise
noted, we shall assume a standard word-RAM where each memory word has at
least w = log N bits, i.e., large enough to store its own logical address. We assume
that word-level addition and boolean operations can be done in unit cost. We
assume that the CPU has constant number of private registers. For our ORAM
construction, we additionally assume that a single evaluation of a pseudorandom
function (PRF), resulting in at least word-size number of pseudo-random bits,
can be done in unit cost.3 Note that all earlier computationally secure ORAM
schemes, starting with the work of Goldreich and Ostrovsky [22,23], make the
same set of assumptions. Additionally, we remark that our result can be made
statistically secure if one assumes a private random oracle to replace the PRF
(the known logarithmic ORAM lower bound [22,23,30] still hold in this setting).
Finally, we note that our construction suffers from huge constants due to the
use of certain expander graphs; improving the concrete constant is left for future
work.

In the full version [5], we provide a comparison with previous works, where
we make the comparison more accurate and meaningful by explicitly stating the
dependence on the error probability (which was assumed to be some negligible
functions in previous works).

1.2 Our Results: Optimal Oblivious Tight Compaction

Closing the remaining log log N gap for ORAM turns out to be highly challeng-
ing. Along the way, we actually construct an important building block, that is,
a deterministic, linear-time, oblivious tight compaction algorithm. This result is
an important contribution on its own, and has intimate connections to classical
algorithms questions, as we explain below.

Tight compaction is the following task: given an input array of size n con-
taining either real or dummy elements, output a permutation of the input array
where all real elements appear in the front. Tight compaction can be considered
as a restricted form of sorting, where each element in the input array receives a 1-
bit key, indicating whether it is real or dummy. One näıve solution for tight com-
paction, therefore, is to rely on oblivious sorting to sort the input array [2,24];
unfortunately, due to recent lower bounds [17,33], we know that any oblivious
sorting scheme must incur Ω(n · log n) time on a word-RAM, either assuming

3 Alternatively, if we use number of IOs as an overhead metric, we only need to assume
that the CPU can evaluate a PRF internally without writing to memory, but the
evaluation need not be unit cost.

406 G. Asharov et al.

that the algorithm treats each element as “indivisible” [33] or assuming that the
famous Li-Li network coding conjecture [32] is true [17].

A natural question, therefore, is whether we can do asymptotically better
than just näıvely sorting the input. It turns out that this question is related
to a line of work in the classical algorithms literature, that is, the design of
switching networks and routing on such networks [2,4,6,18,42,43]. First, a line of
combinatorial works showed the existence of linear-sized super-concentrators [41,
42,49], i.e., switching networks with n inputs and n outputs such that vertex-
disjoint paths exist from any k elements in the inputs to any k positions in
the outputs. One could leverage a linear-sized super-concentrator construction
to obliviously route all the real elements in the input to the front of the output
array deterministically and in linear time (by routing elements along the routes),
but it is not clear yet how to find routes (i.e., a set of vertex-disjoint paths) from
the real input positions to the front of the output array.

In an elegant work in 1996, Pippenger [43] showed a deterministic, linear-
time algorithm for route-finding but unfortunately the algorithm is not oblivi-
ous. Shortly afterwards, Leighton et al. [31] showed a probabilistic algorithm that
tightly compacts n elements in O(n·log log λ) time with 1−negl(λ) probability—
their algorithm is almost oblivious except for leaking the number of reals and
dummies. After Leighton et al. [31], this line of work remained somewhat stag-
nant for almost two decades. Only recently, did we see some new results: Mitchell
and Zimmerman [38] as well as Lin et al. [33] showed how to achieve the same
asymptotics as Leighton et al. [31] but now making the algorithm fully oblivious.

In this paper, we give an explicit construction of a deterministic, oblivious
algorithm that tightly compacts any input array of n elements in linear time, as
stated in the following theorem:

Theorem 1.2 (Linear-time oblivious tight compaction). There is a determinis-
tic, oblivious tight compaction algorithm that compacts n elements in O(�D/w� ·
n) time on a word-RAM where D is the bit-width for encoding each element and
w ≥ log n is the word size.

Our algorithm is not comparison-based and not stable and this is inherent.
Specifically, Lin et al. [33] recently showed that any stable, oblivious tight com-
paction algorithm (that treats elements as indivisible) must incur Ω(n·log n) run-
time, where stability requires that the real elements in the output must appear in
the same order as the input. Further, due to the well-known 0-1 principle [1,15],
any comparison-based tight compaction algorithm must incur at least Ω(n·log n)
runtime as well.4

Not only our ORAM construction relies on the above compaction algorithm
in several key points, but it is a useful primitive independently. For example,
we use our compaction algorithm to give a perfectly oblivious algorithm that

4 Although the algorithm of Leighton et al. [31] appears to be comparison-based, it is
in fact not since the algorithm must tally the number of reals/dummies and make
use of this number.

OptORAMa: Optimal Oblivious RAM 407

randomly permutes arrays of n elements in (worst-case) O(n · log n) time. All
previously known such constructions have some probability of failure.

2 Technical Roadmap

We give a high-level overview of our results. In Sect. 2.1 we provide a high-level
overview of our ORAM construction which uses an oblivious tight compaction
algorithm. In Sect. 2.2 we give a high-level overview of the techniques underlying
our tight compaction algorithm.

2.1 Oblivious RAM

In this section we present a high-level description of the main ideas and tech-
niques underlying our ORAM construction. Full details are given later in the
corresponding technical sections.

Hierarchical ORAM. The hierarchical ORAM framework, introduced by Goldre-
ich and Ostrovsky [22,23] and improved in subsequent works (e.g., [10,25,29]),
works as follows. For a logical memory of N blocks, we construct a hierarchy of
hash tables, henceforth denoted T1, . . . , TL where L = log N . Each Ti stores 2i

memory blocks. We refer to table Ti as the i-th level. In addition, we store next
to each table a flag indicating whether the table is full or empty. When receiving
an access request to read/write some logical memory address addr, the ORAM
proceeds as follows:

– Read phase. Access each non-empty levels T1, . . . , TL in order and perform
Lookup for addr. If the item is found in some level Ti, then when accessing all
non-empty levels Ti+1, . . . , TL look for dummy.

– Write back. If this operation is read, then store the found data in the read
phase and write back the data value to T0. If this operation is write, then
ignore the associated data found in the read phase and write the value pro-
vided in the access instruction in T0.

– Rebuild: Find the first empty level �. If no such level exists, set � := L.
Merge all {Tj}0≤j≤� into T�. Mark all levels T1, . . . , T�−1 as empty and T� as
full.

For each access, we perform log N lookups, one per hash table. Moreover, after
t accesses, we rebuild the i-th table �t/2i� times. When implementing the hash
table using the best known oblivious hash table (e.g., oblivious Cuckoo hash-
ing [10,25,29]), building a level with 2k items obliviously requires O(2k ·log(2k)) =
O(2k · k) time. This building algorithm is based on oblivious sorting, and its
time overhead is inherited from the time overhead of the oblivious sort proce-
dure (specifically, the best known algorithm for obliviously sorting n elements
takes O(n · log n) time [2,24]). Thus, summing over all levels (and ignoring the
log N lookup operations across different levels for each access), t accesses require
∑log N

i=1

⌈
t
2i

⌉ · O(2i · i) = O(t · log2 N) time. On the other hand, lookup takes

408 G. Asharov et al.

essentially constant time per level (ignoring searching in stashes which introduce
an additive factor) and thus O(log N) per access. Thus, there is an asymmetry
between build time and lookup time, and the main overhead is the build.

The work of Patel et al. [40]. Classically (e.g., [10,22,23,25,29]), oblivious hash
tables were built to support (and be secure for) every input array. This required
expensive oblivious sorting, causing the extra logarithmic factor. The key idea of
Patel et al. [40] is to modify the hierarchical ORAM framework to realize ORAM
from a weaker primitive: an oblivious hash table that works only for randomly shuf-
fled input arrays. Patel et al. describe a novel oblivious hash table such that building
a hash table containing n elements can be accomplished without oblivious sorting
and consumes only O(n · log log λ) total time5 and lookup consumes O(log log n)
total time. Patel et al. argue that their hash table construction retains security not
necessarily for every input, but when the input array is randomly permuted, and
moreover the input permutation must be unknown to the adversary.

To be able to leverage this relaxed hash table in hierarchical ORAM, a
remaining question is the following: whenever a level is being rebuilt in the
ORAM (i.e., a new hash table is being constructed), how do we make sure that
the input array is randomly and secretly shuffled? A näıve answer is to employ an
oblivious random permutation to permute the input, but known oblivious ran-
dom permutation constructions require oblivious sorting which brings us back to
our starting point. Patel et al. solve this problem and show that there is no need
to completely shuffle the input array. Recall that when building some level T�,
the input array consists of only unvisited elements in tables T0, . . . , T�−1 (and
T� too if � is the largest level). Patel et al. argue that the unvisited elements
in tables T0, . . . , T�−1 are already randomly permuted within each table and the
permutation is unknown to the adversary. Then, they presented a new algo-
rithm, called multi-array shuffle, that combines these arrays to a shuffled array
within O(n · log log λ) time, where n = |T0| + |T1| + . . . + |T�−1|.6 The algorithm
is somewhat involved, randomized, and has a negligible probability of failure.

The blueprint. Our construction builds upon and simplifies the construction of
Patel et al. To get better asymptotic overhead, we improve their construction in
two different aspects:

1. We show how to implement our variant of multi-array shuffle (called inter-
sperse) in O(n) time. Specifically, we show a new reduction from intersperse
to tight compaction.

2. We develop a hash table that supports build in O(n) time assuming that the
input array is randomly shuffled. The lookup is O(1), ignoring time spent on
looking in stashes. Achieving this is rather non-trivial: first we use a “packing”

5 λ denotes the security parameter. Since the size of the hash table n may be small, here
we separate the security parameter from the hash table’s size.

6 The time overhead is a bit more complicated to state and the above expression is for
the case where |Ti| = 2|Ti−1| for every i (which is the case in a hierarchical ORAM
construction).

OptORAMa: Optimal Oblivious RAM 409

style trick to construct oblivious Cuckoo hash tables for small sizes where
n ≤ poly log λ, achieving linear-time build and constant-time lookup. Relying
on the advantage we gain for problems of small sizes, we then show how to
solve problems of medium and large sizes, again relying on oblivious tight
compaction as a building block. The bootstrapping step from medium to
large is inspired by Patel et al. [40] at a very high level, but our concrete
construction differs from Patel et al. [40] in many technical details.

We describe the core ideas behind these improvements next. In Sect. 2.1.1,
we present our multi-array shuffle algorithm. In Sect. 2.1.2, we show how to
construct a hash table for shuffled inputs achieving linear build time and constant
lookup.

2.1.1 Interspersing Randomly Shuffled Arrays
Given two arrays, I1 and I2, of size n1, n2, respectively, where each array is
randomly shuffled, our goal is to output a single array that contains all elements
from I1 and I2 in a randomly shuffled order. Ignoring obliviousness, we could first
initialize an output array of size n = n1 +n2, mark exactly n1 random locations
in the output array, and place the elements from I1 arbitrarily in these locations.
The elements from I2 are placed in the unmarked locations.7 The challenge is
how to perform this placement obliviously, without revealing the mapping from
the input array to the output array.

We observe that this routing problem is exactly the “reverse” problem of
oblivious tight compaction, where one is given an input array of size n containing
keys that are 1-bit and the goal is to sort the array such that all elements with
key 0 appear before all elements with key 1. Intuitively, by running this algorithm
“in reverse”, we obtain a linear time algorithm for obliviously routing marked
elements to an array with marked positions (that are not necessarily at the front).
Since we believe that this procedure is useful in its own right, we formalize it
independently and call it oblivious distribution. The full details appear in the
full version [5].

2.1.2 An Optimal Hash Table for Shuffled Inputs
In this section, we first describe a warmup construction that can be used to build
a hash table in O(n ·poly log log λ) time and supports lookups in O(poly log log λ)
time. We will then get rid of the additional poly log log λ factor in both the build
and lookup phases.

Warmup: oblivious hash table with poly log log λ slack. Intuitively, to build
a hash table, the idea is to randomly distribute the n elements in the input
into B := n/poly log λ bins of size poly log λ in the clear. The distribution is
done according to a pseudorandom function with some secret key K, where an

7 Note that the number of such assignments is
(

n
n1,n2

)
. Assuming that each array is

already permuted, the number of possible outputs is
(

n
n1,n2

) · n1!n2! = n!.

410 G. Asharov et al.

element with address addr is placed in the bin with index PRFK(addr). Whenever
we lookup for a real element addr′, we access the bin PRFK(addr′); in which case,
we might either find the element there (if it was originally one of the n elements
in the input) or we might not find it in the accessed bin (in the case where the
element is not part of the input array). Whenever we perform a dummy lookup,
we just access a random bin.

Since we assume that the n balls are secretly and randomly distributed to
begin with, the build procedure does not reveal the mapping from original ele-
ments to bins. However, a problem arises in the lookup phase. Since the total
number of elements in each bin is revealed, accessing in the lookup phase all
real keys of the input array would produce an access pattern that is identical to
that of the build process, whereas accessing n dummy elements results in a new,
independent balls-into-bins process of n balls into B bins.

To this end, we first throw the n balls into the B bins as before, revealing
loads n1, . . . , nB . Then, we sample new secret loads L1, . . . , LB corresponding to
an independent process of throwing n′ := n · (1 − 1/poly log λ) balls into B bins.
By a Chernoff bound, with overwhelming probability Li < ni for every i ∈ [B].
We extract from each bin arbitrary ni − Li balls obliviously and move them to
an overflow pile (without revealing the Li’s). The overflow pile contains only
n/poly log λ elements so we use a standard Cuckoo hashing scheme such that it
can be built in O(m · log m) = O(n) time and supports lookups effectively in
O(1) time (ignoring the stash).8 The crux of the security proof is showing that
since the secret loads L1, . . . , LB are never revealed, they are large enough to
mask the access pattern in the lookup phase so that it looks independent of the
one leaked in the build phase.

We glossed over many technical details, the most important ones being how
the bin sizes are truncated to the secret loads L1, . . . , LB , and how each bin is
being implemented. For the second question, since the bins are of O(poly log λ)
size, we support lookups using a perfectly secure ORAM constructions that
can be built in O(poly log λ · poly log log λ) and looked up in O(poly log log λ)
time [12,16] (this is essentially where our poly log log factor comes from in this
warmup). The first question is solved by employing our linear time tight com-
paction algorithm to extract the number of elements we want from each bin.

The full details of the construction appear in Sect. 5.

Remark 2.1 (Comparison of the warmup construction with Patel et al. [40]).
Our warmup construction borrows the idea of revealing loads and then sampling
new secret loads from Patel et al. However, our concrete instantiation is different
and this difference is crucial for the next step where we get an optimal hash table.
Particularly, the construction of Patel et al. has log log λ layers of hash tables
of decreasing sizes, and one has to look for an element in each one of these
hash tables, i.e., searching within log log λ bins. In our solution, by tightening
the analysis (that is, the Chernoff bound), we show that a single layer of hash
tables suffices; thus, lookup accesses only a single bin. This allows us to focus on
optimizing the implementation of a bin towards the optimal construction.
8 We refer to the full version [5] for background information on Cuckoo hashing.

OptORAMa: Optimal Oblivious RAM 411

Oblivious hash table with linear build time and constant lookup time. In the
warmup construction, (ignoring the lookup time in the stash of the overflow
pile9), the only super-linear operation that we have is the use of a perfectly
secure ORAM, which we employ for bins of size O(poly log λ). In this step, we
replace this with a data structure with linear time build and constant time
lookup: a Cuckoo hash table for lists of polylogarithmic size.

Recall that in a Cuckoo hash table each element receives two random bin
choices (e.g., determined by a PRF) among a total of ccuckoo · n bins where
ccuckoo > 1 is a suitable constant. During build-time, the goal is for all elements
to choose one of the two assigned bins, such that every bin receives at most one
element. At this moment it is not clear how to accomplish this build process,
but suppose we can obliviously build such a Cuckoo hash table in linear time,
then the problem would be solved. Specifically, once we have built such a Cuckoo
hash table, lookup can be accomplished in constant time by examining both bin
choices made by the element (ignoring the issue of the stash for now). Since the
bin choices are (pseudo-)random, the lookup process retains security as long as
each element is looked up at most once. At the end of the lookups, we can extract
the unvisited elements through oblivious tight compaction in linear time—it
is not hard to see that if the input array is randomly shuffled, the extracted
unvisited elements appear in a random order too.

Therefore the crux is how to build the Cuckoo hash table for poly-
logarithmically-sized, randomly shuffled input arrays. Our observation is that
classical oblivious Cuckoo hash table constructions can be split into three steps:
(1) assigning two possible bin choices per element, (2) assigning either one of
the bins or the stash for every element, and (3) routing the elements according
to the Cuckoo assignment. We delicately handle each step separately:

1. For step (1) the n = poly log λ elements in the input array can each evaluate
the PRF on its associated key, and write down its two bin choices (this takes
linear time).

2. Implementing step (2) in linear time is harder as this step is dominated by
a sequence of oblivious sorts. To overcome this, we use the fact that the
problem size n is of size poly log λ. As a result, the index of each item and
its two bin choices can be expressed using O(log log λ) bits which means
that a single memory word (which is log λ bits long) can hold O

(
log λ

log log λ

)

many elements’ metadata. We can now apply a “packed sorting” type of
idea [3,11,14,28] where we use the RAM’s word-level instructions to perform
SIMD-style operations. Through this packing trick, we show that oblivious
sorting and oblivious random permutation (of the elements’ metadata) can
be accomplished in O(n) time!

9 For the time being, the reader need not worry about how to perform lookup in the
stash. Later, when we use our oblivious Cuckoo hashing scheme in the bigger hash
table construction, we will merge the stashes of all Cuckoo hash tables into a single
one and treat the merged stash specially.

412 G. Asharov et al.

3. Step (3) is classically implemented using oblivious bin distribution which
again uses oblivious sorts. Here, we cannot use the packing trick since we
operate on the elements themselves, so we use the fact that the input array
is randomly shuffled and just route the elements in the clear.

There are many technical issues we glossed over, especially related to the fact
that the Cuckoo hash tables are of size ccuckoo · n bins, where ccuckoo > 1. This
requires us to pad the input array with dummies and later to use them to fill the
empty slots in the Cuckoo assignment. Additionally, we also need to get rid of
these dummies when extracting the set of unvisited element. All of these require
several additional (packed) oblivious sorts or our oblivious tight compaction.

We refer the reader to Sect. 6 for the full details of the construction.

2.1.3 Additional Technicalities
The above description, of course, glossed over many technical details. To obtain
our final ORAM construction, there are still a few concerns that have not been
addressed. First, recall that we need to make sure that the unvisited elements in
a hash table appear in a (pseudo-)random order such that we can make use of
this residual randomness to re-initialize new hash tables faster. To guarantee this
for the Cuckoo hash table that we employ for poly log λ-sized bins, we need that
the underlying Cuckoo hash scheme we employ satisfy an additional property
called the “indiscriminating bin assignment” property: specifically, we need that
the two pseudo-random Cuckoo-bin choices for each element do not depend on
the order in which they are added, their keys, or their positions in the input
array. In our technical sections later, this property will allow us to do a coupling
argument and prove that the residual unvisited elements in the Cuckoo hash
table appear in random order.

Additionally, some technicalities remain in how we treat the smallest level of
the ORAM and the stashes. The smallest level in the ORAM construction cannot
use the hash table construction described earlier. This is because elements are
added to the smallest level as soon as they are accessed and our hash table does
not support such an insertion. We address this by using an oblivious dictionary
built atop a perfectly secure ORAM for the smallest level of the ORAM. This
incurs an additive O(poly log log λ) blowup. Finally, the stashes for each of the
Cuckoo hash tables (at every level and every bin within the level) incur O(log λ)
time. We leverage the techniques from Kushilevitz et al. [29] to merge all stashes
into a common stash of size O(log2 λ), which is added to the smallest level when
it is rebuilt.

On deamortization. As the overhead of our ORAM is amortized over several
accesses, it is natural to ask whether we can deamortize the construction to
achieve the same overhead in the worst case, per access. Historically, Ostro-
vsky and Shoup [39] deamortized the hierarchical ORAM of Goldreich and
Ostrovsky [23], and related techniques were later applied on other hierarchical
ORAM schemes [10,26,29]. Unfortunately, the technique fails for our ORAM as
we explain below (it fails for Patel et al. [40], as well, by the same reason).

OptORAMa: Optimal Oblivious RAM 413

Recall that in the hierarchical ORAM, the i-th level hash table stores 2i

keys and is rebuilt every 2i accesses. The core idea of existing deamortization
techniques is to spread the rebuilding work over the next sequence of 2i ORAM
accesses. That is, copy the 2i keys (to be rebuilt) to another working space while
performing lookup on the same level i to fulfill the next 2i accesses. However,
plugging such copy-while-accessing into our ORAM, an adversary can access a
key in level i right after the same level is fully copied (as the copying had no
way to foresee future accesses). Then, in the adversarial eyes, the copied keys are
no longer randomly shuffled, which breaks the security of the hash table (which
assumes that the inputs are shuffled). Indeed, in previous works, where hash
tables were secure for every input, such deamortization works. Deamortizing
our construction is left as an open problem.

2.2 Tight Compaction

Recall that tight compaction can be considered as a restricted form of sorting,
where each element in the input array receives a 1-bit key, indicating whether it
is real or dummy. The goal is to move all the real elements in the array to the
front obliviously, and without leaking how many elements are reals. We show a
deterministic algorithm for this task.

Reduction to loose compaction. Pippenger’s self-routing super-concentrator con-
struction [43] proposes a technique that reduces the task of tight compaction
to that of loose compaction. Informally speaking, loose compaction receives as
input a sparse array, containing a few real elements and many dummy elements.
The output is a compressed output array, containing all real elements but the
procedure does not necessarily remove all the dummy elements. More concretely,
we care about a specific form of loose compactor (parametrized by n): consider a
suitable bipartite expander graph that has n vertices on the left and n/2 vertices
on the right where each node has constant degree. At most 1/128 fraction of the
vertices on the left will receive a real element, and we would like to route all
real elements over vertex-disjoint paths to the right side such that every right
vertex receives at most 1 element. The crux is to find a set of satisfying routes in
linear time and obliviously. Once a set of feasible routes have been identified, it
is easy to see that performing the actual routing can be done obliviously in lin-
ear time (and for obliviousness we need to route a dummy element over an edge
that bears 0 load). During this process, we effectively compress the sparse input
array (represented by vertices on the left) by 1/2 without losing any element.

Using Pippenger’s techniques [43] and with a little extra work, we can derive
the following claim—at this point we simply state the claim while deferring
algorithmic details to subsequent technical sections. Below D denotes the number
of bits it takes to encode an element and w denotes the word size:

Claim: There exist appropriate constants C,C ′ > 6 such that the follow-
ing holds: if we can solve the aforementioned loose compaction problem
obliviously in time T (n) for all n ≤ n0, then we can construct an oblivious
algorithm that tightly compacts n elements in time C · T (n) + C ′ · �D/w� · n
for all n ≤ n0.

414 G. Asharov et al.

As mentioned, the crux is to find satisfying routes for such a “loose compactor”
bipartite graph obliviously and in linear time. Achieving this is non-trivial: for
example, the recent work of Chan et al. [12] attempted to do this but their
route-finding algorithm requires O(n log n) runtime—thus Chan et al. [12]’s
work also implies a loose compaction algorithm that runs in time O(n log n +
�D/w� · n). To remove the extra log n factor, we introduce two new ideas, pack-
ing, and decomposition—in fact both ideas are remotely reminiscent of a line of
works in the core algorithms literature on (non-comparison-based, non-oblivious)
integer sorting on RAMs [3,14,28] but obviously we apply these techniques to a
different context.

Packing: linear-time compaction for small instances. We observe that the offline
route-finding phase operates only on metadata. Specifically, the route-finding
phase receives the following as input: an array of n bits where the i-th bit
indicates whether the i-th input position is real or dummy. If the problem size
n is small, specifically, if n ≤ w/ log w where w denotes the width of a memory
word, we can pack the entire problem into a single memory word (since each
element’s index can be described in log n bits). In our technical sections we will
show how to rely on word-level addition and boolean operations to solve such
small problem instances in O(n) time. At a high level, we follow the slow route-
finding algorithm by Chan et al. [12], but now within a single memory word, we
can effectively perform SIMD-style operations and we exploit this to speed up
Chan et al. [12]’s algorithm by a logarithmic factor for small instances.

Relying on the above Claim that allows us to go from loose to tight, we
now have an O(n)-time oblivious tight compaction algorithm for small instances
where n ≤ w/ log w; specifically, if the loose compaction algorithm takes C0 · n
time, then the runtime of the tight compaction would be upper bounded by
C · C0 · n + C ′ · �D/w� · n ≤ C · C0 · C ′ · �D/w� · n.

Decomposition: bootstrapping larger instances of compaction. With this loga-
rithmic advantage we gain in small instances, our hope is to bootstrap larger
instances by decomposing larger instances into smaller ones.

Our bootstrapping is done in two steps—as we calculate below, each time we
bootstrap, the constant hidden inside the O(n) runtime blows up by a constant
factor; thus it is important that the bootstrapping is done for only O(1) times.

1. Medium instances: n ≤ (w/ log w)2. For medium instances, our idea is to
divide the input array into

√
n segments each of B :=

√
n size. As long as

the input array has only n/128 or fewer real elements, then at most
√

n/4
segments can be dense, i.e., each containing more than

√
n/4 real elements

(1/4 is loose but sufficient). We rely on tight compaction for small instances to
move the dense segments in front of the sparse ones. For each of 3

√
n/4 sparse

segments, we next compress away 3/4 of the space using tight compaction for
small instances. Clearly, the above procedure is a loose compaction and con-
sumes at most 2 ·C ·C ′ ·C0 · �D/w� ·n+6�D/w� ·n ≤ 2.5 ·C ·C ′ ·C0 · �D/w� ·n
runtime.

OptORAMa: Optimal Oblivious RAM 415

So far we have constructed a loose compaction algorithm for medium
instances. Using the aforementioned Claim, we can in turn construct an algo-
rithm that obliviously and tightly compacts a medium-sized instance of size
n ≤ (w/ log w)2 in time at most 3C2 · C ′ · C0 · �D/w� · n.

2. Large instances: arbitrary n. We can now bootstrap to arbitrary choices of n
by dividing the problem into m := n/(w

log w)2 segments where each segment
contains at most (w

log w)2 elements. Similar to the medium case, at most 1/4
fraction of the segments can have real density exceeding 1/4—which we call
such segments dense. As before, we would like to move the dense segments
in the front and the sparse ones to the end. Recall that Chan et al. [12]’s
algorithm solves loose compaction for problems of arbitrary size m in time
C1 · (m log m + �D/w�m) Thus due to the above claim we can solve tight
compaction for problems of any size m in time C ·C1 ·(m log m+�D/w�·m)+
C ′ ·�D/w�·m. Thus, in O(�D/w�·n) time we can move all the dense instances
to the front and the sparse instances to the end. Finally, by invoking medium
instances of tight compaction, we can compact within each segment in time
that is linear in the size of the segment. This allows us to compress away 3/4
of the space from the last 3/4 segments which are guaranteed to be sparse.
This gives us loose compaction for large instances in O(�D/w�·n) time—from
here we can construct oblivious tight compaction for large instances using the
above Claim.10

Remark 2.2. In our formal technical sections later, we in fact directly use loose
compaction for smaller problem sizes to bootstrap loose compaction for larger
problem sizes (whereas in the above version we use tight compaction for smaller
problems to bootstrap loose compaction for larger problems). The detailed algo-
rithm is similar to the one described above: it requires slightly more complicated
parameter calculation but results in better constants than the above more intuitive
version.

Organization. In Sect. 3 we highlight several building blocks that are necessary
for our construction. In Sect. 4 we describe our oblivious tight compaction algo-
rithm informally (due to lack of space). In Sect. 5 we provide our construction of
hash table for shuffled input for long size inputs, and in Sect. 6 we provide our
construction of hash table for small size input, i.e., how we organize the bins.
Our ORAM construction is provided in Sect. 7.

3 Oblivious Building Blocks

Our ORAM construction uses many building blocks, some of which new to this
work and some of which are known from the literature. The building blocks are

10 We omit the concrete parameter calculation in the last couple of steps but from the
calculations so far, it should be obvious by now that the there is at most a constant
blowup in the constants hidden inside the big-O notation.

416 G. Asharov et al.

listed next. Due to lack of space, we just mention the building blocks and refer
the reader to the full paper [5] for formal definitions.

Oblivious Sorting Algorithms: We state the classical sorting network of Ajtai
et al. [2] and present a new oblivious sorting algorithm that is more efficient in
settings where each memory word can hold multiple elements.

Oblivious Random Permutations: We show how to perform efficient oblivi-
ous random permutations in settings where each memory word can hold multiple
elements.

Oblivious Bin Placement: We state the known results for oblivious bin place-
ment of Chan et al. [10,13].

Oblivious Hashing: We present the formal functionality of a hash table that
is used throughout our work. We also state the resulting parameters of a simple
oblivious hash table that is achieved by compiling a non-oblivious hash table
inside an existing ORAM construction. Due to its importance, we provide some
high level of the functionality here.

In a nutshell, the functionality of hash function supports three commands:
A “constructor” Build(I), receiving an array of n pairs of key/value (ki, vi). The
array I is assumed to be randomly shuffled, and the instruction builds some inter-
nal structure for supporting fast (and oblivious) future accesses. Then, the con-
struction supports several Lookup(k) instructions, where if k ∈ I then the cor-
responding v should be returned, and otherwise ⊥ is returned. Importantly, the
Lookup should also support fictitious lookups, i.e., supports k = ⊥. The construc-
tion should not leak whether k ∈ I, k 	∈ I or k = ⊥. Finally, the hash function also
supports the “destructor” function Extract() – which returns a permuted array
of size n consisting of all elements in I that were not accessed padded with dum-
mies. The security definition requires that the joint distribution of access pattern,
where the adversary can choose the sequence of instructions and the inputs to the
instructions, is simulatable. The only restriction is that the adversary cannot ask
for the same key more than once. We call this functionality “oblivious hash table
for non-recurrent lookups”, see full paper for formal definition.

Oblivious Cuckoo Hashing: We present and overview the state-of-the-art
constructions of oblivious Cuckoo hash tables. We state their complexities and
also make minor modifications that will be useful to us later.

Oblivious Dictionary: We present and analyze a simple construction of a
dictionary that is achieved by compiling a non-oblivious dictionary (e.g., a red-
black tree) inside an existing ORAM construction.

Oblivious Balls-into-Bins Sampling: We present an oblivious sampling of
the approximated bin loads of throwing independently n balls into m bins, which
uses the binomial sampling of Bringmann et al. [9].

Oblivious Tight Compaction: As was mentioned in the introduction, one
of our main contributions is a deterministic linear time procedure (in the balls
and bins model) for the following problem: given an input array containing n

OptORAMa: Optimal Oblivious RAM 417

balls, each of which marked with a 1-bit label that is either 0 or 1, output a
permutation of the array such that all the 1 balls are moved to the front.

Intersperse: Given two arrays that are assumed to be randomly shuffled I0, I1
of sizes n0, n1, resp., we show a procedure Interspersen0+n1

(I0‖I1, n0, n1) that
returns a random permutation of I0‖I1. We generalize it also for interspersing
k arrays Intersperse(k)n1,...,nk

(I1‖ . . . ‖Ik), each of which is randomly shuffled, and
for interspersing real and dummy elements IntersperseRD, assuming that the real
elements are randomly shuffled but in which we have no guarantee of the relative
positions of the real elements with respect to the dummy ones. In all of these
variants, the goal is to return a random permutation of all elements in the input
array, while the assumption on the input helps to reduces the running time.

Notation. Throughout the paper, we use the notation δA-secure PRF to mean
that for every (non-uniform) probabilistic polynomial-time algorithm A has
advantage at most δA in distinguishing an output of the PRF from random.
We additionally say that an algorithm is (1 − δA)-oblivious if no (non-uniform)
probabilistic polynomial-time algorithm A can distinguish its access pattern
from a simulated one with probability better than δA. Formal definitions appear
in the full paper.

4 Oblivious Tight Compaction in Linear Time

Our tight compaction algorithm works in two main steps. We first reduce the
problem (in linear time) to a relaxed problem called loose compaction. Here,
one is given an array I with n elements in which it is guaranteed that at most
n/� elements are real for some constant � > 2, and the goal is to return an
array of size n/2 that contain all the real elements. Second, we implement loose
compaction in linear time.

Reducing tight compaction to loose compaction. Given an input array I of n
elements in which some are marked 0 and the rest are marked 1, we first count
the number of total elements marked 0 in the input array, and let c be this
number. The first observation is that all 0-elements in the input array that reside
in locations 1, . . . , c, and all 1-elements in locations c+1, . . . , n are already placed
correctly. Thus, we just need to handle the rest of the elements which we call
the misplaced ones. The number of misplaced elements marked 0 equals to the
number of misplaced elements marked 1, and all we have to do is to (obliviously)
swap between each misplaced 0-element with a distinct misplaced 1-element.

The main idea here is to perform the swaps along the edges of a bipartite
expander graph. Consider a bipartite expander graph where the left nodes are
associated with the elements. The edges of the graph are the access pattern of
our algorithm. We will swap two misplaced elements that have a different mark
if they have a common neighbor on the right. To make sure this algorithm runs

418 G. Asharov et al.

in linear time, the graph has to be d-regular for d = O(1) and that the list
of neighbors of every node can be computed using O(1) basic operations. Such
explicit expander graphs are known to exist (for example, Margulis [37]).

Using the expansion properties of the graph, we can upper bound the num-
ber of misplaced elements that were not swapped by this process: at most n/�
for some � > 2. Thus, we can invoke loose compaction where we consider the
remaining misplaced element as real elements and the rest being dummy. This
process reduced the problem from n elements to n/2 and we proceed in recur-
sion to swap the misplaced elements on that first half of the array, until all
0-elements and 1-elements are swapped. (The reduction is of logarithmic depth
and the problem size is shrunk by a factor two in each step so the complexity is
linear overall.)

Loose compaction. The loose compaction algorithm LooseCompaction� receives
as input an array I consisting of n balls, where at most n/� are real and the
rest are dummies for some � > 2. The goal is to return an array of size n/2
where all the real balls reside in the returned array. In this algorithm we again
use a bipartite expander and combine it with ideas coming from the matching
algorithm of Pippenger [43]. The main idea of the procedure is to first distribute
the real balls to many bins, while ensuring that no bin consists of too many real
balls. Then, as all bins have small load, we can merge several bins together and
compact the array, as required.

The input/output of step 1, namely of the balanced distribution, is as follows.
The input is an array I of size n that we interpret as n/B bins of size B each
(simply by considering the array I[(i − 1) · B + 1, . . . , iB] as the i-th bin, for
i = 1, . . . , n/B). If a bin contains more than B/4 real balls, then we call it
“dense”, and otherwise we call it “sparse”. Our goal is to distribute all dense
bins in I into another array I′ of size n which we think about as split into n/B
bins of size B each. The procedure computes which target bins in I′ we should
distribute each one of the dense bins in I, such that, the distribution would be
balanced. In particular, the balanced distribution guarantees that no bin in I′

receives more than B/4 real balls. Let us explain why this balanced distribution
is enough.

After the balanced distribution, we can compact the arrays I, I′ into an array
of size n/2 by “folding”: Interpret I = (I0, I1), I′ = (I′

0, I
′
1) where |I0| = |I1| =

|I′
0| = |I′

1| and each array consists of n/(2B) bins of size B; Then, for every
i = 1, . . . , n/(2B), we merge all real balls in (I0,i, I1,i, I′

0,i, I
′
1,i) into a bin of size

B. As no bin consists of more than B/4 real balls, there is enough “room” in
I0. We then output the concatenation of all these n/(2B) bins, i.e., we return
an array of size n/2.

Balanced distribution of the dense bins. The distribution of dense bins in I
into I′ relies (again) on a good expander graph. Fixing a proper constant ε, we
consider a dε-regular graph Gε,n/B = (L,R,E) with |L| = |R| = n/B, where
L corresponds to I, R corresponds to I′ and we let B = dε/2. Let S ⊂ L be
the set of dense bins in L. We look for a (B,B/4)-matching for S: We look for

OptORAMa: Optimal Oblivious RAM 419

a set of edges M ⊆ E such that (1) from every bin in S there are at least B
out edges, and (2) for every bin in R there are at most B/4 incoming edges.
Given such a matching M , every dense bin in I can be distributed to I′ while
guaranteeing that no bin in I′ will have load greater than B/4, while the access
pattern corresponds to edges in the graph which is public and known to the
adversary.

Computing the matching. We first describe a non-oblivious algorithm for finding
the matching; the algorithm is due to Pippenger [43]. Let m = |L| = |R|.11
The algorithm proceeds in rounds, where initially all dense vertices in L are
“unsatisfied”, and in each round:

1. Each unsatisfied dense vertex u ∈ L: Send a request to each one of the
neighbors of u.

2. Each vertex v ∈ R: If v receives more than B/4 requests in this round, it
replies with “negative” to all the requests it received in this round. Otherwise,
it replies “positive” to all requests it received.

3. Each unsatisfied dense vertex u ∈ L: If u received more than B posi-
tive replies then take these edges to the matching and change the status to
“satisfied”.

The output is the edges in the matching. In each round, there are O(m) trans-
mitted messages, where each message is a single bit. Using properties of the
expander graphs, in each round the number of unsatisfied vertices decreases by
a factor of 2. Thus, the algorithm proceeds in O(log m) rounds, and the total
runtime of the algorithm is O(m).12 However, the algorithm is non-oblivious.

Oblivious slow matching (for any m). A simple way to make this algorithm
oblivious (as observed by [12]) is by sending a message from every vertex in L to
the relevant vertices in R in each round, that is, even a vertex is satisfied it still
sends fictitious messages in the proceeding rounds. In particular, in each round
the algorithm hides whether a vertex v ∈ L is in the set of satisfied vertices
(v /∈ L′) or is still unsatisfied (v ∈ L′), and in fact, we run each iteration on the
entire graph. This results in algorithm that takes overall O(m · log m) time.

Oblivious fast matching (for small m). When m is really small, we use the
packing trick. Concretely, when m ≤ w

log w , where w is the word size, all the
information required for the algorithm can be packed into O(1) words. Thus,
when accessing information related to one node u ∈ L, we can access at the
same time all the information regarding all other nodes in L. This enables us
to hide which node is being visited (i.e., whether a node is in L′ or not) and
therefore the algorithm can now just visit the nodes in L′ and does not have to
make fictitious accesses on the entire graph. As a result, when m is small (as
above) we are able to compute the matching in O(m) word-level operations.
11 Note that we are working here with a parameter m and not n, as m is the number

of vertices in the graph G – e.g., the number of bins and not the number of balls.
12 The set of unsatisfied vertices (in L) and its neighboring set (in R) are both stored

in double-linked lists to visit and remove efficiently.

420 G. Asharov et al.

Combining slow match and fast match. We achieve loose compaction as follows:

– Given the array I of size n and word size w = Ω(log n), we first break it into
blocks of size p2 = (w/ log w)2, and our goal is to move all “dense” blocks to
the beginning of the array. We find the matching obliviously using the “slow”
matching algorithm, that takes O(m · log m) = O

(
n
p2 · log n

p2

)
time, which

is linear. Then, compaction given the matching (by folding) takes O(n). By
running this compaction twice we get an output of size n/4, consisting of all
dense blocks of size p2.

– At this point, we want to run compaction on each one of the sparse blocks in
I (where again, blocks are of size p2) independently, and then take only the
result of the compaction of each block for the remaining part of the output
array.
In order to run the compaction on each block of size p2, we perform the same
trick again. We break each instance into p sub-blocks of a smaller size p, and
mark each sub-block as dense or sparse. As the number of sub-blocks we have
in each instance is p = w/ log w, we can find the matching using the fast
matching algorithm. Note that as previously, we did not handle the real balls
in the sparse sub-blocks.

– Finally, we have to solve compaction of all sparse sub-blocks of the previous
step. Each sparse sub-block is of size p = w/ log w, and thus can be solved in
linear time using the fast matching algorithm.

The final output consists of the following: (i) The output of compaction of
the dense block in I (to total size n/4), and (ii) a compaction of each one of
the sparse blocks in I (sums up together to n/4). Note that each one of these
sparse blocks (of size p2), by itself, is divided to p sub-blocks (each of size p)
and its compaction consists of (i) a compaction of its dense sub-blocks; and (ii)
a compaction of each one of its sparse sub-blocks.

We refer to the full version [5] for the formal description and analysis.

5 BigHT: Oblivious Hashing for Non-Recurrent Lookups

The hash table construction we describe in this section suffers from poly log log λ
extra multiplicative factor in Build and Lookup (which lead to similar overhead in
the impliedORAMconstruction).Nevertheless, this hash table serves as a first step
and we will get rid of the extra factor in Sect. 6. Hence, the parameter of expected
bin load μ = log9 λ is seemingly loose in this section but is necessary later in Sect. 6
(to apply Cuckoo hash). Additionally, note that this hash table captures and sim-
plifies many of the ideas in the oblivious hash table of Patel et al. [40] and can be
used to get an ORAM with similar overhead to theirs.

OptORAMa: Optimal Oblivious RAM 421

Construction 5.1: Hash Table for Shuffled Inputs
Procedure BigHT.Build(I):

– Input: An array I = (a1, . . . , an) containing n elements, where each ai is
either dummy or a (key, value) pair denoted (ki, vi), where both the key k
and the value v are D-bit strings where D := O(1) · w.

– Input assumption: The elements in the array I are uniformly shuffled.
– The algorithm:

1. Let μ := log9 λ, ε := 1
log2 λ

, δ := e− log λ·log log λ, and B := �n/μ�.
2. Sample PRF key. Sample a random PRF secret key sk.
3. Directly hash into major bins. Throw the real ai = (ki, vi) into B bins

using PRFsk(ki). If ai = dummy, throw it to a uniformly random bin. Let
Bin1, . . . ,BinB be the resulted bins.

4. Sample independent smaller loads. Samplea the load of throwing n′ balls
into B bins with failure probability δ, where n′ = n · (1 − ε). Let
(L1, . . . , LB) be the resulted loads. If there exists i ∈ [B] such that
||Bini| − μ| > 0.5 · εμ or

∣
∣
∣Li − n′

B

∣
∣
∣ > 0.5 · εμ, then abort.

5. Create major bins. Allocate new arrays (Bin′
1, . . . ,Bin

′
B), each of size μ.

For every i, iterate in parallel on both Bini and Bin′
i, and copy the first Li

elements in Bini to Bin′
i. Fill the empty slots in Bin′

i with dummy. (Li is
not revealed during this process, by continuing to iterate over Bini after
we cross the threshold Li.)

6. Create overflow pile. Obliviously merge all of the last |Bini|−Li elements
in each bin Bin1, . . . ,BinB into an overflow pile:

• For each i ∈ [B], replace the first Li positions with dummy.
• Concatenate all of the resulting bins and perform oblivious tight com-

paction on the resulting array such that the real balls appear in the
front. Truncate the outcome to be of length εn.

7. Prepare an oblivious hash table for elements in the overflow pile by calling
the Build algorithm of the (1 − O(δ) − δA

PRF)-oblivious Cuckoo hashing
scheme (see Building blocks, Section 3) parameterized by δ (recall that
δ = e−Ω(log λ·log log λ)) and the stash size log(1/δ)/ log n. Let OF = (OFT,
OFS) denote the outcome data structure. Henceforth, we use OF.Lookup
to denote a lookup operation to this oblivious Cuckoo hashing scheme.

8. Prepare data structure for efficient lookup. For i = 1, . . . , B, call
näıveHT.Build(Bin′

i) on each major bin to construct an oblivious hash
table, and let OBini denote the outcome for the i-th bin.

– Output: The algorithm stores in the memory a state that consists of (OBin1,
. . . ,OBinB ,OF, sk).

Procedure BigHT.Lookup(k):

– Input: The secret state (OBin1, . . . ,OBinB ,OF, sk), and a key k to look for
(that may be ⊥, i.e., dummy).

– The algorithm:
1. Call v ← OF.Lookup(k).

422 G. Asharov et al.

2. If k = ⊥, choose a random bin i
$←[B] and call OBini.Lookup(⊥).

3. If k 	= ⊥ and v 	= ⊥ (i.e., v was found in OF), choose a random bin i
$←[B]

and call OBini.Lookup(⊥).
4. If k 	= ⊥ and v = ⊥ (i.e., v was not found in OF), let i := PRFsk(k) and

call v ← OBini.Lookup(k).
– Output: The value v.

Procedure BigHT.Extract():

– Input: The secret state (OBin1, . . . ,OBinB,OF, sk).
– The algorithm:

1. Let
T = OBin1.Extract()‖OBin2.Extract()‖ . . . ‖OBinB .Extract()‖OF.Extract().

2. Perform oblivious tight compaction on T , moving all the real balls to the
front. Truncate the resulting array at length n. Let X be the outcome of
this step.

3. Call X′ ← IntersperseRDn(X), to get a permutation of X.
– Output: X′.

a See the full paper for more information on how to perform this step oblivi-
ously.

We claim that our construction obliviously implements the hash table func-
tionality for every sequence of instructions with non-recurrent lookups between
two Build operations and as long as the input array to Build is randomly and
secretly shuffled.

Theorem 5.2. Assume a δA
PRF-secure PRF. Then, Construction 5.1 (1 − n2 ·

e−Ω(log λ·log log λ) − δA
PRF)-obliviously implements the hash table functionality (see

Sect. 3) for all n ≥ log11 λ, assuming that the input array (of size n) for Build is
randomly shuffled. Moreover,

– Build and Extract each take O
(
n · poly log log λ + n · log n

log2 λ

)
time; and

– Lookup takes O(poly log log λ) time in addition to linearly scanning a stash of
size O(log λ).

In particular, if log11 λ ≤ n ≤ poly(λ), then hash table is (1 −
e−Ω(log λ·log log λ) − δA

PRF)-obliviously and consumes O(n · poly log log λ) time for
the Build and Extract phases; and Lookup consumes O(poly log log λ) time in
addition to linearly scanning a stash of size O(log λ).

The proof of security is given in the full version [5].

Remark 5.3. As we mentioned, Construction 5.1 is only the first step towards
the final oblivious hash table that we use in the final ORAM construction. We
make significant optimizations in Sect. 6. We show how to improve upon the Build
and Extract procedures from O(n·poly log log λ) to O(n) by replacing the näıveHT

OptORAMa: Optimal Oblivious RAM 423

hash table with an optimized version (called SmallHT) that is more efficient for
small lists. Additionally, while it may now seem that the O(log λ)-stash overhead
of Lookup is problematic, we will “merge” the stashes for different hash tables in
our final ORAM construction and store them again in an oblivious hash table.

6 SmallHT: Oblivious Hashing for Small Bins

In Sect. 5, we constructed an oblivious hashing scheme for randomly shuffled
inputs where Build and Extract consumes n · poly log log λ time and Lookup con-
sumes poly log log λ. The extra poly log log λ factors arise from the oblivious hash-
ing scheme (denoted näıveHT) which we use for each major bin of size ≈ log9 λ.
To get rid of the extra poly log log λ factors, in this section, we will construct
a new oblivious hashing scheme for poly log λ-sized arrays which are randomly
shuffled. In our new construction, Build and Extract takes linear time and Lookup
takes constant time (ignoring the stash which we will treat separately later).

As mentioned in Sect. 2.1, the key idea is to rely on packed operations such
that the metadata phase of Build (i.e., the cuckoo assignment problem) takes
only linear time—this is possible because the problem size n = poly log λ is
small. The more tricky step is how to route the actual balls into their destined
location in the hash-table. We cannot rely on standard oblivious sorting to per-
form this routing since this would consume a logarithmic extra overhead. Instead,
we devise a method to directly place the balls into the destined location in the
hash-table in the clear—this is safe as long as the input array has been padded
with dummies to the output length, and randomly shuffled; in this way only a
random permutation is revealed. A technicality arises in realizing this idea: after
figuring out the assigned destinations for real elements, we need to expand this
assignment to include dummy elements too, and the dummy elements must be
assigned at random to the locations unoccupied by the reals. At a high level, this
is accomplished through a combination of packed oblivious random permutation
and packed oblivious sorting over metadata.

We first describe two helpful procedures (mentioned in Sect. 2.1.2) in
Sects. 6.1 and 6.2. Then, in Sect. 6.3, we give the full description of the Build,
Lookup, and Extract procedures (Construction 6.5). Throughout this section, we
assume for simplicity that n = log9 λ (while in reality n ∈ log9 λ ± log7 λ).

6.1 Step 1 – Add Dummies and Shuffle

We are given a randomly shuffled array I of length n that contains real and
dummy elements. In Algorithm 6.1, we pad the input array with dummies to
match the size of the hash-table to be built. Each dummy will receive a unique
index label, and we rely on packed oblivious random permutation to permute
the labeled dummies. Finally, we rely on Intersperse on the real balls to make
sure that all elements, including reals and dummies, are randomly shuffled.

More formally, the output of Algorithm 6.1 is an array of size ncuckoo =
ccuckoo ·n+log λ, where ccuckoo is the constant required for Cuckoo hashing, which

424 G. Asharov et al.

contains all the real elements from I and the rest are dummies. Furthermore,
each dummy receives a distinct random index from {1, . . . , ncuckoo − nR}, where
nR is the number of real elements in I. Assuming that the real elements in I are
a-priori uniformly shuffled, then the output array is randomly shuffled.

Algorithm 6.1: Shuffle the Real and Dummy Elements
Input: An input array I of length n consisting of real and dummy elements.
Input Assumption: The real elements among I are randomly shuffled.
The algorithm:

1. Count the number of real elements in I. Let nR be the output.
2. Write down a metadata array MD of length ncuckoo, where the first nR

elements contain only a symbol real, and the remaining ncuckoo−nR elements
are of the form (⊥, 1), (⊥, 2), . . . , (⊥, ncuckoo − nR), i.e., each element is a ⊥
symbol tagged with a dummy index.

3. Run packed oblivious random permutation (see Section 3)on MD, packing
O

(
w

log n

)
elements into a single memory word. Run oblivious tight com-

paction on the resulting array, moving all the dummy elements to the end.
4. Run tight compaction on the input I to move all the real elements to the

front.
5. Obliviously write down an array I′ of length ncuckoo, where the first nR

elements are the first nR elements of I and the last ncuckoo −nR elements are
the last ncuckoo − nR elements of MD, decompressed to the original length
as every entry in the input I.

6. Run Intersperse on I′ letting n1 := nR and n2 := ncuckoo − nR. Let X denote
the outcome (permuted) array.

Output: The array X.

Claim 6.2. Algorithm 6.1 fails with probability at most e−Ω(
√

n) and completes
in O(n + n

w · log3 n) time. Specifically, for n = log9 λ and w ≥ log3 log λ, the
algorithm completes in O(n) time and fails with probability e−Ω(log9/2 λ).

Proof. All steps except the oblivious random permutation in Step 3 incur O(n)
time and are perfectly correct by construction. Each element of MD can be
expressed with O(log n) bits, so the packed oblivious random permutation incurs
O

(
(n · log3 n)/w

)
time and has failure probability at most e−Ω(

√
n).

6.2 Step 2 – Evaluate Assignment with Metadata Only

We obliviously emulate the Cuckoo hashing procedure, but doing it directly on
the input array is too expensive (as it incurs oblivious sorting inside) so we do
it directly on metadata (which is short since there are few elements), and use
the packed version of oblivious sort (see Sect. 3). At the end of this step, every

OptORAMa: Optimal Oblivious RAM 425

element in the input array should learn which bin (either in the main table or
the stash) it is destined for. Recall that the Cuckoo hashing consists of a main
table of ccuckoo · n bins and a stash of log λ bins.

Algorithm 6.3: Evaluate Cuckoo Hash Assignment on Metadata
Input: An array MDX of length ncuckoo = ccuckoo ·n+log λ, where each element
is either dummy or a pair (choicei,1, choicei,2), where choicei,b ∈ [ccuckoo · n] for
every b ∈ {1, 2}, and the number of real pairs is at most n.
Remark: All oblivious sorting in the algorithm below will be instantiated using
packed oblivious sorting (including those called by cuckooAssign and oblivious
bin placement).
The algorithm:

1. Run the indiscriminate oblivious Cuckoo assignment algorithm cuckooAssign
with parameter δ = e− log λ log log λ (where cuckooAssign is formally de-
scribed in the full paper) and let AssignX be the result. For every i
for which MDX[i] = (choicei,1, choicei,2), we have that AssignX[i] ∈
{choicei,1, choicei,2} ∪ Sstash, i.e., either one of the two choices or the stash
Sstash = [ncuckoo] \ [ccuckoo · n]. For every i for which MDX[i] is dummy we
have that AssignX[i] = ⊥.

2. Run oblivious bin placement on AssignX, and let Occupied be the output
array (of length ncuckoo). For every index j we have Occupied[j] = i if
AssignX[i] = j for some i. Otherwise, Occupied[j] = ⊥.

3. Label the i-th element in AssignX with a tag t = i for all i. Run oblivious
sorting on AssignX and let ˜Assign be the resulting array, such that all real
elements appear in the front, and all dummies appear at the end, and ordered
by their respective dummy-index (i.e. given in Algorithm 6.1, Step 2).

4. Label the i-th element in Occupied with a tag t = i for all i. Run oblivious
sorting on Occupied and let ˜Occupied be the resulting array, such that
all occupied bins appear in the front and all empty bins appear at the end
(where each empty bin contains an index (i.e., a tag t) of an empty bin in
Occupied).

5. Scan both arrays ˜Assign and ˜Occupied in parallel, updating the destined
bin of each dummy element in ˜Assign with the respective tag in ˜Occupied
(and each real element pretends to be updated).

6. Run oblivious sorting on the array ˜Assign (back to the original ordering
in the array AssignX) according to the tag labeled in Step 3. Update the
assignments of all dummy elements in AssignX according to the output
array of this step.

Output: The array AssignX.

426 G. Asharov et al.

Our input for this step is an array MDX of length ncuckoo := ccuckoo ·n+log λ
which consists of pairs of bin choices (choice1, choice2), where each choice is an
element from [ccuckoo ·n]∪{⊥}. The real elements have choices in [ccuckoo ·n] while
the dummies have ⊥. This array corresponds to the bin choices of the original
elements in X (using a PRF) which is the original array I after adding enough
dummies and randomly shuffling that array.

To compute the bin assignments we start with obliviously assigning the bin
choices of the real elements in MDX. Next, we obliviously assign the remaining
dummy elements to the remaining available locations. We do so by a sequence
of oblivious sort algorithms. See Algorithm 6.3.

Claim 6.4. For n ≥ log9 λ, Algorithm 6.3 fails with probability at most
e−Ω(log λ·log log λ) and completes in O

(
n · (1 + log3 n

w)
)

time. Specifically, for

n = log9 λ and w ≥ log3 log λ, Algorithm 6.3 completes in O(n) time.

Proof. The input arrays is of size ncuckoo = ccuckoo ·n+log λ and the arrays MDX,
AssignX, Occupied, ˜Occupied, ˜Assign are all of length at most ncuckoo and
consist of elements that need O(log ncuckoo) bits to describe. Thus, the cost of
packed oblivious sort is O((ncuckoo/w) · log3 ncuckoo) ≤ O((n · log3 n)/w). The
linear scans take time O(ncuckoo) = O(n). The cost of the cuckooAssign from
Step 1 has failure probability e−Ω(log λ·log log λ) and it takes time O((ncuckoo/w) ·
log3 ncuckoo) ≤ O((n · log3 n)/w).

6.3 SmallHT Construction

The full description of the construction is given next. It invokes Algorithms 6.1
and 6.3.

Construction 6.5: SmallHT – Hash table for Small Bins

Procedure SmallHT.Build(I):

– Input: An input array I of length n consisting of real and dummy elements.
Each real element is of the form (k, v) where both the key k and the value v
are D-bit strings where D := O(1) · w.

– Input Assumption: The real elements among I are randomly shuffled.
– The algorithm:

1. Run Algorithm 6.1 (prepare real and dummy elements) on input I, and
receive back an array X.

2. Choose a PRF key sk where PRF maps {0, 1}D → [ccuckoo · n].
3. Create a new metadata array MDX of length n. Iterate over the the

array X and for each real element X[i] = (ki, vi) compute two values
(choicei,1, choicei,2) ← PRFsk(ki), and write (choicei,1, choicei,2) in the i-
th location of MDX. If X[i] is dummy, write (⊥,⊥) in the i-th location
of MDX.

OptORAMa: Optimal Oblivious RAM 427

4. Run Algorithm 6.3 on MDX to compute the assignment for every element
in X. The output of this algorithm, denoted AssignX, is an array of
length n, where in the i-th position we have the destination location of
element X[i].

5. Route the elements of X, in the clear, according to AssignX, into an
array Y of size ccuckoo · n and into a stash S.

– Output: The algorithm stores in the memory a secret state consists of the
array Y, the stash S and the secret key sk.

Procedure SmallHT.Lookup(k):

– Input: A key k that might be dummy ⊥. It receives a secret state that
consists of an array Y, a stash S, and a key sk.

– The algorithm:
1. If k 	= ⊥:

(a) Evaluate (choice1, choice2) ← PRFsk(k).
(b) Visit Ychoice1 ,Ychoice2 and the stash S to look for the key k. If found,

remove the element by overwriting ⊥. Let v∗ be the corresponding
value (if not found, set v∗ := ⊥).

2. Otherwise:
(a) Choose random (choice1, choice2) independently at random from

[ccuckoo · n].
(b) Visit Ychoice1 ,Ychoice2 and the stash S and look for the key k. Set

v∗ := ⊥.
– Output: Return v∗.

Procedure SmallHT.Extract().

– Input: The algorithm has no input; It receives the secret state that consists
of an array Y, a stash S, and a key sk.

– The algorithm:
1. Perform oblivious tight compaction on Y‖S, moving all the real elements

to the front. Truncate the resulting array at length n. Let X be the
outcome of this step.

2. Call X′ ← IntersperseRDn(X) to get a permuted array.
– Output: The array X′.

We prove that our construction obliviously implements the oblivious hash
table functionality for every sequence of instructions with non-recurrent lookups
between two Build operations, assuming that the input array for Build is ran-
domly shuffled.

Theorem 6.6. Assume a δA
PRF-secure PRF. Suppose that n = log9 λ and w ≥

log3 log λ. Then, Construction 6.5 (1 − n · e−Ω(log λ·log log λ) − δA
PRF)-obliviously

implements the non-recurrent hash table functionality assuming that the input
for Build (of size n) is randomly shuffled. Moreover, Build and Extract incur
O(n) time, Lookup has constant time in addition to linearly scanning a stash of
size O(log λ).

428 G. Asharov et al.

Proof. The proof of security is given in the full version [5]. We proceed with the
efficiency analysis. The Build operation executes Algorithm 6.1 that consumes
O(n) time (by Claim 6.2), then performs additional O(n) time, then executes
Algorithm 6.3 that consumes O(n) time (by Claim 6.4), and finally performs
additional O(n) time. Thus, the total time is O(n). Lookup, by construction,
incurs O(1) time in addition to linearly scanning the stash S which is of size
O(log λ). The time of Extract is O(n) by construction.

6.4 CombHT: Combining BigHT with SmallHT

We use SmallHT in place of näıveHT for each of the major bins in the BigHT
construction from Sect. 5. Since the load in the major bin in the hash table
BigHT construction is indeed n = log9 λ, this modification is valid. Note that
we still assume that the number of elements in the input to CombHT, is at least
log11 λ (as in Theorem 5.2).

However, we make one additional modification that will be useful for us later
in the construction of the ORAM scheme (Sect. 7). Recall that each instance of
SmallHT has a stashS of size O(log λ) and so Lookupwill require, not only searching
an element in the (super-constant size) stash OFS of the overflow pile from BigHT,
but also linearly scanning the super-constant size stash of the corresponding major
bin. To this end, we merge the different stashes of the major bins and store the
merged list in an oblivious Cuckoo hash (denoted as CombS later). (A similar idea
has also been applied in several prior works [13,25,27,29].) This results with a new
hash table scheme we call CombHT. See the full version [5] for precise details.

7 Oblivious RAM

In this section, we utilize CombHT in the hierarchical framework of Goldreich
and Ostrovsky [23] to construct our ORAM scheme. We denote by λ the security
parameter. For simplicity, we assume that N , the size of the logical memory, is
a power of 2. Additionally, we assume that w, the word size is Θ(log N).

ORAM Initialization. Our structure consists of one dictionary D (see Sect. 3),
and O(log N) levels numbered �+1, . . . , L respectively, where � = �11 log log λ�,
and L = �log N� is the maximal level.

– The dictionary D is an oblivious dictionary storing 2�+1 elements.
– Each level i ∈ {�+1, . . . , L} consists of an instance, called Ti, of the oblivious

hash table CombHT from Sect. 6.4 that has capacity 2i.

Additionally, each level is associated with an additional bit fulli, where 1 stands
for full and 0 stands for available. Available means that this level is currently
empty and does not contain any blocks, and thus one can rebuild into this level.
Full means that this level currently contains blocks, and therefore an attempt to
rebuild into this level will effectively cause a cascading merge. In addition, there
is a global counter ctr that is initialized to 0.

OptORAMa: Optimal Oblivious RAM 429

Construction 7.1: Oblivious RAM Access(op, addr, data).

Input: op ∈ {read,write}, addr ∈ [N] and data ∈ {0, 1}w.
Secret state: The dictionary D, levels T�+1, . . . , TL, the bits full�+1, . . . , fullL
and counter ctr.
The algorithm:

1. Initialize found := false, data∗ := ⊥.
2. Perform fetched := D.Lookup(addr). If fetched 	= ⊥, then set found := true.
3. For each i ∈ {� + 1, . . . , L} in increasing order, do:

(a) If found = false:
i. Run fetched := Ti.Lookup(addr) with the following modifications:

– Do not visit the stash of OF.
– Do not visit the stash of CombS.

(below, these stashes (OFS,CombSS) are merged into previous levels.)
ii. If fetched 	= ⊥, let found := true and data∗ := fetched.

(b) Else, Ti.Lookup(⊥).
4. If found = false, i.e., this is the first time addr is being accessed, set data∗ = 0.
5. Let (k, v) := {(addr, data∗)} if this is a read operation; else let (k, v) := {(addr,

data)}. Insert (k, (�,⊥, v)) into oblivious dictionary D using D.Insert(k, (�,⊥,
v)).

6. Increment ctr by 1. If ctr ≡ 0 mod 2�, perform the following.
(a) Let j be the smallest level index such that fullj = 0 (i.e., available). If all

levels are marked full, then j := L. In other words, j is the target level
to be rebuilt.

(b) Let U := D.Extract()‖T�+1.Extract()‖ . . . ‖Tj−1.Extract() and set j∗ := j−
1. If all levels are marked full, then additionally let U := U‖TL.Extract()
and set j∗ := L. (Here, Extract() of CombHT does not extract the element
from the stashes.)

(c) Run Intersperse
(j∗−�)

2�+1,2�+1,2�+2,...,2j∗ (U) (see Section 3). Denote the output

by Ũ. If j = L, then additionally do the following to shrink Ũ to size
N = 2L:
i. Run the tight compaction on Ũ moving all real elements to the front.

Truncate Ũ to length N .
ii. Run Ũ ← IntersperseRDN (Ũ) to get a permuted U.

(d) Rebuild the jth hash table with the 2j elements from Ũ via Tj :=
CombHT.Build(Ũ) and let OFS,CombSS be the associated stashes (of size
O(log λ) each). Mark fullj := 1.
i. For each element (k, v) in the stash OFS, run D.Insert(k, v).
ii. For each element (k, v) in the stash CombSS, run D.Insert(k, v).

(e) For i ∈ {�+1, . . . , j −1}, reset Ti to be empty structure and set fulli := 0.

Output: Return data∗.

The next theorem is proven in the full version [5].

430 G. Asharov et al.

Theorem 7.2. Let N ∈ N be the capacity of ORAM and λ ∈ N be a
security parameter. Assume a δA

PRF-secure PRF. For any number of queries
T = T (N,λ) ≥ N , Construction 7.1 (1 − T · N2 · e−Ω(log λ·log log λ) − δA

PRF)-
obliviously implements the ORAM functionality. Moreover, the construction has
O

(
log N ·

(
1 + log N

log2 λ

)
+ log9 log λ

)
amortized time overhead.

Acknowledgments. We are grateful to Hubert Chan, Kai-Min Chung, Yue Guo,
and Rafael Pass for helpful discussions. This work is supported in part by a Simons
Foundation junior fellow award awarded to G.A., an AFOSR Award FA9550-18-1-
0267, NSF grant CNS-1601879, a DARPA Brandeis award, a Packard Fellowship, a
Sloan Fellowship, Google Faculty Research Awards, a VMware Research Award, and
a Baidu Research Award. G.A. and I.K. were with Cornell Tech during most this
research.

References

1. https://en.wikipedia.org/wiki/Sorting network
2. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: ACM

STOC, pp. 1–9 (1983)
3. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? In:

ACM STOC, pp. 427–436 (1995)
4. Arora, S., Leighton, T., Maggs, B.: On-line algorithms for path selection in a

nonblocking network. In: ACM STOC (1990)
5. Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi, E.:

Optorama: optimal oblivious RAM. IACR Cryptology ePrint Archive 2018:892
(2018)

6. Batcher, K.E.: Sorting networks and their applications. In: American Federation
of Information Processing Societies: AFIPS Conference Proceedings, vol. 32, pp.
307–314 (1968)

7. Bindschaedler, V., Naveed, M., Pan, X., Wang, X., Huang, Y.: Practicing oblivious
access on cloud storage: the gap, the fallacy, and the new way forward. In: ACM
CCS, pp. 837–849 (2015)

8. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: ACM ITCS, pp.
357–368 (2016)

9. Bringmann, K., Kuhn, F., Panagiotou, K., Peter, U., Thomas, H.: Internal DLA:
efficient simulation of a physical growth model. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS, vol. 8572, pp.
247–258. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-
7 21

10. Hubert Chan, T.-H., Guo, Y., Lin, W.-K., Shi, E.: Oblivious hashing revisited,
and applications to asymptotically efficient ORAM and OPRAM. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 660–690.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 23

11. Hubert Chan, T.-H., Guo, Y., Lin, W.-K., Shi, E.: Cache-oblivious and data-
oblivious sorting and applications. In: SODA, pp. 2201–2220 (2018)

12. Hubert Chan, T.-H., Nayak, K., Shi, E.: Perfectly secure oblivious parallel RAM.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp.
636–668. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 23

https://en.wikipedia.org/wiki/Sorting_network
https://doi.org/10.1007/978-3-662-43948-7_21
https://doi.org/10.1007/978-3-662-43948-7_21
https://doi.org/10.1007/978-3-319-70694-8_23
https://doi.org/10.1007/978-3-030-03810-6_23

OptORAMa: Optimal Oblivious RAM 431

13. Hubert Chan, T.-H., Shi, E.: Circuit OPRAM: unifying statistically and computa-
tionally secure ORAMs and OPRAMs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017,
Part II. LNCS, vol. 10678, pp. 72–107. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 3

14. Paul, J.C., Simon, W.: Decision trees and random access machines (1980)
15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

3rd edn, pp. 428–436. MIT Press, Cambridge (2009)
16. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-

out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 10

17. Farhadi, A., Hajiaghayi, M.T., Larsen, K.G., Shi, E.: Lower bounds for external
memory integer sorting via network coding. In: ACM STOC (2019)

18. Feldman, P., Friedman, J., Pippenger, N.: Non-blocking networks. In: ACM STOC,
pp. 247–254 (1986)

19. Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: Seventh ACM Workshop on
Scalable Trusted Computing, pp. 3–8. ACM (2012)

20. Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Devadas, S.: Freecursive ORAM:
[nearly] free recursion and integrity verification for position-based oblivious RAM.
In: ACM ASPLOS, pp. 103–116 (2015)

21. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychron-
akis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28166-7 9

22. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: ACM STOC, pp. 182–194 (1987)

23. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

24. Goodrich, M.T.: Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in O(N Log N) time. In: ACM STOC, pp. 684–693 (2014)

25. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22012-8 46

26. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM
simulation with efficient worst-case access overhead. In: Proceedings of the 3rd
ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, pp. 95–
100 (2011)

27. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA,
pp. 157–167 (2012)

28. Hagerup, T., Shen, H.: Improved nonconservative sequential and parallel integer
sorting. Inf. Process. Lett. 36(2), 57–63 (1990)

29. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA, pp. 143–156 (2012)

30. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp.
523–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 18

31. Leighton, F.T., Ma, Y., Suel, T.: On probabilistic networks for selection, merging,
and sorting. Theory Comput. Syst. 30(6), 559–582 (1997)

https://doi.org/10.1007/978-3-319-70503-3_3
https://doi.org/10.1007/978-3-319-70503-3_3
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-319-28166-7_9
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-319-96881-0_18

432 G. Asharov et al.

32. Li, Z., Li, B.: Network coding: the case of multiple unicast sessions (2004)
33. Lin, W.-K., Shi, E., Xie, T.: Can we overcome the n log n barrier for oblivious

sorting? In: SODA (2019)
34. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming

framework for secure computation. In: IEEE S&P (2015)
35. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-

tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 22

36. Maas, M., et al.: PHANTOM: practical oblivious computation in a secure proces-
sor. In: ACM CCS, pp. 311–324 (2013)

37. Margulis, G.A.: Explicit constructions of concentrators. Probl. Pereda. Inf. 9(4),
71–80 (1973)

38. Mitchell, J.C., Zimmerman, J.: Data-oblivious data structures. In: STACS, pp.
554–565 (2014)

39. Ostrovsky, R., Shoup, V.: Private information storage. In: ACM STOC, pp. 294–
303 (1997)

40. Patel, S., Persiano, G., Raykova, M., Yeo, K.: Oblivious RAM with logarithmic
overhead. In: IEEE FOCS, Panorama (2018)

41. Pinsker, M.S.: On the complexity of a concentrator. In: 7th International Teletraffic
Conference (1973)

42. Pippenger, N.: Superconcentrators. SIAM J. Comput. 6(2), 298–304 (1977)
43. Pippenger, N.: Self-routing superconcentrators. J. Comput. Syst. Sci. 52(1), 53–60

(1996)
44. Ren, L., Yu, X., Fletcher, C.W., van Dijk, M., Devadas, S.: Design space exploration

and optimization of path oblivious RAM in secure processors. In: ACM ISCA, pp.
571–582 (2013)

45. Shi, E., Hubert Chan, T.-H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

46. Stefanov, E., Shi, E.: Oblivistore: high performance oblivious cloud storage. In:
IEEE S&P, pp. 253–267 (2013)

47. Stefanov, E., Shi, E., Song, D.X.: Towards practical oblivious RAM. In: NDSS
(2012)

48. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: ACM CCS, pp. 299–310 (2013)

49. Valiant, L.G.: Graph-theoretic properties in computational complexity. J. Comput.
Syst. Sci. 13(3), 278–285 (1976)

50. Wang, X., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of the
Goldreich-Ostrovsky lower bound. In: ACM CCS, pp. 850–861 (2015)

51. Wang, X.S., Huang, Y., Hubert Chan, T.-H., Shelat, A., Shi, E.: SCORAM: obliv-
ious RAM for secure computation. In: ACM CCS, pp. 191–202 (2014)

52. Williams, P., Sion, R., Tomescu, A.: PrivateFS: a parallel oblivious file system. In:
ACM CCS (2012)

53. Zahur, S., et al.: Revisiting square-root ORAM: efficient random access in multi-
party computation. In: IEEE S&P, pp. 218–234 (2016)

https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

On the Streaming Indistinguishability
of a Random Permutation
and a Random Function

Itai Dinur(B)

Department of Computer Science, Ben-Gurion University, Beersheba, Israel
dinuri@cs.bgu.ac.il

Abstract. An adversary with S bits of memory obtains a stream of Q
elements that are uniformly drawn from the set {1, 2, . . . , N}, either with
or without replacement. This corresponds to sampling Q elements using
either a random function or a random permutation. The adversary’s goal
is to distinguish between these two cases.

This problem was first considered by Jaeger and Tessaro (EURO-
CRYPT 2019), which proved that the adversary’s advantage is upper
bounded by

√
Q · S/N . Jaeger and Tessaro used this bound as a stream-

ing switching lemma which allowed proving that known time-memory
tradeoff attacks on several modes of operation (such as counter-mode)
are optimal up to a factor of O(logN) if Q · S ≈ N . However, the
bound’s proof assumed an unproven combinatorial conjecture. Moreover,
if Q · S � N there is a gap between the upper bound of

√
Q · S/N and

the Q · S/N advantage obtained by known attacks.
In this paper, we prove a tight upper bound (up to poly-logarithmic

factors) of O(logQ ·Q ·S/N) on the adversary’s advantage in the stream-
ing distinguishing problem. The proof does not require a conjecture and
is based on a hybrid argument that gives rise to a reduction from the
unique-disjointness communication complexity problem to streaming.

Keywords: Streaming algorithm · Time-memory tradeoff ·
Communication complexity · Provable security · Switching lemma ·
Mode of operation

1 Introduction

A classical result in cryptography asserts that an adversary attempting to dis-
tinguish a random permutation from a random function with an image size of
N using Q queries has advantage that is upper bounded by about Q2/N over a
coin toss [3,13,14]. This bound serves as a switching lemma which has impor-
tant implications in establishing the security of various cryptographic construc-
tions. For example, the security of several modes of operation (such as counter-
mode) is proved up to the birthday bound of Q =

√
N by first idealizing the

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 433–460, 2020.
https://doi.org/10.1007/978-3-030-45724-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_15

434 I. Dinur

underlying block cipher as a random permutation and then replacing it with a
random function using the switching lemma.1

A limitation of the switching lemma is that it only bounds the advantage
of the adversary as a function of the number of queries, whereas in practice,
the adversary could have constraints on additional resources, notably on mem-
ory. At the same time, given Q ≈ √

N unrestricted queries to the underlying
primitive, it is possible to distinguish a random function from a random per-
mutation with constant advantage using a negligible amount of O(log N) bits of
memory by applying a “memory-less” cycle detection algorithm such as Floyd’s
algorithm [17] (or its variants, e.g., [6,21]).

Streaming Indistinguishability. Cycle detection algorithms are inapplicable
when only given access to a stream of data produced by arbitrary queries to the
underlying primitive which are not under the adversary’s control. The stream-
ing indistinguishability model was introduced in the context of symmetric-key
cryptography by Jaeger and Tessaro at EUROCRYPT 2019 [15]. The authors
considered an adversary (i.e. a randomized algorithm) with memory size of S bits
and access to a stream of Q elements drawn from either a random permutation
or from a random function with an image size of N . The main technical result
of [15] is an adaptation of the switching lemma between a random permutation
and random function to the streaming model. The streaming switching lemma
asserts that the adversary’s advantage is bounded by

√
Q · S/N as long as the

queries to the underlying primitive are not repeated. The proof of the bound is
based on tools from information theory and relies on a combinatorial conjecture
regarding hypergraphs. We refer the reader to [15] for more details.

The main applications of the switching lemma described in [15] deal with
cryptanalysis of modes of operations. Such modes are typically secure up to
the birthday bound against adversaries with unbounded memory, yet [15]
shows that they become more secure against memory-bounded adversaries. For
example, in AES-based randomized counter-mode, message mi is encrypted as
ri, ci = AESK(ri) ⊕ mi, where ri is a random 128-bit string. The best known
distinguishing attack simply awaits a collision ri = rj for i �= j, in which case
ci ⊕ cj = mi ⊕ mj . This attack stores the ri’s and requires memory of about√

N = 264 to find a collision with high probability. Let us now assume that the
memory is limited to storing only S′ � 264 values (where S′ ≈ S · log N bits, as
storing an element requires log N bits). In this case, the probability of observing
a collision with a stored element (i.e., the distinguishing advantage) is roughly
Q · S′/N ≈ Q · S/N (ignoring a logarithmic factor in N). Hence, such a collision
is likely to occur only after observing about Q ≈ N/S � 264 elements.

Jaeger and Tessaro used their streaming switching lemma to show that the
simple attack on randomized counter-mode describe above is optimal up to a
factor of O(log N), if we require a constant advantage. The proof applies the
1 For the sake of brevity, in this paper we use the term “switching lemma” to refer

to a particular type of lemma that allows to switch between a random permutation
and a random function.

On the Streaming Indistinguishability of a Random Permutation 435

streaming switching lemma to replace the random ri’s with random non-
repeating ones and further replaces AES with a truly random permutation
(assuming it is a PRP). Finally, it applies the streaming switching lemma again
to replace the permutation with a random function, completely masking the
messages. More details and additional applications are described in [15]. We fur-
ther mention that attacks against counter-mode and other modes of operation
have been shown to be meaningful in practice (refer to [4] for a recent example),
giving an additional motivation to understand their limitations.

The streaming switching lemma of [15] is very useful, but has two limitations.
First, it is based on an unproven combinatorial conjecture. Second, when Q·S �
N , there is a gap between the advantage upper bound

√
Q · S/N of the lemma

and the Q · S/N advantage of the simple attack described above. In fact, it is
easy to see that the bound

√
Q · S/N is not tight when Q ·S � N and S ≈ Q, as

it evaluates to Q/
√

N . On the other hand, the true optimal advantage is Q2/N ,
as obtained by the original switching lemma (since for S ≈ Q, the adversary can
store all the elements in the stream).

In order to demonstrate this gap, let us assume that for N = 2128 the adver-
sary has memory limited to storing S = 240 elements, and obtains a stream
of Q = 264 elements. Jaeger and Tessaro’s result upper bounds the adversary’s
advantage by about

√
264+40−128 = 2−12. On the other hand, the distinguishing

advantage of the attack described above is 264+40−128 = 2−24, which is signifi-
cantly lower.

Our Results. In this paper, we overcome the two limitations of Jaeger and
Tessaro’s result. More specifically, we derive a streaming switching lemma which
bounds the adversary’s advantage by O(log Q ·Q ·S/N) via an alternative proof
which it is not based on any conjecture. This matches the advantage of the simple
distinguishing attack described above (up to poly-logarithmic factors in N),
hence we resolve the streaming indistinguishability problem unconditionally.2

Note that if we plug S = Q into our bound, we obtain the original switching
lemma (up to poly-logarithmic factors). Hence, our bound can also be viewed
as a natural generalization of the original switching lemma to the case that the
adversary cannot store all the Q elements of the stream (i.e. S � Q).

Finally, we extend the streaming switching lemma to show that the advantage
of an adversary with S bits of memory that is allowed P passes over a stream of Q
elements (drawn from a random permutation or a random function) is bounded
by O(log Q · Q · S · P/N). If we combine the multi-pass bound with the original
switching lemma, we obtain the bound of about min{log Q · Q · S · P/N,Q2/N},
which is tight up to poly-logarithmic factors in N .

To understand the significance of our multi-pass bound, observe that for a
fixed value of S, the P -pass streaming bound depends only on the total number
of queries, Q · P (ignoring the small factor of log Q). This essentially implies
that repeating Q distinct queries P times does not give a P -pass algorithm
2 We note, however, that Jaeger and Tessaro’s result is superior to ours by a factor of

up to O(
√

logQ) when S · Q ≈ N .

436 I. Dinur

an advantage over a single-pass algorithm that issues Q · P distinct queries. In
contrast, in the non-streaming model repeating queries in an adaptive way has
a big advantage, as cycle detection algorithms perform significantly better than
the P -pass bound (obtaining constant advantage for S = O(log N) and

√
N

queries).

Our Techniques. The main novelty of the proof of our switching lemma is a
hybrid argument that allows to devise a reduction from communication complex-
ity to streaming. The hybrid argument is tailored to a common cryptographic
setting where the goal is to distinguish between two pre-fixed distributions on
streams. The cryptographic setting is different from the typical worst-case set-
ting of streaming problems, where there is much more freedom in choosing the
stream distributions in reductions from communication complexity, and hybrid
arguments are not required. Although it is simple, this hybrid argument is some-
what non-trivial and allows us to apply strong bounds from communication com-
plexity to the problem. This proof naturally extends to multi-pass adversaries.
On the other hand, it seems challenging to extend the proof of [15] to multi-pass
adversaries, where queries to the underlying primitive are repeated. This further
demonstrates that our proof technique may be of independent interest.

Related Work. This work lies in the intersection between cryptography and
streaming algorithms. The area of streaming algorithms is subject to active
research in computer science, and has been largely influenced by the seminal
work of Alon, Matias, and Szegedy on approximating frequency moments with
limited space [1]. In the field of cryptography, several previous works investi-
gated the security of cryptographic primitives against a space-bounded adversary
whose input is given as a data stream composed of a sequence of elements that
can be read only once (cf., [7,20]). More recently, Thiruvengadam and Tessaro
initiated the study of the security of modes of operation against space-bounded
adversaries [23]. Jaeger and Tessaro’s work [15], as well as this paper, continue
the line of research on streaming algorithms in cryptography.

Paper Organization. The rest of the paper is organized as follows. We give a
technical overview of the proof in Sect. 2 and describe preliminaries in Sect. 3. In
Sect. 4 we prove our main streaming switching lemma for single-pass algorithms,
while our proof of the multi-pass variant is given in Sect. 5. Finally, we conclude
the paper in Sect. 6.

2 Technical Overview

We consider an algorithm with S bits of memory that processes a stream of
Q ≤ N elements from [N] = {1, 2, . . . , N}, element by element. The goal of the
algorithm is to decide whether the stream is drawn from a random permutation

On the Streaming Indistinguishability of a Random Permutation 437

(i.e., the elements are drawn uniformly without replacement), or from a random
function (i.e., the elements are drawn uniformly with replacement).

In [15] Jaeger and Tessaro approached the problem by considering the
sequences of states maintained by the adversary for the two stream distribu-
tions, claiming that they remain statistically close.

In the rest of this section, we give an overview of our proof, which (unlike
Jaeger and Tessaro’s proof) does not directly analyze the states maintained by
the adversary. For the sake of simplicity, in this overview we aim to show that
the distinguishing advantage of any algorithm (compared to a random guess) is
negligible as long as Q � N/S, but do not consider the concrete advantage.

2.1 Communication Complexity

A standard approach for obtaining bounds on streaming algorithms is via a
reduction from communication complexity. Suppose that our goal is to distin-
guish between two distributions D1 and D2 on a stream x1, x2, . . . , xQ ∈ [N]Q.
We can reduce the problem from a 2-player communication game between A
and B as follows. For some value of i, we partition the stream into two parts,
x1, . . . , xi and xi+1, . . . , xQ. We give the first part to A and the second part to
B. The goal of A and B is to decide whether the (concatenated) stream is drawn
from D1 or from D2 with minimal one-way communication between A and B.

In the reduction, A simulates a streaming algorithm on its input, sends its
intermediate state to B, which continues the simulation of the streaming algo-
rithm and outputs its result. Thus, any streaming algorithm with memory S
yields a one-way communication protocol with communication cost of S and the
same distinguishing advantage. Therefore, an upper bound on the distinguishing
advantage of A and B in any one-way communication protocol yields a bound
on the distinguishing advantage of any streaming algorithm.

Obviously, in order to obtain a meaningful upper bound on the distinguish-
ing advantage in the communication game, the communication problem induced
from the streaming problem must be hard. In particular, a reduction from com-
munication complexity to the streaming distinguishability game could be use-
ful only if it has the property that for both stream distributions considered in
the game, each player receives an input (partial stream) drawn from the same
marginal distribution. Otherwise, a player could trivially distinguish between the
two distributions locally with no communication (since A and B are unrestricted
computationally).

Suppose that D1 is the distribution where x1, x2, . . . , xQ are sampled using a
random permutation, and D2 is the distribution where the elements are sampled
using a random function. Unfortunately, for Q > 2 there is no way to partition
the stream between A and B such that each player receives an input with the
same marginal distribution in both cases.

In order to work around this difficulty, we define hybrid stream distributions
between D1 and D2 with the aim of bounding the advantage between each pair
of neighboring distributions using communication complexity, and applying a
hybrid argument to bound the total advantage.

438 I. Dinur

2.2 An Initial Approach

We start by informally outlining an initial approach that does not give the
desired bound, but motivates the alternative approach that follows. We denote
a stream drawn from a random permutation by x1, . . . , xQ and a stream drawn
from a random function by x̂1, . . . , x̂Q. We define Q − 1 intermediate stream
distributions, which give rise to Q distinguishing games. The i’th game involves
distinguishing between the stream distributions

x1, . . . , xQ−i, x̂Q−i+1, . . . , x̂Q and x1, . . . , xQ−i−1, x̂Q−i, . . . , x̂Q,

which is equivalent to distinguishing between

x1, . . . , xQ−i and x1, . . . , xQ−i−1, x̂Q−i.

Namely, the goal is to determine whether the last element already appears in
the stream or not. In fact, even if the last element is chosen uniformly, it will not
appear in the stream with probability 1−(Q−i−1)/N . Hence, we can condition
on the event that x̂Q−i appears in the stream. As a result, the distinguishing
advantage of any algorithm can be approximately bounded by α · (Q− i− 1)/N ,
where α = α(i) is the advantage of the algorithm in distinguishing between
x1, . . . , xQ−i and x1, . . . , xQ−i−1, x̂Q−i, where x̂Q−i is drawn uniformly from the
first Q − i − 1 elements of the stream.

Unfortunately, this approach is insufficient to prove the bound we require
via a hybrid argument (regardless of whether we use communication complexity
of any other tool). In order to demonstrate this, consider the following dis-
tinguishing algorithm that uses only O(log N) bits of memory: we iteratively
hash every element of x1, . . . , xQ−i−1 to a single bit, maintaining the majority
of the hashes. Then, we hash the final element and output 1 if and only if its
hash is equal to the majority over the first Q − i − 1 hashes. Simple calculation
shows that the advantage of the algorithm in distinguishing between the above
streams is about α = 1/

√
Q − i − 1. This implies that using this method cannot

give a better upper bound than 1/
√

Q − i − 1 · (Q − i − 1)/N on the advantage
of a streaming algorithm with memory S = O(log N) in distinguishing between
neighboring stream distributions. If we sum over the advantages of the first Q−1
games (the advantage is 0 in the last game), we obtain

Q−2∑

i=0

1√
Q − i − 1

· Q − i − 1
N

=
Q−2∑

i=0

√
Q − i − 1

N
= Ω

(
Q3/2

N

)
,

which is already Ω(1) for Q = N2/3. On the other hand, our goal is to show that
if S = O(log N) and the distinguishing advantage is Ω(1), then Q ≈ N .

2.3 The Improved Approach

The reason that the initial attempt above fails to prove the required bound is
that distinguishing neighboring stream distributions is too easy, and the sum

On the Streaming Indistinguishability of a Random Permutation 439

of the advantages over all Q games results in a loose bound. An alternative
approach in attempt to overcome the loss is to try and avoid the straightforward
sum of advantages by using more advanced techniques developed in the area of
provable security for the purpose of obtaining tight bounds (e.g., the chi-squared
method proposed in [10]). However, such techniques do not directly apply to the
streaming model where the adversary no longer has access to answers of its
previous queries. Moreover, it seems challenging to extend such techniques to
the multi-pass setting in order to handle the dependencies between repeated
queries to the underlying primitive. In this paper, we use a completely different
approach by reconsidering our definition of intermediate hybrid distributions
that lead from a stream produced by random permutation to a stream produced
by a random function.

The Hybrid Distributions. We start by defining the first distinguishing game
between x1, . . . , xQ (a stream drawn from a random permutation) and a second
stream drawn from a carefully chosen hybrid distribution. Our goal is to make
sure that the distinguishing advantage between two neighboring stream distri-
butions is significantly lower compared to the basic approach. Furthermore, we
would like to use communication complexity in order to analyze neighboring
stream distributions, i.e., we require that the stream can be partitioned such
that the marginal distributions of the inputs given to each player are identical.

We define our stream distributions using more convenient notation of
x1, . . . , xQ/2, y1, . . . , yQ/2, where each of x1, . . . , xQ/2 and y1, . . . , yQ/2 is a stream
drawn from a random permutation, such that the streams are either drawn
from the same permutation (which corresponds to the original distribution), or
drawn from independent permutations (which corresponds to the first intermedi-
ate hybrid). We then define the corresponding 2-player communication problem
(which we call the permutation-dependence problem), where A and B obtain
x1, . . . , xQ/2 and y1, . . . , yQ/2, respectively, and try to decide with minimal one-
way communication whether their inputs are drawn from the same or from inde-
pendent permutations.

To complete the distinguishability upper bound proof for the streaming game,
we prove an upper bound on the distinguishing advantage of A and B in the
permutation-dependence problem. The proof is by a reduction from the set-
disjointness problem, which is a canonical 2-player problem in communication
complexity [2,16,22], where the input of each player is a set and their goal is to
determine whether their sets intersect, or are disjoint.3

The first hybrid breaks the dependency between the two halves of the stream.
We can now continue recursively by dividing the halves into quarters, etc. This
results in a binary tree of hybrids of hight log Q, where a one-way communication
game is played at every non-leaf node. The leaves are completely independent

3 In fact, the reduction is from the unique-disjointness problem which is a variant
of set-disjointness with the promise that if the sets of the players intersect, the
intersection size is 1.

440 I. Dinur

elements of [N], whose concatenation is a stream sampled using a random func-
tion, as desired.4

Summing up the advantages over the hybrids in each level of the tree gives
an upper bound of O(Q · S/N). The overall advantage is O(log Q · Q · S/N), as
there are log Q levels in the tree.

3 Preliminaries

Unless stated explicitly, all parameters considered in this paper are positive
integers. We define [N] = {1, 2, . . . , N} and [N]K = [N] × [N] × . . . × [N]

︸ ︷︷ ︸
K

. Given

bit strings x and y, we denote their concatenation by x‖y. For a positive integer
K, we denote by x(K) the string x‖x . . . ‖x

︸ ︷︷ ︸
K

, obtained by K repetitions of x. We

denote by HW (x) the Hamming weight of x.
Given a bit string a ∈ {0, 1}N such that HW (a) = K, we can treat it as

an incidence vector of a set {x1, x2, . . . , xK} such that xi ∈ [N] and a[xi] = 1
for i ∈ [K]. We define SEQ : {0, 1}N → [N]K as the sequence SEQ(a) =
x1, x2, . . . , xK (which includes the elements indicated by a in lexicographical
order). Given incidence vectors a ∈ {0, 1}N and b ∈ {0, 1}N , let a ∩ b denote the
intersection of these sets, and |a ∩ b| the size of the intersection.

Given a distribution X on strings with finite support, we write x
$←− X to

denote a random variable x chosen from X . We write x ∼ X if x is a random
variable that is distributed as X .

For arbitrary distributions on strings D1 and D2, we denote by D1‖D2 the
distribution on strings obtained by concatenating two strings sampled indepen-
dently from D1 and D2.

Distinguishing Between Streams. We define our model for a randomized
algorithm whose goal is to distinguish between streams. The model is similar to
the one defined in [15], although we use slightly different notation.

For some parameters N,K, let X be some distribution over [N]K . We denote
by O(X) an oracle that samples x1, x2, . . . , xK from X . The oracle receives up to
K queries and answers query number i by xi. Note that once the oracle outputs
xi, it is not output again. This implies that an algorithm A that interacts with
O(X) receives x1, x2, . . . , xK as a stream, i.e., if A requires access to xi after
issuing query i, it has to store xi in memory in some representation.

We denote by AO(X) a randomized algorithm with oracle access to O(X) and
by AO(X) ⇒ b the event that the algorithm outputs the bit b ∈ {0, 1}.

4 A hybrid argument on a binary tree is also used to prove the security of the classical
pseudo-random function construction by Goldreich et al. [11]. However, the resem-
blance is superficial, as in [11] the construction itself is a binary tree, whereas in our
case, we build it artificially only in the proof.

On the Streaming Indistinguishability of a Random Permutation 441

We say that an algorithm A is S-bounded, if the size of each state maintained
by A during any execution is upper bounded by S bits.

Let X and Y be two distributions over [N]K . The streaming distinguishing
advantage of an algorithm A between X and Y is defined as

AdvSTR
X ,Y (A) =

∣∣Pr[AO(X) ⇒ 1] − Pr[AO(Y) ⇒ 1]
∣∣.

We further define the optimal advantage for an S-bounded algorithm as

OptSTR
X ,Y (S) = max

A
{AdvSTR

X ,Y (A) | A is S − bounded}.

Sampling with and Without Replacement. For a parameter 0 < K ≤ N ,
let DK

N be the distribution over [N]K that is defined by a sampling procedure
which uniformly draws K elements from [N] without replacement.

For parameters 0 < K ≤ N and R > 0, let DK×R
N be the distribution

over [N]K·R that is composed of R independent copies of DK
N . For example,

DK×2
N = DK

N ‖DK
N .

Note that sampling from D1×K
N is equivalent to choosing K items from [N]

uniformly with replacement (i.e., from a random function), while sampling from
DK

N is equivalent to choosing K items from [N] uniformly without replacement
(i.e., from a random permutation).

The original switching lemma between a random permutation and a random
function [3,13,14] asserts that any algorithm that issues Q queries to the under-
lying primitive has distinguishing advantage bounded by Q2/2N . This bound
obviously holds in the (more restricted) streaming model.

Theorem 1 (switching lemma [3,13,14]). For any S and Q ≤ N ,

OptSTR
DQ

N ,D1×Q
N

(S) ≤ Q2

2N
.

The Set-Disjointness and Unique-Disjointness Problems

The set-disjointness function DISJ : {0, 1}N × {0, 1}N → {0, 1} is defined as

DISJ(a, b) =

{
0, there exists i ∈ [N] for which a[i] = b[i] = 1
1, otherwise.

We can view a and b as subsets of [N], encoded as incidence vectors, and then
DISJ(a, b) = 1 if a and b are disjoint.

The set-disjointness problem (or disjointness in short) is a classical problem
in communication complexity.5 We consider its 2-player variant which is a game
between A and B that run a protocol Π. In an instance of disjointness A receives
a ∈ {0, 1}N , B receives b ∈ {0, 1}N and their goal is to output DISJ(a, b) with
minimal communication in the worst case. Namely, the communication cost of
5 For a (slightly outdated) survey on set-disjointness, refer to [8].

442 I. Dinur

Π is defined as the maximal number of bits communicated among all possible
protocol executions.

We consider a variant of the disjointness problem called unique-disjointness,
which is identical to disjointness, but with the promise that in a 0-instance, there
exists a single index i ∈ [N] for which a[i] = b[i] = 1. We denote the correspond-
ing function by UDISJ , where we define UDISJ(a, b) =⊥ if a, b do not satisfy
the required promise. We will be interested in a public-coin randomized variant
of unique-disjointness in which A,B have access to a shared random string that
is independent of their inputs.

We denote the output of the protocol Π on inputs a, b as UDISJΠ(a, b).
Note that it is a random variable that depends on the shared randomness of
A,B. Disjointness and its variants are worst case problems. This motivates the
following notation for the error and advantage of the protocol.6

ErrUDISJ0
N (Π) = max

a,b
{Pr[UDISJΠ(a, b) �= 0 | UDISJ(a, b) = 0]},

ErrUDISJ1
N (Π) = max

a,b
{Pr[UDISJΠ(a, b) �= 1 | UDISJ(a, b) = 1]},

ErrUDISJ
N (Π) = max{ErrUDISJ0

N (Π),ErrUDISJ1
N (Π)},

AdvUDISJ
N (Π) =

∣∣1 − ErrUDISJ1
N (Π) − ErrUDISJ0

N (Π)
∣∣.

The following is a classical result in communication complexity.

Theorem 2 ([2,16,22, adapted]). Any public-coin randomized protocol Π
that solves unique-disjointness on all inputs a, b ∈ {0, 1}N × {0, 1}N such that
UDISJ(a, b) ∈ {0, 1} with error probability ErrUDISJ

N (Π) ≤ 1/3, uses Ω(N) bits
of communication in the worst case.

Therefore, it is not possible to do much better than the trivial protocol in which
A sends B its entire input a, and B outputs UDISJ(a, b).

When analyzing the advantage γ of a protocol with communication cost of
o(N), we can repeat it with independent randomness and amplify its advantage
using a majority vote to obtain an error probability of at most 1/3. By applying
a Chernoff bound and using Theorem 2, we can lower bound the communication
cost required to achieve advantage of γ by Ω(γ2N). Unfortunately, this bound
is insufficient for our purpose of obtaining a tight streaming switching lemma.
On the other hand, relatively recent results [5,12] prove a much stronger lower
bound of Ω(γN) on the communication cost by a more careful analysis. This
stronger bound (summarized in the theorem below) will allow us to prove a
tight streaming switching lemma. Nevertheless, we use the full power of the
theorem only in the multi-pass version of the lemma in Sect. 5, whereas the main
(single-pass) lemma only requires a weaker variant of the theorem for one-way
communication protocols.

6 Our notation for disjointness is consistent with the rest of the paper, yet it differs
from standard notation used in communication complexity.

On the Streaming Indistinguishability of a Random Permutation 443

Theorem 3 (unique-disjointness bound). There exists a constant M ≥ 1
for which any public-coin randomized protocol Π for unique-disjointness that
satisfies AdvUDISJ

N (Π) = γ must communicate at least 1
M γN − M log N bits in

the worst case.

The proof is heavily based on the proof of Theorem 2.2 in [5]. It is described in
Appendix A for the sake of completeness, where we prove it with M = 20.

4 The Streaming Switching Lemma

Our main theorem is stated below. We refer to it as a “streaming switching
lemma” (for the sake of compatibility with previous results).

Theorem 4 (streaming switching lemma). There exists a constant M1 ≥ 1
such that any S-bounded randomized algorithm A for S ≥ log N with access to
a stream containing log N ≤ Q ≤ N/3 elements drawn from [N] via either
a random permutation or a random function has a distinguishing advantage
bounded by

AdvSTR
DQ

N ,D1×Q
N

(A) ≤ OptSTR
DQ

N ,D1×Q
N

(S) ≤ M1 · �log Q� · Q

N
· (S + M1 · log N).

Remark 1. The advantage is O(log Q · Q · S/N) given than S = Ω(log N).

Remark 2. It follows from our proof that we can set M1 = 30. However, a smaller
value of M1 can be derived by low-level optimizations.

Theorem 4 follows from the lemma below, which is proved in Sect. 4.1.

Lemma 1. There exists a constant M1 ≥ 1 such that for any K ≤ N/3 and
S ≥ log N ,

OptSTR
D2K

N ,DK×2
N

(S) ≤ M1 · K

N
· (S + M1 · log N).

Proof (of Theorem 4). Let M1 be the constant implied by Lemma 1. We denote
by Γ = Γ (N,S) = M1

N · (S + M1 · log N) the upper bound on OptSTR
D2K

N ,DK×2
N

(S)
deduced in Lemma 1, divided by K. Note that Γ (N,S) does not depend on K.
Let k be a positive integer such that K = 2k < 2N/3. We prove that for any
S-bounded algorithm A with S ≥ log N ,

AdvSTR
DK

N ,D1×K
N

(A) ≤ k · K

2
· Γ. (1)

The proof is by induction on k. The base case is for k such that K ≤ log N . It
follows from the original switching lemma (Theorem 1), since

AdvSTR
DK

N ,D1×K
N

(A) ≤ K2

2N
≤ K · S

2N
≤ M1 · k · K

2N
· (S + M1 · log N).

444 I. Dinur

Suppose that the hypothesis holds up to k′ = k. We prove it for k′ = k + 1
(assuming K ≤ N/3). We have

AdvSTR
D2K

N ,D1×2K
N

(A) =
∣∣Pr[AO(D2K

N) ⇒ 1] − Pr[AO(D1×2K
N) ⇒ 1]

∣∣ =
∣∣∣
(
Pr[AO(D2K

N) ⇒ 1] − Pr[AO(DK×2
N) ⇒ 1]

)
+

(
Pr[AO(DK×2

N) ⇒ 1] − Pr[AO(D1×2K
N) ⇒ 1]

)∣
∣∣ ≤

∣∣∣Pr[AO(D2K
N) ⇒ 1] − Pr[AO(DK×2

N) ⇒ 1]
∣∣∣+

∣∣∣Pr[AO(DK×2
N) ⇒ 1] − Pr[AO(D1×2K

N) ⇒ 1]
∣∣∣ ≤ (Lemma 1)

K · Γ+
∣
∣∣
(
Pr[AO(DK×2

N) ⇒ 1] − Pr[AO(DK
N ‖D1×K

N) ⇒ 1]
)

+
(
Pr[AO(DK

N ‖D1×K
N) ⇒ 1] − Pr[AO(D1×2K

N) ⇒ 1]
)∣∣∣ ≤

K · Γ+
∣∣
∣Pr[AO(DK

N ‖DK
N) ⇒ 1] − Pr[AO(DK

N ‖D1×K
N) ⇒ 1]

∣∣
∣+

∣∣∣Pr[AO(DK
N ‖D1×K

N) ⇒ 1] − Pr[AO(D1×K
N ‖D1×K

N) ⇒ 1]
∣∣∣ ≤ (hypothesis)

K · Γ + 2 · k · K

2
· Γ =

(k + 1) · 2K

2
· Γ.

This completes the proof of the induction.
Finally, let A be S-bounded as in the theorem. Let q′ = �log Q� and Q′ = 2q′

(note that Q ≤ Q′ ≤ 2Q). We have

AdvSTR
DQ

N ,D1×Q
N

(A) ≤ AdvSTR

DQ′
N ,D1×Q′

N

(A) ≤ q′ · Q′

2
· Γ ≤ �log Q� · Q · Γ,

where the second inequality follows from (1). This concludes the proof of
Theorem 4. �

4.1 Reduction from Communication Complexity to Streaming

We now define the permutation-dependence problem and summarize the out-
come of the reduction from this problem to streaming in Proposition 1. We then
state a lower bound on the communication cost of the permutation-dependence
problem in Proposition 2 (which is proved in Sect. 4.2), and use it to prove
Lemma 1.

On the Streaming Indistinguishability of a Random Permutation 445

The Permutation-Dependence Problem. Permutation-dependence is a 2-
player game between A and B that run a protocol Π. For an even parameter
K ≤ N , we choose the K elements

x1, . . . , xK/2, y1, . . . , yK/2,

from either DK
N , or from DK/2×2

N . We give x1, . . . , xK/2 to A and y1, . . . , yK/2

to B. Note that regardless of the distribution from which the K elements are
chosen, the input to each player is taken from the (marginal) distribution DK/2

N .
However, the inputs are either dependent (chosen from DK

N) or independent
(chosen from DK/2×2

N) and the goal of the players is to distinguish between these
cases.

After receiving their inputs x, y, players A,B run a communication protocol
Π and then one of the players outputs a bit which is the output of the protocol,
denoted by PDEPΠ(x, y). We say that Π has communication cost C if A,B
communicate at most C bits in all possible protocol executions. Similarly to the
disjointness problem, we will be interested in public-coin randomized protocols
for permutation-dependence.

Since it is a distributional communication complexity problem, we define the
following notation for permutation-dependence:

ErrPDEP0
N,K (Π) = Pr[PDEPΠ(x, y) �= 0 | x, y

$←− DK/2×2
N],

ErrPDEP1
N,K (Π) = Pr[PDEPΠ(x, y) �= 1 | x, y

$←− DK
N],

AdvPDEP
N,K (Π) =

∣∣1 − ErrPDEP1
N,K (Π) − ErrPDEP0

N,K (Π)
∣∣,

OptPDEP
N,K (C) = max

Π
{ AdvPDEP

N,K (Π) | Π has communication cost C}.

We further denote by OptPDEP→
N,K (C) the optimal advantage of a one-way com-

munication protocol for permutation-dependence. Namely, we only consider pro-
tocols in which A sends a single message to B, which outputs the answer. Clearly,
OptPDEP→

N,K (C) ≤ OptPDEP
N,K (C).

The Reduction from Permutation-Dependence to Streaming. The fol-
lowing proposition upper bounds the advantage of a (memory-bounded) stream-
ing algorithm in distinguishing between DK

N and DK/2×2
N by the advantage of

an optimal one-way permutation-dependence protocol (with limited communi-
cation cost). It is a standard reduction from a 2-player one-way communication
protocol to streaming (for example, refer to [18]).

Proposition 1. For any S and even K ≤ N ,

OptSTR

DK
N ,DK/2×2

N

(S) ≤ OptPDEP→
N,K (S).

Proof. Given black-box access to an S-bounded streaming algorithm A1, players
A and B in the permutation-dependence protocol Π run A1 and answer its

446 I. Dinur

oracle queries using their inputs: A answers the first batch of K/2 queries (using
x1, . . . , xK/2) and then communicates the intermediate state of A1 to B which
answers the second batch of K/2 queries (using y1, . . . , yK/2). Finally, B outputs
the same answer as A1.

Thus, A1 is given oracle access to O, where either O = O(DK
N) or O =

O(DK/2×2
N), depending on the distribution of the inputs x, y of A,B. Clearly,

Π is a one-way communication protocol. Moreover, since A1 is S-bounded and
its state is communicated once, the communication cost of Π is bounded by S.
Therefore,

AdvSTR

DK
N ,DK/2×2

N

(A1) = AdvPDEP
N,K (Π) ≤ OptPDEP→

N,K (S).

The proposition follows since the above inequality holds for any S-bounded
algorithm A1. �

Remark 3. In case S > K/2, a trivial reduction (where one party sends its input
to the other) is more efficient than the one above. This gives

OptSTR

DK
N ,DK/2×2

N

(S) ≤ OptPDEP→
N,K (K/2).

Using this observation, it is possible to obtain a limited improvement to the
streaming switching lemma (Theorem 4) in case S = NΩ(1).

Proof of Lemma 1. In order to prove Lemma 1, we use the following propo-
sition (proved in Sect. 4.2) which bounds the advantage of any protocol Π for
permutation-dependence.

Proposition 2. There exists a constant M1 ≥ 1 such that for any K ≤ N/3
and C ≥ log N ,

OptPDEP
N,2K (C) ≤ M1 · K

N
· (C + M1 · log N).

Proof (of Lemma 1). Let M1 be the constant implied by Proposition 2. Based
on Proposition 1 and Proposition 2 we have

OptSTR
D2K

N ,DK×2
N

(S) ≤ OptPDEP→
N,2K (S) ≤ OptPDEP

N,2K (S) ≤ M1 · K

N
· (S + M1 · log N).

�

Remark 4. Proposition 2 upper bounds OptPDEP
N,2K (C), yet the proof of Lemma 1

only requires an upper bound on OptPDEP→
N,2K (S). This suggests that a (small)

improvement to the bound of Lemma 1 (and hence to the bound of Theorem 4)
may be possible.

On the Streaming Indistinguishability of a Random Permutation 447

4.2 Reduction from Unique-Disjointness to Permutation-
Dependence

The proof of Proposition 2 is based on a reduction from the unique-disjointness
problem to the permutation-dependence problem, summarized by the proposi-
tion below.

Proposition 3. Let K ≤ N/3 and N ′ = �N/K�. There exists a public-coin
randomized local reduction, f1, f2, where fi : {0, 1}N ′ → [N]K , such that for any
a, b ∈ {0, 1}N ′ × {0, 1}N ′

,

f1(a), f2(b) ∼
{

DK×2
N , if UDISJ(a, b) = 0

D2K
N , if UDISJ(a, b) = 1.

Here, a public-coin randomized local reduction means that f1 only depends on
a and on public randomness (but not on b), and similarly, f2 does not depend
on a. Hence, if a, b intersect at exactly 1 index, then the output of the reduction
consists of two independent random permutation streams, each of K elements.
On the other hand, if a, b are disjoint, then the output of the reduction consists
of a single random permutation stream of 2K elements (that is split into two
halves).

Proof. We describe the reduction f1, f2 as a procedure executed by two parties
A,B that do not communicate, but share a random string.

1. Given incidence vector inputs (bit arrays) a, b ∈ {0, 1}N ′ × {0, 1}N ′
,

let SA = a(K)‖0(N−N ′·K), SB = b(K)‖0(N−N ′·K). Namely, each party
locally duplicates its array K times and appends zero entries such that
SA ∈ {0, 1}N and SB ∈ {0, 1}N .

2. Using their joint randomness, the parties sample a sequence of K indices
i1, i2, . . . , iK

$←− DK
N (chosen from [N] without replacement). The parties

use the sampled indices to create new arrays: A defines an array TA ∈
{0, 1}K , where TA[j] = SA[ij] for j ∈ {1, 2, . . . ,K}. Similarly, B defines
TB ∈ {0, 1}K , where TB [j] = SB [ij] for j ∈ {1, 2, . . . ,K}.

3. Each party locally extends its array from size K to size N such that its
Hamming weight becomes K (the parties add disjoint 1 entries). More
specifically, A computes

T 2
A = TA‖1(K−HW (TA))‖0(N−2K+HW (TA)),

and B computes

T 2
B = TB‖0(K)‖1(K−HW (TB))‖0(N−3K+HW (TB)).

4. Each party applies (the same) uniform permutation σ : {0, 1}N →
{0, 1}N to its array of size N (σ is specified in the joint randomness),

T 3
A[i] = T 2

A[σ(i)], and T 3
B [i] = T 2

B[σ(i)],

for each i ∈ [N].

448 I. Dinur

5. Finally, A selects a uniform permutation σ1 : {0, 1}K → {0, 1}K and
uses it to output the elements indicated by its array T 3

A (the 1 entries)
in uniform order. A outputs

f1(a)i = SEQ(T 3
A)σ1(i), for each i ∈ [K].

B selects a uniform permutation σ2 : {0, 1}K → {0, 1}K and outputs

f2(b)i = SEQ(T 3
B)σ2(i), for each i ∈ [K].

Analysis. Observe that T 3
A ∈ {0, 1}N satisfies HW (T 3

A) = K and similarly
T 3

B ∈ {0, 1}N satisfies HW (T 3
B) = K. Therefore, each party outputs a sequence

of K elements.
Due to the randomization of σ (which randomizes the elements that are

output by f1, f2) and of σ1, σ2 (which randomize the order of the elements output
by f1, f2), we have the following property.

Property 1. Let a, b ∈ {0, 1}N ′ × {0, 1}N ′
and

x, y = x1, . . . , xK , y1, . . . , yK ∈ [N]2K , x′, y′ = x′
1, . . . , x

′
K , y′

1, . . . , y
′
K ∈ [N]2K ,

where each K element sequence (x, y, x′ and y′) contains distinct elements and
for some 0 ≤ t ≤ K,

|{x1, . . . , xK} ∩ {y1, . . . , yK}| = |{x′
1, . . . , x

′
K} ∩ {y′

1, . . . , y
′
K}| = t.

Then,
Pr[f1(a), f2(b) = x, y] = Pr[f1(a), f2(b) = x′, y′].

Hence, the distribution of f1(a), f2(b) is completely determined by the distribu-
tion of the size of the intersection of the sequences f1(a) and f2(b) as sets. The
intersection size is equal to |TA ∩ TB| (since |TA ∩ TB| = |T 3

A ∩ T 3
B|), thus we

analyze this variable below.
Observe that

|SA ∩ SB | = K · |a ∩ b|.
Consider the case that UDISJ(a, b) = 1, or |a ∩ b| = 0. We have |SA ∩ SB | = 0
and therefore |TA ∩ TB | = 0. Hence, f1(a) and f2(b) are disjoint as sets, and by
Property 1, f1(a), f2(b) ∼ D2K×1

N .
Otherwise, UDISJ(a, b) = 0, implying that |a ∩ b| = 1 and therefore |SA ∩

SB | = K. The number of options for selecting i1, i2, . . . , iK in the second step
such that they intersect the K common indices in SA, SB in exactly 0 ≤ t ≤ K
places is

(
K
t

)(
N−K
K−t

)
. Since the total number of options for selecting i1, i2, . . . , iK

is
(
N
K

)
,

Pr[|TA ∩ TB | = t] =

(
K
t

)(
N−K
K−t

)

(
N
K

) .

On the Streaming Indistinguishability of a Random Permutation 449

At the same time,

Pr
[∣∣{x1, . . . , xK} ∩ {y1, . . . , yK}∣∣ = t | x1, . . . , xK , y1, . . . , yK

$←− DK×2
N

]
=

(
K
t

)(
N−K
K−t

)

(
N
K

) = Pr[|TA ∩ TB | = t].

Hence, by Property 1, f1(a), f2(b) ∼ DK×2
N as claimed. �

Finally, Proposition 2 follows from Proposition 3 and Theorem 3.

Proof (of Proposition 2). We show that there exists a constant M1 such that
any permutation-dependence protocol Π ′ with communication cost C ≥ log N
satisfies AdvPDEP

N,2K (Π ′) ≤ M1·K
N · (C + M1 · log N). This proves Proposition 2.

Fix a permutation-dependence protocol Π ′ as above. We consider a protocol
Π for unique-disjointness, where given an input a, b ∈ {0, 1}N ′ × {0, 1}N ′

(for
N ′ = �N/K�), each party independently applies the reduction of Proposition 3
to its input using the public randomness. The parties then run the permutation-
dependence protocol Π ′ on input f1(a), f2(b) with communication cost (at most)
C bits in the worst case and output the same value. In short,

UDISJΠ(a, b) = PDEPΠ′(f1(a), f2(b)).

Proposition 3 implies that for every a, b such that UDISJ(a, b) = 0,

Pr[UDISJΠ(a, b) = 1 | UDISJ(a, b) = 0] =

Pr[PDEPΠ′(f1(a), f2(b)) = 1 | UDISJ(a, b) = 0] = ErrPDEP0
N,2K (Π ′),

and a similar equality holds for every a, b such that UDISJ(a, b) = 1. Hence

ErrUDISJ0
N ′ (Π) = ErrPDEP0

N,2K (Π ′), and ErrUDISJ1
N ′ (Π) = ErrPDEP1

N,2K (Π ′).

Denote

α′ = 1 − ErrUDISJ1
N ′ (Π), β′ = ErrUDISJ0

N ′ (Π),

and γ′ = α′ − β′. We have

AdvUDISJ
N ′ (Π) = α′ − β′ = γ′ =

1 − ErrPDEP1
N,2K (Π ′) − ErrPDEP0

N,2K (Π ′) = AdvPDEP
N,2K (Π ′),

where we assume that α′−β′ ≥ 0 (otherwise, A,B in Π simply negate the output
of Π ′). Hence, γ′ is equal to the advantage of both the unique-disjointness and
permutation-dependence protocols.

We apply Theorem 3 to Π, and since C upper bounds the communication
cost of Π in the worst case, we conclude that C ≥ 1

M · N ′ · γ′ − M log N ′. This
gives

γ′ ≤ M

N ′ · (C + M · log N ′) ≤ M

N ′ · (C + M · log N).

450 I. Dinur

Define M1 = 3/2 · M . Note that since K ≤ N/3, then

N ′ =
⌊

N

K

⌋
≥ N − K

K
≥ 2N

3K
,

hence M
N ′ ≤ M1·K

N . Therefore,

γ′ ≤ M1 · K

N
· (C + M1 · log N),

as claimed. �

5 The Multi-pass Streaming Switching Lemma

For a parameter P ≥ 1, we consider a P -pass streaming algorithm which can
access an input stream of Q elements P times at the same order. The P -pass
algorithm attempts to distinguish between a stream chosen from a random per-
mutation or from a random function. In our model, the algorithm interacts with
an oracle that samples from one of the distributions defined below.

For 0 < K ≤ N , let DK×R⊗P
N be the distribution over [N]K·R·P that is

defined by a sampling procedure which first draws x
$←− DK×R

N and then outputs
x‖x‖ . . . ‖x
︸ ︷︷ ︸

P

. In case R = 1, we simply write DK⊗P
N .

Theorem 5 (multi-pass switching lemma). There exists a constant M1 ≥ 1
such that any S-bounded randomized P -pass algorithm A for S ≥ log N with
access to a stream containing log N ≤ Q ≤ N/3 elements drawn from [N] via
either a random permutation or a random function has a distinguishing advan-
tage bounded by

AdvSTR

DQ⊗P
N

,D1×Q⊗P
N

(A) ≤ OptSTR

DQ⊗P
N

,D1×Q⊗P
N

(S) ≤ M1 · �logQ� · Q

N
· (P · S + M1 · logN).

The proof of Theorem 5 is based on the lemma below, which is a generalization
of Lemma 1.

Lemma 2. There exists a constant M1 ≥ 1 such that for any K ≤ N/3 and
S ≥ log N ,

OptSTR
D2K⊗P

N ,DK×2⊗P
N

(S) ≤ M1 · K

N
· (P · S + M1 · log N).

We omit the proof of Theorem 5, as it is essentially identical to the one of
Theorem 4.

The proof of Lemma 2 uses the following proposition which generalizes Propo-
sition 1.

Proposition 4. For any S and even K ≤ N ,

OptSTR

DK⊗P
N ,DK/2×2⊗P

N

(S) ≤ OptPDEP
N,K (P · S).

On the Streaming Indistinguishability of a Random Permutation 451

Proof. The proof is via a reduction from the (multi-round) permutation-
dependence problem to (multi-pass) streaming, which generalizes the proof of
Proposition 1. The only difference is that in order to simulate the P -pass stream-
ing algorithm, its state is communicated P times between the parties, hence the
communication cost of the permutation-dependence protocol is bounded by S ·P .

�

Proof (of Lemma 2). Let M1 be the constant implied by Proposition 2. Based
on Proposition 4 and Proposition 2 we have

OptSTR
D2K⊗P

N ,DK×2⊗P
N

(S) ≤ OptPDEP
N,2K (P · S) ≤ M1 · K

N
· (P · S + M1 · log N).

�

6 Conclusions and Future Work

In this paper we proved an upper bound on the streaming distinguishing advan-
tage between a random permutation and a random function, which is tight up to
poly-logarithmic factors. Our proof is based on a hybrid argument that gives rise
to a reduction from the unique-disjointness communication complexity problem
to streaming. In the future, it would be interesting to apply our techniques to
additional streaming problems that are relevant to cryptography.

Acknowledgements. The author would like to thank Andrej Bogdanov for his help-
ful comment on a previous version of this work, which allowed to base the single-pass
streaming switching lemma on a permutation-dependence problem with one-way com-
munication (the previous version was based on a generalized variant of permutation-
dependence with multi-round communication).

The author was supported by the Israeli Science Foundation through grant
No. 573/16 and by the European Research Council under the ERC starting grant
agreement No. 757731 (LightCrypt).

A Concrete Parameters for Theorem 3

In this appendix we prove Theorem 3 for M = 20, as restated below.

Theorem 3 (restated with M = 20). Any public-coin randomized protocol
Π for unique-disjointness that satisfies AdvUDISJ

N (Π) = γ must communicate at
least 1

20γN − 20 log N bits in the worst case.

We first describe information theory preliminaries, which are heavily used in
the proof (for more details refer to [9]). We then give an overview of the proof,
which is based on the proof of Theorem 2.2 in [5, revision 1].

452 I. Dinur

A.1 Information Theory

We begin with notations and definitions. Consider discrete random variables
X,Y,Z. We denote the distribution of X by p(X). We denote by X (x) the prob-
ability that a random variable drawn from the distribution X gets the value x.

The entropy of X is

H(X) =
∑

x

Pr[X = x] log(1/Pr[X = x]).

The conditional entropy of X given Y is

H(X|Y) =
∑

y

Pr[Y = x]H(X|Y = y) = H[X,Y] − H[Y].

The mutual information between X,Y is

I(X;Y) = H(X) − H(X|Y) = H(Y) − H(Y |X),

where I(X;Y) = 0 if and only if X and Y are independent. The conditional
mutual information between X,Y given Z is

I(X;Y |Z) = H(X|Z) − H(X|Y,Z).

The Kullback-Leibler divergence (also known as the relative entropy) between
two distributions X ,Y is

D(X‖Y) =
∑

x

X (x) log(X (x)/Y(x)).

Next, we describe the properties that we use.
The chain rule of mutual information asserts that

I(X;Y,Z) = I(X;Z) + I(X;Y |Z).

Since (conditional) mutual information is non-negative, this implies that

I(X;Y,Z) ≥ I(X;Z).

We will use the following equalities:

I(X;Y) =
∑

x

Pr[X = x]D(p(Y |X = x)‖p(Y)), and

I(X;Y |Z) =
∑

z

Pr[Z = z]D(p(X,Y |Z = z)‖p(X|Z = z), p(Y |Z = z)) =

∑

y,z

Pr[Y = y, Z = x]D(p(X|Y = y, Z = z)‖p(X|Z = z)).

Finally, Pinsker’s inequality bounds the statistical distance between proba-
bility distributions as

Δ(X ,Y) ≤
√

1/2 · D(X‖Y).

On the Streaming Indistinguishability of a Random Permutation 453

A.2 Overview of the Proof

The main part of the proof (described in Sect.A.3) establishes a similar result
to Theorem 3 for private-coin protocols. It is based on the proof of Theorem 2.2
by Braverman and Moitra [5, revision 1]. Then, in Sect.A.4, we complete the
proof of the theorem by extending the result to public-coin protocols using the
standard sparsification technique of [19].

We now give a short overview of the lower bound proof for private-coin pro-
tocols. It uses the information complexity approach, which has become a stan-
dard technique for proving communication complexity lower bounds (cf., [2]). In
particular, we define a distribution on the inputs of the parties, which become
random variables, denoted by (A,B). We analyze the amount of information
that the concatenation of the messages in the protocol (namely, the protocol
transcript, denoted as Π(A,B)) reveals to each player about the other player’s
input. This quantity is exactly I(A;Π | B) + I(B;Π | A) (known as the internal
information complexity of Π) and it immediately lower bounds H(Π) and hence
the communication cost of Π.

In order to lower bound I(A;Π | B)+ I(B;Π | A), we break down the inputs
(A,B) into N mutually independent coordinates (Aj , Bj). This allows using a
direct sum property which reduces the task of proving an Ω(εN) lower bound for
the original problem (for 0 < ε ≤ 1) to the task of proving an Ω(ε) lower bound
for a small “gadget”. In particular, the disjointness function can be written as
DISJ(a, b) =

∨
j∈[N](aj ∧ bj). Hence, in standard proofs that use this approach

the gadget is the AND (or NAND) gate.
Unfortunately, it is shown in [5] that there is a protocol for AND that achieves

an advantage of γ, but reveals only O(γ2) bits of information. This implies that
the standard reduction to the AND gate only allows to prove a lower bound of
Ω(γ2N) on the communication cost (which can also be obtained by straight-
forward majority amplification, as summarized in Sect. 3). We note that the
protocol of [5] for AND can also be viewed as a one-way communication pro-
tocol in which B outputs the answer. Therefore, the standard reduction to the
AND gate does not allow proving the required Ω(γN) communication cost lower
bound even for one-way protocols.

In order to prove a Ω(γN) lower bound, Braverman and Moitra use a more
complex gadget and the main part of the analysis involves proving that any
protocol for this gadget that achieves advantage of γ must reveal Ω(γ) bits of
information. The analysis essentially breaks the gadget down into 6 smaller AND
gadgets which interact in a way that allows proving the required bound.

A.3 A Lower Bound for Private-Coin Protocols

We consider private-coin protocols for unique-disjointness.

Theorem 6. Any private-coin protocol Π for unique-disjointness that satisfies
AdvUDISJ

N (Π) = γ must communicate at least 1
19.5γN bits in the worst case.

454 I. Dinur

Theorem 3 is a concrete variant of Theorem 2.2 in [5, revision 1] and its proof
is very similar to that of [5]. However, we present the proof slightly differently
and additionally calculate the constants involved. We note that the proof in [5]
employed a so-called “smoothing” to the underlying disjointness protocol, yet
this not necessary to prove the theorem and hence is omitted.7

Consider a private-coin protocol Π such that AdvUDISJ
N (Π) = γ. We analyze

the information complexity of Π with respect to the following distribution on
inputs: we group the N bits into blocks of size exactly three, and for each pair
of three bits we generate aj , bj ∈ {0, 1}3 (for j ∈ [N/3]) uniformly at random
from the pairs of strings of length three bits where aj and bj have exactly one
1 and two 0’s, and aj and bj are disjoint. Consequently, there are 6 possible
aj , bj pairs. We define A,B as random variables for the inputs of the players
and Aj , Bj ∈ {1, 2, 3} as random variables for the location of the 1 bit in aj , bj ,
respectively.

We will be interested in lower bounding H(Π) = H(Π(A,B)) by proving a
lower bound on the internal information complexity I(A;Π | B) + I(B;Π | A)
using the following fact.

Fact 1. 1
2

[∑
j I(Aj ;Π | A1...j−1, Bj...n) + I(Bj ;Π | A1...j , Bj+1...n)

]
≤ H[Π].

Proof. By the chain rule for mutual information we obtain
∑

j

I(Aj ;Π | A1...j−1, Bj...n) ≤
∑

j

I(Aj ;Π,B1...j−1 | A1...j−1, Bj...n) =

∑

j

I(Aj ;B1...j−1 | A1...j−1, Bj...n) +
∑

j

I(Aj ;Π | A1...j−1, B) =

∑

j

I(Aj ;Π | A1...j−1, B) = I(A;Π | B) ≤ H(Π),

where I(Aj ;B1...j−1 | A1...j−1, Bj...n) = 0 by independence. Similarly,
∑

j

I(Bj ;Π | A1...j , Bj+1...n) ≤ H(Π).

Therefore,

1
2

⎡

⎣
∑

j

I(Aj ;Π | A1...j−1, Bj...n) + I(Bj ;Π | A1...j , Bj+1...n)

⎤

⎦ ≤ H(Π),

concluding the proof. �
We define Cj = A1...j−1, Bj+1...n and write

I(Aj ;Π | A1...j−1, Bj...n) = I(Aj ;Π | Cj , Bj) =
∑

c,i

∑

t

Pr[Π = t, Cj = c, Bj = i]D(p(Aj | Π = t, Cj = c, Bj = i)‖p(Aj | Cj = c, Bj = i)),

and a similar equality holds for I(Bj ;Π | A1...j , Bj+1...n).
7 The fact that “smoothing” is not required is also mentioned in [24, Footnote 7].

On the Streaming Indistinguishability of a Random Permutation 455

Choosing Cj according to the distribution on the inputs, we obtain

I(Aj ;Π | Cj , Bj) + I(Bj ;Π | Cj , Aj) =
∑

t

E[adv(t, Cj)], (2)

where the expectation is over Cj , and adv(t, Cj) is defined as

adv(t, Cj) =
∑

i∈{1,2,3}
Pr[Π = t, Bj = i | Cj]D(p(Aj | Π = t, Bj = i, Cj)‖p(Aj | Bj = i, Cj))+

Pr[Π = t, Aj = i | Cj]D(p(Bj | Π = t, Aj = i, Cj)‖p(Bj | Aj = i, Cj)).

Since Bj is independent of Cj and is uniform in {1, 2, 3} (and the same property
holds for Aj), then

adv(t, Cj) =

1

3

∑

i∈{1,2,3}
Pr[Π = t | Bj = i, Cj]D(p(Aj | Π = t, Bj = i, Cj)‖p(Aj | Bj = i, Cj))+

Pr[Π = t | Aj = i, Cj]D(p(Bj | Π = t, Aj = i, Cj)‖p(Bj | Aj = i, Cj)).

(3)

Our goal is to relate the expression
∑

t E[adv(t, Cj)] to the advantage of the
protocol, γ. For this purpose, we fix a transcript t where the output is one. We
consider a fixed block j, and the matrix N t(Cj) that gives the probability of
Π = t for each pair of inputs for the parties A and B, conditioned on the parts
of their input Cj that we have already fixed (the probability here is taken over
the randomness of the protocol and the remaining bits in the input of A and B).
To simplify notation we abbreviate N t(Cj) as N t and write

N t =

⎡

⎣
N t

11, N t
12, N t

13

N t
21, N t

22, N t
23

N t
31, N t

32, N t
33

⎤

⎦ .

Since Π is a private-coin protocol, A and B can privately sample their remain-
ing bits conditioned on Cj . Therefore (similarly to [2, Lemma 6.7]), N t is a rank
one matrix that can be expressed as N t = [a1, a2, a3][b1, b2, b3]T . In particu-
lar, bi is the probability over B1...j−1 and the private randomness of B that
B = B1...j−1, Bj = i;Bj+1...n is in the rectangle for Π = t.

Relating the terms in (3) to N t, observe that for i = 1, Pr[Π = t |
Bj = 1, Cj] = N t

21 + N t
31 = a2b1 + a3b1. Moreover, using the convention

that 0/0 = 0, p(Aj | Π = t, Bj = 1, Cj) is a Bernoulli distribution with
parameter a2b1/(a2b1 + a3b1) (which we denote by Ba2b1/(a2b1+a3b1)), while
p(Aj | Bj = 1, Cj) is a Bernoulli distribution with parameter 1/2 (as Aj ∈ {2, 3}
is uniform). Consequently, we get the equality

Pr[Π = t | Bj = 1, Cj]D(p(Aj | Π = t, Bj = 1, Cj)‖p(Aj | Bj = 1, Cj)) =
(a2b1 + a3b1)D(Ba2b1/(a2b1+a3b1)‖B1/2).

456 I. Dinur

For any x, y, z ∈ [0, 1], define

IC(x, y, z) = (xy + xz)D(Bxy/(xy+xz)‖B1/2).

We generalize the above equality to all terms in (3), obtaining

adv(t, Cj) =
1
3
(IC(b1, a2, a3) + IC(a1, b2, b3) + IC(b2, a1, a3)+

IC(a2, b1, b3) + IC(b3, a1, a2) + IC(a3, b1, b2)).
(4)

Let P be the ordered set of triplets (i1, i2, i3) ∈ {1, 2, 3}3 such that i1, i2, i3
are all distinct. Note that P contains 6 triples. Since IC(x, y, z) = IC(x, z, y),
we can write (4) as

adv(t, Cj) =
1
6

∑

(i1,i2,i3)∈P

(IC(ai1 , bi2 , bi3) + IC(bi2 , ai1 , ai3)). (5)

Each expression IC(ai1 , bi2 , bi3) + IC(bi2 , ai1 , ai3) can be thought of the infor-
mation revealed by the protocol for a small AND gadget. The sum of the 6
expressions in adv(t, Cj) can be thought of as a “covering” of the matrix N t(Cj)
with 6 AND gadgets.

For the following fact, we use the proof of [24, Lemma 4] to obtain a slightly
better constant than the one obtained in [5]. Let φ = (1 +

√
5)/2 ≈ 1.618 be the

golden ratio. Recall that φ2 = φ + 1.

Fact 2 For any x, y, z, u ∈ [0, 1], IC(x, y, z)+IC(y, x, u) ≥ 1
2φ (xz+yu−xy−zu).

Proof. By Pinsker’s inequality for Bernoulli distributions, we have

D(Bxy/(zy+xz)‖B1/2) ≥ 2 ·
(

xy

xy + xz
− 1

2

)2

=
1
2

(
z − y

z + y

)2

(if xy + xz = 0 the inequality follows from the definition 0/0 = 0). Therefore,

IC(x, y, z) + IC(y, x, u) =
(xy + xz)D(Bxy/(xy+xz)‖B1/2) + (yx + yu)D(Byx/(yx+yu)‖B1/2) ≥

1
2

(

(xy + xz)
(

z − y

z + y

)2

+ (yx + yu)
(

x − u

x + u

)2
)

=

1
2

(
x

y + z
· (z − y)2 +

y

x + u
· (x − u)2

)
.

Denote

R =
x

y + z
· (z − y)2 +

y

x + u
· (x − u)2,

L =xz + yu − xy − zu = (x − u)(z − y).

On the Streaming Indistinguishability of a Random Permutation 457

Thus, in order to complete the proof we show that R ≥ L/φ. If L is not positive,
then R ≥ L (since R is non-negative) and we are done. It remains to consider the
case that x ≥ u and z ≥ y (the remaining case, x ≤ u and z ≤ y, is symmetric).
If z ≤ (2φ+1)y (implying that y/(y+z) ≥ 1/(2φ+2)) then since x/(x+u) ≥ 1/2,
the product of the two terms of R is at least (x − u)2(z − y)2/(4φ + 4). Hence
by the AM-GM inequality, R ≥ 2(x − u)(z − y)/

√
4φ + 4 = L/

√
φ + 1 = L/φ. If

z ≥ (2φ + 1)y then z + y ≤ (z − y)(φ + 1)/φ = φ(z − y), hence the first term of
R is at least (x/φ(z − y))(z − y)2 = x(z − y)/φ ≥ L/φ. �

We can now prove Theorem 6.

Proof (of Theorem 6). Combining (5) with Fact 2, we obtain

adv(t, Cj) =
1
6

∑

(i1,i2,i3)∈P

(IC(ai1 , bi2 , bi3) + IC(bi2 , ai1 , ai3)) ≥

1
12φ

∑

(i1,i2,i3)∈P

(ai1bi3 + bi2ai3 − ai1bi2 − bi3ai3) =

1
12φ

⎛

⎝
∑

i�=i′
aibi′ − 2

∑

i∈{1,2,3}
aibi

⎞

⎠ =

1
12φ

⎛

⎝
∑

i�=i′
(N t

ii′(Cj) − 2
∑

i∈{1,2,3}
N t

ii(Cj))

⎞

⎠ .

Therefore,

∑

t

E[adv(t, Cj)] ≥ 1

12φ

∑

t

E

⎡

⎣
∑

i�=i′
(Nt

ii′ (Cj) − 2
∑

i∈{1,2,3}
Nt

ii(Cj))

⎤

⎦ ≥ 1

12φ
· 6γ = γ/(2φ).

The second inequality follows since the advantage of Π is γ. In more detail,
for some α ≥ 0, for each i, i′ such that i �= i′ we average the probability of
outputting 1 over disjoint inputs and therefore we have

∑
t E[N t

ii′(Cj)] ≥ α + γ.
On the other hand, for each i ∈ {1, 2, 3} we average the probability of outputting
1 over inputs with intersection size of one and hence

∑
t E[N t

ii(Cj)] ≤ α.
Finally, combining with Fact 1 and (2),

H[Π] ≥ 1
2

∑

j

[I(Aj ;Π | Cj , Bj) + I(Bj ;Π | Cj , Aj)]] =

1
2

∑

j

∑

t

E[adv(t, Cj)] ≥ 1
4φ

∑

j∈[N/3]

γ =
1
4φ

· γN/3 ≥ γN/19.5,

concluding the proof. �

458 I. Dinur

A.4 The Proof of Theorem 3

We now use Theorem 6 to prove Theorem 3. The proof is based on the standard
sparsification technique of [19].

Proof (of Theorem 3). We start with a public-coin protocol Π ′ for unique-
disjointness with communication cost C ′ and advantage γ′ and convert it into a
private-coin protocol Π with communication cost at most C = C ′+2.7 log N+17
and advantage at least γ ≥ 0.99γ′. By Theorem 6, we have C ≥ γN/19.5, or
C ′ + 2.7 log N + 17 ≥ γ′N/20, implying that C ′ ≥ γ′N/20 − 2.7 log N − 17 ≥
γ′N/20 − 20 log N and establishing Theorem 3 for M = 20.

Suppose Π ′ uses a string R as its randomness. For a parameter k, we pick
k independent random strings R1, . . . , Rk, distributed as R. Fix an input (a, b)
such that UDISJ(a, b) = 0 and denote α = ErrUDISJ0

N (Π ′). Among R1, . . . , Rk,
the expected number of strings Ri for which Π ′(a, b) errs with randomness Ri

is at most αk. Hence, by a Chernoff bound, the probability that the number of
strings for which Π ′(a, b) errs is more than (α + γ′/256)k = (1 + γ′/(256α))αk

is at most e−(γ′/(256α))2·αk/3 > e−(γ′)2·k·2−16
. Since γ′ ≥ 1/N (otherwise, the

theorem is trivial), this probability is upper bounded by e−k·2−16N−2
. A similar

bound can be shown for an input (a, b) such that UDISJ(a, b) = 1 by considering
β = ErrUDISJ1

N (Π ′).
We call a sequence of strings R1, . . . , Rk good if for any (legal) input (a, b) to

unique-disjointness, the fraction of strings for which Π ′ errs deviates from the
corresponding error probability of Π ′ (ErrUDISJ0

N (Π ′) or ErrUDISJ1
N (Π ′)) by at

most γ′/256. Otherwise, the sequence is called bad. Taking a union bound over
the (at most) 22N possible inputs, the probability that the sequence R1, . . . , Rk is
bad is at most 22N ·e−k·2−16N−2

. Setting k = 217N2.7 ensures that this probability
is less than 1, and therefore there exists a good sequence of k = 217N2.7 random
strings, which we fix.

In the private-coin protocol Π, A first samples a uniform index i ∈ [k] and
sends it to B with its first message. This requires log k = 17+2.7 log N additional
bits of communication. The parties then run Π ′ with randomness Ri. Since
R1, . . . , Rk is good, then the advantage of Π is at least γ′ − γ′/256 − γ′/256 ≥
0.99γ′, as claimed. �

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci.
68(4), 702–732 (2004)

3. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25

On the Streaming Indistinguishability of a Random Permutation 459

4. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016, pp. 456–467. ACM (2016)

5. Braverman, M., Moitra, A.: An information complexity approach to extended for-
mulations. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on
Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June
2013, pp. 161–170. ACM (2013)

6. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT Numer. Math.
20(2), 176–184 (1980). https://doi.org/10.1007/BF01933190

7. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-
saries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

8. Chattopadhyay, A., Pitassi, T.: The story of set disjointness. SIGACT News 41(3),
59–85 (2010)

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

10. Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via
the Chi-Squared method. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part
III. LNCS, vol. 10403, pp. 497–523. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 17

11. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

12. Göös, M., Watson, T.: Communication complexity of set-disjointness for all prob-
abilities. Theory Comput. 12(1), 1–23 (2016)

13. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055742

14. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Johnson, D.S. (ed.) Proceedings of the 21st Annual ACM Sympo-
sium on Theory of Computing, 14–17 May 1989, Seattle, Washigton, USA, pp.
44–61. ACM (1989)

15. Jaeger, J., Tessaro, S.: Tight time-memory trade-offs for symmetric encryption.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp.
467–497. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 16

16. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

17. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms. Addison-Wesley, Reading (1969)

18. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

19. Newman, I.: Private vs. common random bits in communication complexity. Inf.
Process. Lett. 39(2), 67–71 (1991)

20. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

21. Pollard, J.M.: A monte carlo method for factorization. BIT Numer. Math. 15(3),
331–334 (1975). https://doi.org/10.1007/BF0193366

22. Razborov, A.A.: On the distributional complexity of disjointness. Theor. Comput.
Sci. 106(2), 385–390 (1992)

https://doi.org/10.1007/BF01933190
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/978-3-030-17653-2_16
https://doi.org/10.1007/BF0193366

460 I. Dinur

23. Tessaro, S., Thiruvengadam, A.: Provable time-memory trade-offs: symmetric cryp-
tography against memory-bounded adversaries. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 3–32. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03807-6 1

24. Watson, T.: Communication complexity with small advantage. In: Servedio, R.A.
(ed.) 33rd Computational Complexity Conference, CCC 2018, 22–24 June 2018,
San Diego, CA, USA, volume 102 of LIPIcs, pp. 9:1–9:17. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2018)

https://doi.org/10.1007/978-3-030-03807-6_1

Isogeny-Based Cryptography

He Gives C-Sieves on the CSIDH

Chris Peikert(B)

University of Michigan, Ann Arbor, USA
cpeikert@alum.mit.edu

Abstract. Recently, Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH (pronounced “sea-side”) as a candidate post-quantum
“commutative group action.” It has attracted much attention and inter-
est, in part because it enables noninteractive Diffie–Hellman-like key
exchange with quite small communication. Subsequently, CSIDH has also
been used as a foundation for digital signatures.

In 2003–04, Kuperberg and then Regev gave asymptotically subexpo-
nential quantum algorithms for “hidden shift” problems, which can be
used to recover the CSIDH secret key from a public key. In late 2011,
Kuperberg gave a follow-up quantum algorithm called the collimation
sieve (“c-sieve” for short), which improves the prior ones, in particular
by using exponentially less quantum memory and offering more parame-
ter tradeoffs. While recent works have analyzed the concrete cost of the
original algorithms (and variants) against CSIDH, nothing of this nature
was previously available for the c-sieve.

This work fills that gap. Specifically, we generalize Kuperberg’s col-
limation sieve to work for arbitrary finite cyclic groups, provide some
practical efficiency improvements, give a classical (i.e., non-quantum)
simulator, run experiments for a wide range of parameters up to the
actual CSIDH-512 group order, and concretely quantify the complexity
of the c-sieve against CSIDH.

Our main conclusion is that the proposed CSIDH parameters pro-
vide relatively little quantum security beyond what is given by the cost
of quantumly evaluating the CSIDH group action itself (on a uniform
superposition). For example, the cost of CSIDH-512 key recovery is only
about 216 quantum evaluations using 240 bits of quantumly accessible
classical memory (plus relatively small other resources). This improves
upon a prior estimate of 232.5 evaluations and 231 qubits of quantum
memory, for a variant of Kuperberg’s original sieve.

Under the plausible assumption that quantum evaluation does not
cost much more than what is given by a recent “best case” analysis,
CSIDH-512 can therefore be broken using significantly less than 264

quantum T-gates. This strongly invalidates its claimed NIST level 1
quantum security, especially when accounting for the MAXDEPTH
restriction. Moreover, under analogous assumptions for CSIDH-1024 and
-1792, which target higher NIST security levels, except near the high end
of the MAXDEPTH range even these instantiations fall short of level 1.

This material is based upon work supported by the Patrick C. Fischer Development
Chair and the National Science Foundation under Award CNS-1606362. The views
expressed are those of the author and do not necessarily reflect the official policy or
position of the National Science Foundation.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 463–492, 2020.
https://doi.org/10.1007/978-3-030-45724-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_16

464 C. Peikert

1 Introduction

In 1994, Shor [Sho94] upended cryptography by giving polynomial-time quan-
tum algorithms for the integer factorization and discrete logarithm problems,
which can be used (on sufficiently large-scale quantum computers) to break all
widely deployed public-key cryptography. With the steady progress in engineer-
ing quantum computers, there is an increasing need for viable post-quantum
cryptosystems, i.e., ones which can be run on today’s classical computers but
resist attacks by future quantum ones. Indeed, the US National Institute of
Standards and Technology (NIST) has begun a post-quantum standardization
effort [NIS], and recently selected the second-round candidates.

1.1 Isogeny-Based Cryptography

One prominent class of candidate post-quantum cryptosystems uses isogenies
between elliptic curves over a common finite field. Isogeny-based cryptography
began with the proposal of Couveignes in 1997, though it was not widely dis-
tributed until 2006 [Cou06]. The approach was independently rediscovered by
Stolbunov (in his 2004 Master’s thesis [Sto04]) and by Rostovtsev and Stol-
bunov [RS06] in 2006. The central object in these proposals is a (free and tran-
sitive) group action � : G × Z → Z of a finite commutative group G on a set Z.
Group actions naturally generalize exponentiation in (finite) cyclic multiplica-
tive groups C: we take G = Z

∗
q to be the multiplicative group of integers modulo

the order q = |C| and Z to be the set of generators of C, and define a � z = za.
The Couveignes–Rostovtsev–Stolbunov (hereafter CRS) proposal very nat-

urally generalizes Diffie–Hellman [DH76] noninteractive key exchange to use a
commutative group action: some z ∈ Z is fixed for use by all parties; Alice
chooses a secret a ∈ G and publishes pA = a � z; Bob likewise chooses a secret
b ∈ G and publishes pB = b � z; then each of them can compute their shared key
(ab)�z = a�pB = b �pA. (Note the essential use of commutativity in the second
equation, where b � (a � z) = (ba) � z = (ab) � z.)

Security. Of course, for the CRS system to have any hope of being secure,
the analogue of the discrete logarithm problem for the group action must be
hard, i.e., it must be infeasible to recover a (or some functional equivalent) from
pA = a�z. In 2010, Childs, Jao, and Soukharev [CJS10] observed that, assuming
a suitable algorithm for the group action, this problem reduces to the (injective)
abelian hidden-shift problem on the group G. It happens that Kuperberg [Kup03]
in 2003 and then Regev [Reg04] in 2004 had already given asymptotically subex-
ponential quantum “sieve” algorithms for this problem. More specifically, Kuper-
berg’s algorithm uses exp(O(

√
n)) quantum time and space, whereas Regev’s

uses slightly larger exp(O(
√

n log n)) quantum time but only poly(n) quantum
space, where n = log N is the bit length of the group order N = |G|. While
these attacks do not necessarily render CRS-type systems insecure asymptoti-
cally, one must consider their concrete complexity when setting parameters to
obtain a desired level of security.

He Gives C-Sieves on the CSIDH 465

We mention that these subexponential attacks against CRS motivated Jao
and De Feo [JD11] to give a different approach to isogeny-based cryptography
using supersingular curves, whose full endomorphism rings are non-commutative,
which thwarts the Kuperberg-type attacks. The Jao–De Feo scheme, now known
as Supersingular Isogeny Diffie–Helmman (SIDH), is also not based on a group
action, and is inherently interactive. Most research on isogeny-based cryptogra-
phy has focused on SIDH and closely related ideas.

CSIDH. The noninteractive nature and simplicity of the CRS approach are
particularly attractive features, which motivated Castryck, Lange, Martindale,
Panny, and Renes [CLM+18] to revisit the method recently. They proposed
“Commutative SIDH,” abbreviated CSIDH and pronounced “sea-side.” Like
SIDH, it relies on supersingular curves, but it uses a commutative subring of the
full endomorphism ring, which naturally leads to a commutative group action.
This design choice and other clever optimizations yield an impressive efficiency
profile: for the CSIDH-512 parameters that were claimed in [CLM+18] to meet
NIST security level 1, a full key exchange takes only about 80 milliseconds
(improving upon several minutes for prior CRS prototypes), with key sizes of
only 64 bytes (compared to hundreds of bytes for SIDH and derivatives).

In summary, the designers of CSIDH describe it as a primitive “that can
serve as a drop-in replacement for the (EC)DH key-exchange protocol while
maintaining security against quantum computers.” As such, it has attracted a
good deal of attention and interest. (For example, it received the 2019 Dutch
Cybersecurity Research Paper Award.) In addition, a series of works [Sto11,
DG19,BKV19,KKP20] used CSIDH to develop digital signature schemes having
relatively small sizes and reasonable running times. E.g., for the same claimed
security levels as above, the CSI-FiSh signature scheme [BKV19] can have a
combined public key and signature size of 1468 bytes, which is better than all
proposals to the NIST post-quantum cryptography effort.

1.2 Attacking the CSIDH

As mentioned above, when setting parameters for CSIDH and arriving at security
claims, one must take into account known attacks. The main quantum approach
is given by Kuperberg’s abelian hidden-shift algorithm [Kup03] and descendants,
where the hidden “shift” corresponds to the secret “discrete log” a ∈ G for
a given public key pA = a � z ∈ Z. Algorithms of this type have two main
components:

1. a quantum oracle that, whenever queried, outputs a certain kind of random
“labeled” quantum state, in part by evaluating the group action on a uniform
superposition over the group;

2. a sieving procedure that combines labeled states in some way to generate
“more favorable” ones.

By processing many fresh labeled states from the oracle, the sieve eventually
creates some “highly favorable” states, which are then measured to reveal useful
information about the hidden shift (i.e., the secret key).

466 C. Peikert

The overall complexity of the attack is therefore mainly determined by the
complexities of the quantum oracle and the sieve, where the latter includes the
number of oracle queries. These can be analyzed independently, and for each
there is a line of work with a focus on CRS/CSIDH.

The Oracle. To produce a labeled state, the oracle mainly needs to prepare
a uniform superposition over the group G, and apply the group action to a
superposition of the “base” z ∈ Z and the public key a�z. (It then does a certain
measurement, takes a Fourier transform, and measures again to get a label.) In
the context of isogenies, evaluating the group action on the superposition is
presently the bottleneck, by a large amount.

The original work of Childs, Jao, and Soukharev [CJS10] implemented the
oracle in exp(Õ(n1/2)) quantum time (assuming GRH) and space. Biasse, Iezzi,
and Jacobson [BIJJ18] improved this to an oracle that (under different heuristics)
runs in exp(Õ(n1/3)) quantum time and polynomial space, though they did not
analyze the factors hidden by the Õ notation.

More recently, Bernstein, Lange, Martindale, and Panny [BLMP19] analyzed
the concrete cost of quantumly evaluating the CSIDH group action. For the
CSIDH-512 parameters, they arrived at an estimate of less than 240 nonlinear
bit operations (which translates to between 240 and 244 quantum T-gates), with
a failure probability below 2−32, to evaluate the group action on a non-uniform
“best conceivable” (for the attacker) distribution of group elements, namely, the
one used in CSIDH key generation. Recent work by Beullens, Kleinjung, and
Vercauteren [BKV19] suggests that the cost for a uniform superposition may
be quite close to that of the “best conceivable” case; see Sect. 1.4 for further
discussion.

The Sieve. Kuperberg’s original algorithm [Kup03] has exp(O(
√

n)) complexity
in time, queries, and quantum space. More specifically, he rigorously proved a
query bound of O(23

√
n), and a better time and query bound of Õ(3

√
2 log3 N)

when N = rn for some small radix r (though this is very unlikely to be the case
for CSIDH). As already mentioned, Regev reduced the quantum space to only
polynomial in n, but at the cost of increasing the time and query complexity
to exp(O(

√
n log n)); to our knowledge, precise hidden factors have not been

worked out for this approach.
Bonnetain and Schrottenloher [BS18] provided a variant of Kuperberg’s sieve

for arbitrary cyclic groups, and gave more precise estimates of its query and
quantum-space complexity. Specifically, using simulations up to n = 100 they
estimate that 21.8

√
n+2.3 queries and nearly the same number of qubits of memory

are needed. For the CSIDH-512 parameters, this translates to 232.5 queries and
231 qubits.

Notably, in late 2011 Kuperberg gave a follow-up algorithm [Kup11], called
the collimation sieve (or “c-sieve” for short), which subsumes his original one

He Gives C-Sieves on the CSIDH 467

and Regev’s variant.1 Asymptotically, it still uses exp(O(
√

n)) quantum time and
classical space, but only linear O(n) quantum space (in addition to the oracle’s).
Moreover, it provides other options and tradeoffs, most notably among classi-
cal time, quantum time, and quantumly accessible classical memory (QRACM,
also known as QROM), i.e., classical memory that is readable (but not write-
able) in superposition. As argued in [BHT98,Kup11], QRACM is plausibly much
cheaper than fully quantum memory, because it does not need to be preserved
in superposition. In particular, Kuperberg describes [Kup11, Proposition 2.2]
how QRACM can be simulated using ordinary classical memory, at the cost of
logarithmic quantum memory and quasilinear quantum time in the number of
data cells; see [BGB+18, Section III.C] for a realization of this idea which has
modest concrete cost.

Although Kuperberg’s collimation sieve dates to about six years before the
CSIDH proposal, and has been briefly cited in some of the prior literature on
CSIDH, an analysis for concrete parameters was not previously available.2 That
is the topic we address in this work.

1.3 Our Contributions

We analyze the concrete complexity of Kuperberg’s collimation sieve [Kup11],
with a focus on CSIDH and its proposed parameterizations, although our results
apply generally to any CRS-style commutative group action, including recent
CSIDH variants [CD19,FTLX19].3 Our study mainly treats the quantum oracle
as a “black box,” and focuses on the precise number of queries and amount of
quantumly accessible classical memory (QRACM) the sieve uses. Following a
suggestion by Schanck [Sch19], we also give a rough analysis of how these quan-
tities translate to the quantum complexity of full attacks on proposed CSIDH
parameters.

More specifically, we generalize the c-sieve to work for cyclic groups of arbi-
trary finite order (from power-of-two or other smooth orders, which CSIDH
groups typically do not have), provide some practical improvements that extract
more secret-key bits per run of the sieve and maintain better control of the
memory and time complexities, give a classical simulator and run experiments
on a wide range of parameters—including the actual CSIDH-512 group order of
N ≈ 2257.1—and concretely quantify the complexity of the c-sieve against pro-
posed CSIDH parameters. As far as we know, ours is the first work to simulate
any kind of quantum sieve algorithm for groups as large as the actual CSIDH-512
group; previously, the largest simulations were for group orders N ≈ 2100.

1 More recently, Kuperberg has given talks highlighting the virtues of the algorithm
and its relevance to isogenies.

2 Shortly after the announcement of this work, Bonnetain and Schrottenloher posted
an updated version of [BS18], which had been under private review and which does
contain such an analysis. See below for a comparison.

3 Our work has no implications for SIDH [JD11] or the NIST submission SIKE, which
do not use commutative group actions.

468 C. Peikert

Conclusions. Our main conclusion is that the proposed CSIDH parameters pro-
vide relatively little quantum security beyond what is given by the cost of the
quantum oracle. For example, for CSIDH-512 the secret key can be recovered
from the public key with only about 216 oracle queries and 240 bits of QRACM,
or about 219.3 queries and 232 bits of QRACM, plus insignificant other resources.
This improves upon a prior estimate [BS18] of 232.5 queries and 231 qubits of
quantum memory, for a variant of Kuperberg’s first sieve algorithm. The key
insight underlying our improvements is that when the oracle is expensive, trad-
ing oracle queries for QRACM can dramatically reduce the overall quantum time,
while keeping the classical costs reasonable. (No such tradeoff is available for the
earlier sieve algorithms.) In addition, we find that for the group orders of interest,
the cost of implementing even substantial amounts of QRACM using [BGB+18]
is dwarfed by that of the oracle queries (under current estimates for the latter).
See Sect. 4 for the full details.

Under the plausible assumption that implementing the oracle does not cost
much more than the “best conceivable case” estimate of [BLMP19], CSIDH-512
can therefore be broken using not much more than 260 quantum T-gates, plus
relatively small other resources. This strongly invalidates its claimed NIST level 1
quantum security, especially when accounting for the MAXDEPTH restriction,
and even under much weaker assumptions about the cost of the oracle.4

Similarly, CSIDH-1024 and -1792, which respectively targeted NIST quantum
security levels 2 and 3, can be broken with, e.g., about 226 and 239 oracle queries
and 240 bits of QRACM (plus insignificant other resources).5 Under analogous
assumptions about the cost of their oracles relative to the “best conceivable
case,” CSIDH-1024 therefore falls short of level 1 (and by a large margin for
the low end and middle region of the MAXDEPTH range). Moreover, with the

4 The main security claim in [CLM+18] for CSIDH-512 (which appears in the abstract,
introduction, and security evaluation) is NIST level 1. However, in one location the
paper also mentions, in a passing reference to CSIDH-512, a “conjectured post-
quantum security level of 64 bits.” This would constitute a different, significantly
weaker security claim than NIST level 1, in part because the latter accounts for the
cost of quantumly evaluating AES, and has a MAXDEPTH restriction. No definition
for ‘bits of post-quantum security’ is given in [CLM+18], but the security analysis
in Section 7.3 and Table 1 quantifies “costs for the complete attack” in terms of
number of logical qubit operations, and targets 264 or more for CSIDH-512. Under
this implied interpretation of ‘64 bits of post-quantum security,’ and our assumption
on the cost of the oracle, our work even falsifies this security claim as well. We point
out that other metrics like “depth times width” can be used to quantify security (see,
e.g., [JS19]), and at present the complexity of our attack in this metric is unclear,
in part because the precise depth and width of the oracle are unknown. However,
under any reasonable metric the oracle calls are presently the bottleneck for sieve
parameters of interest.

5 We again emphasize that the c-sieve offers a flexible tradeoff among queries,
QRACM, and classical time, so all these example query counts can be reduced some-
what by increasing these other resources.

He Gives C-Sieves on the CSIDH 469

possible exception of the high region of the MAXDEPTH range, even CSIDH-
1792 also fails to reach level 1.

Comparison with [BS18]. Shortly after the initial announcement of this work,
Bonnetain and Schrottenloher posted an update [BS18] to their earlier analysis
of Kuperberg’s first sieve algorithm, which now also analyzes variants of the
collimation sieve. They arrive at similar conclusions, but their analysis is largely
complementary to ours, in the following ways. They give a theoretical analysis
that ignores some polynomial terms, whereas ours is fully concrete and supported
by experiments (which reveal some unexpected phenomena that significantly
affect the polynomial factors). They only consider large collimation arity r (see
below) with correspondingly small fully quantum memory and large classical
work and memory, whereas we mainly limit our attention to the binary case
r = 2 with correspondingly larger QRACM and small classical work. Finally, we
include optimizations that are not considered in [BS18], like the extraction of
many secret-key bits from each run of the sieve. It seems likely that a combination
of ideas from these works would yield additional points on the attack spectrum
and somewhat improved bounds.

1.4 Further Research

A main question that remains to be addressed is the actual concrete cost
of the requisite quantum oracle, i.e., evaluation of the CSIDH group action
for a uniform superposition over the group. The results of [BS18] and even
moreso [BKV19] suggest that for CSIDH-512, the cost may be close to the
roughly 240 nonlinear bit operations estimate [BLMP19] for the “best conceiv-
able case”—perhaps even within a factor of two or less. This is because [BKV19]
gives a fast method for mapping a uniformly random group element to a short
exponent vector, whose norm statistics are very similar to those of the distri-
bution analyzed in [BLMP19]. (In particular, the norm’s expectation is only
about 10% larger, and its variance is actually somewhat smaller.) Also, because
the sieve requires so few oracle queries (e.g., 216 or less for CSIDH-512), some
improvement should be obtainable simply by increasing the oracle’s error prob-
ability, from the 2−32 considered in [BLMP19]. Related questions are whether it
is possible to accelerate the oracle computations by amortization, or by directly
designing a quantum circuit rather than converting a Boolean one.

Our study is primarily focused on collimation arity r = 2, which corresponds
to a sieve that produces a binary recursion tree. Using an arity r > 2 can reduce
the number of queries and/or the needed amount of QRACM, at the cost of
more classical time. In a bit more detail, the main collimation subroutine that
for r = 2 takes quasilinear Õ(L) classical time (in the amount L of QRACM)
takes Õ(Lr−1) classical time in general (or even less time with more memory,
using Schroeppel–Shamir [SS79]), but reduces the depth of the recursion tree by
about an r−1 factor, which can significantly reduce the number of oracle queries.
Our experiments demonstrate that the classical work for r = 2 is cryptanalyti-
cally small (on the order of several core-days), and our model suggests modest

470 C. Peikert

improvements in query complexity for slightly larger arities, so this direction
may be worth investigating further, especially if the quantum oracle remains the
main bottleneck.

A final interesting question is how many bits of a CSIDH secret are required
to break the scheme. Our complexity estimates are for running the c-sieve several
times to recover almost all of the secret bits (the remainder can be obtained by
brute force). However, if partial information about the secret suffices to break
the scheme through other means, then the number of sieve invocations and
corresponding query complexity would be reduced.

1.5 Paper Organization

In Sect. 3 we describe and analyze our generalization of Kuperberg’s collimation
sieve to arbitrary cyclic groups. In Sect. 4 we draw conclusions about the quan-
tum security of various CSIDH parameters. In Sect. 5 we describe our classical
simulator for the collimation sieve, and report on our experiments with it.

2 Preliminaries

We let N = {0, 1, 2, . . .} denote the set of nonnegative integers, and for a positive
integer L we define [L] := {0, 1, . . . , L − 1}. All logarithms have base 2 unless
otherwise specified. Define χ(x) = exp(2πi · x) and observe that χ(x)χ(y) =
χ(x + y).

2.1 CSIDH Group Action

Here we recall sufficient background on CSIDH for our purposes; for full details,
see [CLM+18]. At its heart is a free and transitive group action � : G × Z → Z,
where the group G is the ideal class group Cl(O) of the order O = Z[

√−p] of
the imaginary quadratic number field Q(

√−p), for a given prime p of a certain
form. (The acted-upon set Z is a certain collection of elliptic curves over Fp,
each of which can be uniquely represented by a single element of Fp, but this
will not be important for our purposes.) Because O is commutative, its class
group G = Cl(O) is abelian. Heuristically, G is cyclic or “almost cyclic” (i.e., it
has a cyclic component of order nearly as large as |G|), and its order N = |G| is
approximately

√
p.

CSIDH uses d special ideals li of the order O. Heuristically, these ideals
generate the class group or a very large subgroup thereof; for simplicity, assume
the former. The ideals li define an integer lattice of relations

Λ = {z = (z1, . . . , zd) ∈ Z
d : lz1

1 · · · lzd

d is principal},

so G is isomorphic to Z
d/Λ, via (the inverse of) the map e ∈ Z

d �→ [∏
i l

ei
i

]
, of

which Λ is the kernel.
A CSIDH secret key is a vector e ∈ Z

d of “small” integer exponents repre-
senting a group element; more specifically, the ei are drawn uniformly from some

He Gives C-Sieves on the CSIDH 471

small interval [−B,B]. One evaluates the group action for the associated ideal
class [le1

1 · · · led

d] by successively applying the action of each [li] or its inverse,
|ei| times. Therefore, the �1 norm of e largely determines the evaluation time.
Note that a group element is not uniquely specified by an exponent vector; any
vector in the same coset of Λ defines the same group element, but very “long”
vectors are not immediately useful for computing the group action. However, if
we have a basis of Λ made up of very short vectors, then given any exponent
representation of a group element, we can efficiently reduce it to a rather short
representation of the same element using standard lattice algorithms like Babai’s
nearest-plane algorithm [Bab85].

In the CSIDH-512 parameterization, for which p ≈ 2512, the class group
G = Cl(O) has recently been computed [BKV19]: it is isomorphic to the additive
cyclic group ZN = Z/NZ of integers modulo

N = 3 · 37 · 1407181 · 51593604295295867744293584889

· 31599414504681995853008278745587832204909 ≈ 2257.1,

and is in fact generated by the class of the ideal l1. In addition, the lattice Λ ⊂ Z
74

of relations among the ideals li is known, along with a very high-quality (HKZ-
reduced) basis. Indeed, the authors of [BKV19] showed that a uniformly random
element of ZN can be quickly reduced to a short exponent vector having a norm
distribution very similar to the CSIDH-512 one. So, in summary, for CSIDH-512
we can efficiently represent the class group as ZN , and secret keys using the
distinguished representatives {0, 1, . . . , N − 1}.

2.2 Abelian Hidden-Shift Problem

The hidden-shift problem on an additive abelian group G is as follows: given
injective functions f0, f1 : G → X (for some arbitrary set X) such that f1(x) =
f0(x + s) for some secret “shift” s ∈ G and all x ∈ G, the goal is to find s. For
cyclic groups G ∼= ZN , this hidden-shift problem is equivalent to the hidden-
subgroup problem on the Nth dihedral group (which has order 2N). Kuper-
berg [Kup03] gave the first nontrivial quantum algorithm for this problem, which
uses subexponential exp(O(

√
log N)) quantum time and space.

As observed by Childs, Jao, and Soukharev [CJS10], there is a simple con-
nection between the abelian hidden-shift problem and the key-recovery prob-
lem for Couveignes–Rostovtsev–Stolbunov-type systems: given the “base value”
z0 ∈ Z and a public key z1 = s � z0 for some secret key s ∈ G, where
� : G × Z → Z is a free and transitive group action, define fb : G → Z as
fb(g) = g � zb for b = 0, 1. These fb are injective because � is free and transitive,
and f1(x) = x � z1 = x � (s � z0) = (x + s) � z0 = f0(x + s), as required. So,
solving the hidden-shift problem for these fb immediately yields the secret key.

472 C. Peikert

3 Collimation Sieve for Cyclic Groups

In this section we generalize Kuperberg’s collimation sieve [Kup11] to arbitrary
cyclic groups ZN of known order N . (The algorithm can also be made to work
even if we only have a bound on the group order.) The algorithm works very much
like Kuperberg’s for power-of-two group orders N = 2n, but with some imple-
mentation differences and optimizations inspired by improvements to Kuper-
berg’s first sieve algorithm [Kup03].

The collimation sieve works with quantum states called phase vectors, each
of which has some associated integer (phase) multipliers (see Sect. 3.1). The
ultimate goal of the sieve (see Sect. 3.2) is to construct a length-L phase vector
that is ‘very nice,’ meaning its multipliers come from a desired set of small
size S � L, e.g., the interval [S]. (Additionally, the phase multipliers should
be roughly uniformly distributed, which happens automatically.) From such a
nice phase vector one can extract bits of the secret via the quantum Fourier
transform and measurement (see Sect. 3.4). Initially, the sieve will only be able to
construct very ‘non-nice’ phase vectors whose multipliers come from the huge set
{0, 1, . . . , N − 1}. It then repeatedly produces progressively ‘nicer’ phase vectors
whose multipliers lie in successively smaller sets, by combining less-nice vectors
via a process called collimation (see Sect. 3.3).

The differences between our version of the collimation sieve and Kuperberg’s
are summarized as follows:

1. The sieve creates phase vectors with multipliers in progressively smaller inter-
vals of the integers, by collimating on the “most-significant bits” of the mul-
tipliers. (By contrast, Kuperberg makes the multipliers divisible by progres-
sively larger powers of two, by collimating on the least-significant bits.)

2. After sieving down to an interval of size S, where S can be roughly as large as
the amount of quantumly accessible classical memory (QRACM), the algo-
rithm applies a quantum Fourier transform of dimension S and measures,
to reveal about log S of the “most-significant bits” of the secret with good
probability. (Kuperberg instead applies a two-dimensional Fourier transform
and measures to recover the single least-significant bit of the secret, with
certainty.)

3. Alternatively, instead of recovering just log(S) bits of the secret, the algorithm
can perform additional independent sieves down to various “scaled” intervals.
By combining the resulting phase vectors, the algorithm can recover about
log(S) different secret bits per sieve, and in particular, it can recover the entire
secret using about log(N)/ log(S) = logS(N) sieves. (Kuperberg’s algorithm,
after recovering the least-significant bit of the secret, effectively halves the
secret and repeats to recover the remaining bits, using log(N) total sieves.)

The technique from Item 2 is reminiscent of one used by Levieil and
Fouque [LF06] to recover several secret bits at once in the Learning Parity
with Noise problem. The technique from Item 3 is analogous to one attributed
to Høyer in [Kup03] for recovering the entire secret from about log(N) qubits
obtained via Kuperberg’s original sieving algorithm.

He Gives C-Sieves on the CSIDH 473

3.1 Phase Vectors

We first recall from [Kup11] the notion of a phase vector and some of its essential
properties. Fix some positive integer N and s ∈ ZN . For a positive integer L, a
phase vector of length L is a (pure) quantum state of the form

|ψ〉 = L−1/2
∑

j∈[L]

χ(b(j) · s/N)|j〉

for some function b : [L] → Z, where the b(j) are called the (phase) multipli-
ers. In all the algorithms considered in this work, the multiplier functions b will
be written down explicitly in a table, in sorted order by b(j) for efficiency of
collimation (see Sect. 3.3). Note that while this requires classical memory pro-
portional to L, only log L qubits of quantum memory are needed for |ψ〉. Also
observe that the multipliers are implicitly modulo N (because of the division
by N inside χ), so we will use and store their distinguished integer representa-
tives in {0, 1, . . . , N − 1}. We say that |ψ〉 is ranged on (or just on) a particular
set S ⊆ Z if every b(j) ∈ S.

Looking ahead a bit, the collimation sieve uses collimation to combine and
produce phase vectors of roughly equal length L that are ranged on a sequence of
geometrically smaller sets, starting from unrestricted ones on {0, 1, . . . , N − 1}
and ultimately yielding one on a set of size S � L (e.g., the interval [S]). Mea-
suring the quantum Fourier transform of such a vector then yields part of the
secret.

Creating and Combining Phase Vectors. Prior (finite) hidden-subgroup and
hidden-shift algorithms use a simple quantum procedure (an “oracle”) Uf that
generates a special kind of one-qubit state, i.e., a length-2 phase vector. Given
quantum procedures for computing injective functions f0, f1 : ZN → X (for an
arbitrary set X) such that f1(x) = f0(x + s) for some secret s and all x, the
procedure Uf outputs a uniformly random b ∈ ZN along with a qubit

|ψ〉 =
1√
2
(|0〉 + χ(b · s/N)|1〉),

i.e., a length-2 phase vector with b(0) = 0, b(1) = b. The details of Uf are
not material here; see [Kup03,Reg04] for accessible descriptions. However, we
note that Uf evaluates the functions fi in superposition, which in our context
corresponds to evaluating the CSIDH group action.

Phase vectors can naturally be combined by tensoring: given r phase vec-
tors |ψi〉 respectively having lengths Li and multiplier functions bi, we can form
the following quantum state |ψ′〉 with index set L = [L1] × · · · × [Lr]:

|ψ′〉 = |ψ1, . . . , ψr〉 = |L|−1/2
∑

j1∈[L1]

· · ·
∑

jr∈[Lr]

χ(b1(j1) · s/N) · · · χ(br(jr) · s/N)|j1, . . . , jr〉

(1)

= |L|−1/2
∑

j∈L

χ(b′(j) · s/N)|j〉,

474 C. Peikert

where b′(j) =
∑r

i=1 bi(ji). Therefore, |ψ′〉 can be thought of as a kind of phase
vector of length |L| =

∏r
i=1 Li, except that its index set is not exactly [|L|]

(although there is a natural bijection between L and [|L|]). We note that in
the context of collimation (Sect. 3.3), we do not explicitly write down the full
multiplier function b′, but instead first partially measure |ψ′〉 to lessen its length
before storing its multiplier function.

3.2 Collimation Sieve

We now formally define the collimation sieve, in Algorithm1. It constructs a
phase vector on a desired interval by recursively constructing and collimating
phase vectors on suitably larger intervals. The algorithm is essentially the same as
Kuperberg’s from [Kup11] (which incorporates a key insight of Regev’s [Reg04]),
except that it uses collimation on “high bits,” along with a few tweaks to make
it more practically efficient in simulations (see Sect. 3.2 below).

Algorithm 1. Collimation sieve for group ZN and collimation arity r.
Input: Interval sizes S0 < S1 < · · · < Sd = N , a desired phase-vector length L, and

oracle access to Uf .
Output: A phase vector on [S0] of length ≈ L.

Base case. If S0 = N , generate � ≈ log L length-2 phase vectors |ψ1〉, |ψ2〉, . . . , |ψ�〉
using Uf (see Section 3.1). Output the length-2� phase vector |ψ〉 = |ψ1, . . . , ψ�〉.

Recursive case. Otherwise:

1. Using r recursive calls for sizes S1 < · · · < Sd = N and appropriate desired
lengths, obtain r phase vectors |ψ1〉, . . . , |ψr〉 on [S1], the product of whose
lengths is ≈ rL · S1/S0.

2. Collimate these phase vectors using Algorithm 2 to produce a phase vec-
tor |ψ〉 on [S0], and output it. (Or, if its length is much less than L, discard
it and recompute from Step 1.)

In the base case, when a phase vector of length roughly L on [N] is desired,
the algorithm simply invokes the oracle Uf some � ≈ log L times to get length-2
phase vectors |ψi〉 ∝ |0〉 + χ(bi · s/N)|1〉 for known uniformly random multi-
pliers bi ∈ [N], then tensors them all together to get a length-2� phase vector
whose multipliers are the mod-N subset-sums of the bi values. (See Sect. 3.1.) In
the recursive case, when a phase vector on [Si] for some Si < N is desired, the
algorithm recursively obtains r phase vectors on [Si+1] of appropriate lengths,
collimates them to interval [Si], and returns the result. (See Sect. 3.3 below for
the definition and analysis of the collimation procedure.)

The sieve can traverse the recursion tree in any manner, e.g., depth first,
breadth first, or some hybrid of the two. The choice offers a tradeoff between
the quantum memory cost and parallelism of the sieve. Because each phase
vector uses about log L qubits, a depth-first traversal would require only about

He Gives C-Sieves on the CSIDH 475

(r−1)d log L qubits of memory, but the collimation steps would need to be done
sequentially. On the other extreme, a breadth-first traversal would allow all the
oracle calls and collimation steps at each level of the tree to be done in parallel,
but at the cost of about rd log L qubits of memory.

Finally, we can also use the sieve to construct phase vectors on other desired
output ranges, like scaled intervals A · [S], simply by tweaking the collimation
procedure as described in Sect. 3.3. Combining phase vectors on different scaled
intervals enables recovery of more (or even all) bits of the secret with a single
measurement.

Parameters. Following the analysis of the collimation procedure (see Sect. 3.3
and Eq. (4) below), a top-level call to Algorithm1 for arity r ≥ 2 would typically
be made on a sequence of interval sizes Si where:

– S0 ≈ L, the desired length of the ultimate phase vector (which can be almost
as large as the available amount of QRACM), and

– Si+1 = min{≈ Si · Lr−1/r,N}, where the final Sd = N .

The depth d of the recursion tree is therefore given by

S0(Lr−1/r)d ≥ N =⇒ d =
⌈

log(N/S0)
log(Lr−1/r)

⌉
≈ logL(N/S0)

r − 1
. (2)

Practical Improvements. As detailed below in Sect. 3.3, the length of a phase
vector output by collimation is unpredictable, and may be rather longer or
shorter than expected. Because the lengths directly affect the required amount
of QRACM and other resources required by the rest of the sieve, we would like
to keep them under control as much as possible. We do so with two techniques:

1. being adaptive about the requested vector lengths in the recursive calls, and
2. discarding phase vectors that are unusually short, and recomputing from

scratch.

Adaptivity means the following. Recall that to create a phase vector on [S]
of length ≈ L, the algorithm recursively creates r phase vectors on [S′] for
some given S′ � S, the product of whose lengths we want to be ≈ L′ = L ·
(S′/S). So, on the first recursive call we request a vector of length (L′)1/r,
and obtain a vector of some length L̃. Following that we want the product
of the remaining r − 1 vector lengths to be ≈ L′/L̃, so we request a vector
of length (L′/L̃)1/(r−1), and so on. This immediately compensates for shorter-
than-expected vectors, which helps to avoid cascading short vectors higher in
the recursion tree and a useless final output. And in the fortunate event that
we get a longer-than-expected vector, requesting correspondingly shorter vectors
speeds up the remaining computation. In case there is a hard cap on the available
amount of QRACM, it is also trivial to shorten a longer-than-expected vector
via a partial measurement, which also beneficially shrinks the interval in which
the phase multipliers lie.

476 C. Peikert

Vectors that are much shorter than expected present a more significant prob-
lem, however. Compensating for them requires corresponding longer and/or more
phase vectors for collimation, which require correspondingly more QRACM and
computation. Moreover, getting another short vector in that part of the com-
putation subtree further increases the required resources. Therefore, whenever
a call to Algorithm 1 produces a candidate output vector that is shorter than
the requested length by some fixed threshold factor, it simply discards it and
computes a fresh one from scratch.6

Empirically, for arity r = 2 threshold factors of 0.25 or 0.4 seem to work well,
causing a discard in only about 2% or 4.5% of calls (respectively), and keeping
the maximum vector length across the entire sieve to within a factor of about 24–
25 or 22.5 (respectively) of the desired length L; moreover, that factor tends to
decrease somewhat as L grows. (See Fig. 2 for details.) This modification was
very important for the feasibility of our simulations: without the discard rule,
the maximum vector length tended to be several hundreds or even thousands of
times larger than L, yet the ultimate phase vector was often still much shorter
than desired.

Oracle Query Complexity. Here we give a model for the number of queries to
the oracle Uf made by the sieve. For the interval sizes Si given above in Sect. 3.2,
the recursion depth is given in Eq. (2) as

d =
⌈

log(N/S0)
log(Lr−1/r)

⌉
.

At the base case (leaf level) of the recursion tree, where Sd = N , we typically
need to make a phase vector of length about

L′ = (rLSd/Sd−1)1/r = (rLN/Sd−1)1/r.

We construct such a vector by making �log L′� oracle queries and tensoring the
results.

Supposing that a random δ fraction of recursive calls to Algorithm 1 result in
a discard (due to insufficient length), the arity of the recursion tree is effectively
r/(1 − δ). Therefore, our model for the total number of oracle queries is

Q = (r/(1 − δ))d · log L′. (3)

For arity r = 2 our experiments turn out to conform very closely to this
model, especially for moderate and larger values of L. (For r = 2 it is slightly
more accurate to replace r with 2r/3 in the above expressions, but this has a
negligible effect on the predictions.) See Sect. 5 for details.

6 This is roughly analogous to what is done in Kuperberg’s original sieve [Kup03],
where combining two qubits has a 50% chance of producing a “useless” output that
is then discarded.

He Gives C-Sieves on the CSIDH 477

3.3 Collimating Phase Vectors

The heart of the collimation sieve is the collimation procedure, which combines
phase vectors to create a new one on a desired smaller interval. Algorithm 2 is
our variant of Kuperberg’s collimation procedure; the only significant difference
is that it collimates according to “high bits” (or “middle bits”; see Sect. 3.3)
rather than “low bits,” which allows us to deal with arbitrary group orders N .
More precisely, it collimates phase vectors according to the quotients (ignoring
remainder) of their multipliers with the desired interval size S, yielding a new
phase vector on [S].

Algorithm 2. Collimation procedure for arity r.
Input: Phase vectors |ψ1〉, |ψ2〉, . . . , |ψr〉 of respective lengths L1, . . . , Lr, and a desired

interval size S.
Output: A phase vector |ψ〉 on [S].

1. Form the phase vector |ψ′〉 = |ψ1, . . . , ψr〉 having index set [L1] × · · · × [Lr] and
phase multiplier function b′(j) =

∑r
i=1 bi(ji).

2. Measure |ψ′〉 according to the value of q = �b′(j)/S� to obtain Pq|ψ′〉 for a
certain subunitary Pq.

3. Find the set J of tuples j that satisfy the above. Let L = |J | and choose a
bijection π : J → [L].

4. Output phase vector |ψ〉 = UπPq|ψ′〉 with index set [L] and multiplier function
b(j) = b′(π−1(j)).

In more detail, given phase vectors |ψi〉 having lengths Li and multiplier
functions bi : [Li] → Z, the algorithm constructs a combined phase vector |ψ′〉
having multiplier function b′(j) =

∑r
i=1 bi(ji), as shown in Eq. (1) above. It then

measures the quotient q = �b′(j)/S�, so that the “surviving” indices j are exactly
those for which b′(j) ∈ qS + [S]. The common additive qS term corresponds to
a global phase that has no effect, so the surviving phase multipliers can be
seen to lie in [S]. Let J be the set of surviving indices j and suppose that
|J | = L. Just as described in [Kup11], the algorithm (classically) constructs
a bijection π : J → [L] and its inverse, then applies a corresponding unitary
permutation operator Uπ to the post-measurement state, finally yielding a true
length-L phase vector on [S].

We briefly summarize the main computational costs; see Sect. 3.3 for a
detailed analysis in the case r = 2. Step 2 does a QRACM lookup for each
i = 1, . . . , r to obtain bi(ji), then quantumly adds the results and divides by S.
Step 3 classically performs an r-way merge on the sorted lists of phase multi-
pliers, and prepares associated lists for the next step. Finally, Step 4 computes
π(j) by performing QRACM lookups on the entries of j, and uncomputes j and
all the scratch work via one or more additional lookups.

478 C. Peikert

Length Analysis. Collimation is guaranteed to output a phase vector on [S],
but the length of the output is a random variable affected by the phase multipliers
of the input vectors and the quantum measurement.

Let r be small, with r = 2 being the main case of interest. Suppose that
the input vectors |ψi〉 have roughly uniformly distributed multipliers on [S′] for
some S′ � S, and let L′ =

∏
i Li be the product of their lengths. Then the L′

phase multipliers b′(j) are also very well distributed on [rS′], so we expect L ≈
L′ ·S/(rS′) indices to “survive” collimation.7 Moreover, the surviving multipliers
are well distributed on [S], because it is a very narrow subinterval of [rS′].

Because we will want all the input and output vectors to have roughly the
same lengths L, we can therefore take rS′L ≈ SL′ where L′ = Lr, i.e.,

S′ ≈ S · Lr−1/r. (4)

In other words, with one level of collimation we can narrow the size of the interval
in which the multipliers lie by roughly an Lr−1/r factor, while expecting to
roughly preserve the vector lengths.

Scaled Intervals. Collimation naturally generalizes to produce phase vectors
on other sets, such as scaled intervals A · [S] = {0, A, 2A, . . . , (S − 1)A} for
positive integers A. (We use such sets in Sect. 3.4 below.) Specifically, if we are
given r phase vectors on A · [S′], we can get a phase vector on certain scalings
of [S] as follows:

1. We can collimate according to q = �b′(j)/(AS)�, thereby creating a phase
vector on A · [S] (ignoring the global-phase term qAS), because all the b′(j)
are divisible by A.

2. Alternatively, we can collimate according to c = b′(j) mod (AB) for B =
�rS′/S�, thereby creating a phase vector on AB · [S] (ignoring the global-
phase term c), because all the b′(j) are in A · [rS′].

3. Finally, we can interpolate between the above two techniques, collimating
according to both q = �b′(j)/(ABS)� and c = b′(j) mod (AB) for an arbitrary
positive integer B ≤ �rS′/S�, thereby creating a phase vector on AB · [S].

By appropriately composing these kinds of collimations, we can obtain any
needed scaling factor. For all these options, adapting the above analyses yields
the same ultimate conclusions, that collimation can decrease the range size by
roughly an Lr−1/r factor while keeping the input and output vector lengths
roughly equal.

7 Note that the multipliers b′(j) ∈ [rS′] are not quite uniformly distributed, because
they are biased toward their expectation rS′/2, and extreme values are less likely.
For r = 2, an easy calculation shows that due to this bias, E[L] is very close to
2
3
L′ ·S/S′. This means that the output of the collimation step is slightly better than

the above analysis indicates.

He Gives C-Sieves on the CSIDH 479

Complexity of Binary Collimation. We conclude our treatment of colli-
mation by analyzing its complexity for the main arity r = 2 of interest, focus-
ing especially on precise QRACM bounds. We adapt and refine Kuperberg’s
analysis [Kup11, Proposition 4.2] of his “low bits” collimation procedure. Let-
ting Lmax denote the maximum of the lengths of the input and output phase
vectors, Kuperberg proved that low-bits collimation can be done with:

– Õ(Lmax) classical time, where Õ hides logarithmic factors in both Lmax

and N ,
– O(Lmax log N) classical space,
– O(1) lookups into O(Lmax · log max{S′/S, Lmax}) bits of QRACM, and
– poly(log Lmax) quantum time and O(log Lmax) quantum space.

The same holds for our high-bits collimation, with one subtlety concern-
ing the amount of QRACM. Näıvely, measuring q = �b(j)/S� requires stor-
ing the entire bi vectors in QRACM, which requires up to O(Lmax log S′) =
O(Lmax log N) bits. This is in contrast to Kuperberg’s method, which requires
only O(Lmax log(S′/S)) bits, namely, the least-significant bits of the multipliers.
We can obtain the latter bound by storing in QRACM only sufficiently many of
the “most significant bits” of the bi(ji), namely, b̂i(ji) = �bi(ji)/K� for some K

moderately smaller than S. We then measure q = �K · b̂(j)/S�, from which it
follows that

b̂(j) ∈ qS/K + [0, S/K] =⇒ b(j) ∈ qS + [0, S + rK].

By taking K = (S/S′)α · S for some small positive α like α = 1 or α = 1/2,
each entry of b̂i(ji) takes at most (the ceiling of) log(S′/K) ≤ (1 + α) log(S′/S)
bits. By Eq. (4), the range size for the collimated output vector is S + rK ≈
S(1+r1+α/Lα), which is insignificantly larger than S for the L ≥ 216 of interest.

Concrete Constants for QRACM. A close inspection of [Kup11, Section 4.3]
shows that the constant factor in the QRACM bound, and the associated O(1)
number of QRACM lookups, are small. The entire algorithm can be run with 9
lookups and as little as

R = Lmax · �max{(1 + α) log(S′/S), log Lmax}� (5)

bits of reusable QRACM, or with as few as 4 lookups and Lmax · (2(1 +
α) log(S′/S) + 3 log Lmax) bits, or with various intermediate combinations. (For
our purposes, minimizing QRACM seems preferable because lookups are much
cheaper than CSIDH evaluation.) This can be done as follows:

1. First, in new registers we look up each b̂i(ji) for i = 1, 2. As described
above, arrays representing the functions b̂i can be stored in QRACM with
�(1 + α) log(S′/S)� bits per entry. (In all steps, the QRACM can be reused
from one lookup to another.)

480 C. Peikert

2. Following the measurement, in new registers we compute j = π(j1, j2) ∈
[L] and a scratch value j′

2. An array representing the permutation π : J →
[L] can be stored as a table mapping each j1 to the smallest value j′

2 such
that (j1, j′

2) ∈ J , and the corresponding value of π(j1, j′
2); each value takes

�log Lmax� bits per entry. We look up, either sequentially or both at once,
the appropriate values of j′

2, π(j1, j′
2) and then (reversibly) add j2 − j′

2 to the
latter quantity to get j = π(j1, j2).

3. Lastly, we uncompute the five values j′
2 and ji, b̂i(ji) for i = 1, 2, leaving

behind just j. One or more arrays (each requiring a lookup) mapping each j
(or alternatively, j1 or j2) to one or more of these values can be stored in the
natural way. We do the appropriate lookup(s) to uncompute all the values.

Finally, we remark that for the Lmax of interest in this work, the
poly(log Lmax) quantum time (which consists of just a few additions and subtrac-
tions, and one division) and O(log Lmax) quantum space needed for collimation
are insignificant compared to the estimated complexity of the quantum oracle Uf

for CSIDH parameters of interest [BLMP19].

3.4 Post-processing

We now describe how phase vectors output by the collimation sieve can be used
to recover information about the secret.

Regularization. A top-level call to Algorithm 1 outputs a phase vector |ψ〉
on [S] = [S0] of length L̃ ≈ L, which we want to be somewhat larger than S.
Heuristically, for each t ∈ [S] we expect about L̃/S phase multipliers b(j) to
equal t; however, there is some variation in the number of each multiplier. Ideally,
we would like a regular state, i.e., one which has exactly the same number of
multipliers for each t ∈ [S].

We can obtain one by generalizing [Kup11]: select a maximal subset X ⊆ [L̃]
for which b(X) has an equal number of every t ∈ [S]. Then measure whether |ψ〉
is in C[X] (i.e., the Hilbert space with basis |j〉 for j ∈ X), which holds with
probability |X|/L̃. If not, discard it and run the sieve again. If so, the measured
form of |ψ〉 is regular, so it has a factor of the form

S−1/2
∑

j∈[S]

χ(j · s/N)|j〉 ,

which we can extract by reindexing. (This requires almost no work, because the
multipliers are sorted.) Observe that the above state essentially corresponds to
the dimension-S inverse quantum Fourier transform of a point function at sS/N ;
see Sect. 3.4 for details.

The probability of obtaining a regular phase vector is |X|/L̃ = mS/L̃,
where m is the frequency of the least-frequent phase multiplier t ∈ [S]. In our
experiments, a length L̃ ≈ 64S typically led to success probabilities in the 40–
80% range, and a length L̃ ≈ 128S usually led to an 80% or larger success
probability.

He Gives C-Sieves on the CSIDH 481

Punctured Regularization. The above procedure is somewhat wasteful,
because it loses a factor of L̃/S ≈ 27 in the number of basis states |j〉 in the
fortunate case (and loses all of them in the unfortunate case). Alternatively, we
can use the following method for generating a “punctured” (regular) phase vec-
tor, which works for S as large as L̃ (or even a bit more), and which produces
a state that is almost as good as a regular one on [S]. Empirically, this lets us
extract almost log S bits of the secret.

Again suppose that the sieve produces a phase vector |ψ〉 on [S] of length L̃.
We make a pass over j ∈ [L̃], forming a set X of one index j for each distinct value
of b(j), and ignoring duplicates. (This is trivial to do, because the multipliers are
sorted.) We then measure whether |ψ〉 is in C[X], which holds with probability
|X|/L̃. If not, we try again with a new choice of X on the leftover phase vector,
as long as it remains long enough. If so, the restriction b : X → [S] is injective,
so by a change of variable and reindexing the basis from j ∈ X to b(j) ∈ [S], we
now have a state of the form

|X|−1/2
∑

j∈X

χ(b(j) · s/N)|j〉 ≡ |X|−1/2
∑

j∈b(X)

χ(j · s/N)|j〉. (6)

This state is a length-|X| phase vector, except for the “punctured” index set
b(X) ⊆ [S]. It is also almost as good as a regular phase vector on [S], in the
following sense. Heuristically, each of the multipliers b(j) for j ∈ [L̃] is uniformly
random, so the multipliers b(X) ⊆ [S] form a random subset of density

1 − (1 − 1/S)L̃ ≈ 1 − exp(−L̃/S).

(For example, this density is approximately 0.632, 0.864, and 0.981 for L̃ = S,
2S, and 4S, respectively.) Therefore, the state in Eq. (6) corresponds to a kind
of densely subsampled Fourier transform of a point function encoding the secret.
Empirically, such states have enough information to let us extract about log S−2
bits of the secret in expectation; see Sect. 3.4 for details.

Combining (Punctured) Regular Phase Vectors. By combining k sepa-
rately generated regular phase vectors for scalings of [S], we can create a regular
phase vector on [T] for T = Sk, as shown below. In particular, for k > logS N we
can create a regular phase vector for T > N , which is large enough to recover s
exactly (with good probability). Note that it might not be necessary to recover
all of s in this manner; given partial information on s (say, half of its bits) it
might be more efficient to use other methods to recover the rest.

We separately create k regular phase vectors

|ψi〉 = S−1/2
∑

j∈[S]

χ(Sij · s/N)|j〉

on the scaled intervals Si ·[S] = {0, Si, 2Si, . . . , (S − 1)Si}, for i = 0, 1, . . . , k−1.
Then their tensor product |ψ〉 = |ψ0, . . . , ψk−1〉 is

|ψ〉 = T −1/2
∑

j0∈[S]

· · ·
∑

jk−1∈[S]

χ
(k−1∑

i=0

jiS
i · s/N

)
|j0, . . . , jk−1〉 = T −1/2

∑

j∈[T]

χ(j · s/N)|j〉,

482 C. Peikert

where we have re-indexed using j =
∑k−1

i=0 jiS
i. Therefore, |ψ〉 is a regular phase

vector for [T], as desired.
The same technique works for punctured regular states, where the tensored

state’s index set is the Cartesian product of the original states’ index sets. To
prevent the density from decreasing, we can use a scaling factor slightly smaller
than S, e.g., δS where δ is the density of the input states. Then the density of
the resulting state is about (δS)k/(δk−1Sk) = δ.

Measurement. Now suppose we have a regular phase vector |ψ〉 = T−1/2
∑

j∈[T] χ(j · s/N)|j〉 on [T]. Then its T -dimensional quantum Fourier transform
is

QFTT |ψ〉 = T −1
∑

w∈[T]

∑

j∈[T]

χ
(js

N
− jw

T

)
|w〉 = T −1

∑

w

(∑

j

χ
(
j
(s

N
− w

T

)))
|w〉. (7)

We compute this state and measure, obtaining some w that reveals information
about s, as analyzed next.

If N |(sT), then the amplitude associated with w = sT/N ∈ [T] is nonzero
and the amplitudes associated with all the other w ∈ [T] are zero, so measuring
the state yields w with certainty, from which we recover s = wN/T . Otherwise,
fix some arbitrary w ∈ [T] and let θ = s/N − w/T �∈ Z. By summing the finite
geometric series (over j), we see that the amplitude associated with |w〉 is

T−1

∣
∣
∣
∣
1 − χ(Tθ)
1 − χ(θ)

∣
∣
∣
∣ = T−1

∣
∣
∣
∣
χ(Tθ/2) · (χ(−Tθ/2) − χ(Tθ/2))

χ(θ/2) · (χ(−θ/2) − χ(θ/2))

∣
∣
∣
∣ = T−1

∣
∣
∣
∣
sin(πTθ)
sin(πθ)

∣
∣
∣
∣.

For |θ| ≤ 1/(2T) this value is at least (T sin(π/(2T)))−1 ≥ 2/π. So when measur-
ing the state, we obtain a w such that |s/N − w/T | ≤ 1/(2T) with probability
at least 4/π2 ≥ 0.4. In such a case, we have

s ∈ w · N

T
+

[
− N

2T
,

N

2T

]
,

i.e., we know the log T “most-significant bits” of s. In particular, if T > N then
this defines s uniquely.

Measuring Punctured Phase Vectors. Now suppose instead that we have a punc-
tured regular phase vector |ψ〉 = |Y |−1/2

∑
j∈Y χ(j · s/N)|j〉 on [T], for a heuris-

tically random index set Y ⊆ [T] of significant density. Its QFT is exactly as in
Eq. (7), but with normalizing factor (Y T)−1/2 instead of T , and with the index j
running over Y instead of [T]. As above, when w/T is very close to s/N , the
amplitudes χ(j(s/N − w/T)) ∈ C all point in roughly the same direction, and
accumulate. Otherwise, the amplitudes heuristically point in random directions
and mostly cancel out. Therefore, the final measurement is likely to output a w
close to sT/N .

As pointed out by an anonymous reviewer, the above argument can be made
rigorous using the fidelity |〈ρ|ψ〉| between our punctured vector |ψ〉 with index set

He Gives C-Sieves on the CSIDH 483

|Y | = δ|T | and a regular phase vector |ρ〉 on [T], which by an easy calculation
is seen to be

√
δ. Because the QFT preserves fidelity, with probability δ the

outcome of the measurement is the same as measuring a regular vector.
For the values of S we used in our experiments, it is possible to efficiently

compute the probability of obtaining any particular value of w when measur-
ing (the QFT of) a particular punctured phase vector. Empirically, we usually
observe a total probability (over the first several punctured vectors coming from
the final sieve output) of about 40% or more in recovering the value of w closest
to sT/N . This corresponds to extracting at least log T − 2 bits of the secret in
expectation. See Fig. 3.

4 Quantum (In)security of CSIDH

In this section come to some conclusions about the quantum security levels
for various CSIDH parameters proposed in [CLM+18], based on our model from
Sect. 3.2 and our experiments’ close adherence to it (Sect. 5). See Fig. 1 for several
representative estimates.

4.1 Oracle Query Complexity for Key Recovery

Our main conclusion is that key recovery for CSIDH-512 can be accomplished
with a binary collimation sieve using, for example, about 219 oracle queries and
about 232 bits of QRACM, or about 216 oracle queries and about 240 bits of
QRACM (plus relatively small other resources); see Fig. 1. This significantly
improves upon the prior estimate [BS18] of about 232.5 queries plus 231 quantum
bits of memory, for a version of Kuperberg’s original sieve algorithm [Kup03].

Similarly, Fig. 1 shows that key recovery for CSIDH-1024 and -1792 (using the
same or somewhat more QRACM as above) requires only 2b oracle queries, for
values of b in the mid-20s and high-30s, respectively. For example, CSIDH-1024
can be broken using less than 224 queries and about 244 bits of QRACM.

According to our model, for arities r = 3 and r = 4 (and the same amounts of
QRACM) the query complexities decrease modestly, by factors of about 22–23.5.
Note that these arities require much more classical computation, but still may
be cryptanalytically feasible. We stress that all these query complexities are for
recovering almost all the bits of the secret. At present it is unclear whether the
number of queries can be reduced even further by breaking the scheme using
only partial information about the secret.

The estimates in Fig. 1 are based on the following:

484 C. Peikert

log p logN logL log QRACM depth log Q̃total log T ≤

512 257.1 23.6 32 11 18.7 63
27.4 36 9 17.0 61
31.3 40 8 15.7 60
35.1 44 7 14.9 59
39.0 48 6 14.1 58

1024 512 27.4 36 19 27.9 76
31.3 40 16 25.5 74
35.1 44 14 23.5 72
39.0 48 13 22.1 70
42.9 52 12 20.8 69

1792 896 31.3 40 29 39.2 90
35.1 44 25 35.8 87
39.0 48 23 33.2 84
42.9 52 21 30.9 82
46.7 56 19 29.2 80

Fig. 1. Example complexity estimates for secret-key recovery against CSIDH-log p
using the collimation sieve with arity r = 2, for various bit lengths (rounded to the
nearest integer) of the CSIDH parameter p. Each missing entry is equal to the one
above it. Here N is the estimated (or known, in the case of CSIDH-512) group order;
L = S are respectively the desired length and range size of the sieve’s final phase
vector; “QRACM” is the number of bits of quantumly accessible classical memory,
which is given by Eq. (5) with α = 1/2 for L̃max = 8L indexable cells; “depth” is the
depth of the sieve’s recursion tree; Q̃total is the total number of queries to the quantum
oracle to recover all but 56 bits of the secret; T is the total T-gate complexity of the
attack, assuming the complexity of implementing the oracle is not much more than for
evaluating on the “best conceivable” distribution.

– We take S = L and use punctured regularity to obtain several bits of the
secret (see Sect. 3.4). We assume that each run of the sieve reveals an expected
log S − 2 bits of the secret, which is consistent with our experiments.

– We quantify the total number Q̃total of oracle queries needed to recover all
but 56 bits of the secret; the remainder can be obtained by classical brute
force. We assume that the actual number of queries Q̃ made by a run of the
sieve is within a 20.3 factor of the estimated number Q from Eq. (3), which
is consistent with our experiments.

– We impose a maximum phase-vector length of L̃max = 8L. This reflects the
fact that the generated phase vectors are sometimes longer than the desired
length L, but are almost always within a factor of 8, and we can enforce this
as a hard bound by doing a partial measurement whenever a phase vector
happens to be longer. We use Eq. (5) for the number of bits of QRACM as a
function of L̃max.

He Gives C-Sieves on the CSIDH 485

4.2 T-Gate Complexity and NIST Security Levels

As shown below in Sect. 4.3, for all the sieve parameters appearing in Fig. 1, the
quantum work of the collimation sieve itself—mainly, the QRACM lookups done
during each collimation step—can be implemented more cheaply than the oracle
calls, under optimistic estimates for the latter. (Moreover, the classical work of
the sieve scales with the number of collimations, so as long as the quasilinear
classical work of collimation is cheaper than the linear quantum work used to
implement the QRACM, the total classical work is not significant.) So, if we
assume that the actual cost of the oracle is not much more than what is given
by the analysis of [BLMP19] for the “best conceivable” distribution (see Sect. 1.4
for discussion), we can give T-gate estimates for the full attacks, and compare
them to what is needed to achieve the targeted NIST post-quantum security
levels.

CSIDH-512 and Level 1. A CSIDH-512 oracle for the “best conceivable” dis-
tribution can be implemented in about 240 nonlinear bit operations [BLMP19],
which translates to between 240 and 244 T-gates. Under our assumption, CSIDH-
512 key recovery therefore costs between roughly 256 and 260 T-gates with
240 bits of QRACM, plus relatively small other resources. (See Fig. 1 for other
options.) It would be prudent to expect that something toward the lower end of
this range is attainable.

It follows that CSIDH-512 falls far short of its claimed NIST quantum secu-
rity level 1, especially when accounting for the MAXDEPTH restriction, and
even under a substantially weaker assumption about the oracle cost. Specifi-
cally, level 1 corresponds to the difficulty of key search for AES-128, and NIST’s
estimate for this is 2170/MAXDEPTH quantum gates, where suggested plausi-
ble values of MAXDEPTH range between 240 and 296. As seen in Sect. 3.2, the
sieve can almost perfectly parallelize the oracle calls and collimation steps, so
the depth of the full attack can be made quite close to the depth of the oracle,
which certainly cannot exceed its gate count. So, the depth of the full attack
can be brought close to the low end of the MAXDEPTH range or only some-
what larger, if the sieve works sequentially (which requires fewer qubits). In any
case, the attack’s quantum gate complexity of about 256–260 is far below the
required 2130 for the low end of the MAXDEPTH range, and even significantly
below the required 274 for the high end.

Other CSIDH Parameters. For a 1030-bit prime CSIDH parameter (namely,
four times the product of the first 130 odd primes and 911, minus 1), using the
software from [BLMP19] we determined that an oracle for the “best conceivable”
distribution can be implemented in less than 244 nonlinear bit operations, which
translates to between 244 and 248 T-gates. Under our assumption, breaking this
parameterization of CSIDH therefore takes no more than about 274 T-gates
using about 240 bits of QRACM, 272 T-gates using about 244 bits, and so on
(see Fig. 1). This is also below NIST quantum security level 1, and well below it
for small and medium choices of MAXDEPTH.

486 C. Peikert

Similarly, for a 1798-bit prime CSIDH parameter (namely, four times the
product of the first 207 odd primes and 2273, minus 1), an oracle for the “best
conceivable” distribution can be implemented in about 247 nonlinear qubit oper-
ations, which translates to between 247 and 251 T-gates. Under our assumption,
the attack therefore takes no more than about 287 T-gates using 244 bits of
QRACM, 284 T-gates using 248 bits of QRACM, and so on. While [CLM+18]
proposed a 1792-bit parameterization for NIST quantum security level 3—
corresponding to security against 2233/MAXDEPTH quantum gates—it falls
far short of this target (even allowing for a much weaker assumption about the
oracle). Indeed, with the possible exception of the high end of the MAXDEPTH
range, it does not even reach level 1.

4.3 Quantum Complexity of the Sieve

Here we estimate the T-gate complexity of the quantum work of the collima-
tion sieve using the QRACM implementation of [BGB+18], as suggested by
Schanck [Sch19]. The main conclusion is that for parameters of interest, the
quantum complexity of the sieve and the QRACM is dwarfed by that of the
oracle calls (under current estimates for the latter).

Fix the collimation arity r = 2. The analysis below shows that the total T-
gate complexity of the collimation sieve (apart from the oracle calls) is essentially

36L̃ · (2/(1 − δ))d, (8)

where L̃ is (an upper bound on) the typical phase-vector length, δ is the dis-
card probability, and d is the depth of the sieve tree. For δ ≈ 0.02 and all the
sieve parameters (log L̃, d) given in Fig. 1, this T-gate estimate is comfortably
below even the most optimistic T-gate estimates for all the oracle calls, based
on [BLMP19]. For example, for the sieve parameters given in Fig. 1 for CSIDH-
512, the T-gate complexity of the sieve itself is between 238 and 247, which in
all cases is well below the lower bound of about 253 for making at least 214 calls
to an oracle with T-gate complexity at least 239.

The estimate from Eq. (8) is obtained as follows. The full sieve is a traversal
of a binary tree (modulo discards), with one collimation at each non-leaf node,
and one or more oracle calls at each leaf node. Therefore, the T-gate complexity
of the sieve itself (apart from the oracle calls) is essentially the number of non-
leaf nodes times the T-gate complexity of collimation. For sieve tree depth d, the
number of internal nodes is about (2/(1 − δ))d when accounting for discards.

The T-gate complexity of a single collimation step can be bounded as follows.
As shown in Sect. 3.3, for input and output phase vectors having lengths bounded
by D, the quantum work is dominated by nine lookups into a QRACM of D
indexable cells. Because [BGB+18] implements such a QRACM (for cells of any
uniform size) using classical memory plus just 4D T-gates (and only �log D�
ancillary qubits), the claim follows.

He Gives C-Sieves on the CSIDH 487

5 Experiments

At present, there are no (publicly available) quantum computers capable of run-
ning the full quantum algorithm for nontrivial parameters. But fortunately, as
pointed out in [Kup11], the collimation sieve itself (apart from the quantum ora-
cle Uf and the final QFT) is pseudoclassical : it consists entirely of permutations
of the computational basis and measurements in that basis, which are trivial to
simulate classically. In addition, the needed part of the quantum oracle Uf is easy
to simulate, just by generating a uniformly random phase multiplier b ← ZN (for
the qubit |ψ〉 ∝ |0〉 + χ(b · s/N)|1〉, which we do not need to generate).

5.1 Sieve Simulator

Using the above observations, we implemented a classical simulator for our gen-
eralized collimation sieve.8 The simulator is currently hard-coded for collimation
arity r = 2, but would be easy to generalize to larger arities. It allows the user
to specify:

– a group order N (including an option for the exact CSIDH-512 group order,
as computed in [BKV19]);

– a desired typical phase vector length L;
– an interval size S for the ultimate phase vector.

The simulator logs its progress in a human-readable form, and finally outputs
various statistics for the full sieve, including:

– the total number Q̃ of queries to the quantum oracle Uf ;
– the number Q of queries predicted by the model of Eq. (3) from Sect. 3.2;
– the length L̃max of the longest created phase vector;
– the probability of obtaining a regular phase vector from the final one, and

the expected number of bits of the secret that can be recovered from the final
phase vector via regularity;

– the probabilities of obtaining punctured regular phase vectors of sufficient
length from the final phase vector, and the total probability of measuring a
value that yields log S secret bits.

8 The code for the simulator and instructions for running it are at https://github.com/
cpeikert/CollimationSieve. The code is written in the author’s favorite functional
language Haskell, and has not been especially optimized for performance, but it
suffices for the present purposes.

https://github.com/cpeikert/CollimationSieve
https://github.com/cpeikert/CollimationSieve

488 C. Peikert

5.2 Experimental Results

We ran our simulator for a wide range of group orders N (focusing mainly on
the exact CSIDH-512 group order), desired phase-vector lengths L, and range
sizes S. Our results for the CSIDH-512 group order are given in Figs. 2 and 3;
the former concerns full regularization of the final phase vector (Sect. 3.4), while
the latter concerns punctured regularization (Sect. 3.4). In summary, the exper-
iments strongly support the following conclusions:

– For all tested group orders and desired vector lengths L ∈ [216, 226], the
required classical resources are cryptanalytically insignificant: at most a few
core-days on a commodity server with 128 GB or 512 GB of RAM, using only
four CPU cores and less than 100 GB RAM per experiment.

– The actual number Q̃ of oracle queries conforms very closely to the model
of Eq. (3) from Sect. 3.2, especially for relatively larger L ≥ 222, where Q̃
was almost always within a factor of 20.4 ≈ 1.32 of the predicted Q, and was
usually even closer.

– Taking L = 64S suffices to obtain a regular phase vector on [S] with good
probability, usually in the 45–80% range (see Sect. 3.4). Halving S, and hence
making L ≈ 128S, typically results in a regularity probability of 70% or more,
often yielding slightly more expected number of bits of the secret.

– Taking L = S typically suffices to obtain at least log S − 2 bits of the secret
in expectation, via punctured regularization (see Sect. 3.4). More specifically,
we can create one or more punctured regular phase vectors that collectively
represent a roughly 40% probability of yielding log S bits of the secret.

He Gives C-Sieves on the CSIDH 489

log Q̃ logQ log L̃max logL logS Pr[regular] bits threshold discard depth
(%) (%)

19.4 19.1 23.9 18 10 78 7.8 0.25 2.8 15
19.4 19.2 23.8 11 95 10.5 3.6
19.2 19.3 23.3 12 72 8.6 4.2

18.3 18.2 24.3 19 11 95 10.5 2.3 14
18.4 18.1 23.5 12 82 9.8 2.3
18.6 18.1 24.5 13 61 7.9 2.4

17.6 17.4 24.3 20 12 84 10.1 2.0 13
17.7 17.4 25.2 13 56 7.3 2.0
17.6 17.4 24.2 14 66 9.2 2.2

17.2 16.7 25.2 21 13 64 8.3 2.1 12
17.2 16.7 25.7 14 71 10.0 2.0
16.8 16.6 25.4 15 73 10.9 1.9

16.6 16.3 26.8 22 14 72 10.0 2.0 12
16.3 16.2 26.6 15 55 8.2 1.9
16.6 16.2 26.6 16 60 9.6 2.3

16.3 15.7 26.4 23 15 79 11.9 2.0 11
15.6 15.6 26.9 16 66 10.5 1.8
15.6 15.6 26.7 17 62 10.6 2.0

15.4 15.4 28.0 24 16 71 11.3 2.4 11
15.5 15.3 28.6 17 85 14.4 2.1
15.3 15.2 29.1 18 64 11.5 2.1

14.9 14.8 28.7 25 17 62 10.5 1.8 10
14.8 14.8 29.6 17 93 15.7 1.9
15.4 14.8 28.9 18 85 15.3 1.9
14.9 14.8 29.2 19 60 11.4 2.1
15.1 14.8 29.1 19 81 15.4 2.0

15.0 14.7 29.6 26 18 92 16.5 0.40 3.5 10
15.3 14.8 29.3 18 88 15.8 4.1
14.9 14.8 29.4 19 77 14.7 4.6

Fig. 2. Statistics from representative runs of our collimation sieve simulator on the
actual CSIDH-512 group, as computed by [BKV19]. Here Q̃ and Q are respectively
the actual and predicted (by the model of Sect. 3.2) number of queries to the quantum
oracle; L̃max is the maximum length of all created phase vectors, and L is the requested
(and typical) vector length; S is the range size for the final phase vector; “Pr[regular]” is
the probability of obtaining a regular vector from the final phase vector (see Sect. 3.4);
“bits” is the expected number of bits of the secret that can be recovered from the final
phase vector; “threshold” is the threshold factor used for determining whether a phase
vector is too short (see Sect. 3.2); “discard” is the fraction of recursive calls that were
discarded for being below the threshold; “depth” is the recursion depth of the sieve.
Each missing entry is equal to the one above it. Every experiment ran on at most four
CPU cores on a commodity server, and completed in no more than a few core-days.

490 C. Peikert

log Q̃ logQ log L̃max logL logS bits threshold discard (%) depth

17.2 17.0 25.3 20 20 19.1 0.25 2.2 13
18.1 17.1 24.3 18.1 2.2
16.7 16.4 25.1 21 21 20.1 2.0 12
16.8 16.4 24.9 19.4 1.9
16.6 16.4 24.8 17.7 2.0
15.9 15.7 26.6 22 22 21.2 1.9 11
16.2 15.8 25.7 20.3 2.0
16.4 15.8 25.8 20.4 2.0
15.6 15.3 26.6 23 23 21.2 1.7 11
16.0 15.4 26.3 21.9 2.0
15.9 15.4 26.7 21.3 1.9
16.1 15.4 26.1 21.4 1.9
14.9 14.8 26.8 24 24 22.5 1.8 10
15.6 14.8 27.3 23.2 1.9
15.0 14.8 27.3 23.1 1.9
15.0 14.6 28.3 25 25 22.4 2.3 10
14.5 14.5 27.9 23.5 1.6
15.0 14.6 28.2 23.7 2.4
14.5 14.3 29.1 26 26 25.2 3.0 10
14.7 14.2 29.0 24.1 2.4
14.7 14.6 28.4 25.0 0.40 4.9
14.2 14.1 29.6 27 27 25.7 4.1 9
14.5 14.1 29.6 25.3 4.6
14.4 14.1 30.0 24.6 4.2
14.0 13.8 30.4 28 28 25.6 3.9 9
14.3 13.8 30.4 26.3 3.7
13.9 13.8 30.1 26.4 4.3
14.0 13.9 30.4 25.5 4.5

Fig. 3. Statistics from representative runs of our collimation sieve simulator on the
actual CSIDH-512 group, as computed by [BKV19]. The column headers are the same
as in Fig. 2, except that “bits” b is the expected number of secret bits obtainable
by using punctured phase vectors obtained from the vector output by the sieve; see
Sect. 3.4. Each missing entry is equal to the one above it. Every experiment ran on at
most four CPU cores on a commodity server, and completed within several core-days.

Acknowledgments. We thank the organizers of the Oxford Post-Quantum Cryptog-
raphy Workshop, at which we received our first detailed exposure to CSIDH; Michael
Cafarella and J. Alex Halderman for the use of their servers to conduct experiments;
Oded Regev and Greg Kuperberg for clarifying comments; Dan Bernstein for pointing
out Kuperberg’s recent talks and for comments on [BLMP19]; Léo Ducas for addi-
tional references; John Schanck and Sam Jaques for additional references and discus-
sions about the full quantum complexity analysis; and the anonymous EUROCRYPT
reviewers for many helpful comments and suggestions.

He Gives C-Sieves on the CSIDH 491

References

[Bab85] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point prob-
lem. Combinatorica 6(1), 1–13 (1986). Preliminary version in STACS 1985

[BGB+18] Babbush, R., et al.: Encoding electronic spectra in quantum cir-
cuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).
https://arxiv.org/pdf/1805.03662.pdf

[BHT98] Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and
claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998.
LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0054319

[BIJJ18] Biasse, J.-F., Iezzi, A., Jacobson, M.J.: A note on the security of CSIDH.
In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol.
11356, pp. 153–168. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-05378-9 9

[BKV19] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny
based signatures through class group computations. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 9

[BLMP19] Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits
for the CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 15

[BS18] Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH
and ordinary isogeny-based schemes. Cryptology ePrint Archive, Report
2018/537 (2018). https://eprint.iacr.org/2018/537

[CD19] Castryck, W., Decru, T.: CSIDH on the surface. Cryptology ePrint
Archive, Report 2019/1404 (2019). https://eprint.iacr.org/2019/1404

[CJS10] Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies
in quantum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014).
https://arxiv.org/abs/1012.4019

[CLM+18] Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an
efficient post-quantum commutative group action. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 15

[Cou06] Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive,
Report 2006/291 (2006). https://eprint.iacr.org/2006/291

[DG19] De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from
class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17659-4 26

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory IT–22(6), 644–654 (1976)

[FTLX19] Fan, X., Tian, S., Li, B., Xu, X.: CSIDH on other form of elliptic curves.
Cryptology ePrint Archive, Report 2019/1417 (2019). https://eprint.iacr.
org/2019/1417

[JD11] Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25405-5 2

https://arxiv.org/pdf/1805.03662.pdf
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-030-05378-9_9
https://doi.org/10.1007/978-3-030-05378-9_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-17656-3_15
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2019/1404
https://arxiv.org/abs/1012.4019
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://eprint.iacr.org/2019/1417
https://eprint.iacr.org/2019/1417
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2

492 C. Peikert

[JS19] Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model:
claw-finding attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 32–61. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 2

[KKP20] Kaafarani, A.E., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: efficient sig-
nature scheme with tight reduction to decisional CSIDH-512. In: PKC
(2020)

[Kup03] Kuperberg, G.: A subexponential-time quantum algorithm for the dihe-
dral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005).
Preliminary version in https://arxiv.org/abs/quant-ph/0302112

[Kup11] Kuperberg, G.: Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. In: 8th Conference on the Theory of
Quantum Computation, Communication and Cryptography, TQC, pp.
20–34 (2013). Preliminary version in https://arxiv.org/abs/1112.3333

[LF06] Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco,
R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer,
Heidelberg (2006). https://doi.org/10.1007/11832072 24

[NIS] NIST post-quantum cryptography project. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography

[Reg04] Regev, O.: A subexponential time algorithm for the dihedral hidden sub-
group problem with polynomial space. CoRR, quant-ph/0406151 (2004)

[RS06] Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isoge-
nies. Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.
iacr.org/2006/145

[Sch19] Schanck, J.: Personal communication, June 2019
[Sho94] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–
1509 (1997). Preliminary version in FOCS 2004

[SS79] Schroeppel, R., Shamir, A.: A t=o(2n/2), s=o(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981). Prelim-
inary version in FOCS 1979

[Sto04] Stolbunov, A.: Public-key encryption based on cycles of isogenous elliptic
curves. Master’s thesis, Saint-Petersburg State Polytechnical University
(2004). (in Russian)

[Sto11] Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis,
Norwegian University of Science and Technology (2011)

https://doi.org/10.1007/978-3-030-26948-7_2
https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/1112.3333
https://doi.org/10.1007/11832072_24
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145

Quantum Security Analysis of CSIDH

Xavier Bonnetain1,2(B) and André Schrottenloher2(B)

1 Sorbonne Université, Collège Doctoral, 75005 Paris, France
2 Inria, Paris, France

{xavier.bonnetain,andre.schrottenloher}@inria.fr

Abstract. CSIDH is a recent proposal for post-quantum non-interactive
key-exchange, based on supersingular elliptic curve isogenies. It is similar
in design to a previous scheme by Couveignes, Rostovtsev and Stolbunov,
but aims at an improved balance between efficiency and security. In the
proposal, the authors suggest concrete parameters in order to meet some
desired levels of quantum security. These parameters are based on the
hardness of recovering a hidden isogeny between two elliptic curves, using
a quantum subexponential algorithm of Childs, Jao and Soukharev. This
algorithm combines two building blocks: first, a quantum algorithm for
recovering a hidden shift in a commutative group. Second, a computation
in superposition of all isogenies originating from a given curve, which the
algorithm calls as a black box.

In this paper, we give a comprehensive security analysis of CSIDH.
Our first step is to revisit three quantum algorithms for the abelian
hidden shift problem from the perspective of non-asymptotic cost, with
trade-offs between their quantum and classical complexities. Second,
we complete the non-asymptotic study of the black box in the hidden
shift algorithm. We give a quantum procedure that evaluates CSIDH-512
using less than 40 000 logical qubits.

This allows us to show that the parameters proposed by the authors
of CSIDH do not meet their expected quantum security.

Keywords: Post-quantum cryptography · Isogeny-based
cryptography · Quantum cryptanalysis · Quantum circuits · Hidden
shift problem

1 Introduction

Problems such as factoring and solving discrete logarithms, believed to be classi-
cally intractable, underlie the security of most asymmetric cryptographic prim-
itives in use today. After Shor found a quantum polynomial-time algorithm for
both [44], the cryptographic community has been actively working on replace-
ments, culminating with the ongoing NIST call for post-quantum primitives [37].

One of the families of problems studied concerns elliptic curve isogenies. In
this setting, we consider a graph, whose vertices are elliptic curves, and whose
edges are non constant morphisms (isogenies). The problem of finding a path
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 493–522, 2020.
https://doi.org/10.1007/978-3-030-45724-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_17

494 X. Bonnetain and A. Schrottenloher

between two given curves was first used in the design of the CGL hash functions
[13] with supersingular isogeny graphs. Afterwards, a key-exchange based on
ordinary curves (CRS) was proposed independently by Rostovtsev and Stol-
bunov [45] and Couveignes [18]. Later, a quantum algorithm was given in [16],
that could find an isogeny between two such curves in subexponential time, a
problem for which classical algorithms still require exponential time. Although
it is not broken in quantum polynomial time, the scheme became considered as
too inefficient with respect to its post-quantum security.

Meanwhile, a key-exchange based on supersingular elliptic curves isogenies
was proposed [21], and the candidate SIKE was selected for the second round of
the NIST standardization process. The quantum algorithm for finding ordinary
isogenies cannot be applied for the supersingular graphs, and the best known
quantum algorithm for breaking SIKE has an exponential time complexity.

CSIDH. CSIDH is a new primitive presented at ASIACRYPT 2018 [12]. Its
name stands for “commutative supersingular isogeny Diffie-Hellman”, and its
goal is to make isogeny-based key exchange efficient in the commutative case,
analogous to a regular non-interactive Diffie-Hellman key exchange. CSIDH uses
supersingular elliptic curves defined over Fp. In this case, the Fp-isogeny graph
has a structure analogous to the ordinary isogeny graph, and the subexponential
quantum attack of [16] also applies. CSIDH aims at an improved balance between
efficiency and security with respect to the original CRS scheme. However, it
stands in a peculiar situation. To the best of our knowledge, it is the only post-
quantum scheme actively studied1 against which a quantum adversary enjoys
more than a polynomial speedup. Schemes based on lattices, codes, or SIKE,
rely on problems with a quantum speedup quadratic at best.

In only two years, CSIDH has been the subject of many publications, showing
a renewed interest for protocols based on commutative elliptic curve isogenies.
It has been used in [20] to devise the signature scheme SeaSign. CSIDH and
SeaSign were further studied and their efficiency was improved in [22,26,35,36],
the last two works published at PQCRYPTO 2019.

Meanwhile, there has been a few works dealing with the security of CSIDH.
The asymptotic cost of attacking the scheme, with classical precomputations and
a quantum polynomial-space algorithm, was studied in [7]. Asymptotically also,
it was shown in [27] that CSIDH (and CRS) could be attacked in polynomial
space. Next, a quantum-classical trade-off using Regev’s variant [39] of Kuper-
berg’s sieve was proposed in [8]. Only two works studied the concrete parameters
proposed in [12]: independently from us, Peikert [38] attacked CSIDH-512 using
Kuperberg’s collimation sieve [32]. Contrary to us, he uses classical memory
with quantum random access. Finally, the number of Toffoli gates required to
implement a CSIDH-512 key-exchange in constant time has been studied in full
detail in [4], published at EUROCRYPT 2019. However, the authors designed an
irreversible classical circuit, and the memory usage of an immediate translation
to a quantum circuit seems massive (see the appendix of [4]).

1 Unfortunately, CSIDH was published after the beginning of the NIST call, and it
could not be submitted to the standardization process.

Quantum Security Analysis of CSIDH 495

Contributions. In this paper, we make a decisive move towards understanding
the quantum security of CSIDH. First, we revisit three quantum abelian hidden
shift algorithms from the available literature, that can be used to recover the
secret key in a CSIDH key-exchange, from the point of view of non-asymptotic
cost. We give a wide range of trade-offs between their quantum and classical
time and memory complexities. Second, we give quantum circuits for computing
the isogenies in CSIDH. Building on [4], with the addition of quantum time-
space tradeoffs for reversible computations and refined quantum search, we give
a quantum procedure that computes the action of the class group in CSIDH-
512 using 249.8 Toffoli gates and less than 40 000 qubits. Putting together our
improved query complexities and this new quantum circuit, we are able to attack
CSIDH-512, -1024 and -1792 in 210 to 248 less quantum time than expected, using
only tens of thousands of logical qubits.

Paper Outline. Section 2 below presents the context of the CSIDH group
action and outlines the attack. We next go into the details of the two building
blocks: a quantum black-box hidden shift algorithm, and a quantum procedure
to evaluate the class group action. In Sect. 3, we present the three main quantum
algorithms for finding abelian hidden shifts. Our contribution here is to give non-
asymptotic estimates of them, and to write a simple algorithm for cyclic hidden
shift (Algorithm 2), which can be easily simulated. In Sect. 4, we show how to
replace the class group action oracle by the CSIDH group action oracle using
lattice reduction. We study the latter in Sect. 5. We summarize our complexity
analysis in Sect. 6.

2 Preliminaries

In this section, we present the rationale of CSIDH and the main ideas of its
quantum attack. Throughout this paper, we use extensively standard notions of
quantum computing such as qubits, ancilla qubits, quantum gates, entanglement,
uncomputing, quantum Fourier Transform (QFT), CNOT and Toffoli gates. We
use the Dirac notation of quantum states |〉. We analyze quantum algorithms in
the quantum circuit model, where the number of qubits represents the quantum
space used, including ancilla qubits which are restored to their initial state after
the computation. Time is the number of quantum gates in the circuit (we do
not consider the metric of circuit depth). We use the standard “Clifford+T”
universal gate set for all our benchmarks [25] and focus notably on the T-gate
count, as T-gates are usually considered an order of magnitude harder to realize
than Clifford gates. It is possible to realize the Toffoli gate with 7 T-gates.

2.1 Context of CSIDH

Let p > 3 be a prime number. In general, supersingular elliptic curves over Fp

are defined over a quadratic extension Fp2 . However, the case of supersingular
curves defined over Fp is special. When O is an order in an imaginary quadratic

496 X. Bonnetain and A. Schrottenloher

field, each supersingular elliptic curve defined over Fp having O as its Fp-rational
endomorphism ring corresponds to an element of C�(O), the ideal class group
of O. Moreover, a rational �-isogeny from such a curve corresponds to an ideal
of norm � in C�(O). The (commutative) class group C�(O) acts on the set of
supersingular elliptic curves with Fp-rational endomorphism ring O.

One-way Group Action. All use cases of the CSIDH scheme can be pinned down
to the definition of a one-way group action (this is also the definition of a hard
homogeneous space by Couveignes [18]). A group G acts on a set X. Operations
in G, and the action g ∗ x for g ∈ G, x ∈ X, are easy to compute. Recovering g
given x and x′ = g ∗ x is hard. In the case of CSIDH, X is a set of Montgomery
curves of the form EA : y2 = x3 +Ax2 +x for A ∈ Fp, and the group G is C�(O)
for O = Z[

√−p]. Taking g ∗ x for an element in C�(O) (i.e. an isogeny) and a
curve corresponds to computing the image curve of x by this isogeny.

CSIDH and CRS both benefit from this action of the class group, which also
exists in the ordinary case. Quantum algorithms for recovering abelian hidden
shifts solve exactly this problem of finding g when G is commutative. There
exists a family of such algorithms, initiated by Kuperberg. The variant of [16]
targets precisely the context of ordinary curves, and it can be applied to CSIDH.

Representation of C�(O). The designers choose a prime p of the form: p =
4 · �1 · · · �u − 1 where �1, . . . , �u are small primes. This enables to represent the
elements of C�(O) (hence, the isogenies) in a way that is now specific to CSIDH,
and the main reason of its efficiency. Indeed, since each of the �i divides −p−1 =
π2 −1, the ideal �iO splits and li = (�i, π −1) is an ideal in O. The image curves
by these ideals can be computed efficiently [12, Section 8].

The designers consider the set {∏u
i=1[li]

ei ,−m ≤ ei ≤ m} ⊆ C�(O), where
[li] is the class of li. If we suppose that these products fall randomly in C�(O),
which has O(

√
p) elements, it suffices to take 2m + 1 � p1/(2u) in order to

span the group C�(O) or almost all of it. Since a greater m yields more isogeny
computations, u should be the greatest possible. With this constraint in mind,
we estimate u = 132 and u = 209 for CSIDH-1024 and CSIDH-1792 respectively
(for CSIDH-512, we know that u = 74 and the list of primes is given in [12]).

Given an element of C�(O) of the form [b] =
∏u

i=1[li]
ei , we compute E′ =

[b] · E by applying a sequence of
∑

i ei isogenies. The CSIDH public keys are
curves. The secret keys are isogenies of this form.

CSIDH Original Security Analysis. The problem underlying the security of
CSIDH is: given two Montgomery curves EA and EB , recover the isogeny
[b] ∈ C�(O) such that EB = [b] · EA. Moreover, the ideal b that represents
it should be sufficiently “small”, so that the action of [b] on a curve can be
evaluated. The authors study different ways of recovering [b]. The complexity of
these methods depends on the size of the class group N = #C�(O) = O(

√
p).

Classically, the best method seems the exhaustive key search of [b] using a meet-
in-the-middle approach: it costs O(p1/4). Quantumly, they use the cost given
in [16] for ordinary curves: exp

(
(
√

2 + o(1))
√

log N log log N
)
.

Quantum Security Analysis of CSIDH 497

Levels of Security. In [12], the CSIDH parameters 512, 1024 and 1792 bits are
conjectured secure up to the respective levels 1, 3 and 5 of the NIST call [37].
These levels correspond respectively to a key-recovery on AES-128, on AES-192
and AES-256. A cryptographic scheme, instantiated with some parameter size,
matches level 1 if there is no quantum key-recovery running faster than quantum
exhaustive search of the key for AES-128, and classical key-recovery running
faster than classical exhaustive search. The NIST call considered the quantum
gate counts given in [25]. These were improved later in [33], and we choose to
adopt these improvements in this paper. For example, AES-128 key-recovery
can be done with Grover search using 1.47 · 281 T-gates and 865 qubits. Hence
any algorithm using less than 1.47 · 281 T-gates and 2128 classical computations
breaks the NIST level 1 security, as it runs below the security level of AES-128.

2.2 Attack Outline

Algorithm 1 outlines a quantum key-recovery on CSIDH. Given EA, EB , we find
a vector ē such that EB =

∏
i[li]

e
i · EA. We will not retrieve the exact secret

key which was selected at the beginning, but the output ē will have an L1 norm
small enough that it can be used instead, and impersonate effectively the secret
key.

Algorithm 1. Key Recovery
Input: The elements ([l1], . . . , [lu]), two curves EB and EA defined over Fp, a
generating set of C�(O): ([g1], . . . , [gk])
Output: A vector (e1, . . . , eu) such that

∏u
i=1[li]

ei · EA = EB

1: Define f : [x] ∈ C�(O) �→ [x] · EA and g : [x] ∈ C�(O) �→ [x] · EB .
2: There exists [s] such that EB = [s] · EA, hence f([s][x]) = g([x]) for all [x].
3: Apply a quantum abelian hidden shift algorithm, which recovers the “shift”

between f and g. Obtain [s].
4: Decompose [s] as

∏u
i=1[li]

ei with small ei.
5: return (e1, . . . , eu)

In order to evaluate the cost of Algorithm 1, we need to study the quantum
query complexity of the black-box hidden shift algorithm applied, but also its
classical complexity, as it will often contain some quantum-classical trade-off.
Afterwards, we need to analyze the quantum gate complexity of an oracle for
the action of the ideal class group on Montgomery curves. There will also be
classical precomputations.

In [16], in the context of ordinary curves, the authors show how to evaluate
[x]·E for any ideal class [x] in superposition, in subexponential time. For CSIDH,
in a non-asymptotic setting, it is best to use the structure provided by the scheme
(contrary to [7]). We have supposed that the class group is spanned by products
of the form [l1]e1 . . . [lu]eu with small ei. If we are able to rewrite any [x] as such
a product, then the evaluation of the class group action [x] · E costs no more

498 X. Bonnetain and A. Schrottenloher

than the evaluation of the CSIDH group action
∏

i[li]
ei · E. Here, a technique

based on lattice reduction intervenes, following [6,7,18].
In general, although the class group is spanned by the products used in

the CSIDH key-exchange: {[l1]e1 . . . [lu]eu ,−m ≤ ei ≤ m}, we cannot retrieve the
shortest representation of a given [x]. There is some approximation overhead,
related to the quality of the lattice precomputations. In Sect. 4, we will show
that this overhead is minor for the CSIDH original parameters.

3 Quantum Abelian Hidden Shift Algorithms

In this section, we present in detail three quantum algorithms for solving the
hidden shift problem in commutative (abelian) groups. For each of them, we
give tradeoff formulas and non-asymptotic estimates. The first one (Sect. 3.2)
is a new variant of [31] for cyclic groups, whose behavior is easy to simulate.
The second is by Regev [39] and Childs, Jao and Soukharev [16]. The third is
Kuperberg’s second algorithm [32].

3.1 Context

The hidden shift problem is defined as follows:

Problem 1 (Hidden shift problem). Let (G,+) be a group, f, g : G → G two
permutations such that there exists s ∈ G such that, for all x, f(x) = g(x + s).
Find s.

Classically, this problem essentially reduces to a collision search, but in the
case of commutative groups, there exists quantum subexponential algorithms.
The first result on this topic was an algorithm with low query complexity, by
Ettinger and Høyer [24], which needs O(log(N)) queries and O(N) classical com-
putations to solve the hidden shift in Z/NZ. The first time-efficient algorithms
were proposed by Kuperberg in [31]. His Algorithm 3 is shown to have a com-
plexity in quantum queries and memory of Õ

(
2
√

2 log2(3) log2(N)
)

for the group

Z/NZ for smooth N , and his Algorithm 2 is in O
(
23

√
log2(N)

)
, for any N . This

has been followed by a memory-efficient variant by Regev, with a query complex-
ity in LN (1/2,

√
2) and a polynomial memory complexity, in [39], which has been

generalized by Kuperberg in [32], with an algorithm in Õ
(
2
√

2 log2(N)
)

quan-
tum queries and classical memory, and a polynomial quantum memory. Regev’s
variant has been generalized to arbitrary commutative groups in the appendix
of [16], with the same complexity. A complexity analysis of this algorithm with
tighter exponents can be found in [9].

A broad presentation of subexponential-time quantum hidden shift algo-
rithms can be found in [39]. Their common design is to start with a pool of
labeled qubits, produced using quantum oracle queries for f and g. Each qubit
contains information in the form of a phase shift between the states |0〉 and |1〉.

Quantum Security Analysis of CSIDH 499

This phase shift depends on the (known) label � and on the (unknown) hidden
shift s. Then, they use a combination procedure that consumes labeled qubits
and creates new ones. The goal is to make the label � reach some wanted value
(e.g. 2n−1), at which point meaningful information on s (e.g. one bit) can be
extracted.

Cyclic Groups and Concrete Estimates. In [10], the authors showed that the
polynomial factor in the Õ, for a variant of Kuperberg’s original algorithm,
is a constant around 1 if N is a power of 2. In the context of CSIDH, the
cardinality of the class group C�(O) is not a power of 2, but in most cases, its
odd part is cyclic, as shown by the Cohen–Lenstra heuristics [17]. So we choose
to approximate the class group as a cyclic group. This is why we propose in what
follows a generalization of [10, Algorithm 2] that works for any N , at essentially
the same cost. We suppose that an arbitrary representation of the class group is
available; one could be obtained with the quantum polynomial-time algorithm
of [14], as done in [16].

3.2 A First Hidden Shift Algorithm

In this section, we present a generic hidden shift algorithm for Z/NZ, which
allows us to have the concrete estimates we need. We suppose an access to the
quantum oracle that maps |x〉|0〉|0〉 to |x〉|0〉|f(x)〉, and |x〉|1〉|0〉 to |x〉|1〉|g(x)〉.

Producing the Labeled Qubits. We begin by constructing the uniform superpo-
sition on N × {0, 1}: 1√

2N

∑N−1
x=0 |x〉 (|0〉 + |1〉) |0〉. Then, we apply the quantum

oracle, and get
1√
2N

N−1∑

x=0

|x〉 (|0〉|f(x)〉 + |1〉|g(x)〉) .

We then measure the final register. We obtain a value y = f(x0) = g(x0 + s)
for some random x0. The two first registers collapse on the superposition that
corresponds to this measured value: 1√

2
(|x0〉|0〉 + |x0 + s〉|1〉).

Finally, we apply a Quantum Fourier Transform (QFT) on the first register
and measure it, we obtain a label � and the state

|ψ�〉 =
1√
2

(

|0〉 + χ

(

s
�

N

)

|1〉
)

, χ (x) = exp (2iπx) .

The phase χ
(
s �

N

)
, which depends on s and �

N , contains information on s. We
now apply a combination routine on pairs of labeled qubits (|ψ�〉, �) as follows.

Combination Step. If we have obtained two qubits |ψ�1〉 and |ψ�2〉 with their
corresponding labels �1 and �2, we can write the (disentangled) joint state of
|ψ�1〉 and |ψ�2〉 as:

|ψ�1〉 ⊗ |ψ�2〉 =
1
2

(

|00〉 + χ

(

s
�1
N

)

|10〉 + χ

(

s
�2
N

)

|01〉 + χ

(

s
�1 + �2

N

)

|11〉
)

.

500 X. Bonnetain and A. Schrottenloher

We apply a CNOT gate, which maps |00〉 to |00〉, |01〉 to |01〉, |10〉 to |11〉 and
|11〉 to |10〉. We obtain the state:

1
2

(

|00〉 + χ

(

s
�2
N

)

|01〉 + χ

(

s
�1 + �2

N

)

|10〉 + χ

(

s
�1
N

)

|11〉
)

.

We measure the second qubit. If we measure 0, the first qubit collapses to:

1√
2

(

|0〉 + χ

(

s
�1 + �2

N

)

|1〉
)

= |ψ�1+�2〉

and if we measure 1, it collapses to:

1√
2

(

χ

(

s
�2
N

)

|0〉 + χ

(

s
�1
N

)

|1〉
)

= χ

(

s
�2
N

)

|ψ�1−�2〉.

A common phase factor has no incidence, so we can see that the combina-
tion either produces |ψ�1+�2〉 or |ψ�1−�2〉, with probability 1

2 . Furthermore, the
measurement of the first qubit gives us which of the labels we have obtained.
Although we cannot choose between the two cases, we can perform favorable
combinations: we choose �1 and �2 such that �1 ± �2 is a multiple of 2 with
greater valuation than �1 and �2 themselves.

Goal of the Combinations. In order to retrieve s, we want to produce the qubits
with label 2i and apply a Quantum Fourier Transform. Indeed, we have

QFT

n−1⊗

i=0

|ψ2i〉 =
1

2n/2
QFT

2n−1∑

k=0

χ

(
ks

N

)

|k〉

=
1
2n

2n−1∑

t=0

(
2n−1∑

k=0

χ

(

k

(
s

N
+

t

2n

)))

|t〉.

The amplitude associated with t is 1
2n

∣
∣
∣
∣
1−χ(2n(s

N + t
2n))

1−χ(s
N + t

2n)

∣
∣
∣
∣. If we note θ = s

N +

t
2n , this amplitude is 1

2n

∣
∣
∣
sin(2nπθ)
sin(πθ)

∣
∣
∣. For θ ∈ [

0; 1
2n+1

]
, this value is decreasing,

from 1 to 1
2n sin π

2n+1
� 2

π . Hence, when measuring, we obtain a t such that
∣
∣ s
N + t

2n

∣
∣ ≤ 1

2n+1 with probability greater than 4
π2 . Such a t always exists, and

uniquely defines s if n > log2(N).

From 2n to any N . We want to apply this simple algorithm to any cyclic group,
with any N . A solution is to not take into account the modulus N in the com-
bination of labels. We only want combinations such that

∑
k ±�k = 2i. At each

combination step, we expect the 2-valuation of the output label to increase (we
collide on the lowest significant bits), but its maximum size can also increase:
�1 + �2 is bigger than �1 and �2. However, the size can increase of at most one
bit per combination, while the lowest significant 1 position increases on average
in

√
n. Hence, the algorithm will eventually produce the correct value.

Quantum Security Analysis of CSIDH 501

We note val2(x) = maxi 2i|x the 2-valuation of x. The procedure is Algo-
rithm2. Each label is associated to its corresponding qubit, and the operation
± corresponds to the combination.

Algorithm 2. Hidden shift algorithm for Z/NZ

Input: N , a number of queries Q, a quantum oracle access to f and g such that
f(x) = g(x + s), x ∈ Z/NZ

Output: s
1: Generate Q random labels in [0; N) using the quantum oracles
2: Separate them in pools Pi of elements e such that val2(x) = i
3: i ← 0, R = ∅, n ← �log2(N)�.
4: while some elements remain do
5: if i ≤ n then
6: Pop a few elements e from Pi, put (e, i) in R.
7: end if
8: for (e, j) ∈ R do
9: if val2(e − 2j) = i then

10: Pop a of Pi which maximizes val2(a + e − 2j) or val2(e − 2j − a)
11: e = e ± a
12: end if
13: end for
14: if {(2i, i)|0 ≤ i ≤ n} ⊂ R then
15: Apply a QFT on the qubits, measure a t
16: s ← ⌈ −Nt

2n+1

⌋
mod N

17: return s
18: end if
19: while |Pi| ≥ 2 do
20: Pop two elements (a, b) of Pi which maximizes val2(a + b) or val2(a − b)
21: c = a ± b
22: Insert c in the corresponding Pj

23: end while
24: i ← i + 1
25: end while
26: return Failure

Intuitively, the behavior of this algorithm will be close to the one of [10], as we
only have a slightly higher amplitude in the values, and a few more elements to
produce. The number of oracle queries Q is exactly the number of labeled qubits
used during the combination step. Empirically, we only need to put 3 elements
at each step in R in order to have a good success probability. This algorithm is
easily simulated, because we only need to reproduce the combination step, by
generating at random the new labels obtained at each combination. We estimate
the total number of queries to be around 12 × 21.8

√
n (Table 1).

502 X. Bonnetain and A. Schrottenloher

Table 1. Simulation results for Algorithm 2, for 90% success

log2(N) log2(Q) 1.8
√

log2(N) + 2.3 log2(N) log2(Q) 1.8
√

log2(N) + 2.3

20 10.1 10.3 64 16.7 16.7
32 12.4 12.5 80 18.4 18.4
50 15.1 15.0 100 20.3 20.3

For the CSIDH parameters of [4], we have three group sizes (in bits): n = 256,
512 and 896 respectively. We obtain 233, 245 and 258 oracle queries to build the
labeled qubits, with 231, 243 and 256 qubits to store in memory. A slight overhead
in time stems from the probability of success of 4

π2 ; the procedure needs to be
repeated at most 4 times. In CSIDH, the oracle has a high gate complexity. The
number of CNOT quantum gates applied during the combination step (roughly
equal to the number of labeled qubits at the beginning) is negligible. Notice also
that the production of the labeled qubits can be perfectly parallelized.

3.3 An Approach Based on Subset-sums

Algorithm 2 is only a variant of the first subexponential algorithm by Kuperberg
in [31]. We develop here on a later approach used by Regev [39] and Childs, Jao
and Soukharev [16] for odd N .

Subset-sum Combination Routine. This algorithm uses the same labeled qubits
as the previous one. The main idea is to combine not 2, but k qubits:

⊗

i≤k

|ψ�i
〉 =

∑

j∈{0,1}k

χ

(
j · (�1, . . . , �k)

N
s

)

|j〉

and apply |x〉|0〉 �→ |x〉|�x·(�1, . . . , �k)/B〉 for a given B that controls the cost of
the combination routine and depends on the tradeoffs of the complete algorithm.
Measuring the second register yields a value V = �x · (�1, . . . , �k)/B, the state
becoming

∑

�j·(�1,...,�k)/B�=V

χ

(
j · (�1, . . . , �k)

N
s

)

|j〉.

In order to get a new labeled qubit, one can simply project on any pair
(j1, j2) with j1 and j2 among this superposition of j. This is easy to do as long
as the j are classically known. They can be computed by solving the equation
�j · (�1, . . . , �k)/B = V , which is an instance of the subset-sum problem.

This labeled qubit obtained is of the form:

χ

(
j1 · (�1, . . . , �k)

N
s

)

|j1〉 + χ

(
j2 · (�1, . . . , �k)

N
s

)

|j2〉

which, up to a common phase factor, is:

|j1〉 + χ

(
(j2 − j1) · (�1, . . . , �k)

N
s

)

|j2〉.

Quantum Security Analysis of CSIDH 503

We observe that the new label in the phase, given by (j2 − j1) · (�1, . . . , �k),
is less than B. If we map j1 and j2 respectively to 0 and 1, we obtain a labeled
qubit |ψ�〉 with � < B. Now we can iterate this routine in order to get smaller
and smaller labels, until the label 1 is produced. If N is odd, one reaches the
other powers of 2 by multiplying all the initial labels by 2−a and then applying
normally the algorithm.

Algorithm 3. Combination routine
Input: (|ψ�1〉, . . . , |ψ�k 〉), r
Output: |ψ�′〉, �′ < B

1: Tensor
⊗

i|ψ�i〉 =
∑

j∈{0,1}k χ
(

j·(�1,...,�k)
N

s
)

|j〉
2: Add an ancilla register, apply |x〉|0〉 �→ |x〉|�x · (�1, . . . , �k)/B�〉
3: Measure the ancilla register, leaving with

V and
∑

�j·(�1,...,�k)/B�=V

χ

(
j · (�1, . . . , �k)

N
s

)

|j〉

4: Compute the corresponding j
5: Project to a pair (j1, j2).

The register is now χ
(

j1·(�1,...,�k)
N

s
)

|j1〉 + χ
(

j2·(�1,...,�k)
N

s
)

|j2〉
6: Map |j1〉 to |0〉, |j2〉 to |1〉
7: Return |0〉 + χ

(
(j2−j1)·(�1,...,�k)

N
s
)

|1〉

There are 2k sums, and N/B possible values, hence we can expect to have
2kB/N solutions. If we take k � log2(N/B), we can expect 2 solutions on aver-
age. In order to obtain a labeled qubit in the end, we need at least two solutions,
and we need to successfully project to a pair (j1, j2) if there are more than two
solutions.

The case where a single solution exists cannot happen more than half of the
time, as there are twice many inputs as outputs. We consider the case where we
have strictly more than one index j in the sum. If we have an even number of
such indices, we simply divide the indices j into a set of pairs, project onto a
pair, and map one of the remaining indexes to 0 and the other to 1. If we have
an odd number of such indices, since it is greater or equal than 3, we single out
a solitary element, and do the projections as in the even case. The probability
to fall on this element is less than 1

t ≤ 1
3 if there are t solutions, hence the

probability of success in this case is more than 2
3 .

This combination routine can be used recursively to obtain the label we want.

Linear Number of Queries. Algorithm 3 can directly produce the label 1 if we
choose k = �log2(N)� and B = 2. In that case, we will either produce 1 or 0
with a uniform probability, as the input labels are uniformly distributed.

504 X. Bonnetain and A. Schrottenloher

If the group has a component which is a small power of two, the previous
routine can be used with B = 1 in order to force the odd cyclic component at
zero. Then the algorithms of [10] can be used, with a negligible overhead.

Overall, the routine can generate the label 1 using log2(N) queries with
probability one half. This also requires to solve a subset-sum instance, which
can be done in only Õ

(
20.291 log2(N)

)
classical time and memory [2].

We need to obtain log2(N) labels, and then we can apply the Quantum
Fourier Transform as before, to recover s, with a success probability 4

π2 . So we
expect to reproduce this final step 3 times. The total number of queries will be
8 log2(N)2, with a classical time and memory cost in Õ

(
20.291 log2(N)

)
.

We note that this variant is the most efficient in quantum resources, as we
limit the quantum queries to a polynomial amount. The classical complexity
remains exponential, but we replace the complexity of a collision search (with
an exponent of 0.5) by that of the subset-sum problem (an exponent of 0.291). In
the case N � 2256 (CSIDH-512), by taking into account the success probability
of the final Quantum Fourier Transform, we obtain 219 quantum queries and 286

classical time and memory.

Time/Query Tradeoffs. There are many possible tradeoffs, as we can adjust the
number of steps and their sizes. For example, we can proceed in two steps: the
first step will produce labels smaller than

√
N , and the second will use them to

produce the label 1. The subset-sum part of each step, done classically, will cost
Õ

(
20.291 log2(N)/2

)
time and memory, and it has to be repeated log(N)2/4 times

per label. Hence, the total cost in queries is in O(log(N)3), with a classical time
and memory cost in Õ

(
20.291 log2(N)/2

)
.

For N � 2256, we can use Algorithm 3 to obtain roughly 130 labels that are
smaller than 2128, and then apply Algorithm3 on them to obtain the label 1.
We can estimate the cost to be roughly 224 quantum queries, 260 classical time
and 245 memory.

This method generalizes to any number of steps. If we want a subexponential
classical time, then the number of steps has to depend on N . Many tradeoffs are
possible, depending on the resources of the quantum attacker (see [9]).

3.4 Kuperberg’s Second Algorithm

This section revisits the algorithm from [32] and builds upon tradeoffs developed
in [9]. We remark that the previous labeled qubits |ψ�〉 were a particular case of
qubit registers of the form

|ψ(�0,...,�k−1)〉 =
1√
k

∑

0≤i≤k−1

χ

(

s
�i

N

)

|i〉.

These multi-labeled qubit registers become the new building blocks. They
are not indexed by a label �, but by a vector (�0, . . . , �k−1). We can remark that
if we consider the joint state (tensor) of j single-label qubits |ψ�i

〉, we directly
obtain a multi-labeled qubit register of this form:

Quantum Security Analysis of CSIDH 505

Algorithm 4. A general combination routine

Input: (|ψ(�0,...,�M−1)〉,
∣
∣
∣ψ(�′

0,...,�′
M−1)

〉
) : ∀i, �i < 2a, �′

i < 2a, r

Output:
∣
∣
∣ψ(v0,...,vM′−1)

〉
: ∀i, vi < 2a−r

1: Tensor |ψ(�0,...,�M−1)〉
∣
∣
∣ψ(�′

0,...,�′
M−1)

〉
=

∑M−1
i,j=0 χ

(
s(�i+�′

j)

N

)
|i〉|j〉

2: Add an ancilla register, apply |i〉|j〉|0〉 �→ |i〉|j〉|�(�i + �′
j)/2a−r�〉

3: Measure the ancilla register, leaving with

V and
∑

i,j:�(�i+�′
j)/2

a−r�=V

χ

(
s(�i + �′

j)

N

)

|i〉|j〉

4: Compute the M ′ corresponding pairs (i, j)
5: Apply to the state a transformation f from (i, j) to [0; M ′ − 1].
6: Return the state and the vector v with vf(i,j) = �i + �′

j .

⊗

0≤i≤j−1

|ψ�i
〉 =

∣
∣
∣
∣ψ

(
�′
0,...,�′

2j−1

)
〉

, with �′
k = k · (�0, . . . , �j−1).

These registers can again be combined by computing and measuring a partial
sum, as in Algorithm 4. While Algorithm 3 was essentially a subset-sum routine,
Algorithm 4 is a 2-list merging routine. Step 4 simply consists in iterating trough
the sorted lists of (�0, . . . , �M−1) and (�′

0, . . . , �
′
M−1) to find the matching values

(and this is exactly a classical 2-list problem). Hence, it costs Õ(M) classical
time, with the lists stored in classical memory. The memory cost is max(M,M ′).
The quantum cost comes from the computation of the partial sum and from the
relabeling. Both can be done sequentially, in O(max(M,M ′)) quantum time.

This routine can also be generalized to merge more than two lists. The only
difference will be that at Step 4, we will need to apply another list-merging
algorithm to find all the matching values. In particular, if we merge 4k lists, we
can use the Schroeppel-Shamir algorithm [43], to obtain the solutions in O(M2k)
classical time and O(Mk) classical memory.

Once we are finished, we project the vector to a pair of values with difference
1, as in Algorithm 3, with the same success probability, better than 1/3.

Complete Algorithm. The complete algorithm uses Algorithm 4 recursively. As
before, the final cost depends on the size of the lists, the number of steps and
the number of lists we merge at each step. Then, we can see the algorithm as a
merging tree.

The most time-efficient algorithms use 2-list merging. The merging tree is
binary, the number of lists at each level is halved. We can save some time if we
allow the lists to double in size after a merging step. In that case, the merging
of two lists of size 2m to one list of size 2m+1 allows to constrain m − 1 bits2,
2 As in the end, we only need a list of size two, the bit we lose here is regained in the

last step.

506 X. Bonnetain and A. Schrottenloher

at a cost of O(2m) in classical and quantum time and classical memory. If we
have e levels in the tree and begin with lists of size 2�0 , then the quantum query
cost is �02e. The time cost will be in Õ

(
2�0+e

)
, as the first step is performed 2e

times, the second 2e−1 times, and so on.
Allowing the lists to grow saves some time, but costs more memory. To save

memory, we can also combine lists and force the output lists to be of roughly
the same size. Hence, the optimal algorithm will double the list sizes in the first
levels until the maximal memory is reached, when the list size has to stay fixed.

Overall, let us omit polynomial factors and denote the classical and quantum
time as 2t. We use at most 2m memory and make 2q quantum queries, begin
with lists of size 2�0 and double the list sizes until we reach 2m. Hence, the list
size levels are distributed as in Fig. 1. We have q equal to the number of levels,
and t equals the number of levels plus �0. As each level constrains as many bits
as the log of its list size, the total amount of bits constrained by the algorithm
corresponds to the hatched area.

0
tree level

list size

t − q = �0

m

t

q

n

Fig. 1. Size of the lists in function of the tree level, in log2 scale, annotated with the
different parameters.

Hence, with max(m, q) ≤ t ≤ m + q, we can solve the hidden shift problem
for N < 2n with

−1
2
(t − m − q)2 + mq = n

We directly obtain the cost of Õ
(
2

√
2n

)
from [32] if we consider t = m = q.

Classical/Quantum Tradeoffs. The previous approach had the inconvenience of
using equal classical and quantum times, up to polynomial factors. In practice,
we can expect to be allowed more classical operations than quantum gates. We
can obtain different tradeoffs by reusing the previous 2-list merging tree, and
seeing it as a 2k-list merging tree. That is, we see k levels as one, and merge the
2k lists at once. This allows to use the Schroeppel-Shamir algorithm for merging,
with a classical time in 22

k/2 and a classical memory in 22
k/4. This operation is

purely classical, as we are computing lists of labels, and it does not impact the
quantum cost. Moreover, while we used to have a constraint on log(k)m bits, we
now have a constraint on (k − 1)m bits.

For k = 2, omitting polynomial factors, with a classical time of 22t and
quantum time of 2t, a memory of 2m, a number of quantum queries of 2q and
max(m, q) ≤ t ≤ m + q, we can solve the hidden shift problem for N < 2n with

Quantum Security Analysis of CSIDH 507

−1
2
(t − m − q)2 + mq = 2n/3.

In particular, if we consider that t = m = q, we obtain an algorithm with
a quantum time and query and classical memory complexity of Õ(22

√
n
3) and a

classical time complexity of Õ(24
√

n
3), and if we consider that t = 2m = 2q, we

obtain a quantum query and classical memory cost in Õ(2
√

2n
3), a classical time

in Õ(24
√

2n
3) and a quantum time in Õ(22

√
2n
3).

Concrete Estimates. If we consider N � 2256, with the 2-list merging method
we can succeed with 223 initial lists of size 2. We double the size of the list at
each level until we obtain a list of size 224. In that case, we obtain classical and
quantum time cost in 239, a classical memory in 229 and 234 quantum queries.

Using the 4-list merging, we can achieve the same in 10 steps with roughly
255 classical time, 223 classical memory, 235 quantum time, 231 quantum queries.

Other tradeoffs are also possible. We can reduce the number of queries by
beginning with larger lists. We can also combine the k-list approach with the
subset-sum approach to reduce the quantum time (or the classical memory, if
we use a low-memory subset-sum algorithm).

For example, if we consider a 4-level tree, with a 4-list merging, an initial
list size of 224 and lists that quadruple in size, the first combination step can
constrain 24×3−2 = 70 bits, the second 26×3−2 = 76 and the last 28×4−1 =
111 bits (for the last step, we do not need to end with a large list, but only with
an interesting element, hence we can constrain more). We bound the success
probability by the success probability of one complete merging (greater than
1/3) times the success probability of the Quantum Fourier Transform (greater
than π2/4), for a total probability greater than 1/8.

The cost in memory is of 230, as we store at most 4 lists of size 228. For the
number of quantum queries: there are 43 = 64 initial lists in the tree, each costs
24 queries (to obtain a list of 224 labels by combining). We have to redo this
256 times to obtain all the labels we want, and to repeat this 8 times due to the
probability of success. Hence, the query cost is 24 × 64 × 256 × 8 � 222. The
classical time cost is in 256 × 8 × 3 × 228×2 � 269. The quantum time cost is in
256 × 8 × 3 × 228 � 241.

We summarize the results of this section in Table 2.

Table 2. Hidden shift costs tradeoffs that will be used in the following sections. Quan-
tum memory is only the inherent cost needed by the algorithm and excludes the oracle
cost. n = log2(N).

Classical Classical Quantum Quantum
Approach

time memory memory queries

1.8
√

n + 4.3 1.8
√

n + 2.3 1.8
√

n + 2.3 1.8
√

n + 4.3 Section 3.2
0.291n + log2(n) + 3 0.291n log2(n) 2 log2(n) + 3 Section 3.3

4
√

2n
3

+ log2(n) + 3
√

2n/3 log2(n)
√

2n
3

+ log2(n) + 3 Section 3.4

508 X. Bonnetain and A. Schrottenloher

4 Reduction in the Lattice of Relations

This section reviews the lattice reduction technique that allows to go from an
arbitrary representation of an ideal class [x] to a representation on a basis of
arbitrary ideals: [x] = [li]xi , with short exponents xi. This allows to turn an
oracle for the CSIDH group action, computing

∏
i[li]

ei ·E, into an oracle for the
action of C�(O).

4.1 The Relation Lattice

Given p and the ideal classes [l1], . . . , [lu], the integer vectors ē = (e1, . . . eu)
such that [l1]e1 . . . [lu]eu = 1 form an integer lattice in R

u, that we denote L, the
relation lattice. This lattice is ubiquitous in the literature on CRS and CSIDH
(see [6] or [27] for a CSIDH context).

The lattice L depends only on the prime parameter p, hence all computations
involving L are precomputations. First, we notice that L is the kernel of the
map: (e1, . . . eu) �→ [l1]e1 . . . [lu]eu . Finding a basis of L is an instance of the
Abelian Stabilizer Problem, that Kitaev introduces and solves in [28] in quantum
polynomial time.

Lattice Reduction. Next, we compute an approximate short basis B and its
Gram-Schmidt orthogonalization B∗. All this information about L will be stored
classically. We compute B using the best known algorithm to date, the Block
Korkine Zolotarev algorithm (BKZ) [42]. Its complexity depends on the dimen-
sion u and the block size, an additional parameter which determines the quality
of the basis. For any dimension u, BKZ gives an approximation factor cu for
some constant c depending on the block size: ||b1||2 ≤ cuλ1(L) where λ1(L) is
the euclidean norm of the smallest vector in L. In our case, assuming that the
products [li]ei with −m ≤ ei ≤ m span the whole class group, one of these falls
on 1 and we have: λ1(L) ≤ 2m

√
u.

4.2 Solving the Approximate CVP with a Reduced Basis

In this section, we suppose that a product
∏

i[li]
ti for some large ti is given

(possibly as large as the cardinality of the class group, hence O(
√

p)). In order
to evaluate the action of

∏
i[li]

ti , we would like to reduce t̄ = t1, . . . tu to a vector
ē = e1, . . . eu with small norm, such that

∏
i[li]

ei =
∏

i[li]
ti . In other words, we

want to solve the approximate closest vector problem (CVP) in L: given the
target t̄, we search for the closest vector v̄ in L and set ē = v̄ − t̄.

Babai’s Algorithm. The computation of a short basis B of L has to be done
only once, but the approximate CVP needs to be solved on the fly and for a
target t̄ in superposition. As in [7], we use a simple polynomial-time algorithm,
relying on the quality of the basis B: Babai’s nearest-plane algorithm [1]. We
detail it in the full version of the paper [11]. Given the target vector t̄, B and its
Gram-Schmidt orthogonalization B�, this algorithm outputs in polynomial time

Quantum Security Analysis of CSIDH 509

a vector v̄ in the lattice L such that ||v̄ − t̄||2 ≤ 1
2

√∑u
i=1 ||b�

i ||22. This bound
holds simultaneously for every target vector t̄ and corresponding output v̄ (as t̄
will actually be a superposition over all targets, this is important for us).

Effect on the L1 Norm. Our primary concern is the number of isogenies that
we compute, so we will measure the quality of our approximation with the L1

norm of the obtained ē = v̄ − t̄. The bound on the L1 norm is: ||v̄ − t̄||1 ≤
√

u ||v̄ − t̄||2 =
√

u
2

√∑u
i=1 ||b�

i ||22. Naturally, if we manage to solve the exact
CVP, and obtain always the closest vector to t̄, any evaluation of [x] · EA will
cost exactly the same as an evaluation of

∏
i[li]

ei · EA with the bounds on the
exponents ei specified by the CSIDH parameters; hence the class group action
collapses to the CSIDH group action.

Our Simulations. We performed simulations by modeling C�(O) as a cyclic group
of random cardinality q � √

p. Then we take u elements at random in this group,
of the form gai for some generator g and compute two-by-two relations between
them, as: (gai)ai+1 ·(gai+1)−ai = 1. With such a basis, the computational system
Sage [46] performs BKZ reduction with block size 50 in a handful of minutes, even

in dimension 200. We compute the L1 bound
√

u
2

√∑u
i=1 ||b�

i ||22 for many lattices
generated as above, reduced with BKZ-50. We obtain on average, for CSIDH
-512, -1024 and -1792 (of dimensions 74, 132 and 209 respectively), 1300, 4000
and 10000. The standard deviation of the values found does not exceed 10%.
Notice that the bound is a property of the lattice, so we can take the average
here, even though we will apply Babai’s algorithm to a superposition of inputs.

Faster Evaluations of the Class Group Action. In the context of speeding up
the classical group action, the authors of [5] computed the structure of the class
group for CSIDH-512, the relation lattice and a small basis of it. They showed
that the class group was cyclic. Given an ideal class [x], they use Babai’s algo-
rithm with another refinement [23]. It consists in keeping a list of short vectors
and adding them to the output of Babai’s algorithm, trying to reduce further
the L1 norm of the result.

In particular for CSIDH-512, they are able to compute vectors of L1 norm
even shorter on average than the original bound of 5 × 74 = 370, reaching an
average 240 with BKZ-40 reduction. This suggests that, with lattice reduction,
there may be actually less isogenies to compute than in the original CSIDH
group action. However, we need a bound guaranteed for all target vectors, since
we are computing in superposition, which is why we keep the bounds of above.

5 A Quantum Circuit for the Class Group Action

In this section, we first analyze the cost of a quantum circuit that evaluates the
CSIDH group action on a given Montgomery curve EA represented by A ∈ Fp:

|e1, . . . eu〉|A〉|0〉 �→ |e1, . . . eu〉|A〉|Le1
�1

◦ . . . ◦ Leu

�u
(A)〉

510 X. Bonnetain and A. Schrottenloher

where L�i
corresponds to applying [li] to a given curve, and the ei are possibly

greater than the CSIDH original exponents. We will then move to the class group
action, which computes [x] · EA in superposition for any [x].

Following previous literature on the topic [4,41], we count the number of
Toffoli gates and logical qubits used, as both are considered the most determinant
factors for implementations. Our goal is to give an upper bound of resources for
CSIDH-512 and an estimate for any CSIDH parameters, given a prime p of n
bits and the sequence of small primes �i such that p = 4 · ∏i �i − 1.

It was shown in [27] that the group action could be computed in polynomial
quantum space. A non-asymptotic study of the gate cost has been done in [4].
However, the authors of [4] were concerned with optimizing a classical circuit for
CSIDH, without reversibility in mind. This is why the appendix of [4], mentions
a bewildering amount of “537503414” logical qubits [4, Appendix C.6] (approx.
229). In this section, we will show that the CSIDH-512 group action can be
squeezed into 40 000 logical qubits.

We adopt a bottom-up approach. We first introduce some significant tools
and components, then show how to find, on an input curve EA, a point that
generates a subgroup of order �. We give a circuit for computing an isogeny, a
sequence of isogenies, and combine this with lattice reduction to compute the
class group action.

5.1 Main Tools

Bennett’s Conversion. One of the most versatile tools for converting an irre-
versible computation into a reversible one is Bennett’s time-space tradeoff [3].
Precise evaluations were done in [30,34].

Assume that we want to compute, on an input x of n bits, a sequence
ft−1 ◦ . . . ◦ f0(x), where each fi can be computed out of place with a quan-
tum circuit using Tf Toffoli gates and a ancilla qubits: |x〉|0〉 �→ |x〉|fi(x)〉. We
could naturally compute the whole sequence using tn ancilla qubits, but this
rapidly becomes enormous. Bennett remarks that we can separate the sequence
ft−1 ◦ . . . ◦ f0 = G ◦ F , with F and G functions using mF and mG ancillas
respectively, and compute:

1. |x〉 |F (x)〉 |0〉
2. |x〉 |F (x)〉 |G ◦ F (x)〉
3. |x〉 |0〉 |G ◦ F (x)〉

If TF and TG are the respective Toffoli counts of the circuits for F and G,
the total is 2TF + TG and the number of ancillas used is max(mF ,mG) + n.
Afterwards, we cut F and G recursively. Bennett obtains that for any ε > 0, an
irreversible circuit using S space and running in time T can be converted to a
reversible circuit running in time T 1+ε and using O(S log T) space.

Adding One More Step. It often happens for us that the final result of the fi-
sequence is actually not needed, we need only to modify the value of another

Quantum Security Analysis of CSIDH 511

one-bit register depending on ft−1 ◦ . . . ◦ f0(x) (for example, flipping the phase).
This means that at the highest level of the conversion, all functions are actually
uncomputed. This can also mean that we do not compute ft−1 ◦ . . . ◦ f0(x), but
f ◦ ft−1 ◦ . . . ◦ f0(x) for some new f . Hence the cost is the same as if we added
one more step before the conversion, and often negligible.

Number of Steps Given a Memory Bound. We want to be as precise as possible,
so we follow [30]. In general, we are free to cut the t operations in any way, and
finding the best recursive way, given a certain ancilla budget, is an optimization
problem. Let B(t, s) be the least number of computation steps, for a total Toffoli
cost B(t, s)Tf , given sn + m available ancilla qubits, to obtain reversibly ft−1 ◦
. . . ◦ f0(x) from input x. We have:

Theorem 1 (Adaptation of [30], Theorem 2.1). B(t, s) satisfies the recur-
sion:

B(t, s) =

⎧
⎨

⎩

1 for t = 1 and s ≥ 0
∞ for t ≥ 2 and s = 0

min1≤k<t B(k, s) + B(k, s − 1) + B(t − k, s − 1) for t ≥ 2 and s ≥ 1

In all the costs formulas that we write below, we add a trade-off parameter
s in the memory used and B(t, s) in the time.

Basic Arithmetic Modulo p. The Toffoli cost of the group action oracle is
almost totally consumed by arithmetic operations modulo p (a prime of n bits),
and in the following, we count the time in multiples of these basic operations. We
do not make a difference between multiplication and squaring, as we use a single
circuit for both, and denote TM the Toffoli gate count of a multiplication in Fp,
using QM ancilla qubits. We also denote TI the Toffoli count of an inversion
and QI its ancilla count. As n will remain the same parameter throughout this
section, we deliberately omit it in these notations, although TM , TI , QI , QM are
functions of n. Note that [4] considers that the inversion modulo p costs an n-bit
exponentiation, far more than with the circuit of [41].

Lemma 1 ([41], Table 1). There is a quantum circuit for (out of place)
inversion modulo a prime p of n bits: |x〉|0〉 �→ |x〉|x−1 mod p〉 that uses
TI = 32n2 log2 n Toffoli gates and QI = 5n + 2�log2 n� + 7 qubits.

This circuit is out of place: the input registers are left unchanged, and the
result is written on an n-bit output register. Circuits for in-place modular addi-
tion and doubling are also given in [41] and their Toffoli counts remain in
O (n log2 n), hence negligible with respect to the multiplications.

We use the best modular multipliers given in [40] with 3n qubits and 4n2

Toffoli gates (dismissing terms of lower order). Note that, although the paper
is focused on in-place multiplication by a classically known Y (i.e. computing
|x〉 �→ |xY 〉), the same resource estimations apply to the out-of-place multi-
plication of two quantum registers: |x〉|y〉|0〉 �→ |x〉|y〉|xy〉 (see [40, Section 2.5]).
Implementing a controlled multiplication (an additional register chooses to apply
it or not) is not much more difficult than a multiplication.

512 X. Bonnetain and A. Schrottenloher

In-place Multiplication. The in-place multiplication: |x〉|y〉 �→ |x〉|x · y〉 is not
reversible if x is not invertible, and in this case, we can simply rewrite |y〉 in the
output register. We reuse the modular inversion circuit of [41] to compute |x−1〉.
Then we compute |x · y〉 and erase the |y〉 register by computing |x · y · x−1〉.
Lemma 2 (In-place multiplication). There is a circuit that on input |x〉|y〉
returns |x〉|x · y〉 if x is invertible and |x〉|y〉 otherwise. It uses T ′

M = 2TM + 2TI

Toffoli gates and Q′
M = QI + n ancillas.

Modular Exponentiation. Given a t-bit exponent m, we write m =
∑t−1

i=0 mi2i.
We give a circuit that maps |m〉|x〉|0〉 to |m〉|x〉|xm〉. Contrary to the modular
exponentiation in Shor’s algorithm, in our case, both x and m are quantum,
which means that we cannot classically precompute powers of x (see e.g. [41]).

We use a simple square-and-multiply approach with Bennett’s time-space
tradeoff. We perform t steps requiring each a squaring and a controlled multi-
plication by x: on input |y〉|0〉|0〉, we compute |y〉|x · y〉|0〉 then |y〉|x · y〉|0〉, then
|y〉|x·y〉|(x·y)2〉 and erase the second register with another multiplication. Hence
a single step uses 3TM Toffolis and QM + n ancillas.

Lemma 3. There is a quantum circuit for t-bit modular exponentiation (with
quantum input x and m) using 3B(t, s)TM Toffolis and (s + 1)n + QM ancillas,
where s is a trade-off parameter.

Legendre Symbol. The Legendre symbol of x modulo p is 1 if x is a square
modulo p, −1 if not, 0 if x is a multiple of p. It can be computed as x(p−1)/2

mod p. We deduce from Lemma 3, for an n-bit p, a cost of 3B(n, s)TM Toffolis
and (s + 1)n + QM ancillas for any trade-off parameter s.

Reversible Montgomery Ladder. Most of the work in the group action
oracle is spent computing the (x-coordinate of the) m-th multiple of a point P
on a Montgomery elliptic curve given by its coefficient A, for a quantum input
m. Following the presentation in [4, Section 3.3], made reversible and combined
with Bennett’s time-space tradeoff, we prove Lemma 4 in the full version of the
paper [11]. Notice that mP can be transformed back to affine coordinates with
little overhead, since the inversion in Fp costs TI = O

(
n2 log n

)
Toffolis.

Lemma 4. There exists a circuit to compute, given A, on input P (a point
in affine coordinates) and m (an integer of t bits), the x-coordinate of mP (in
projective coordinates), using 15B(t, s)TM Toffolis and QM + 2n + 4sn ancilla
qubits, where s is a trade-off parameter.

5.2 Finding a Point of Order �

Given A in input, we want to compute B = L�(A), the coefficient of the curve
�-isogenous to A. This requires to find a subgroup of order � of the curve EA.
In CSIDH, this is done by first finding a point P on EA, then computing Q =
((p + 1)/�)P . if Q is not the point at infinity, it generates a subgroup of order �.

Quantum Security Analysis of CSIDH 513

Quantum Search for a Good Point. Let test(x) be a function that, on input
x ∈ F

∗
p, returns 1 if x is the x-coordinate x of such a good point P , and 0

otherwise. We will first build a quantum circuit that on input A and x ∈ F
∗
p,

flips the phase: |A〉|x〉 �→ (−1)test(x)|A〉|x〉. We will use this circuit as a test in a
modified Grover search.

Testing if P is on the Curve. We compute x3+Ax2+x using some multiplications
and squarings (a negligible amount), then the Legendre symbol of x3 +Ax2 +x.
For exactly half of F∗

p, we obtain 1, which means that x is the x-coordinate of
a point on the curve. For the other half, we obtain −1, and x is actually the
x-coordinate of a point on its twist.

Multiplication by the Cofactor. Assume that the x-coordinate obtained above
is that of a point P on the curve. We compute Q = ((p + 1)/�)P using our
reversible Montgomery ladder. Then, another failure occurs if Q = ∞. This
happens with probability 1/�. Hence, the probability of success of the sampling-
and-multiplication operation is 1

2

(
1 − 1

�

)
. In the circuit that we are building

right now, we don’t need the value of Q, only the information whether Q = ∞
or not. Bennett’s conversions of both the Legendre symbol computation and the
Montgomery ladder can take into account the fact that we merely need to flip
the phase of the input vector.

Lemma 5. There exists a quantum circuit that, on input |A〉|x〉, flips the phase
by (−1)test(x), using 15B(n, s)TM + 3B(n, s′)TM Toffolis and max(QM + 2n +
4sn, (s′ + 1)n + QM) ancillas, where s and s′ are trade-off parameters.

With this phase-flip oracle, we can obtain a point of order � with a quantum
search. Instead of using Elligator as proposed in [4], we follow the “conventional”
approach outlined in [4, Section 4.1], not only because it is simpler, but also
because its probability of success is exactly known, which makes the search
operator cheaper. More details are given in the full version of the paper [11].

Quantum Search with High Success Probability. We start by generating the uni-
form superposition

∑
x∈F∗

p
|x〉 using a Quantum Fourier Transform (this is very

efficient with respect to arithmetical operations). We use a variant of amplitude
amplification for the case where the probability of success is high [15]. This vari-
ant is exact, but requires to use a phase shift whose angle depends on the success
probability.

We know that the proportion of good x is exactly g = 1
2

(
1 − 1

�

)
. Normally,

a Grover search iteration contains a phase flip and a diffusion transform which,
altogether, realize an “inversion about average” of the amplitudes of the vectors
in the basis. In [15], this iteration is modified into a controlled-phase operator
which multiplies the phase of “good vectors” by eiγ instead of −1 and a “β-
phase diffusion transform”. Then by [15, Theorem 1], if 1

4 ≤ g ≤ 1 and we set
β = γ = arccos(1 − 1/(2g)), the amplitude of the “bad” subspace is reduced to
zero. Such a phase shift can be efficiently approximated with the Solovay-Kitaev

514 X. Bonnetain and A. Schrottenloher

algorithm [19]. For a phase shift gate synthesized from Clifford+T gates, we esti-
mate from [29] that it can be approximated up to an error of 2−50 using around
214 T-gates, which is negligible compared to the cost of the exponentiation in
the test function.

Detecting the Errors. If the error probability is low enough, we can assume that
the end state is perfect. However, we can avoid these errors if, after computing
the superposition of good points, we reapply the test function, add the result in
an ancilla qubit and measure this qubit. In general, such a measurement could
disrupt the computation. This is not the case here: measuring whether x is a
good point for A, while A is in superposition, does not affect the register A, as
the set of good points is always of the same size. With probability ≥ 1−2−50 we
measure 1 and the state collapses to the exact superposition of good points for
the given A. Otherwise we stop the procedure here. When we need to uncompute
this procedure, we revert the same single-iteration quantum search and perform
the same measurement, with the same success probability.

Lemma 6. There exists a quantum procedure that, on input (affine) A, finds
the x-coordinate x of a “good” point on EA: |A〉|0〉 �→ |A〉 (

∑
x|x〉). It uses

30B(n, s)TM + 6B(n, 4s)TM Toffolis and QM + 2n + 4sn ancillas, and its prob-
ability of failure is less than 2−50.

Proof. This procedure runs as follows (we say “procedure” instead of “circuit”,
since it contains a measurement):

• Compute the superposition of points S =
∑

x∈F∗
p
|x〉;

• Apply the modified Grover operator: it contains the computation of S (neg-
ligible) and the computation of |x〉 �→ (

eiγ
)test(x) |x〉

• We actually do not obtain a single x, but a superposition close to the super-
position of suitable x

• Recompute the test in a single-bit ancilla register: |x〉|0〉 �→ |x〉|test(x)〉
• Measure the ancilla register, forcing a collapse on the exact superposition of

suitable x.

We set s′ = 4s in Lemma 5. All in all, we use two Legendre symbol computations
and two n-bit reversible Montgomery ladders. ��

5.3 Computing an Isogeny

From the x-coordinate of a point Q on EA of order �, we can compute the
coefficient B of the �-isogenous curve EB . The details are in the full version of
the paper [11].

Lemma 7 (Isogeny from point). There is a circuit that on input |A〉|Q〉|0〉,
computes |A〉|Q〉|B〉 using QI + (4s + 9)n ancilla qubits and

7B

(
� − 1

2
+ 1, s

)

TM + 6B(�log2 ��, 4s)TM + (4� − 1)TI + (4� + 3)TM

Toffolis, where s is a tradeoff parameter.

Quantum Security Analysis of CSIDH 515

We now put together the last subsections in order to perform an �-isogeny
mapping: |A〉|0〉 �→ |A〉|L�(A)〉 with overwhelming probability of success and
detectable failure. We suppose that the cofactor (p + 1)/� has been classically
precomputed. The isogeny computation is performed as follows:

1. On input |A〉, produce the superposition of good points P , that are on EA

and have order p + 1 (detectable failures happen here)
2. On input |A〉|P 〉, compute a reversible Montgomery ladder to obtain Q =

((p + 1)/�)P
3. On input |A〉|Q〉, obtain the coefficient B = L�(A) of the image curve
4. Uncompute the Montgomery ladder for Q
5. Uncompute the superposition of good points (detectable failures happen here)

The ancilla cost of an out of place isogeny computation is the maximum
between n + QM + 2n + 4sn (computing the good points and the ladder for
Q = ((p+1)/�)P) and n+QI +(4s′ +9)n (computing the image curve). We set
s = s′ in order to use QI +(4s+11)n ancillas at most. Next, we denote T�(s) the
Toffoli count of this operation. It sums 60B(n, s) + 12B(n, 4s)TM (computing
the good points), the cost of Lemma 7 and 30B(n, s)TM (computing the ladder).

Computing the inverse of an isogeny is not difficult, as noticed in [4], as we
have L−1

� (A) = −L�(−A). Hence, by doubling the cost, we are able to compute
isogenies in place. On input |A〉, we compute |A〉|L�(A)〉, then we compute L−1

�

to erase |A〉. We will see that most of the computation is spent computing the
12 reversible Montgomery ladders P �→ ((p + 1)/�)P .

Lemma 8. There exists a quantum procedure that performs an �-isogeny map-
ping in place: |A〉 �→ |L�(A)〉 with an overwhelming probability of success
(≤ 2−50) and detectable failure using 2T�(s) Toffolis and QI +(4s+11)n ancillas.

5.4 Computing a Sequence of Isogenies

Using the computation in place of L�i
, we now compute the image of an input

A by a sequence of isogenies, described by ē = e1, . . . eu:

|e1, . . . eu〉|A〉 �→ |e1, . . . eu〉|Le1
�1

◦ . . . ◦ Leu

�u
(A)〉.

If we need to apply the backwards and not the forwards isogeny (ei is nega-
tive), we apply L−1

�i
(A) = −L�i

(−A), so we just need to change the signs of
the registers, in place, with negligible overheads (in computations and qubits).
In general, contrary to the standard CSIDH key-exchange, we do not have a
guarantee on maxi ei. Instead, we only know that ‖ē‖1 =

∑
i |ei| ≤ M for some

bound M . We follow the idea of [4] of having a single quantum circuit for any
�i-isogeny computation, controlled by which isogeny we want to apply. Given an
input vector e1, . . . eu, we apply isogenies one by one by decrementing always
the top nonzero exponent (or incrementing it, if it is negative).

Since the procedure for the isogeny sequence considers all cases in superposi-
tion, it will always apply exactly M controlled isogenies, depending only on the

516 X. Bonnetain and A. Schrottenloher

promised bound M . Contrary to modular exponentiation, we don’t need a time-
space tradeoff for this sequence of computations, as isogenies can be computed
in place (Lemma 8). Finally, if single isogenies fail with probability f , the total
failure probability is lower than Mf .

A Constant Success Probability is Enough. The success probability 2−50 given
Lemma 8 is actually more than enough. Indeed, failures are detected and failed
oracle queries can be discarded. One should note that the quantum hidden shift
algorithms that apply to the cryptanalysis of CSIDH precisely allow this, since
they start by applying the oracle many independent times before combining the
results. Before the combination step, we can discard all the failed queries and
the complexity is only multiplied by 1/(1 − (Mf)). Hence, compared to [4], we
do not only obtain a better success probability in a simpler way using quantum
search, but we also reduce considerably the required success rate. In our case, we
expect M ≪ 250, a negligible failure probability, hence a negligible overhead.

Finally, we can transform the CSIDH group action into the class group action,
using the lattice reduction technique of Sect. 4. We show in the full version of
the paper [11] that, using [27] and Babai’s algorithm together, we can achieve a
negligible computational and memory overhead.

Lemma 9 (Group action). Let M be the L1 bound obtained by reducing
the lattice of relations. Assume that M ≪ 250 and � is the maximal small
prime used. Then there exists a quantum circuit for the class group action using
2MT�(s) Toffolis and QI + (4s + 11)n ancillas, where s is an integer trade-off
parameter, with negligible probability of failure.

6 Estimating the Security of CSIDH Parameters

In this section, we assess the quantum security of the original parameters pro-
posed in [12]. We count the number of T-gates necessary to attack CSIDH and
compare to the targeted security levels.

6.1 Cost of the Group Action Oracle

In CSIDH-512, the base prime p has n = 511 bits, and there are u = 74 small
primes whose maximum is � = 587. We will first count the number of Toffoli
gates required in terms of TM and TI , before plugging the cost of a reversible
multiplication modulo p.

In Sect. 4, we have estimated that Babai’s algorithm would return a vector
of L1 norm smaller than 1300. Hence, the oracle of Lemma 9 needs to apply
M = 1300 in-place isogenies, more than the 74 · 5 = 370 required by the “legiti-
mate” group action. We choose s = 15 in Lemma 9. Using Lemma 1, we compute
B(512, 15) = 3553 and B(512, 60) = 1925. We further have �log2 �� = 10 and
B(10, 60) = 17, (� + 1)/2 = 294 and B(294, 15) = 1809. For a single in-place
isogeny, the number of multiplications is: 639540 = 219.3 for the Montgomery
ladders, 46200 for the Legendre symbols, 30232 for computing the isogeny from a

Quantum Security Analysis of CSIDH 517

point, and there are 4694 inversions. For 1300 isogenies, we need 229.8 multiplica-
tions, among which 229.6 for the Montgomery ladders. There are approximately
38912 ancillas. A 512-bit multiplication costs 220 Toffoli [40], hence the 512-bit
class group action can be performed with 249.8 Toffoli gates, i.e. 252.6 T-gates.

Time Complexity for CSIDH-1024 and CSIDH-1792. Since the time is domi-
nated by the Montgomery ladders, and QI � 5n, we simplify the Toffoli cost of
an isogeny into 180B(n, s)TM and the ancilla cost into (4s + 16)n. We compute
B(n, s) for various values of s and propose the trade-offs of Table 3.

Table 3. Quantum time and qubits for the class group action for the original CSIDH
parameters (computed with the simplified formula). We put in bold the trade-offs
selected for the next section.

Bit-size Number M TM s B(n, s) Toffoli T-gates Ancilla
n of p of isogenies gates qubits

512 1300 220 15 3553 249.6 252.4 < 40 000
1024 4000 222 10 27231 256.2 259.0 < 60 000
1024 4000 222 15 10465 254.8 257.6 < 80 000
1792 10 000 223.6 11 51953 260.1 262.9 < 110 000
1792 10 000 223.6 15 22753 258.9 261.7 < 140 000

6.2 Attacking CSIDH

The parameters in [12] are aimed at three security levels defined by the NIST
call [37]: NIST 1 should be as computationally hard as recovering the secret key
of AES-128 (with quantum or classical resources), NIST 3 should be as hard as
key-recovery of AES-192 and NIST 5 key-recovery of AES-256. The NIST call
referred to quantum estimates of [25], but they have been improved in [33]. We
plug our class group action oracle into the three quantum hidden shift algorithms
of Sects. 3.2, 3.3 and 3.4, and compute the resulting complexities (note that, in
terms of quantum time, we compare only the T-gate counts). The results are
summarized in Table 4.

The first generic hidden-shift algorithm that we presented (Sect. 3.2) uses a
large amount of quantum memory (resp. 231, 243 and 256 qubits), as it needs to
store all of its labeled qubits. Besides, as the quantum queries are very costly in
the case of CSIDH, it is advantageous to reduce their count, even by increasing
the classical complexity.

With the variant of Sect. 3.3, we see that the quantum query complexity
decreases dramatically. If N is the cardinality of the class group (roughly

√
p),

we solve 8(log2 N) classical subset-sum instances on log2 N bits (one for each
label produced before the final QFT, and a success probability of 1

8 in total), each
of which costs 20.291 log2 N .3 We make a total 8(log2 N)2 quantum oracle queries.
The quantum memory used depends only on the quantum oracle implementation.
3 In classical time complexities, contrary to quantum time complexities, we dismiss

the subset-sum polynomial factor, as we dismiss the cost of a single AES query,
which is a standard approach.

518 X. Bonnetain and A. Schrottenloher

Table 4. Attack trade-offs, in log2 scale, rounded to the first decimal. “<” in the
quantum memory complexity means that the memory comes mainly from the oracle.
We put in bold the most significant trade-offs that we obtained for each variant.

Conjectured level of
security in [12]

and corresp. resources
Attacks of this paper

C. time
T-gates

[33]

Hidden
shift

variant

Quant.
queries

T-gates C. time Q. mem

NIST 1
CSIDH-

512
128 81.6

Section 3.2 33 33 + 52.6 = 85.6 33 31
Section 3.3 19 19 + 52.6 = 71.6 86 < 15.3
Section 3.4 24 24 + 52.6 = 76.6 63 < 15.3

NIST 3
CSIDH-

1024
192 114.7

Section 3.2 45 45 + 57.6 = 102.6 45 43
Section 3.3 21 21 + 57.6 = 78.6 161 < 16.3
Section 3.4 30.5 30.5 + 57.6 = 88.1 86 < 16.3

NIST 5
CSIDH-

1792
256 147.0

Section 3.2 58 58 + 62.9 = 120.9 58 56
Section 3.3 22 22 + 62.9 = 84.9 274 < 16.7
Section 3.4 37 37 + 62.9 = 99.9 111 < 16.7

Going further, we can trade between classical and quantum cost with the
algorithm of Sect. 3.4. We use 4-list merging, equal quantum query and classical
memory costs (excluding polynomial factors). Hence we consider lists of size
2
√

2 log2(N)/3 everywhere and
√

log2(N)/6 steps, obtaining the costs of Table 4
with respectively 218, 225 and 231 classical memory.

6.3 Going Further

All the parameter sizes proposed in [12] fall below their targeted security lev-
els. In Table 4, we see that the best strategy to apply varies with the size of
the parameter p. With the small instance CSIDH-512, it is better to reduce at
most the number of quantum queries, even if it means increasing the classical
time complexity. With CSIDH-1792, the variant of Sect. 3.3 with a polynomial
number of quantum queries cannot be applied anymore, due to a too high clas-
sical complexity. However, the trade-off that we propose with Kuperberg’s sec-
ond algorithm (Sect. 3.4) allows to attack CSIDH-1024 and CSIDH-1792 with a
significant quantum advantage. In order to meet the NIST security levels, the
bit-size of the parameter p needs to be increased.

For CSIDH-512, it seems unlikely to us that the query count of 219 may be
significantly decreased; however, there is room for improvement in the quantum
oracle. Currently, our oracle performs 1300 in-place isogeny computations, each
of which requires 12 Montgomery ladders with 512 steps. With more precise esti-
mations, and improving our current use of Babai’s algorithm, one might reduce
the number of isogenies down to ∼240 [5]. But this would require to implement

Quantum Security Analysis of CSIDH 519

the algorithm of [23] as a quantum circuit and requires further investigation. We
use currently 40 000 logical qubits; this could be reduced with more aggressive
optimizations (for example, using dirty ancillas that don’t need to start in the
state |0〉). We also notice that in general, quantum multiplication circuits are
optimized in order to use few ancilla qubits, with Shor’s algorithm in mind. In
the case of CSIDH, the prime p is smaller than an RSA modulus, but the number
of ancillas can be higher, and different trade-offs might be used.

7 Conclusion

We performed the first non-asymptotic quantum security assessment of CSIDH,
a recent and promising key-exchange primitive based on supersingular elliptic
curve isogenies. We presented the main variants of quantum commutative hidden
shift algorithms, which are used as a building block in attacking CSIDH. There
are many tradeoffs in quantum hidden shift algorithms. This makes the security
analysis of CSIDH all the more challenging, and we tried to be as exhaustive as
possible regarding the current literature.

We gave tradeoffs, estimates and experimental simulations of their complex-
ities. Next, we gave a quantum procedure for the class group action oracle in
CSIDH, completing and extending the previous literature. Consequently, we were
able to propose the first non-asymptotic cost estimates of attacking CSIDH.

Comparing these to the targeted security levels, as defined in the ongoing
NIST call, we showed that the parameters proposed [12] did not meet these
levels. We used different trade-offs between classical and quantum computations
depending on the parameters targeted. In particular, the CSIDH-512 proposal
is at least 1 000 times easier to break quantumly than AES-128, using a variant
polynomial in quantum queries and exponential in classical computations.

Safe Instances. The minimal size for which the attacks presented here are out
of reach is highly dependent both on the way we estimate the costs (as they
are subexponential) and the interpretation of the NIST metrics. In particular,
does NIST 1 allows for a classical part with Time = Memory = 2128, or only
Time ×Memory = 2128? Moreover, the oracle cost vastly depends on the amount
of qubits used inside.

We can propose two sets of parameters for security level NIST 1: one aggres-
sive, and one conservative. If we consider that NIST 1 allows for a classical
time-memory product of 2128, 220 quantum queries and we neglect the polyno-
mial factors, then the minimal size would be p ∼ 2260 bits, which corresponds
to a multiplication by 4 of the parameter size. Our best attack would use Kuper-
berg’s second algorithm and 2-list merging, at a cost of 269 classical time, 259

classical memory, 220 quantum queries and 218 qubits.
For a more conservative estimation, we can consider that classical time can

reach 2128 and classical memory 264, that the quantum oracle for CISDH can
be reduced down to 240 T-gates, that a quantum key recovery on AES-128 costs
280 T-gates (which allows for 240 queries and 280 quantum time), and neglect

520 X. Bonnetain and A. Schrottenloher

polynomial factors. Then this would require p ∼ 5280 bits, that is, multiplying
by 10 the parameter size. Our best attack uses 4-list merging in Kuperberg’s
second algorithm, for a cost in classical time of 2128, 264 classical memory, 240

quantum queries, and as many qubits as required by the hypothetical improved
CSIDH oracle.

Acknowledgements. The authors want to thank Maŕıa Naya-Plasencia for her help-
ful comments, Alain Couvreur and Jean-Pierre Tillich for helpful discussions on
isogeny-based cryptography, Lorenz Panny and Joost Renes for their valuable com-
ments on a draft of this paper. Thanks to Jean-François Biasse for pointing out the
reference [6], Luca De Feo, Ben Smith and Steven Galbraith for helpful comments
on Kuperberg’s algorithm and discussions on the NIST benchmark. Thanks to the
anonymous Eurocrypt referees for helpful remarks.

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement no 714294 - acronym QUASYModo).

References

1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986). https://doi.org/10.1007/BF02579403

2. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 21

3. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

4. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 15

5. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FISh: efficient isogeny based
signatures through class group computations. IACR Cryptology ePrint Archive
2019, 498 (2019). https://eprint.iacr.org/2019/498

6. Biasse, J.F., Fieker, C., Jacobson, M.J.: Fast heuristic algorithms for computing
relations in the class group of a quadratic order, with applications to isogeny
evaluation. LMS J. Comput. Math. 19(A), 371–390 (2016)

7. Biasse, J.F., Iezzi, A., Jacobson, M.J.: A note on the security of CSIDH. In:
Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 153–
168. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9 9

8. Biasse, J.F., Bonnetain, X., Pring, B., Schrottenloher, A., Youmans, W.: A trade-
off between classical and quantum circuit size for an attack against CSIDH. J.
Math. Cryptol. (2020, to appear)

9. Bonnetain, X.: Improved low-qubit hidden shift algorithms. CoRR abs/1901.11428
(2019). http://arxiv.org/abs/1901.11428

10. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and impli-
cations. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272,
pp. 560–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-
2 19

https://doi.org/10.1007/BF02579403
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-030-17656-3_15
https://eprint.iacr.org/2019/498
https://doi.org/10.1007/978-3-030-05378-9_9
http://arxiv.org/abs/1901.11428
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-030-03326-2_19

Quantum Security Analysis of CSIDH 521

11. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. IACR
Cryptology ePrint Archive 2018, 537 (2018). https://eprint.iacr.org/2018/537

12. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

13. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009). https://doi.org/10.1007/
s00145-007-9002-x

14. Cheung, K.K.H., Mosca, M.: Decomposing finite Abelian groups. Quantum Inf.
Comput. 1(3), 26–32 (2001). http://portal.acm.org/citation.cfm?id=2011341

15. Chi, D.P., Kim, J.: Quantum database search by a single query. In: Williams, C.P.
(ed.) QCQC 1998. LNCS, vol. 1509, pp. 148–151. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49208-9 11

16. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

17. Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields. In: Jager, H.
(ed.) Number Theory Noordwijkerhout 1983. LNM, vol. 1068, pp. 33–62. Springer,
Heidelberg (1984). https://doi.org/10.1007/BFb0099440

18. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

19. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quantum Inf. Com-
put. 6(1), 81–95 (2006)

20. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

21. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

22. Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through improved
rejection sampling. IACR Cryptology ePrint Archive 2018, 1109 (2018)

23. Doulgerakis, E., Laarhoven, T., de Weger, B.: Finding closest lattice vectors using
approximate Voronoi cells. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-25510-7 1

24. Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden sub-
groups. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 478–487.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3 45

25. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

26. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Towards optimized and
constant-time CSIDH on embedded devices. In: Polian, I., Stöttinger, M. (eds.)
COSADE 2019. LNCS, vol. 11421, pp. 215–231. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16350-1 12

27. Jao, D., LeGrow, J., Leonardi, C., Ruiz-Lopez, L.: A subexponential-time, poly-
nomial quantum space algorithm for inverting the CM group action. J. Math.
Cryptol. (2018)

28. Kitaev, A.Y.: Quantum measurements and the Abelian stabilizer problem. Elec-
tronic Colloquium on Computational Complexity (ECCC) 3(3) (1996)

https://eprint.iacr.org/2018/537
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
http://portal.acm.org/citation.cfm?id=2011341
https://doi.org/10.1007/3-540-49208-9_11
https://doi.org/10.1007/BFb0099440
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/3-540-49116-3_45
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-030-16350-1_12
https://doi.org/10.1007/978-3-030-16350-1_12

522 X. Bonnetain and A. Schrottenloher

29. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single-
qubit unitaries generated by Clifford and T gates. Quantum Inf. Comput. 13(7–8),
607–630 (2013)

30. Knill, E.: An analysis of Bennett’s pebble game. CoRR abs/math/9508218 (1995)
31. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden

subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)
32. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral

hidden subgroup problem. In: 8th Conference on the Theory of Quantum Com-
putation, Communication and Cryptography, TQC 2013, Guelph, Canada, 21–23
May 2013, pp. 20–34 (2013). https://doi.org/10.4230/LIPIcs.TQC.2013.20

33. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
AES as a quantum circuit. IACR Cryptology ePrint Archive 2019, 854 (2019)

34. Levin, R.Y., Sherman, A.T.: A note on Bennett’s time-space tradeoff for reversible
computation. SIAM J. Comput. 19(4), 673–677 (1990)

35. Meyer, M., Campos, F., Reith, S.: On Lions and Elligators: an efficient constant-
time implementation of CSIDH. Cryptology ePrint Archive, Report 2018/1198
(2018). https://eprint.iacr.org/2018/1198

36. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

37. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

38. Peikert, C.: He gives C-Sieves on the CSIDH. IACR Cryptology ePrint Archive
2019, 725 (2019)

39. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup prob-
lem with polynomial space. CoRR (2004). http://arxiv.org/abs/quant-ph/0406151

40. Rines, R., Chuang, I.: High performance quantum modular multipliers. CoRR
abs/1801.01081 (2018). http://arxiv.org/abs/1801.01081

41. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 9

42. Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

43. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

44. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700

45. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010). https://doi.org/10.3934/amc.2010.4.215

46. The Sage Developers: SageMath, the Sage Mathematics Software System. http://
www.sagemath.org

https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://eprint.iacr.org/2018/1198
https://doi.org/10.1007/978-3-030-05378-9_8
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://arxiv.org/abs/quant-ph/0406151
http://arxiv.org/abs/1801.01081
https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.3934/amc.2010.4.215
http://www.sagemath.org
http://www.sagemath.org

Rational Isogenies
from Irrational Endomorphisms

Wouter Castryck1(B), Lorenz Panny2(B), and Frederik Vercauteren1(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
{wouter.castryck,frederik.vercauteren}@esat.kuleuven.be

2 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, Eindhoven, The Netherlands

lorenz@yx7.cc

Abstract. In this paper, we introduce a polynomial-time algorithm to
compute a connecting O-ideal between two supersingular elliptic curves
over Fp with common Fp-endomorphism ring O, given a description of
their full endomorphism rings. This algorithm provides a reduction of
the security of the CSIDH cryptosystem to the problem of computing
endomorphism rings of supersingular elliptic curves. A similar reduction
for SIDH appeared at Asiacrypt 2016, but relies on totally different tech-
niques. Furthermore, we also show that any supersingular elliptic curve
constructed using the complex-multiplication method can be located pre-
cisely in the supersingular isogeny graph by explicitly deriving a path to
a known base curve. This result prohibits the use of such curves as a
building block for a hash function into the supersingular isogeny graph.

Keywords: Isogeny-based cryptography · Endomorphism rings ·
CSIDH

1 Introduction

Isogeny-based cryptography is founded on the hardness of computing an isogeny
between two isogenous elliptic curves over a finite field Fq. Since this problem
appears to remain hard even for quantum computers, it is one of the main
candidates for building post-quantum cryptography [26]. Although the origins
of isogeny-based cryptography go back to work by Couveignes from 1997 using
ordinary elliptic curves [10], the currently most efficient instantiations rely on

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. This work was supported in part by the Commission
of the European Communities through the Horizon 2020 program under project number
643161 (ECRYPT-NET) and by the Research Council KU Leuven grants C14/18/067
and STG/17/019, and by CyberSecurity Research Flanders with reference number
VR20192203. The first listed author was affiliated with the Department of Mathemat-
ics at KU Leuven during part of the preparation of this paper.
Date of this document: 2020-02-20.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 523–548, 2020.
https://doi.org/10.1007/978-3-030-45724-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_18&domain=pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://doi.org/10.1007/978-3-030-45724-2_18

524 W. Castryck et al.

supersingular curves. These instantiations can be broadly classified into two
families, known as SIDH [19] and CSIDH [7], depending on which supersingular
elliptic curves and connecting isogenies are being used.

The acronym SIDH is shorthand for “Supersingular-Isogeny Diffie–Hellman”,
a key-exchange protocol introduced by Jao and De Feo in 2011 [19]. SIDH works
in the full supersingular �-isogeny graph, i.e., one considers the graph consisting
of all (isomorphism classes of) supersingular elliptic curves defined over Fp for
a specifically chosen prime p and connecting isogenies of small prime degree �.
The vertices of this graph are the j-invariants of the isomorphism classes and
are all contained in Fp2 . Finding a path between two given vertices j(E1) and
j(E2) is equivalent to constructing an isogeny between E1 and E2 whose degree
is a power of �.

The full endomorphism ring of a supersingular elliptic curve is a maximal
order in a quaternion algebra. Kohel, Lauter, Petit and Tignol [22] showed that
the above path-finding problem can be solved in (heuristically) expected poly-
nomial time when given the endomorphism rings of E1 and E2; we will refer to
this algorithm as “KLPT”. Galbraith, Petit, Shani and Ti [16] later extended
the KLPT algorithm specifically for the SIDH setting and showed that knowl-
edge of the endomorphism rings of E1 and E2 suffices to break SIDH. Results by
Eisenträger, Hallgren, Lauter, Morrison and Petit [13] show that finding a path
in the isogeny graph is essentially equivalent to computing endomorphism rings.

CSIDH stands for “Commutative SIDH” and was introduced by Castryck,
Lange, Martindale, Panny, and Renes [7] in 2018. CSIDH restricts the isogeny
graph under consideration to supersingular elliptic curves and isogenies defined
over Fp and mimics Couveignes’ construction of a “hard homogeneous space”.
In particular, if E is a supersingular elliptic curve over Fp, then its ring of Fp-
rational endomorphisms is an imaginary quadratic order O ⊆ Q(

√−p). The C
in “CSIDH” refers to the commutativity of O, which (much like the situation on
ordinary curves used by Couveignes) gives rise to an action of the (commutative)
ideal-class group cl(O) on the set of supersingular elliptic curves over Fp with O
as their Fp-rational endomorphisms. This class-group action immediately leads
to several cryptographic primitives such as identification, non-interactive key
agreement, and even signature schemes.

1.1 Contributions

Our first contribution reduces the key recovery problem in CSIDH to computing
the full endomorphism ring of the target curve, where in many cases even one
non-Fp-rational endomorphism suffices. More precisely, given two supersingular
elliptic curves E,E′ over Fp with Fp-rational endomorphism ring O, assuming
sufficient knowledge of their full endomorphism rings End(E) and End(E′), we
show how to compute in polynomial time an ideal a ⊆ O such that E′ = [a]E.
This result can be seen as an analogon of [16] for SIDH, but uses different
techniques, and in particular it does not rely on the KLPT algorithm [22].

Rational Isogenies from Irrational Endomorphisms 525

Several remarks on this result are in order:

– In CSIDH all curves have the same known Fp-rational endomorphism ring O,
which therefore does not contain any information specific to E, nor to [a].
This explains why we require knowledge of at least one endomorphism of E
that is not Fp-rational.

– Since both End(E0) and End(E) are assumed to be known, one can run the
KLPT algorithm to obtain an isogeny α : E0 → E. However, this isogeny is
most likely not Fp-rational and as such does not correspond to the CSIDH
private key. It is easy to verify that the isogeny β = α◦πE0 +πE ◦α, with π the
p-power Frobenius endomorphism on the respective curves, is an Fp-rational
isogeny1 from E0 to E. Note that β can be evaluated efficiently on points
of E0, but it is unclear how to efficiently derive an invertible ideal b ⊆ O
whose action on E0 corresponds to β. Such an ideal b is required to break the
CSIDH Diffie–Hellman key agreement and other derived protocols, since it is
essentially a curve-independent way of specifying an Fp-rational isogeny.

– Our polynomial-time algorithm returns an ideal a whose norm is not necessar-
ily smooth. To efficiently compute the action of [a] therefore requires an extra
smoothing step, which obtains an ideal of smooth norm in the ideal class [a].
This smoothing step is standard and consists of a combination of a class-group
computation and lattice reduction to solve an instance of the approximate
closest-vector problem (CVP). The class-group computation requires subex-
ponential time using classical computers [18], but runs in polynomial time on a
quantum computer [21]. Using the BKZ algorithm [28], one can solve the CVP
problem up to a subexponential approximation factor in subexponential time.
This last step therefore implies that asymptotically, the smoothing step requires
subexponential time. However, we note that for any practical instantiation of
CSIDH, solving the approximate CVP problem can be done fairly efficiently [4].

Our second contribution is motivated by an important open problem in
isogeny-based cryptography, namely how to hash into a supersingular isogeny
graph without revealing a path to a known base curve. This problem remains
open both in the SIDH (full isogeny graph) and the CSIDH (Fp-rational isogeny
graph) setting. The hash function introduced by Charles, Goren and Lauter [8]
can be used to hash any string into the supersingular isogeny graph, but by
construction, the hash function itself leaks an isogeny path from a base curve.
To illustrate the issue, we can compare with the standard elliptic-curve discrete-
logarithm setting: The equivalent of the CGL construction would start from the
public base point P ∈ E(Fq) and construct a point Q by multiplying P with
a scalar computed deterministically from the message. As such, anyone would
know the discrete logarithm of Q with respect to P , which voids cryptographic
applications relying on the assumption that the relationship between Q and P
cannot be discovered. To remedy this, elliptic-curve cryptosystems instead hash
to curve points using maps like Elligator [3], which computes a point directly
without passing through a scalar first, but an equivalent of these constructions
in isogeny-based cryptography is not known.

1 Unless β = 0.

526 W. Castryck et al.

Besides the random-walk approach à la CGL, it is also possible to generate
supersingular elliptic curves using the complex-multiplication (CM) method [6].
It is therefore natural to wonder whether CM can be useful to hash into the
supersingular isogeny graph, and in particular, whether finding paths between
the resulting curves could be computationally hard. Our second result squashes
this hope by locating these curves (and therefore also a path to a base curve)
in the supersingular isogeny graph, in a surprisingly explicit manner (see Theo-
rem 26(iii) for the exact statement).

The remainder of the paper is organized as follows. In Sect. 2 we recall the
necessary mathematical background. In Sect. 3 we introduce the notion of twist-
ing endomorphisms and explain their relation to Fp-rational isogenies. Section 4
describes our new algorithm to compute a connecting ideal between two super-
singular elliptic curves over Fp given their endomorphism rings and argues that
(at least classically) our approach appears to be optimal. Finally, Sect. 5 shows
how to locate supersingular elliptic curves constructed via CM in the isogeny
graph, by explicitly deriving a path to a known starting curve.

2 Preliminaries

In this section we recall the required mathematical background and fix notation.
Our focus lies on supersingular elliptic curves over finite prime fields Fp, although
much of what follows readily generalizes to arbitrary elliptic curves over arbitrary
finite fields. Some of the observations below seem new.

For ease of exposition, we shall assume p > 3 throughout, noting that this is
not necessarily a requirement for all of the statements.

2.1 Quadratic Twisting

For each odd prime number p we fix a non-square element ξ ∈ Fp along with a
square root

√
ξ ∈ Fp2 \Fp; if p ≡ 3 (mod 4) then our default choice is ξ = −1 and

we write i =
√−1. For an elliptic curve E : y2 = f(x) over Fp defined by some

squarefree cubic polynomial f(x) ∈ Fp[x], we call the curve Et : ξ−1y2 = f(x)
the quadratic twist of E over Fp. The map τE : E → Et, (x, y) �→ (x,

√
ξ · y) is a

non-Fp-rational isomorphism. From
√

ξ
p = −√

ξ one easily sees that

τE ◦ πE = −πEt ◦ τE , (1)

with πE and πEt the respective Frobenius endomorphisms of E and Et.
It can exceptionally happen that our definition of the quadratic twist is a

trivial twist in the sense of [30, § X.2]:

Lemma 1. An elliptic curve E/Fp is Fp-isomorphic to its quadratic twist Et

if and only if p ≡ 3 (mod 4) and j(E) = 1728.

Proof. After an Fp-isomorphism, we can assume E : y2 = x3 + Ax + B with
A,B ∈ Fp satisfying 4A3 + 27B2 	= 0. Then its quadratic twist is Fp-isomorphic

Rational Isogenies from Irrational Endomorphisms 527

to y2 = x3 + Aξ2x + Bξ3 for some non-square ξ. According to [30, Prop. III.3.1]
this curve is Fp-isomorphic to E if and only if Aξ2 = Au4 and Bξ3 = Bu6 for
some u ∈ Fp \{0}. This holds if and only if B = 0 and ξ2 is a fourth power, from
which the lemma follows.
�

2.2 Hard Homogeneous Spaces from Supersingular Curves

Fix a prime number p > 3 and consider the imaginary quadratic number field
K = Q(

√−p) along with its maximal order OK . If E is a supersingular ellip-
tic curve defined over Fp, then its ring Endp(E) of Fp-rational endomorphisms
admits an isomorphism to an order O ⊆ K, under which πE is mapped to

√−p.
In particular, O always contains the subring Z[

√−p], hence if p ≡ 1 (mod 4)
then O = OK = Z[

√−p], while if p ≡ 3 (mod 4) then either O = Z[
√−p] or

O = OK = Z[(1+
√−p)/2]. We write E��p(O) to denote the set of Fp-isomorphism

classes of supersingular elliptic curves having endomorphism O.

Remark 2. If p ≡ 3 (mod 4), then the Fp-endomorphism ring of a supersingu-
lar elliptic curve E/Fp is determined by its 2-torsion; see [12]: either we have
#E(Fp)[2] = 2, in which case E ∈ E��p(Z[

√−p]), or #E(Fp)[2] = 4, in which
case E ∈ E��p(Z[(1+

√−p)/2]).

Every such order O comes equipped with its (ideal-)class group cl(O), which
consists of invertible ideals modulo non-zero principal ideals; the class of an
invertible ideal a ⊆ O is denoted by [a]. The number of elements of cl(O) is
called the class number and denoted by h(O).

Lemma 3. If p ≡ 3 (mod 4) then h(O) is odd, while if p ≡ 1 (mod 4) then
cl(O) has a unique element of order 2, in particular h(O) is even.

Proof. This follows from genus theory [11].
�
Through

cl(O) × E��p(O) −→ E��p(O) : ([a], E) �−→ [a]E := E/E[a]

the class group acts in a free and transitive manner on the set E��p(O) of (Fp-
isomorphism classes of) supersingular elliptic curves defined over Fp whose ring
of Fp-endomorphisms Endp(E) is isomorphic to O [31]. Here E[a] denotes the
intersection of the kernels of all elements of a interpreted as endomorphisms of
E; to compute this intersection it suffices to consider a set of generators of a.

Ignoring constructive issues, this group action (for large enough p) is conjec-
tured to turn E��p(O) into a “hard homogeneous space”, in which the following
problems are assumed to be computationally infeasible:

Definition 4. (Vectorization problem.) Given E,E′ ∈ E��p(O), find the ideal
class [a] ∈ cl(O) for which E′ = [a]E.

(Parallelization problem.) Given E,E′, E′′ ∈ E��p(O), find the elliptic curve
[a][b]E where [a], [b] ∈ cl(O) are such that E′ = [a]E and E′′ = [b]E.

528 W. Castryck et al.

The hardness of the parallelization problem naturally relates to the security
of the Diffie–Hellman-style key exchange protocol built from the above group
action: starting from a publicly known base curve E ∈ E��p(O), the two parties
Alice and Bob secretly sample [a] resp. [b] from cl(O), compute [a]E resp. [b]E,
and publish the result. The shared secret is then [a][b]E, which Alice computes
as [a]([b]E) and which Bob computes as [b]([a]E). Clearly, in order to solve
the parallelization problem, it suffices to solve the vectorization problem. On a
quantum computer, the converse holds as well [14].

For later use we recall the following rule, which was pointed out in [7, Rem. 5],
albeit very briefly and without proof (see also [1, Prop. 3.31]).

Lemma 5. For all [a] ∈ cl(O) and all E ∈ E��p(O) we have [a]−1E = ([a]Et)t.

Proof. It is convenient to assume that a is generated by elements of Z[
√−p],

which can be done without loss of generality by scaling with an appropriate
principal ideal if needed. We claim that the composition

E
τE−−→ Et −� Et/Et[a] = [a]Et

τ[a]Et−−−−→ ([a]Et)t

is an Fp-rational isogeny whose kernel equals the ideal a obtained from a by
complex conjugation. This claim implies the lemma because aa is the principal
ideal generated by N(a).

Let ϕ be the middle isogeny Et � Et/Et[a]. Two applications of (1) yield

π([a]Et)t ◦ (τ[a]Et ◦ ϕ ◦ τE) = (τ[a]Et ◦ ϕ ◦ τE) ◦ πE ,

implying the Fp-rationality. One verifies that a+b
√−p ∈ a if and only if a+bπEt

vanishes on ker ϕ, which holds if and only if a − bπE vanishes on ker(ϕ ◦ τE),
from which it follows that ker(τ[a]Et ◦ ϕ ◦ τE) = ker(ϕ ◦ τE) = E[a].
�

2.3 CSIDH

CSIDH (pronounced “seaside”) is an efficient instantiation of the more general
supersingular hard-homogeneous-spaces construction described in the previous
section. We let r ∈ Z≥1 and consider a prime p of the form p = 4�1�2 · · · �r − 1,
where the �i’s are distinct odd prime numbers. This implies p ≡ 3 (mod 8), so
a priori there are two options for O, namely Z[

√−p] and the maximal order
OK = Z[(1+

√−p)/2]. CSIDH chooses the former option. Recall from Remark 2
that this corresponds to supersingular elliptic curves over Fp having a unique
Fp-rational point of order 2.

Remark 6. The set E��p(Z[
√−p]) is sometimes referred to as the “floor”, as

opposed to E��p(Z[(1+
√−p)/2]) which is called the “surface”. This terminology

comes from the volcano structure of the 2-isogeny graph of supersingular elliptic
curves over Fp; see [12]. We stress that CSIDH can be set up equally well on the
surface, although a convenient feature of the floor is that each E ∈ E��p(Z[

√−p])
is Fp-isomorphic to a Montgomery curve EA : y2 = x3 + Ax2 + x for a unique
coefficient A ∈ Fp; furthermore, the coefficient defining Et is then given by −A.

Rational Isogenies from Irrational Endomorphisms 529

The prime p was chosen such that the primes �1, �2, . . . , �r exhibit particularly
easy splitting behaviour in Z[

√−p], namely

(�i) = (�i,
√−p − 1)(�i,

√−p + 1). (2)

We refer to the respective factors, which are complex conjugates of each other,
by li and li. If we define �0 := 4 then (2) also applies to i = 0, so we can similarly
define l0 and l0. All these ideals are clearly invertible, so we can consider their
classes [li] and [li] = [li]−1 inside cl(O). Although this is not known in general,
it seems likely that the [li]’s together generate the entire class group.

Example 7. The concrete instantiation CSIDH-512 from [7] has r = 74, where
�1, �2, . . . , �73 are the odd primes up to 373 and where �74 = 587. This results
in a 511-bit prime p. The structure of cl(Z[

√−p]) was computed by Beullens,
Kleinjung and Vercauteren [4], who verified that [l1] = [(3,

√−p − 1)] is in fact
a generator.

The basic idea is then to let Alice and Bob choose their secrets as

[a] = [l1]a1 [l2]a2 · · · [lr]ar resp. [b] = [l1]b1 [l2]b2 · · · [lr]br,
for exponent vectors (a1, a2, . . . , ar) and (b1, b2, . . . , br) sampled at random from
some bounded subset of Z

r, for instance uniformly from a hypercube [−B;B]r

of size (2B+1)r ≈ h(Z[
√−p]) ≈ √

p. The resulting public keys and shared secret
are then computed using |a1| + . . . + |ar| resp. |b1| + . . . + |br| repeated actions
of [li] or [li]−1 = [li]. If E ∈ E��p(Z[

√−p]) then the subgroups

E[li] = {P ∈ E[�i] | πE(P) = P } = E(Fp)[�i]

E[li] = {P ∈ E[�i] | πE(P) = −P }
consist of points having Fp-rational x-coordinates; therefore, these actions are
easy to evaluate using low-degree Vélu-type formulas and involving only arith-
metic in Fp.

As far as we know, the following class group relations have not appeared in
the literature before:2

Lemma 8. In cl(Z[
√−p]), we have

[l1][l2] · · · [lr] = [l0] 	= [1] and [l1]3[l2]3 · · · [lr]3 = [1].

Proof. One easily verifies that

l1l2 · · · lr =
(p + 1

4
,
√−p − 1

)
and l0l1l2 · · · lr =

(√−p − 1
)
.

The latter identity implies [l1][l2] · · · [lr] = [l0]−1 = [l0], while the former shows
that [l1][l2] · · · [lr] is an element of order 3. Indeed, it represents a non-trivial
2 After we posted a version of this paper online, we learned that this was observed

independently and quasi-simultaneously in [27], with a more elaborate discussion.

530 W. Castryck et al.

ideal class because Z[
√−p] contains no elements of norm (p + 1)/4, while its

order divides 3 since
(p + 1

4
,
√−p − 1

)
OK =

1 +
√−p

2
OK ,

i.e., it belongs to the kernel of the group homomorphism

cl(O) −→ cl(OK), a �−→ aOK

which is 3-to-1 by [9, Thm. 5.2].
�
Note that this allows for reduction of the secret exponent vectors of Alice and

Bob modulo (3, 3, . . . , 3). It also shows that the action of [l1][l2] · · · [lr] can be
evaluated using a single application of [l0] = [(4,

√−p + 1)]. The latter step can
be taken using an isogeny of degree 4, or using a composition of two isogenies of
degree 2, which necessarily makes us pass through the surface.

2.4 The Full Endomorphism Ring

The “full” endomorphism ring of a supersingular elliptic curve, as opposed to
merely the Fp-rational endomorphisms, plays a fundamental role in the theory
of supersingular isogeny graphs.

An elliptic curve E is supersingular if and only if End(E) is non-commutative.
In that case, End(E) embeds as a maximal order into a certain quaternion
algebra Bp,∞ ramified at p and infinity, which is unique up to isomorphism.
Concretely, Bp,∞ can be constructed as a four-dimensional Q-algebra of the
form Q ⊕ Qi ⊕ Qj ⊕ Qij, subject to the multiplication rules i2 = −q, j2 = −p,
and ji = −ij, for some positive integer q that depends on p. In the common case
that p ≡ 3 (mod 4), we can and will use q = 1. (Thus Bp,∞ may be viewed as two
imaginary quadratic fields “glued together” non-commutatively.) We certainly
cannot stress enough that the embedding End(E) ↪−→ Bp,∞ is extremely non-
unique; in fact, there are always infinitely many choices, and usually none of
them sticks out as being particularly natural.

The notions of dual, degree, and trace of endomorphisms carry over to Bp,∞:
Taking the dual corresponds to conjugation, which maps α = a + bi+ cj+ dij to
α = a−bi−cj−dij. The degree turns into N(α) = αα = a2+b2q+c2p+d2qp, and
the trace is simply tr(α) = α + α = 2a. Moreover, the trace yields a symmetric
bilinear map 〈α, β〉 = tr(αβ) on Bp,∞, with respect to which the basis 1, i, j, ij
is orthogonal. With this, finding an embedding End(E) ↪−→ Bp,∞ when being
given rational maps that span End(E) in some computationally effective way
is easy: A variant of Schoof’s point counting algorithm [29] can be used to
compute traces of endomorphisms, and thereby the map 〈·, ·〉, which can then be
used in the Gram–Schmidt process to compute an orthogonal basis of the given
endomorphism ring. Once the basis is orthogonal, some norm computations are
necessary to align the given maps with the algebraic properties of the abstract
quaternion representation. See [13, § 5.4] for details. We will commonly use the

Rational Isogenies from Irrational Endomorphisms 531

Q-basis (1, i, j, ij) in the forthcoming algorithms to compute with End(E); the
isomorphism to the corresponding rational maps of curves will be made explicit
whenever it is realized computationally.

One reason why the endomorphism rings are interesting for cryptographic
applications is because they contain all the information necessary to construct
an isogeny between two curves: Given End(E) and End(E′), it is easy to find a
connecting ideal I between them; that is, a lattice in Bp,∞ that is a left ideal of
End(E) and a right ideal of End(E′). For example, the following choice works:

Lemma 9. Between any two maximal orders Q and Q′ in Bp,∞, the lattice
I = QQ′ = span {ab | a ∈ Q, b ∈ Q′} is a connecting ideal.

Proof. This is an easy special case of [20, Algorithm 3.5]: Clearly QI ⊆ I, hence
OL(I) ⊇ Q, and equality follows since Q is maximal. Similarly, OR(I) = Q′.
�
The intersection of all kernels of endomorphisms contained in this ideal is a
finite subgroup determining a separable isogeny E −→ E′. One can prove that
the codomain curve of the isogeny given by such a left ideal of End(E) only
depends on the left-ideal class of I: This is what the Kohel–Lauter–Petit–Tignol
algorithm [22] exploits to find a smooth-degree, hence efficiently computable,
isogeny between E and E′ given their endomorphism rings.

Since we are concerned with supersingular elliptic curves defined over Fp,
our endomorphism rings—maximal orders in Bp,∞—will always contain a copy
of the Frobenius order Z[

√−p] ∼= Z[πE] ⊆ Endp(E). It thus makes sense to fix
the image of the Frobenius endomorphism πE when embedding End(E) into
Bp,∞ once and for all: We will always assume that πE is mapped to j.

3 Twisting Endomorphisms

As before, we focus on the case of finite fields Fp with p > 3 prime.

Definition 10. Let E be an elliptic curve defined over Fp. An endomorphism
α ∈ End(E) is called a twisting endomorphism of E if

α ◦ πE = −πE ◦ α.

(Note that E must necessarily be supersingular for this to be possible.)

Lemma 11. Let E be an elliptic curve defined over Fp. The non-zero twist-
ing endomorphisms of E are precisely the elements of End(E) that are purely
imaginary over Endp(E).

Proof. Write α = a + bi+ cj+ dij with a, b, c, d ∈ Q; then using the fact that πE

is mapped to j, the equality α ◦ πE = −πE ◦ α implies a = c = 0.
�
Lemma 12. Twisting endomorphisms have kernels defined over Fp. (Thus they
always equal either the zero map or an Fp-isogeny followed by an isomorphism.)

532 W. Castryck et al.

Proof. Since π−1
E (ker α) = ker(α ◦ πE) = ker(−πE ◦ α) = ker α, the subgroup

ker α is stable under the action of Gal(Fp/Fp), hence Fp-rational.
�
Lemma 13. Let E be an elliptic curve as above and let α be a non-zero twist-
ing endomorphism of E. Then τE ◦ α : E → Et is an Fp-rational isogeny of
degree N(α).

Proof. Since τE is an isomorphism we have deg(τE ◦ α) = deg α = N(α), so it
remains to prove the Fp-rationality, which follows from

τE ◦ α ◦ πE = −τE ◦ πE ◦ α = πEt ◦ τE ◦ α

where the last equality uses that
√

ξ ∈ Fp2 \ Fp and therefore
√

ξ
p = −√

ξ.

4 Isogenies from Known Endomorphisms

In this section, we describe how to find a connecting ideal between two super-
singular elliptic curves over Fp given their full endomorphism rings.

The basic idea behind our approach is to exploit the symmetry of the isogeny
graph over Fp with respect to quadratic twisting; cf. Lemma 5: Intuitively, the
distance between a curve and its quadratic twist tells us where in the graph
it is located, and combining this information for two curves allows finding the
distance between them. See Fig. 1 below for an illustration.

In more mathematical terms, the “distance” between E and its quadratic
twist corresponds to an invertible ideal a ⊆ O that connects E to Et, i.e.,
satisfies [a]E = Et. We will show in Algorithm1 how to find such an ideal, given
the full endomorphism ring of E. Subsequently, given two arbitrary supersingular
elliptic curves E,E′ with the same Fp-endomorphism ring O together with such
a “twisting ideal” for each of them, Algorithm2 can be used to find a connecting
ideal from E to E′, i.e., an invertible ideal c ⊆ O such that [c]E = E′.

The following lemma shows the relationship between ideals in Endp(E) and
End(E) that determine the same subgroup; it is of crucial significance for the
forthcoming algorithms.

Lemma 14. Let E be a supersingular elliptic curve defined over Fp. Consider
a non-zero ideal c ⊆ Endp(E) and a non-zero left ideal I ⊆ End(E) such that
the corresponding subgroups E[I] and E[c] are equal. Then I ∩ Endp(E) = πk

Ec
for some k ∈ Z.3

Proof. Following [31, Thm. 4.5], we know that for every order O which can arise
as an endomorphism ring, every ideal of O is a kernel ideal, and thus

I = {γ ∈ End(E) | ker γ ⊇ E[I]} · πr
E

c = {γ ∈ Endp(E) | ker γ ⊇ E[c]} · πs
E

with non-negative integers r, s ∈ Z. Now E[I] = E[c] by assumption, hence it
follows that I ∩ Endp(E) = πr−s

E c, which shows the claim.
�
3 One could handle the purely inseparable part—powers of πE—in a unified way by

working with scheme-theoretic kernels. Since this issue is only tangential to our work,
we will for simplicity avoid this technical complication and deal with πE explicitly.

Rational Isogenies from Irrational Endomorphisms 533

4.1 The Algorithm

Throughout this section, we write OE := Endp(E) for brevity.
Recall from Sect. 2.4 that we assume End(E) is represented as a maximal

order in Bp,∞ with respect to the 1, i, j, ij basis, and such that the Frobenius
endomorphism πE is mapped to j ∈ Bp,∞ under the embedding.

We start off with an algorithm to find an ideal that connects a curve to its
quadratic twist, which will be used as a building block for the main algorithm
to connect two arbitrary curves with the same Fp-endomorphism ring in the
Fp-isogeny graph.

Algorithm 1: Connecting ideal of a curve and its twist.

Input: a supersingular E/Fp and the full endomorphism ring End(E).

Output: an invertible ideal a ⊆ OE such that [a]E = Et.

Find a non-zero element α ∈ End(E) of the form xi + yij.

Compute the ideal a :=
(
End(E) · α

) ∩ OE .

Return a.

Lemma 15. Algorithm1 is correct and runs in polynomial time.

Proof. Note that α ∈ iOE is a twisting endomorphism of E due to Lemma 11.
Hence, E[End(E) · α] = ker α is an Fp-rational subgroup of E giving rise to an
Fp-rational isogeny E −→ Et, which is necessarily horizontal since OE = OEt .
Therefore, there exists an invertible ideal c of OE such that E[c] = kerα, and we
may apply Lemma 14 to conclude that a =

(
End(E) · α) ∩ OE in fact equals the

desired ideal c—up to powers of πE , which is an endomorphism.
Regarding the runtime, everything consists of basic arithmetic in Bp,∞ and

some linear algebra over Q and Z.
�
As mentioned before, the inherent symmetry of the Fp-isogeny graph with

respect to quadratic twisting implies that the “location” of a curve E in the graph
is somehow related to the properties of ideals that connect E to its quadratic
twist Et. The following lemma makes this intuition precise, in the sense that it
determines a connecting ideal between two curves almost uniquely when given a
twisting ideal for each of them. This correspondence is then used in an explicit
manner to compute a connecting ideal in Algorithm2.

Lemma 16. Let E0 and E1 be supersingular elliptic curves defined over Fp with
Endp(E0) ∼= Endp(E1), such that we may simply write O for both. If b, c ⊆ O
are invertible ideals such that [b]E0 = Et

0 and [c]E1 = Et
1, then the unique ideal

class [a] such that [a]E0 = E1 satisfies the equation [a]2 = [b][c]−1.

Proof. By Lemma 5, applying the action of an ideal class [u] to Et gives the
same result as first applying [u] = [u]−1 and then twisting. Hence, if [a]E0 = E1,
then [a]−1Et

0 = Et
1. However, by the assumptions, we have [a]−1Et

0 = [a]−1[b]E0

on the left-hand side and Et
1 = [c]E1 = [c][a]E0 on the right-hand side, which

implies the claimed equality of ideal classes as the class-group action is free. See
Fig. 1 for a visualization of the situation on an isogeny cycle.
�

534 W. Castryck et al.

Fig. 1. Illustration of Lemma 16 and the square-root issue in Lemma 17. If the ideal t =
(2,

√−p) is non-principal and invertible in O, it corresponds to a point symmetry with
respect to the “center” of the isogeny cycle, and the entire relationship between E0,1

and their twists is replicated on the “opposite” side with the “dual” curves [t]E0,1 and
their twists. This explains why the output of Algorithm 2 is a priori only correct up to
multiplication by t; the quadratic equation determining [a] simply cannot distinguish
whether [a] jumps between the two worlds or not.

Algorithm 2: Connecting ideal of two curves.

Input: supersingular elliptic curves E0, E1/Fp with OE0 = OE1 = O,

together with their full endomorphism rings End(E0) and End(E1).

Output: an invertible ideal a ⊆ O such that [a]E0 = E1.

Using Algorithm 1, find an invertible ideal b ⊆ O with [b]E0 = Et
0.

Likewise, find an invertible ideal c ⊆ O such that [c]E1 = Et
1.

Compute an ideal a ⊆ O such that [a]2 = [b][c]−1 in cl(O) using [5, § 6].

If p ≡ 1 (mod 4) and the right order of End(E0) · a in Bp,∞ is not isomorphic

to End(E1), then replace a by a · (2, 1+
√−p).

Return a.

Rational Isogenies from Irrational Endomorphisms 535

Lemma 17. Algorithm2 is correct and runs in polynomial time.

Proof. Most of this follows from Lemmas 16 and 15. The square root in cl(O) to
determine the ideal a can be computed in polynomial time using the algorithm
in [5, § 6].

Regarding the correctness of the output, recall from Lemma 3 that the class
number of O is odd if p ≡ 3 (mod 4), hence the square root [a] is unique. On
the other hand, if p ≡ 1 (mod 4), then Lemma 3 implies that there are exactly
two square roots. Now the order O has discriminant −4p, hence (p) = (

√−p)2

and (2) = (2, 1+
√−p)2 are the only ramified primes. The principal ideal (

√−p)
becomes trivial in cl(O). However, t := (2, 1+

√−p) is non-principal as there is
no element of norm 2 in O, hence [t] is an element of order 2 in cl(O). Thus
the two square roots of [b][c]−1 are [a] and [at]. The final check in the algorithm
identifies the correct choice by lifting a to a left End(E0)-ideal and comparing
its right order to the endomorphism ring of E1; they must be isomorphic if a
determines an isogeny E0 → E1 as intended.
�

An Example. To illustrate the algorithms in this section, we will show their
workings on a concrete, rather special example.

Lemma 18. Assume p ≡ 3 (mod 4) and let E1 be a supersingular elliptic curve
over Fp with Fp-endomorphism ring O. Let E0 be the elliptic curve in E��p(O)
having j-invariant 1728. If b ⊆ O is an invertible ideal such that [b]E1 = Et

1,
then the unique ideal class [a] such that [a]E0 = E1 is given by [b](h(O)−1)/2.

Proof. This follows from Lemmas 1 and 16, together with the fact that the class
number of O is odd.
�
Example 19. Assume that p ≡ 11 (mod 12). We illustrate Algorithm 2 by com-
puting a connecting ideal a between E0 : y2 = x3 + x and E1 : y2 = x3 + 1.
Note that both curves are contained in E��p(Z[

√−p]), as can be seen by consid-
ering E(Fp)[2]. If ω ∈ Fp2 \ Fp denotes a primitive 3rd root of unity, then E1

admits the automorphism (x, y) �→ (ωx, y), which will, by abuse of notation, be
denoted by ω as well. According to [25, Prop. 3.2],4 the endomorphism ring of
E1 is isomorphic to the Bp,∞-order

Q = Z + Z
−1 + i

2
+ Zj + Z

3 + i + 3j + ij
6 ,

where i corresponds to 2ω +1 and satisfies5 i2 = −3, and as usual j corresponds
to the Frobenius endomorphism πE1 . If we choose the twisting endomorphism
α = i in Algorithm 1, then we find Qi ∩ Z[j] = (3, j − 1). (Of course, this also

4 Unfortunately, the statement of [25, Prop. 3.2] wrongly attributes this description to
the quadratic twist of E1.

5 Here we deviate from our convention that i2 = −1 as soon as p ≡ 3 (mod 4).

536 W. Castryck et al.

follows from the fact that 2ω +1 is a degree-3 isogeny whose kernel {(0,±1),∞}
is Fp-rational.) So Et

1 = [(3,
√−p − 1)]E1, and we can take

a = (3,
√−p − 1)(h(Z[

√−p])−1)/2 (3)

by Lemma 18. Thus, in the 3-isogeny graph associated with E��p(Z[
√−p]), which

is a union of cycles, the curve E1 and its twist Et
1 : y2 = x3 − 1 can be found

“opposite” of our starting curve E0, on the same cycle. We will generalize this
example in Sect. 5.

Example 20. In particular, the findings of Example 19 hold for a CSIDH prime
p = 4�1�2 · · · �r−1 with �1 = 3, so that (3,

√−p−1) = l1. Note that E : y2 = x3+1
is isomorphic to the Montgomery curve E−√

3 : y2 = x3 − √
3 · x2 + x through

E−√
3 −→ E, (x, y) �−→ (δ2x − 1, δ3y),

where
√

3 ∈ Fp denotes the square root of 3 which is a square itself, and δ2 =
√

3.
In view of the class-group computation carried out in [4] for the CSIDH-512
parameter set, the previous example shows that the ideal

l1273262211147421375885150930053196010808102571527432117962854304877988058630951

takes the starting Montgomery coefficient 0 to the coefficient −√
3, and one

further application of l1 takes it to
√

3. Smoothing this ideal using the class-group
relations of cl(Z[

√−p]) from [4] yields (for instance) the CSIDH-512 exponent
vector

(5, −7, −1, 1, −4, −5, −8, 4, −1, 5, 1, 0, −2, −4, −2, 2, −9, 4, 2,
5, 1, 1, 1, 5, −4, 2, 6, 5, −1, 0, 0, −4, −1, −3, −1, −4, 1, 7,
1, 4, 1, 4, −7, 0, −3, −1, 0, 1, 2, 3, 1, 2, −4, −5, 9, −1, 4,
0, 5, 1, 0, 1, 1, 3, 0, 2, 2, 2, −1, 2, 1, −1, 11, 3),

which can indeed be readily verified to connect E0 to E−√
3 by plugging it into

a CSIDH-512 implementation, such as that of [7], as a private key.

Example 21. If in Example 19, we instead choose the twisting endomorphism

α =
i + ij

3
= −1 − j + 2

3 + i + 3j + ij
6

∈ Q ,

then we obtain a twisting ideal of norm (p + 1)/3. In the CSIDH setting of
Example 20 above, one can deduce that this ideal is nothing but l̄0 l̄2 l̄3 · · · l̄r, so
this confirms the first class-group relation stated in Lemma 8.

4.2 Incomplete Knowledge of Endomorphism Rings

At first sight, there appears to be no strong reason why one requires the full
endomorphism rings to be known exactly in Algorithm1, rather than for instance
a full-rank proper subring Q � End(E) containing O: Twisting endomorphisms

Rational Isogenies from Irrational Endomorphisms 537

α can clearly be found in every full-rank subring, and one can still compute the
left ideal Q · α, which can then be intersected with O. The result is indeed an
ideal a of O, as desired, but unfortunately it turns out that a usually falls short
of connecting E to its quadratic twist unless in fact Q = End(E). This is not
surprising: If Q is contained in multiple non-isomorphic maximal orders, then
the algorithm would need to work for all those maximal orders—and therefore
elliptic curves—simultaneously, which is absurd. However, luckily, one can prove
that a is only locally “wrong” at the conductor, i.e., the index f :=

[
End(E) : Q]

.

Lemma 22. Let Q ⊆ End(E) a full-rank subring containing O and α ∈ Q\{0}
a twisting endomorphism. Defining a := (Q·α)∩O and bc :=

(
End(E) ·cα)∩O,

we have inclusions of O-ideals

bf ⊆ a ⊆ b1,

where the norm of the quotient (b1 : bf) divides the squared conductor f2.

Proof. The inclusions are obvious from End(E) · f ⊆ Q ⊆ End(E). Moreover,

fb1 =
(
f · End(E) · α

) ∩ (f · O) ⊆ (
End(E) · fα

) ∩ O = bf ,

and the inclusions we have just established imply a chain of surjections

b1/fb1 −� b1/bf −� b1/a

on the quotients of b1. The first module in this sequence is clearly isomorphic
to Z

2/fZ
2, therefore the index [b1 : bf] must be a divisor of |Z2/fZ

2| = f2.
�
Note that both ideals b1 and bf from Lemma 22 would be correct outputs for a

generalization of Algorithm1 to proper subrings of End(E), but a typically is not.
However, the lemma still suggests an easy strategy for guessing b1 after having
obtained a from the subring variant of Algorithm1, at least when factoring f is
feasible and there are not too many prime factors: In that case, one may simply
brute-force through all ideals c ⊆ O of norm dividing f2 and output ac for each of
them. The lemma guarantees that a correct such c exists, since the ideal (b1 : a)
is a good choice. This procedure is summarized in Algorithm 3.

Algorithm 3: Twisting a curve using an endomorphism subring.

Input: a supersingular E/Fp and a rank-4 subring Q ⊆ End(E) with Q ⊇ OE .

Output: a set A of invertible ideals a ⊆ OE such that ∃ a∈A with [a]E = Et.

Find a non-zero element α ∈ Q of the form xi + yij.

Compute the ideal a :=
(Q · α

) ∩ OE .

Determine f = [End(E) : Q] as the (reduced) discriminant of Q divided by p.

Factor f and iterate through all ideals c ⊆ O of norm dividing f2 to compute the

set A := {ac | c ⊆ O ideal, N(c) | f2}.

Return A.

538 W. Castryck et al.

We can bound the size of the set A returned by the algorithm as follows: If
the conductor f factors into primes as f =

∏r
i=1 pei

i , then there are at most

r∏
i=1

(
2ei + 2

2

)
∈ O

(
(log f)2r

)

distinct O-ideals of norm dividing f2. Hence, if f is factorable in polynomial
time and the number of distinct prime factors r is bounded by a constant, then
Algorithm 3 takes polynomial time to output polynomially many ideals, and at
least one of them is guaranteed to be correct.

4.3 Can We Do Better?

It is a natural question to ask whether one can tweak the KLPT quaternion-
ideal algorithm [22] to simply output an ideal corresponding to an isogeny defined
over Fp, while preserving the main characteristics of the algorithm, namely the
smoothness of the ideal that is returned and the (heuristic) polynomial runtime.

In this section, we argue that the answer is likely “no”, at least for classical
algorithms: More concretely, we show that such an algorithm can be used as
a black-box oracle to construct, under a few mild assumptions, a polynomial-
time algorithm for the discrete-logarithm problem in those imaginary-quadratic
class groups where the prospective KLPT variant would apply. In contrast, the
currently best known algorithm is only subexponential-time [18]. Thus, the basic
conclusion appears to be that either our result is essentially optimal, or there
exists an improved classical algorithm to compute class-group discrete logarithms
in (at least) some cases.

In a sense, this is not surprising: The requirement that the output be gen-
erated by an ideal of the two-dimensional subring Endp(E) removes about the
same amount of freedom as was “adjoined” when moving from Q(

√−p) to Bp,∞
in the first place. In fact, the KLPT algorithm makes explicit constructive use
of a quadratic subring of Bp,∞ to achieve its functionality; an advantage that
can be expected to cease when imposing strong restrictions on the output.

We formalize the situation as follows. Suppose we are given an algorithm A
with the same interface as Algorithm 2, i.e., it takes as input two supersingular
elliptic curves E,E′/Fp with the same Fp-endomorphism ring O, together with
their full endomorphism rings, and outputs an ideal a ⊆ O such that [a]E = E′.
In addition, our hypothetical algorithm A now guarantees that all prime factors
of the returned ideal a are elements of some polynomially-sized set SO, which
may depend on the prime p or the ring O but not on the concrete input curves
E and E′. For example, SO might consist of the prime ideals of O with norm
bounded by a polynomial in log p.6

6 Under GRH, Bach [2] proved that cl(O) is generated by prime ideals of norm less
than C(log p)2 for an explicitly computable small constant C. It is not known uncon-
ditionally whether a polynomial bound on the norms suffices.

Rational Isogenies from Irrational Endomorphisms 539

Then, Algorithm 5 can use such an oracle A to compute discrete logarithms in
the subgroup of cl(O) generated by the subset SO in expected polynomial time,
assuming that querying A takes polynomial time. Note that the core of the
reduction is Algorithm 4, which employs A to decompose class-group elements
as a relation over the factor base SO, and those relations are subsequently used
by Algorithm 5 in a generic and fairly standard index-calculus procedure.

A remark on notation: we make use of vectors and matrices indexed by finite
sets I such as SO—in real implementations this would correspond to fixing an
ordering of I and simply storing normal vectors or matrices of length |I|. We
use the notation |I′ to restrict a vector or matrix to the columns indexed by a
subset I ′ ⊆ I.

Algorithm 4: Finding a class-group relation using A.

Input: an oracle A as above, and an ideal a ⊆ O such that [a] ∈ 〈
[s] | s ∈ SO

〉
.

Output: a vector (es | s ∈ SO) ∈ Z
SO such that [a] =

[∏
s∈SO ses

]
.

Find a supersingular E/Fp with Endp(E) = O and known End(E).

Apply KLPT to End(E) · a to get an equivalent powersmooth left ideal I.

Find the codomain E′ = [a]E by computing the isogeny defined by I.

Compute End(E′) as the right order of I in Bp,∞.

Now query A to find an ideal c ∈ 〈SO〉 such that [c]E = E′ = [a]E.

By assumption, c is of the form
∏

s∈SO ses.

Return that exponent vector e = (es | s ∈ SO).

Lemma 23. Algorithm4 is correct. It takes polynomial time under the heuristic
that the KLPT algorithm runs in polynomial time.

Proof. Note that finding a curve E as desired is easy: first construct an arbitrary
supersingular elliptic curve over Fp using [6], then potentially walk to the surface
or floor of a 2-volcano. Next, note that the curve E′ in fact equals [a]E, since
End(E) · a and a define the same subgroup of E and I is equivalent as a left
ideal to End(E) · a. Computing End(E′) given I is easy linear algebra. Now, c is
a product of ideals in SO by assumption on A, and it must be equivalent to a in
cl(O) since the latter acts freely on E��p(O). In conclusion, Algorithm 4 indeed
returns a correct relation vector for a and takes polynomial time to do so.
�

Using Algorithm 4, we can then follow the generic index-calculus procedure
shown in Algorithm5 to compute discrete logarithms in cl(O):

Lemma 24. Algorithm5 is correct and runs in expected polynomial time.7

Proof sketch. It is not hard to check that the output of the algorithm is correct
if it terminates; we thus only have to bound the expected runtime.
7 Note that this does not require any assumptions on the output distribution of Δ(a),

other than that the returned vectors are correct. (The algorithm still takes polyno-
mial time if the oracle Δ only succeeds on an inverse polynomial fraction of inputs.).

540 W. Castryck et al.

Algorithm 5: Solving DLP using index calculus (generic).

Input: • a generating set S of a finite abelian group G.

• an upper bound B on the cardinality |G|.
• elements g, h ∈ G such that h ∈ 〈

g
〉
.

• a probabilistic algorithm Δ : G → Z
S , such that for all inputs a ∈ G,

we have ‖Δ(a)‖∞ < B and a =
∏

b∈S bΔ(a)b.

Output: an integer x such that gx = h.

Fix a large integer H B2|S|+1
. (In practice, use much smaller H.)

Initialize empty matrices M ∈ Z
0×2 and L ∈ Z

0×S
.

For n = 1, 2, ... do

Pick integers u, v uniformly random in {−H, ..., H}.

Invoke Δ to obtain a vector e ∈ Z
S such that guhv =

∏
b∈S beb.

Append (u, v) to M as a new row. Append e to L as a new row.

Compute a basis matrix K ∈ Z
r×n of the left kernel of L, which is a lattice in

Z
n of rank r.

If the row span of K · M contains a vector of the form (x, −1) then

Return x.

Since the proof is rather technical, we will merely show the overall strategy.
Note that it suffices to lower bound the success probability of the algorithm when
r = 2 by a constant: Since r ≥ n − |S| throughout, it is evident that running
|S| + α iterations of Algorithm5 has success probability at least as big as �α/2�
independent executions of the modified algorithm. We thus want to lower bound
the probability that two entries λ1, λ2 in the second column of K ·M are coprime.

First, since Δ cannot distinguish from which scalars (u, v) the element guhv

was obtained, the conditional distribution of each coefficient of M after fixing a
certain oracle output e is close to uniform on {−H, ...,H}. As the lattice spanned
by the rows of K · M is clearly independent of a basis choice, we may without
loss of generality assume that the rows of K form a shortest basis of Z

rK; using
lattice techniques, one can then show that the norms of vectors in a shortest
basis of Z

rK are upper bounded by B2|S|. (This uses the bound on the size of
integers returned by Δ.) Hence λi is a “small” coprime linear combination of
random variables essentially uniform on {−H, ...,H}, which in turn implies that
λi is close to uniform modulo all potential prime divisors. Thus the probability
that gcd(λ1, λ2) = 1 is lower bounded by a constant, similar to the well-known
fact that the density of coprime pairs in Z

2 is ζ(2)−1 = 6/π2.
�
For concreteness, we briefly spell out how to instantiate Algorithm5 for our

particular application to cl(O). Clearly, Algorithm 4 will serve as the oracle Δ,
so the factor base S equals the set SO from Algorithm 4. In order to keep the
representation sizes limited and to obtain unique representatives of ideal classes,
the required products guhv should be computed using the square-and-multiply
algorithm combined with reduction of binary quadratic forms; see [11] for more

Rational Isogenies from Irrational Endomorphisms 541

context on the correspondence between quadratic forms and ideals (§ 7.B) and
the notion of reduction (§ 2.A). To select the estimate B on the group order,
recall the upper bound h(O) ∈ O(

√
p log p) from the class number formula.

5 Vectorizing CM Curves

To the best of our knowledge, there exist two practical methods for construct-
ing supersingular elliptic curves over a large finite field Fp: either one reduces
curves having CM by some order R in an imaginary quadratic field F modulo
(appropriately chosen) primes that do not split in F , or one performs isogeny
walks starting from known supersingular curves. As pointed out earlier, outside
of trusted setup, the latter method is not suitable for most cryptographic appli-
cations. In this section we focus on the former method; additional details can be
found in Bröker’s paper [6] and the references therein. As we will see, from a secu-
rity point of view, the situation is even more problematic in this case: we show
that the vectorization problem associated with a CM-constructed supersingular
elliptic curve over Fp admits a surprisingly easy and explicit solution.

In practice, when constructing supersingular elliptic curves over Fp one does
not explicitly write down CM curves. Rather, one computes the Hilbert class
polynomial HR(T) ∈ Z[T] for R, which is a monic irreducible polynomial whose
roots are the j-invariants of the curves having CM by R. This polynomial can
be computed effectively, although the existing methods are practical for orders
having small discriminants only, one reason being that the degree of HR(T)
equals h(R). The roots of HR(T) mod p ∈ Fp[T] are precisely those j ∈ Fp which
arise as the j-invariant of a supersingular elliptic curve obtained by reducing an
elliptic curve having CM by R. It is well-known that all these j-invariants are
in fact elements of Fp2 , i.e., the irreducible factors of HR(T) mod p are at most
quadratic. The linear factors then correspond to elliptic curves over Fp.

Example 25. The Hilbert class polynomial for Z[
√−17] is given by

H
Z[

√−17](T) = T 4 − 178211040000T 3 − 75843692160000000T 2

−318507038720000000000T − 2089297506304000000000000,

whose reduction modulo 83 factors as (T −28)(T −50)(T 2 +7T +73). This gives
rise to two pairs of quadratic twists of elliptic curves over F83 that appear as the
reduction modulo 83 of a curve with CM by Z[

√−17].

The main result of this section is the following theorem; for conciseness, our
focus lies on the setting where p ≡ 3 (mod 4) and where

Z[
√−�] ⊆ R ⊆ Q(

√−�)

for some odd prime number �, i.e., we want our CM curves to come equipped
with an endomorphism Ψ satisfying Ψ ◦Ψ = [−�]. This leaves us with two options
for R, namely Z[

√−�] and Z[(1+
√−�)/2]. In Remark 32 we will briefly comment

on how to locate curves having CM by more general imaginary quadratic orders.

542 W. Castryck et al.

Theorem 26. Let p ≡ 3 (mod 4) and � < (p + 1)/4 be primes with
(−p

�

)
= 1.

(i) If � ≡ 1 (mod 4) then
H

Z[
√−�](T) mod p

has precisely two Fp-rational roots, both corresponding to a pair of quadratic
twists of supersingular elliptic curves. One pair is contained in E��p(Z[

√−p])
while the other pair is contained in E��p(Z[(1+

√−p)/2]).
(ii) If � ≡ 3 (mod 4) then both

H
Z[(1+

√−�)/2](T) mod p and H
Z[

√−�](T) mod p

have exactly one Fp-rational root each, in both cases corresponding to a
pair of quadratic twists of elliptic curves. The first such pair is contained
in E��p(Z[

√−p]), while the other pair is contained in E��p(Z[(1+
√−p)/2]).

(iii) Let O ∈ {Z[
√−p], Z[(1+

√−p)/2]} and let E,Et ∈ E��p(O) be a pair of
supersingular elliptic curves over Fp arising as above. Up to order, this
pair is given by the curves

[l](h(O)−1)/2E0 and [l](h(O)+1)/2E0 (4)

for any prime ideal l ⊆ O lying above �. Here E0 : y2 = x3 ±x is the unique
curve with j-invariant 1728 in E��p(O).

This theorem can be seen as a vast generalization of (3) from Example 19,
where we dealt with the reduction modulo p of the curve E : y2 = x3 + 1 over Q

having CM by the ring of Eisenstein integers Z[e2πi/3] = Z[(1+
√−3)/2]. Up to

twisting it is the only such curve: the Hilbert class polynomial for Z[(1+
√−3)/2]

is just T . An endomorphism Ψ satisfying Ψ2 = −3 can be constructed as 2ω +1,
where ω is the automorphism E → E, (x, y) �→ (e2πi/3x, y).

One particularly interesting range of parameters satisfying the stated
assumptions is where

– p = 4�1�2 · · · �r − 1 is a CSIDH prime with r ≥ 2, and
– � = �i for some i ∈ {1, 2, . . . , r}.

If r = 1 then �1 = (p + 1)/4, so Theorem 26 can no longer be applied. However,
the reasons for excluding the boundary case � = (p + 1)/4 are rather superficial
and the statement remains largely valid in this case (the exclusion is related to
the possible occurrence of j = 1728 as a root of HR(T) mod p, which comes with
some subtleties in terms of quadratic twisting; see the proof).

5.1 Twisting Endomorphisms from Deuring Reduction

Before proceeding to the proof of Theorem 26, we discuss Deuring lifting and
reduction, with a focus on how the endomorphism Ψ behaves under reduction.

Rational Isogenies from Irrational Endomorphisms 543

Theorem 27 (Deuring’s reduction theorem). Let p be a prime number
and let E be an elliptic curve over a number field K which has CM by some
order R in an imaginary quadratic number field F . Let p be a prime of K above
p at which E has good reduction. Then E mod p is supersingular if and only if
p ramifies or is inert in F .

Proof. This is part of [23, Thm. 12 of Ch. 13].
�
When applying this to an elliptic curve E/K having CM by our order

R ⊆ Q(
√−�) from above, the endomorphism Ψ satisfying Ψ ◦ Ψ = [−�] reduces

modulo p to an endomorphism ψ which also satisfies ψ ◦ ψ = [−�]. This is
because reduction modulo p induces an (injective) homomorphism of endomor-
phism rings; see for instance [23, § 2 of Ch. 9]. The following proposition gives
sufficient conditions for ψ to be a twisting endomorphism.

Proposition 28. Assume K = Q(j(E)), p > 2 and � ≤ (p + 1)/4. If E mod p
is supersingular and j(E mod p) ∈ Fp then deg p = 1 and

πE mod p ◦ ψ = −ψ ◦ πE mod p, (5)

i.e., ψ anticommutes with the p-power Frobenius endomorphism of E mod p.

The proof of this proposition relies on the following observation:

Lemma 29. Let α be an algebraic integer and K = Q(α). Consider a prime
number p and a prime ideal p ⊆ OK above p. If Fp(α mod p) � OK/p, then p
divides the discriminant of the minimal polynomial f(x) ∈ Z[x] of α over Q.

Proof. If p does not divide the discriminant of f(x), then

p =
(
p, g(α)

)
,

where g(x) ∈ Z[x] is a monic polynomial of degree deg p whose reduction modulo
p is an irreducible factor in Fp[x] of f(x) mod p; this is a well-known fact, see
e.g. [24, Thm. 27]. But this implies that α mod p is a generator of OK/p over Fp,
so the lemma follows by contradiction.
�
Proof (of Proposition 28). The minimal polynomial of j(E) over Q is precisely
the Hilbert class polynomial HR(T) for R. The field H = Q(

√−�, j(E)) is a
quadratic extension of K known as the ring class field for R, see [11, proof of
Prop. 1.32]. If R is a maximal order, then this is better known as the Hilbert
class field.

Using that � ≤ (p + 1)/4, we see that p does not ramify in Q(
√−�), hence

it must be inert by our assumption that E mod p is supersingular. This implies
that pOH splits as a product of prime ideals P of degree 2, see [11, Cor. 5.25] for
a proof in case R is a maximal order and [11, proof of Prop. 9.4] for the general
case (this is where we use the assumption p > 2). Our prime ideal p is necessarily
dominated by such a P, so it follows that

544 W. Castryck et al.

– either deg p = 1, in which case p must be inert in H, i.e., pOH = P,
– or deg p = 2, in which case p must split in H.

But the latter option would imply that

Fp(j(E) mod p) = Fp(j(E mod p)) = Fp � OK/p

and therefore, in view of Lemma 29, it would follow that p divides the discrim-
inant of HR(T). This is impossible: by Gross–Zagier [17, p. 195] the primes p
dividing the discriminant of HR(T) cannot be larger than the absolute value of
the discriminant of R, which is at most 4�.

We have thus established that deg p = 1. Now let Σ be the non-trivial auto-
morphism of H over K. From [23, § 4 of Ch. 10] we see that Ψ is not defined
over K and therefore ΨΣ = −Ψ . But Σ necessarily descends to the Frobenius
automorphism σ of OH/P ∼= Fp2 over OK/p ∼= Fp, from which it follows that
ψσ = −ψ. This implies (5) and thereby concludes the proof.
�

We remark that the last part of the preceding proof mimics the proof of [15,
Prop. 6.1]. However, the statement of [15, Prop. 6.1] is lacking an assumption
on deg p. For instance, in our case, if deg p = 2 and therefore p splits in H,
the reasoning fails because the extension OH/P over OK/p becomes trivial. And
indeed, in these cases it may happen that the reduction of Ψ mod p does not
anticommute with Frobenius:

Example 30. The discriminant of the Hilbert class polynomial for Z[
√−29] is

divisible by 83. More precisely, its reduction modulo 83 factors as T (T −50)(T −
67)2(T 2+7T +73). One can verify that inside K = Q[T]/(H

Z[
√−29](T)), we have

83OK = (83, T)(83, T − 50)(83, T 2 − 7)(83, T 2 + 7T + 73),

where the third factor is a degree-2 prime ideal p modulo which T reduces to
67; note that 672 ≡ 7 (mod 83). So in this case we have Fp(T mod p) � OK/p.

Let E be any of the two elliptic curves over F83 having j-invariant 67. By
exhaustive search through the possible kernels of order 29, one can check that
E admits four distinct automorphisms squaring to [−29]. These appear in the
form ±ψ,±ψσ, where as in the proof of Proposition 28 we use σ to denote the
action of the p-power Frobenius. In particular ψ does not anticommute with πE .
Nevertheless, by Deuring’s lifting theorem (recalled below), the pair (E,ψ) must
arise as the reduction of some CM curve along with an endomorphism Ψ satisfy-
ing Ψ ◦ Ψ = [−29]. (Note: this also applies to the pair (E,ψσ), which is reflected
in the fact that 67 appears as a double root of H

Z[
√−�](T) mod 83.)

Theorem 31 (Deuring’s lifting theorem). Let E/Fp be an elliptic curve
and let α ∈ End(E). There exists an elliptic curve E′ over a number field K
along with an endomorphism α′ ∈ End(E′) and a prime p of K above p at which
E′ has good reduction, such that E′ mod p is isomorphic to E and such that α′

reduces to α modulo p.

Proof. See [23, Thm. 14 of Ch. 13].
�

Rational Isogenies from Irrational Endomorphisms 545

5.2 Proof of Theorem 26

Proof (of Theorem 26). Using quadratic reciprocity one checks that
(−p

�

)
= 1 ⇐⇒

(−�

p

)
= −1,

from which we see that p is inert in Q(
√−�). Hence a curve with CM by Z[

√−�]
has supersingular reduction modulo p and therefore the Fp-rational roots of the
Hilbert class polynomial

H
Z[

√−�](T) mod p

should correspond to pairs of quadratic twists in either the floor E��p(Z[
√−p])

or the surface E��p(Z[(1+
√−p)/2]). If � ≡ 3 (mod 4), then the same conclusions

apply to Z[(1+
√−�)/2].

As a side note, we remark that � < (p+1)/4 implies that y2 = x3±x does not
admit any twisting endomorphisms of norm �, which is easy to elaborate from [25,
Prop. 3.1]. In view of Proposition 28, we therefore see that the Fp-rational roots
of the Hilbert class polynomial never include 1728. Hence by Lemma 1 there is
no ambiguity in what is meant by “pairs of quadratic twists”. (Apart from this
ambiguity, the theorem remains true under the weaker assumption � ≤ (p+1)/4.)

We first claim that E��p(Z[
√−p]) and E��p(Z[(1+

√−p)/2]) both contain at
most one such pair E,Et. Indeed, using Proposition 28 we see that E comes
equipped with a twisting endomorphism ψ of degree �, which by Lemma 13
corresponds to an Fp-rational degree-� isogeny E → Et. Its kernel is necessarily
of the form E[l] for some prime ideal l above �, i.e., we must have Et = [l]E. But
then we can solve the vectorization problem E = [a]E0: from Lemma 18 we get
that [a] = [l](h(O)−1)/2. Since the pair

{
[l](h(O)−1)/2, [l](h(O)+1)/2 = [l](h(O)−1)/2

}

does not depend on the choice of l, this shows that the pair {E,Et} is fully
characterized by �, implying the claim. At the same time this proves (iii).

Next, let us explain why E��p(Z[
√−p]) and E��p(Z[(1+

√−p)/2]) contain at
least one such pair E,Et. We remark that this comes for free if � ≡ 3 (mod 4),
since in this case the Hilbert class polynomials for Z[

√−�] and Z[(1+
√−�)/2]

have odd degree and split over Fp2 , their roots being supersingular j-invariants:
hence they must admit at least one Fp-rational root. In general, we can reverse
the reasoning from the previous paragraph and define E,Et using (4), for some
choice of prime ideal l above �. In particular Et = [l]E, which provides us
with an Fp-rational degree-� isogeny ϕ : E → Et, which we use to construct an
endomorphism ψ = τEt ◦ ϕ of E that is not Fp-rational. In contrast, it is easily
verified that ψ ◦ψ is Fp-rational. Therefore the minimal polynomial of ψ cannot
admit a non-zero linear term, i.e., ψ ◦ ψ must be a scalar-multiplication map,
necessarily of the form [±�]. By Deuring’s lifting theorem E can be lifted to an
elliptic curve over a number field carrying an endomorphism Ψ whose reduction
modulo a suitable prime above p yields ψ. Since Ψ must belong to an imaginary
quadratic ring we see that Ψ ◦ Ψ = [−�] as wanted.

546 W. Castryck et al.

Altogether this proves (i), while for (ii) it leaves us with the task of showing
that if � ≡ 3 (mod 4), then the unique Fp-rational root of

H
Z[(1+

√−�)/2](T) mod p

corresponds to a pair of elliptic curves {E,Et} with endomorphism ring Z[
√−p].

Equivalently, we need to show that such curves admit a unique Fp-rational point
of order 2, rather than three such points. To this end, let P ∈ E be an Fp-
rational point of order 2 and let ϕ be the endomorphism of E corresponding to
(1+

√−�)/2. Proposition 28 implies that πE ◦ ϕ = ϕ ◦ πE , where ϕ corresponds
to (1−√−�)/2. But then clearly (ϕ + ϕ)(P) = P 	= ∞, which implies that
ϕ(P) 	= ϕ(P) and therefore that πE(ϕ(P)) 	= ϕ(P), i.e., ϕ(P) is a non-rational
point of order 2. This concludes the proof.
�
Remark 32. The above ideas can be generalized to locate reductions mod p of
CM curves carrying an endomorphism Ψ such that Ψ ◦ Ψ = [−�1�2 · · · �s], where
the �i ≤ (p + 1)/4 are distinct odd primes for which

(−�1�2 · · · �s

p

)
= −1. (6)

We did not elaborate this in detail, but assume for instance that each �i splits
in Q(

√−p); note that this implies (6). Letting O ∈ {Z[
√−p], Z[(1+

√−p)/2]},
one expects that 2s−1 pairs E,Et in E��p(O) can be obtained as the reduction
mod p of an elliptic curve carrying such an endomorphism Ψ . Fixing for each
i = 1, 2, . . . , s a prime ideal li ⊆ O of norm �i, these pairs are characterized by

Et = [l1][l2]e2 [l2]e3 · · · [ls]esE

with (e2, e3, . . . , es) ∈ {±1}s−1. As before, an application of Lemma 18 then
solves the corresponding vectorization problems.

Acknowledgements. The authors would like to thank Benjamin Wesolowski, Robert
Granger, Christophe Petit, and Ben Smith for interesting discussions regarding this
work, and Lixia Luo for pointing out an error in an earlier version of Lemma 22, as
well as a few smaller mistakes. Thanks to Daniel J. Bernstein for providing key insights
regarding the proof of Lemma 24.

References

1. Arpin, S., et al.: Adventures in Supersingularland. Cryptology ePrint Archive
2019/1056 (2018). https://ia.cr/2019/1056

2. Bach, E.: Explicit bounds for primality testing and related problems. Math. Com-
put. 55(191), 355–380 (1990)

3. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: ACM Conference on
Computer and Communications Security, pp. 967–980. ACM (2013). https://ia.
cr/2013/325

https://ia.cr/2019/1056
https://ia.cr/2013/325
https://ia.cr/2013/325

Rational Isogenies from Irrational Endomorphisms 547

4. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

5. Bosma, W., Stevenhagen, P.: On the computation of quadratic 2-class groups. J.
de Théorie des Nombres de Bordeaux 8(2), 283–313 (1996)

6. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory
1(3), 273–469 (2009)

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIA-
CRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03332-3 15

8. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009). https://ia.cr/2006/021

9. Conrad, K.: The conductor ideal. Expository paper. https://kconrad.math.uconn.
edu/blurbs/gradnumthy/conductor.pdf

10. Couveignes, J.-M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive
2006/291 (1997). https://ia.cr/2006/291

11. Cox, D.A.: Primes of the Form x2+ny2: Fermat, Class Field Theory, and Complex
Multiplication. Pure Applied Mathematics, 2nd edn. Wiley, Hoboken (2013)

12. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Cryptogr. 78(2), 425–440 (2016). https://arxiv.org/
abs/1310.7789

13. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

14. Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum equivalence of the
DLP and CDHP for group actions. Cryptology ePrint Archive 2018/1199 (2018).
https://ia.cr/2018/1199

15. Galbraith, S., Rotger, V.: Easy decision Diffie-Hellman groups. LMS J. Comput.
Math. 7, 201–218 (2004). https://ia.cr/2004/070

16. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

17. Gross, B.H., Zagier, D.B.: On singular moduli. J. für die Reine und Angewandte
Mathematik 355, 191–220 (1985)

18. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation
of class groups. J. Am. Math. Soc. 2, 837–850 (1989)

19. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

20. Kirschmer, M., Voight, J.: Algorithmic enumeration of ideal classes for quaternion
orders. SIAM J. Comput. 39(5), 1714–1747 (2010). https://arxiv.org/abs/0808.
3833

21. Kitaev, A.Y.: Quantum measurements and the Abelian stabilizer problem. Elec-
tron. Colloquium Comput. Complex. (ECCC) 3(3) (1996). https://eccc.hpi-web.
de/eccc-reports/1996/TR96-003

https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://ia.cr/2006/021
https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf
https://ia.cr/2006/291
https://arxiv.org/abs/1310.7789
https://arxiv.org/abs/1310.7789
https://doi.org/10.1007/978-3-319-78372-7_11
https://ia.cr/2018/1199
https://ia.cr/2004/070
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-642-25405-5_2
https://arxiv.org/abs/0808.3833
https://arxiv.org/abs/0808.3833
https://eccc.hpi-web.de/eccc-reports/1996/TR96-003
https://eccc.hpi-web.de/eccc-reports/1996/TR96-003

548 W. Castryck et al.

22. Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17(Suppl. A), 418–432 (2014). https://ia.cr/
2014/505

23. Lang, S.: Elliptic Functions. Graduate Texts in Mathematics, vol. 112. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-1-4612-4752-4. With an appendix
by John Tate

24. Marcus, D.A.: Number Fields. Universitext, 2nd edn. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-1-4684-9356-6. With a foreword by Barry Mazur

25. McMurdy, K.: Explicit representation of the endomorphism rings of supersin-
gular elliptic curves (2014). Preprint. https://phobos.ramapo.edu/∼kmcmurdy/
research/McMurdy-ssEndoRings.pdf

26. National Institute of Standards and Technology: Post-Quantum Cryptography
Standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

27. Onuki, H., Takagi, T.: On collisions related to an ideal class of order 3 in CSIDH.
Cryptology ePrint Archive 2019/1202 (2019). https://ia.cr/2019/1202

28. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

29. Schoof, R.: Elliptic curves over finite fields and the computation of square roots
mod p. Math. Comput. 44(170), 483–494 (1985)

30. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, vol. 106, 2nd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
0-387-09494-6

31. Waterhouse, W.C.: Abelian varieties over finite fields. Annales scientifiques de
l’École Normale Supérieure 2, 521–560 (1969)

https://ia.cr/2014/505
https://ia.cr/2014/505
https://doi.org/10.1007/978-1-4612-4752-4
https://doi.org/10.1007/978-1-4684-9356-6
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://ia.cr/2019/1202
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6

Lattice-Based Cryptography

Hardness of LWE on General Entropic
Distributions

Zvika Brakerski1(B) and Nico Döttling2(B)

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
doettling@cispa-helmholtz.de

Abstract. The hardness of the Learning with Errors (LWE) problem
is by now a cornerstone of the cryptographic landscape. In many of its
applications the so called “LWE secret” is not sampled uniformly, but
comes from a distribution with some min-entropy. This variant, known
as “Entropic LWE”, has been studied in a number of works, starting with
Goldwasser et al. (ICS 2010). However, so far it was only known how to
prove the hardness of Entropic LWE for secret distributions supported
inside a ball of small radius.

In this work we resolve the hardness of Entropic LWE with arbitrary
long secrets, in the following sense. We show an entropy bound that
guarantees the security of arbitrary Entropic LWE. This bound is higher
than what is required in the ball-bounded setting, but we show that this is
essentially tight. Tightness is shown unconditionally for highly-composite
moduli, and using black-box impossibility for arbitrary moduli.

Technically, we show that the entropic hardness of LWE relies on a
simple to describe lossiness property of the distribution of secrets itself.
This is simply the probability of recovering a random sample from this
distribution s, given s + e, where e is Gaussian noise (i.e. the quality of
the distribution of secrets as an error correcting code for Gaussian noise).
We hope that this characterization will make it easier to derive entropic
LWE results more easily in the future. We also use our techniques to
show new results for the ball-bounded setting, essentially showing that
under a strong enough assumption even polylogarithmic entropy suffices.

1 Introduction

Lattice-based cryptography has emerged in the last few decades as one of
the most important developments in cryptography. Lattice-based cryptographic
schemes have been shown to achieve functionalities that are unknown under any

We encourage readers to refer to the full version of this work, available at https://
eprint.iacr.org/2020/119.
Z. Brakerski—Supported by the Binational Science Foundation (Grant No. 2016726),
and by the European Union Horizon 2020 Research and Innovation Program via ERC
Project REACT (Grant 756482) and via Project PROMETHEUS (Grant 780701).

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 551–575, 2020.
https://doi.org/10.1007/978-3-030-45724-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_19&domain=pdf
https://eprint.iacr.org/2020/119
https://eprint.iacr.org/2020/119
https://doi.org/10.1007/978-3-030-45724-2_19

552 Z. Brakerski and N. Döttling

other cryptographic structure (such as fully homomorphic encryption [Gen09,
BV11], attribute-based encryption for circuits [GVW13] and many others). At
the same time, it is possible in many cases to show strong security properties
such as worst-case to average-case hardness results [Ajt96,AD97,MR04,Reg05]
that relate the hardness of breaking the cryptographic scheme to that of solving
approximate short-vector problems in worst-case lattices, a problem that resists
algorithmic progress even when use of quantum computers is considered.

Much of the progress in advancing lattice-based cryptography can be
attributed to the hardness of the Learning with Errors (LWE) problem, intro-
duced by Regev [Reg05]. This problem can be stated in a very clean linear-
algebraic syntax, which allows to utilize it for applications very easily, and at
the same time was shown to enjoy worst-case hardness as explained above. An
instance of the LWE problem has the following form. It is parameterized by a
dimension n and modulus q � n. Consider the following distribution. Sample a
(public) random matrix A ∈ Z

n×m
q , for arbitrary m = poly(n), and a (secret)

random vector s ∈ Z
n
q , and output (A,y), where y = sA + e (mod q), and e is

a noise vector selected from some distribution (often a Gaussian with parameter
σ � q). The goal of the LWE solver is to find s given (A,y), where m can be as
large as the adversary desires. In the most straightforward use of this assump-
tion for cryptography (suggested in Regev’s original paper), (A,y) are used as
public key for an encryption scheme, and s is the secret key. Similar roles are
assumed in other cryptographic constructions.

Goldwasser et al. [GKPV10] initiated a study on the hardness of LWE when
s is not chosen uniformly at random. This study was motivated by the desire to
achieve an entropic notion of security that will allow to guarantee that the prob-
lem remains hard even if some information about s is leaked. They showed that
if s is sampled from a binary distribution (i.e. supported over {0, 1}n), then LWE
remains hard so long as s has sufficient entropy. In fact, sampling s from a (possi-
bly sparse) binary distribution is attractive in other contexts such as constructing
efficient post-quantum cryptographic objects [NIS], minimizing noise blowup in
homomorphic encryption [BGV12], classical worst-case to average-case reduc-
tion [BLP+13] and proving hardness for the so-called Learning with Rounding
(LWR) problem [BPR12,BGM+16]. Progress on understanding entropic LWE
in the binary setting was made in subsequent works [BLP+13,Mic18].

However, the question of hardness of LWE on imperfect secret distributions
carries significance beyond the binary setting. If we consider the key-leakage
problem, then changing the honest key distribution to be binary just for the
sake of improving robustness against key-leakage carries a heavy cost in the per-
formance and security features in case no leakage occurs. An entropic hardness
result for the general uniform setting is thus a natural question. Furthermore,
for a problem as important as LWE, the mere scientific understanding of the
robustness of the problem to small changes in the prescribed distributions and
parameters stands as a self-supporting goal.

Alas, it appears that current approaches provide no insight for the general set-
ting. Existing results can be extendedbeyond the binary setting so long as the norm

Hardness of LWE on General Entropic Distributions 553

of the vectors s is bounded, i.e. so long as the secret distribution is contained within
some small enough ball, as was made explicit by Alwen et al. [AKPW13]. However
this appeared to be an artifact of the proof technique and it was speculated by
some that a general entropic LWE result should exist. Exploring the hardness of
general entropic LWE is the goal of this work.

1.1 Our Results

We relate the hardness of Entropic LWE for arbitrary distributions to a basic
property of the distribution, specifically to how bad the distribution performs
as an error correcting code against Gaussian noise. Specifically, let S be some
distribution over secrets in Z

n
q . Recall the notion of conditional smooth min-

entropy H̃∞ and define the noise lossiness of S as

νσ(S) = H̃∞(s|s + e) = − log
(

Pr
s,e

[A∗(s + e) = s]
)

, (1)

where s is sampled from S and e is (continuous, say) Gaussian noise with
parameter σ, and A∗ is the optimal maximal likelihood decoder for s, namely
A∗(y) = arg maxs Prs,e[s|y = s + e]. This notion is a min-entropy analogue to
the notion of equivocation for Shannon-entropy, and can be seen as a guaranteed
information loss of a gaussian channel (rather than average information loss).

We advocate for noise lossiness as a new and natural measure for a distribu-
tion and show that it allows to get a good handle on the entropic LWE question.
We do this by showing that distributions with sufficiently high noise lossiness
lead to hard instances of Entropic LWE (under assumptions, see details below).
We then show that high min-entropy implies (some limited level of) noise lossi-
ness, which allows us to derive hardness results for general Entropic LWE. We
furthermore show that results for distributions supported inside a ball can also
be derived using our technique and show that noise lossiness of such distributions
is larger than that of general distributions.1 Finally, we show that our bounds
for the general entropic setting are essentially tight. See below for details.

Noise Lossiness Implies Entropic LWE Hardness (Sect. 4). We show that
high noise lossiness implies entropic hardness. Our result relies on the hardness
of the decision version of LWE (with “standard” secret distribution). Whereas
the variant we discussed so far is the search variant, which asserts that finding
s given (A,y) should be hard, the decision variant dLWE asserts that it is
computationally hard to even distinguish (A,y) from (A,u) where u ∈ Z

m
q is

uniform. The hardness of decision LWE immediately implies hardness for search
LWE, and the converse is also true but not for every noise distribution and via

1 In fact, noise lossiness provides a simple intuitive explanation on why ball-bounded
distributions with given min-entropy yield harder Entropic LWE instances than gen-
eral ones. This is due to the fact that packing the same number of elements in a
small ball necessarily makes it harder to go back to the point of origin once noise is
added.

554 Z. Brakerski and N. Döttling

a reduction that incurs some cost. This is also the case in the entropic setting.
By default when we refer to (Entropic) LWE in this work, we refer to the search
version. We will mention explicitly when referring to the decision version.

Our results in this setting are as follows.

Theorem 1.1 (Main Theorem, Informal). Assume that decision LWE with
dimension k, modulus q and Gaussian noise parameter γ is hard. Let S be a
distribution over Z

n
q with νσ1(S) ≥ k log(q) + ω(log λ) for some parameter σ1,

then Entropic LWE with secret distribution S and Gaussian noise parameter
σ ≈ σ1γ

√
m is hard.

Our actual theorem is even more expressive on two aspects. First, while the
above result applies for search Entropic LWE for all values of q, but in some
cases, e.g. when q is prime, it also applies to decision Entropic LWE. Second,
in the case where S is supported inside a ball, the term k log(q) can be relaxed
to roughly k log(γr) where r is the radius of the ball (this only applies to the
search version).

We note that we incur a loss in noise that depends on
√

m, i.e. depends on
the number of LWE samples. This is inherent in our proof technique, but using
known statistical or computational rerandomization results, this dependence can
be replaced by dependence on n, γ.

As explained above, most of our results imply hardness for search Entropic
LWE and do not directly imply hardness for the decision version (albeit search-
to-decision reductions can be applied, as we explained below). We note that this
is an artifact of the applicability of our proof technique even in cases where the
decision problem is not hard at all. We view this as a potentially useful property
which may find future applications. To illustrate, consider the setting where the
distributions of s and e, as well as the modulus q, are all even. (Indeed, usually we
consider the coordinates of e to be continuous Gaussians or a discrete Gaussians
over Z, but one may be interested in a setting where they are, say, discrete
Gaussian over 2Z.) In this setting, decision LWE is trivially easy, but search
LWE remains hard. Our techniques (as detailed in the technical overview below)
naturally extend to this setting and can be used to prove entropic hardness in
this case as well.

In the standard regime of parameters, where e is a continuous Gaussian, we
can derive the hardness of the decision problem using known search-to-decision
reductions. The most generic version, as in e.g. [Reg05], runs in time q · poly(n)
but in many cases the dependence on q can be eliminated [Pei09,MM11]. In
particular we note that in the ball-bounded setting, search-to-decision does not
incur dependence on q.

Noise-Lossiness and Entropy (Sect. 5). We analyze the relation between
noise-lossiness and min-entropy of a distribution both in the general setting and
in the ball-bounded setting. We derive the following bounds.

Lemma 1.2 (Noise-Lossiness of General Distributions). Let S be a gen-
eral distribution over Z

n
q , then νσ(S) ≥ H̃∞(s) − n log(q/σ) − 1.

Hardness of LWE on General Entropic Distributions 555

Lemma 1.3 (Noise-Lossiness of Small Distributions). Let S be a distri-
bution over Z

n
q which is supported only inside a ball of radius r, then νσ(S) ≥

H̃∞(s) − 2r
√

n/σ.

Putting these results together with our main theorem, we get general
Entropic LWE hardness whenever H̃∞(s) � k log(q) + n log(qγ

√
m/σ). In the

r-ball-bounded setting we require entropy H̃∞(s) � k log(γr) + 2r
√

nmγ/σ.2

Note that if we make the very strong (yet not implausible) assumption that
LWE is sub-exponentially secure, then we can use complexity leveraging and
choose k to be polylogarithmic, we can choose σ to be large enough that the
second term vanishes, and we get entropic hardness even with H̃∞(s) which is
polylogarithmic in the security parameter, in particular independent of log(q).

Tightness (Sects. 6 and 7). We provide two tightness results. The first one is
essentially a restatement of a bound that was shown in the Ring-LWE setting by
Bolboceanu et al. [BBPS19]. It is unconditional, but requires q to have a factor
of a proper size.

Theorem 1.4 (Counterexample for Entropic LWE, Informal [BBPS19]).
Let n, q, σ be LWE parameters. Then if there exists p s.t. p|q and p ≈ σ

√
n,

then there exists a distribution S with min-entropy roughly n log(q/σ), such that
Entropic LWE is insecure with respect to S.

However, the above requires that q has a factor of appropriate size. One could
wonder whether one can do better for a prime q. While we do not have an explicit
counterexample here, we can show that proving such a statement (i.e. security
for Entropic LWE with entropy below roughly n log(q/σ)) cannot be done by
a black-box reduction to a standard “game based” assumption. In particular if
the reduction can only access the adversary and to the distribution of secrets as
black-box, then the entropy bound n log(q/σ) applies even for prime q.

Theorem 1.5 (Barrier for Entropic LWE, Informal). Let n, q, σ be LWE
parameters. Then there is no black-box reduction from Entropic LWE with
entropy � n log(q/σ) to any game-based cryptographic assumption.

1.2 Technical Overview

We provide a technical overview of our main contributions.

The Lossiness Approach to Entropic LWE. The starting point of our proof
is the lossiness approach. This approach (in some small variants) was used in
2 In the ball-bounded setting, our main improvement over [AKPW13, Appendix B] is

that our entropy bound is independent of q. This is due to our use of Hermite normal
form. Beyond this important difference, our flooding method and that of [AKPW13]
are asymptotically similar in the ball-bounded setting. Our method of flooding at the
source, however, is a general method that performs at least as well as the state of
the art in the ball-bounded setting, and also implies tight results in the unbounded
setting.

556 Z. Brakerski and N. Döttling

all existing hardness results for Entropic LWE [GKPV10]. However, prior works
were only able to use it for norm-bounded secrets. We show a minor yet crucial
modification that allows to relate the hardness of Entropic LWE to the noise-
lossiness of the noise distribution.

Fix parameters n, q, σ and recall that the adversary is given (A,y), where A is
uniform, y = sA+e (mod q), s sampled from S and e is a (continuous) Gaussian
with parameter σ. The lossiness approach replaces the uniform matrix A with an
“LWE matrix” of the form: BC + F, where B ∈ Z

n×k
q , C ∈ Z

k×m
q are uniform,

and k � n,m, and where F is a matrix whose every element is a (discrete)
Gaussian with parameter γ. The decisional LWE assumption with dimension
k, modulus q and noise parameter γ asserts that BC + F is computationally
indistinguishable from a uniform matrix, and therefore the adversary should
also be able to recover s when (A,y) is generated using A = BC + F. At this
point, the vector y is distributed as

y = sA + e = sBC + sF + e.

The strategies on how to continue from here diverge. The [GKPV10] approach
is to say that when s is confined inside a ball, and when e is a wide enough
Gaussian, then the value sF + e is “essentially independent” of s. This is some-
times referred to as “noise flooding” since the noise e “floods” the value sF
and minimizes its effect. This allows to apply the leftover hash lemma to argue
that sB is statistically close to a uniform s′ and obtain a new “standard” LWE
instance. The [BLP+13,Mic18] approaches can be viewed as variants of this
method, where the argument on sF + e is refined in non-trivial ways to achieve
better parameters.

This type of argument cannot work for the general setting (i.e. when s is not
short) since in this case sF + e can reveal noticeable information about s. For
example, if s is a multiple of some large enough factor then the noise e can just
be rounded away (indeed this will be the starting point for our tightness result,
as we explain further below).

Our approach therefore is to resort to a weaker claim. We do not try to
change y into a form of standard LWE, but instead all we show is that y loses
information about s. Namely, we will show that even information-theoretically it
is not possible to recover s from (A,y). This approach was taken, for example,
by Alwen et al. [AKPW13], but they were unable to show lossiness for the
general setting. The reason, essentially, is that they also use a refined version of
noise flooding, one that did not require that e completely floods sF, only slightly
perturb it. We can call it “gentle flooding” for the purpose of this work. A similar
argument was used in [DM13] to establish hardness of LWE with uniform errors
from a short interval.

We note that in all flooding methods, it is beneficial if F contains small
values as much as possible. Therefore in order to show hardness for s with as
low entropy as possible, the parameter γ is to be taken as small as possible,
while still supporting the hardness of distinguishing BC + F from uniform.

Hardness of LWE on General Entropic Distributions 557

Our Approach: Gentle Flooding at the Source. Our approach can be
viewed in hindsight as a very simple modification of the lossiness/flooding app-
roach, that results in a very clean statement, and the characterization of the
noise lossiness as the “right” parameter for the hardness of Entropic LWE.

We take another look at the term sF + e and recall that our goal is to use
e to lose information about s. Clearly, if e was of the form e1F, then things
would be more approachable since then we would simply have (s + e1)F, and
we will simply need to argue about the lossiness of s under additive Gaussian
noise (which is exactly our notion of noise lossiness for the distribution S). Our
observation is that even though e does not have this form, the properties of
the Gaussian distribution allow to present e as e = e1F + e2, where e1, e2 are
independent random variables (but the distribution of e2 depends on F). This
is easiest to analyze when e is a continuous Gaussian, which is the approach we
take in this work.3

It can be shown essentially by definition that the sum of two independent
Gaussian vectors with covariance matrices Σ1,Σ2 is a Gaussian with covariance
matrix Σ1 + Σ2. It follows that if we choose e1 to be a spherical Gaussian
with parameter σ1 then e1F will have covariance matrix σ1FT F. Therefore if
we choose e2 to be an aspherical Gaussian with covariance σI − σ1FT F, we
get that e = e1F + e2 is indeed a spherical σ Gaussian. There is an important
emphasis here, the matrix σI − σ1FT F must be a valid covariance matrix, i.e.
positive semidefinite. To guarantee this, we must set the ratio σ/σ1 to be at
least the largest singular value of the matrix F. Standard results on singular
values of Gaussian matrices imply that the largest singular value is roughly√

mγ, which governs the ratio between σ1 and σ. We stress again that e1 and
e2 are independent random variables.

Once we established the decomposition of the Gaussian, we can write y as

y = sA + e = sBC + (s + e1)F + e2.

Now, our noise lossiness term νσ1(S) = H̃∞(s|s + e1) naturally emerges. Note
that y cannot provide more information about s than the two variables (sB, s+
e1). Since the former contains only k log q bits, it follows that if the noise lossiness
is sufficiently larger than k log q, then naturally H̃∞(s|s + e1, sB) is non-trivial
(we need ω(log λ) where λ is the security parameter), which implies that finding
s is information theoretically hard. Thus the hardness of Entropic (search) LWE
is established.

If in addition B can serve as an extractor (this is the case when the modulus
q is prime, or when the S is binary), then we can make a stronger claim, that sB
is statistically close to uniform, and then apply (standard) LWE again in order
to obtain hardness for Entropic dLWE directly.

Finally, we notice that for norm-bounded distributions we can improve the
parameters further by using LWE in Hermite Normal Form (HNF) which has
3 It can be shown and is by now standard that the hardness of LWE is essentially

equivalent whether e is a continuous Gaussian, discrete Gaussian, or “rounded”
Gaussian [Pei10].

558 Z. Brakerski and N. Döttling

been shown to be equivalent to standard LWE in [ACPS09]. HNF LWE allows
to argue that BC+F is indistinguishable from uniform even when the elements
of B are also sampled from a Gaussian with parameter γ (same as F). Using
HNF, we can further bound the entropy loss caused by the term sB and achieve
a bound that is independent of q, and only depends on γ, r, σ. We can only apply
this technique for Entropic search LWE.

For the complete analysis and formal statement of the result, see Sect. 4.

Computing The Noise Lossiness. We briefly explain the intuition behind
the noise lossiness computation. The exact details require calculation and are
detailed in Sect. 5.

For the sake of this overview, let us consider only “flat” distributions, i.e. ones
that are uniform over a set of K strings (and thus have min-entropy log K). We
will provide an upper bound on the probability Prs,e[A∗(s+e) = s] from Eq. (1),
which will immediately translate to a bound on the noise-lossiness.

For general distributions, we note that we can write

Pr
s,e

[A∗(s + e) = s] =
∫
y

Pr
s,e

[s + e = y ∧ A∗(y) = s]dy,

where the integral is over the entire q-cube (we use integral since we use a
continuous distribution for e, but a calculation with discrete Gaussian will be
very similar). Note that the expression Prs,e[s + e = y ∧ A∗(y) = s] can be
written as Prs,e[A∗(y) + e = y ∧ A∗(y) = s], which can then be decomposed
since the event A∗(y) + e = y depends only on e and the event A∗(y) = s
depends only on s (recall that y is fixed at this point). We can therefore write

Pr
s,e

[A∗(s + e) = s] =
∫
y

Pr
e

[e = y − A∗(y)] · Pr
s

[A∗(y) = s]dy.

Now, for all y it holds that Prs[A∗(y) = s] ≤ 1/K, simply since A∗(y) is a fixed
value. It also holds that Pre[e = y − A∗(y)] is bounded by the maximum value
of the Gaussian mass function, which is 1/σn. We get that

Pr
s,e

[A∗(s + e) = s] ≤ 1
Kσn

∫
y

dy =
qn

Kσn
,

and Lemma 1.2 follows.
For the setting of Lemma 1.3, recall that S is supported only over r-norm-

bounded vectors. Note that the analysis above is correct up to and including the
conclusion that Prs[A∗(y) = s] ≤ 1/K. Furthermore, A∗(y) must return a value
in the support of S, that is small. We therefore remain with the challenge of
bounding

∫
y

Pre[e = y − A∗(y)]dy, when we are guaranteed that ‖A∗(y)‖ ≤ r.
We can deduce that this can only induce a minor perturbation to the e Gaussian.
Using Gaussian tail bounds the result follows.

Tightness. The result of [BBPS19] (Theorem 1.4 above) is quite straightforward
in our setting (they showed a ring variant which is somewhat more involved).

Hardness of LWE on General Entropic Distributions 559

The idea to choose S to be uniform over the set of all vectors that are multiples
of p (or in the [BBPS19] terminology, uniform over an ideal dividing the ideal
q). This distribution has min-entropy n log(q/p) ≈ n log(q/σ) (since p ≈ σ), and
it clearly leads to an insecure LWE instance since the instance can be taken
modulo p in order to recover the noise, and then once the noise is removed the
secret can easily be recovered.

The above argument seems to “unfairly” rely on the structure of the modulus
q, and one could hope that for prime q, which has no factors, a better result can
be achieved. We extend a methodology due to Wichs [Wic13] to show that if such
a result exists then it will require non-black-box use of the adversary and/or the
sampler for the distribution S. Consider a black-box reduction that given access
to an entropic LWE adversary A and a sampler for S (we overload the notation
and denote the sampler by S as well), manages to solve some hard problem, e.g.
solve a standard LWE instance.

We show that it is possible to efficiently (jointly) simulate A,S, such that
in the eyes of a reduction they are indistinguishable from a real high-entropy
distribution S and an adversary A that solves Entropic LWE on it, thus leading
to an efficient unconditional algorithm for said hard problem. The basic idea
relies on the natural intuition that it is hard to generate a “valid” LWE instance
without knowing the value of s that is being used. While this intuition is false in
many situations, we show that in the entropic setting with black-box reductions
it can be made formal.

Specifically, consider S that is just a uniform distribution over a set of K
randomly chosen strings (note that this distribution does not have an efficient
sampler, but a black-box reduction is required to work in such a setting as well,
and we will show how to simulate S efficiently). The adversary A, upon receiving
an instance (A,y) first checks that A is full rank (otherwise return ⊥), and if
so it brute-forces s out of y by trying all possible s∗ in the support of S, and if
there is one for which y−s∗A (mod q) is short (i.e. of the length that we expect
from noise with Gaussian parameter σ), then return a random such s∗ as answer
(otherwise return ⊥). This is a valid adversary for Entropic LWE and therefore
it should allow the reduction to solve the hard problem.

Now, let us show how to simulate S,A efficiently. The idea is to rely on the
intuition that the reduction cannot generate valid LWE instances with values
of S that it does not know, and since the distribution is sparse, the reduction
cannot generate strings in the support of S in any way except calling the S
sampler. Furthermore, since the reduction can only make polynomially many
queries to the sampler, there are only polynomially many options for s for which
it can generate valid LWE instances, and our efficient implementation of A can
just check these polynomially many options. (Note that throughout this intuitive
outline we keep referring to valid Entropic LWE instances, the above argument
actually fails without a proper notion of validity as will be explained below.)

Concretely, we will simulate the adversary using a stateful procedure, i.e.
one that keeps state. However, in the eyes of the reduction this will simulate the
original stateless adversary and therefore will suffice for our argument. We will

560 Z. Brakerski and N. Döttling

simulate S using “lazy sampling”. Whenever the reduction makes a call to S, we
will just sample a new random string s, and save the new sample to its internal
state. When a query (A,y) to A is made, then we first check that A is indeed
full rank (otherwise return ⊥), and if it is the case, go over all vectors s∗ that
we generated so far (and are stored in the state), and check whether y − s∗A
(mod q) is short (in the same sense as above, i.e. of the length that we expect
from noise with Gaussian parameter σ). If it is the case then a random such s∗

is returned as the Entropic LWE answer. If the scan did not reveal any adequate
candidate, then return ⊥.

We want to argue that the above simulates the stateless process. The first step
is to show that if there is no s∗ in the state and thus our simulated adversary
returns ⊥, then the inefficient adversary would also have returned ⊥ with all
but negligible probability. Secondly, noticing that when our simulated adversary
does return a value s∗, this s∗ is a value that the reduction already received as a
response to a S query, and only one such s∗ exists. In fact, both of these concerns
boil down to properly defining a notion of validity of the Entropic LWE instance
that will prevent both of these concerns.

To this end, we notice that the original inefficient adversary return a non-⊥
value only on instances where A is full rank, and there exists a short e∗ and
value s∗ in the support of S such that y = s∗A + e∗. We will prove that it is
not possible to find an instance which is valid for s in the support of S which
has not been seen by the reduction. This will address both concerns and can
be proven since the unseen elements of S are just randomly sampled strings,
so we can think of the vectors as sampled after the matrix A is determined.
The probability of a random vector s to be s.t. y − sA is σ-short, where y is
arbitrary and A is full rank, is roughly (σ/q)n. This translates to the cardinality
K of S being as large as (roughly) n log(q/σ) and still allowing to apply the
union bound. The result thus follows.

Maybe somewhat interestingly, while our security proofs for entropic LWE are
technically similar to converse coding theorems [Sha48,W+59], our barrier result
resembles the random coding arguments used to prove the coding theorem [Sha48,
Sha49].

2 Preliminaries

We will denote the security parameter by λ. We say a function ν(λ) is negligible
if ν(λ) ∈ λ−ω(1). We will generally denote row vectors by x and column vectors
by x�. We will denote the L2 norm of a vector x by ‖x‖ =

√∑
i x2

i and the L∞
norm by ‖x‖∞ = maxi |xi|.

We denote by Tq = R/qZ be the real torus of scale q. We can embed Zq =
Z/qZ into Tq in the natural way. Tq is an abelian group and therefore a Z-
algebra. Thus multiplication of vectors from T

n
q with Z-matrices is well-defined.

Tq is however not a Zq-algebra. We will represent Tq elements by their central
residue class representation in [−q/2, q/2).

For a continuous random variable x, we will denote the probability-density
function of x by px(·). We will denote the probability density of x conditioned

Hardness of LWE on General Entropic Distributions 561

on an event E by px|E(·). Let X,Y be two discrete random variables defined
on a common support X . We define the statistical distance between X and
Y as Δ(X,Y) =

∑
x∈X |Pr[X = x] − Pr[Y = x]|. Likewise, if X and Y are

two continuous random variables defined on a measurable set X , we define the
statistical distance between X and Y as Δ(X,Y) =

∫
x∈X |pX(x) − pY (x)|.

Random Matrices. Let p be a prime modulus. Let A ←$ Z
n×m
p be chosen

uniformly at random. Then the probability that A is not invertible (i.e. does
not have an invertible column-submatrix)

Pr[A not invertible] = 1 −
n−1∏
i=0

(1 − pi−m) ≤ pn−m.

For an arbitrary modulus q, a matrix A is invertible if and only if it is invertible
modulo all prime factors pi of q. As we can bound the number of prime factors
of q by log(q), we get for an A ←$ Z

n×m
p that

Pr[A not invertible] ≤ log(q) · 2n−m.

2.1 Min-entropy

Let x be a discrete random variable supported on a set X and z be a possibly
(continuous) random variable supported on a (measurable) set Z. The condi-
tional min-entropy H̃∞(x|z) of x given z is defined by

H̃∞(x|z) = − log
(
Ez′

[
max
x′∈X

Pr[x = x′|z = z′]
])

.

In the case that z is continuous, this becomes

H̃∞(x|z) = − log
(∫

z′
pz(z′) max

x′∈X
Pr[x = x′|z = z′]

)
,

where pz(·) is the probability density of z.

2.2 Leftover Hashing

We recall the generalized leftover hash lemma [DORS08,Reg05]

Lemma 2.1. Let q be a modulus and let n, k be integers. Let s be a random
variable defined on Z

n
q and let B ←$ Z

n×k
q be chosen uniformly random. Fur-

thermore let Y be a random-variable (possibly) correlated with s. Then it holds
that

Δ((B, sB, Y), (B,u, Y)) ≤
√

qk · 2−H̃∞(s|Y).

562 Z. Brakerski and N. Döttling

2.3 Gaussians

Continuous Gaussians. A matrix Σ ∈ R
n×n is called positive definite, if it

holds for every x ∈ R
n\{0} that xΣx� > 0. For every positive definite matrix

Σ there exists a unique positive definite matrix
√

Σ such that (
√

Σ)2 = Σ.
For a parameter σ > 0 define the n-dimensional gaussian function ρσ : Rn →

(0, 1] by
ρσ(x) = e−π‖x‖2/σ2

.

For a positive definite matrix Σ ∈ R
n×n, define the function ρ√

Σ : Rn →
(0, 1] by

ρ√
Σ(x) := e−πxΣ−1x�

.

For a scalar σ > 0, we will define

ρσ(x) := ρσ·I(x) = e−π‖x‖2/σ2
.

The total measure of ρ√
Σ over R

n is

ρ√
Σ(Rn) =

∫
Rn

ρ√
Σ(x)dx =

√
det(Σ).

In the scalar case this becomes

ρσ(Rn) =
∫
Rn

ρσ(x)dx = σn.

Normalizing ρ√
Σ by ρ√

Σ(Rn) yields the probability density for the continuous
gaussian distribution D√

Σ over R
n.

For a discrete set S ⊆ R
n we define ρ√

Σ(S) by

ρ√
Σ(S) :=

∑
s∈S

ρ√
Σ(s).

In particular, for a integer q we have

ρ√
Σ(qZn) =

∑
z∈qZn

ρ√
Σ(z).

For a gaussian x ∼ Dσ we get the tail-bound

Pr[|x| ≥ t] ≤ 2 · e− t2

2σ2 .

As a simple consequence we get Pr[|x| ≥ (log(λ)) · σ] ≤ negl(λ).

Discrete Gaussians. We say a random variable x defined on Z follows the
discrete gaussian distribution DZ,σ for a parameter σ > 0, if the probability
mass function of x is given by

Pr[x = x′] =
ρσ(x′)
ρσ(Z)

for every x′ ∈ Z.

Hardness of LWE on General Entropic Distributions 563

Modular Gaussians. For a modulus q, we also define the q-periodic gaussian
function ρ̃q,

√
Σ : by

ρ̃q,
√

Σ(x) :=
∑

z∈qZn

ρq,
√

Σ(x − z).

We define ρ̃q,
√

Σ(Tn
q) by

ρ̃q,
√

Σ(Tn
q) := ρ̃q,

√
Σ([−q/2, q/2)n) =

∫
[−q/2,q/2)n

ρ̃q,
√

Σ(x)dx = ρ√
Σ(Rn).

Consequently, normalizing ρ̃q,
√

Σ by ρ̃q,
√

Σ(Tn
q) yields a probability density on

T
n
q . We call the corresponding distribution D√

Σ mod q a modular gaussian. A
x ∼ D√

Σ mod q can be sampled by sampling and x′ ←$ D√
Σ and computing

x ← x′ mod q.
In order to prove our strong converse coding theorems, we need various upper

bounds for the periodic gaussian function. We will use the following variant of
the smoothing lemma of Micciancio and Regev [MR04]4.

Lemma 2.2 (Smoothing Lemma [MR04]). Let ε > 0. Given that 1
σ ≥√

ln(2n(1+1/ε))
π · 1

q , then it holds that

ρσ(qZn\{0}) ≤ ε.

Lemma 2.3. The periodic gaussian function ρ̃q,σ assumes its maximum at q·Zn.
In particular, it holds for all x ∈ R

n that ρ̃q,σ(x) ≤ ρ̃q,σ(0).

See the full version [BD20] for proof.

Lemma 2.4. If q
σ ≥

√
ln(4n)

π , then it holds for all x ∈ R
n that

ρ̃q,σ(x) ≤ 2.

See the full version [BD20] for proof.
We will use the following estimate for shifted gaussians.

Lemma 2.5. Let σ2 > σ1 > 0. Then it holds for all x ∈ R
n and t ∈ R

n that

ρσ1(x − t) ≤ e
π

‖t‖2

σ2
2−σ2

1 · ρσ2(x).

Moreover, the same holds for the q-periodic gaussian function ρ̂qZn,σ1 , i.e.

ρ̂qZn,σ1(x − t) ≤ e
π

‖t‖2

σ2
2−σ2

1 · ρ̂qZn,σ2(x).

See the full version [BD20] for proof.

4 We use the smoothing lemma with the parameter s = 1/σ and the lattice Λ = 1
q
Z
n.

Note that for this lattice it holds that λn = 1/q.

564 Z. Brakerski and N. Döttling

2.4 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [Reg05]. The
search problem LWE(n,m, q, χ), for n,m, q ∈ N and for a distribution χ sup-
ported over the torus Tq is to find s given (A, sA + e), where A ←$ Z

n×m
q

is chosen uniformly random and e ←$ χm is chosen according to χm. The
decisional version dLWE(n,m, q, χ) asks to distinguish between the distributions
(A, sA + e) and (A,u + e), where A, s and e are as in the search version and
u ←$ Z

m
q is chosen uniformly random. We also consider the hardness of solving

dLWE for any m = poly(n log q). This problem is denoted dLWE(n, q, χ). The
matrix version of this problem asks to distinguish (A,S · A + E) from (A,U),
where S ←$ Z

k×n
q , E ←$ χk×m and U ← Z

k×m
q . The hardness of the matrix

version for any k = poly(n) can be established from dLWEn,m,q,χ via a rou-
tine hybrid-argument. Moreover, Applebaum et al. [ACPS09] showed that if the
error-distribution χ is supported on Zq, then the matrix S can also be chosen
from χk×m without affecting the hardness of the problem.

As shown in [Reg05], the LWE(n, q, χ) problem with χ being a continuous
Gaussian distribution with parameter σ = αq ≥ 2

√
n is at least as hard as

approximating the shortest independent vector problem (SIVP) to within a fac-
tor of γ = Õ(n/α) in worst case dimension n lattices. This is proven using a
quantum reduction. Classical reductions (to a slightly different problem) exist
as well [Pei09,BLP+13] but with somewhat worse parameters. The best known
(classical or quantum) algorithms for these problems run in time 2Õ(n/ log γ), and
in particular they are conjectured to be intractable for γ = poly(n).

Regev also provided a search-to-decision reduction which bases the hardness
of the decisional problem dLWE(n, q, χ) on the search version LWE(n, q, χ) when-
ever q is prime of polynomial size. This reduction has been generalized to more
general classes of moduli [Pei09,BLP+13]. Moreover, there exists a sample pre-
serving reduction which [MM11] which bases the hardness of dLWE(n,m, q, χ)
on LWE(n,m, q, χ) for certain moduli q without affecting the number of samples
m.

Finally, Peikert [Pei10] provided a randomized rounding algorithm which
allows to base the hardness of LWE(n,m, q,DZ,σ′) (i.e. LWE with a discrete
gaussian error DZ,σ′) on LWE(n,m, q,Dσ) (continuous gaussian error), where σ′

is only slightly larger than σ.

2.5 Entropic LWE

We will now consider LWE with entropic secrets, entropic LWE for short. In
this variant, we allow the distribution of secrets S to be chosen from a family
of distributions S̄ = {Si}i. This captures the idea the distribution of secrets can
be worst-case from a certain family.

Definition 2.6 (Entropic LWE). Let q = q(λ) be a modulus and n,m =
poly(λ). Let χ be an error-distribution on Tq. Let S̄ = S(λ, q, n,m) be a family

Hardness of LWE on General Entropic Distributions 565

of distributions on Z
n
q . We say that the search problem ent-LWE(q, n,m, S̄, χ) is

hard, if it holds for every PPT adversary A and every S ∈ S̄ that

Pr[A(1λ,A, s · A + e) = s] ≤ negl(λ),

where A ←$ Z
m×n
q , s ←$ S and e ←$ χm. Likewise, we say that the decisional

problem ent-dLWE(q, n,m, S̄, χ) is hard, if it holds for every PPT distinguisher
D and every S ∈ S̄ that

|Pr[D(1λ,A, sA + e) = 1] − Pr[D(1λ,u + e) = 1]| ≤ negl(λ),

where A ←$ Z
m×n
q , s ←$ S, e ←$ χm and u ←$ Z

m
q .

3 Probability-Theoretic Tools

3.1 Singular Values of Discrete Gaussian Matrices

Consider a real valued matrix A ∈ R
n×m, assume for convenience that m ≥ n.

The singular values of A are the square roots of the eigenvalues of the positive
semidefinite (PSD) matrix AA�. They are denoted σ1(A) ≥ · · · ≥ σn(A) ≥ 0.
The spectral norm of A is σ1(A), and we will also denote it by σA. It holds that

σA = σ1(A) = max
x∈Rm\{0}

‖Ax‖
‖x‖ .

We will be interested in the of discrete Gaussian matrices.

Proposition 3.1 ([MP12, Lemma 2.8, 2.9]). Let F ∼ Dn×m
Z,γ , assume for conve-

nience that m ≥ n. Then with all but 2−m probability it holds that σF ≤ γ ·C ·√m,
where C is a global constant.

3.2 Decomposition Theorem for Continuous Gaussians

The following proposition is an immediate corollary of the properties of (contin-
uous) Gaussian vectors. We provide a proof for the sake of completeness.

Proposition 3.2. Let F ∈ Z
n×m be an arbitrary matrix with spectral norm

σF . Let σ, σ1 > 0 be s.t. σ > σ1 · σF . Let e1 ∼ Dn
σ1

and let e2 ∼ D√
Σ for

Σ = σ2I − σ2
1F

�F. Then the random variable e = e1F + e2 is distributed
according to Dm

σ .

Proof. First note that Σ is positive definite: It holds for any x ∈ R
m\{0} that

xΣx� = σ2‖x‖2 − σ2
1‖xF‖2 ≥ σ2‖x‖ − σ2σ2

F‖x‖2 ≥ (σ2 − σ2
1σ

2
F) · ‖x‖2 > 0,

as σ > σ1 · σF. Since e1, e2 are independent Gaussian vectors, they are also
jointly Gaussian, and therefore e is also a Gaussian vector. Since e1, e2 have

566 Z. Brakerski and N. Döttling

expectation 0, then so does e. The covariance matrix of e is given by a direct
calculation, recalling that e1, e2 are independent:

E[e�e] = E[F�e�eF] + E[e�
2 e2]

= F�σ2
1IF + Σ

= σ2
1F

�F + σ2I − σ2
1F

�F

= σ2I,

and the statement follows. ��

4 Hardness of Entropic LWE with Gaussian Noise

In this Section we will establish our main result, the hardness of entropic search
LWE with continuous gaussian noise. Using standard techniques, we can con-
clude that entropic search LWE with discrete gaussian noise is also hard. Finally
for suitable moduli a search-to-decision reduction can be used to establish the
hardness of entropic decisional LWE.

Theorem 4.1. Let C be the global constant from Proposition 3.1. Let q = q(λ)
be a modulus and n,m = poly(λ) where m ≥ n, and let r, γ, σ1 > 0. Let s
be a random variable on Z

n
q distributed according to some distribution S. Let

e1 ∼ Dσ1 mod q be an error term. Assume that s is r-bounded, where we assume
that r = q if no bound for s is known. Further assume that

H̃∞(s|s + e1) ≥ k · log(min{2C · γ · √nr, q}) + ω(log(λ))

Let σ > C ·√m ·γ ·σ1. Then the search problem ent-LWE(q, n,m,S,Dσ) is hard,
provided that dLWE(q, k,DZ,γ) is hard.

Furthermore, if H̃∞(s|s+e1) ≥ k · log(q)+ω(log(λ)) and we have that either
q is prime or s ∈ {0, 1}n, then the decisional problem ent-dLWE(q, n,m,S,Dσ)
is hard, provided that dLWE(q, k,DZ,γ) and dLWE(q, k,m,Dσ) are hard.

See the full version [BD20] for proof.

5 Noise-Lossiness for Modular Gaussians

In this Section, we will compute the noise lossiness for general high-minentropy
distributions. We further show that considerable improvements can be achieved
when considering short distributions. Our Lemmas in this Section can be seen
as strong converse coding theorems for gaussian channels. I.e. if a distribution
codes above a certain information rate, then information must be lost and noise
lossiness quantifies how much information is lost. The following lemma will allow
us to bound H̃∞(s|s + e) by suitably bounding maxs∗ pe(y − s∗).

Hardness of LWE on General Entropic Distributions 567

Lemma 5.1. Let q ∈ N be a modulus and fix n,m ∈ N with m > n. Let s be a
random variable on Z

k
q with min-entropy H̃∞(s). Let χ be a noise distribution

over R
n and let e ∼ χ. Then it holds that

H̃∞(s|s + e) ≥ H̃∞(s) − log
(∫

y

max
s∗ pe(y − s∗)dy

)

in the case that χ is continuous and

H̃∞(s|s + e) ≥ H̃∞(s) − log

(∑
y

max
s∗ Pr

e
[e = y − s∗]

)

in the case that χ is discrete. Moreover, if s is a flat distribution then equality
holds.

Proof. The lemma follows from the following derivation in the continuous case.
The discrete case follows analogously.

H̃∞(s|s + e) = − log
(
E
y
[max
s∗∈S

Pr
s,e

[s = s∗|s + e = y]]
)

= − log
(∫

y

ps+e(y) · max
s∗ Pr

s,e
[s = s∗|s + e = y]dy

)

= − log
(∫

y

max
s∗ ps,s+e(s∗,y)dy

)

= − log

⎛
⎜⎝

∫
y

max
s∗ ps+e|s=s∗(y) · Pr[s = s∗]︸ ︷︷ ︸

≤2−H̃∞(s)

dy

⎞
⎟⎠

≥ H̃∞(s) − log
(∫

y

max
s∗ pe(y − s∗)dy

)
.

To see that equality holds for flat distributions, note that in this case we have
Pr[s = s∗] = 2−H̃∞(s).

5.1 General High Entropy Secrets

We first turn to the case of general high-entropy secrets and prove the following
lemma.

Lemma 5.2. Let n be an integer, let q be a modulus and σ1 be a parameter for
a gaussian. Assume that

q

σ1
≥

√
ln(4n)

π
.

Let s be a random variable on Z
n
q and e1 ∼ Dσ1 mod q. Then it holds that

H̃∞(s|s + e1) ≥ H̃∞(s) − n · log(q/σ1) − 1

568 Z. Brakerski and N. Döttling

We remark that the requirement q
σ1

≥
√

ln(4n)
π is made for technical reasons,

but we restrict ourselves to keep the proof simple. We also remark that this
condition is essentially trivially fulfilled by interesting parameter choices.

We can instantiate Theorem 4.1 with Lemma 5.2 obtaining the following
corollary.

Corollary 5.3. Let C be a global constant. Let q = q(λ) be a modulus and let
n,m, k = poly(λ). Let γ, σ1 > 0. Assume that S is a distribution on Z

n
q with

H̃∞(s) > k · log(q) + n · log(q/σ1) + ω(log(λ)). Now let σ > C · √m · γσ1. Then
ent-LWE(q, n,m,S,Dσ) is hard, provided that dLWE(q, k,DZ,γ) is hard.

Proof (of Lemma 5.2). It holds that∫
y

max
s∗ pe(y − s∗)dy =

1
ρσ1(Rn)

∫
y

max
s∗ ρ̂qZn,σ1(y − s∗)dy

≤ 1
ρσ1(Rn)

·
∫
y

2dy

= 2 · qn

ρσ1(Rn)

= 2 · qn

σn
1

,

where the ρ̂qZn,σ1(y − s∗) ≤ 2 follows by Lemma 2.4 as q
σ1

≥
√

ln(4n)
π . We can

conclude by Lemma 5.1 that

H̃∞(s|s + e) ≥ H̃∞(s) − log
(∫

y

max
s∗ pe(y − s∗)dy

)

≥ H̃∞(s) − n · log(q/σ1) − 1.

5.2 Short Secrets

We will now turn to the case where the secret has bounded norm.

Lemma 5.4. Let n be an integer, let q be a modulus and σ1 be a parameter for
a gaussian. Assume that s is a random-variable on Z

n
q such that ‖s‖ ≤ r for a

parameter r = r(λ). Let e1 ∼ Dσ1 mod q Then it holds that

H̃∞(s|s + e1) ≥ H̃∞(s) −
√

2πn · r

σ1
log(e).

In particular, if σ1 >
√

n · r, then H̃∞(s|s + e1) ≥ H̃∞(s) − π log(e). We can
instantiate Theorem 4.1 with Lemma 5.4 obtaining the following corollary.

Corollary 5.5. Let C be a global constant. Let q = q(λ) be a modulus and let
n,m, k = poly(λ). Let γ = γ(λ) > 0 and σ1 = σ1(λ) > 0. Assume that S is a r-
bounded distribution with H̃∞(s) > k·log(2C ·γ ·σ1)+

√
2πn· r

σ1
log(e)+ω(log(λ)).

Now let σ > C · √
mσ1 · γ. Then ent-LWE(q, n,m,S,Dσ) is hard, provided that

dLWE(q, k,DZ,γ) is hard.

Hardness of LWE on General Entropic Distributions 569

Proof (of Lemma 5.4). Fix some σ2 > σ1. Since it holds that ‖s‖ ≤ r, it holds
that ∫

y

max
s∗ pe(y − s∗)dy =

1
ρσ1(Rn)

∫
y

max
s∗ ρ̂qZn,σ1(y − s∗)dy

≤ 1
ρσ1(Rn)

∫
y

max
s∗ e

π
‖s∗‖2

σ2
2−σ2

1 · ρ̂qZn,σ2(y)dy

≤ 1
ρσ1(Rn)

· e
π r2

σ2
2−σ2

1 ·
∫
y

ρ̂qZn,σ2(y)dy

= e
π r2

σ2
2−σ2

1 · ρσ2(R
n)

ρσ1(Rn)

= e
π r2

σ2
2−σ2

1 ·
(

σ2

σ1

)n

Now, setting σ2 = σ1 · √
1 + η we get that

∫
y

max
s∗ pe(y − s∗)dy ≤ e

π r2

σ2
2−σ2

1 ·
(

σ2

σ1

)n

= e
π r2

ησ2
1 · (1 + η)n/2 ≤ e

π r2

ησ2
1
+nη

2

By Lemma 5.1, we can conclude that

H̃∞(s|s + e1) ≥ H̃∞(s) −
(

π
r2

ησ2
1

+
nη

2

)
log(e).

Recall that η is still a free parameter. This expression is minimized by choosing

η =
√

2π
n

r
σ1

, which yields

H̃∞(s|s + e1) ≥ H̃∞(s) −
√

2πn · r

σ1
log(e).

6 Tightness of the Result

In this Section, we will show that for general moduli and general min-entropy
distributions our result is tight up to polynomial factors.

For a modulus q and a noise parameter σ, we will provide an example of a
distribution s with min-entropy ≈ n · log(q/σ), such that ent-LWE(q, n,m,X , χ)
is easy. For this counter-example, the choice of the modulus q is critical.

Lemma 6.1. Let q = q(λ) be a modulus such that q has a divisor p of size
|p| > 2B + 1, let n,m = poly(λ) and let χ be a B-bounded error-distribution.
Define the distribution S to be the uniform distribution on p · Zn

q . Then there
exists an efficient algorithm A that solves ent-LWE(q, n,m,S, χ).

Corollary 6.2. There exist moduli q and distributions S with min-entropy ≥
n · (log(q/σ) − log(log(λ)))) such that ent-LWE(q, n,m,S,Dσ) is easy.

570 Z. Brakerski and N. Döttling

The corollary follows from Lemma 6.1 by choosing p such that p = 2 log(λ) ·
σ + 1 and noting that a gaussian of parameter σ is log(λ) · σ bounded, except
with negligible probability. Moreover, for this choice of p the distribution S in
Lemma 6.1 has min-entropy n · log(q/p) ≥ n · log(q/σ) − 2 log(log(λ)).

Proof (of Lemma 6.1). Assume that reduction modulor p computes a central
residue class representation in [−p/2, p/2]. The algorithm A proceeds as follows.

A(A,y):
– Compute e ← y mod p.
– Solve the equation system s·A = y−e for s, e.g. via Gaussian elimination.
– Output s.

To see that the algorithm A is correct, note that

y mod p = (s · A + e) mod p = (p · r · A + e) mod p = e

as p ≥ 2B and ‖e‖ ≤ B.

7 Barriers for Entropic LWE

In the last Section we provided an attack on entropic LWE when the min-entropy
of the secret is below n · log(q/σ) for a worst-case choice of the modulus q. On
might still hope that for more benign choices of the modulus q this problem
might be hard in this entropy regime. In this section we will provide a barrier
for the hardness of entropic LWE in this regime for any modulus. In particular,
we will show that for entropies below n · log(q/σ), the hardness of entropic LWE
does not follow from any standard assumption in a black-box way. This leaves
open the possibility that in this regime the hardness of entropic LWE may be
established from more exotic knowledge assumptions. To establish our result, we
will use a framework developed by Wichs [Wic13].

7.1 Simulatable Attacks

We first recall the notion of cryptographic games as a way to characterize cryp-
tographic standard assumptions due to Haitner and Holenstein [HH09]. This
characterization captures essentially all falsifiable assumptions [Nao03] used in
cryptography, such as LWE.

Definition 7.1 (Cryptographic Games [HH09]). A cryptographic game C =
(Γ, c) is defined by a (possibly inefficient) randomized machine Γ , called the
challenger, and a constant c ∈ [0, 1). On input a security parameter 1λ, the
challenger interacts with an attack A(1λ) and outputs a bit b. Denote this by
Γ (1λ) � A(1λ). The advantage of an attacker A against C is defined by

AdvA
C (1λ) = Pr[(Γ (1λ) � A(1λ)) = 1] − c.

We say that a cryptographic game C is secure if for all PPT attackers A the

advantage AdvÅ
C (λ) is negligible.

Hardness of LWE on General Entropic Distributions 571

Definition 7.2 (Black-Box Reduction). Let C1 and C2 be cryptographic
games. A black-box reduction deriving the security of C2 from the security of
C1 is an oracle PPT-machine B(·) for which there are constants c, λ0 such that
for all λ ≥ λ0 and all (possibly inefficient, non-uniform) attackers Aλ with
advantage AdvAλ

C1
(λ) ≥ 1/2, we have AdvBAλ

C2
(λ) ≥ λ−c.

We remark that the choice of the constant 1/2 for the advantage of Aλ is
arbitrary and can be replaced by a non-negligible function (depending Aλ). We
now recall the notion of simulatable attacks [Wic13].

Definition 7.3 (Simulatable Attacks [Wic13]). An ε-simulatable attack on
an assumption C is a tuple (A,Sim) such that A is a stateless, non-uniform
possibly inefficient attacker against C, and Sim is a stateful PPT simulator. We
require the following two properties to hold.

– The (inefficient) attacker A successfully breaks C with advantage 1 − negl(λ).
– For every (possibly inefficient) oracle machine M(·) making at most q queries

to its oracle it holds that

|Pr[MA(1λ,1)(1λ) = 1] − Pr[MSim(1λ) = 1]| ≤ poly(q) · ε.

where the probabilities are taken over all the random choices involved.

We use the shorthand simulatable attack for ε-simulatable attack with some neg-
ligible ε.

We remark that for reasons of conceptual simplicity Wichs [Wic13] required
the advantage of the simulatable adversary A to be 1. But it can easily be verified
that Theorem 7.4 below also works with our slightly relaxed notion which allows
the unbounded adversary to have advantage 1 − negl(λ). The following theorem
by Wichs [Wic13] shows that the existence of a simulatable attack for some
assumption C1 implies that there cannot by a reduction B which reduces the
hardness of C1 to any standard assumption C2, where C1 and C2 are cryptographic
games in the sense of Definition 7.1.

Theorem 7.4 ([Wic13] Theorem 4.2). If there exists a simulatable attack
against some assumption C1 and there is a black-box reduction B reducing the
security of C1 to some assumption C2, then C2 is not secure.

The idea for the proof of this theorem is simple: If an attack A against C1

is simulatable, then the behavior of BSim will be indistinguishable from BA. But
since A breaks C1, it holds that BA breaks C2. Therefore, the efficient algorithm
BSim must also break C2, implying that C2 is insecure.

7.2 A Simulatable Attack for Entropic LWE

We will now provide a simulatable attack against entropic (search-)LWE. The
attack consists of a pair of a min-entropy distribution S and an attacker A.

572 Z. Brakerski and N. Döttling

Since we want to prove a result for general min-entropy distributions, we assume
that both the adversary and the min-entropy distribution S are adversarially
chosen. Thus, we can consider the distribution S as running a coordinated attack
with the attacker A. More importantly, any black-box reduction B reducing the
entropic LWE to a standard assumption will only have black-box access to the
distribution S. We remark that, to the best of our knowledge, currently all
reductions in the realm of leakage resilient cryptography only make black-box
use of the distribution. Making effective non-black box use of an adversarially
chosen sampling circuit seems out of reach for current techniques. Assume in the
following that m ≥ 2n and let χ be a B-bounded error distribution. Furthermore
let k be a positive integer. Consider the following attacker, consisting of the
adversary A and the distribution S.

– The distribution S is a flat distribution on a set S of size 2k, where the set S
is chosen uniformly random.

– AS(A,y): Given a pair (A,y), the attacker A proceeds as follows:
• Check if the matrix A has an invertible column-submatrix, if not abort

and output ⊥ (this check can be performed efficiently using linear alge-
bra).

• Compute a set I ⊆ [m] of size n such that the column-submatrix AI is
invertible (where AI is obtained by dropping all columns of A that do
not have indices in I).

• Set A′ = AI and y′ = yI (i.e. y′ is y projected to the coordinates in I).
• Initialize a set S′ = ∅.
• For every s ∈ S, check if ‖y − sA‖∞ ≤ B, if so include s in the set S′.
• Choose an s ←$ S′ uniformly random and output s.

First observe that whenever the matrix A has an invertible submatrix, then
A does have advantage 1. The probability that A does not have an invertible
submatrix is at most log(q) ·2n−m = log(q) ·2−n, which is negligible (see Sect. 2).
Consequently, A breaks ent-LWE(q, n,m,S, χ) with probability 1 − negl(λ).

We will now provide our simulator for the adversary A and the distribution
S. The simulator jointly simulates the distribution S and the attacker A, i.e.
from the interface of an oracle machine B it holds that Sim(1λ, ·, ·) simulates
(S(·),A(·)). The advantage of the simulator stems from having a joint view of
the samples provided so far and the inputs of the adversary A. The main idea
of our simulator is that is samples the set S lazily and keeps track of all the
samples S∗ it gave out so far. When provided with an instance (A,y), it will
perform the same check as A but restricted to the set X ′ and therefore run in
time O(q). Recall that the simulator is stateful.

– Simulator Sim(1λ, ·, ·):
• Initialize a set S∗ = ∅.
• Whenever a sample is queried from S, choose s ←$ Zn

q uniformly random,
include s in the set S∗ and output s.

• Whenever an instance is provided to A, do the following:

Hardness of LWE on General Entropic Distributions 573

∗ Initialize a set S′ = ∅.
∗ Check for every s ∈ S∗, check if ‖y − sA‖∞ ≤ B, if so include s in

the set S′.
∗ Choose an s ←$ S′ uniformly random and output s.

We will now show that the simulator Sim simulates the attack (A,X) with
negligible error. We need the following lemma.

Lemma 7.5. Let z ←$ Z
n
q be distributed uniformly random. Then it holds that

Pr[‖z‖∞ ≤ B] ≤ ((2B + 1)/q)n.

Proof. Since all the components zi of z are distributed uniformly and indepen-
dently, it holds that

Pr[‖z‖∞ ≤ B] =
n∏

i=1

Pr[|zi| ≤ B] ≤ ((2B + 1)/q)n.

Theorem 7.6. Let χ = χ(λ) be a B-bounded error-distribution. Further, let
k < n · log(q/(2B + 1)) − ω(log(λ)) be an integer. Let S̄ be the family of all
distributions on Z

n
q with min-entropy at most k. Then, if there is a reduction B

from ent-LWE(q, n,m, S̄, χ) to any cryptographic game C, then C is not secure.

See the full version [BD20] for proof.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 35

[AD97] Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-
case equivalence. In: 29th Annual ACM Symposium on Theory of Com-
puting, El Paso, TX, USA, 4–6 May 1997, pp. 284–293. ACM Press (2017)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: 28th Annual ACM Symposium on Theory of Computing,
Philadephia, PA, USA, 22–24 May 1996, pp. 99–108. ACM Press (1996)

[AKPW13] Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding,
revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 4

[BBPS19] Bolboceanu, M., Brakerski, Z., Perlman, R., Sharma, D.: Order-LWE
and the hardness of ring-LWE with entropic secrets. In: Galbraith,
S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 91–
120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-
8 4. https://eprint.iacr.org/2018/494

[BD20] Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distribu-
tions. Cryptology ePrint Archive, Report 2020/119 (2020). https://eprint.
iacr.org/2020/119 (Full version of this work)

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-030-34621-8_4
https://doi.org/10.1007/978-3-030-34621-8_4
https://eprint.iacr.org/2018/494
https://eprint.iacr.org/2020/119
https://eprint.iacr.org/2020/119

574 Z. Brakerski and N. Döttling

[BGM+16] Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hard-
ness of learning with rounding over small modulus. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49096-9 9

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS
2012: 3rd Innovations in Theoretical Computer Science, Cambridge, MA,
USA, 8–10 January 2012, pp. 309–325. Association for Computing Machin-
ery (2012)

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing,
Palo Alto, CA, USA, 1–4 June 2013, pp. 575–584. ACM Press (2013)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 42

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd Annual Symposium on
Foundations of Computer Science, Palm Springs, CA, USA, 22–25 October
2011, pp. 97–106. IEEE Computer Society Press (2011)

[DM13] Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the
learning-with-errors problem. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 18–34. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 2

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. SIAM J.
Comput. 38(1), 97–139 (2008)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing,
Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178. ACM Press (2009)

[GKPV10] Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: Yao, A.C.-C (ed.) ICS 2010:
1st Innovations in Computer Science, Tsinghua University, Beijing, China,
5–7 January 2010, pp. 230–240. Tsinghua University Press (2010)

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA,
1–4 June 2013, pp. 545–554. ACM Press (2013)

[HH09] Haitner, I., Holenstein, T.: On the (im)possibility of key dependent
encryption. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
202–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00457-5 13

[Mic18] Micciancio, D.: On the hardness of learning with errors with binary secrets.
Theory Comput. 14(1), 1–17 (2018)

[MM11] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9 26

https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-38348-9_2
https://doi.org/10.1007/978-3-642-00457-5_13
https://doi.org/10.1007/978-3-642-00457-5_13
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-22792-9_26

Hardness of LWE on General Entropic Distributions 575

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 41

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on Gaussian measures. In: 45th Annual Symposium on Foundations of
Computer Science, Rome, Italy, 17–19 October 2004, pp. 372–381. IEEE
Computer Society Press (2004)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 6

[NIS] NIST: Post-quantum cryptography standardization. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st Annual ACM
Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June
2009, pp. 333–342. ACM Press (2009)

[Pei10] Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 5

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Sym-
posium on Theory of Computing, Baltimore, MA, USA, 22–24 May 2005,
pp. 84–93. ACM Press (2005)

[Sha48] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech.
J. 27(3), 379–423 (1948)

[Sha49] Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1),
10–21 (1949)

[W+59] Wolfowitz, J., et al.: Strong converse of the coding theorem for semicon-
tinuous channels. Ill. J. Math. 3(4), 477–489 (1959)

[Wic13] Wichs, D.: Barriers in cryptography with weak, correlated and leaky
sources. In: Kleinberg, R.D. (ed.) ITCS 2013: 4th Innovations in Theo-
retical Computer Science, Berkeley, CA, USA, 9–12 January 2013, pp.
111–126. Association for Computing Machinery (2013)

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-540-45146-4_6
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/978-3-642-14623-7_5

Key-Homomorphic Pseudorandom
Functions from LWE with Small Modulus

Sam Kim(B)

Stanford University, Stanford, USA
skim13@cs.stanford.edu

Abstract. Pseudorandom functions (PRFs) are fundamental objects in
cryptography that play a central role in symmetric-key cryptography.
Although PRFs can be constructed from one-way functions generically,
these black-box constructions are usually inefficient and require deep
circuits to evaluate compared to direct PRF constructions that rely on
specific algebraic assumptions. From lattices, one can directly construct
PRFs from the Learning with Errors (LWE) assumption (or its ring vari-
ant) using the result of Banerjee, Peikert, and Rosen (Eurocrypt 2012)
and its subsequent works. However, all existing PRFs in this line of work
rely on the hardness of the LWE problem where the associated modulus
is super-polynomial in the security parameter.

In this work, we provide two new PRF constructions from the LWE
problem. In each of these constructions, each focuses on either minimizing
the depth of its evaluation circuit or providing key-homomorphism while
relying on the hardness of the LWE problem with either a polynomial
modulus or nearly polynomial modulus. Along the way, we introduce a
new variant of the LWE problem called the Learning with Rounding and
Errors (LWRE) problem. We show that for certain settings of parame-
ters, the LWRE problem is as hard as the LWE problem. We then show
that the hardness of the LWRE problem naturally induces a pseudoran-
dom synthesizer that can be used to construct a low-depth PRF. The
techniques that we introduce to study the LWRE problem can then be
used to derive variants of existing key-homomorphic PRFs whose secu-
rity can be reduced from the hardness of the LWE problem with a much
smaller modulus.

1 Introduction

A pseudorandom function (PRF) [32] is a deterministic function F : K×X → Y
that satisfies a specific security property: for a randomly sampled key k

r← K, the
output of the function F (k, ·) is computationally indistinguishable from those of
a truly random function. PRFs are fundamental objects in cryptography that
serve as a basis for symmetric cryptography. Even beyond symmetric cryptog-
raphy, PRFs serve as one of the core building blocks for many advanced crypto-
graphic constructions and protocols.

In theory, PRFs can be constructed from any one-way function via the trans-
formation of [32,34]. However, the PRFs that are constructed from one-way
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 576–607, 2020.
https://doi.org/10.1007/978-3-030-45724-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_20

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 577

functions in a blackbox way are generally inefficient. Furthermore, the trans-
formation of [32,34] is inherently sequential and therefore, the resulting PRFs
require deep circuits to evaluate. For practical deployment, this is problematic
as symmetric objects like PRFs are often deployed inside designated hardware
devices similar to how modern blockciphers, such as AES, are incorporated into
many modern processors. For these settings, it is important for PRFs to exhibit
low depth evaluation circuits that require few computing cycles to evaluate using
multiple cores or processing units.

For these reasons, constructing low-depth pseudorandom functions from stan-
dard cryptographic assumptions have been a highly active area of research.
Starting from the seminal work of Naor and Reingold [45], there have been
great progress in constructing low-depth pseudorandom functions from group-
based assumptions like the Decisional Diffie-Hellman (DDH) assumption [1,2,45].
However, constructing low-depth PRFs from standard lattice assumptions such
as the Learning with Errors (LWE) assumption [48] has been surprisingly more
difficult. Indeed, a low-depth PRF from LWE was constructed by a breakthrough
result of Banerjee, Peikert, and Rosen [11], but only after the realization of seem-
ingly more powerful primitives such as (lattice-based) identity-based encryp-
tion [3,4,27,31] and fully homomorphic encryption [22,23,30].

Key-Homomorphic PRFs. Since the work of [11], the study of lattice-based
PRFs has become a highly productive area of research. There have been a
sequence of results that further improve the constructions of [11] with vari-
ous trade-offs in the parameters [10,17,28,35,43]. A long sequence of results
also show how to construct PRFs with useful algebraic properties such as key-
homomorphic PRFs [10,17,25], constrained PRFs [16,21,25,26], and even water-
markable PRFs [26,36,37,47] from LWE.

A special family of PRFs that are particularly useful for practical applications
are key-homomorphic PRFs. The concept was first introduced by Naor, Pinkas,
and Reingold [44] and it was first formalized as a cryptographic primitive by
Boneh et al. [17]. We say that a pseudorandom function F : K × X → Y is key-
homomorphic if the key-space (K,⊕) and the range of the PRF (Y,⊗) exhibit
group structures such that for any two keys k1, k2 and input x ∈ X , we have
F (k1 ⊕ k2, x) = F (k1, x) ⊗ F (k2, x). Key-homomorphic PRFs have many use-
ful applications in symmetric cryptography and give rise to distributed PRFs,
symmetric-key proxy re-encryption, and updatable encryption. The study of
updatable encryption, in particular, have recently gained a considerable amount
of traction [17,19,29,38,40]. Most of these existing proposals for updatable
encryption rely on key-homomorphic PRFs or use direct updatable encryption
constructions that take advantage of similar algebraic structures.

LWE Modulus. Despite significant progress in our understanding of lattice-
based PRFs as described above, all existing direct PRF constructions suffer
from one caveat: the modulus q, which defines the underlying ring for the PRF,
must be set to be super-polynomial in the security parameter. The need for a
large modulus q has several disadvantages. The first and immediate disadvantage
is efficiency. A lattice-based PRF is generally defined with respect to a set of

578 S. Kim

public matrices in Z
n×m
q and a secret vector in Z

n
q for some suitable choice of

parameters n and m. A bigger modulus q means that more space is required to
store these values and more time is needed to evaluate the PRF.

Another disadvantage of a large modulus q is related to the quality of the LWE
assumption that is needed to prove security. Generally, PRFs that are defined
with a super-polynomial modulus q relies on the hardness of the LWE prob-
lem with a super-polynomial noise-to-modulus ratio. This means that the secu-
rity of the PRF can only be based on the hardness of solving worst-case lattice
problems with a super-polynomial approximation factor, which is a significantly
stronger assumption than what is required by many other lattice-based crypto-
graphic constructions. In fact, today,we canbase seemingly stronger primitives like
fully-homomorphic encryption [7,24] and attribute-based encryption [33] (when
restricted to NC1 computations) on the hardness of approximating worst-case lat-
tice problems with only polynomial approximation factors. This clearly demon-
strates that our current understanding of lattice-based PRFs is still quite limited.

Many existing lattice-based PRFs including the original constructions of [11]
are, in fact, conjectured to be secure even when they are instantiated with much
smaller values of the modulus q. However, their formal proof of security has
been elusive for many years. An important question in the study of lattice-based
PRFs is whether there exist direct lattice-based PRF constructions that rely on
a polynomial modulus q that still exhibit some of the useful features not satisfied
by the generic constructions [32,34] such as low-depth evaluation circuits or key-
homomorphism.

1.1 Our Contributions

In this work, we present two PRF constructions from the hardness of the LWE
problem with a small modulus q. For our first construction, we focus on mini-
mizing the depth of the evaluation circuit while in our second construction, we
focus on constructing a key-homomorphic PRF. In both settings, our goal is to
construct lattice-based PRFs that work over small moduli q.

1.1.1 Low-Depth PRF
In our first PRF construction, our main focus is on minimizing the size of the
modulus q while also minimizing the depth of the PRF evaluation circuit. We
provide an overview of the construction in Sect. 2 and briefly discuss our app-
roach below. The resulting PRF can be instantiated with a range of parameter
settings that are determined by a trade-off between the depth of the evalua-
tion circuit and the associated modulus q. We consider two types of parameter
settings that provide different levels of security.

– Theoretical security: In this setting, we guarantee that any adversary has at
most a negligible advantage in breaking the PRF. For this level of security,
we can set the parameters of our PRF such that the modulus is polynomial
in the security parameter q = Õ(λ2.5) and the depth of the evaluation circuit
is in NC2.

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 579

– 2λ-security: In this setting, we guarantee that an adversary’s advantage in
breaking the PRF degrades exponentially in the security parameter. For this
level of security, we can set the parameters of our PRF such that the depth
of the evaluation circuit is Õ(λ/ log q). In particular, setting q = 2Õ(

√
λ), the

PRF evaluation can be done in depth Õ(
√

λ). Previously, all lattice-based
PRFs either required that the depth of the evaluation circuit is at least Õ(λ)
or the modulus q to be at least 2Õ(λ).

We provide a comparison of the size of the modulus q and the depth of the
evaluation circuit that is needed for our PRF with those of existing LWE-based
PRFs in Table 1. We further discuss how to interpret our parameter settings in
Sect. 1.2 and how to concretely instantiate them in Sect. 4.3.

Synthesizers and LWRE. The main intermediate object that we use to con-
struct our PRF is a pseudorandom synthesizer (Definition 4.5), which was first
introduced by Naor and Reingold [45]. They showed that a pseudorandom syn-
thesizer that can be computed by a low-depth circuit can be used to construct a
PRF that can also be computed by a low-depth circuit. The work of Banerjee,
Peikert, and Rosen [11] first showed that such pseudorandom synthesizers can be
constructed from a natural variant of the LWE problem called the Learning with
Rounding (LWR) problem. They showed that the hardness of the LWR problem
can be reduced from the hardness of the LWE problem when the modulus q is
set to be very large.

To construct a pseudorandom synthesizer from a small-modulus LWE prob-
lem, we introduce yet another variant of the LWE problem called the Learning
with Rounding and Errors (LWRE) problem whose hardness naturally induces a
pseudorandom synthesizer. The challenger for an LWRE problem chains multiple
samples of the LWR and LWE problems together such that the error terms that
are involved in each of the LWE samples are derived from the “noiseless” LWR
samples. This specific way of chaining LWR and LWE samples together allows
us to reduce the hardness of LWRE from the hardness of the LWE problem with
a much smaller modulus q. We provide an overview of the LWRE problem and
the reduction from LWE in Sect. 2. We precisely formulate the LWRE problem
in Definition 4.1 and provide the formal reduction in the full version of this work.

The LWRE problem and our synthesizer construction naturally extend to
the ring setting as well. In the full version of this work, we formulate the Ring-
LWRE problem similarly to how the Ring-LWE and Ring-LWR problems are
defined. Then, we show how to construct a pseudorandom synthesizer from the
Ring-LWRE problem.

1.1.2 Key-Homomorphic PRF
For our second construction, we focus on constructing a key-homomorphic PRF
with a small modulus q. Specifically, we provide a key-homomorphic PRF whose
security (either theoretical or 2λ-security) can be based on the hardness of LWE
with a polynomial size q without relying on random oracles. All previous key-
homomorphic PRFs from lattices either relied on LWE with a super-polynomial

580 S. Kim

Table 1. Comparison of the PRF constructions in this work and the existing PRF
constructions based on LWE. For each of the PRF constructions, the table denotes the
size of the modulus q that is needed to prove 2λ-security from LWE and the depth of
the evaluation circuit that is needed to evaluate the PRFs.

Construction Size of modulus Evaluation depth

[11, GGM] λΩ(1) Ω(λ log λ)

[11, Synthesizer] 2Ω(λ) Ω(log2 λ)

[11, Direct] 2Ω(λ log λ) Ω(log2 λ)

[17] 2Ω(λ log λ) Ω(log2 λ)

[10] 2Ω(λ) Ω(log2 λ)

[28] 2Ω(λ) Ω(log1+o(1) λ)

[43] 2Ω(λ) Ω(log2 λ)

[35] 2Ω(λ) Ω(log1+o(1) λ)

This work: Synthesizer-based 2Ω(
√

λ) Ω(
√

λ log λ)

This work: BP-based λΩ(1) Ω(λ2 log λ)

modulus q [10,17,25] or random oracles [17,44]. As in previous LWE-based key-
homomorphic PRFs, our construction is “almost” key-homomorphic in that the
homomorphism on the PRF keys hold subject to some small rounding error,
which does not significantly impact its usefulness to applications.

Our construction relies on the same chaining technique that is used to con-
struct our first PRF. This time, instead of chaining multiple LWE and LWR sam-
ples together as was done in our first construction, we chain multiple instances of
the existing lattice-based PRFs themselves. For most existing PRF constructions
that are based on LWE, their proof of security proceeds in two steps:

1. Define a “noisy” variant of the deterministic PRF function whose security
can be based on the hardness of the LWE problem.

2. Show that the deterministic PRF function and its “noisy” variant have the
same input-output behavior with overwhelming probability over the random-
ness used to sample the noise.

Generally, in order to show that the deterministic PRF and its “noisy” variant
are statistically indistinguishable in step 2 above, the modulus q has to be set
to be super-polynomial in the security parameter.

To reduce the need for a large modulus q in step 2, we chain multiple instances
of the deterministic PRF and its noisy variant. Namely, our PRF construction
consists of many noisy variants of these PRFs that are chained together such
that the noise that is needed to evaluate the noisy PRF in a chain is derived
from a PRF in the previous level of the chain. By setting the initial PRF at the
start of the chain to be the original deterministic PRF, the entire evaluation of
the chained PRF can be made to be deterministic.

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 581

This simple way of chaining multiple instances of deterministic and noisy vari-
ants of PRFs allows us to prove the security of the final PRF from the hardness of
LWE with a much smaller modulus q. In fact, when we chain multiple instances
of a key-homomorphic PRF, the resulting PRF is also key-homomorphic. Instan-
tiating the chain with the Banerjee-Peikert key-homomorphic PRF [10] results in
a key-homomorphic PRF that works over a polynomial modulus q. We provide a
detailed overview of our technique in Sect. 2 and provide the formal construction
and its security proof in Sect. 5.

1.2 Discussions

Regarding Theoretical and 2λ-Security. The reason why we present our
results with respect to both theoretical and 2λ-security is due to the fact that
the generic PRF constructions [32] can already be used to construct a low-
depth PRF that provides asymptotically equivalent level of security. Note that
using a length-doubling pseudorandom generator, the Goldwasser, Goldreich and
Micali [32] construction can be used to provide a PRF that can be evaluated in
depth linear in the input size of the PRF. One way to achieve a poly-logarithmic
depth PRF using the GGM construction is to first hash the input using a univer-
sal hash function into a domain of size 2ω(log λ) and then apply the PRF on the
hash of the message. As the hashed outputs are poly-logarithmic in length, the
PRF can be evaluated in poly-logarithmic depth. At the same time, as long as
the adversary is bounded to making a polynomial number of evaluation queries
on the PRF, a collision on the hash function occurs with negligible probability
and therefore, any efficient adversary can have at most negligible advantage in
breaking the PRF. As a length-doubling PRG can be constructed from LWE
with a polynomial modulus q, this gives an LWE-based PRF with both small
evaluation depth and small modulus q. Of course, the actual security of this final
PRF is quite poor since the probability that an adversary forces a collision on
the hash function is barely negligible.

Therefore, the way to view our low-depth PRF is to consider its parameters
when they are set to provide 2λ-security. In this setting, our PRF provides
security under the condition that d log q = Ω̃(λ) where d is the depth of the
evaluation circuit. When setting Ω̃(log q) =

√
λ, the evaluation circuit has depth

that scales with
√

λ. This means that setting λ = 128 and ignoring arithmetic
and vector operations, our PRF can be evaluated by a circuit with depth ≈11
that works over a ≈11-bit modulus. The GGM PRF, on the other hand, requires
a circuit with depth at least λ = 128, which is prohibitive for practical use, while
the existing lattice-based PRFs require 7 ≈ log λ circuit depth, but must operate
over at least a 128-bit modulus. We discuss concrete instantiation of our scheme
in Sect. 4.3.

We note that for key-homomorphic PRFs, no construction that works over a
polynomial modulus was previously known. Therefore, our second PRF construc-
tion can be viewed as the first key-homomorphic PRF that works over a poly-
nomial modulus independent of whether it provides theoretical or 2λ-security.

582 S. Kim

On the Chaining Method and Blockciphers. The pseudorandom synthe-
sizers or PRFs in this work consist of many repeated rounds of computation
that are chained together in such a way that the output of each round of com-
putation is affected by the output of the previous round. This way of chaining
multiple rounds of computation is reminiscent of the structure of many exist-
ing blockciphers such as DES or AES, which also consist of many rounds of bit
transformations that are chained together. Interestingly, chaining in blockciphers
and chaining in our work seem to serve completely opposite roles. In blockcipher
design, chaining is generally used to achieve the effect of diffusion, which guar-
antees that a small change to the input to the blockcipher significantly alters its
final output. This assures that no correlation can be efficiently detected between
the input and the output of the blockcipher. In this work, chaining is used to
actually prevent diffusion. Namely, chaining guarantees that some small error
that is induced by the PRF evaluation does not affect the final output of the
PRF. This allows us to switch from the real PRF evaluation to the “noisy” PRF
evaluation in our hybrid security argument such that we can embed an LWE
challenge to the output of the PRF.

1.3 Other Related Work

PRF Cascades. The techniques that are used in this work are conceptually
similar to PRF cascading, which is the process of chaining multiple small-domain
PRFs to construct large-domain PRFs. The technique was first introduced by
Bellare et al. [14] and was further studied by Boneh et al. [18]. PRF cascades
serve as a basis for NMAC and HMAC PRFs [12,13].

LWR for Bounded Number of Samples. There have been a sequence of
results that study the hardness of the Learning with Rounding problem when
the number of samples are a priori bounded. Alwen et al. [8] first showed that
such variant of LWR is as hard as LWE even when the modulus q is set to be
polynomial in the security parameter. Bogdanov et al. [15] improved the statisti-
cal analysis of this reduction using Rényi divergence. Alperin-Sherif and Apon [6]
further improved these previous results such that the reduction from LWE to
LWR is sample-preserving.

2 Overview

In this section, we provide a high level overview of the main techniques that we
use in this work. For the full details of our main results and proofs, we refer the
readers to Sects. 4 and 5.

We divide the overview into three parts. In Sect. 2.1, we provide additional
background on existing results on constructing lattice-based PRFs. In Sect. 2.2,
we provide an overview of our synthesizer construction from a new computational
problem called the Learning with Rounding and Errors (LWRE) problem. Then,
in Sect. 2.3, we show how the technique that we use to prove the security of
our synthesizer-based PRF can be applied to the parameters for existing lattice-
based key-homomorphic PRFs.

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 583

2.1 Background on Lattice PRFs via Synthesizers

The main intermediate primitive that we use to construct our first lattice-based
PRF is a special family of pseudorandom generators called pseudorandom syn-
thesizers [45]. A pseudorandom synthesizer over a domain D is a two-to-one
function S : D × D → D such that for any (a priori unbounded) polynomial
number of inputs a1, . . . , a�

r← D, and b1, . . . , b�
r← D, the set of �2 elements

{S(ai, bj)}i,j∈[�] are computationally indistinguishable from uniformly random
elements {ui,j}i,j∈[�]

r← D�2 .
A pseudorandom synthesizer S : D × D → D induces a PRF F with key

space D2�, domain {0, 1}�, and range D for any positive power-of-two integer �
as follows:

– Define a PRF key to consist of 2� uniformly random elements in D:
(

s1,0 s2,0

s1,1 s2,1
· · · s�,0

s�,1

)
.

– To evaluate the PRF on an input x ∈ {0, 1}�, compress the subset of the
elements s1,x1 , . . . , s�,x�

into a single element of D by iteratively applying the
synthesizer:

S
(

· · · S(
S(s1,x1 , s2,x2), S(s3,x3 , s4,x4)

)
, · · · S(s�−1,x�−1 , s�,x�

) · · ·
)
.

The pseudorandomness of the output of the PRF can roughly be argued as
follows. Since each of the � elements s1,x1 , . . . , s�,x�

∈ D that are part of
the PRF key are sampled uniformly at random, the compressed �/2 elements
S(s1,x1 , s2,x2), . . . , S(x�−1,x�−1 , x�,x�

) are computationally indistinguishable from
random elements in D. This, in turn, implies that the compression of these �/2
elements into �/4 elements are pseudorandom. This argument can be applied
iteratively to show that the final output of the PRF is computationally indistin-
guishable from uniform in D.

LWE and Synthesizers. As pseudorandom synthesizers imply pseudorandom
functions, one can naturally hope to construct a pseudorandom synthesizer from
the LWE problem [48]. Recall that the LWEn,q,χ assumption, parameterized by
positive integers n, q and a B-bounded error distribution χ, states that for any (a
priori unbounded) m = poly(λ), if we sample a uniformly random secret vector
s r← Z

n
q , uniformly random public vectors a1, . . . ,am

r← Z
n
q , “small” error terms

e1, . . . , e� ← χm, and uniformly random values u1, . . . , um
r← Zq, the following

distributions are computationally indistinguishable:

(a1, 〈a1, s〉 + e1) ≈c (a1, u1)
(a2, 〈a2, s〉 + e2) ≈c (a2, u2)

...
...

(am, 〈am, s〉 + em) ≈c (am, um).

584 S. Kim

Given the LWEn,q,χ assumption, it is natural to define a (randomized) pseudo-
random synthesizer S : Zn×n

q × Z
n×n
q → Z

n×n
q as follows

S(S,A) = S · A + E,

where the error matrix E ← χn×n is sampled randomly by the synthesizer S.
It is easy to show via a standard hybrid argument that for any set of matrices
S1, . . . ,S�

r← Z
n×n
q , A1, . . . ,A�

r← Z
n×n
q , and E1,1, . . . ,E�,� ← χn×n, the pair-

wise applications of the synthesizer S(Si,Aj) = Si · Aj + Ei,j for all i, j ∈ [n]
result in pseudorandom matrices.

Learning with Rounding. The problem with the synthesizer construction
above is that the synthesizer must be randomized. Namely, in order to argue
that the synthesizer’s outputs are pseudorandom, the evaluation algorithm must
flip random coins and sample independent error matrices Ei,j ← χn×n for each
execution S(Si,Aj) for i, j ∈ [�]. Otherwise, if the error matrices are derived
from an additional input to the synthesizer, then the error matrices for each
evaluation of the synthesizer S(Si,Aj) for i, j ∈ [�] must inevitably be correlated
and hence, the security of the synthesizer cannot be shown from the hardness of
LWEn,q,χ.

Banerjee, Peikert and Rosen [11] provided a way to overcome this obstacle
by introducing a way of derandomizing errors in LWE samples. The idea is quite
simple and elegant: instead of adding small random error terms e ← χ to each
inner product 〈a, s〉 ∈ Zq, one can deterministically round it to one of p <
q partitions or “buckets” in Zq. Concretely, the idea can be implemented by
applying the modular rounding operation �·�p : Zq → Zp to the inner product
〈a, s〉, which maps 〈a, s〉 → �〈a, s〉 · p/q�. Intuitively, adding a small noise term
e ← χ to the inner product of 〈a, s〉 in the LWEn,q,χ problem blinds its low-
ordered bits from a distinguisher. Therefore, applying the modular rounding
operation to 〈a, s〉, which removes the low-ordered bits (albeit deterministically),
should make the task of distinguishing it from random just as hard.

With this intuition, [11] introduced a new computational problem called the
Learning with Rounding (LWR) problem. For parameters n, q, p ∈ N where p < q,
the LWRn,q,p problem asks an adversary to distinguish the distributions:

(a1, �〈a1, s〉�p) ≈c (a1, u1)
(a2, �〈a2, s〉�p) ≈c (a2, u2)

...
...

(am, �〈am, s〉�p) ≈c (am, um),

where s r← Z
n
q , a1, . . . ,am

r← Z
n
q , and u1, . . . , um

r← Zp. The hardness of the
LWR problem then induces a deterministic pseudorandom synthesizer S : Zn×n

q ×
Z

n×n
q → Z

n×n
p that is defined as follows:

S(S,A) = �S · A�p,

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 585

where the modular rounding is done component-wise to each entry of the matrix
S · A ∈ Z

n×n
q .1

Reducing LWE to LWR. Now, the remaining question is whether the LWR
problem can formally be shown to be as hard as the LWE problem. The work
of [11] gave a positive answer to this question. They showed that for any B-
bounded distribution χ and moduli q and p for which q = 2Bpλω(1), the LWRn,q,p

problem is as hard as the LWEn,q,χ problem.2 Given an adversary for the
LWRn,q,p problem A, one can construct a simple algorithm B that uses A to solve
LWEn,q,χ. Specifically, on input an LWEn,q,χ challenge (a1, b1), . . . , (am, bm) ∈
Z

n
q × Zq, algorithm B simply provides (a1, �b1�p), . . . , (am, �bm�p) to A.

– If the values b1, . . . , bm ∈ Zq are noisy inner products b1,= 〈a1, s〉 +
e1, . . . , bm = 〈am, s〉 + em, then we have

�bi�p = �〈ai, s〉 + ei�p = �〈ai, s〉�p

for all i ∈ [m] except with negligible probability over a1, . . . ,am
r← Z

n
q .

– If the values b1, . . . , bm are uniformly random in Zq, then the values �b1�p, . . . ,
�bm�p are also uniform in Zp.

Hence, the algorithm B statistically simulates the correct distribution of an
LWRn,q,p challenge for A and therefore, can solve the LWEn,q,χ problem with
essentially the same advantage as A.

The apparent limitation of this reduction is the need for the modulus q to be
super-polynomial in the security parameter. If q is only polynomial, then with
noticeable probability, the inner product 〈ai, s〉 ∈ Zq for any i ∈ [m] lands on a
rounding “borderline” set

BorderlineB = [−B,B] + q/p · (Z + 1/2)
FV = { v ∈ Zq | ∃ e ∈ [−B,B] such that �v�p �= �v + e�p },

and hence �〈ai, s〉 + ei�p �= �〈ai, s〉�p. In this case, one cannot guarantee that
an adversary A for the LWRn,q,p problem correctly distinguishes the samples
(a1, �〈a1, s〉 + e1�p), . . . , (am, �〈am, s〉 + em�p) from purely random samples.

1 Note that the synthesizer maps matrices in Z
n×n
q to matrices in Z

n×n
p for p < q and

hence violates the original syntax of a synthesizer. This is a minor technicality, which
can be addressed in multiple ways. One option is to have a sequence of rounding
moduli p1, . . . , plog � such that the synthesizer can be applied iteratively. Another
option is to take a pseudorandom generator G : Zn×n

p → Z
n×n
q and define S(S,A) =

G(�S ·A�p). Finally, one can define the synthesizer S(S,A) = �S ·A�p with respect
to non-square matrices S : Zm×n

q ×Z
n×m
q → Z

m×m
p such that the sets Z

m×n
q , Zn×m

q ,
and Z

m×m
p have the same cardinality |Zm×n

q | = |Zn×m
q | = |Zm×m

p |.
2 For the reduction to succeed with probability 1− 2−λ, we must set q ≥ 2Bp · 2λ. For

simplicity throughout the overview, we restrict to the “negligible vs. non-negligible”
type security as opposed to 2λ-security. See Sect. 1.2 for further discussions.

586 S. Kim

2.2 Learning with Rounding and Errors

Chaining LWE Samples. We get around the limitation of the reduction above
by using what we call the chaining method. To demonstrate the idea, let us con-
sider a challenge oracle Oτ,S that chains multiple LWEn,q,χ samples together.
The oracle Oτ,S is parameterized by a chaining parameter τ ∈ N, a set of secret
vectors S = (s1, . . . , sτ) ∈ Z

n×τ
q , and is defined with respect to a sampling algo-

rithm Dχ : {0, 1}�log p� → Z, which takes in as input �log p� random coins and
samples an error value e ∈ Z according to the B-bounded error distribution χ.

– Oτ,S: On its invocation, the oracle samples a public vector a r← Z
n
q and an

error term e1 ← χ. Then, for 1 ≤ i < τ , it iteratively computes:
• ri ← �〈a, si〉 + ei�p.
• ei+1 ← Dχ(ri).

It then returns (a, �〈a, sτ 〉 + eτ�p).

In words, the oracle Oτ,S generates (the rounding of) an LWEn,q,χ sample
(a, �〈a, s1〉 + e1�p) and uses r1 ← �〈a, s1〉 + e1�p as the random coins to sample
e2 ← Dχ(r1). It then computes r2 ← �〈a, s2〉 + e2�p and uses r2 to sample the
next error term e3 ← Dχ(r2) for the next iteration. The oracle iterates this
procedure for τ steps and finally returns (a, �〈a, sτ 〉 + eτ�p).

Now, suppose that p divides q. Then a hybrid argument shows that assuming
the hardness of LWEn,q,χ, a sample (a, b) ← Oτ,S is computationally indistin-
guishable from uniform in Z

n
q ×Zp. Specifically, we can argue that the first term

(random coins) r1 ← �〈a, s1〉 + e1�p is computationally indistinguishable from
uniform in {0, 1}�log p� by the hardness of LWEn,q,χ. Then, since r1 is uniform,
the error term e2 ← Dχ(r1) is correctly distributed according to χ, which implies
that r2 ← �〈a, s2〉+e2�p is also computationally indistinguishable from uniform.
Continuing this argument for τ iterations, we can prove that the final output
(a, �〈a, sτ 〉+eτ�p) is computationally indistinguishable from uniform in Z

n
q ×Zp.

Chaining LWR and LWE Samples. So far, it seems as if we have not
made much progress. Although the oracle Oτ,s returns an “LWR looking” sample
(a, b) ∈ Zq × Zp, it must still randomly sample the initial noise term e1 ← χ,
which makes it useless for constructing a deterministic pseudorandom synthe-
sizer. Our key observation, however, is that when the chaining parameter τ
is big enough, then the initial error term e1 does not affect the final output
(a, �〈a, sτ 〉+ eτ�p) with overwhelming probability. In other words, e1 can always
be set to be 0 without negatively impacting the pseudorandomness of Oτ,S.

To see this, consider the following modification of the oracle Oτ,S:

– O(lwre)
τ,S : On its invocation, the oracle samples a public vector a r← Z

n
q and

initializes e1 = 0. Then, for 1 ≤ i < τ , it iteratively computes:
• ri ← �〈a, si〉 + ei�p.
• ei+1 ← Dχ(ri).

It returns (a, �〈a, sτ 〉 + eτ�p).

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 587

In contrast to Oτ,S, the oracle O(lwre)
τ,S derives the first set of random coins r1 from

an errorless LWRn,q,p sample r1 ← �〈a, s1〉�p. It then uses r1 to sample the error
term e2 ← Dχ(r1) for the next LWEn,q,χ sample to derive r2 ← �〈a, s2〉 + e2�p,
and it continues this procedure for τ iterations. As the oracle O(lwre)

τ,S is, in effect,

chaining LWRn,q,p and LWEn,q,χ samples together, we refer to O(lwre)
τ,S as the

Learning with (both) Rounding and Errors (LWRE) oracle.
We claim that even when q is small, as long as the chaining parameter τ

is big enough, the samples that are output by the oracles Oτ,S and O(lwre)
τ,S are

identical except with negligible probability. For simplicity, let us fix the modulus
to be q = 4Bp such that for u

r← Zq, e1, e2 ← χ, we have

Pr[�u + e1�p �= �u + e2�p] ≤ 1
2
. (2.1)

Now, consider a transcript of an execution of the oracles Oτ,S and O(lwre)
τ,S for

S r← Z
n×τ
q , a r← Z

n
q , and any fixed error value e1 ∈ [−B,B]:

Oτ,S : O(lwre)
τ,S :

r1 ← �〈a, s1〉 + e1�p

r2 ← �〈a, s2〉 + e2�p

...
rτ ← �〈a, sτ 〉 + eτ�p

r̃1 ← �〈a, s1〉 + 0�p

r̃2 ← �〈a, s2〉 + ẽ2�p

...
r̃τ ← �〈a, sτ 〉 + ẽτ�p

We make the following observations:

1. Since the sampler Dχ is deterministic, if there exists an index 1 ≤ i∗ ≤ τ for
which ri∗ = r̃i∗ , then this implies that ri = r̃i for all i∗ ≤ i ≤ τ .

2. Since the vectors s1, . . . , sτ are sampled uniformly at random from Z
n
q , the

inner products 〈a, si〉 for any 1 ≤ i ≤ τ are distributed statistically close to
uniform in Zq.3 Therefore, using (2.1), we have

Pr
[�〈a, si〉 + ei�p �= �〈a, si〉 + ẽi�p

] ≤ 1
2

+ negl,

for any 1 ≤ i ≤ τ .

These observations imply that unless all of the inner products 〈a, s1〉 , . . . , 〈a, sτ 〉
land on the “borderline” set of Zq, the samples of Oτ,S and O(lwre)

τ,S coincide for

a r← Z
n
q . Furthermore, such bad event occurs with probability at most ≈1/2τ .

Hence, even for very small values of the chaining parameter τ = ω(log λ), with
overwhelming probability over the matrix S r← Z

n×τ
q , no information about the

3 When the modulus q is prime, then the inner product 〈a, si〉 is certainly uniform in
Zq. Even when q is composite (i.e. q is divisible by p), under mild requirements on
q, the inner product 〈a, si〉 is statistically close to uniform in Zq.

588 S. Kim

initial error term e1 is revealed from a single sample of Oτ,S or O(lwre)
τ,S . This can

be extended to argue that no information about e1 is leaked from any polynomial
number of samples via the union bound. Hence, for τ = ω(log λ), any polynomial
number of samples from Oτ,S or O(lwre)

τ,S are statistically indistinguishable.
In the discussion above, we set the modulus q = 4Bp purely for simplicity. If

we set q to be slightly greater than 2Bp (by a polynomial factor), the chaining
parameter τ can be set to be any super-constant function τ = ω(1) to guarantee
that the output of the oracles Oτ,S and O(lwre)

τ,S are statistically indistinguishable.

Synthesizer from LWRE. The oracle O(lwre)
τ,S naturally induces a com-

putational problem. Namely, for a set of parameters n, q, p, χ, and τ , we
define the LWREn,q,p,χ,τ problem that asks an adversary to distinguish the
samples (a1, b1), . . . , (am, bm) ← O(lwre)

τ,S from uniformly random samples

(a1, b̂1), . . . , (am, b̂m) r← Z
n
q × Zp. Using the ideas highlighted above, we can

show that for small values of q and τ , the LWREn,q,p,χ,τ is at least as hard as
the LWEn,m,q,χ problem. Specifically, we can first show that the oracle O(lwre)

τ,S is
statistically indistinguishable from Oτ,S. Then, via a hybrid argument, we can
show that the oracle Oτ,S is computationally indistinguishable from a uniform
sampler over Z

n
q × Zp by the hardness of LWEn,q,χ.

The LWREn,q,p,χ,τ problem naturally induces a pseudorandom synthesizer.
One can first define an “almost” pseudorandom synthesizer G : Zn

q ×Z
n×τ
q → Zp

that emulates the LWREn,q,p,χ,τ oracle as follows:

– G(a,S): On input a ∈ Z
n
q and S = (s1, . . . , sτ) ∈ Z

n×τ
q , the LWRE function

sets e1 = 0 and computes for i = 1, . . . , τ − 1:
1. ri ← �〈a, si〉 + ei�p,
2. ei+1 ← Dχ(ri).

It then sets b = �〈a, sτ 〉 + eτ�p and returns b ∈ Zp.

It is easy to see that as long as the LWREn,q,p,χ,τ problem is hard, then for any
� = poly(λ), a1, . . . ,a�

r← Z
n
q , S1, . . . ,S� ← Z

n×τ
q , and u1,1, . . . , u�,�

r← Zp, we
have {

G(ai,Sj)
}

i,j∈[�]
≈c

{
ui,j

}
i,j∈[�]

∈ Z
�2

p .

Furthermore, this indistinguishability holds even for small values of the chaining
parameter τ = ω(1) and hence, the function G can be computed by shallow
circuits.

The only reason why G : Zn
q × Z

n×τ
q → Zp is not a pseudorandom synthe-

sizer is that the cardinality of the sets Z
n
q , Z

n×τ
q , and Zp are different. How-

ever, this can easily be fixed by defining a synthesizer S : (Zn
q)�1 × (Zn×τ

q)�2 →
(Zp)�1×�2 that takes in a set of �1 vectors (a1, . . . ,a�) ∈ (Zn

q)�1 , and �2 matrices
(S1, . . . ,Sτ) ∈ (Zn×τ

q)�2 , and then returns {G(ai,Sj)}i,j∈[�]. The parameters �1
and �2 can be set to be any positive integers such that

∣∣(Zn
q)�1

∣∣ =
∣∣(Zn×τ

q)�2
∣∣ =

∣∣Z�1×�2
p

∣∣,

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 589

which makes S to be a two-to-one function over a fixed domain. The PRF that
is induced by the synthesizer S : (Zn

q)�1 × (Zn×τ
q)�2 → (Zp)�1×�2 corresponds to

our first PRF construction.
We note that for practical implementation of the synthesizer, the large PRF

key can be derived from a λ-bit PRG seed. Furthermore, the discrete Gaus-
sian sampler Dχ can always be replaced by a suitable look-up table with pre-
computed Gaussian noise as the modulus p is small. Therefore, the synthesizer
can be implemented quite efficiently as it simply consists of τ inner products of
two vectors modulo a small integer and their rounding. We refer to Sect. 4.3 for
a discussion on the parameters and implementations.

2.3 Chaining Key-Homomorphic PRFs

The method of chaining multiple LWR/LWE samples can also be applied directly
to existing lattice-based PRF constructions to improve their parameters. Fur-
thermore, when applied to existing key-homomorphic PRFs, the resulting PRF
is also key-homomorphic. Here, we demonstrate the idea with the PRF con-
struction of [17] as it can be described quite compactly. In the technical section
(Sect. 5), we show how to chain the PRF construction of [10] as it is a general-
ization of the previous PRF constructions of [11,17] and it also allows us to set
the parameters such that the underlying modulus q is only polynomial in the
security parameter.

Background on BLMR [17]. Recall that the BLMR PRF is defined with
respect to two public binary matrices A0,A1 ∈ {0, 1}n×n for a suitable choice
of n = poly(λ). A PRF key is set to be a vector s ∈ Z

n
q , and the PRF evaluation

for an input x ∈ {0, 1}� is defined to be the rounded matrix product

F (BLMR)(s, x) =
⌊
sᵀ

�∏
i=1

Axi

⌉
p
.

We can reason about the security of the BLMR PRF by considering its “noisy”
variant that is defined as follows:

F (noise)(s, x):
1. Sample error vectors e1, . . . , e� ← χn,
2. Return the vector⌊((

(sᵀAx1 + eᵀ
1) · Ax2 + eᵀ

2

) · · ·
)

· Ax�
+ eᵀ

�

⌉
p

=
⌊
sᵀ

�∏
i=1

Axi
+

�−1∑
i=1

eᵀ
i

�−1∏
j=i+1

Axj
+ eᵀ

�

︸ ︷︷ ︸
e∗

⌉
p
.

590 S. Kim

Since the error vectors e1, . . . , e� ← χn has small norm and the matrices
A0,A1 ∈ {0, 1}n×n are binary, the error term e∗ is also small. Therefore, if
the modulus q is sufficiently big, then with overwhelming probability, the error
vector e∗ is “rounded away” and does not contribute to the final output of the
PRF. This shows that when the modulus q is big, the evaluations of the functions
F (s, ·) and F (noise)(s, ·) are statistically indistinguishable.

Now, it is easy to show that F (noise)(s, ·) is computationally indistinguishable
from a truly random function using the hardness of the LWEn,q,χ problem.4 We
can first argue that the vector sᵀ

1A1,x1 +eᵀ
1 is computationally indistinguishable

from a uniformly random vector s2
r← Z

n
q . This implies that the vector sᵀ

2A2,x2 +
eᵀ
2 is computationally indistinguishable from a random vector s3

r← Z
n
q . We can

repeat the argument for � steps to prove that the final output of the PRF is
computationally indistinguishable from a uniformly random output.

Chaining BLMR. For the security argument of the BLMR PRF to be valid, it
is crucial that the modulus q is large enough such that the error term e∗ rounds
away with the modular rounding operation. Specifically, the modulus q must be
set to be greater than the maximum possible norm of the error term ‖e∗‖ by a
super-polynomial factor in the security parameter.

To prevent this blow-up in the size of q, we can chain multiple instances of
the functions F (BLMR) and F (noise) together. Consider the following chained PRF
F (chain) : Zn×τ

q × {0, 1}� → Z
n
p :

F (chain)
(
S = (s1, . . . , sτ), x

)
:

1. Evaluate r2 ← F (BLMR)(s1, x).
2. For i = 2, . . . , τ − 1, compute:

– ri+1 ← F (noise)(si, x; ri).
3. Return F (noise)(sτ , x; rτ).

In words, the chained PRF F (chain)(s, x) evaluates the “random coins” that are
needed to evaluate the randomized PRF F (noise)(si, x) from the previous execu-
tion of F (noise)(si−1, x). The initial random coins are derived from the errorless
BLMR PRF F (BLMR)(s1, x).

We can prove that the chained PRF F (chain) is secure using the same argument
that was used to show the hardness of the LWRE problem. Namely, we first argue
that even if the modulus q is greater than the maximum possible norm of the
error term ‖e∗‖ only by a polynomial factor, for any two random coins ri, r

′
i, we

have F (noise)(si, x; ri) = F (noise)(si, x; r′
i) with noticeable probability. Therefore,

if we set τ to be sufficiently big, then we can replace F (BLMR)(s1, ·) with the
randomized function F (noise)(s1, ·) without changing the output of the PRF. Now,
we can use the fact that F (noise)(s1, ·) is computationally indistinguishable from a

4 Technically, the reduction uses the hardness of the non-uniform variant of the LWE
problem [17] where the challenger samples the public vectors a1, . . . , am uniformly
at random from {0, 1}n as opposed to sampling them from Z

n
q . The work of [17]

shows that this variant of the LWE problem is as hard as the traditional version of
LWE for suitable choices of parameters.

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 591

truly random function to argue that the function F (chain)(S, ·) is computationally
indistinguishable from a truly random function.

The parameters for the chained PRF F (chain) provide a trade-off between the
depth of the evaluation circuit and the size of the modulus q (and therefore,
the quality of the LWE assumption). If we set τ = 1, then we recover the
original BLMR PRF, which requires very large values of the modulus q. As we
increase τ , the modulus q can be set to be arbitrarily close to the maximum
possible value of the error vector ‖e∗‖ for F (noise)(s, x). For the Banerjee-Peikert
PRF [10], the maximum possible value of the error vector ‖e∗‖ can be made to
be only polynomial in the security parameter, thereby allowing us to set q to be
a polynomial function of the security parameter.

Key-Homomorphism. The BLMR PRF is key-homomorphic because the
modular rounding operation is an almost linear operation. Namely, for any input
x ∈ {0, 1}� and any two keys s, s̃ ∈ Z

n
q , we have

F (BLMR)(s, x) + F (BLMR)(s̃, x) =
⌊
sᵀ

�∏
i=1

Axi

⌉
p

+
⌊
s̃ᵀ

�∏
i=1

Axi

⌉
p

≈
⌊
(s + s̃)ᵀ

�∏
i=1

Axi

⌉
p

= F (BLMR)(s + s̃, x).

Due to this algebraic structure, the “noisy” variant of the BLMR PRF is also
key-homomorphic. Namely, for any input x ∈ {0, 1}�, any two keys s, s̃ ∈ Z

n
q ,

and any random coins r, r̃, r′ that is used to sample the noise, we have

F (noise)(s, x; r) + F (noise)(s̃, x; r̃) =
⌊
(s + s̃)ᵀ

�∏
i=1

Axi
+ (e∗ + ẽ∗)

⌉
p

≈ F (noise)(s + s̃, x; r′),

Now, note that the final output of the chained PRF F (chain) on an input x ∈
{0, 1}� and a key (s1, . . . , sτ) ∈ Z

n×τ
q with chaining parameter τ is simply the

output of the noisy PRF F (noise)(sτ , x; rτ) where rτ is the randomness that is
derived from the previous execution of rτ ← F (noise)(sτ−1, x; rτ−1). Therefore,
for any input x ∈ {0, 1}�, and two keys S, S̃ ∈ Z

n×τ
q , we can show that

F (chain)(S, x) + F (chain)(S̃, x) = F (noise)(sτ , x; rτ) + F (noise)(s̃τ , x; r̃τ)

≈ F (noise)(sτ + s̃τ , x)

≈ F (chain)(S + S̃, x)

Specifically, we can show that for a suitable choice of the modulus q, the resulting
PRF is 2-almost key-homomorphic in that for any input x ∈ {0, 1}� and two keys
S, S̃ ∈ Z

n×τ
q , there exists an error vector η ∈ [0, 2]n such that

F (chain)(S, x) + F (chain)(S̃, x) = F (chain)(S + S̃, x) + η.

592 S. Kim

The exact argument to show that the chained BLMR PRF is 2-almost key-
homomorphic can be used to show that the chained BP PRF [10] is also 2-almost
key-homomorphic. We provide the formal details in Sect. 5.

3 Preliminaries

Basic Notations. Unless specified otherwise, we use λ to denote the security
parameter. We say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) =
o(1/λc) for all c ∈ N. We say that a function f(λ) is noticeable in λ if f(λ) =
Ω(1/λc) for some c ∈ N. We say that an event happens with overwhelming
probability if its complement happens with negligible probability. We say that
an algorithm is efficient if it runs in probabilistic polynomial time in the length
of its input. We use poly(λ) to denote a quantity whose value is bounded by a
fixed polynomial in λ.

For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}.
For a distribution D, we write x ← D to denote that x is sampled from D; for
a finite set S, we write x

r← S to denote that x is sampled uniformly from S.
For a positive integer B, we say that a distribution D over Z is B-bounded if
Pr[x ← D ∧ |x| > B] is negligible. Finally, we write Funs[X ,Y] to denote the set
of all functions mapping from a domain X to a range Y.

Vectors and Matrices. We use bold lowercase letters (e.g., v,w) to denote
vectors and bold uppercase letters (e.g., A,B) to denote matrices. Throughout
this work, we always use the infinity norm for vectors and matrices. Therefore, for
a vector x, we write ‖x‖ to denote maxi |xi|. Similarly, for a matrix A, we write
‖A‖ to denote maxi,j |Ai,j |. If x ∈ Z

n and A ∈ Z
n×m, then ‖xA‖ ≤ n·‖x‖·‖A‖.

Modular Rounding. For an integer p ≤ q, we define the modular “rounding”
function

�·�p : Zq → Zp that maps x → �(p/q) · x�
and extend it coordinate-wise to matrices and vectors over Zq. Here, the opera-
tion �·� is the integer rounding operation over the real numbers. It can be readily
checked that for any two values x, y ∈ Zq, there exists some η ∈ {0, 1} such that
�x�p + �y�p = �x + y�p + η.

Bit-Decomposition. Let n and q be positive integers. Then we define the
“gadget matrix” G = g⊗ In ∈ Z

n×n·	log q

q where g = (1, 2, 4, . . . , 2	log q
−1). We

define the inverse bit-decomposition function G−1 : Zn×m
q → Z

n	log q
×m
q which

expands each entry x ∈ Zq in the input matrix into a column of size �log q� that
consists of the bits of the binary representation of x.

3.1 Learning with Errors

In this section, we define the Learning with Errors (LWE) problem [48].

Learning with Errors. We define the LWE problem with respect to the real
and ideal oracles.

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 593

Definition 3.1 (Learning with Errors). Let λ ∈ N be the security parame-
ter. Then the learning with errors (LWE) problem is parameterized by a dimen-
sion n = n(λ), modulus q = q(λ), and error distribution χ = χ(λ). It is defined
with respect to the real and ideal oracles O(lwe)

s and O(ideal) that are defined as
follows:

– O(lwe)
s : The real oracle is parameterized by a vector s ∈ Z

n
q . On its invocation,

the oracle samples a random vector a r← Z
n
q , and an error term e ← χ. It

sets b = 〈a, s〉 + e, and returns (a, b) ∈ Z
n
q × Zq.

– O(ideal): On its invocation, the ideal oracle samples a random vector a r← Z
n
q ,

random element u
r← Zq, and returns (a, u) ∈ Z

n
q × Zq.

The LWEn,q,χ problem is to distinguish the oracles O(lwe)
s and O(ideal). More pre-

cisely, we define an adversary A’s distinguishing advantage AdvLWE(n, q, χ,A)
as the probability

AdvLWE(n, q, χ,A) =
∣∣ Pr

[AO(lwe)
s (1λ) = 1

] − Pr
[AO(ideal)

(1λ) = 1
]∣∣,

where s r← Z
n
q . The LWEn,q,χ assumption state that for any efficient adversary

A, its distinguishing advantage is negligible AdvLWE(n, q, χ,A) = negl(λ).

Compactly, the LWEn,q,χ assumption states that for any m = poly(λ), s r← Z
n
q ,

A ← Z
n×m
q , e ← χm, and u ← Z

m
q , the noisy vector-matrix product (A, sᵀA +

eᵀ) is computationally indistinguishable from (A,uᵀ). It follows from a standard
hybrid argument that for any m, � = poly(λ), S r← Z

�×n
q , A r← Z

n×m
q , E ← χ�×m,

and U r← Z
�×m
q , the noisy matrix product (A,S · A + E) is computationally

indistinguishable from (A,U) by the LWEn,q,χ assumption.
Let n = poly(λ) and χ be a B-bounded discrete Gaussian distribution. Then

the LWEn,q,χ assumption is true assuming that various worst-case lattice prob-
lems such as GapSVP and SIVP on n-dimensional lattices are hard to approximate
to within a factor of Õ(n·q/B) by a quantum algorithm [48]. Similar reductions of
LWEn,q,χ to the classical hardness of approximating worst-case lattice problems
are also known [9,20,41,42,46].

3.2 Elementary Number Theory

In this section, we state and prove an elementary fact in number theory that
we use for our technical sections. Specifically, we analyze the distribution of the
inner product of two uniformly random vectors 〈a, s〉 where a, s r← Z

n
q for some

positive integers n and q. When n is sufficiently big, then with overwhelming
probability, one of the components of a (or s) will be a multiplicative unit in Zq

and therefore, the inner product 〈a, s〉 will be uniform in Zq. We formally state
and prove this elementary fact in the lemma below. We first recall a general fact
of the Euler totient function.

594 S. Kim

Fact 3.2 ([39]). Let ϕ : Z → Z be the Euler totient function. Then, there exists
a constant c such that for any q > 264, we have q/ϕ(q) = c · log log q.

The following lemma follows immediately from Fact 3.2.

Lemma 3.3. Let n = n(λ) and q = q(λ) be positive integers such that n =
Ω(λ log log q). Then, for any element d ∈ Zq, we have

Pr[〈a, s〉 = d] ≤ 1/q + 2−λ,

for a, s r← Z
n
q .

Proof. If the vector a ∈ Z
n
q has at least one component that is a multiplicative

unit in Zq, then since s is sampled uniformly at random from Z
n
q , we have

〈a, s〉 = d with probability 1/q. By Fact 3.2, the probability that all components
of a is not a unit in Zq is bounded by the probability

(
1 − 1

c · log log q

)n

for some constant c. Setting λ = Ω(n/ log log q), this probability is bounded by
e−λ < 2−λ. The lemma follows.

3.3 Pseudorandom Functions and Key-Homomorphic PRFs

In this section, we formally define pseudorandom functions [32] and key-
homomorphic PRFs [17].

Definition 3.4 (Pseudorandom Functions [32]). A pseudorandom function
for a key space K, domain X , and range Y is an efficiently computable deter-
ministic function F : K × X → Y such that for any efficient adversary A, we
have
∣∣ Pr

[
k

r← K : AF (k,·)(1λ) = 1
] − Pr

[
f

r← Funs[X ,Y] : Af(·)(1λ) = 1
]∣∣ = negl(λ),

We generally refer to the experiment where the adversary A is given oracle access
to the real PRF F (k, ·) as the real PRF experiment. Analogously, we refer to
the experiment where the adversary A is given oracle access to a truly random
function f(·) as the ideal PRF experiment.

Key-homomorphic PRFs are special family of pseudorandom function that
satisfy an additional algebraic property. Specifically, for a key-homomorphic
PRF, the key space K and the range Y of the PRF exhibit certain group struc-
tures such that its evaluation on any fixed input x ∈ X is homomorphic with
respect to these group structures. Formally, we define a key-homomorphic PRF
as follows.

Definition 3.5 (Key-Homomorphic PRFs [17,44]). Let (K,⊕), (Y,⊗) be
groups. Then, an efficiently computable deterministic function F : K × X → Y
is a key-homomorphic PRF if

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 595

– F is a secure PRF (Definition 3.4).
– For every key k1, k2 ∈ K and every x ∈ X , we have F (k1, x) ⊗ F (k2, x) =

F (k1 ⊕ k2, x).

In this work, we will work with a slight relaxation of the notion of key-
homomorphic PRFs. Namely, instead of requiring that the PRF outputs are
perfectly homomorphic with respect to the PRF keys, we require that they are
“almost” homomorphic in that F (k1, x)⊗F (k2, x) ≈ F (k1 ⊕k2, x). Precisely, we
define an almost key-homomorphic PRF as follows.

Definition 3.6 (Almost Key-Homomorphic PRFs [17]). Let (K,⊕),
(Y,⊗) be groups and let m and p be positive integers. Then, an efficiently com-
putable deterministic function F : K × X → Z

m
p is a γ-almost key-homomorphic

PRF if

– F is a secure PRF (Definition 3.4).
– For every key k1, k2 ∈ K and every x ∈ X , there exists a vector e ∈ [0, γ]m

such that

F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x) + e (mod p).

Naor et al. [44] and Boneh et al. [17] gave a number of applications of (almost)
key-homomorphic PRFs including distributed PRFs, symmetric-key proxy re-
encryption, updatable encryption, and PRFs secure against related-key attacks.

4 Learning with Rounding and Errors

In this section, we present our new lattice-based synthesizer construction. We
first define the Learning with Rounding and Errors (LWRE) problem in Sect. 4.1.
We then show how to use the LWRE problem to construct a synthesizer in
Sect. 4.2 and discuss its parameters in Sect. 4.3. We show that the LWRE problem
is as hard as the standard LWE problem for suitable choices of parameters in
the full version of this work.

4.1 Learning with Rounding and Errors

Definition 4.1 (Learning with Rounding and Errors). Let λ ∈ N be the
security parameter. The learning with rounding and errors (LWRE) problem is
defined with respect to the parameters

– LWE parameters (n, q, χ),
– Rounding modulus p ∈ N such that p < q,
– Chaining parameter τ ∈ N,

that are defined as functions of λ. Additionally, let Dχ : {0, 1}�log p� → Z

be a sampling algorithm for the error distribution χ. Then, we define the
LWREn,q,p,χ,τ real and ideal oracles O(lwre)

τ,S and O(ideal) as follows:

596 S. Kim

– O(lwre)
τ,S : The real oracle is defined with respect to a chaining parameter τ ∈ N,

and a secret matrix S = (s1, . . . , sτ) ∈ Z
n×τ
q . On its invocation, the real

oracle samples a vector a r← Z
n
q and initializes e1 = 0. Then, for 1 ≤ i < τ ,

it iteratively computes:
1. ri ← �〈a, si〉 + ei�p.
2. ei+1 ← Dχ(ri).

It then sets b = �〈a, sτ 〉 + eτ�p, and returns (a, b) ∈ Z
n
q × Zp.

– O(ideal): On its invocation, the ideal oracle samples a random vector a r← Z
n
q ,

a random element u
r← Zp, and returns (a, u) ∈ Z

n
q × Zp.

The LWREn,q,p,χ,τ problem is to distinguish the oracles O(lwre)
S and O(ideal) for

S r← Z
n×τ
q . More precisely, we define an adversary A’s distinguishing advantage

AdvLWRE(n, q, p, χ, τ,A) as the probability

AdvLWRE(n, q, p, χ, τ,A) =
∣∣ Pr

[AO(lwre)
τ,S (1λ) = 1

] − Pr
[AO(ideal)

(1λ) = 1
]∣∣,

for S r← Z
n×τ
q .

It is easy to see that when τ = 1, the LWREn,q,p,χ,τ problem is identical to
the standard Learning with Rounding problem [11]. Hence, the reduction in [11]
immediately shows that for τ = 1, if the modulus q is sufficiently large such
that q = 2Bpnω(1), then the LWREn,q,p,χ,τ problem is as hard as the LWEn,q,χ

problem. We show that when τ is set to be larger, then the modulus q can be
set to be significantly smaller.

Theorem 4.2. Let λ be the security parameter and n, q, p, χ, τ be a set of param-
eters for the LWREn,q,p,χ,τ problem such that p divides q. Then, for any efficient
adversary A making at most Q number of oracle calls, we have

AdvLWRE(n, q, p, χ, τ,A) ≤ Q
(
2Bp/q + 1/2λ

)τ + τ · AdvLWE(n, q, χ,A).

In particular, if Q(2Bp/q + 1/2λ)τ = negl(λ), then the LWREn,q,p,χ,τ problem is
as hard as the LWEn,q,χ problem.

We provide the proof of the theorem in the full version of this work. We provide
the high-level ideas of the proof in Sect. 2.

Remark 4.3. The LWREn,q,p,χ,τ problem is well-defined only when there exists a
concrete sampler Dχ : {0, 1}�log p� → Z, which uses at most �log p� random bits
to sample from χ. For the discrete Gaussian distribution (over Z) with Gaussian
parameter σ >

√
n, there exist Gaussian samplers (i.e., [31]) that require O(log λ)

random bits. Therefore, one can always set p = poly(λ) to be big enough such
that LWREn,q,p,χ,τ is well defined for the discrete Gaussian distribution.

To set p to be even smaller, one can alternatively use a pseudorandom gen-
erator (PRG) to stretch the random coins that are needed by the sampler. A
single element in Zp for p = poly(λ) is not large enough to serve as a seed for a

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 597

PRG. However, one can modify the oracle O(lwre)
τ,S such that it samples multiples

vectors a1, . . . ,a�
r← Z

n
q for some � = poly(λ) and then derives a vector of ele-

ments ri = (ri,1, . . . , ri,�) ∈ Z
�
p that can serve as a seed for any (lattice-based)

pseudorandom generator.

Remark 4.4. We note that in Theorem 4.2, we impose the requirement that p
perfectly divides q. This requirement is needed purely to guarantee that the
rounding �r�p of a uniformly random element r

r← Zq results in a uniformly
random element in Zp. However, even when q is not perfectly divisible by p (i.e.
q is prime), the rounding �r�p of r

r← Zq still results in a highly unpredictable
element in Zp. Therefore, by modifying the oracle O(lwre)

τ,S such that it applies
a randomness extractor after each of the modular rounding operation, one can
remove the requirement on the structure of q with respect to p.

4.2 Pseudorandom Synthesizers from LWRE

In this section, we construct our new pseudorandom synthesizer from the hard-
ness of the LWREn,q,p,χ,τ problem. A pseudorandom synthesizer over a domain
D is a function S : D × D → D satisfying a specific pseudorandomness property
as formulated below. We first recall the formal definition as presented in [45]. As
observed in [11], one can also relax the traditional definition of a pseudorandom
synthesizer by allowing the synthesizer function S : D1 × D1 → D2 to have dif-
fering domain D1 and range D2. A synthesizer satisfying this relaxed definition
still induces a PRF as long as the function can be applied iteratively. For this
work, we restrict to the original definition for a simpler presentation.

Definition 4.5 (Pseudorandom Synthesizer [45]). Let D be a finite set.
An efficiently computable function S : D × D → D is a secure pseudorandom
synthesizer if for any polynomial � = �(λ), the following distributions are com-
putational indistinguishable

{S(ai, bj)}i,j∈[�] ≈c {ui,j}i,j∈[�],

where (a1, . . . , a�)
r← D�, (b1, . . . , b�)

r← D�, and (ui,j)i,j∈[�] ← D�×�.

Naor and Reingold [45] showed that a secure pseudorandom synthesizer induces a
secure pseudorandom function. Furthermore, if the synthesizer can be computed
by a low-depth circuit, then the final PRF can also be evaluated by a low-depth
circuit. We formally state their result in the following theorem.

Theorem 4.6 ([11,45]). Suppose that there exists a pseudorandom synthesizer
S : D × D → D over a finite set D that is computable by a circuit of size s
and depth d. Then, for any � = poly(λ), there exists a pseudorandom function
F : D2� × {0, 1}� → D with key space D2�, domain {0, 1}�, and range D that is
computable by a circuit of size O(s�) and depth O(d log �).

598 S. Kim

As was shown in [11], the hardness of the Learning with Rounding (LWR)
problem (Definition 4.1 for τ = 1) naturally induces a secure pseudorandom
synthesizer S : Z

n×n
q → Z

n×n
q → Z

n×n
p that can be compactly defined as

S(S,A) = �S·A�p.5 One can naturally extend this construction to LWREn,q,p,χ,τ

for τ > 1. Unfortunately, as the LWREn,q,p,χ,τ requires the chaining of many
samples, the synthesizer does not exhibit a compact description like the LWR
synthesizer. We describe the LWRE synthesizer in two steps. We first define
an LWRE function, which satisfies the security requirement of a pseudorandom
synthesizer, but does not satisfy the strict restriction on the domain and range
of a synthesizer. Then, we show how to modify the LWRE function to achieve a
synthesizer that satisfies Definition 4.5.

Definition 4.7 (LWRE Function). Let λ be the security parameter and let
n, q, p, χ, τ be a set of LWRE parameters. Then, we define the LWREn,q,p,χ,τ func-
tion Gn,q,p,χ,τ : Zn

q × Z
n×τ
q → Zp as follows:

– Gn,q,p,χ,τ (a,S): On input a ∈ Z
n
q and S = (s1, . . . , sτ) ∈ Z

n×τ
q , the LWRE

function sets e1 = 0 and computes for 1 ≤ i < τ :
1. ri ← �〈a, si〉 + ei�p,
2. ei+1 ← D(ri).

It then sets b = �〈a, sτ 〉 + eτ�p and returns b ∈ Zp.

For any � = poly(λ), we can use a standard hybrid argument to show
that for a1, . . . ,a�

r← Z
n
q and S1, . . . ,S�

r← Z
n×τ
q , the set of elements

{Gn,q,p,χ,τ (ai,Sj)}i,j∈[�] are computationally indistinguishable from �2 uniformly
random elements in Zp. It readily follows that for any �1, �2 = poly(λ), the func-
tion S : Zn×�1

q × (Zn×τ
q)�2 → Z

�1×�2
p that takes in as input A = (a1, . . . ,a�1)

r←
Z

n×�1
q , (S1, . . . ,S�2)

r← (Zn×τ
q)�2 , and returns the pairwise application of the

LWRE function {Gn,q,p,χ,τ (ai,Sj)
}

i∈[�1],j∈[�2]

satisfies the security requirements for a synthesizer. Therefore, as long as �1
and �2 are set such that the cardinality of the sets Z

n×�1
q , (Zn×τ

q)�2 , and Z
�1×�2
p

have the same cardinality, the function S : Zn×�1
q × (Zn×τ

q)�2 → Z
�1×�2
p satisfies

Definition 4.5. We can naturally set the parameters �1 and �2 as

�1 = nτ

⌈
log q

log p

⌉
, �2 = n

⌈
log q

log p

⌉
.

Formally, we define our LWRE synthesizer as follows.

Construction 4.8 (LWRE Synthesizer). Let λ be the security parameter,
let n, q, p, χ, τ be a set of LWRE parameters, and let � = nτ�log q/ log p�. We
define the LWRE synthesizer S : Zn×�

q × Z
n×�
q → Z

n×�
q as follows:

5 The LWR synthesizer satisfies the more general definition of a pseudorandom syn-
thesizer where the domain and range of the synthesizer can differ.

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 599

– S(A,S): On input A,S ∈ Z
n×�
q , the synthesizer parses the matrices

• A = (a1, . . . ,a�1) where ai ∈ Z
n
q and �1 = nτ�log q/ log p�,

• S = (S1, . . . ,S�2) where Sj ∈ Z
n×τ
q and �2 = n�log q/ log p�.

Then, the synthesizer computes the LWREn,q,p,χ,τ function bi,j ←
Gn,q,p,χ,τ (ai,Sj) for all i ∈ [�1] and j ∈ [�2]. It translates the bits of
{bi,j}j∈[�1],i∈[�2] ∈ Z

�1×�2
p as the representation of a matrix B ∈ Z

n×�
q . It

returns B.

We now state the formal security statement for the LWRE synthesizer in Con-
struction 4.8. The proof follows immediately from Definitions 4.1, 4.7 and Theo-
rem 4.2.

Theorem 4.9 (Security). Let λ be the security parameter and let n, q, p, χ, τ
be a set of LWRE parameters. Then, assuming that the LWREn,q,p,χ,τ problem
is hard, the LWRE synthesizer in Construction 4.8 is a secure pseudorandom
synthesizer (Definition 4.5).

By combining Theorems 4.2, 4.6 and 4.9, we get the following corollary.

Corollary 4.10. Let λ be a security parameter and n = poly(λ) be a positive
integer. Then, there exists a pseudorandom function F : K × {0, 1}poly(λ) → Y
that can be computed by a circuit in NC3, and whose security can be reduced from
the worst-case hardness of approximating GapSVP and SIVP to a polynomial
approximation factor on n-dimensional lattices.

We additionally discuss the parameter choices for our PRF in Sect. 4.3.

4.3 Parameter Instantiations

In this section, we discuss the various ways of instantiating the parameters for
the LWRE synthesizer from Construction 4.8. As discussed in Sect. 1.2, we con-
sider two parameter settings that provide different level of security against an
adversary. For theoretical security, we require that an efficient adversary’s dis-
tinguishing advantage of the LWRE synthesizer to degrade super-polynomially
in λ. For 2λ-security, we require that an efficient adversary’s advantage degrades
exponentially in λ. By Theorem 4.2, the main factor that we consider in deter-
mining the security of the synthesizer is the term (2Bp/q + 1/2λ)τ .

Theoretical Security. For theoretical security, we must let (2Bp/q +1/2λ)τ =
negl(λ). In one extreme, we can set τ = 1 and q to be greater than 2Bp by
a super-polynomial factor in λ, which reproduces the result of [11].6 As both
vector-matrix multiplication and the rounding operation can be implemented in
NC1, the resulting PRF can be implemented in NC2 for input space {0, 1}� where
� = poly(λ).

If we set τ = ω(1), then we can set q to be any function that is greater
than 2Bp by a polynomial factor in λ. In this case, when considering the depth
6 We note that the term 1/2λ is needed for Lemma 3.3. If q is set to be prime, then

this factor can be ignored.

600 S. Kim

of the evaluation circuit, we must take into account the depth of the sampling
algorithm Dχ for the error distribution χ. To base security on approximating
worst-case lattice problems such as GapSVP or SIVP, we must set χ to be the
discrete Gaussian distribution over Z with Gaussian parameter σ >

√
n. In this

case, we can either use the rejection sampling algorithm of [31] or pre-compute
the samples for each possible seed for the sampler and use a look-up table. In
both cases, we can guarantee that a random element in Zp provides enough
entropy to the Gaussian sampler by setting p = ω(λ2).

Since the Gaussian function can be computed by an arithmetic circuit with
depth O(log p), the rejection sampling algorithm can be implemented by a circuit
of depth ω(log λ · log log λ). Therefore, the synthesizer can be evaluated by a
circuit in NC2+ε for any constant ε > 0 and the final PRF can be evaluated by a
circuit in NC3+ε for input space {0, 1}� where � = poly(λ). When using a look-up
table, the synthesizer can be evaluated by a circuit in NC1+ε for any constant
ε > 0, and the final PRF can be evaluated in NC2+ε.

2λ-Security. For 2λ-security, we must let (2Bp/q)τ = 1/2Ω(λ) or equivalently,
τ · log q = Ω̃(λ) for q prime. This provides a trade-off between the size of q and
the chaining parameter τ , which dictates the depth needed to evaluate the PRF.
In one extreme, we can set τ = 1 and require the modulus to be greater than
2Bp by an exponential factor in λ. In the other extreme, we can let τ be linear
in λ and decrease the modulus to be only a constant factor greater than 2Bp.
For practical implementations, a natural choice of parameters would be to set
both τ and log q to be Ω(

√
λ). For practical implementations, one can derive the

secret keys from a single λ-bit seed using a pseudorandom generator.

Concrete Instantiations. The concrete parameters for our PRF can be instan-
tiated quite flexibly depending on the applications. The modulus p can first be
set to determine the output of the PRF. For instance, as the range of the PRF is
Zp, the modulus p can be set to be 28 or 216 such that the output of the PRF is
byte-aligned. Then the PRF can be run multiple times (in parallel) to produce
a 128-bit output.

Once p is set, the modulus q and τ can be set such that τ · log q ≈ λ · log p.
For instance, to provide 2λ-bit security, one can reasonable set q to be a 20-bit
prime number and τ = 12. Finally, after q is set, the LWE parameter n and
noise distribution χ can be set such that the resulting LWE problem provides
λ-bit level of security. Following the analysis in [5], we can set n to be around
600 (classical security) or 800 (quantum security), and χ to be either a uniform
distribution over [−24, 24] or an analogous Gaussian distribution with similar
bits of entropy.

5 Key-Homomorphic PRFs

In this section, we show how to use the chaining method to construct key-
homomorphic PRFs directly from the Learning with Errors assumption with a

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 601

polynomial modulus q. Our construction is the modification of the Banerjee-
Peikert (BP) PRF of [10], which generalizes the algebraic structure of previous
LWE-based PRFs [11,17].

To be precise, the BP PRF is not a single PRF family, but rather multiple
PRF families that are each defined with respect to a full binary tree. The LWE
parameters that govern the security of a BP PRF are determined by the structure
of the corresponding binary tree. In order to construct a key-homomorphic PRF
that relies on the hardness of LWE with a polynomial modulus q, we must use
the BP PRF that is defined with respect to the “right-spine” tree. However, as
our modification works over any BP PRF family, we present our construction
with respect to any general BP PRF. For general BP PRFs, our modification is
not enough to bring the size of the modulus q to be polynomial in λ, but it still
reduces its size by superpolynomial factors.

We provide our main construction in Sect. 5.1 and discuss its parameters in
Sect. 5.2. We provide the proof of security and key-homomorphism in the full
version.

5.1 Construction

The BP PRF construction is defined with respect to full (but not necessarily
complete) binary trees. Formally, a full binary tree T is a binary tree for which
every non-leaf node has two children. The shape of the full binary tree T that
is used to define the PRF determines various trade-offs in the parameters and
evaluation depth. As we only consider full binary trees in this work, we will
implicitly refer to any tree T as a full binary tree.

Throughout the construction description and analysis, we let |T | denote the
number of its leaves. For any tree with |T | ≥ 1, we let T.� and T.r denote the left
and the right subtrees of T respectively (which may be empty trees). Finally, for
a full binary tree T , we define its expansion factor e(T) recursively as follows:

e(T) =
{

0 if |T | = 1
max{e(T.�) + 1, e(T.r)} otherwise.

This is simply the “left-depth” of the tree, i.e., the maximum length of a root-
to-leaf path, counting edges from parents to their left children.

With these notations, we define our PRF construction in a sequence of steps.
We first define an input-to-matrix mapping AT : {0, 1}|T | → Z

n×m
q as follows.

Definition 5.1. Let n, q, χ be a set of LWE parameters, let p < q be a rounding
modulus, and let m = n�log q�. Then, for a full binary tree T , and matrices
A0,A1 ∈ Z

n×m
q , define the function AT : {0, 1}|T | → Z

n×m
q recursively:

AT (x) =
{
Ax if |T | = 1
AT.�(x�) · G−1(AT.r(xr)) otherwise, ,

where x = x�‖xr for |x�| = |T.�|, |xr| = |T.r|.

602 S. Kim

Then, for a binary tree T , and a PRF key s ∈ Z
n
q , the BP PRF F (BP) :

{0, 1}|T | → Z
m
p is defined as F

(BP)
s (x) = �sTAT (x)�p. To define our new PRF,

we must first define its “noisy” variant Gs,E,T : {0, 1}|T | → Z
m
p as follows.

Definition 5.2. Let n, q, χ be a set of LWE parameters, let p < q be a rounding
modulus, and let m = n�log q�. Then, for a full binary tree T , public matrices
A0,A1 ∈ Z

n×m
q , error matrix E = (e1, . . . , ee(T)) ∈ Z

m×e(T), and a secret vector
s ∈ Z

n
q , we define the function Gs,E,T : {0, 1}|T | → Z

m
p :

Gs,E,T (x) =
{
sTAT (x) + eT

1 if |T | = 1
Gs,E,T.�(x�) · G−1

(
AT.r(xr)

)
+ ee(T) otherwise,

where x = x�‖xr for |x�| = |T.�|, |xr| = |T.r|.
We note that when the error matrix E is set to be an all-zero matrix E = 0 ∈
Z

m×e(T), then the function �Gs,0,T (·)�p is precisely the BP PRF.
We define our new PRF to be the iterative chaining of the function Gs,E,T .

Specifically, our PRF is defined with respect to τ secret vectors s1, . . . , sτ ∈
Z

n
q where τ ∈ N is the chaining parameter. On input x ∈ {0, 1}|T |, the PRF

evaluation function computes r1 ← �Gs1,0,T (x)�p and uses r1 ∈ Z
m
p as a seed

to derive the noise term E2 for the next iteration r2 ← �Gs2,E2,T (x)�p. The
evaluation function repeats this procedure for τ − 1 iterations and returns rτ ←
�Gsτ−1,Eτ−1,T (x)�p as the final PRF evaluation.

Construction 5.3. Let n,m, q, and χ be LWE parameters and p < q be
an additional rounding modulus. Then, our PRF construction is defined with
respect to a full binary tree T , two public matrices A0,A1 ∈ Z

n×m
q , a secret

matrix S ∈ Z
m×τ
q , and a sampler Dχ : {0, 1}m�log p� → Z

m×e(T) for the noise
distribution χ. We define our PRF FS : {0, 1}|T | → Z

m
q as follows:

– FS(x): On input x ∈ {0, 1}|T |, the evaluation algorithm sets E1 = 0 ∈
Z

m×e(T)
q . Then, for i = 1, . . . , τ − 1, it iteratively computes
1. ri ← �Gsi,Ei,T (x)�p.
2. Ei+1 ← Dχ(ri).

It sets y ← �Gsτ ,Eτ ,T (x)�p, and returns y ∈ Z
m
p .

For the PRF to be well-defined, we must make sure that a seed ri ←
�Gsi,Ei,T (x)�p ∈ Z

m
p for i ∈ [τ − 1] provides enough entropy to derive the noise

terms Ei+1 ← χm×e(T). As in the case of LWRE (Remark 4.3), there are two main
ways of ensuring this condition. One method is to set the rounding modulus p to
be big enough such that there exists a sampler Dχ : {0, 1}m�log p� → Z

m×e(T) for
the noise distribution χm×e(T). Alternatively, one can expand the seed ri ∈ Z

m
p

using a pseudorandom generator to derive sufficiently many bits to sample from
χm×e(T). Since the issue of deriving the noise terms Ei+1 from the seeds ri is
mostly orthogonal to the central ideas of our PRF construction, we assume that
the rounding modulus p is set to be big enough such that the noise terms Ei+1

can be derived from the bits of ri.
We now state the main security theorem for the PRF in Construction 5.3.

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 603

Theorem 5.4. Let T be any full binary tree, λ the security parameter,
n,m, q, p, τ positive integers and χ a B-bounded distribution such that m =
n�log q� > 2, (2Rmp/q)τ−1 = negl(λ) for R = |T |Bme(T) and p divides q.
Then, assuming that the LWEn,q,χ problem is hard, the PRF in Construction 5.3
is a 2-almost key-homomorphic PRF (Definition 3.5).

We provide the proof of Theorem5.4 in the full version. Except for the compo-
nents on chaining, the proof inherits many of the arguments that are already
used in [10]. For the main intuition behind the proof, we refer the readers to
Sect. 2.3.

5.2 Instantiating the Parameters

As in the original Banerjee-Peikert PRF [10], the size of the modulus q and the
depth of the evaluation circuit is determined by the structure of the full binary
tree T . The size of the modulus q is determined by the expansion factor e(T)
or equivalently, the length of the maximum root-to-leaf path to the left children
of T . Namely, to satisfy Theorem 5.4, we require q to be large enough such that
(2Rmp/q)τ−1 = negl(λ) for R = |T |Bme(T).

The depth of the evaluation circuit is determined by the sequentiality factor
s(T) of the tree, which is formally defined by the recurrence

s(T) =
{

0 if |T | = 1
max{s(T.�), s(T.r) + 1} otherwise.

Combinatorially, s(T) denotes the length of the maximum root-to-leaf path to
the right children of T . For a tree T , our PRF can be evaluated by depth τ ·
s(T) log |T |.

When we restrict the chaining parameter to be τ = 1, then we recover the
parameters of the Banerjee-Peikert PRF where the modulus q is required to be
q = Rmpλω(1). However, setting τ to be a super-constant function ω(1), we can
set q = 2Rmp · λc for any constant c > 0, which reduces the size of the modulus
q by a super-polynomial factor. To guarantee that an adversary’s advantage in
breaking the PRF degrades exponentially in λ, we can set τ to be linear in λ.

To set q to be polynomial in the security parameter, we can instantiate the
construction with respect to the “right-spine” binary tree where the left child
of any node in the tree is a leaf node. In this tree T , the sequentiality factor
becomes linear in the size of the tree s(T) = |T |, but the expansion factor
becomes a constant e(T) = 1. Therefore, when τ = ω(1) (or linear in λ for
2λ-security), the modulus q can be set to be q = 2mpλc for any constant c > 0.
The concrete parameters for our PRF can be set similarly to our synthesizer
construction (see Sect. 4.3).

Acknowledgments. We thank the Eurocrypt reviewers for their helpful comments.
This work was funded by NSF, DARPA, a grant from ONR, and the Simons Founda-
tion. Opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of DARPA.

604 S. Kim

References

1. Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework for pseu-
dorandom functions and applications to related-key security. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 388–409. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 19

2. Abdalla, M., Benhamouda, F., Passelègue, A.: Multilinear and aggregate pseudo-
random functions: new constructions and improved security. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 103–120. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48797-6 5

3. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

4. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 6

5. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

6. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from LWE to LWR.
IACR Cryptology ePrint Archive, 2016(589) (2016)

7. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

8. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 4

9. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

10. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 20

11. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

12. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11818175 36

13. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

14. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: FOCS (1996)

15. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9 9

https://doi.org/10.1007/978-3-662-47989-6_19
https://doi.org/10.1007/978-3-662-48797-6_5
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-662-49096-9_9

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 605

16. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard lat-
tice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 15

17. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

18. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: CCS (2010)

19. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Rise and shine: fast and
secure updatable encryption. Cryptology ePrint Archive, Report 2019/1457 (2019).
https://eprint.iacr.org/2019/1457

20. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC (2013)

21. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 10

22. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS (2011)

23. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

24. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS
(2014)

25. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7 1

26. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

27. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

28. Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-fly adap-
tation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
329–350. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 16

29. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

30. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
31. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new

cryptographic constructions. In: STOC (2008)
32. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.

ACM (JACM) 33(4), 792–807 (1986)

https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://eprint.iacr.org/2019/1457
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4

606 S. Kim

33. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 23

34. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

35. Jager, T., Kurek, R., Pan, J.: Simple and more efficient PRFs with tight security
from LWE and matrix-DDH. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018. LNCS, vol. 11274, pp. 490–518. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03332-3 18

36. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lat-
tice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 17

37. Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security via
extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 11

38. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11476, pp. 68–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 3

39. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1. Ripol
Classic Publishing House, Moscow (2000)

40. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 22

41. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 26

42. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

43. Montgomery, H.: More efficient lattice PRFs from keyed pseudorandom synthesiz-
ers. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356,
pp. 190–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-
9 11

44. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

45. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

46. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC (2009)

https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-030-03332-3_18
https://doi.org/10.1007/978-3-030-03332-3_18
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-030-05378-9_11
https://doi.org/10.1007/978-3-030-05378-9_11
https://doi.org/10.1007/3-540-48910-X_23

Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus 607

47. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assump-
tions: public marking and security with extraction queries. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03810-6 24

48. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

https://doi.org/10.1007/978-3-030-03810-6_24

Integral Matrix Gram Root and Lattice
Gaussian Sampling Without Floats

Léo Ducas1, Steven Galbraith2, Thomas Prest3, and Yang Yu4(B)

1 Centrum Wiskunde en Informatica, Amsterdam, The Netherlands
ducas@cwi.nl

2 Mathematics Department, University of Auckland, Auckland, New Zealand
s.galbraith@auckland.ac.nz
3 PQShield Ltd, Oxford, UK
thomas.prest@pqshield.com

4 Univ Rennes, CNRS, IRISA, Rennes, France
yang.yu0986@gmail.com

Abstract. Many advanced lattice based cryptosystems require to sam-
ple lattice points from Gaussian distributions. One challenge for this
task is that all current algorithms resort to floating-point arithmetic
(FPA) at some point, which has numerous drawbacks in practice: it
requires numerical stability analysis, extra storage for high-precision,
lazy/backtracking techniques for efficiency, and may suffer from weak
determinism which can completely break certain schemes.

In this paper, we give techniques to implement Gaussian sampling
over general lattices without using FPA. To this end, we revisit the app-
roach of Peikert, using perturbation sampling. Peikert’s approach uses
continuous Gaussian sampling and some decomposition Σ = AAt of
the target covariance matrix Σ. The suggested decomposition, e.g. the
Cholesky decomposition, gives rise to a square matrix A with real (not
integer) entries. Our idea, in a nutshell, is to replace this decomposition
by an integral one. While there is in general no integer solution if we
restrict A to being a square matrix, we show that such a decomposition
can be efficiently found by allowing A to be wider (say n×9n). This can
be viewed as an extension of Lagrange’s four-square theorem to matri-
ces. In addition, we adapt our integral decomposition algorithm to the
ring setting: for power-of-2 cyclotomics, we can exploit the tower of rings
structure for improved complexity and compactness.

1 Introduction

Lattice based cryptography is a promising post-quantum alternative to cryptog-
raphy based on integer factorization and discrete logarithms. One of its attrac-
tive features is that lattices can be used to build various powerful cryptographic
primitives including identity based encryption (IBE) [1,8,11,19], attribute based
encryption (ABE) [5,20], functional encryption [2], group signatures [22,23,31]

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 608–637, 2020.
https://doi.org/10.1007/978-3-030-45724-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_21

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 609

and so on [7,18]. A core component of many advanced lattice based cryptosys-
tems is sampling lattice points from discrete Gaussians, given a short basis (i.e.
a trapdoor) [19,25,32].

Gaussian sampling is important to prevent leaking secret information. Indeed
early lattice trapdoors have suffered from statistical attacks [14,30,37]. In 2008,
Gentry, Peikert and Vaikuntanathan first showed that Gaussian distributions [19]
can prevent such leaks, and that Klein’s algorithm [21] could sample efficiently
from a negligibly close distribution. This algorithm uses the Gram-Schmidt
orthogonalization, which requires either arithmetic over the rationals with very
large denominators, or floating-point approximations. An alternative algorithm
was proposed by Peikert in [32], where most of the expensive computation,
including floating-point arithmetic, can be done in an offline phase at the cost of
somewhat increasing the width of the sampled Gaussian. This technique turned
out to be particularly convenient in the lattice-trapdoor framework of Micciancio
and Peikert [25].

We now explain Peikert’s algorithm in more details. Let B be the input basis
and the target distribution be a spherical discrete Gaussian of width s, center
c and over the lattice L spanned by B. Note that spherical Gaussian sampling
over Z

n is easy, by applying B as a transformation, it is also easy to sample
a Gaussian over L but of covariance Σ = BBt. To produce target samples,
Peikert proposed to use convolution, that is adding some perturbation vector of
covariance Σp = s2I − Σ on the center c. Indeed for continuous Gaussians, the
resulting distribution is of covariance s2I. In [32], Peikert showed that this fact
also holds for discrete Gaussians under some conditions. In summary, Peikert’s
approach consists of two phases:

– offline phase: one samples a perturbation vector of covariance Σp = s2I − Σ;
– online phase: one first samples a spherical Gaussian over Zn and then applies

the transformation of B.

The online sampling can be rather efficient and fully performed over the inte-
gers [17,25,32]. By contrast, the offline sampling uses continuous Gaussian sam-
pling and requires some matrix A such that Σp = AAt. The only suggested way
to find such A is the Cholesky decomposition. Therefore high-precision floating-
point arithmetic is still heavily used in the offline phase.

We now list some of the numerous drawbacks of high-precision FPA when it
comes to practical efficiency and security in the wild.

– First, one needs to perform a tedious numerical stability analysis to determine
what level of precision is admissible, and how much security is lost. Indeed,
while such analysis may be reasonable when done asymptotically, doing a
concrete and tight analysis requires significant effort [3,13,33,34], and may
be considered too error-prone for deployed cryptography. Moreover, efficient
numerical stability analysis for cryptosystems based on generic decision prob-
lems remain open.

610 L. Ducas et al.

– Second, for a security level of λ-bits, it incurs significant storage overheads
as one requires at least a precision of λ/2 bits1 for each matrix entry, while
the trapdoor basis itself only needs log(s) bits per entry, where s = poly(λ)
in simple cryptosystems.

– Thirdly, the requirement for high-precision arithmetic would significantly slow
down those sampling algorithms (may it be fix-point or floating-point arith-
metic). While it has been shown in [13] that one can do most of the operations
at lower precision, the proposed technique requires complicated backtracking,
and high-precision arithmetic from time to time. While asymptotically inter-
esting, it is unclear whether this technique is practical; in particular it has,
to our knowledge never been implemented. It also seems particularly hard to
protect against timing attacks.

– Finally we mention the intrinsic weak determinism of floating-point arith-
metic. It is essential to de-randomize trapdoor sampling, as revealing two
different vectors close to a single target instantly reveals a (secret) short vec-
tor of the lattice. Even with the same random stream, we need to assume
that the rest of the algorithm is deterministic. In the case of high-precision
arithmetic, one would for example have to assume that the mpfr library
behaves exactly the same across different architectures and versions. But even
at low precision, the use of native floats can be tricky despite deterministic
IEEE standards. For example, while both Add and Multiply instructions
are deterministically defined by the IEEE standard, the standard also allows
the combined ‘Multiply-and-Accumulate’ instruction to behave differ-
ently from applying both instructions sequentially, as long as the result is at
least as precise [36]. As FPA addition is not associative, it is crucial to specify
the order of operations for matrix-vector products as part of the scheme, and
to not leave it as an implementation detail. Furthermore, compilers such as
gcc do not guarantee determinism when considering code optimization over
floating-point computation [29].

Our contribution. We present a new perturbation sampling algorithm in which
no floating-point arithmetic is used. Compared with Peikert’s algorithm [32],
our new algorithm has the following features. A more detailed comparison is
available in Sect. 5, with Tables 2 and 3.

– Similar quality. The final Gaussian width s achieved by our technique is only
larger than its minimum by a factor of 1 + o(1): the parameters of the whole
cryptosystems will be unaffected.

– No need for FPA and less precision. All operations are performed over integers
of length about log s, while previous algorithms required floating points with
a mantissa of length at least λ/2 + log s.

– Less memory. While the intermediate matrix, i.e. the Gram root of the covari-
ance, is rectangular, it is integral and of a regular structure, requiring only
≈ n2 log s, instead of n2(λ+log s)/2 bits for Cholesky decomposition [25,32].

1 Unless one assumes strong bounds on the number of attackers’ queries, as done
in [34].

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 611

– Simpler base sampling. Only two kinds of base samplers are required: DZ,Lr

and DZ,r,c with c ∈ 1
L · Z, where L can be any integer larger than a poly-

nomial bound; choosing L as a power of two is known to be particularly
convenient [28].

In summary, not only do we get rid of FPA and its weak determinism, we also
improve time and memory consumption; when s = poly(λ) this improvement
factor is quasilinear. In practice, it may allow to implement an HIBE or ABE
with a few levels before having to resort to multi-precision arithmetic (note that
the parameter s grows exponentially with the depth of such schemes). Compared
to traditional samplers, we expect that the absence of floating-point arithmetic
in our sampler will make it more amenable to side-channel countermeasures such
as masking. We leave this for future work.

Techniques. Our main idea stems from the observation that, at least in the
continuous case, sampling a Gaussian of covariance Σ can be done with using a
matrix A such that AAt = Σ, may A not be a square matrix. This idea was
already implicit in [28,32], and we push it further.

The first step is to prove that the above statement also holds in the discrete
case. We show that when A ·Zm = Z

n, the distribution of Ax where x is drawn
from DZm,r is statistically close to D

Zn,r
√

AAt under some smoothness condition
with respect to the orthogonal lattice Λ⊥(A).

Now the difficult step under study boils down to finding a Gram root of a
given matrix (in the context of Peikert’s algorithm, AAt = dI − Σ). To avoid
the FPA issues, we want this Gram root integral. Driven by this, we proceed
to study the Integral Gram Decomposition Problem denoted by IGDPn,B,d,m

as follows: given an integral symmetric matrix Σ ∈ Z
n×n with ‖Σ‖2 ≤ B,

find an integral matrix A ∈ Z
n×m such that AAt = dIn − Σ. For n = 1,

Lagrange’s 4-square theorem has provided a solution to IGDP. Our goal is finding
an algorithmic generalization of such a decomposition to larger matrices, which
will be bootstrapped from the case of n = 1. Aiming at IGDPn,B,d,m, our initial
method is recursive, and can be summarized as the following reduction

IGDPn,B,d,m → IGDPn−1,B′,d,m′

where B′ ≈ B, m = m′ + �logb B� + 4 and b is the base of the used gadget
decomposition. The reduction is constructive: by gadget decomposition (also
called b-ary decomposition), one first finds a matrix T such that TTt has the
same first row and column as dIn − Σ except the diagonal element, and then
clears out the remaining diagonal element by the 4-square decomposition given
by Lagrange’s theorem. However, this decomposition requires d 	 B, which
significantly enlarges the width of corresponding Gaussian. To overcome this
issue, we develop another tool called eigenvalue reduction, which can be viewed
as the following reduction:

IGDPn,B,d,m → IGDPn,B′,d−B,m−n

612 L. Ducas et al.

with B′
 B. By eigenvalue reduction, the final overhead on the Gaussian width
is introduced during the decomposition on a small matrix, which becomes negligi-
ble compared with the original parameter. Combining the integral decomposition
for d 	 B and the eigenvalue reduction, we arrive at a solution to IGDPn,B,d,m

of a somewhat large B, say B = ω(n4). This is the case of some advanced lattice
based schemes, such as hierarchical IBE [1,8] and ABE [20]. Furthermore, if a
few, say O(log n), bits of rational precision are permitted, we can find an almost
integral Gram root for general positive definite matrices.

Techniques in the ring setting. The aforementioned algorithms apply to the
ring setting, but the decompositions break the ring structure and thus lose
the efficiency improvement provided by rings. To improve efficiency, we devised
ring-based algorithms. The IGDPn,B,d,m problem is naturally generalized to the
ring setting by adding the underlying ring R as a parameter. To tackle the
IGDPR,n,B,d,m problem, we first study the special case IGDPR,1,B,d,m. We pro-
pose an analogue of 4-square decomposition in the power-of-2 cyclotomic ring,
i.e. R2w = Z[x]/(xw + 1) where w = 2l. At a high level, our solution performs
the reduction

IGDPR2w,1,B,d,m → IGDPRw,1,B′,d′,m′ ,

where B′ ≈ B, d = d′ + b2k−1
b2−1 , m = m′ + k and b is the gadget base, k =

�logb B�, which projects the problem onto a subring. To build this reduction,
we make use of ring gadgets: given f ∈ R2w, the ring gadget computes a set of
ai = bi−1 +xci(x2) ∈ R2w such that f +

∑k
i=1 aia

�
i can be viewed as an element

in the subring Rw and all ci’s are small. The resulting integral decomposition
inherits the tower of rings structure and hence can be stored efficiently despite
the output being wider by a factor of O(log w). Finally, this decomposition in
the ring setting can be combined with the previous integer setting algorithm to
yield an algorithm for solving IGDPR2w,n,B,d,m.

Related work. While we are not aware of works on the Integral Gram Decompo-
sition Problem, the rational version of this question arises as a natural mathe-
matical and algorithmic question for the representation of quadratic forms. For
example, Cassel [9] showed that a rational solution exists for m = n + 3; we are
unaware of an efficient algorithm to find such a solution. Lenstra [24] proposed
a polynomial time rational solution for m = 4n.

However, such rational solutions are not very satisfactory in our context, as
the denominators can get as large as the determinant of the input lattice. In
fact, if rational arithmetic with such large coefficient is deemed acceptable, then
one could directly use an implementation of Klein-GPV [19,21] algorithm over
the rationals.

In a concurrent work [10], Chen, Genise and Mukherjee proposed a notion
of approximate trapdoor and adapted the Micciancio-Peikert trapdoor [25] to
the approximate trapdoor setting. In the analysis of the preimage distribution,
they used a similar linear transformation theorem for discrete Gaussians. Their

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 613

preimage sampling calls perturbation sampling as a “black-box” so that our
technique is well compatible with [10].

Furthermore in [15], Ducas and Prest applied FFT techniques to improve
the Klein-GPV algorithm in the ring setting. Similarly, Genise and Micciancio
exploited the Schur complement and developed a discrete perturbation algorithm
in [17]. Yet in practice these methods still resort to floating-point arithmetic.

Roadmap. We start in Sect. 2 with some preliminary material. Section 3 shows
that rectangular Gram roots allow to sample according to the desired distribu-
tion. In Sect. 4, we introduce the Integral Gram Decomposition Problem and
detail the algorithms to solve it. We provide a detailed comparison with Peik-
ert’s perturbation sampler in Sect. 5. Finally we propose a variant of our integral
matrix decomposition geared to the ring setting in Sect. 6.

2 Preliminaries

2.1 Notations

We use log and ln to denote respectively the base 2 logarithm and the natural
logarithm. Let ε > 0 denote some very small number; we use the notational
shortcut ε̂ = ε + O(ε2). One can check that 1+ε

1−ε = 1 + 2ε̂ and ln
(

1+ε
1−ε

)
= 2ε̂.

For a distribution D over a countable set, we write z ←↩ D when the random
variable z is sampled from D, and denote by D(x) the probability of z = x.
For a real-valued function f and a countable set S, we write f(S) =

∑
x∈S f(x)

assuming that this sum is absolutely convergent (which is always the case in this
paper). Given two distributions D1 and D2 of common support E, the max-log
distance between D1 and D2 is

ΔML(D1,D2) = max
x∈E

| ln(D1(x)) − ln(D2(x))|.

As shown in [28], it holds that ΔML(D1,D2) ≤ ΔML(D1,D3) + ΔML(D2,D3).

2.2 Linear Algebra

We use bold lower case letters to denote vectors, and bold upper case letters to
denote matrices. By convention, vectors are in column form. For a matrix A, we
denote by Ai,j the element in the i-th row and j-th column, and by Ai:j,k:l the
sub-block (Aa,b)a∈{i,··· ,j},b∈{k,··· ,l}. Let �A� be the matrix obtained by rounding
each entry of A to the nearest integer. Let In be the n-dimensional identity
matrix.

Let Σ ∈ R
n×n be a symmetric matrix. We write Σ > 0 when Σ is positive

definite, i.e. xtΣx > 0 for all non-zero x ∈ R
n. It is known that Σ > 0 if and

only if Σ−1 > 0. We also write Σ1 > Σ2 when Σ1 − Σ2 > 0. It holds that
Σ1 > Σ2 > 0 if and only if Σ−1

2 > Σ−1
1 > 0. Similarly, we write Σ1 ≥ Σ2 or

Σ1 −Σ2 ≥ 0 to state that Σ1 −Σ2 is positive semi-definite. If Σ = AAt, we call

614 L. Ducas et al.

A a Gram root of Σ. In particular, if a Gram root A is a square and invertible
matrix, we call A a square Gram root2. When the context permits it, we denote√

Σ for any square Gram root of Σ.
For a positive definite matrix Σ, let e1(Σ) be the largest eigenvalue of Σ,

then e1(Σ) > 0. Let Σ1,Σ2 be positive definite matrices and Σ = Σ1 + Σ2,
then Σ > 0 and e1(Σ) ≤ e1(Σ1) + e1(Σ2). We recall the spectral norm ‖A‖2 =
maxx�=0

‖Ax‖
‖x‖ =

√
e1(AtA) and the Frobenius norm ‖A‖F =

√∑
i,j A2

i,j . It is

known that ‖At‖2 = ‖A‖2, ‖AB‖2 ≤ ‖A‖2‖B‖2 and ‖A‖2 ≤ ‖A‖F . We also

write ‖A‖max = maxi,j |Ai,j | and ‖A‖col = maxj

√∑
i A

2
i,j .

2.3 Lattices

A lattice is a discrete additive subgroup of R
m, and is the set of all integer

linear combinations of linearly independent vectors b1, · · · ,bn ∈ R
m. We call

B =
(
b1 · · · bn

)
a basis and n the dimension of the lattice. If n = m, we call

the lattice full-rank. We denote by L(B) the lattice generated by the basis B.
Let L̂ = {u ∈ span(L) | ∀v ∈ L, 〈u,v〉 ∈ Z} be the dual lattice of L. For k ≤ n,
the k-th minimum λk(L) is the smallest value r ∈ R such that there are at least
k linearly independent vectors in L whose lengths are not greater than r.

Given A ∈ Z
n×m with m ≥ n, we denote the orthogonal lattice3 defined by

A by Λ⊥(A) = {v ∈ Z
m | Av = 0}. When the rank of A is n, the dimension of

Λ⊥(A) is (m − n).

2.4 Gaussians

Let ρR,c(x) = exp
(−π(x − c)tR−tR−1(x − c)

)
be the n-dimensional Gaussian

weight with center c ∈ R
n and (scaled)4 covariance matrix Σ = RRt. Because

ρR,c(x) = exp
(−π(x − c)tΣ−1(x − c)

)
is exactly determined by Σ, we also

write ρR,c as ρ√
Σ,c. When c = 0, the Gaussian function is written as ρR or ρ√

Σ

and is called centered. When Σ = s2In, we write the subscript
√

Σ as s directly,
and call s the width.

The discrete Gaussian distribution over a lattice L with center c and covari-
ance matrix Σ is defined by the probability function DL,

√
Σ,c(x) =

ρ√
Σ,c(x)

ρ√
Σ,c(L) for

any x ∈ L. We recall some notions related to the smoothing parameter.

Definition 1 ([27], Definition 3.1). Given a lattice L and ε > 0, the ε-
smoothing parameter of L is ηε(L) = min

{
s | ρ1/s

(
L̂
)

≤ 1 + ε
}
.

2 When n ≥ 2, any Σ > 0 has infinitely many square Gram roots.
3 Take note that we are here not considering the “q-ary orthogonal lattice” Λ⊥

q (A) =
{v ∈ Z

m | Av = 0 mod q}.
4 The scaling factor is 2π and we omit it in this paper for convenience.

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 615

Definition 2 ([32], Definition 2.3). Given a full-rank lattice L, ε > 0 and
a positive definite matrix Σ, we write

√
Σ ≥ ηε(L) if ηε

(√
Σ

−1 · L
)

≤ 1 i.e.

ρ√
Σ−1

(
L̂
)

≤ 1 + ε.

We define η≤
ε (Zn) =

√
ln(2n(1+1/ε))

π . We will use the following results later.

Proposition 1. Given a lattice L and ε > 0, then ηε(rL) = r·ηε(L) for arbitrary
r > 0.

Proposition 2. Let Σ1 ≥ Σ2 > 0 be two positive definite matrices. Let L be a
full-rank lattice and ε ∈ (0, 1). If

√
Σ2 ≥ ηε(L), then

√
Σ1 ≥ ηε(L).

Proof. Notice that ρ√
Σ−1

1
(x) = exp(−πxtΣ1x) ≤ exp(−πxtΣ2x) = ρ√

Σ−1
2

(x),

hence ρ√
Σ−1

1

(
L̂
)

≤ ρ√
Σ−1

2

(
L̂
)
. By Definition 2, we complete the proof. ��

Lemma 1 ([27], Lemma 3.3). Let L be an n-dimensional lattice and ε ∈ (0, 1).
Then ηε(L) ≤ η≤

ε (Zn) · λn(L). In particular, for any ω(
√

log n) function, there
is a negligible ε such that ηε(Zn) ≤ ω(

√
log n).

Lemma 2 ([27], implicit in Lemma 4.4). Let L be a lattice and ε ∈ (0, 1). If
r ≥ ηε(L), then ρr(c + L) ∈ [1−ε

1+ε , 1]ρr(L) for any c ∈ span(L).

We recall the convolution theorem with respect to discrete Gaussians that
was introduced in [32].

Theorem 1 (Adapted from Theorem 3.1 [32]). Let Σ1,Σ2 ∈ R
n×n be

positive definite matrices. Let Σ = Σ1 + Σ2 and let Σ3 ∈ R
n×n be such

that Σ−1
3 = Σ−1

1 + Σ−1
2 . Let L1,L2 be two full-rank lattices in R

n such that√
Σ1 ≥ ηε(L1) and

√
Σ3 ≥ ηε(L2) for ε ∈ (0, 1/2). Let c1, c2 ∈ R

n. Then the
distribution of x1 ←↩ DL1,

√
Σ1,x2−c2+c1

where x2 ←↩ DL2,
√

Σ2,c2
is within max-

log distance 4ε̂ of DL1,
√

Σ,c1
.

2.5 Integral Decompositions

Lagrange’s four-square theorem states that every natural number can be repre-
sented as the sum of four integer squares. An efficient algorithm to find such a
decomposition was given by Rabin and Shallit [35].

Theorem 2 (Rabin-Shallit algorithm [35]). There is a randomized algo-
rithm for expressing N ∈ N as a sum of four squares which requires an expected
number of O(log2 N log log N) operations with integers smaller than N .

Another important integral decomposition for our work is the b-ary decompo-
sition, more conveniently formalized with the gadget vector g = (1, b, · · · , bk−1)t

in [25], hence called gadget decomposition. It says that for any n ∈ (−bk, bk)∩Z,
there exists a vector c ∈ Z

k such that 〈c,g〉 = n and ‖c‖∞ < b. The
cost of such a decomposition is dominated by O(k) Euclidean divisions by b
that are particularly efficient in practice when b is a power of 2. Note that
‖g‖2 = (b2k − 1)/(b2 − 1).

616 L. Ducas et al.

3 Gaussian Sampling with an Integral Gram Root

In Peikert’s sampler [32], one samples perturbation vectors from a Gaussian
with certain covariance, say D

Zn,r
√

Σ during the offline phase. Among existing
perturbation samplers [17,25,32] this requires floating-point arithmetic in the
linear algebraic steps.

To avoid FPA, our starting point is the following observation: given an inte-
gral Gram root of Σ−In, one can sample from D

Zn,r
√

Σ without resorting to FPA
and in a quite simple manner. The main result of this section is the following
theorem.

Theorem 3 (Sampling theorem). Let Σ ∈ Z
n×n such that Σ − In ≥ In.

Given A ∈ Z
n×(n+m) such that AAt = Σ−In, A·Zn+m = Z

n and λm(Λ⊥(A)) ≤
L, let D̃A(L′, r) denote the distribution of DZn,r, 1

L′ ·c where c = Ax with x ←↩

DZn+m,L′r. For ε ∈ (0, 1/2), r ≥ ηε(Zn) and L′ ≥ max{√2, (L/r) · η≤
ε (Zm)},

then
ΔML

(
D̃A(L′, r),D

Zn,r
√

Σ

)
≤ 8ε̂.

We give an algorithmic description in Algorithm 1.

Algorithm 1. New perturbation sampling algorithm NewPert(r,Σ)
Input: a covariance matrix Σ ∈ Z

n×n and some r ≥ ηε(Z
n).

Output: a sample x from a distribution within max-log distance 8ε̂ of D
Zn,r

√
Σ.

Precomputation:
1: compute A ∈ Z

n×(n+m) such that AAt = Σ − In, A · Zn+m = Z
n and

λm(Λ⊥(A)) ≤ L (see Sect. 4 for details)
Sampling:

2: sample x ←↩ DZn+m,Lr by base sampler DZ,Lr

3: c ← Ax
4: sample y ←↩ D

Zn,r, 1
L

·c by base samplers DZ,r, c
L

with c ∈ {0, 1, · · · , L − 1}
5: return y

To prove Theorem 3, we need the following linear transformation lemma for
discrete Gaussians.

Lemma 3 (Linear Transformation Lemma). Let A ∈ Z
n×m such that A ·

Z
m = Z

n. Let Σ = AAt. For ε ∈ (0, 1/2), if r ≥ ηε(Λ⊥(A)), then the max-log
distance between the distribution of y = Ax where x ←↩ DZm,r and D

Zn,r
√

Σ is
at most 4ε̂.

Remark 1. Lemma 3 was used implicitly in [6,26]. Its proof is given in the full
version [16]. Again, a general linear transformation theorem is stated in [10].

Remark 2. Lemma 3 implies similar bounds for other metrics, such as the
Kullback-Leibler divergence [33] and the Rényi divergence [3,34].

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 617

Proof of Theorem 3. By Lemmata 3 and 1, the max-log distance between the
distribution of c = Ax and D

Zn,L′r
√

Σ−In
is at most 4ε̂. By scaling, we have

that the max-log distance between the distribution of 1
L′ · c and D 1

L′ ·Zn,r
√

Σ−In

is still at most 4ε̂. It can be verified that

r

√
(
(Σ − In)−1 + I−1

n

)−1 ≥ ηε

(
1
L′ · Zn

)

.

Combining Theorem 1, the proof follows. ��

3.1 Reducing λm (Λ⊥(A))

As shown in Theorem 3, with an integral Gram root, the sampling of D
Zn,r

√
Σ is

converted into two kinds of base samplings: DZ,L′r and DZ,r,c with c ∈ 1
L′ ·Z. One

sometimes may prefer to work with small L′ whose size is mainly determined
by λm(Λ⊥(A)). The following lemma suggests that given a matrix A, one can
construct an orthogonal lattice of relatively small successive minima by padding
A with some gadget matrices

(
In bIn · · · bk−1In

)
.

Lemma 4. Let A ∈ Z
n×m with ‖A‖2 ≤ B. For b, k ∈ N such that bk > B, let

A′ =
(
In bIn · · · bk−1In A

)
, then λm+(k−1)n(Λ⊥ (A′)) ≤√nk(b − 1)2 + 1.

The proof of Lemma 4 is given in the full version [16].

Remark 3. Lemma 4 provides a solution to reduce L′ at the cost of more base
samplings and some overhead on the final Gaussian width. In practice, it is
optional to pad gadget matrices considering the tradeoff. In later discussions, we
shall omit this trick and just focus on λm(Λ⊥(A)).

4 Integral Gram Decompositions

In Sect. 3, we have explicated how to sample perturbation vectors using no FPA
with an integral Gram root. The computation of such an integral Gram root is
developed in this section. Let us first formally define the Integral Gram Decom-
position Problem.

Definition 3 (IGDPn,B,d,m). Let n,B, d,m ∈ N. The Integral Gram Decompo-
sition Problem, denoted by IGDPn,B,d,m, is defined as follows: given an integral
symmetric matrix Σ ∈ Z

n×n with ‖Σ‖2 ≤ B, find an integral matrix A ∈ Z
n×m

such that AAt = dIn − Σ.

Our final goal is to solve IGDPn,B,d,m with fixed (n,B) while keeping d =
(1 + o(1))B and m relatively small.

Our first approach (Sect. 4.1) only allows a decomposition of sufficiently diag-
onally dominant matrices, i.e. d 	 B, which implies a large overhead on the final
width of the Gaussian. Fortunately, when the parameter B is somewhat large,
say ω(n4), this can be fixed by first resorting to some integral approximations of
Cholesky Gram roots and then working on the left-over matrix of small norm.
We call this procedure eigenvalue reduction and describe it in Sect. 4.2. Finally,
we combine these two algorithms and give several example instances in Sect. 4.3.

618 L. Ducas et al.

4.1 Decomposition for Diagonally Dominant Matrices

We present an algorithm to compute an integral Gram root of Σ′ = dIn −Σ for
a relatively large d. It is formally described in Algorithm 2.

The algorithmproceeds by induction, reducing IGDPn,B,d,m to IGDPn−1,B′,d,m′

where B′ and m are slightly larger than B and m′ respectively. To do so, one first
constructs T ∈ Z

n×k such that TTt and Σ′ have the same first row and col-
umn, and then proceeds iteratively over (Σ′ − TTt)2:n,2:n. In the construction of
T, to clear out the off-diagonal elements, we make use of a gadget decomposition
〈ci,g〉 = Σ′

1,i (i > 1). The remaining diagonal element, namely Σ′
1,1 − ‖g‖2, is

then handled by the 4-square theorem.
To ensure the inductive construction goes through, Algorithm 2 requires a

certain strongly positive definiteness condition. We need that d−Σi,i ≥ ‖g‖2, but
we also need to account for the perturbation TTt subtracted from Σ′ during the
induction. The correctness and efficiency of this algorithm is given in Lemma 5.

Remark 4. For tighter parameters, we consider ‖Σ‖max instead of direct ‖Σ‖2
in Algorithm 2, which does not affect the main result, i.e. Corollary 1.

Lemma 5. Algorithm 2 is correct. More precisely, let Σ ∈ Z
n×n be symmetric

and d, b, k ∈ Z such that bk ≥ ‖Σ‖max + k(n − 1)b2 and d ≥ b2k−1
b2−1 + bk. Then

DiagDomIGD(Σ, d, b, k) outputs A ∈ Z
n×n(k+4) such that AAt = dIn − Σ.

Moreover, DiagDomIGD(Σ, d, b, k) performs O(kn3 + n log2 d log log d) arith-
metic operations on integers of bitsize O(log d).

Proof. There are n calls to the Rabin-Shallit algorithm in Algorithm 2, and all
input integers are at most 2d. Thus the total cost of the Rabin-Shallit algo-
rithm is O(n log2 d log log d) operations on integers of bitsize O(log d). There are
also n(n−1)

2 gadget decompositions, and the total cost is O(n2k) operations on
integers of bitsize at most k log b ≤ log d. For matrix multiplication, we follow
the textbook algorithm, thus the total cost is O(n3k) operations on integers of
bitsize at most O(log d). This yields the overall running time complexity.

We now prove the correctness. Since d − Σ1,1 ≥ d − ‖Σ‖max ≥ ‖g‖2, the
existence of a 4-square decomposition x is ensured. For Σ1,j with j > 1, we have
|Σ1,j | ≤ ‖Σ‖max < bk, which implies the existence of cj and ‖cj‖∞ < b. Then
it can be verified that

dIn − Σ − TTt =
(

0 0t

0 Π′

)

where Π′ = dIn−1 − Π ∈ Z
(n−1)×(n−1) and Π = Σ2:n,2:n + Ξ with Ξ = CCt.

Notice that ‖cj‖ ≤ b
√

k, hence ‖Π‖max ≤ ‖Σ‖max + kb2. Further we have that

bk ≥ ‖Π‖max + k(n − 2)b2 and d ≥ b2k − 1
b2 − 1

+ bk.

So far, all parameter conditions indeed hold for d and Π correspondingly. There-
fore, the induction goes through and Algorithm 2 is correct. ��

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 619

Algorithm 2. Integral matrix decomposition for a strongly diagonally
dominant matrix DiagDomIGD(Σ, d, b, k)

Input: a symmetric matrix Σ ∈ Z
n×n,

two integers b, k ≥ 2 such that bk ≥ ‖Σ‖max + k(n − 1)b2,

an integer d such that d ≥ b2k−1
b2−1

+ bk.

Output: A =
(
L1 · · · Lk D1 · · · D4

) ∈ Z
n×n(k+4) such that AAt = dIn − Σ

where Li ∈ Z
n×n is a lower-triangular matrix whose diagonal elements are bi−1

and Di ∈ Z
n×n is a diagonal matrix.

1: g ← (1, b, · · · , bk−1)t

2: calculate x = (x1, x2, x3, x4)t ∈ Z
4 such that ‖x‖2 = d − Σ1,1 − ‖g‖2 using

Rabin-Shallit algorithm (Theorem 2)

3: if n = 1 then

4: return (gt,xt)

5: end if
6: for j = 2, · · · , n do
7: calculate cj ∈ Z

k such that 〈cj ,g〉 = −Σ1,j by gadget decomposition

8: end for

9: C ← (
c2 · · · cn

)t ∈ Z
(n−1)×k, T ←

(
gt xt

C

)
∈ Z

n×(4+k)

10: Π ← (
Σ + TTt

)
2:n,2:n

11:
(
L′
1 · · · L′

k D′
1 · · · D′

4

) ← DiagDomIGD(Π, d, b, k) {Recursive call}
12:

(
v′
1 · · · v′

k

) ← C

13: Li ←
(
bi−1

v′
i L′

i

)
∈ Z

n×n for i = 1, · · · , k

14: Di ←
(
xi

D′
i

)
∈ Z

n×n for i = 1, · · · , 4
15: return A =

(
L1 · · · Lk D1 · · · D4

)

Notice that ‖Σ‖max ≤ ‖Σ‖2, we immediately get the following result.

Corollary 1. Let n,B, d, b, k ∈ N such that bk ≥ B+k(n−1)b2 and d ≥ b2k−1
b2−1 +

bk. Then there exists a solution to IGDPn,B,d,n(k+4) and it can be calculated by
Algorithm 2.

To use such a decomposition for perturbation sampling, we also need to
control λm−n(Λ⊥(A)). Lemma 6 shows that this can easily be done by padding
the output A with an identity matrix In.

Lemma 6. Let A = DiagDomIGD(Σ, d − 1, b, k) ∈ Z
n×m where m = n(k + 4).

Let A′ =
(
In A

)
, then A′ · Zn+m = Z

n, the dimension of Λ⊥(A′) is m, and

λm(Λ⊥(A′)) ≤ max

⎧
⎨

⎩
b2

√
n,

√

d − b2k − 1
b2 − 1

+ ‖Σ‖max

⎫
⎬

⎭
.

Proof. Let S =

⎛

⎝

1 −b
1 −b

. . . −b
1

⎞

⎠ ∈ Z
(k−1)×(k−1). We define D =

(
D1 · · · D4

)

∈ Z
n×4n,L =

(
L1 · · · Lk

) ∈ Z
n×kn such that A =

(
L D
)
. We also define

620 L. Ducas et al.

L = L · (S ⊗ In) =
(
L1 L2 − bL1 · · · Lk − bLk−1

)
, then ‖L‖max < b2 and the

diagonal elements of Li − bLi−1 are 0. Let

P =
(

A
−Im

)

·
(

S ⊗ In

I4n

)

=

⎛

⎝
L D

−S ⊗ In

−I4n

⎞

⎠ ,

then P contains m linearly independent vectors of Λ⊥(A′). A straightforward
computation yields that

‖P‖col ≤ max

⎧
⎨

⎩
b2

√
n,

√

d − b2k − 1
b2 − 1

+ ‖Σ‖max

⎫
⎬

⎭
,

which implies the conclusion immediately. ��

4.2 Eigenvalue Reduction

The parameter requirements of Corollary 1 are rather demanding. Indeed, the
minimal d is at least B + b2k−2 + k(n − 1)b2 > 2B

√
k(n − 1), which results in

costly overhead on the final Gaussian width, and therefore on all the parameters
of the cryptosystem. Yet we claim that for some large B, say ω(n4), one can
overcome this issue with the help of some integral approximations of Cholesky
decompositions. The case of large B is of interest in advanced lattice based
schemes [1,8,20]. Note that by scaling, this constraint on B can even be removed
if one accepts to include a few (O(log n)) rational bits in the Gram decomposi-
tion.

This technique essentially can be summarized as a reduction from
IGDPn,B,d,m to IGDPn,B′,d−B,m−n in which B′
 B. One first splits dIn−Σ into
two parts: Σ′ = B ·In −Σ and (d−B) ·In. Exploiting an integral approximation
of Cholesky decomposition, one decomposes Σ′ as a Gram matrix LLt and a
small matrix Σ′′. Then it suffices to decompose (d − B)In + Σ′′, which implies
the reduction. As B′
 B, the overhead introduced by IGDPn,B′,d−B,m−n can
be negligible compared with the original B. The formal description is illustrated
in Algorithm 3, and an upper bound of B′ is shown in Lemma 7.

Algorithm 3. Eigenvalue reduction EigenRed(Σ, B)
Input: a symmetric matrix Σ ∈ Z

n×n with ‖Σ‖2 ≤ B.
Output: (L,Π) where L ∈ Z

n×n, Π ∈ Z
n×n is symmetric and

B · In − Σ = LLt − Π.

1: L ←
⌊
L̃

⌉
where L̃ is the Cholesky Gram root of B · In − Σ

2: Π ← LLt − (B · In − Σ)
3: return (L,Π)

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 621

For better description, we define a function Fn : N → N specified by n as

Fn(x) =
⌈
√

n(n + 1)x +
n(n + 1)

8

⌉

.

Lemma 7. Let Σ ∈ Z
n×n be a symmetric matrix and B ≥ ‖Σ‖2. Let (L,Π) =

EigenRed(Σ, B), then ‖Π‖2 ≤ Fn(B).

Proof. Let Δ = L − L̃, then ‖Δ‖max ≤ 1
2 and Δ is lower triangular. We have

‖Δ‖2 ≤ ‖Δ‖F ≤ 1
2 ·
√

n(n+1)
2 and ‖L̃‖2 ≤ √

2B, then

‖Π‖2 = ‖ΔL̃t + L̃Δt + ΔΔt‖2 ≤ 2‖L̃‖2‖Δ‖2 + ‖Δ‖22 ≤ Fn(B).

We complete the proof. ��
Corollary 2. Let n,B, d,m ∈ N. There is a deterministic reduction from
IGDPn,B,d,m to IGDPn,Fn(B),d−B,m−n whose cost is dominated by one call to
Cholesky decomposition on some positive semi-definite matrix Σ ∈ Z

n×n with
‖Σ‖2 ≤ 2B.

Remark 5. One may fear the re-introduction of Cholesky within our algorithm,
however we argue that it is in this context much less of an issue:

– costly FPA computation may still be needed, but they are now confined to a
one-time pre-computation, rather than a many-time off-line phase,

– the weak determinism of this FPA computation can be mitigated by running
pre-computation as part of the trapdoor generation algorithm, and providing
the pre-computed integral Gram decomposition as part of the secret key,

– the eigenvalue reduction algorithm can tolerate a rather crude approximation
of Cholesky without leading to a hard to detect statistical leak. At worse,
insufficient precision will simply fail to solve the IGDP instance at hand.
That is, only completeness is at stake, not security, and one may tolerate rare
failures.

– one may also completely avoid FPA by resorting to potentially less efficient
though more convenient square root approximation algorithm. In particular,
we note that the Taylor series of

√
1 − x involves only power-of-2 denomina-

tors: one can design a “strongly deterministic” algorithm.

4.3 Putting Them Together

So far, we have introduced two algorithmic tools for IGDPn,B,d,m: the integral
decomposition for diagonally dominant matrices DiagDomIGD(Σ, d, b, k) and the
eigenvalue reduction EigenRed(Σ, B). They can be combined as follows: one first
applies the eigenvalue reduction iteratively and then decomposes the final left-
over matrix. We summarize this as IGD(Σ, d, B, t, b, k) in Algorithm 4, and prove
its correctness in Lemma 8.

622 L. Ducas et al.

We follow the notation Fn given in Sect. 4.2, and also define its iterated
function F

(i)
n : N → N for i ∈ N by: F

(0)
n (x) = x and F

(i+1)
n (x) = Fn

(
F

(i)
n (x)

)
.

Algorithm 4. Integral matrix decomposition IGD(Σ, d, B, t, b, k)
Input: a symmetric matrix Σ ∈ Z

n×n with ‖Σ‖2 ≤ B,

non-negative integers b, k, t such that bk ≥ F
(t)
n (B) + k(n − 1)b2,

an integer d such that d ≥ b2k−1
b2−1

+ bk +
∑t−1

i=0 F
(i)
n (B).

Output: A =
(
A1 A2

) ∈ Z
n×(m1+m2) such that AAt = dIn − Σ where

m1 = nt and m2 = n(k + 4),
A1 ∈ Z

n×m1 consists of t lower-triangular matrices,
A2 =DiagDomIGD(Π, d − ∑t−1

i=0 F
(i)
n (B), b, k) ∈ Z

n×m2 where ‖Π‖2 ≤ F
(t)
n (B).

1: A1 ← () (an empty matrix ∈ Z
n×0·n), Π ← Σ

2: for i = 1, · · · , t do
3: (L,Π) ← EigenRed(Π, F

(i−1)
n (B))

4: A1 ← (
A1 L

)
5: end for
6: A2 ← DiagDomIGD(Π, d − ∑t−1

i=0 F
(i)
n (B), b, k) ∈ Z

n×m2

7: return
(
A1 A2

)

Lemma 8. Algorithm 4 is correct. More precisely, let Σ ∈ Z
n×n be symmetric

and d,B, t, b, k ∈ N such that ‖Σ‖2 ≤ B, bk ≥ F
(t)
n (B) + k(n − 1)b2 and d ≥

b2k−1
b2−1 + bk +

∑t−1
i=0 F

(i)
n (B). Then IGD(Σ, d, B, t, b, k) outputs A ∈ Z

n×m such
that AAt = dIn − Σ and m = n(t + k + 4).

Remark 6. In practice, the calculation of the Gram root A can be accomplished
during the key generation and needs to run only once. Therefore, we do not take
into account the complexity of IGD(Σ, d, B, t, b, k).

Proof. It can be verified that

A1At
1 =

(
t−1∑

i=0

F (i)
n (B)

)

· In − Σ + Π

and

A2At
2 =

(

d −
t−1∑

i=0

F (i)
n (B)

)

· In − Π,

hence AAt = dIn−Σ. According to Lemmata 5 and 7, all conditions required by
the calls of EigenRed(Π, F

(i−1)
n (B)) and DiagDomIGD(Π, d−∑t−1

i=0 F
(i)
n (B), b, k)

are satisfied. Therefore, Algorithm 4 is correct. ��

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 623

Now we give an upper bound of λm−n(Λ⊥(A)) in Lemma 9. Similar to
Lemma 6, we also pad the Gram root A with In.

Lemma 9. Let A = IGD(Σ, d − 1, B, t, b, k) ∈ Z
n×m where m = n(t + k + 4).

Let A′ =
(
In A

)
, then A′ · Zn+m = Z

n, the dimension of Λ⊥(A′) is m, and

λm(Λ
⊥
(A

′
)) ≤ max

⎧
⎨

⎩
b
2√

n,

√
√
√
√d + F

(t)
n (B) − b2k − 1

b2 − 1
−

t−1∑

i=0

F
(i)
n (B), max

0≤i<t

√

2F
(i)
n (B) + n

⎫
⎬

⎭
.

Proof. Let A =
(
A1 A2

)
where A1 ∈ Z

n×m1 with m1 = nt and A2 ∈ Z
n×m2

with m2 = n(k + 4). Let A′
1 =
(
In A1

)
and A′

2 =
(
In A2

)
, then

λm(Λ⊥(A′)) ≤ max{λm1(Λ
⊥(A′

1)), λm2(Λ
⊥(A′

2))}.

The matrix A1 consists of t lower-triangular matrices, denoted by L1, · · · ,Lt,

such that Li =
⌊
L̃i

⌉
and ‖L̃i‖col ≤ ‖L̃i‖2 ≤

√

2F
(i−1)
n (B) by Lemma 7. It follows

that ‖Li‖col ≤ ‖L̃i‖col +
√

n
2 ≤

√

2F
(i−1)
n (B) +

√
n
2 , and then we have

λm1(Λ
⊥(A′

1)) ≤ max
1≤i≤t

√

‖Li‖col2 + 1 ≤ max
0≤i<t

√

2F
(i)
n (B) + n.

As for λm2(Λ
⊥(A′

2)), combining Lemmata 6 and 7 leads to that

λm2(Λ
⊥(A′

2)) ≤ max

⎧
⎨
⎩b2

√
n,

√√√√d + F
(t)
n (B) − b2k − 1

b2 − 1
−

t−1∑
i=0

F
(i)
n (B)

⎫
⎬
⎭ .

The proof is completed. ��
As the parameters n and B have been determined before the key generation,

one can first choose suitable (t, b, k) and then proceed to minimize d satisfying
the requirements of Algorithm 4. We next discuss concrete parameter selections
according to the size of B.

Case 1: B = ω(n6). In this case, we insist on a common gadget setting: b = 2.
One can first fix (t, b) = (2, 2) and then choose k = 1 +

⌈
3
2 log(n + 1) + 1

4 log B
⌉
.

The minimal d is bounded by B + 2(n + 1)3
√

B = (1 + o(1))B.
Under this setting, the final integral Gram root A′ =

(
In A

)
is of size

n × (n + m) with m = n(k + 6), and λm(Λ⊥(A′)) ≤ √
2B + n for d ≤ 3B.

Case 2: B = ω(n4). We now insist on minimizing the total size of the output A.
To this end, one first sets (t, k) = (1, 3) and then selects b =

⌈
3n +

√
2n

1
3 B

1
6

⌉
.

The minimal d is bounded by B + 2b4 = (1 + o(1))B.
Under this setting, the final integral Gram root A′ =

(
In A

)
is of size

n×(n+m) with m = 8n, and λm(Λ⊥(A′)) ≤ max{√
2B+n, b2

√
n = O(n

7
6 B

1
3)}

for d ≤ 3B.

624 L. Ducas et al.

Case 3: B = O(n4). In some scenarios, B can be relatively small, say Õ(n) [4,25],
so that the current algorithm does not work directly. But we can still compute
an almost integral Gram root of dIn − Σ. By almost integral, we mean that we
resort to rationals of the form i/2ν , with only a few rational bits ν = O(log n).

The trick is rather simple: by scaling both d and B by a factor of 22ν , one
can reduce the case of small B to the case of a large one. This technique indeed
applies for any B and d > B + 1, when the scaling factor is sufficiently large.

As an example, we choose arbitrary ν ∈ Z such that 22νB = ω(n4). As
shown in Case 2, selecting (t, k, b) =

(
1, 3,
⌈
3n +

√
2n

1
3 (22νB)

1
6

⌉)
allows an

almost integral decomposition, and the minimal d is bounded by B+2b4 ·2−2ν =
(1 + o(1))B.

Under this setting, the final integral Gram root A′ = 2−ν · (In A
)

is of size
n × (n + m) with m = 8n. A minor modification to apply Theorem 3 is that one
should consider λm(Λ⊥(2ν · A′)) to fulfil Lemma 3. This can be done similarly:
λm(Λ⊥(2ν · A′)) ≤ max{2ν

√
2B + n, b2

√
n = O(2

2
3νn

7
6 B

1
3)} for d ≤ 3B.

We compare above parameter selections according to some values including:
(1) m = m + n, determining the size of the Gram root; (2) L, an upper bound
of λm(Λ⊥(A′)) dominating L′ in Theorem 3; and (3) dmin, the minimum of d
proportional to the minimal final width. We summarize three cases in Table 1.

Table 1. Parameter selections of the integral Gram decomposition. In the first two
cases, the final Gram root A′ is integral of size n×m. In the third one, the final Gram
root is 2−νA′ where A′ ∈ Z

n×m and ν = 2 log n − 1
2

log B + ω(1) is an integer.

m = m + n L dmin

Gadget base b = 2:
B = ω(n6)

O(n log B) O
(√

B
)

(1 + o(1))B

Large gadget base:
B = ω(n4)

9n O
(√

B + n
7
6 B

1
3

)
(1 + o(1))B

Almost integral:
B = O(n4)

9n O
(
2ν

√
B + 2

2
3 νn

7
6 B

1
3

)
(1 + o(1))B

5 Comparisons with Peikert’s Perturbation Sampler

Throughout this section, Σ ∈ Z
n×n is a positive semi-definite matrix, and s = rs′

is the final Gaussian width where r is the base sampling parameter and s′2 ∈ Z

such that s′2 ≥ e1(Σ)+1. The covariance of perturbation vectors is r2(s′2In−Σ).
The later discussions specialize to e1(Σ) = ω(n6), which can occur in advanced
cryptosystems, e.g. hierarchical IBE [1,8] and ABE [20].5

5 When e1(Σ) is small, one can resort to the almost integral Gram root in Sect. 4.3.

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 625

Applying the integral matrix decomposition from Sect. 4 along with
Theorem 3, we devise a variant of Peikert’s perturbation sampling algorithm.
This variant requires no floating-point arithmetic, and the intermediate matrix
is integral. The centers of the base Gaussian samplings are integers scaled by
a common factor L′, which is easier to deal with. Moreover, our approach only
enlarges the final width by a factor of 1 + o(1).

We next compare our sampler with Peikert’s one [32] from the follow-
ing aspects: the storage of the Gram root (Sect. 5.1), required base sam-
plings (Sect. 5.2) and the quality of final Gaussians (Sect. 5.3). Additionally, we
discuss the applications within the Micciancio-Peikert trapdoor framework [25]
in Sect. 5.4, and show that exploiting the trapdoor, one can significantly reduce
the size of the matrix to be decomposed.

5.1 Required Storage

For Peikert’s sampler, we follow the suggested setting where the precomputa-
tion is a standard (real) Cholesky Gram root of

√
(s′2 − 1)In − Σ. It requires

n(n+1)
2 (log s′ +λ) bits of storage, where λ is a security parameter that is usually

set to O(n).
In our sampler, the intermediate matrix is A =

(
In A1 A2

) ∈ Z
n+m

where
(
A1 A2

)
= IGD(Σ, s′2 − 2, B, t, b, k) ∈ Z

n×m and m = n(t +
k + 4). The sub-matrix A1 consists of t lower-triangular matrices, and its

storage is about n(n+1)
2

(
∑t−1

i=0 log
√

F
(i)
n (B)

)

bits. The parameter t can be

very small, say t = 1, 2 (see Sect. 4.3), and {F
(i)
n (B)}i decreases very fast

at the beginning for large B. Therefore, the actual storage of A1 is well
bounded. As for A2, while it is even wider, namely n × n(k + 4), its reg-
ular structure allows an efficient storage. More precisely, treating (b, k) as
global variables, it suffices to store off-diagonal entries that are in (−b, b) in
the first k blocks and diagonal ones in the rest blocks (see Algorithm 2).
Thus the storage of A2 is bounded by n(n−1)

2 k log b + 2n log(s′), which is about
n(n−1)

2 log(F (t)
n (B)) + 2n log(s′) when bk = O(F (t)

n (B)).
We summarize in Table 2 the storage comparison. Despite the integral Gram

root A being wider, it can achieve asymptotically better storage efficiency than
the FPA solution. In fact, the storage is still an advantage even we apply the
almost integral decomposition in Sect. 4.3 to deal with small e1(Σ).

5.2 Base Samplings

To generate an integral perturbation, one first samples from a Gaussian of covari-
ance r2((s′2−1)In −Σ). In Peikert’s sampler, this is accomplished by continuous
Gaussian sampling with high precision, which is expensive. In our sampler, this is
accomplished by sampling from DZn+m,L′r and then multiplying a scaled integral
Gram root, i.e. 1

L′ A.

626 L. Ducas et al.

Table 2. The storage comparison. The concrete parameter selections of t = 1, 2 are
discussed in Sect. 4.3.

Storage of Gram root

Peikert’s sampler ≈ n2

2
(log s′ + λ) where λ is the security parameter

Ours ≈ n2

4

(∑t
i=0 log(F

(i)
n (s′2)) + log(F

(t)
n (s′2))

)

Ours with t = 1 ≈ n2(log s′ + 1
2

log n)

Ours with t = 2 ≈ n2(log s′ + log n)

There are also some non-centered samplings. Peikert’s algorithm requires to
sample from DZ,r,c with a floating-point center. In our sampler, all Gaussian
centers are in 1

L′ · Z with some L′ ≥ λm(Λ⊥(A)).
We exhibit the comparison on the base samplings in Table 3. As shown in

Sect. 4.3, we may choose some L′ = O(s′ + n
7
6 s′ 23). When the padding trick is

used (see Sect. 3.1), L′ can be even smaller, namely O
(√

n log s′). In concrete
implementations, we would suggest to set L′ to be a power-of-2 so that with a
minor modification, all samplings can be done by only two base samplers DZ,r

and DZ,r,1/2 as in [28]. Therefore, the base samplings required by us are easier
to implement than that by Peikert. While our sampler requires more centered
samples, (n + m) is O(n log s′) even O(n), which does not increase the base
sample number too much.

Table 3. The base sampling comparison. Here DR,r denotes the continuous Gaussian
over R of width r. In our sampler, the Gram root A ∈ Z

n×(n+m). If no padding,

m = O(n) (say 8n) and L′ = O(s′ + n
7
6 s′ 23) ≥ λm(Λ⊥(A)). If padding is used, m =

O(n log s′) and L′ = O(
√

n log s′).

Centered samplings Non-centered samplings

Peikert’s sampler DR,r DZ,r,c with c ∈ R

n times n times

Ours DZ,L′r DZ,r,c with c ∈ 1
L′ · Z

O(n) times n times

Ours with padding
(Sect. 3.1)

DZ,L′r DZ,r,c with c ∈ 1
L′ · Z

O(n log s′) times n times

5.3 The Quality of Final Gaussians

In Peikert’s sampler, r ≥ ηε(Zn) and s′2 ≥ e1(Σ) + 1 so that the minimal s
is ηε(Zn)

√
e1(Σ) + 1. Our sampler also applies to any r ≥ ηε(Zn) according to

Theorem 3. As for s′, its minimum is (1 + o(1))
√

e1(Σ) (see Sect. 4.3). Thus
the minimal s achieved by us is (1 + o(1)) · ηε(Zn)

√
e1(Σ). As a conclusion, our

sampler only leads to a very small loss in the quality of final Gaussians.

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 627

5.4 The Case of the Micciancio-Peikert Trapdoor

In [25], Micciancio and Peikert propose a celebrated trapdoor framework which
has been the basis of various primitives [4,12,20]. In this framework, the matrix

Σ =
(

T
I

)
(
Tt I

)
where T ∈ Z

n1×n2 is the trapdoor with n1
 n1 + n2. The

Gaussian sampling is performed by an entity that knows the trapdoor T.
We now explain how to use the trapdoor to reduce the input size at the

beginning of the matrix decomposition of Σ′ = dIn − Σ (a similar idea is used
in [17]). More precisely, notice that

Σ′ = dIn − Σ =
(

dIn1 − 2TTt

(d − 2)In2

)

+
(

T
−I

)
(
Tt −I

)
.

Hence, it suffices to decompose Σ′
new = dIn1 − 2TTt whose dimension is n1,

which is much less than n = n1+n2.6 This trick needs neither extra computation
nor storage, and only enlarges the maximal elements in Σnew(= 2TTt) by a
factor of 2. Therefore we suggest to use this trick as the preprocessing of the
integral decomposition in the Micciancio-Peikert trapdoor framework.7

6 The Ring Setting

Many lattice cryptosystems use polynomial rings. In this setting, vectors and
matrices consist of ring elements, which improves storage and running time.
Some previous works [15,17,25,32] provide ring-efficient Gaussian sampling
in which intermediate matrices preserve the ring structure, but require high-
precision FPA. One the other hand, the generic techniques in Sect. 4 avoid high-
precision FPA but require to take Z as a base ring, therefore not benefiting from
efficiency gains that are typically expected in the ring setting.

The goal of this section is to get the best of both worlds : being ring-efficient
and avoiding high-precision FPA. We realize that by proposing an integral
decomposition algorithm for the ring setting. By Theorem 3, this will imply
a Gaussian sampler that is both ring-efficient and FPA-free. To this end, we first
formally define the Integral Gram Decomposition Problem over the ring R.

Definition 4 (IGDPR,n,B,d,m). Let R = Z[x]/Φ(x) where Φ(x) ∈ Z[x] and
n,B, d,m ∈ N. The Integral Gram Decomposition Problem over R, denoted
by IGDPR,n,B,d,m, is defined as follows: given an integral symmetric matrix
Σ ∈ Rn×n with ‖Σ‖2 ≤ B, find an integral matrix A ∈ Rn×m such that
AAt = dIn − Σ.

Clearly, IGDPR,n,B,d,m is a natural generalization of the IGDP problem which
introduces a new parameter: the ring R. The initial definition of IGDPn,B,d,m

(Definition 3) corresponds to the case R = Z. For simplicity we only discuss

6 The other block can be addressed by 4-square decomposition directly.
7 Note that this requires some new analysis of smoothness conditions.

628 L. Ducas et al.

power-of-2 cyclotomic rings, i.e. R2w = Z[x]/(xw + 1) with w = 2	. Similarly
to [15], the results can be extended to more general cyclotomic rings and convolu-
tion rings with smooth conductors. Why do we care about solving IGDPR,n,B,d,m

for trapdoor sampling? Indeed, a naive and functional approach is to embed
Σ in Z

wn×wn via the coefficient embedding, then solve IGDPZ,wn,B,d′,m′ as in
Sect. 4. However, that would break the ring structure and cancel the main advan-
tage of rings: efficiency. Therefore our goal is to directly solve IGDPR,n,B,d,m;
if m′ = m · ω̃(w), this improves the storage and running time (via the number
theoretic transform) of lattice Gaussian sampling by a factor Õ(w) compared to
the naive approach.

Technical roadmap. We first recall some preliminaries on cyclotomic rings
(Sect. 6.1). Next, we propose a solution for the special case IGDPR2w,1,B,d,m;
this particular case is also a generalization of the 4-square decomposition, for
self-adjoint ring elements instead of natural numbers. Our solution relies on a
technique called ring gadgets to reduce IGDPR2w,1,B,d,m to IGDPRw,1,B′,d′,m′ .
Naturally, a repeated application of ring gadgets allows to project the initial
problem onto Z eventually, which is then solved by 4-square decomposition.

Once we know how to decompose a single polynomial, a general solution to
IGDPR2w,n,B,d,m is easily derived by adapting Algorithm 2 to the ring setting
(Sect. 6.3). Compared with the generic solution (Sect. 4), the ring-based integral
decomposition reduces storage by a factor O(w) and running time by a factor
Õ(w), at the cost of increasing the number of columns of the integral Gram
root by O(log w). This leads to a simple ring-based sampler achieving the same
efficiency as the state of the art [17] (Sect. 6.4).

Comparison with the generic technique. Algorithms in Sect. 4 and in this
section operate on the same central idea: to recursively project the initial problem
into smaller dimensions. The only conceptual difference is how this projection is
done; as we now impose an additional constraint, i.e. preserving the ring struc-
ture, projection requires to use ring gadgets in addition to matrix decomposition.
In addition, these algorithms treat the eigenvalue reduction and the bottom case
differently. We summarize used techniques as Table 4.

Table 4. Different techniques in integral decompositions.

Section 4
IGDPn,B,d,m

Section 6.2
IGDPR2w,1,B,d,m

Section 6.3
IGDPR2w,n,B,d,m

Eigenvalue reduction Cholesky – Structured Cholesky

Projection Integer gadget Ring gadget Integer gadget

Bottom case 4-square 4-square IGDPR2w,1,B,d,m

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 629

6.1 Preliminaries on Cyclotomic Rings

Let w ∈ N and Φw(x) ∈ Z[x] be the w-th cyclotomic polynomial. The w-th
cyclotomic ring is Rw = Z[x]/(Φw(x)) and the w-th cyclotomic field is Kw =
Q[x]/(Φw(x)). In this paper, we only discuss the case of power-of-2 cyclotomic
rings where w = 2	 and Φ2w(x) = xw + 1. For such kind of rings, we have the
following tower of rings:

R2w ⊇ Rw ⊇ · · · ⊇ R2 = Z. (1)

Adjoints. Let Φ ∈ R[x] be monic with distinct roots over C, and f, g ∈
R[x]/(Φ(x)). We denote by f� the (Hermitian) adjoint of f , that is, the unique
element of R[x]/(Φ(x)) such that f�(ξ) = f(ξ) for any root ξ of Φ. This gener-
alizes the complex conjugation of real numbers. We say that f is self-adjoint if
f = f�. It is easy to verify that ff� is self-adjoint and all self-adjoint elements
form a ring. When Φ is a cyclotomic polynomial, it holds that f�(x) = f(x−1).

Norms and gadgets. For f =
∑w−1

i=0 fix
i ∈ K2w, let ‖f‖ =

√∑w−1
i=0 |fi|2 be

its �2-norm, and ‖f‖∞ = maxi |fi| be its �∞-norm. For f = (f0, · · · , fn−1)t and

g = (g0, · · · , gn−1)t in K
n
2w, let ‖f‖ =

√∑n−1
i=0 ‖fi‖2, ‖f‖∞ = maxi ‖fi‖∞ and

〈f ,g〉 =
∑

i fig
�
i ∈ K2w. For Σ ∈ K

n×n
2w , let ‖Σ‖2 = maxx�=0

‖Σx‖
‖x‖ and ‖Σ‖max =

maxi,j ‖Σi,j‖∞. Moreover, the gadget decomposition generalizes naturally: given
the gadget vector g = (1, b, · · · , bk−1)t ∈ Rk

2w, for any f ∈ R2w with ‖f‖∞ < bk,
there exists c ∈ Rk

2w such that 〈c,g〉 = f and ‖c‖∞ < b, and it can be efficiently
computed.

Even and odd polynomials. Each f ∈ R2w can be uniquely written as:

f(x) = fe(x2) + xfo(x2),

where fe, fo are elements of the subring Rw ⊂ R2w. We say that fe (resp. fo) is
the even (resp. odd) part of f , and indeed it consists of the even-index (resp. odd-
index) coefficients of f , respectively. We also say that a polynomial is even (resp.
odd) if its odd (resp. even) part is zero. Any even polynomial of Z[x]/(xw + 1)
can be seen as an element of Z[y]/(yw/2 + 1) by the ring morphism y → x2.

Ring gadgets. A key technical component of our algorithms in the ring setting
consists of projecting a self-adjoint polynomial f ∈ R2w onto the subring Rw.
More precisely, we exhibit a polynomial a ∈ R2w such that aa�+f is even (hence
is in the subring Rw) and self-adjoint. Let us write f = fe(x2) + xfo(x2); since
f is self-adjoint, it holds that fi = −fw−i for each coefficient fi of f , and we can

630 L. Ducas et al.

therefore write xfo(x2) = xf̄o(x2) + (xf̄o(x2))� for some polynomial f̄o ∈ Rw

with only its lower-half coefficients nonzero. Taking a = 1 − xf̄o(x2), we have:

f + aa� = fe(x2) + xf̄o(x2) + (xf̄o(x2))� + (1 − xf̄o(x2))(1 − xf̄o(x2))�

= fe(x2) + f̄o(x2)(f̄o(x2))� + 1

All the odd terms have been eliminated, and f +aa� is isomorphic to an element
of Rw. As an example, let us consider the following self-adjoint element of R16:

f = 32 − 8x + 2x2 − 9x3 + 9x5 − 2x6 + 8x7,

f = (32 + 2x2 − 2x6) + x(−8 − 9x2) + (x(−8 − 9x2))�.

Then we will take: a = 1 − xf̄o(x2) = 1 + 8x + 9x3. One can check that:

f + aa� = −74x6 + 74x2 + 178,

which is indeed in the subring R8. This projection is compatible with the use
of gadget matrices; more precisely, we can first decompose a polynomial using
gadget decomposition, and then apply the projection to each element of the
decomposition. Finally we have f +

∑k
i=1 aia

�
i is even, where ai = bi−1 +xci(x2)

and
∑k

i=1 bi−1ci = −f̄o. We will refer to these combined decomposition and
projection as ring gadgets.

6.2 Decomposition for Ring Elements

We proceed to generalize 4-square decomposition to the ring setting. Precisely,
our goal is to represent one integral self-adjoint ring element f ∈ R2w as 〈a,a〉
where a ∈ Rm

2w is an integral polynomial vector. Equivalently, we seek to solve
the special case IGDPR2w,1,B,d,m.

Our solution is build upon the use of ring gadgets, defined at the end of
Sect. 6.1. As previously illustrated, a single application of a ring gadget can be
viewed as the reduction IGDPR2w,1,B,d,m → IGDPRw,1,B′,d′,m′ . Hence, we have
projected our problem onto a subring.

We can go further. As recalled in (1), the Ri’s are arranged in a tower of rings
structure, thus we can repeatedly apply ring gadgets to project IGDPR,1,B,d,m

onto a subring, until it is projected in R4. We note that the set of all self-adjoint
elements of R4 is exactly Z and thus IGDPR4,1,B,B,4 is easily solved via the
Rabin-Shallit algorithm. We have this chain of reductions:

IGDPR2w,1,B,d,m → IGDPRw,1,B′,d′,m′ → · · · → IGDPR4,1,B′′,d′′,m′′

We formally describe the procedure in Algorithm 5.
Lemma 10 shows the correctness and the complexity analysis of Algorithm 5.

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 631

Algorithm 5. Decomposition of a single ring element REIGD(d, f, b, k)

Input: a self-adjoint f ∈ R2w with w = 2� ≥ 2,
two integers b, k ≥ 2 such that bk ≥ ‖f‖∞ + kwb2,

an integer d such that d ≥ b2k−1
b2−1

(
 − 1) + bk.

Output: a =
(
a1 · · · ak(�−1) x1 x2 x3 x4

) ∈ Rk(�−1)+4
2w such that 〈a,a〉 = d − f ,

where x1, x2, x3, x4 ∈ Z and a1+jk+i = bi + a′
i,j

(
x2�−2−j

)
with a′

i,j ∈ R2j+2

for any 0 ≤ i < k and 0 ≤ j <
 − 1.
1: g ← (1, b, · · · , bk−1)t

2: if w = 2 then
3: calculate x = (x1, x2, x3, x4)

t ∈ Z
4 such that ‖x‖2 = d − f using the

Rabin-Shallit algorithm (Theorem 2)
4: return x
5: end if
6: calculate

(
a1 · · · ak

) ∈ Rk
2w by using ring gadgets such that f+

∑
i aia

�
i is even

7: let f ′ ∈ Rw such that f ′(x2) = f − b2k−1
b2−1

+
∑

i aia
�
i

8: a′ =
(
a′
1 · · · a′

k(�−2) x1 x2 x3 x4

) ← REIGD
(
d − b2k−1

b2−1
, f ′, b, k

)

9: return a =
(
a′
1(x

2) · · · a′
k(�−2)(x

2) ‖ a1 · · · ak ‖ x1 x2 x3 x4

) ∈ Rk(�−1)+4
2w

Lemma 10. Algorithm 5 is correct. More precisely, let w = 2	 ≥ 2 and f ∈ R2w

be a self-adjoint polynomial, let d, b, k ∈ Z such that bk ≥ ‖f‖∞ + kwb2 and
d ≥ b2k−1

b2−1 (� − 1) + bk. Then REIGD(d, f, b, k) outputs a ∈ Rk(−1)+4
2w such that

〈a,a〉 = d − f .
Moreover, REIGD(d, f, b, k) performs O(kw log w + log2 d′ log log d′) arith-

metic operations on integers of bitsize O(log d′) where d′ = d − b2k−1
b2−1 (� − 1).

Proof. Let fe ∈ Rw be the even part of f . Let ai = bi−1 + xci(x2) where
ci ∈ Rw with ‖ci‖∞ < b and only its lower-half coefficients nonzero. Since
f(x) +

∑
i aia

�
i = f ′(x2) + b2k−1

b2−1 , we inductively conclude that 〈a,a〉 = d − f . A
routine computation shows that f ′ = fe +

∑
i cic

�
i and that ‖cic

�
i ‖∞ ≤ w

2 b2. By
the same argument as in the proof of Lemma 5, the correctness follows.

Algorithm 5 proceeds recursively. At the highest level, there is one gadget
decomposition of (−f̄o), k polynomial multiplications over Rw and one recursive
call. At the bottom level, there is one 4-square decomposition. Thus the total
complexity is O(kw log w + log2 d′ log log d′) if one uses NTT techniques during
multiplication, and all involved integers are of bitsize at most O(log d′). ��
Lemma 10 implies a solution to IGDPR2w,1,B,d,m as the following corollary.

Corollary 3. Let �,B, d, b, k ∈ N and w = 2	 ≥ 2 such that m = k(�−1)+4 and
d− b2k−1

b2−1 (�−1) ≥ bk ≥ B+kwb2. Then there exists a solution to IGDPR2w,1,B,d,m

and it can be calculated by Algorithm 5.

The output of Algorithm 5 consists of a series of vectors built upon the tower
of rings followed by 4 integers, hence the storage can be essentially the same as

632 L. Ducas et al.

that of f due to the polynomials in the tower of rings being gradually sparser.
Detailed argument on the storage is given in Lemma 11.

Lemma 11. Let a be the output of Algorithm 5, then a can be stored using
(

kw
2 log b + 2 log(2d′)

)
bits where d′ = d − b2k−1

b2−1 (� − 1). In particular, when
d′ = O (‖f‖∞), the required storage is (w

2 + 2) (log ‖f‖∞ + O(1)) bits.

Proof. The storage of (x1, x2, x3, x4) ∈ Z
4 is bounded by 2 log(2d′). We notice

that a1+jk+i = bi + a′
i,j

(
x2�−2−j

)
for some a′

i,j ∈ R2j+2 with even coefficients

being 0, odd coefficients in (−b, b), hence the storage of a1+jk+i is 2j log b and
then the storage of a is kw

2 log b + 2 log(2d′). ��

6.3 Decomposition for Positive Definite Σ′ ∈ Rn×n
2w

We now show how to solve the generalized problem IGDPR2w,n,B,d,m. Our ring-
setting matrix decomposition is illustrated in Algorithm 6. The high level idea
is the same in spirit to Algorithm 4, except that we replace the Rabin-Shallit
algorithm with a decomposition based on ring gadgets (Algorithm 5). For Σ′ =
dIn − Σ ∈ Rn×n

2w , one first calculates some T ∈ Rn×k
2w such that TTt has the

same first row and column as Σ′, except the diagonal element, and then proceeds
iteratively over (Σ′ − TTt)2:n,2:n ∈ R(n−1)×(n−1)

2w . During construction of T we
deal with off-diagonal elements by gadget decomposition, and decompose the
remaining diagonal element with Algorithm 5. Detailed analysis is shown in
Lemma 12.

Lemma 12. Algorithm 6 is correct. More precisely, let w = 2	 ≥ 2 and Σ ∈
Rn×n

2w be a symmetric matrix, let d, b, k ∈ Z such that bk ≥ ‖Σ‖max + knwb2

and d ≥ b2k−1
b2−1 � + bk. Then RMIGD(d,Σ, b, k) outputs A ∈ Rn×n(k	+4)

2w such that
AAt = dIn − Σ.

Moreover, RMIGD(d,Σ, b, k) performs O(n3kw log w + n log2 d′ log log d′)
arithmetic operations on integers of bitsize at most O(log d′), and A can be
stored using

(
n2

2 kw log b + 2n log(2d′)
)

bits where d′ = d − b2k−1
b2−1 �.

Proof (sketch). A routine computation shows that ‖CCt‖max ≤ kwb2. Following
the same argument as the proof of Lemma 5, we confirm the correctness.

According to Lemma 10, all involved integers are of bitsize at most O(log d′),
and the complexity is mainly contributed by (1) the gadget decompositions, (2)
calls to Algorithm 5 and (3) matrix multiplications. More specifically, there are
O(n2) times gadget decompositions, hence the total complexity of this part is
O(kwn2). There are n calls to Algorithm 5 that entirely costs O(nkw log w +
n log2 d′ log log d′) according to Lemma 10. Furthermore, the cost of all matrix
multiplications is bounded by O(kn3w log w). To sum up, the running time of
RMIGD(d,Σ, b, k) is dominated by O(n3kw log w + n log2 d′ log log d′).

From Lemma 11, the storage of D is n
(

kw
2 log b + 2 log(2d′)

)
and that of each

Li is n(n−1)
2 w log b. The overall storage thus is

(
n2

2 kw log b + 2n log(2d′)
)
. ��

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 633

Algorithm 6. Integral matrix decomposition in ring setting
RMIGD(d,Σ, b, k)

Input: a symmetric matrix Σ ∈ Rn×n
2w with w = 2� ≥ 2,

integers d, b, k ≥ 2 such that bk ≥ ‖Σ‖max + knwb2 and d ≥ b2k−1
b2−1

 + bk.

Output: A =
(
L1 · · · Lk D

) ∈ Rn×n(k�+4)
2w such that AAt = dIn − Σ

where Li ∈ Rn×n
2w is a lower-triangular matrix with diagonal elements being

bi−1 and off-diagonal elements of
∞-norm less than b,
D ∈ Rn×n(k(�−1)+4)

w is a block diagonal matrix with each block being the
output of REIGD(d, f, b, k) for some f ∈ R2w.

1: g ← (1, b, · · · , bk−1)t ∈ Rk
2w

2: x ← REIGD(d − ‖g‖2,Σ1,1, b, k) ∈ Rk(�−1)+4
2w {Call to Algorithm 5}

3: if n = 1 then
4: return (gt,xt)
5: end if
6: for j = 2, · · · , n do
7: calculate cj ∈ Rk

2w such that 〈cj ,g〉 = −Σ1,j by gadget decomposition
8: end for

9: C ← (
c2 · · · cn

)t ∈ R(n−1)×k
2w , T ←

(
gt xt

C

)
∈ Rn×(k�+4)

2w

10: Π ← (
Σ + TTt

)
2:n,2:n

11:
(
L′

1 · · · L′
k D′) ← RMIGD(d,Π, b, k) {Recursive call}

12:
(
v′
1 · · · v′

k

) ← C

13: Li ←
(

bi−1

v′
i L′

i

)
∈ Rn×n

2w for i = 1, · · · , k

14: D ←
(

xt

D′

)
∈ Rn×n(k(�−1)+4)

2w

15: return A =
(
L1 · · · Lk D

)

Corollary 4. Let �,B, d, b, k ∈ N and w = 2	 ≥ 2 such that m = n(k� + 4) and
d − b2k−1

b2−1 � ≥ bk ≥ B + knwb2. Then there exists a solution to IGDPR2w,n,B,d,m

and it can be calculated by Algorithm 6.

Lemma 13 shows a result related to the smoothness condition. Arguments in
the proof of Lemma 9 still apply to the ring setting due to the similar structure
of the output Gram root. The minor difference is that we should use the �2-norm
to measure the “size” of each entry that is a ring element instead of an integer.
Therefore we omit the proof.

Lemma 13. Let A′ = RMIGD(d,Σ, b, k) ∈ Rn×m
2w with w = 2	 ≥ 2 and m =

n(k� + 4) and A =
(
Inw Mw(A′)

) ∈ Z
nw×(n+m)w where Mw maps each entry

of A′ to its coefficient matrix of size w × w. Then

λmw(Λ⊥(A)) ≤ max

⎧
⎨

⎩
b2

√
nw,

√

d − b2k − 1
b2 − 1

� + bk + 1

⎫
⎬

⎭
.

The idea of eigenvalue reduction (Sect. 4.2) is compatible with the ring set-
ting as well, if one uses structure-preserving Cholesky decomposition as in [15].

634 L. Ducas et al.

Additionally, for Algorithm 5, one may also subtract some gg� approximation
from f at the beginning, and then work on a small polynomial.

6.4 Comparative Results of the Ring-Based Sampler

Combining the eigenvalue reduction and Algorithm 6, a ring-based integral
decomposition is available. Based on it, one can devise a perturbation sam-
pler for the ring case. Here we skip detailed arguments and just present some
comparisons. Let us first recall the following notations:

– � ∈ N, w = 2	, n ∈ N and N = nw.
– Σ ∈ Rn×n

2w is a symmetric matrix over R2w that is identified with a symmetric
matrix over Z

N×N . We focus on the case of e1(Σ) = ω(N7).
– s′2 ∈ N and s′2 > e1(Σ) + 1.
– M ∈ N such that the integral Gram root A =

(
IN A′) ∈ Z

N×(N+M).
– L ∈ N is an upper bound of λM (Λ⊥(A)). The base samplings include DZ,L′r

and DZ,r,c with c ∈ 1
L′ · Z, where L′ ≈ L.

Comparison with the generic sampler. Table 5 shows the comparison
between the ring-based sampler and the generic one. Note that in both the
generic and ring cases, the parameter L = O(s′) and the minimal Gaussian
width smin = (1 + o(1))

√
e1(Σ). Thus we do not include them in Table 5.

Table 5. Comparisons between the ring-based sampler and the generic ones.

Storage M

Ring, large gadget base ≈ N(2n+1
2

log s′ + n
2

log N) O(Nl)

Generic, large gadget base ≈ N2(log s′ + 1
2

log N) O(N)

Ring, gadget base b = 2 ≈ N(4n+3
4

log s′ + n log N) O(Nl log s′)

Generic, gadget base b = 2 ≈ N2(log s′ + log N) O(N log s′)

As a conclusion, our ring-based integral decomposition reduces the required
memory by a factor of O(w) but increases the number of centered base samplings
(i.e. M) by O(log w). The smoothness condition and the quality of the output
Gaussian are asymptotically the same in two kinds of samplers.

Comparison with the sampler of [17]. Genise and Micciancio proposed a
ring-based perturbation sampler in [17]. To generate a perturbation vector in
Z

w(2+log q), they first sample w log q integer Gaussians and then sample a Gaus-
sian of covariance dI2 − Σ ∈ R2×2

2w . To minimize the storage, the sampler only
stores the matrix Σ and performs all algebraic computation on the fly.8

As shown in Sect. 5.4, our ring-based sampler can also reduce the procedure
to the sampling of D

Z2w,
√

dI2−Σ in which n = 2. The storage comes from the
integral Gram root of

√
dI2 − Σ. We summarize the comparison in Table 6.

8 It suffices to store 3 polynomials due to the symmetry.

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 635

Table 6. Comparisons between the Genise-Micciancio sampler and ours. We use large
gadget base in our sampler. We do not take into account the storage of the trapdoor
itself that is O(w log q log s′).

Storage Time

Genise-Micciancio sampler ≈ 6w log s′ Θ(w log w log q)

Our ring-based sampler ≈ w(5 log s′ + 2 log w) Θ(w log w log q)

The Genise-Micciancio sampler and ours require asymptotically the same
memory. Particularly, if one regards the integral Gram root as a part of the
trapdoor, the increase is negligible compared with the storage of trapdoor itself.
As for running time, the costs of two samplers are dominated by the matrix
multiplication of the trapdoor T ∈ R2×log q

2w . Applying FFT or NTT techniques
yields the same complexity of Θ(w log w log q). Nevertheless, our sampler (The-
orem 3) just requires base samplings and integral polynomial multiplications.
This not only gets rid of FPA, but also makes the whole algorithm much simpler
and highly parallelizable.

As a conclusion, our ring-based sampler achieves the same storage and time
efficiency asymptotically as the state of the art [17] but in a simpler manner.

Acknowledgements. Léo Ducas is supported by a Veni Innovational Research Grant
from NWO under project number 639.021.645 and by the European Union Horizon 2020
Research and Innovation Program Grant 780701 (PROMETHEUS). Steven Galbraith
is funded by the Royal Society of New Zealand, Marsden Fund project 16-UOA-144.
Thomas Prest is supported by the Innovate UK Research Grant 104423 (PQ Cyberse-
curity). Yang Yu is funded by a French government support managed by the National
Research Agency in the “Investing for the Future” program, under the national project
RISQ P141580-2660001/DOS0044216, and under the project TYREX granted by the
CominLabs excellence laboratory with reference ANR-10-LABX-07-01.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

3. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: using the Rényi divergence rather than the statistical
distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452,
pp. 3–24. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 1

4. Bert, P., Fouque, P.-A., Roux-Langlois, A., Sabt, M.: Practical implementation
of ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.)

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-662-48797-6_1
https://doi.org/10.1007/978-3-662-48797-6_1

636 L. Ducas et al.

PQCrypto 2018. LNCS, vol. 10786, pp. 271–291. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-79063-3 13

5. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

6. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS 2011, pp. 97–106 (2011)

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

9. Cassels, J.W.S.: Rational quadratic forms. In: North-Holland Mathematics Studies,
vol. 74 (1982)

10. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices
and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34618-8 1

11. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

12. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 19

13. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point
arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
415–432. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 26

14. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 27

15. Ducas, L., Prest, T.: Fast fourier orthogonalization. In: ISSAC 2016, pp. 191–198
(2016)

16. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lat-
tice Gaussian sampling without floats. IACR Cryptology ePrint Archive, report
2019/320 (2019)

17. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 7

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178 (2009)

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

20. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC 2013, pp. 545–554 (2013)

https://doi.org/10.1007/978-3-319-79063-3_13
https://doi.org/10.1007/978-3-319-79063-3_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats 637

21. Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: SODA
2000, pp. 937–941 (2000). http://dl.acm.org/citation.cfm?id=338219.338661

22. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

23. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

24. Lenstra, H.W.: Lattices (2008). http://www.math.leidenuniv.nl/∼psh/ANTproc/
06hwl.pdf

25. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

26. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

27. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

28. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402,
pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-
0 16

29. mirtich: Bug 323 - optimized code gives strange floating point results. GCC
Bugzilla. https://gcc.gnu.org/bugzilla/show bug.cgi?id=323

30. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 17

31. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 18

32. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

33. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 20

34. Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi diver-
gence. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp.
347–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 13

35. Rabin, M.O., Shallit, J.O.: Randomized algorithms in number theory. Commun.
Pure Appl. Math. 39(S1), S239–S256 (1986)

36. Wilson, J.: Floating point trouble with x86’s extended precision. The
gcc@gcc.gnu.org mailing list for the GCC project. https://gcc.gnu.org/ml/gcc/
2003-08/msg01195.html

37. Yu, Y., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 525–543.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 18

http://dl.acm.org/citation.cfm?id=338219.338661
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
http://www.math.leidenuniv.nl/~psh/ANTproc/06hwl.pdf
http://www.math.leidenuniv.nl/~psh/ANTproc/06hwl.pdf
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0_16
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
https://doi.org/10.1007/11761679_17
https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-319-70694-8_13
https://gcc.gnu.org/ml/gcc/2003-08/msg01195.html
https://gcc.gnu.org/ml/gcc/2003-08/msg01195.html
https://doi.org/10.1007/978-3-030-03329-3_18

Symmetric Cryptography II

TNT: How to Tweak a Block Cipher

Zhenzhen Bao1, Chun Guo2,3(B), Jian Guo1, and Ling Song4,5

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{zzbao,guojian}@ntu.edu.sg
2 Key Laboratory of Cryptologic Technology and Information Security

of Ministry of Education, Shandong University, Qingdao, China
3 School of Cyber Science and Technology, Shandong University, Qingdao, China

chun.guo@sdu.edu.cn
4 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
5 Jinan University, Guangzhou, China

songling.qs@gmail.com

Abstract. In this paper, we propose Tweak-aNd-Tweak (TNT for short)
mode, which builds a tweakable block cipher from three independent
block ciphers. TNT handles the tweak input by simply XOR-ing the
unmodified tweak into the internal state of block ciphers twice. Due to its
simplicity, TNT can also be viewed as a way of turning a block cipher into
a tweakable block cipher by dividing the block cipher into three chunks,
and adding the tweak at the two cutting points only. TNT is proven to
be of beyond-birthday-bound 22n/3 security, under the assumption that
the three chunks are independent secure n-bit SPRPs. It clearly brings
minimum possible overhead to both software and hardware implementa-
tions. To demonstrate this, an instantiation named TNT-AES with 6, 6,
6 rounds of AES as the underlying block ciphers is proposed. Besides the
inherent proven security bound and tweak-independent rekeying feature
of the TNT mode, the performance of TNT-AES is comparable with all
existing TBCs designed through modular methods.

Keywords: AES · Tweakable block cipher · χ2 method · Proof

1 Introduction

1.1 Background - The Need of BBB TBC

Together with the development of authenticated encryption (AE) in CAESAR
competition [1] and the on-going lightweight cryptography competition [64],
tweakable block ciphers (TBC) are playing a more and more important role.
Besides the plaintext, TBCs take a tweak as an additional input, which can be
viewed as an index to the underlying block cipher, so it becomes a family of
(independent) block ciphers v.s. a single instance of block cipher. Its formaliza-
tion is motivated by the needs of (more than one) independent block ciphers in
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 641–673, 2020.
https://doi.org/10.1007/978-3-030-45724-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_22

642 Z. Bao et al.

some modes, e.g., OCB [67], while using multiple independent ciphers or keys
could cause efficiency issues. In contrast, using a TBC that typically lends itself
to very efficient (both software and hardware) implementations, a new instance
of block cipher could be obtained by simply choosing a new value of the tweak.

Beyond-Birthday-Bound Security. Most of the current (tweakable) block
cipher standards have a block length of 128 bits or less, providing a security
level at most 64 bits when instantiated in designs offering only birthday-bound
security. Such a security level has become largely inadequate [35]. Even worse,
in order to save hardware implementation costs, many lightweight block cipher
designs tend to have a smaller block length like 64 bits, providing a birthday
security of 32 bits only. Hence, the needs of modes providing BBB security are
emerging, and the same has been observed by Gueron and Lindell [35] and in
this whitepaper [2].

There are two different ways to construct TBCs. Following the modular app-
roach, they can be built from classical block ciphers via various modular con-
structions, and security is ensured by a reduction to that of the underlying block
ciphers. Alternatively, one could appeal to (probably more efficient) dedicated
algorithms, the security guarantees of which come from comprehensive crypt-
analysis. Below we’ll review both methods.

1.2 Modular Approach: TBCs from Block Ciphers

A classical popular approach is to construct TBCs from existing (traditional)
block ciphers in a black-box fashion. Such proposals are further divided into two
classes. The “old school” approach, initiated by Liskov et al. [54], works in the
so-called standard model, models the underlying block cipher as a pseudorandom
permutation. The “new school” approach recently popularized by Mennink [56]
models the block cipher as an ideal cipher. The two approaches deviate not
only in their security assumptions, but also in their design philosophies. Con-
cretely, standard assumption-based constructions typically tried to avoid tweak-
dependent rekeying, which were deemed as (arguably) costly. Another shortage of
rekeying is the unavoidable “hybrid security loss” in their security bounds [58,69]
(some withstand this loss using carefully-chosen parameters [17,61]). Such a loss
doesn’t appear in the ideal cipher model, and this is leveraged by many construc-
tions for good bounds and efficiency at the same time. Indeed, ideal cipher-based
TBCs have achieved ≥ n-bit security within 1 or 2 cipher-calls [43,53,77].

In this paper we follow the standard model. In this respect, the original
Liskov et al.’s paper [54] proposed two constructions that were subsequently
named LRW1 and LRW2 by Landecker et al. [51]. The former is based on a block
cipher E with key space KE and message space {0, 1}n, and is defined as

LRW1((K,K ′), T,X) = EK′
(
T ⊕ EK(X)

)
. (1)

where (K,K ′) ∈ KE × KE is the key, T ∈ T is the tweak, and X ∈ {0, 1}n is
the message. Unfortunately it is only CPA secure up to a tight birthday bound,
i.e., 2n/2 adversarial queries. Actually, achieving CCA security was an important

TNT: How to Tweak a Block Cipher 643

motivation for their second proposal LRW2, which is based on a block cipher E
and message space {0, 1}n and an almost XOR-universal (AXU) family of hash
functions H = (HK)K∈KH

from some set T to {0, 1}n, and defined as

LRW2((K,K ′), T,X) = HK′(T) ⊕ EK(HK′(T) ⊕ X), (2)

where (K,K ′) ∈ KE × KH is the key. This construction was proved CCA secure
in [54] up to a tight birthday bound. To seek for beyond-birthday-bound (BBB)
secure TBCs, pioneered by Landecker et al. [51], subsequent works studied cas-
cade of LRW2 (with independent underlying keys): its 2-cascade was first proved
secure up to about 22n/3 queries [51] and latter improved to a tight bound of
23n/4 queries [44,59], while its r-cascade for general r was proved secure up to
roughly 2

rn
r+2 adversarial queries.

A somewhat independent series of works considered tweakable Even-Mansour
(TEM) ciphers that are built upon public random permutations [18,20,57], which
could also be instantiated with fixed-key block ciphers. It is important to note
their security is only provable in the ideal (permutation) model.

1.3 Development of Dedicated TBCs

The Tweakey framework was introduced in 2014 by Jean et al. [41], which pro-
vides a general guideline for TBC designs. The core idea is to treat the key and
tweak in the same way during the primitive design process so that the crypt-
analysis can be unified, and becomes simpler than before. So the word “tweakey”
is invented to reflect the combined input of tweak and key. Following tweakey
framework, various dedicated algorithms such as the Deoxys-BC in the Deoxys
AE design [42], SKINNY [7], and Kiasu [40] have been proposed. In detail,
SKINNY takes lightweightness into account, and hence makes use of lightweight
linear layer—0/1 matrices—almost MDS rather than MDS, although it still fol-
lows AES-like design strategy. Up to date, Deoxys is one of the finalists of the
CAESAR competition and SKINNY is one of the lightest TBCs in terms of area
in the optimized hardware implementations.

When the tweak length is long, TBC-based designs [3,38] can take advantage
of its efficiency to process additional input such as associated data. There is also
a recent direction of designing TBCs of short tweaks to offer a small family of
yet independent block ciphers [12], where tweaks are mainly used as domain
separators in the design of authenticated encryption schemes.

It is well-known that, to hide the key of a block cipher, it requires several
iterations of the simple round functions. Since Tweakey framework does not
distinguish key and tweak, the tweak input has been iterated the same amount
of rounds as well. We notice that, rather than hiding, the functionality of a
tweak is no more than an index to the block cipher in most of use-cases, and are
even assumed to be under attacker’s full control in some cryptanalytic settings.
Hence, the required level of “protection” for a tweak is essentially lower than that
for the key. Inspired by this observation, a natural question to be asked is: what
is the minimum number of iterations (or tweak addition) required to produce a
secure TBC (especially those with BBB security), with provable security.

644 Z. Bao et al.

1.4 Our Approach (Hybrid of Two Approaches), Provable Security
of TBC Modes, and Instantiation with Long-Standing Modules
(Similar with AES-PRF)

We seek for an approach slotting between the above two and (hopefully) enjoying
the advantages of both, i.e., achieving (some level of) provable guarantees and
high efficiency at the same time. Our result is a proposal of a new design of
dedicated TBCs based on AES. Our approach is “prove-then-prune”, i.e., proving
security and then instantiating with a scaled-down primitive (a reduced-round
block cipher), that has been used in symmetric designs for a long time, see
e.g., [60] (while the terminology was due to Hoang et al. [37]). Below we elaborate
in detail.

TNT: A New TBC Construction with BBB Security. Our starting point
is a new block cipher-based TBC construction with provable BBB security. Con-
cretely, the idealized version of our mode is built upon three secret independent
random permutations π1, π2, and π3, and is defined as

TNTπ1,π2,π3(T,X) = π3
(
T ⊕ π2

(
T ⊕ π1(X)

))
,

as pictured in Fig. 1. We term our mode as TNT, meaning Tweak-aNd-Tweak. It
can also be viewed as a cascaded LRW1 TBC construction (if we “split” π2 into
two permutations, then the scheme turns into a cascade of two LRW1 construc-
tions).

X π1
S U π2

V W π3 Y

T T

Fig. 1. The TNTπ1,π2,π3 mode with the notations (for the intermediate values) used
in this paper.

While the original (two-permutation-based) LRW1 construction was proved
CPA secure up to birthday 2n/2 queries and it turns out to be tight, the security
of TNT (or cascaded LRW1) remains as a long-standing open problem. In this
paper, using the χ2 technique recently proposed by Dai et al. [24], we prove
the idealized TNT construction is CCA secure up to BBB 22n/3 queries. To our
knowledge, this constitutes the first “non-trivial” application of the χ2 technique
to domain expanding constructions, and our proof thus demonstrates relevant
issues and their solutions.

We refer to Table 1 for a summary of comparison to existing TBC construc-
tions (we omit the TEM ciphers as they either appear a bit theoretical or are
specific for sponges [57]). It is rather difficult to make a comparison with the
ideal cipher-based designs [43,53,56,77]. In general, they achieve ≥n bits secu-
rity (as mentioned) at the expense of a smaller safety margin (similar concern

TNT: How to Tweak a Block Cipher 645

Table 1. Comparison with previous TBCs. The column ⊗/AXU states if the design
relies on AXU hash or field multiplications ⊗. The column tdk states if the design relies
on tweak-dependent rekeying. For all the ideal cipher-based designs, we assume using
an ideal cipher with n-bit keys and n-bit blocks.

#tweak #cost ⊗/AXU? tdk security (log2)

LRW1 n 2 SPRPs no no n/2 [54]
XEX n 1 SPRP yes no n/2 [67]
LRW2 arbitrary 1 SPRP yes no n/2 [54]
CLRW22 arbitrary 2 SPRPs yes no 3n/4 [44,59]
CLRW2r arbitrary r SPRPs yes no rn/(r + 2) [50]
Min t 2 SPRPs no yes max{n/2, n − t} [61]
˜F [1] n 1 ideal cipher no yes 2n/3 [56]
˜F [2] n 2 ideal ciphers no yes n [56]
˜E1, . . . , ˜E32 n 2 ideal ciphers no yes n [77]
XHX arbitrary 1 ideal cipher yes yes n [43]
XHX2 arbitrary 2 ideal ciphers yes yes 4n/3 [53]

TNT n 3 SPRPs no no 2n/3

has been raised in other settings [36]). Also, their provable bounds should be
interpreted with a bit of caution [58]. In terms of efficiency, it is widely believed
that tweak-dependent rekeying used in the above designs as well as [61] is a bit
costly, particularly when AES-NI is available.

It appears that LRW2 and its cascades are the closest designs. In short, while
LRW2 and CLRW2 accept long tweaks, their uses of AXU hash are expected
to result in a lower efficiency when n-bit tweaks already suffice. The additional
requirement of AXU hash usually results in lower software efficiency and/or
higher gate counts as additional registers and operations are needed.

Instantiation from AES. To take the advantage of the AES-NI for better soft-
ware performance, it is natural for us to instantiate TNT with AES. To further
improve the software performance, we reduce the number of rounds of each of
the permutations π1, π2, and π3 to 6, 6, and 6 rounds respectively (rather than
the full AES itself), which are named TNT-AES. Although, it is not possible to
assume the round-reduced AES to be ideal any more, we show, through com-
prehensive cryptanalysis, the security of TNT-AES are sound. Similar design
strategy was introduced by Hoang et al. [37] and used in the design of AES-
PRF [60] by Mennink and Neves. The estimated performance shows, with help
from AES-NI, TNT-AES is among the fastest TBCs in software, and in some
cases it can be implemented as light as AES itself in area constrained hardware
environment thanks to the simplicity of TNT, smaller than most of the existing
TBCs.

646 Z. Bao et al.

Organization. The rest of the paper is organized as follows. Section 2 gives
the preliminary necessary for the introduction of the new mode in Sect. 3. The
security TNT is proven in Sect. 4. Section 5 proposes a concrete design following
TNT based on AES, and finally Sect. 6 concludes the paper.

2 Preliminary

2.1 Notation

For a finite set X , X
$←− X denotes selecting an element from X uniformly at

random and |X | denotes its cardinality.

2.2 TBC and Its Security

A tweakable permutation with tweak space T and message space M is a mapping
Π̃ : T ×M → M such that for any tweak T ∈ T , X �→ Π̃(T,X) is a permutation
of M. We denote TP(T , n) the set of all tweakable permutations with tweak
space T and message space {0, 1}n. A tweakable block cipher with key space K,
tweak space T , and message space M is a mapping TBC : K×T ×M → M such
that for any key K ∈ K, (T,X) �→ TBC(K,T,X) is a tweakable permutation in
TP(T , n).

A secure TBC should be indistinguishable from a tweakable random per-
mutation. As our mode TNT is specified in an idealized manner, our security
definition is also given for such cases. For this, we denote P(n) the set of all
n-bit permutations. By default, we always allow D to make forward and inverse
queries to its tweakable permutation oracle (though we do not write this explic-
itly). With these, for the TBC construction Cπ1,...,πr built upon r independent
secret n-bit permutations, we define the advantage of any distinguisher D break-
ing its strong tweakable pseudorandomness (STPRP) as

Advstprp
C (D) =

∣
∣
∣Pr[π1, . . . , πr

$←− P(n) : DCπ1,...,πr
= 1] − Pr[Π̃

$←− TP(T , n) : D ˜Π = 1]
∣
∣
∣.

And for any non-negative integer q, we define the insecurity of Cπ1,...,πr as

Advstprp
C (q) = maxDAdvstprp

C (D),

where the maximum is taken over all distinguishers D making exactly q queries
to the oracle.

The above definition focuses on the information-theoretic setting. Later in
Sect. 5 we will instantiate the multiple secret permutations π1, . . . , πr with multi-
ple “independent” block ciphers E1, . . . , Er using the same secret key K (thus the
key space does not increase with the number of permutations). Proving the indis-
tinguishability of such two systems (π1, . . . , πr) and ((E1)K , . . . , (Er)K) seems
out of reach of current techniques (note that existing works typically instanti-
ated π1, . . . , πr with the same block cipher using r independent keys K1, . . . , Kr,
which deviates from us). As such, our mode TNT will be specified only in the
idealized manner.

TNT: How to Tweak a Block Cipher 647

2.3 χ2 Method

For the proof, we will employ the χ2 method of Dai et al. [24]. We recall this
technique here. Below we mainly follow Dai et al.’s notations (with some nec-
essary supplementaries borrowed from Chen et al. [13]). Concretely, consider
two stateless systems S0 and S1 (e.g., S0 and S1 may be the tweakable ran-
dom permutation Π̃ and the TNT construction TNTπ1,π2,π3 respectively) and
any computationally unbounded deterministic distinguisher D that has query
access to either of these systems. The distinguisher’s goal is to distinguish the
two systems. It is well-known that, the distinguishing advantage AdvS0,S1(D)
is bounded by the statistical distance ‖pS0,D(·) − pS1,D(·)‖, where pS0,D(·) and
pS1,D(·) are the respective probability distributions of the answers obtained by
D. The χ2 method concerns with bounding ‖pS0,D(·) − pS1,D(·)‖. To this end,
if we denote the maximum amount of queries by q, we can define a transcript
Q = (τ1, . . . , τq) with τi = (Ti,Xi, Yi), and let Q� = (τ1, . . . , τ�) for every � ≤ q.
The distinguisher D can make its queries adaptively, but as it makes them in
a deterministic manner, the �-th query input is determined by the first � − 1
query-responses Q�−1.

For system Sb with b ∈ {0, 1} and fixed tuple Q�−1, we denote by pSb,D(Q�−1)
the probability that D interacting with Sb yields transcript Q�−1 for its first �−1
queries. If pSb,D(Q�−1) > 0, then we denote by pSb,D(R� | Q�−1) the conditional
probability that D receives response R� upon its �-th query, given transcript Q�−1
of the first � − 1 queries (that deterministically fixes the �-th query). Define for
any � ∈ {1, . . . , q} and any query-response tuple Q�−1:

χ2(Q�−1
)
=

∑

R�

(
pS1,D(R� | Q�−1) − pS0,D(R� | Q�−1)

)2

pS0,D(R� | Q�−1)
, (3)

where the sum is taken over all R� in the support of the distribution pS0,D(· |
Q�−1). The χ2 method states the following:

Lemma 1 (χ2 method [24, Lemma 3]). Consider a fixed deterministic distin-
guisher D and two systems S0,S1. Suppose that for any � ∈ {1, . . . , q} and any
query-response tuple Q�, pS0,D(Q�) > 0 whenever pS1,D(Q�) > 0. Then:

‖pS0,D(·) − pS1,D(·)‖ ≤
(
1
2

q∑

�=1

E
[
χ2(Q�−1)

]
)1/2

, (4)

where the expectation is taken over Q�−1 of the � − 1 first answers sampled
according to interaction with S1.

3 The Idealized TNT Mode

In this section, we describe our mode TNT. As discussed in Sect. 2, we only give
its idealized description, which is built upon secret random permutations rather
than efficient block ciphers.

648 Z. Bao et al.

Concretely, TNT is built upon three independent secret random permutations
π1, π2, and π3, and is formally defined as

TNTπ1,π2,π3(T,X) = π3
(
T ⊕ π2

(
T ⊕ π1(X)

))
. (5)

4 Security Proof for TNT Mode

Theorem 1. When q ≤ 2n/2, it holds

Advstprp
TNT (q) ≤ 8q1.5

2n
. (6)

Proof. In our proof, S0 denotes the tweakable random permutation Π̃, while
S1 denotes the TNTπ1,π2,π3 TBC. The condition stated in Lemma 1, i.e., ∀Q�,
pS0,D(Q�) > 0 whenever pS1,D(Q�) > 0, is clearly satisfied.

Given Q�−1, let T� be the tweak of the �-th query (note that it is determined
by Q�−1). It is easy to see that, regardless of the direction of this query, it holds

p
˜Π,D(R� | Q�−1) =

1
2n − μ�

,

where μ� ≤ � − 1 is the frequency of the tweak value T� in Q�−1, i.e.,

μ� =
∣
∣
∣
{
(X,Y) : (T�,X, Y) ∈ Q�−1

}∣
∣
∣.

The real world probability pTNT,D(R� | Q�−1) however depends on the concrete
state of the �-th query and Q�−1, for which we distinguish eight cases as follows.

Case 1: the �-th query is forward TNT(T�, X�) → Y�, and X�, Y� ∈Q�−1,
i.e., ∃T ′,X ′, T ∗, Y ∗ : (T ′,X ′, Y�), (T ∗,X�, Y

∗) ∈ Q�−1. We write

pTNT,D(Y� | Q�−1) =Pr[TNT(T�,X�) → Y� | Q�−1]

=
∑

Inter

Pr[TNT(T�,X�) → Y� | Inter] · Pr[Inter | Q�−1],

where the sum is taken over all the vectors of intermediate values

Inter =
(
(S1, . . . , S�−1), (U1, . . . , U�−1), (V1, . . . , V�−1), (W1, . . . , W�−1)

)

that are possible to appear given Q�−1.
Now, for a certain intermediate vector Inter, it can be seen that there are

three possibilities, according to which we divide all intermediate vectors into
three disjoint classes A, B, and C:

– Class A: Pr[TNT(T�,X�) → Y� | Inter] = 1;
• i.e., the vector Inter specifies S� and W� as the values corresponding to X�

and Y�, as well as a input-output relation on π2 (subsequently abbreviated
as π2-relation) (Ui, Vi) such that T� ⊕ S� = Ui and T� ⊕ W� = Vi.

TNT: How to Tweak a Block Cipher 649

– Class B: Pr[TNT(T�,X�) → Y� | Inter] = 1
N−β(Inter) , where β(Inter) is the

number of distinct U values in (U1, . . . , U�−1);
• i.e., the two corresponding values U� = T� ⊕ S� and V� = T� ⊕ W� (as

before) are “free”, so that Pr[π2(U�) = V� | Inter] = 1
N−β(Inter) .

– Class C: Pr[TNT(T�,X�) → Y� | Inter] = 0.
• i.e., the two corresponding values U� = T� ⊕ S� and V� = T� ⊕ W� (as

before) are “contradictory” to Inter: there exists a π2-relation (Ui, Vi) in
Inter such that

∗ T� ⊕ S� = Ui yet T� ⊕ W� = Vi; or
∗ T� ⊕ S� = Ui yet T� ⊕ W� = Vi.

By these, we have

Pr[TNT(T�,X�) → Y� | Q�−1]

=
∑

Inter∈A
Pr[Inter | Q�−1] +

∑

Inter∈B
Pr[Inter | Q�−1] ·

1
N − β(Inter)

. (7)

With this, we derive upper and lower bounds as follows.

The Upper Bound: It’s easy to see β(Inter) ≤ �−1. By this and Eq. (7), it holds

Pr[TNT(T�,X�) → Y� | Q�−1]

≤Pr[Inter ∈ A | Q�−1] + Pr[Inter ∈ B | Q�−1]︸ ︷︷ ︸
≤1

· 1
2n − �

. (8)

It remains to bound Pr[Inter ∈ A | Q�−1]. For this, note that once the values
in Inter except for (S�,W�) have been fixed, the number of choices for (S�,W�)
is at least (2n − α(Q�−1))(2n − γ(Q�−1)) ≥ 22n/4, where α(Q�−1) ≤ q ≤ 2n/2
and γ(Q�−1) ≤ q ≤ 2n/2 are the number of distinct values in (S1, . . . , S�−1)
and (W1, . . . , W�−1). Out of these ≥ 22n/4 choices, the number of choices that
ensure the desired property TNT(T�,X�) = Y� is at most � − 1, which results
from the following selection process: we first pick a pair of input-output (Ui, Vi)
with i ≤ � − 1, and then set S� = T� ⊕ Ui and W� = T� ⊕ Vi. Therefore,
Pr[Inter ∈ A | Q�−1] ≤ 4�

22n , and thus the upper bound in this case is

Pr[TNT(T�,X�) → Y� | Q�−1] ≤ 4�
22n

+
1

2n − �
. (9)

The Lower Bound: It can be seen β(Inter) ≥ μ�, since every previ-
ous query under the tweak T� gives rise to a unique pair (U, V) in
((U1, V1), . . . , (U�−1, V�−1)). Therefore, still from Eq. (7), we have

Pr[TNT(T�,X�) → Y� | Q�−1] ≥
∑

Inter∈B
Pr[Inter | Q�−1] ·

1
2n − μ�

=Pr[Inter ∈ B | Q�−1] ·
1

2n − μ�
.

650 Z. Bao et al.

As before, out of the (2n − α(Q�−1))(2n − γ(Q�−1)) choices of (S�,W�), the
number of choices that ensure the desired property T� ⊕ S� /∈ {U1, . . . , U�−1}
and T� ⊕ W� /∈ {V1, . . . , V�−1} is at least (2n − �)2. This means Pr[Inter ∈ B |
Q�−1] ≥ 2n−�

2n−α(Q�−1)
· 2n−�
2n−γ(Q�−1)

≥ (1 − �
2n)2 ≥ 1 − 2�

2n , and thus

Pr[TNT(T�,X�) → Y� | Q�−1] ≥
(
1 − 2�

2n

)
· 1
2n − μ�

. (10)

Summary. In all, in the first case, we have
∣
∣
∣Pr[TNT(T�,X�) → Y� | Q�−1] −

1
2n − μ�

∣
∣
∣

≤max
{

4�
22n

+
� − μ�

(2n − μ�)(2n − �)
,
2�
2n

· 1
2n − μ�

}
≤ 8�

22n
. (11)

Case 2: the �-th query is forward TNT(T�,X�)→ Y�, and X� ∈Q�−1,
Y� /∈ Q�−1, i.e., ∃T ′, Y ′ : (T ′,X�, Y

′) ∈ Q�−1, yet ∀T,X : (T,X, Y�) /∈ Q�−1.
Now, for a certain intermediate vector Inter, there are three possibilities, accord-
ing to which we divide all intermediate vectors into three disjoint classes A, B,
and C:

– Class A: there does not exist (Ui, Vi) such that Ui = T� ⊕ S�, where S� is
specified by Inter and corresponds to X�.

– Class B: there exists (Ui, Vi) such that Ui = T�⊕S�, and Pr[π3(T�⊕Vi) = Y�] =
1

2n−γ(Q�−1)
, where γ(Q�−1) is the number of distinct values in (Y1, . . . , Y�−1).

– Class C: there exists (Ui, Vi) such that Ui = T� ⊕ S�, and Pr[π3(T� ⊕ Vi) =
Y�] = 0.

By these, we have

Pr[TNT(T�,X�) → Y� | Q�−1]

=
∑

Inter∈A
Pr[Inter | Q�−1] · Pr[TNT(T�,X�) → Y� | Inter]

+
∑

Inter∈B
Pr[Inter | Q�−1] ·

1
2n − γ(Q�−1)

. (12)

The Upper Bound: For this we need to consider Pr[TNT(T�,X�) → Y� | Inter]
for any Inter ∈ A. Let U� = T� ⊕ S�. Then it can be seen

Pr[TNT(T�,X�) → Y� | Inter]
=

∑

V�∈{0,1}n

Pr[π2(U�) = V� | Inter] · Pr[π3(T� ⊕ V�) = Y� | Inter] (13)

≤
∑

V�∈{0,1}n

Pr[π2(U�) = V� | Inter]

︸ ︷︷ ︸
≤1

· 1
2n − γ(Q�−1)

.

TNT: How to Tweak a Block Cipher 651

By this, the upper bound in this case is

Pr[TNT(T�,X�) → Y� | Q�−1] ≤
∑

Inter∈A∪B
Pr[Inter | Q�−1] ·

1
2n − γ(Q�−1)

≤ 1
2n − γ(Q�−1)

≤ 1
2n − �

.

The Lower Bound: Still by Eq. (13), for any Inter ∈ A we have

Pr[TNT(T�,X�) → Y� | Inter]
≥

∑

W�∈GW
Pr[π2(U�) = T� ⊕ W� | Inter] · Pr[π3(W�) = Y� | Inter],

where GW (“good W set”) is the set of W� such that:
– W� /∈ {W1, . . . , W�−1}, and
– T� ⊕ W� /∈ {V1, . . . , V�−1}.

It can seen that |GW| ≥ 2n − � − � + μ� = 2n − 2� + μ�: the reason is, for any
(Ti,Xi, Yi) ∈ Q�−1 with Ti = T�, W� = Wi ⇔ T� ⊕ W� = Vi. On the other hand,
Pr[π3(W�) = Y� | Inter] = 1

2n−γ(Q�−1)
≥ 1

2n−μ�
, and Pr[π2(U�) = T� ⊕ W� |

Inter] = 1
2n−β(Inter) ≥ 1

2n−μ�
. Therefore, for any Inter ∈ A we have

Pr[TNT(T�,X�) → Y� | Inter] ≥ 2n − 2� + μ�

(2n − μ�)2
.

By these and Eq. (12), we have

Pr[TNT(T�,X�) → Y� | Q�−1]

≥
∑

Inter∈A∪B
Pr[Inter | Q�−1] ·

2n − 2� + μ�

(2n − μ�)2

=
(
1 − Pr[Inter ∈ C | Q�−1]

)
· 2

n − 2� + μ�

(2n − μ�)2
.

To bound Pr[Inter ∈ C | Q�−1], note that if Inter ∈ C, then there exists
Yi ∈ {Y1, . . . , Y�−1} such that Pr[TNT(T�,X�) = Yi | Q�−1] = 1. For each such
Yi the probability is at most 4�

22n as analyzed in Case 1. Since there are at most
� − 1 ≤ � choices for this Yi, we obtain

Pr[TNT(T�,X�) → Y� | Q�−1] ≥
(
1 − 4�2

22n

)
· 2

n − 2� + μ�

(2n − μ�)2

as the lower bound. Further note that
1

2n − μ�
−

(
1 − 4�2

22n

)
· 2

n − 2� + μ�

(2n − μ�)2

≤ 1
2n − μ�

− 2n − 2� + μ�

(2n − μ�)2
+

4�2

22n
· 2

n − 2� + μ�

(2n − μ�)2

≤ 2(� − μ�)
(2n − μ�)2

+
8�2

23n
≤ 8�

22n
+

8�
22n

=
16�
22n

.

652 Z. Bao et al.

Summary. In all, in the second case, we have
∣
∣
∣Pr[TNT(T�,X�) → Y� | Q�−1] −

1
2n − μ�

∣
∣
∣

≤max
{

1
2n − �

− 1
2n − μ�

,
16�
22n

}
≤ 16�

22n
. (14)

Case 3: the �-th query is forward TNT(T�, X�)→ Y�, and X� /∈ Q�−1,
Y� ∈ Q�−1. The analysis is similar to Case 2 by symmetry, resulting in the same
bound

∣
∣
∣Pr[TNT(T�,X�) → Y� | Q�−1] −

1
2n − μ�

∣
∣
∣ ≤ 16�

22n
. (15)

Case 4: the �-th query is forward TNT(T�, X�)→Y�, and X�, Y� /∈Q�−1.
The analyses for this case heavily resemble Case 2. First, the same upper bound

Pr[TNT(T�,X�) → Y� | Q�−1] ≤ 1
2n − γ(Q�−1)

≤ 1
2n − �

can be established. Second, for any Inter such that Pr[Inter | Q�−1] > 0, we
have

Pr[TNT(T�,X�) → Y� | Inter]
≥

∑

S�∈GS,W�∈GW
Pr[π1(X�) = S� | Inter] · Pr[π2(T� ⊕ S�) = T� ⊕ W� | Inter]

· Pr[π3(W�) = Y� | Inter],

where GS is the set of S� such that:

– S� /∈ {S1, . . . , S�−1}, and
– T� ⊕ S� /∈ {U1, . . . , U�−1},

and GW is the set of W� such that:

– W� /∈ {W1, . . . , W�−1}, and
– T� ⊕ W� /∈ {V1, . . . , V�−1}.

It is easy to see |GS|, |GW| ≥ 2n − 2� + μ�, Pr[π1(X�) = S� | Inter] =
1

2n−α(Q�−1)
≥ 1

2n−μ�
, Pr[π3(W�) = Y� | Inter] = 1

2n−γ(Q�−1)
≥ 1

2n−μ�
, and

Pr[π2(U�) = T� ⊕ W� | Inter] = 1
2n−β(Inter) ≥ 1

2n−μ�
. Therefore, we have

Pr[TNT(T�,X�) → Y� | Inter] ≥ (2n − 2� + μ�)2

(2n − μ�)3
,

for which

1
2n − μ�

− (2n − 2� + μ�)2

(2n − μ�)3
≤ 4(� − μ�)(2n − �)

(2n − μ�)3
≤ 16�

22n
.

TNT: How to Tweak a Block Cipher 653

Therefore,
∣
∣
∣Pr[TNT(T�,X�) → Y� | Q�−1] −

1
2n − μ�

∣
∣
∣

≤max
{

1
2n − �

− 1
2n − μ�

,
16�
22n

}
≤ 16�

22n
. (16)

To conclude, when the �-th query is forward, from Eqs. (11), (14), (15), and
(16) we have

(
pTNT,D(Y� | Q�−1) − 1

2n − μ�

)2
≤

(16�
22n

)2
≤ 256�2

24n
.

The remaining Cases 5, 6, 7, and 8 concern with the case where the �-th query
is backward, and the analyses are similar to Cases 1, 2, 3, and 4 by symmetry,
resulting in the same bound

(
pTNT,D(X� | Q�−1) − 1

2n − μ�

)2
≤

(16�
22n

)2
≤ 256�2

24n
.

Consequently,

χ2(Q�−1) ≤
∑

R�

256�2/24n

1/(2n − μ�)
≤ 2n · 2n · 256�

2

24n
≤ 256�2

22n
,

and
1
2

q∑

�=1

E
[
χ2(Q�−1)

]
≤ 1

2

q∑

�=1

256�2

22n
≤ 1

2
· 128q

3

22n
=

64q3

22n
,

which implies Eq. (6) by Lemma 1. ��

5 Concrete Proposals

In this section, we propose our instantiation of the TNT construction based on
AES, which allows fast software implementations when AES-NI are available.
We call the instantiation TNT-AES. To also enjoy the long-standing security of
AES, we try to make minimum possible modifications over AES. Following these
considerations, we only extend the number of rounds without any modification
to its round function or key schedule, and pick the respective numbers of rounds
for the three permutations π1, π2, and π3 so that the design is secure against
all relevant attacks. More explicitly, when the tweak T = 0, TNT-AES simply
becomes AES with more rounds, which clearly leaves higher security margins
over AES. Besides, we let the last round be complete instead of missing the
MixColumns operation. In the remainder of the section, we give the description
of TNT-AES, followed by a comprehensive cryptanalysis, and a comparison of
software and hardware performances against other existing TBCs with similar
security levels.

654 Z. Bao et al.

5.1 Instantiation Based on AES

The Advanced Encryption Standard (AES) [23] is an iterated block cipher with
block size 128 bits and secret key sizes 128, 192, and 256 bits. The internal
state of AES, as well as the round keys, can be represented as a 4 × 4 matrix
whose elements are byte value (8 bits). The round function consists of four basic
transformations in the following order (see Fig. 2):

– SubBytes (SB) is a nonlinear substitution that applies the same S-box to each
byte of the internal state.

– ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

– MixColumns (MC) is a multiplication of each column with a Maximum Dis-
tance Separable (MDS) matrix over GF(28).

– AddRoundKey (AK) is an exclusive-or with the round key.

SB
0
1
2
3

0 1 2 3

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC AK

Fig. 2. AES round function

At the very beginning of the encryption, an additional pre-whitening key
addition is performed, and the last round is different from the normal rounds
by omitting the MixColumns operation. AES-128, AES-192, and AES-256 share
the same round function with different numbers of rounds: 10, 12, and 14,
respectively.

The key schedule of AES transforms the master key into subkeys that are
used in each of the rounds. Here, we describe the key schedule of AES-128. The
128-bit master key is divided into four 32-bit words (W [0],W [1],W [2],W [3]),
then W [i] for i � 4 is computed as

W [i] =

{
W [i − 4] ⊕ SB(RotByte(W [i − 1])) ⊕ Rcon[i/4] i ≡ 0 mod 4,
W [i − 4] ⊕ W [i − 1] otherwise.

The i-th round key is the concatenation of 4 words W [4i] ‖ W [4i+1] ‖ W [4i+
2] ‖ W [4i + 3]. RotByte is a cyclic shift by one byte to the left, and Rcon are
the round constants defined as

Rcon[i] =

{
1 i = 0,
2 · Rcon[i − 1] otherwise,

where ‘·’ denotes multiplication in GF(28) with irreducible polynomial x8+x4+
x3 + x + 1.

TNT: How to Tweak a Block Cipher 655

Although AES-128 consists of 10 rounds, it can be naturally extended to more
rounds, each composed of all 4 transformations (AddRoundKey ◦ MixColumns ◦
ShiftRows ◦ SubBytes), and the pre-whitening key addition to the first round is
kept as it is. Then, TNT-AES[n1, n2, n3] is defined to be the extension of AES to
(n1+n2+n3) rounds, i.e., π1, π2, π3 are of n1, n2, n3 full AES rounds respectively,
and the 128-bit tweak is XOR-ed into the internal state at the output of π1 and
π2. It is natural to set n1 = n3 due to the symmetry of the design. Concretely,
we define TNT-AES[6, 6, 6], and will use TNT-AES to denote this choice for the
sake of simplicity. We will justify the round numbers in the security analysis
below.

5.2 Preliminary Cryptanalysis

In this subsection, we give our preliminary cryptanalysis against TNT-AES. As
TNT-AES consists of 18 rounds in total, which is 8 more rounds than AES-128,
we expect higher security margins of TNT-AES when the tweak is treated as a
given constant. Hence, we focus on only the cases where the tweaks help the
attack from cryptanalysts’ point of view, i.e., it is assumed the tweak is under
the attacker’s full control (open tweak), and possibly extends the existing attacks
against round-reduced AES. Under such a setting, we verify the most efficient
attacks in terms of number of attacked rounds, against TNT-AES and claim the
absence of key-recovery attack against the full TNT-AES in the single-key setting.
While we do not claim security under the related-key setting for TNT-AES due
to lack of security proof for TNT in such setting, our preliminary cryptanalysis
below shows that there is no key-recovery attack either.

Following the proven security bound of TNT, TNT-AES offers 2n/3-bit secu-
rity, i.e., there exists no key-recovery attack, given that the data (the combina-
tion of tweak and plaintext with no restriction on individual input) and time
complexities are bounded by 22·128/3 � 285. Due to the fact that there is no
attack against TNT matching the 22n/3 bound, all our security analysis against
TNT-AES are following the 2n = 2128 bound for both data and time. This allows
TNT-AES offering higher security strength should a better than 2n/3-bit bound
be proven for TNT. In summary, we claim that there is no shortcut attack on
TNT-AES better than the generic attacks against the corresponding TNT mode.

In what follows, explicit security margins are given under each attack method
whenever possible. Before moving to the individual attack methods, an overview
of the impact of the tweak to the security at model level is given as follows.
As mentioned above, the security margin will be higher for TNT-AES when
tweak is a given constant, and we call such a tweak inactive. When the tweak is
active, it may be used to cancel differences in differential attack, or to be used
as the source of input structure in integral attacks. Under the single-key setting,
the activeness of the round functions will be consistent within each of the three
permutations π1, π2, and π3. This allows us using 0/1 to denote the activeness of
the permutations with 1 for active (0 for inactive), and a simple exhaustive search
shows there are activity patterns {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)} for
differential attacks, and {(1, 1, 1), (1, 1, 0), (0, 1, 1)} for integral attacks and alike.

656 Z. Bao et al.

Differential and Linear Attacks. In the single-key setting, we will employ
the known results of 4-round AES to justify the security of TNT-AES. It is well-
known that there are at least 25 active S-boxes in 4 rounds of AES, which makes
sure that there exists no 4-round differential characteristic (resp. linear approxi-
mation) with differential probability (resp. linear correlation) higher than 2−6×25

(resp. 2−3×25) [22]. For the maximum expected differential and linear probabil-
ity (MEDP and MELP), known results can be obtained following the work of
Keliher and Sui [47], which suggests that the upper bound on the MEDP (and
MELP) of 4-round AES is about (53/234)4 ≈ 2−110. For TNT-AES in the single-
key setting where the difference can be injected on the plaintext or the tweak,
there is at least one active permutation among π1, π2, π3 since their activity pat-
terns fall in {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)}. As long as π2 is active,
there must be more than 25 active S-boxes. In the case of (1, 0, 1), it happens
only when the first addition of the tweak cancels out the differences introduced
from plaintext through π1, and the same difference is then re-introduced through
the second addition of tweak through π3. Due to the fact that the same tweak is
added and the difference in tweak is the same as well, π1 and π3 can be concate-
nated together with respective to differences. Note that π1 + π3 is of 12 rounds
in total, out of which any 4 consecutive rounds will ensure 25 active S-boxes.
We also note the security analysis of TNT under such a setting is very similar
to that of AES-PRF [60] except one has the control over the extra input tweak
in TNT added to the unknown internal state.

In the related-key setting, we only considered differential cryptanalysis, as
there is no cancellation of active S-boxes between subkeys and the state in linear
approximations. In [73], it is shown that in the related-key setting, there are
at least 21 active S-boxes in consecutive 6 rounds of AES-128, and the optimal
6-round differential has probability 2−131. Therefore, no useful related-key dif-
ferential characteristic covering more than π2 can be found no matter whether
there is a difference in the tweak or not.

Impossible-Differential Attacks. In [71], it is proven that there does not
exist any truncated impossible-differential of AES which covers more than 5
rounds. Furthermore, the best impossible-differential attack, in terms of number
of attacked rounds, is 7 rounds against AES-128 [55]. Following a similar dis-
cussion for differential attacks, when π2 is active, impossible-differential attack
does not apply naturally since π2 is of 6 rounds, more than what impossible-
differential distinguisher can cover. For the case of activity pattern (1, 0, 1), there
are 12 rounds in total for π1 + π3, more than the best attack against AES-128
can cover.

The Demirci-Selçuk Meet-in-the-Middle Attack. The Demirci-Selçuk
meet-in-the-middle attack led to the best cryptanalytic result on 7 rounds of
AES-128 in the single-key setting, where data/time/memory complexities are
below 2100 [25]. The distinguisher covers 4 rounds, following a differential char-
acteristic. Note, the distinguisher here tries to limit the number of possibilities

TNT: How to Tweak a Block Cipher 657

for the actual values related to the differential characteristic, and it is not clear
how the addition of the tweak helps reduce that. Actually, it is not even clear
the addition of round key can help reduce the counts either. Hence, round keys
are treated as independent fixed constants in such attacks. Thus, we can treat
the tweak in the same way. Therefore, the Demirci-Selçuk meet-in-the-middle
attack would work in the same way on TNT-AES as on AES, and 7 rounds of
TNT-AES can be attacked.

Yoyo Tricks. In [68], Rønjom et al. presented several key-independent yoyo-
distinguishers on 3- to 5-round AES, which require up to 225.8 data and 224.8 XOR
computations. A key-independent impossible-differential yoyo-distinguisher on
6-round AES requiring an amount of 2122.83 data was also proposed. Besides, a
key-recovery attack on 5-round AES requiring practical complexities was devised
based on the 4-round yoyo-distinguisher. In these attacks, the attacker queries
pair of plaintexts to the encryption and uses swap operation on the obtained
pair of ciphertexts to generate new queries to the decryption, and observes dif-
ference in the obtained pair of plaintexts, then she may continually construct
new pairs of plaintexts by swapping words in the obtained pairs and iterate
the same procedure enough times. It can be seen that, instead of collecting all
chosen plaintexts/ciphertexts (CPs/CCs) at once, these attacks use adaptively-
chosen-plaintexts/-ciphertexts (ACPs/ACCs). In TNT-AES, tweaks are always
inserted as input to the encryption/decryption, and will never be output. So, for
activity pattern (0, 1, 1) (resp. (1, 1, 0) for decryption), the attacker cannot play
the yoyo game by adaptively choosing and observing the differences of tweak
pairs and ciphertext (resp. plaintext) pairs. Accordingly, we claim that these
yoyo-distinguishers and yoyo-distinguisher-based key-recovery attacks cannot be
directly applied in their current form to TNT-AES.

Subspace Trail Attacks. Subspace trail cryptanalysis [32] can be seen as
a generalization of invariant subspace cryptanalysis [52], whereas it can be
launched independently on specific choices of round constants or subkeys. By
analyzing subspace trails, Grassi et al. re-interpreted the 3-round truncated
differential and integral, the 4-round impossible-differential and integral dis-
tinguishers on AES [33]. Besides, new distinguishers on round-reduced AES
are found using subspace trail cryptanalysis, including the 5-round impossible-
differential distinguisher [33], the 5-round multiple-of-8 distinguisher [34], the
4-round mixture-differential [31], and the 5-round (probabilistic, threshold,
and impossible) mixture-differential distinguishers [30]. Exploiting the 4-round
mixture-differential distinguisher, a record for key-recovery attack on 5-round
AES-128 in single-key model is set [4]. In [6], Bardeh and Rønjom proposed the
exchange attacks. Like in yoyo and mixture-differential attacks, exchange attacks
also involve swap (exchange) operations on the pairs of chosen data. On 6-round
AES, the exchange distinguishers requires 288.2 CPs and 288.2 encryptions. In
the attacks, new plaintext pairs are obtained by exchanging certain active diag-
onal of other pairs that are different in diagonals, and an invariant property on

658 Z. Bao et al.

the number of active columns of the differences of ciphertext pairs under such
exchange operation are considered.

Using subspace trail cryptanalysis and comparing with distinguishers on
round-reduced AES, we analyze distinguishers and corresponding attacks on
round-reduced TNT-AES. The activity patterns of the three permutations that
we considered are (0, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0), and (1, 1, 1). The activity
pattern (0, 1, 0) requires that all differences are comes from tweaks and canceled
by the same tweaks through n2 (i.e., 6) AES-rounds, which has no shortcut
method up to now. Considering that all subspace-trail-based distinguishers on
round-reduced AES are no more than n2 (i.e., 6) AES-rounds, it seems hard to
construct an exploitable subspace trail under activity patterns (0, 1, 1), (1, 1, 0),
(1, 1, 1), which indicate more than a chunk of active 6-round AES. The activity
pattern (1, 0, 1) implies that the coset of subspace related to the internal states
at the end of π1 (resulted from a set of plaintexts) equals a coset of the same
subspace formed by the chosen tweaks (and the differences between tweak pairs
should cancel the differences caused by the plaintext pairs), and thus the coset
of subspace formed by the chosen tweaks will cause the internal states at the
beginning of π3 forming a coset of the same subspace. A subspace trail on inter-
nal states can be seen as bypassing π2 via choosing a coset of subspace of the
tweak. Thus, devising an attack using a subspace trail under activity pattern
(1, 0, 1) requires that one can devise a subspace trail attack on the concatenated
permutation π3 ◦ π1 that is of (n1 + n3) AES-rounds, which is unknown when
(n1 + n3) > 6. In Appendix A, we discuss in detail the subspace-trail-based
distinguishers and key-recovery attacks on round-reduced TNT-AES.

Cube Attack, Dynamic Cube Attack. AES is immune to cube attacks [27]
or dynamic cube attacks [28] due to the high algebraic degree of the AES S-box.
Specifically, the algebraic degree is 7 for one round of AES and increases to 32
(<72) and 128 (<32 × 7) for two and three rounds. Therefore, AES, which has
10 rounds, is believed to be resistant to such types of attacks. So is TNT-AES
since it has more rounds than AES.

Integral Attacks and Division Property. The integral attacks utilize an
integral distinguisher for 3 rounds (or 4 rounds without MixColumns for the last
round), with a starting point of ALL values for a diagonal and a BALANCED
output, i.e., the sum of each individual byte is 0. The best attack setting will
be to utilize the degrees of freedom from the tweak to achieve the distinguisher
starting from the input of π2 in forward direction with activity pattern (0, 1, 1)
(or output of π2 in backward direction with activity pattern (1, 1, 0)). The attack
will start with a fixed plaintext, and take ALL values of a diagonal from tweak.
Thus, the target is π2 + π3 only with a secret input to π2. In the key-recovery
phase, the attacker is able to append one round only, so this attack will work for
at most n1 + 5 out of (n1 + n2 + n3) rounds, i.e., 6 + 5 out of 18 for TNT-AES.

TNT: How to Tweak a Block Cipher 659

The division property due to Todo et al. [74,75] can be viewed as an extension
of integral distinguisher, which has been successfully applied to many block
ciphers. However, there is no reported results on AES better than integral attack
so far.

Slide Attacks. The slide attack was first described by Biryukov and Wag-
ner [10,11] in 1999 to attack round-reduced DES. The core idea is to make use
of the similarity of the round functions and that of key schedule. Thus, the dif-
ference of encryption process in its original form and one (or few) rounds shifted
is within control, e.g., with high probability. The addition of tweak will allow
canceling the difference in at most one round, while TNT-AES has 8 more rounds
than AES-128. Hence, we expect higher security margin here. Furthermore, there
is no reported slide attack against full AES-128 so far.

(Related-Subkey) Boomerang Attacks. Boomerang attacks [76] construct
long distinguishers by connecting two short differential characteristics. Recently,
a new tool named Boomerang Connectivity Table [16] was proposed to formulate
the dependency that the two differential characteristics contain and offer guid-
ance towards better boomerang distinguishers. We utilize the framework of the
boomerang connectivity table when mounting boomerang attacks on TNT-AES.
First, we consider the single-key setting where the difference can be introduced
on the plaintext or the tweak. When the difference is introduced only on the
tweak, as shown in Fig. 3 in Appendix B, high-probability boomerang distin-
guishers can be constructed on n1 + n2 + n3 rounds, where n1, n3 can be any
number and n2 < 6. When n2 ≥ 6, such high-probability distinguishers do not
exist. Note that these distinguishers with zero plaintext and ciphertext difference
are not useful in key-recovery attacks. When the difference is also introduced to
the plaintext or ciphertext, by making π2 inactive through the tweak difference,
the cipher can be seen as π1 ◦ π3 with respective to differences and boomerang
attacks of n2 + r rounds can be mounted, where r is the number of rounds that
boomerang attacks of AES-128 can cover and is 5. That is, only 11 rounds can be
attacked. Next, we consider the related-subkey setting where the key difference
can be injected on a round key. The related-subkey setting is more powerful
and usually allows longer boomerang distinguishers than the related-key set-
ting where the difference is injected on the master key. In the related-subkey
setting, there exists a 6-round boomerang distinguisher of AES-128 with proba-
bility 2−109.42 [70]. This distinguisher can be naturally extended to the 7 middle
rounds of TNT-AES with the same probability under the condition that the
tweak difference cancels the input difference or the output difference of the 6-
round boomerang distinguisher. When we add one more round to the bottom
or to the top of the 7-round distinguisher, the numbers of active S-boxes will
increase at least by one, leading to a negligible probability. Therefore, there
seem no boomerang distinguishers of TNT-AES in the related-subkey setting
that cover more than 8 rounds.

660 Z. Bao et al.

5.3 Performance

Software Performance. We estimate the software performance of TNT-AES
on the basis of the best results of AES software provided by Park et al. [65]. In
what follows, we consider both “Plaintext” and “Tweak” as data since when used
in some authenticated encryption schemes, both of them are used to process data
such as associated data. Hence, the software performance is then calculated as
the total number of CPU cycles divided by the total byte length of plaintext
and tweak of the TBCs. To obtain a fair comparison, we estimate the same for
other existing TBCs as well (omitting their additional cost for updating tweaks),
using the following formula:

original speed × block size
block size + tweak size

. (17)

For TNT-AES, the number of rounds are different from AES. To evaluate the
performance, we multiply a factor to the speed of AES. Accordingly, the formula
we used to calculate the software speed of TNT-AES is (where, AES means AES-
128):

speed of AES × block size
block size + tweak size

× TNT-AES round number
AES round number

. (18)

We note that the optimization technique proposed in [65] is for the CTR
mode of AES, which extends the counter-mode caching [9,78]. It caches and
reuses intermediate results up to AES round 1 (R1) or up to AES round 2 (R2).
For TNT-AES, tweaks are added until round (n1 + 1). Thus, this optimization
technique is applicable. Whereas, for other TBCs in which tweaks are added
before the first round, this technique may not be applicable.

Table 2 presents the estimated results on software performance of TNT-AES,
together with the results of other TBCs under the similar setting (considering
both “Plaintext” and “Tweak” as data).

Rekeying and Retweaking. To see the scenario that profits considerably by using
a tweakable block cipher processing tweak efficiently, we performed a perfor-
mance comparison between retweaking in TNT-AES and rekeying in AES-128.
Table 3 reports the timing results. Because in the AES-NI set, the reciprocal
throughput of the AESKEYGENASSIST instruction that assists the key-schedule is
higher than that of the instruction AESENC that executes one round of encryp-
tion, in Table 3, it can be seen that the process of rekeying in AES becomes
slower. Whereas, the process of retweaking in TNT-AES benefits a lot from the
fast AES-NI instruction for encryption.1

1 Please refer to https://github.com/TNT-AES/Rekeying_vs_Retweaking for a very
simple implementation of the TNT-AES encryption and this performance comparison.

https://github.com/TNT-AES/Rekeying_vs_Retweaking

TNT: How to Tweak a Block Cipher 661

Table 2. A table of comparison with other TBCs on software (all TBCs are with 128-
bit block, 128-bit master key). The platform is Intel Haswell CPU i7-4770, which is the
commonly used CPU in references [8,40,42,65].

Cipher Data type Tech. Speed in cycles per byte, given messages in bytes Ref.
128 256 512 1024 2048 4096 8192 20480 40960 65536

AES Plaintext Table-
based

8.38 8.34 8.37 8.37 [65]

Plaintext Bitsliced 4.70 4.43 4.40 4.40 [65]
Plaintext AES-NI

1 × 1 R1
1.03 1.02 1.07 1.07 [65]

Plaintext AES-NI
1 × 1 R2

0.93 0.92 1.04 1.04 [65]

Plaintext AES-NI
1 x 4 R1

0.63 0.62 0.62 0.62 [65]

Plaintext AES-NI
1 x 4 R2

0.59 0.58 0.58 0.58 [65]

TNT- AES Plaintext
+ Tweak

Table-
based

7.54 7.51 7.53 7.53 � [65]

Plaintext
+ Tweak

Bitsliced 4.23 3.99 3.96 3.96 � [65]

Plaintext
+ Tweak

AES-NI
1 × 1 R1

0.92 0.92 0.97 0.96 � [65]

Plaintext
+ Tweak

AES-NI
1 × 1 R2

0.83 0.83 0.94 0.94 � [65]

Plaintext
+ Tweak

AES-NI
1 × 4 R1

0.57 0.56 0.56 0.56 � [65]

Plaintext
+ Tweak

AES-NI
1 × 4 R2

0.53 0.52 0.52 0.52 � [65]

SKINNY
-128-128

Plaintext Bitsliced-
64-block

† 3.78 [8]

SKINNY
-128-256

Plaintext
+ Tweak

Bitsliced-
64-block

‡ 2.27 [8]

Deoxys
-BC-256

Plaintext AES-NI 4.74 2.85 1.90 1.43 1.18 1.07 1.01 0.96 [42]

Plaintext
+ Tweak

AES-NI 2.37 1.43 0.95 0.72 0.59 0.54 0.51 0.48 [42]

Kiasu�=
-BC-64

Plaintext AES-NI 0.97 0.84 0.78 0.76 0.75 0.74 [40]

Plaintext
+ Tweak

AES-NI 0.65 0.56 0.52 0.51 0.50 0.49 [40]

- The reference for TNT-AES indicated by � means that basing on the results of AES in [65] and
using Eq. (18), we calculated the presented results for TNT-AES.
- The value for SKINNY-128-256 indicated by ‡ is calculated using the value for SKINNY-128-128
indicated by † basing on a formula similar to Eq. (18).

Hardware Performance. We estimate the hardware performance of TNT-AES
with area minimization as optimizations target. The current record of minimized
area of AES is kept by the bit-serial implementations provided by Jean et al. [39].
Apart from AES, Jean et al. also provided bit-serial implementations of another
tweakable block cipher SKINNY. Using those state-of-the-art results provided

662 Z. Bao et al.

by Jean et al. [39], we estimate the area and latency of TNT-AES and make
comparisons with other TBCs. The results are summarized in Table 5.

In the table, results for AES, SKINNY-128-256, and Deoxys-BC-256 are all
from existing studies. The results for TNT-AES are calculated using the following
method based on the results for AES. Let δ be the number of bits in the data
path in all implementations. Let C1DFF be the cost of a 1-bit D flip-flop (D FF),
let CXOR be the cost of a 2-input XOR gate, and let CMUX be the cost of a 2-to-1
Multiplexer in a library. We use Table 4 to estimate C1DFF, CXOR, and CMUX in
various libraries.

Table 3. Software performance of AES-128 when rekeying for every block and that of
TNT-AES when fixing a key but retweaking for every block, both with plaintexts as
data (unlike in Table 2 where we consider both “Plaintext” and “Tweak” as data), and
both with help of AES-NI (on an Intel(R) Core(TM) i7-8565U CPU 1.80 GHz, which
belongs to products formerly Whiskey Lake).

|M | (bytes) Rekeying in AES-128 Retweaking in TNT-AES
(cycles/byte) (cycles/byte)

128 4.60 1.50
256 4.60 1.00
512 4.60 0.80

1024 4.60 0.70
2048 4.60 0.60
4096 4.60 0.60
8192 4.60 0.60

Compared with implementations of AES, the additional area cost for imple-
mentations of TNT-AES comes from the cost for storing a 128-bit tweak and
the cost for implementing the XOR with tweak (we ignore the additional cost
for the signals controlling the tweak/key inputs). We note that there are cases
where as input, the tweak can be sent twice by the external provider. In such
cases, extra storage for the tweak can be saved. We note that this is possible
for a design without a “tweak-schedule”. For other designs, such as that permute
the bytes of the tweak, this becomes difficult as it requires this permutation
to be followed by external provider if not stored locally. In TNT-AES, there
is no tweak-schedule, hence no storage for tweak is required. When storage is
required, the 128-bit tweak can be stored using 128 1-bit D FF. To implement
the XOR with tweak, besides δ 2-input XOR gates, δ 2-to-1 multiplexers are also
required for selecting the bits of tweak after the n1-th round and the (n1+n2)-th
round and selecting constant 0 after other rounds. The additional area cost for
XOR gates and multiplexers is δ × (CXOR + CMUX). Thus, additional area cost is
128 × C1DFF + δ × (CXOR + CMUX) when the tweak needs to be stored locally, and
δ×(CXOR+CMUX) otherwise. To get a better view of the performances, we provide
the gate sizes for both scenarios.

TNT: How to Tweak a Block Cipher 663

Table 4. The (estimated) cost (in Gate Equivalent, GE) of regular flip-flops, scan
flip-flops, 2-input XOR gates, and 2-to-1 Multiplexers in different libraries.

UMC 180 UMC 130 UMC 90 Ngate 45 IBM 130

1-bit D FF 4.67 5.00 4.25 5.67 4.25
1-bit Scan FF 6.00 6.25 5.75 7.67 5.50

1-bit XOR 2.67 2.75 2.50 2.00 2.00
2-to-1 MUX 2.33 2.25 2.25 2.33 2.25

Table 5. A table of comparison with other TBCs on hardware area (in GEs) and
latency (all TBCs are with 128-bit block, 128-bit master key, and 128-bit tweak)

Cipher data UMC 180 UMC 130 UMC 90 Ngate 45 IBM 130 Latency Ref.

path GEs GEs GEs GEs GEs Cycles

Bits

AES 1 1727 1902 1596 1982 1560 ∗ 1776/168 [39]

2 1796 1992 1667 2054 1625 ∗ 888/84 [39]

4 1920 2168 1784 2146 1731 ∗ 520/50 [39]

8 2112 2360 1968 2337 1912 ∗ 282/27 [39]

8 2400 3574 2292 2768 2182 ∗ 226/21 [63]

TNT- AES 1 † 2330/1732 † 2547/1907 † 2145/1601 † 2712/1986 † 2108/1564 3152 � [39]

2 † 2404/1806 † 2642/2002 † 2221/1677 † 2788/2063 † 2178/1634 1576 � [39]

4 † 2538/1940 † 2828/2188 † 2347/1803 † 2889/2163 † 2292/1748 932 � [39]

8 † 2750/2152 † 3040/2400 † 2550/2006 † 3097/2372 † 2490/1946 502 � [39]

8 † 3038/2440 † 4254/3614 † 2874/2330 † 3528/2803 † 2760/2216 394 � [63]

SKINNY-
128-256

1 2082 2278 1937 2501 1905 8448 [39]

2 2130 2318 1988 2554 1941 4224 [39]

4 2248 2433 2108 2694 2044 2112 [39]

8 2456 2662 2325 2949 2223 1056 [39]

Deoxys-
BC-256

8 2860 338 [42]

∗ In column 8 for AES, in the form x/y, x is the number of cycles taken by the entire encryption, y

is the number of cycles taken by one full round which is used to estimate the latency of TNT-AES.
† In column 3–7 for TNT-AES, in the form x/y, x is the area when the tweak is stored locally, y is
the area when the tweak is not stored locally.
� The references for TNT-AES indicated by � means that basing on the results of AES in these works,
we calculated the presented results for TNT-AES.

For latency, selecting and XOR-ing bits of tweak can be implemented in the
same clock cycles for AddRoundKey and SubBytes, thus cost no additional cycles.
The additional cycle-cost comes from the fact that TNT-AES has more rounds
and the last round is complete instead of missing the MixColumns. Thus, to
estimate the latency of TNT-AES, we use the clock cycles taken by one full round
of AES (denoted by Cyclesround), times the total number of rounds (n1+n2+n3),
plus the cycles taken by the last AddRoundKey (128/δ cycles), i.e., Cyclesround×
(n1+n2+n3)+128/δ, where Cyclesround is listed in Table 5 (column 8 for AES).

From Table 5, when the tweak has to be stored locally, the hardware perfor-
mance of TNT-AES is slightly inferior to those of SKINNY-128-256 and Deoxys-
BC-256, otherwise, the hardware performance of TNT-AES can be superior.

664 Z. Bao et al.

Comparison to TAES. Here, we briefly discuss the comparison between the per-
formance of TNT-AES and that of TAES, where TAES is an AES-based TBC
used to instantiate ZOCB and ZOTR that are two tweakable blockcipher modes
for authenticated encryption with full absorption [3]. TAES tweaks AES-256 by
simply replacing the second half part of the secrete key with 128-bit tweak and
keeping all other operations and parameters unchanged. Thus, it has 14 rounds,
128-bit blocks, 128-bit keys, and 128-bit tweaks.

Because TNT-AES consists of 18 AES-rounds, i.e., 4 more rounds than TAES,
under the use-cases where both the key and the tweak are fixed and all sub-
tweaks/sub-keys can be precomputed, TAES outperforms TNT-AES. Whereas,
for other use-cases where retweaking is necessary, TNT-AES is expected to per-
form better. The reasons are as follows. TNT-AES has no tweak-schedule, while
that for TAES is related to the key-schedule for AES-256. For software imple-
mentation using AES-NI, the instruction for one-round encryption outperforms
that for the key-schedule as mentioned above. Thus, in retweaking use-cases,
TNT-AES will be much faster than TAES. For hardware implementation, when
the 128-bit tweak can be stored in external storage, TNT-AES does not need
additional storage to process the tweak. The area requirement is hence much
less than that of TAES, which requires local storage to hold and process the
tweak.

6 Conclusion and Open Questions

In this paper, we proposed a new mode named TNT for constructing tweak-
able block ciphers with proven BBB security based on three block ciphers. To
demonstrate the effectiveness of the mode, an instantiation based on AES named
TNT-AES was proposed, which enjoys the long-standing security of AES, fast
software performance due to AES new instructions, and hardware efficiency due
to the simplicity of TNT mode. Following the prove-then-prune design strat-
egy, we reduced the number of rounds of the three underlying AES-based block
ciphers from 10 for the original AES, to 6, 6, and 6, respectively. Our comprehen-
sive cryptanalysis shows no security issues against TNT-AES, while the reduced
number of rounds allow achieving competitive software and hardware perfor-
mances with existing TBCs designed through modular methods. We expect TNT
to be a generic way to turn a block cipher into a tweakable block cipher securely,
especially for those lightweight block ciphers with smaller block lengths.

Potential Applications. While TNT-AES only supports n-bit tweaks which
seems a limitation compared to CLRW22, such a parameter has already been suf-
ficient for many important applications. For example, many TBC-based MACs,
including the chaining-via-tweak mode proposed by Liskov et al. [54] (its secu-
rity was later proved optimal by Landecker et al. [51]) and the AXU-hash-based
MACs proposed by Cogliati et al. [19], are exactly built from TBCs with n-bit
tweaks, and thus instantiating the TBCs with CLRW22 (as done in [51]) clearly
wastes power and causes unnecessary efficiency loss. Consequently, TNT-AES

TNT: How to Tweak a Block Cipher 665

would probably be a better building block. Moreover, TNT-AES could also be
used to build BBB secure variable length domain extenders via the construc-
tion of Chen et al. [13] or double-length block cipher via the construction of
Coron et al. [21]. As discussed in [13], such construction may further motivate
highly secure format-preserving encryption schemes might be a very valuable
alternative to the recently broken standards.

Besides, TNT-AES could be used to replace the TBC module in the stan-
dard OCB3 mode and the OTR mode [62] (the 2nd round candidate during
CAESAR competition). Both modes are optimally secure when the underlying
TBC-module is optimal [49,62] but fall down to the birthday bound due to
instantiating the TBC with XEX-like constructions [67]. Therefore, once instan-
tiating with TNT-AES, we obtain corresponding variants secure against BBB
22n/3 queries in both cases. Consider the application to OCB3 for concreteness.
The resulting AE TNT-AES-ΘCB is a ΘCB instance [49] with TNT-AES being
its underlying TBC, and the security is boosted from n/2 bits of OCB3 to 2n/3
bits. Perhaps surprisingly, the hardware efficiency might be improved as well:
the original OCB3 mode requires to store an AXU hash key EK(0) during the
lifetime of the master key K, which is avoided in TNT-AES-TAE.

We anticipate more such applications, especially when AES-based TBCs are
used and constructed from other modes than TNT.

The Security Gap. Although the security of TNT is proven to be 22n/3, there
is no matching attack – note that Dinur et al.’s attack strategy [26] against the
3-round Even-Mansour ciphers does not help here since the permutations in TNT
cannot be queried by the adversary, and Mennink’s distinguisher [59] does not
work directly either due to the 23n/2 offline computational complexity besides
the 23n/4 online query complexity. Then, the same applies to the instantiation
TNT-AES. It will be interesting to see the closure of this gap, by either improving
the proven security bound or finding a better attack. We leave this as an open
problem to the community.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
and thank Tetsu Iwata, Eik List and Kazuhiko Minematsu for fruitful discussions. This
research is supported by the National Research Foundation, Prime Minister’s Office,
Singapore, under its Strategic Capability Research Centres Funding Initiative, Nanyang
Technological University under grant M4082123, Singapore’s Ministry of Education
under grants RG 18/19 and MOE2019-T2-1-060, and National Natural Science Foun-
dation of China (No. 61961146004). The second author is partially supported by the
Program of Qilu Young Scholars (Grant No. 61580089963177) of Shandong University.
The fourth author is partially supported by the National Natural Science Foundation
of China (Grants No. 61802399, 61802400, 61732021 and 61772519), the Youth Innova-
tion Promotion Association CAS, the National Key Research and Development Project
(Grant No. 2018YFA0704704) and Chinese Major Program of National Cryptography
Development Foundation (Grant No. MMJJ20180102).

666 Z. Bao et al.

A Subspace Trail Cryptanalysis of TNT-AES

In this section, we discuss subspace-trail-based distinguishers and key-recovery
attacks on TNT-AES under the activity pattern (0, 1, 1). Attacking encryption
under the pattern (1, 1, 0) can be seen as attacking decryption with the pattern
(0, 1, 1). Thus, similar attacks under the pattern (1, 1, 0) can be devised once
attacks under the pattern (0, 1, 1) are established. Subspace trail cryptanalysis
of TNT-AES under the activity pattern (0, 1, 1) can be compared with subspace
trail cryptanalysis of (n2 + n3)-round AES. The difference lies in that the initial
coset of concerned subspace is formed by chosen tweaks instead of by chosen
plaintext and elements in the coset will be XOR-ed with the internal state (an
unknown constant) c∗ which can not be observed during the attack. Besides, the
same chosen tweaks are XOR-ed after π2.

As introduced in Sect. 5.2, a series of attacks on round-reduced (no more than
6 rounds) AES based on subspace trail cryptanalysis and the extended mixture-
differential, exchange attacks were proposed in [4–6,31–34]. Among these r-round
distinguishers, those which do not require the knowledge of part of the secret
key can be directly turned into (n1 + r)-round distinguishers with the same
complexity on round-reduced TNT-AES. This can be done by using a unique
plaintext p and a structure of tweaks to construct required cosets of concerned
subspace at the beginning of π2. Although the exact cosets are unknown, required
relations among input states at the beginning of the active permutation can be
constructed using chosen tweaks. For example, when turn the 4-round mixture-
differential distinguisher on AES [4,30] into an (n1 + 4)-round distinguisher on
TNT-AES, if some chosen tweaks can form mixture quadruples, then after being
XOR-ed with a common unknown internal state, the resulting states still keep
the relation of being mixture quadruples. There are r-round distinguishers on
round-reduced AES that require considering part of the key, which can also
be turned into (n1 + r)-round distinguisher on TNT-AES. Take the 5-round
impossible-differential distinguishers based on the impossible subspace trail on
4-round AES [33] for example. When we turn it into (n1+5)-round distinguisher
on TNT-AES, we use a unique plaintext p and structures of chosen tweaks (chosen
in the way of choosing plaintexts in the original distinguisher). Then, unlike in
the original distinguisher on AES, where we guess the single-byte key difference
k0,0⊕k1,1, we guess the single-byte difference c∗

0,0⊕c∗
1,1, where c∗ is the unknown

internal state before XOR-ing the tweak. Again, the complexities of these (n1 +
r)-round distinguishers on TNT-AES will be almost the same with those r-round
distinguishers on AES.

TNT: How to Tweak a Block Cipher 667

As for key-recovery attacks exploiting those r-round distinguishers on round-
reduced AES (e.g., the 5-round key-recovery attack exploiting the 4-round
mixture-differential distinguisher [4] and the 6-round key-recovery attack exploit-
ing the 5-round probabilistic mixture-differential distinguisher [30]), they add
one round in front of the distinguisher, and guess parts of the whitening key
(e.g., key bits in SR−1(Col(i)), or say in diagonal space Di, i ∈ {0, 1, 2, 3}) to
filter out useful plaintexts from a chosen structure or to classify chosen plaintexts
into properly defined sets. Such attacks may not be directly used to construct
corresponding attacks on (n1 + 1 + r)-round TNT-AES by guessing part of the
subkey, because the internal state is also unknown. However, by guessing the
internal state before XOR-ing the tweak, we can recover this unknown state
part by part (instead of recovering key bits). Using this recovered internal state,
one may further analyze π1 to recover the key. However, because the depen-
dent unknown values are in the diagonal SR−1(Col(i)) that depend on the full
state one round before, extending such attacks to cover one more round seems
to be difficult. Thus, exploiting current techniques in such attacks on r-round
AES-128, an attack on TNT-AES is limited to be no more than (n1 + 1 + r)
rounds. Key-recovery attacks using those (n1 + r)-round (r ≥ 5) distinguishers
to recovery the subkey in an appended (complete) round seems also very hard.
That is because, the considered cosets at the end of the exploited distinguishers
are commonly cosets of mixed space MI (I ⊆ {0, 1, 2, 3}), which are mapped
into the full state. Thus, in an (n1 + r + 1)-round (r ≥ 5) key-recovery attack,
checking the distinguishable properties one round before the last round requires
guessing the entire key.

Based on these analyses and together with previous analyses of other activity
patterns, we believe TNT-AES is strong enough to resist subspace trail attacks.

B Examples of the Related-Tweak Boomerang
Distinguishers of TNT-AES

668 Z. Bao et al.

SB
SR

AK

MC

SB
SR

MC

AK
SB

SB

U
pp

er
 tr

ai
l

SB
SR

MC
AK

SR
MC

AK

AK
SR

MC
SB

Lo
w

er
 tr

ai
l

AK
SR

MC

AK

T
1

T
2

pl
ai

nt
ex

t

ci
ph

er
te

xt

(5
+5

)∙2
+1

=2
1

ac
tiv

e
S-

bo
xe

s

SB
SR

AK

MC

SB
SR

MC

AK
SB SB

U
pp

er
 tr

ai
l

SB
SR

MC
AK

SR
MC

AK AK
SR

MC
SB

Lo
w

er
 tr

ai
l

AK
SR

MC

AK

T
1

T
2

pl
ai

nt
ex

t

ci
ph

er
te

xt
(4

+4
)∙2

ac

tiv
e

S-
bo

xe
s

n 1
+4

+n
3

n 1
+5

+n
3

F
ig
.3

.E
xa

m
pl

es
of

th
e

re
la

te
d-

tw
ea

k
bo

om
er

an
g

di
st

in
gu

is
he

rs
of

T
N
T
-A

E
S,

w
he

re
th

e
(n

1
+
4
+

n
3
)-

ro
un

d
di

st
in

gu
is

he
r

ha
s

pr
ob

ab
ili

ty
2

−
9
6

an
d

th
e

(n
1
+

5
+

n
3
)-

ro
un

d
di

st
in

gu
is

he
r

ha
s

pr
ob

ab
ili

ty
sl

ig
ht

ly
hi

gh
er

th
an

2
−
1
2
8
.

TNT: How to Tweak a Block Cipher 669

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness (2014–2019). https://competitions.cr.yp.to/caesar.html

2. Aumasson, J.P., et al.: Challenges in authenticated encryption, March 2017.
https://chae.cr.yp.to/chae-20170301.pdf

3. Bao, Z., Guo, J., Iwata, T., Minematsu, K.: ZOCB and ZOTR: tweakable blockci-
pher modes for authenticated encryption with full absorption. IACR Trans. Sym-
metr. Cryptol. 2019(2), 1–54 (2019)

4. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key
recovery attacks on reduced-round AES with practical data and memory complex-
ities. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 185–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0_7

5. Bardeh, N.G.: A key-independent distinguisher for 6-round AES in an adaptive
setting. Cryptology ePrint Archive, Report 2019/945 (2019). https://eprint.iacr.
org/2019/945

6. Bardeh, N.G., Rønjom, S.: The exchange attack: how to distinguish six rounds
of AES with 288.2 chosen plaintexts. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 347–370. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8_12

7. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5_5

8. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. Cryptology ePrint Archive, Report 2016/660 (2016). http://eprint.iacr.
org/2016/660

9. Bernstein, D.J., Schwabe, P.: New AES software speed records. In: Chowdhury
et al. [15], pp. 322–336 (2008)

10. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen [48], pp. 245–259 (1999)
11. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-

CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6_41

12. Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: Elastic-
tweak: a framework for short tweak tweakable block cipher. Cryptology ePrint
Archive, Report 2019/440 (2019). https://eprint.iacr.org/2019/440

13. Chen, Y.L., Mennink, B., Nandi, M.: Short variable length domain extenders with
beyond birthday bound security. In: Peyrin and Galbraith [66], pp. 244–274 (2018)

14. Cheon, J.H., Takagi, T. (eds.): Advances in Cryptology - ASIACRYPT 2016, Part
I, Hanoi, Vietnam, 4–8 December 2016. LNCS, vol. 10031. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6

15. Chowdhury, D.R., Rijmen, V., Das, A. (eds.): Progress in Cryptology -
INDOCRYPT 2008: 9th International Conference in Cryptology in India, Kharag-
pur, India 14–17 December 2008. LNCS, vol. 5365. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89754-5

16. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8_22

https://competitions.cr.yp.to/caesar.html
https://chae.cr.yp.to/chae-20170301.pdf
https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.1007/978-3-319-96881-0_7
https://eprint.iacr.org/2019/945
https://eprint.iacr.org/2019/945
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
http://eprint.iacr.org/2016/660
http://eprint.iacr.org/2016/660
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://eprint.iacr.org/2019/440
https://doi.org/10.1007/978-3-662-53887-6
https://doi.org/10.1007/978-3-540-89754-5
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22

670 Z. Bao et al.

17. Cogliati, B.: Tweaking a block cipher: multi-user beyond-birthday-bound security
in the standard model. Des. Codes Cryptogr. 86(12), 2747–2763 (2018). https://
doi.org/10.1007/s10623-018-0471-8

18. Cogliati, B., Lampe, R., Seurin, Y.: Tweaking even-mansour ciphers. In: Gennaro
and Robshaw [29], pp. 189–208 (2015)

19. Cogliati, B., Lee, J., Seurin, Y.: New constructions of MACs from (tweakable)
block ciphers. IACR Trans. Symmetr. Cryptol. 2017(2), 27–58 (2017)

20. Cogliati, B., Seurin, Y.: Beyond-birthday-bound security for tweakable even-
mansour ciphers with linear tweak and key mixing. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 134–158. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48800-3_6

21. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_17

22. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1999)
23. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

24. Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via
the Chi-Squared method. In: Katz and Shacham [46], pp. 497–523 (2017)

25. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round, in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_23

26. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on 3-round
even-mansour, 8-step LED-128, and Full AES2. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-42033-7_18

27. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9_16

28. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux [45],
pp. 167–187 (2011)

29. Gennaro, R., Robshaw, M.J.B. (eds.): Advances in Cryptology - CRYPTO 2015,
Part I, Santa Barbara, CA, USA, 16–20 August 2015. LNCS, vol. 9215. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7

30. Grassi, L.: Structural truncated differential attacks on round-reduced AES. Cryp-
tology ePrint Archive, Report 2017/832 (2017). http://eprint.iacr.org/2017/832

31. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers and
attacks on round-reduced AES. IACR Trans. Symmetr. Cryptol. 2018(2), 133–160
(2018)

32. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its
applications to AES. IACR Trans. Symmetr. Cryptol. 2016(2), 192–225 (2016).
http://tosc.iacr.org/index.php/ToSC/article/view/571

33. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. Cryptology ePrint Archive, Report 2016/592 (2016). http://eprint.
iacr.org/2016/592

34. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-Round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II.
LNCS, vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_10

https://doi.org/10.1007/s10623-018-0471-8
https://doi.org/10.1007/s10623-018-0471-8
https://doi.org/10.1007/978-3-662-48800-3_6
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-42033-7_18
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-662-48000-7
http://eprint.iacr.org/2017/832
http://tosc.iacr.org/index.php/ToSC/article/view/571
http://eprint.iacr.org/2016/592
http://eprint.iacr.org/2016/592
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10

TNT: How to Tweak a Block Cipher 671

35. Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via
nonce-based key derivation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications
Security, 31 October–2 November 2017, pp. 1019–1036. ACM Press, Dallas (2017)

36. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. J. Cryptol. 31(3), 798–844 (2018)

37. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46800-5_2

38. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: a fast tweakable block
cipher mode for highly secure message authentication. In: Katz and Shacham [46],
pp. 34–65

39. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique for
bit-serial implementations of SPN-based primitives. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 687–707. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4_33

40. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1. Additional first-round candidates
of CAESAR compeition (2014). https://competitions.cr.yp.to/caesar-submissions.
html

41. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45608-8_15

42. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys-II. Finalist of CAESAR com-
peition (2014). https://competitions.cr.yp.to/caesar-submissions.html

43. Jha, A., List, E., Minematsu, K., Mishra, S., Nandi, M.: XHX - a framework for
optimally secure tweakable block ciphers from classical block ciphers and universal
hashing. Cryptology ePrint Archive, Report 2017/1075 (2017). https://eprint.iacr.
org/2017/1075

44. Jha, A., Nandi, M.: Tight security of cascaded LRW2. Cryptology ePrint Archive,
Report 2019/1495 (2019). https://eprint.iacr.org/2019/1495

45. Joux, A. (ed.): Fast Software Encryption - FSE 2011, Lyngby, Denmark, 13–16
February 2011. LNCS, vol. 6733. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21702-9

46. Katz, J., Shacham, H. (eds.): Advances in Cryptology - CRYPTO 2017, Part III,
Santa Barbara, CA, USA, 20–24 August 2017. LNCS, vol. 10403. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-319-63688-7

47. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
2-round advanced encryption standard (AES). Cryptology ePrint Archive, Report
2005/321 (2005). http://eprint.iacr.org/2005/321

48. Knudsen, L.R. (ed.): Fast Software Encryption - FSE 1999, Germany, Rome, Italy
24–26 March 1999. LNCS, vol. 1636. Springer, Heidelberg (1999)

49. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux [45], pp. 306–327 (2011)

50. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–151. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43933-3_8

https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/978-3-319-66787-4_33
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://competitions.cr.yp.to/caesar-submissions.html
https://eprint.iacr.org/2017/1075
https://eprint.iacr.org/2017/1075
https://eprint.iacr.org/2019/1495
https://doi.org/10.1007/978-3-642-21702-9
https://doi.org/10.1007/978-3-642-21702-9
https://doi.org/10.1007/978-3-319-63688-7
http://eprint.iacr.org/2005/321
https://doi.org/10.1007/978-3-662-43933-3_8

672 Z. Bao et al.

51. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5_2

52. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9_12

53. Lee, B., Lee, J.: Tweakable block ciphers secure beyond the birthday bound in the
ideal cipher model. In: Peyrin and Galbraith [66], pp. 305–335

54. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9_3

55. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on
AES. In: Chowdhury et al. [15], pp. 279–293 (2011)

56. Mennink, B.: Optimally secure tweakable blockciphers. Cryptology ePrint Archive,
Report 2015/363 (2015). http://eprint.iacr.org/2015/363

57. Mennink, B.: XPX: generalized tweakable Even-Mansour with improved security
guarantees. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 64–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53018-4_3

58. Mennink, B.: Insuperability of the standard versus ideal model gap for tweakable
blockcipher security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 708–732. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0_24

59. Mennink, B.: Towards tight security of cascaded LRW2. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 192–222. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_8

60. Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Trans.
Symmetr. Cryptol. 2017(3), 228–252 (2017)

61. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03317-9_19

62. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudoran-
dom functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 275–292. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5_16

63. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4_6

64. NIST: Lightweight Cryptography Competition (2019). https://csrc.nist.gov/
projects/lightweight-cryptography

65. Park, J.H., Lee, D.H.: FACE: Fast AES CTR mode encryption techniques
based on the reuse of repetitive data. IACR Trans. Cryptogr. Hardw. Embedd.
Syst. 2018(3), 469–499 (2018). https://tches.iacr.org/index.php/TCHES/article/
view/7283

66. Peyrin, T., Galbraith, S. (eds.): Advances in Cryptology - ASIACRYPT 2018,
Part I, Brisbane, Queensland, Australia, 2–6 December 2018. LNCS, vol. 11272.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03326-2

https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
http://eprint.iacr.org/2015/363
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-319-63715-0_24
https://doi.org/10.1007/978-3-319-63715-0_24
https://doi.org/10.1007/978-3-030-03810-6_8
https://doi.org/10.1007/978-3-642-03317-9_19
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.1007/978-3-642-20465-4_6
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://tches.iacr.org/index.php/TCHES/article/view/7283
https://tches.iacr.org/index.php/TCHES/article/view/7283
https://doi.org/10.1007/978-3-030-03326-2

TNT: How to Tweak a Block Cipher 673

67. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2_2

68. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 217–243.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_8

69. Shrimpton, T., Terashima, R.S.: Salvaging weak security bounds for blockcipher-
based constructions. In: Cheon and Takagi [14], pp. 429–454 (2016)

70. Song, L., Qin, X., Hu, L.: Boomerang connectivity table revisited. IACR Trans.
Symmetr. Cryptol. 2019(1), 118–141 (2019)

71. Sun, B., Liu, M., Guo, J., Rijmen, V., Li, R.: Provable security evaluation of struc-
tures against impossible differential and zero correlation linear cryptanalysis. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp.
196–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3_8

72. Sun, B., et al.: Links among impossible differential, integral and zero correlation
linear cryptanalysis. In: Gennaro and Robshaw [29], pp. 95–115 (2015)

73. Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming.
IACR Trans. Symmetr. Cryptol. 2017(1), 281–306 (2017)

74. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro and Robshaw [29],
pp. 413–432 (2015)

75. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5_18

76. Wagner, D.: The boomerang attack. In: Knudsen [48], pp. 156–170 (1999)
77. Wang, L., Guo, J., Zhang, G., Zhao, J., Gu, D.: How to build fully secure tweakable

blockciphers from classical blockciphers. In: Cheon and Takagi [14], pp. 455–483
(2016)

78. Wu, H.: Hongjun’s optimized C-code for AES-128 and AES-256. eSTREAM
project (2007). http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/trunk/
benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist

https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-662-49890-3_8
https://doi.org/10.1007/978-3-662-49890-3_8
https://doi.org/10.1007/978-3-662-52993-5_18
http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/trunk/benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist
http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/trunk/benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist

On a Generalization of
Substitution-Permutation Networks:

The HADES Design Strategy

Lorenzo Grassi1,3(B), Reinhard Lüftenegger1(B), Christian Rechberger1,
Dragos Rotaru2,4, and Markus Schofnegger1

1 IAIK, Graz University of Technology, Graz, Austria
L.Grassi@science.ru.nl, {reinhard.luftenegger,

christian.rechberger,markus.schofnegger}@iaik.tugraz.at
2 University of Bristol, Bristol, UK

3 Know-Center, TU Graz, Graz, Austria
4 imec-Cosic, Department of Electrical Engineering, KU Leuven, Leuven, Belgium

dragos.rotaru@esat.kuleuven.be

Abstract. Keyed and unkeyed cryptographic permutations often iterate
simple round functions. Substitution-permutation networks (SPNs) are
an approach that is popular since the mid 1990s. One of the new direc-
tions in the design of these round functions is to reduce the substitution
(S-Box) layer from a full one to a partial one, uniformly distributed over
all the rounds. LowMC and Zorro are examples of this approach.

A relevant freedom in the design space is to allow for a highly non-
uniform distribution of S-Boxes. However, choosing rounds that are so
different from each other is very rarely done, as it makes security analysis
and implementation much harder.

We develop the design strategy Hades and an analysis framework for
it, which despite this increased complexity allows for security arguments
against many classes of attacks, similar to earlier simpler SPNs. The
framework builds upon the wide trail design strategy, and it additionally
allows for security arguments against algebraic attacks, which are much
more of a concern when algebraically simple S-Boxes are used.

Subsequently, this is put into practice by concrete instances and
benchmarks for a use case that generally benefits from a smaller number
of S-Boxes and showcases the diversity of design options we support: A
candidate cipher natively working with objects in GF(p), for securing
data transfers with distributed databases using secure multiparty com-
putation (MPC). Compared to the currently fastest design MiMC, we
observe significant improvements in online bandwidth requirements and
throughput with a simultaneous reduction of preprocessing effort, while
having a comparable online latency.

Keywords: Hades strategy · Cryptographic permutations · Secure
Multiparty Computation (MPC)

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 674–704, 2020.
https://doi.org/10.1007/978-3-030-45724-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_23

On a Generalization of Substitution-Permutation Networks 675

1 Introduction

Starting out with a layer of local substitution boxes (S-Boxes), combining it with
a global permutation box (sometimes merely wires, sometimes affine transfor-
mations), and iterating such a round a number of times is a major design app-
roach in symmetric cryptography. The resulting constructions are often referred
to as substitution-permutation networks (SPNs) and are used to instantiate
block ciphers, permutations, pseudo-random functions (PRFs), one-way func-
tions, hash functions, and various other constructions. The approach can be
traced back to Shannon’s confusion-diffusion paradigm. There is a huge amount
of efficient designs that exploit this design strategy, including Rijndael/AES [20]
which is perhaps the most important one. Theoretical aspects have been ana-
lyzed too, which include the asymptotic analysis by Miles and Viola [41], and
more recent results in the provable security framework [16,26].

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

S

S

(a) SPN

S

S

S

S

. . .

. . .

Identity

(b) P-SPN

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

. . .

. . .

S

S

S

S

S

S

Identity

(c) Hades

Fig. 1. SP-Networks and Generalizations (P-SPNs and Hades).

Driven by various new application areas and settings, a variation of the SPN
approach – the so-called partial substitution-permutation network (P-SPN) –
has been proposed and investigated on the practical side [5,27]. The idea is
to replace parts of the substitution layer with an identity mapping, leading to
substantial practical advantages. A big caveat of this approach is that existing
elegant approaches to rule out large classes of attacks via the so-called wide
trail strategy [19] are no longer applicable and have to be replaced by more
ad-hoc approaches, as discussed in more details in Sect. 1.1. We note that the
well studied Feistel approach and its generalizations, when the round function
is using S-Boxes, also have the property that only a part of the internal state is
affected by S-Boxes in a given round.

676 L. Grassi et al.

Our Contribution in a Nutshell: We propose a new generalization of SPNs,
which we call the “Hades” approach1. This is illustrated in Fig. 1. It (1st)
restores the ability to apply the elegant wide trail strategy to rule out important
classes of attacks, (2nd) is accompanied with a broad framework to rule out var-
ious other attack vectors for many relevant instantiation possibilities, and (3rd)
is demonstrated to result in even better implementation characteristics in the
same application domains P-SPNs have been introduced for.

We use the rest of the introduction to explain this further. In Sect. 1.1 we
explain the difficulty of the security analysis of P-SPNs, in Sect. 1.2 we outline
our alternative generalization of SPNs called Hades. A big part of the paper
will then be spent on detailing the approach and its framework for the security
analysis. On the practical side, in Sect. 1.4 we will discuss how applications
which rely on properties like a small number of S-Boxes can benefit from this
framework. A very recent and independent work [3] explores various generalized
Feistel networks as a method benefiting similar settings. This nicely complements
our paper, and we include this approach in our practical comparisons.

1.1 The Big Caveat: Security Analysis of P-SPNs

The wide trail strategy cannot guarantee security against all attacks in the liter-
ature. As a concrete example, algebraic attacks that exploit the low degree of the
encryption or decryption function – like the interpolation attack [33] or the higher-
order differential one [36] – are (almost) independent of the linear layer used in the
round transformation2, which is the crucial point of such a design strategy. In other
words, especially in the case of a low-degree S-Box, the wide trail strategy is not
sufficient by itself, and it must be combined with something else (e.g., increasing
the number of rounds) to guarantee security against all known attacks.

Moreover, the “hidden” assumption of such a strategy is that each round con-
tains a full S-Box layer. Even if this is a well accepted practice, there are various
applications/contexts in which non-linear operations are much less expensive
than linear ones. For example, this includes masking and practical applications of
secure multi-party computation (MPC), fully homomorphic encryption (FHE),
and zero-knowledge proofs (ZK) that use symmetric primitives.

A possible way to achieve a lower implementation cost is by designing a
primitive minimizing the number of non-linear operations. To achieve this goal,
possible strategies are looking for low-degree S-Boxes and/or exploiting SPN
structures where not all the state goes through the S-Boxes in each round. This
second approach has been proposed for the first time by Gérard et al. [27] at
CHES 2013. Such partial non-linear SP networks – in which the non-linear oper-
ation is applied to only part of the state in every round – contain a wide range
of possible concrete schemes that were not considered so far, some of which have

1 Referring to Fig. 1 and 2, if one highlights the S-Boxes per round, the obtained
picture resembles a “bident”. In classical mythology, the bident is a weapon associated
with Hades, the ruler of the underworld.

2 We remark that a linear/affine function does in general not increase/change the degree.

On a Generalization of Substitution-Permutation Networks 677

performance advantages on certain platforms. A concrete instantiation of their
methodology is Zorro [27], a 128-bit lightweight AES-like cipher which reduces
the number of S-Boxes per round from 16 to only 4 (to compensate, the number
of rounds has been increased to 24).

A similar approach has then been considered by Albrecht et al. [5] in the
recent design of a family of block ciphers called LowMC proposed at Eurocrypt
2015. LowMC is a flexible block cipher based on an SPN structure and designed
for MPC/FHE/ZK applications. It combines an incomplete S-Box layer with a
strong linear layer to reduce the total number of AND gates.

How Risky Are Partial SP Networks? The wide trail strategy and tools
that were developed in order to formally prove the security of block ciphers
against standard differential and linear cryptanalysis do not apply to partial SP
networks such as Zorro, and authors use heuristic arguments instead.

For the case of Zorro, the simple bounds on the number of active S-Boxes in
linear and differential characteristics cannot be used due to the modified Sub-
Bytes operation. Even though the authors came up with a dedicated approach
to show the security of their design, this turned out to be insufficient, as Wang
et al. [46] found iterative differential and linear characteristics that were missed
by the heuristic and used them to break full Zorro. An automated characteristic
search tool and dedicated key-recovery algorithms for SP networks with par-
tial non-linear layers have been presented in [8]. In there, the authors propose
generic techniques for differential and linear cryptanalysis of SP networks with
partial non-linear layers. Besides obtaining practical attacks on P-SPN ciphers,
the authors concluded that even if “the methodology of building PSP networks
based on AES in a straightforward way is flawed, [...] the basic PSP network
design methodology can potentially be reused in future secure designs”.

Similarly, the authors of LowMC chose the number of rounds in order to
guarantee that no differential/linear characteristic can cover the whole cipher
with non-negligible probability. However, they do not provide such strong security
arguments against other attack vectors including algebraic attacks. As a result,
the security of earlier versions of LowMC against algebraic attacks was found to
be lower than expected [23,25], and full key-recovery attacks on LowMC have
been set up. More recently, generalizations of impossible differential attacks have
been found for some LowMC instances [43].

1.2 The Idea in a Nutshell – The Hades Strategy

Summarizing the current situation: The wide trail strategy is appealing due to
its simplicity, but limited to differential and linear attacks, and does not work
with partial S-Box layers. Additionally, when S-Boxes are chosen to have a low
degree, other attacks vectors are more relevant anyhow. Designs of this type,
like Zorro and LowMC, require a lot of ad-hoc analysis.

To address this issue we propose to start with a classical wide trail design,
i.e., with a full S-Box layer (outer layer), and then add a part with full and/or
partial S-Box layers in the middle. Even without the middle part, the outer layer

678 L. Grassi et al.

in itself is supposed to give arguments against differential and linear attacks in
exactly the same way the wide trail strategy does. At the same time, arguments
against low-degree attacks can be obtained working on the middle layer. Since
algebraic attacks exploit the small degree of the encryption/decryption function,
the main role of this middle part is to achieve a high degree, with perhaps only
few (e.g., one) S-Boxes per round. Depending on the cost metric of the target
application one has in mind (e.g., minimizing the total number of non-linear
operations), we show that the best solution is to choose the optimal ratio between
the number of rounds with full S-Box layers and with partial S-Box layers in order
to achieve both security and performance. We refer to this high-level approach
as the “Hades” strategy and will be more concrete in the following.

1.3 Related Work – Designs with Different Round Functions

Almost all designs for block ciphers and permutations, not only those following
the wide trail design strategy, use round functions that are very similar, differing
often only in so-called round constants which break symmetries in order to prevent
attacks like slide attacks. Notable exceptions to this are the AES finalist MARS,
the lightweight cipher PRINCE [14] and the cipher Rescue [6], recently proposed
for ZK-STARK proof system and MPC applications. MARS has whitening rounds
with a different structure than the inner rounds with the idea to frustrate crypt-
analytic attacks. A downside was perhaps that it also complicated cryptanalysis.
PRINCE rounds differ in that the later half of the rounds is essentially the inverse
of the first half of the rounds, and a special middle round is introduced. This allows
to achieve a special property, namely that a circuit describing PRINCE computes
its own inverse (when keyed in a particular way). Similar to PRINCE, each round
of Rescue is composed of two steps, which are respectively a non-linear S-Box layer
and its inverse (that is, R(·) = M ′ ◦ S−1 ◦ M ◦ S(·) for particular affine layers
M,M ′). Finally, we mention the cases of LowMC [5] and Rasta [24], for which
different (independent and random) linear layers are used in each round. Due to
their particular design strategies, this allows to maximize the amount of diffusion
achieved by the linear layer. In none of these cases, however, the amount of non-
linearity, and hence their cryptographic strength, differs over the rounds.

1.4 HadesMiMC: Concrete Instantiations for MPC Applications

We briefly outline the use cases in the following and discuss how our new design
compares against the best-in-class.

MPC. There is a large application area around secure multi-party computation.
The setting is a secret-sharing-based MPC system where data is often shared as
elements of a finite field Fp for large p. In order to get data securely in and out of
such a system, an efficient solution can be to directly evaluate a symmetric prim-
itive within such an MPC system. Note that “traditional” PRFs such as AES are
not efficient in this setting, since they are built for computational engines which
work over data types that do not easily match the operations possible in the MPC

On a Generalization of Substitution-Permutation Networks 679

engine. For example,AES is a byte-oriented cipher, which is hard to represent using
arithmetic in Fp. More details can be found in [32], where for the first time this
setting was explicitly analyzed and where the authors concluded that among vari-
ous other options MiMC [4] was competitive. After these initial works, several new
primitives have been proposed for MPC applications, including GMiMC [3] (a gen-
eralization of MiMC based on Feistel networks), Jarvis and Friday [7], and Res-
cue and Vision [6]. GMiMC was recently broken [13] by exploiting its weak key
schedule, and Gröbner basis attacks were found against Jarvis and Friday [2].

Concrete Instances. For our concrete instantiations of HadesMiMC, we bor-
row ideas from the pre-predecessor of AES, namely SHARK [44], an SPN design
with a single large MDS layer covering the whole internal state. Concretely spec-
ified instances, both full and toy versions, together with their reference imple-
mentation, test vectors, and helper scripts are available online3.

When benchmarking our new design HadesMiMC for MPC applications, we
observe significant improvements in online bandwidth requirements and through-
put with a simultaneous reduction of preprocessing effort with respect to MiMC
and Rescue, while having a comparable online latency. The same holds also for
the comparison between HadesMiMC and GMiMC, with the exception for the
online throughput when the number of blocks is bigger than or equal to 16.

New Instances for Future Use Cases. HadesMiMC is a very parameter-
izable design approach: Given any block size and a cost metric that one aims
to minimize, a concrete secure instantiation – hence, the best S-Box size and
the best ratio between rounds with full S-Box and partial S-Box layers – can
be created easily using our scripts. In fact we can already report on such usage:
Variants of HadesMiMC have been proposed [29] for use cases of efficient proof
systems like STARKs, SNARKs and Bulletproofs, for which they outperform
competing designs, often by a large margin.

2 Description of the Hades Strategy

Block ciphers and cryptographic permutations are typically designed by iterat-
ing an efficiently implementable round function many times in the hope that the
resulting composition behaves like a randomly drawn permutation. In general,
the same round function is iterated enough times to make sure that any symme-
tries and structural properties that might exist in the round function vanish. In
our case, instead of considering the same non-linear layer for all rounds, we pro-
pose to consider a variable number of S-Boxes per round, that is, to use different
S-Box layers in the round functions.

Each round of a cipher based on Hades is composed of three steps:

1. Add Round Key – denoted by ARK (·);
2. SubWords – denoted by S-Box(·);
3. MixLayer – denoted by M(·).
3 https://extgit.iaik.tugraz.at/krypto/hadesmimc.

https://extgit.iaik.tugraz.at/krypto/hadesmimc

680 L. Grassi et al.

A final round key addition is then performed, and the final MixLayer opera-
tion can be omitted (we sometimes include it in this description for simplicity):

ARK → S-Box → M
︸ ︷︷ ︸

1st round

→ ... → ARK → S-Box → M
︸ ︷︷ ︸

(R−1)-th round

→ ARK → S-Box
︸ ︷︷ ︸

R-th round

→ ARK

ARK (·)

S S S S S S . . . S

M(·)

ARK (·)

S S S S S S . . . S

M(·)

ARK (·)

S S S S S S . . . S

M(·)

ARK (·)

S S S S S S . . . S

M(·)

ARK (·)

S S S S S S . . . S

M(·)
...

...

ARK (·)

. . . S

M(·)
...

...

ARK (·)

S S S S S S . . . S

M(·)

ARK (·)

Rstat
f

RP

Rstat
f

Rf

Rf

Fig. 2. Construction of Hades (the final matrix multiplication can be omitted).

The crucial property of Hades is that the number of S-Boxes per round is not
the same for every round:

– a certain number of rounds – denoted by RF – has a full S-Box layer, i.e., t
S-Box functions;

– a certain number of rounds – denoted by RP – has a partial S-Box layer, i.e.,
1 ≤ s < t S-Boxes and (t − s) identity functions.

In the following, we only consider the case s = 1, that is, RP rounds have a
single S-Box per round and t − 1 identity functions. However, we remark that
this construction can be easily generalized (e.g., like LowMC) allowing more
than a single S-Box per round in the middle RP rounds.

In more details, assume RF = 2 · Rf is an even number. Then

On a Generalization of Substitution-Permutation Networks 681

– the first Rf rounds have a full S-Box layer,
– the middle RP rounds have a partial S-Box layer (i.e., 1 S-Box per round),
– the last Rf rounds have a full S-Box layer.

Note that the rounds with a partial S-Box layer are “masked” by the rounds
with a full S-Box layer, which means that an attacker should not (directly) take
advantage of the rounds with a partial S-Box layer.

Crucial Points of the Hades Strategy. In the Hades design, Rstat
f rounds

with full S-Box layers situated at the beginning and the end guarantee security
against statistical attacks, yielding a total of Rstat

F = 2 · Rstat
f rounds with full

S-Box layers. As we are going to show, they are sufficient in order to apply the
wide trail strategy, even without the middle rounds with partial S-Box layers.
Moreover, the choice to have the same number of rounds with full non-linear
layers at the beginning and at the end aims to provide the same security with
respect to chosen-plaintext and chosen-ciphertext attacks.

Security against all algebraic attacks is achieved working both with rounds
RF = Rstat

F + R′
F ≥ Rstat

F with full S-Box layers and rounds RP ≥ 0 with
partial S-Box layers. The degree of the encryption/decryption function has a
major impact on the cost of an algebraic attack. Even if one S-Box per round
is potentially sufficient to increase this degree, other factors can have a crucial
impact on the cost of such attacks too (e.g., a Gröbner basis attack also depends
on the number of non-linear equations and variables).

Finally, another crucial point of our Hades strategy regards the possibility
to choose among several possible combinations of rounds (RF ≥ Rstat

F , RP ≥ 0)
that provide the same security level. Namely, one can potentially decrease (resp.
increase) the number of rounds with partial S-Box layers and add (resp. remove)
R′

F = 2 · R′
f ≥ 0 rounds with full S-Box layers instead without affecting the

security level. This freedom allows to choose the best combination of rounds
(RF , RP) that minimizes a given cost metric. Roughly speaking, the idea is to
find a balance between the approach in an SPN and a P-SPN cipher.

Choosing the Field and the Linear/Non-linear Layer. Our strategy does
not pose any restriction/constriction on the choice of the field, on the linear
layer, or on the choice of the S-Box. The idea is to consider a “traditional” SPN
cipher – defined over (Fqn)t for q = 2 or q = p prime – based on the wide
trail strategy, and then to replace a certain number of rounds with full S-Box
layers with the same number of rounds with partial S-Box layers in order to
reduce the number of non-linear operations, but without affecting the security.
The Hades strategy has a considerable impact especially in the case of ciphers
with low-degree S-Boxes, since in this case a large number of rounds is required
to guarantee security against algebraic attacks.

3 The Keyed Permutation HadesMiMC

HadesMiMC is a construction for cryptographic permutations based on the
strategy just proposed. It is obtained by applying the Hades strategy to the

682 L. Grassi et al.

cipher SHARK [44] proposed by Rijmen et al. in 1996 and based on the wide
trail strategy. Our design works with texts of t ≥ 2 words4 in (Fp,+,×) ≡
(GF(p),+,×), where p is a prime of size p ≈ 2n ≥ 11 (namely, the smallest
prime bigger than 23 = 8) and where + and × are resp. the addition and the
multiplication in Fp. In the following, N denotes N := �log2 p	 · t.

3.1 Specification of HadesMiMC

Each round Rk(·) : (Fp)t → (Fp)t of HadesMiMC is defined as

Rk(·) = k + M × S(·),
where k ∈ (Fp)t is the secret subkey, M ∈ (Fp)t×t is an invertible matrix that
defines the linear layer, S(·) : (Fp)t → (Fp)t is the S-Box layer, defined as S =
[S(·), ..., S(·)] for the rounds with full S-Box layers and as S = [S(·), I(·), ..., I(·)]
for the rounds with partial S-Box layers, where S(·) : Fp → Fp is a non-linear
S-Box and I(·) is the identity function.

The number of rounds R = 2 · Rf + RP depends on the choice of the S-Box
and of the parameters p and t. For the MPC applications we have in mind, we
usually consider a large prime number (namely, p ≥ 264, e.g. p ≈ 2128), and each
round is composed of the following operations:

– the non-linear S-Box is defined as the cube one, namely S-Box(x) = x3; we
recall that x3 is a permutation5 in GF(p) if and only if p �= 1 mod 3;

– as in SHARK, the MixLayer of HadesMiMC is defined by a multiplication
with a fixed t × t MDS matrix.

Details about the MDS matrix, the key schedule, and the number of rounds are
given in the following. Test vectors are provided in [30, App. A].

About the MDS Matrix. A t × t MDS matrix6 M with elements in GF(p)
exists if the condition 2t + 1 ≤ p is satisfied (see [39] for details). Since there
are several ways to construct an MDS matrix, we recall in [30, App. B] some
concrete strategies proposed in the literature. We also provide a script that,
given an input p and t, returns an MDS matrix.

Security Level κ and Key Schedule. For our goals, we define two security
levels, respectively κ = log2(p) · t ≈ n · t = N and κ = log2(p) ≈ n (note that
n = �log2(p)	 is the field size in bits).

Case: κ = log2(p) · t ≈ N . Let k ∈ (Fp)t be the secret key of size N ≈
t · log2(p) bits, and let k = [k0, k1, ..., kt−1] be its representation over Fp (namely,
4 The case t = 1 corresponds to MiMC [4].
5 More generally, a power map x �→ xα is a permutation over Fp if and only if gcd(α, p−
1) �= 1 – see e.g. Hermite’s criterion for more details.

6 A matrix M ∈ F
t×t is called a Maximum Distance Separable (MDS) matrix iff it has

a branch number B(M) equal to B(M) = t + 1. The branch number is defined as
B(M) = minx∈Ft\{0}{wt(x)+wt(M(x))}, where wt is the bundle weight in wide trail
terminology. Equally, a matrix M is MDS iff every submatrix of M is non-singular.

On a Generalization of Substitution-Permutation Networks 683

kj ∈ Fp for each 0 ≤ j < t). We define the i-th round key k(i) for 0 ≤ i ≤ R
(where R is the number of rounds) as follows. For the first round i = 0, the
subkey is simply given by the whitening key, that is, k(0) := k. For the next
rounds, the subkeys are defined by a linear key schedule as

∀i = 1, ..., R : k(i) := M̂ · k(i−1) + RC(i),

where RC(i) �= 0 are random round constants and M̂ is an MDS matrix7. For
the matrix M̂ we require that M̂ i =

∏R
i=1 M̂ has no zero coefficient8, where

1 ≤ i ≤ R and R is the total number of rounds. This condition implies that each
word of each subkey k(i) (linearly) depends on all words of k. As a result, even
if an attacker guesses a certain number of words of a subkey k(i), she does not
have information about other subkeys (more precisely, she cannot deduce any
words of other subkeys).

Case: κ = log2(p) ≈ n (for MPC Applications). Let k′ ∈ Fp be the secret
key of size n ≈ log2(p) bits. We define the subkeys as

∀i = 0, ..., R : k(i) = [k′, k′, · · · , k′
︸ ︷︷ ︸

t times

] ⊕ RC(i),

for random round constants RC(i).

Efficient Implementation and Decryption. Like for LowMC, the amount of
operations required in each round with a partial non-linear layer can be reduced.
Referring to the idea proposed in [22], in [30, App. C] we recall an equivalent
representation of an SPN with partial non-linear layers that can be exploited for
an efficient implementation of HadesMiMC.

Finally, we mention that – as for MiMC [4] – decryption is much more expen-
sive than encryption (e.g., x1/3 ≡ x(2p−1)/3 over Fp). However, we emphasize that
HadesMiMC has been proposed for applications where the decryption process
(hence, computing the inverse) is not required. We therefore provide benchmark
results only for the encryption function. If used for confidentiality, we suggest to
use modes where the inverse is not needed (e.g., the counter (CTR) mode).

3.2 Design Considerations: Reviving “Old” Design Ideas

Why SHARK Among Many Others? Since in our practical applications
(e.g., the MPC use case which we will mainly consider) the cost of linear oper-
ations is much lower than the cost of non-linear ones, we decided to focus on
the most efficient linear layer (from the security point of view) to construct
HadesMiMC, namely the one that provides the fastest diffusion at word level.
This corresponds to a linear layer defined as a multiplication with an MDS
matrix that involves the entire state, which is exactly the case for SHARK.

Since our design strategy can be applied to any SPN design, a possible inter-
esting future problem would be to apply Hades to e.g. AES, in order to see if
a certain number of rounds of AES can be replaced with rounds that contain
partial non-linear layers without decreasing its security.
7 To be as general as possible, M̂ can be equal or different from M .
8 If this is not possible, one must minimize the number of zero coefficients.

684 L. Grassi et al.

Choosing the S-Box. Before going on, we mention that we also considered
possible variants of HadesMiMC instantiated by S-Boxes defined by e.g. a dif-
ferent power exponent. In order to motivate our choice, we remember that, since
our final goal is to use HadesMiMC for MPC applications over a LAN, the
performance in such application is mainly influenced by the total number of
non-linear operations (the AND depth/multiplication depth has a small impact
on the cost of an MPC application over a LAN, while it could play a crucial role
in the case of a WAN). Since linear operations are basically free, the choice to
consider a cube S-Box among many other non-linear permutations is motivated
by the following considerations:

– First of all, since there are no quadratic permutation polynomials (namely,
x → x2+a ·x+b for a, b ∈ Fp) over the finite field Fp (see e.g. [38, Theorem 6–
7] and [21, Sect. 2] for details), the cube S-Box requires the smallest number
of non-linear operations (namely, two) and at the same time it offers high
security against statistical attacks (e.g. its maximum differential probability
satisfies DPmax ≤ 2/|F| where |F| is the size of the field F);

– Secondly, let us focus on algebraic attacks when using an S-Box of the form
S-Box(x) = xd. An S-Box with a higher degree than the cube one allows
to reach the maximum degree faster, hence a smaller number of rounds is
potentially sufficient to provide security. However, an S-Box with a higher
degree requires more operations to be computed. As a result, even if the
number of rounds can potentially be decreased9, in general the total number
of non-linear operations does not change significantly (see e.g. [4, Sect. 5] for
a detailed analysis10). Thus, from this point of view, the choice of the S-Box
is in continuity with the choice of the cube S-Box made e.g. for MiMC and
for Rescue [6] for similar applications.

4 Security Analysis

It is paramount for a new design to present a concrete security analysis. In the
following, we provide an in-depth analysis of the security of the HadesMiMC
family of block ciphers. Since we cannot ensure that a cipher is secure against
all possible attacks, the best option of determining its security is to ensure that
it is secure against all known attacks. We follow this strategy for our proposals
and the number of rounds of HadesMiMC is then chosen accordingly.

The crucial points of our security analysis are the following:

9 We emphasize that this is not always the case. For a concrete example, we analyze
the security of HadesMiMC instantiated by the inverse S-Box S-Box(x) = 1/x in
[30, App. F]. In there, we show that, even though this S-Box has the highest possible
degree, the number of rounds needed for security is of the same order as the number
of rounds required for the cubic case (see also [33, Sect. 3.4] for more details).

10 In there, authors showed e.g. that the total number of non-linear operations over Fp

(hence, including the square operations) is constant for each permutation function
of the form x �→ xd for d = 2d′ − 1.

On a Generalization of Substitution-Permutation Networks 685

– Security against statistical attacks is obtained exploiting the wide trail strat-
egy by using Rstat

F = 2 · Rstat
f rounds with full S-Box layers.

– The combination of both rounds RF = Rstat
F + R′ with full S-Box layers

and/or rounds RP ≥ 0 with partial S-Box layers provide security against all
other possible attacks. Indeed, even if rounds with partial S-Box layers are
sufficient to increase the degree of the encryption/decryption function, other
factors can also have a crucial impact on the cost of an algebraic attack.

In the following, we present our security analysis for the case κ = N (and full
data case). Then, we adapt it for the case κ = n (together with the restriction
pt/2 ≈ 2N/2) used for the MPC applications we have in mind.

4.1 Main Points of Our Cryptanalysis Results

Here we limit ourselves to highlight the main points of our cryptanalysis results
– a detailed description of the attacks can be found in the following.

Number of Rounds. In the following, given the number of rounds of a distin-
guisher which is independent of the key, we add at least 2 rounds with full S-Box
layers to prevent key-guessing attacks. This choice is motivated by the fact that
it is not possible to skip more than a single round with a full S-Box layer without
guessing the entire key. Indeed, one round of HadesMiMC already provides full
diffusion at word level, while the S-Box provides full diffusion at bit level.

Statistical Attacks. As we are going to show, at least 6 rounds with full
S-Box layers are needed to protect HadesMiMC against all statistical attacks
in the literature (that is, differential, linear, truncated/impossible differential,
boomerang, ...). Depending on p and t, in some cases 10 rounds are necessary in
order to guarantee security against these attacks.

Algebraic Attacks. Algebraic attacks exploit mainly the low degree of the
encryption/decryption function in order to break the cipher. However, as already
mentioned, other factors can influence the cost of such attacks.

Interpolation Attack. The goal of an interpolation attack is to construct the
polynomial that describes the function: If the number of monomials is too large,
then such a polynomial cannot be constructed faster than via a brute force
attack. A (lower/upper) bound of the number of different monomials can be
estimated given the degree of the function. We show that – when the polynomial
is dense – the attack complexity is approximately O(dt), where d is the degree
of the polynomial after r rounds. Since d = 3r for the cubic case, log3(p) +
log3(t) rounds with partial S-Box layers are necessary to guarantee security,
where log3(t) more rounds guarantee that the polynomial is dense. The cost of
the attack does not change when working with rounds with full S-Box layers.

686 L. Grassi et al.

We finally remark that the degree of a function can also depend on its “rep-
resentation”. To give a concrete example, the function x−1 can be written as a
function of degree p − 2 (namely, x−1 ≡ xp−2 for x �= 0) or using the “fraction
representation” 1/x as introduced in [33], where both the numerator and the
denominator are functions of degree at most 1 (see [30, App. F] for more details
on the influence of such representation on the interpolation attack).

Gröbner Basis Attack. In a Gröbner basis attack, one tries to solve a system of
non-linear equations that describe the cipher. The cost of such an attack depends
on the degree of the equations, but also on the number of equations and on the
number of variables. We show that – when working with rounds with full S-Box
layers – the attack complexity is approximately O((d/t)t). If a partial S-Box
layer is used in order to guarantee security against this attack, it could become
more efficient to consider degree-3 equations for single S-Boxes. In this case, a
higher number of rounds may be necessary to provide security.

To summarize, a round with a partial S-Box layer can be described by just
1 non-linear equation of degree d and t − 1 linear equations, while a round with
a full S-Box layer can be described by t non-linear equations of degree d. If the
cost of the attack depends on other properties than just the degree (as in the
case of a Gröbner basis attack), this fact can influence its final cost.

Higher-Order Differential Attack. The higher-order differential attack exploits
the property that given a function f(·) of algebraic degree δ, then⊕

x∈V ⊕φ f(x) = 0 if the dimension of the subspace V satisfies dim(V) ≥ δ + 1
(where the algebraic degree δ of a function f(x) = xd is given by the hamming
weight of d, which we denote by hw(d)). If the algebraic degree is sufficiently high,
then the attack does not work. In the case in which HadesMiMC is instanti-
ated over Fp, we conjecture that security against the interpolation attack implies
security against this attack.

Other Attacks. Related-Key Attacks. The related-key attack model is a class of
cryptanalytic attacks in which the attacker knows or chooses a relation between
several keys and is given access to encryption/decryption functions with all these
keys. We explicitly state that we do not make claims in the related-key model
as we do not consider it to be relevant for the intended use case.

HadesMiMc Permutation: Security. Since we do not require the indistin-
guishability of the permutation obtained by HadesMiMC with a fixed key from
a “randomly drawn” permutation11 in the practical applications considered in
the following, we explicitly state that we do not make claims about the indistin-
guishability of the HadesMiMC Permutation.

11 This basically corresponds to the known-key or chosen-key models, where the
attacker can have access or even choose the key(s) used, and where the goal is to
find some (plaintext, ciphertext) pairs having a certain property with a complexity
lower than what is expected for randomly chosen permutations.

On a Generalization of Substitution-Permutation Networks 687

4.2 Statistical Attacks – Security Level: κ = N

Differential Cryptanalysis. Differential cryptanalysis [11] and its variations
are the most widely used techniques to analyze symmetric-key primitives. The
differential probability of any function over the finite field (F,+,×) is defined
as

Prob[α → β] := |{x : f(x + α) − f(x) = β}|/|F|
where |F| is the size of the field and where “−” denotes the subtraction operation
(x − y = z iff x = z + y). The probability for the cube function f(x) = x3 is
bounded above by 2/|Fp| = 2/p, i.e., it has an optimal differential probability
over a prime field [42].

As largely done in the literature, we first compute the number of rounds nec-
essary to guarantee that each characteristic has probability at most p−t ≈ 2−N .
Since more characteristics can be used simultaneously in order to set up a
differential attack, the previous number of rounds is in general not sufficient
to guarantee security. For this reason, we claim that HadesMiMC is secure
against differential cryptanalysis if each characteristic has probability smaller
than p−2·t ≈ 2−2·N . We emphasize that (1st) this basically corresponds to dou-
ble the number of rounds necessary to guarantee that each characteristic has
probability at most 2−N and (2nd) that a similar strategy is largely used in the
literature (including e.g. AES).

As we are going to show, the idea is to compute the minimum number of
rounds with full S-Box layers that guarantee this. In other words, we consider a
“weaker” version of the cipher defined as

RRf ◦ L ◦ RRf (·), where (1)

– L is an invertible linear layer (which is the “weakest” possible assumption),
– R(·) = M ◦ S-Box ◦ ARK (·) where S-Box(·) is a full S-Box layer (remember

that M is an MDS matrix).

We show that this “weaker” cipher is secure against differential cryptanalysis for

Rstat
F =

{

6 if p ≥ 2t+1,

10 otherwise.
(2)

As a result, it follows that also HadesMiMC (instantiated with RF rounds
with full S-Box layers) is secure against such an attack. Indeed, if the linear
layer L (which we only assume to be invertible) is replaced by RP rounds of
HadesMiMC, its security cannot decrease. The same strategy is exploited in the
following in order to prove security against all attacks in this subsection.

In order to prove the result just given, we need a lower bound on the (min-
imum) number of active S-Boxes. Observe that the minimum number of active
S-Boxes of a cipher of the form

Rs ◦ L ◦ Rr(·) ≡ SB ◦ M ◦ SB︸ ︷︷ ︸
s−1 times

◦ L′
︸︷︷︸

≡L◦M(·)
◦SB ◦ M ◦ SB︸ ︷︷ ︸

r−1 times

(·),

688 L. Grassi et al.

where s, r ≥ 1, R(·) is a round with a full S-Box layer and where L′ is an
invertible linear layer, is at least12

number active S-Boxes ≥ (
⌊

s/2
⌋

+
⌊

r/2
⌋)×(t + 1) +

(

s mod 2
)

+
(

r mod 2
)

.

We emphasize that the middle linear layer L′(·) ≡ L ◦ M(·) plays no role in
the computation of the previous number (it has branch number equal to 2). By
choosing s = r = 2, it follows that – since at least 2 · (t+1) S-Boxes are active in
the weaker cipher R2 ◦ L ◦ R2(·) and since the maximum differential probability
of the cube S-Box is DPmax = 2/p – each characteristic has probability at most

(
2
p

)2·(t+1)

=

{
p−2t · 4t+1

p2 ≤ p−2·t ≈ 2−2·N if p ≥ 2t+1

p−1.25·t · 4t+1

p0.75·t+2 < p−1.25·t ≈ 2−1.25·N since p0.75 > 6

where remember that p ≥ 11. By doubling this number of rounds (i.e., by
choosing s = r = 4), we get that each characteristic has probability at most
p−2.5·t ≈ 2−2.5·N . Finally, 2 more rounds with full S-Box layers guarantee that
no differential attack can be set up by key guessing. Indeed, note that (1st)
given a partial round key, one has no information about the other round keys
(due to the key schedule), and (2nd) 1 round with a full S-Box layer is sufficient
to provide full diffusion. Hence, no more than a single round can be skipped by
exploiting a partial guessed key.

Other Attacks. In [30, App. D], we present a (detailed) security analysis against
other statistical attacks, including the linear one [40], truncated [36] and impos-
sible differential attacks [10], Meet-in-the-Middle statistical attacks, the integral
attack [18], the boomerang attack [45], the multiple-of-8 distinguisher [31], the
mixture differential attack [28], and the invariant subspace attack [37]. In there,
we argue that (the “basic” variants of) all these attacks do not outperform the dif-
ferential attack discussed here. Finally, a discussion about biclique cryptanalysis
[12] is provided.

4.3 Algebraic Attacks – Security Level: κ = N

Interpolation Attack. One of the most powerful attacks against HadesMiMC
is the interpolation attack, introduced by Jakobsen and Knudsen [33] in 1997.

The strategy of the attack is to construct a polynomial corresponding to the
encryption function without knowledge of the secret key. Let Ek : F → F be an
encryption function. For a randomly fixed key k, the interpolation polynomial
P (·) representing Ek(·) can be constructed using e.g. the Vandermonde matrix
(cost of ≈ O(t2)) or Lagrange’s theorem (cost of ≈ O(t · log t)). If an adversary
can construct such an interpolation polynomial without using the full codebook,
then she can potentially use it to set up a forgery attack or a key-recovery attack.

12 If s = 2 · s′ is even, then the minimum number of active S-Boxes over Rs(·) rounds
with full S-Box layers is 	s/2
·(t+1). Instead, if s = 2·s′+1 is odd, then the minimum
number of active S-Boxes over Rs(·) rounds with full S-Box layers is 	s/2
·(t+1)+1.

On a Generalization of Substitution-Permutation Networks 689

The attack proceeds by simply guessing the key of the final round, decrypting
the ciphertexts and constructing the polynomial for r − 1 rounds13. With one
extra (plaintext, ciphertext) pair, the attacker checks whether the polynomial is
correct. The data cost of the attack is well approximated by the number of texts
necessary to construct the interpolation polynomial.

Considering HadesMiMC, since the S-Box is the cube function, the degree
of each word after r rounds is roughly approximated by 3r. In particular, since
in each round at least one S-Box is applied and since the affine layer does not
change the degree, the degree of one round is three as well. It follows that, if
the degree of each word after r ≥ 1 rounds is 3r, then the degree of each word
after r + 1 rounds is well approximated by 3r+1 even if only one S-Box per
round (together with a linear layer that provides “sufficiently good” diffusion at
word level, in our case the multiplication with an MDS matrix) is applied. For
this reason, in the following we consider a weaker cipher in which each round
contains only a single S-Box. If such a cipher is secure against the interpolation
attack, then our design is also secure (more S-Boxes per round do not decrease
the security). Finally, we recall that since at least 3 rounds with a full S-Box layer
are applied at the beginning and at the end, our design prevents the possibility
to skip a certain number of rounds by a proper choice of the input texts (e.g.,
by having no active S-Box), as happens for the case of partial SPN ciphers. For
this reason, we do not take care of this last event.

Note that not all terms of (total) degree 3r appear before the (r + 1)-th
round14. Thus, assuming the interpolation polynomial of degree 3r−1 is not
sparse in the r-th round, a (rough) estimation for the number of monomials
of the interpolation polynomial (and so of the attack complexity) is given by

(3r−1 + 1)t ≥ 3(r−1)·t,

since after r rounds there are t words each of degree at least 3r−1. By requiring
that the number of monomials is equal to the full codebook (3(r−1)·t � pt,
that is, 3r−1 � p), the number of rounds must be at least r � 1 + log3(p).
However, this estimation for the number of rounds does not guarantee that the
interpolation polynomial is dense. For this reason, since the cipher works over
a finite field with characteristic p and due to the specific algebraic structure of
the cube function, we add �log3(t)	 more rounds in order to guarantee that the
interpolation polynomial is not sparse – see [30, App. E] for details.

A MitM variant of the interpolation attack can also be performed. To thwart
this variant and due to the high degree of S-Box−1(x) = x1/3 = x(2p−1)/3, it
is sufficient to add 2 rounds. Finally, 2 more rounds are added to prevent key-

13 The “hidden” assumption is that the cost to construct such a polynomial is smaller
than the cost of an encryption. If this assumption does not hold, then the cost of
the attack is bigger than the cost of a brute-force attack.

14 E.g., after the first round not all words of degree 3 appear. Indeed, the input of each
S-Box in the first round is composed of a single word, which means that after the
first round there is no non-linear mixing of different words. Similarly, not all terms
of (total) degree 3r appear before the (r + 1)-th round.

690 L. Grassi et al.

guessing attacks. As a result, the total number of rounds R must satisfy15

R = RP + RF ≥ Rinter(N, t) ≡ 5 +
⌈

log3(p)
⌉

+
⌈

log3(t)
⌉

(3)

to thwart the interpolation attack.

Gröbner Basis and GCD Attacks. In the Greatest Common Divisors (GCD)
attack [4], given more than one known (plaintext, ciphertext) pair or working on
the output of each S-Box of a single (known) pair, one constructs their polyno-
mial representations and computes their polynomial GCD to recover a multiple
of the key. We refer to [30, App. E] for all details about the GCD attack.

The natural generalization of GCDs is the notion of Gröbner bases [17]. The
attack proceeds like the GCD attack with the final GCD computation replaced by
a Gröbner basis computation. As our design exhibits a strong algebraic structure,
it is paramount to carefully analyze its resistance against Gröbner basis attacks.
For example, it has been shown recently that this attack vector has been able
to break two proposed primitives which do not seem to be vulnerable to other
types of classical algebraic attacks [2].

A Gröbner basis attack consists of the following steps:

1. computing the Gröbner basis in degrevlex order;
2. converting the Gröbner basis into lex order;
3. factorizing the univariate polynomial, and back-substituting its roots.

As largely done in the literature, we assume that the security of ciphers against
Gröbner basis attacks follows from the infeasible complexity of computing the
Gröbner basis in degrevlex order. For generic systems, the complexity of this
step (hence, a lower bound for the complexity of computing a Gröbner basis)
for a system of ne polynomials fi in nv variables is O

((
nv+Dreg

Dreg

)ω
)

operations
over the base field F [17], where Dreg is the degree of regularity and 2 ≤ ω < 3
is the linear algebra constant (the memory requirement of these algorithms is of
the same order as the running time). The degree of regularity depends on the
degrees of the polynomials d and the number of polynomials ne.

In the following, we provide three different strategies to attack our design
using Gröbner bases. We give a brief overview here, while we provide more
details in [30, App. E].
First Strategy. The first strategy consists in using t variables k0, ..., kt−1 and t
equations for each (plaintext, ciphertext) pair. When being provided at most
pt − 1 (plaintext, ciphertext) pairs, the system of equations that describes the
cipher is composed of at most ne = t · (pt − 1) equations of the form ĉi =
fi(p̂0, ..., p̂t−1, k0, ..., kt−1) in nv = t variables k0, ..., kt−1 (remember that the
key schedule is linear). In this over-determined case (ne > nv), there is no
closed-form expression to compute Dreg, which is defined as the index of the
first non-positive coefficient in

H(z) =

∏ne
i=1(1 − zdi)

(1 − z)nv
=

(1 − z3r)ne

(1 − z)nv
= (1 − z3r)ne−nv · (1 + z + z2)nv ,

15 We emphasize that in this analysis we do not take into account the cost to construct
the interpolation polynomial, which is (in general) non-negligible.

On a Generalization of Substitution-Permutation Networks 691

where di = 3r is the degree of the i-th equation. By simple observation, the
index of the first non-positive coefficient cannot be smaller than d = 3r, since
(1 + z + z2)nv contains only positive terms.

Depending on parameter choices, the hybrid approach [9], which combines
exhaustive search with Gröbner basis computations, may lead to a reduced cost.
Following [9], guessing κ < t parts of the key leads to a complexity of

O
(

pκ ·
(

t − κ + D′
reg

D′
reg

)ω)

, (4)

where D′
reg ≤ Dreg is the degree of regularity for the system of equations after

substituting κ variables with their guesses. It follows that to prevent Gröbner
basis attacks, the minimum number of rounds r must satisfy pκ ·(t−κ+D′

reg
D′

reg

)ω ≥ pt

for all 0 ≤ κ ≤ t − 1, and where the degree of regularity D′
reg = O(d) ≈ 3r. In

our cases, the expression (4) is minimized by κ = 0, which implies that
(

t + d

d

)

=
1

t!
·

t
∏

i=1

(d + i) ≥ dt

t!
≥

(

d

t

)t

= 2t log2(d/t),

where x! ≤ xx for x ≥ 1. Setting ω = 2, we obtain 2t log2(d/t) ≈ log2(p) · t and

r ≥ 2 + log3(p)/2 + log3(t), (5)

where 2 rounds are added to thwart the MitM version of the attack (note that
the degree of the S-Box in the decryption direction is (2p − 1)/3). As a result,
R ≥ ⌈

log3(p)/2+log3(t)
⌉
+2 rounds are sufficient to protect the cipher from this

attack. Note that the analysis just proposed is independent of the fact whether
the rounds contain a full or a partial S-Box layer.

Second Strategy. While we use only t variables in the first strategy, the second
strategy is to add intermediate variables in each round. Specifically for the rounds
with a partial S-Box layer, it is sufficient to add only one intermediate variable.
In total, we get a system with more variables and equations compared to the
first strategy, but with much lower degrees. We describe this strategy in detail
in [30, App. E], where we conclude that RF and RP have to fulfill

RF · t + RP ≥
⌈

N

2 · (log2(27) − 2)

⌉

+

⌈

N

2 · (log2(2p − 1) − log2(3))

⌉

in order for our design to be secure against this type of attack.

Third Strategy. The third strategy is merely a combination of the previous two
strategies. We use 2t variables for the RF rounds with full S-box layers (i.e.,
we do not add intermediate variables in these rounds), but we apply the idea
from the second strategy during the RP rounds with partial S-box layers (i.e.,
we add intermediate variables in these rounds). This approach gives us a system
of 2t equations of degree 3Rf and RP equations of degree 3 in 2t+RP variables
(t variables for the key and t + RP intermediate variables). Since the number

692 L. Grassi et al.

of variables is the same as the number of equations, we can estimate Dreg and
conclude that our design is secure if16

RF ≥ 2 + log3(2) ·
(

N

2t + RP
+ 2 · log2(t + RP) − 2 · log2(t)

)

,

is fulfilled (see [30, App. E] for more details).

Conclusion. We claim that if RF and RP satisfy
⎧

⎪
⎪
⎨

⎪
⎪
⎩

RP + RF ≥ R1st-Grob(N, t) ≡ 2 +
⌈

log3(p)/2 + log3(t)
⌉

RF · t + RP ≥ R2nd-Grob(N, t) ≡ ⌈

N/[2 · log2(27/4)]
⌉

+
⌈

N/[2 · log2((2p − 1)/3)]
⌉

RF ≥ R3rd-Grob(N, t, RP) ≡ 2 + log3(2) ·
(

N
2t+RP

+ 2 · log2(t + RP) − 2 · log2(t)
)

(6)
for N ≈ t · log2(p), then HadesMiMC can be considered secure against the
Gröbner basis attacks proposed here. We mention that if RF satisfies RF ≥
R1st-Grob(N, t) ≡ 2+

⌈
log3(p)/2+log3(t)

⌉
(namely, rounds with full S-Box layers

are sufficient to provide security w.r.t. the first strategy), then the second and
the third condition are also satisfied.

Higher-Order Differential Attack. A well-known result from the theory of
Boolean functions is that if the algebraic degree of a vectorial Boolean function
f(·) (like a permutation) is d, then the sum over the outputs of the function
applied to all elements of an affine vector space V ⊕ c of dimension ≥ d + 1 for
an arbitrary constant c is zero, that is,

∑
v∈V⊕c v =

∑
v∈V⊕c f(v) = 0.

This property is exploited by higher-order differential attacks [36]. However,
it only holds if V is a subspace, and not just a generic set of elements. While F2m

is always a subspace of F2n for each m ≤ n, the only subspaces of Fp are {0}
and Fp. It follows that the biggest subspace of (Fp)t has dimension t, in contrast
to the biggest subspace of (F2n)t, which has dimension n · t = N . As a result,
in the case in which a cipher is instantiated over Fp, a lower degree (and hence
a smaller number of rounds) is sufficient to protect it against the higher-order
differential attack w.r.t. the number of rounds needed for the F2n case.

Security Analysis: HadesMiMc Instantiated Over Fp. Due to the discussion
just given (namely, the fact that the biggest (non-trivial) subspace of (Fp)t has
dimension at most t − 1), we conjecture that the number of rounds necessary
to achieve maximum degree guarantees security against higher-order differential
attacks over Fp. In other words, we conjecture that if HadesMiMC over Fp is
secure against the interpolation attack, then it is also secure against the higher-
order differential attack17.

16 A “more precise” condition can be found in [30, App. E].
17 We emphasize that this does not hold in general. In particular, working over FN

2 , note
that a scheme is secure against the interpolation attack if the corresponding poly-
nomial is full/dense. However, for security against higher-order differential attacks,
we want a maximum algebraic degree. These two things are in general not strictly
related.

On a Generalization of Substitution-Permutation Networks 693

5 Security Analysis for MPC: κ = n and Data ≤ p1/2

In this section, we will adjust our security arguments in order to provide a
security level of only log2(p) ≈ n bits (instead of the previous log2(pt) ≈ N
bits). At the same time, we only allow an attacker to use p1/2 data.

5.1 Statistical Attacks

Differential Attack. As before, we assume that the cipher is secure if every
characteristic has probability smaller than p−2 (namely, smaller than the square
of the data complexity equal to √

p). Working with the weaker cipher RRf ◦ L ◦
RRf (·) defined as in (1), it follows that Rf = 2 rounds with full S-Box layers are
sufficient, since each characteristic has a probability of at most

(

2

p

)2(t+1)

=
1

p1.25·t · 4t+1

(p0.75)t+1.25
< p−2.5,

since p1/2 ≥ 111/2 ≈ 3.3. However, since a total number of RF = 2 full rounds
would not lead to 2 consecutive full rounds in our design (recall that we use par-
tial rounds in the middle), we add two other rounds to have at least 2 consecutive
rounds both at the beginning and at the end. Finally, we add two more rounds to
prevent differential attacks with key guessing and conclude that RF ≥ Rstat

F = 6
rounds are needed in this setting.

Other Attacks. The situation in this setting does not differ from the situation
analyzed in Sect. 4.2 (namely, other statistical attacks do not outperform the
differential attack just discussed). Therefore, we argue that RF = 6 rounds also
prevent (the “basic” variant of) all other statistical attacks in the literature.

5.2 Algebraic Attacks

Interpolation Attack. The approach in this setting follows the analysis given
in Sect. 4.3. By choosing plaintexts with just one active word, the interpolation
polynomial depends on a single variable (namely, the active word). Hence, the
number of monomials after r rounds is approximated by 3r + 1. Since the data
complexity is limited to √

p, here we require that 3r + 1 ≥ √
p =⇒ r ≥

0.5 · log3 (p). We finally add log3(t) + 4 rounds due to the reasons given in
Sect. 4.3 and conclude that

RF + RP ≥ Rinter(p, t) ≡ 4 +

⌈

log3 (p)

2

⌉

+ �log3(t) (7)

rounds are needed to prevent the interpolation attack.

GCD and Gröbner Basis Attack. As further explained in [30, App. E], the
GCD attack for a key from (Fp)t works by first guessing t−1 components of the
key in order to have a univariate polynomial in the last component. Since we
are using only one key component in this setting, we do not need to guess these

694 L. Grassi et al.

components. With other words, the encryption path alone already yields a uni-
variate polynomial. Since the cost of the GCD computation is approximated by
O (

d log22 d
)
, we target a complexity of d log22 d ≈ p, where d is well approximated

by 3r−1 when using a cubic S-Box, and thus require that

RF + RP ≥ RGCD(p, t) ≡ 4 + �log3(p)	 − �2 log3(log2(p))� . (8)

Finally, since computing the Gröbner Basis of a univariate system of equa-
tions is equivalent to computing the greatest common divisor (GCD) [15], we
expect that this attack does not outperform the GCD one just discussed (we
refer to [30, App. E] for more details).

6 Number of Rounds: Security and Efficiency

The design goal of HadesMiMC is to offer a cipher optimized for schemes whose
performance critically depends on the MULTdepth/ANDdepth, the number of
MULTs/ANDs, or the number of MULTs/ANDs per bit. We thus try to be as
close to the number of rounds needed for security as possible.

Security. HadesMiMC with a security level equal to κ = N is secure iff
⎧

⎪
⎨

⎪
⎩

RF ≥ max
{

Rstat
F ;R3rd-Grob(p, t, RP)

}

,

RP + RF ≥ Ψ (1)(p, t) ≡ max
{

Rinter(p, t);R1st-Grob(p, t);RGCD(p, t)
}

= Rinter(p, t),

RP + t · RF ≥ Ψ (t)(p, t) ≡ R2nd-Grob(p, t),

where Rinter(p, t) and R1st-Grob(p, t), R2nd-Grob(p, t), R3rd-Grob(p, t, RP) are resp.
defined in (3) and (6) for the case κ = N . The analogous case κ = n (used for
the MPC applications that we have in mind) is discussed in the following.

Several Combinations of (RF,RP) for the Same Security Level. Besides
the possibility to choose the size of the S-Box, we emphasize that one of the
strengths of our design is the freedom to choose the ratio between the number
of rounds RF with full S-Box layers and the number of rounds RP with partial
S-Box layers without affecting the security level. In other words, the crucial point
here is that for each given p and t, the designer has in general the freedom to
choose among several combinations of rounds (RF , RP) – that guarantee the
same security – in order to minimize the analyzed cost metric.

In the following, we show how to choose the best combination of (RF , RP) in
order to minimize a given cost metric (for the same security level). We provide a
script18 that, given an input p, returns the best t and the best ratio between RP

and RF for several cost metrics – as the total number of non-linear operations,
the depth, etc., for both κ = N and κ = n.

18 We mention that we propose also a variant of such script that takes p and t as input,
and that returns the best choice of RF and RP that minimizes the given cost metric.

On a Generalization of Substitution-Permutation Networks 695

6.1 Efficiency in the Case of MPC Applications

Consider a generic scenario in which the main goal is to minimize the total
number of non-linear operations (namely, the number of S-Boxes in our case)
and/or the depth and/or the total number of linear operations proportional
respectively to some parameters 0 ≤ ϕ,ψ, ρ ≤ 1 s.t. ϕ + ψ + ρ = 1. Among all
possible combinations of rounds (RF , RP) that provides the same security level,
the goal is to find the one that minimizes the metric given by

ϕ

ϕ + ψ + ρ
× # S-Boxes +

ψ

ϕ + ψ + ρ
× depth +

ρ

ϕ + ψ + ρ
× # Linear Op. =

=
ϕ × (t · RF + RP) + ψ × (RF + RP) + ρ × (t2 · RF + (3t − 2) · RP)

ϕ + ψ + ρ

where the equality holds only for the HadesMiMC design (a precise estimation
of the number of linear operations in the case of an efficient implementation of
HadesMiMC is provided in [30, App. C]).

Cost Metric for MPC: “Number of S-Boxes” and Depth. Due to the
MPC applications we have in mind, we limit ourselves to optimize HadesMiMC
w.r.t. the metric that takes into account both the number of multiplications/S-
Boxes and the depth. Motivated by real-life applications, the goal that we face
is to reduce the total runtime (described in details in the following). Since the
main bottleneck of a protocol run on top of the SPDZ framework is the triple
generation mechanism, which is given by the number of non-linear operations,
in such a case the goal would be to minimize the total number of S-Boxes, while
the depth plays a minor role (and where the cost of a single linear operation
is negligible compared to the cost of a single non-linear operation). Due to this
consideration, here we focus only on the case 0 ≤ ρ � ϕ. For the simplified case
ρ = 0, the previous metric can be simplified as follows:

α × number of S-Boxes + (1 − α) × depth =
= α × (t·RF + RP) + (1 − α) × (RF + RP) = RF × [1 + α · (t − 1)] + RP

(9)

for different values of a parameter α, where 0 ≤ α ≤ 1. Note that α = 1 and
α = 0 correspond to the cases in which one aims to minimize the total number
of S-Boxes and the depth, respectively.

6.2 Best Ratio Between RF and RP – MPC Application

We focus on HadesMiMC with a security level of κ = n (and the data complexity
allowed for the attack is less than p1/2), namely the case suitable for the MPC
applications we have in mind.

Security. Due to the analysis provided in the previous section, HadesMiMC
is secure if the following inequalities are satisfied:

{

RF ≥ Rstat
F and RP ≥ 0;

RP + RF ≥ Ψ(p, t) ≡ max{RGCD(p, t);Rinter(p, t)}

696 L. Grassi et al.

where RGCD(p, t) and Rinter(p, t) are defined resp. in (8) and in (7).

Efficiency – Best Combination (RF,RP). The goal is to find the best com-
bination of rounds RF = Rstat

F + R′
F ≥ Rstat

F and RP that minimizes the cost
for different values of α, assuming Ψ(p, t) is fixed (equivalently, both p and t
are fixed). As we are going to show, in the case in which a single inequality of
the form RP + RF ≥ Ψ(p, t) must be satisfied, for each α the cost metric (9) is
always minimized by choosing the smallest possible RF (namely, RF = Rstat

F).
By combining the equation RP +RF ≥ Ψ(p, t) with the cost metric for generic

α, we get that the cost is upper bounded by

RF × [1 + α · (t − 1)] + RP

∣

∣

∣

∣

RP+RF ≥Ψ

≥ RF × α × (t − 1) + Ψ,

which is minimized by the following choice:

– if α �= 0, then the cost is minimized by taking the minimum value of RF

(where note that Ψ is fixed for t and N fixed), that is RF = Rstat
F ;

– if α = 0, then the cost is equal for each choice of (RF , RP) s.t. RP +RF = Ψ .

Let us analyze the case in which α = 0 in more details. Even if every choice
of RF and RP lead to the same cost w.r.t. the metric RF + RP (namely, the
depth), one possibility would be to choose the combination that minimizes other
metrics. By taking into account the number of non-linear and linear operations,
it turns out that the best choice is to take the minimum value of RF , since

S-Boxes: t × RF + RP

∣
∣
∣
∣
RP+RF ≥Ψ

≥ RF × (t − 1) + Ψ

Linear Op.: t2 × RF + (3t − 2) × RP

∣
∣
∣
∣
RP+RF ≥Ψ

≥ RF × (t2 − 3t + 2
︸ ︷︷ ︸

≥0 for each t≥2

) + Ψ

are both minimized by taking the minimum RF ≥ Rstat
F .

6.3 Concrete Instantiations of HadesMiMC

Based on the security analysis just proposed, in Table 1 we present concrete
instantiations of HadesMiMC for different security levels and/or applications.
The corresponding test vectors of HadesMiMC are given in [30, App. A].

Reduced and Toy Versions. Many classes of cryptanalytic attacks become
more difficult with an increased number of rounds. In order to facilitate third-
party cryptanalysis and estimate the security margin, reduced-round variants
need to be considered. Hence we encourage to study reduced-round variants of
HadesMiMC where the symmetry around the middle is kept. For this reason,
we highlight that it is also possible to specify toy versions of our cipher which
aim at achieving, e.g., only 32 bits of security.

On a Generalization of Substitution-Permutation Networks 697

Table 1. A range of different parameter sets for HadesMiMCoffering different trade-
offs. The first set is for AES-like security (≈128 bits). The second set is for MPC
applications (where the ratio between RF and RP is chosen in order to minimize the
metric cost for given values of α). The last set includes an example of a toy version
useful to facilitate third-party cryptanalysis.

Text size Security S-Box size # S-Box α Rounds RF Rounds RP

log2 p × t κ (log2 p) (t) (Full S-Box) (Partial S-Box)

128 128 8 16 – 10 4
128 128 16 8 – 8 10

256 128 128 2 0, 0.25, 0.5, 0.75, 1 6 71
256 256 128 2 0, 0.25, 0.5, 0.75, 1 12 76

512 128 128 4 0, 0.25, 0.5, 0.75, 1 6 71
512 512 128 4 0, 0.25, 0.5, 0.75, 1 12 76

1 024 128 128 8 0, 0.25, 0.5, 0.75, 1 6 71
1 024 1 024 128 8 0, 0.25 16 72
1 024 1 024 128 8 0.5, 0.75, 1 14 79

2 048 128 128 16 0, 0.25, 0.5, 0.75, 1 6 71
2 048 2 048 128 16 0, 0.25, 0.5 20 69
2 048 2 048 128 16 0.75, 1 18 93

4 096 128 128 32 0, 0.25, 0.5, 0.75, 1 6 71
4 096 4 096 128 32 0 24 66
4 096 4 096 128 32 0.25, 0.5 22 83
4 096 4 096 128 32 0.75, 1 20 121

8 192 128 128 64 0, 0.25, 0.5, 0.75, 1 6 71
8 192 8 192 128 64 0 32 58
8 192 8 192 128 64 0.25, 0.5 22 151
8 192 8 192 128 64 0.75, 1 20 240

32 32 8 4 – 6 7
About the case in which the security level κ is equal to the size of the S-Box (namely, κ = log2 p):
the given number of rounds provided security only if the data used for the attack is smaller than
p1/2 – no restriction for the case κ = log2 p · t ≈ N .

Comparison with Ciphers in “Traditional Use Cases”. We remark that
our strategy is not primarily intended to be used for pure encryption/decryption
purposes, and that it is specifically tailored towards new applications like the
MPC use case explained previously.

However, if only encryption/decryption is needed, we still expect
HadesMiMC to not be significantly worse than more suitable constructions
when considering the number of S-Boxes. E.g, when choosing the first instance
given in Table 1 (namely, p ≈ 28 and t = 16) and comparing it to AES-128, we
can observe that the total number of S-Boxes is 10 · (16 + 4) = 200 in AES-128
(including the key schedule), and only 10 · 16 + 4 = 164 in our design. At the
same time, we point out that the linear layer of HadesMiMC compared to the
one of AES is likely to be a bottleneck when trying to reduce the number of
operations.

698 L. Grassi et al.

7 MPC Applications

For MPC applications, we evaluated the HadesMiMC cipher using the SPDZ
framework [35] within a prime field Fp following the reasoning of [32].

Preliminaries. In the following, we denote by [x] a sharing of x, where each
party Pi holds a random xi ∈ Fp. The process of parties reconstructing x is called
an opening, i.e., going from a shared value [x] to a public value x known to all
parties. As with modern MPC frameworks, a protocol is split into two steps: an
input-independent preprocessing phase where parties generate random Beaver
triples [a] = [b] · [c], and an input-dependent online phase where parties share
their inputs and use the triples generated in the preprocessing phase. The cost
of a multiplication between two secret values [z] ← [x] · [y] is twofold: one Beaver
triple generated in the preprocessing phase as well as two openings and one round
of communications in the online phase. Since secretly shared multiplications can
be done in parallel, the number of communication rounds in the online phase is
given by the multiplicative depth of the circuit (AND depth) to be evaluated.
Linear operations such as additions and multiplications by public scalars are
non-interactive and require only a small computational overhead.

To evaluate a blockcipher in our setting, both the key [k] and the message [m]
are secretly shared between the parties. Since most of the computation is linear
and is computed locally by the parties the last thing to show is how to compute
the S-Box. The trivial way is to perform [x2] ← [x] · [x] and then [x3] ← [x2] · [x]
using two triples. This can be done with two communication rounds and it has
an online cost of 3 openings and uses two triples. However, we use the Grassi et
al. version [32] to reduce the online cost to one communication round with the
same amount of openings and triples. Note that every multiplication translates
into two field elements broadcasted by each party (256 bits for p ≈ 2128).

Standard Benchmarks. We implemented and benchmarked HadesMiMC
with a security level of κ = 128 ≈ log2 p bits using the SPDZ protocol in the MP-
SPDZ library19 between two computers equipped with i7-7700K CPUs, 32GB
RAM, and connected via a 10Gb/s LAN connection with an average round-trip
time of 0.47 ms. The choice of MP-SPDZ was due to having the fastest triple
generation mechanism for a dishonest majority [34] and because it integrates
the preprocessing with the online phase to check the end-to-end runtime of a
protocol.

In Table 2, we present a comparison between HadesMiMC and other existing
PRFs/block-ciphers proposed in the literature for MPC applications – namely,
MiMC and GMiMCerf (both with a security level of κ = 128 bits) and Rescue
(with a security level of κ = t · 128 bits) – in terms of four metrics:

1. latency represents the best running time of a single cipher evaluation by
running sequential single-threaded executions of it;

19 https://github.com/data61/MP-SPDZ.

https://github.com/data61/MP-SPDZ

On a Generalization of Substitution-Permutation Networks 699

2. throughput represents the encryption rate given in the number of field ele-
ments that can be encrypted in parallel per second by running multiple exe-
cutions using different threads;

3. communication done by each party per encrypted field element;
4. round complexity which is the multiplicative depth of the circuit when com-

puted in MPC.

Moreover, we show the difference in throughput and communication between
the online phase (columns denoted by ‘Online’) and when running the entire
end-to-end protocols (Runtime).

Experiment Results: Table 2. Our design is better in all metrics for t = 2
compared to all other blockciphers (except round complexity when looking at
MiMC in CTR mode), and also enjoys the smallest online latency for all t’s.

In terms of online throughput it is surpassed by GMiMCerf from t ≥ 16 due
to the local computation involving MDS matrices. In more details, from t ≥ 16
GMiMCerf has the best online throughput due to a low number of openings in
the online phase and a low computational overhead as it is just swapping and
adding states.

When looking at the Runtime column, we see that HadesMiMC outperforms
all the existing work from t = 2 and the gap increases by a factor of four for
t = 64 when comparing with GMiMCerf . Note that for the runtime column
one has to choose carefully the number of encryptions done in parallel. This is
because for different t’s MP-SPDZ produces triples in a batch of size 524288 and
some of them might be unused. We tried to diminish this gap by tweaking the
number of encryptions to be produced when benchmarking such that it utilizes
a maximum number of triples from the last batch.

Remarks About GMiMCerf and Rescue. In order to understand the previous
results, we emphasize two facts. First, all versions of GMiMCerf with n ≈ log2 p
bits of security are vulnerable to an attack presented in [13]. Specifically, in [3]
the authors propose a number of rounds for n ≈ log2 p bits of security, assuming
the attacker has access to the full codebook (up to pt ≈ 2N different texts).
Secondly, in order to have a more precise comparison, in [30, App. G] we adapt
their analysis in the case in which the attacker has access to at most p1/2 different
chosen texts. This attack – which is reminiscent of a slide attack – makes only
use of the weak key schedule and does not exploit any particular properties
of the cipher. Hence, while the versions of GMiMCerf used here are broken in
theory, we conjecture that a stronger key schedule can help to avoid this attack.
Therefore, since in MPC applications round keys are precomputed (the cost of
MPC applications is not influenced by the key schedule), we decided to keep the
corresponding numbers in the table, noting that a secure variant of GMiMCerf

using an appropriate key schedule would yield the same results.
We highlight that Rescue is specified with a security level of pt ≈ 2N bits

only, besides a conservative security margin of 100%. Due to the particular design
of Rescue (each round contains a non-linear layer and its inverse), this choice has
been made due to the fact that “[...] the field of algebraic attacks seems rather

700 L. Grassi et al.

Table 2. Two-party costs for Rescue, MiMCt (namely, t parallel MiMC-128/128 in
CTR mode), GMiMCerf and HMiMC≡HadesMiMC over a 10Gb/s LAN. Communi-
cation is given in KiloBytes. Runtime column represents the entire protocol execution,
including preprocessing.

Cipher Text size Online Runtime (multi-thread)

log2 p× t (MPC)
Rounds

Lat. (ms)
(s-thr)

Fp/s
(m-thr)

Comm.
per Fp

Fp/s Comm.
per Fp

Rescue 256 98 5.54 23 464 6.10 70 971
MiMC2 256 73 3.53 79 728 3.50 192 366

GMiMCerf 256 146 7.50 71 661 3.50 137 487
HMiMC 256 78 3.85 117 358 1.90 261 266

Rescue 512 50 1.25 46 890 3.08 136 485
MiMC4 512 73 1.69 83 876 3.50 192 366

GMiMCerf 512 150 3.42 137 058 1.80 274 243
HMiMC 512 78 1.90 185 160 1.14 526 133.2

Rescue 1024 32 0.59 72 689 1.93 137 484
MiMC8 1024 73 1.08 85 795 3.50 192 366

GMiMCerf 1024 158 1.98 252 102 0.94 271 241
HMiMC 1024 78 0.98 253 475 0.71 1045 66.8

Rescue 2048 32 0.45 66 830 1.93 273 243
MiMC16 2048 73 0.63 87 318 3.50 192 366
GMiMCerf 2048 174 1.09 425 717 0.52 137 483
HMiMC 2048 78 0.5 283 678 0.50 1088 60.9

Rescue 4096 32 0.42 57 695 1.93 274 243
MiMC32 4096 73 0.34 87 831 3.5 192 366
GMiMCerf 4096 206 0.68 637 747 0.3 276 241
HMiMC 4096 78 0.32 258 610 0.39 1098 60.8

Rescue 8192 32 0.31 44 697 1.93 283 243
MiMC64 8192 73 0.20 87 773 3.50 192 366
GMiMCerf 8192 323 0.50 664 091 0.24 550 120
HMiMC 8192 78 0.11 189 772 0.32 2189 30.6

underexplored. As a result, it is difficult to make a compelling security argument
valid for the entire family of attacks” (see [6, Sect. 3.5]). Hence, we mention that it
is potentially possible that the gap (in term of performance) between Rescue and
HadesMiMC can be actually reduced in the case in which the “design choices
[of Rescue are] indeed too conservative, and that the complexity and security
margins can safely be reduced ” (see [6, Sect. 4.6]).

Related Work. At CCS’18, Agrawal et al. [1] applied a threshold PRF to
compute an encryption between several parties where one party Pext holds a
plaintext m, does a 2-round protocol with multiple servers, and Pext receives an
encryption Ek(m) where the key k is shared among the servers. This use case is

On a Generalization of Substitution-Permutation Networks 701

covered by us as well by having the servers computing the blockcipher in MPC
with Pext as an external party providing the input m and getting the output
Ek(m). In the two-server case where one external party gets the ciphertext,
Agrawal et al. obtain a latency of 0.05ms and a throughput of around 2 million
encrypted blocks. HadesMiMC with t = 2 blocks can achieve an online latency
of 3.85ms and an online throughput of more than 117 000 blocks per second.

Although this design performs orders of magnitude slower than Agrawal et
al.’s, we provide more flexibility: (1st) Pext does not have to be online with the
other servers as in Agrawal et al. to compute the encryption; (2nd) it is more
friendly towards working with encrypted databases: servers upload the ciphertext
to a DB and anyone holding k can decrypt, whereas for Agrawal et al. each party
(Pext or else) needs to be online with the servers to decrypt.

Acknowledgements. The authors thank the anonymous reviewers for their valu-
able comments and suggestions. L. Grassi has been supported by IOV42. D. Rotaru
has been supported in part by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. N66001-15-C-4070, by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity (IARPA) via Contract No.
2019-1902070006 and by the CyberSecurity Research Flanders with reference number
VR20192203. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
ODNI, United States Air Force, IARPA, DARPA, the US Government or FWO. The
U.S. Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation therein.

References

1. Agrawal, S., Mohassel, P., Mukherjee, P., Rindal, P.: DiSE: distributed symmetric-
key encryption. In: CCS, pp. 1993–2010. ACM (2018)

2. Albrecht, M.R., et al.: Algebraic cryptanalysis of STARK-friendly designs: appli-
cation to MARVELlous and MiMC. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 371–397. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8_13

3. Albrecht, M.R., et al.: Feistel structures for MPC, and more. In: Sako, K., Schnei-
der, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_8

4. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

5. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_17

6. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. Cryptology
ePrint Archive, Report 2019/426 (2019). https://eprint.iacr.org/2019/426

https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://eprint.iacr.org/2019/426

702 L. Grassi et al.

7. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-Friendly Family of Crypto-
graphic Primitives. Cryptology ePrint Archive, Report 2018/1098 (2018)

8. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 315–342. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46800-5_13

9. Bettale, L., Faugère, J.C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

10. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X_2

11. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

12. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0_19

13. Bonnetain, X.: Collisions on Feistel-MiMC and univariate GMiMC. Cryptology
ePrint Archive, Report 2019/951 (2019). https://eprint.iacr.org/2019/951

14. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4_14

15. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. J.
Symb. Comput. 41, 475–511 (2006)

16. Cogliati, B., et al.: Provable security of (tweakable) block ciphers based
on substitution-permutation networks. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 722–753. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1_24

17. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms - An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra. UTM.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

18. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052343

19. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3_20

20. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

21. Diaz-Vargas, J., Rubio-Barrios, C.J., Sozaya-Chan, J.A., Tapia-Recillas, H.: Self-
invertible permutation polynomials over Zm. Int. J. Algebra 5(23), 1135–1153
(2011)

22. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear equiv-
alence of block ciphers with partial non-linear layers: application to LowMC. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 343–372.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_12

https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://eprint.iacr.org/2019/951
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-030-17653-2_12

On a Generalization of Substitution-Permutation Networks 703

23. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
535–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3_22

24. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and Few ANDs per
bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp.
662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22

25. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of LowMC.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 87–101. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30840-1_6

26. Dodis, Y., Stam, M., Steinberger, J.P., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 679–704. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5_24

27. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1_22

28. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2),
133–160 (2018)

29. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.:
Starkad and Poseidon: New Hash Functions for Zero Knowledge Proof Systems.
Cryptology ePrint Archive, Report 2019/458 (2019)

30. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a Gen-
eralization of Substitution-Permutation Networks: The HADES Design Strategy.
Cryptology ePrint Archive, Report 2019/1107 (2019)

31. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56614-6_10

32. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: CCS, pp. 430–443. ACM (2016)

33. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052332

34. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6

35. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: CCS, pp. 549–560. ACM (2013)

36. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8_16

37. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9_12

38. Li, S.: Permutation Polynomials modulo m. arXiv Mathematics e-prints (2005)
39. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-

Holland Publishing Company, Amsterdam (1978)

https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-319-30840-1_6
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12

704 L. Grassi et al.

40. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7_33

41. Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom functions,
and natural proofs. J. ACM 62(6), 46:1–46:29 (2015)

42. Nyberg, K., Knudsen, L.R.: Provable security against differential cryptanalysis.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 566–574. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_41

43. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of low-data instances of
full LowMCv2. IACR Trans. Symmetric Cryptol. 2018(3), 163–181 (2018)

44. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.D.: The cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_47

45. Wagner, D.: The Boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8_12

46. Wang, Y., Wu, W., Guo, Z., Yu, X.: Differential cryptanalysis and linear distin-
guisher of full-round zorro. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 308–323. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-07536-5_19

https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/978-3-319-07536-5_19
https://doi.org/10.1007/978-3-319-07536-5_19

Lightweight Authenticated Encryption
Mode Suitable for Threshold

Implementation

Yusuke Naito1(B), Yu Sasaki2(B), and Takeshi Sugawara3(B)

1 Mitsubishi Electric Corporation, Kamakura, Kanagawa, Japan
Naito.Yusuke@ce.MitsubishiElectric.co.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
yu.sasaki.sk@hco.ntt.co.jp

3 The University of Electro-Communications, Tokyo, Japan
sugawara@uec.ac.jp

Abstract. This paper proposes tweakable block cipher (TBC) based
modes PFB Plus and PFBω that are efficient in threshold implementa-
tions (TI). Let t be an algebraic degree of a target function, e.g. t = 1
(resp. t > 1) for linear (resp. non-linear) function. The d-th order TI
encodes the internal state into dt+1 shares. Hence, the area size increases
proportionally to the number of shares. This implies that TBC based
modes can be smaller than block cipher (BC) based modes in TI because
TBC requires s-bit block to ensure s-bit security, e.g. PFB and Romulus,
while BC requires 2s-bit block. However, even with those TBC based
modes, the minimum we can reach is 3 shares of s-bit state with t = 2
and the first-order TI (d = 1).

Our first design PFB Plus aims to break the barrier of the 3s-bit state
in TI. The block size of an underlying TBC is s/2 bits and the output
of TBC is linearly expanded to s bits. This expanded state requires only
2 shares in the first-order TI, which makes the total state size 2.5s bits.
We also provide rigorous security proof of PFB Plus. Our second design
PFBω further increases a parameter ω: a ratio of the security level s to
the block size of an underlying TBC. We prove security of PFBω for any ω
under some assumptions for an underlying TBC and for parameters used
to update a state. Next, we show a concrete instantiation of PFB Plus
for 128-bit security. It requires a TBC with 64-bit block, 128-bit key
and 128-bit tweak, while no existing TBC can support it. We design a
new TBC by extending SKINNY and provide basic security evaluation.
Finally, we give hardware benchmarks of PFB Plus in the first-order TI
to show that TI of PFB Plus is smaller than that of PFB by more than
one thousand gates and is the smallest within the schemes having 128-bit
security.

Keywords: Authenticated encryption · Threshold implementation ·
Beyond-birthday-bound security · Tweakable block cipher · Lightweight

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 705–735, 2020.
https://doi.org/10.1007/978-3-030-45724-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_24

706 Y. Naito et al.

1 Introduction

Data communication through IoT devices is getting more and more popular.
This requires lightweight authenticated encryption (AE) schemes that can be
used comfortably in a resource-restricted environment. Since March 2019, NIST
has organized a competition for determining the lightweight AE standard [38].
56 designs were chosen as Round 1 candidates and 32 designs have been chosen
as Round 2 candidates in August 2019. The design of lightweight AE schemes is
one of the most actively discussed topics in the symmetric-key research filed.

Many of AE designs with provable security adopt a block cipher (BC), a
cryptographic permutation, or a tweakable block cipher (TBC) as an underlying
primitive. The conventional security model regards those modules as a black box
and discusses the security under the black box setting. In contract, NIST’s com-
petition optionally takes into account the security in the grey box setting, where
the cryptographic modules leak side-channel information. It is now important to
design lightweight AE schemes such that countermeasures against side-channel
attacks (SCA) can be implemented efficiently.

Masking is by far the most common countermeasure against SCA [25,37],
and thus implementing an AE scheme using a BC/TBC primitive protected by
masking is the natural way to realize an SCA-resistant AE. Threshold implemen-
tation (TI) introduced by Nikova et al. [37] is a masking particularly popular for
hardware implementation. Masking, however, easily multiply the computational
cost. Although hardware designers have been tackling the problem by design-
ing serialized implementations in order to achieve an extreme of the area-speed
trade-off, implementation-level optimization is reaching its limit. To push the
limit further, researchers have been studying a BC optimized for TI by design,
mostly focusing on TI-friendly Sboxes [13,21]. In this paper, we follow this line
of research and go one step further by introducing the TI-friendly AE mode.

TI encodes the internal state (mostly consists of the internal state to compute
the underlying primitive) intomultiple shares, and apply the round transformation
to each of them. Hence, the area size in TI increases proportionally to the number
of shares. The number of shares is dt+1 for the order of masking d and the algebraic
degree of a target function t, and thus it is t + 1 for the first-order TI with d = 1.

In lightweight AE schemes, register occupies the major circuit area. To be
more precise, let b and s be the bit sizes of the underlying primitive and the
aiming security, respectively. Then the key size needs to be at least s, and thus
we need a b-bit register for the data block and an s-bit key for the key. We need
different number of shares for the data and key because the data needs three
shares for the nonlinear round function (t > 1), but the key needs only two shares
because the key schedule function is often linear for recent algorithms. Naito and
Sugawara recently proposed a TBC-based scheme which is particularly efficient
with TI by exploiting this asymmetry [34].

The problem we address in this paper is to further exploit this asymmetry.
More specifically, we let ω = s/b be an indicator of the asymmetry, and consider
designing a scheme with higher ω. Following Naito and Sugawara, we pursue
TBC-based schemes because of disadvantages of other approaches as follows.
The comparison is also given in Table 1.

Lightweight AE Mode Suitable for Threshold Implementation 707

Drawbacks of BC based schemes: To minimize a register size, i.e., the reg-
ister size is (almost) equal to the BC size, the security level is compromised
to the birthday-bound security regarding the block size, because birthday
attacks are principally unavoidable. Hence, 2s-bit block and s-bit key are
necessary to ensure s-bit security even without TI. SAEB [33] is an example
of this case. To apply the first-order TI by assuming a linear key schedule,
we need 3 shares for the data block and 2 shares for the key. Hence, we need
a register of size 8s(= 3× 2s+2× s) bits. Note that the key register may not
be protected in the same level as the data block register because computation
of the key schedule is not dependent on the value of the data block. In this
strategy, the register size is 7s(= 3 × 2s + s) bits. Note that there are several
beyond-the-birthday-bound (BBB) modes, but those require very unsuitable
structures for TI i.e., in TI the register sizes of BBB modes are grater than
those of birthday-bound ones.

Drawbacks of permutation based schemes: Let r and c be the number of
bits for the rate and the capacity, respectively. When attackers are allowed to
make decryption queries, the security of the simple duplex construction can
be proven only up to the birthday bound of the capacity [12,28]. Hence to
ensure s-bit security, the permutation size must be at least 2s + r bits. For
the first-order TI, we need 3 × (2s + r) bits of the register size. Beetle [14],
a recently proposed design, is provably security up to min(c − log r, b/2, r).
To ensure s-bit security, we basically balance r and c to s bits for the second
term, but slightly increases c to compensate ‘− log r’ in the first term. Hence,
the register size is 2s + log s bits without TI and 3 × (2s + log s) for TI.

Advantages of TBC based schemes: To ensure s-bit security, the block size
can be s bits. Along with an s-bit key and an s-bit tweak, the register size
without TI is 3s bits, e.g. PFB [34] and Romulus [26]. To apply the first-order
TI by assuming a linear key schedule, we need 3 shares for the data block
and 2 shares for the key. s-bit tweak is a public value, and it does not need
any protection. Hence, we need a register of size 6s(= 3s + 2s + s) bits for
TI. By the same analogy for BC, the protection of the key register may not
be needed. In this case, the register size for TI becomes 5s bits.

Form the above comparison, we investigate a TBC-based scheme to design a
mode that is efficient for TI. In particular, we focus our attention on the property
that the area size of TI mainly depends on how big ω(= s/b) is, and we aim a
TBC-based mode with a large ω.

Before stepping into the TI-friendly design, we first briefly introduce some
knowledge that is general to the designs of AE schemes.

– To be lightweight, the use of “nonce”, a value that is never repeated under
the same key, offers significant advantages.

– As shown by ΘCB [29], privacy can be ensured by injecting the nonce and
the block counter into the tweak for an underlying TBC.

– Authenticity can be ensured by preparing the double internal state size (the
block size of an underlying TBC is a part of the internal state size) of the
security level.

708 Y. Naito et al.

Table 1. Comparison of State Sizes with and without (w/o) TI. The (twea)key func-
tions are assumed to be linear. Without TI, permutation based schemes achieve the
smallest state size by using a small rate, while with TI, TBC based schemes in partic-
ular PFB Plus outperform the others.

base BC Permutation TBC

example mode SAEB Duplex Beetle PFB,Romulus PFB Plus PFBω

reference [33] [12,28] [14] [26,34] Ours Ours

w/o TI data block 2s 2s + r 2s + log s s 0.5s s/ω

key s s s s s s

tweak − − − s s s

extra state − − − − 0.5s s − s/ω

total 3s 2s + r 2s + log s 3s 3s 3s

TI protect key 8s 6s + 3r 6s + 3 log s 6s 5.5s 5s + s/ω

not protect key 7s 6s + 3r 6s + 3 log s 5s 4.5s 4s + s/ω

– The key size must be greater than or equal to the security level.
– The maximum number of processed input blocks by all queries should be

equal to the security level.

Our goal is to design a TBC-based AE mode that has a large ω(= s/b). The
biggest ω among the exiting TBC modes is 1, hence we first aim a TBC-based
AE mode with ω = 2. To achieve the goal, we have the following obstacles.

– b is a block size of TBC. For ω = 2, we need to ensure the security up to the
double of the block size. Hence, we need to design a mode that expands an
b-bit TBC output to a 2b-bit internal state. The expanded state needs to be
updated only linearly, otherwise we need 3 shares for the expanded state in
TI and thus does not yield any advantage compared to the case with ω = 1.

– To avoid using 3 shares for the key, the key schedule must be linear. To leave
the tweak state unprotected (only with 1 share), the tweak and key states
must be kept independent. We observe that the tweakey framework [27] is
suitable for this design.

– The key size must be 2b bits. To process up to 2b-bit block inputs, the size of
the combination of the nonce and the block counter must be 2b bits. Namely,
we need to process 4b bits for the key plus tweak, which is not easy with
existing TBCs. The tweakey framework conceptually defines a way to process
4b-bit tweakey (tweak plus key), while exiting concrete designs only support
up to 3b-bit tweakey. Note that Lilliput-AE [1], one of the first-round can-
didates at the NIST competition, specifies TBCs with 5b-, 6b-, and 7b-bit
tweakeys. However, those ignored the rationale of the original tweakey frame-
work to ensure the security, and were actually attacked practically [20].

Our Contributions. This paper proposes new TBC based modes that are
efficient for TI. We first propose our new mode PFB Plus (Fig. 1) that is a TI-
friendly TBC-based mode for ω = 2 with rigorous security proof. The block size

Lightweight AE Mode Suitable for Threshold Implementation 709

b of the underlying TBC is 0.5s bits for s-bit security. As its construction, we
combine the structure of PFB with f9 [43] in order to generate 2b-bit internal
state from b-bit TBC outputs and only use linear operations to update the
expanded state. We then provide rigorous security proofs of PFB Plus. The proof
is advantageous in a sense that the security only depends on the number of
decryption queries and independent of the length of the each query. PFB Plus
is optimized for the first-order TI, namely, 3 shares for the TBC of 0.5s-bit
block, 2 shares for the 0.5s-bit extended state, 2 shares for the s-bit key and
no protection (1 share) for the s-bit tweak. The total state size is 5.5s in TI or
even 4.5s when the key is not protected. Those are shown in Table 11. We also
provide a tradeoff between the area size and the target security by truncating
the extended 2b-bit internal state, which offers arbitrary security level between
b to 2b bits. Note that such a feature cannot be achieved by PFB and Romulus:
one of the second-round candidates in the NIST competition.

WhilePFB Plus is optimized for thefirst-orderTI, onemaybe interested infind-
ing the theoretical limitation of our approach, i.e. how large ω can be. To answer
this question, we propose an extended version called PFBω (Fig. 2) that can handle
an arbitrary ω with security proof under some assumptions for the existence of the
underlying primitives (a TBC with 2ωb-bit tweakey and suitable coefficients for
multiplications over a finite field). When ω becomes larger, to satisfy the assump-
tion becomes more difficult and the number of operations increases, while the area
size in TI becomes smaller. The state size of PFBω is shown in Table 1.

Next, we design a concrete TBC for PFB Plus. The underlying TBC must be
small in area and needs to support 4b-bit tweakey. In addition, to increase the effi-
ciency in TI, the tweakey schedule should not contain any non-linear operation.
We choose SKINNY with 64-bit block as a base of our TBC because SKINNY is
lightweight and indeed used in several designs submitted to the NIST competition.
We extend the design of SKINNY to support TK4 so that the existing third-party
security analysis remains available up to TK3. With this approach, our SKINNY-
64-256up toTK3 is secure as long as the originalSKINNY is secure.We thenprovide
the lowerboundsof thenumberof activeS-boxes inTK4as thedesigners of SKINNY
did the same. Moreover, we update the security analysis of SKINNY in the single
key: the designers of SKINNY sometimes provided upper bounds of the number of
active S-boxes both in differential and linear cryptanalysis. Alfarano et al. updated
the bounds for differential cryptanalysis [4], while we update the bounds for linear
cryptanalysis with the tight ones. Finally, we benchmark TI of PFB Plus instan-
tiated with SKINNY-64-256 in hardware by using the most practical parameters
for TI.2

1 In the table, the (twea)key functions are assumed to be linear. If the functions are
non-linear, 3 shares of the functions are required, and the state sizes of the TBC-
based modes are grater than those of the permutation-based ones.

2 With respect to the reliability, it can be disadvantageous that our modes cannot be
instantiated with existing well-known TBCs. However, from a different viewpoint,
PFB Plus is the first use case where 2n-bit tweak and 2n-bit key sizes are useful. This
can give new insight to TBC designers considering that there is no consensus about
the adequate tweak size to support.

710 Y. Naito et al.

Finally, we give hardware performance evaluation of PFB Plus combined with
SKINNY-64-256, and compare it with the conventional PFB. As a masking scheme,
we choose the first-order TI in which the TBC state and key are protected with
three and two shares, respectively. Thanks to the larger ω, the TI of PFB Plus is
smaller than that of PFB by more than one thousand gates (7,439 and 8,448 [GE],
respectively), and is the smallest within the schemes having 128-bit security.

Recommendation. PFBω is designed as a proof-of-concept of using a smaller
block size, and our recommendation is PFB Plus.

Limitations. The proposed method becomes efficient with TI, and the benefit
extends to other masking schemes with dt+1 shares (for t > 1) [25]; meanwhile,
it is no longer efficient with (d + 1)-share masking schemes [16]. We believe
that (dt + 1)-shares schemes are still important. First, the 1st-order TI is a
very practical option because of its reasonable circuit area and no need for fresh
randomness. Second, (dt + 1)-share schemes can be an only option under some
security requirements, e.g., when we need non-completeness to eliminate leakage
by glitches without relying on registers in between gates.

PFB Plus and PFBω are secure if no unverified plaintext is released and no
nonce is repeated, and we do not ensure the misuse security.

Previous Works. In this paper, we focus on designing TI-friendly AE schemes
with respect to implementation size. Another approach to design an AE scheme
with SCA resistance is leakage-resilient cryptography. The schemes [9–11,23,24]
based on the Pereira et al.’s approach [39] assume a leak-free component, and
are optimized for minimizing the number of calls to it3. However, the way how
to realize the leak-free component, that determines the implementation size, is
usually out of scope. Moreover, they need additional components such as hash
function and pseudo-random function. Barwell et al. [7] studied another approach
using pairing-based cryptography, but it is also costly.

The Sponge-based leakage resilient AE scheme ISAP [18] has a potential for
lightweight implementation because it does not rely on a leak-free component.
However, its implementation cost (14 [kGE]) is still larger than PFB Plus (7.439
[kGE]). There are recent works following ISAP. The works [17,19] gave security
proofs for the Sponge-based schemes which was missing in the original paper.
Degabriele et al. [17] proposed a variant using a random function. Dobraunig and
Mennink [19] gave the security proof of the duplex [12] with respect to leakage
resiliency.

Another line of research is to design cryptographic primitives using mini-
mum number of non-linear operations thereby reducing the cost for TI [2,3]. In
contrast to those studies, we approach the problem from the mode of operation
by exploiting the asymmetry between non-linear round function and linear key
scheduling, rather than improving the non-linear function itself. We designed
SKINNY-64-256 for providing a small block length and a larger tweakey state,
3 Note that some works even have misuse resistance that our research does not.

Lightweight AE Mode Suitable for Threshold Implementation 711

and not for minimizing the number of non-linear operations. We also note that
the conventional works focus on minimizing non-linear operations and thus their
target primitive is BC rather than TBC (TBCs typically require a higher amount
of operations than BCs in order to process a tweak), while the use of TBC is
the central part of our study.

2 Preliminaries

Notation. Let ε be an empty string and {0, 1}∗ be the set of all bit strings. For an
integer i ≥ 0, let {0, 1}i be the set of all i-bit strings, {0, 1}0 := {ε}, and {0, 1}≤i :=
{0, 1}1 ∪ {0, 1}2 ∪ · · · ∪ {0, 1}i be the set of all bit strings of length at most i,
except for ε. Let 0i resp. 1i be the bit string of i-bit zeros resp. ones. For an integer
i ≥ 1, let [i] := {1, 2, . . . , i} be the set of positive integers less than or equal to

i, and (i] := {0} ∪ [i]. For a non-empty set T , T
$←− T means that an element is

chosen uniformly at random from T and is assigned to T . The concatenation of two
bit strings X and Y is written as X‖Y or XY when no confusion is possible. For
integers 0 ≤ i ≤ j and X ∈ {0, 1}j , let msbi(X) resp. lsbi(X) be the most resp.
least significant i bits of X, and |X| be the number of bits of X, i.e., |X| = j. For
integers i and j with 0 ≤ i < 2j , let strj(i) be the j-bit binary representation of
i. For an integer b ≥ 0 and a bit string X, we denote the parsing into fixed-length
b-bit strings as (X1,X2, . . . , X�)

b←− X, where if X �= ε then X = X1‖X2‖ · · · ‖X�,
|Xi| = b for i ∈ [� − 1], and 0 < |X�| ≤ b; if X = ε then � = 1 and X1 = ε. For an
integer b > 0, let ozp : {0, 1}≤b → {0, 1}b be a one-zero padding function: for a bit
string X ∈ {0, 1}≤b, ozp(X) = X if |X| = b; ozp(X) = X‖10b−1−|X| if |X| < b.

Tweakable Block Cipher. A tweakable blockcipher (TBC) is a set of permu-
tations indexed by a key and a public input called tweak. Let K be the key space,
T W be the tweak space, and b be the input/output-block size. An encryption is
denoted by ˜E : K × T W × {0, 1}b → {0, 1}b, ˜E having a key K ∈ K is denoted
by ˜EK , and ˜EK having a tweak TW ∈ T W is denoted by ˜ETW

K .
In this paper, a keyed TBC is assumed to be a secure tweakable-pseudo-

random permutation (TPRP), i.e., indistinguishable from a tweakable random
permutation (TRP). A tweakable permutation (TP) ˜P : T W ×{0, 1}b → {0, 1}b

is a set of b-bit permutations indexed by a tweak in T W. A TP ˜P having a
tweak TW ∈ T W is denoted by ˜PTW . Let ˜Perm(T W, {0, 1}b) be the set of all
TPs. For a set of all TPs:T W ×{0, 1}b → {0, 1}b denoted by ˜Perm(T W, {0, 1}b),

a TRP is defined as ˜P
$←− ˜Perm(T W, {0, 1}b). In the TPRP-security game, an

adversary A has access to either the keyed TBC ˜EK or a TRP ˜P , where K
$←− K

and ˜P
$←− ˜Perm(T W, {0, 1}b), and after the interaction, A returns a decision bit

y ∈ {0, 1}. The output of A with access to O is denoted by AO. The TPRP-
security advantage function of A is defined as

Advtprp
˜EK

(A) := Pr
[

K
$←− K;A ˜EK = 1

]

− Pr
[

˜P
$←− ˜Perm(T W, {0, 1}b);A ˜P = 1

]

,

where the probabilities are taken over K, ˜P and A.

712 Y. Naito et al.

Nonce-Based Authenticated Encryption with Associated Data. A
nonce-based authenticated encryption with associated data (nAEAD) scheme
based on a keyed TBC ˜EK , denoted by Π[˜EK], is a pair of encryption and
decryption algorithms (Π.Enc[˜EK],Π.Dec[˜EK]). K,N ,M, C,A and T are the
sets of keys, nonces, plaintexts, ciphertexts, associated data (AD) and tags of
Π[˜EK], respectively. In this paper, the key space of Π[˜EK] is equal to that
of the underlying TBC. The encryption algorithm takes a nonce N ∈ N , AD
A ∈ A, and a plaintext M ∈ M, and returns, deterministically, a pair of a
ciphertext C ∈ C and a tag T ∈ T . The decryption algorithm takes a tuple
(N,A,C, T) ∈ N × A × C × T , and returns, deterministically, either the dis-
tinguished invalid (reject) symbol reject �∈ M or a plaintext M ∈ M. We
require |Π.Enc[˜EK](N,A,M)| = |Π.Enc[˜EK](N,A,M ′)| when these outputs are
strings and |M | = |M ′|. We consider two security notions of nAEAD, privacy
and authenticity. Hereafter, we call queries to the encryption resp. decryption
oracle “encryption queries” resp. “decryption queries.”

The privacy notion considers the indistinguishability between the encryption
Π.Enc[˜EK] and a random-bits oracle $, in the nonce-respecting setting. $ has
the same interface as Π.Enc[˜EK] and for a query (N,A,M) returns a random
bit string of length |Π.Enc[˜EK](N,A,M)|. In the privacy game, an adversary A
interacts with either Π.Enc[˜EK] or $, and then returns a decision bit y ∈ {0, 1}.
The privacy advantage function of an adversary A is defined as

Advpriv

Π[˜EK]
(A) := Pr[K $←− K;AΠ.Enc[˜EK] = 1] − Pr[A$ = 1],

where the probabilities are taken over K, $ and A. We demand that A is nonce-
respecting (all nonces in encryption queries are distinct).

The maximum over all adversaries, running in time at most t and making
encryption queries of σE the total number of TBC calls invoked by all encryp-
tion queries, is denoted by Advpriv

Π[˜EK]
(σE , t) := maxA Advpriv

Π[˜EK]
(A). When an

adversary is a computationally unbounded algorithm, the time t is disregarded.
The authenticity notion considers the unforgeability in the nonce-respecting

setting. In the authenticity game, an adversary A interacts with Π[˜EK] =
(Π.Enc[˜EK],Π.Dec[˜EK]), and the goal of the adversary is to make a non-trivial
decryption query whose response is not reject. The authenticity advantage of
an adversary A is defined as

Advauth
Π[˜EK]

(A) := Pr[K $←− K;AΠ.Enc[˜EK],Π.Dec[˜EK] forges],

where the probabilities are taken over K and A. We demand that A is nonce-
respecting (all nonces in encryption queries are distinct), that A never asks
a trivial decryption query (N,A,C, T), i.e., there is a prior encryption query
(N,A,M) with (C, T) = Π.Enc[˜EK](N,A,M), and that A never repeats a
query. AΠ.Enc[˜EK],Π.Dec[˜EK] forges means that A makes a decryption query whose
response is not reject.

Lightweight AE Mode Suitable for Threshold Implementation 713

The maximum over all adversaries, running in time at most t and making
at most qE encryption queries and qD decryption queries of σ the total number
of TBC calls invoked by all queries, is denoted by Advauth

Π[˜EK]
((qE , qD, σ), t) :=

maxA Advauth
Π[˜EK]

(A). When an adversary is a computationally unbounded algo-
rithm, the time t is disregarded.

3 PFB Plus: Specification and Security Bounds

We design PFB Plus, a TBC-based nAEAD mode with b + τ -bit security where
0 ≤ τ ≤ b, by extending the existing TBC-based lightweight mode PFB [34].
Regarding the relation between security and internal state size, in order to
achieve s-bit security, the internal state size must be at least s bits. Thus
PFB Plus is designed so that the internal state size is minimum, i.e., b + τ
bits. To do so, we extend PFB, which is a b-bit secure nAEAD mode and whose
security level equals to the internal state size. For the extension, we need to
define an additional τ -bit internal state in order to have b + τ -bit security. The
additional internal state is designed using the idea of f9 [43], which is a BC-based
message authentication code.

– The first b-bit internal state is updated by iterating a TBC and absorbing a
data block (AD/plaintext/ciphertext block), and the output of the last TBC
call becomes the first b-bit tag. The idea comes from PFB.

– The remaining τ -bit internal state is defined by XORing outputs of TBC
calls. The idea comes from f9, but our structure is slightly different from f9.
In PFB Plus, a TBC is not performed after XORing all outputs of TBC calls
(with b − τ -bit truncation), which keeps the internal state size b + τ bits. On
the other hand, in f9, a block cipher is performed after XORing all outputs
of block cipher calls.

Regarding tweak elements, as shown by ΘCB [29], for the sake of perfect privacy,
the nonce and the block counter are injected.

3.1 Specification

The specification of PFB Plus is given in Algorithm 1 and is illustrated in Fig. 1.
Let �max be a maximum number of AD/plaintext/ciphertext blocks, i.e., a ≤

�max and m ≤ �max. The tweak space T W consists of a nonce space N := {0, 1}n,
a block counter space (�max] and a space for tweak separations (15]. The space
for tweak separations (15] is used to offer distinct permutations for handing AD,
encrypting plaintexts (or decrypting ciphertexts) and generating a tag. Hence,
the tweak space is defined as T W := {0, 1}n × (�max] × (15].

The procedure of handing AD is given in PFB Plus.Hash. The procedure of
encrypting a plaintext is given in the steps 2–5 of PFB Plus.Enc, and the proce-
dure of generating a tag is given in the steps 6–9. The procedure of decrypting
a ciphertext is given in the steps 2–5 of PFB Plus.Dec, and the procedure of ver-
ifying a tag is given in the steps 6–9. Note that the tweaks x and y are defined
according to the lengths of AD A and of a plaintext M (more precisely, whether

714 Y. Naito et al.

Algorithm 1. PFB Plus

Encryption PFB Plus.Enc[˜EK](N, A, M)

1: (M0, T2) ← PFB Plus.Hash[˜EK](A)
2: if A = ε then x ← 1; else if A �= ε ∧ |A| mod b = 0 then x ← 6; else x ← 11

3: M1, . . . , Mm
b←− M ; if M = ε then

{

m ← 0; S1 ← M0; goto Step 7
}

4: for i = 1, . . . , m−1 do
{

Wi ← ˜EN,i,x
K (Mi−1); Ci ← Wi ⊕Mi; T2 ← T2 ⊕ lsbτ (Wi)

}

5: Wm ← ˜EN,m,x
K (Mm−1); Cm ← msb|Mm|(Wm) ⊕ Mm

6: T2 ← T2 ⊕ lsbτ (Wm); S1 ← ozp(Mm) ⊕ (0|Mm|‖lsbb−|Mm|(Wm))
7: if |M | mod b = 0 then y ← x + 1; else y ← x + 3

8: S2 ← ˜EN,m,y
K (S1); T2 ← lsbτ (S2) ⊕ T2; T1 ← ˜EN,m,y+1

K (S2)
9: C ← C1‖ · · · ‖Cm; T ← T1‖T2; return (C, T)

Decryption PFB Plus.Dec[˜EK](N, A, C, T̂)

1: (M0, T2) ← PFB Plus.Hash[˜EK](A)
2: if A = ε then x ← 1; else if A �= ε ∧ |A| mod b = 0 then x ← 6; else x ← 11

3: C1, . . . , Cm
b←− C; if C = ε then

{

m ← 0; S1 ← M0; goto Step 7
}

4: for i = 1, . . . , m−1 do
{

Wi ← ˜EN,i,x
K (Mi−1); Mi ← Wi ⊕Ci; T2 ← T2 ⊕ lsbτ (Wi)

}

5: Wm ← ˜EN,m,x
K (Mm); Mm ← msb|Cm|(Wm) ⊕ Cm

6: T2 ← T2 ⊕ lsbτ (Wm); S1 ← ozp(Mm) ⊕ (0|Cm|‖lsbb−|Cm|(Wm))
7: if |C| mod b = 0 then y ← x + 1; else y ← x + 3

8: S2 ← ˜EN,m,y
K (S1); T2 ← lsbτ (S2) ⊕ T2; T1 ← ˜EN,m,y+1

K (S2); T ← T1‖T2

9: if T = T̂ then return M ← M1‖ · · · ‖Mm; else return reject

Hash PFB Plus.Hash[˜EK](A)

1: if A = ε then return (0b, 0τ)

2: V0 ← 0b; H2 ← 0τ ; A1, . . . , Aa
b←− A

3: for i = 1, . . . , a − 1 do
{

Vi ← ˜E0n,i,0
K (Ai ⊕ Vi−1); H2 ← lsbτ (Vi) ⊕ H2

}

4: Va ← ˜E0n,a,0
K (ozp(Aa) ⊕ Va−1); H1 ← Va; H2 ← lsbτ (Va) ⊕ H2; return (H1, H2)

AD is empty or not, whether the one-zero padding is applied to A or not, and
whether it is applied to M or not). The concrete values are given below:

– if A = ε ∧ |M | mod b = 0 then (x, y) = (1, 2),
– if A = ε ∧ |M | mod b �= 0 then (x, y) = (1, 4),
– if A �= ε ∧ |A| mod b = 0 ∧ |M | mod b = 0 then (x, y) = (6, 7),
– if A �= ε ∧ |A| mod b = 0 ∧ |M | mod b �= 0 then (x, y) = (6, 9),
– if A �= ε ∧ |A| mod b �= 0 ∧ |M | mod b = 0 then (x, y) = (11, 12), and
– if A �= ε ∧ |A| mod b �= 0 ∧ |M | mod b �= 0 then (x, y) = (11, 14).

3.2 Privacy and Authenticity Bounds of PFB Plus

Theorem 1.

Advpriv

PFB Plus[˜EK]
(σE , t) ≤ Advtprp

˜EK
(σE , t + O(σE)),

Advauth
PFB Plus[˜EK]

((qE , qD, σ), t) ≤ qD · 2b−τ+1

(2b − 1)2
+ Advtprp

˜EK
(σ, t + O(σ)).

Lightweight AE Mode Suitable for Threshold Implementation 715

A1

0n,1,0

A2

H1

0τ

N,1,x

M1
C1

N,m-1,x

Mm-1

Cm-1

N,m,x

Mm

10*

Cm

H2

T2

T1

N,2,x

C2

M2

H1 M0

~EK
~EK

0n,2,0 ~EK

H2

|Mm|
b-|Mm|

||
N,m,y N,m,y+1

S1

W1 Wm-1 Wm

(Aa)

0n,a,0

A = ε x = 1
A ε |A| b = 0 x = 6
A ε |A| b 0 x = 11
|M| b = 0 y = x+1
|M| b 0 y = x+3

V1 V2 Va
τ τ τ

~EK
~EK

τ

W2

~EK

τ

~EK

τ

~EK

τ

~EK

S2

S2

0b

τ

b

���������

��� ��� ��� ���

���

���

���

Fig. 1. PFB Plus.Hash and PFB Plus.Enc. A1, . . . , Aa
b←− A (in the hash procedure);

M1, . . . , Mm
b←− M (in the encryption procedure).

4 Proof of Theorem1

Firstly, the keyed TBC ˜EK for K
$←− K is replaced with a TRP ˜P

$←−
˜Perm

(

T W, {0, 1}b
)

. The replacement offers the TPRP-terms Advtprp
˜EK

(σE , t +

O(σE)) and Advtprp
˜EK

(σ, t + O(σ)), and then the remaining works are to upper-

bound the advantages Advpriv

PFB Plus[˜P]
(σE) and Advauth

PFB Plus[˜P]
(qE , qD, σ), where

adversaries are computationally unbounded algorithms and the complexities are
solely measured by the numbers of queries. Without loss of generality, adversaries
are deterministic.

Regarding Advpriv

PFB Plus[˜P]
(σE), as tweaks of ˜P are all distinct, all output

blocks of ˜P defined by encryption queries are chosen independently and uni-
formly at random from {0, 1}b. We thus have Advpriv

PFB Plus[˜P]
(σE) = 0.

In the following, we focus on upper-bounding Advauth
PFB Plus[˜P]

(qE , qD, σ).

4.1 Upper-Bounding Advauth
PFB Plus[˜P]

(qE , qD, σ)

Firstly, we fix a decryption query (N (d), A(d), C(d), T̂ (d)), and upper-bound the
probability that an adversary forges at the decryption query.

In the analysis, we use the following notations. Values/variables correspond-
ing with the decryption query are denoted by using the superscript of (d) such
as N (d), M (d), etc. Hence, this analysis upper-bounds Pr[T (d) = T̂ (d)]. The
lengths a and m are denoted by ad and md, respectively. Similarly, for an encryp-
tion query (N (e), A(e),M (e)), values/variables corresponding with the encryption
query are denoted by using the superscript of (e), and the lengths a and m are
denoted by ae and me, respectively.

We next define two cases that are used to upper-bound Pr[T (d) = T̂ (d)].

716 Y. Naito et al.

– Case1: for any previous encryption query (N (e), A(e),M (e)),

N (e) �= N (d) ∨ me �= md ∨ y(e) �= y(d).

– Case2: for some previous encryption query (N (e), A(e),M (e)),

N (e) = N (d) ∧ me = md ∧ y(e) = y(d).

Using these cases, we have

Pr[T (d) = T̂ (d)] ≤ max
{

Pr
[

T (d) = T̂ (d)
∣

∣

∣Case1
]

,Pr
[

T (d) = T̂ (d)
∣

∣

∣Case2
]}

.

These probabilities are analyzed in Subsect. 4.2 and Subsects. 4.3–4.9, respec-
tively. The upper-bounds are given in Eqs. (1) and (4), respectively, and give

Advauth
PFB Plus[˜P]

(qE , qD, σ) ≤ qD · max
{

1
2b+τ

,
2b−τ+1

(2b − 1)2

}

=
qD · 2b−τ+1

(2b − 1)2
.

4.2 Upper-Bounding Pr
[

T (d) = T̂ (d)
∣

∣

∣Case1
]

In Case1, the tweak tuples (y(d), N (d), z(d)) and (y(d)+1, N (d), z(d)) with which the
outputs of ˜P define S

(d)
2 and T

(d)
1 are distinct from the tweak triples defined by the

previous encryption queries. Hence, T (d)
1 and T

(d)
2 are chosen uniformly at random

from {0, 1}b and independently of the previous outputs of ˜P . We thus have

Pr
[

T (d) = T̂ (d)
∣

∣

∣Case1
]

≤ 1
2b+τ

. (1)

4.3 Upper-Bounding Pr
[

T (d) = T̂ (d)
∣

∣

∣Case2
]

In Case2, S
(d)
2 = S

(e)
2 ⇔ S

(d)
1 = S

(e)
1 is satisfied (as ˜PN(d),y(d),md and ˜PN(e),y(e),me

are the same permutation). Hence, we can focus on the cases: S
(d)
1 �= S

(e)
1 ∧S

(d)
2 �=

S
(e)
2 ; S

(d)
1 = S

(e)
1 ∧ S

(d)
2 = S

(e)
2 . Using these cases, we have

Pr
[

T (d) = T̂ (d)
∣

∣

∣Case2
]

= Pr
[

T (d) = T̂ (d) ∧ S
(d)
1 �= S

(e)
1 ∧ S

(d)
2 �= S

(e)
2

∣

∣

∣Case2
]

+ Pr
[

T (d) = T̂ (d) ∧ S
(d)
1 = S

(e)
1 ∧ S

(d)
2 = S

(e)
2

∣

∣

∣Case2
]

≤Pr
[

T (d) = T̂ (d)
∣

∣

∣Case2 ∧ S
(d)
1 �= S

(e)
1 ∧ S

(d)
2 �= S

(e)
2

]

︸ ︷︷ ︸

=:p1

(2)

+ Pr
[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣

∣

∣Case2
]

︸ ︷︷ ︸

=:p2

. (3)

The probabilities p1 and p2 are analyzed in Subsect. 4.4 and Subsects. 4.4–4.9,
respectively. The upper-bounds are given in Eqs. (5) and (6), respectively, and
give

Pr
[

T (d) = T̂ (d)
∣

∣

∣Case2
]

≤ 2b−τ

(2b − 1)2
+

2b−τ

(2b − 1)2
=

2b−τ+1

(2b − 1)2
. (4)

Lightweight AE Mode Suitable for Threshold Implementation 717

4.4 Upper-Bounding p1 in (2)

By S
(d)
1 �= S

(e)
1 ∧ S

(d)
2 �= S

(e)
2 , T

(d)
1 is chosen uniformly at random from

{0, 1}b\{T (e)
1 }, and S

(d)
2 is chosen uniformly at random from {0, 1}b\{S(e)

2 }, i.e.,
T

(d)
2 is chosen uniformly at random from at least (2b − 1)/2b−τ values. Hence,

we have

p1 = Pr
[

T̂ (d) = T (d)
∣

∣

∣S
(d)
1 �= S

(e)
1 ∧ S

(d)
2 �= S

(e)
2 ∧ Case2

]

≤ 2b−τ

(2b − 1)2
. (5)

4.5 Upper-Bounding p2 in (3)

Let

I �=
V =

{

i ∈ [max{ae, ad}]
∣

∣

∣V
(d)
i �= V

(e)
i

}

, I �=
W =

{

i ∈ [md]
∣

∣

∣W
(d)
i �= W

(e)
i

}

be sets of indexes with distinct blocks for V and W , respectively, where V
(d)
i := ε

for i > ad, and V
(e)
i := ε for i > ae.

This analysis uses the following four sub-cases of Case2.

– Case2-1 : Case2 ∧ ad = ae ∧ |I �=
V | + |I �=

W | = 1.
– Case2-2 : Case2 ∧ ad = ae ∧ |I �=

V | + |I �=
W | ≥ 2.

– Case2-3 : Case2 ∧ ad �= ae ∧ |I �=
W | = 0 ∧ A(d) �= ε ∧ A(e) �= ε.

– Case2-4 : Case2 ∧ ad �= ae ∧ |I �=
W | ≥ 1 ∧ A(d) �= ε ∧ A(e) �= ε.

Note that Case2 ⇒ Case2-1 ∨ Case2-2 ∨ Case2-3 ∨ Case2-4 is satisfied by the fol-
lowing reasons. Regarding the sets I �=

V and I �=
W , the non-equation (A(d), C(d)) �=

(A(e), C(e)) and the condition y(e) = y(d) (from Case2) ensure the following:

|I �=
V | + |I �=

W | ≥ 1.

Regarding the AD A(d) and A(e), the condition y(e) = y(d) ensures the following:
(

A(d) = A(e) = ε
)

∨
(

A(d) �= ε,A(e) �= ε
)

.

Let CollS,T := S
(d)
1 = S

(e)
1 ∧ T̂

(d)
2 = T

(e)
2 . Then, using the four cases, we have

p2 = Pr [CollS,T |Case2] ≤max
{

Pr [CollS,T |Case2-1] ,Pr [CollS,T |Case2-2] ,

Pr [CollS,T |Case2-3] ,Pr [CollS,T |Case2-4]
}

.

These probabilities are analyzed in Subsects. 4.6, 4.7, 4.8, and 4.9, respectively.
These upper-bounds are given in Eqs. (7), (8), (9), and (10), respectively, and
give

p2 ≤ 2b−τ

(2b − 1)2
. (6)

718 Y. Naito et al.

4.6 Upper-Bounding Pr
[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣

∣

∣Case2-1
]

In Case2-1, the number of positions with distinct output blocks is 1, and thus
the output difference is propagated to S1, i.e., S

(d)
1 �= S

(e)
1 is satisfied. Hence, we

have
Pr

[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣

∣

∣Case2-1
]

= 0. (7)

4.7 Upper-Bounding Pr
[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣

∣

∣Case2-2
]

First, notations used in the analysis are introduced. Let I �= = I �=
V ∪

{

i + ad

∣

∣

∣i ∈ I �=
W

}

be the set of indexes with distinct output blocks (counting

from the hash function). Let I �= = {i1, i2, . . . , iγ} where i1 < i2 < · · · < iγ and
γ ≥ 2. For i ∈ I �=, the i-th output block is denoted as Zi, where Zi := Vi if
i ≤ ad; Zi := Wi−ad

if i > ad, and the data block (AD or ciphertext block)
XORed with Zi is denoted as Di: Di = Ai+1 (if i ≤ ad − 2); Dad−1 = ozp(Aad

);
Dad

= 0b; Di = Ci−ad
(if ad < i < ad + md); Dad+md

= ozp(Cmd
).

Then, the collision S
(d)
1 = S

(e)
1 is considered. The collision occurs if and

only if Z
(d)
iγ

⊕ D
(d)
iγ

= Z
(e)
iγ

⊕ D
(e)
iγ

is satisfied. In order to satisfy the equation,

D
(d)
iγ

�= D
(e)
iγ

and Z
(d)
iγ

�= Z
(e)
iγ

must be satisfied. As Z
(d)
iγ

is chosen uniformly

at random from {0, 1}b\{Z(e)
iγ

}, we have Pr[S(d)
1 = S

(e)
1] = Pr[Z(d)

iγ
⊕ D

(d)
iγ

=

Z
(e)
iγ

⊕ D
(e)
iγ

] ≤ 1/(2b − 1).

Next, the collision T
(d)
2 = T̂

(d)
2 is considered. The collision is of the form:

lsbτ

(

Z
(d)
i1

)

= T̂
(d)
2 ⊕ lsbτ

(

⊕

i∈[ad+md]\{i1} Z
(d)
i ⊕ S

(d)
2

)

. As Z
(d)
i1

is chosen uni-

formly at random from {0, 1}b\{Z(e)
i1

}, we have Pr[T (d)
2 = T̂

(d)
2] ≤ 2b−τ/(2b − 1).

These upper-bounds give

Pr
[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣

∣

∣Case2-2
]

≤ 2b−τ

(2b − 1)2
. (8)

4.8 Upper-Bounding Pr
[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣

∣

∣Case2-3
]

First, the collision T
(d)
2 = T̂

(d)
2 is considered. The collision is of the form

lsbτ (V (d)
1) = T̂

(d)
2 ⊕ lsbτ

(

⊕ad

i=2 V
(d)
i ⊕

⊕md

i=1 W
(d)
i ⊕ S

(d)
2

)

. As V
(d)
1 is chosen

uniformly at random from {0, 1}b\{V (e)
1 } (if the input blocks of V

(d)
1 and V

(e)
1

are the same, “\{V (e)
1 }” is removed), we have Pr[T (d)

2 = T̂
(d)
2] ≤ 2b−τ/(2b − 1).

Next, the collision S
(d)
1 = S

(e)
1 is considered. In Case2-3, S

(d)
1 = S

(e)
1 ⇔

H
(d)
1 = H

(e)
1 ⇔ V

(d)
ad = V

(e)
ae is satisfied. When ad > ae ≥ 1, V

(d)
ad is chosen

independently of V
(d)
1 , and chosen uniformly at random from {0, 1}b. When

1 ≤ ad < ae, V
(e)
ae is chosen independently of V

(d)
1 , and chosen uniformly at

random from {0, 1}b. Hence, we have Pr[S(d)
1 = S

(e)
1] ≤ 1/2b.

Lightweight AE Mode Suitable for Threshold Implementation 719

These upper-bounds give

Pr
[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(e)
2

∣

∣

∣Case2-3
]

≤ 1
2τ (2b − 1)

. (9)

4.9 Upper-Bounding Pr
[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣

∣

∣Case2-4
]

First, the collision S
(d)
1 = S

(e)
1 is considered. Let i = max I �=

W . The collision
implies W

(d)
i ⊕ C

(d)
i = W

(e)
i ⊕ C

(e)
i . As W

(d)
i are chosen uniformly at random

from {0, 1}b\{W (e)
i }, we have Pr[S(d)

1 = S
(e)
1] ≤ 1/(2b − 1).

Next, the collision T
(d)
2 = T̂

(d)
2 is considered. The collision is of the form

lsbτ

(

V
(d)
1

)

= T̂
(d)
2 ⊕ lsbτ

(

⊕ad

i=2 V
(d)
i ⊕

⊕md

i=1 W
(d)
i ⊕ S

(d)
2

)

. As V
(d)
1 is chosen

uniformly at random from {0, 1}b\{V (e)
1 } (if the input blocks of V

(d)
1 and V

(e)
1

are the same, “\{V (e)
1 }” is removed), we have Pr[T (d)

2 = T̂
(d)
2] ≤ 2b−τ/(2b − 1).

These upper-bounds give

Pr
[

S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣

∣

∣Case2-4
]

≤ 2b−τ

(2b − 1)2
. (10)

5 PFBω: Specification and Security Bounds

We design PFBω, a TBC-based nAEAD mode with ωb-bit security (under some
condition), where 1 ≤ ω. PFBω is an extension of PFB Plus, and the internal
state size is ωb bits for achieving ωb-bit security. The procedure of updating
the first b-bit internal state of PFBω is designed by using the PFB’s idea [34].
The procedure of updating the remaining (ω − 1)b-bit internal sate is designed
by extending the PMAC Plus’s idea [45]4. Using these ideas, the procedure of
updating the internal state of PFBω is designed as follows.

– The first b-bit internal state is updated by iterating a TBC and absorbing a
data block (AD/plaintext/ciphertext block), and the output of the last TBC
call becomes the first b-bit tag. The idea comes from PFB.

– The i-th b-bit internal state (2 ≤ i ≤ ω) is updated by multiplying an output
of a TBC with a constant over GF (2b)∗ and then XORing the result with
the current internal state. This is an extension of the PMAC Plus’s idea. In
order to have ωb-bit security, a condition on the constants is required, which
is given in the next subsection.

Regarding tweak elements, as PFB Plus, the nonce and the block counter are
injected in order to ensure perfect privacy.

4 PMAC Plus is a block-cipher-based message authentication code and has 2b-bit inter-
nal state, which is updated by using outputs of BC calls, XOR operations and con-
stant field multiplications.

720 Y. Naito et al.

Algorithm 2. PFBω

Encryption PFBω.Enc[˜EK](N, A, M)

1: M1, . . . , Mm
b←− M ; (M0, S2, . . . , Sω, a, �) ← PFBω.Hash[˜EK](A, m)

2: if M = ε then
{

m ← 0; goto Step 7
}

3: for j = 1, . . . , m do
4: Za+j−1 ← ˜EN,a,j,0

K (Mj−1); Cj ← Za+j−1 ⊕ Mj

5: for i = 2, . . . , ω do
{

Si ← α
(�)
i,a+j−1 · Za+j−1 ⊕ Si

}

6: end for
7: S1 ← Mm; Za+m ← ˜EN,a,m,1

K (S1); T1 ← Za+m

8: for i = 2, . . . , ω do
{

Si ← α
(�)
i,a+m · Za+m ⊕ Si; Ti ← ˜EN,a,m,i

K (Si)
}

9: C ← C1‖ · · · ‖Cm; T ← T1‖ · · · ‖Tω; return (C, T)

Decryption PFBω.Dec[˜EK](N, A, C, T̂)

1: (M0, S2, . . . , Sω, a, �) ← PFBω.Hash[˜EK](A, m); C1, . . . , Cm
b←− C

2: if C = ε then
{

m ← 0; goto Step 7
}

3: for j = 1, . . . , m do
4: Za+j−1 ← ˜EN,a,j,0

K (Mj−1); Mj ← Za+j−1 ⊕ Cj ;

5: for i = 2, . . . , ω do
{

Si ← α
(�)
i,a+j−1 · Wa+j−1 ⊕ Si

}

6: end for
7: S1 ← Mm; Za+m ← ˜EN,a,m,1

K (S1); T1 ← Za+m

8: for i = 2, . . . , ω do
{

Si ← α
(�)
i,a+m · Za+m ⊕ Si; Ti ← ˜EN,a,m,i

K (Si)
}

9: T ← T1‖ · · · ‖Tω; if T = T̂ then return M ← M1‖ · · · ‖Mm; else return reject

Hash PFBω.Hash[˜EK](A, m)

1: if A = ε then return (0b, . . . , 0b, 0, m)

2: Z0 ← 0b; A1, . . . , Aa
b←− A; � ← a + m; for i = 2, . . . , ω do Hi ← 0b

3: for j = 1, . . . , a − 1 do
4: Zj ← ˜E0n,j,0,0

K (Zj−1 ⊕ Aj); for i = 2, . . . , ω do Hi ← α
(�)
i,j · Zj ⊕ Hi

5: end for
6: H1 ← Za−1 ⊕ Aa return (H1, . . . , Hω, a, �)

5.1 Specification

For the sake of simplifying the specification and the security proof, we consider
only the case where the bit lengths of AD and plaintext/ciphertext are multiple of
b, i.e., |A| mod b = 0, |M | mod b = 0 and |C| mod b = 0. Note that arbitrary
length data can be handled by introducing the one-zero padding ozp as PFB Plus,
and an extra TBC call by the padding can be avoided by adding 2 bits to the
tweak space for distinguishing whether the padding is applied or not for each of
AD and plaintext/ciphertext.

The specification of PFBω is given in Algorithm 2 and is illustrated in Fig. 2.
Let amax be a maximum number of AD blocks, i.e., a ≤ amax, and mmax be a

maximum number of plaintext/ciphertext blocks, i.e., m ≤ mmax. The tweak space
T W consists of a nonce space N := {0, 1}n, a counter space for AD blocks (amax],

Lightweight AE Mode Suitable for Threshold Implementation 721

0b

0b

0b

0n,1,0,0 ~EK

α2 1

αω 1

A1

0n,2,0,0 ~EK

α2 2

αω 2

A2

0n,a-1,0,0 ~EK

α2 a-1

αω a-1

Aa-1 Aa

H1

H2

Hω

N,a,1,0 N,a,m,0

αω,a+m

~EK
N,a,2,0 ~EK

M2

C2

M1

C1

~EK
Mm

C

~EK

α2 a α2,a+1 α2,a+m-1

αω,a+m-1

~EK

N,a,m,2

~EK

N,a,m,ωαω,a+1

T1

T2

Tω

αω,a

N,a,m,1

α2,a+m

H1

H2

Hω

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Z1 Z2 Za-1

Za Za+1 Za+m-1
Za+m

=Z0 � � �

��

�

�

�

� �

�
�

�

�

�

,

,

,

,

,

,

,

Fig. 2. PFBω.Enc and PFBω.Hash.

a counter space for plaintext/ciphertext blocks (mmax], and a space for tweak sepa-
rations (ω]. Hence, the tweak space is defined as T W := N ×(amax]×(mmax]×(ω].
Let α

(�)
i,j be a b-bit constant in GF (2b)∗ with the following condition.

– Cond: for any 1 ≤ � ≤ amax + mmax, a ω − 1 × � matrix with an i-th row
and j-th column element α

(�)
i,j is MDS, i.e., for any 1 ≤ μ ≤ min{�, ω − 1},

2 ≤ i1 < i2 < · · · < iμ ≤ ω, and 1 ≤ j1 < j2 < · · · < jμ ≤ �, the rank of
the μ × μ sub-matrix where for each u, v ∈ [μ], the u-th row and v-th column
element is α

(�)
iu,jv

is μ.

Examples of constants for ω = 2, 3 are given below.

– ω = 2: α
(�)
2,j := 1 for all �, j. The second b-bit internal state is updated by

XORing all outputs of TBC calls. This is the same as the PFB Plus’s internal
state updating (without truncations).

– ω = 3: α
(�)
2,j := 1 and α

(�)
3,j := 2�−j for all �, j. This is the same as the

PMAC Plus’s internal state updating.

722 Y. Naito et al.

5.2 Privacy and Authenticity Bounds of PFBω

Theorem 2.

Advpriv

PFBω[˜EK]
(σE , t) ≤ Advtprp

˜EK
(σE , t + O(σE)),

Advauth
PFBω[˜EK]

((qE , qD, σ), t) ≤ 2ω · qD
(2b − 1)ω

+ Advtprp
˜EK

(σ, t + O(σ)).

6 Proof of Theorem2

Firstly, the keyed TBC ˜EK for K
$←− K is replaced with a TRP ˜P

$←−
˜Perm

(

T W, {0, 1}b
)

. The replacement offers the TPRP-terms Advtprp
˜EK

(σE , t +

O(σE)) and Advtprp
˜EK

(σ, t + O(σ)) in the upper-bounds, and then the

remaining works are to upper-bound the advantages Advpriv

PFBω[˜P]
(σE) and

Advauth
PFBω[˜P]

(qE , qD, σ), where adversaries are computationally unbounded algo-
rithms and the complexities are solely measured by the numbers of queries.
Without loss of generality, adversaries are deterministic.

Regarding Advpriv

PFBω[˜P]
(σE), as tweaks of ˜P are all distinct, all output blocks

of ˜P defined by encryption queries are chosen independently and uniformly at
random from {0, 1}b. We thus have Advpriv

PFBω[˜P]
(σE) = 0.

Hereafter, we focus on upper-bounding Advauth
PFBω[˜P]

(qE , qD, σ).

6.1 Upper-Bonding Advauth
PFBω [˜P]

(qE , qD, σ)

We first fix a decryption query (N (d), A(d), C(d), T̂ (d)) and upper-bound the prob-
ability that A forges at the decryption query. Values/variables corresponding
with the decryption query are denoted by using the superscript of (d) such as
N (d), M (d), etc. The lengths a, m and � are denoted by ad, md and �d, respec-
tively. Thus Pr[T (d) = T̂ (d)] is upper-bounded in the analysis. Similarly, for
an encryption query (N (e), A(e),M (e)), values/variables corresponding with the
decryption query are denoted by using the superscript of (e), and the lengths a,
m and � are denoted by ae, me and �e, respectively.

Then, Pr[T (d) = T̂ (d)] is upper-bounded using the following two cases.

– Case1: ∀enc. query (N (e), A(e),M (e)): N (e) �= N (d) ∨ ae �= ad ∨ me �= md.
– Case2: ∃enc. query (N (e), A(e),M (e)) s.t. N (e) = N (d) ∧ ae = ad ∧ me = md.

Using these cases, we have

Pr[T (d) = T̂ (d)] ≤ max
{

Pr
[

T (d) = T̂ (d)
∣

∣

∣Case1
]

,Pr
[

T (d) = T̂ (d)
∣

∣

∣Case2
]}

.

These probabilities are analyzed in Subsects. 6.2 and 6.3, respectively. The upper-
bounds are given in Eqs. (12) and (13), respectively, and give

Advauth
PFBω[˜P]

(qE , qD, σ) ≤ 2ω · qD
(2b − 1)ω

. (11)

Lightweight AE Mode Suitable for Threshold Implementation 723

6.2 Upper-Bounding Pr
[

T (d) = T̂ (d)
∣

∣

∣Case1
]

In Case1, tag blocks T
(d)
1 , T

(d)
2 , . . . , T

(d)
ω are chosen independently and uniformly

at random from {0, 1}b. Hence, we have

Pr
[

T (d) = T̂ (d)
∣

∣

∣Case1
]

≤ 1
2ωb

. (12)

6.3 Upper-Bounding Pr
[

T̂ (d) = T (d)
∣

∣

∣Case2
]

Let (N (e), A(e),M (e)) be an encryption query with N (e) = N (d)∧ae = ad ∧me =
md. The analysis considers the following sub-cases where 0 ≤ μ ≤ ω.

Case2-μ : ∃μ indexes i1 < · · · < iμ s.t.
(

∀i ∈ [i1, . . . , iμ] : S
(d)
i = S

(e)
i

)

∧
(

∀i ∈ [ω]\{i1, . . . , iμ} : S
(d)
i �= S

(e)
i

)

.

Using the sub-cases, we have

Pr
[

T (d) = T̂ (d)
∣

∣

∣Case2
]

≤
ω

∑

μ=0

Pr
[

T (d) = T̂ (d) ∧ Case2-μ
∣

∣

∣Case2
]

≤ 1
(2b − 1)ω

+
ω

∑

μ=1

2 ·
(

ω − 1
μ − 1

)

· 1
(2b − 1)ω

≤ 2ω

(2b − 1)ω
. (13)

The probabilities Pr
[

T (d) = T̂ (d) ∧ Case2-μ
∣

∣

∣Case2
]

for 0 ≤ μ ≤ ω are upper-

bounded below. In the analyses, the following set is used: I �= =
{

j
∣

∣

∣Z
(e)
j �= Z

(d)
j

}

.

• μ = 0. In this case, for all i, S
(d)
i �= S

(e)
i is satisfied, and thus T

(d)
i is chosen

uniformly at random from {0, 1}b\{T (e)
i } (as both T

(e)
i and T

(d)
i are defined by

the same permutation ˜PN(d),ad,md,i). Hence, we have

Pr
[

T (d) = T̂ (d) ∧ Case2-0
∣

∣

∣Case2
]

≤ 1
(2b − 1)ω

.

• 1 ≤ μ ≤ ω − 1 ∧ S
(d)
1 = S

(e)
1 . Note that one has i1 = 1. First, μ − 1 indexes

1 < i2 < · · · < iμ are fixed, and the following case is considered:

– ∀i ∈ {1, i2, . . . , iμ} : S
(d)
i = S

(e)
i is satisfied, and

– ∀i ∈ [ω]\{1, i2, . . . , iμ} : S
(d)
i �= S

(e)
i is satisfied.

For each i ∈ [ω]\{1, i2, . . . , iμ}, T
(d)
i is chosen uniformly at random from

{0, 1}b\{T (e)
i }, we have Pr[∀i ∈ [ω]\{1, i2, . . . , iμ} : T

(d)
i = T̂

(d)
i] ≤ 1/(2b−1)ω−μ.

724 Y. Naito et al.

Next, the collisions S
(d)
i = S

(e)
i where i ∈ {1, i2, . . . , iμ} are considered. Let

I �= = {J1, . . . , jγ} such that j1 < · · · < jγ (note that ∀j ∈ I �= : Z
(d)
j �= Z

(e)
j).

The collisions are of the following forms:

S
(d)
1 = S

(e)
1 ⇔ Z

(d)
jγ

⊕ Z
(e)
jγ

︸ ︷︷ ︸

=:Zjγ

= D
(d)
jγ+1 ⊕ D

(e)
jγ+1,

where Djγ+1 ∈ {Ajγ+1, Cjγ−a+1}, and for i ∈ {i2, . . . , iμ},

S
(d)
i = S

(e)
i ⇔ α

(�d)
i,j1

· (Z(e)
j1

⊕ Z
(d)
j1

)
︸ ︷︷ ︸

=:Zj1

⊕ · · · ⊕ α
(�d)
i,jγ

· (Z(e)
jγ

⊕ Z
(d)
jγ

)
︸ ︷︷ ︸

=:Zjγ

= 0b.

If γ ≤ μ − 1, by Cond, the collisions S
(d)
i = S

(e)
i where i ∈ {i2, . . . , iμ} offer a

unique solution (Zj1 , . . . , Zjγ
) = (0b, · · · , 0b). Hence, the collisions do not occur.

If γ ≥ μ, then the collision S
(d)
1 = S

(e)
1 offers a solution Zjγ

= D
(d)
jγ+1⊕D

(e)
jγ+1. The

collisions S
(d)
i2

= S
(e)
i2

, . . . , S
(d)
iμ

= S
(e)
iμ

, fixing Zjω
, . . . , Zjγ−1 , offer a unique solu-

tion for (Zj1 , . . . , Zjω−1) by Cond. Since for each j ∈ {j1, . . . , jω−1, jγ}, Z
(d)
j is

chosen uniformly at random from {0, 1}b\{Z(e)
j }, we have Pr[∀i ∈ {1, i2, . . . , iμ} :

S
(d)
i = S

(e)
i] ≤ 1/(2b − 1)μ.

These upper-bounds give

Pr
[

T (d) = T̂ (d) ∧ Case2-μ
∣

∣

∣Case2
]

≤
(

ω − 1
μ − 1

)

· 1
(2b − 1)ω

.

• 1 ≤ μ ≤ ω − 1 ∧ S
(d)
1 �= S

(e)
1 : This analysis is the same as that of the case:

1 ≤ μ ≤ ω − 1 ∧ S
(d)
1 = S

(e)
1 . μ indexes 1 < i1 < i2 < · · · < iμ are fixed, and the

following case is considered:

– ∀i ∈ {i1, i2, . . . , iμ} : S
(d)
i = S

(e)
i is satisfied, and

– ∀i ∈ [ω]\{i1, i2, . . . , iμ} : S
(d)
i �= S

(e)
i is satisfied.

Using the same analysis, we have Pr[∀i ∈ {i1, i2, . . . , iμ} : S
(d)
i = S

(e)
i] ≤ 1/(2b −

1)μ, and Pr[∀i ∈ [ω]\{i1, i2, . . . , iμ} : T
(d)
i = T̂

(d)
i] ≤ 1/(2b −1)ω−μ. These upper-

bounds give

Pr
[

T (d) = T̂ (d) ∧ Case2-μ
∣

∣

∣Case2
]

≤
(

ω − 1
μ − 1

)

· 1
(2b − 1)ω

.

7 SKINNY-64-256

SKINNY [8] is a tweakable block cipher adopting the tweakey framework [27] that
treats the key input and the tweak input in the same way. The combined state is
called tweakey which does not make a particular distinction about which part is

Lightweight AE Mode Suitable for Threshold Implementation 725

used as a key and the tweak. For the 64-bit block, SKINNY supports the tweakey
sizes up to 192 bits, (i.e. SKINNY-64-192) while what we need is SKINNY-64-256.
In Sect. 7.1, we show how to extend the design of SKINNY to support a 256-bit
tweakey. The rationale of our design choices are explained in Sect. 7.2. Security
evaluation of SKINNY-64-256 is given in Sect. 7.3.

7.1 Specification

Round Transformation. We only briefly recall the round transformation of
SKINNY-64-256 because SKINNY-64-256 does not modify the round transforma-
tion. Refer to the original SKINNY document [8] for the details of each operation.

The 64-bit internal state is viewed as a 4×4 square array of nibbles. SKINNY-
64-256 consists of 44 rounds, in which one round transformation is defined
as an application of the following 5 operations: SubCells, AddRoundConstant,
AddRoundTweakey, ShiftRows and MixColumns.

SubCells. A 4-bit S-box is applied for each nibble.
AddRoundConstant. A 6-bit constant generated by an LFSR and a single

fixed bit are XORed to the top three rows of the first column.
AddRoundTweakey. The top two rows of all tweakey arrays are extracted and

XORed to the top two rows of the state.
ShiftRows. Each nibble in row i is rotated by i positions to the right.
MixColumns. Each column is multiplied by a 4 × 4 binary matrix.

New Tweakey Schedule. The 256-bit tweakey state consists of four 4 × 4
square arrays of nibbles. Each of them are called TK1, TK2, TK3 and TK4.

The tweakey states are updated as follows. First, a permutation PT is applied
on the nibble positions of all tweakey arrays TK1, TK2, TK3, and TK4, where
PT is defined as (0, . . . , 15) PT�−→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7).

Finally, every nibble of the first and second rows of TK2, TK3, and TK4
are individually updated with the following LFSRs.

TK2 : (x3‖x2‖x1‖x0) → (x2‖x1‖x0‖x3 ⊕ x2)
TK3 : (x3‖x2‖x1‖x0) → (x0 ⊕ x3||x3||x2||x1)
TK4 : (x3‖x2‖x1‖x0) → (x2‖x1‖x2 ⊕ x0‖x3 ⊕ x2 ⊕ x1)

7.2 Rationale for Newly Designed Parts

Design from Scratch vs Extension of the Original. The designers of
SKINNY first searched for good parameters of ShiftRows and MixColumns to
maximize the security in the single-key setting, and then later searched for the
tweakey schedule to maximize the security in the TK2 and TK3 settings. Later
Nikolić searched for better parameters to achieve higher number of active S-boxes
[36]. The first choice we made is whether we should search for good parameters
for TK4 from scratch as Nikolić did or we should extend the original SKINNY
that was optimized for TK1, TK2, and TK3. In the end, we determined to design

726 Y. Naito et al.

SKINNY-64-256 as a natural extension of the original SKINNY-64, i.e. not modify
any components to realize TK1, TK2, and TK3, though we do not have any
application to use smaller tweakey sizes. This is all for higher reliability. The
original SKINNY has received a lot of cryptanalytic effort by third-party and
seems to generate a consensus that the design choice of SKINNY is conservative,
and thus secure. We would like to design SKINNY-64-256 so that those existing
results contribute to the reliability of the security of SKINNY-64-256.

Number of Rounds. Once the above strategy was established, the only com-
ponents we need to design are an LFSR to update the TK4 state and the number
of rounds. In SKINNY, the number of rounds for TK1, TK2 and TK3 are defined
to be 32, 36, and 40, respectively. As mentioned above, those choices look quite
conservative. Indeed, the maximum number of attacked rounds so far is 19 for
TK1 by related-tweakey impossible differential attacks [30,41], 23 for TK2 by
related-tweakey impossible differential attacks [5,30,41], and 27 for TK3 by a
related-tweakey rectangle attack [30]. This made us think about not increasing
the number of rounds from TK3. In the end, to be consistent with the first deci-
sion, i.e. to make it a natural extension of the original SKINNY, we determined
to keep the same rate for increasing the number of rounds, namely 44 for TK4.

LFSR for TK4. To be a secure instantiation of the tweakey framework [27],
the LFSR must have a cycle of 15. The original LFSRs in SKINNY for TK2 and
TK3 are quite efficient: they only require a single XOR to the LFSR. By the
exhaustive search, We found that there is no more LFSR achieving cycle 15 only
with a single XOR. Moreover, we found that

– there is no LFSR having cycle 15 even with two XORs.
– it is impossible to achieve cycle 15 only by updating one output bit

In the end, we picked up the LFSR that updates 2 output bits with 3 XORs.

7.3 Bounds of the Number of Active S-boxes

Bounds for SKINNY-64-256 (TK4). The designers of SKINNY evaluated the
tight bounds of the number of active S-boxes by using Mixed Integer Linear
Programming (MILP) by describing how to model the problem in details. We
extended their MILP model to derive the number of active S-boxes of SKINNY-
64-256 (in TK4). The lower bounds of the number of active S-boxes for SK,
TK1, TK2, TK3 and TK4 are compared in Table 2. Note that according to the
designers, MILP sometimes took too long, and the designers only could give
upper bounds of the number of active S-boxes in such cases. The upper bounds
are denoted with the upper bar in Table 2.

Table 2 shows that TK4 is a natural extension of TK3 also for the increase
of the bounds. In particular, the comparison is clear in the following part.

– The bounds for 21 to 24 rounds for TK2 are 59, 64, 67, and 72, respectively.
– The bounds for 24 to 27 rounds for TK3 are 58, 60, 65, and 72, respectively.
– The bounds for 27 to 30 rounds for TK4 are 58, 62, 66, and 72, respectively.

Lightweight AE Mode Suitable for Threshold Implementation 727

Table 2. Lower bounds on the number of active Sboxes. The numbers for SK, TK1,
TK2, TK3 and Lin are from the evaluation by the designers [8], where numbers with
upper line are the upper bounds. SK[4] shows the updated tight bounds by Alfarano
et al. [4]. Numbers for Lin’ and TK4 were derived by us.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66

TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49

TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35

TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24

TK4 0 0 0 0 0 0 0 0 1 2 3 6 9 12 16

Lin 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK 75 82 88 92 96 102 108 114 116 124 132 138 136 148 158

SK[4] 75 82 88 92 96 102 108 112 116 124 128 132 136 142 148

TK1 54 59 62 66 70 75 79 83 85 88 95 102 108 112 120

TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96

TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

TK4 19 21 24 30 35 39 41 43 46 50 54 58 62 66 72

Lin 70 76 80 85 90 96 102 107 110 118 122 128 136 141 143

Lin’ 70 76 80 85 90 96 102 107 110 115 121 127 130 135 141

The bounds for r rounds in TK2, r +3 rounds in TK3, and r +6 rounds in TK4
are almost the same. This also implies that our choice of the total number of
rounds (44 rounds for TK4, while 40 rounds for TK3 and 36 rounds for TK2) is
quite reasonable.

To be more precise, the designers of SKINNY need to ensure at least 64
active S-boxes because their 8-bit S-box for 128-bit block versions also allows
differential propagation with probability 2−2. For SKINNY-64, to ensure at least
32 active S-boxes is sufficient to resist a single differential characteristic, which
is ensured only by 20 rounds even in TK4. Hence, our choice of 44 rounds is
more conservative than the original SKINNY supporting the 128-bit block.

Deriving Tight Bounds for Linear Cryptanalysis. As mentioned above,
the designers sometimes could not derive the tight bounds. Alfarano et al. [4]
later identified the tight bound for differential cryptanalysis in SK, but did not
show the bound for linear cryptanalysis. To present a better picture, we tried to
derive the tight bounds.

Our approach is to apply the combination of Matsui’s search strategy [31]
with MILP proposed by Zhang et al. [46]. In short, this considers the bound
derived for r−1 rounds to efficiently search for the bounds for r rounds. In more
precise, it restricts the sum of the number of active S-boxes from round 1 to
round r − 1 and from round 2 to round r. This small changes actually allowed
us to derive the tight bounds for Lin up to 30 rounds.

728 Y. Naito et al.

8 Hardware Performance Evaluation

We evaluate the hardware performance of PFB Plus combined with SKINNY-64-
256 and compare it with a conventional BBB scheme, namely PFB.

Choice of Competitor. We choose PFB as a competitor in hardware perfor-
mance evaluation because (i) it is the scheme PFB Plus based on, and (ii) it
shows the best performance in TI at the time of writing [34]. To achieve the
same security level, we use a 128-bit variant of the SKINNY family, namely
SKINNY-128-256 as an underlying cipher.

Design Policy. We follow the design policy for the previous PFB implemen-
tation [34]. The design defines a set of commands for processing block-aligned
data, and an external microcontroller is supposed to dispatches the commands
in an appropriate order to realize AD processing, encryption, and decryption
of AEAD. The design aims to accelerate the main processing part, while the
microcontroller is responsible for preparing the block-aligned data by padding
and choosing an appropriate ID. The designs store a key, nonce, and tweak in
its internal registers, and can process multiple data blocks without feeding the
data redundantly. For the purpose, the tweak is updated in place by integrated
nonce-updating circuitry.

Side-Channel Attack Countermeasure. We implement unprotected and
protected designs for each of the algorithms. For protected implementation,
we implement 3-share TI secure up to the first-order attacks. For protected
implementations, we also protect the on-the-fly tweakey schedule considering a
profiling attack5.

Register Cost. We first compare the register costs of PFB Plus[SKINNY-64-
256] and PFB[SKINNY-128-256] with and without TI in Table 3. The table also
shows PFB[SKINNY-64-192] and SAEB[GIFT-128-128] in the previous work [34]
for comparison. Without TI, the security level determines the register cost: the
ones with 128- and 64-bit security need 386 and 256 bits of registers, respectively.
With TI, on the other hand, PFB Plus[SKINNY-64-256] uses a smaller number
of registers than PFB[SKINNY-128-256]. The difference comes from the different
number of shares for each component: the state needs three shares, while the key
and tag need only two shares because the operation is linear. There are 2-share
masking schemes that can protect the state with two shares [15], but we do not
consider them because they need fresh randomness during the execution and the
cost for random number generation is overwhelming [42].

8.1 PFB Plus with SKINNY-64-256

Tweakey Configuration. We use the tweakey TK1 and TK2 for storing a
128-bit secret key, and TK3 and TK4 for a tweak. The tweak comprises the
5 The designs in this paper has a room for more aggressive optimization by skipping

protection of (twea)key-scheduling [8,40,44].

Lightweight AE Mode Suitable for Threshold Implementation 729

Table 3. Comparison of the number of registers with and without TI. We imple-
ment and evaluate the ones with 128-bit security (PFB Plus[SKINNY-64-256] and
PFB[SKINNY-128-256]) in this section. The table also shows the conventional ones with
64-bit security (PFB[SKINNY-64-192] and SAEB[GIFT-128-128]) [34] for comparison.

Name TI Sec. Total State Key Tweak Tag Ref.

PFB Plus[SKINNY-64-256] — 128 386 64 128 128 64 Ours

PFB[SKINNY-128-256] — 128 386 128 128 128 0 Ours

PFB Plus[SKINNY-64-256] � 128 704 192 256 128 128 Ours

PFB[SKINNY-128-256] � 128 768 384 256 128 0 Ours

PFB[SKINNY-64-192] — 64 256 64 128 64 0 [34]

SAEB[GIFT-128-128] — 64 256 128 128 0 0 [34]

PFB[SKINNY-64-192] � 64 512 192 256 64 0 [34]

SAEB[GIFT128-128] � 64 640 384 256 0 0 [34]

g

RC gen.

State
array

f

M
ix

C
ol

um
ns

State array

4

4

44
A/M/C C/M/T

3 share

4

Shift
reg.

byte perm. / revert / counter
4

Tweakey array linear/
revert

2 share

4

TK1 array

TK1 input

8

64 bits
TK2 array

TK2 input

8

64 bits
TK3 array

TK3 input

8

64 bits
TK4 array

TK4 input

8

64 bits

id

4

2 share

64 bits

64 bits

Fig. 3. Hardware architecture of PFB Plus[SKINNY-64-256]. f and g functions are the
decomposed 4-bit S-box [8].

4-bit ID x, 96-bit nonce N , and a 28-bit counter ctr. TK3 and TK4 combined
store these values as:

TK3‖TK4 = str4(x)‖str96(N)‖str28(ctr). (14)

Circuit Architecture for SKINNY-64-256. Following the conventional
SKINNY implementations, we use the nibble-serial architecture based on 2-
dimensional arrays of scan flip-flops [8,32,34] with the decomposed 4-bit S-box (f
and g functions) integrated. The design uses in-place on-the-fly tweakey schedule
capable of reverting it to the original state after the final round [34]. Moreover,
the TK4 array has an integrated 28-bit adder for incrementing ctr in place.

730 Y. Naito et al.

i

RC gen.

State array

TK1 array TK2 array

TK1 input TK2 input id

h

M
ix

C
ol

um
ns

State array

8

8

8

8

8
A/M/C C/M/T

3 share

2 share

8

gf

8 3

128 bits 128 bits

128 bits

Fig. 4. Hardware architecture of PFB[SKINNY-128-256]. f , g, h, and i functions are
the decomposed 8-bit S-box [8].

Circuit Architecture for Mode of Operation. PFB Plus is a thin wrapper
on top of the SKINNY-64-256 circuit similar to the conventional PFB implemen-
tation. The shift register (4 × 16 bits) with a feedback XOR realizes the tag
accumulator.

Latency. The design finishes the round function in 16 cycles, and the entire
SKINNY-64-256 in 704 (=16 × 44) cycles. With one more cycle for updating the
tweak, the circuit consumes a single-block message with 705 cycles.

Sharing. Figure 3 shows the number of shares in the protected implementation.
As mentioned in the previous section, the implementation is heterogeneous in
terms of the number of shares: (I) there is no sharing on TK3 and TK4 storing
the public tweak, (II) TK1, TK2, and the tag accumulator use 2-share repre-
sentation as they use linear operations only, and (III) the state array that goes
through the non-linear S-box operation has three shares.

8.2 PFB with SKINNY-128-256

Tweakey Configuration. The first tweakey array TK1 stores a 128-bit secret
key, and another tweakey TK2 stores a tweak comprising the 3-bit ID x, 96-bit
nonce N , and a 29-bit counter ctr:

TK2 = str3(x)‖str96(N)‖str29(ctr). (15)

Circuit Architecture for SKINNY-128-256. Figure 4 shows the circuit archi-
tecture of PFB Plus with SKINNY-128-256. The circuit architecture of SKINNY-
128-256 follows the previous implementation [8]: the byte-serial architecture with
the decomposed 8-bit S-box (f , g, h, and i functions) integrated into the state
array. The TK1 and TK2 arrays have the same structure as the SKINNY-64-
256 circuit (see Fig. 3), and support in-pace tweak updating and reverting after
on-the-fly tweakey schedule.

Lightweight AE Mode Suitable for Threshold Implementation 731

Circuit Architecture for Mode of Operation. The circuit architecture for
PFB is similar to the previous PFB Plus and also the conventional implementa-
tion [34].

Latency. The design finishes the SKINNY-64-256 encryption in 768 (= 16 × 44
+ 1) cycles.

Sharing. This circuit also has a heterogeneous sharing, as shown in Fig. 4: (I)
there is no sharing on TK2 storing the public tweak, (II) the secret key in TK1
represented by two shares, and (III) the state array in three shares.

8.3 Performance Evaluation and Comparison

Implementation and Evaluation Procedure. We implemented the designs
in the register-transfer level with a single exception: explicit instantiation of

Table 4. Circuit area breakdown of PFB Plus[SKINNY-64-256] and PFB[SKINNY-128-
256]

Target Component Circuit area [GE]

Normal TI

PFB Plus with Total 4,351 7,439

SKINNY-64-256 Total/Shift register 444 888

Total/TBC 3,713 6,292

Total/TBC/State 532 1,646

Total/TBC/Key 1,268 2,620

Total/TBC/Tweak 1,551 1,551

PFB with Total 4,400 8,448

SKINNY-128-256 Total/TBC 4,218 8,159

Total/TBC/State 1,098 3,517

Total/TBC/Key 1,224 2,546

Total/TBC/Tweak 1,421 1,470

Table 5. Comparison with previous AEAD implementations with TI: the latency shows
that of a single primitive call.

Target Sec.
[bits]

Area
[GE]

Latency
[cycles]

Standard-cell library Ref.

PFB Plus[SKINNY-64-256] 128 7,439 705 NanGate 45-nm Ours

PFB[SKINNY-128-256] 128 8,448 768 NanGate 45-nm Ours

PFB[SKINNY-64-192] 64 5,858 641 NanGate 45-nm [34]

SAEB[GIFT128-128] 64 6,229 1,320 NanGate 45-nm [34]

Ascon w/o IF 128 7,970 3,072 UMC 90-nm [22]

Ascon w/ IF 128 9,190 3,072 UMC 90-nm [22]

Ketje-JR 96 18,335 16 NanGate 45-nm [6]

732 Y. Naito et al.

scan flip-flops following the previous works [32]. We synthesized the design using
Synopsys Design Compiler with the NanGate 45-nm standard cell library [35]
while preserving the structure of major components, as shown in Table 4.

Performance without TI. PFB Plus[SKINNY-64-256] and PFB[SKINNY-128-
256] have similar circuit areas without TI: 4,351 and 4,400 [GE], respectively.
As consistent with the register counts in Table 3, PFB Plus[SKINNY-64-256] has
the smaller state array (532 compared to 1,098 [GE], but needs the additional
shift register.

Performance with TI. With TI, on the other hand, PFB Plus[SKINNY-64-256]
is smaller than PFB[SKINNY-128-256] by 1,009 [GE] (7,439 and 8,448 [GE]).
That is also consistent with Table 3 as PFB Plus[SKINNY-64-256] has 64-bit
fewer registers. A smaller S-box circuit of PFB Plus[SKINNY-64-256] (nibble-
wise and two stages) compared to that of PFB[SKINNY-128-256] (byte-wise and
four stages) also contributes to this advantage of over one thousand gates.

Comparison with other AEAD. Table 5 compares the proposed method
with conventional implementations of AEADs protected with TI. PFB[SKINNY-
64-192] is a predecessor with a lower security level and is smaller than
PFB Plus[SKINNY-64-256] by 1,581 [GE] because it has fewer registers as sum-
marized in Table 3. In comparison with Ascon having the same 128-bit security
level, PFB Plus[SKINNY-64-256] has a smaller circuit area even compared with
the one having no interface6. The advantage of PFB Plus[SKINNY-64-256] comes
from heterogeneous sharing: PFB Plus[SKINNY-64-256] can use fewer shares for
the tweak, key, and tag meanwhile Ascon needs three shares for the entire 320-bit
state. We also note that the Ascon implementation has longer latency and needs
fresh random bits during the execution. Based on the comparison, we can con-
clude that PFB Plus[SKINNY-64-256] has the smallest circuit area in TI among
the schemes having 128-bit security.

References

1. Adomnicai, A., et al.: Lilliput-AE: a new lightweight tweakable block cipher for
authenticated encryption with associated data. Submitted to NIST Lightweight
Project (2019)

2. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 7

3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

6 The Ascon implementation excludes a 128-bit key register (640 [GE] for 5 [GE/bit])
needed to run another encryption/decryption with the same key.

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17

Lightweight AE Mode Suitable for Threshold Implementation 733

4. Alfarano, G.N., Beierle, C., Isobe, T., Kölbl, S., Leander, G.: ShiftRows alternatives
for AES-like ciphers and optimal cell permutations for Midori and Skinny. IACR
Trans. Symmetric Cryptol. 2018(2), 20–47 (2018)

5. Ankele, R., et al.: Related-key impossible-differential attack on reduced-round
Skinny. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol.
10355, pp. 208–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61204-1 11

6. Arribas, V., Nikova, S., Rijmen, V.: Guards in action: first-order SCA secure imple-
mentations of Ketje without additional randomness. In: DSD 2018, pp. 492–499.
IEEE Computer Society (2018)

7. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the
face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 24

8. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

9. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.: Ciphertext integrity
with misuse and leakage: definition and efficient constructions with symmetric
primitives. In: AsiaCCS 2018, pp. 37–50. ACM (2018)

10. Berti, F., Pereira, O., Peters, T., Standaert, F.: On leakage-resilient authenticated
encryption with decryption leakages. IACR Trans. Symmetric Cryptol. 2017(3),
271–293 (2017)

11. Berti, F., Pereira, O., Standaert, F.-X.: Reducing the cost of authenticity with
leakages: a CIML2-secure AE scheme with one call to a strongly protected tweakable
block cipher. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019.
LNCS, vol. 11627, pp. 229–249. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23696-0 12

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

13. Beyne, T., Bilgin, B.: Uniform first-order threshold implementations. In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 79–98. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69453-5 5

14. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(2), 218–241 (2018)

15. Chen, C., Farmani, M., Eisenbarth, T.: A tale of two shares: why two-share thresh-
old implementation seems worthwhile—and why it is not. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 819–843. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 30

16. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2 10

17. Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: the case of authen-
ticated encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
Part II, vol. 11922, pp. 209–240. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34621-8 8

https://doi.org/10.1007/978-3-319-61204-1_11
https://doi.org/10.1007/978-3-319-61204-1_11
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-030-23696-0_12
https://doi.org/10.1007/978-3-030-23696-0_12
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-319-69453-5_5
https://doi.org/10.1007/978-3-662-53887-6_30
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-030-34621-8_8
https://doi.org/10.1007/978-3-030-34621-8_8

734 Y. Naito et al.

18. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

19. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In:
Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, Part III, vol. 11923,
pp. 225–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 8

20. Dunkelman, O., Keller, N., Lambooij, E., Sasaki, Y.: A practical forgery attack on
Lilliput-AE. IACR Cryptology ePrint Archive 2019/867 (2019)

21. Gao, S., Roy, A., Oswald, E.: Constructing TI-friendly substitution boxes using
shift-invariant permutations. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 433–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-
4 22

22. Groß, H., Wenger, E., Dobraunig, C., Ehrenhöfer, C.: Suit up! - made-to-measure
hardware implementations of ASCON. In: DSD 2015, pp. 645–652. IEEE Computer
Society (2015)

23. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Authenticated encryption with
nonce misuse and physical leakage: definitions, separation results and first con-
struction. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 150–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 8

24. Guo, C., Pereira, O., Peters, T., Standaert, F.: Towards lightweight side-channel
security and the leakage-resilience of the duplex sponge. IACR Cryptology ePrint
Archive 2019/193 (2019)

25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

26. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1.0. Submitted
to NIST Lightweight Project (2019)

27. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

28. Jovanovic, P., Luykx, A., Mennink, B., Sasaki, Y., Yasuda, K.: Beyond conventional
security in sponge-based authenticated encryption modes. J. Cryptol. 32(3), 895–
940 (2018). https://doi.org/10.1007/s00145-018-9299-7

29. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

30. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey
settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017)

31. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

32. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 6

33. Naito, Y., Matsui, M., Sugawara, T., Suzuki, D.: SAEB: a lightweight blockcipher-
based AEAD mode of operation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(2), 192–217 (2018)

https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-030-12612-4_22
https://doi.org/10.1007/978-3-030-12612-4_22
https://doi.org/10.1007/978-3-030-30530-7_8
https://doi.org/10.1007/978-3-030-30530-7_8
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/s00145-018-9299-7
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/978-3-642-20465-4_6

Lightweight AE Mode Suitable for Threshold Implementation 735

34. Naito, Y., Sugawara, T.: Lightweight authenticated encryption mode of operation
for tweakable block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1),
66–94 (2020)

35. NanGate: NanGate FreePDK45 open cell library. http://www.nangate.com
36. Nikolić, I.: How to use metaheuristics for design of symmetric-key primitives. In:

Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 369–391.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 13

37. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

38. NIST: Submission requirements and evaluation criteria for the lightweight cryptog-
raphy standardization process (2018). https://csrc.nist.gov/Projects/lightweight-
cryptography

39. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryp-
tion from symmetric cryptographic primitives. In: CCS 2015, pp. 96–108. ACM
(2015)

40. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011). https://
doi.org/10.1007/s00145-010-9086-6

41. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY
block cipher. IACR Trans. Symmetric Cryptol. 2018(3), 124–162 (2018)

42. Sugawara, T.: 3-share threshold implementation of AES S-box without fresh ran-
domness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 123–145 (2019)

43. TS35.201: 3G Security; Specification of the 3GPP confidentiality and integrity
algorithms; Document 1: f8 and f9 specification (1999)

44. Ueno, R., Homma, N., Aoki, T.: Toward more efficient DPA-resistant AES
hardware architecture based on threshold implementation. In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 50–64. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64647-3 4

45. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 34

46. Zhang, Y., Sun, S., Cai, J., Hu, L.: Speeding up MILP aided differential character-
istic search with Matsui’s strategy. In: Chen, L., Manulis, M., Schneider, S. (eds.)
ISC 2018. LNCS, vol. 11060, pp. 101–115. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99136-8 6

http://www.nangate.com
https://doi.org/10.1007/978-3-319-70700-6_13
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/978-3-319-64647-3_4
https://doi.org/10.1007/978-3-319-64647-3_4
https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-319-99136-8_6
https://doi.org/10.1007/978-3-319-99136-8_6

Secure Computation II

PSI from PaXoS: Fast, Malicious Private
Set Intersection

Benny Pinkas1(B), Mike Rosulek2(B), Ni Trieu2, and Avishay Yanai3

1 Bar-Ilan University, Ramat Gan, Israel
benny.pinkas@biu.ac.il

2 Oregon State University, Corvallis, USA
{rosulekm,trieun}@oregonstate.edu
3 VMware Research, Herzliya, Israel

yanaia@vmware.com

Abstract. We present a 2-party private set intersection (PSI) protocol
which provides security against malicious participants, yet is almost as
fast as the fastest known semi-honest PSI protocol of Kolesnikov et al.
(CCS 2016).

Our protocol is based on a new approach for two-party PSI, which
can be instantiated to provide security against either malicious or semi-
honest adversaries. The protocol is unique in that the only difference
between the semi-honest and malicious versions is an instantiation with
different parameters for a linear error-correction code. It is also the first
PSI protocol which is concretely efficient while having linear communi-
cation and security against malicious adversaries, while running in the
OT-hybrid model (assuming a non-programmable random oracle).

State of the art semi-honest PSI protocols take advantage of cuckoo
hashing, but it has proven a challenge to use cuckoo hashing for malicious
security. Our protocol is the first to use cuckoo hashing for malicious-
secure PSI. We do so via a new data structure, called a probe-and-XOR of
strings (PaXoS), which may be of independent interest. This abstraction
captures important properties of previous data structures, most notably
garbled Bloom filters. While an encoding by a garbled Bloom filter is
larger by a factor of Ω(λ) than the original data, we describe a signifi-
cantly improved PaXoS based on cuckoo hashing that achieves constant
rate while being no worse in other relevant efficiency measures.

The first and fourth authors are supported by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office and by a grant from the Israel Science Founda-
tion. The second and third authors are supported by NSF award 1617197, a Google
faculty award, and a Visa faculty award. Part of the work was done while the fourth
author is at Bar-Ilan University. This research is based upon work supported in part
by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), via 2019-19-020700006. The views and conclu-
sions contained herein are those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or implied, of ODNI, IARPA, or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 739–767, 2020.
https://doi.org/10.1007/978-3-030-45724-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_25

740 B. Pinkas et al.

1 Introduction

Private set intersection (PSI) allows two parties with respective input sets X
and Y to compute the intersection of the two sets without revealing anything
else about their inputs. PSI and its variants have numerous applications, such as
for contact discovery, threat detection, advertising, etc. (see e.g., [14,31] and ref-
erences within). Privately computing the size of the intersection (known as ‘PSI
cardinality’) is also important for computing conditional probabilities, which are
useful for computing different analytics of private distributed data.

While there are generic methods for secure multi-party computation of any
function (MPC), finding a specific protocol for PSI is interesting in its own sake
since generic MPC protocols are relatively inefficient for computing PSI: generic
MPC operates on a circuit representation of the computed functionality, while
the intersection functionality can be represented only by relatively large circuits
(the naive circuit for computing the intersection of two sets of size n is of size
O(n2); a circuit based on sorting networks is of size O(n log n) [12]; and new
results reduce the circuit to size O(n) by utilizing different hashing schemes, but
seem to be hard to be adapted to the malicious setting [28,29].)

There has been tremendous progress in computing PSI in the semi-honest
model, where the parties are assured to follow the protocol (see [19,26,28]). How-
ever, protocols for the malicious setting, where parties can behave arbitrarily,
are much slower, with the protocol of Rosulek and Rindal [34] being the best in
terms of concrete efficiency. Protocols in both settings reduce the computation
of PSI to computing many oblivious transfers (OT), which can be implemented
extremely efficiently using oblivious transfer extension [1,15]. The protocols also
benefit from hashing the items of the input sets to many bins, and computing
the intersection separately on each bin. In the semi-honest setting it was possible
to use Cuckoo hashing, which is a very efficient hashing method that maps each
item to one of two possible locations [17,25]. However, it was unknown how to
use Cuckoo hashing in the malicious setting: the problem was that a malicious
party Alice can learn the location to which an input element of Bob is mapped.
The choice of this location by Bob leaks information about the other inputs of
Bob, including items which are not in the intersection.

1.1 Our Contributions

Our protocol is the first to use Cuckoo hashing for PSI in the malicious setting.
This is done by introducing a new data structure, called a probe-and-XOR of
strings (PaXoS). This is a randomized function, mapping n binary strings to m
binary strings, where each of the n original strings can be retrieved by XOR’ing
a specific subset of the m strings. PaXoS can be trivially implemented using a
random m×n matrix, but then the encoding and decoding times are prohibitively
high when n is large. We show how to implement PaXoS using a Cuckoo graph
(a graph representing the mapping in Cuckoo hashing), with efficient encoding
and decoding algorithms. This is essentially equivalent to Cuckoo hashing where
instead of storing an item in one of two locations, we set the values of these

PSI from PaXoS: Fast, Malicious Private Set Intersection 741

two locations such that their XOR is equal to the stored value. As a side-effect,
this does away with the drawback of using Cuckoo hashing in malicious PSI.
Namely, parties do not need to choose one of two locations in which an input
item is stored, and thus there is no potential information leakage by Cuckoo
hashing.

Our protocol uses a PaXoS data structure D as a key-value store, mapping
the inputs values (aka keys) of one of the parties to values which are encoded as
linear combinations of the string in D. It then uses the OT extension protocol
of Orrù et al. [23] (OOS), to build a PSI protocol from this data structure. The
OOS protocol is secure against malicious adversaries, and is parameterized by
a linear error-correcting code. Our PSI construction is unique in that the only
difference between the semi-honest and malicious instantiations is only in the
parameters of this code.

The semi-honest instantiation improves over the state of the art KKRT pro-
tocol [19] by 25% in concrete communication cost, while having a comparable
running time. More importantly, the malicious instantiation has only slightly
higher overhead than the best semi-honest protocol, and significantly better
performance than the state of the art for malicious security [34] (about 8×
less communication, and 3× faster computation). Source code is available at
github.com/cryptobiu/PaXoS PSI.

From a theory perspective, we introduce the first concretely efficient protocol
in the OT-hybrid model (assuming a non-programmable random oracle), which
is secure in the malicious setting and has linear communication. The previous
state-of-the-art [34] has O(n log n) communication complexity.

1.2 Related Work

We focus on the discussion of the state-of-the-art of semi-honest PSI protocols.
We note that the earliest PSI protocols, based on Diffie-Hellman assumptions,
can be traced back to the 1980s [13,20,35], and refer the reader to [30] for an
overview of the different PSI paradigms for PSI. Protocols [26] based on oblivious
transfer extension have proven to be the fastest in practice.

A more popular public-key based approach to low-communication PSI is
based on Diffie-Hellman key agreement, and presented in the 1980s [13,21] in
the random oracle model. The high-level idea is for the parties to compute the
intersection of {(H(xi)k)r | x ∈ X} and {(H(yi)r)k | y ∈ Y } in the clear, where
r and k are secrets known by receiver and sender, respectively. However, This
protocol requires O(n) exponentiations.

Current state-of-the-art semi-honest PSI protocols in the two-party setting
are [19,26,31]. They all rely on oblivious transfer. Most work on concretely effi-
cient PSI is in the random oracle model, and with security against semi-honest,
rather than malicious, adversaries. Some notable exceptions are [7,11,16] in the
standard model, and [4,7,33,34] with security against malicious adversaries.

We refer the reader to the full paper [27] for a detailed and technical com-
parison of the many different protocol paradigms for PSI.

http://github.com/cryptobiu/PaXoS_PSI

742 B. Pinkas et al.

1.3 Organization

In Sect. 2 we present the preliminaries required in order to understand our tech-
niques (linear codes, correlation-robustness, oblivious transfer and PSI). We then
introduce the notion of Probe and Xor of Strings (PaXoS) in Sect. 3 and show an
efficient construction of a PaXoS in Sect. 5. In Sect. 4 we present and prove our
PSI protocol, which is obtained from any PaXoS. We show our main construc-
tion of an efficient PaXoS in Sect. 3.2 (and an alternative, more compact one, in
the full paper [27]). We present a detailed, qualitative as well as experimental,
comparison to previous work in Sects. 6 and 7.

2 Preliminaries

We denote the computational and statistical security parameters by κ and λ
respectively. We say that a function μ : N → N is negligible if for every positive
polynomial p(·) and all sufficiently large κ it holds that μ(κ) < 1

p(κ) . For a bit
string x (or a vector) of length m, we refer to the j-th coordinate of x by xj . A
matrix is denoted by a capital letter. For a matrix X, we refer to the j-th row of
X by xj and the j-th column of X by xj . For two bit strings a, b with |a| = |b|,
a ∧ b (resp. a ⊕ b) denotes the bitwise-AND (resp. bitwise-XOR) of a and b.

Error-correcting codes. A binary linear code C with length nC , dimension kC
and minimum distance dC is denoted [nC , kC , dC]. So C : FkC

2 → F
nC
2 is a linear

map such that for every nonzero m ∈ F
kC
2 , the Hamming weight of C(m) is at

least dC .

Code-correlation-robustness of random oracles. Our construction uses the fact
that when H is a random oracle, C is a linear code with minimum distance κ,
and s is secret, terms of the form H(a ⊕ C(b) ∧ s) look random. This property
was introduced in [18] as a generalization of correlation-robust hashing (from
[15]), and a variant is also used in the context of PSI in [19]. It is described in
the following lemma.

Lemma 1 ([18]). Let C be a linear error correcting code [n, k, d] with d ≥ κ.
Let H be a random oracle and let s ← {0, 1}n be chosen uniformly at random.
Then for all a1, . . . , am ∈ {0, 1}n and nonzero b1, . . . , bm ∈ {0, 1}k, the following
values are indistinguishable from random:

H(a1 ⊕ C(b1) ∧ s), . . . , H(am ⊕ C(bm) ∧ s),

Proof (Proof Sketch). If C has minimum distance κ, then any nonzero codeword
C(bi) has hamming weight at least κ, so the term C(bi) ∧ s involves at least κ
unknown bits of the secret s. Hence, each argument of the form H(ai ⊕C(bi)∧s)
has at least κ bits of entropy, from the point of view of the distinguisher, so it
is negligibly likely that the distinguisher will ever query H at such a point.

PSI from PaXoS: Fast, Malicious Private Set Intersection 743

Oblivious transfer. Oblivious Transfer (OT) is a central cryptographic primitive
in the area of secure computation. It was introduced by Rabin [6,32]. 1-out-of-2
OT is a two-party protocol between a sender, who inputs two messages v0, v1,
and a receiver who inputs a choice bit b and learns as output vb and nothing
about v1−b. The sender remains oblivious as what message was received by the
receiver. The general case of 1-out-of-N OT on τ -bit strings is defined as the
functionality:

Fτ
N-OT [(v0, . . . , vN−1) , c] → [⊥, vc]

where v0, . . . , vN−1 ∈ {0, 1}τ are the sender’s inputs and c ∈ {0, . . . , N − 1}
is the receiver’s input. We denote by Fτ,m

N-OT the functionality that runs FN-OT

for m times on messages in {0, 1}τ . An important variant is the random OT
functionality, denoted Fτ,m

N-ROT in which the sender provides no input, but receives
from the functionality as output random messages (v0, . . . , vN−1) (or a key which
enables to compute these messages).

The OOS oblivious transfer functionality. We will use a specific construction, by
Orrù, Orsini and Scholl [23] (hereafter referred to as OOS) that realizes Fτ,m

N-ROT,
and supports an exponentially large N , e.g. N = 2τ . OOS is parameterized with
a binary linear code [nC , kC , dC] where kC = τ and dC ≥ κ. OOS features a useful
homomorphism property that we use in our PSI construction (see Sect. 4).

Specifically, we describe OOS as the functionality:

FOOS [s, (d1, . . . , dm)] → [
(q1, . . . , qm) ,

(
r1, . . . , rm

)]

where ri = qi ⊕ s ∧ C(di), s, qi ∈ F
nC
2 and di ∈ F

kC
2 for every i ∈ [m].

These outputs can be used for m instances of 1-out-of-N OT as follows. The
random OT values for the ith OT instance are H(qi ⊕ s ∧ C(x)), where H is a
random oracle and x ranges over all N possible τ -bit strings. The sender can
compute any of these values as desired, whereas the receiver can compute only
H(ri) = H(qi ⊕ s ∧ C(di)), which is the OT value corresponding to choice index
di. The fact that other OT values H(qi⊕s∧C(d′)), for d′ 	= di, are pseudorandom
is due to Lemma 1. Specifically, we can write

qi ⊕ s ∧ C(d′) = qi ⊕ s ∧
[
C(di) ⊕ C(di ⊕ d′)

]
= ri ⊕ s ∧ C(di ⊕ d′)

and observe that C(di ⊕ d′) has Hamming weight at least dC ≥ κ. Hence
Lemma 1 applies. Note that the “raw outputs” of the OOS functionality are
XOR-homomorphic in the following sense: for every i, j ∈ [m],

ri ⊕ rj =
(
qi ⊕ s ∧ C(di)

) ⊕ (
qj ⊕ s ∧ C(dj)

)
= qi ⊕ qj ⊕ s ∧ C(di ⊕ dj)

In this expression we use the fact that C is a linear code.

Secure computation and 2-party PSI. Informally, security is defined in the
real/ideal paradigm [9, Chapter 7]. A protocol is secure if, for any attack against

744 B. Pinkas et al.

the protocol, there is an equivalent attack in an “ideal” world where the func-
tion is computed by a trusted third party. More formally, a functionality is a
trusted third party who cannot be corrupted and who carries out a specific task
in response to invocations (with arguments) from parties. This is considered as
the ideal world. Parties interact with each other according to some prescribed
protocol; in other words, the parties execute a protocol in the real world. Parties,
who execute some protocol, may interact/invoke functionalities as well, in which
case we consider this to be a hybrid world. A semi-honest adversary may cor-
rupt parties and obtain their entire state and all subsequent received messages; a
malicious adversary may additionally cause them deviate, arbitrarily, from their
interaction with each other and with a functionality (i.e. modify/omit messages,
etc.). In this work there are only two parties, sender and receiver, and the adver-
sary may statically corrupt one of them (at the onset of the execution).

We denote by idealf,A(x, y) the joint execution of some task f by an ideal
world functionality, under inputs x and y of the receiver and sender, resp., in the
presence of an adversary A. In addition, we denote by realπ,A(x, y) the joint
execution of some task f by a protocol π in the real world, under inputs x and
y of the receiver and sender, resp., in the presence of an adversary A.

Definition 2. A protocol π is said to securely compute f (in the malicious
model) if for every probabilistic polynomial time adversary A there exists a prob-
abilistic polynomial time simulator S such that

{idealf,S(x, y)}x,y
c≡ {realπ,A(x, y)}x,y

We consider a 2-party PSI functionality, described in Fig. 1, that does not
strictly enforce the size of a corrupt party’s input set. In other words,
while ostensibly running the protocol on sets of size n, an adversary may learn
as much as if he used a set of bounded size n′ > n in the ideal world (typically,
n′ = c·n for some constant c, This is the case in this work as well). This property
is shared by several other 2-party malicious PSI protocols [33,34].

3 Probe-and-XOR of Strings (PaXoS)

3.1 Definitions

Our main tool is a mapping which has good linearity properties.

Definition 3. A (n,m, 2−λ)-probe and XOR of strings (PaXoS) is an oracle
function vH : {0, 1}∗ → {0, 1}m such that for any distinct x1, . . . , xn ∈ {0, 1}∗,

Pr[vH(x1), . . . ,vH(xn) are linearly independent] ≥ 1 − 1/2λ

PSI from PaXoS: Fast, Malicious Private Set Intersection 745

Parameters:
– Two parties: a sender and receiver.
– Set size n for honest parties and n′ for corrupt parties.

Functionality:
1. Wait for input Y = {y1, y2, . . .} from the receiver. Abort if the receiver is

corrupt and |Y | > n′.
2. Wait for input X = {x1, x2, . . .} from the sender. Abort if the sender is

corrupt and |X| > n′.
3. Give output X ∩ Y to the receiver.

Fig. 1. Ideal functionality for 2-party PSI.

where the probability is over choice of random function H, and linear indepen-
dence is over the vector space (Z2)m, i.e. for x ∈ {0, 1}∗ we look at vH(x) as a
vector from (Z2)m. We often let H be implicit and eliminate it from the notation.

In other words, this is a randomized function mapping n binary strings to binary
vectors of length m, satisfying the property that the output strings are indepen-
dent except with probability 2−λ.

We would like the output/input rate, m/n, to be as close as possible to 1. A
random mapping would satisfy the PaXoS definition and will have a good rate,
but will be bad in terms of encoding/decoding efficiency properties that will be
defined in Sect. 3.4.

A PaXoS has the implicit property that the mapping is independent of the
inputs. Namely, the goal is not to find a function that works well for a specific
set of inputs, but rather to find a function that works well with high probability
for any input set. This is crucial in terms of privacy, since the function must not
depend on any input, as this would leak information about the input.

3.2 PaXoS as Key-Value Mapping

A key-value store, or mapping, is a database which maps a set of keys to cor-
responding values.1 A PaXoS leads to a method for encoding a key-value
mapping into a concise data structure, as follows:

Encode((x1, y1), . . . , (xn, yn)): Given n items (xi, yi) with xi ∈ {0, 1}∗ and yi ∈
{0, 1}�, denote by M the n × m matrix where the ith row is v(xi). One can
solve for a data structure (matrix) D = (d1, . . . , dm)� ∈ ({0, 1}�)m such that
M × D = (y1, . . . , yn)�. Namely, the following linear system of equations

1 A hash table is a simple key-value mapping, but it encounters issues such as collisions.
More importantly for our application, a hash table explicitly reveals whether an item
is encoded in it and therefore has a privacy leakage.

746 B. Pinkas et al.

(over the field of order 2�) is satisfied:
⎡

⎢
⎢
⎢
⎣

− v(x1) −
− v(x2) −

...
− v(xn) −

⎤

⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎣

d1
d2
...

dm

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

y1
y2
...

yn

⎤

⎥
⎥
⎥
⎦

When the v(xi)’s are linearly independent, a solution to this system of equa-
tions must exist. Therefore, when v(·) is a PaXoS, the system has a solution
except with probability 1/2λ.

Decode(D,x): Given a data structure D ∈ ({0, 1}�)m and a “key” x ∈ {0, 1}∗,
we can retrieve its corresponding “value” via

y = 〈v(x),D〉 def=
⊕

j:v(x)j=1

dj

In other words, probing D for a key x amounts to computing the XOR of
specific positions in D, where the choice of positions is defined by v(x) and
depends only on x (not D). It is easy to see that when x is among the xi

values that was used to create D as above, then y obtained this way is equal
to the corresponding yi. However, the PaXoS can be probed on any key x.

It is often more convenient to discuss PaXoS in terms of the corresponding
Encode/Decode algorithms than the v mapping.

3.3 Homomorphic Properties

The Decode algorithm enjoys the following homomorphic properties. Let
D = (d1, . . . , dm) ∈ ({0, 1}�)m. Then:

– For any linear map L : {0, 1}� → {0, 1}�′
, extend the notation L(D) to mean

(L(d1), . . . , L(dm)). Then we have

Decode(L(D), x) = L(Decode(D,x)).

– If D and D′ have the same dimension, then define D⊕D′ = (d1⊕d′
1, . . . , dm⊕

d′
m). Then we have

Decode(D,x) ⊕ Decode(D′, x) = Decode(D ⊕ D′, x).

– With s ∈ {0, 1}�, define D ∧ s = (d1 ∧ s, d2 ∧ s, . . . , dm ∧ s), where “∧” refers
to bitwise-AND. Then we have

Decode(D ∧ s, x) = Decode(D,x) ∧ s.

PSI from PaXoS: Fast, Malicious Private Set Intersection 747

3.4 Efficiency Measures

The following measures of efficiency are relevant in our work, and are crucial for
the efficiency of the resulting PSI protocols:

– Rate: The Encode algorithm must encode n values (y1, . . . , yn), which have
total length n� bits, into a data structure D of total length m� bits. The ratio
n/m defines the rate of the PaXoS scheme, with rate 1 being optimal and
constant rate being desirable.

– Encoding complexity: What is the computational cost of the Encode algo-
rithm, as a function of the number n of key-value pairs? In general, solving
a system of n linear equations requires O(n3) computation using Gaussian
elimination. However, the structure of the v(x) constraints may lead to a
more efficient method for solving the system. We strive for an encoding pro-
cedure that is linear in n, for example O(nλ) where λ is the statistical security
parameter.

– Decoding complexity: What is the computational cost of the Decode algo-
rithm? The cost is proportional to the Hamming weight of the v(k) vectors—
i.e., the number of positions of D that are XOR’ed to give the final result. We
strive for decoding which is sublinear in n, for example O(λ) or O(log n).2

3.5 Examples and Simple Constructions

Below are some existing concepts that fall within the abstraction of a PaXoS:

Random Boolean Matrix. A natural approach is to let v(x) simply be a random
vector for each distinct x.3 It is elementary to show that a random boolean
matrix of dimension n × (n + λ) has full rank with probability at least 1 − 1/2λ.
This leads to a (n,m, 2−λ)-PaXoS scheme with m = n + λ.

This scheme has excellent rate n/(n + λ) (which is likely optimal), but poor
efficiency of encoding/decoding. Encoding corresponds to solving a random lin-
ear system of equations, requiring O(n3) if done via Gaussian elimination. Decod-
ing one item requires computing the XOR of ∼ n/2 positions from the data
structure.

Garbled Bloom Filter. A garbled Bloom filter works in the following way: Let
h1, . . . , hλ be random functions with range {1, . . . , m}. To query the data struc-
ture at a key x, compute the XOR of positions h1(x), . . . , hλ(x) in the data
structure. In our terminology, v(x) is the vector that is 1 at position i if and
only if ∃j : hj(x) = i.

2 When defining the cost of encoding and decoding we ignore the length (m) of the
y-values.

3 I.e., vH(x) = H(x) where H is a random oracle with m output bits.

748 B. Pinkas et al.

Garbled Bloom Filters were introduced by Dong, Chen, Wen in [5]. They
showed that if the Bloom filter has size m = Θ(λn) then the Encode algorithm
succeeds with probability 1−1/2λ. The concrete error probability is identical to
the false-positive probability of a standard Bloom filter.

Garbled Bloom filters are an instance of (n,m, 2−λ)-PaXoS with m = Θ(λn)
and therefore rate Θ(1/λ). Items can be inserted into the garbled Bloom filter in
an online manner, leading to a total cost of O(nλ) to encode n items. Decoding
requires taking the XOR of at most λ positions per item.

Garbled Cuckoo table. We introduce in Sect. 5 a new PaXoS construction, garbled
Cuckoo table, with a size which is almost optimal, and optimal encoding and
decoding times.

It is also worth mentioning a variant of Bloomier filters that was introduced
in [3], is similar to our garbled Cuckoo table construction, and yet is insecure for
our purposes. The construction of [3] works for a specific input set S. It chooses
random hash functions and generates a graph by mapping the items of S to
edges. The construction works well if the graph is acyclic. If the graph contains
cycles then a new set of hash functions is chosen, until finding hash functions
which map S to an acyclic graph. This construction is not a PaXoS since the
choice of hash functions depends on the input and therefore leaks information
about it. (Our garbled Cuckoo table construction, on the other hand, chooses
the hash functions independently of the inputs, and works properly, except with
negligible probability, even if the graph has cycles (Fig. 2).)

scheme size m encoding (n items) decoding (single item)
random matrix n + λ O(n3) Θ(n)
garbled Bloom filter O(λn) O(λn) λ
garbled Cuckoo (2 + ε)n + d + λ O((λ + d)n) (λ + d + 2)/2 in avg.

Fig. 2. A comparison between the different PaXoS schemes, where n is the number
of items, λ is a statistical security parameter (e.g., λ = 40), ε is the a Cuckoo hash
parameter (typically ε = 0.4), and d is an upper bound the number of cycles of a
Cuckoo hash graph (d = log n except with negligible probability, and therefore for all
reasonable input sizes d < λ).

4 PSI from PaXoS

In this section we describe a generic construction of PSI from PaXoS.

4.1 Overview

The fastest existing 2-party PSI protocols [19,34] are all based on efficient OT
extension and its variants. The leading OT extension protocol for malicious

PSI from PaXoS: Fast, Malicious Private Set Intersection 749

security is due to Orrù et al. [23] (hereby called OOS), and it serves as the basis
of our PSI protocol.

The OOS OT extension protocol implements the OOS functionality defined in
Sect. 2, and provides many instances of 1-out-of-N OT of random strings, where
N can even be exponentially large. Our PSI protocol involves the internals of the
OOS protocol to some extent, so let us start by reviewing the relevant details.
Suppose we are interested in 1-out-of-N OT for N = 2t. In OOS, the sender
chooses a string s and receives a string qi for each OT instance. In this OT
instance, the sender can derive N random values as follows:

H
(
qi⊕C(00 · · · 0)∧s

)
; H

(
qi⊕C(00 · · · 01)∧s

)
; · · · H

(
qi⊕C(11 · · · 1)∧s

)
;

where C is a linear error-correcting code with t input/data bits, H is a
correlation-robust hash function, and “∧” denotes bitwise-AND (whenever we
write a ⊕ b ∧ s we mean a ⊕ (b ∧ s)).

The receiver has a “choice string” di ∈ {0, 1}t for each instance, and as a
result of the OOS protocol he receives

ri = qi ⊕ C(di) ∧ s (1)

Clearly H(ri) is one of the N random values that the sender can compute
for this OT instance. The security of the OOS protocol is that the N − 1 other
values look pseudorandom to the receiver, given ri, despite the fact that the
same s is used in all OT instances.

One important property of the OOS values is that they enjoy an XOR-
homomorphic property:

ri ⊕ rj = (qi ⊕ C(di) ∧ s) ⊕ (qj ⊕ C(dj) ∧ s) = qi ⊕ qj ⊕ C(di ⊕ dj) ∧ s

Note that we use the fact that C is a linear code. The fact that these values
have such a homomorphic property was already pointed out and used in the
OOS protocol as a way to check consistency for a corrupt receiver. Our main
contribution is to point out how to leverage this homomorphic property for PSI
as well.

Suppose the receiver uses the strings of a PaXoS D = (d1, . . . , dm) as its OOS
inputs, and the parties further interpret their OOS outputs Q = (q1, . . . , qm) (for
the sender) and R = (r1, . . . , rm) (for the receiver) as PaXoS data structures as
well. Then we find that the identity ri = qi⊕C(di)∧s facilitates the homomorphic
properties of PaXoS:

Decode(R, x) = Decode(Q ⊕ C(D) ∧ s, x)
= Decode(Q,x) ⊕ C(Decode(D,x)) ∧ s

Suppose the receiver encodes the PaXoS D so that Decode(D,x) is something
“recognizable” (say, x itself) for every item x in his PSI input set. Then the
expression above is something that both parties can compute: the receiver com-
putes it as Decode(R, x), and the sender computes it as Decode(Q,x)⊕C(x)∧s.

750 B. Pinkas et al.

Hence, we can obtain a PSI protocol by having the sender send
H(Decode(Q,x)⊕C(x)∧s) for each of her items x. The receiver compares these
values to H(Decode(R, y)) for each of his items y, to determine the intersection.

4.2 Protocol Details

Our full protocol follows the general outline described above, but with some
minor technical changes to facilitate the security proof.

One change is that instead of generating a PaXoS D where Decode(D,x) = x,
the receiver arranges for Decode(D,x) = H1(x) (for x in his input set) where H1

is a random oracle. This modification allows the simulator to extract a malicious
receiver’s effective input set by observing D (used as input to OOS) and the
receiver’s queries to H1.

Also, instead of sending values of the form H(Decode(Q,x) ⊕ C(H1(x)) ∧ s),
we have the sender send values of the form H(x,Decode(Q,x) · · ·). That is, the
item x is included in the clear as an additional argument to H (named H2 in
our construction to avoid confusion with H1). Additionally, H (H2) is a (non-
programmable) random oracle. As above, this allows the simulator to extract a
malicious sender’s effective input by observing its random-oracle queries.

The protocol is described formally in Fig. 3.

4.3 Security Analysis

Recall that we are using as our definition an ideal PSI functionality (Fig. 1) that
does not strictly enforce the size of a corrupt party’s set. In other words, a corrupt
party may provide more items (n′) than they claim (n). We prove security of
our construction without making explicit reference to the relationship between
n′ and n. That is, in the proofs below we show that a simulator is able to extract
some set (of size polynomial in the security parameter) in the ideal interaction,
but the proofs do not explicitly bound the size of these sets.

The protocol contains several parameters �1 and �2 which affect the value
of n′ that can be proven. We discuss how to choose these parameters, and the
resulting n′ that one obtains, in Sect. 4.4.

Theorem 4. The protocol of Fig. 3 is a secure 2-party PSI protocol against mali-
cious adversaries in the random oracle model.

We prove the theorem in the following two lemmas:

Lemma 5. The protocol of Fig. 3 is secure against a malicious receiver in the
random oracle model.

PSI from PaXoS: Fast, Malicious Private Set Intersection 751

Parameters:

– Computational and statistical security parameters κ and λ
– Sender with set X ⊆ {0, 1}∗ of size n
– Receiver with set Y ⊆ {0, 1}∗ of size n
– (n, m, 2−λ)-PaXoS scheme (Encode,Decode)
– Random oracles H1 : {0, 1}∗ → {0, 1}�1 and H2 : {0, 1}∗ → {0, 1}�2 ,

where �2, �1 ≥ λ + 2 logn
– Linear error correcting code C : [t, �1, κ]

Protocol:

1. The receiver generates a PaXoS D = Encode({(y, H1(y)) | y ∈ Y }).
2. The parties run the OOS functionality (as defined in Section 2) where

the receiver uses as input D = (d1, . . . , dm) and the sender uses a
random string s as input. As a result, the sender obtains output
strings Q = (q1, . . . , qm) and the receiver obtains output strings
R = (r1, . . . , rm) that follow Eq, (1). We interpret both D,Q and R
as PaXoS data structures.

3. The sender computes and sends the set

M =
{

H2

(
x,Decode(Q, x) ⊕ C(H1(x)) ∧ s

) ∣
∣
∣ x ∈ X

}

randomly permuted.
4. The receiver coutputs {y ∈ Y | H2(y,Decode(R, y)) ∈ M}.

Fig. 3. Our PaXoS-PSI protocol

Proof. The simulator for a corrupt receiver behaves as follows:

– It observes the receiver’s input D to OOS, and also observes all of the
receiver’s queries to random oracle H1.

– The simulator computes Ỹ = {y | y was queried to H1 and Decode(D, y) =
H1(y)} and sends this to the ideal functionality as the receiver’s effective
input.

– Upon receiving from the ideal functionality the intersection Z = X ∩ Ỹ , the
simulator simulates the sender’s message M as {H2(z,Decode(R, z)) | z ∈ Z}
along with |X \ Z| additional random values.

We prove the indistinguishability of this simulation in the following sequence of
hybrids:

– Hybrid 1: Same as the real protocol interaction, but the simulator maintains a
list L of all queries that the adversary makes to random oracle H1. When the
adversary selects its OOS input D, the simulator checks all y ∈ L and defines
the set Ỹ = {y ∈ L | Decode(D, y) = H1(y)}. This hybrid is indistinguishable
from the real protocol interaction, since the only difference is in internal
bookkeeping information that is not used.

752 B. Pinkas et al.

– Hybrid 2: Same as Hybrid 1, except that immediately after defining Ỹ , the
simulator aborts if the honest sender holds an x ∈ X where Decode(D,x) =
H1(x) but x 	∈ Ỹ . It suffices to show that the probability of this artificial
abort is negligible.

• Case x ∈ L: then H1(x) was known at the time Ỹ was defined. Therefore
it is by construction that x ∈ Ỹ ⇔ Decode(D,x) = H1(x). In other words,
the abort does not happen in this case

• Case x 	∈ L: then H1(x) is independent of D, and thus Decode(D,x) =
H1(x) with probability 1/2�1 where �1 is the output length of H1.

If �1 = λ + log2 n then by a union bound over at most n possible sender’s
values x ∈ X, the abort probability is indeed bounded by 1/2λ.

– Hybrid 3: Same as Hybrid 2, except we can rewrite the computation that
defines the sender’s message M . Observe that

Decode(Q,x) ⊕ C(H1(x)) ∧ s

= Decode(R ⊕ C(D) ∧ s, x) ⊕ C(H1(x)) ∧ s

=
[
Decode(R, x) ⊕ Decode(C(D), x) ∧ s

]
⊕ C(H1(x)) ∧ s

= Decode(R, x) ⊕
[
C(Decode(D,x)) ⊕ C(H1(x))

]
∧ s

= Decode(R, x) ⊕ C
(
Decode(D,x) ⊕ H1(x)

)
∧ s

In particular, the term inside C is zero if and only if Decode(D,x) = H1(x).
Furthermore, because of the artificial abort introduced in the previous hybrid,
this happens for x ∈ X if and only if x ∈ X ∩ Ỹ . Hence, we can rewrite the
sender’s message M as:

M = {H2(x,Decode(Q,x) ⊕ C(H1(x)) ∧ s) | x ∈ X}
= {H2(x,Decode(R, x)) | x ∈ X ∩ Ỹ }

∪ {H2(x,Decode(R, x) ⊕ C(δx) ∧ s) | x ∈ X \ Ỹ }

where the δx := Decode(D,x) ⊕ H1(x) values are guaranteed to be nonzero.
This hybrid is identical to the previous one, as we have only rewritten the
same computation in an equivalent way.

– Hybrid 4: Same as Hybrid 3, except we replace every term of the form
H2(x,Decode(R, x) ⊕ C(δx) ∧ s) with random. The two hybrids are indis-
tinguishable by Lemma1 since C(δx) are nonzero codewords and hence have
Hamming weight at least κ. Now note that the sender’s message M is gener-
ated as:

M = {H2(x,Decode(R, x)) | x ∈ X ∩ Ỹ } ∪ {m1, . . . , m|X\Ỹ |}

where each mi is uniformly chosen in {0, 1}�2 .
– Hybrid 5: Same as Hybrid 4, except the simulator no longer artificially aborts

in the manner introduced in Hybrid 2. The hybrids are indistinguishable for

PSI from PaXoS: Fast, Malicious Private Set Intersection 753

the same reasoning as before. Now the simulator does not use the items of
X \ Ỹ at all. We conclude the proof by observing that this hybrid exactly
describes the final ideal-world simulation: the simulator extracts Ỹ , sends it
to the ideal PSI functionality, receives Z = X ∩ Ỹ , and uses it to simulate
the sender’s message M .

Lemma 6. The protocol of Fig. 3 is secure against a malicious sender in the
random oracle model.

Proof. The simulator for a corrupt sender behaves as follows:

– It observes the sender’s input s and output Q from OOS, and also observes
all of the sender’s queries to random oracle H2.

– When the sender produces protocol message M , the simulator computes

X̃ = {x | x was queried to H2 and H2(x,Decode(Q,x)⊕C(H1(x))∧s) ∈ M}

and sends this to the ideal functionality as the sender’s effective input.

We prove the indistinguishability of this simulation in the following sequence of
hybrids:

– Hybrid 1: Same as the real protocol interaction, except that the simula-
tor observes the sender’s input s and output Q for OOS, and additionally
observes all queries made to random oracle H2. The simulator defines a set L
of all the values x such that the adversary queried H2 on the “correct” value
(x,Decode(Q,x)⊕C(H1(x))∧s). When the sender gives protocol message M ,
the simulator defines the set X̃ := {x ∈ L | H2(x,Decode(Q,x) ⊕ C(H1(x)) ∧
s) ∈ M}. This hybrid is identical to the real protocol interaction, since the
only change is to record bookkeeping information that is not used.

– Hybrid 2: Same as Hybrid 1, except the simulator aborts if the honest receiver
holds y ∈ Y \ X̃ where H2(y,Decode(Q, y) ⊕ C(H1(y)) ∧ s) ∈ M . There are
two cases for why such a y may not be in X̃:

• Case y ∈ L: then the value H2(y,Decode(Q, y)⊕C(H1(y))∧s) was defined
at the time X̃ was computed, and y was excluded because the correct
value was not in M . The simulator will never abort in this case.

• Case y 	∈ L: the adversary never queried H2 at H2(y,Decode(Q, y) ⊕
C(H1(y)) ∧ s) before sending M , so this output of H2 is random and
independent of M . The probability that this H2-output appears in M is
thus |M |/2�2 where �2 is the output length of H2.

Overall, the probability of such an artificial abort is bounded by n|M |/2�2 ≤
n2/2�1 ≤ 1/2λ (since �1 < �2 and �1 ≥ λ+2 log n). Hence the two hybrids are
indistinguishable.

– Hybrid 3: Same as Hybrid 2, except we change the way the honest receiver’s
output is computed. In Hybrid 2, the honest receiver computes output as in
the protocol specification:

{y ∈ Y | H2(y,Decode(R, y)) ∈ M}

754 B. Pinkas et al.

In this hybrid we make the honest receiver compute its output as, simply,
X̃ ∩Y . These two expressions are in fact equivalent, from the definition of X̃,
the artificial abort introduced in the previous expression, and the equivalence
of Decode(R, y) and Decode(Q, y) ⊕ C(H1(y)) ∧ s discussed in the previous
proof.

– Hybrid 4: Same as Hybrid 3, except we remove the artificial abort condition
that was introduced in Hybrid 2. The hybrids are indistinguishable for the
same reason as before. Note that in this hybrid, the simulator does not use
the honest receiver’s input Y except to compute the receiver’s final output.
We conclude the proof by observing that this hybrid exactly describes the
ideal world simulation: The simulator observes s,Q and the sender’s oracle
queries to determine a set X̃. It sends X̃ to the ideal functionality and X̃ ∩Y
is delivered to the receiver.

4.4 Choosing Parameters

The protocol contains several parameters:

– A linear binary code C : {0, 1}�1 → {0, 1}t.
– Random oracle output lengths �1, �2.

As shown in the security proof, the following facts must be true in order for
security to hold:

– C must have minimum distance at least κ (the computational security param-
eter).

– �1, �2 ≥ λ + 2 log n, where λ is the statistical security parameter.

However, the parameters �1, �2 also have an effect on the size of the corrupt
party’s set, as extracted by the simulator. In particular, increasing these values
causes the protocol to more tightly enforce the size (n′) of the corrupt party’s
input set.

We note that the communication cost of the protocol is roughly �2 bits per
item from the sender and roughly t bits per item from the receiver (sent as part
of the OOS protocol, where t is the length of the code used in the OOS protocol).

Semi-honest security. To instantiate our protocol for semi-honest security, it is
enough to set �1 = �2 = λ + 2 log n, the minimum possible value for security.
The issue of extracting a corrupt party’s input, which involves further increasing
�1, �2, is not relevant in the semi-honest case.

It therefore suffices to identify linear (binary) codes with suitable minimum
distance, for the different values of �1 that result. We identify good choices in
Fig. 4, all of which are the result of concatenating a Reed-Solomon code with a
small (optimal) binary code.

PSI from PaXoS: Fast, Malicious Private Set Intersection 755

n �1 = �2 = λ + 2 log n codeword lengh t choice of code
212 64 448 RS[28, 13, 16]32 composed with (16, 5, 8)2
216 72 473 RS[42, 12, 32]64 composed with (11, 6, 4)2
220 80 495 RS[45, 14, 32]64 composed with (11, 6, 4)2
224 88 506 RS[46, 15, 32]64 composed with (11, 6, 4)2

Fig. 4. Parameters for semi-honest instantiation of PaXoS-PSI, with κ = 128 and
λ = 40.

Malicious sender’s set size. Consider a malicious sender and recall how the
simulator extracts an effective input for that sender. The sender gives protocol
message M and the simulator extracts via

X̃ := {x ∈ L | H2(x,Decode(Q,x) ⊕ C(H1(x)) ∧ s) ∈ M}

where L is the set of x values such that the adversary has queried H2(x, ·). The
protocol limits the protocol message M to have n items, but still X̃ may have
many more than n items if the adversary manages to find collisions in H2. If we
set �2 (the output length of H2) to be 2κ, then collisions are negligibly likely
and indeed |X̃| ≤ n except with negligible probability.

While it is possible to set �2 < 2κ, doing so has less impact on the protocol
than the other parameters (�1 and hence t). One can reduce �2 only very slightly
before the adversary can find a very large amount (e.g., superlinear in n) of
collisions. For these reasons, we recommend setting �2 = 2κ in our malicious
instantiation.

Malicious receiver’s set size. Consider a malicious receiver and recall how the
simulator extracts an effective input for that receiver. The simulator observes
the receiver’s input D (a PaXoS) to OOS and also observes all queries made to
the random oracle H1. Then the simulator extracts via:

Ỹ := {y ∈ L | Decode(D, y) = H1(y)}

where L is the set of queries made to H1. The question becomes: as a function
of |D| and �1 (the output length of H1), what is an upper bound on the number
of items in Ỹ ?

In the full version [27] we prove the following, using an information-theoretic
compression argument:

Claim. Suppose an adversary makes q queries to random oracle H1 with output
length �1 and then generates a PaXoS D of size m (hence m�1 bits) total. Fix
a value n′ and let E denote the event that Decode(D, y) = H1(y) for at least n′

values y that were queried to H1. Then

Pr[E] ≤
(

q

n′

)
/2(n

′−m)�1 .

756 B. Pinkas et al.

The idea behind the proof is that if a PaXoS D happens to encode many
H1(y) values, then D could be used to compress H1. However, this is unlikely
due to H1 being a random object and therefore incompressible.

For reference, we have computed some concrete parameter settings so that
Pr[E] < 2−40 (the probability that the simulator extracts more than n′ items).
The values are given in Fig. 5. We consider an adversary making q = 2128 queries
to H1, which is rather conservative (in terms of security). In practice significantly
smaller parameters may be possible.4 Note that if the PaXoS has size m, then a
compression argument such as the one we use only starts to apply when n′ > m.
Hence all of our bounds are expressed as n′ = cm where c > 1 is a small constant.

Recall that �1 is the input length to the linear code C, so increasing it has
the effect of increasing t (the codeword length) as well. We include good choices
of codes (achieving minimum distance κ = 128) in the figure as well.

m n′ �1 codeword len t choice of code
212 2m 233 776 RS[97, 34, 64]128 composed with (8, 7, 2)2
212 3m 174 660 RS[60, 29, 32]64 composed with (11, 6, 4)2
212 4m 154 627 RS[57, 26, 32]64 composed with (11, 6, 4)2
212 5m 144 605 RS[55, 24, 32]64 composed with (11, 6, 4)2
216 2m 225 768 RS[64, 33, 32]128 composed with (12, 7, 4)2
216 3m 168 649 RS[59, 28, 32]64 composed with (11, 6, 4)2
216 4m 149 616 RS[56, 25, 32]64 composed with (11, 6, 4)2
216 5m 139 605 RS[55, 24, 32]64 composed with (11, 6, 4)2
220 2m 217 744 RS[62, 31, 32]128 composed with (12, 7, 4)2
220 3m 162 638 RS[58, 27, 32]64 composed with (11, 6, 4)2
220 4m 144 605 RS[55, 24, 32]64 composed with (11, 6, 4)2
220 5m 134 594 RS[54, 23, 32]64 composed with (11, 6, 4)2
224 2m 209 732 RS[61, 30, 32]128 composed with (12, 7, 4)2
224 3m 156 627 RS[57, 26, 32]64 composed with (11, 6, 4)2
224 4m 138 594 RS[54, 23, 32]64 composed with (11, 6, 4)2
224 5m 129 583 RS[53, 22, 32]64 composed with (11, 6, 4)2

Fig. 5. Parameters for malicious PaXoS-PSI with κ = 128 and Pr[simulator extracts >
n′ items from malicious receiver] < 1/240, where adversary makes 2128 queries to H1.

5 Garbled Cuckoo Table

We introduce a new approach for PaXoS that enjoys the best of all worlds:
it has the same asymptotic encoding and decoding costs as a garbled Bloom
filter, but with constant rate (e.g., ∼ 1/(2 + ε)) rather than a O(1/λ) rate.

4 For example, considering an adversary who makes q = 280 queries to H1 leads to �1
in the range of 70 to 90, and codeword length t in the range of 460 to 510.

PSI from PaXoS: Fast, Malicious Private Set Intersection 757

Furthermore, it has a linear time construction, just like the modified Bloomier
filter of [3], but with the advantage of having the hash function(s) independent
of the keys/values.

5.1 Overview

Our construction uses ideas from both garbled Bloom filters as well as Cuckoo
hashing. Recall that in Cuckoo hashing, it is typical to have only 2 hash functions
h1, h2, where an item x is associated with positions h1(x) and h2(x) in the data
structure.

So as a starting point, consider a garbled Bloom filter with just 2 hash func-
tions rather than λ. Such a data structure corresponds to the decoding function
Decode(D,x) = dh1(x) ⊕ dh2(x).

5 (Using the PaXoS key-value mapping termi-
nology of Sect. 3.2, the vector v(x) has only two non-zero entries, in locations
h1(x) and h2(x).) Given n key-value pairs (xi, yi), how can we generate a data
structure D = (d1, . . . , dm) that encodes them in this way?

An important object in analyzing our construction is the cuckoo graph. The
vertices in the cuckoo graph are numbered 1 through m, and correspond to the
positions in the data structure D. The (undirected) edges of the graph correspond
to items that are meant to be inserted. An item x corresponds to the edge
{h1(x), h2(x)}. (The graph may contain self-loops and repeated edges.) We refer
to such graphs with m vertices and n edges as (n,m)-cuckoo graphs and note
that the distribution over such graphs is independent of X. We write Gh1,h2,X

to refer to the specific (n,m)-cuckoo graph corresponding to a particular set of
hash functions and keys X. All properties of our PaXoS can be understood in
terms of properties of random (n,m)-cuckoo graphs.

In the simplest case, suppose that Gh1,h2,X happens to be a tree. Our goal
is to encode the items X into the data structure D. Each node g in the graph
corresponds to a row dg of D. Then we can do this encoding in linear time as
follows: We choose an arbitrary root vertex r of the tree and set dr of the data
structure arbitrarily. We then traverse the tree, say, in DFS or BFS order. Each
time we visit a vertex j for the first time, we set its corresponding value dj in the
data structure, to agree with the edge we just traversed. This is done as follows.

Recall that each edge ij corresponds to a key-value pair (x, y) in the sense
that {i, j} = {h1(x), h2(x)} and our goal is to arrange that di ⊕ dj = y. As we
cross an edge from i to j in the traversal, we have the invariant that position di

in the data structure has been already fixed but dj is still undefined. Hence, we
can always set dj := di ⊕ y.

Handling Cycles. When m = O(n), corresponding to a PaXoS of constant rate,
the corresponding Cuckoo graph is unlikely to be acyclic [10]. In this case the
encoding procedure that we just outlined does not work, since when the graph
traversal closes a circuit it encounters a vertex whose value has already been
defined and cannot be set to satisfy the constraint imposed by the current edge.

5 For now, we ignore the case where h1(x) = h2(x).

758 B. Pinkas et al.

We can handle acyclic Cuckoo graphs by adding d+λ additional entries to the
data structure D. We first describe an analysis where d is an upper bound on the
size χ of the 2-core of the graph, and then an analysis where d is an upper bound
on the cyclomatic number σ of the graph. (These bounds are O((log n)1+ω(1))
and log n, respectively.) We recall below the definitions of both these values, and
note that σ < χ always.

The 2-core of a graph is the maximum subgraph where each node has degree
at least 2 (namely, the subgraph containing all cycles, as well as all paths con-
necting cycles). We use χ to denote the number of edges in the 2-core. The
cyclomatic number of a graph is the minimum number of edges to remove to
leave an acyclic graph. Equivalently, it is the number of non-tree edges (back
edges) in a DFS traversal of the graph. We use σ to denote the cyclomatic num-
ber. The cyclomatic number is equal to the minimal number of independent
cycles in the graph, and is therefore smaller than or equal to the number of
cycles. It is also always strictly less than the size of the 2-core.

The construction. D will be structured as D = L‖R, where |L| = m (the number
of vertices in the Cuckoo graph) and |R| = d+λ. Each decoding/constraint vector
v(x) then has the form v(x) = l(x)‖r(x), where l(x) determines the positions of
L to be XOR’ed and r(x) determines the positions of R to be XOR’ed. We will
let L correspond to the simple Cuckoo hashing idea above, so each l(x) vector is
zeroes everywhere except for two 1s. We will let r(x) be determined uniformly
at random for each x (similar to the random matrix construction of a PaXoS).

To encode n key-value pairs into the data structure in this way, first con-
sider the system of linear equations induced by the constraints 〈v(xi),D〉 = yi,
restricted to only the χ items (edges) in the 2-core. (Once we set values
that encode the items in the 2-core, we will be able to encode the other items
using graph traversal as in an acyclic graph.) These constraints refer to a vertex
u of G only if that vertex is in the 2-core. We get χ equations over m + d + λ
variables, where the coefficients of the last d + λ variables (the r(x) part) are
random. If we set d to be an upper bound on χ then we get that the system has
a solution with probability 1 − 2−λ.

So, using a general-purpose linear solver we can find values for R and for
the subset of L corresponding to the vertices in the 2-core, that satisfies these
constraints. This can be done in O((d + λ)3) time. For vertices u outside of
the 2-core, the value of du in the data structure remains undefined. But after
removing the 2-core, the rest of the graph is such that these values in the data
structure can be fixed according to a tree traversal process:

Every edge not in the 2-core can be oriented away from all cycles (if an edge
leads to a cycle in both directions, then that edge would have been part of the
2-core). We traverse those edges following the direction of their orientation. Let
edge i → j correspond to a key-value pair (x, y). Let dj denote the position

PSI from PaXoS: Fast, Malicious Private Set Intersection 759

in D (in its “L region”) corresponding to vertex j. By our invariant, dj is not
yet fixed when we traverse i → j. Yet it is the only undefined value relevant
to the constraint 〈v(x),D〉 = y, so we can satisfy the constraint by solving for
dj . Hence with a linear pass over all remaining items, we finish constructing the
data structure D.

The total cost of encoding is therefore O((d+λ)3 +nλ). We explained above
that we can set d to be an upper bound on the size of the 2-core.6 As we shall see
(in Sect. 5.2), it is possible to set d to be the cyclomatic number of the Cuckoo
graph, which is logarithmic in n. Therefore the dominating part of the expression
is nλ.

5.2 Details

The garbled-cuckoo construction is presented formally in Fig. 6.

Analysis & Costs. In the full version of the paper [27] we show that the number σ
of cycles is smaller than log n+O(1) except with negligible probability. Therefore
we can set d = (1 + ε) log n.7 This bound also applies to the cyclomatic number
(which is always smaller than or equal to the number of cycles). Theorem7 shows
that it is sufficient to set d to be equal to this upper bound on the cyclomatic
number.

Recall that each item is mapped to a row l(xi)‖r(xi) which contains an l(xi)
part with two 1 entries, and a random binary vector r(xi) of length λ + d. We
set λ = 40, and therefore for all practical input sizes we get that d < λ. We
conclude that the number of 1 entries in the row vector is O(λ).

The encoding processes each of n edges once during the traversal. The com-
putation involves XORing the locations pointed to by 1 entries in the row. The
overhead of encoding all rows is O(nλ). The decoding of a single item involves
XORing the rows pointed by the two rows to which it is mapped, and is O(λ).

Theorem 7. When setting d = (1+ ε) log n, the garbled cuckoo PaXoS of Fig. 6
with parameter λ is a (n,m, ε + 2−λ)-PaXoS where

ε = Pr[the cyclomatic number of a random (n,m)-cuckoo graph > log n + O(1)]

Proof. As discussed above, we use here an upper bound d for the cyclomatic
number of the graph. Setting the bound to d = (1 + ε) log n works excepts with
a negligible failure probability.

6 Such an upper bound for the case of Cuckoo hashing can be derived from [24, Lemma
3.4], but that analysis assumes that the graph has 8n edges, and shows that an upper
bound of size d fails with probability n/2−Ω(d). Therefore we must set d = (log n)1+ε

to get a negligible failure probability.
7 The parameter ε used here is independent of the parameter ε used in Cuckoo hashing.

760 B. Pinkas et al.

Parameters:

– upper bound d on the cyclomatic number of the Cuckoo graph
– error parameter λ
– random functions h1, h2 : {0, 1}∗ → {1, . . . , m}
– random function r : {0, 1}∗ → {0, 1}d+λ

Decode(D,x):

1. Parse D as D = L‖R where |L| = m and |R| = d + λ
2. Set l(x) ∈ {0, 1}m to be all zeroes except 1s at positions h1(x) and h2(x)
3. Return 〈l(x), L〉 ⊕ 〈r(x), R〉
Encode((x1, y1), . . . , (xn, yn)):

1. Construct the Cuckoo graph Gh1,h2,X for X = {x1, . . . , xn} and let Ṽ , Ẽ
be the vertices and edges of its 2-core. If the number of cycles is greater
than d then abort.

2. Initialize variables L = (l1, . . . , lm) and R = (r1, . . . , rd+λ).
3. Solve (e.g., with Gaussian elimination) for variables {lu | u ∈ Ṽ } ∪ R

that satisfy:
〈l(xi)‖r(xi), L‖R〉 = yi, ∀xi ∈ Ẽ

where l(·), r(·) are as above.
4. For each connected component which is a tree, pick an arbitrary vertex

v as the root of the tree. Set the variable lv to a random value.
5. For each item/edge xi �∈ Ẽ, in order of a DFS traversal directed away

from the 2-core (in connected components which include a cycle), or
directed away from the root (in connected components which do not
include a cycle)
(a) Let {u, v} = {h1(xi), h2(xi)} so that lu is already defined and lv is

not.
(b) Set lv := lu ⊕ 〈r(xi), R〉 ⊕ yi

6. Output D = L‖R

Fig. 6. Garbled Cuckoo PaXoS

The proof bounds the probability that the Encode algorithm fails to satisfy
the linear constraints 〈v(xi),D〉 = yi for every i. For items xi that do not
correspond to edges in the 2-core, Step 4 of Encode satisfies the appropriate linear
constraint, by construction. For items in the 2-core, their linear constraints are
fixed all at once in Step 3 of Encode. Hence, the construction only fails if Step 3
fails. Step 3 solves for the following system of equations:

〈l(xi)‖r(xi), L‖R〉 = yi, ∀xi ∈ Ẽ

PSI from PaXoS: Fast, Malicious Private Set Intersection 761

We interpret {l(xi)‖r(xi)}xi∈Ẽ as a matrix ML|MR where the first m columns
(i.e., ML) are {l(xi)}xi∈Ẽ and the remaining d + λ columns (i.e., MR) are
{r(xi)}xi∈Ẽ . We therefore ask whether the rows of the matrix ML|MR are lin-
early independent.

There are up to d cycles in the graph, denoted as C1, . . . , Cd. Let us focus
on the matrix ML, and more specifically on the rows corresponding an arbitrary
cycle Ci (each of these rows has two 1 entries, at the locations of the vertices
touching the corresponding edge). It is easy to see that there is a single linear
combination Di of these rows which is 0 (the XOR of all these rows). Any linear
combination of D1, . . . , Dd is 0, and these are the only linear combinations of
rows which are equal to 0. Therefore there are at most 2d such combinations and
the kernel of ML is of dimension at most d.

Our goal is to find the probability of the existence of a zero linear combination
of the rows of ML|MR, rather than the rows of ML alone. Since in MR each row
contains d + λ random bits, this probability is at most 2−λ. ��

5.3 Comparison

Our construction shares many features with garbled Bloom filters (GBF), and
indeed is somewhat inspired by them. Both our construction and GBF involve
probing about the same number of positions per item (λ+χ+2

2 in average vs.
O(λ)), however we are able to obtain constant rate while GBFs have rate O(1/λ).
We point out that GBFs inherit from standard Bloom filters their support for
fully online insertion; that is, their analysis proves that items can be added to
a GBF in any order. Our approach builds the data structure in a very partic-
ular order (according to a global tree or tree-like structure of a graph). This
qualitative difference seems important for achieving constant rate.

We also use much of the analysis techniques and terminology from cuckoo
hashing (especially cuckoo hashing with a stash). However, one important dif-
ference with typical cuckoo hashing is that our construction can handle multiple
cycles in a connected component of the cuckoo graph. Indeed, usual cuckoo
hashing (without a stash) succeeds if each connected component of the graph
has at most one cycle. The items in a cycle can be handled by arbitrarily assign-
ing an orientation to the cycle, and assigning each edge (item) to its forward
endpoint (position in the table). In our case, if some items form a cycle, their
corresponding constraint vectors become linearly dependent and we cannot solve
the system of linear equations. In general, our approach has a larger class of sub-
graphs which present a “barrier” to the process (where graphs with only 1 cycle
are a barrier for us but not for standard cuckoo hashing), making the analyses
slightly different.

5.4 An Alternative Construction

In full version of the paper [27] we describe a modified construction which is based
on a DFS traversal of the graph, and has a similar overhead to the construction
described in this section.

762 B. Pinkas et al.

6 A Theoretical Comparison

In Table 1 we show the theoretical communication complexity of our protocol
compared with the Diffie-Hellman based PSI, the KKRT protocol [19] and the
SpoT protocol [26] in the semi-honest setting, and the Rindal-Rosulek [34] and
Ghosh-Nilges [8] protocols in the malicious setting. This comparison measures
how much communication the protocols require on an idealized network where
we do not care about protocol metadata, realistic encodings, byte alignment, etc.
In practice, data is split up into multiples of bytes (or CPU words), and different
data is encoded with headers, etc.—empirical measurements of such real-world
costs are given later in Sect. 7.

Table 1. Theoretical communication costs of PSI protocols (in bits), calculated using
computational security κ = 128 and statistical security λ = 40. Ignores cost of base
OTs (in our protocol, KKRT, Sp) which are independent of input size. n1 and n2 are
the input sizes of the sender and receiver respectively. φ is the size of elliptic curve
group elements (256 is used here). � is width of OT extension matrix (depends on n1

and protocol. χ is the upper bound on the number of cycles in a cuckoo graph. σ is the
length of items (σ = 64 in the concrete numbers). “SH” and “M” denotes semi-honest
and malicious setting. In RR protocols, EC-ROM and SM respectively denote their
encode-commit model and the standard model dual execution variant.

Protocol Communication
n = n1 = n2

216 220 224

Semi Honest

DH-PSI φn1z + (φ + λ + log(n1n2))n2 584n 592n 600n

KKRT [19] (3 + s)(λ + log(n1n2))n1 + 1.2�n2 1042n 1018n 978n

SpOT-low-comm [26] 1.02(λ + log2(n2) + 2)n1 + �n2 488n 500n 512n

SpOT-fast [26] 2(λ + log(n1n2))n1 + �(1 + 1/λ)n2 583n 609n 634n

ours (λ + log2(n1n2))n1 + �(2.4n2 + λ + χ) ∼ 1207n∼ 1268n ∼ 1302n

Malicious

RR (EC-ROM) [34] 3κn + n(2κ + κ log n + log2 n) 10112n 10576n 11024n

RR (SM) [34] 3κn + n(2κ + σκ log n + log2 n) (200k)n (220k)n> (240k)n

GN [8] at least 8(n + 1)(κ + 2σ) > 3072n> 3072n > 3072n

ours (λ + log2(n1n2))n1 + �(2.4n2 + 2λ + χ) + λ(2.4n2 + 2�) ∼ 1623n∼ 1621n ∼ 1602n

PaXoS PSI has linear communication complexity. Let us clarify our claim of
“linear communication.” Consider the insecure intersection protocol where Alice
sends H(x) for every x in her set. H could have output length equal to secu-
rity parameter, giving O(n · κ) communication. But with semi-honest parties H
can also have output length as small as λ + 2 log(n) to ensure correctness with
probability 1 − 1/2λ. When viewed this way, it looks like the protocol has com-
plexity O(n log n)! However, if 1/2λ is supposed to be negligible then certainly
log n � λ, so one could still write O(n · λ).

If we let L be a length that depends on the security parameters and log n
(which is inherent to all intersection protocols, secure or not), then insecure PSI
and PaXoS-PSI have complexity O(L · n), while previous OT-based malicious

PSI from PaXoS: Fast, Malicious Private Set Intersection 763

PSI [34] has complexity O(L · n log n) or even O(L · nκ) [33]. For comparison,
semi-honest KKRT [19] protocol has complexity ω(L ·n) (from the stash growing
as ω(1)) and semi-honest PRTY [26] has complexity O(L · n).

In [26] and in this work, L can depend on the security parameter alone,
leading to a O(n · κ) communication, which we would characterize as linear in
n. But when choosing concrete parameters (just like in the insecure protocol) L
can be made smaller by involving a O(log n) term. Again, this is endemic to all
intersection protocols.

7 Implementation and Evaluation

7.1 Implementation Details

We now present a comparison based on implementations of all protocols. We used
the implementation of KKRT [19], RR [34], HD-PSI, spot-low, spot-fast [26] from
the open source-code8 provided by the authors.

We evaluate the DH-PSI protocol, instantiated with two different elliptic
curves: Curve25519 [2] and Koblitz-283. Curve25519 elements are 256 bits while
K-283 elements are 283 bits. Using the Miracl library, K-283 operations are
faster than Curve25519, giving us a tradeoff of running time vs. communication
for DH-PSI.

All OT-based PSI protocols [19,26,34] (including our protocols) require the
same underlying primitives: a Hamming correlation-robust function H, a pseu-
dorandom function F , and base OTs for OT extension. We instantiated these
primitives exactly as in previous protocols (e.g, KKRT, RR): both H and F
instantiated using AES, and base OTs instantiated using Naor-Pinkas [22]. We
use the implementation of base OTs from the libOTe library9. All protocols
use a computational security parameter of κ = 128 and a statistical security
parameter λ = 40.

For our own protocols, we implemented two variants of our PaXoS. We imple-
mented the DFS traversal of the cuckoo graph (see the full version [27]) using the
boost library. We used additional libraries linbox, gmp, ntl, givaro iml, blas for
solving systems for linear equations and generating the required concatenated
linear codes needed for the 2-core based variant of Sect. 5. We use 2n bins in our
DFS based PaXoS, and 2.4n bin in our 2-core based variant.

7.2 Experimental Setup

We performed a series of benchmarks on the Amazon web services (AWS) EC2
cloud computing service. We used the M5.large machine class with 2.5 GHz Intel
Xeon and 8 GB RAM.6

8 https://github.com/osu-crypto.
9 https://github.com/osu-crypto/libOTe.

https://github.com/osu-crypto
https://github.com/osu-crypto/libOTe

764 B. Pinkas et al.

We tested the protocols over three different network settings: LAN – two
machines in the same region (N.Virginia) with bandwidth 4.97 GiB/s; WAN1 –
one machine in N.Virginia and the other in Oregon with bandwidth 155 MiB/s;
and WAN2 – one machine in N.Virginia and the other in Sydney with bandwidth
55 MiB/s. All experiments are performed with a single thread (with an additional
thread used for communication). Find the result of the WAN2 setting in the full
version of the paper [27].

7.3 Experimental Results

A detailed benchmark for set sizes n = {212, 216, 220} is given in Table 2.

Semi-honest PSI Comparison. Our best protocol in terms of communication is
PaXoS-DFS. The communication of this protocol is less than 10% larger than
that of KKRT [19], and slightly more than twice the communication of SpOT-
low.

Our best protocol in terms of run time is PaXoS 2-core. In the LAN setting
for 220 inputs, it runs only 18% slower than KKRT. In the two WAN settings it
is about 80% slower.

Table 2. Communication in MB and run time in milliseconds for related works over
n = {212, 216, 220} items and over three network settings as described in the text.
DH-PSI has two versions, with two different curves: K-283 and 25519. EC-ROM is the
encode-commit version in [34] and σ is the input length of the parties. All protocols
run with σ = 128 except RR (SM) that can run with 64 at most bit items. The upper
part of the table refers to semi-honest (SH) protocols whereas the lower part refers to
malicious (M) protocols. Missing entries refer to experiment that failed due to lack of
memory or they took too much time.

Protocol
comm (MB) LAN WAN

212 216 220 212 216 220 212 216 220

Semi Honest

DH-PSI (K-283) 0.32 5.2 84.0 4597 73511 6529 75839

DH-PSI (25519) 0.29 4.7 76.1 8797 140507 12558 142922

KKRT [19] 0.53 8.06 127 177 339 4551 586 1361 9809

SpOT-low [26] 0.25 3.9 63.1 898 10173 3693 18068

SpOT-fast [26] 0.3 4.71 76.4 460 1964 24442 6464 11602 31944

PaXoS 2-core (Sect. 5) 0.65 10.19 163.63 16 235 5378 641 1664 17628

Malicious

RR (EC-ROM) [34] 4.8 79 1322 144 828 13996 1723 5061 69003

RR (SM, σ = 64) [34] 92 1317 22183 596 7330 6190 67310

PaXoS 2-core (Sect. 5) 0.81 12.59 202.04 120 257 5598 644 1800 18621

PSI from PaXoS: Fast, Malicious Private Set Intersection 765

Malicious PSI Comparison. The communication of both implementations of
our protocol is better than that of RR. For 220 items, PaXoS-DFS uses almost
8 times less communication, and PaXoS 2-core uses 6.5 less communication.

In terms of run time, PaXoS 2-core is faster than RR by a factor of about 2.5
on a LAN, and factors of 3.7–4 in the two WAN settings. The larger improvement
in the WAN settings is probably due to the larger effect that the improvement
in the communication has over a WAN.

Semi-honest vs. Malicious. In both our implementations of PaXoS the mali-
cious implementation uses only about 25% more communication than the semi-
honest implementation. In the LAN setting, our malicious protocols run about
4% slower than our corresponding semi-honest protocols.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM CCS, pp. 535–548 (2013)

2. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

3. Charles, D., Chellapilla, K.: Bloomier filters: a second look. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 259–270. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87744-8 22

4. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15–19 October 2018, pp. 1223–1237 (2018)

5. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM CCS 2013, pp. 789–800 (2013)

6. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28, 637–647 (1985)

7. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

8. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 6

9. Goldreich, O.: Foundations of Cryptography, Volume 2: Basic Applications. Cam-
bridge University Press, Cambridge (2004)

10. Havas, G., Majewski, B.S., Wormald, N.C., Czech, Z.J.: Graphs, hypergraphs and
hashing. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 153–165. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-57899-4 49

11. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. J. Cryptology 23(3), 422–
456 (2010). https://doi.org/10.1007/s00145-008-9034-x

12. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-540-87744-8_22
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/3-540-57899-4_49
https://doi.org/10.1007/s00145-008-9034-x

766 B. Pinkas et al.

13. Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing privacy and trust in elec-
tronic communities. In: EC, pp. 78–86 (1999)

14. Ion, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions. ePrint Archive 2017/738 (2017)

15. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

16. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

17. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing
with a stash. SIAM J. Comput. 39(4), 1543–1561 (2009)

18. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 4

19. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched OPRF
with applications to PSI. In: ACM CCS (2016)

20. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: IEEE S&P (1986)

21. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In: Proceedings of the 1986
IEEE Symposium on Security and Privacy, Oakland, California, USA, 7–9 April
1986, pp. 134–137 (1986)

22. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM, January 2001

23. Orrú, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with
application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 22

24. Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM
J. Comput. 38(1), 85–96 (2008)

25. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
26. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set

intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

27. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. ePrint archive 2020/193 (2020)

28. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 5

29. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 5

30. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX 2014, pp. 797–812 (2014)

31. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018)

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5

PSI from PaXoS: Fast, Malicious Private Set Intersection 767

32. Rabin, M.O.: How to exchange secrets with oblivious transfer. ePrint Archive
2005/187 (2005)

33. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 9

34. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1229–1242. ACM Press, October 2017

35. Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg
(1980). https://doi.org/10.1007/3-540-10003-2 100

https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/3-540-10003-2_100

Two-Round Oblivious Transfer
from CDH or LPN

Nico Döttling1(B), Sanjam Garg2(B), Mohammad Hajiabadi2, Daniel Masny3,
and Daniel Wichs4

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
doettling@cispa-helmholtz.de
2 UC Berkeley, Berkeley, USA

sanjamg@berkeley.edu
3 VISA Research, Palo Alto, USA

4 Northeastern University, Boston, USA

Abstract. We show a new general approach for constructing maliciously-
secure two-round oblivious transfer (OT). Specifically,we provide a generic
sequence of transformations to upgrade a very basic notion of two-round
OT, which we call elementary OT, to UC-secure OT. We then give simple
constructions of elementary OT under the Computational Diffie-Hellman
(CDH) assumption or the Learning Parity with Noise (LPN) assumption,
yielding the first constructions of malicious (UC-secure) two-round OT
under these assumptions. Since two-round OT is complete for two-round 2-
party andmulti-party computation in themalicious setting,wealso achieve
the first constructions of the latter under these assumptions.

1 Introduction

Oblivious transfer (OT) [Rab05,EGL85], is a fundamental primitive in cryptog-
raphy. An OT protocol consists of two parties: a sender and a receiver. The
sender’s input is composed of two strings (m0,m1) and the receiver’s input is a
bit c. At the end of the execution of the OT protocol, the receiver should only
learn the value mc, but should not learn anything about the other value m1−c.
The sender should gain no information about the choice bit c. This very simple
primitive is often used as the foundational building block for realizing secure
computation protocols [Yao82,GMW87]. Thus, the efficiency characteristics of
the OT protocol directly affect the efficiency of the resulting secure computation

S. Garg—Supported in part from AFOSR Award FA9550-19-1-0200, AFOSR YIP
Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract N66001-15-C-
4065, aHellmanAward and research grants by theOkawaFoundation,Visa Inc., andCen-
ter for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those
of the authors and do not reflect the official policy or position of the funding agencies.
D. Masny—Part of the research was done at UC Berkeley supported by the Center for
Long-Term Cybersecurity (CLTC, UC Berkeley).
D. Wichs—Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-
1750795 and the Alfred P. Sloan Research Fellowship.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 768–797, 2020.
https://doi.org/10.1007/978-3-030-45724-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_26

Two-Round Oblivious Transfer from CDH or LPN 769

protocol. As such, several notions of OT, achieving varying security and efficiency
properties, have been devised (see e.g., [Lin16]). Ideally, we want to achieve a
simulation-based definition of OT, where we require that malicious behavior in
the real world can be simulated in an ideal world with an ideal OT functionality,
and even more desirably, we want to do so in the universal composability (UC)
framework [Can01].

OT in Two-Rounds. As the name suggests, a two-round OT protocols allows
the OT functionality to be implemented in just the minimal two-rounds of com-
munication. Namely, the receiver sends the first-round message based on her
input bit c. Next, using his input (m0,m1) and the first message of the proto-
col, the sender generates and sends the second-round message of the protocol.
Finally, the receiver uses the second-round protocol message to recover mc.

OT protocols that require only two rounds of communication are often desir-
able. Most importantly, two-round OT protocols are complete (necessary and suf-
ficient) for general two-round (i.e., round optima) two-party [Yao82] and multi-
party secure computation (2PC, MPC) [GS18,BL18] in both the semi-honest
and malicious settings. Unfortunately, constructing two-round OT is typically
much harder than constructing OT protocols with a larger round complexity. In
particular, by relying on ZK proofs, we can construct constant-round malicious
OT assuming only constant-round semi-honest OT and the latter follows from
essentially all known assumptions that imply public-cryptography. On the other
hand, no such equivalence is known for 2-round protocols since zero-knowledge
proofs add more round. Furthermore, we know that two-round simulation-secure
malicious OT is impossible in the plain model, and therefore we consider security
in the common reference string (CRS) model.

Assumptions. Over the years, tremendous progress has been made in construct-
ing both semi-honest and maliciously secure two-round OT protocols [CCM98,
NP01,AIR01,DHRS04,PVW08,HK12,BD18] from a wide variety of assump-
tions. However, there are still gaps in our understanding—namely, constructing
two-round OT typically requires stronger assumptions than what known to be
sufficient for just OT. This is especially true for the case of maliciously secure
OT. In this work, we attempt to bridge this gap. More specifically, we ask:

Can maliciously secure two-round OT and be based on the Computational
Diffie-Hellman (CDH) assumption or the Learning Parity with Noise
(LPN) assumption?

Since two-round malicious (UC) OT is complete for two-round malicious (UC)
2PC and MPC, the above is equivalent to asking whether the latter can be
instantiated under the CDH and LPN assumptions. While constructions of UC-
secure two-round OT under the Decisional Diffie-Hellman (DDH) assumption
and the Learning with Errors (LWE) assumption are known [PVW08], the ques-
tion of constructing the same under CDH and LPN has so far remained open.
Moreover, we do not even have two-round constructions under CDH or LPN
that satisfy any alternate weaker notions of malicious OT security that have
been previously proposed in the literature.

770 N. Döttling et al.

1.1 Why Is Two-Round Maliciously Secure OT Difficult?

One reason that (two-round) OT is difficult to construct is that this notion
is even difficult to define. Simulation-based definitions of security are complex
and impose requirements that often seem stronger than necessary and hard to
achieve. Unlike (say) public-key encryption, where we have simple game-based
definitions that imply simulation-based (semantic) security, we do not have any
simpler definitions of malicious OT security that suffice for simulation. All prior
attempts from the literature to weaken the definition of OT security are still
complex and require some form of extraction/simulation. In particular, to mean-
ingfully define that the malicious receiver only learns one of the two sender values
m0,m1, all known definitions require that we can somehow extract the receiver’s
choice bit c from the first OT message and then argue that the second message
hides the value m1−c.

To meet any such extraction-based definition, we need to start with an OT
where the receiver’s choice bit is statistically committed in the first OT mes-
sage. This seems like a significant restriction. For example there is a natural
construction of OT from CDH due to Bellare and Micali [BM90], which achieves
semi-honest security in the standard model or a weak form of malicious security
in the random-oracle model. However, in this construction, the first message
only commits the receiver computationally to the choice bit and hence there is
no hope of extracting it. Therefore, it appears difficult to prove any meaningful
notion of malicious security without resorting to the random oracle model.

Overall, we are aware of only two approaches towards achieving maliciously-
secure OT. The first starts with semi-honest OT and then compiles it to mali-
cious OT using zero-knowledge proofs. Unfortunately, if we want two-round OT
we would need to use non-interactive zero-knowledge (NIZK) proofs and we do
not have instantiations of such NIZKs under many natural assumptions such as
CDH or LPN (or LWE). The other approach, used by Peikert, Vaikuntanathan
and Waters [PVW08] (and to some extent also e.g., [NP01,AIR01,BD18]) takes
advantage of a statistically “lossy” mode of DDH/LWE based encryption. Unfor-
tunately, we do not have any such analogous “lossy” mode for CDH/LPN based
encryption and therefore this approach too appears to be fundamentally stuck.

1.2 Our Results

In this work, we give a new general approach for constructing UC-secure two-
round OT.1 Specifically, we introduce an extremely weak and simple notion of
two-round OT, which we call elementary OT. This notion is defined via a game-
based definition and, in contrast to all prior notions of OT, does not rely on an
extractor. We then provide a series of generic transformations that upgrade the
security of elementary OT, eventually culminating in a UC-secure two-round OT.
These transformations are the main technically challenging contributions of the

1 Although we achieve UC security, it does not appear that achieving stand-alone
security would make our solutions significantly simpler.

Two-Round Oblivious Transfer from CDH or LPN 771

paper. Lastly, we show simple constructions of two-round elementary OT under
the Computational Diffie-Hellman (CDH) assumption or the Learning Parity
with Noise (LPN) assumption, yielding the first constructions of UC-secure two-
round OT under these assumptions. We rely on a variant of LPN with noise-rate
1/nε for some arbitrary constant ε > 1

2 .2

Applications to Two-Round MPC. As mentioned earlier, two-round OT is
known to be complete for constructing two-round MPC [GS18,BL18]. Thus, our
results also yield the first constructions of two-round malicious (UC-secure) MPC
under the Computational Diffie-Hellman (CDH) assumption or the Learning
Parity with Noise (LPN) assumption.

Open Problems. Interestingly, our generic transformations use garbled circuits
that make a non-black-box use of the underlying cryptographic primitives. We
leave it as an open problem to obtain a black-box construction or show the
impossibility thereof.

Follow-Up Work. Subsequently to our work, techniques and results of our
paper were used in some follow-up works. Lombardi et al. [LQR+19] used our
main result to obtain the first construction of maliciously-secure designated-
verifier NIZK (MDV-NIZK) from CDH. MDV-NIZK may be though of as a
two-round ZK protocol in the CRS model with a reusable first-round message.
Technically, [LQR+19] gives constructionist of MDV-NIZK from a combination
of key-dependent-message (KDM) secure private-key encryption for projection
functions and a receiver-extractable two-round OT protocol. (See Definition 15.)
They used the main result of our paper in order to realize their OT component.
(The KDM component is already known from CDH [BLSV18].) In another work,
Döttling, Garg and Malavolta [DGM19] use and extend techniques form our work
(especially those from Sect. 6) in order to build protocols for Malicious Laconic
Function Evaluation (among others).

2 Technical Overview

Our results are obtained via a sequence of transformations between various
notions of OT. We give an overview of this sequence in Fig. 1 and explain each
of the steps below. All of the notions of OT that we consider are two-round and
can rely on a common reference string (CRS), which is generated by a trusted
third party and given to both the sender and the receiver. For simplicity, we
often ignore the CRS in the discussion below.

Elementary OT. We begin by defining an extremely weak and simple notion of
OT, called elementary OT. The receiver uses her choice bit c to generate a first
round message otr. The sender then uses otr to generate a second-round message
ots together with two values y0, y1. The receiver gets ots and uses it to recover
the value yc. Note that, unlike in standard OT, the sender does not choose the
2 This is marginally stronger than the variant used in constructing public-key encryp-

tion due to Alekhnovich [Ale03], which relies on a noise-rate 1/Θ(n1/2).

772 N. Döttling et al.

CDH

LPN

Elementary OT Search OT

iOT Weak SFE

Sender’s UC Security

ZK UC OT

Sec. 10.1

Sec. 10.2

Sec. 5.1

Sec. 5.2 & 5.3

Sec. 6

Sec. 7

Sec. 8

Sec. 9

Fig. 1. Sequence of transformations leading to our results.

two values y0, y1 himself, but instead generates them together with ots. (One
may think of this as analogous to the distinction between key-encapsulation
and encryption.) The security of elementary OT is defined via the following two
game-based requirements:

1. Receiver Security: The receiver’s choice bit c is computationally hidden by
the first-round OT message otr.

2. Sender Security: A malicious receiver who creates the first-round message otr
maliciously and is then given an honestly generated second-round message ots
cannot simultaneously output both of the values y0, y1 except with negligible
probability.

Note that elementary OT provides a very weak notion of sender security. Firstly,
it only provides unpredictability, rather than indistinguishability, based security
– the malicious receiver cannot output both values y0, y1, but may learn some
partial information about each of the two values. Second of all, it does not require
that the there is a consistent bit w such that the value yw is hidden from the
malicious receiver – it may be that, even after the receiver maliciously chooses
otr, for some choices of ots she learns y0 and for other choices she learns y1. We
fix the second issue first.

From Elementary OT to Search OT. We define a strengthening of elemen-
tary OT, which we call search OT. The syntax and the receiver security remain
the same. For sender security, we still keep an unpredictability (search) based
security definition. But now we want to ensure that, for any choice of the mali-
cious receiver’s message otr, there is a consistent bit w such that yw is hidden.
We want to capture this property without requiring the existence of an (even
inefficient) extractor that can find such w. We do so as follows. For any choice
of the malicious receiver’s first message otr (along with all her random coins
and the CRS), we define two probabilities ε0, ε1 which denote the probability of
the receiver outputting y0 and y1 respectively, taken only over the choice of ots.
We require that for any polynomial p, with overwhelming probability over the
receiver’s choices, at least one of ε0 or ε1 is smaller than 1/p. In particular, this

Two-Round Oblivious Transfer from CDH or LPN 773

means that with overwhelming probability over the malicious receiver’s choice
of otr, there is a fixed and consistent bit w such that the receiver will be unable
to recover yw from the sender’s message ots. Note that the value w may not be
extractable (even inefficiently) from otr alone since the way that w is defined is
“adversary-dependent”.

To go from elementary OT to search OT, we rely on techniques from “hard-
ness amplification”. The difficulty of using a search-OT adversary to break
elementary-OT security is that a search-OT adversary can, for example, have
ε0 = ε1 = 1

2 , but for half the value of ots it outputs the correct y0 and for half it
outputs the correct y1, yet it never output both correct values simultaneously.
However, if we could ensure that ε0, ε1 are both much larger than 1

2 , then this
could not happen. We use hardness amplification to achieve this. In particular,
we construct search OT scheme from elementary OT by having the sender gen-
erate λ (security parameter) different second-round messages of the elementary
OT and set the search OT values to be the concatenations OTS = (ots1, . . . , otsλ)
and Y0 = (y1

0 , . . . , y
λ
0), Y1 = (y1

1 , . . . , y
λ
1). By hardness amplification, if for some

choice of otr the malicious receiver can separately predict each of Y0, Y1 with
probability better than some inverse polynomial 1/p, then that means it can
separately predict each of the components y0, y1 with extremely high probabil-
ity > 3

4 , and by the union bound, can therefore predict both components y0, y1
simultaneously with probability > 1

4 .

From Search OT to Indistinguishability OT. Next, we define a notion that
we call indistinguishability OT. Here, just like in standard OT, the sender gets
to choose his two values m0,m1 himself, rather than having the scheme generate
values y0, y1 for him, as was the case in elementary and search OT. The receiver
security remains the same as in elementary and search OT: the receiver’s choice
bit c is hidden by her first-round message otr. The sender security is defined in
a similar manner to search OT, except that we now require indistinguishability
rather than unpredictability. In particular, the malicious receiver chooses two
values m0,m1 and a maliciously generated otr. For any such choice, we define two
probabilities ε0, ε1, where εb denotes the receiver’s advantage, calculated only
over the random coins of the sender, in distinguishing between ots generated
with the messages (m0,m1) versus (m′

0,m
′
1) where m′

b is uniformly random
and m′

1−b = m1−b. We require that for any polynomial p, with overwhelming
probability over the receiver’s choices, at least one of ε0 or ε1 is smaller than
1/p. In particular, this means that, with overwhelming probability, the malicious
receiver’s choice of otr fixes a consistent bit w such that the receiver does not
learn anything about mw.

To go from search OT to indistinguishability OT with 1-bit values m0,m1,
we rely on the Goldreich-Levin hardcore bit [GL89]. In particular, we use search
OT to generate ots along with values y0, y1 and then use the Goldreich-Levin
hardcore bits of y0, y1 to mask m0,m1 respectively. To then allow for multi-bit
values m0,m1, we simply have the sender send each bit separately, by reusing
the same receiver message otr for all bits.

774 N. Döttling et al.

From Indistinguishability OT to Weak SFE. Next, we generalize from
OT and define a weak form of (two-round) secure function evaluation (weak-
SFE). Here, there is a receiver with an input x and a sender with a circuit
f . The receiver learns the output f(x) in the second round. We define a very
simple (but weak) game-based notion of malicious security, without relying on
a simulator or extractor:

– Receiver Security: The receiver’s first-round message hides the input x from
the sender.

– Sender Security: A malicious receiver cannot distinguish between any two
functionally equivalent circuits f0, f1 used by the sender.

We show how to compile indistinguishability OT to weak SFE. Indeed, the con-
struction is the same as the standard construction of (standard) SFE from (stan-
dard) OT: the receiver sends first-round OT messages corresponding to the bits
of the input x and the sender creates a garbled circuit for f and uses the two
input labels as the values for the second-round OT messages.

The proof of sender security, however, is very different than that for the
standard construction of SFE from OT, which relies on extracting the receiver’s
OT choice bits. Instead, we rely on technical ideas that are similar to and
inspired by those recently used in the context of distinguisher-dependent simu-
lation [JKKR17] and have a sequence of hybrids that depends on the adversary.
More concretely, indistinguishability OT guarantees that for each input wire,
there is some bit w such that the adversary cannot tell if we replace the label for
w by uniform. However, this bit w is defined in an adversary-dependent manner.
This effectively allows us to extract the adversary’s OT choice bits. Therefore,
we have a sequence of adversary-dependent hybrids where we switch the OT val-
ues used by the sender and replace the labels for the bits w by random values.
We then rely on garbled circuit security to argue that garblings of f0 and f1 are
indistinguishable, and conclude that the adversary’s advantage is negligible.

Formalizing the above high-level approach is the most technically involved
component of the paper.

From Weak SFE to OT with UC Sender Security. We show how to
go from weak SFE to an OT scheme that has UC-security for the sender. In
particular, this means we can extract the choice bit c from the receiver’s first-
round message otr and simulate the sender’s second-round message ots given
only mc, without knowing the “other” value m1−c. For the receiver’s secu-
rity, we maintain the same indistinguishability-based requirement as in elemen-
tary/search/indistinguishability OT, which guarantees that the choice bit c is
hidden by the first-round OT message otr. We refer to this as a “half-UC OT”
for short. This is the first step where we introduce a simulation/extraction based
notion of security.

Our compiler places a public-key pk of a public-key encryption (PKE) scheme
to the CRS. The receiver encrypts her choice bit c under pk using randomness
r and sends the resulting ciphertext ct = Epk(c; r) as part of her first-round OT
message. At the same time, the receiver and sender run an instance of weak SFE,

Two-Round Oblivious Transfer from CDH or LPN 775

where the receiver’s input is x = (c, r) and the sender’s circuit is fpk,ct,m0,m1(c, r),
which output mc if ct = Epk(c; r) and ⊥ otherwise. The indistinguishability-based
security of the receiver directly follows from that of the SFE and the PKE, which
together guarantees that c is hidden by the first-round message. To argue UC
security of the sender, we now extract the receiver’s bit c by decrypting the
ciphertext ct. If ct is an encryption of c then fpk,ct,m0,m1 is functionally equivalent
to fpk,ct,m′

0,m′
1

where m′
c = mc and m′

1−c is replaced by an arbitrary value, say all
0s. Therefore, we can simulate the sender’s second-round OT message by using
the circuit fpk,ct,m′

0,m′
1
, which only relies on knowledge of mc without knowing

m1−c, and weak SFE security guarantees that this is indistinguishable from the
real world.

From UC Sender Security to Full UC OT. Finally, we show how to use an
OT scheme with UC-security of the sender and indistinguishability-based secu-
rity for the receiver (“half-UC OT”) to get a full UC-secure OT. In particular,
this means that we need to simulate the receiver’s first-round message without
knowing c and extract two values m0,m1 from a malicious sender such that, if
the receiver’s bit was c, he would get mc.

Before we give our actual construction, it is useful to examine a naive pro-
posal and why it fails. In the naive proposal, the sender commits to both val-
ues m0,m1 using an extractable commitment (e.g., PKE where the public key
is in the CRS); the parties use a half-UC OT where the sender puts the two
decommitments as his OT values and also sends the commitments as part of
the second-round OT message. We can extract two values m0,m1 from the com-
mitment and are guaranteed that the receiver either outputs the value mc or ⊥
(if the decommitment he receives via the underlying OT is incorrect). But we
are unable to say which of the two cases will occur. This is insufficient for full
security.

We solve the above problem via two steps:

– We first give a solution using a two-round zero-knowledge (ZK) argument and
an extractable commitment (both in the CRS model). The sender and receiver
run the half-UC OT protocol where the receiver uses her choice bit c and the
sender uses his two values m0,m1. In the first round, the receiver also sends
the first-round verifier message of the ZK argument. In the second round,
the sender also commits to his two messages m0,m1 using an extractable
commitment and uses the ZK argument system to prove that he computed
the second-round OT message correctly using the same values m0,m1 as in
the commitment. This provides UC security for the receiver since, if the ZK
argument verifies, we can extract the values m0,m1 from the commitment and
know that the receiver would recover the correct value mc. The transformation
also preserves UC security for the sender since the ZK argument can be
simulated.

– We then show how to construct a two-round ZK argument using half-UC OT.
We rely on a Σ-protocol for NP where the prover sends a value a, receives
a 1-bit challenge b ∈ {0, 1}, and sends a response z; the verifier checks that
the transcript (a, b, z) is valid for the statement being proved and accepts or

776 N. Döttling et al.

rejects accordingly. We can compile a Σ-protocol to a two-round ZK argument
using OT. The verifier sends a first-round OT message for a random bit b.
The prover chooses a and computes both responses z0, z1 corresponding to
both possible values of the challenge b; he then sends a and uses z0, z1 as the
values for the second-round OT message. The verifier recovers zb from the OT
and checks that (a, b, zb) is a valid transcript of the Σ-protocol. We repeat
this in parallel λ (security parameter) times to get negligible soundness error.
It turns out that we can prove ZK security by relying on the UC-security for
the sender; we can extract the OT choice bits b in each execution and then
simulate the Σ-protocol transcript after knowing the challenge bit b. It would
also be easy to prove soundness using UC-security for the receiver, but we
want to only rely on a “half-UC” OT where we only have indistinguishability
security of the receiver. To solve this, we rely on a special type of “extractable”
Σ-protocol [HL18] in the CRS model, where, for every choice of a there is
a unique “bad challenge” b such that, if the statement is false, there exists
a valid response z that results in a valid transcript (a, b, z). Furthermore,
this unique bad challenge b should be efficiently extractable from a using
a trapdoor to the CRS. Such “extractable” Σ-protocols can be constructed
from only public-key encryption. If the Σ-protocol is extractable and the OT
scheme has indistinguishability-based receiver security then the resulting two-
round ZK is computationally sound. This is because, the only way that the
prover can succeed is if in each of the λ invocations he chooses a first message
a such that the receiver’s OT choice bit b is the unique bad challenge for
a, but this means that the prover can predict the receiver’s OT choice bits
(the reduction uses the trapdoor for the Σ-protocol to extract the unique bad
challenge from a).

Combined together, the above two steps give a general compiler from half-UC
OT to fully secure UC OT.

Instantiation from CDH. We now give our simple instantiation of elementary
OT under the CDH assumption. The construction is based on a scheme of Bellare
and Micali [BM90], which achieves a weak form of malicious security in the
random-oracle model. Our protocol is somewhat simplified and does not require
a random oracle. Recall that the CDH assumption states that, given a generator
g of some cyclic group G of order p, along with values ga, gb for random a, b ∈ Zp,
it is hard to compute gab.

The CRS of the OT scheme consists of A = ga for random a ∈ Zp. The
receiver with a choice bit c computes two value hc = gr and h1−c = A/hc

for a random r ∈ Zp and sends otr := h0 as the first-round OT message. The
sender computes h1 = A/h0. It chooses a random b ∈ Zp, sets ots := B = gb as
the second-round message, and generates the two values y0 = hb

0, y1 = hb
1. The

receiver outputs ŷc = Br.

Two-Round Oblivious Transfer from CDH or LPN 777

This ensures correctness since ŷc = Br = gbr = hb
c = yc. Also, h0 is uniformly

random over G no matter what the receiver bit c is, and therefore this provides
(statistic) indistinguishability-based receiver security. Lastly, we argue that we
get elementary OT security for the sender, meaning that a malicious receiver
cannot simultaneously compute both y0, y1. Note that the only values seen by
the malicious receiver during the game are A = ga, B = gb. If the receiver
outputs y0 = hb

0, y1 = hb
1 = (A/h0)b then we can use these values to compute

y0 · y1 = Ab = gab, which breaks CDH.

Instantiation from LPN. We also give a simple instantiation of elementary
OT under the LPN assumption. This construction closely mirrors the CDH one.
We use a variant of the LPN problem with noise-rate 1/nε for an arbitrary
constant ε > 1

2 . We also rely on a variant of the LPN problem where the secret
is chosen from the error distribution, which is known to be equivalent to standard
LPN where the secret is uniformly random [ACPS09]. In particular this variant
of the LPN problem states that, for a Bernoulli distribution Bρ which outputs 1
with probability ρ = 1/nε, and for A ← Z

n×n
2 , s, e ← Bn

ρ , the values (A, sA + e)
are indistinguishable from uniformly random values.

The CRS of the OT scheme consists of a tuple (A, v) where A ← Z
n×n
2 and

v ← Z
n
2 . The receiver chooses x, e ← Bn

ρ and sets hc = Ax + e and h1−c =
v − hc and sends otr = h0 as the first-round OT message. The sender computes
h1 = h0 + v, chooses S,E ← Bλ×n

ρ where λ is the security parameter and sends
ots := B = SA + E as the second-round OT message. The sender computes the
values y0 = Sh0, y1 = Sh1. The receiver outputs ŷc = Bx.

This ensures correctness with a small inverse-polynomial error probability.
In particular, yc = Shc = S(Ax + e) = Bx + Se − Ex = ŷc + (Se − Ex)
where Ex + Se = 0 except with a small error probability, which we can make
an arbitrarily small inverse polynomial in λ by setting n to be a sufficiently
large polynomial in λ. The receiver’s (computational) indistinguishability-based
security holds under LPN since h0 is indistinguishable from uniform no matter
what c is. We also get elementary OT security for the sender under the LPN
assumption. A malicious receiver only sees the values A, v and B = SA + E
during the game. If the receiver outputs y0 = Sh0, y1 = Sh1, then we can use
it to compute y0 + y1 = S(h0 + h1) = Sv. But, since S is hard to compute
given A,B, we can argue that Sv is indistinguishable form uniform under the
LPN assumption, by thinking of the i’th of Sv as a Goldreich-Levin hardcore
bit for the i’th row of S. Therefore, is should be hard to output Sv except with
negligible probability.

The fact that we get a small (inverse polynomial) error probability does
not affect the security of the generic transformations going from elementary
OT to indistinguishability OT for 1-bit messages. Then, when we go from 1-
bit messages to multi-bit messages we can also use an error-correcting code to
amplify correctness and get a negligible correctness error.

778 N. Döttling et al.

3 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote compu-

tational indistinguishability between two distributions and use ≡ to denote two
distributions are identical. For a distribution D we use x

$←− D to mean x is
sampled according to D and use y ∈ D to mean y is in the support of D. For
a set S we overload the notation to use x

$←− S to indicate that x is chosen
uniformly at random from S.

3.1 Basic Inequalities

Lemma 1 (Markov Inequality for Advantages). Let A(Z) and B(Z) be
two random variables depending on a random variable Z and potentially addi-
tional random choices. Assume that |PrZ [A(Z) = 1] − PrZ [B(Z) = 1]| ≥ ε ≥ 0.
Then

Pr
Z

[|Pr[A(Z) = 1] − Pr[B(Z) = 1]| ≥ ε/2] ≥ ε/2.

Proof. Let a := PrZ [|Pr[A(Z) = 1] − Pr[B(Z) = 1]| ≥ ε/2]. We have ε ≤
a × 1 + (1 − a) × ε/2. Since 0 ≤ 1 − a ≤ 1, we obtain ε ≤ a + ε/2. The inequality
now follows. �	
Theorem 2 (Hoeffding Inequality). Let X1, . . . , XN ∈ [0, 1] be i.i.d. random
variables with expectation E[X1]. Then it holds that

Pr

[∣∣∣∣∣ 1
N

∑
i

Xi − E[X1]

∣∣∣∣∣ > δ

]
≤ 2e−2Nδ2

.

3.2 Standard Primitives

Definition 3 (PKE). The notion of CPA security for a PKE scheme PKE =
(KeyGen,E,Dec) is standard. We say that PKE is perfectly correct if Pr[∃(m, r)

s.t. Dec(sk,E(pk,m; r)) �= m] = negl(λ), where (pk, sk) $←− KeyGen(1λ).

Definition 4 (Garbled Circuits). A garbling scheme for a class of circuits
C with n-bit inputs consists of (Garble,Eval,Sim) with the following correctness
and security properties.

– Correctness: for all C ∈ C, x ∈ {0, 1}n, we have Pr[Eval(Ĉ,GarbleInput(�lb
0
,

�lb
1
, x)) = C(x)] = 1, where (Ĉ, �lb

0
, �lb

1
) $←− Garble(1λ,C), �lb

0
:= (lb01, . . . , lb

0
n),

�lb
1

:= (lb11, . . . , lb
1
n) and we define GarbleInput(�lb

0
, �lb

1
, x) := (lbx11 , . . . , lbxn

n).

– Security: For any C ∈ C and x ∈ {0, 1}n: (Ĉ,GarbleInput(�lb
0
, �lb

1
, x))

c≡
Sim(1λ,C(x)), where (Ĉ, �lb

0
, �lb

1
) $←− Garble(1λ,C).

Two-Round Oblivious Transfer from CDH or LPN 779

4 Definitions of Two-Round Oblivious Transfer

A two-round oblivious transfer (OT) protocol (we use the definition
from [BGI+17]) is given by algorithms (Setup,OT1,OT2,OT3), where the setup

algorithm Setup generates a CRS value crs
$←− Setup(1λ).3 The receiver runs the

algorithm OT1 which takes crs and a choice bit c ∈ {0, 1} as input and outputs
(otr, st). The receiver then sends otr to the sender, who obtains ots by evaluat-
ing OT2(1λ, otr,m0,m1), where m0 and m1 (such that m0,m1 ∈ {0, 1}λ) are its
inputs. The sender then sends ots to the receiver who obtains mc by evaluating
OT3(1λ, st, ots).

4.1 Correctness

We say that a two-round OT scheme is perfectly correct, if with probability
1−negl(λ) over the choice of crs $←− Setup(1λ) the following holds: for every choice
bit c ∈ {0, 1} of the receiver and input messages m0 and m1 of the sender, and for
any (otr, st) ∈ OT1(crs, c) and ots ∈ OT2(crs, otr,m0,m1), we have OT3(st, ots) =
mc. (Recall that x ∈ D for a distributions D means that x is in the support of D.)

4.2 Receiver’s Security Notions

We consider two notions of receiver’s security—namely, notions that require
security against a malicious sender. We describe them next.

Receiver’s indistinguishability security. For every non-uniform polynomial-
time adversary A: |Pr[A(crs,OT1(crs, 0)) = 1] − Pr[A(crs,OT1(crs, 1)) = 1]| =

negl(λ), where crs $←− Setup(1λ).

Receiver’s UC-Security. We work in Canetti’s UC framework with static cor-
ruptions [Can01]. We assume familiarity with this model. We use Z for denoting
the underlying environment. For a real protocol Π and an adversary A, we use
EXECΠ,A,Z to denote the real-world ensemble. Also, for an ideal functionality F
and an adversary S we denote IDEALF,S,Z to denote the ideal-world ensemble.

We say that an OT protocol OT is receiver-UC secure if for any adversary
A corrupting the sender, there exists a simulator S such that for all environ-
ments Z:

IDEALFOT,S,Z
c≡ EXECOT,A,Z ,

where the ideal functionality FOT is defined in Fig. 2. (We will follow the same
style as in [CLOS02,PVW08].)

3 Some variants of two-round OT do not need a CRS. In this case, we will assume
Setup as the identity function.

780 N. Döttling et al.

OT interacts with an ideal sender S and an ideal receiver R.

1. On input (sid, sender,m0,m1) from the sender, store (m0,m1).
2. On input (sid, receiver, b), check if a pair of inputs (m0,m1) has been

already recorded for session sid; if so, send mb to R and send sid to the
adversary and halt; else, send nothing.

Fig. 2. Ideal functionality FOT

Since our OT protocols are in the CRS model, we also give the FCRS idea
functionality below (Fig. 3).

D
CRS: parameterized over a distribution D, run by parties P1, . . . , Pn,

and an adversary S:
– Whenever receiving message a message (sid, Pi, Pj) from party Pi, sam-

ple crs
$←− D and send (sid, crs) to Pi and send (sid, crs, Pi, Pj) to S.

Whenever receiving the message (sid, Pi, Pj) from Pj , send (sid, crs) to
Pj and S.

Fig. 3. Ideal functionality FD
CRS [CR03]

4.3 Sender’s Security Notions

We consider several different notions of sender’s security that we define below.
In the first two notions of security, namely elementary and search notions, we
change the syntax of OT2 a bit. More specifically, instead of taking m0 and m1 as
input, OT2 outputs two masks y0 and y1 where the receiver only gets yc, where
c is the receiver’s choice bit.

Sender’s Elementary Security. The elementary sender security corresponds
to the weakest security notion against a malicious receiver that is considered
in this work. This notion requires that the receiver actually compute both the
strings y0 and y1 used by the sender. Let A = (A1,A2) be an adversary. Consider
the following experiment Expλ

eOT(A):

1. Run crs
$←− Setup(1λ).

2. Run (otr, st) $←− A1(1λ, crs)
3. Compute (ots, y0, y1)

$←− OT2(crs, otr)
4. Compute (y∗

0, y
∗
1)

$←− A2(st, ots) and output 1 iff (y∗
0, y

∗
1) = (y0, y1)

Two-Round Oblivious Transfer from CDH or LPN 781

We say that a scheme satisfies eOT security if Pr[Expλ
eOT(A) = 1] = negl(λ).

Sender’s Search Security. Next, we consider the search security notion. In
this stronger security notion, the adversary is expected to still compute both
y0 and y1 but perhaps not necessarily at the same time. More formally, let
A = (A1,A2) be an adversary where A2 outputs a message y∗. Consider the
following experiment Expcrs,r,wsOT (A), indexed by a crs, random coins r ∈ {0, 1}λ

and a bit w ∈ {0, 1}.

1. Run (otr, st) $←− A1(1λ, crs; r)

2. Compute (ots, y0, y1)
$←− OT2(crs, otr)

3. Compute y∗ $←− A2(st, ots, w) and output 1 iff y∗ = yw

We say a PPT adversary A breaks the sender search privacy if there exist a
non-negligible function ε such that

Pr
crs,r

[Pr[Expcrs,r,0sOT (A) = 1] > ε and Pr[Expcrs,r,1sOT (A) = 1] > ε] > ε,

where crs
$←− Setup(1λ) and r

$←− {0, 1}λ.

Sender’s Indistinguishability Security (iOT). Moving on, we consider the
sender’s indistinguishability security notion (or the iOT notion for short). In this
notion, we require that the receiver does not learn any information about either
m0 or m1. More formally, let A = (A1,A2) be an adversary where A2 outputs a
bit s. Consider the following experiment Expcrs,r,w,b

iOT (A), indexed by a crs, random
coins r ∈ {0, 1}λ, a bit w ∈ {0, 1} and a bit b ∈ {0, 1}.

1. Run (m0,m1, otr, st)
$←− A1(1λ, crs; r)

2. If b = 0 compute ots
$←− OT2(crs, otr,m0,m1)

3. Otherwise, if b = 1 compute ots
$←− OT2(crs, otr,m′

0,m
′
1) where m′

w
$←− {0, 1}n

and m′
1−w = m1−w.

4. Compute and output s
$←− A2(st, ots)

Define the advantage of A as Advcrs,r,wiOT (A) = |Pr[Expcrs,r,w,0
iOT (A) = 1] −

Pr[Expcrs,r,w,1
iOT (A) = 1]|. We say a PPT adversary A breaks the sender’s indistin-

guishability security if there exist a non-negligible function ε such that

Pr
crs,r

[Advcrs,r,0iOT (A) > ε and Advcrs,r,1iOT (A) > ε] > ε,

where crs
$←− Setup(1λ) and r

$←− {0, 1}λ.
In the experiment above, if the two messages m0 and m1 are single-bits, then

call the notion bit iOT. Otherwise, we call the notion string iOT.

Sender’s UC-Security. We say that an OT protocol OT is sender-UC secure
if for any adversary A corrupting the receiver, there exists a simulator S such
that for all environments Z:

782 N. Döttling et al.

IDEALFOT,S,Z
c≡ EXECOT,A,Z ,

where the ideal functionality FOT is defined in Fig. 2.

Definition 5. For X ∈ {elementary, search, indistinguishability}, we call a
two-round OT scheme X -secure if it has sender’s X security and receiver’s indis-
tinguishability security. Moreover, we call a two-round OT scheme UC-secure if
it has sender’s UC-security and receiver’s UC-security.

5 Transformations for Achieving Sender’s
Indistinguishability

In this section, we give a sequence of transformations which leads us to sender’s
indistinguishability security, starting with sender’s elementary security.

5.1 From Elementary OT to Search OT

We rely on a result of [CHS05] on hardness amplification of weakly verifiable
puzzles. In such puzzles, a puzzle generator can efficiently verify solutions but
others need not be able to; we rely on a restricted case where the solution is
unique and the puzzle generator generates the puzzle with the solution. The
result essentially says that solving many puzzles is much harder than solving a
single puzzle. For simplicity, we state a simplified version of their result (restate-
ment of Lemma 1 in [CHS05]) with a restricted range of parameters. It shows
that, if there is a “weak solver” that has some inverse polynomial advantage in
solving λ puzzles simultaneously, then there is an “amplified solver” that has
extremely high advantage (arbitrarily close to 1) in solving an individual puzzle.

Lemma 6 (Hardness Amplification [CHS05]). For every polynomial p and
every constant δ > 0 there exists a PPT algorithm Amp such that the following
holds for all sufficiently large λ ∈ N. Let G be some distribution over pairs
(puzzle, solution) ← G. Let WS be a “weak solver” such that

Pr[WS(puzzle1, . . . , puzzleλ) = (solution1, . . . , solutionλ)] ≥ 1/p(λ)

where (puzzlei, solutioni)
$←− G for i ∈ {1, . . . , λ}. Then

Pr[AmpWS,G(1λ, puzzle∗) = solution∗] ≥ δ

where (puzzle∗, solution∗) $←− G.

Construction of Search OT. Let Π = (Setup,OT1,OT2,OT3) be an elemen-
tary OT. We construct a search OT scheme Π ′ = (Setup,OT1,OT

′
2,OT

′
3) as

follows:

Two-Round Oblivious Transfer from CDH or LPN 783

– (ots′, Y0, Y1)
$←− OT′

2(otr
′): Sample (otsi, yi

0, y
i
1)

$←− OT2(crs, otr) for i =
1, . . . , λ. Output ots′ = (ots1, . . . , otsλ) and Y0 = (y10, . . . , y

λ
0), Y1 =

(y11, . . . , y
λ
1).

– Y
$←− OT′

3(ots
′, st): Parse ots′ = (ots1, . . . , otsλ). Let yi

$←− OT3(otsi, st) for
i = 1, . . . , λ. Output Y = (y1, . . . , yλ).

Theorem 7. If Π is an elementary OT then Π ′ described above is a search OT.

The proof can be found in the full version of the paper.

5.2 From Search OT to Bit iOT

Let Π = (Setup,OT1,OT2,OT3) be a search OT with message length n = n(λ).
We construct an iOT scheme Π ′ = (Setup,OT′

1,OT
′
2,OT

′
3) with 1-bit message

as follows:

– (otr′, st′) $←− OT′
1(crs, b): Let (otr, st) $←− OT1(crs, b). Output otr′ = otr, st′ =

(st, b).

– ots′ $←− OT′
2(otr

′,m0,m1): Sample (ots, y0, y1)
$←− OT2(crs, otr). Choose

s0, s1
$←− {0, 1}n. For b ∈ {0, 1}, let cb = 〈yb, sb〉 ⊕ mb. Output ots′ =

(ots, s0, s1, c0, c1).

– M
$←− OT′

3(st
′, ots′): Parse ots′ = (ots, s0, s1, c0, c1), st′ = (st, b). Let y

$←−
OT3(ots, st). Output M = cb ⊕ 〈y, sb〉.

Theorem 8. If Π is a search OT then Π ′ is an iOT with 1-bit messages.

The proof can be found in the full version of the paper.

5.3 From Bit iOT to String iOT

Let Π = (Setup,OT1,OT2,OT3) be an iOT scheme with 1 bit messages. Then,
we construct an iOT scheme Π ′ = (Setup,OT′

1,OT
′
2,OT

′
3) with message length

n = n(λ) as follows:

– (otr′, st′) $←− OT′
1(crs, b): Let (otr, st) $←− OT1(crs, b). Output otr′ = otr, st′ =

st.
– ots′ $←− OT′

2(otr
′,m0,m1): For each i ∈ [n], sample ots(i)

$←−
OT2(crs, otr,m

(i)
0 ,m

(i)
1), where m

(i)
0 and m

(i)
1 are the ith bits of m0 and m1,

respectively. Output ots′ = {ots(i)}i∈[n].

– M
$←− OT′

3(ots
′, st′): Parse ots′ = {ots(i)}, st′ = (st, b). Let M (i) $←−

OT3(ots(i), st) and output M .

Theorem 9. If Π is iOT with 1-bit messages then Π ′ is an iOT with messages
of length n.

The proof can be found in the full version of the paper.

784 N. Döttling et al.

6 Weak Secure Function Evaluation

In this section, we will define our notion of weak secure function evaluation and
provide instantiations of the new notion.

6.1 Definitions

Definition 10. A weak secure function evaluation scheme wSFE for a function
class F consists of four PPT algorithms (Setup,Receiver1,Sender,Receiver2) with
the following syntax.

Setup(1λ): Takes as input a security parameter and outputs a common reference
string crs

Receiver1(crs, x): Takes as input a common reference string crs and an input x
and outputs a message z1 and a state st

Sender(crs, f, z1): Takes as input a common reference string crs, a function f ∈ F
and a receiver message z1 and outputs a sender message z2

Receiver2(st, z2): Takes as input a state st and a sender message z2 and outputs
a value y.

We require the following properties.

– Correctness: It holds for any λ, any f ∈ F and any x in the domain of f
that

Receiver2(st,Sender(crs, f, z1)) = f(x),

where crs
$←− Setup(1λ) and (z1, st)

$←− Receiver1(crs, x)
– Receiver Privacy: Let A = (A1,A2) be an adversary where A2 outputs a

bit and let the experiment ExpRP (A) be defined as follows:

• Compute crs
$←− Setup(1λ)

• Compute (x0, x1)
$←− A1(crs)

• Choose b
$←− {0, 1}

• Compute z∗
1

$←− Receiver1(crs, xb)

• Compute b′ $←− A2(crs, z∗
1)

• If b′ = b output 1, otherwise 0
Define AdvRP (A) = |Pr[ExpRP (A) = 1] − 1/2|. We say that wSFE has
computational receiver privacy, if it holds for all PPT adversaries A that
AdvRP (A) < negl(λ). Likewise, we say that wSFE has statistical receiver
privacy, if it holds for all unbounded (non-uniform) adversaries A that
AdvRP (A) < negl(λ).

– Sender Privacy: Let A = (A1,A2) be an adversary where A2 outputs a bit
and let the experiment ExpSP (A) be defined as follows:

• Compute crs
$←− Setup(1λ)

• Compute (f0, f1, z1)
$←− A1(crs)

• Choose b
$←− {0, 1}

Two-Round Oblivious Transfer from CDH or LPN 785

• Compute z∗
2

$←− Sender(crs, fb, z1)
• Compute b′ $←− A2(crs, z∗

2)
• If b′ = b output 1, otherwise 0

Define AdvSP (A) = |Pr[ExpSP (A) = 1] − 1/2|. We say that wSFE has com-
putational sender privacy, if it holds for all PPT adversaries A = (A1,A2)
which output equivalent functions f0 ≡ f1 in the first stage that AdvSP (A) <
negl(λ). Likewise, we say that wSFE has statistical sender privacy, if it holds
for all unbounded (non-uniform) adversaries A which output equivalent func-
tions f0 ≡ f1 in the first stage that AdvSP (A) < negl(λ).

6.2 wSFE for All Circuits from iOT and Garbled Circuits

Let iOT = (Setup,OT1,OT2,OT3) be an iOT protocol and let (Garble,Eval) be a
garbling scheme. Overloading notation, assume that if �x = (x1, . . . , xn) ∈ {0, 1}n

is an input vector, then OT1(crs, �x) = (OT1(crs, x1), . . . ,OT1(crs, xn)). Similarly,
if �m0 = (m0,1, . . . ,m0,n) and �m1 = (m1,1, . . . ,m1,n) are two vectors of messages,
then denote

OT2(crs, �otr, �m0, �m1) = (OT2(crs, otr
1, m0,1, m1,1), . . . ,OT2(crs, otr

n, m0,n, m1,n))

The scheme wSFE is given as follows.

Setup(1λ): Compute and output crs
$←− iOT.Setup(1λ)

Receiver1(crs, �x ∈ {0, 1}n): Compute (�otr, �st
′) $←− iOT.OT1(crs, �x). Output z1

$←−
�otr and st

$←− �st
′.

Sender(crs, z1 = �otr,C):
– Compute (Ĉ, �lb

0
, �lb

1
) $←− Garble(1λ,C)

– Compute �ots
$←− iOT.OT2(crs, �otr, �lb

0
, �lb

1
).

– Output z2
$←− (�ots, Ĉ).

Receiver2(st = �st
′
, z2):

– Parse z2 = (�ots, Ĉ).
– Compute �lb

$←− iOT.OT3(�st
′
, �ots)

– Compute m
$←− Eval(Ĉ, �lb).

– Output m

Correctness. We will briefly argue that the scheme is correct. Thus, let
crs

$←− iOT.Setup(1λ) and (�otr, �st) $←− iOT.OT1(crs, �x). Further let (Ĉ, �lb
0
, �lb

1
) $←−

Garble(1λ,C) and �ots
$←− iOT.OT2(crs, �otr, �lb

0
, �lb

1
). By the correctness of iOT it

holds that
�lb = iOT.OT3(�st, �ots) = GarbleInput(�lb

0
, �lb

1
, �x).

Furthermore, by the correctness of the garbling scheme (Garble,Eval) it holds
that

m = Eval(Ĉ, �lb) = Eval(Ĉ,GarbleInput(�lb
0
, �lb

1
, �x)) = C(�x),

and we get that wSFE is correct.

786 N. Döttling et al.

Receiver Privacy. We will first establish receiver privacy of wSFE.

Theorem 11. Assume that iOT has receiver indistinguishability security. The
wSFE has receiver privacy.

The proof can be found in the full version of the paper.

Sender Privacy. We will now proceed to show sender privacy of wSFE against
malicious receivers.

Theorem 12. Assuming that iOT has indistinguishability sender privacy and
that (Garble,Eval) is a simulation secure garbling scheme, it holds that wSFE has
sender privacy.

The proof can be found in the full version of the paper.

7 Sender-UC OT from wSFE

In this section we will provide a two-round OT protocol with sender’s UC security
and receiver’s indistinguishability security from any CPA-secure PKE and a two-
round wSFE for a specific class of functions.

Let PKE := (KeyGen,E,Dec) be a PKE scheme and let wSFE be a two-round
wSFE, i.e. wSFE := (Setup,Receiver1,Sender,Receiver2), for a function class F
defined as follows: any function in this class is of the form C[pk, ct,m0,m1],
parameterized over a public key pk, a ciphertext ct and two messages m0 and
m1, and is defined as follows:

C[pk, ct,m0,m1](b, r): If PKE.E(pk, b; r) = ct, output mb; otherwise ⊥.

Construction 13 (Sender-UC OT). The OT-protocol is based on the above
two primitives PKE and wSFE, and is described as follows.

Setup(1λ): Compute crs′ $←− wSFE.Setup(1λ) and (pk, sk) $←− PKE.KeyGen(1λ).
Output crs := (crs′, pk).

OT1(crs = (crs′, pk), b): Choose r
$←− {0, 1}λ and compute ct

$←− PKE.E(pk, b; r).

Set �x := (b, r) and compute (z1, st)
$←− wSFE.Receiver1(crs′, �x). Output otr :=

(ct, z1) as the OT message and st as the private state.

OT2(crs, otr,m0,m1): Parse crs = (crs′, pk), otr = (ct, z1) and compute z2
$←−

wSFE.Sender(crs′,C[pk, ct,m0,m1], z1). Output ots := z2.
OT3(st, ots): Let z2 := ots. Compute and output Receiver2(st, z2).

Theorem 14. Assuming PKE is CPA-secure and perfectly correct (Defini-
tion 3), and that wSFE satisfies correctness, receiver privacy and sender pri-
vacy (Definition 10), then the OT given in Construction 13 provides receiver’s
indistinguishability security and sender’s UC security.

Two-Round Oblivious Transfer from CDH or LPN 787

The proof can be found in the full version of the paper.
Finally, we mention that the OT protocol constructed in Construction 13

satisfies a receiver-extractability property, which was (implicitly) used in the
proof of sender’s UC security. Since we will use this definition later, we formalize
it below.

Definition 15. We say that an OT protocol (Setup,OT1,OT2,OT3) has receiver
extractability if the setup algorithm Setup(1λ) in addition to crs also outputs a
trapdoor key σ and if there is a PPT algorithm Extract, for which the following
holds: for any stateful PPT adversary A := (A1,A2), assuming (m0,m1, otr)

$←−
A1(crs) and b = Extract(σ, otr), then A2 cannot distinguish between the outputs
of OT2(crs, otr, (m0,m1)) and OT2(crs, otr, (mb,mb)).

8 2-Round ZK from Sender-UC OT and Σ-Protocols

In this section we give a two-round (statement-independent) ZK protocol against
malicious verifiers in the CRS model based on a special type of Σ-protocols and
an OT with sender’s UC-security and receiver’s indistinguishability security.

We first start by defining the properties we require of our Σ-protocol, and will
then define the notion of statement-independent ZK protocols that we would like
to achieve. Our notion of Σ-protocols is what Holmgren and Lombardi [HL18]
called extractable Σ-protocols, defined as follows.

Definition 16 (Extractable Σ-protocols [HL18]). A CRS-based Σ-protocol
(Setup,P,V,Extract,Sim) for a language L ∈ NP is a three-round argument sys-
tem between a prover P := (P1,P2) and a verifier V, where the prover is the
initiator of the protocol and where the verifier’s only message is a random bit
b ∈ {0, 1}. The setup algorithm (crs, σ) $←− Setup(1λ) returns a CRS value crs
together with an associated trapdoor key σ. The trapdoor key σ will only play a
role in the extractability requirement. We require the following properties:

– Completeness: For all λ, all (x,w) ∈ R (where R is the underlying relation), we

have Pr[V(crs, x, a, b, z) = 1] = 1, where the probability is taken over (crs, σ) $←−
Setup(1λ), (a, st) $←− P1(crs, x,w), b

$←− {0, 1} and z
$←− P2(st, b).

– Special soundness and extractability: For any value crs generated as (crs, σ) $←−
Setup(1λ), any x /∈ L and any (possibly malicious) first-round message
a, there exists at most one b ∈ {0, 1} for which there exists z such that
V(crs, x, a, b, z) = 1. Moreover, for such parameters, this unique value of b
(if any) can be computed efficiently as Extract(σ, x, a).

– Honest-verifier zero knowledge: For any value crs generated as (crs, σ) $←−
Setup(1λ), any b ∈ {0, 1} and any (x,w) ∈ R:

(crs, x, a, b, z)
c≡ (crs, x, a′, b, z′), (1)

where (a, st) $←− P1(crs, x,w), z $←− P2(st, b) and (a′, z′) $←− Sim(crs, x, b).

788 N. Döttling et al.

We will now define out notion of CRS-based two-round statement-independent
ZK. Informally, a two-round ZK protocol is statement-independent if the veri-
fier’s message in the protocol is independent of the statement being proven.

Definition 17 (Two-round statement-independent zero knowledge). A
two-round zero-knowledge argument system for a language L ∈ NP with a
corresponding relation R in the CRS model consists of four PPT algorithms
ZK = (Setup,P,V := (V1,V2),Sim := (Sim1,Sim2)), defined as follows. The
setup algorithm Setup on input 1λ outputs a value crs. The verifier algorithm
V1(crs) on input crs returns a message msgv together with a private state st.
We stress that the verifier does not take as input any statement x, hence the
“statement-independent” name. The prover algorithm P(crs, x,w,msgv) on input
crs, a statement x with a corresponding witness w and a verifier’s message msgv,
outputs a message msgp. Finally, the algorithm V2(st, x,msgp) outputs a bit b.
We require the following properties.

– Completeness: For all (x,w) ∈ L we have Pr[V2(st, x,msgp) = 1] = 1, where

crs
$←− Setup(1λ), (msgv, st) $←− V1(crs) and msgp

$←− P(crs, x,w,msgv).
– Adaptive soundness: No PPT malicious prover can convince an honest verifier

of a false statement, even if the statement is chosen adaptively after seeing crs
and the verifier’s (statement-independent) message. Formally, for any PPT
adversary P∗ the following holds: Pr[V2(st, x,msgp) = 1 ∧ x /∈ L] = negl(λ),

where crs
$←− Setup(1λ), (msgv, st) $←− V1(crs), (x,msgp) $←− P∗(crs,msgv).

– Adaptive Malicious Zero-Knowledge (ZK): Let V∗ = (V∗
1,V

∗
2) be a stateful

two-phase adversary where V∗
2 outputs a bit. Let the experiment ExpZK(V∗)

be defined as follows:
1. Choose b

$←− {0, 1}
2. If b = 0, sample crs

$←− Setup(1λ). Else, sample (crs, σ) $←− Sim1(1λ).

3. Let (x,w,msgv) $←− V∗
1(crs). If R(x,w) = 0, then halt.

4. If b = 0, let msgp
$←− P(crs, x,w,msgv). Else, let msgp

$←− Sim2(σ, x,msgv).

5. Compute b′ $←− V∗
2(msgp).

6. If b′ = b output 1, otherwise 0.
Define AdvZK(V∗) = |Pr[ExpZK(V∗) = 1] − 1/2|. We say that the scheme is
zero-knowledge if for all PPT adversaries V∗, AdvZK(V∗) = negl(λ).

Construction 18 (Two-round ZK). Let OT := (Setup,OT1,OT2,OT3)
be an OT protocol and let SIGM := (Setup,P,V,Extract,Sim) be an
extractable Σ-protocol for a language L ∈ NP (Definition 16). We give a two-
round ZK protocol ZK := (Setup,P,V := (V1,V2)) for L as follows. The con-
struction is parameterized over a polynomial r := r(λ), which we will instantiate
in the soundness proof.

– ZK.Setup(1λ): Run crsot
$←− OT.Setup(1λ) and (crssig, σ) $←− SIGM.Setup(1λ).

Return crs := (crsot, crssig).

Two-Round Oblivious Transfer from CDH or LPN 789

– ZK.V1(crs := (crsot, crssig)): For each i ∈ [r], sample bi
$←− {0, 1}. Let

(�otr, �stot)
$←− OT1(crsot,�b), where �b := (b1, . . . , br). Return (msgv, st), where

msgv := �otr is the message to the prover P, and st := (b1, . . . , br, �stot) is the
private state.

– ZK.P(crs := (crsot, crssig), x,w,msgv): For each i ∈ [r] sample (ai, stsi)
$←−

SIGM.P1(crssig, x,w). For each i ∈ [r] and b ∈ {0, 1}, form zi,b
$←−

SIGM.P2(stsi, b), which is the prover’s last message in the Σ-protocol when his
first message was ai and when the verifier’s challenge bit is b. Return msgp :=
(�a,OT2(crsot, �otr, �z0, �z1)), where �a := (a1, . . . , ar), �z0 := (z1,0, . . . , zr,o) and
�z1 := (z1,1, . . . , zr,1).

– ZK.V2(st, x,msgp): Parse st := (b1, . . . , br, �stot), msgp := (�a, �ots) and �a :=
(a1, . . . , ar). Let (z1, . . . , zr) = OT3(�stot, �ots). Return 1 if for all i ∈ [r]:
SIGM.V(crssig, x, ai, bi, zi) = 1. Otherwise, return 0.

Theorem 19. Assuming that SIGM := (Setup,P,V,Extract,Sim) is an
extractable Σ-protocol for a language L (Definition 16) and OT :=
(Setup,OT1,OT2,OT3) provides sender’s UC-security and receiver’s indistin-
guishability security, then the protocol ZK given in Construction 18 satisfies
completeness, adaptive soundness and adaptive malicious zero knowledge for L.

The proof can be found in the full version of the paper.

9 UC-Secure OT from Sender-UC OT and Zero
Knowledge

We will now show how to build a UC-secure OT scheme (with both receiver’s
and sender’s UC security) from the combination of a CPA-secure PKE scheme, a
CRS-based two-round statement-independent ZK protocol, and a two-round OT
scheme with sender’s UC-security and receiver’s indistinguishability security.

Let PKE := (KeyGen,E,Dec) be the PKE scheme, (Setup,OT1,OT2,OT3)
be the base two-round OT scheme and ZK = (Setup,P,V := (V1,V2),Sim :=
(Sim1,Sim2)) be a two-round statement-independent ZK protocol for the lan-
guage Lpk,crsot,otr ∈ NP, parameterized over a public key pk of the PKE scheme,
a CRS value crsot of the OT scheme and an OT-receiver’s message otr, defined
as follows:

Lpk,crsot,otr =
{
(ct0, ct1, ots) | ∃(m0,m1, r0, r1, r) s.t.

ct0 = E(pk,m0; r0), ct1 = E(pk,m1; r1), ots = OT2(crsot, otr,m0,m1; r)
}
. (2)

Construction 20 (UC-secure OT). We build OT′ := (Setup′,OT′
1,OT

′
2,

OT′
3) from the above primitives as follows.

Setup′(1λ): Sample (pk, sk) $←− PKE.Gen(1λ), crsot
$←− OT.Setup(1λ) and crszk

$←−
ZK.Setup(1λ). Output crs := (pk, crsot, crszk).

790 N. Döttling et al.

OT′
1(crs, b): Parse crs := (pk, crsot, crszk). Sample (otr, stot)

$←− OT1(crsot, b) and

(msgv, stzk)
$←− ZK.V1(crszk). Output otr′ := (otr,msgv) as the message to the

sender and output st := (stot, stzk) as the private state.
OT′

2(crs, otr
′,m0,m1): Parse crs := (pk, crsot, crszk) and otr′ := (otr,msgv). Sam-

ple r, r0, r1
$←− {0, 1}∗. Let ct0 := E(pk,m0; r0), ct1 = E(pk,m1; r1), and ots =

OT2(crsot, otr,m0,m1; r). Set x := (ct0, ct1, ots) and w := (m0,m1, r0, r1, r).

Output ots′ := (ct0, ct1, ots,msgp), where msgp
$←− ZK.P(crszk, x,w,msgv).

OT′
3(st, ots

′): Parse st := (stot, stzk), ots′ := (ct0, ct1, ots,msgp) and let x :=
(ct0, ct1, ots). If ZK.V2(stzk, x,msgp) �= 1, then return ⊥. Otherwise, return
OT3(stot, ots).

Theorem 21. Assuming that OT := (Setup,OT1,OT2,OT3) provides sender’s
UC-security and receiver’s indistinguishability security, that PKE := (KeyGen,E,
Dec) is a CPA-secure scheme, and that ZK is a two-round ZK protocol for the lan-
guage L described in Eq. 2, then the OT protocol OT′ given in Construction 20 sat-
isfies completeness and UC security.

The proof can be found in the full version of the paper.

10 Instantiations from CDH and LPN

10.1 Instantiation from CDH

We first give a construction of elementary OT from CDH. In fact, we show that
the construction also already directly satisfies the stronger notion of search OT
security. The protocol is given in Fig. 4.

Definition 22 (Computational Diffie-Hellman (CDH) assumption). Let
G be a group-generator scheme, which on input 1λ outputs (G, p, g), where G

is the description of a group, p is the order of the group which is always a
prime number and g is a generator of the group. We say that G is CDH-hard
if for any PPT adversary A: Pr[A(G, p, g, ga1 , ga2) = ga1a2] = negl(λ), where

(G, p, g) $←− G(1λ) and a1, a2
$←− Zp.

Lemma 23. The protocol in Fig. 4 satisfies statistical receiver’s indistinguisha-
bility security.

Proof. The distribution of the receiver’s message h0 = grX−c is uniformly ran-
dom over the group G no matter that the receiver’s bit c is. �	
Lemma 24. The protocol in Fig. 4 satisfies sender’s elementary security based
on the CDH assumption.

Two-Round Oblivious Transfer from CDH or LPN 791

Sender(X): Receiver(X, c):CRS: X := gx

r ← Zp

h0 := grX−c

h1 := h0X

otr := h0

s ← Zp

S := gs ots := S

output yc := hs
c = Sroutput y0 := hs

0, y1 := hs
1

Fig. 4. Elementary and search OT from CDH.

Proof. Let there be a PPT adversary A that breaks the elementary security
of the sender. Then we are able to construct a PPT adversary B that breaks
the CDH assumption. Recall that A receives a CRS X = gx, sends a group
element h0, receives S = gs for a uniform s, and succeeds if he outputs y0 = hs

0,
y1 = hs

1 = (h0X)s. Our adversary against the CDH assumption receives G,
p, g, A1 := ga1 , A2 := ga2 from his challenger, gives CRS X := A1 to A,
receives h0, gives S := A2 to A, receives y0, y1 and outputs y1/y0. If A succeeds
then y0 = hs

0 = ha2
0 , y1 = hs

1 = (h0X)s = hb
0A

a2
1 = ha2

0 ga1a2 and therefore
y1/y0 = ga1a2 , meaning that B succeeds in solving CDH. �	

The above two lemmas already show that the scheme in Fig. 4 is a elementary
OT scheme and we can then rely on our black-box transformations from the
previous sections to then get UC secure OT under CDH assumption. Therefore,
the following Theorem follows as a corollary.

Theorem 25. Under the CDH assumption there exists a 2-round UC OT.

Although the above lemmas already suffice to show the above corollary, we
note that we can actually show something stronger about the scheme in Fig. 4.
Not only does it satisfy sender’s elementary security, it already also satisfies the
stronger notion of sender’s search security. To show this, we implicitly rely on
the random self-reducibility of the CDH problem.

Lemma 26. The protocol in Fig. 4 satisfies sender’s search security based on
the CDH assumption.

Proof. Let there be an adversary A = (A1,A2) with

Pr
crs,r

[Pr[Expcrs,r,0sOTiOT(A) = 1] > ε and Pr[Expcrs,r,1sOTiOT(A) = 1] > ε] > ε,

the we can construct an adversary A′ that solves CDH at least with probability
ε3. A′ receives a CDH challenge G, p, g, A1, A2. It sets crs X := A1, chooses
random coins r and invokes A1 which outputs a state st and OT message otr =
h0. A′ samples d1, d2 ← Zp, defines S0 := A2 · gd1 , S1 := A2 · gd2 and invokes for
i ∈ {0, 1} A2(st, Si, i) which outputs yi. A′ returns solution (hd1

0 ·y1)/(hd2
0 ·y0·Ad2

1)
to the CDH challenger.

792 N. Döttling et al.

With probability ε, crs X and random coins r are good, i.e.
Pr[Expcrs,r,0sOTiOT(A) = 1] > ε and Pr[Expcrs,r,1sOTiOT(A) = 1] > ε. We condition on
that being the case. Since S0 and S1 are independent, it holds with probability
ε2 that A2 is successful for input (st, S0, 0) and input (st, S1, 1). Conditioned on
that being the case, y0 = hs0

0 = ha2+d1
0 and y1 = hs1

1 = (h0 · A1)d2+a2 . Therefore
it holds that the submitted CDH solution is

hd1
0 · y1

hd2
0 · y0 · Ad1

1

=
hd1
0 · (h0 · A1)d2+a2

hd2
0 · ha2+d1

0 · Ad2
1

= Aa2
1 .

Hence, A′ solves CDH with at least probability ε3. �	

10.2 Instantiation from LPN

We now give an instantiation of an elementary OT under the learning parity with
noise (LPN) assumption with noise rate ρ = n−ε for ε > 1

2 . This protocol only
achieves imperfect correctness, with an inverse-polynomial failure probability,
but we argue that this is sufficient to get UC OT with negligible error probability.

Definition 27 (Learning Parity with Noise). For a uniform s ∈ Z
n
2 , oracle

OLPN outputs samples of the form a, z = as + e, where a
$←− Z

n
2 and Bernoulli

distributed noise term e
$←− Bρ for parameter ρ. Oracle Ouniform outputs uniform

samples a, z ∈ Z
n
2 × Z2. We say Learning with Parity (LPN) for dimension n

and noise distribution Bρ is hard iff for any ppt adversary A,

|Pr[AOLPN(1n) = 1] − Pr[AOuniform(1n) = 1]| ≤ negl.

In the following, we will use a variant of LPN, where the secret is sampled
from the noise distribution rather than the uniform distribution and the first
sample is errorless. This variant is known to be as hard as standard LPN. The
two following lemmata give a more precise relation between LPN and its above
described variant.

Lemma 28 ([BLP+13], Lemma 4.3). There is an efficient reduction from
LPN with dimension n and noise distribution Bρ to LPN where the first sample
is errorless with dimension n − 1 and noise distribution Bρ that reduces the
advantage by at most probability 2−n.

Lemma 29 ([ACPS09] Adaptation of Lemma 2). LPN samples of the from

a, as + e with uniform a, s ∈ Z
n
2 and e

$←− Bρ can be efficiently transformed

into samples a′, a′s′ + e, where s′ $←− Bn
ρ and uniform a′ ∈ Z

n
2 . This also holds

when e = 0, i.e. first is errorless LPN. The same transformation maintains the
uniformity of samples in Z

n
2 × Z2.

Proof (Proof Sketch). The transformation queries LPN samples A, zA = As+ es

until A ∈ Z
n×n
2 is invertible. Then, A−1, A−1zA = s+A−1es will allow mapping

LPN samples a, z = as + e to samples with secret s′ = es by computing the
new sample a′ = aA−1, z + aA−1zA = a′s′ + e. In the case where e = 0, i.e. an
errorless LPN sample, the resulting sample will also be errorless. �	

Two-Round Oblivious Transfer from CDH or LPN 793

Sender(A, v): Receiver(A, v, c):CRS: (A, v) ∈ Z
n×(n+1)
2

x, e ← Bn
ρ

h0 := Ax+ e+ cv

h1 := h0 + v

otr := h0

S,E ← Bλ×n
ρ

Z := SA+ E
ots := Z

output yc := Zxoutput y0 := Sh0, y1 := Sh1

Fig. 5. Elementary OT from LPN with imperfect correctness.

Lemma 30. The protocol in Fig. 5 satisfies receiver’s indistinguishability secu-
rity based on the LPN assumption with dimension n and noise distribution Bρ.

Proof. The receiver’s bit c is masked by an LPN sample Ax + e. Therefore,
distinguishing the case c = 0 versus c = 1 is equivalent to breaking LPN. �	
Lemma 31. The protocol in Fig. 5 satisfies sender’s elementary OT security
based on the LPN assumption with dimension n − 1 and noise distribution Bρ.

Proof. We use a hybrid version of first is errorless LPN with a secret sampled
from the noise distribution which is hard based on standard LPN with the same
noise distribution and dimension n − 1, see Lemma 28 and Lemma 29. Hybrid
LPN is as hard as standard LPN losing a factor 1

λ in the advantage.
Let there be a malicious receiver that outputs y0, y1 with probability ε > negl

then there is a LPN distinguisher A that breaks hybrid first is errorless LPN
with advantage ε. A operates as follows. It receives a LPN challenge v,A, zv, Z
and sets CRS to A, v. After receiving h0, it sends Z to the malicious receiver
and obtains y0, y1. If y0 + y1 = zv it outputs 1 otherwise 0.

Let Z = SA + E, zv = Sv, then A faithfully simulates the actual protocol.
With probability ε, the malicious receiver will output (y0, y1) = (Sh0, Sh1). In
this case y0 + y1 = Sv equals zv and A will output 1. In the uniform case, i.e.
ZA and zv are uniform, hence the malicious receiver can output y0, y1 such that
y0 +y1 = zv at most with probability 2−λ. Hence A breaks LPN with advantage
ε
λ − 2−λ > negl. �	
Lemma 32 (Imperfect Correctness). Let a sender and a receiver interact in
the protocol in Fig. 5 with parameter ρ ≤ 1

nε , for constant 1 > ε > 1
2 . Then with

overwhelming probability 1 − negl(λ) over the coins of the receiver (i.e., x, e) we
have the following probability of correctness over the coins of the sender (i.e.,
S,E):

Pr
S,E

[Shc = Zx] ≥ 1 − 4λn1−2ε,

where 4λn1−2ε can be an arbitrary 1
poly(λ) for a suitable choice of n = poly(λ).

794 N. Döttling et al.

Proof. The protocol is correct iff the receivers output Zx matches the senders
output Shc. By construction, Zx = SAx+Ex, whereas Shc = SAx+Se. Hence
correctness holds when Ex − Se = 0.

By Chernoff,
Pr[|x| > 2ρn ∨ |e| > 2ρn] ≤ 2e− ρn

3 ,

which is negligible for ε < 1. Given that |x| ≤ 2ρn, for all rows ei of E, eix
is distributed as the sum of at most 2ρn Bernoulli variables with parameter ρ.
Hence, by a union bound over the 2ρn variables Prei

[eix = 1] ≤ 2ρ2n. Using
another union bound over all λ rows yields PrE [Ex �= 0 ∈ Z

λ
2] ≤ 2λρ2n. Because

of symmetry,
Pr
E,S

[Ex − Se = 0] ≥ 1 − 4λρ2n.

�	

Dealing with Imperfect Correctness. The above gives us an elementary OT
scheme with imperfect correctness under LPN: with overwhelming probability
over the coins of the receiver, we have a 1/p(λ) error-probability over the coins
of the sender, where we can choose p(λ) to be an arbitrary polynomial. For
concreteness we set p(λ) = λ2, so the error probability is 1/λ2. We outline
how to leverage the series of generic transformations from the previous sections
to get UC OT with a negligible correctness error. This requires only minor
modifications throughout.

Elementary OT → Search OT (Theorem 7): This transformation performs
a λ-wise parallel repetition on the sender message and therefore, by the union
bound, increases the correctness error from 1/λ2 to 1/λ. Security is unaf-
fected.

Search OT → bit-iOT (Theorem 8): This transformation preserves the cor-
rectness error of 1/λ. Security is unaffected.

bit-iOT → string iOT (Theorem 9): Here, we can modify the transformation
slightly and first encode the strings using an error-correcting code and have
the receiver apply error correction. Since each bit has an independent error
probability of 1/λ, we can set the parameters of the error-correcting code to
get an exponentially small error probability, say 2−2λ. Security is unaffected
by this modification.

Imperfect → Perfect Correctness: The above gives a scheme where, with
overwhelming probability over the receiver’s coins, we have a 2−2λ error prob-
ability over the sender’s coins. However, our definition of OT correctness in
Sect. 4.1 requires a stronger notion of perfect correctness: with overwhelming
over the receiver’s coins and the CRS, all choices of the sender coins yield
the correct output. This is needed in two places: (1) In the construction of
2-round ZK arguments (Theorem 19), we rely on extractable commitments,
which in turn require a PKE with perfect correctness (Definition 3). Con-
structing PKE from OT requires the same perfect correctness for the OT. (2)
In the construction of UC OT from Sender-UC OT and ZK (Theorem 21) we

Two-Round Oblivious Transfer from CDH or LPN 795

also need the underlying Sender-UC OT to have perfect correctness. This is
because we rely on the fact that if a malicious sender computes the second-
round OT message correctly with some choice of random coins (which he
proves via the ZK argument), then the receiver gets the correct value.
We can generically achieve such perfect correctness, using an idea similar to
the one behind Naor’s commitments [Nao90]. We add an additional random
value r∗ to the CRS. The sender computes his second-round OT message by
relying on a pseudorandom generator G and setting the random coins to be
G(s) ⊕ r∗ where s is small seed of length (e.g.,) λ. By a counting argument,
with overwhelming probability over r∗ and the receiver’s random coins, there
is no choice of the sender’s coins s that results in an error. Security is preserved
by relying on the security of the PRG.

Combining the above, the following theorem follows as a corollary.

Theorem 33. Under the LPN assumption with noise rate ρ = n−ε for ε > 1
2

there exists a 2-round UC OT.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 35

[AIR01] Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 8

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In:
44th FOCS, Cambridge, MA, USA, 11–14 October 2003, pp. 298–307. IEEE
Computer Society Press (2003)

[BD18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT
from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS,
vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03810-6 14

[BGI+17] Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message
witness indistinguishability and secure computation in the plain model from
new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part
III. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70700-6 10

[BL18] Benhamouda, F., Lin, H.: k -round multiparty computation from k -round
oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rij-
men, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 17

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.) 45th ACM STOC, Palo Alto, CA, USA, 1–4 June 2013, pp.
575–584. ACM Press (2013)

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-78375-8_17

796 N. Döttling et al.

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol.
10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78381-9 20

[BM90] Bellare, M., Micali, S.: Non-interactive oblivious transfer and applica-
tions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557.
Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 48

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, Las Vegas, NV, USA, 14–17 October
2001, pp. 136–145. IEEE Computer Society Press (2001)

[CCM98] Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-
bounded receiver. In: 39th FOCS, Palo Alto, CA, USA, 8–11 November
1998, pp. 493–502. IEEE Computer Society Press (1998)

[CHS05] Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly ver-
ifiable puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 2

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally compos-
able two-party and multi-party secure computation. In: 34th ACM STOC,
Montréal, Québec, Canada, 19–21 May 2002, pp. 494–503. ACM Press
(2002)

[CR03] Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 16

[DGM19] Döttling, N., Garg, S., Malavolta, G.: Laconic conditional disclosure of
secrets and applications. In: 2019 IEEE 58th Annual Symposium on Foun-
dations of Computer Science (FOCS). IEEE (2019)

[DHRS04] Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivi-
ous transfer in the bounded storage model. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 446–472. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 25

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions.
In: 21st ACM STOC, Seattle, WA, USA, 15–17 May 1989, pp. 25–32. ACM
Press (1989)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Aho, A. (ed.)
19th ACM STOC, New York City, NY, USA, 25–27 May 1987, pp. 218–229.
ACM Press (1987)

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 16

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivi-
ous transfer. J. Cryptol. 25(1), 158–193 (2012)

[HL18] Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way
functions (or: one-way product functions and their applications). In: 59th
FOCS, pp. 850–858. IEEE Computer Society Press (2018)

https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1007/978-3-540-30576-7_2
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-319-78375-8_16

Two-Round Oblivious Transfer from CDH or LPN 797

[JKKR17] Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent
simulation in two rounds and its applications. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 6

[Lin16] Lindell, Y.: How to simulate it - a tutorial on the simulation proof technique.
Cryptology ePrint Archive, Report 2016/046 (2016). http://eprint.iacr.org/
2016/046

[LQR+19] Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New
constructions of reusable designated-verifier NIZKs. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 670–700. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 22

[Nao90] Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 13

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao
Kosaraju, S. (ed.) 12th SODA, Washington, DC, USA, 7–9 January 2001,
pp. 448–457. ACM-SIAM (2001)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 31

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187 (2005). http://eprint.iacr.org/2005/187

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS, Chicago, Illinois, 3–5 November 1982, pp. 160–164. IEEE Com-
puter Society Press (1982)

https://doi.org/10.1007/978-3-319-63715-0_6
http://eprint.iacr.org/2016/046
http://eprint.iacr.org/2016/046
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://eprint.iacr.org/2005/187

Private Aggregation from Fewer
Anonymous Messages

Badih Ghazi1(B), Pasin Manurangsi1(B), Rasmus Pagh1,2,
and Ameya Velingker1

1 Google Research, Mountain View, CA 94043, USA
badihghazi@google.com, pasin@google.com, pagh@google.com,

ameyav@google.com
2 IT University of Copenhagen, Copenhagen, Denmark

Abstract. Consider the setup where n parties are each given an ele-
ment xi in the finite field Fq and the goal is to compute the sum

∑
i xi in a

secure fashion and with as little communication as possible. We study this
problem in the anonymized model of Ishai et al. (FOCS 2006) where each
party may broadcast anonymous messages on an insecure channel.

We present a new analysis of the one-round “split and mix” protocol
of Ishai et al. In order to achieve the same security parameter, our analy-
sis reduces the required number of messages by a Θ(log n) multiplicative
factor.

We also prove lower bounds showing that the dependence of the num-
ber of messages on the domain size, the number of parties, and the secu-
rity parameter is essentially tight.

Using a reduction of Balle et al. (2019), our improved analysis of the
protocol of Ishai et al. yields, in the same model, an (ε, δ)-differentially
private protocol for aggregation that, for any constant ε > 0 and any
δ = 1

poly(n)
, incurs only a constant error and requires only a constant

number of messages per party. Previously, such a protocol was known
only for Ω(log n) messages per party.

Keywords: Secure aggregation · Anonymous channel · Shuffled
model · Differential privacy

1 Introduction

We study one-round multi-party protocols for the problem of secure aggrega-
tion: Each of n parties holds an element of the field Fq and we wish to compute
the sum of these numbers, while satisfying the security property that for every
two inputs with the same sum, their transcripts are “indistinguishable.” The
protocols we consider work in the anonymized model, where parties are able
to send anonymous messages through an insecure channel and indistinguisha-
bility is in terms of the statistical distance between the two transcripts (i.e.,
this is information-theoretic security rather than computational security). This
model was introduced by Ishai et al. [17] in their work on cryptography from

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 798–827, 2020.
https://doi.org/10.1007/978-3-030-45724-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_27

Private Aggregation from Fewer Anonymous Messages 799

anonymity1. We refer to [8,17] for a discussion of cryptographic realizations of
an anonymous channel.

The secure aggregation problem in the anonymized model was studied
already by Ishai et al. [17], who gave a very elegant one-round “split and mix”
protocol. Under their protocol, each party i holds a private input xi and sends
m anonymized messages consisting of random elements of Fq that are condi-
tioned on summing to xi. Upon receiving these mn anonymized messages from
n parties, the server adds them up and outputs the result. Pseudocode of this
protocol is shown as Algorithm 1. Ishai et al. [17] show that as long as m exceeds
a threshold of Θ (log n + σ + log q), this protocol is σ-secure in the sense that
the statistical distance between transcripts resulting from inputs with the same
sum is at most 2−σ.

Differentially Private Aggregation in the Shuffled Model. An exciting recent
development in differential privacy is the shuffled model, which is closely related
to the aforementioned anonymized model. The shuffled model provides a middle
ground between two widely-studied models of differential privacy. In the central
model, the data structure released by the analyst is required to be differentially
private, whereas the local model enforces the more stringent requirement that
the messages sent by each party be private. While protocols in the central model
generally allow better accuracy, they require a much greater level of trust to be
placed in the analyzer, an assumption that may be unsuitable for certain appli-
cations. The shuffled model is based on the Encode-Shuffle-Analyze architecture
of [6] and was first analytically studied by [8,12] and further studied in recent
work [4,13]. It seeks to bridge the two aforementioned models and assumes the
presence of a trusted shuffler that randomly permutes all incoming messages
from the parties before passing them to the analyzer (see Sect. 2 for formal def-
initions.) The shuffled model is particularly compelling because it allows the
possibility of obtaining more accurate communication-efficient protocols than in
the local model while placing far less trust in the analyzer than in the central
model. Indeed, the power of the shuffled model has been illustrated by a number
of recent works that have designed algorithms in this model for a wide range
of problems such as privacy amplification, histograms, heavy hitters, and range
queries [4,8,11–13].

The appeal of the shuffled model provides the basis for our study of dif-
ferentially private protocols for aggregation in this work. Most relevant to the
present work are the recent differentially private protocols for aggregation of
real numbers in the shuffled model provided by [3,4,8,15]. The strongest of
these results [3] shows that an extension of the split and mix protocol yields an
(ε, δ)-differentially private protocol for aggregation with error O(1 + 1/ε) and
m = O(log(n/δ)) messages, each consisting of O(log n) bits.

1 Ishai et al. in fact considered a more general model in which the adversary is allowed
to corrupt some of the parties; please refer to the discussion at the end of Sect. 1.1
for more details.

800 B. Ghazi et al.

1.1 Our Results

Upper Bound. We prove that the split and mix protocol is in fact secure for a
much smaller number of messages. In particular, for the same security parameter
σ, the number of messages required in our analysis is Θ(log n) times smaller than
the bound in [17]:

Theorem 1 (Improved upper bound for split and mix). Let n and q
be positive integers and σ be a positive real number. The split and mix proto-
col (Algorithm 1 and [17]) with n parties and inputs in Fq is σ-secure for m

messages, where m = O
(
1 + σ+log q

log n

)
.

An interesting case to keep in mind is when the field size q and the inverse
statistical distance 2σ are bounded by a polynomial in n. In this case, Theorem 1
implies that the protocol works already with a constant number of messages,
improving upon the known O(log n) bound.

Lower Bound. We show that, in terms of the number of messages m sent by each
party, Theorem 1 is essentially tight not only for just the split and mix protocol
but also for every one-round protocol.

Theorem 2 (Lower bound for every one-round protocol). Let n and q
be positive integers, and σ ≥ 1 be a real number. In any σ-secure, one-round
aggregation protocol over Fq in the anonymized model, each of the n parties

must send Ω
(
1 + σ

log(σn) + log q
log n

)
messages.

The lower bound holds regardless of the message size and asymptotically
matches the upper bound under the very mild assumption that σ is bounded
by a polynomial in n. Furthermore, when σ is larger, the bound is tight up to a
factor O

(
log σ
log n

)
.

We point out that Theorem 2 provides a nearly-tight lower bound on the
number of messages. In terms of the total communication per party, improve-
ments are still possible when σ + log q = ω(log n). We discuss this further, along
with other interesting open questions, in Sect. 5.

Corollary for Differentially Private Aggregation. As stated earlier, the differen-
tially private aggregation protocols of [3,15] both use extensions of the split and
mix protocol. Moreover, Balle et al. use the security guarantee of the split and
mix protocol as a blackbox and derive a differential privacy guarantee from it [3,
Lemma 4.1]. Specifically, when ε is a constant and δ ≥ 1

poly(n) , their proof uses
the split and mix protocol with field size q = poly(n). Previous analyses required
m = Ω(log n); however, our analysis works with a constant number of messages.
In general, Theorem 1 implies (ε, δ)-differential privacy with a factor Θ(log n)
fewer messages than known before:

Private Aggregation from Fewer Anonymous Messages 801

Corollary 1 (Differentially private aggregation in the shuffled model).
Let n be a positive integer, and let ε, δ be positive real numbers. There is an
(ε, δ)-differentially private aggregation protocol in the shuffled model for inputs
in [0, 1] having absolute error O(1 + 1/ε) in expectation, using O

(
1 + log(1/δ)

log n

)

messages per party, each consisting of O(log n) bits.

A more comprehensive comparison between our differentially private aggre-
gation protocol in Corollary 1 and previous protocols is presented in Fig. 1.

We end this subsection by remarking that Ishai et al. [17] in fact considered
a setting that is more general than what we have described so far. Specifically,
they allow the adversary to corrupt a certain number of parties. In addition to
the transcript of the protocol, the adversary knows the input and messages of
these corrupted parties. (Alternatively, one can think of these corrupted parties
as if they are colluding to learn the information about the remaining parties.)
As already observed in [17], the security of the split and mix protocol still holds
in this setting except that n is now the number of honest (i.e., uncorrupted)
parties. In other words, Theorem 1 remains true in this more general setup but
with n being the number of honest parties instead of the total number of parties.

Discussion and Comparison of Parallel and Subsequent Work. Concurrently and
independently of our work, Balle et al. [2,5] obtained an upper bound that
is asymptotically the same as the one in Theorem 1. They also give explicit
constants, whereas we state our theorem in asymptotic notation and do not
attempt to optimize the constants in our proof.

A key difference between our work and theirs is that in addition to the
analysis of the split and mix protocol, we manage to prove a matching lower
bound on the required number of messages for any protocol (see Theorem 2),
which establishes the near-tightness of the algorithmic guarantees in our upper
bound. Our lower bound approach could potentially be applied to other problems
pertaining to the anonymous model and possibly differential privacy.

The upper bound proofs use different techniques. Balle et al. reduce the ques-
tion to an analysis of the number of connected components of a certain random
graph, while our proof analyzes the rank deficiency of a carefully-constructed
random matrix. While the upper bound of Balle et al. is shown for summa-
tion over any abelian group, our proofs are presented for finite fields. We note,
though, that our lower bound proof carries over verbatim to any abelian group.

A subsequent work [14] obtained an (ε, 0)-differentially private aggregation
protocol with error Oε(1) and where each user sends Oε(log3 n) messages each
consisting of O(log log n) bits (see Fig. 1 for the explicit bounds).

1.2 Applications and Related Work

At first glance it may seem that aggregation is a rather limited primitive for
combining data from many sources in order to analyze it. However, in impor-
tant approaches to machine learning and distributed/parallel data processing,

802 B. Ghazi et al.

the mechanism for combining computations of different parties is aggregation of
vectors. Since we can build vector aggregation in a straightforward way from
scalar aggregation, our results can be applied in these settings.

Before discussing this in more detail, we mention that it is shown in [17]
that summation protocols can be used as building blocks for realizing general
secure computations in a specific setup where a server mediates computation
of a function on data held by n other parties. However, the result assumes a
somewhat weak security model (see in Appendix D of [17] for more details).

Machine Learning and Data Analytics. Secure aggregation has applications in
so-called federated machine learning [21] (see, e.g., [18] for a recent survey). The
idea is to train a machine learning model without collecting data from any party,
and instead compute weight updates in a distributed manner by sending model
parameters to all parties, locally running stochastic gradient descent on private
data, and aggregating model updates over all parties. For learning algorithms
based on gradient descent, a secure aggregation primitive can be used to compute
global weight updates without compromising privacy [23,24]. It is known that
gradient descent can work well even if data is accessible only in noised form, in
order to achieve differential privacy (e.g., [1,25]).

Beyond gradient descent, as observed in [8], we can translate any statistical
query over a distributed data set to an aggregation problem over numbers in
[0, 1]. That is, every learning problem solvable using a small number of statistical
queries [19] can be solved privately and efficiently based on secure aggregation.

Moreover, very recent work in eye-tracking research [22,29] study differential
privacy for eye-tracking tasks, the most basic of which is the aggregation of users’
gaze maps.

Sketching. Research in the area of data stream algorithms has uncovered many
non-trivial algorithms that are compact linear sketches, see, e.g., [9,31]. As noted
already in [17], linear sketches can be implemented using secure aggregation by
computing linear sketches locally, and then using aggregation to compute their
sum which yields the sketch of the whole dataset. Typically, linear sketches do
not reveal much information about their input, and are robust to the noise
needed to ensure differential privacy, though specific guarantees depend on the
sketch in question. We refer to [20,26,27] for examples and further discussion.

Secure Aggregation Protocols. Secure aggregation protocols are well-studied,
both under cryptographic assumptions and with respect to differential privacy.
We refer to the survey of Goryczka et al. [16] for an overview, but note that our
approach leads to protocols that use less communication than existing (multi-
round) protocols. The trust assumptions needed for implementing a shuffler (e.g.,
using a mixnet) are, however, slightly different from the assumptions typically
used for secure aggregation protocols. Practical secure aggregation typically
relies on an honest-but-curious assumption, see e.g. [7]. In that setting, such
protocols typically require five rounds of communication with Ω(n) bits of com-
munication and Ω(n2) computation per party. A more recent work [28] using

Private Aggregation from Fewer Anonymous Messages 803

Reference #messages / n Message size Expected error

Cheu et al. [8]
ε
√

n

�
1

1
ε
log n

√
n/� + 1

ε
log 1

Balle et al. [4] 1 logn n1/6 log1/3(1/)
ε2/3

Ghazi et al. [15] log(n
ε
) log(n) 1

ε

√
log 1

Balle et al. [3] log(n) logn 1
ε

This work (Corollary 1) 1 + log(1/)
log n

logn 1
ε

Ghazi et al. [14] (= 0) log3 n
ε

log log n

√
log(1/ε)

ε3/2

Fig. 1. Comparison of differentially private aggregation protocols in the shuffled model
with (ε, δ)-differential privacy. The number of parties is n, and � is an integer parameter.
Message sizes are in bits. For readability, we assume that ε ≤ O(1), and asymptotic
notations are suppressed.

homomorphic threshold encryption gives a protocol with three messages and
constant communication and computation per party in addition to a (reusable)
two-message setup (consisting of Ω(n) communication per party). By contrast,
our aggregation protocol has a single round of constant communication and com-
putation per party, albeit in the presence of a trusted shuffler. We note that for
an apples to apples comparison of these approaches, one would need to look at
actual implementations of the shuffler which is beyond the scope of this work.

Other Related Models. A very recent work [30] has designed an extension of the
shuffled model, called Multi Uniform Random Shufflers and analyzed its trust
model and privacy-utility tradeoffs. Since they consider a more general model,
our differentially private aggregation protocol would hold in their setup as well.

There has also been work on aggregation protocols in the multiple servers
setting, e.g., the PRIO system [10]; here the protocol is secure as long as at least
one server is honest. Thus trust assumptions of PRIO are somewhat different
from those underlying shuffling and mixnets. While each party would be able to
check the output of a shuffler, to see if its message is present, such a check is not
possible in the PRIO protocol making server manipulation invisible even if the
number of parties is known. On the other hand, PRIO handles malicious parties
that try to manipulate the result of a summation by submitting illegal data—a
challenge that has not been addressed yet for summation in the shuffled model
but that would be interesting future work.

1.3 The Split and Mix Protocol

The protocol of [17] is shown in Algorithm 1. To describe the main guarantee
proved in [17] regarding Algorithm 1, we need some notation. For any input
sequence x ∈ F

n
q , we denote by Sx the distribution on F

mn
q obtained by sampling

804 B. Ghazi et al.

ym(i−1)+1, . . . , ymi ∈ Fq uniformly at random conditioned on ym(i−1)+1 + · · · +
ymi = xi, sampling a random permutation π : [mn] → [mn], and outputting
(yπ(1), . . . , yπ(mn)). Ishai et al. [17] proved that for some m = O(log n+σ+log q)
and for any two input sequences x,x′ ∈ F

n
q having the same sum (in Fq), the

distributions Sx and Sx′ are 2−σ-close in statistical distance.

Algorithm 1. Split and mix encoder from [17]
Input: x ∈ Fq, positive integer parameter m
Output: Multiset {y1, . . . , ym} ⊆ Fq

for j = 1, . . . , m − 1 do
yj ← Uniform(Fq)

ym ← x − ∑m−1
j=1 yj (in Fq)

return {y1, . . . , ym}

1.4 Overview of Proofs

We now give a short overview of the proofs of Theorems 1 and 2. For ease of
notation, we define Bs to be the set of all input vectors x = (x1, x2, . . . , xn) ∈ F

n
q

with a fixed sum x1 + x2 + · · · + xn = s.

Upper Bound. To describe the main idea behind our upper bound, we start
with the following notation. For every x ∈ Fq, we denote by Sx the uniform
distribution on F

mn
q conditioned on all coordinates summing to x.

To prove Theorem 1, we have to show that for any two input sequences
x,x′ ∈ F

n
q such that

∑
i∈[n] xi =

∑
i∈[n] x

′
i, the statistical distance between Sx

and Sx′ is at most γ = 2−σ. By the triangle inequality, it suffices to show that
the statistical distance between Sx and Sx1+···+xn

is at most γ/2. (Theorem 3).
Note that Sx1+···+xn

puts equal mass on all vectors in F
mn
q whose sum is equal

to x1 + · · · + xn. Thus, our task boils down to showing that the mass put by
Sx on a random sample from Sx1+···+xn

is well-concentrated. We prove this
via a second order method (specifically, Chebyshev’s inequality). This amounts
to computing the mean and bounding the variance. The former is a simple
calculation whereas the latter is more technically involved and reduces to proving
a probabilistic bound (Theorem 4) on the rank deficit of a certain random matrix
(specified in Definitions 7 and 8). A main ingredient in the proof of this bound
is a combinatorial characterization (Lemma 2) of the rank deficit of the relevant
matrices in terms of matching partitions (given in Definition 9).

Lower Bound. For the lower bound (Theorem 2), our proof consists of two parts:
a “security-dependent” lower bound m ≥ Ω

(
σ

log(σn)

)
and a “field-dependent”

lower bound m ≥ Ω
(

log q
log n

)
. Combining these two yields Theorem 2. We start

Private Aggregation from Fewer Anonymous Messages 805

by outlining the field-dependent bound as it is simpler before we outline the
security-dependent lower bound which is technically more challenging.

Field-Dependent Lower Bound. To prove the field-dependent lower bound (for-
mally stated in Theorem 5), the key idea is to show that for any s ∈ Fq, there
exist distinct inputs x,x′ ∈ Bs such that the statistical distance between Sx and
Sx′ is at least 1 − nnm/qn−1 (see Lemma 4). We do so by proving the same
quantitative lower bound on the average statistical distance between Sx and Sx′

over all pairs x,x′ ∈ Bs.
The average statistical distance described above can be written as the sum,

over all y, of the average difference in probability mass assigned to y by x and
x′. Thus, we consider how to lower bound this coordinate-wise probability mass
difference for an arbitrary y.

There are at most nnm ways to associate each of the nm elements of y with a
particular party. Since any individual party’s encoding uniquely determines the
corresponding input, it follows that any shuffled output y could have arisen from
at most nnm inputs x. Moreover, since there are exactly qn−1 input vectors x ∈
Bs, it follows that there are at least qn−1−nnm possible inputs x ∈ Bs that cannot
possibly result in y as an output. This implies that the average coordinate-wise
probability mass difference, over all x,x′ ∈ Bs, is at least

(
1 − qn−1

nnm

)
times the

average probability mass assigned to y over all inputs in Bs. Summing this up
over all y yields the desired bound.

Security-Dependent Lower Bound. To prove the security-dependent lower bound,
it suffices to prove the following statement (see Theorem 7): if Enc is the encoder
of any aggregation protocol in the anonymized model for n > 2 parties with m
messages sent per party, then there is a vector x ∈ B0 such that the statistical
distance between the distributions of the shuffled output y corresponding to
inputs 0 and x is at least 1

(10nm)5m .
Let us first sketch a proof for the particular case of the split and mix protocol.

In this case, we set x = (1, 1, . . . , 1︸ ︷︷ ︸
n−1

,−(n−1)), and we will bound from below the

statistical distance by considering the “distinguisher” A which chooses a random
permutation π : [nm] → [nm] and accepts iff yπ(1)+· · ·+yπ(m) = 0. We can argue
(see Subsect. 4.2) that the probability that A accepts under the distribution S0

is larger by an additive factor of 1
(en)m than the probability that it accepts

under the distribution Sx. To generalize this idea to arbitrary encoders (beyond
Ishai et al.’s protocol), it is natural to consider a distinguisher which accepts iff
yπ(1), . . . , yπ(m) is a valid output of the encoder when the input is zero. Unlike
the case of Ishai et al., in general when π(1), . . . , π(m) do not all come from the
same party, it is not necessarily true that the acceptance probability would be
the same for both distributions. To circumvent this, we pick the smallest integer
t such that the t-message marginal of the encoding of 0 and that of input 1 are
substantially different, and we let the distinguisher perform an analogous check
on yπ(1), . . . , yπ(t) (instead of yπ(1), . . . , yπ(m) as before). Another complication

806 B. Ghazi et al.

that we have to deal with is that we can no longer consider the input vector
(1, · · · , 1,−(n − 1)) as in the lower bound for Ishai et al.’s protocol sketched
above. This is because the t-message marginal of the encoding of −(n− 1) could
deviate from that for input 0 more substantially than from that for input 1,
which could significantly affect the acceptance probability. Hence, to overcome
this issue, we instead set x∗ to the minimizer of this value t among all elements
of Fq, and use the input vector x = (x∗, . . . , x∗,−(n−1)x∗) (for more details we
refer the reader to the full proof in Subsect. 4.2).

Organization of the Rest of the Paper

We start with some preliminaries in Sect. 2. We prove our main upper bound
(Theorem 1) in Sect. 3. We prove our lower bound (Theorem 2) in Sect. 4. The
proof of Corollary 1 appears in Appendix B.

2 Preliminaries

2.1 Protocols

In this paper, we are concerned with answering the question of how many messages
are needed for protocols to achieve certain security or cryptographic guarantees.
We formally define the notion of protocols in the models of interest to us.

We first define the notion of a secure protocol in the shuffled model. An
n-user secure protocol in the shuffled model, P = (Enc,A), consists of a ran-
domized encoder (also known as local randomizer) Enc : X → Ym and an
analyzer A : Ynm → Z. Here, Y is known as the message alphabet, Ym is
the message space for each user, and Z is the output space of the protocol.
The protocol P implements the following mechanism: each party i holds an
input xi ∈ X and encodes xi as Encxi

. (Note that Encxi
is possibly ran-

dom based on the private randomness of party i.) The concatenation of the
encodings, y = (Encx1 ,Encx2 , . . . ,Encxn

) ∈ Ynm is then passed to a trusted
shuffler, who chooses a uniformly random permutation π on nm elements and
applies π to y. The output is submitted to the analyzer, which then outputs
P(x) = A(π(y)) ∈ Z.

In this paper, we will be concerned with protocols for aggregation, in which
X = Z = Fq (a finite field on q elements) and Y = [
] = {1, 2, . . . ,
}, and

A(π(Encx1 ,Encx2 , . . . ,Encxn
)) =

n∑
i=1

xi,

i.e., the protocol always outputs the sum of the parties’ inputs, regardless of the
randomness over the encoder and the shuffler.

A related notion that we consider in this work is a one-round protocol
P = (Enc,A) in the anonymized model. The notion is similar to that of a secure

Private Aggregation from Fewer Anonymous Messages 807

protocol in the shuffled model except that there is no shuffler. Rather, the ana-
lyzer A receives a multiset of nm messages obtained by enumerating all m mes-
sages of each of the n parties’ encodings. It is straightforward to see that the
two models are equivalent, in the sense that a protocol in one model works in
the other and the distributions of the view of the analyzer are the same.

2.2 Distributions Related to a Protocol

To study a protocol and determine its security and privacy, it is convenient
to define notations for several probability distributions related to the protocol.
First, we use EEnc

x to denote the distribution of the (random) encoding of x:

Definition 1. For a protocol P with encoding function Enc, we let EEnc
x denote

the distribution of outputs over Ym obtained by applying Enc to x ∈ X .

Furthermore, for a vector x ∈ X n, we use EEnc
x to denote the distribution of

the concatenation of encodings of x1, . . . , xn, as stated more formally below.

Definition 2. For an n-party protocol P with encoding function Enc and x ∈
X n, we let EEnc

x denote the distribution over Ynm obtained by applying Enc indi-
vidually to each element of x, i.e.,

EEnc
x ∼ (EEnc

x1
, EEnc

x2
, . . . , EEnc

xn

)
.

Finally, we define SEnc
x to be EEnc

x after random shuffling. Notice that SEnc
x is

the distribution of the transcript seen at the analyzer.

Definition 3. For an n-party protocol P with encoding function Enc and x ∈
X n, we let SEnc

x denote the distribution over Ynm obtained by applying Enc to
the elements of x and then shuffling the resulting nm-tuple, i.e.,

SEnc
x ∼ π ◦ EEnc

x

for π a uniformly random permutation over nm elements.

2.3 Security and Privacy

Given two distributions D1 and D2, we let SD(D1,D2) denote the statistical
distance (aka the total variation distance) between D1 and D2.

We begin with a notion of σ-security for computation of a function f , which
essentially says that distinct inputs with a common function value should be
(almost) indistinguishable:

Definition 4 (σ-security). An n-user one-round protocol P = (Enc,A) in the
anonymized model is said to be σ-secure for computing a function f : X n → Z
if for any x,x′ ∈ X n such that f(x) = f(x′), we have

SD
(SEnc

x ,SEnc
x′

) ≤ 2−σ.

808 B. Ghazi et al.

In this paper, we will primarily be concerned with the function that sums
the inputs of each party, i.e., f : Fn

q → Fq given by f(x1, x2, . . . , xn) =
∑n

i=1 xi.
We now define the notion of (ε, δ)-differential privacy. We say that two input

vectors x = (x1, x2, . . . , xn) ∈ X n and x′ = (x′
1, x

′
2, . . . , x

′
n) ∈ X n are neighboring

if they differ on at most one party’s data, i.e., xi = x′
i for all but one value of i.

Definition 5 ((ε, δ)-differential privacy). An algorithm M : X ∗ → Z is
(ε, δ)-differentially private if for every neighboring input vectors x,x′ ∈ X n and
every S ⊆ Z, we have

Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S] + δ,

where probability is over the randomness of M .

We now define (ε, δ)-differential privacy specifically in the shuffled model.

Definition 6. A protocol P with encoder Enc : X → Zm is (ε, δ)-differentially
private in the shuffled model if the algorithm M : X n → Znm given by

M(x1, x2, . . . , xn) = π(Encx1 ,Encx2 , . . . ,Encxn
)

is (ε, δ)-differentially private, where π is a uniformly random permutation on
nm elements.

3 Proof of Theorem 1

In this section, we prove Theorem 1, i.e., that the split and mix protocol of Ishai
et al. is σ-secure even for m = Θ

(
1 + σ+log q

log n

)
messages, improving upon the

known bounds of O(log n + σ + log q) [3,15,17].
Since we only consider Ishai et al.’s split and mix protocol in this section, we

will drop the superscript from SEnc
x and simply write Sx to refer to the shuffled

output distribution of the protocol. Recall that, by the definition of the protocol,
Sx is generated as follows: for every i ∈ [n], sample ym(i−1)+1, . . . , ymi ∈ Fq

uniformly at random conditioned on ym(i−1)+1 + · · · + ymi = xi. Then, pick a
random permutation π : [mn] → [mn] and output (yπ(1), . . . , yπ(mn)).

Showing that the protocol is σ-secure is by definition equivalent to showing
that SD(Sx,Sx′) ≤ 2−σ for all inputs x,x′ ∈ F

n
q such that

∑
i∈[n] xi =

∑
i∈[n] xi.

In fact, we prove a stronger statement, that each Sx is γ-close (in statistical
distance) to the distribution that is uniform over all vectors in F

mn
q whose sum

of all coordinates is equal to
∑

i∈[n] xi, as stated below.

Theorem 3. For every a ∈ Fq, let Sa denote the distribution on F
mn
q gener-

ated uniformly at random conditioned on all coordinates summing to a. For any
parameter γ > 0 and any m ≥ Θ(1 + logn(q/γ)), the following holds: for every
x ∈ F

n
q , the statistical distance between Sx and Sx1+···+xn

is at most γ.

Private Aggregation from Fewer Anonymous Messages 809

When plugging in γ = 2−σ−1, Theorem 3 immediately implies Theorem 1
via the triangle inequality.

We now outline the overall proof approach. First, observe that Sx1+···+xn
puts

probability mass equally across all vectors t ∈ F
mn
q whose sum of all coordinates

is x1+· · ·+xn, whereas Sx puts mass proportional to the number of permutations
π : [mn] → [mn] such that y := (tπ−1(1), . . . , tπ−1(mn)) satisfies ym(i−1)+1 + · · ·+
ymi = xi for all i ∈ [n]. Thus, our task boils down to proving that this latter
number is well-concentrated (for a random t ∈ supp(Sx1+···+xn

)). We prove this
via a second moment method (specifically Chebyshev’s inequality). Carrying this
out amounts to computing the first moment and upper-bounding the second
moment of this number. The former is a simple calculation, whereas the latter
involves proving an inequality regarding the rank of a certain random matrix
(Theorem 4). We do so by providing a combinatorial characterization of the
rank deficit of the relevant matrices (Lemma 2).

The rest of this section is organized as follows. In Subsect. 3.1, we define
appropriate random variables, state the bound we want for the second moment
(Lemma 4), and show how it implies our main theorem (Theorem 3). Then,
in Subsect. 3.2, we relate the second moment to the rank of a random matrix
(Proposition 1). Finally, we give a probabilistic bound on the rank of such a
random matrix in Subsect. 3.3 (Theorem 4).

3.1 Bounding Statistical Distance via Second Moment Method

From now on, let us fix x ∈ F
n
q , and let a = x1 + · · · + xn. The variables we

define below will depend on x (or a), but, for notational convenience, we avoid
indicating these dependencies in the variables’ names.

For every t ∈ F
mn
q , let Zt denote the number of permutations π : [mn] →

[mn] such that tπ(m(i−1)+1)+ · · ·+tπ(mi) = xi for all i ∈ [n]. From the definition2

of Sx, its probability mass function is

fSx
(t) =

Zt

(mn)! · q(m−1)n
. (1)

As stated earlier, Theorem 3 is essentially about the concentration of Zt, which
we will prove via the second moment method. To facilitate the proof, for every π :
[mn] → [mn], let us also denote by Yt,π the indicator variable of “tπ(r(i−1)+1) +
· · · + tπ(ri) = xi for all i ∈ [n]”. Note that by definition we have

Zt =
∑

π∈Πmn

Yt,π (2)

where Πmn denotes the set of all permutations of [mn].
When we think of t as a random variable distributed according to Sa, the

mean of Yt,π (and hence of Zt) can be easily computed: the probability that t

2 Note that, if derived directly from the definition of Sx, π here should be replaced by
π−1. However, these two definitions are equivalent since π �→ π−1 is a bijection.

810 B. Ghazi et al.

satisfies “tπ(m(i−1)+1) + · · · + tπ(mi) = xi” is exactly 1/q for each i ∈ [n − 1],
and these events are independent. Furthermore, when these events are true, it is
automatically the case that the condition holds for i = n. Hence, we immediately
have:

Observation 1. For every π ∈ Πmn,

E
t∼Sa

[Yt,π] =
1

qn−1
. (3)

The more challenging part is upper-bounding the second moment of Zt

(where we once again think of t as a random variable drawn from Sa). This
is equivalent to upper-bounding the expectation of Yt,π · Yt,π′ , where π, π′ are
independent uniformly random permutations of [mn] and t is once again drawn
from Sa. On this front, we will show the following bound in the next subsections.

Lemma 1. For every π ∈ Πmn, we have

E
π,π′∼Πmn,t∼Sa

[Yt,π · Yt,π′] ≤
∑
k≥1

qk

q2n−1
·
(

n2

(n/2)m−2

) k−1
2

. (4)

Since there are many parameters, the bound might look a bit confusing.
However, the only property we need in order to show concentration of Zt is
that the right-hand side of (4) is dominated by the k = 1 term. This is the
case when the term inside the parenthesis is q−Ω(1), which indeed occurs when
m ≥ 4 + Ω(logn q).

The bound in Lemma 1 will be proved in the subsequent sections. For now,
let us argue why such a bound implies our main theorem (Theorem 3).

Proof of Theorem 3. First, notice that (2) and Observation 1 together imply that

E
t∼Sa

[Zt] =
(mn)!
qn−1

. (5)

For convenience, let us define μ as (mn)!
qn−1 .

We now bound the second moment of Zt as follows:

E
t∼Sa

[Z2
t] = E

t∼Sa

⎡
⎣

(∑
π∈Πmn

Yt,π

)2
⎤
⎦

= ((mn)!)2 · E
π,π′∼Πmn,t∼Sa

[Yt,π · Yt,π′]

(4)

≤ ((mn)!)2 ·
⎛
⎝∑

k≥1

qk

q2n−1
·
(

n2

(n/2)m−2

) k−1
2

⎞
⎠

= ((mn)!)2 · 1
q2(n−1)

·
⎛
⎝1 +

∑
k≥2

qk−1 ·
(

n2

(n/2)m−2

) k−1
2

⎞
⎠

Private Aggregation from Fewer Anonymous Messages 811

= μ2 ·
⎛
⎝1 +

∑
k≥2

(
(qn)2

(n/2)m−2

) k−1
2

⎞
⎠ .

Now, let p =
(

(qn)2

(n/2)m−2

) 1
2
. If m ≥ 4+100 logn/2(q/γ)), then we have p ≤ 0.01γ4.

Plugging this back in the above inequality gives

E
t∼Sa

[Z2
t] ≤ μ2

(
1

1 − p

)
≤ μ2

(
1

1 − 0.01γ4

)
≤ μ2(1 + 0.02γ4).

In other words, we have Vart∼Sa
(Zt) ≤ (0.2γ2 · μ)2. Hence, by Chebyshev’s

inequality, we have

Pr
t∼Sa

[Zt ≤ (1 − 0.5γ)μ] ≤ 0.5γ. (6)

Finally, notice that the statistical distance between Sx and Sa is
∑

t∈Fmn
q

max{fSa
(t) − fSx

(t), 0} =
∑

t∈F
mn
q

t1+···+tmn=a

max

{
1

qmn−1
− Zt

(mn)! · q(m−1)n
, 0

}

=
∑

t∈F
mn
q

t1+···+tmn=a

fSa
(t) · max {1 − Zt/μ, 0}

= E
t∼Sa

[max {1 − Zt/μ, 0}]

≤ Pr
t∼Sa

[Zt ≤ (1 − 0.5γ)μ] · 1 + Pr
t∼Sa

[Zt > (1 − 0.5γ)μ] · (0.5γ)

(6)

≤ (0.5γ) · 1 + 1 · (0.5γ)
= γ. 	

3.2 Relating Moments to Rank of Random Matrices

Having shown how Lemma 1 implies our main theorem (Theorem 3), we now
move on to prove Lemma 1 itself. In this subsection, we deal with the first half
of the proof by relating the quantity on the left-hand side of (4) to a quantity
involving the rank of a certain random matrix.

Warm-Up: (Re-)Computing the First Moment. As a first step, let us
define below a class of matrices that will be used throughout.

Definition 7. For every permutation π : [mn] → [mn], let us denote by
Aπ ∈ F

n×mn
q the matrix whose i-th row is the indicator vector for π({m(i −

1) + 1, . . . , mi}). More formally,

(Aπ)i,j =

{
1 if j ∈ π({m(i − 1) + 1, . . . , mi}),
0 otherwise.

812 B. Ghazi et al.

Before we describe how these matrices relate to the second moment, let us
illustrate their relation to the first moment, by sketching an alternative way
to prove Observation 1. To do so, let us rearrange the left-hand side of (3) as
Et∼Sa

[Yt,π] = 1
qmn−1

∑
t∈Fmn

q
Yt,π. Now, observe that Yt,π = 1 iff Aπt = x. Since

the rows of the matrix Aπ have pairwise-disjoint supports, the matrix is always
full rank (over Fq), i.e., rank(Aπ) = n. This means that the number of values of
t satisfying the aforementioned equation is qmn−n. Plugging this into the above
expansion gives Et∼Sa

[Yt,π] = qmn−n

qmn−1 = 1
qn−1 . Hence, we have rederived (3).

Relating Second Moment to Rank. In the previous subsection, we have
seen the relation of matrix Aπ to the first moment. We will now state such a
relation for the second moment. Specifically, we will rephrase the left-hand side
of (4) as a quantity involving matrices Aπ and Aπ′ . To do so, we will need the
following additional notations:

Definition 8. For a pair of permutations π, π′ : [mn] → [mn], we let Aπ,π′ ∈
F
2n×mn
q denote the (column-wise) concatenation of Aπ and Aπ′ , i.e.,

Aπ,π′ =
[
Aπ

Aπ′

]
.

Furthermore, let3 the rank deficit of Aπ,π′ be defc(Aπ,π′) := 2n − rank(Aπ,π′).

Analogous to the relationship between the first moment and Aπ seen in the
previous subsection, the quantity Et∼Sa

[Yt,π · Yt,π′] is in fact proportional to the
number of solutions to certain linear equations, which is represented by Aπ,π′ .
This allows us to give the bound to the former, as formalized below.

Proposition 1. For every pair of permutations π, π′ : [mn] → [mn], we have

E
t∼Sa

[Yt,π · Yt,π′] ≤ qdefc(Aπ,π′)

q2n−1
.

Proof. First, let us rearrange the left-hand side term as

E
t∼Sa

[Yt,π · Yt,π′] =
1

qmn−1

∑
t∈Fmn

q

Yt,π · Yt·π′ . (7)

Now, notice that Yt,π = 1 iff Aπt = x. Similarly, Yt,π′ = 1 iff Aπ′t = x. In other
words, Yt,π · Yt·π′ = 1 iff

Aπ,π′t =
[
x
x

]
.

3 Note that defc(Aπ,π′) is equal to the corank of AT
π,π′ .

Private Aggregation from Fewer Anonymous Messages 813

The number of solutions t ∈ F
mn
q to the above equation is at most

qmn−rank(Aπ,π′) = q(m−2)n+defc(AT
π,π′). Plugging this back into (7), we get

E
t∼Sa

[Yt,π · Yt,π′] ≤ 1
qmn−1

· q(m−2)n+defc(Aπ,π′) =
qdefc(Aπ,π′)

q2n−1
,

as desired. 	

3.3 Probabilistic Bound on Rank Deficit of Random Matrices

The final step of our proof is to bound the probability that the rank deficit of
Aπ,π′ is large. Such a bound is encapsulated in Theorem 4 below. Notice that
Proposition 1 and Theorem 4 immediately yield Lemma 1.

Theorem 4. For all m ≥ 3 and k ∈ N, we have

Pr
π,π′∼Πmn

[defc(Aπ,π′) ≥ k] ≤
(

n2

(n/2)m−2

) k−1
2

.

Characterization of Rank Deficit via Matching Partitions. To prove
Theorem 4, we first give a “compact” and convenient characterization of the
rank deficit of Aπ,π′ . In order to do this, we need several additional notations:
we say that a partition S1
 · · ·
 Sk = U of a universe U is non-empty if
S1, . . . , Sk �= ∅. Moreover, for a set S ⊆ [n], we use S→m ⊆ [mn] to denote
the set ∪i∈S{m(i − 1) + 1, . . . , mi}. Finally, we need the following definition of
matching partitions.

Definition 9. Let π, π′ be any pair of permutations of [mn]. A pair of non-
empty partitions S1
 · · ·
Sk = [n] and S′

1
 · · ·
S′
k = [n] is said to match with

respect to π, π′ iff

π
(
S→m

j

)
= π′ ((S′

j)
→m

)
(8)

for all j ∈ [k]. When π, π′ are clear from the context, we may omit “with respect
to π, π′” from the terminology.

Condition (8) might look a bit mysterious at first glance. However, there is a
very simple equivalent condition in terms of the matrices Aπ,Aπ′ : S1
· · ·
Sk =
[n] and S′

1
 · · ·
S′
k = [n] match iff the sum of rows i ∈ Sj of Aπ coincides with

the sum of rows i′ ∈ S′
j of Aπ′ , i.e.,

∑
i∈Sj

(Aπ)i =
∑

i′∈S′
j
(Aπ′)i′ .

An easy-to-use equivalence of defc(Aπ,π′) = k is that a pair of matching
partitions S1
 · · ·
 Sk = [n] and S′

1
 · · ·
 S′
k = [n] exists. We only use one

direction of this relation, which we prove below.

Lemma 2. For any permutations π, π′ : [mn] → [mn], if defc(Aπ,π′) ≥ k, then
there exists a pair of matching partitions S1
· · ·
Sk = [n] and S′

1
· · ·
S′
k = [n].

814 B. Ghazi et al.

Proof. We will prove the contrapositive. Let π, π′ : [mn] → [mn] be any permuta-
tions, and suppose that there is no pair of matching partitions S1
· · ·
Sk = [n]
and S′

1
 · · ·
 S′
k = [n]. We will show that defc(Aπ,π′) < k, or equivalently

rank(Aπ,π′) > 2n − k.
Consider any pair of matching partitions4 S1
· · ·
St = [n] and S′

1
· · ·
S′
t =

[n] that maximizes the number of parts t. From our assumption, we must have
t < k.

For every part j ∈ [t], let us pick an arbritrary element ij ∈ Sj . Consider
all rows of Aπ,π′ , except the ij-th rows for all j ∈ [t] (i.e. {(Aπ,π′)i}i/∈{i1,...,it}).
We claim that these rows are linearly independent. Before we prove this, note
that this imply that the rank of Aπ,π′ is at least 2n − t > 2n − k, which would
complete our proof.

We now move on to prove the linear independence of {(Aπ,π′)i}i/∈{i1,...,it}.
Suppose for the sake of contradiction that these rows are not linearly indepen-
dent. Since the matrix Aπ,π′ is simply a concatenation of Aπ and Aπ′ , we have
that {(Aπ,π′)i}i/∈{i1,...,it} = {(Aπ)i}i∈[n]\{i1,...,it} ∪ {(Aπ′)i′}i′∈[n]. The linear
dependency of these rows mean that there exists a non-zero vector of coefficients
(c1, . . . , cn, c′

1, . . . , c
′
n) ∈ F

2n
q with ci1 = · · · = cit

= 0 such that

0 =
∑
i∈[n]

ci · (Aπ)i +
∑

i′∈[n]

c′
i′ · (Aπ′)i′ . (9)

Since the rows of Aπ′ are linearly independent, there must exist i∗ ∈ [n] such
that ci∗ �= 0. Let j ∈ [t] denote the index of the partition to which i∗ belongs, i.e.,
i∗ ∈ Sj . For notational convenience, we will assume, without loss of generality,
that j = t.

Let Pt : Fmn
q → F

(S→m
t)

q denote the projection operator that sends a vector
(v�)�∈[mn] to its restriction on coordinates in S→m

t , i.e., (v�)�∈S→m
t

. Observe that
Pt((Aπ)i) is non-zero iff i ∈ St and Pt((Aπ′)i′) is non-zero iff i′ ∈ S′

t. Thus, by
taking Pt on both sides of (9), we have

0 =
∑
i∈St

ci · Pt((Aπ)i) +
∑

i′∈S′
t

ci′ · Pt((Aπ)i′) (10)

Now, let T = {i ∈ St | ci �= 0} and T ′ = {i′ ∈ S′
t | ci′ �= 0}. Notice that

supp
(∑

i∈St
ci · Pt((Aπ)i)

)
= π(T→m) and supp

(∑
i′∈S′

t
ci′ · Pt((Aπ)i′)

)
=

π′((T ′)→m). Hence, from (10), we have

π(T→m) = π′((T ′)→m). (11)

Consider the pair of partitions S1
· · · St−1
T
 (St \T) = [n] and S′
1
· · · S′

t−1

T ′
 (S′

t \ T ′) = [n]. From the definition of T , we must have T �= ∅ because i∗

belongs to T , and (St \T) �= ∅ because it does not belong to T . From this and (11),
these partitions are non-empty and they match. However, these matching parti-
tions have t + 1 parts, which contradicts the maximality of the number of parts of
S1
 · · ·
 St and S′

1
 · · ·
 S′
t. This concludes our proof. 	

4 Note that at least one matching partition always exists: S1 = [n] = S′
1.

Private Aggregation from Fewer Anonymous Messages 815

Proof of Theorem 4. With the characterization from the previous subsection
ready, we can now easily prove our main theorem of this section (Theorem 4).
We will also use two simple inequalities regarding the multinomial coefficients
stated below. For completeness, we provide their proofs in the appendix.

Fact 1. For every a1, . . . , ak, a′
1, . . . , a

′
k ∈ N, we have

(
a1 + · · · + ak + a′

1 + · · · + a′
k

a1 + a′
1, . . . , ak + a′

k

)
≥

(
a1 + · · · + ak

a1, . . . , ak

)
·
(

a′
1 + · · · + a′

k

a′
1, . . . , a

′
k

)

Fact 2. For every k ∈ N and a1, . . . , ak ∈ N, we have

(
a1 + · · · + ak

a1, . . . , ak

)
≥

(
a1 + · · · + ak

2

)	k/2

Proof of Theorem 4. Let us fix a pair of non-empty partitions S1
 · · ·
Sk = [n]
and S′

1
 · · ·
S′
k = [n] such that5 |Si| = |S′

i| for all i ∈ [k]. Notice that, when we
pick π : [mn] → [mn] uniformly at random, (π (S→m

1) , · · · , π (S→m
k)) is simply

a random partition of [mn] into subsets of size m|S1|, . . . , m|Sk|. Hence, the
probability that these partitions match is equal to

1(
mn

m|S1|,...,m|Sk|
) .

Hence, by evoking Lemma 2 and taking union bound over all pairs of partitions
S1
 · · ·
 Sk = [n] and S′

1
 · · ·
 S′
k = [n], we have

Pr
π,π′∼Πmn

[defc(A
T
π,π′) ≥ k] ≤

∑

S1�···�Sk=[n],S′
1�···�S′

k=[n]

|S1|=|S′
1|>0,...,|Sk|=|S′

k|>0

1
(mn

m|S1|,...,m|Sk|
)

=
∑

a1,...,ak∈N

a1+···+ak=n

∑

S1�···�Sk=[n],S′
1�···�S′

k=[n]

|S1|=|S′
1|=a1,...,|Sk|=|S′

k|=ak

1
(mn

ma1,...,mak

)

=
∑

a1,...,ak∈N

a1+···+ak=n

(n
a1,...,ak

)2

(mn
ma1,...,mak

)

(Fact 1) ≤
∑

a1,...,ak∈N

a1+···+ak=n

1
(n

a1,...,ak

)(m−2)

(Fact 2) ≤
∑

a1,...,ak∈N

a1+···+ak=n

1

(n/2)(m−2)·�k/2	

≤ nk−1

(n/2)(m−2)·�k/2	

≤
(

n2

(n/2)m−2

) k−1
2

	

5 We may assume that |Si| = |S′

i|; otherwise, π(S→m
i) and π′((S′

i)
→m) are obviously

not equal and hence S1 � · · · � Sk = [n] and S′
1 � · · · � S′

k = [n] do not match.

816 B. Ghazi et al.

4 Lower Bound Proofs

In this section, we prove our lower bound on the number of messages
(Theorem 2), which is a direct consequence of the following two theorems:

Theorem 5. Suppose σ ≥ 1. Then, for any σ-secure n-party aggregation proto-
col over Fq in which each party sends m messages, we have m = Ω(logn q).

Theorem 6. For any σ-secure n-party aggregation protocol over Fq in which

each party sends m messages, we have m = Ω
(

σ
log(σn)

)
.

We prove Theorem 5 in Sect. 4.1, while we prove Theorem 6 in Sect. 4.2.
Before we proceed to the proofs, let us start by proving the following fact that
will be used in both proofs: the output of the encoder on a party’s input must
uniquely determine the input held by the party.

Lemma 3. For any n-party aggregation protocol P with encoder Enc : Fq →
[
]m, we have that for any x, x′ ∈ Fq with x �= x′, the distributions EEnc

x and EEnc
x′

have disjoint supports.
As a consequence, for any output vector y ∈ [
]nm, there exists at most

one x = (x1, x2, . . . , xn) ∈ F
n
q such that y is a possible output (Encx1 ,Encx2 ,

. . . ,Encxn
).

Proof. For the sake of contradiction, suppose there exist x, x′ ∈ Fq with x �= x′

such that EEnc
x and EEnc

x′ have a common element in the support, say z. Then,
let z′ ∈ [
]m be an element in the support of EEnc

0 . Note that it follows that
(z, z′, z′, . . . , z′

︸ ︷︷ ︸
n−1

) is a possible output of inputs (x,0n−1) and (x′,0n−1), which

means that the analyzer cannot uniquely determine the parties’ inputs from the
output, thereby contradicting the correctness of the protocol. This completes
the proof. 	

4.1 Field-Dependent Bound

We now present the proof of Theorem 5. Recall from Sect. 1.4 that Bs is defined
as {x ∈ F

n
q | ∑

i xi = s}. The key technical lemma is the following.

Lemma 4. For each s ∈ Fq and every n-user one-round aggregation protocol P
in the anonymized model with encoder Enc : Fq → [
]m, there exists a pair of
inputs x,x′ ∈ Bs such that SD

(SEnc
x ,SEnc

x′
) ≥ 1 − nnm/qn−1.

Throughout this subsection, let us fix s ∈ Fq. Before proving Lemma 4, we
first define some notation. For every possible shuffler output vector y and input
x ∈ Bs, let px,y denote the probability that on input x the encoder outputs y,
i.e., PrY ∼SEnc

x
[Y = y]. Moreover, let Invy = {x ∈ Bs | px,y > 0} denote the set

of sum-s inputs that are possible given that the output is y.

Private Aggregation from Fewer Anonymous Messages 817

Lemma 5. |Invy| ≤ nnm.

Proof. Suppose y is an output vector consisting of nm messages with |Invy| > 0.
Consider a function g : [nm] → [n] that associates each of the mn messages to
a single party. Note that y and g uniquely identify the set of messages Yi sent
by each party i. In turn, Yi must correspond to a unique input xi to party i
by Lemma 3. Then, it follows that y and g can determine at most one input
x ∈ Invy. Since there are at most nnm valid functions g, the desired bound on
|Invy| follows. 	

Let py =
∑

x∈Bs
px,y, and define dy = 1

q2n−2

∑
x∈Bs

∑
x′∈Bs

|px,y − px′,y| as
the average difference between probabilities px,y and px′,y over all pairs of inputs
x,x′ with sum s. Then, we have the following lemma.

Lemma 6. dy ≥ 2
(
1 − nnm

qn−1

)
py/qn−1.

Proof. We have

q2n−2dy ≥ 2
∑

x∈Invy

∑
x′∈Bs\Invy

|px,y − 0|

= 2 |Bs \ Invy|
∑

x∈Invy

px,y

= 2
(
qn−1 − |Invy|) py

(Lemma 5) ≥ 2
(
qn−1 − nnm

)
py. 	

We now prove Lemma 4.

Proof of Lemma 4. We will in fact show the stronger statement that the (scaled)
average statistical distance for pairs of inputs in Bs is lower bounded by 1 −
nnm/qn−1, i.e.,

davg ≥ 1 − nnm

qn−1
,

where
davg =

1
q2n−2

∑
x∈Bs

∑
x′∈Bs

SD
(SEnc

x ,SEnc
x′

)
. (12)

Note that by Lemma 6, we have

davg =
∑
y

dy
2

≥ 1
qn−1

(
1 − nnm

qn−1

)∑
y

py

≥ 1
qn−1

(
1 − nnm

qn−1

)∑
y

∑
x∈Bs

px,y

= 1 − nnm

qn−1
,

818 B. Ghazi et al.

where the last line follows from the fact that |Bs| = qn−1. To conclude, note that
it follows that at least one of the summands in (12) must be at least 1 − nnm

qn−1 ,
as desired. 	

Theorem 5 now follows easily from Lemma 4.

Proof of Theorem 5. Suppose P is such a σ-secure n-party aggregation protocol
with encoder Enc : Fq → [
]m. Then, choose an arbitrary s ∈ Fq. Note that by
Lemma 4, there exist x,x′ ∈ Bs such that 2−σ ≥ SD

(SEnc
x ,SEnc

x′
) ≥ 1 − nnm

qn−1 .
Thus, if σ ≥ 1, it follows that m = Ω(logn q), as desired. 	

4.2 Security-Dependent Bound

We now turn to the proof of Theorem 6, which follows from the next theorem.

Theorem 7. Let Enc be the encoder of any summation protocol for n > 2 parties
with m messages sent per party. Then, there exists a vector x ∈ B0 such that the
statistical distance between SEnc

0 and SEnc
x is at least 1

(10nm)5m .

It is not hard to see that Theorem 6 follows from Theorem 7:

Proof of Theorem 6. Simply note that by Theorem 7 and the definition of σ-
security, we can find x ∈ B0 such that 2−σ ≥ SD

(SEnc
0 ,SEnc

x

) ≥ 1
(10nm)5m , which

immediately implies that m = Ω
(

σ
log(σn)

)
, as desired. 	

Henceforth, we focus on proving Theorem 7.

Warm-up: Proof of Theorem 7 for Ishai et al.’s Protocol. Before we prove
Theorem 7 for the general case, let us sketch a proof specific to Ishai et al.’s
protocol. The input vector x we will use is simply x = (1, · · · , 1,−(n − 1)).

To lower bound SD(S0,Sx), we give a “distinguisher” A that takes in the
output (y1, . . . , yπ(mn)) of the shuffler and outputs either 1 (i.e. “accept”) or 0
(i.e. “reject”). Its key property will be that the probability that A accepts when
(yπ(1), . . . , yπ(mn)) ∼ S0 is more than that of when (yπ(1), . . . , yπ(mn)) ∼ Sx by
an additive factor of 1

(en)m . This immediately implies that the distributions S0

and Sx are at a statistical distance of at least 1
(en)m as well. (Note that this

bound is slightly better than the one in Theorem 7.)
The distinguisher A is incredibly simple here: A accepts iff yπ(1) + · · · +

yπ(m) = 0. To see that it satisfies the claim property, observe that, when
π(1), . . . , π(m) not all come from the same party, yπ(1) + · · · + yπ(m) is sim-
ply a random number in Fq, meaning that A accepts with probability 1/q (in
both distributions). On the other hand, when π(1), . . . , π(m) come from the
same party, yπ(1) + · · ·+ yπ(m) is always zero in the distribution S0 and hence A
always accept. For the distribution Sx, if π(1), . . . , π(m) comes from the same
party i �= n, then the sum yπ(1) + · · · + yπ(m) is always one and hence A rejects.
Thus, the probability that A accepts in the former distribution is more than that
of the latter by an additive factor of n−1

(nm
m) ≥ 1

(en)m . (The −1 factor corresponds

to the case where p(1), · · · , p(m) comes from party i = n; here A might accept
if −(n − 1) = 0 in Fq.) This concludes the proof sketch.

Private Aggregation from Fewer Anonymous Messages 819

From Ishai et al.’s Protocol to General Protocols. Having sketched the
argument for Ishai et al.’s protocol, one might wonder whether the same app-
roach would work for general protocols. In particular, here instead of checking
if yπ(1) + · · · + yπ(m) = 0, we would check whether yπ(1), . . . , yπ(m) is a valid
output of the encoder when the input is zero. Now, the statement for when
π(1), . . . , π(m) comes from the same party remains true. However, the issue is
that, when π(1), . . . , π(m) do not all come from the same party, it is not nec-
essarily true that the acceptance probability of A would be the same for both
distributions.

To avoid having these “cross terms” affect the probability of acceptance of
A too much, we pick the smallest integer t such that the “t-message marginals”
(defined formally below) of EEnc

0 and EEnc
1 differ “substantially”. Then, we mod-

ify A so that it performs an analogous check on yπ(1), . . . , yπ(t) (instead of
yπ(1), . . . , yπ(m) as before). Once again, we will have that, if π(1), . . . , π(t) corre-
sponds to the same party, then the probability that A accepts differs significantly
between the two cases. On the other hand, due to the minimality of t, we can
also argue that, when π(1), . . . , π(t) are not all from the same parties (i.e. “cross
terms”), the difference is small. Hence, the former case would dominate and we
can get a lower bound on the difference as desired. This is roughly the app-
roach we take in the proof of Theorem 7 below. There are subtle points we have
to change in the actual proof below. For instance, we cannot simply use the
input (1, · · · , 1,−(n − 1)) as in the case of Ishai et al. protocol because, if the
t-marginal of EEnc

−(n−1) deviates from EEnc
0 more substantially than that of EEnc

1 ,
then this could affect the acceptance probability by a lot. Hence, in the actual
proof, we instead pick x∗ that minimizes the value of such t among all numbers
in Fq, and use the input vector x = (x∗, . . . , x∗,−(n − 1)x∗).

Additional Notation and Observation. To formally prove Theorem 7 in
the general form, we need to formally define the notion of t-marginal. For a
distribution D supported on [
]m and a positive integer t ≤ m, its t-marginal,
denoted by D|t, supported on [
]t is simply the marginal of D on the first t-
coordinates; more formally, for all y ∈ [
]t, we have

Pr
Y ∼D|t

[Y = y] =
∑

yt+1,...,ym∈[�]

Pr
Y ∼D

[Y = y ◦ (yt+1, . . . , ym)].

An observation that will simplify our proof is that we may assume w.l.o.g.
that the distribution EEnc

x for every x ∈ Fq is permutation invariant, i.e., that
for any π : [m] → [m] and any y ∈ [
]m, we have

Pr
Y ∼EEnc

x

[Y = y] = Pr
Y ∼EEnc

x

[Y = π(y)].

This is because we may apply a random permutation to the encoding Encx before
sending it to the shuffler, which does not change the distribution Sx

Enc. Notice
that our observation implies that EEnc

x |t is also permutation invariant.

820 B. Ghazi et al.

Proof of Theorem 7. Let t ≤ m be the smallest positive integer such that
maxx∈Fq

SD(EEnc
0 |t, EEnc

x |t) is at least 1
(10nm)4(m−t) . Note that such t always exist

because the requirement holds for t = m, at which EEnc
0 |t = EEnc

0 and EEnc
1 |t =

EEnc
1 have statistical distance 1 (as their supports are disjoint due to Lemma 3).

For t as defined above, let x∗ = argmaxx∈Fq
SD(EEnc

0 |t, EEnc
x |t) and let us

defined H as the set of elements of [
]t whose probability under EEnc
0 |t is higher

than under EEnc
x∗ |t. More formally, H = {y ∈ [
]t : EEnc

0 |t(y) > EEnc
x∗ |t(y)}. By

definition of statistical distance, we have

Pr
y∈EEnc

0 |t
[y ∈ H] − Pr

y∈EEnc
x∗ |t

[y ∈ H] = SD(EEnc
0 |t, EEnc

x∗ |t) ≥ 1
(10nm)4(m−t)

, (13)

where the inequality follows from our choice of t.
Let x = (x∗, . . . , x∗,−(n − 1)x∗); clearly, x ∈ B0 as desired. We next give

a distinguisher for the distributions SEnc
0 and SEnc

x . The distinguisher A takes
in the permuted output (yπ(1), . . . , yπ(nm)). It returns one (i.e., “accept”) if
(yπ(1), . . . , yπ(t)) belongs to H and it returns zero (i.e., “reject”) otherwise.

We will show that the probability that A accepts on SEnc
0 is more than the

probability that it accepts on SEnc
x by at least 1

(10nm)5m , which implies that the
statistical distance between SEnc

0 and SEnc
x is also at least 1

(10nm)5m as desired.
To argue about the acceptance probability of A, it is worth noting that

there are two sources of randomness here: the output y (sampled from EEnc
0

or EEnc
x) and the permutation π. More formally, we may write the probability

that A accepts on SEnc
0 and that on SEnc

x as Prπ∼Πmn,y∼EEnc
0

[A(π(y)) = 1] and
Prπ∼Πmn,y∼EEnc

x
[A(π(y)) = 1] respectively. Hence, the difference between the

probability that A accepts on SEnc
0 and that on SEnc

x is

Pr
π∼Πmn,y∼SEnc

0

[A(π(y)) = 1] − Pr
π∼Πmn,y∼SEnc

x

[A(π(y)) = 1]

= E
π∼Πmn

[
Pr

y∼SEnc
0

[A(π(y)) = 1] − Pr
y∼SEnc

x

[A(π(y)) = 1]
]

.

For brevity, let us define Δπ as

Δπ := Pr
y∼SEnc

0

[A(π(y)) = 1] − Pr
y∼SEnc

x

[A(π(y)) = 1].

Note that the quantity we would like to lower bound is now simply Eπ[Δπ].
For each party i ∈ {1, . . . , n} and any permutation π : [mn] → [mn], we

use U i
π to denote {π(1), . . . , π(t)} ∩ {m(i − 1) + 1, . . . , mi}. Furthermore, we

define the largest number of messages from a single party for a permutation π
as Cπ := maxi=1,...,n |U i

π|.

Private Aggregation from Fewer Anonymous Messages 821

In the next part of the proof, we classify π into three categories, as listed
below. For each category, we prove either a lower or an upper bound on Δπ and
the probability that a random permutation falls into that category.

I. Cπ = t and |Un
π | �= t. In other words, all of {π(1), . . . , π(t)} correspond to

a single party and that party is not the last party.
II. Cπ = t and |Un

π | = t. In other words, all of {π(1), . . . , π(t)} correspond to
the last party n.

III. Cπ < t. Not all of π(1), . . . , π(t) comes from the same party.

We will show that for category I permutations, Δπ is large (Lemma 11) and
the probability that a random permutation belongs to this category is not too
small (Lemma 8). For both categories II and III, we show that |Δπ| is small
(Lemmas 9 and 11) and the probabilities that a random permutation belongs to
each of these two categories are not too large (Lemmas 10 and 12).

These quantitative bounds are such that the first category dominates Eπ[Δπ],
meaning that we get a lower bound on this expectation as desired; this is done
at the very end of the proof.

Category I: Cπ = t and |Un
π | �= t.

We now consider the first case: when {π(1), . . . , π(t)} corresponds to a single
party i �= n. In this case, Δπ is exactly equal to the statistical distance between
EEnc
0 and EEnc

x∗ (which we know from (13) to be large):

Lemma 7. For any π such that Cπ = t and |Un
π | �= t, we have Δπ =

SD(EEnc
0 |t, EEnc

x∗ |t).
Proof. Let i ∈ {1, . . . , n} be the party such that |U i

π| = Cπ = t. When y is drawn
from EEnc

x (respectively EEnc
0), {π(1), · · · , π(t)} ⊆ {m(i−1)+1, . . . , mi}, it is the

case that (yπ(1), . . . , yπ(t)) is simply distributed as EEnc
xi

|t (respectively EEnc
0 |t).

Recall that we assume that Un
π �= t, which means that i �= n or equivalently

xi = x∗. Hence, we have

Pr
y∼EEnc

x

[A(π(y)) = 1] = Pr
y′∼EEnc

xi
|t
[y′ ∈ H] = Pr

y′∼EEnc
x∗ |t

[y′ ∈ H].

and

Pr
y∼EEnc

0

[A(π(y)) = 1] = Pr
y′∼EEnc

0 |t
[y′ ∈ H].

Combining the above two equalities with (13) implies that Δπ =
SD(EEnc

0 |t, EEnc
x∗ |t) as desired. 	

The probability that π falls into this category can be simply computed:

Lemma 8. Prπ[Cπ = t ∧ Un
π �= t] =

(n−1)·(m
t)

(nm
t) .

822 B. Ghazi et al.

Proof. Cπ = t and |Un
π | �= t if and only if there exists a party i ∈ {1, . . . , n − 1}

such that π({1, . . . , t}) ⊆ {m(i − 1) + 1, . . . , mi}. For a fixed i, this happens with

probability (m
t)

(nm
t) . Notice also that the event is disjoint for different i’s. As a result,

the total probability that this event occurs for at least one i is (n − 1) · (m
t)

(nm
t) . 	

Category II: Cπ = t and |Un
π | = t.

We now consider the second category: when {π(1), . . . , π(t)} corresponds to
the last party n. In this case, our choice of x∗ implies that |Δπ| is upper bounded
by the statistical distance between EEnc

0 |t and EEnc
x∗ |t, as formalized below.

Lemma 9. For any π such that Cπ = t and |Un
π | = t, we have |Δπ| ≤

SD(EEnc
0 |t, EEnc

x∗ |t).
Proof. In this case, we have {π(1), · · · , π(i)} ⊆ {m(n − 1) + 1, . . . , mn}.
Thus, when y is drawn from EEnc

x (respectively EEnc
0), it is the case that

(yπ(1), . . . , yπ(t)) is simply distributed as EEnc
xn

|t (respectively EEnc
0 |t). Hence, we

have Pry∼EEnc
x

[A(π(y)) = 1] = Pry′∼EEnc
xn

|t [y
′ ∈ H] and Pry∼EEnc

0
[A(π(y)) =

1] = Pry′∼EEnc
0 |t [y

′ ∈ H]. Combining the above two equalities implies that
|Δπ| ≤ SD(EEnc

0 |t, EEnc
xn

|t). Recall that x∗ is chosen to maximize SD(EEnc
0 |t, EEnc

x∗ |t),
which means that SD(EEnc

0 |t, EEnc
xn

|t) ≤ SD(EEnc
0 |t, EEnc

x∗ |t). Hence, we have |Δπ| ≤
SD(EEnc

0 |t, EEnc
x∗ |t) as desired. 	

The probability that π falls into this category can be simply computed in a
similar manner as in the first case:

Lemma 10. Prπ[Cπ = t ∧ |Un
π | = t] = (m

t)
(nm

t) .

Proof. Cπ = t and |Un
π | = t if and only if π({1, . . . , t}) ⊆ {m(n−1)+1, . . . ,mn}.

This happens with probability exactly (m
t)

(nm
t) . 	

Category III: Cπ < t.
Finally, we consider any permutation π such that not all of {π(1), . . . , π(t)}

correspond to a single party. On this front, we may use our choice of t to give
an upper bound on |Δπ| as follows.

Lemma 11. For any π such that Cπ < t, we have |Δπ| < m · 1
(10nm)4(m−Cπ) .

Proof. In fact, we will show something even stronger: that the statistical distance
of (yπ(1), . . . , yπ(t)) when y is drawn from EEnc

0 and that when y is drawn from
EEnc
x is at most m · 1

(10nm)4(m−Cπ) . The desired bound immediately follows.
Let I denote the set of all parties i such that Ui �= ∅. Observe that, when y

is drawn from EEnc
x (respectively EEnc

0), (yp)p∈Ui
is simply distributed as EEnc

xi
||Ui|

(respectively EEnc
0 ||Ui|) and that these are independent for different i. In other

Private Aggregation from Fewer Anonymous Messages 823

words, (yπ(1), . . . , yπ(t)) is (after appropriate rearrangement) just the product
distribution

∏
i∈I EEnc

xi
||Ui| (respectively

∏
i∈I EEnc

0 ||Ui|).
Recall from the definition of Cπ that |Ui| is at most Cπ for all i. Since Cπ < t

and from our choice of t, we must have SD(EEnc
0 ||Ui|, EEnc

xi
||Ui|) < 1

(10nm)4(m−Cπ)

for all i ∈ I. Hence, we also have

SD

(∏
i∈I

EEnc
0 ||Ui|,

∏
i∈I

EEnc
xi

||Ui|

)
< |I| · 1

(10nm)4(m−Cπ)
≤ m · 1

(10nm)4(m−Cπ)
,

which concludes the proof. 	

Next, we bound the probability that a random permutation π belongs to this

category:

Lemma 12. For all j < t, we have Prπ[Cπ = j] ≤ n·(m
t)

(nm
t) · (nm)3(t−j).

Proof. If Cπ = j, there must exist a subset T ⊆ {1, . . . , t} of size j and a party
i ∈ {1, . . . , n} such that π(T) ⊆ {m(i − 1) + 1, . . . , mi}. For a fixed T and i, this

happens with probability exactly (m
j)

(nm
j) . Hence, by union bound over all T and i,

we have

Pr
π

[Cπ = j] ≤ n ·
(

t

j

)

·
(

m
j

)

(
nm
j

) ≤ n · (
m
t

)

(
nm

t

) ·
(

t
j

) · mt−j

(nm)j−t
≤ n · (

m
t

)

(
nm

t

) · (nm)3(t−j). 	

Putting Things Together. With all the claims ready, it is now simple to finish
the proof of Theorem 7. The difference between the probability that A accepts
on SEnc

0 and that on SEnc
x is

E
π
[Δπ] = Pr

π
[Cπ = t ∧ |Un

π |
= t] · E
π
[Δπ | Cπ = t ∧ |Un

π |
= t]

+ Pr
π

[Cπ = t ∧ |Un
π | = t] · E

π
[Δπ | Cπ = t ∧ |Un

π | = t]

+

t−1∑

j=1

Pr
π

[Cπ = j] · E
π
[Δπ | Cπ = j]

(Lemmas 7, 8, 9, 10) ≥ (n − 1) · (
m
t

)

(
nm

t

) · SD(EEnc
0 |t, EEnc

x∗ |t) −
(

m
t

)

(
nm

t

) · SD(EEnc
0 |t, EEnc

x∗ |t)

+

t−1∑

j=1

Pr
π

[Cπ = j] · E
π
[Δπ | Cπ = j]

(From n ≥ 3) ≥ n · (
m
t

)

3
(

nm
t

) · SD(EEnc
0 |t, EEnc

x∗ |t) +

t−1∑

j=1

Pr
π

[Cπ = j] · E
π
[Δπ | Cπ = j]

((13) and Lemma 11) ≥ n · (
m
t

)

3
(

nm
t

) · 1

(10nm)4(m−t)
−

t−1∑

j=1

Prπ[Cπ = j] · m

(10nm)4(m−j)

824 B. Ghazi et al.

(Lemma 12) ≥ n · (
m
t

)
(
nm
t

) ·
⎛
⎝1

3
· 1
(10nm)4(m−t)

−
t−1∑
j=1

(nm)3(t−j)m

(10nm)4(m−j)

⎞
⎠

≥ n · (
m
t

)
(
nm
t

) ·
⎛
⎝1

3
−

t−1∑
j=1

1
10t−j

⎞
⎠ · 1

(10nm)4(m−t)

≥ n · (
m
t

)
(
nm
t

) · 1
10

· 1
(10nm)4(m−t)

≥ 1
(nm)t

· 1
10

· 1
(10nm)4(m−t)

≥ 1
(10nm)5m

. 	

5 Conclusion and Open Questions

In this work, we provide an improved analysis for the split and mix protocol
of Ishai et al. [17] in the shuffled model. Our analysis reduces the number of
messages required by the protocol by a logarithmic factor. Moreover, for a large
range of parameters, we give an asymptotically tight lower bound in terms of the
number of messages that each party needs to send for any protocol for secure
summation.

Although our lower bound is tight in terms of the number of messages, it
does not immediately imply any communication lower bound beyond the trivial
log q bound. For instance, when q = nlog n and σ is a constant, then the number
of messages needed by Ishai et al.’s protocol is O

(
log q
log n

)
= O(log n) but each

message is also of length O(log q). However, our lower bound does not preclude
a protocol with the same number of messages but of length only O(log n) bits.
It remains an interesting open question to close this gap.

Another interesting open question is whether we can give a lower bound for
(ε, δ)-differentially private summation protocols when ε is a constant. Currently,
our lower bound does not give anything in this regime. In fact, to the best of
our knowledge, it remains possible that an (ε, 0)-differentially private summation
protocol exists with error O(1/ε) and where each party sends only Oε(log n) bits.
Coming up with such a protocol, or proving that one does not exist, would be
a significant step in understanding the power of differential private algorithms
in the shuffled model. We point out that following up on this work, [14] studied
this question obtaining a pure differentially protocol for summation along with
a lower bound, though the tight answer remains unknown.

A Proofs of Bounds for Multinomial Coefficients

Below we prove Facts 1 and 2 from Sect. 3.

Private Aggregation from Fewer Anonymous Messages 825

Proof of Fact 1. Let U = [a1 + a′
1 + · · · + ak + a′

k], A = [a1 + · · · + ak] and
B = U \ A.

Consider the following process of generating a partition S1
 · · ·
 Sk = U .
First, take a partition T1
 · · ·
Tk = A and a partition T ′

1
 · · ·
T ′
k = B. Then,

let Si = Ti ∪ T ′
i for all i ∈ [k].

Notice that each pair of T1
 · · ·
 Tk with |Ti| = ai and T ′
1
 · · ·
 T ′

k with
|Pi| = a′

i produces different S1
 · · ·
 Sk = U with |Si| = ai + a′
i. Since the

number of such pairs T1
 · · ·
Tk and T ′
1
 · · ·
T ′

k is
(
a1+···+ak

a1,...,ak

) · (a′
1+···+a′

k

a′
1,...,a′

k

)
and

the number of S1
 · · ·
 Sk = U with |Si| = ai + a′
i is only

(a1+···+ak+a′
1+···+a′

k

a1+a′
1,...,ak+a′

k

)
,

we have
(

a1 + · · · + ak + a′
1 + · · · + a′

k

a1 + a′
1, . . . , ak + a′

k

)
≥

(
a1 + · · · + ak

a1, . . . , ak

)
·
(

a′
1 + · · · + a′

k

a′
1, . . . , a

′
k

)

as desired. 	

Proof of Fact 2. Assume w.l.o.g. that a1 ≤ a2 ≤ · · · ≤ ak. We have

(
a1 + · · · + ak

a1, . . . , ak

)
=

k∏
i=1

(
ai + · · · + ak

ai

)
≥

	k/2
∏
i=1

(
ai + · · · + ak

ai

)

≥
	k/2
∏
i=1

(ai + · · · + ak)

≥
(

a1 + · · · + ak

2

)	k/2

,

where the last inequality uses the fact that a1 ≤ · · · ≤ ak. 	

B Proof of Corollary 1

Corollary 1 follows from our main theorem (Theorem 1) and the connection
between secure summation protocols and differentially private summation pro-
tocols due to Balle et al. [3]. We recall the latter below.

Lemma 13 (Lemma 4.1 of [3]). Given a σ-secure protocol in the anonymized
setting for n-party summation over the domain Fq, where each party sends
f(q, n, σ) messages each of g(q, n, σ) bits, there exists an (ε, (1 + eε)2−σ−1)-
differentially private protocol in the shuffled model for real summation with abso-
lute error O(1 + 1/ε) where each party sends f(O(n3/2), n, σ) messages each of
g(O(n3/2), n, σ) bits.

Corollary 1 now follows immediately by applying Lemma 13 and Theorem 1
with σ = 1 + log

(
1+eε

δ

)
= O (1 + ε + log(1/δ)).

We remark here that Lemma 13 as stated above is slightly different from
Lemma 4.1 of [3]. In particular, in [3], the statement requires the secure sum-
mation protocol to works for any Zq even when q is not a prime power. On the

826 B. Ghazi et al.

other hand, our analysis in this paper (which uses rank of matrices) only applies
to when q is a prime power (i.e., Fq is a field). However, it turns out that this
does not affect the connection too much: instead of picking q = 2�n3/2� as in [3],
we may pick q to be the smallest prime larger than 2n3/2. In this case, q remains
O(n3/2) and the remaining argument of [3] remains exactly the same.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318. ACM (2016)

2. Balle, B., Bell, J., Gascón, A., Nissim, K.: Improved summation from shuffling
(2019). http://arxiv.org/abs/1909.11225

3. Balle, B., Bell, J., Gascón, A., Nissim, K.: Differentially private summation with
multi-message shuffling. CoRR abs/1906.09116 (2019). http://arxiv.org/abs/1906.
09116

4. Balle, B., Bell, J., Gascón, A., Nissim, K.: The privacy blanket of the shuffle
model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS,
vol. 11693, pp. 638–667. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 22

5. Balle, B., Bell, J., Gascón, A., Nissim, K.: Private summation in the multi-message
shuffle model. arXiv: 2002.00817 (2020)

6. Bittau, A., et al.: PROCHLO: strong privacy for analytics in the crowd. In:
Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai,
China, 28–31 October 2017, pp. 441–459 (2017)

7. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 1175–
1191. ACM (2017)

8. Cheu, A., Smith, A., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential
privacy via shuffling. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I.
LNCS, vol. 11476, pp. 375–403. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 13

9. Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C., et al.: Synopses for massive
data: samples, histograms, wavelets, sketches. Found. Trends Databases 4(1–3),
1–294 (2011)

10. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of
aggregate statistics. In: NSDI (2017)

11. Erlingsson, Ú., et al.: Encode, shuffle, analyze privacy revisited: formalizations and
empirical evaluation. arXiv preprint arXiv:2001.03618 (2020)

12. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta,
A.: Amplification by shuffling: from local to central differential privacy via
anonymity. In: SODA, pp. 2468–2479 (2019)

13. Ghazi, B., Golowich, N., Kumar, R., Pagh, R., Velingker, A.: On the power of
multiple anonymous messages. arXiv preprint arXiv:1908.11358 (2019)

14. Ghazi, B., Kumar, R., Manurangsi, P., Pagh, R., Velingker, A.: Pure differentially
private summation from anonymous messages. arXiv: 2020.01919 (2020)

http://arxiv.org/abs/1909.11225
http://arxiv.org/abs/1906.09116
http://arxiv.org/abs/1906.09116
https://doi.org/10.1007/978-3-030-26951-7_22
https://doi.org/10.1007/978-3-030-26951-7_22
http://arxiv.org/abs/2002.00817
https://doi.org/10.1007/978-3-030-17653-2_13
https://doi.org/10.1007/978-3-030-17653-2_13
http://arxiv.org/abs/2001.03618
http://arxiv.org/abs/1908.11358
http://arxiv.org/abs/2020.01919

Private Aggregation from Fewer Anonymous Messages 827

15. Ghazi, B., Pagh, R., Velingker, A.: Scalable and differentially private distributed
aggregation in the shuffled model (2019). http://arxiv.org/abs/1906.08320

16. Goryczka, S., Xiong, L., Sunderam, V.: Secure multiparty aggregation with differ-
ential privacy: a comparative study. In: EDBT/ICDT 2013 Workshops (2013)

17. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity.
In: IEEE Symposium on Foundations of Computer Science (FOCS) (2006)

18. Kairouz, P., et al.: Advances and open problems in federated learning.
arXiv: 1912.04977 (2019)

19. Kearns, M.: Efficient noise-tolerant learning from statistical queries. JACM 45(6),
983–1006 (1998)

20. Kenthapadi, K., Korolova, A., Mironov, I., Mishra, N.: Privacy via the Johnson-
Lindenstrauss transform. J. Privacy Confid. 5, 39–71 (2013)

21. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

22. Liu, A., Xia, L., Duchowski, A., Bailey, R., Holmqvist, K., Jain, E.: Differential
privacy for eye-tracking data. In: Proceedings of the 11th ACM Symposium on Eye
Tracking Research & Applications, pp. 1–10 (2019)

23. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial Intelli-
gence and Statistics, pp. 1273–1282 (2017)

24. McMahan, H.B., Ramage, D.: Federated learning: collaborative machine learn-
ing without centralized training data. Google AI Blog, April 2017. https://ai.
googleblog.com/2017/04/federated-learning-collaborative.html

25. McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963 (2017)

26. Melis, L., Danezis, G., Cristofaro, E.D.: Efficient private statistics with succinct
sketches. In: NDSS (2016)

27. Mishra, N., Sandler, M.: Privacy via pseudorandom sketches. In: PODS (2006)
28. Reyzin, L., Smith, A.D., Yakoubov, S.: Turning hate into love: homomorphic ad hoc

threshold encryption for scalable MPC. IACR Cryptology ePrint Archive (2018)
29. Steil, J., Hagestedt, I., Huang, M.X., Bulling, A.: Privacy-aware eye tracking using

differential privacy. In: Proceedings of the 11th ACM Symposium on Eye Tracking
Research & Applications, pp. 1–9 (2019)

30. Wang, T., Xu, M., Ding, B., Zhou, J., Li, N., Jha, S.: Practical and robust privacy
amplification with multi-party differential privacy. arXiv:1908.11515 (2019)

31. Woodruff, D.P., et al.: Sketching as a tool for numerical linear algebra. Found.
Trends Theor. Comput. Sci. 10(1–2), 1–157 (2014)

http://arxiv.org/abs/1906.08320
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1610.05492
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://arxiv.org/abs/1710.06963
http://arxiv.org/abs/1908.11515

Broadcast-Optimal Two-Round MPC

Ran Cohen1(B), Juan Garay2(B), and Vassilis Zikas3

1 Northeastern University, Boston, USA
rancohen@ccs.neu.edu

2 Texas A&M University, College Station, USA
garay@cse.tamu.edu

3 School of Informatics, University of Edinburgh & IOHK, Edinburgh, UK
vzikas@inf.ed.ac.uk

Abstract. An intensive effort by the cryptographic community to mini-
mize the round complexity of secure multi-party computation (MPC) has
recently led to optimal two-round protocols from minimal assumptions.
Most of the proposed solutions, however, make use of a broadcast channel
in every round, and it is unclear if the broadcast channel can be replaced
by standard point-to-point communication in a round-preserving man-
ner, and if so, at what cost on the resulting security.

In this work, we provide a complete characterization of the trade-off
between number of broadcast rounds and achievable security level for
two-round MPC tolerating arbitrarily many active corruptions. Specif-
ically, we consider all possible combinations of broadcast and point-to-
point rounds against the three standard levels of security for maliciously
secure MPC protocols, namely, security with identifiable, unanimous,
and selective abort. For each of these notions and each combination of
broadcast and point-to-point rounds, we provide either a tight feasibility
or an infeasibility result of two-round MPC. Our feasibility results hold
assuming two-round OT in the CRS model, whereas our impossibility
results hold given any correlated randomness.

1 Introduction

Round complexity is an important efficiency measure of secure multi-party com-
putation protocols (MPC) [40,67], with a large body of research focusing on how
it can be minimized. The “holy grail” in this thread has been two-round proto-
cols, as single-round MPC for a large set of functions cannot be achieved [43].
The first solutions to this problem were based on strong cryptographic assump-
tions (FHE [5,59], iO [34], witness encryption [42], and spooky encryption [26]),
whereas more recent results showed how to build two-round MPC resilient to
any number of active corruptions from standard assumptions, such as two-round
oblivious transfer (OT) [9,10,33] or OT-correlation setup and one-way functions
(OWF) [35] (we discuss the state of the art in Sect. 1.1).

The full version of this paper can be found at the IACR Cryptology ePrint Archive,
report 2019/1183.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, pp. 828–858, 2020.
https://doi.org/10.1007/978-3-030-45724-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_28

Broadcast-Optimal Two-Round MPC 829

The advantage of such two-round MPC protocols, however, is often dulled
by the fact that the protocols make use of a broadcast channel in the case
of malicious adversaries. Indeed, in practice such a broadcast channel is typi-
cally not available to the parties, who instead need to use a broadcast protocol
over point-to-point communication for this task. Classical impossibility results
from distributed computing imply that any such deterministic protocol tolerat-
ing (up to) t corruptions requires t + 1 rounds of communication [27,28]; these
bounds extend to randomized broadcast, showing that termination cannot be
guaranteed in constant rounds [17,52]. Even when considering expected round
complexity, randomized broadcast would require Ω(n/(n − t)) rounds [30] when
the adversary can corrupt a majority of parties (i.e., t ≥ n/2), and expected two
rounds are unlikely to suffice for reaching agreement, even with weak guarantees,
as long as t > n/4 [24] (as opposed to expected three rounds [58]). Furthermore,
while the above lower bounds consider broadcasting just a single message, known
techniques for composing randomized broadcast protocols with non-simultaneous
termination require a multiplicative blowup of c > 2 rounds [7,20,22,53,55].

The above state of affairs motivated a line of work investigating the effect in
the round complexity of removing the assumption of broadcast from two-round
MPC protocols [2,4,49,51,60]. In order to do so, however, one needs to settle
for weaker security definitions. In other words, one needs to trade off security
guarantees for lower round complexity.

In this work, we fully characterize the optimal trade-off between security
and use of broadcast in two-round MPC protocols against a malicious adversary
who corrupts any number of parties: In a nutshell, for each of the three standard
security definitions that are achievable against such adversaries in the round-
unrestricted setting—namely, security with identifiable, unanimous, or selective
abort—we provide protocols that use the provably minimal number of broadcast
rounds (a broadcast round is a round in which at least one party broadcasts a
message using a broadcast channel). Our positive results assume, as in the state-
of-the-art solutions, existence of a two-round oblivious transfer (OT) protocol
in the CRS model (alternatively, OT-correlation setup and OWF), whereas our
impossibility results hold for any correlated randomness setup.

1.1 Background

Starting with the seminal works on MPC [8,16,40,65,67], a major goal has been
to strike a favorable balance between the resources required for the computation
(e.g., the protocol’s round complexity), the underlying assumptions (e.g., the
existence of oblivious transfer), and the security guarantees that can be achieved.

Since in the (potentially) dishonest-majority setting, which is the focus in
this work, fairness (either all parties learn the output or nobody does) cannot
be achieved generically [18], the standard security requirement is weakened by
allowing the adversary to prematurely abort the computation even after learning
the output value. Three main flavors of this definition—distinguished by the
guarantees that honest parties receive upon abort—have been considered in the
literature:

830 R. Cohen et al.

1. Security with identifiable abort [19,50] allows the honest parties to identify
cheating parties in case of an abort;

2. security with unanimous abort [29,40] allows the honest parties to detect that
an attack took place, but not to catch the culprits; and, finally,

3. security with selective (non-unanimous) abort [41,49] guarantees that every
honest party either obtains the correct output from the computation or locally
detects an attack and aborts.

We note in passing that the above ordering reflects the strength of the security
definition, i.e., if a protocol is secure with identifiable abort then it is also secure
with unanimous abort; and if a protocol is secure with unanimous abort, then
it is also secure with selective abort. The opposite is not true in general.

A common design principle for MPC protocols, used in the vast majority of
works in the literature, is to consider a broadcast channel as an atomic resource
of the communication model. The ability to broadcast messages greatly simplifies
protocols secure against malicious parties (see, e.g., the discussion in Goldreich’s
book [39, Sec. 7]) and is known to be necessary for achieving security with iden-
tifiable abort [19]. Indeed, broadcast protocols that run over authenticated chan-
nels exist assuming a public-key infrastructure (PKI) for digital signatures [27],
with information-theoretic variants in the private-channels setting [63]. There-
fore, in terms of feasibility results for MPC, the broadcast resource is inter-
changeable with a PKI setup. In fact, if merely unanimous abort is required,
even this setup assumption can be removed [29].1

However, as discussed above, in terms of round efficiency, removing the
broadcast resource is not for free and one needs to either pay with more rounds
to emulate broadcast [27,30], or lessen the obtained security guarantees. How-
ever, very few generic ways to trade-off broadcast for weaker security have been
proposed. A notable case is that of Goldwasser and Lindell [41], who showed
how to compile any r-round MPC protocol π that is designed in the broadcast
model into a 2r-round MPC protocol over point-to-point channels at the cost of
settling for the weakest security guarantee of selective abort, even if the original
protocol π was secure with unanimous or identifiable abort. Interestingly, since
as mentioned earlier broadcast protocols are expensive in terms of rounds and
communication, most (if not all) practical implementations of MPC protocols use
this compiler and therefore can only achieve selective abort [44,45,54,56,57,66].

But even at this security cost, the compiler from Goldwasser and Lindell [41]
does not achieve a round-preserving reduction as it induces a constant multi-
plicative blowup in the number of rounds. The reason is that, in a nutshell, this
compiler has every broadcast round being emulated by a two-round echo multi-
cast approach, where every party sends the message he intends to broadcast to
all other parties, who then echo it to ensure that if two honest parties received
inconsistent messages everyone can observe. Such a blowup is unacceptable when
we are after protocols with the minimal round complexity of two rounds.

1 In some cases, the PKI assumption can be removed even for the strong notion of
guaranteed output delivery, see [19,21].

Broadcast-Optimal Two-Round MPC 831

Two-round MPC protocols in the malicious setting were first explored in
[37,38], while recent years have witnessed exciting developments in two-round
MPC [1–5,9–11,15,25,26,31–36,42,49,51,59,60,64]. The current state of the art
can be summarized as follows:

– Garg and Srinivasan [33] and Benhamouda and Lin [9] showed how to balance
between the optimal round complexity and minimal cryptographic assump-
tions for MPC in the broadcast model, by showing that every function can
be computed with unanimous abort using two broadcast rounds, assuming
two-round oblivious transfer (OT) and tolerating t < n corruptions.

– In the honest-majority setting, Ananth et al. [2] and Applebaum et al. [4]
showed that security with selective abort can be achieved using two point-to-
point rounds assuming OWF.

– Patra and Ravi [60] showed that in the plain model (without any setup
assumptions, such as a PKI) security with unanimous abort cannot be
achieved in two point-to-point rounds, and even if the first round can use
a broadcast channel. As pointed out in [62], the lower-bounds proofs from
[60] do not extend to a setting with private-coins setup.

While advancing our understanding of what kind of security can be achieved
in two rounds, the picture derived from the results above is only partial and
does not resolve the question of whether the feasibility results can be pushed
further. For example, is it possible to obtain identifiable abort via two broadcast
rounds for t < n? Is it possible to achieve selective abort via two point-to-point
rounds for t < n? What security can be achieved when broadcast is used only in
a single round in a two-round MPC protocol? This motivates the main question
we study in this paper:

What is the tradeoff between the use of broadcast and achievable security
in two-round MPC?

1.2 Our Contributions

We devise a complete characterization of the feasibility landscape of two-round
MPC against arbitrarily many malicious corruptions, with respect to the above
three levels of security (with abort) depending on availability of a broadcast
channel. Specifically, we consider all possible combinations of broadcast and
point-to-point rounds—where a point-to-point round consists of only point-to-
point communication whereas in a broadcast round at least one party uses
the broadcast channel—i.e., no broadcast round, one broadcast round, and two
broadcast rounds.

Our results are summarized in Table 1. For simplicity we prove our positive
results secure against a static t-adversary, for t < n. Although we do not see
a specific reason why an adaptive adversary cannot be tolerated, treating this
stronger case would need a careful modification of our arguments; we leave a
formal treatment of an adaptive adversary as an open question. All our negative
results hold for a static adversary, and hence also for an adaptive adversary, since

832 R. Cohen et al.

Table 1. Feasibility and infeasibility of two-round MPC facing a static, malicious
(n − 1)-adversary. Feasibility results hold assuming two-round OT in the CRS model.
Impossibility results hold given any correlated randomness. A corollary with a citation
of a paper should be interpreted as corollary of the results of the paper that was not
explicitly stated in the paper.

Rounds Security with abort

First Second Selective Unanimous Identifiable

BC BC ✓ ✓ GS [33], BL [9] ✓ Corollary 1 [9,33]

P2P BC ✓ ✓ Theorem 11 ✗ Theorem 7

BC P2P ✓ ✗ Theorem 1 ✗

P2P P2P ✓ Theorem 11 ✗ Theorem 1 ✗

BC – ✗ HLP [43] ✗ ✗

the latter is a stronger adversary. We note that due to the ordering in strength of
the security definitions discussed above, any positive (feasibility) result implies
feasibility for any column to its left in the same row, and an impossibility result
implies impossibility for any column to its right in the same row.

Next, we give a more detailed description of the results and how they com-
plement the current landscape.

Two Broadcast Rounds MPC. First, as a justification of our search for round-
optimal protocols, we observe that as a straightforward corollary of Halevi et al.
[43], we can exclude the existence of a single-round general MPC protocol—i.e.,
MPC for any function. This is true for any of the three security definitions,
independently of whether or not the protocol uses a broadcast channel. We can
thus focus our attention to protocols with two rounds.

Let us first consider the case where both rounds use a broadcast channel. A
simple observation reveals that in this case the strongest notion of security with
identifiable abort is feasible. Indeed, the recent results by Garg and Srinivasan
[33] and Benhamouda and Lin [9] prove that assuming two-round OT, every func-
tion can be securely computed with unanimous abort, tolerating static, malicious
corruptions of any subset of the parties.2 A simple corollary shows that when
starting with an inner protocol that is secure with identifiable abort (e.g., the
GMW protocol [40]), the compiled protocol will also be secure with identifiable
abort. The proof follows directly by inspecting either one of the proofs of [9,33].
For completeness, we state this as a corollary below.

Corollary 1 ([9,33]). Assume the existence of a two-round OT protocol secure
against a static malicious adversary in the CRS model and let t < n. Then, every
efficiently computable n-party function can be securely computed with identifiable
abort in the CRS model using two broadcast rounds tolerating a static malicious
t-adversary.

2 In fact, [9] also requires NIZK, but this assumption can be removed (see [10]).

Broadcast-Optimal Two-Round MPC 833

This leaves open the cases of both rounds being point-to-point rounds, and
of one broadcast round and one point-to-point round, which constitute our main
contributions. Interestingly, in the latter case the order of the rounds makes a
difference on what security can be achieved.

Impossibility Results. We start our investigation with proving the lower
bounds illustrated in Table 1. Towards this goal, we describe a simple three-
party function which, due to its properties, can be used in all the associated
lower bounds. At a very high level, the chosen function f enjoys two core prop-
erties that will be crucial in our impossibility proofs: First, the function takes
two inputs from a dedicated party, say P3, but in any evaluation, the output
depends on only one of these values (which of the two inputs is actually used
is mandated by the input of the other two parties). Second, f has input inde-
pendence with respect to P1’s input, i.e., an adversary corrupting P2 and P3

cannot bias their inputs depending on P1’s input. (See Sect. 3 for the function’s
definition.)

We note in passing that all our impossibility results hold assuming an arbi-
trary private-coin setup and are therefore not implied by any existing work.
As a result, wherever in our statements broadcast is assumed for some round,
the impossibility holds even if point-to-point channels are also available in this
round. The reason is that as our proofs hold assuming an arbitrary private-coins
setup (e.g, a PKI), the setup can be leveraged to implement secure point-to-point
communication over broadcast (using encryption). Thus, adding point-to-point
communication in a broadcast round cannot circumvent our impossibilities. This
is not necessarily the case when no setup is allowed by the proof, which is an addi-
tional justification for proving impossibilities which hold even assuming setup.

Here is how we proceed in gradually more involved steps to complete the
impossibility landscape: As a first, easy step we show, using the line of argu-
mentation of HLP [43], that our function f is one of the functions which cannot
be computed in a single round even against any one party being semi-honest.
This excludes existence of single-round maliciously secure generic MPC protocol
against dishonest majorities, even if the single round is a broadcast round, and
even if we are settling for security with selective abort and assume an arbitrary
correlated-randomness setup (last row in Table 1).

Unanimous Abort Requires Second Round over Broadcast. Next, we turn to
two-round protocols and prove impossibility for securely computing f with
unanimous abort when only the first round might use broadcast, i.e., the sec-
ond round is exclusively over point-to-point (rows 3 and 4 in Table 1). This
implies that under this communication pattern, security with identifiable abort
is also impossible. Looking ahead, this impossibility result is complemented by
Theorem 11 (Item 2), which shows that security with selective abort can be
achieved in this setting.

The proof is somewhat involved, although not uncommon in lower bounds,
but can be summarized as follows: We assume, towards a contradiction, that a

834 R. Cohen et al.

protocol π computing f with unanimous abort exists. We then look at an adver-
sary corrupting P1 and define a sequence of worlds in which P1’s second-round
messages are gradually dropped—so that in the last world, (the adversarial) P1

sends no messages to the other parties. By sequentially comparing neighboring
worlds, we prove that in all of them, the parties cannot abort and they have
to output the output of the function evaluated on the original inputs that were
given to the parties. However, as in the last scenario P1 sends no message in
the second round, this means that P2 and P3 can compute the output (which
incorporates P1’s input) already in the first round. This enables a rushing adver-
sary corrupting P2 and P3 to evaluate f(x1, x2, x3) on his favorite inputs for x2

and x3 before even sending any protocol message, and depending on the output
y decide whether he wants to continue playing with those inputs—and induce
the output y = f(x1, x2, x3) on P1—or change his choice of inputs to some x′

2

and x′
3 and induce the output y′ = f(x1, x

′
2, x

′
3) on P1. This contradicts the

second property of f , i.e., input independence with respect to P1’s input against
corrupted P2 and P3.

We note in passing that a corollary of [60, Thm. 5] (explicitly stated in the
full version [61, Cor. 1]) excluded security with unanimous abort for the case of
an honest majority, but only for protocols that are defined in the plain model,
without any trusted setup assumptions. Indeed, as pointed out by the authors
in [62], their proof technique does not extend to the setting with private-coin
setup. In more detail, and to illustrate the difference, consider the setting where
the first round is over broadcast (and possibly point-to-point channels) and the
second is over point-to-point. The argument for ruling out unanimous abort in
[61, Cor. 1] crucially relies on P3 not be able to distinguish between the case
where P2 does not send messages to P1 (over a private channel) and the case
where P1 claims not to receive any message. However, given a PKI and a CRS
for NIZK, the private channel can be emulated over the broadcast message, and
the sender can prove honest behaviour. In this case, P3 can detect the event
where P2 is cheating towards P1 in the first round; hence, P1 and P3 can jointly
detect the attack.

Identifiable Abort Requires Two Broadcast Rounds. As a final step, we consider
the case where only the second round might use broadcast—i.e., the first round is
over a point-to-point channel. In this case we prove that security with identifiable
abort is impossible (row 2 in Table 1). This result, which constitutes the core
technical contribution of our work, is once again, complemented by a positive
result which shows how to obtain unanimous abort with this communication
pattern (Theorem 11). The idea of the impossibility proof is as follows: Once
again we start with an assumed protocol π (towards contradiction) and compare
two scenarios, where the adversary corrupts P1 in the first and P2 in the second.
The adversary lets the corrupted party run π, but drops any message exchanged
between P1 and P2 in the first (point-to-point) round. By comparing the views
on the two scenarios we show that aborting is not an option. Intuitively, the
reason is that identifiable abort requires the parties to agree on the identity of a
corrupted party; but the transcripts of the two executions are identical despite

Broadcast-Optimal Two-Round MPC 835

the corrupted party’s identity being different, which means that if the parties
try to identify a cheater, they will get it wrong (with noticeable probability) in
one of the two scenarios.

Subsequently, we compare the world where P2 is corrupted with one where
the adversary corrupts also P1 but has him play honestly; the correctness of
the protocol (and the fact that the protocol machines are not aware of who is
corrupted) ensures that despite the fact that P1 is corrupted, his initial input
will be used for computing the output of the honest party (which recall cannot
abort as its view is identical to the other two scenarios). In this world, P2 sends
nothing to P3 in Round 1, but P1 and P3 exchange their first-round messages.
Therefore, a rushing adversary can obtain P3’s second-round message before
sending any message on behalf of P2. Using this information, the adversary can
run in its head two executions of the protocol using the same messages for P3

(and same first-round messages for P1) but on different inputs for P2. This will
allow extracting both inputs of P3, thereby violating the first property of the
function discussed above.

Note that this proof is more involved than the previous one excluding unani-
mous abort. For example, while the previous proof merely required the adversary
to “bias” the output, the current proof requires the adversary to extract both
inputs of the honest P3; essentially, we use the indistinguishable hybrids to con-
struct an extractor. Indeed, the above is only a sketch of the argument, and the
formal proof needs to take care of a number of issues: First, since an honest
P3 can detect that P2 is cheating, the security definition only guarantees that
P3’s output will be consistent with some input value of P2. In that case, it is not
clear that the adversary can have strategies which yield both inputs of P3, which
would exclude the possibility of the above attack. We prove that this is not the
case, and that using the honest strategy, the adversary can induce an execution
in which the different input distributions required by the proofs are used in the
evaluation of the function. Second, in order to extract the two inputs of P3, the
adversary needs to know the output as well as the effective corrupted inputs on
which the function is evaluated under our above attack scenarios. We ensure this
by a simple syntactic manipulation of the function, i.e., by requiring each party
to locally (and privately) output its own input as used in the evaluation of the
function’s output.

Observe that although our results are proved for three parties, they can be
easily extended to n parties by a standard player-simulation argument [46]—in
fact, because our adversary corrupts 2 out of the 3 parties, our result exclude
any adversary corrupting t ≥ 2n/3 of the parties.

Feasibility Results. Next, we proceed to provide matching upper bounds,
showing that security with unanimous abort is feasible when the second round
is over broadcast (even if the first round is over point-to-point), and that security
with selective abort can be achieved when both rounds are over point-to-point
channels. Our results are based on the compiler of Ananth et al. [2], who focused
on information-theoretic security of two-round MPC in the honest-majority

836 R. Cohen et al.

setting.3 Ananth et al. [2], initially adjusted the two-round protocol from [1]
to provide information-theoretic security with unanimous abort in the broad-
cast model (for NC1 circuits), and then compiled it to provide security with
selective abort over point-to-point channels.4

Compiling Two-Broadcast-Round Protocols. We start by presenting an adap-
tation of the compiler from [2] to the dishonest-majority setting. Let πbc be a
two-round MPC protocol in the broadcast model that is secure with unanimous
abort. We first discuss how to compile πbc to a protocol in which the first round
is over point-to-point and the second round is over broadcast.

– In the compiled protocol, every party Pi starts by computing its first-round
message in πbc, denoted m1

i . In addition, Pi considers its next-message func-
tion for the second round second-msgi(xi, ri,m

1
1, . . . ,m

1
n) (that computes Pi’s

second round message based on its input xi, randomness ri, and all first-round
messages). Each party “hard-wires” its input and randomness to the circuit
computing second-msgi such that given all first-round messages as input, the
circuit outputs Pi’s second-round message. Next, Pi garbles this circuit and
secret-shares each input label using an additive secret-sharing scheme. In the
first round of the compiled protocol, each party sends to each other party
over private channels his first-round message from πbc and one share of each
garbled label. (Note that for all the parties, the “adjusted” second-round
circuits should receive the same input values, i.e., the first-broadcast-round
messages.)

– In case Pi didn’t receive messages from all other parties he aborts. Otherwise,
Pi receives from every Pj the message m1

j→i (i.e., first-round messages of πbc)
and for each input wire of the next-message function of Pj , two shares: one
for value 0 and the other for value 1 (recall that each bit that is broadcasted
in the first round of πbc forms an input wire in each circuit). In the second
round, every party sends to all other parties the garbled circuit as well as one
share from each pair, according to the messages received in the first round
(m1

1→i, . . . ,m
1
n→i).

– Next, every party reconstructs all garbled labels and evaluates each garbled
circuit to obtain the second-round messages of πbc. Using these messages the
output value from πbc is obtained.

Proof Intuition. Intuitively, if all honest parties receive the same “common part”
of the first-round message (corresponding to the first broadcast round of πbc),
they will be able to reconstruct the garbled labels and obtain the second-round
message of each party by evaluating the garbled circuits. Note that since the
second round is over broadcast, it is guaranteed that all honest parties will
evaluate the same garbled circuits using the same garbled inputs, and will obtain
3 A similar technique was used by Garg et al. [35] to compile two-round MPC to a

client-server MPC, albeit in the semi-honest setting.
4 We note that the approach of Applebaum et al. [4] does not extend to the dishonest-

majority setting in a straightforward way.

Broadcast-Optimal Two-Round MPC 837

the same output value. If there exists a pair of parties that received different first-
round messages, then none of the parties will be able to reconstruct the correct
labels.

Given an adversary Aout to the outer protocol (that uses a first point-to-point
round) a simulator Sout is constructed using a simulator Sin for the inner protocol
(in the broadcast model). At a high level, Sout will use Sin to simulate the first-
round messages of the honest parties, send them (with the appropriate synthetic
adjustments) to Aout, and get the corrupted parties’ first-round messages.

– In case they are not consistent, Sout will send abort to the trusted party
and resume by simulating garbled circuits that output dummy values in the
second round—this is secure since the labels for these garbled circuits will
not be revealed.

– In case they are consistent, Sout will use the inner simulator Sin to extract
the input values of the corrupted parties and send them to the trusted party.
Once receiving the output, Sout can hand it to Sin who outputs the second-
round messages for the honest parties. Next, Sout will use these messages to
simulate the garbled circuits of the honest parties and hand them to Aout.
Based on the response from Aout (i.e., the second-round messages) Sout will
send abort or continue to the trusted party and halt.

We remark that the proof in [2] also follows this intuition; however, that
proof uses specific properties of the (simulator for the) broadcast-model protocol
constructed in [2] (which in turn is based on the protocol from [1]). Our goal is
to provide a generic compiler, which works for any two-round broadcast-model
protocol, and so our use of the simulator for the broadcast-model protocol must
be black-box. For that purpose, we devise non-trivial new simulation techniques,
which we believe might be of independent interest. Our proof can be adapted
to demonstrate that the original compilation technique of [2] is, in fact, generic,
i.e., can securely compile any broadcast-hybrid protocol.

To explain the technical challenge and our solution, let us discuss the above
issue in more detail: Recall that the security definition for the stand-alone model5

from [39] guarantees that for every adversary there is a simulator for the ideal
computation (in the current case, ideal computation with unanimous abort).
The simulator is invoked with some auxiliary information, and starts by sending
to the trusted party inputs for the corrupted parties (or abort). Upon receiving
the output value, the simulator responds with abort/continue, and finally gen-
erates its output which is computationally indistinguishable from the view of
the adversary in a protocol (where the honest parties’ outputs are distributed
according to the extracted corrupted-parties’ inputs).

Given an adversary Aout for the compiled protocol π, we would like to use the
security of πbc to construct a simulator Sout and simulate the “common part”
5 Our choice to describe the results in the stand-alone model is for simplicity and

for providing stronger impossibility results. Our feasibility results extend to the UC
framework [13] via standard technical adjustments, as our simulators are black-box
and straight-line. We note that the same simulation techniques discussed in this
section are also needed for adjusting the proof to the UC model.

838 R. Cohen et al.

of the honest parties’ messages (i.e., the messages m1
i→j from an honest Pi to

a corrupted Pj). However, the adversary Aout induces multiple adversaries for
πbc, one for every honest party and it is not clear which simulator (i.e., for which
of these adversaries) should be used. In fact, before interacting with Aout and
sending him the first-round messages of honest parties, Sout should first run one
(or a few) of the aforementioned simulators to get the inputs for the corrupted
parties, invoke the trusted party with the input values, and get back the output.
(At this point the simulator is committed to the corrupted parties’ inputs.)6

Only then can Sout send the output back to the inner simulator(s) and get the
view of the inner adversary (adversaries) in the execution, and use it to interact
with Aout.

Receiver-Specific Adversaries. To solve this conundrum, we construct our sim-
ulator as follows: For every honest party Pj we define a receiver-specific adver-
sary Aj

in for πbc, by forwarding the first-broadcast-round messages to Aout and
responding with the messages Aout sends to Pj (recall that Aout can send differ-
ent messages to different honest parties in π). By the security of πbc, for every
such Aj

in there exists a simulator Sj
in.

To define the simulator Sout (for the adversary Aout), we use one of the
simulators Sj

in corresponding to the honest parties. Sout initially receives from
Sj
in either the corrupted parties’ inputs or an abort message, and forwards the

received message to the trusted party. If Sj
in does not abort, Sout receives back

the output value y, forwards y to Sj
in and receives the simulated second-round

messages from Sj
in’s output. Next, Sout invokes Aout and simulates the first-round

messages of π (using the simulated first-round messages for πbc obtained from
Sj
in), receives back the first-round messages from Aout, and checks whether these

messages are consistent. If so, Sout completes the simulation by constructing
simulated garbled circuits that output the correct second-round messages (if
Aout’s messages are consistent, the simulated messages by Sj

in are valid for all
honest parties). If Aout’s messages are inconsistent, Sout simulates garbled circuits
that output dummy values (e.g., zeros), which is acceptable since the Aout will
not learn the labels to open them. We refer the reader to Sect. 4.2 for a detailed
discussion and a formal proof.

Selective Abort via Two point-to-point Rounds. After showing that the compiler
from [2] can be adjusted to achieve unanimous abort when the first round is
over point-to-point and the second is over broadcast, we proceed to achieve
selective abort when both rounds are over point-to-point, facing any number of
corruptions. The main difference from the previous case is that the adversary
can send different garbled circuits to different honest parties in the second round,
potentially causing them to obtain different output values, which would violate

6 This is challenging because we use the broadcast-hybrid protocol in a black-box
manner. Restricting to subclasses of protocols with specific properties—e.g., the
view of the adversary in the first round is distributed independently of the function’s
output—may enable more straightforward simulation strategies.

Broadcast-Optimal Two-Round MPC 839

correctness (recall that the definition of security with selective abort permits
some honest parties to abort while other obtain the correct output, but it is
forbidden for two honest parties to obtain two different output values). However,
we reduce this attack to the security of πbc and show that it can only succeed
with negligible probability.

Organization of the Paper. Preliminaries are presented in Sect. 2. In Sect. 3 we
present our impossibility results and in Sect. 4 our feasibility results. Due to
space limitations, complementary material and some of the proofs can be found
in the full version [23].

2 Preliminaries

In this section, we introduce some necessary notation and terminology. We
denote by κ the security parameter. For n ∈ N, let [n] = {1, · · · , n}. Let poly
denote the set of all positive polynomials and let PPT denote a probabilistic
algorithm that runs in strictly polynomial time. A function ν : N → [0, 1] is neg-
ligible if ν(κ) < 1/p(κ) for every p ∈ poly and large enough κ. Given a random
variable X, we write x ← X to indicate that x is selected according to X.

2.1 Security Model

We provide the basic definitions for secure multiparty computation according
to the real/ideal paradigm (see [12,13,39] for further details), capturing in par-
ticular the various types of unsuccessful termination (“abort”) that may occur.
For simplicity, we state our results in the stand-alone setting, however, all of our
results can be extended to the UC framework [13].

Real-World Execution. An n-party protocol π = (P1, . . . , Pn) is an n-tuple of
PPT interactive Turing machines. The term party Pi refers to the i’th interac-
tive Turing machine. Each party Pi starts with input xi ∈ {0, 1}∗ and random
coins ri ∈ {0, 1}∗. Without loss of generality, the input length of each party is
assumed to be the security parameter κ. An adversary A is another interactive
TM describing the behavior of the corrupted parties. It starts the execution
with input that contains the identities of the corrupted parties and their private
inputs, and an additional auxiliary input. The parties execute the protocol in
a synchronous network. That is, the execution proceeds in rounds: Each round
consists of a send phase (where parties send their messages from this round) fol-
lowed by a receive phase (where they receive messages from other parties). The
adversary is assumed to be rushing, which means that he can see the messages
the honest parties send in a round before determining the messages that the
corrupted parties send in that round.

The parties can communicate in every round over a broadcast channel
or using a fully connected point-to-point network. The communication lines
between the parties are assumed to be ideally authenticated and private (and

840 R. Cohen et al.

thus the adversary cannot modify messages sent between two honest parties nor
read them).7

Throughout the execution of the protocol, all the honest parties follow the
instructions of the prescribed protocol, whereas the corrupted parties receive
their instructions from the adversary. The adversary is considered to be actively
malicious, meaning that he can instruct the corrupted parties to deviate from
the protocol in any arbitrary way. At the conclusion of the execution, the honest
parties output their prescribed output from the protocol, the corrupted parties
do not output anything and the adversary outputs an (arbitrary) function of its
view of the computation (containing the views of the corrupted parties). The
view of a party in a given execution of the protocol consists of its input, its
random coins, and the messages it sees throughout this execution.

Definition 1 (Real-world execution). Let π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n] denote the set of indices of the parties corrupted
by A. The joint execution of π under (A, I) in the real model, on input vec-
tor x = (x1, . . . , xn), auxiliary input aux and security parameter κ, denoted
REALπ,I,A(aux)(x, κ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-World Execution (with abort). We now present standard definitions of ideal
computations that are used to define security with identifiable abort, unanimous
abort, and selective (non-unanimous) abort. For further details see [19,41,50].

An ideal computation with abort of an n-party functionality f on input x =
(x1, . . . , xn) for parties (P1, . . . , Pn) in the presence of an adversary (a simulator)
S controlling the parties indexed by I ⊆ [n], proceeds via the following steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the
trusted party. The adversary may send to the trusted party arbitrary inputs
for the corrupted parties. Let x′

i be the value actually sent as the input of
party Pi.

Trusted party answers adversary: The trusted party computes y = f(x′
1, . . . , x

′
n).

If there are corrupted parties, i.e., if I �= ∅, send y to S. Otherwise, proceed
to step Trusted party answers remaining parties.

Adversary responds to trusted party: The adversary S can either select a set of
parties that will not get the output by sending an (abort,J) message with
J ⊆ [n] \ I, or allow all honest parties to obtain the output by sending a
continue message.

Trusted party answers remaining parties: If S has sent an (abort,J) message
with J ⊆ [n]\I and I �= ∅, the trusted party sends ⊥ to every party Pj with
j ∈ J and y to every Pj with j /∈ J ∪ I. Otherwise, if the adversary sends a
continue message or if I = ∅, the trusted party sends y to Pi for every i /∈ I.

Outputs: Honest parties always output the message received from the trusted
party while the corrupted parties output nothing. The adversary S outputs

7 Private channels can be realized over authenticated channels without increasing the
round complexity given a PKI for public-key encryption.

Broadcast-Optimal Two-Round MPC 841

an arbitrary function of the initial inputs {xi}i∈I , the messages received by
the corrupted parties from the trusted party and its auxiliary input.

Definition 2 (Ideal computation with selective abort). Let f : ({0, 1}∗)n

→ ({0, 1}∗)n be an n-party functionality and let I ⊆ [n] be the set of indices of
the corrupted parties. Then, the joint execution of f under (S, I) in the ideal
computation, on input vector x = (x1, . . . , xn), auxiliary input aux to S and
security parameter κ, denoted IDEAL

sl-abort
f,I,S(aux)(x, κ), is defined as the output vector

of P1, . . . , Pn and S resulting from the above described ideal process.

We now define the following variants of this ideal computation:

– Ideal computation with unanimous abort. This ideal computation pro-
ceeds as in Definition 2, with the difference that in order to abort the com-
putation, the adversary simply sends abort to the trusted party (without
specifying a set J). In this case, the trusted party responds with ⊥ to all
honest parties. This ideal computation is denoted as IDEAL

un-abort
f,I,S(aux)(x, κ).

– Ideal computation with identifiable abort. This ideal computation pro-
ceeds as the ideal computation with unanimous abort, with the exception
that in order to abort the computation, the adversary chooses an index of a
corrupted party i∗ ∈ I and sends (abort, i∗) to the trusted party. In this case,
the trusted party responds with (⊥, i∗) to all parties. This ideal computation
is denoted as IDEAL

id-abort
f,I,S(aux)(x, κ).

Security Definitions. Having defined the real and ideal computations, we can
now define security of protocols.

Definition 3. Let type ∈ {sl-abort, un-abort, id-abort}. Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n-party functionality. A protocol π t-securely computes f with
“type” if for every PPT real-world adversary A, there exists a PPT adversary
S, such that for every I ⊆ [n] of size at most t, it holds that

{
REALπ,I,A(aux)(x , κ)

}
(x ,aux)∈({0,1}∗)n+1,κ∈N

c≡
{
IDEALtype

f,I,S(aux)(x , κ)
}
(x ,aux)∈({0,1}∗)n+1,κ∈N

.

3 Impossibility Results

In this section, we prove our impossibility results. Concretely, in Sect. 3.1, we
argue that there is no single-round maliciously secure generic MPC protocol
against dishonest majorities, even if the single round is a broadcast round, and
even if we are settling for security with selective abort and we assume an arbi-
trary correlated-randomness setup. Subsequently, in Sect. 3.2, we prove that no
generic two-round MPC protocol can achieve security with identifiable abort,
while making use of broadcast in only one of the two rounds. This holds irre-
spective of whether the broadcast round is the first or second one. Towards this
goal, we start by proving that no two-round protocol in which the broadcast
round is first—i.e., the second round is over point-to-point—can achieve identi-
fiable abort. This is proved in Theorem 1; in fact, the theorem proves a stronger

842 R. Cohen et al.

statement, namely, that there is a function f such that no protocol with the
above structure can securely compute f with unanimous abort.8

Theorem 1 implies that the only option for a two-round protocol with only
one broadcast round to securely compute f with identifiable abort, is if the
broadcast round is the second round—i.e., the first round is over point-to-point.
We prove (Theorem 7) that this is also impossible, i.e., f cannot be computed
by such a protocol. This proves that the result from Theorem 11 (Item 1),
which achieves security with unanimous abort in this case, is also tight and
completes the (in)feasibility landscape for two-round protocols. Furthermore,
we note that all the results proved in this section hold for both computational
and information-theoretic security, even if we assume access to an arbitrary
correlated-randomness setup.

A Simple Function. Before starting our sequence of impossibility results, we first
introduce a simple function which we will use throughout this section. Consider
the following three-party public-output function (i.e., all three parties receive
the output): The parties, P1, P2, and P3, hold inputs x1 ∈ {0, 1} × {0, 1}, x2 ∈
{0, 1} and x3 ∈ {0, 1}κ × {0, 1}κ, respectively, where x1 = (x1,1, x1,2) and x3 =
(x3,1, x3,2). For a bit b we denote by bκ the string resulting from concatenating
κ times the bit b (recall that κ denotes the security parameter). The function is
defined as follows:

f(x1, x2, x3) =

{
xκ
1,1 ⊕ xκ

2 ⊕ x3,1, if x1,2 = x2

xκ
1,1 ⊕ xκ

2 ⊕ x3,2, if x1,2 �= x2.

Note that in the above function, the first bit of P1, i.e., x1,1 contributes to the
computed XOR, whereas the relation between the second bit of P1, i.e., x1,2, and
the input-bit x2 of P2 is the one which defines which of the x3,1 or x3,2 will be
used in the output. One can easily verify that the following is a more compact
representation of f :

f(x1, x2, x3) = xκ
1,1 ⊕ xκ

2 ⊕ x3,1+(x1,2⊕x2).

The latter representation will be useful in the proof of Theorem 7.
As discussed in the introduction, the above function enjoys the following two

useful properties: First, it is impossible in the ideal world (where parties and
an adversary/simulator have access to a TTP for f) for the simulator to learn
both inputs of P3 even if he corrupts both P1 and P2. Second, assuming the
input x1,1 of P1 is chosen uniformly at random, it is impossible for a simulator
corrupting P2 and P3 to fix the output to 0. We prove these two properties in
the corresponding theorems where they are used.

8 Recall that there is a trivial reduction from security with unanimous abort to security
with identifiable abort: Run the protocol and in case it aborts with the ID of some
party Pi, output abort and ignore the identity of the corrupted party.

Broadcast-Optimal Two-Round MPC 843

3.1 Impossibility of Single-Round MPC

As a simple corollary of HLP [43] (see also [60]), we can exclude the existence
of a semi-honestly secure MPC protocol for the above function.

Corollary 2 ([43]). The function f cannot be computed with selective abort by
a single-round protocol tolerating one semi-honest corrupted party.

Extending Corollary 2 to the multi-party case (involving more than three
parties) follows using a player-simulation argument, and the following facts that
are implied by our definition of security with selective abort: (1) If the adversary
follows his protocol, the evaluation cannot abort even if parties are corrupted;
this follows from the non-triviality condition and the fact that when the adver-
sary follows the protocol with his corrupted parties, the protocol cannot deviate
based on the fact that parties are corrupted; (2) for such an honest-looking
adversary [14], the protocol achieves all the guarantees required for semi-honest
security—i.e., there is a simulator which simulates the adversary’s entire view
from the inputs and outputs of corrupted parties.

Corollary 3. For n ≥ 3, there exist an n-party function fn for which there is no
single-round protocol π which securely computes fn with selective abort against
even a single corruption. The statement is true even if π uses a broadcast channel
in its single round.

3.2 Impossibility of Single-Broadcast Two-Round MPC

Having excluded the possibility of single-round MPC protocols, we next turn
to two rounds. Throughout this section, we prove impossibility statements for
three-party protocols (for the function f). As discussed in the introduction, all
our statements can be directly extended to the multi-party setting using the
straightforward extension of f to n parties (cf. function fn in Corollary 3).

Impossibility of Unanimous Abort When Broadcast Is First Round.
We start by proving impossibility of security with unanimous abort for f against
corrupted majorities. Analogous to [43] we will say that an adversary learns the
residual function f(x1, ·, ·) to denote the event that the adversary learns enough
information to locally and efficiently compute f(x1, x

∗
2, x

∗
3) on any (and as many)

inputs x∗
2 and x∗

3 as he wants.

Theorem 1. There exists no two-round protocol π which securely computes f
with unanimous abort against corrupted majorities while making use of the broad-
cast channel only in the first round (i.e., where the second round is over point-
to-point channels). The statement is true even assuming an arbitrary correlated
randomness setup.

Proof. Towards a contradiction, assume that there is protocol π = (π1, π2, π3),
where πi is the code (e.g., interactive Turing machine) of Pi, for computing f

844 R. Cohen et al.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Round 1

Round 2

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Fig. 1. The scenarios from the proof. All protocols are executed as specified; whenever
an arrow is present it indicates that the message that the corresponding protocol would
send is indeed sent; missing arrows indicate that respective messages are dropped.
A shade on the background of a protocol indicates that the corresponding party is
corrupted (but the adversary still executes the respective protocol on the honest input,
but might drop some messages).

with unanimous abort which uses broadcast in its first round, but only point-
to-point in the second round. Consider executions of π on uniformly random
inputs x1 and x2 for P1 and P2 and on input x3 ∈ {(0κ, 1κ), (1κ, 0κ)} from P3

in the following scenarios (see Fig. 1 for an illustration). In all four scenarios,
the adversary uses the honest input for the corrupted party and allows him to
execute his honest protocol on uniform random coins, but might drop some of
the messages the corrupted party’s protocol attempts to send in Round 2.

Scenario 1: The adversary corrupts P1, plays the first round according to π
but sends no messages in the second round.

Scenario 2: The adversary corrupts P1, plays both rounds according to π, but
does not send his second-round message towards P3; party P2 receives his
second-round message according to the honest protocol.

Scenario 3: The adversary corrupts P1 but plays the honest protocols in both
rounds.

Scenario 4: No party is corrupted.

The proof of the theorem proceeds as follows: By a sequence of comparisons
between the four scenarios we show that in Scenario 1, π2 and π3 cannot abort
and will have to produce output equal to f(x1, x2, x3) with overwhelming prob-
ability despite the fact that P1 sends no message in Round 2. This means that
a (rushing)9 adversary corrupting P2 can learn the residual function f(x1, ·, ·)
9 Our impossibility results consider standard, worst-case and rushing adversaries. One

might investigate how the landscape looks like against non-rushing adversaries, but
this is typically considered too strong an assumption for protocols, as it implies
feasibility of fair exchange (a task impossible in the standard rushing-adversary
with dishonest majority realm) and even in a single round. We do not consider this
theoretical question here.

Broadcast-Optimal Two-Round MPC 845

already in Round 1 and before committing to any inputs for P2 and P3. This
allows him to choose corrupted inputs depending on (the honest input) x1 vio-
lating the security (in particular the input-independence property)10 of π. The
formal argument follows. For notational clarity, we will denote the message that
Pi sends to Pj over a point to point channel in round ρ by mρ,i→j ; if in round ρ
a party Pi broadcasts a messages, we will denote this message by mρ,i→∗. Due to
space limitations, the proof for these claim are deferred to the full version [23].

Claim 2. In Scenario 3, parties P2 and P3 output f(x1, x2, x3) with overwhelm-
ing probability.

Claim 3. In Scenario 2, parties P2 and P3 output f(x1, x2, x3) with overwhelm-
ing probability.

Claim 4. In Scenario 1, parties P2 and P3 output f(x1, x2, x3) with overwhelm-
ing probability.

Claim 5. An adversary corrupting P2 and P3 can learn the residual function
f(x1, ·, ·) before P2 or P3 send any message.

To complete the proof of the theorem, we show that existence of the above
adversary A implies an adversary A′ that can break the security (in particular,
the input independence) of π. Intuitively, A′ will corrupt P2 and P3 and use the
strategy of the adversary A from the above claim to learn the residual function
before committing to his own input to f ; thus A′ is free to choose this inputs for P2

and P3 depending on x1. We next provide a formal proof of this fact by describing
a strategy for biasing the output (depending on x1) which cannot be simulated.

Concretely, consider the following A′ that corrupts P2 and P3: A′ receives
m1,1→∗ from P1 and using A, for x∗

2 = 0 and x3,1∗ = 0κ and x3,2∗ = 1κ, A′ com-
putes y = f(x1, 0, (0κ, 1κ)). Then, dependent on whether y is 0κ or 1κ—observe
that by definition of the function, these are the only two possible outcomes given
the above inputs of P3—A′ distinguishes two cases:

Case 1: If y = 0κ then execute the honest protocol for P2 and P3 with these
inputs, i.e., x2 = 0 and x3,1 = 0κ and x3,2 = 1κ.

Case 2: If y = 1κ, then execute the honest protocol for P2 and P3 with the
inputs of P3 swapped, i.e., x2 = 0 and x3,1 = 1κ and x3,2 = 0κ.

Note that in both cases P1 witnesses a view which is indistinguishable from the
honest protocol with inputs: x2 = 0 and x3,1 = 0κ and x3,2 = 1κ (Case 1)
or x2 = 0 and x3,1 = 1κ and x3,2 = 0κ (Case 2); hence, the correctness of π
implies that with overwhelming probability if y = f(x1, 0, (0κ, 1κ)) = 0κ then
P1 will output it, otherwise, i.e., if y = f(x1, 0, (0κ, 1κ)) = 1κ he will output
y = f(x1, 0, (1κ, 0κ)); but in this latter case y = 0κ by the definition of f . Hence,
this adversary always makes P1 output 0κ.
10 Informally, input independence, a property implied by the standard simulation-based

security definition (see Sect. 2.1), requires that the adversary cannot choose his inputs
depending on the inputs of honest parties.

846 R. Cohen et al.

To complete the proof we prove that in an ideal evaluation of f with an
honest P1 and corrupted P2 and P3, if P1 uses a uniformly random input and no
abort occurs, then the output can be 0κ with probability at most 1/2 ± negl(κ).

Claim 6. For any simulator S corrupting P2 and P3 and not causing the ideal
execution to abort, if P1’s input is chosen uniformly at random, then for any
choice of inputs for P2 and P3, there exist a string z ∈ {0, 1}κ such that the
output of P1 will be z or z̄ each with probability 1/2 ± negl(κ).

The above claim implies that for any simulator, with probability at least
1/2 the output will be different than 0κ. Hence the adversary A′ (who, recall,
always fixes the output to 0κ) cannot be simulated which contradicts the assumed
security of π.

Impossibility of Identifiable Abort. Next, we proceed to the proof of our
second, and main, impossibility theorem about identifiable abort. For this proof
we make the following modification to f : In addition to its output from f , every
party Pi is required to locally output his own input xi. We denote this function
by f̂ . Specifically, the output of f̂ consists of two parts: A public part that is
identical to f , which is the same for all parties (without loss of generality, we
will use f(x1, x2, x3) to denote this part), and a private part which for each Pi

is its own input.

f̂(x1, x2, x3) =
(
(y, x1), (y, x2), (y, x3)

)
where y = f(x1, x2, x3).

We remark that impossibility for such a public/private output function f̂ implies
impossibility of public output functions via the standard reduction of private to
public input functions (see [39]).

Theorem 7. The function f̂ cannot be securely computed with identifiable abort
by a three-party protocol that uses one point-to-point round and one broadcast
round, tolerating (up to) two corrupted parties. This is true even assuming an
arbitrary correlated-randomness setup.

Proof. Assume, towards a contradiction, that a protocol π exists for the function
f̂ . First, note that due to Theorem 1, the broadcast round cannot be the first
round. (This holds because security with identifiable abort implies security with
unanimous abort.) Hence, the first round of π must be the point-to-point round
and the second can be a broadcast round. In the following, we will assume
that the second round uses only the broadcast channel; this is without loss
of generality as we allow π to be in the correlated-randomness model, which
means that parties might share keys that they can use to emulate point-to-
point communication over the broadcast network. (Proving impossibility in the
correlated-randomness model implies impossibility in the plain model.)

Consider the parties P1, P2, and P3 holding uniformly chosen inputs x1, x2,
and x3 for f̂ . Let πi denote the code executed by Pi in π (i.e., Pi’s protocol
machine), and consider the following scenarios (also illustrated in Fig. 2):

Broadcast-Optimal Two-Round MPC 847

Scenario 1 Scenario 2 Scenario 3

Round 1

Round 2

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Fig. 2. The scenarios from the proof. All protocols are executed as specified. A shade
on the background of a protocol indicates that the corresponding party is corrupted
(the adversary still executes the respective protocol on the honest input, but may
drop some messages). A solid arrow indicates that the message that the corresponding
protocol would send is indeed sent; cut arrows indicate that respective messages are
dropped, where we illustrate which adversarial behavior is the reason for dropping a
message by scissors; bold arrows indicate that this second-round message depends on
the protocol having seen some incomplete transcript (due to dropped messages) in the
first round and might therefore adapt its behavior accordingly.

Scenario 1: The adversary corrupts only P3 and has him play π3, but drops the
message m1,3→2 that π3 sends to P2 in the first round (i.e., the message is
never delivered to π2) and does not deliver to π3 the message m1,2→3 received
from P2 in the first round. Other than this intervention, all machines execute
their prescribed code and all other messages are sent and delivered as specified
by the protocol π.
In particular, the instance of π3 which the adversary emulates is not aware
that the message m1,3→2 (which it generated and tried to send to π2 in the
first round) was never delivered, and is not aware that P2 did send a message
m1,2→3 in the first round, which was blocked. In other words, the internal
state of π2 (resp., π3) reflects the fact that the message to π3 (resp., π2) is
sent, but the message from π3 (resp., π2) did not arrive.

Scenario 2: The adversary corrupts only P2 and has him play π2 with the
modification that he drops the first-round message m1,3→2 received from P3

(again, the message is never delivered to π2) and the message m1,2→3 that π2

sends to P3. Other than this specific intervention, all machines execute their
prescribed code and all other messages are sent and delivered as specified by
the protocol π.
In particular, the simulated instance of π2 is not aware that its first round
message m1,2→3 for P3 was never delivered, and is not aware that P3 did send
the message m1,3→2 in the first round, which was blocked, as above.

Scenario 3: The adversary corrupts P1 and P2. Both parties play exactly the
same protocol as in Scenario 2.

First we observe the following: In all three scenarios the three machines
witness the same interaction—i.e., their (joint) internal states are identically

848 R. Cohen et al.

distributed. Indeed, all three adversarial strategies have the effect of execution
of the prescribed protocol without the first message from π3 to π2 and from
π2 to π3. Since π1, π2, and π3 are protocol-machines (interactive algorithms),
their behavior cannot depend on who is corrupted. This means that their (joint)
output (distribution) in Scenario 1 must be indistinguishable (in fact, identically
distributed) to their output in Scenarios 2 and 3.

Now consider an execution of this protocol on uniformly random inputs.
We consider the following two cases for Scenario 1, where the probabilities are
defined over the choice of the correlated randomness, the random coins used by
the protocols, and the randomness used for selecting the inputs, and analyze
them in turn.

Case 1: The Honest Parties Abort (with noticeable probability). We prove that if
an abort occurs with noticeable probability, then the security of the protocol is
violated: Due to the identifiability requirement, if in Scenario 1 there is an abort,
then both π1 and π2 need to output the identity of P3 (as a cheater) as he is the
only corrupted party. However, since as argued above the output distributions
in the two scenarios are indistinguishable, the fact that in Scenario 1, π1 aborts
with the identity of P3 with noticeable probability implies that also in Scenario
2, π1 will also abort identifying P3 with noticeable probability.

By the assumption that π is secure with identifiable abort—which implies
that honest parties agree on the identity of a corrupted party in case of abort—
the latter statement implies that in Scenario 2, with noticeable probability, π3

will abort with the same cheater, i.e., the honest party P3 (who is running π3)
will abort identifying itself as a cheater contradicting the fact that π is secure
with identifiable abort. (Security with identifiable abort only allows an abort
identifying a corrupted party.) This means that the protocol cannot abort with
noticeable probability which leaves Case 2, below, as the only alternative.

Case 2: The Honest Parties Do Not Abort (with overwhelming probability). We
prove that an adversary corrupting P1 in addition to P2 can learn both x3,1

and x3,2 with noticeable probability, which is impossible in an ideal evaluation
of f̂ , as follows. Observe that since, in this case, the probability of aborting in
Scenario 1 is negligible and the joint views of the parties are indistinguishable
between the two scenarios, the probability that an abort occurs in Scenario 2
or Scenario 3 is also negligible. Furthermore, because Scenario 3 consist of the
same protocols in exactly the same configuration and with the same messages
dropped, the output of the protocols in Scenario 3 is distributed identically to
the output of the protocol in Scenario 2, namely it is the output of the function
on the actual inputs of P1 and P3 and some input from P2.

Next, observe that the security of π for this case implies that for every
adversary in Scenario 2 there exists a simulator corrupting P2. Let A2 denote
the adversary that chooses an input for π2 uniformly at random and plays the
strategy specified in Scenario 2, and let S2 denote the corresponding simulator.
Denote by X∗

2 the random variable corresponding to the input x∗
2 that S2 hands

to the functionality for f̂ on behalf of P2, and denote by X1 = (X1,1,X1,2) and

Broadcast-Optimal Two-Round MPC 849

X3 = (X3,1,X3,2) the random variables corresponding to the inputs of the hon-
est parties. The following claim states that X∗

2 might take any of the values 0
or 1 with noticeable probability.

Claim 8. For each b ∈ {0, 1}, Pr [X∗
2 = b] is noticeable.

Proof. First we note that due to input independence—i.e., because in the ideal
experiment the simulator needs to hand inputs corresponding to the corrupted
parties before seeing any information about the honest parties’ inputs—it must
hold that Pr [X∗

2 = b] = Pr [X∗
2 = b | X1,X3]. Hence, it suffices to prove that

Pr [X∗
2 = x∗

2 | X1,X3] is noticeable for each of the two possible input choices
x∗
2 ∈ {0, 1} for the simulator. Assume towards a contradiction that this is not

true. This means that with overwhelming probability the simulator always inputs
the same x∗

2 = b. Without loss of generality, assume that b = 0 (the argument for
b = 1 is symmetric). Since the protocol aborts only with negligible probability,
security implies that the distribution of the public output for every Pi with
this simulator S2 is (computationally) indistinguishable from f(X1, 0,X3) =
Xκ

1,1 ⊕ X3,(1+X1,2).
However, since S2 is a simulator for π with adversary A2 who uses a uniform

input in his π2 emulation, this implies that the interaction of the protocols π1, π2,
and π3 in Scenario 2 must also have as public output a value with distribution
indistinguishable from Xκ

1,1 ⊕ X3,(1+X1,2). Now, using the fact that the views
which the protocol machines in Scenario 2 and 1 are indistinguishable,11 we
can deduce that the public output in Scenario 1 needs to also be distributed
indistinguishably from Xκ

1,1 ⊕ X3,(1+X1,2).
However, in Scenario 1, party P2 is not corrupted which means that the

public output distribution needs to be indistinguishable from f(X1,X2,X
∗
3),

where X∗
3 = (X∗

3,1,X
∗
3,2) is the input distribution of the simulator S3 for the

corrupted P3, existence of which is implied by the security of π. But this means
that S3 will have to come up with X∗

3 such that the public-output distribution
f(X1,X2,X

∗
3) = Xκ

1,1⊕Xκ
2 ⊕X∗

3,1+(X1,2⊕X2)
is distributed indistinguishably from

Xκ
1,1 ⊕ X∗

3,(1+X1,2)
. Since X∗

3 cannot depend on X1 or X2, this is impossible.

The following claim follows directly from Claim 8 and the security of π (recall
that we are under the assumption that Scenario 2 terminates without abort
except with negligible probability).

Claim 9. For any inputs x1 and x3 for protocol-machines π1 and π3 in Scenario
2, the probability (over the input-choice of x2 and the local randomness r2 given
to π2) that the public output is xκ

1,1 ⊕ xκ
2 ⊕ x3,1 (i.e., x1,2 = x2) is noticeable,

and so is the probability that the public output xκ
1,1 ⊕xκ

2 ⊕x3,2 (i.e., x1,2 �= x2).

11 Note that although parties P3 and P2 are corrupted in these scenarios, the corre-
sponding adversary still executes π3 and π2, respectively and has some transmitted
message dropped. Hence, we can define the view of these protocols in this concrete
attack scenario although they are controlled by the adversary.

850 R. Cohen et al.

The final claim that we prove provides the attack discussed at the beginning
of the proof for Case 2. We refer to the full version [23] for a proof.

Claim 10. An adversary A corrupting both P1 and P2 can learn both x3,1 and
x3,2 with noticeable probability.

Finally, we observe that, by the definition of the function, the probability
that a simulator S for the adversary A from Claim 10 (who corrupts P1 and P2)
outputs both inputs of π3 is negligible. Hence, Claim 10 contradicts the assumed
security of π.

4 Feasibility of Two-Round MPC with Limited Use
of Broadcast

In this section, we present our feasibility results, showing how to compute any
function with unanimous abort when only the second round of the MPC protocol
is over broadcast, and with selective abort purely over pairwise channels. More
formally:

Theorem 11. Assume the existence of a two-round maliciously secure OT pro-
tocol, let f be an efficiently computable n-party function, and let t < n. Then,

1. f can be securely computed with unanimous abort, tolerating a PPT static,
malicious t-adversary, by a two-round protocol in which the first round is over
private channels and the second over broadcast.

2. f can be securely computed with selective abort, tolerating a PPT static, mali-
cious t-adversary, by a two-round protocol over private channels.

The proof of Theorem 11 follows from Lemmas 1 and 2 that show how to com-
pile any two-broadcast-round protocol secure with unanimous (resp., selective)
abort by a black-box straight-line simulation, to the desired result. Theorem 11
follows from that fact, and the two-broadcast-round MPC protocols presented
in [9,33].

The only cryptographic assumption used in our compiler is a garbling scheme
that is used to garble the second-round next-message function of the protocol.
As observed in [2], for the protocol from [33] the second-round next-message
function is in NC1. Therefore, by using information-theoretic garbling schemes
for NC1 [47,48] and the information-theoretic two-broadcast-round protocol of
[35] (in the OT-correlation model, where parties receive correlated randomness
for precomputed OT [6]), we obtain the following corollary.

Corollary 4. Let f be an efficiently computable n-party function and let t < n.
Then,

1. f can be computed with information-theoretic security and unanimous abort
in the OT-correlation model, tolerating a static, malicious t-adversary, by a
two-round protocol in which the first round is over private channels and the
second over broadcast.

Broadcast-Optimal Two-Round MPC 851

2. f can be computed with information-theoretic security and selective abort in
the OT-correlation model, tolerating a static, malicious t-adversary, by a two-
round protocol over private channels.

Structure of Two-Round Protocols. Before proving Theorem 11, we present
the notations that will be used for the proof. We consider n-party protocols
defined in the correlated-randomness hybrid model, where a trusted party sam-
ples (r1, . . . , rn) ← Dcorr from some predefined efficiently sampleable distribution
Dcorr, and each party Pi receives ri at the onset of the protocol. For simplicity,
and without loss of generality, we assume that the random coins of each party
are a part of the correlated randomness. The probabilities below are over the
random coins for sampling the correlated randomness and the random coins of
the adversary.

The two-round n-party protocol is then defined by the set of three func-
tions per party {(first-msgi, second-msgi, outputi)}i∈[n]. Every party Pi operates
as follows:

– The first-round messages are computed by the function (m1
i→1, . . . ,m

1
i→n) =

first-msgi(xi, ri), which is a deterministic function of his input xi and random-
ness ri. If the first round is over broadcast it holds that m1

i→1 = . . . = m1
i→n,

and we denote the unique message as m1
i .

– The second-round messages are computed by the next-message function
(m2

i→1, . . . ,m
2
i→n) = second-msgi(xi, ri,m

1
1→i, . . . ,m

1
n→i), which is a deter-

ministic function of xi, ri and the first-round message m1
j→i received from

each Pj . As before, if the second round is over broadcast we denote the unique
message as m2

i .
– The output is computed by the function y = outputi(xi, ri,m

1
1→i, . . . ,m

1
n→i,

m2
1→i, . . . ,m

2
n→i), which is a deterministic function of xi, ri and the first-

round and second-round messages.

4.1 Compiling Two-Broadcast-Round Protocols

In this section, we present a compiler which transforms a two-broadcast-round
MPC protocol into a two-round protocol suitable for a point-to-point network.
The compiler is based on the compiler presented in Ananth et al. [2], which con-
sidered information-theoretic honest-majority protocols that are executed over
both private point-to-point channels and a broadcast channel. We adapt this
compiler to the dishonest-majority setting, where the input protocol is defined
purely over a broadcast channel. See the full version [23] for a formal specification
of the compiler.

Let πbc be a two-round MPC protocol in the broadcast model. Initially,
every party “hard-wires” his input and randomness to the circuit computing the
second-round next-message function second-msgi,x,r(m1, . . . ,mn) on the first-
broadcast-round messages. Next, each party garbles this circuit and secret-shares
each label using an additive secret-sharing scheme.

852 R. Cohen et al.

In the first round, each party sends to each other party over private channels12

his first-round message from πbc and one share of each garbled label. Note that all
of these “adjusted” second-round circuits (one circuit generated by each party)
should receive the same input values, i.e., the first-broadcast-round messages.
For each input wire, corresponding to one broadcast bit, each party receives
two shares (one for value 0 and the other for value 1). In the second round,
every party sends to all other parties the garbled circuit as well as one share
from each pair, according to the messages received in the first round. Since each
party sends the same second-round message to all others, each party can either
send the second-round message over a broadcast channel (in which case it is
guaranteed that all parties receive the same messages) or multicast the message
over (authenticated) point-to-point channels.

Next, every party reconstructs all garbled labels and evaluates each garbled
circuit to obtain the second-round messages of πbc. Using these messages each
party can recover the output value from πbc.

4.2 Unanimous Abort with a Single Broadcast Round

We start by proving that the compiled protocol π = Comp(πbc) is secure with
unanimous abort when the second-round message is over a broadcast channel.
Intuitively, if all honest parties receive the same “common part” of the first-
round message (corresponding to the first broadcast round of πbc), they will be
able to reconstruct the garbled labels and obtain the second-round message of
each party by evaluating the garbled circuits. Note that since the second round
is over broadcast, it is guaranteed that all honest parties will evaluate the same
garbled circuits using the same garbled inputs, and will obtain the same output
value. If there exist a pair of parties that received different first-round messages,
then none of the parties will be able to reconstruct the correct labels.

The security of the compiled protocol reduces to the security of the broadcast-
model protocol; however, some subtleties arise in the simulation. The simulation
of the garbled circuits requires the simulated second-round messages for πbc

(as this is the output from the garbled circuit). To simulate the second-round
message of πbc, the simulator must obtain the output value that corresponds to
the input values that are extracted from the corrupted parties in the first round.
However, since the adversary can send different first-round messages to different
honest parties over the point-to-point channels, there may be multiple input
values that can be extracted—in fact, the messages received by every honest
party can define a different set of input values for the corrupted parties.

In more detail, given an adversary A for the compiled protocol π, we construct
a simulator S. We would like to use the security of πbc to simulate the “common
part” of the honest parties’ messages. However, the adversary A induces multiple
adversaries for πbc, one for every honest party. For every honest party Pj we

12 Private channels can be realized over authenticated channels without additional
rounds assuming a public-key infrastructure (PKI) for public-key encryption.

Broadcast-Optimal Two-Round MPC 853

define a receiver-specific adversary Aj for πbc, by forwarding the first-broadcast-
round messages to A and responding with the messages A sends to Pj (recall
that A can send different messages to different honest parties in π). By the
security of πbc, for every such Aj there exists a simulator Sj .

To define the simulator S (for the adversary A), we use one of the simulators
Sj corresponding to the honest parties (the choice of which simulator to use is
arbitrary). S initially receives from Sj either the corrupted parties’ inputs or
an abort message, and forwards the received message to the trusted party. If Sj

does not abort, S receives back the output value y, forwards y to Sj and receives
the simulated second-round messages from Sj ’s output. Next, S invokes A and
simulates the first-round messages of π (using the simulated first-round messages
for πbc obtained from Sj), receives back the first-round messages from A, and
checks whether these messages are consistent. If so, S completes the simulation
by constructing simulated garbled circuits that output the correct second-round
messages (if A’s messages are consistent, the simulated messages by Sj are valid
for all honest parties). If A’s messages are inconsistent, S simulates garbled
circuit that output dummy values (e.g., zeros), which is ok since the A will not
learn the labels to open them.

Lemma 1. Let f be an efficiently computable n-party function and let t < n. Let
πbc be a two-broadcast-round protocol that securely computes f with unanimous
abort by a black-box straight-line simulation and assume that garbling schemes
exist. Consider the protocol π = Comp(πbc) where the first round is over secure
point-to-point channels and the second round is over broadcast. Then, π securely
computes f with unanimous abort.

The proof of Lemma 1 can be found in the full version [23].

4.3 Selective Abort with Two point-to-point Rounds

We proceed by proving our second result, that the compiled protocol π =
Comp(πbc) is secure with selective abort when the second-round message is over
a point-to-point channel. The main difference from the previous case (Sect. 4.2) is
that the adversary can send different garbled circuits to different honest parties
in the second round, potentially causing them to obtain different output values,
which would violate correctness (recall that the definition of security with selec-
tive abort permits some honest parties to abort while other obtain the correct
output, but it is forbidden for two honest parties to obtain two different output
values.)

Lemma 2. Let f be an efficiently computable n-party function and let t < n. Let
πbc be a two-broadcast-round protocol that securely computes f with unanimous
abort by a black-box straight-line simulation and assume that garbling schemes
exist. Consider the protocol π = Comp(πbc) where both rounds are over secure
point-to-point channels. Then, π securely computes f with selective abort.

The proof of Lemma 2 can be found in the full version [23].

854 R. Cohen et al.

Acknowledgements. We would like to thank Prabhanjan Ananth, Arpita Patra,
and Divya Ravi for useful discussions and comments. We also thank the anonymous
reviewers of Eurocrypt 2020 for pointing us to the client-server protocol MPC of [35].

Ran Cohen’s research was supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Project Activity (IARPA) under
contract number 2019-19-020700009 (ACHILLES). Juan Garay and Vassilis Zikas were
supported in part by the Office of the Director of National Intelligence (ODNI), Intel-
ligence Advanced Research Projects Activity (IARPA), via 2019-1902070008.

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of ODNI, IARPA, DoI/NBC, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

This work was done in part while Vassilis Zikas was visiting the Simons Institute
for the Theory of Computing, UC Berkeley, and UCLA.

References

1. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96881-0 14

2. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic
MPC with malicious security. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part II. LNCS, vol. 11477, pp. 532–561. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17656-3 19

3. Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two
rounds. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol.
11239, pp. 152–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03807-6 6

4. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-
complexity of malicious MPC. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part II. LNCS, vol. 11477, pp. 504–531. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17656-3 18

5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

6. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-44750-4 8

7. Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant
time. Distrib. Comput. 16(4), 249–262 (2003)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press (1988)

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-03807-6_6
https://doi.org/10.1007/978-3-030-03807-6_6
https://doi.org/10.1007/978-3-030-17656-3_18
https://doi.org/10.1007/978-3-030-17656-3_18
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8

Broadcast-Optimal Two-Round MPC 855

9. Benhamouda, F., Lin, H.: k -Round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 17

10. Benhamouda, F., Lin, H., Polychroniadou, A., Venkitasubramaniam, M.: Two-
round adaptively secure multiparty computation from standard assumptions. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 175–
205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 7

11. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 6

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

14. Canetti, R., Ostrovsky, R.: Secure computation with honest-looking parties: what
if nobody is truly honest? (extended abstract). In: 31st ACM STOC, pp. 255–264.
ACM Press (1999)

15. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Better two-round adap-
tive multi-party computation. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol.
10175, pp. 396–427. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54388-7 14

16. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press (1988)

17. Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in
realistic failure models. J. ACM 36(3), 591–614 (1989)

18. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press (1986)

19. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multi-
party computation. J. Cryptol. 30(4), 1157–1186 (2017). https://doi.org/10.1007/
s00145-016-9245-5

20. Cohen, R., Coretti, S., Garay, J.A., Zikas, V.: Round-preserving parallel composi-
tion of probabilistic-termination cryptographic protocols. In: ICALP 2017. LIPIcs,
vol. 80, pp. 37:1–37:15. Schloss Dagstuhl (2017)

21. Cohen, R., Haitner, I., Omri, E., Rotem, L.: Characterization of secure multiparty
computation without broadcast. J. Cryptol. 31(2), 587–609 (2018). https://doi.
org/10.1007/s00145-017-9264-x

22. Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and compos-
ability of cryptographic protocols. J. Cryptol. 32(3), 690–741 (2019). https://doi.
org/10.1007/s00145-018-9279-y

23. Cohen, R., Garay, J.A., Zikas, V.: Broadcast-optimal two-round MPC. Cryptology
ePrint Archive, Report 2019/1183 (2019)

24. Cohen, R., Haitner, I., Makriyannis, N., Orland, M., Samorodnitsky, A.: On the
round complexity of randomized Byzantine agreement. In: DISC, pp. 12:1–12:17
(2019)

25. Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear commu-
nication complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part
II. LNCS, vol. 11693, pp. 30–60. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 2

https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-03807-6_7
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/978-3-662-54388-7_14
https://doi.org/10.1007/978-3-662-54388-7_14
https://doi.org/10.1007/s00145-016-9245-5
https://doi.org/10.1007/s00145-016-9245-5
https://doi.org/10.1007/s00145-017-9264-x
https://doi.org/10.1007/s00145-017-9264-x
https://doi.org/10.1007/s00145-018-9279-y
https://doi.org/10.1007/s00145-018-9279-y
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-030-26951-7_2

856 R. Cohen et al.

26. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol.
9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53015-3 4

27. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

28. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183–186 (1982)

29. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable Byzantine
agreement secure against faulty majorities. In: 21st ACM PODC, pp. 118–126.
ACM (2002)

30. Garay, J.A., Katz, J., Koo, C.-Y., Ostrovsky, R.: Round complexity of authen-
ticated broadcast with a dishonest majority. In: 48th FOCS, pp. 658–668. IEEE
Computer Society Press (2007)

31. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 24

32. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017)

33. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 16

34. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

35. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and
black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol.
11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03807-6 5

36. Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation min-
imizing public key operations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part III. LNCS, vol. 10993, pp. 273–301. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 10

37. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-
able secret sharing and secure multicast. In: 33rd ACM STOC, pp. 580–589. ACM
Press (2001)

38. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

39. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004). ISBN 0-521-83084-2 (hardback)

40. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: 19th ACM STOC, pp.
218–229. ACM Press (1987)

41. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18(3), 247–287 (2005)

https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/3-540-45708-9_12

Broadcast-Optimal Two-Round MPC 857

42. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48000-7 4

43. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

44. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70694-8 21

45. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Concretely efficient large-scale
MPC with active security (or, TinyKeys for TinyOT). In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 86–117. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 4

46. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https://doi.org/
10.1007/s001459910003

47. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press (2000)

48. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

49. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

50. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol.
8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 21

51. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure com-
putation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 18

52. Karlin, A.R., Yao, A.C.: Probabilistic lower bounds for Byzantine agreement and
clock synchronization (1986). Unpublished manuscript

53. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 27

54. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: ACM CCS 2017, pp.
259–276. ACM Press (2017)

55. Lindell, Y., Lysyanskaya, A., Rabin, T.: Sequential composition of protocols with-
out simultaneous termination. In: 21st ACM PODC, pp. 203–212. ACM (2002)

56. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 16

https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/978-3-662-48000-7_16

858 R. Cohen et al.

57. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016,
Part I. LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 21

58. Micali, S.: Very simple and efficient Byzantine agreement. In: Papadimitriou, C.H.
(ed.) ITCS 2017, LIPIcs, vol. 4266, pp. 6:1–6:1, 67, January 2017. https://doi.org/
10.4230/LIPIcs.ITCS.2017.6

59. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 26

60. Patra, A., Ravi, D.: On the exact round complexity of secure three-party compu-
tation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 425–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 15

61. Patra, A., Ravi, D.: On the exact round complexity of secure three-party compu-
tation. Cryptology ePrint Archive, Report 2018/481 (2018)

62. Patra, A., Ravi, D.: Beyond honest majority: the round complexity of fair
and robust multi-party computation. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part I. LNCS, vol. 11921, pp. 456–487. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 17

63. Pfitzmann, B., Waidner, M.: Unconditional Byzantine agreement for any number of
faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577,
pp. 337–350. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55210-
3 195

64. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
59th FOCS, pp. 859–870. IEEE Computer Society Press (2018)

65. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press
(1989)

66. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
ACM CCS 2017, pp. 39–56. ACM Press (2017)

67. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press (1982)

https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.4230/LIPIcs.ITCS.2017.6
https://doi.org/10.4230/LIPIcs.ITCS.2017.6
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/3-540-55210-3_195
https://doi.org/10.1007/3-540-55210-3_195

Correction to: Optimal Merging in Quantum
k-xor and k-sum Algorithms

María Naya-Plasencia and André Schrottenloher

Correction to:
Chapter “Optimal Merging in Quantum k-xor and k-sum
Algorithms” in: A. Canteaut and Y. Ishai (Eds.): Advances
in Cryptology – EUROCRYPT 2020, LNCS 12106,
https://doi.org/10.1007/978-3-030-45724-2_11

In the originally published version of the chapter 11, the title of the paper was incorrect.
The title has been corrected as “Optimal Merging in Quantum k-xor and k-sum
Algorithms”.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-45724-2_11

© International Association for Cryptologic Research 2021
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12106, p. C1, 2021.
https://doi.org/10.1007/978-3-030-45724-2_29

https://doi.org/10.1007/978-3-030-45724-2_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45724-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-45724-2_11
https://doi.org/10.1007/978-3-030-45724-2_29

Author Index

Aggarwal, Divesh I-343
Agrawal, Shweta I-13, I-110
Agrikola, Thomas II-96
Alagic, Gorjan III-759, III-788
Aranha, Diego F. I-644
Asharov, Gilad II-403
Auerbach, Benedikt III-475

Badrinarayanan, Saikrishna III-642
Bag, Arnab I-612
Bao, Zhenzhen II-641
Bardet, Magali III-64
Basu Roy, Debapriya I-612
Batina, Lejla I-581
Beimel, Amos I-529
Belaïd, Sonia III-311
Bellare, Mihir II-3, III-507
Beullens, Ward III-183
Bonnetain, Xavier II-493
Brakerski, Zvika I-79, II-551
Briaud, Pierre III-64
Bros, Maxime III-64
Bünz, Benedikt I-677

Castryck, Wouter II-523
Chiesa, Alessandro I-738, I-769
Cohen, Ran II-828
Coron, Jean-Sébastien III-342
Corrigan-Gibbs, Henry I-44
Couteau, Geoffroy III-442
Cramer, Ronald I-499

D’Anvers, Jan-Pieter III-3
Daemen, Joan I-581
Dagand, Pierre-Évariste III-311
Davis, Hannah II-3
de Boer, Koen II-341
Dinur, Itai I-405, II-433
Dodis, Yevgeniy I-313
Döttling, Nico I-79, II-551, II-768
Ducas, Léo II-341, II-608
Dulek, Yfke III-729
Dunkelman, Orr I-250, I-280

Ephraim, Naomi I-707, III-125
Esser, Andre III-94

Fehr, Serge II-341
Fernando, Rex III-642
Fisch, Ben I-677
Fischlin, Marc III-212
Flórez-Gutiérrez, Antonio I-221
Fouque, Pierre-Alain III-34
Freitag, Cody I-707, III-125
Fuchsbauer, Georg II-63

Gaborit, Philippe III-64
Galbraith, Steven II-608
Garay, Juan II-129, II-828
Garg, Ankit I-373
Garg, Sanjam I-79, II-373, II-768
Ghazi, Badih II-798
Ghoshal, Ashrujit II-33
Giacon, Federico III-475
Goldwasser, Shafi II-373
Gong, Junqing III-278
Goyal, Vipul III-668
Grassi, Lorenzo II-674
Greuet, Aurélien III-342
Grilo, Alex B. III-729
Grosso, Vincent I-581
Günther, Felix II-3
Guo, Chun II-641
Guo, Jian II-641

Hajiabadi, Mohammad II-768
Hao, Yonglin I-466
Harasser, Patrick III-212
Hazay, Carmit II-184, III-599
Heath, David III-569
Hofheinz, Dennis II-96
Hosoyamada, Akinori II-249
Hu, Yuncong I-738

Jain, Aayush I-141, III-642
Jain, Abhishek III-668

Janson, Christian III-212
Jaques, Samuel II-280
Jayanti, Siddhartha II-159
Jeffery, Stacey III-729
Jin, Zhengzhong III-668

Kalai, Yael Tauman I-373
Kastner, Julia II-96
Katsumata, Shuichi III-379, III-442
Keller, Nathan I-250, I-280
Khurana, Dakshita I-373, III-642
Kiayias, Aggelos II-129
Kiltz, Eike III-475
Kim, Sam II-576
Kim, Seongkwang I-435
Kirchner, Paul III-34
Kogan, Dmitry I-44
Kolesnikov, Vladimir III-569
Komargodski, Ilan I-707, II-403, III-125
Kuchta, Veronika III-703

Lasry, Noam I-250
Leander, Gregor I-466
Lee, Byeonghak I-435
Lee, Jooyoung I-435
Li, Bao III-538
Libert, Benoît III-410
Lin, Huijia III-247
Lin, Wei-Kai II-403
Lombardi, Alex III-620
Lüftenegger, Reinhard II-674
Luo, Ji III-247

Majenz, Christian III-729, III-759, III-788
Malavolta, Giulio I-79, III-668
Maller, Mary I-738
Manohar, Nathan I-141
Manurangsi, Pasin II-798
Masny, Daniel II-768
Massolino, Pedro Maat Costa I-581
May, Alexander III-94
Meier, Willi I-466
Mercadier, Darius III-311
Mishra, Pratyush I-738
Morgan, Andrew II-216
Mukhopadhyay, Debdeep I-612
Musa, Saud Al III-538

Naehrig, Michael II-280
Naito, Yusuke II-705
Nandi, Mridul I-203
Nayak, Kartik II-403
Naya-Plasencia, María I-221, II-311
Neiger, Vincent III-64
Nielsen, Jesper Buus I-556
Nishimaki, Ryo III-379

Obremski, Maciej I-343
Ojha, Dev I-769
Orlandi, Claudio I-644
Ostrovsky, Rafail M. II-129
Othman, Hussien I-529

Pagh, Rasmus II-798
Panagiotakos, Giorgos II-129
Panny, Lorenz II-523
Papagiannopoulos, Kostas I-581
Pass, Rafael I-707, II-216, III-125, III-599
Passelègue, Alain III-410
Patranabis, Sikhar I-612
Peikert, Chris II-463
Pellet-Mary, Alice I-110
Peserico, Enoch II-403
Pinkas, Benny II-739
Plouviez, Antoine II-63
Polychroniadou, Antigoni II-216
Prest, Thomas II-608

Raghuraman, Srinivasan II-159
Rechberger, Christian II-674
Regazzoni, Francesco I-581
Ribeiro, João I-343
Rivain, Matthieu III-311
Roetteler, Martin II-280
Ronen, Eyal I-280
Rossi, Mélissa III-3
Rosulek, Mike II-739
Rotaru, Dragos II-674
Rotem, Lior III-155
Ruatta, Olivier III-64
Russell, Alexander III-759, III-788

Saha, Sayandeep I-612
Sahai, Amit I-141, III-642
Sakzad, Amin III-703

860 Author Index

Samwel, Niels I-581
Sasaki, Yu II-249, II-705
Schaffner, Christian III-729
Schofnegger, Markus II-674
Schrottenloher, André II-311, II-493
Segev, Gil III-155
Seurin, Yannick II-63
Shahaf, Ido III-155
Shamir, Adi I-250, I-280
Shi, Elaine II-403
Silverberg, Alice I-3
Simkin, Mark I-556
Simon, Thierry I-581
Siniscalchi, Luisa I-343
Song, Fang III-788
Song, Ling II-641
Spooner, Nicholas I-769
Stehlé, Damien III-703
Steinfeld, Ron III-703
Stepanovs, Igors III-507
Sugawara, Takeshi II-705
Sun, Shi-Feng III-703
Szepieniec, Alan I-677

Takahashi, Akira I-644
Tessaro, Stefano II-33
Tibouchi, Mehdi III-34
Tillich, Jean-Pierre III-64
Todo, Yosuke I-466
Trieu, Ni II-739

Ünal, Akın I-169
Ursu, Bogdan III-442

Vaikuntanathan, Vinod I-313, III-620
Vasudevan, Prashant Nalini II-373
Velingker, Ameya II-798
Venkitasubramaniam, Muthuramakrishnan

II-184, III-599
Vercauteren, Frederik II-523
Vesely, Noah I-738
Virdia, Fernando II-280, III-3
Visconti, Ivan I-343
Vyas, Nikhil II-159

Wallet, Alexandre III-34
Wang, Qingju I-466
Ward, Nicholas I-738
Wee, Hoeteck III-278, III-410
Weiss, Mor II-184
Wichs, Daniel I-313, II-768, III-620
Wintersdorff, Raphaël III-311
Wu, David J. III-410

Xing, Chaoping I-499

Yamada, Shota I-13, III-379
Yamakawa, Takashi III-379
Yanai, Avishay II-739
Yu, Wei III-538
Yu, Yang II-608, III-34

Zaverucha, Greg I-644
Zeitoun, Rina III-342
Zikas, Vassilis II-129, II-828

Author Index 861

	Preface
	Eurocrypt 2020
	Contents – Part II
	Generic Models
	Separate Your Domains: NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability
	1 Introduction
	2 Oracle Cloning in NIST PQC Candidates
	2.1 Design Process
	2.2 The Base KEM
	2.3 Submissions We Break
	2.4 Submissions with Unclear Security
	2.5 Submissions with Provable Security but Ambiguous Specification
	2.6 Submissions with Clear Provable Security

	3 Preliminaries
	4 Read-Only Indifferentiability of Translating Functors
	4.1 Functors and Read-Only Indifferentiability
	4.2 Translating Functors
	4.3 Rd-Indiff of Translating Functors

	5 Analysis of Cloning Functors
	References

	On the Memory-Tightness of Hashed ElGamal
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	2.1 Generic Group Model
	2.2 Compression Lemma
	2.3 Polynomials
	2.4 Key Encapsulation Mechanism (KEM)

	3 Memory Lower Bound on the ODH-SDH Reduction
	3.1 Result and Proof Outline

	4 Proof of Theorem
	4.1 Adversary A Against ODH
	4.2 The Shuffling Games
	4.3 Proof of Lemma 3
	4.4 Memory Lower Bound When |Z|l (Proof of Lemma 4)

	5 Conclusions
	References

	Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic Group Model
	1 Introduction
	2 Preliminaries
	3 Schnorr Signatures
	3.1 Definitions
	3.2 Security of Schnorr Signatures in the AGM

	4 Blind Schnorr Signatures
	4.1 Definitions
	4.2 The ROS Problem
	4.3 Security of Blind Schnorr Signatures

	5 The Clause Blind Schnorr Signature Scheme
	6 Schnorr-Signed ElGamal Encryption
	References

	On Instantiating the Algebraic Group Model from Falsifiable Assumptions
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 Subset Membership Problem
	2.2 Dual-mode NIWI
	2.3 Probabilistic Indistinguishability Obfuscation
	2.4 Re-randomizable and Fully Homomorphic Encryption
	2.5 Statistically Correct Input Expanding pIO

	3 How to Simulate Extraction – Algebraic Wrappers
	3.1 Group Schemes
	3.2 An Algebraic Wrapper
	3.3 Construction

	4 How to Use Algebraic Wrappers – Implementing Proofs from the AGM
	4.1 Diffie-Hellman Assumptions
	4.2 Schnorr Signatures

	References

	Secure Computation I
	Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era
	1 Introduction
	2 Model
	3 Inapplicability of Strong BA Impossibility
	3.1 Modeling a Communication-Restricted Network
	3.2 The Impossibility Theorem, Revisited

	4 Implementing a Communication-Restricted Network
	5 Implementing a Registration Functionality
	5.1 The Registration Functionality
	5.2 The Identity-Assignment Protocol

	6 Removing the Freshness Assumption
	References

	Efficient Constructions for Almost-Everywhere Secure Computation
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions
	1.3 Our Techniques
	1.4 Related Work
	1.5 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Approximation and Concentration Inequalities
	2.3 Expanders
	2.4 Network Parameters
	2.5 Notion of Almost-Everywhere Security
	2.6 Almost-Everywhere Reliable Message Transmission
	2.7 Corruption Models

	3 Constant-Degree Networks in the Random Model
	4 Logarithmic Degree Networks in the Worst-Case Model
	5 Low-Work Protocols in the Worst-Case Model
	5.1 Resilient and Efficient Networks

	References

	The Price of Active Security in Cryptographic Protocols
	1 Introduction
	1.1 Our Results – A New Framework
	1.2 Related Work

	2 Our Techniques
	3 Preliminaries
	3.1 Layered Arithmetic Circuits
	3.2 Multiplication Functionalities
	3.3 Secret-Sharing
	3.4 Error Correcting Codes

	4 Basic MPC Protocol
	4.1 Instantiating FRMULT

	5 Actively Secure MPC with Constant Communication Overhead
	6 Corollaries and Applications
	6.1 Constant Overhead MPC for Constant-Size Fields
	6.2 Constant Overhead MPC over Fields of Arbitrary Size

	References

	Succinct Non-interactive Secure Computation
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Fully Homomorphic Encryption
	2.2 Adaptive Delegation Schemes
	2.3 Non-interactive Secure Computation

	3 Protocol
	4 Proof
	4.1 Comparing Hybrid and Ideal Executions

	References

	Quantum I
	Finding Hash Collisions with Quantum Computers by Using Differential Trails with Smaller Probability than Birthday Bound
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Outline

	2 Preliminaries
	2.1 AES-like Ciphers
	2.2 Quantum Computation

	3 Generic Quantum Collision-Finding Algorithms
	4 Previous Works in the Classical Setting
	4.1 Framework of Collision Attacks
	4.2 Super-Sbox Cryptanalysis
	4.3 Covering Three Full Active Rounds on 8 8 State

	5 New Observation
	5.1 Birthday Bound Barrier for Classical Differential Probabilities
	5.2 Breaking the Barrier with Quantum Computers and qRAM
	5.3 Breaking the Barrier Without qRAM

	6 Finding Collisions for 7-Round AES-MMO
	6.1 New Differential Trail for 7-Round AES
	6.2 Demonstration: An Attack with qRAM
	6.3 Attack Without qRAM: A Time-Space Tradeoff
	6.4 Small Quantum Computer with Large Classical Memory

	7 Finding Collisions for 6-Round Whirlpool
	8 Optimality of Differential Trails
	9 Concluding Remarks
	References

	Implementing Grover Oracles for Quantum Key Search on AES and LowMC
	1 Introduction
	2 Finding a Block Cipher Key with Grover's Algorithm
	2.1 Grover's Algorithm
	2.2 Key Search for a Block Cipher
	2.3 Parallelization

	3 Quantum Circuit Design
	3.1 Assumptions About the Fault-Tolerant Gate Set and Architecture
	3.2 Automated Resource Estimation and Unit Tests
	3.3 Reversible Circuits for Linear Maps
	3.4 Cost Metrics for Quantum Circuits

	4 A Quantum Circuit for AES
	5 A Quantum Circuit for LowMC
	6 Grover Oracles and Key Search Resource Estimates
	6.1 Grover Oracles
	6.2 Cost Estimates for Block Cipher Key Search

	7 Future Work
	References

	Optimal Merging in Quantum k-xor and k-sum Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Variants of the k-xor Problem
	2.2 Quantum Computing Model and Preliminaries
	2.3 Overview of Previous Related Work

	3 Summary of Our Main Results
	3.1 Quantum Algorithms for Problem2
	3.2 Quantum Algorithms for Unique k-xor
	3.3 k-xor with Classical Lists

	4 Introducing the k-Merging Trees
	4.1 Wagner's Binary Tree in a Breadth-First Order
	4.2 Building a k-tree in a Depth-First Order
	4.3 Limitations of the Extension to Quantum k-trees
	4.4 Examples of Quantum Merging
	4.5 Definition of Merging Trees
	4.6 Optimization of Merging Trees

	5 Optimal Merging Trees
	5.1 Description of the Optimal Trees
	5.2 Optimality in the QACM Setting
	5.3 Theoretical Result in the Low-Qubits Setting

	6 Extended Merging Trees and Quantum Dissections
	6.1 Generalized Merging Trees for Problems1, 3 and 4
	6.2 Quantum Algorithms for Unique k-xor

	7 Applications
	7.1 Improved Quantum Time – Memory Tradeoff for Subset-sums
	7.2 New Quantum Algorithms for LPN and LWE
	7.3 New Quantum Algorithms for the Multiple-Encryption Problem
	7.4 Approximate k-list Problem

	8 Conclusion
	References

	On the Quantum Complexity of the Continuous Hidden Subgroup Problem*-12pt
	1 Introduction
	2 Problem Statements and Results
	2.1 Notation and Set-Up
	2.2 Main Theorem: Continuous Hidden Subgroup Problem
	2.3 Dual Lattice Sampling Problem
	2.4 Full Dual Lattice Recovery
	2.5 Primal Basis Reconstruction
	2.6 Gaussian State Preparation

	3 Preliminaries
	3.1 Groups
	3.2 Norms and Fourier Transforms
	3.3 The Poisson Summation Formula
	3.4 The Fourier Transform of Vector-Valued Functions
	3.5 Trigonometric Approximation
	3.6 The Gaussian Function and Smoothing Errors
	3.7 Lipschitz Condition

	4 Algorithm
	4.1 The Algorithm
	4.2 The Figure of Merit

	5 Analysis
	5.1 Proof Overview
	5.2 Formal Analysis
	5.3 Tuning Parameters

	6 From Sampling to Full Dual Lattice Recovery
	References

	Foundations
	Formalizing Data Deletion in the Context of the Right to Be Forgotten
	1 Introduction
	1.1 Our Notions
	1.2 Lessons from Our Definitions
	1.3 Related Work

	2 Our Framework and Definitions
	2.1 Explanation of the Definition
	2.2 Discussion
	2.3 Conditional Deletion-Compliance
	2.4 Properties of Our Definitions

	3 Scenarios
	3.1 Data Storage and History-Independence

	References

	OptORAMa: Optimal Oblivious RAM
	1 Introduction
	1.1 Our Results: Optimal Oblivious RAM
	1.2 Our Results: Optimal Oblivious Tight Compaction

	2 Technical Roadmap
	2.1 Oblivious RAM
	2.2 Tight Compaction

	3 Oblivious Building Blocks
	4 Oblivious Tight Compaction in Linear Time
	5 BigHT: Oblivious Hashing for Non-Recurrent Lookups
	6 SmallHT: Oblivious Hashing for Small Bins
	6.1 Step 1 – Add Dummies and Shuffle
	6.2 Step 2 – Evaluate Assignment with Metadata Only
	6.3 SmallHT Construction
	6.4 CombHT: Combining BigHT with SmallHT

	7 Oblivious RAM
	References

	On the Streaming Indistinguishability of a Random Permutation and a Random Function
	1 Introduction
	2 Technical Overview
	2.1 Communication Complexity
	2.2 An Initial Approach
	2.3 The Improved Approach

	3 Preliminaries
	4 The Streaming Switching Lemma
	4.1 Reduction from Communication Complexity to Streaming
	4.2 Reduction from Unique-Disjointness to Permutation-Dependence

	5 The Multi-pass Streaming Switching Lemma
	6 Conclusions and Future Work
	A Concrete Parameters for Theorem 3
	A.1 Information Theory
	A.2 Overview of the Proof
	A.3 A Lower Bound for Private-Coin Protocols
	A.4 The Proof of Theorem 3

	References

	Isogeny-Based Cryptography
	He Gives C-Sieves on the CSIDH
	1 Introduction
	1.1 Isogeny-Based Cryptography
	1.2 Attacking the CSIDH
	1.3 Our Contributions
	1.4 Further Research
	1.5 Paper Organization

	2 Preliminaries
	2.1 CSIDH Group Action
	2.2 Abelian Hidden-Shift Problem

	3 Collimation Sieve for Cyclic Groups
	3.1 Phase Vectors
	3.2 Collimation Sieve
	3.3 Collimating Phase Vectors
	3.4 Post-processing

	4 Quantum (In)security of CSIDH
	4.1 Oracle Query Complexity for Key Recovery
	4.2 T-Gate Complexity and NIST Security Levels
	4.3 Quantum Complexity of the Sieve

	5 Experiments
	5.1 Sieve Simulator
	5.2 Experimental Results

	References

	Quantum Security Analysis of CSIDH
	1 Introduction
	2 Preliminaries
	2.1 Context of CSIDH
	2.2 Attack Outline

	3 Quantum Abelian Hidden Shift Algorithms
	3.1 Context
	3.2 A First Hidden Shift Algorithm
	3.3 An Approach Based on Subset-sums
	3.4 Kuperberg's Second Algorithm

	4 Reduction in the Lattice of Relations
	4.1 The Relation Lattice
	4.2 Solving the Approximate CVP with a Reduced Basis

	5 A Quantum Circuit for the Class Group Action
	5.1 Main Tools
	5.2 Finding a Point of Order
	5.3 Computing an Isogeny
	5.4 Computing a Sequence of Isogenies

	6 Estimating the Security of CSIDH Parameters
	6.1 Cost of the Group Action Oracle
	6.2 Attacking CSIDH
	6.3 Going Further

	7 Conclusion
	References

	Rational Isogenies from Irrational Endomorphisms
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Quadratic Twisting
	2.2 Hard Homogeneous Spaces from Supersingular Curves
	2.3 CSIDH
	2.4 The Full Endomorphism Ring

	3 Twisting Endomorphisms
	4 Isogenies from Known Endomorphisms
	4.1 The Algorithm
	4.2 Incomplete Knowledge of Endomorphism Rings
	4.3 Can We Do Better?

	5 Vectorizing CM Curves
	5.1 Twisting Endomorphisms from Deuring Reduction
	5.2 Proof of Theorem 26

	References

	Lattice-Based Cryptography
	Hardness of LWE on General Entropic Distributions
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Min-entropy
	2.2 Leftover Hashing
	2.3 Gaussians
	2.4 Learning with Errors
	2.5 Entropic LWE

	3 Probability-Theoretic Tools
	3.1 Singular Values of Discrete Gaussian Matrices
	3.2 Decomposition Theorem for Continuous Gaussians

	4 Hardness of Entropic LWE with Gaussian Noise
	5 Noise-Lossiness for Modular Gaussians
	5.1 General High Entropy Secrets
	5.2 Short Secrets

	6 Tightness of the Result
	7 Barriers for Entropic LWE
	7.1 Simulatable Attacks
	7.2 A Simulatable Attack for Entropic LWE

	References

	Key-Homomorphic Pseudorandom Functions from LWE with Small Modulus
	1 Introduction
	1.1 Our Contributions
	1.2 Discussions
	1.3 Other Related Work

	2 Overview
	2.1 Background on Lattice PRFs via Synthesizers
	2.2 Learning with Rounding and Errors
	2.3 Chaining Key-Homomorphic PRFs

	3 Preliminaries
	3.1 Learning with Errors
	3.2 Elementary Number Theory
	3.3 Pseudorandom Functions and Key-Homomorphic PRFs

	4 Learning with Rounding and Errors
	4.1 Learning with Rounding and Errors
	4.2 Pseudorandom Synthesizers from LWRE
	4.3 Parameter Instantiations

	5 Key-Homomorphic PRFs
	5.1 Construction
	5.2 Instantiating the Parameters

	References

	Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Linear Algebra
	2.3 Lattices
	2.4 Gaussians
	2.5 Integral Decompositions

	3 Gaussian Sampling with an Integral Gram Root
	3.1 Reducing m((A))

	4 Integral Gram Decompositions
	4.1 Decomposition for Diagonally Dominant Matrices
	4.2 Eigenvalue Reduction
	4.3 Putting Them Together

	5 Comparisons with Peikert's Perturbation Sampler
	5.1 Required Storage
	5.2 Base Samplings
	5.3 The Quality of Final Gaussians
	5.4 The Case of the Micciancio-Peikert Trapdoor

	6 The Ring Setting
	6.1 Preliminaries on Cyclotomic Rings
	6.2 Decomposition for Ring Elements
	6.3 Decomposition for Positive Definite ' R2wnn
	6.4 Comparative Results of the Ring-Based Sampler

	References

	Symmetric Cryptography II
	TNT: How to Tweak a Block Cipher
	1 Introduction
	1.1 Background - The Need of BBB TBC
	1.2 Modular Approach: TBCs from Block Ciphers
	1.3 Development of Dedicated TBCs
	1.4 Our Approach (Hybrid of Two Approaches), Provable Security of TBC Modes, and Instantiation with Long-Standing Modules (Similar with AES-PRF)

	2 Preliminary
	2.1 Notation
	2.2 TBC and Its Security
	2.3 2 Method

	3 The Idealized TNT Mode
	4 Security Proof for TNT Mode
	5 Concrete Proposals
	5.1 Instantiation Based on AES
	5.2 Preliminary Cryptanalysis
	5.3 Performance

	6 Conclusion and Open Questions
	A Subspace Trail Cryptanalysis of TNT-AES
	B Examples of the Related-Tweak Boomerang Distinguishers of TNT-AES
	References

	On a Generalization of Substitution-Permutation Networks: The HADES Design Strategy
	1 Introduction
	1.1 The Big Caveat: Security Analysis of P-SPNs
	1.2 The Idea in a Nutshell – The Hades Strategy
	1.3 Related Work – Designs with Different Round Functions
	1.4 HadesMiMC: Concrete Instantiations for MPC Applications

	2 Description of the Hades Strategy
	3 The Keyed Permutation HadesMiMC
	3.1 Specification of HadesMiMC
	3.2 Design Considerations: Reviving ``Old'' Design Ideas

	4 Security Analysis
	4.1 Main Points of Our Cryptanalysis Results
	4.2 Statistical Attacks – Security Level: = N
	4.3 Algebraic Attacks – Security Level: = N

	5 Security Analysis for MPC: = n and Data p1/2
	5.1 Statistical Attacks
	5.2 Algebraic Attacks

	6 Number of Rounds: Security and Efficiency
	6.1 Efficiency in the Case of MPC Applications
	6.2 Best Ratio Between RF and RP – MPC Application
	6.3 Concrete Instantiations of HadesMiMC

	7 MPC Applications
	References

	Lightweight Authenticated Encryption Mode Suitable for Threshold Implementation
	1 Introduction
	2 Preliminaries
	3 PFB_Plus: Specification and Security Bounds
	3.1 Specification
	3.2 Privacy and Authenticity Bounds of PFB_Plus

	4 Proof of Theorem1
	4.1 Upper-Bounding AdvauthPFB_Plus[P"0365P](qE, qD,)
	4.2 Upper-Bounding Pr[T(d) = (d) | Case1]
	4.3 Upper-Bounding Pr[T(d) = (d) | Case2]
	4.4 Upper-Bounding p1 in (2)
	4.5 Upper-Bounding p2 in (3)
	4.6 Upper-Bounding Pr[S1(d) = S1(e) T2(d) = 2(d) | Case2-1]
	4.7 Upper-Bounding Pr[S1(d) = S1(e) T2(d) = 2(d) | Case2-2]
	4.8 Upper-Bounding Pr[S1(d) = S1(e) T2(d) = 2(d) | Case2-3]
	4.9 Upper-Bounding Pr[S1(d) = S1(e) T2(d) = 2(d) | Case2-4]

	5 PFB: Specification and Security Bounds
	5.1 Specification
	5.2 Privacy and Authenticity Bounds of PFB

	6 Proof of Theorem2
	6.1 Upper-Bonding AdvauthPFB[P"0365P](qE, qD,)
	6.2 Upper-Bounding Pr[T(d) = (d) | Case1]
	6.3 Upper-Bounding Pr[(d) = T(d) | Case2]

	7 SKINNY-64-256
	7.1 Specification
	7.2 Rationale for Newly Designed Parts
	7.3 Bounds of the Number of Active S-boxes

	8 Hardware Performance Evaluation
	8.1 PFB_Plus with SKINNY-64-256
	8.2 PFB with SKINNY-128-256
	8.3 Performance Evaluation and Comparison

	References

	Secure Computation II
	PSI from PaXoS: Fast, Malicious Private Set Intersection
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Probe-and-XOR of Strings (PaXoS)
	3.1 Definitions
	3.2 PaXoS as Key-Value Mapping
	3.3 Homomorphic Properties
	3.4 Efficiency Measures
	3.5 Examples and Simple Constructions

	4 PSI from PaXoS
	4.1 Overview
	4.2 Protocol Details
	4.3 Security Analysis
	4.4 Choosing Parameters

	5 Garbled Cuckoo Table
	5.1 Overview
	5.2 Details
	5.3 Comparison
	5.4 An Alternative Construction

	6 A Theoretical Comparison
	7 Implementation and Evaluation
	7.1 Implementation Details
	7.2 Experimental Setup
	7.3 Experimental Results

	References

	Two-Round Oblivious Transfer from CDH or LPN
	1 Introduction
	1.1 Why Is Two-Round Maliciously Secure OT Difficult?
	1.2 Our Results

	2 Technical Overview
	3 Preliminaries
	3.1 Basic Inequalities
	3.2 Standard Primitives

	4 Definitions of Two-Round Oblivious Transfer
	4.1 Correctness
	4.2 Receiver's Security Notions
	4.3 Sender's Security Notions

	5 Transformations for Achieving Sender's Indistinguishability
	5.1 From Elementary OT to Search OT
	5.2 From Search OT to Bit iOT
	5.3 From Bit iOT to String iOT

	6 Weak Secure Function Evaluation
	6.1 Definitions
	6.2 wSFE for All Circuits from iOT and Garbled Circuits

	7 Sender-UC OT from wSFE
	8 2-Round ZK from Sender-UC OT and -Protocols
	9 UC-Secure OT from Sender-UC OT and Zero Knowledge
	10 Instantiations from CDH and LPN
	10.1 Instantiation from CDH
	10.2 Instantiation from LPN

	References

	Private Aggregation from Fewer Anonymous Messages
	1 Introduction
	1.1 Our Results
	1.2 Applications and Related Work
	1.3 The Split and Mix Protocol
	1.4 Overview of Proofs

	2 Preliminaries
	2.1 Protocols
	2.2 Distributions Related to a Protocol
	2.3 Security and Privacy

	3 Proof of Theorem 1
	3.1 Bounding Statistical Distance via Second Moment Method
	3.2 Relating Moments to Rank of Random Matrices
	3.3 Probabilistic Bound on Rank Deficit of Random Matrices

	4 Lower Bound Proofs
	4.1 Field-Dependent Bound
	4.2 Security-Dependent Bound

	5 Conclusion and Open Questions
	A Proofs of Bounds for Multinomial Coefficients
	B Proof of Corollary 1
	References

	Broadcast-Optimal Two-Round MPC
	1 Introduction
	1.1 Background
	1.2 Our Contributions

	2 Preliminaries
	2.1 Security Model

	3 Impossibility Results
	3.1 Impossibility of Single-Round MPC
	3.2 Impossibility of Single-Broadcast Two-Round MPC

	4 Feasibility of Two-Round MPC with Limited Use of Broadcast
	4.1 Compiling Two-Broadcast-Round Protocols
	4.2 Unanimous Abort with a Single Broadcast Round
	4.3 Selective Abort with Two point-to-point Rounds

	References

	Correction to: Optimal Merging in Quantum k-xor and k-sum Algorithms
	Correction to: Chapter “Optimal Merging in Quantum k-xor and k-sum Algorithms” in: A. Canteaut and Y. Ishai (Eds.): Advances in Cryptology – EUROCRYPT 2020, LNCS 12106, https://doi.org/10.1007/978-3-030-45724-2_11

	Author Index

