
Low Error Efficient Computational
Extractors in the CRS Model

Ankit Garg1(B), Yael Tauman Kalai2(B), and Dakshita Khurana3

1 Microsoft Research India, Bangalore, India
garga@microsoft.com

2 Microsoft Research New England, Cambridge, USA
yael@microsoft.com

3 University of Illinois Urbana-Champaign, Champaign, IL, USA
dakshita@illinois.edu

Abstract. In recent years, there has been exciting progress on build-
ing two-source extractors for sources with low min-entropy. Unfortu-
nately, all known explicit constructions of two-source extractors in the
low entropy regime suffer from non-negligible error, and building such
extractors with negligible error remains an open problem. We investi-
gate this problem in the computational setting, and obtain the following
results.

We construct an explicit 2-source extractor, and even an explicit
non-malleable extractor, with negligible error, for sources with low min-
entropy, under computational assumptions in theCommonRandomString
(CRS) model. More specifically, we assume that a CRS is generated once
and for all, and allow the min-entropy sources to depend on the CRS. We
obtain our constructions by using the following transformations.
1. Building on the technique of [5], we show a general transformation

for converting any computational 2-source extractor (in the CRS
model) into a computational non-malleable extractor (in the CRS
model), for sources with similar min-entropy.
We emphasize that the resulting computational non-malleable
extractor is resilient to arbitrarily many tampering attacks (a prop-
erty that is impossible to achieve information theoretically). This
may be of independent interest.
This transformation uses cryptography, and relies on the sub-
exponential hardness of the Decisional Diffie Hellman (DDH)
assumption.

2. Next, using the blueprint of [1], we give a transformation converting
our computational non-malleable extractor (in the CRS model) into
a computational 2-source extractor for sources with low min-entropy
(in the CRS model). Our 2-source extractor works for unbalanced
sources: specifically, we require one of the sources to be larger than
a specific polynomial in the other.
This transformation does not incur any additional assumptions. Our
analysis makes a novel use of the leakage lemma of Gentry and
Wichs [18].

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 373–402, 2020.
https://doi.org/10.1007/978-3-030-45721-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_14

374 A. Garg et al.

1 Introduction

Randomness is fundamental for cryptography. It is well known that even the
most basic cryptographic primitives, such as semantically secure encryption,
commitments and zero-knowledge proofs, require randomness. In fact, Dodis et
al. [15] proved that these primitives require perfect randomness, and cannot be
constructed using a weak source of randomness, not even one that has nearly
full min-entropy.1

Unfortunately, in reality, perfect randomness is very hard to come by, and
secret randomness is even harder. Indeed, several attacks on cryptographic sys-
tems rely on the fact that the randomness that was used in the implementation
was imperfect. Very recently, this was demonstrated in the regime of cryptocur-
rencies by Breitner and Heninger [6], who computed hundreds of Bitcoin private
keys by exploiting the fact that the randomness used to generate them was
imperfect (other examples include [3,20]).

Randomness Extractors. These attacks give rise to a very natural question: Can
we take weak sources of randomness and “boost” them into perfect random
sources? This is the basic question that underlies the field of randomness extrac-
tors. Extractors are algorithms that extract perfect randomness from weak ran-
dom sources. As eluded to above, one cannot hope to deterministically take only
a single weak random source and generate perfect randomness from it.

Nevertheless, two common types of randomness extractors have been consid-
ered in the literature. The first is a seeded extractor, which uses a uniform seed to
extract randomness from any (n, k) source, for k as small as k = polylog(n). This
seed is typically very short, often of length O(log n). However, it is paramount
that this seed is perfectly random, and independent of the source. In real-
ity, unfortunately, even generating such short perfectly random strings may be
challenging.

The second type of extractor is a 2-source extractor. A 2-source extractor
takes as input two independent weak sources and outputs pure randomness. We
stress that a 2-source extractor does not require perfect randomness at all! It
only requires two independent sources with sufficiently large min-entropy. Such
sources may be arguably easier to generate.

Until recently, we had an explicit construction of a 2-source extractor only
in the high-entropy regime, i.e. assuming one of the sources has min-entropy
k ≥ 0.499n [4,26]. Over the last three years, there has been remarkable and
exciting progress [2,7–9,11–14,24], giving rise to 2-source extractors in the low-
entropy regime, albeit with non-negligible error.

More formally, an (n1, n2, k1, k2, ε) 2-source extractor is a function E:{0, 1}n1×
{0, 1}n2 → {0, 1}m such that for any independent sources X and Y , with min-
entropy at least k1 and k2 respectively, E(X,Y) is ε-close (in statistical distance) to

1 A weak source is modeled as an (n, k)-source, which is a distribution that generates
elements in {0, 1}n with min-entropy k. A distribtion X ⊆ {0, 1}n is said to have
min-entropy k if for every x ∈ {0, 1}n, Pr[X = x] ≤ 2−k.

Low Error Efficient Computational Extractors in the CRS Model 375

the uniform distribution over {0, 1}m. The line of recent breakthroughs discussed
above can support min-entropy as small as O(log(n) log(log(n))) in the balanced
regime n1 = n2 = n. However, in all the above constructions, the running time of
the extractor is proportional to poly(1/ε)!

This state-of-the-art is far from ideal for cryptographic applications, where
typically the error is required to be negligible in the security parameter. Unfor-
tunately, in the negligible error regime, the extractors mentioned above run
in super-polynomial time. The question of whether one can obtain a 2-source
extractor with negligible error, even for sources with min-entropy δn, for a small
constant δ > 0, is one of the most important open problems in the area of
randomness extractors.

In this work, we explore this problem in the computational setting. We note
that solving this problem, even in the computational setting, may facilitate gen-
erating useful randomness for many cryptographic applications.

1.1 Prior Work on Computational Extractors

There has been some prior work [22,23] on building computational extrac-
tors. However, these works rely on extremely strong computational assump-
tions. Loosely speaking, the assumption is (slightly stronger than) assum-
ing the existence of an “optimally exponentially hard” one-way permutation
f : {0, 1}n → {0, 1}n, that is hard to invert even with probability 2−(1−δ)n (this
gives extractors for sources with min-entropy roughly δn).

Intuitively, such a strong assumption seems to be necessary. This is the case
since to prove security we need to construct a reduction that uses an adversary
A, that breaks the 2-source extractor, to break the underlying assumption. If
this assumption is a standard one, then the challenge provided by the assump-
tion comes from a specific distribution (often the uniform distribution). On the
other hand, the adversary A may break the extractor w.r.t. arbitrary indepen-
dent sources X and Y with sufficient min-entropy. It is completely unclear how
one could possibly use (X,Y,A) to break this challenge, since A only helps to
distinguish the specific distribution E(X,Y) from uniform (where E is the 2-
source extractor). Since X and Y are arbitrary low min-entropy distributions, it
is unclear how one could embed the challenge in X or Y , or in E(X,Y).

1.2 Our Results

In this paper, we get around this barrier by resorting to the Common Random
String (CRS) model.2 As a result, under the sub-exponential hardness of DDH
(which is a comparatively mild assumption), we obtain a computational 2-source
extractor, and a computational non-malleable extractor, both with negligible
error, for low min-entropy sources (in the CRS model).

2 Jumping ahead, we note that in the proof we break the assumption by embedding
the challenge in the CRS.

376 A. Garg et al.

At first one may think that constructing such extractors in the CRS model
is trivial since the CRS can be used a seed. However, as mentioned above, we
emphasize that this is not the case, since the CRS is fixed once and for all,
and the sources can depend on this CRS. Indeed, constructing an information
theoretic 2-source extractor in the CRS model is an interesting open problem.

Secondly, one could ask why assuming the existence of a CRS is reasonable,
since our starting point is the belief that fresh randomness is hard to generate,
and thus in a sense assuming a CRS brings us back to square one. However, as
emphasized above, this CRS is generated once and for all, and can be reused
over and over again. Indeed, we believe that true randomness is hard, yet not
impossible, to generate. Thus, reducing the need for true randomness to a single
one-time need, is significant progress. Importantly, we emphasize that in cryp-
tography, there are many natural applications where a CRS is assumed to exist,
and in such applications this same CRS can be used to extract randomness from
weak sources.

The computational CRS model. In our constructions, we assume that a CRS is
(efficiently) generated once and for all. We consider any two weak sources X and
Y . These sources can each depend on the CRS,3 but are required to be indepen-
dent from each other, and each have sufficient min-entropy, conditioned on the
CRS. We require that X and Y are efficiently sampleable given the CRS. This
is needed since we are in the computational setting, and in particular, security
breaks down if the sources can be used to break our hardness assumption.

Our 2-source extractor. We define an (n1, n2, k1, k2) computational 2-source
extractor (in the CRS model) as a function E : {0, 1}n1 × {0, 1}n2 × {0, 1}c →
{0, 1}m such that for all sources (X,Y), which conditioned on the crs, are inde-
pendent, are polynomially sampleable, and have min-entropy at least k1, k2
respectively, it holds that (E(X,Y, crs), Y, crs) is computationally indistinguish-
able from (U, Y, crs), namely, any polynomial size adversary cannot distinguish
(E(X,Y, crs), Y, crs) from (U, Y, crs) with non-negligible advantage.4

We construct such a 2-source extractor (with unbalanced sources) assuming
the sub-exponential security of DDH 5.

Theorem 1 (Informal). Let λ ∈ N denote the security parameter and assume
the sub-exponential hardness of DDH. For every constant ε > 0, there exist con-
stants δ > 0, c > 1 such that there exists an explicit (n1, n2, k1, k2) computational
2-source extractor in the CRS model, with n1 = Ω(λ), n2 ≤ λδ and min-entropy
k1 = nε

1, k2 = logc(λ).
3 In this way, the CRS is different from the seed of a seeded extractor, which must be

completely independent of the source.
4 Requiring the output of the extractor to be random even given the source Y is a

standard requirement, and such an extractor is known as a strong extractor.
5 The sub-exponential DDH assumption asserts that there exists a group G such

that no sub-exponential time algorithm can distinguish between (ga, gb, gab) and
(ga, gb, gc), where g is a fixed generator of G, and where a, b, c are chosen randomly
from Zq, where q denotes the order of G.

Low Error Efficient Computational Extractors in the CRS Model 377

Our non-malleable extractor. We also construct a computational non-malleable
extractor in the CRS model. A non-malleable extractor is a notion that was
introduced by Dodis and Wichs [17]. This notion is motivated by cryptography,
and was used to achieve privacy amplification, i.e., to “boost” a private weak
key into a private uniform one.

Similar to standard extractors, one can consider non-malleable extractors
both in the seeded setting and in 2-source setting. The seeded version is defined
as follows: A strong (k, ε) t-non-malleable-extractor is a function E : {0, 1}n ×
{0, 1}d → {0, 1}m s.t. for all functions f1, . . . , ft : {0, 1}d → {0, 1}d, that have
no fixed points, it holds that

(Y, E(X, Y), E(X, f1(Y)), . . . , E(X, ft(Y))) ≡ε (Y, U, E(X, f1(Y)), . . . , E(X, ft(Y)))

where X,Y,U are independent, X has min-entropy at least k, Y is distributed
uniformly over {0, 1}d and U is distributed uniformly over {0, 1}m. Non-
malleable 2-source extractors are defined similarly to seeded ones, except that
the requirement that Y is uniformly distributed is relaxed; i.e., it is only required
to have sufficient min-entropy and be independent of X. In addition, both the
sources can be tampered independently.

Clearly, in the information theoretic setting, such non-malleable extractors
(both seeded and 2-sources ones) can exist only for a bounded t.

In this work we construct a computational analogue of a non-malleable
extractor in the CRS model. As opposed to the information theoretic setting,
where the number of tampering attacks t is a-priori bounded, in the compu-
tational setting we allow the adversary to tamper an arbitrary (polynomial)
number of times (i.e., we do not fix an a priori bound t on the number of tam-
pering functions). In fact, in addition to giving the adversary Y,E(X,Y), we
can even give the adversary access to an oracle that on input Y ′ �= Y , outputs
E(X,Y ′).

We would like to note that the object we construct is somewhere in between
a seeded and a 2-source non-malleable extractor. While the source Y need not
be uniformly distributed, we only allow tampering with Y , and do not allow
tampering with the other source.

More formally, we define an (n1, n2, k1, k2) computational non-malleable
extractor (in the CRS model) as a function E : {0, 1}n1 × {0, 1}n2 × {0, 1}c →
{0, 1}m such that for all sources X,Y that are polynomially sampleable, are
independent, and have min-entropy at least k1 and k2 respectively, conditioned
on the CRS, it holds that (E(X,Y,CRS),CRS, Y) is computationally indistin-
guishable from (U,CRS, Y), even with respect to PPT adversaries that are given
access to an oracle that on input Y ′ �= Y outputs E(X,Y ′,CRS). Clearly, such
adversaries can obtain E(X,Y ′,CRS) for an arbitrary t = poly(n) number of
different samples Y ′, that depend on Y and the CRS.

In this setting, we obtain the following two incomparable results, in the high
and low min-entropy regimes respectively.

378 A. Garg et al.

Theorem 2 (Informal). Let λ ∈ N denote the security parameter and assume
the sub-exponential security of DDH. For every constant ε > 0, there exists a
constant c > 0 such that there exists an explicit (n1, n2, k1, k2) computational
non-malleable extractor resisting arbitrarily polynomial tamperings where:

n1 = Ω(λ), logc λ ≤ n2, k1 = nε
1, k2 = 0.51n2

Theorem 3 (Informal). Let λ ∈ N denote the security parameter and assume
the sub-exponential security of DDH. For every constant ε > 0, there exist con-
stants δ, c > 0 such that there exists an explicit (n1, n2, k1, k2) computational
non-malleable extractor resisting arbitrarily polynomial tamperings, where:

n1 = Ω(λ), logc λ ≤ n2 ≤ λδ, k1 = nε
1, k2 = logc n2

We mention that in our formal theorems, under the sub-exponential hardness
of DDH, we allow the sources to be sampled in super-polynomial time and the
adversary to run in super-polynomial time. This will be used in Sect. 6 to convert
a non-malleable extractor (in the high entropy regime) into a 2-source extractor
(in the low entropy regime). We refer the reader to Sects. 5 and 6 for more details.

2 Our Techniques

We obtain our results in three steps.

1. We first construct a computational non-malleable extractor in the CRS model,
for sources in the high entropy regime (i.e., assuming one of the sources has
min entropy rate larger than 1/2). Our construction follows the blueprint
of [5], who built leaky pseudo-entropy functions based on the sub-exponential
hardness of DDH. When viewed differently, their construction can be framed
as showing how to use cryptography to convert any (information theoretic)
2-source extractor (with negligible error) into a computational non-malleable
extractor in the CRS model (for sources with roughly the same min-entropy
as in the underlying 2-source extractor). Since we only have information the-
oretic 2-source extractors for sources in the high entropy regime, we obtain
a computational non-malleable extractor (in the CRS model) for sources in
the high entropy regime.
Importantly, this extractor is non-malleable w.r.t. arbitrarily many tampering
functions (a property that is impossible to achieve information theoretically).
This contribution is mainly conceptual.

2. We then describe how this extractor can be used to obtain a computational
2-source extractor (in the CRS model) with negligible error for low min-
entropy sources. This part contains the bulk of the technical difficulty of
this work. Specifically, we follow the blueprint of [1], which shows how to
convert any (information-theoretic) non-malleable extractor into a 2-source
extractor (with negligible error for low min-entropy sources). However, this
transformation assumes that the non-malleable extractor has a somewhat

Low Error Efficient Computational Extractors in the CRS Model 379

optimal dependence between the seed length and the allowable number of
tampering functions. Prior to our work, no explicit constructions of non-
malleable extractors were known to satisfy this requirement.
Our computational non-malleable extractor does satisfy this requirement, and
therefore we manage to use the [1] blueprint to construct the desired 2-source
extractor. Nevertheless, there are multiple unique challenges that come up
when trying to apply their transformation in the computational setting. One
of our key ideas to overcome these challenges involves using the leakage lemma
of Gentry and Wichs [18]. We elaborate on this in Sect. 2.2.

3. To achieve our final construction of a computational non-malleable extractor
(in the CRS model) with negligible error for low min-entropy sources, we
again use the blueprint from [5], however, this time we use our computational
2-source extractor as a building block. To argue security, we prove that the [5]
transformation goes through even if we start with a computational 2-source
extractor. As above, many technical challenges arise when considering the
computational setting.

2.1 From 2-Source Extractors to Non-malleable Extractors

We begin with the observation that the construction of leaky psuedo-random
functions from [5], can be framed more generally as a cryptographic reduction
from (information theoretic) 2-source extractors to computational non-malleable
extractors in the CRS model. Since we only know information theoretic 2-source
extractors (with negligible error) in the high-entropy regime, we obtain a compu-
tational non-malleable extractor (in the CRS model) in the high entropy regime.

Moreover, we generalize the [5] blueprint, by showing that one can convert
any computational 2-source extractor (in the CRS model) to a computational
non-malleable extractor (in the CRS model). This introduces several technical
difficulties which we elaborate on in Sect. 5. This generalization is needed to
obtain our final result, of a computational non-malleable extractor (in the CRS
model) for sources with low min-entropy (i.e., to achieve Item 3 in the overview
above).

We next describe our interpretation of the [5] blueprint for converting any
(information theoretic) 2-source extractor into a computational non-malleable
one (in the CRS model):

Start with any 2-source extractor

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m,

with negligible error (eg., [4,26]).
Assume the existence of the following two cryptographic primitives:

1. A collision resistant function family H, where for each h ∈ H,

h : {0, 1}n2 → {0, 1}k,

where k is significantly smaller than the min-entropy of the second source of
2Ext.

380 A. Garg et al.

A collision resistant hash family has the guarantee that given a random func-
tion h ← H it is hard to find two distinct elements y1, y2 ∈ {0, 1}n2 such that
h(y1) = h(y2).

2. A family of lossy functions F , where for each f ∈ F ,

f : {0, 1}n1 → {0, 1}n1 .

A lossy function family consist of two types of functions: injective and lossy.
Each lossy function loses most of the information about the input (i.e., the
image size is very small). It is assumed that it is hard to distinguish between
a random injective function and a random lossy function in the family.

We note that both these primitive can be constructed under the DDH assump-
tion, which is a standard cryptographic assumption.6

We next show how these cryptographic primites can be used to convert 2Ext
into a computational non-malleable 2-source extractor in the CRS model. We
start by describing the CRS.

The CRS consists of a random function h ← H from the collision-resistant
hash family, and consists of 2k random injective functions from the lossy function
family F , denoted by

f1,0, f2,0, . . . , fk,0

f1,1, f2,1, . . . , fk,1

The computational non-malleable extractor (in the CRS model) is defined by

cnm-Ext(x, y, crs) := 2Ext(fcrs,h(y)(x), y),

where
fcrs,s(x) := f1,s1 ◦ . . . ◦ fk,sk

(x)

In what follows, we recall the proof idea from [5]. To this end, consider any poly-
nomial size adversary A that obtains either (cnm-Ext(x, y), y, crs) or (U, y, crs),
together with an oracle O that has (x, y, crs) hardwired, and on input y′ outputs
⊥ if y′ = y, and otherwise outputs nm-Ext(x, y′, crs). By the collision resistance
property of h, A queries the oracle on input y′ s.t. h(y′) = h(y) only with negli-
gible probability. Therefore, the oracle O can be replaced by a different oracle,
that only hardwires (crs, h(y), x) and on input y′ outputs ⊥ if h(y′) = h(y), and
otherwise outputs cnm-Ext(x, y′).

A key observation is that access to this oracle can be simulated entirely given
only crs, h(y) and (Z1, . . . Zk), where

Zk = fk,1−h(y)k
(x)

Zk−1 = fk−1,1−h(y)k−1(fk,h(y)k
(x))

...
Z1 = f1,1−h(y)1(f2,h(y)2(. . . fk,h(y)k

(x)))

6 The DDH assumption asserts that there exists a group G such that (ga, gb, gab) is
computationally indistinguishable from (ga, gb, gc), where g is a fixed generator of G,
and where a, b, c are chosen randomly from Zq, where q denotes the order of G.

Low Error Efficient Computational Extractors in the CRS Model 381

Since the adversary A cannot distinguish between random injective func-
tions and random lossy ones, we can change the CRS to ensure that functions
f1,h(y)1 , . . . , fk,h(y)k

are injective, whereas the functions f1,1−h(y)1 , . . . , fk,1−h(y)k

are all lossy. By setting k (the size of the output of the hash) to be small
enough, we can guarantee that Y has high min-entropy conditioned on h(y)
and Z = (Z1, . . . , Zk). In addition, by setting the image of the lossy functions to
be small enough, we can guarantee that X also has high min-entropy conditioned
on h(y) and Z = (Z1, . . . , Zk). Moreover, it is easy to seet that X and Y remain
independent conditioned on h(Y) and Z. Thus, we can use the fact that 2Ext
is a (strong) 2-source extractor, to argue that the output of our non-malleable
extractor is close to uniform.

This was, of course, a very simplified overview. A careful reader may have
observed a circularity in the intuition above: Recall that we sample the crs
such that for b = h(y), the functions f1,b1 , . . . , fk,bk

are injective, whereas
f1,1−b1 , . . . , fk,1−bk

are lossy. Thus, the crs implicitly depends on y (via b = h(y)).
This results in a circularity, because y is then sampled as a function of this crs,
and hence may not satisfy that b = h(y). The formal proof requires us to care-
fully deal with this (and other) dependency issues that arise when formalizing
this intuition. In a nutshell, we overcome this circularity by strengthening our
assumption to a sub-exponential one, namely we assume the sub-exponential
hardness of DDH as opposed to the (more standard) polynomial hardness of
DDH.

In addition, as mentioned above, we prove that this transformation goes
through even if the underlying 2-source extractor is a computational one (in the
CRS model). This introduces various other technical difficulties. We refer the
reader to Sect. 5 for the details.

2.2 Our 2-Source Extractor

As mentioned earlier, we construct our computational 2-source extractor by fol-
lowing the blueprint of [1], which shows how to use a non-malleable seeded
extractor to construct a 2-source extractor (in the low entropy regime). How-
ever, they need the non-malleable seeded extractor to have the property that the
seed length is significantly smaller than t log(1/ε), where t is the number of tam-
pering functions that the non-malleable extractor is secure against, and where
ε is the error.7 Unfortunately, all known (information theoretic) non-malleable
extractors require the seed length to be at least t log(1/ε).

We note that in Sect. 2.1, we obtained computational non-malleable extrac-
tor (in the CRS model) for sources in the high-entropy regime (by using a 2-
source extractor from [4,26] as a building block). This extractor, in particular,
can be seen as a non-malleable seeded extractor. Importantly, it satisfies the
requirements of [1], since in our construction the seed length is independent of t.
Thus, one would expect that instantiating the [1] transformation with our com-
putational non-malleable extractor (in the CRS model), would directly yield a

7 The exact parameters are not relevant to this overview.

382 A. Garg et al.

computational 2-source extractor (in the CRS model), with negligible error for
low min-entropy sources. However, this turns out not to be the case.

The reason is that the analysis of [1] crucially requires the underlying non-
malleable extractor to be secure against adversaries that run in unbounded time.
Specifically, even given an efficient adversary that contradicts the security of
the 2-source extractor, [1] obtain an inefficient adversary that contradicts the
security of the underlying non-malleable extractor. Since our underlying non-
malleable extractor is computational, it is not clear if this gets us anywhere.
Moreover, dealing with sources that can depend on the CRS causes further
technical problems. Nevertheless, we show that the construction of [1] can be
instantiated with our computational non-malleable extractor in the CRS model,
but with a substantially different (and more technically involved) analysis. In
particular, in our analysis we make a novel use of the leakage lemma of Gentry
and Wichs [18].

The blueprint of [1]. To better understand these technicalities, we begin by
describing the transformation of [1]. Their transformation uses a disperser as
a building block.

A (K,K ′) disperser is a function

Γ : {0, 1}n2 × [t] → {0, 1}d

such that for every subset A of {0, 1}n2 that is of size ≥ K, it holds that the size
of the set of neighbors of A under Γ is at least K ′.

The [1]-transformation takes a seeded non-malleable extractor

nm-Ext : {0, 1}n1 × {0, 1}d → {0, 1}m

and a disperser
Γ : {0, 1}n2 × [t] → {0, 1}d,

and constructs the following 2-source extractor 2Ext : {0, 1}n1 × {0, 1}n2 →
{0, 1}m, defined by

2Ext(x1, x2) =
⊕

y:∃i s.t. Γ (x2,i)=y

nm-Ext(x1, y)

In this work, we instantiate their transformation in the computational setting.
In what follows, we first describe the key ideas in the proof from [1], and then
we explain the technical difficulties that arise in the computational setting, and
how we resolve them.

Fix any two independent sources X1 and X2 with “sufficient” min-entropy.
One can argue that

(2Ext(X1,X2),X2) ≡ (U,X2)

as follows:

Low Error Efficient Computational Extractors in the CRS Model 383

1. By the definition of an (information-theoretic) t-non-malleable extractor
nm-Ext, for a random y ∈ {0, 1}d, for all y′

1, . . . , y
′
t that are distinct from

y, it holds that

(nm-Ext(X1, y),nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) ≡

(U,nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) .

We call a y that satisfies the above property, a good y. By a standard averaging
argument one can argue that an overwhelming fraction of y’s are good.

2. Fix any x2 for which there exists an i ∈ [t] such that y = Γ (x2, i) is good.
This means that nm-Ext(X1, y) is statistically close to uniform, even given
nm-Ext(X1, Γ (x2, j)) for every j ∈ [t]\{i} such that Γ (x2, j) �= y, which in
turn implies that the XOR of these (distinct) values is close to uniform, which
implies that 2Ext(X1, x2) is close to uniform.

3. It thus suffice to show that for x2 ← X2, with overwhelming probability there
exists an i ∈ [t] such that y = Γ (x2, i) is good. This can be done by relying on
the disperser. Specifically, consider the set of bad x2’s for which y = Γ (x2, i)
is not good for all i ∈ [t]. Loosely speaking, if this set occurs with noticeable
probability, then one can use the property of the disperser to argue that the
support of Γ (x2, i) for x2 ∈ bad, i ∈ [t] covers a large fraction of the y’s, and
by definition, none of these y’s can be good, contradicting the fact that we
argued above that an overwhelming fraction of y’s must be good.

This completes the outline of the proof in [1].

The Computational Setting. The intuitive analysis above, while easy to formalize
in the information theoretic setting, does not carry over to the computational
setting, for various reasons.

1. First, it is not clear that a computational non-malleable extractor satisfies the
first property of the [1] outline. Namely, it is not clear that for an overwhelming
fraction of y ∈ {0, 1}d, it holds that for all y′

1, . . . y
′
t distinct from y,

(cnm-Ext(X1, y), cnm-Ext(X1, y
′
1), . . . , cnm-Ext(X1, y

′
t)) ≈

(U, cnm-Ext(X1, y
′
1), . . . , cnm-Ext(X1, y

′
t)) ,

where ≈ denotes computational indistinguishability. This is because the com-
putational advantage of an efficient adversary on different y’s could cancel
out.

2. More importantly, in the computational setting, we would have to construct
an efficient reduction R that breaks the non-malleable extractor, given any
adversary A that breaks the 2-source extractor.

R obtains input (α, ŷ), where ŷ is a random seed and where α is either
chosen according to cnm-Ext(X1, ŷ) or is chosen uniformly at random. In
addition, R obtains an oracle that outputs cnm-Ext(X1, y

′) on input y′ �= ŷ.
The reduction R is required to efficiently distinguish between the case where
α ← cnm-Ext(X1, ŷ) and the case where α is chosen uniformly at random.

384 A. Garg et al.

In order to use A, R needs to generate a challenge for A that corresponds
either to the output of the 2-source extractor (if α was the output of cnm-Ext)
or uniform (if α was uniform). R also needs to generate a corresponding x2

for A, that is sampled according to X2. How can it generate these values?
If R were allowed to be inefficient, then a simple strategy for R would be the
following:

– Sample x̂2 ← X2 conditioned on the existence of i ∈ [t] such that ŷ =
Γ (x̂2, i).

– Next, query the oracle on inputs (y1, . . . yt) where for every i ∈ [t], yi =
Γ (x̂2, i). As a result, R obtains zi = cnm-Ext(x1, yi) for all i ∈ [t]\̂i, and
sets z =

(⊕
i∈[t] zi

)
⊕ α (after removing duplicates).

– It is easy to see that x̂2 is generated from the distribution X2. Moreover,
if α is the output of cnm-Ext, then z corresponds to 2Ext(x1, x2), and
otherwise to uniform.

– At this point, if A distinguishes z from uniform, R can echo the output
of A to distinguish α from uniform.

Unfortunately, this does not help us much, because the underlying non-
malleable extractor is only guaranteed to be secure against efficient adver-
saries, whereas the adversary R that we just outlined, crucially needs to invert
the disperser. It is not clear that one can build dispersers in our parameter
setting that are efficiently invertible. Moreover, even if there was a way to
invert the disperser, R would need to ensure that the inverse x̂2 is sampled
from the correct distribution, and it is unclear whether this can be done
efficiently.

Our key ideas. Our first key idea is to get around this technicality by using
the leakage lemma as follows: Since R on input ŷ cannot find x̂2 efficiently, we
will attempt to view x̂2 as inefficiently computable leakage on ŷ, and simulate
x̂2 using the following leakage lemma. Informally, this lemma says that any
inefficiently computable function that outputs γ bits, can be simulated in time
roughly O(2γ) relative to all efficient distinguishers.

Lemma 1 [10,18,21]. Fix d, γ ∈ N and fix ε > 0. Let Y be any distribution
over {0, 1}d. Consider any randomized leakage function π : {0, 1}d → {0, 1}γ .
For every T , there exists a randomized function π̂ computable by a circuit of size
poly

(
2γε−1T log T

)
such that for every randomized distinguisher D that runs in

time at most T ,

|Pr[D(Y, π(Y)
)

= 1] − Pr[D(Y, π̂(Y)
)

= 1]| ≤ ε

By Lemma 1, simulating x̂2 given ŷ would take time roughly O(2|x̂2 |).8 While
this simulator is clearly not as efficient as we would like, one can hope that
things still work out if the underlying non-malleable extractor is secure against
adversaries running in time O(2|x̂2 |).
8 Jumping ahead, this is the reason that we end up with a 2-source extractor for

unbalanced sources (see Theorem 3).

Low Error Efficient Computational Extractors in the CRS Model 385

However, any disperser (with our setting of parameter, where t is small) must
be compressing, which means that |x̂2| > |ŷ|. Therefore, the simulator’s running
time would be more than O(2|ŷ|). Howeover, ŷ corresponds to the input of the
non-malleable extractor, and recall that our non-malleable extractor applies a
(compressing) collision-resistant hash function to its input y. Therefore, the non-
malleable extractor is completely insecure against adversaries that run in time
O(2|ŷ|). This creates a circular dependency, and it may appear that this approach
is doomed to fail. Nevertheless, we manage to apply the leakage lemma in a more
sophisticated way. Recall that the adversary outlined above queries its oracle on
{yj}j∈[t]\{i}, where yj = Γ (x̂2, j) and where x̂2 ← X2 such that ŷ = Γ (x̂2, i).
Importantly, we show that the elements in {yj}j∈[t] form a hash collision only
with negligible probability, assuming the sources for the 2-source extractor are
somewhat efficiently sampleable. Otherwise, it would be possible to break the
hash function in time proportional to that required to sample sources for the
2-source extractor.

Thus, in order to use the leakage lemma effectively, we prove a stronger form
of security of our non-malleable extractor: we show that it is secure against
adversaries that potentially run in time larger than the time against which the
hash function is secure; as long as these adversaries do not query the oracle
of the non-malleable extractor on hash collisions. By setting the parameters
appropriately, this allows us to use the leakage lemma, and thus complete the
argument outlined above. We therefore get a construction of a 2-source extractor,
by relying on a non-malleable extractor that is secure against adversaries running
in time O(2|ŷ|), as long as they do not make hash collision queries.

Roadmap. The rest of this paper is organized as follows. In Sect. 3, we provide the
relevant preliminaries. In Sect. 4, we provide our new definitions of computational
2-source extractors and non-malleable extractors in the CRS model.

In Sect. 5 we show how to convert a computational 2-source extractor (in the
CRS model) into a computational non-malleable extractor (in the CRS model),
with similar min-entropy guarantees. By applying this transformation to the
information theoretic 2-source extractors of [4] or [26], we get a computational
non-malleable extractor (in the CRS model) for sources in the high min-entropy
regime.

In Sect. 6 we show how to convert our computatational non-malleable extrac-
tor (in the CRS model) into a computational 2-source extractor (in the CRS
model) in the low entropy regime. Finally, we obtain a computational non-
malleable extractor (in the CRS model) in the low entropy regime, by applying
the transformation from Sect. 5 to the computational 2-source extractor that we
constructed in Sect. 6.

3 Preliminaries

In this section, we discuss some preliminaries needed for the later sections. This
includes facts about min-entropy, lossy functions, dispersers, and the leakage
lemma that we rely on.

386 A. Garg et al.

Definition 1. A function μ : N → N is said to be negligible, denoted by μ =
neg(λ), if for every polynomial p : N → N there exists a constant c ∈ N such that
for every λ > c it holds that

μ(λ) ≤ 1/p(λ).

For any function T : N → N, we say that μ is negligible in T , denoted by
μ(λ) = neg(T (λ)) if for every polynomial p : N → N there exists a constant
c ∈ N such that for every λ > c it holds that

μ(λ) ≤ 1/p(T (λ)).

Definition 2. Two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
said to be T (λ)-indistinguishable if for every poly(T) size circuit A,

∣∣∣∣Prx←Xλ
[A(x) = 1] − Pry←Yλ

[A(y) = 1]
∣∣∣∣ = neg(T (λ))

Definition 3. A distribution X over a domain D is said to have min-entropy
k, denoted by H∞(X) = k, if for every z ∈ D,

Pr
x←X

[x = z] ≤ 2−k.

In this paper, we consider sources with average conditional min entropy, as
defined in [16] (and also in the quantum information literature). This notion
is less restrictive than worst case conditional min-entropy (and therefore this
strengthens our results), and is sometimes more suitable for cryptographic appli-
cations.

Definition 4 [16]. Let X and Y be two distributions. The average conditional
min-entropy of X conditioned on Y , denoted by H∞(X|Y)9 is

H∞(X|Y) = − log Ey←Y max
x

Pr[X = x|Y = y] = − log(Ey←Y [2−H∞(X|Y =y)])

Note that 2−H∞(X|Y) is the highest probability of guessing the value of the random
variable X given the value of Y .

We will rely on the following useful claims about average conditional min-
entropy.

Claim [16]. Let X,Y and Z be three distributions, where 2b is the number of
elements in the support of Y . Then,

H∞(X|Y,Z) ≥ H∞(X,Y |Z) − b

Claim. Let X, Y and Z be three distributions, then

H∞(X|Y) ≥ H∞(X|Y,Z)

We defer the proof of this claim to the full version.
9 This is often denoted by ˜H∞(X|Y) in the literature.

Low Error Efficient Computational Extractors in the CRS Model 387

3.1 Collision Resistan Hash Functions

In this work we rely on the existence of a collision resistant function family. Our
setting of parameters is slightly non-standard, since our input domain may differ
from the security parameter.

Definition 5 (T (λ)-secure collision resistant hash functions). Let n, k :
N → N be functions of the security parameter, and let H = {Hλ}λ∈N be a family
of functions where for every λ ∈ N and every h ∈ Hλ,

h : {0, 1}n(λ) → {0, 1}k(λ).

This function family is said to be a T (λ)-secure collision resistant hash family if
for every poly(T (λ))-size adversary A there exists a negligible function ν such
that for every λ ∈ N,

Pr
h←Hλ

[A(h) = (x1, x2) s.t. (x1 �= x2) ∧ h(x1) = h(x2)] = ν(T (λ)).

Theorem 4. Assuming sub-exponential hardness of DDH, there exists a con-
stant δ > 0 such that for every pair of polynomials n, k : N → N such that
poly(λ) ≥ n(λ) > k(λ) ≥ Ω(λ) and for T (λ) = 2λδ

, there exists a T (λ)-secure
collision resistant hash family Hλ, where for every h ∈ Hλ, h : {0, 1}n(λ) →
{0, 1}k(λ).

3.2 Lossy Functions

Lossy functions were defined by Peikert and Waters in [25]. Loosely speaking
a lossy function family consists of functions of two types: lossy functions and
injective ones. The lossy ones (information theoretically) lose most of the infor-
mation about the input; i.e., the image is significantly smaller than the domain.
The injective functions, on the other hand, are injective. It is required that it is
(computationally) hard to distinguish between a random lossy function in the
family and a random injective function in the family. In our setting, we will need
a lossy function family where the range and the domain are of a similar size
(or close to being a similar size). Intuitively, the reason is that we apply these
functions to our min-entropy source, and if the functions produce output strings
that are much longer than the input strings then we will lose in the min-entropy
rate.

Definition 6 (Lossy functions). A function family F = {Fλ}λ∈N is a
(T, n,w)-lossy function family if the following conditions hold:

– There are two probabilistic polynomial time seed generation algorithms Geninj

and Genloss s.t. for any poly(T (λ))-size A, it holds that
∣∣∣∣Prs←Geninj(1λ) [A(s) = 1] − Prs←Genloss(1λ) [A(s) = 1]

∣∣∣∣ = neg(T (λ)).

388 A. Garg et al.

– For every λ ∈ N and every f ∈ Fλ, f : {0, 1}n(λ) → {0, 1}n(λ).
– For every λ ∈ N and every s ∈ Geninj(1λ), fs ∈ Fλ is injective.
– For every λ ∈ N and every s ∈ Genloss(1λ), fs ∈ Fλ is lossy i.e. its image

size is at most 2n(λ)−w.
– There is a polynomial time algorithm Eval s.t. Eval(s, x) = fs(x) for every

λ ∈ N, every s in the support of Geninj(1λ) ∪ Genloss(1λ) and every x ∈
{0, 1}n(λ).

Modifying the construction in [25] (to ensure that the input and output
lengths of the functions are the same for every n = poly(λ)), [5] gave a construc-
tion of a (T, n,w)-lossy function family, for w = n − nε (where ε > 0 can be any
arbitrary small constant), and for every T assuming the DDH assumption holds
against poly(T)-size adversaries.

In this work, we use the following lemma.

Lemma 2 [5,25]. For any constant ε > 0 there exists a constant δ > 0 such that
for every Ω(λ) ≤ n(λ) ≤ poly(λ) there exists a (T, n,w)-lossy function family,
with T (λ) = 2λδ

and w = n−nε, assuming the sub-exponential DDH assumption.

3.3 Leakage Lemma

We make use of the following lemma, which shows that any inefficient leakage
function can be simulated efficiently relative to a class of distinguishers.

Lemma 3 [10,18,21]. Fix d, γ ∈ N and fix ε > 0. Let Y be any distribution
over {0, 1}d. Consider any randomized leakage function π : {0, 1}d → {0, 1}γ .

For every T , there exists a randomized function π̂ computable by a circuit of
size poly

(
2γε−1T

)
such that for every randomized distinguisher D that runs in

time at most T ,

|Pr[D(Y, π(Y)
)

= 1] − Pr[D(Y, π̂(Y)
)

= 1]| ≤ ε

3.4 Dispersers

Definition 7. A function Γ : [N] × [t] → [D] is a (K,K ′) disperser if for every
A ⊆ [N] with |A| ≥ K it holds that

∣∣ ⋃
a∈A,i∈[t]{Γ (a, i)}∣∣ ≥ K ′.

We will rely on dispersers which follow from the known constructions of seeded
extractors (e.g. [19]).

Theorem 5 (e.g. [19]). There exists a constant c such that the following holds.
For every N,K,K ′,D such that D ≤ √

K and K ′ ≤ D/2, there exists an efficient
(K,K ′)-disperser

Γ : [N] × [t] → [D]

with degree
t = logc(N)

Low Error Efficient Computational Extractors in the CRS Model 389

4 Computational Extractors: Definitions

In this section, we define extractors in the computational setting with a CRS. We
define both a 2-source extractor and a non-malleable extractor in this setting.

In both definitions, we allow the min-entropy sources to depend on the CRS,
but require that they are efficiently sampleable conditioned on the CRS (where
the efficiency is specified by a parameter T). We also allow each source to par-
tially leak, as long as the source has sufficient min-entropy conditioned on the
CRS and the leakage.

At first, it may seem that there is no need to consider leakage explicitly,
since one can incorporate the leakage as part of the definition of the min-entropy
source; i.e., define the source w.r.t. a fixed leakage value. However, the result-
ing source may not be efficiently sampleable. For example, if the leakage on a
source X is h(X), where h is a collision resistant hash function, then sampling
x ← X conditioned on a given leakage value is computationally hard, due to the
collision resistance property of h. Therefore, in the definitions below we consider
leakage explicitely.

More specifically, for two sources X and Y we allow leakage on Y , which we
will denote by Linit; and then allow leakage on X (that can also depend on Linit),
which we will denote by Lfinal. Moreover, both Linit and Lfinal can depend on the
CRS. We mention that a more general leakage model is one which allows first
leakage on Y , then allows leakage on X (that may depend on the initial leakage),
and then again allows leakage on Y (that may depend on all the leakage so far),
etc. Unfortunately, we do not know how to obtain our results in this more general
leakage model.

For technical reasons, we also allow one of the sources (the one which is given
to the adversary in the clear, as part of the definition of a strong extractor) to
be sampled together with auxiliary information AUX. This auxiliary informa-
tion depends on the source and on the CRS. As in the leakage case, we need
to consider this auxiliary information explicitely, since in our proofs we will use
an auxiliary input which is hard to compute given the source and CRS (and
therefore cannot generate it while ensuring the security of our underlying hard-
ness assumption). Importantly, it is easy to generate this auxiliary information
together with the source, jointly as a function of CRS. As opposed to the case
of leakage, the source is not required to have min-entropy conditioned on AUX.

Definition 8 (T -Admissible Leaky (n1, n2, k1, k2) Source Distribution).
A T -admissible leaky (n1, n2, k1, k2) source distribution with respect to a CRS
distribution {CRSλ}λ∈N consists of an ensemble of sources X = {Xλ}λ∈N, Y =
{Yλ}λ∈N, leakage L = {Lλ} and auxiliary input AUX = {AUXλ}, such that for
every λ ∈ N, the following holds:

– For every crs ∈ Supp(CRSλ), Supp(Xλ|crs) ⊆ {0, 1}n1(λ) and Supp(Yλ|crs) ⊆
{0, 1}n2(λ).

– The leakage Lλ consists of two parts, Linit and Lfinal, such that for every
crs ∈ Supp(CRS), (Y,AUX, Linit|crs) is sampleable in time poly(T), and for
every �init ∈ Supp(Linit|crs), (X,Lfinal|crs, �init) is sampleable in time poly(T).

390 A. Garg et al.

– H∞(Xλ|CRSλ, Lλ) ≥ k1 and H∞(Yλ|CRSλ, Lλ) ≥ k2.
– For every crs ∈ CRSλ and � ∈ Supp(Lλ|crs), the distributions (Xλ|crs, �) and

(Yλ,AUXλ|crs, �) are independent.10
– For every aux ∈ Supp(AUXλ), |aux| = O(log T (λ))11.

Definition 9 (Computational strong 2-source extractors in the CRS
model). For functions n1 = n1(λ), n2 = n2(λ), c = c(λ), and m = m(λ), a
function ensemble 2Ext = {2Extλ}λ∈N, where

2Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ),

is said to be a (n1, n2, k1, k2) strong T -computational 2-source extractor in the
CRS model if there is an ensemble {CRSλ}λ∈N where CRSλ ∈ {0, 1}c(λ), such
that the following holds:

For every T -admissible leaky (n1, n2, k1, k2) source distribution (X,Y, L,AUX)
with respect to CRS, for every polynomial p, there exists a negligible function
ν(·) such that for every λ and every p(T (λ))-size adversary A,

∣∣∣∣ Pr
[
A (2Extλ(x, y, crs), y, crs, �, aux) = 1

]
−

Pr
[
A (U, y, crs, �, aux) = 1

]∣∣∣∣ = ν(T (λ)),

where the probabilities are over the randomness of sampling (crs, x, y, �, aux) ←
(CRSλ,Xλ, Yλ, Lλ,AUXλ), and over U which is uniformly distributed over
{0, 1}m(λ) independent of everything else.

Definition 10 (Computational strong non-malleable extractors in the
CRS model). For functions n1 = n1(λ), n2 = n2(λ), c = c(λ), and m = m(λ),
a function ensemble cnm-Ext = (cnm-Extλ)λ∈N, where

cnm-Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ)

is said to be a (n1, n2, k1, k2) strong T -computational non-malleable extractor
in the CRS model if there is an ensemble {CRSλ}λ∈N, where CRSλ ∈ {0, 1}c(λ),
such that the following holds:

For every T -admissible leaky (n1, n2, k1, k2) source distribution (X,Y, L,AUX)
with respect to CRS, for every polynomial p, there exists a negligible function
ν(·) such that for every λ and every p(T (λ))-size adversary A,

∣∣∣∣Pr
[
AOy

x,crs (cnm-Ext(x, y, crs), y, crs, �, aux) = 1
]
−

Pr
[
AOy

x,crs (U, y, crs, �, aux) = 1
] ∣∣∣∣ = ν(T (λ)),

10 This condition follows from the way X and Y are sampled, and we add it only for
the sake of being explicit.

11 We restrict the length of aux to be at most O(log T (λ)) for technical reasons.

Low Error Efficient Computational Extractors in the CRS Model 391

where the oracle Oy
x,crs on input y′ �= y outputs cnm-Ext(x, y, crs), and other-

wise outputs ⊥; and where the probabilities are over the randomness of sampling
(crs, x, y, �, aux) ← (CRSλ,Xλ, Yλ, Lλ,AUXλ), and over U which is uniformly
distributed over {0, 1}m(λ) independent of everything else.

We will occasionally need to impose a different requirement on the error
distribution. In such cases we specify the error requirement explicitly. Specifi-
cally, we say that a (n1, n2, k1, k2) strong T -computational two source (or non-
malleable) extractor has error neg(T ′(λ)) if it satisfies Definition 9 (or Defini-
tion 10), where the adversary’s distinguishing advantage is required to be at
most negligible in T ′(λ).

For our constructions, we will rely on the following theorem from [26] (sim-
plified to our setting). This is a statistical 2-source extractor; i.e., one that con-
siders sources that are sampled in unbounded time, and fools adversaries with
unbounded running time.

Theorem 6 [26]. There exists a (n1, n2, k1, k2) strong statistical 2-source
extractor according to Definition 9 where n2 = ω(log n1), k1 ≥ log n1, and
k2 ≥ αn2 for any constant α > 1

2 , and error exp−Θ(min{k1,k2}).

5 Computational Strong Non-malleable Extractors in the
CRS Model

In this section, we describe our construction of computational non-malleable
extractors in the CRS model, and prove the following theorem.

Theorem 7. Let T, T ′, n1, n2, k1, k2, k3, w : N → N be functions of the security
parameter, where T ≥ 2k3 and such that the following primitives exist.

– A (n1, n2, k1, k2) strong T -computational 2-source extractor with in the CRS
model, denoted by:

2Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ)

– A (T, n1, w)-lossy function family F = {Fλ}λ∈N, according to Definition 6,
where w = n1 − nγ

1 for some constant γ ∈ (0, 1).
– A T ′-secure family of collision resistant hash functions H = {Hλ}λ∈N with

h : {0, 1}n2 → {0, 1}k3 .

Then there exists a (n1, n2,K1,K2) strong T ′-computational non-malleable
extractor, satisfying Definition 10 for K1 = k1+k3(n1−w+1)+1,K2 = k2+k3+1.

Before we describe the construction (Sect. 5.1), we point out that the guaran-
tees of the non-malleable extractor from Theorem 7 are not sufficient to instan-
tiate the compiler in Sect. 6. To this end, we prove (Sect. 5.2) that our non-
malleable extractor construction satisfies a stronger (yet more technical) prop-
erty which turns out to be sufficient.

392 A. Garg et al.

5.1 Construction

We begin by defining the CRS distribution.

Generating the common reference string (CRS). For a given security parameter
λ ∈ N, the common reference string is generated as follows.

1. Sample crs2Ext for the (n1, n2, k1, k2) strong T -computational 2-source extrac-
tor with respect to the security parameter 1λ.

2. Sample h ← Hλ.
3. Sample b = (b1, . . . , bk3) ← {0, 1}k3 .
4. Sample independently k3 pairs of random injective functions from Fλ,

f1,b1 , f2,b2 , . . . , fk3,bk3
← Geninj(1λ).

5. Sample independently k3 pairs of random lossy functions from Fλ,

f1,1−b1 , f2,1−b2 , . . . , fk3,b1−k3
← Genloss(1λ).

Output

crs =
(
crs2Ext, h,

f1,0, f2,0, . . . , fk3,0

f1,1, f2,1, . . . , fk3,1

)

Our computational non-malleable extractor, cnm-Ext = {cnm-Extλ}λ∈N, is
defined as follows: For any λ ∈ N, denote by c = c(λ) = |crs|, then

cnm-Extλ : {0, 1}n1 × {0, 1}n2 × {0, 1}c → {0, 1}m,

where ∀(x, y, crs) ∈ {0, 1}n1 × {0, 1}n2 × {0, 1}c, crs =

(

crs2Ext, h, {fi,b}i∈[k3],b∈{0,1}

)

cnm-Extλ(x, y, crs) = 2Extλ

(
f1,h(y)1 ◦ f2,h(y)2 ◦ . . . ◦ fk3,h(y)k3

(x), y, crs2Ext

)
.

(1)

As mentioned above, Theorem 7 is insufficient for instantiating our compiler
(in Sect. 6) which converts a non-mallealbe extractor into a 2-source extractor.
Rather, we need the non-malleable extractor to have the following more gen-
eral (and more complex) guarantee, which is tailored to our construction (in
Sect. 5.1): If the underlying 2-source extractor 2Ext is T -secure (for T ≥ 2k3)
then the resulting non-malleable extractor is also T -secure with error neg(2k3),
assuming the adversary (i.e., distinguisher) does not query its oracle on y′ such
that h(y) = h(y′). We next formalize this guarantee, and begin by defining the
notion of an H-admissible adversary corresponding to our non-malleable extrac-
tor from Sect. 5.1.

Definition 11 (H-Admissible Adversary). We say that an adversary A is
H-admissible if on any input (v, y, crs, �, aux) (where v is either cnm-Ext(x, y, crs)
or a uniformly random string), it does not query its oracle Oy

x,crs with y′ such
that h(y′) = h(y), where h is the hash function in crs.

Low Error Efficient Computational Extractors in the CRS Model 393

Theorem 8. Let T, n1, n2, k1, k2, k3, w : N → N be functions of the security
parameter, and let H = {Hλ}λ∈N with h : {0, 1}n2 → {0, 1}k3 be a family of
functions. Assume that T ≥ 2k3 and the following primitives exist.

– A (n1, n2, k1, k2) strong T -computational 2-source extractor in the CRS
model, denoted by:

2Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ)

– A (T, n1, w)-lossy function family F = {Fλ}λ∈N, according to Definition 6,
where w = n1 − nγ

1 for some constant γ ∈ (0, 1).

Then the extractor constructed in Sect. 5.1 is a (n1, n2,K1,K2) strong T -
computational non-malleable extractor with error neg(2k3) against H-admissible
adversaries, for K1 = k1 + k3(n1 − w + 1) + 1,K2 = k2 + k3 + 1.

Corollary 1 instantiates Theorem 8 with the 2-source extractor from Theo-
rem 6; this corollary will be used in the next section.

Corollary 1. Let H = {Hλ}λ∈N with h : {0, 1}n2 → {0, 1}k3 be a family of func-
tions. Assume the sub-exponential hardness of DDH, and fix any constant ε > 0.
Then there exists a constant δ > 0 such that for any parameters (n1, n2,K1,K2)
satisfying

Ω(λ) ≤ n1 ≤ poly(λ), n2 = ω(log n1), K1 = nε
1, and K2 = 0.51n2

there exists a (n1, n2,K1,K2) strong T -computational non-malleable extractor
with error neg(2k3) against H-admissible adversaries (satisfying Definition 10)
for T (λ) = 2λδ

and k3 ≤ min{λδ, n
ε/2
1 , n0.9

2 }.

Proof of Corollary 1. Fix a constant ε > 0, and fix n1 = n1(λ) and n2 = n2(λ)
as in the statement of Corollary 1. By Lemma 2, the sub-exponential hardness
of DDH (together with the restrictions on n1 and n2) implies that there exists
a constant δ > 0 for which there exists a (T, n1, w)-lossy function family F =
{Fλ}λ∈N where T (λ) = 2λδ

and w is such that n1 − w = n
ε/3
1 .

By Theorem 6, for n2 = ω(log n1), there exists a (n1, n2, k1, k2) strong
statistical 2-source extractor for k1 = n

ε/3
1 and k2 = 0.501n2 with error

exp−Θ(min(k1,k2)) = neg(2k3). In particular, this extractor is a (n1, n2, k1, k2)
strong T -computational 2-source extractor in the CRS model (where the CRS
is empty).

Note that by our setting of parameters T ≥ 2k3 . Therefore, by Theorem 8,
there exists a (n1, n2,K1,K2) strong T -computational non-malleable extractor
with error neg(2k3) against H-admissible adversaries, where K1 = k1 + k3(n1 −
w+1)+1 ≤ n

ε/3
1 +n

ε/2
1 ·nε/3

1 +1 ≤ nε
1 and K2 = k2+k3+1 ≤ 0.501n2+n0.9

2 +1 ≤
0.51n2, as desired. ��

394 A. Garg et al.

5.2 Analysis

In this section, we prove Theorem 8; namely, we prove the T -security of the non-
malleable extractor against H-admissible adversaries. The proof of Theorem 7
follows from the observation that every adversary A that runs in time poly(T ′)
on input sources sampled in time poly(T ′), cannot query the oracle on hash
collisions, except with probability neg(T ′), and thus is H-admissible (except
with probability neg(T ′)).

The proof proceeds in stages. First we replace the oracle Oy
x,crs with an oracle

Õy
x,crs which refuses to answer when queried on a y′ s.t. the hash values of y

and y′ match. Note that since our adversary is assumed to be H-admissible, it
cannot distinguish between these two oracles since it never makes such a query.
Then we prove that if the adversary succeeds in distinguishing the output of
the non-malleable extractor from random, then he can also distinguish even if
we condition on the event that h(y) = b (recall that b ∈ {0, 1}k3 is used to
determine which functions are lossy or injective in the crs). Finally, we design a
distribution for the 2-source extractor and break it using the supposed adversary
for the non-malleable extractor.

Proof (of Theorem 8). In this proof, we will sometimes suppress the dependence
on λ in the notation for convenience.

Fix any T -admissible leaky (n1, n2,K1,K2) source distribution
(X,Y, L,AUX) with respect to CRS. Suppose for the sake of contradiction, that
there exists a polynomial p, and a poly(T)-size H-admissible adversary A, such
that for infinitely many λ ∈ N,

Pr[AOy
x,crs(cnm-Ext(x, y, crs), y, crs, �, aux) = 1]−

Pr[AOy
x,crs(U, y, crs, �, aux) = 1] ≥ 1

p(2k3)
, (2)

where the probabilities are over (crs, x, y, �, aux) ← (CRS,X, Y, L,AUX) and over
uniformly distribution U ← {0, 1}m.

For any x ∈ {0, 1}n1 and y ∈ {0, 1}n2 , let

zk3 = fk3,1−h(y)k3
(x)

zk3−1 = fk3−1,1−h(y)k3−1(fk3,h(y)k3
(x))

...
z1 = f1,1−h(y)1(f2,h(y)2(. . . fk3,h(y)k3

(x)))

Denote by zx,h(y) = (z1, . . . , zk3).

Let Õy
x,crs (abusing notation we will call it just Õ) be the oracle that on input

y′ ∈ {0, 1}n2 , if h(y′) �= h(y) outputs

Oy
x,crs(y

′) = cnm-Ext(x, y′, crs) = 2Extλ(f1,h(y′)1 ◦ . . . ◦ fk3,h(y′)k3
(x), y′, crs2Ext),

Low Error Efficient Computational Extractors in the CRS Model 395

and otherwise outputs ⊥. The key observation is that this oracle can be simu-
lated efficiently given only (h(y), zx,h(y), crs), without any additional information
about x or y. This will come in handy later.

Since A is H-admissible, by definition, A does not generate a query y′ �= y
such that h(y′) = h(y), and therefore, the oracles are indistinguishable. This,
together with Eq. (2), implies that for infinitely many λ ∈ N,

Pr[A ˜O (cnm-Ext(x, y, crs), y, crs, �, aux) = 1]−
Pr[A ˜O (U, y, crs, �, aux) = 1] ≥ 1

p(2k3)
(3)

where the probabilities are over (crs, x, y, �, aux) ← (CRS,X, Y, L,AUX) and
over uniformly distribution U ← {0, 1}m. Next, the T -security of the lossy func-
tion family, together with the assumption that T ≥ 2k3 , implies that for every
poly(T)-size adversary B (recall b ∈ {0, 1}k3 is used to determine which functions
are lossy or injective in the crs),

2−k3 + neg(T) ≥ Pr[B(crs) = b] ≥ 2−k3 − neg(T). (4)

This, together with the fact that (X,Y, L,AUX|crs) can be sampled in time
poly(T), implies that

2−k3 + neg(T) ≥ Pr
[
h(y) = b

] ≥ 2−k3 − neg(T), (5)

where the probability is over crs ← CRS, and over (x, y, �, aux) ←
(X,Y, L,AUX|crs).
Claim. For infinitely many λ ∈ N,

Pr
[(A ˜O (cnm-Ext(x, y, crs), y, crs, �, aux) = 1

)∣∣∣
(
h(y) = b

)]

− Pr
[(A ˜O (U, y, crs, �, aux) = 1

)∣∣∣
(
h(y) = b

)] ≥ 1
4p(2k3)

(6)

The proof of this claim appears in the full version of our paper.
This Claim, together with Eq. (5), implies that for infinitely many λ ∈ N:

Pr
[(A ˜O (cnm-Ext(x, y, crs), y, crs, �, aux) = 1

) ∧ (
h(y) = b

)]

− Pr
[(A ˜O (U, y, crs, �, aux) = 1

) ∧ (
h(y) = b

)]

= Pr
[(A ˜O (cnm-Ext(x, y, crs), y, crs, �, aux) = 1

)∣∣∣
(
h(y) = b

)] · Pr
[
h(y) = b

]

− Pr
[(A ˜O (U, y, crs, �, aux) = 1

)∣∣∣
(
h(y) = b

)] · Pr
[
h(y) = b

]

≥ 1
4p(2k3)

· (2−k3 − neg(2k3)) ≥ 1
p′′(2k3)

(7)

where the last inequality holds for some polynomial p′′(·).

396 A. Garg et al.

Next, substituting

cnm-Ext(x, y, crs) = 2Ext(f1,h(y)1 ◦ f2,h(y)2 ◦ . . . ◦ fk3,h(Y)k3
(x), y, crs2Ext)

in Eq. (7), we conclude that for infinitely many λ ∈ N,

Pr
[(

A ˜O
(

2Ext(f1,h(y)1 ◦ f2,h(y)2 ◦ . . . ◦ fk3,h(y)k3
(x), y, crs2Ext), y, crs, �, aux

)

= 1
)

∧
(

h(y) = b
)]

− Pr
[(

A ˜O (U, y, crs, �, aux) = 1
)

∧
(

h(y) = b
)]

≥ 1

p′′(2k3)
(8)

We will now use the T -admissible leaky (n1, n2,K1,K2) source distribution
(X,Y, L,AUX) for the non-malleable extractor, to define a new T -admissible
leaky (n1, n2, k1, k2) source distribution (X ′, Y ′, L′,AUX′) for the underlying
two-source extractor with CRS distribution CRS2Ext, where k1 = K1 −k3 · (n1 −
w+1)−1 and k2 = K2−k3−1. Then, we will prove that there exists an adversary
A′ that breaks the (n1, n2, k1, k2) strong T -computational 2-source extractor for
(X ′, Y ′, L′,AUX′).

Define (X ′, Y ′, L′,AUX′|crs2Ext) as follows:

1. We first define (Y ′, L′
init,AUX

′)|crs2Ext):
(a) Sample b ← {0, 1}k3 .

(b) Sample fh =
(

h,
f1,0, f2,0, . . . , fk3,0

f1,1, f2,1, . . . , fk3,1

)
such that {fi,bi

}i∈[k3] are injective

and the rest are lossy. Set crs = (crs2Ext, fh).
(c) Sample (y, �init, aux) ← (Y,Linit,AUX|crs).
(d) Set (y′, aux′) = (y, aux).
(e) Set �′

init = (d, �init, fh, b), where d = 0 if h(y) �= b and 1 otherwise.
2. We next define (X ′, L′

final|crs2Ext, �′
init):

(a) Parse �′
init = (d, �init, fh, b), and set crs = (crs2Ext, fh).

(b) Sample (x, �final) ← (X,Lfinal|crs, �init). Set x′ = f1,b1 ◦f2,b2 ◦ . . .◦fk3,bk3
(x)

and �′
final = (�final, zx,b), where

zx,b = {z1, . . . , zk3} and for every i ∈ [�], zi := fi,1−bi(fi+1,bi+1(. . . fk3,bk3
(x))).

Claim. (X ′, Y ′, L′,AUX′) is a T -admissible leaky (n1, n2, k1, k2) source distri-
bution with respect to CRS2Ext, where k1 = K1 − k3 · (n1 − w + 1) − 1 and
k2 = K2 − k3 − 1.

The proof of this claim appears in the full version of our paper.
We next argue that Equation (8), together with the definition of the dis-

tribution (X ′, Y ′, L′,AUX′|crs2Ext), implies that there exists a T -size adversary
A′, that simulates the adversary A, as well as its oracle, such that for infinitely
many λ ∈ N,

Pr[A′(2Ext(X ′, Y ′, crs2Ext), y′, crs2Ext, �′, aux′) = 1]− (9)

Pr[A′(U, y′, crs2Ext, �′, aux′) = 1] ≥ 1/poly(2k3).

The algorithm A′ on input (α, y′, crs2Ext, �′, aux′) does the following:

Low Error Efficient Computational Extractors in the CRS Model 397

1. Parse �′ = (�′
init, �

′
final) and further parse �′

init = (d, �init, fh, h(y)), �′
final =

(�final, zx,h(y)). and obtain d from �′
init.

2. If d = 0 then output ⊥.
3. Else, set � = (�init, �final), and set crs = (crs2Ext, fh).
4. Output A ˜O(α, y′, crs, �, aux′), where Õ is simulated using (h(y), zx,h(y), crs).

Equation (8) implies that indeed Eq. (9) holds, as desired. This contra-
dicts the fact that 2Ext is a strong T -computational 2-source extractor for
(X ′, Y ′, L′,AUX′). This completes the proof of Theorem 8.

6 Computational Strong 2-Source Extractors in the CRS
Model

In this section, we describe our compiler that converts a computational non-
malleable extractor (in the CRS model) with negligible error for sources in the
high entropy regime, into a computational 2-source extractor (in the CRS model)
with negligible error for sources in the low entropy regime. This construction
is essentially identical to that suggested by [1]. However, the analysis in the
computational setting introduces many technical challenges which result from
the existence of the CRS, and the necessity of building an efficient reduction. Due
to these challenges, our compiler is not as general as the one in the information
theoretic setting. In particular, in Theorem9 below, we use as an ingredient a
collision resistant hash family H, and show how to convert a computational non-
malleable extractor that is secure against H-admissible adversaries (such as the
one from Theorem 8) into a computational 2-source extractor.

Theorem 9. Let T, T ′, n1, n2, k1, k2, k3, d : N → N be functions of the security
parameter, such that T = (T ′)ω(1), T = λΩ(1), n2 = O(log T), k2 = ω(log T ′),
and such that the following primitives exist.

– A family of T ′-secure collision-resistant hash functions functions H =
{Hλ}λ∈N with h : {0, 1}d → {0, 1}k3

– A
(
n1, d, k1, d

)
strong T -computational non-malleable extractor against H-

admissible adversaries in the CRS model with error neg(2k3), where the CRS
is generated by sampling h ← H and sampling crs′ ← CRS′, where CRS′

is a poly(T)-time sampleable distribution, and setting crs = (h, crs′). This
non-mallealbe extractor is denoted by

cnm-Extλ : {0, 1}n1 × {0, 1}d × {0, 1}c → {0, 1}m

– A
(

2k2

T ′ log T ′ , 2d−1
)

disperser

Γ : {0, 1}n2 × [t] → {0, 1}d

with degree t = poly(λ) (according to Definition 7).

398 A. Garg et al.

Then there exists a (n1, n2, k1, 2k2) strong T ′-computational 2-source extractor
in the CRS model (according to Definition 9).

We defer the construction of the 2-source extractor from Theorem 9 to
Sect. 6.1, and defer the analysis to Sect. 6.2. In what follows we present two
corollaries. Corollary 2 instantiates Theorem 9 with the non-malleable extractor
from Corollary 1.

Corollary 2. Fix any constant ε > 0. Then assuming the sub-exponential hard-
ness of the DDH assumption, there exists a constant δ > 0 such that for any
constant c ≥ 1 and any parameters n1, n2, k1, k2, T

′ satisfying

Ω(λ) ≤ n1 ≤ poly(λ), λO(1) ≤ n2 ≤ O(λδ), k1 = nε
1, k2 = logc/δ n2, T ′ = 2log

c λ

there exists a (n1, n2, k1, k2) strong T ′-computational 2-source extractor in the
CRS model (satisfying Definition 9).

Proof. Fix any constant ε > 0. By Corollary 1, there exists a constant δ >
0 for which there exists a (n1, d,K1, d) strong T -computational non-malleable
extractor with error neg(2k3) in the CRS model against H-admissible adversaries,
for H : {0, 1}d → {0, 1}k3 , where T = 2λδ

, k3 = min{n
ε/2
1 , d0.9, λδ}, and for any

n1, d,K1 such that

Ω(λ) ≤ n1 ≤ poly(λ), d = ω(log n1),K1 = nε
1

Moreover, this is the computational non-malleable extractor from Construc-
tion 5.1 where the crs is distributed as required in the theorem statement.

Next, fix any n1 such that Ω(λ) ≤ n1 ≤ poly(λ). By Theorem 5, there exists
a polynomial t = poly(λ) for which there exists a

(
2k2

T ′(log T ′) , 2d−1
)

disperser

Γ : {0, 1}n1 × [t] → {0, 1}d

for any d, k2, T
′ that satisfy

k2 ≥ 2d + log2 T ′. (10)

Fix any constant c ≥ 1, let k2 = logc/δ n2 and let T ′ = 2log
c λ. Set d = k2/4.

Note that Eq. (10) is satisfied by the definition of d and T ′. Also,

k3 = min{λδ, n
ε/2
1 , d0.9} = Ω((log λ)0.9c/δ).

Therefore, assuming the sub-exponential hardness of DDH, and setting the secu-
rity parameter in Theorem4 to be κ = k3, we conclude that there exists a con-
stant δ′ such that there exists a 2kδ′

3 -secure collision resistant hash H : {0, 1}d →
{0, 1}k3 . Assume without loss of generality that δ ≤ 0.9δ′ (otherwise, reduce the
size of δ). This implies that T ′ ≤ 2kδ′

3 .
Theorem 9 implies that there exists a (n1, n2, k1, 2k2) strong T ′-computational

2-source extractor in the CRS model, as long as n2 = O(log T) = O(λδ), and as
long as k2 = ω(log T ′) and in particular for k2 = logc/δ n2.

Low Error Efficient Computational Extractors in the CRS Model 399

By using the 2-source extractor obtained as a result of Corollary 2 to instanti-
ate the non-malleable extractor in Theorem7, we obtain the following corollary:

Corollary 3. Fix any constant ε > 0. Then, assuming the sub-exponential hard-
ness of the DDH assumption, there exists a constant δ > 0 for which there exists a
(n1, n2,K1,K2) strong T ′-computational non-malleable extractor satisfying Def-
inition 10 whenever

Ω(λ) ≤ n1 ≤ poly(λ), λO(1) ≤ n2 ≤ O(λδ), K1 = nε
1, K2 = log1/δ2

n2, T
′ = λ.

Proof. Fix n1, n2 as in the statement of the corollary. Fix any constant ε > 0.
By Corollary 2, assuming the sub-exponential hardness of DDH, there exists a
constant δ > 0 such that for any constant c ≥ 1, there exists a (n1, n2, k1, k2)
strong T -computational 2-source extractor for k1, k2, T satisfying

k1 = n
ε/3
1 , k2 = logc/δ n2, T = 2log

c λ.

Furthermore, the sub-exponential hardness of DDH, together with the fact
that n1 = Ω(λ), implies that the following exist:

– A (T, n1, w)-lossy function family F = {Fλ}λ∈N where each f ∈ Fλ is of the
form f : {0, 1}n1 → {0, 1}n1 , where T (λ) = 2log

c λ as above and w is such
that n1 − w = n

ε/3
1 . This follows from Lemma 2.

– A collision resistant hash family H = {Hλ}λ∈N, where each h ∈ Hλ is of
the form h : {0, 1}n2 → {0, 1}k3 where k3 = log1/δ λ, that is secure against
poly(λ)-size adversaries (this follows by setting the security parameter to be
κ = k3 in Theorem 4.12)

Set c ≥ 1
δ which implies that T ≥ 2k3 . Therefore, by Theorem 7, there exists

a (n1, n2,K1,K2) strong T ′-computational non-malleable extractor for T ′ = λ

for K1 = k1 + k3(n1 − w) + 1 ≤ n
ε/3
1 + log1/δ λ · n

ε/3
1 + 1 < nε

1, and thus in
particular for K1 = nε

1, and for K2 = k2 + k3 + 1 = logc/δ n2 + (log λ)1/δ + 1,
and thus for K2 = logc/δ′

n2 for any constant δ′ < δ. The corollary follows by
reassigning δ to be δ′.

6.1 Construction

In what follows, we construct the 2-source extractor from Theorem 9. To this,
end, fix any parameters T, T ′, n1, n2, k1, k2, d according to Theorem 9. Fix any
collision-resistant hash function H and a

(
n1, d, k1, d

)
strong T -computational

non-malleable extractor against H-admissible adversaries in the CRS model

cnm-Ext : {0, 1}n1 × {0, 1}d × {0, 1}c → {0, 1}m

and any
(

2k2

T ′ log T ′ , 2d−1
)

disperser

Γ : {0, 1}n2 × [t] → {0, 1}d.

12 We assume that δ is small enough so that the hash function is 2κδ

secure.

400 A. Garg et al.

Define a 2-source extractor

2Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}c → {0, 1}m

by
2Ext(x1, x2, crs) =

⊕

y: ∃i s.t. Γ (x2,i)=y

cnm-Ext(x1, y, crs)

6.2 Analysis

We prove the security of the 2-source extractor 2Ext described above in several
steps. We start by assuming (for contradiction) that there exists an adversary
running in time poly(T ′) that breaks the 2-source extractor 2Ext on a specific
(n1, n2, k1, 2k2) T ′-admissible leaky source distribution. Using this adversary, we
define an adversary that breaks the non-malleable extractor (on a distribution to
be defined later). To this end, we define the sets BAD-rand and BAD-seed. These
capture the places where the adversary breaks the non-malleable extractor. Next,
we prove that these sets are large. Finally we define the distribution on which the
adversary breaks the non-malleable extractor. This relies on the leakage lemma.
The complete proof appears in the full version of our paper.

Acknowledgement. We thank Maciej Obremski and João Ribeiro for pointing out
a subtle error in an initial draft of this work.

References

1. Ben-Aroya, A., Chattopadhyay, E., Doron, D., Li, X., Ta-Shma, A.: Low-error,
two-source extractors assuming efficient non-malleable extractors. In: CCC (2017)

2. Ben-Aroya, A., Doron, D., Ta-Shma, A.: Explicit two-source extractors for near-
logarithmic min-entropy. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 23, p. 88 (2016)

3. Bernstein, D.J., et al.: Factoring RSA keys from certified smart cards: Coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
341–360. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 18

4. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. Number Theory 1, 1–32 (2005)

5. Braverman, M., Hassidim, A., Kalai, Y.T.: Leaky pseudo-entropy functions. In:
Innovations in Computer Science (2011)

6. Breitner, J., Heninger, N.: Biased nonce sense: lattice attacks against weak ECDSA
signatures in cryptocurrencies. Cryptology ePrint Archive, Report 2019/023
(2019). https://eprint.iacr.org/2019/023

7. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, pp. 285–298. ACM (2016)

8. Chattopadhyay, E., Li, X.: Explicit non-malleable extractors, multi-source extrac-
tors, and almost optimal privacy amplification protocols. In: 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 158–167.
IEEE (2016)

https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://eprint.iacr.org/2019/023

Low Error Efficient Computational Extractors in the CRS Model 401

9. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory
of Computing, pp. 670–683. ACM (2016)

10. Chung, K., Lui, E., Pass, R.: From weak to strong zero-knowledge and applications.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 66–92. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 4

11. Cohen, G.: Local correlation breakers and applications to three-source extractors
and mergers. SIAM J. Comput. 45(4), 1297–1338 (2016)

12. Cohen, G.: Making the most of advice: new correlation breakers and their applica-
tions. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 188–196. IEEE (2016)

13. Cohen, G.: Non-malleable extractors-new tools and improved constructions. In:
LIPIcs-Leibniz International Proceedings in Informatics, vol. 50. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

14. Cohen, G.: Two-source extractors for quasi-logarithmic min-entropy and improved
privacy amplification protocols. In: Electronic Colloquium on Computational Com-
plexity (ECCC), vol. 23, p. 114 (2016)

15. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: Proceedings of the 45th Symposium on
Foundations of Computer Science (FOCS 2004), Rome, Italy, 17–19 October 2004,
pp. 196–205 (2004). https://doi.org/10.1109/FOCS.2004.44

16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008). https://doi.org/10.1137/060651380

17. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 601–610
(2009). https://doi.org/10.1145/1536414.1536496

18. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8
June 2011, pp. 99–108. ACM (2011). https://doi.org/10.1145/1993636.1993651

19. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM (JACM) 56(4) (2009). Article No.
20

20. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps
and Qs: detection of widespread weak keys in network devices. In: Proceedings
of the 21th USENIX Security Symposium, Bellevue, WA, USA, 8–10 August
2012, pp. 205–220 (2012). https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/heninger

21. Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 24

22. Kalai, Y.T., Li, X., Rao, A.: 2-source extractors under computational assump-
tions and cryptography with defective randomness. In: 2009 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2009, pp. 617–626. IEEE
(2009)

23. Kalai, Y.T., Li, X., Rao, A., Zuckerman, D.: Network extractor protocols. In:
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
Philadelphia, PA, USA, 25–28 October 2008, pp. 654–663 (2008). https://doi.org/
10.1109/FOCS.2008.73

https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1109/FOCS.2004.44
https://doi.org/10.1137/060651380
https://doi.org/10.1145/1536414.1536496
https://doi.org/10.1145/1993636.1993651
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://doi.org/10.1007/978-3-642-54242-8_24
https://doi.org/10.1007/978-3-642-54242-8_24
https://doi.org/10.1109/FOCS.2008.73
https://doi.org/10.1109/FOCS.2008.73

402 A. Garg et al.

24. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1144–1156. ACM (2017)

25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196 (2008)

26. Raz, R.: Extractors with weak random seeds. In: STOC, pp. 11–20 (2005)

	Low Error Efficient Computational Extractors in the CRS Model
	1 Introduction
	1.1 Prior Work on Computational Extractors
	1.2 Our Results

	2 Our Techniques
	2.1 From 2-Source Extractors to Non-malleable Extractors
	2.2 Our 2-Source Extractor

	3 Preliminaries
	3.1 Collision Resistan Hash Functions
	3.2 Lossy Functions
	3.3 Leakage Lemma
	3.4 Dispersers

	4 Computational Extractors: Definitions
	5 Computational Strong Non-malleable Extractors in the CRS Model
	5.1 Construction
	5.2 Analysis

	6 Computational Strong 2-Source Extractors in the CRS Model
	6.1 Construction
	6.2 Analysis

	References

