
Anne Canteaut
Yuval Ishai (Eds.)

LN
CS

 1
21

05

39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I

Advances in Cryptology –
EUROCRYPT 2020

Lecture Notes in Computer Science 12105

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Anne Canteaut • Yuval Ishai (Eds.)

Advances in Cryptology –

EUROCRYPT 2020
39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, May 10–14, 2020
Proceedings, Part I

123

Editors
Anne Canteaut
Équipe-projet COSMIQ
Inria
Paris, France

Yuval Ishai
Computer Science Department
Technion
Haifa, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45720-4 ISBN 978-3-030-45721-1 (eBook)
https://doi.org/10.1007/978-3-030-45721-1

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6292-8336
https://doi.org/10.1007/978-3-030-45721-1

Preface

Eurocrypt 2020, the 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Zagreb, Croatia, during May 10–14,
2020.1 The conference was sponsored by the International Association for Cryptologic
Research (IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan
Picek (Delft University of Technology, The Netherlands) were responsible for the local
organization. They were supported by a local organizing team consisting of Marin
Golub and Domagoj Jakobovic (University of Zagreb, Croatia). Peter Schwabe acted as
the affiliated events chair and Simona Samardjiska helped with the promotion and local
organization. We are deeply indebted to all of them for their support and smooth
collaboration.

The conference program followed the now established parallel-track system where
the works of the authors were presented in two concurrently running tracks. The invited
talks and the talks presenting the best paper/best young researcher spanned over both
tracks.

We received a total of 375 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 57 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 81 papers. The revised versions of these papers are included in these three
volume proceedings, organized topically within their respective track.

The PC decided to give the Best Paper Award to the paper “Optimal Broadcast
Encryption from Pairings and LWE” by Shweta Agrawal and Shota Yamada and the
Best Young Researcher Award to the paper “Private Information Retrieval with
Sublinear Online Time” by Henry Corrigan-Gibbs and Dmitry Kogan. Both papers,
together with “Candidate iO from Homomorphic Encryption Schemes” by Zvika
Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta, received invitations for
the Journal of Cryptology.

The program also included invited talks by Alon Rosen, titled “Fine-Grained
Cryptography: A New Frontier?”, and by Alice Silverberg, titled “Mathematics and
Cryptography: A Marriage of Convenience?”.

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of very good papers
which did not find a slot in the sparse number of accepted papers. We sincerely hope
that these works eventually get the attention they deserve.

We are also indebted to the members of the PC and all external reviewers for their
voluntary work. The PC work is quite a workload. It has been an honor to work with

1 This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions related to the coronavirus.

everyone. The PC’s work was simplified by Shai Halevi’s submission software and his
support, including running the service on IACR servers.

Finally, we thank everyone else – speakers, session chairs, and rump-session
chairs – for their contribution to the program of Eurocrypt 2020. We would also like to
thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2020 Anne Canteaut
Yuval Ishai

vi Preface

Eurocrypt 2020

The 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research (IACR)

May 10–14, 2020
Zagreb, Croatia

General Co-chairs

Lejla Batina Radboud University, The Netherlands
Stjepan Picek Delft University of Technology, The Netherlands

Program Co-chairs

Anne Canteaut Inria, France
Yuval Ishai Technion, Israel

Program Committee

Divesh Aggarwal National University of Singapore, Singapore
Benny Applebaum Tel Aviv University, Israel
Fabrice Benhamouda Algorand Foundation, USA
Elette Boyle IDC Herzliya, Israel
Zvika Brakerski Weizmann Institute of Science, Israel
Anne Broadbent University of Ottawa, Canada
Nishanth Chandran MSR India, India
Yilei Chen Visa Research, USA
Aloni Cohen Boston University, USA
Ran Cohen Boston University and Northeastern University, USA
Geoffroy Couteau CNRS, IRIF, Université de Paris, France
Joan Daemen Radboud University, The Netherlands
Luca De Feo IBM Research Zurich, Switzerland
Léo Ducas CWI Amsterdam, The Netherlands
Maria Eichlseder Graz University of Technology, Austria
Thomas Eisenbarth University of Lübeck and WPI, Germany
Thomas Fuhr ANSSI, France
Romain Gay Cornell Tech, USA
Benedikt Gierlichs KU Leuven, Belgium
Rishab Goyal UT Austin, USA

Vipul Goyal Carnegie Mellon University, USA
Tim Güneysu Ruhr-Universität Bochum and DFKI, Germany
Jian Guo Nanyang Technological University, Singapore
Mohammad Hajiabadi UC Berkeley, USA
Carmit Hazay Bar-Ilan University, Israel
Susan Hohenberger Johns Hopkins University, USA
Pavel Hubáček Charles University Prague, Czech Republic
Abhishek Jain Johns Hopkins University, USA
Marc Joye Zama, France
Bhavana Kanukurthi IISc Bangalore, India
Nathan Keller Bar-Ilan University, Israel
Susumu Kiyoshima NTT Research, USA
Eyal Kushilevitz Technion, Israel
Gregor Leander Ruhr-Universität Bochum, Germany
Tancrède Lepoint Google, USA
Tal Malkin Columbia University, USA
Alexander May Ruhr-Universität Bochum, Germany
Bart Mennink Radboud University, The Netherlands
Kazuhiko Minematsu NEC Corporation, Japan
María Naya-Plasencia Inria, France
Ryo Nishimaki NTT Secure Platform Laboratories, Japan
Cécile Pierrot Inria and Université de Lorraine, France
Sondre Rønjom University of Bergen, Norway
Ron Rothblum Technion, Israel
Alessandra Scafuro North Carolina State University, USA
Peter Schwabe Radboud University, The Netherlands
Adam Smith Boston University, USA
François-Xavier Standaert KU Leuven, Belgium
Yosuke Todo NTT Secure Platform Laboratories, Japan
Gilles Van Assche STMicroelectronics, Belgium
Prashant Nalini Vasudevan UC Berkeley, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Frederik Vercauteren KU Leuven, Belgium
Damien Vergnaud Sorbonne Université and Institut Universitaire

de France, France
Eylon Yogev Technion, Israel
Yu Yu Shanghai Jiao Tong University, China
Gilles Zémor Université de Bordeaux, France

viii Eurocrypt 2020

External Reviewers

Aysajan Abidin
Ittai Abraham
Thomas Agrikola
Navid Alamati
Nils Albartus
Martin Albrecht
Ghada Almashaqbeh
Joël Alwen
Miguel Ambrona
Ghous Amjad
Nicolas Aragon
Gilad Asharov
Tomer Ashur
Thomas Attema
Nuttapong Attrapadung
Daniel Augot
Florian Bache
Christian Badertscher
Saikrishna

Badrinarayanan
Shi Bai
Josep Balasch
Foteini Baldimtsi
Marshall Ball
Zhenzhen Bao
James Bartusek
Lejla Batina
Enkhtaivan Batnyam
Carsten Baum
Gabrielle Beck
Christof Beierle
Amos Beimel
Sebastian Berndt
Dan J. Bernstein
Francesco Berti
Ward Beullens
Rishabh Bhadauria
Obbattu Sai Lakshmi

Bhavana
Jean-Francois Biasse
Begül Bilgin
Nina Bindel
Nir Bitansky

Olivier Blazy
Naresh Boddu
Koen de Boer
Alexandra Boldyreva
Xavier Bonnetain
Carl Bootland
Jonathan Bootle
Adam Bouland
Christina Boura
Tatiana Bradley
Marek Broll
Olivier Bronchain
Ileana Buhan
Mark Bun
Sergiu Bursuc
Benedikt Bünz
Federico Canale
Sébastien Canard
Ran Canetti
Xavier Caruso
Ignacio Cascudo
David Cash
Gaëtan Cassiers
Guilhem Castagnos
Wouter Castryck
Hervé Chabanne
André Chailloux
Avik Chakraborti
Hubert Chan
Melissa Chase
Cong Chen
Hao Chen
Jie Chen
Ming-Shing Chen
Albert Cheu
Jérémy Chotard
Arka Rai Choudhuri
Kai-Min Chung
Michele Ciampi
Benoit Cogliati
Sandro Coretti-Drayton
Jean-Sébastien Coron
Adriana Suarez Corona

Alain Couvreur
Jan-Pieter D’Anvers
Bernardo David
Thomas Decru
Claire Delaplace
Patrick Derbez
Apoorvaa Deshpande
Siemen Dhooghe
Denis Diemert
Itai Dinur
Christoph Dobraunig
Yevgeniy Dodis
Jack Doerner
Jelle Don
Nico Döttling
Benjamin Dowling
John Schank
Markus Duermuth
Orr Dunkelman
Fréderic Dupuis
Iwan Duursma
Sébastien Duval
Stefan Dziembowski
Aner Moshe Ben Efraim
Naomi Ephraim
Thomas Espitau
Andre Esser
Brett Hemenway Falk
Antonio Faonio
Serge Fehr
Patrick Felke
Rex Fernando
Dario Fiore
Ben Fisch
Marc Fischlin
Nils Fleischhacker
Cody Freitag
Benjamin Fuller
Ariel Gabizon
Philippe Gaborit
Steven Galbraith
Chaya Ganesh
Juan Garay

Eurocrypt 2020 ix

Rachit Garg
Pierrick Gaudry
Nicholas Genise
Essam Ghadafi
Satrajit Ghosh
Kristian Gjøsteen
Aarushi Goel
Junqing Gong
Alonso Gonzalez
Lorenzo Grassi
Jens Groth
Aurore Guillevic
Berk Gulmezoglu
Aldo Gunsing
Chun Guo
Qian Guo
Siyao Guo
Shai Halevi
Shuai Han
Abida Haque
Phil Hebborn
Brett Hemenway
Shoichi Hirose
Dennis Hofheinz
Justin Holmgren
Akinori Hosoyamada
Senyang Huang
Paul Huynh
Kathrin Hövelmanns
Andreas Hülsing
Ilia Iliashenko
Laurent Imbert
Takanori Isobe
Tetsu Iwata
Håkon Jacobsen
Tibor Jager
Aayush Jain
Samuel Jaques
Jéremy Jean
Yanxue Jia
Zhengzhong Jin
Thomas Johansson
Kimmo Järvinen
Saqib Kakvi
Daniel Kales
Seny Kamara

Gabe Kaptchuk
Martti Karvonen
Shuichi Katsumata
Raza Ali Kazmi
Florian Kerschbaum
Dakshita Khurana
Jean Kieffer
Ryo Kikuchi
Eike Kiltz
Sam Kim
Elena Kirshanova
Fuyuki Kitagawa
Dima Kogan
Lisa Kohl
Markulf Kohlweiss
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Lucas Kowalczyk
Karel Kral
Ralf Kuesters
Ashutosh Kumar
Ranjit Kumaresan
Srijita Kundu
Peter Kutasp
Thijs Laarhoven
Gijs Van Laer
Russell Lai
Virginie Lallemand
Baptiste Lambin
Julien Lavauzelle
Phi Hung Le
Eysa Lee
Hyung Tae Lee
Jooyoung Lee
Antonin Leroux
Gaëtan Leurent
Xin Li
Xiao Liang
Chengyu Lin
Huijia (Rachel) Lin
Wei-Kai Lin
Eik List
Guozhen Liu
Jiahui Liu
Qipeng Liu

Shengli Liu
Tianren Liu
Pierre Loidreau
Alex Lombardi
Patrick Longa
Sébastien Lord
Julian Loss
George Lu
Atul Luykx
Vadim Lyubashevsky
Fermi Ma
Varun Madathil
Roel Maes
Bernardo Magri
Saeed Mahloujifar
Christian Majenz
Eleftheria Makri
Giulio Malavolta
Mary Maller
Alex Malozemoff
Nathan Manohar
Daniel Masny
Simon Masson
Takahiro Matsuda
Noam Mazor
Audra McMillan
Lauren De Meyer
Peihan Miao
Gabrielle De Micheli
Ian Miers
Brice Minaud
Pratyush Mishra
Ahmad Moghimi
Esfandiar Mohammadi
Victor Mollimard
Amir Moradi
Tal Moran
Andrew Morgan
Mathilde de la Morinerie
Nicky Mouha
Tamer Mour
Pratyay Mukherjee
Marta Mularczyk
Koksal Mus
Pierrick Méaux
Jörn Müller-Quade

x Eurocrypt 2020

Yusuke Naito
Mridul Nandi
Samuel Neves
Ngoc Khanh Nguyen
Anca Nitulescu
Ariel Nof
Sai Lakshmi Bhavana

Obbattu
Maciej Obremski
Tobias Oder
Frédérique Oggier
Miyako Ohkubo
Mateus de Oliveira

Oliveira
Tron Omland
Maximilian Orlt
Michele Orrù
Emmanuela Orsini
Morten Øygarden
Ferruh Ozbudak
Carles Padro
Aurel Page
Jiaxin Pan
Omer Paneth
Lorenz Panny
Anat Paskin-Cherniavsky
Alain Passelègue
Sikhar Patranabis
Michaël Peeters
Chris Peikert
Alice Pellet-Mary
Olivier Pereira
Léo Perrin
Edoardo Persichetti
Thomas Peters
George Petrides
Thi Minh Phuong Pham
Duong-Hieu Phan
Krzysztof Pietrzak
Oxana Poburinnaya
Supartha Podder
Bertram Poettering
Antigoni Polychroniadou
Claudius Pott
Bart Preneel
Robert Primas

Luowen Qian
Willy Quach
Ahmadreza Rahimi
Somindu Ramannai
Matthieu Rambaud
Hugues Randriam
Shahram Rasoolzadeh
Divya Ravi
Mariana P. Raykova
Christian Rechberger
Ling Ren
Joost Renes
Leonid Reyzin
Joao Ribeiro
Silas Richelson
Peter Rindal
Francisco

Rodríguez-Henríquez
Schuyler Rosefield
Mélissa Rossi
Mike Rosulek
Dragos Rotaru
Lior Rotem
Arnab Roy
Paul Rösler
Reihaneh Safavi-Naini
Amin Sakzad
Simona Samardjiska
Antonio Sanso
Yu Sasaki
Pascal Sasdrich
Or Sattath
John Schanck
Sarah Scheffler
Tobias Schneider
Markus Schofnegger
Peter Scholl
Jan Schoone
André Schrottenloher
Sven Schäge
Adam Sealfon
Jean-Pierre Seifert
Gregor Seiler
Sruthi Sekar
Okan Seker
Karn Seth

Yannick Seurin
Ido Shahaf
Ronen Shaltiel
Barak Shani
Sina Shiehian
Omri Shmueli
Jad Silbak
Thierry Simon
Luisa Sinischalchi
Veronika Slivova
Benjamin Smith
Yifan Song
Pratik Soni
Jessica Sorrell
Nicholas Spooner
Akshayaram Srinivasan
Damien Stehlé
Ron Steinfeld
Noah

Stephens-Davidowitz
Martin Strand
Shifeng Sun
Ridwan Syed
Katsuyuki Takashima
Titouan Tanguy
Stefano Tessaro
Enrico Thomae
Jean-Pierre Tillich
Benjamin Timon
Junichi Tomida
Deniz Toz
Rotem Tsabary
Daniel Tschudi
Yiannis Tselekounis
Yi Tu
Dominique Unruh
Bogdan Ursu
Vinod Vaikuntanathan
Kerem Varici
Philip Vejre
Marloes Venema
Daniele Venturi
Fernando Virdia
Vanessa Vitse
Damian Vizár
Chrysoula Vlachou

Eurocrypt 2020 xi

Mikhail Volkhov
Satyanarayana Vusirikala
Hendrik Waldner
Alexandre Wallet
Michael Walter
Haoyang Wang
Meiqin Wang
Weijia Wang
Xiao Wang
Yohei Watanabe
Hoeteck Wee
Mor Weiss
Weiqiang Wen
Benjamin Wesolowski
Jan Wichelmann
Daniel Wichs

Friedrich Wiemer
Christopher Williamson
Jonas Wloka
Wessel van Woerden
Lennert Wouters
David J. Wu
Shai Wyborski
Brecht Wyseur
Keita Xagawa
Xiang Xie
Chaoping Xing
Sophia Yakoubov
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Kang Yang

Kevin Yeo
Arkady Yerukhimovich
Øyvind Ytrehus
Aaram Yun
Mohammad Zaheri
Mark Zhandry
Jiayu Zhang
Liangfeng Zhang
Ren Zhang
Zhenfei Zhang
Zhongxiang Zheng
Hong-Sheng Zhou
Vassilis Zikas
Giorgos Zirdelis
Vincent Zucca

xii Eurocrypt 2020

Fine-Grained Cryptography: A New Frontier?
(Abstracts of Invited Talk)

Alon Rosen

IDC Herzliya

Abstract. Fine-grained cryptography is concerned with adversaries that are only
moderately more powerful than the honest parties. We will survey recent results
in this relatively underdeveloped area of study and examine whether the time is
ripe for further advances in it.

One approach for weakening the assumptions underlying cryptographic constructions
is to require less from them. For instance, rather than requiring a super-polynomial gap
between the running time of the honest parties and that of the adversary, one could
settle for some fixed polynomial gap. This fine-grained approach to cryptography was
considered as early as 1974 by Merkle, who relied on a random oracle to construct a
key-exchange protocol in which the honest parties run in time O nð Þ, while security
holds against O n2ð Þ-time adversaries.

Merkle’s scheme demonstrates how in a fine-grained setting, public-key encryption
can be obtained from a primitive as unstructured as a random oracle. While the lack of
structure renders the scheme less susceptible to cryptanalysis than its traditional
counterparts, it does have its limitations. As proved by Barak and Mahmoody in 2009,
the quadratic gap in Merkle’s construction is optimal. If one were to increase the gap
between honest and malicious parties, it will be necessary to rely on structured com-
putational problems.

Structured problems are often computationally easy, and hence are less desirable
from a cryptographic standpoint. But they do offer their own advantages. After all, it is
the most structured problems within P that admit the only known lower bounds in
complexity theory. Could it actually be a structured problem that will give rise to
unconditionally secure cryptography?

But even forgoing unconditional security, structure may be used to attain larger than
quadratic gaps between honest and malicious parties. For instance, recent advances in
fine-grained complexity have increased our confidence in the hardness of a host of
problems in P, along with a web of interconnectedness between them. Based on such
problems, we now have new candidate proofs of work with any arbitrary fixed poly-
nomial gap between parties.

Could such results be extended to constructing fine-grained one-way functions? This
is a necessary step we need to take if we were to bypass the optimality of the gap in

Supported by ISF grant No. 1399/17 and by Project PROMETHEUS (780701).

Merkle’s key-exchange protocol. Looking even further, suppose we do succeed in our
quest. Should we stop there? And what about the foundations? Shouldn’t they also be
revisited and adapted to the fine-grained setting?

xiv A. Rosen

Contents - Part I

Invited Talk

Mathematics and Cryptography: A Marriage of Convenience?
INVITED TALK . 3

Alice Silverberg

Best Paper Awards

Optimal Broadcast Encryption from Pairings and LWE 13
Shweta Agrawal and Shota Yamada

Private Information Retrieval with Sublinear Online Time 44
Henry Corrigan-Gibbs and Dmitry Kogan

Obfuscation and Functional Encryption

Candidate iO from Homomorphic Encryption Schemes 79
Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta

Indistinguishability Obfuscation Without Maps:
Attacks and Fixes for Noisy Linear FE . 110

Shweta Agrawal and Alice Pellet-Mary

Combiners for Functional Encryption, Unconditionally 141
Aayush Jain, Nathan Manohar, and Amit Sahai

Impossibility Results for Lattice-Based Functional Encryption Schemes 169
Akın Ünal

Symmetric Cryptanalysis

Mind the Composition: Birthday Bound Attacks on EWCDMD
and SoKAC21 . 203

Mridul Nandi

Improving Key-Recovery in Linear Attacks:
Application to 28-Round PRESENT . 221

Antonio Flórez-Gutiérrez and María Naya-Plasencia

New Slide Attacks on Almost Self-similar Ciphers 250
Orr Dunkelman, Nathan Keller, Noam Lasry, and Adi Shamir

The Retracing Boomerang Attack . 280
Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir

Randomness Extraction

Extracting Randomness from Extractor-Dependent Sources. 313
Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs

How to Extract Useful Randomness from Unreliable Sources 343
Divesh Aggarwal, Maciej Obremski, João Ribeiro, Luisa Siniscalchi,
and Ivan Visconti

Low Error Efficient Computational Extractors in the CRS Model 373
Ankit Garg, Yael Tauman Kalai, and Dakshita Khurana

Symmetric Cryptography I

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs
and Their Applications. 405

Itai Dinur

Tight Security Bounds for Double-Block Hash-then-Sum MACs. 435
Seongkwang Kim, Byeonghak Lee, and Jooyoung Lee

Modeling for Three-Subset Division Property Without Unknown Subset:
Improved Cube Attacks Against Trivium and Grain-128AEAD. 466

Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo,
and Qingju Wang

Secret Sharing

Blackbox Secret Sharing Revisited: A Coding-Theoretic Approach
with Application to Expansionless Near-Threshold Schemes 499

Ronald Cramer and Chaoping Xing

Evolving Ramp Secret Sharing with a Small Gap . 529
Amos Beimel and Hussien Othman

Lower Bounds for Leakage-Resilient Secret Sharing 556
Jesper Buus Nielsen and Mark Simkin

Fault-Attack Security

FRIET: An Authenticated Encryption Scheme with Built-in Fault Detection . . . 581
Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso,
Pedro Maat Costa Massolino, Kostas Papagiannopoulos,
Francesco Regazzoni, and Niels Samwel

xvi Contents - Part I

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 612
Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis,
and Debdeep Mukhopadhyay

Security of Hedged Fiat–Shamir Signatures Under Fault Attacks 644
Diego F. Aranha, Claudio Orlandi, Akira Takahashi,
and Greg Zaverucha

Succinct Proofs

Transparent SNARKs from DARK Compilers . 677
Benedikt Bünz, Ben Fisch, and Alan Szepieniec

SPARKs: Succinct Parallelizable Arguments of Knowledge 707
Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 738
Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra,
Noah Vesely, and Nicholas Ward

FRACTAL: Post-quantum and Transparent Recursive Proofs
from Holography . 769

Alessandro Chiesa, Dev Ojha, and Nicholas Spooner

Author Index . 795

Contents - Part I xvii

Contents – Part II

Generic Models

Separate Your Domains: NIST PQC KEMs, Oracle Cloning
and Read-Only Indifferentiability . 3

Mihir Bellare, Hannah Davis, and Felix Günther

On the Memory-Tightness of Hashed ElGamal . 33
Ashrujit Ghoshal and Stefano Tessaro

Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic
Group Model . 63

Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin

On Instantiating the Algebraic Group Model from Falsifiable Assumptions . . . 96
Thomas Agrikola, Dennis Hofheinz, and Julia Kastner

Secure Computation I

Resource-Restricted Cryptography: Revisiting MPC Bounds
in the Proof-of-Work Era . 129

Juan Garay, Aggelos Kiayias, Rafail M. Ostrovsky,
Giorgos Panagiotakos, and Vassilis Zikas

Efficient Constructions for Almost-Everywhere Secure Computation 159
Siddhartha Jayanti, Srinivasan Raghuraman, and Nikhil Vyas

The Price of Active Security in Cryptographic Protocols 184
Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,
and Mor Weiss

Succinct Non-interactive Secure Computation . 216
Andrew Morgan, Rafael Pass, and Antigoni Polychroniadou

Quantum I

Finding Hash Collisions with Quantum Computers by Using Differential
Trails with Smaller Probability than Birthday Bound 249

Akinori Hosoyamada and Yu Sasaki

Implementing Grover Oracles for Quantum Key Search
on AES and LowMC. 280

Samuel Jaques, Michael Naehrig, Martin Roetteler,
and Fernando Virdia

Optimal Merging in Quantum k-xor and k-sum Algorithms 311
María Naya-Plasencia and André Schrottenloher

On the Quantum Complexity of the Continuous Hidden
Subgroup Problem. 341

Koen de Boer, Léo Ducas, and Serge Fehr

Foundations

Formalizing Data Deletion in the Context of the Right to Be Forgotten 373
Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan

OptORAMa: Optimal Oblivious RAM. 403
Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak,
Enoch Peserico, and Elaine Shi

On the Streaming Indistinguishability of a Random Permutation
and a Random Function . 433

Itai Dinur

Isogeny-Based Cryptography

He Gives C-Sieves on the CSIDH. 463
Chris Peikert

Quantum Security Analysis of CSIDH . 493
Xavier Bonnetain and André Schrottenloher

Rational Isogenies from Irrational Endomorphisms 523
Wouter Castryck, Lorenz Panny, and Frederik Vercauteren

Lattice-Based Cryptography

Hardness of LWE on General Entropic Distributions 551
Zvika Brakerski and Nico Döttling

Key-Homomorphic Pseudorandom Functions from LWE
with Small Modulus . 576

Sam Kim

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats . . . 608
Léo Ducas, Steven Galbraith, Thomas Prest, and Yang Yu

xx Contents – Part II

Symmetric Cryptography II

TNT: How to Tweak a Block Cipher. 641
Zhenzhen Bao, Chun Guo, Jian Guo, and Ling Song

On a Generalization of Substitution-Permutation Networks:
The HADES Design Strategy . 674

Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger,
Dragos Rotaru, and Markus Schofnegger

Lightweight Authenticated Encryption Mode Suitable
for Threshold Implementation . 705

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara

Secure Computation II

PSI from PaXoS: Fast, Malicious Private Set Intersection. 739
Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai

Two-Round Oblivious Transfer from CDH or LPN 768
Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny,
and Daniel Wichs

Private Aggregation from Fewer Anonymous Messages 798
Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker

Broadcast-Optimal Two-Round MPC. 828
Ran Cohen, Juan Garay, and Vassilis Zikas

Author Index . 859

Contents – Part II xxi

Contents – Part III

Asymmetric Cryptanalysis

(One) Failure Is Not an Option: Bootstrapping the Search for Failures
in Lattice-Based Encryption Schemes . 3

Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia

Key Recovery from Gram–Schmidt Norm Leakage in Hash-and-Sign
Signatures over NTRU Lattices. 34

Pierre-Alain Fouque, Paul Kirchner, Mehdi Tibouchi, Alexandre Wallet,
and Yang Yu

An Algebraic Attack on Rank Metric Code-Based Cryptosystems 64
Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit,
Vincent Neiger, Olivier Ruatta, and Jean-Pierre Tillich

Low Weight Discrete Logarithm and Subset Sum in 20:65n

with Polynomial Memory. 94
Andre Esser and Alexander May

Verifiable Delay Functions

Continuous Verifiable Delay Functions . 125
Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass

Generic-Group Delay Functions Require Hidden-Order Groups. 155
Lior Rotem, Gil Segev, and Ido Shahaf

Signatures

Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes. 183
Ward Beullens

Signatures from Sequential-OR Proofs . 212
Marc Fischlin, Patrick Harasser, and Christian Janson

Attribute-Based Encryption

Compact Adaptively Secure ABE from k-Lin: Beyond NC1

and Towards NL . 247
Huijia Lin and Ji Luo

Adaptively Secure ABE for DFA from k-Lin and More 278
Junqing Gong and Hoeteck Wee

Side-Channel Security

Tornado: Automatic Generation of Probing-Secure Masked
Bitsliced Implementations . 311

Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier,
Matthieu Rivain, and Raphaël Wintersdorff

Side-Channel Masking with Pseudo-Random Generator 342
Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun

Non-Interactive Zero-Knowledge

Compact NIZKs from Standard Assumptions on Bilinear Maps 379
Shuichi Katsumata, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa

New Constructions of Statistical NIZKs: Dual-Mode
DV-NIZKs and More . 410

Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu

Non-interactive Zero-Knowledge in Pairing-Free Groups
from Weaker Assumptions . 442

Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu

Public-Key Encryption

Everybody’s a Target: Scalability in Public-Key Encryption 475
Benedikt Auerbach, Federico Giacon, and Eike Kiltz

Security Under Message-Derived Keys: Signcryption in iMessage 507
Mihir Bellare and Igors Stepanovs

Double-Base Chains for Scalar Multiplications on Elliptic Curves 538
Wei Yu, Saud Al Musa, and Bao Li

Zero-Knowledge

Stacked Garbling for Disjunctive Zero-Knowledge Proofs 569
David Heath and Vladimir Kolesnikov

Which Languages Have 4-Round Fully Black-Box Zero-Knowledge
Arguments from One-Way Functions? . 599

Carmit Hazay, Rafael Pass,
and Muthuramakrishnan Venkitasubramaniam

xxiv Contents – Part III

Statistical ZAPR Arguments from Bilinear Maps. 620
Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs

Statistical ZAP Arguments . 642
Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain,
Dakshita Khurana, and Amit Sahai

Statistical Zaps and New Oblivious Transfer Protocols. 668
Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta

Quantum II

Measure-Rewind-Measure: Tighter Quantum Random Oracle Model
Proofs for One-Way to Hiding and CCA Security . 703

Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld,
and Shi-Feng Sun

Secure Multi-party Quantum Computation with a Dishonest Majority 729
Yfke Dulek, Alex B. Grilo, Stacey Jeffery, Christian Majenz,
and Christian Schaffner

Efficient Simulation of Random States and Random Unitaries 759
Gorjan Alagic, Christian Majenz, and Alexander Russell

Quantum-Access-Secure Message Authentication via Blind-Unforgeability . . . 788
Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song

Author Index . 819

Contents – Part III xxv

Invited Talk

Mathematics and Cryptography:
A Marriage of Convenience?

Invited Talk

Alice Silverberg(B)

Departments of Mathematics and Computer Science, University of California, Irvine,
Irvine, CA, USA
asilverb@uci.edu

Abstract. Mathematics and cryptography have a long history together,
with the ups and downs inherent in any long relationship. Whether it
is a marriage of convenience or a love match, their progeny have lives
of their own and have had an impact on the world. This invited lecture
will briefly recall some high points from the past, give speculation and
encouragement for the future of this marriage, and give counseling on
how to improve communication, resolve conflicts, and play well together,
based on personal experience and lessons learned.

1 Introduction

For a number of years, I have been moving within and between the overlap-
ping mathematics and cryptography communities. My background is in number
theory, and I became intrigued with cryptography after elliptic curves were intro-
duced to the field. My cryptography-related research includes work on traitor
tracing, hierarchical identity based encryption, bilinear and multilinear maps,
torus-based cryptography, efficient use of elliptic curves and abelian varieties in
cryptography, primality proving, fully homomorphic encryption, and lattices. For
the past seven years I’ve been organizing conferences and workshops designed
to bring together mathematicians and cryptographers to work on cryptography
questions of common interest. In the talk, I will tell some stories about my
adventures, give observations based on my experiences, and share some of what
I’ve learned that I hope will be helpful for others.

I have some specific goals and some general goals for the talk. Specific aims
include recalling some of the fruitful interactions between mathematics and cryp-
tography from the past and how they came about, discussing problems for the
future, and suggesting productive ways to move forward. Many of the impedi-
ments to making full use of mathematics to solve cryptographic questions are
social rather than technical. Cultural differences between the fields can lead to
obstacles and misunderstanding that delay the progress of science. I will attempt
to share some thoughts and ideas for how to move forward in constructive ways.

Supported in part by the Alfred P. Sloan Foundation and by National Science Foun-
dation Grant CNS-1703321.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 3–9, 2020.
https://doi.org/10.1007/978-3-030-45721-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_1

4 A. Silverberg

I hope that some of these suggestions will also have wider applicability, to our
daily lives and our interactions with others.

My more general goals come from a sense that we live in dangerous times.
Communication between people is breaking down. Norms for social behavior
are changing. The value systems on which we based our decisions and our lives
are being called into question. We wonder whether it makes sense to continue
working as before, when the problems of the world seem so weighty. In an effort
to act locally while thinking globally, in the talk I plan to give some suggestions
that I hope will not only help the cryptography and mathematics communities
work together, but will also be useful more generally, in working with others or
communicating across cultures.

Due to the (necessarily) short time frame I was given to write this paper,
there are aspects I was not able to include. In particular, I apologize for the
lack of careful referencing. Ideally, I would be setting a good example by giving
a complete bibliography of relevant sources, and I regret not having the time
to do so. I thank the many people who contributed to the research mentioned
below, and I hope they will forgive me for not citing them explicitly.

2 Fruitful Interactions

There is a long history of fruitful interactions between mathematics and cryp-
tography. Much of it involves number theory, a field of mathematics that extends
back thousands of years.

One of the most well known mathematical cryptosystems is RSA, from the
1970s, whose security is based on the (presumed) difficulty of factoring products
of large prime numbers.

Diffie-Hellman key exchange and El Gamal encryption, while originally based
on properties of finite fields and their multiplicative groups, have been extended
to make use of other groups, including groups coming from elliptic curves
and, more generally, abelian varieties such as Jacobian varieties of hyperelliptic
curves.

Understanding and generalizing the mathematics underlying these schemes
has led to torus-based cryptography, including the LUC, XTR, and CEILIDH
cryptosystems. These cryptosystems can be understood in terms of certain vari-
eties from algebraic geometry that are called algebraic tori, which are them-
selves generalizations of the multiplicative group of a finite field. The algorithms
in these cryptosystems can be reinterpreted as compression and decompression
algorithms that allow you to send shorter transmissions for the same security. On
the other hand, these compression algorithms can be viewed as telling us that one
actually gets less security than had been realized, for discrete log cryptography
over extensions of finite fields.

The Weil pairing on elliptic curves was first used destructively in cryptog-
raphy as an attack on the elliptic curve discrete log problem, and then used
constructively in pairing-based cryptography. This seems to me like an area that
could have progressed sooner and faster, had there been a longer and deeper tra-
dition of mathematicians and computer scientists working more closely together

Mathematics and Cryptography: A Marriage of Convenience? 5

on cryptographic questions. The interest in pairing-based cryptography led to
the introduction into cryptography of other number theoretic pairings, such as
what cryptographers call the Tate pairing or the Tate-Lichtenbaum pairing. The
use in cryptography of pairings on elliptic curves also led to the construction
of identity-based encryption schemes. Work on ways to use abelian varieties to
make pairing-based cryptography more efficient led to compression algorithms
for points on elliptic curves over a certain class of finite fields, and this in turn
led to some of the torus-based cryptography and compression results in finite
fields mentioned above.

Lattice-based cryptography, which hopes to survive the advent of quantum
computers, comes from a field of number theory that is traditionally called the
geometry of numbers. Research in this area makes use of the arithmetic and
geometry of algebraic number fields. This thriving area has great potential for
future interactions between mathematics and security research.

While both factoring-based cryptography and discrete log-based cryptogra-
phy, including standard elliptic curve cryptography, are threatened by the poten-
tial advent of quantum computers, a possibly quantum-resistant use of elliptic
curves was recently discovered. It makes use of isogenies on elliptic curves, and
its security is based on the presumed difficulty of actually finding an isogeny
between two elliptic curves that have one.

Permeating these themes is the power of mathematics to make or break the
security of modern-day cryptography. As alluded to above, the constructive use of
mathematics in cryptography has a flip side, namely mathematical cryptanalysis,
which has a long history, even before mathematics was used in a serious way
to build cryptosystems. As algorithms for solving mathematics problems get
better and stronger, cryptography is under threat. All that is needed is a new
mathematical idea, for problems that were presumed hard to suddenly become
easy. This has the potential to not only make currently used cryptosystems
obsolete, but also to reveal our past secrets that we had assumed were secure,
potentially including financial, medical, military, or government secrets, for good
or ill.

3 Looking Toward the Future

I believe that mathematics and cryptography are no longer just staying together
for the sake of the children. They have now committed to each other and to
making it work out. Where do they go from here? Next, I give a sampling of
problems.

3.1 Computing on Encrypted Data and Fully Homomorphic
Encryption

Creating efficient and secure methods to compute on encrypted data, for example
with efficient fully homomorphic encryption, is an area where mathematical ideas
have been and can continue to be helpful. Efficient and secure fully homomorphic

6 A. Silverberg

encryption would allow people to calculate aggregate statistics from collections
of sensitive data from different sources while maintaining privacy. In the history
of fully homomorphic encryption thus far, both the constructions and attacks
make use of ideas from both cryptology and mathematics, including the theory
of lattices (geometry of numbers) and algebraic number theory.

3.2 Cryptographic Multilinear Maps

Pairing-based cryptography uses bilinear maps, namely, maps

G1 × G2 → G3

that are linear in each input variable, where the Gi are finite groups in which
the discrete logarithm problem is believed to be hard. This necessitates the
introduction of new hard problems that I would feel more comfortable with if
they were better known in and carefully studied by the mathematical community.

A natural generalization is to have more than two inputs. This leads to the
open problem of finding cryptographically useful multilinear maps.

The candidate multilinear maps that we have seen so far look very different
from what I envisioned when I first started thinking about cryptographic mul-
tilinear maps. They don’t fall neatly into the original framework. For me, this
is one of a number of examples that demonstrate the richness and potential of
cryptography. It is a field in which mathematicians can be surprised by the clever
ideas of computer scientists, and computer scientists can make use of deep ideas
from mathematics. When the two perspectives build on one another in fruitful
ways, the result is pleasing.

The theory of multilinear maps is closely connected to the theory of indistin-
guishability obfuscation (iO). While it’s tempting to want to prove that efficient
indistinguishability obfuscation cannot exist, it’s unlikely that we will see a proof
of that soon, since an unconditional impossibility result for iO would imply that
P �= NP.

3.3 Cryptography that Will Survive Future Attacks

Mathematics is useful for generating new ideas for post-quantum cryptography,
i.e., cryptography that will withstand attacks by quantum computers, in addition
to being useful for analyzing the security of proposed systems. Below are some
areas where I think it would be helpful if there were more mathematicians looking
more deeply at these questions.

Lattice-based cryptography. Interesting open questions include the question
of whether supposedly hard lattice problems are as hard in ideal lattices as they
are in general lattices. We should be able to use more algebraic number theory
to give deeper insights to help us better understand this problem.

Mathematics and Cryptography: A Marriage of Convenience? 7

Isogeny-based cryptography. While a sufficiently good quantum computer
would break classical elliptic curve cryptography, an interesting new area of
research is cryptography based on the presumed difficulty of finding (high degree)
isogenies between isogenous elliptic curves. As with much of public key cryptog-
raphy, this is an area where a little mathematics has gone a long way. More work
is needed to understand the security of the proposed schemes.

3.4 Cryptanalysis

Mathematics is especially powerful for cryptanalysis. When the security of a
cryptosystem is based on the presumed difficulty of some mathematics problem,
then one good mathematical idea or algorithm might suffice to break the system.
I worry that security of some systems might be based largely on the lack of
awareness of the “hard problem” by the mathematicians who would be most
capable of breaking it. The more mathematicians work in this area, the more
confident we can be in the security of systems that rely on relatively new or
unfamiliar “hard problems”.

4 Working Well Together

Cryptology and computer security would benefit from continued and greater
input of mathematical ideas. I think it would be good if more mathematicians
become part of the cryptography community, and if more cryptographers become
part of the mathematics community. I found it easy to assimilate into the cryp-
tography community. The community was welcoming, and was willing to explain
concepts and jargon. More difficult is for computer scientists without mathe-
matics degrees to participate in math conferences. There is room for the math
community to learn how to bring others in. Each community can learn from the
other.

Different groups have different cultures with regard to territoriality, giving or
withholding credit, transparency, speed of publication, and choices about where
to publish (for example, journals versus conference proceedings). These choices
are sometimes motivated by publication pressures coming from academia, or
by patents or other intellectual property or financial concerns. These cultural
differences might depend in part on whether you’re a mathematician, theoretical
or applied computer scientist, or engineer, and on whether you work in academia,
industry, or government. The incentives in your workplace might encourage you
to maintain secrecy or to publicize findings, to be generous with giving credit,
deserved or otherwise, or to only give limited acknowledgement to the work of
others. Such differences might make it hard for people from different workplace
cultures to work together, and might lead to misunderstandings or conflict.

I’m not convinced that the research that gets done under tight deadlines and
page limits, with short time windows for reviewers, is better than research done
carefully and correctly, with all details filled in, that reviewers have time to fully
check. The mathematics community has started to borrow the deadline and page

8 A. Silverberg

limit culture from the computer science community, but I’m not convinced that
this is a good way to publish papers or encourage correct and careful research.

NTRU and braid group cryptography can perhaps be seen as illustrative
examples for how better contact between the mathematics and cryptography
communities might have been helpful. The usefulness of NTRU might have been
recognized sooner had the communities been closer. For braid group cryptog-
raphy, a succession of proposals and breaks have led some cryptographers to
dismiss anything braid-related. Someone pointed out to me that if one comes up
with a good cryptosystem based on braids, in order to have credibility in the
crypto community it might be best to suppress the word “braid”. This raises
the question of whether a succession of proposals and breaks is a bad thing.
On the one hand, earlier contact and better communication between proposers
and cryptanalysts might lead to fewer insecure proposals. On the other hand,
too cosy a relationship between proposers and cryptanalysts might not be a
good thing; adversarial or competitive relationships might lead to more secure
cryptosystems.

People don’t like to be told what to do. I worry that if I write in the imper-
ative, some readers will be rubbed the wrong way. However, sound bites are
easy to remember. I hope you will forgive me for writing in the imperative, and
will understand the below advice not as commands, but as (hopefully helpful!)
suggestions.

Behave professionally. Treat your colleagues respectfully, and behave profes-
sionally.

In the late 1980s I spent a year at one of IBM’s research centers. Afterwards I
would tell people that the main difference I noticed between IBM and academia
was that at IBM, they knew the law and obeyed it. Many of the problems and
conflicts that I have seen over the years could have been avoided had people
simply remembered to behave professionally, legally, and ethically.

Whether you are an advisor to students, a journal editor, a reviewer of papers,
a program committee member, a manager, a student, a colleague, a chair or dean,
and whether or not your behavior is questioned, ask yourself: Am I behaving
professionally? Am I acting ethically? Am I setting a good example for others?
Is this the way I want others to treat me? Could I do better?

Mathematicians and computer scientists sometimes have different ideas about
what constitutes professional and ethical behavior. When working across disci-
plines, one needs to navigate and negotiate the terms of the relationship.

Learn constructive ways to communicate. Good communication is impor-
tant not only to help cryptographers and mathematicians work well together, or
more generally to help communicate across cultures; it’s also useful in all our
interactions. I find that it’s important to keep communication channels open.
Cutting off communication can close doors.

Many misunderstandings come from mistakenly thinking that you can cor-
rectly read the minds of other people, and attributing bad motives to them.

Mathematics and Cryptography: A Marriage of Convenience? 9

If you want to know what someone is thinking or feeling, ask them. Moreover,
don’t assume that others are correctly reading your mind.

Avoid jargon. When communicating across fields, avoid jargon, and avoid
abbreviations.

It’s hard for mathematicians to attend talks by computer scientists because
of the unfamiliar abbreviations. “Learning with errors” has the same number of
syllables as “LWE,” so when you give a talk, you might as well say the words.

It’s hard for computer scientists to read technical papers written by mathe-
maticians. I think it would be helpful if mathematicians wrote more survey talks,
in less technical language, in order to explain their technical papers to people
outside their specialities who might be able to make use of the results.

Listen. Listen, and learn from what others have to offer. Listen to different
points of view.

Ask for advice. Listen to advice (solicited or otherwise) with an open mind;
you don’t have to follow it.

Be curious. Be curious, open-minded, and open to opportunities.
It’s helpful to try to see things from the point of view of the other person.

Ask questions.
For every experience, good or bad, ask yourself “What can I learn from this?”
I learned the phrase “Get curious, not furious” from the book A New Map for

Relationships: Creating True Love at Home and Peace on the Planet by Dorothie
Hellman and Martin Hellman. That book makes an eloquent case for curiosity,
and for not getting angry.

Be kind. As Lewis Carroll wrote about Alice in Alice’s Adventures in Won-
derland, “She generally gave herself very good advice (though she very seldom
followed it).” I’m much better at giving advice, than following my own advice.
For most of the advice that I’m giving here, I’m still learning how to follow it,
and not doing as well as I would like.

It took me a very long time to learn that being kind solves many problems,
and prevents many problems. To be clear, being kind does not mean that you
let other people get their way. Being kind can include enforcing boundaries,
standing up for what’s right, sticking up for others, and being kind to yourself.

Best Paper Awards

Optimal Broadcast Encryption
from Pairings and LWE

Shweta Agrawal1(B) and Shota Yamada2(B)

1 IIT Madras, Chennai, India
shweta.a@cse.iitm.ac.in

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

yamada-shota@aist.go.jp

Abstract. Boneh, Waters and Zhandry (CRYPTO 2014) used multilin-
ear maps to provide a solution to the long-standing problem of public-key
broadcast encryption (BE) where all parameters in the system are small.
In this work, we improve their result by providing a solution that uses
only bilinear maps and Learning With Errors (LWE). Our scheme is fully
collusion-resistant against any number of colluders, and can be general-
ized to an identity-based broadcast system with short parameters. Thus,
we reclaim the problem of optimal broadcast encryption from the land
of “Obfustopia”.

Our main technical contribution is a ciphertext policy attribute based
encryption (CP-ABE) scheme which achieves special efficiency properties
– its ciphertext size, secret key size, and public key size are all indepen-
dent of the size of the circuits supported by the scheme. We show that
this special CP-ABE scheme implies BE with optimal parameters; but
it may also be of independent interest. Our constructions rely on a novel
interplay of bilinear maps and LWE, and are proven secure in the generic
group model.

1 Introduction

Broadcast Encryption (BE) [30] enables a sender to encrypt a message for a
subset of users who are listening on a broadcast channel. In more detail, in a
BE system, a sender can encrypt to any set S of its choice, and any user in S
can decrypt the broadcast using its secret key. The system is said to be fully
collusion resistant if no collection of users outside S can learn anything about
the plaintext.

Introduced in a seminal work by Fiat and Naor [30], the primitive of broadcast
encryption has received significant attention, with diverse constructions achiev-
ing different tradeoffs in the sizes of ciphertext, secret key and public parameters.
Of particular importance is the size of the ciphertext overhead: namely, the size
of the ciphertext beyond what is necessary for the description of the recipient set
S and the symmetric encryption of the plaintext message. A BE scheme is said
to have low overhead if the ciphertext overhead depends at most logarithmically
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 13–43, 2020.
https://doi.org/10.1007/978-3-030-45721-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_2

14 S. Agrawal and S. Yamada

on the number of users in the system (N , say). In this work, we focus on BE
systems that are public key, have low ciphertext overhead and are fully collusion
resistant.

The first work to satisfy the above desiderata was by Boneh, Gentry, and
Waters [13], and was based on hardness assumptions on bilinear maps. This
construction achieved optimal (constant) ciphertext overhead and short secret
keys, but suffered from public parameter size which is linear in the number of
users N . Follow-ups based on bilinear maps improved some aspects of this con-
struction [8,28,29,33,37,45], but could not improve the public key size. Indeed,
even relying on the existence of the powerful indistinguishability obfuscation [31],
BE with short public key remained elusive (though it achieved other remarkable
properties) [16].

This state of affairs was improved considerably by the work of Boneh, Waters
and Zhandry [15] who provided the first construction of broadcast encryption,
achieving optimal parameters including short public key, by relying on mul-
tilinear maps. This marked the first solution to a long standing open problem.
However, the constructions suggested by [15] also have some limitations. In more
detail, the [15] provide three broadcast encryption systems that use an O(log N)
way multilinear map – this necessitates the degree of the map to be polynomial
when N is exponential. More importantly, existing candidates of multilinear
maps have been subject to many attacks [7,23–27,38,42] and their security is
poorly understood. Thus, the question of broadcast encryption with optimal
parameter size has so far, remained squarely in the land of “Obfustopia”.

Our Results. In this work, we reclaim broadcast encryption from Obfustopia
by providing a solution that uses only bilinear maps and Learning With Errors
(LWE). Our scheme is public key, fully collusion-resistant against any number
of colluders, and can be generalized to an identity-based broadcast system with
short parameters. Along the way, we provide the first ciphertext policy attribute
based encryption scheme whose ciphertext size, secret key size, and public key
size are all independent of the size of the circuits supported by the scheme. This
construction may be of independent interest. Our constructions rely on a novel
interplay between bilinear maps and LWE and are proven secure in the generic
group model.

1.1 Our Techniques

Recasting BE as CP-ABE: Our starting observation is that the question of
broadcast encryption can be re-stated in terms of the notion of ciphertext policy
attribute based encryption (CP-ABE). In a CP-ABE scheme, a ciphertext for a
message m is labelled with a function (policy) f , and secret keys are labelled
with public attributes x from the domain of f . Decryption succeeds to yield
the hidden message m if and only if the attribute satisfies the policy, namely
f(x) = 1. To see BE as a special case of CP-ABE, note that the ciphertext
may encode a circuit FS that checks membership of a given user index in a
set of recipients S, and the attributes x may encode user index in the set N .

Optimal Broadcast Encryption from Pairings and LWE 15

Thus, a user i can use her CP-ABE secret key to test whether i is a member of
the set S encoded in the ciphertext, and recover the message m if and only if
this is true. Then, a natural approach to construct BE is to leverage CP-ABE
schemes. However, unsurprisingly, constructions of CP-ABE achieving optimal
parameters that suffice for BE, has been elusive.

From Pairings to LWE: All known constructions of BE from standard assumptions
(i.e. without relying on the existence of multilinear maps or indistinguishability
obfuscation) are based on various assumptions on bilinear groups. Since the ques-
tion of optimal BE from pairings has met with little progress for over a decade, it
is evidently meaningful to look at assumptions on other mathematical structures
to seek a way forward. The most obvious candidate that presents itself is the ver-
satile Learning With Errors (LWE) assumption, which has led to breakthroughs
in similar primitives, notably in fully homomorphic encryption [17,18,20].

Let us then examine what is known from LWE in this context. The dual
notion of key-policy ABE has met with fantastic success from LWE – the works of
Gorbunov et al. [34] and Boneh et al. [12] show how to construct KP-ABE for all
circuits (on the other hand, constructions based on pairings could only support
the much weaker circuit class NC1). KP-ABE is the same as CP-ABE with the
roles of circuit and attributes swapped. Additionally, the KP-ABE construction
of Boneh et al. [12], henceforth denoted as BGG+, manages to encode the circuit
very succinctly – in more detail, the size of the public and secret keys in the
BGG+ construction are independent of the circuit size and depend only on the
depth of the circuit. Additionally, the size of the ciphertext is also independent
of the circuit size and depends only on input length. Since the input length for
the circuit FS that checks membership in S is an encoding of a user index, it
is of size O(log N). Moreover, it is easy to check that the depth of FS is also
O(log N). Therefore, if we have a CP-ABE with analogous efficiency, namely, so
that the public key size, secret key size, and ciphertext size do not depend on
the size but only input length and depth of the circuit, it follows that we can
obtain BE with optimal parameters.

Constructing CP-ABE from LWE: Thus, it suffices to ask whether we can have
a CP-ABE scheme, denoted by cpABE, with the desired efficiency. To lever-
age the succinctness of the circuit encoding of BGG+, a naive idea is to set
cpABE.CT(FS) = BGG+.SK(FS). Two immediate problems present themselves:
(i) Where to embed the message m1, and (ii) Computing BGG+.SK(FS) requires
the master secret but encryption is a public key algorithm.

To address these challenges, a first idea is to exploit the decomposability of
BGG+. In more detail, decomposability means that the ciphertext for attribute
x and message m may be decomposed into |x|+1 encodings, one for each bit xi

of the attribute string and message m – these are tied together using common
randomness used during their generation. Let us denote the encoding corre-
sponding to bit xi as ψi,xi

. Then, a natural idea is to let the encryptor sample
a fresh instance of the BGG+ scheme, generate BGG+.SK(FS) and encrypt each

1 This question is surprisingly non-trivial even in the symmetric key setting.

16 S. Agrawal and S. Yamada

ψi,b using a different public key encryption scheme, say with PKE key PKi,b.
This yields a CP-ABE with the desired efficiency, inherited directly from the
succinctness of the BGG+ key and the decomposability of the BGG+ ciphertext.

Constraining the Information Leaked (Or, Back to Pairings): However, this
scheme is obviously not collusion resistant: a user with keys for x and x̄ can
decrypt every ciphertext. To make the scheme collusion resistant, we would like
to replace the naive use of public key encryption above into a more sophisticated
scheme, which hides all but the output of the BGG+ decryption algorithm. This
description bears close resemblance to a functional encryption scheme for some
restricted functionality, for which we turn to—pairings! In particular, we isolate
the ψi,b by randomizing and lifting them to the exponent of a bilinear group.
The hope is that we may provide a secret key for some attribute x such that it
only allows the appropriate ψi,xi

to be selected and combined so that only the
output of the BGG+ decryption is revealed, and that the randomization, which
will be unique to every cpABE ciphertext and secret key pair, prevents collusion
attacks.

Evaluation of NC1 Circuit in the Exponent: Several questions arise. First, we dis-
cussed above that the circuit for checking membership in set S is inNC1 – however,
pairings are only capable of supporting at most quadratic operations. How then,
do we hope to compute an NC1 circuit in the exponent of a bilinear group? The
answer lies in the specific structure of the BGG+ evaluation algorithm, which, even
for a circuit in P is linear in the encodings and the secret key, followed by a final
rounding step to remove the noise. Indeed, the knowledgeable reader may observe
that this very linearity of the BGG+ evaluation procedure has been the cause of
attacks in other contexts [1] – what is a “curse” there is a “blessing” here! How-
ever, the rounding step remains – this is in NC1 and clearly cannot be performed
in the exponent.

An approach is to perform the linear computation (which represents the cir-
cuit FS) in the exponent, recover the output via discrete log, and then compute
the rounding in the clear. Again, it is unclear this satisfies either correctness or
security. For the former, note that recovering the encoded output from the expo-
nent requires that the output be polynomially bounded. In this case, the output
is the message bit plus some noise that resulted from the homomorphic evalua-
tion. While the noise in this context may be superpolynomial in general, we can
convert our NC1 circuit into a branching program and leverage the asymmetric
noise growth for BP evaluation of BGG+ encodings to ensure that the noise is
bounded by a polynomial [35].

The more worrisome issue is that of security. It is well known that the noise
that results from homomorphic evaluation of encodings leaks the noise in the
original encodings and is often a security threat –in fact, the savvy reader may
have observed that this leakage is one of the main barriers in constructing iO
from standard assumptions [2,6]. However, here we are rescued by the serendip-
itous fact that what we are trying to build here is a kind of attribute based
encryption, not functional encryption! In more detail, the leakage caused by the
noise is a security threat in the context of functional encryption, as formalized

Optimal Broadcast Encryption from Pairings and LWE 17

in [1,2,6] – this is because a decryptor who possesses some secret keys for a
functional encryption scheme must still not be able to learn anything about the
encrypted message beyond what the keys reveal. On the other hand, attribute
based encryption is a much simpler “all or nothing” primitive – if the adver-
sary possesses a single key that decrypts a ciphertext, there are no more secrets
the scheme withholds from her. Hence, if the adversary has a key that lets her
recover the value encoded in the exponent, the additional leakage created by the
noise terms do not pose a security threat.

Preventing Mix and Match Attacks: To prevent collusions, we design the decryp-
tion algorithm so that the decryptor obtains a randomized version of the cipher-
text components in the exponents as g

δψi,xi

T , where gT is the target group, ψi,xi

are BGG+ encodings as defined above and δ is user specific randomness. Since δ is
user specific, the attacker cannot combine partial decryption results of multiple
users, preventing mix and match attacks.

Hence, it suffices to restrict our attention to the single user case. Here, we
must ensure that the adversary only gets components {g

δψi,xi

T }i corresponding
to the particular key x issued to her, instead of all the components {g

δψi,b

T }i,b for
b ∈ {0, 1}. Furthermore, we must ensure that the attribute vector x is processed
in the correct sequence – i.e., its bits are not permuted. To prevent these attacks,
we bind each entry of the ciphertext and each bit of the secret key attribute x
to the corresponding positions. This is possible by setting the master public
key to be {gwi,b}i,b where wi,b are randomly chosen for each position i and b ∈
{0, 1} and setting the secret key and ciphertext as {g

δ/wi,xi
2 }i and {g

ψi,bwi,b

1 }i,b

respectively. We remark that we need to use asymmetric pairings to prevent
ciphertext (respectively key) components from being paired between themselves
to leak information. By tying element values to their positions, we ensure that
pairing of the ciphertext and secret key components corresponding to different
positions result in a term which looks like g

δψi,bwi,b/wi′,b′
T for (i, b) �= (i′, b′).

Now, we claim that a term of the form gδwi,b/wi′,b′ is useless to the attacker –
to see this, note that in the generic group model, an attacker cannot obtain any
information about a value encoded in the exponent unless she finds a non-trivial
linear relation that contains that term. However, since the term δwi,b/wi′,b′

appears only when we pair the ciphertext component with position (i, b) with
the secret key component with position (i′, b′) and cannot appear anywhere else,
it follows that it cannot appear as a term in a linear combination that results in
0 (except with negligible probability). Thus, by using {wi,b}i,b, we enforce that
the computation follows the desired path.

Combining the above ideas, we obtain our final CP-ABE scheme. By setting
the circuit class appropriately, this yields BE and even Identity Based BE (or
IBBE). Please see Sect. 3 for the CP-ABE and Sect. 5 for the construction of BE
and IBBE.

Security in the Generic Group Model: We prove security in the generic group
model, which closely follows the intuition we explained so far. Specifically, we

18 S. Agrawal and S. Yamada

will show that the adversary cannot find any non-trivial linear relation among
the partial decryption results of the ciphertext components. The main challenge
in the security proof is that the partial decryption results obtained by using
different secret keys are correlated – in more detail, they can contain terms g

δψi,0
1

and g
δ′ψi,1
1 where ψi,0 and ψi,1, if learned simultaneously, lead to a complete

break of security. Simulating these in the standard model using the security of
BGG+ appears difficult.

To address the issue we first observe that the adversary cannot take a linear
combination among partial decryption results obtained by two different secret
keys in a meaningful way, since they are randomized by the user specific ran-
domness introduced for preventing collusions. This implies that if the adversary
manages to find a non-trivial linear relation among the partial decryption results,
all the terms involved should be obtained from the same secret key. We also
observe that until the point when the adversary finds the first non-trivial linear
relation, the simulator can simulate the generic group oracles without knowing
the corresponding encodings. This can be done by simply pretending that there
is no non-trivial linear relation among the terms.

The above observations allow us to concentrate on the security proof for the
single-key case without worrying about the partial decryption results by other
keys. We can then conclude by using the security of the BGG+ scheme. In more
detail, an adversary who can find a non-trivial linear relation among the partial
decryption results can be used to distinguish a BGG+ ciphertexts from random
ones, since the partial decryption result by a single key essentially corresponds
to a BGG+ ciphertext in exponent and it cannot find any non-trivial linear
relation among the random ciphertext components as long as the modulus size
is exponential.

1.2 Related Works

In an independent work (that predates ours), Brakerski and Vaikuntanathan
[21] also construct broadcast encryption achieving optimal parameters. Their
techniques as well as final result are very different from ours – while our work
crucially uses pairings in conjunction with LWE, they rely entirely on LWE and
new assumptions in the regime of lattices. Both works can be seen as following
the broad approach of starting with a succinct single-key CP-ABE from LWE2,
and adding collusion resistance using pairings (ours) or new techniques in the
lattice regime (theirs).

The techniques in our work are similar in spirit to a growing line of work that
uses “the best of both” of pairings and LWE [2,6,36,39], but quite different in
details. Closest to our work are techniques used to construct key policy functional
encryption [2,6,39], which use FHE (based on LWE) for encrypted evaluation
and pairings for performing FHE decryption in the exponent. While a major
challenge in these constructions is the leakage caused by FHE decryption noise,
2 The single key CP-ABE with succinct CT was also discovered by Boneh and Kim

[14].

Optimal Broadcast Encryption from Pairings and LWE 19

we sidestep this issue altogether because BE is an “all or nothing primitive”
with no secrets from a legitimate key holder. On the other hand, we need new
tricks to handle the functionality and security of a ciphertext-policy scheme – for
instance, we need to use position-wise randomness on the exponent to prevent
ciphertext and secret key components from being paired in illegitimate positions
to leak information.

2 Preliminaries

In this section, we define some preliminaries that we require.

2.1 Attribute Based Encryption

Let R = {Rλ : Aλ × Bλ → {0, 1}}λ be a relation where Aλ and Bλ denote
“ciphertext attribute” and “key attribute” spaces. An attribute-based encryption
(ABE) scheme for R is defined by the following PPT algorithms:

Setup(1λ) → (mpk,msk): The setup algorithm takes as input the unary repre-
sentation of the security parameter λ and outputs a master public key mpk
and a master secret key msk.

Enc(mpk,X, μ) → ct: The encryption algorithm takes as input a master public
key mpk, a ciphertext attribute X ∈ Aλ, and a message bit μ. It outputs a
ciphertext ct.

KeyGen(mpk,msk, Y) → skY : The key generation algorithm takes as input the
master public key mpk, the master secret key msk, and a key attribute Y ∈ Bλ.
It outputs a private key skY .

Dec(mpk, ct,X, skY , Y) → μ or ⊥: We assume that the decryption algorithm
is deterministic. The decryption algorithm takes as input the master public
key mpk, a ciphertext ct, ciphertext attribute X ∈ Aλ, a private key skY , and
private key attribute Y ∈ Bλ. It outputs the message μ or ⊥ which represents
that the ciphertext is not in a valid form.

Definition 2.1 (Correctness). An ABE scheme for relation family R is cor-
rect if for all λ ∈ N, X ∈ Aλ, Y ∈ Bλ such that R(X,Y) = 1, and for all
messages μ ∈ M,

Pr

[
(mpk,msk) ← Setup(1λ), skY ← KeyGen(mpk,msk, Y),
ct ← Enc(mpk,X, μ) : Dec

(
mpk, skY , Y, ct,X

)
�= μ

]
= negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.2 (Ada-IND security for ABE). For an ABE scheme ABE =
{Setup,Enc,KeyGen,Dec} for a relation family R = {Rλ : Aλ × Bλ → {0, 1}}λ

and a message space {Mλ}λ∈N and an adversary A, let us define Ada-IND secu-
rity game as follows.

20 S. Agrawal and S. Yamada

1. Setup phase: On input 1λ, the challenger samples (mpk,msk) ← Setup(1λ)
and gives mpk to A.

2. Query phase: During the game, A adaptively makes the following queries,
in an arbitrary order. A can make unbounded many key queries, but can make
only single challenge query.
(a) Key Queries: A chooses an input Y ∈ Bλ. For each such query, the

challenger replies with skY ← KeyGen(mpk,msk, Y).
(b) Challenge Query: At some point, A submits a pair of equal length

messages (μ0, μ1) ∈ (M)2 and the target X� ∈ Aλ to the challenger.
The challenger samples a random bit b ← {0, 1} and replies to A with
ct ← Enc(mpk,X�, μb).

We require that R(X�, Y) = 0 holds for any Y such that A makes a key query
for Y in order to avoid trivial attacks.

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

We define the advantage AdvAda-IND
ABE,A (1λ) of A in the above game as

AdvAda-IND
ABE,A (1λ) :=

∣∣Pr[ExpABE,A(1λ) = 1|b = 0] − Pr[ExpABE,A(1λ) = 1|b = 1]
∣∣ .

The ABE scheme ABE is said to satisfy Ada-IND security (or simply adaptive
security) if for any stateful PPT adversary A, there exists a negligible function
negl(·) such that AdvAda-IND

ABE,A (1λ) �= negl(λ).

We can consider the following stronger version of the security where we
require the ciphertext to be pseudorandom.

Definition 2.3 (Ada-INDr security for ABE). We define Ada-INDr security
game similarly to Ada-IND security game except that the adversary A chooses
single message μ instead of (μ0, μ1) at the challenge phase and the challenger
returns ct ← Enc(mpk,X�, μ) if b = 0 and a random ciphertext ct ← CT from
a ciphertext space CT if b = 1. We define the advantage AdvAda-INDr

ABE,A (1λ) of the
adversary A accordingly and say that the scheme satisfies Ada-INDr security if
the quantity is negligible.

We also consider (weaker) selective versions of the above notions, where A
specifies its target X� at the beginning of the game.

Definition 2.4 (Sel-IND security for ABE). We define Sel-IND security game
as Ada-IND security game with the exception that the adversary A has to choose the
challenge ciphertext attribute X� before the setup phase but key queries Y1, Y2, . . .
and choice of (μ0, μ1) can still be adaptive. We define the advantage AdvSel-IND

ABE,A (1λ)
of the adversary A accordingly and say that the scheme satisfies Sel-INDr security
(or simply selective security) if the quantity is negligible.

Definition 2.5 (Sel-INDr security for ABE). We define Sel-INDr security
game as Ada-INDr security game with the exception that the adversary A has
to choose the challenge ciphertext attribute X� before the setup phase but key
queries Y1, Y2, . . . and choice of μ can still be adaptive. We define the advantage
AdvSel-INDr

ABE,A (1λ) of the adversary A accordingly and say that the scheme satisfies
Sel-INDr security if the quantity is negligible.

Optimal Broadcast Encryption from Pairings and LWE 21

In the following, we recall definitions of various ABEs by specifying the rela-
tion. We start with the standard notions of ciphertext-policy attribute-based
encryption (CP-ABE) and key-policy attribute-based encryption (KP-ABE).

CP-ABE for circuits. We define CP-ABE for circuit class {Cλ}λ by specifying
the relation. Here, Cλ is a set of circuits with input length �(λ) and binary output.
We define ACP

λ = Cλ and BCP
λ = {0, 1}�. Furthermore, we define the relation RCP

λ

as RCP
λ (C,x) = ¬C(x).3

KP-ABE for circuits. To define KP-ABE for circuits, we simply swap key
and ciphertext attributes in CP-ABE for circuits. More formally, to define KP-
ABE for circuits, we define AKP

λ = {0, 1}� and BKP
λ = Cλ. We also define RKP

λ :
AKP

λ × BKP
λ → {0, 1} as RKP

λ (x, C) = ¬C(x).

We can also capture identity-based broadcast encryption (IBBE) and broadcast
encryption (BE) as special cases of ABE by specifying the relations.

IBBE. To define IBBE, we define AIBBE
λ = ID(λ)≤t and BIBBE

λ = ID(λ), where
ID(λ) is the identity space and ID(λ)≤t denotes all subsets of ID(λ) with size
at most t. We also define RIBBE

λ : AIBBE
λ × BIBBE

λ → {0, 1} as RIBBE
λ (S, id) ={

1 if id ∈ S

0 if id �∈ S
. For IBBE, we typically require that the ciphertext size should be

o(t) · poly(λ), since otherwise we have a trivial construction from IBE.

BE. To define BE, we define ABE
λ = 2[N(λ)] and BBE

λ = [N(λ)], where N(λ) =
poly(λ) is the number of users in the system and 2[N(λ)] denotes all subsets of
[N]. We also define RBE

λ : ABE
λ × BBE

λ → {0, 1} as RBE
λ (S, i) = 1 when i ∈ S

and RBE
λ (S, i) = 0 otherwise. For BE, we typically require that the ciphertext

size should be o(N) ·poly(λ), since otherwise we have a trivial construction from
plain public key encryption.

We also define dual versions of BE and IBBE where the ciphertext and secret
key attributes are swapped.

Dual IBBE (DIBBE). To define DIBBE, we define ADIBBE
λ = ID(λ) and

BDIBBE
λ = ID(λ)≤t, whereID(λ) is the identity space.WedefineRDIBBE

λ : ADIBBE
λ ×

BDIBBE
λ → {0, 1} as RIBBE

λ (id, S) = 1 if id ∈ S and RIBBE
λ (id, S) = 0 otherwise.

Dual BE (DBE). To define DBE, we define ADBE
λ = [N(λ)] and BDBE

λ = 2[N(λ)],
where N(λ) = poly(λ) is the number of users in the system. We also define
RDBE

λ : ADBE
λ × BDBE

λ → {0, 1} as RDBE
λ (i, S) = 1 when i ∈ S and RDBE

λ (i, S) = 0
otherwise.

2.2 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of
our construction. Throughout this section, n, m, and q are integers such that
3 Here, we follow the standard convention in lattice-based cryptography where the

decryption succeeds when C(x) = 0 rather than C(x) = 1.

22 S. Agrawal and S. Yamada

n = poly(λ) and m ≥ n�log q	. In the following, let SampZ(γ) be a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter
γ > 0 whose support is restricted to z ∈ Z such that |z| ≤ √

nγ.

Learning with Errors. We the introduce then learning with errors (LWE)
problem.

Definition 2.6 (The LWE Assumption). Let n = n(λ), m = m(λ), and
q = q(λ) > 2 be integers and χ = χ(λ) be a distribution over Zq. We say that
the LWE(n,m, q, χ) hardness assumption holds if for any PPT adversary A we
have

|Pr[A(A, s�A + x�) → 1] − Pr[A(A,v�) → 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adver-
sary A and A ← Z

n×m
q , s ← Z

n
q , x ← χm, and v ← Z

m
q . We also say

that LWE(n,m, q, χ) problem is subexponentially hard if the above probability is
bounded by 2−nε · negl(λ) for some constant 0 < ε < 1 for all PPT A.

As shown by previous works [19,43], if we set χ = SampZ(γ), the LWE(n,m, q, χ)
problem is as hard as solving worst case lattice problems such as gapSVP and
SIVP with approximation factor poly(n) · (q/γ) for some poly(n). Since the
best known algorithms for 2k-approximation of gapSVP and SIVP run in time
2Õ(n/k), it follows that the above LWE(n,m, q, χ) with noise-to-modulus ratio
2−nε

is likely to be (subexponentially) hard for some constant ε.

Trapdoors. Let us consider a matrix A ∈ Z
n×m
q . For all V ∈ Z

n×m′
q ,

we let A−1
γ (V) be an output distribution of SampZ(γ)m×m′

conditioned on
A · A−1

γ (V) = V. A γ-trapdoor for A is a trapdoor that enables one to sam-
ple from the distribution A−1

γ (V) in time poly(n,m,m′, log q) for any V. We
slightly overload notation and denote a γ-trapdoor for A by A−1

γ . We also
define the special gadget matrix G ∈ Z

n×m
q as the matrix obtained by padding

In ⊗ (1, 2, 4, 8, . . . , 2�log q�) with zero-columns. The following properties had been
established in a long sequence of works [3,4,19,22,32,41].

Lemma 2.7 (Properties of Trapdoors). Lattice trapdoors exhibit the follow-
ing properties.

1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .
2. Given A−1

τ , one can obtain [A‖B]−1
τ and [B‖A]−1

τ for any B.
3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1

τ0)
where A ∈ Z

n×m
q for some m = O(n log q) and is 2−n-close to uniform, where

τ0 = ω(
√

n log q log m).

Lattice Evaluation. The following is an abstraction of the evaluation procedure
in previous LWE based FHE and ABE schemes. We follow the presentation by
Tsabary [47], but with different parameters.

Optimal Broadcast Encryption from Pairings and LWE 23

Lemma 2.8 (Fully Homomorphic Computation [35]). There exists a pair
of deterministic algorithms (EvalF,EvalFX) with the following properties.

– EvalF(B, F) → HF . Here, B ∈ Z
n×m�
q and F : {0, 1}� → {0, 1} is a circuit.

– EvalFX(F,x,B) → ĤF,x. Here, x ∈ {0, 1}� with x1 = 14 and F : {0, 1}� →
{0, 1} is a circuit with depth d. We have [B− x⊗G]ĤF,x = BHF − F (x)G
mod q, where we denote [x1G‖ · · · ‖xkG] by x ⊗ G. Furthermore, we have
‖HF ‖∞ ≤ m · 2O(d), ‖ĤF,x‖∞ ≤ m · 2O(d).

– The running time of (EvalF,EvalFX) is bounded by poly(n,m, log q, 2d).

The above algorithms are taken from [35], which is a variant of similar algorithms
proposed by Boneh et al. [12]. The algorithms in [12] work for any polynomial-
sized circuit F , but ‖HF ‖∞ and ‖HF,x‖∞ become super-polynomial even if the
depth of the circuit is shallow (i.e., logarithmic depth). On the other hand, the
above algorithms run in polynomial time only when F is of logarithmic depth,
but ‖HF ‖∞ and ‖HF,x‖∞ can be polynomially bounded. The latter property is
crucial for our purpose.

2.3 KP-ABE Scheme by Boneh et al. [12]

We will use a variant of the KP-ABE scheme proposed by Boneh et al. [12]
as a building block of our construction of CP-ABE. We call the scheme BGG+

and provide the description of the scheme in the following. We focus on the
case where the policies associated with secret keys are limited to circuits with
logarithmic depth rather than arbitrary polynomially bounded depth, so that we
can use the evaluation algorithm due to Gorbunov and Vinayagamurthy [35] (see
Lemma 2.8). This allows us to bound the noise growth during the decryption by
a polynomial factor, which is crucial for our application.

The scheme supports the circuit class C�(λ),d(λ), which is a set of all circuits
with input length �(λ) and depth at most d(λ) with arbitrary �(λ) = poly(λ)
and d(λ) = O(log λ).

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ),
m = m(λ), noise distribution χ over Z, τ0, τ , and B = B(λ) as specified later.
It then proceeds as follows.
1. Sample (A,A−1

τ0) ← TrapGen(1n, 1m, q) such that A ∈ Z
n×m
q .

2. Sample random matrix B = (B1, . . . ,B�) ← (Zn×m
q)� and a random

vector u ← Z
n
q .

3. Output the master public key mpk = (A,B,u) and the master secret key
msk = A−1

τ0 .
KeyGen(mpk,msk, F): The key generation algorithm takes as input the master

public key mpk, the master secret key msk, and a circuit F ∈ Fλ and proceeds
as follows.
1. Compute HF = EvalF(B, F) and BF = BHF .

4 This condition may be necessary for the lemma to hold for arbitrary F .

24 S. Agrawal and S. Yamada

2. Compute [A‖BF]−1
τ from A−1

τ0 and sample r ∈ Z
2m as r ← [A‖BF]−1

τ (u).
3. Output the secret key skF := r.

Enc(mpk,x, μ): The encryption algorithm takes as input the master public key
mpk, an attribute x ∈ {0, 1}� with x1 = 1,5 and a message μ ∈ {0, 1} and
proceeds as follows.
1. Sample s ← Z

n
q , e1 ← χ, e2 ← χm, and Si,b ← {−1, 1}m×m for i ∈ [�]

and b ∈ {0, 1}. Then, set ei,b := S�
i,be2 for i ∈ [�] and b ∈ {0, 1}.

2. Compute

ψ1 := s�u + e1 + μ�q/2	 ∈ Zq, ψ�
2 := s�A + e�

2 ∈ Z
m
q ,

ψ�
i,b := s�(B − xiG) + e�

i,b ∈ Z
m
q for all i ∈ [�] and b ∈ {0, 1}.

3. Output the ciphertext ctx := (ψ1, ψ2, {ψi,xi
}i∈[�]), where xi is the i-th bit

of x.
Dec(mpk, skx,x, F, ctF): The decryption algorithm takes as input the master pub-

lic key mpk, a secret key skF for a circuit F , and a ciphertext ctx for an
attribute x and proceeds as follows.
1. Parse ctx → (ψ1 ∈ Zq, ψ2 ∈ Z

m
q , {ψi,xi

∈ Z
m
q }i∈[�]), and skF ∈ Z

2m. If
any of the component is not in the corresponding domain or F (x) = 1,
output ⊥.

2. Concatenate {ψi,xi
}i∈[�] to form ψ�

3 = (ψ�
1,x1

, . . . , ψ�
�,x�

).
3. Compute ψ′ := ψ1 − [ψ�

2 ‖ψ�
3]r.

4. Output 0 if ψ′ ∈ [−B,B] and 1 if [−B + �q/2	, B + �q/2].

Remark 2.9. We note that the encryption algorithm above computes redundant
components {ψi,¬xi

}i∈[�] in the second step, which are discarded in the third
step. However, due to this redundancy, the scheme has the following special
structure that will be useful for us. Namely, the first and the second steps of
the encryption algorithm can be executed without knowing x. Only the third
step of the encryption algorithm needs the information of x, where it chooses
{ψi,xi

}i∈[�] from {ψi,b}i∈[�],b∈{0,1} depending on each bit of x and then output
the former terms along with ψ1 and ψ2. Looking ahead, our construction of CP-
ABE in Sect. 3 crucially relies on this special structure. There, the encryption
algorithm, who takes as input a circuit C that specifies the policy and does
not know the corresponding input x, executes the first two steps of the above
encryption algorithm. This is possible since these two steps do not need the
knowledge of x.

Parameters and Security. We choose the parameters for the scheme as follows:

m = n1.1 log q, q = 2Θ(λ), χ = SampZ(3
√

n),

τ0 = n log q log m, τ = m3.1� · 2O(d) B = n2m2τ · 2O(d).

5 This restriction is required to apply Lemma 2.8. We can remove the condition by
increasing the dimension of x by 1 and considering function F that ignores the first
bit.

Optimal Broadcast Encryption from Pairings and LWE 25

The parameter n will be chosen depending on whether we need Sel-INDr security
or Ada-INDr security for the scheme. If it suffices to have Sel-INDr security, we
set n = λc for some constant c > 1. If we need Ada-INDr security, we have to
enlarge the parameter to be n = (�λ)c in order to compensate for the security
loss caused by the complexity leveraging.

We remark that if we were to use the above ABE scheme stand-alone, we
would have been able to set q polynomially bounded as in [35]. The reason why
we set q exponentially large is that we combine the scheme with bilinear maps
of order q to lift the ciphertext components to the exponent so that they are
“hidden” in some sense (See Sect. 4). In order to use the security of the bilinear
map, we set the group order q to be exponentially large.

The following theorem summarizes the security and efficiency properties of
the construction. There are two parameter settings depending on whether we
assume subexponential hardness of LWE or not.

Theorem 2.10 (Adapted from [12,35]). Assuming hardness of LWE(n,m,

q, χ) with χ = SampZ(3
√

n) and q = O(2n1/ε

) for some constant ε > 1, the
above scheme satisfies Sel-INDr security. Assuming subexponential hardness of
LWE(n,m, q, χ) with the same parameters, the above scheme satisfies Ada-INDr
security with respect to the ciphertext space CT := Z

m(�+1)+1
q

2.4 Bilinear Map Preliminaries

Here, we introduce our notation for bilinear maps and the bilinear generic group
model following Baltico et al. [9], who specializes the framework by Barthe [10]
for defining generic k-linear groups to the bilinear group settings. The defini-
tion closely follows that of Maurer [40], which is equivalent to the alternative
formulation by Shoup [46].

Notation on Bilinear Maps. A bilinear group generator takes as input 1λ and
outputs a group description G = (q,G1,G2,GT , e, g1, g2), where q is a prime of
Θ(λ) bits, G1, G2, and GT are cyclic groups of order q, e : G1×G2 → GT is a non-
degenerate bilinear map, and g1 and g2 are generators of G1 and G2, respectively.
We require that the group operations in G1, G2, and GT as well as the bilinear
map e can be efficiently computed. We employ the implicit representation of
group elements: for a matrix A over Zq, we define [A]1 := gA1 , [A]2 := gA2 ,
[A]T := gAT , where exponentiation is carried out component-wise.

We also use the following less standard notations. For vectors w =
(w1, . . . , w�)� ∈ Z

�
q and v = (w1, . . . , w�)� ∈ Z

�
q of the same length, w � v

denotes the vector that is obtained by component-wise multiplications. Namely,
v � w = (v1w1, . . . , v�w�)�. When w ∈ (Z∗

q)
�, v � w denotes the vector

v � w = (v1/w1, . . . , v�/w�)�. It is easy to verify that for vectors c,d ∈ Z
�
q

26 S. Agrawal and S. Yamada

and w ∈ (Z∗
q)

�, we have (c�w)� (d�w) = c�d. For group elements [v]1 ∈ G
�
1

and [w]1 ∈ G
�
2, [v]1 � [w]2 denotes ([v1w1]T , . . . , [v�w�]T)�, which is efficiently

computable from [v]1 and [w]2 using the bilinear map e.

Generic Bilinear Group Model. Let G = (q,G1,G2,GT , e, g1, g2) be a bilin-
ear group setting, L1, L2, and LT be lists of group elements in G1, G2, and GT

respectively, and let D be a distribution over L1, L2, and LT . The generic group
model for a bilinear group setting G and a distribution D is described in Fig. 1.
In this model, the challenger first initializes the lists L1, L2, and LT by sampling
the group elements according to D, and the adversary receives handles for the
elements in the lists. For s ∈ {1, 2, T}, Ls[h] denotes the h-th element in the list
Ls. The handle to this element is simply the pair (s, h). An adversary running in
the generic bilinear group model can apply group operations and bilinear maps
to the elements in the lists. To do this, the adversary has to call the appropriate
oracle specifying handles for the input elements. The challenger computes the
result of a query, stores it in the corresponding list, and returns to the adversary
its (newly created) handle. Handles are not unique (i.e., the same group element
may appear more than once in a list under different handles).

We remark that we slightly simplify the definition of the generic group model
by Baltico et al. [9]. Whereas they allow the adversary to access the equality test
oracle, which is given two handles (s, h1) and (s, h2) and returns 1 if Ls[h1] =
Ls[h2] and 0 otherwise for all s ∈ {1, 2, T}, we replace this oracle with the
zero-test oracle, which is given a handle (s, h) and returns 1 if Ls[h] = 0 and 0
otherwise only for the case of s = T . We claim that even with this modification,
the model is equivalent to the original one. This is because we can perform the
equality test for (s, h1) and (s, h2) using our restricted oracles as follows. Let
us first consider the case of s = T . In this case, we can get the handle (T, h′)
corresponding to LT [h1] − LT [h2] by calling negT and addT . We then make a
zero-test query for (T, h′). Clearly, we get 1 if Ls[h1] = Ls[h2] and 0 otherwise.
We next consider the case of s ∈ {1, 2}. This case can be reduced to the case
of s = T by lifting the group elements corresponding to h1 and h2 to the group
elements in GT by taking bilinear maps with an arbitrary non-unit group element
in G3−s, which is possible by calling mape.

Symbolic Group Model. The symbolic group model for a bilinear group
setting G and a distribution DP gives to the adversary the same interface
as the corresponding generic group model, except that internally the chal-
lenger stores lists of element in the field Zp(X1, . . . , Xn) instead of lists
of group elements. The oracles adds, negs, map, and zt computes addition,
negation, multiplication, and equality in the field. In our work, we will use
the subring Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn] of the entire field Zp(X1, . . . , Xn).
Note that any element f in Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn] can be repre-
sented as f(X1, . . . , Xn) =

∑
(c1,...,cn)∈Zn ac1,...,cn

Xc1
1 · · · Xcn

n using {ac1,...,cn
∈

Zp}(c1,...,cn)∈Zn , where we have ac1,...,cn
= 0 for all but finite (c1, . . . , cn) ∈ Z

n.
Note that this expression is unique.

Optimal Broadcast Encryption from Pairings and LWE 27

State: Lists L1, L2, LT over G1, G2, GT respectively.
Initializations: Lists L1, L2, LT sampled according to distribution D.
Oracles: The oracles provide black-box access to the group operations, the bilinear

map, and equalities.
• For all s ∈ {1, 2, T}: adds(h1, h2) appends Ls[h1] + Ls[h2] to Ls and

returns its handle (s, |Ls|).
• For all s ∈ {1, 2, T}: negs(h1, h2) appends −Ls[h1] to Ls and returns its

handle (s, |Ls|).
• mape(h1, h2) appends e(L1[h1], L2[h2]) to LT and returns its handle
(T, |LT |).

• ztT (h) returns 1 if LT [h] = 0 and 0 otherwise.
All oracles return ⊥ when given invalid indices.

Fig. 1. Generic group model for bilinear group setting G = (q,G1,G2,GT , e, g1, g2) and
distribution D.

3 Our Construction of CP-ABE

Here, we describe our new construction of CP-ABE scheme. Our construction
can deal with any circuit class F = {Fλ}λ that is subclass of {C�(λ),d(λ)}λ with
arbitrary �(λ) ≤ poly(λ) and d(λ) = O(log λ), where C�(λ),d(λ) is a set of circuits
with input length �(λ) and depth at most d(λ). As we will see in Sect. 5, we can
obtain new constructions of BE, IBBE, CP-ABE by setting the circuit class F
appropriately. In order to get the scheme, we use the KP-ABE scheme BGG+ for
the circuit class F = {Fλ}λ that is described in Sect. 2.3 as an ingredient. Our
construction below can be seen as a conversion from an ABE scheme to another
ABE scheme with dual predicate.

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ),
m = m(λ), noise distribution χ over Z, τ0, τ , and B = B(λ) as specified in
Sect. 2.3. It samples a group description G = (q,G1,G2,GT , e, [1]1, [1]2). It
then sets L := (2� + 1)m + 2 and proceeds as follows.
1. Sample w ← (Z∗

q)
L and compute [w]1.

2. Output mpk = ([1]1, [1]2, [w]1) and msk = w.
KeyGen(mpk,msk,x): The key generation algorithm takes as input the master

public key mpk, the master secret key msk, and an attribute x ∈ {0, 1}� with
x1 = 1 and proceeds as follows.
1. Let 1 := (1, . . . , 1)� ∈ Z

m
q and 0 := (0, . . . , 0)� ∈ Z

m
q . Set

φ0 = 1 ∈ Zq, φ1 = 1 ∈ Zq, φ2 := 1 ∈ Z
m
q ,

φi,b :=

{
1 ∈ Z

m
q if b = xi

0 ∈ Z
m
q if b �= xi

for i ∈ [�] and b ∈ {0, 1}. (3.1)

2. Vectorize (φ0, φ1, φ2, {φi,b}i,b) to form a vector d ∈ Z
L
q by concatenating

each entry of the vectors in a predetermined order.

28 S. Agrawal and S. Yamada

3. Sample δ ← Z
∗
q .

4. Compute [δd � w]2 ∈ G
L
2 from msk = w in msk.

5. Output skx = [δd � w]2.
Enc(mpk, F, μ): The encryption algorithm takes as input the master public key

mpk, the circuit F , and a message μ ∈ {0, 1} and proceeds as follows.
1. Sample fresh BGG+ scheme:

(a) Sample (A,A−1
τ0) ← TrapGen(1n, 1m, q) such that A ∈ Z

n×m
q .

(b) Sample random matrix B = (B1, . . . ,B�) ← (Zn×m
q)� and a random

vector u ← Z
n
q .

2. Compute BGG+ function key for circuit F :
(a) Compute HF = EvalF(B, F) and BF = BHF .
(b) Compute [A‖BF]−1

τ from A−1
τ0 and sample r ∈ Z

2m as r ←
[A‖BF]−1

τ (u).

3. Compute BGG+ ciphertext for all possible inputs:
(a) Sample s ← Z

n
q , e1 ← χ, e2 ← χm, and Si,b ← {−1, 1}m×m for i ∈ [�]

and b ∈ {0, 1}. Then, set ei,b := S�
i,be2 for i ∈ [�] and b ∈ {0, 1}.

(b) Compute

ψ0 := 1 ∈ Zq, ψ1 := s�u + e1 + μ�q/2	 ∈ Zq,

ψ�
2 := s�A + e�

2 ∈ Z
m
q ,

ψ�
i,b := s�(Bi − bG) + e�

i,b ∈ Z
m
q for i ∈ [�] and b ∈ {0, 1}. (3.2)

4. Encode BGG+ ciphertexts in exponent of bilinear group:

(a) Vectorize (ψ0, ψ1, ψ2, {ψi,b}i,b) to form a vector c ∈ Z
L
q by concate-

nating each entry of the vectors in a predetermined order (that aligns
with the one used in the key generation algorithm).

(b) Sample γ ← Z
∗
q .

(c) Compute [γc � w]1 ∈ G
L
2 from γ, c, and [w]1 in mpk.

5. Output ctF = (ct0 = (A,B), ct1 = [γc � w]1, ct2 = r).
Dec(mpk, skx,x, F, ctF): The decryption algorithm takes as input the master pub-

lic key mpk, the secret key skx for an attribute x, and the ciphertext ctF for
a circuit F and proceeds as follows.
1. Parse ctF → (ct0 = (A ∈ Z

n×m
q ,B ∈ Z

n×m�
q), ct1 ∈ G

L
1 , ct2 ∈ Z

2m) and
skx ∈ G

L
2 . If any of the component is not in the corresponding domain or

F (x) = 1, output ⊥.

2. Unmask BGG+ ciphertexts corresponding to x by using secret key:
Compute [v]T := ct1 � skx and de-vectorize [v]T to obtain

[v0]T ∈ GT , [v1]T ∈ GT , [v2]T ∈ G
m
T , [vi,b]T ∈ G

m
T , for i ∈ [�], b ∈ {0, 1}.

3. Evaluate circuit F on BGG+ ciphertexts in the exponent:
Compute ĤF,x = EvalF(F,x,B).

Optimal Broadcast Encryption from Pairings and LWE 29

4. Perform BGG+ decryption in the exponent:
Form [v�

x]T = [v�
1,x1

, . . . ,v�
�,x�

]T and ct�2 = (r�
1 ∈ Z

m
q , r�

2 ∈ Z
m
q). Then

compute
[v′]T := [v1 − (v�

2 r1 + v�
x ĤF,xr2)]T

from [v1]T , [v2]T , [vx]T , r1, r2, and ĤF,x.

5. Recover exponent via brute force if F (x) = 0:
Find η ∈ [−B,B] ∪ [−B + �q/2	, B + �q/2] such that [v0]

η
T = [v′]T

by brute-force search. If there is no such η, output ⊥. To speed up the
operation, one can employ the baby-step giant-step algorithm.

6. Output 0 if η ∈ [−B,B] and 1 if [−B + �q/2	, B + �q/2].

Correctness. To see correctness of the scheme, we first observe that we have
ct1 � skx = [γδ · c � d]T and thus

v0 = γδ, v1 = γδ (sTu + e1 + μ�q/2) , v�
2 = γδ

(
s�A + e�

2

)
,

v�
i,b =

{
γδ

(
s�(Bi − xiG) + e�

i,xi

)
if b = xi

0 if b = 1 − xi

.

From the above, we have v�
x = s�(B−x⊗G) + e�

x for e�
x := (e�

1,x1
, · · · , e�

�,x�
).

We then have

v�
2 r1 + v�

x ĤF,xr2 = γδ
(
s�A + e�

2

)
r1 + γδ

(
s�(B − x ⊗ G) + e�

x

)
ĤF,xr2

= γδ
(
s�(Ar1 + BF r2) + e�

2 r1 + e�
x ĤF,xr2

)
= γδ

(
s�u + e�

2 r1 + e�
x ĤF,xr2

)

where the second equation follows from (B − x ⊗ G)ĤF,x = BF and the third
equation follows form [A‖BF]r = u. This implies

v′ = γδ
(
μ�q/2	 + e1 − e�

2 r1 − e�
x ĤF,xr2

)
.

Recall that we set χ = SampZ(3
√

n). By the definition of SampZ, we have
‖e1‖∞ ≤ 3n and ‖e2‖∞ ≤ 3n. Furthermore, we have ‖ei,b‖∞ = ‖S�

i,be2‖∞ ≤
3mn for i ∈ [�] and b ∈ {0, 1}, ‖r‖∞ ≤ √

nτ , and ‖ĤF,x‖∞ ≤ m · 2O(d), where
the last inequality follows from Lemma 2.8. Thus, we have

‖e1 − e�
2 r1 − e�

x ĤF,xr2‖∞ ≤ O(n1.5m2τ · 2O(d)) ≤ B

by our choice of B. The correctness therefore follows. Note that since B =
poly(n, �) · 2O(d) = poly(λ), the decryption algorithm runs in polynomial time.

30 S. Agrawal and S. Yamada

Efficiency of the Scheme. Here, we evaluate the efficiency of the above scheme.
In particular, we measure the sizes of the parameters. The master public key of
the scheme consists of L+2 group elements. Since L = O(m�), we have that the
master public key can be represented by a binary string of length �·poly(λ). Next,
we observe that a secret key in the scheme consists of L group elements, which
can be represented by a binary string of length � · poly(λ). Finally, a ciphertext
in the scheme consists of O(nm) elements of Zq and L group elements. The
former elements are represented by a binary string of length poly(λ) if we only
need Sel-INDr security for the underlying KP-ABE scheme. If we need Ada-INDr
security, the length of the binary string is poly(�, λ). Therefore, the length of the
whole ciphertext is �·poly(λ) if we only need Sel-INDr security for the underlying
KP-ABE scheme and poly(�, λ) if we need Ada-INDr security. In any case, the
sizes of all parameters in the system are independent of the size of the circuits
being supported by the scheme, which is a notable feature of the scheme.

4 Security Proof for Our CP-ABE

This section is devoted to prove the following theorem that asserts the security
of our CP-ABE scheme in Sect. 3.

Theorem 4.1. Our CP-ABE scheme for function class F satisfies Ada-IND
security in the generic group model assuming that the KP-ABE BGG+ for func-
tion class F satisfies Ada-INDr security.

Overview of the Proof. Before going to the formal proof, we give its overview. The
proof is done by considering a sequence of games and consists of two parts. In the
first part of the proof, which is captured by a series of game hops from Game0
through Game5 defined below, we prove that it is pointless for the adversary
to take pairing products between unmatching positions of the ciphertext and
secret key components and then take linear combinations among them. There-
fore, the only possible strategy for the adversary is to take linear combination
among “partial decryption results” obtained by taking pairing products between
matching positions of the ciphertext and secret key components and infer infor-
mation of the message being encrypted. In the second step of the proof, which
is captured by the game hop from Game5 to Game6, we show that this type of
attack does not work either. To do so, we further consider a sequence of subgames
from Game5,0 through Game5,8. We first prove that taking linear combinations
among partial decryption results from different secret keys is useless. This is the
key step that excludes the collusion attack and is captured by the game hop
from Game5.3 to Game5.4. At this point, the only strategy for the adversary
is to take linear combination among partial decryption result obtained by single
secret key. Finally, in the step from Game5.7 to Game5.8, we use the security
of the BGG+ ABE to conclude that this strategy does not work either. To invoke
the security of BGG+ ABE, we use the fact that the partial decryption result
obtained by secret key for x forms randomized version of BGG+ ABE ciphertext
for attribute x in the exponent.

Optimal Broadcast Encryption from Pairings and LWE 31

Proof. To prove the theorem, we fix a PPT adversary A that makes at most
Qkq(λ) key queries and Qzt(λ) zero-test queries during the game. Furthermore,
we assume that A always chooses (μ0, μ1) = (0, 1) as its target message at
the challenge phase. This can be assumed without loss of generality since our
scheme is a single-bit scheme. In order to prove the security, we consider following
sequence of games. Let us denote the event that A outputs correct guess for b at
the end of Gamex as Ex.

Game0: This is the real game in the generic group model. To fix the notation and
for the sake of concreteness, we briefly describe the game here. Without loss
of generality, we assume that the challenger simulates the generic group oracle
for A. At the beginning of the game, the challenger picks w ← (Z∗

q)
L and sets

the master public key mpk = ([1]1, [1]2, [w]1) and the master secret key msk =
w. Then, it gives handles to the group elements in mpk to A. To respond to the
j-th key query x(j) made by A, the challenger samples δj ← Z

∗
q , sets d(j) ∈ Z

L
q

as specified in the key generation algorithm, and sets sk(j) = [δjd(j) � w]2.
It then gives the handles corresponding to the group elements in sk(j) to A.
To answer the challenge query for a circuit F , the challenger first picks the
message b ← {0, 1} to be encrypted, chooses γ ← Z

∗
q , computes A, B, r, c as

specified in the encryption algorithm (where b is encrypted), and forms the
challenge ciphertext as ctF = (ct0 = (A,B), ct1 = [γc�w]1, ct2 = r). It then
returns ct0 = (A,B), handles to ct1 = [γc�w]1, and ct2 to A. By definition,
the advantage of A against the scheme is

∣∣Pr[E0] − 1
2

∣∣ .
Game1: This game is the same as the previous game except that the challenger

samples w = (w1, . . . , wL)�, δ1, . . . , δQkq
, A, B, u, γ, b, and c = (c1, . . . , cL)�

at the beginning of the game. Note that c is sampled from the distribution
that is only dependent on the bit b being encrypted, and is independent of
the circuit F that is specified by A later in the game. Therefore, this game is
well-defined. As we prove in Lemma 4.2, we have Pr[E0] = Pr[E1].

Game2: In this game, we (partially) switch to the symbolic group model and
replace {wi}i∈[L], {δj}j∈[Qkq], γ, and {ci}i∈[L] in Zq with the formal variables
{Wi}i∈[L], {Δj}j∈[Qkq], Γ , and {Ci}i∈[L] respectively. As a result, all handles
given to A refer to elements in the ring

T := Zq[W1, . . . , WL, 1/W1, . . . , 1/WL,Δ1, . . . , ΔQkq
, Γ, C1, . . . , CL],

where {1/Wi}i are needed to represent the components in the secret keys.
However, when the challenger answers the zero-test queries, it substitutes the
formal variables with corresponding elements in Zq. Namely, in this game,
the challenger picks {wi}i, {δj}j , γ, and {ci}i at the beginning of the game
as specified in the previous game and when A makes a zero-test query for a
handle corresponding to f(W1, . . . , WL,Δ1, . . . , ΔQkq

, Γ, C1, . . . , CL) ∈ T, the
challenger returns 1 if

f(w1, . . . , wL, δ1, . . . , δQkq
, γ, c1, . . . , cL) = 0

holds over Zq and 0 otherwise. As we prove in Lemma 4.3, we have Pr[E1] =
Pr[E2].

32 S. Agrawal and S. Yamada

Here, we list all the components in T for which corresponding handles are
given to A in Game2 as either handles to the group elements in mpk, the chal-
lenge ciphertext, or secret keys:

S1 :=
{
1, Wi, {CiΓWi}i∈[L]

}
, S2 :=

{
1, {d

(j)
i Δj/Wi}i∈[L],j∈[Qkq]

}

where d
(j)
i ∈ {0, 1} is the i-th entry of d(j). Note that S1 and S2 correspond to

handles for elements in G1 and G2, respectively. We then define ST as ST :=
{X · Y : X ∈ S1, Y ∈ S2,X · Y �= 0}. If we explicitly write down ST , we have
ST = ST,1 ∪ ST,2 where

ST,1 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1,
Wi, CiΓWi, for i ∈ [L],
Δj , for j ∈ [Qkq],
Δj/Wi, for i ∈ [L], j ∈ [Qkq] such that d

(j)
i = 1,

ΔjWi′/Wi, for i, i′ ∈ [L], j ∈ [Qkq] such that i �= i′ and d
(j)
i = 1

Ci′ΓΔjWi′/Wi for i, i′ ∈ [L], j ∈ [Qkq] such that i �= i′ and d
(j)
i = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

and ST,2 = {CiΓΔj for i ∈ [L], j ∈ [Qkq] such that d
(j)
i = 1}. Here, ST,2 con-

sists of terms that are obtained by taking product between matching positions of
the ciphertext and secret keys, whereas ST,1 consists of terms that are obtained
by taking product between unmatching positions of the ciphertext and secret
keys or between master public key and the ciphertext or secret keys. Note that
any handle submitted to the zero-test oracle by A during the game refers to an
element f in T that can be represented as

f(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ, C1, . . . , CL) =

∑
Z∈ST

aZZ (4.1)

where the coefficients {aZ ∈ Zq}Z∈ST
can be efficiently computed. Furthermore,

{aZ ∈ Zq}Z∈ST
satisfying the above equation is unique since all monomials in

ST are distinct.

Game3: In this game, we change the game so that {Wi}i∈[L], {Δj}j∈[Qkq], Γ
are treated as formal variables rather than elements in Zq even
when answering zero-test queries. Namely, the challenger no longer
samples {wi}i∈[L], {δj}j∈[Qkq], and γ at the beginning of the game
and when A makes a zero-test query for a handle corresponding to
f(W1, . . . , WL,Δ1, . . . , ΔQkq

, Γ, C1, . . . , CL) ∈ T, the challenger returns 1 if

f(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ, c1, . . . , cL) = 0 (4.2)

holds over T and 0 otherwise, where {ci}i∈[L] are sampled at the beginning
of the game as specified in the previous game. As we prove in Lemma 4.4, we
have |Pr[E2] − Pr[E3]| ≤ Qzt(L + 3)2/q.

Optimal Broadcast Encryption from Pairings and LWE 33

Game4: This game is the same as the previous game except that the challenger
aborts the game and enforces the adversary to output a random bit when there
exists i ∈ [L] such that ci = 0, where c = (c1, . . . , cL)� is sampled as in the
previous game. As we prove in Lemma 4.5, we have |Pr[E3] − Pr[E4]| ≤ L/q.

Game5: In this game, we further change the way zero-test queries are answered.
In particular, when A makes a zero-test query for a handle corresponding to
f ∈ T that can be represented as

f(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ, C1, . . . , CL) =

∑
Z∈ST,1

aZZ +
∑

Z∈ST,2

aZZ,

(4.3)
the challenger returns 0 if there exists Z ∈ ST,1 such that aZ �= 0. Otherwise,
the challenger answers the query as in the previous game. As we prove in
Lemma 4.6, we have Pr[E4] = Pr[E5].

Game6: In this game, we change the game so that zero-test queries are per-
formed over the ring T. Namely, when A makes a zero-test query for a handle
corresponding to f ∈ T the challenger returns 0 if f �= 0 over T. Equivalently,
the challenger returns 0 if there exists Z ∈ ST such that aZ = 0 when A makes
a zero-test query for a handle corresponding to f ∈ T that is represented as
Eq. (4.1). Note that (c1, . . . , cL) is not used in this game and the challenger
does not have to sample it any more. As we prove in Lemma 4.7, there exists a
PPT adversary B such that |Pr[E5]−Pr[E6]| ≤ QkqQzt·(AdvAda-INDr

BGG+,B (1λ)+1/q).

We can see that the adversary cannot obtain any information about the
encrypted message b in Game6 since the challenge ciphertext is replaced by
formal variables (C1, . . . , CL) that does not contain any information of b and the
answers to the zero test queries do not depend on b neither. Therefore, we have
Pr[E6] = 1/2. Thus, there exists a PPT adversary B against Ada-INDr security
of BGG+ such that∣∣∣∣Pr[E0] − 1

2

∣∣∣∣ ≤ QkqQzt ·
(
AdvAda-INDr

BGG+,B (1λ) +
1
q

)
+

Qzt(L + 3)2 + L

q
.

In particular, assuming BGG+ satisfies Ada-INDr security, the above quantity is
negligible as desired.

To finish the proof of Theorem 4.1, it remains to prove Lemmas 4.2, 4.3, 4.4,
4.5, 4.6, and 4.7 in the following.

Lemma 4.2 (Game0 ≡ Game1). We have Pr[E0] = Pr[E1].

Proof. Since this is only a conceptual change, the lemma immediately follows.

Lemma 4.3 (Game1 ≡ Game2). We have Pr[E1] = Pr[E2].

Proof. Since zero-test queries in Game2 are answered by using {wi}i, {δj}j , γ,
and {ci}i that are sampled from exactly the same distribution as that in Game1,
the view of A in Game2 is not altered from that in Game1. The lemma therefore
follows.

34 S. Agrawal and S. Yamada

Lemma 4.4 (Game2 ≈s Game3).We have |Pr[E2]−Pr[E3]| ≤ Qzt(L+3)2/q.

Proof. Let us observe that Game2 and Game3 differ only when A sub-
mits a handle corresponding to a polynomial f(W1, . . . , WL,Δ1, . . . , ΔQkq

, Γ,
C1, . . . , CL) ∈ T satisfying f(w1, . . . , wL, δ1, . . . , δQkq

, γ, c1, . . . , cL) = 0 and
f(W1, . . . , WL,Δ1, . . . , ΔQkq

, Γ, c1, . . . , cL) �= 0 to the zero-test oracle. Let F
denote the event. It suffices to bound the probability of F occurring in Game2. To
do so, let us fix an element f in T and c1, . . . , cL in Zq. We then define a polynomial
g(W1, . . . , WL,Δ1, . . . , ΔQkq

, Γ) ∈ Zq[W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ] as

g(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ)

:=

⎛
⎝ ∏

i∈[L]

Wi

⎞
⎠ · f(W1, . . . , WL,Δ1, . . . , ΔQkq

, Γ, c1, . . . , cL).

Note that in the above, the term (
∏

i Wi) is introduced in order to clear the
denominators that possibly appear in f and to make sure that g is in the ring
Zq[W1, . . . , WL,Δ1, . . . , ΔQkq

, Γ] rather than inT. We observe that F occurs if and
only if g(w1, . . . , wL, δ1, . . . , δQkq

, γ) = 0 and g(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ) �=

0 since we have wi �= 0 for all i ∈ [L]. We can bound this probabil-
ity by (L + 3)2/q using Schwartz-Zippel lemma since g is a polynomial in
Zq[W1, . . . , WL,Δ1, . . . , ΔQkq

, Γ] with degree at most L + 3. (Recall that f can
be represented as a linear combination of the terms in ST .) Since A makes at most
Qzt zero-test queries, the lemma follows by the union bound.

Lemma 4.5 (Game3 ≈s Game4). We have |Pr[E3] − Pr[E4]| ≤ L/q.

Proof. We observe that each entry of c = (c1, . . . , cL) is either fixed to be 1 or
distributed uniformly at random over Zq. Therefore, by the union bound, the
probability that there is i ∈ [L] such that ci = 0 can be bounded by L/q. The
lemma therefore follows.

Lemma 4.6 (Game4 ≡ Game5). We have Pr[E4] = Pr[E5].

Proof. We observe that Game4 and Game5 differ only when A makes a zero-
test query for a handle corresponding to f ∈ T that satisfies Eq. (4.2) and there
exists Z ∈ ST,1 such that aZ �= 0 when we express f as Eq. (4.3). We claim
that such f does not exist and two games are actually equivalent. For the sake
of contradiction, assume that such f exists. Then Eq. (4.2) implies∑

Z∈ST,1

aZZ(c1, . . . , cL) +
∑

Z∈ST,2

aZZ(c1, . . . , cL) = 0,

where Z(c1, . . . , cL) denotes Z(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ, c1, . . . , cL) ∈ T in

the above. We can see that
∑

Z∈ST,1
aZZ(c1, . . . , cL) = 0 holds since we have

⎧
⎨

⎩

∑

Z∈ST,1

a′
ZZ(c1, . . . , cL) : a′

Z ∈ Zq

⎫
⎬

⎭
∩

⎧
⎨

⎩

∑

Z∈ST,2

a′′
ZZ(c1, . . . , cL) : a′′

Z ∈ Zq

⎫
⎬

⎭
= {0},

Optimal Broadcast Encryption from Pairings and LWE 35

which follows from the fact that monomials in ST,1 and ST,2 are distinct even if
we substitute {Ci}i in ST,1 and ST,2 with {ci}i and ignore the difference between
the coefficients of the monomials. Furthermore,

∑
Z∈ST,1

aZZ(c1, . . . , cL) = 0
implies aZ = 0 for all Z ∈ ST,1, which follows from c ∈ (Z∗

q)
L and from the fact

that all monomials in ST,1 are distinct even if we substitute {Ci}i with {ci}i and
ignore the difference between the coefficients of the monomials. However, this
contradicts the assumption that there exists Z ∈ ST,1 such that aZ �= 0. This
completes the proof of the lemma.

Lemma 4.7 (Game5 ≈c Game6). There exists a PPT adversary B such that
|Pr[E5] − Pr[E6]| ≤ QkqQzt ·

(
AdvAda-INDr

BGG+,B (1λ) + 1/q
)
.

Proof. We first observe that Game5 and Game6 differ only when A makes a
zero-test query for a handle corresponding to f ∈ T that can be represented as

f(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ, C1, . . . , CL) =

∑
Z∈ST,2

aZZ (4.4)

and satisfies f �= 0 over T and Eq. (4.2). We call such a query bad. In the
following, we prove that the probability that A makes a bad query in Game5
is negligible. To do so, we consider following sequence of games. We define Fx

as the event that A makes a bad query in Game5,x and the challenger does not
abort.

Game5.0: This game is the same as Game5. By definition, the probability that
A makes a bad query in Game5 is Pr[F0].

Game5.1: In this game, we change the previous game so that the challenger picks
a random guess k∗ for the first bad query as k∗ ← [Qzt] at the beginning of the
game. Furthermore, we change the game so that the challenger aborts if the
k∗-th zero-test query is not the first bad query. Since k∗ is chosen uniformly
at random and independent from the view of A, the guess is correct with
probability 1/Qzt conditioned on F0. Therefore, we have Pr[F1] = Pr[F0]/Qzt.

Game5.2: This game is the same as the previous game except that the challenger
aborts the game immediately after A makes the k∗-th zero-test query. Since
whether F1 occurs or not is irrelevant to how the game proceeds after the
k∗-th zero-test query is made by A, we clearly have Pr[F2] = Pr[F1].

Game5.3: In this game, we change the game so that the challenger answers the
first k∗ − 1 zero-test queries by performing zero tests over T. Furthermore,
we change the game so that the sampling of c is deferred until the k∗-th
zero-test query is made by A. We first observe that the game is well-defined
since c is used only for the k∗-th zero-test query. Furthermore, since the first
k∗ − 1 zero-test queries that refer to f ∈ T such that f �= 0 are answered by
0 whenever F2 happens, we have Pr[F3] ≥ Pr[F2].

36 S. Agrawal and S. Yamada

Game5.4: To define the game, we first define the set ST,2,j :=
{CiΓΔj}i∈[L] s.t. d

(j)
i =1

. By definition, we have ST,2 = ∪j∈[Qkq]ST,2,j . Using
this notation, any f ∈ T referred by a bad query can be represented as

f(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ, C1, . . . , CL) =

∑
j∈[Qkq]

∑
Z∈ST,2,j

aZZ. (4.5)

In this game, we change the game so that the challenger aborts the game if
the bad query made by A refers to f such that there does not exist j ∈ [Qkq]
satisfying ∑

Z∈ST,2,j

aZZ �= 0 and
∑

Z∈ST,2,j

aZZ(c1, . . . , cL) = 0, (4.6)

where Z(c1, . . . , cL) denotes Z(W1, . . . , WL,Δ1, . . . , ΔQkq
, Γ, c1, . . . , cL) ∈ T

above. We claim that this actually cannot happen. To see this, we first observe
that since we have f �= 0 for a bad query, there exists j ∈ [Qkq] satisfying∑

Z∈ST,2,j
aZZ �= 0. Furthermore, we have

∑
Z∈ST,2,j

aZZ(c1, . . . , cL) = −
∑
j′ �=j

∑
Z∈ST,2,j′

aZZ(c1, . . . , cL)

from Eq. (4.2). However, the above is impossible unless the left hand side
equals to 0 since any monomial in ST,2,j never appears in ST,2,j′ for j′ �= j
even if we replace {Ci}i with {ci}i and ignore the difference between the
coefficients of the monomials. Therefore, the change made in this game is
only conceptual and we have Pr[F4] = Pr[F3].

Game5.5: In this game, we change the previous game so that the challenger picks
j∗ ← [Qkq] uniformly at random at the beginning of the game. Furthermore,
we add the abort condition that the challenger aborts if Eq. (4.6) does not
hold with respect to j = j∗ for f that is referred by the k∗-th zero-test query.
Since there exists j′ ∈ [Qkq] that satisfies Eq. (4.6) as long as F4 occurs and
j∗ is chosen uniformly at random and independent from the view of A, we
have Pr[F5] ≥ Pr[F4]/Qkq.

Game5.6: In this game, we further change the game so that the challenger aborts
the game if the j∗-th key query has not been made yet at the point when the
k∗-th zero-test query is made. We claim that conditioned on F5 happens, the
challenger never aborts. To see this, we observe that if the j∗-th key query has
not been made then terms that contain Δj∗ has not been given to A and there
is no way to make a zero-test query for f such that

∑
Z∈ST,2,j∗ aZZ �= 0, since

all terms in ST,2,j∗ are multiples of Δj∗ . We therefore have Pr[F6] = Pr[F5].
Game5.7: In this game, we further change the game so that the challenger sam-

ples ci only for i ∈ [L] such that d
(j∗)
i = 1, where j∗ is chosen at the begin-

ning of the game as in Game5.5. The game is still well-defined since the
only place in the game where we need the information of c is when checking
Eq. (4.6) and we only need {ci}i∈[L] s.t. d

(j∗)
i =1

there. (Recall that we have

Optimal Broadcast Encryption from Pairings and LWE 37

ST,2,j = {CiΓΔj}i∈[L] s.t. d
(j)
i =1

.) Clearly, this does not change the view of
A. We therefore have Pr[F7] = Pr[F6].

From Eqs. (3.1) and (3.2), we can see that {ci}i∈[L] s.t. d
(j∗)
i =1

consists of the
following components:

ψ0 = 1, ψ1 := s�u + e1 + μ�q/2	, ψ�
2 := s�A + e�

2 ,

ψ�
i,x

(j∗)
i

:= s�(Bi − x
(j∗)
i G) + e�

i,x
(j∗)
i

for i ∈ [�],

where x
(j∗)
i is the i-th entry of x(j∗).

Game5.8: In this game, we further change the game so that the challenger
samples

ψ0 := 1 ∈ Zq, ψ1 ← Zq, ψ2 ← Z
m
q , ψi,b ← Z

m
q for i ∈ [�] and b ∈ {0, 1}

and sets {ci}i∈[L] s.t. d
(j∗)
i =1

from the above components.6 As we prove in

Lemma 4.8, there exists a PPT adversary B such that AdvAda-INDr
BGG+,B (1λ) ≥

|Pr[F7] − Pr[F8]|.

As we will prove in Lemma 4.9, we have Pr[F8] ≤ 1/q. This allows us to bound
Pr[F0] as Pr[F0] ≤ QkqQzt · (AdvAda-INDr

BGG+,B (1λ)+ 1/q), where B is a PPT adversary.
This completes the proof of Lemma 4.7.

It remains to prove Lemmas 4.8 and 4.9 in the following.

Lemma 4.8 (Game5.7 ≈c Game5.8). There exists a PPT adversary B such
that AdvAda-INDr

BGG+,B (1λ) ≥ |Pr[F7] − Pr[F8]|.

Proof. We show that if A can distinguish Game5.7 from Game5.8, we can build
another adversary B against Ada-INDr security of BGG+. The adversary B acts
as the challenger and simulates the game for A. Looking ahead, setup phase and
key queries are trivial to handle since they do not need any parameter of BGG+.
The only steps we need care are the simulation of the challenge phase and the
k∗-th zero-test query, where B needs to interact with its challenger in order to
handle them. We describe how B proceeds in the following.

Setup phase. At the beginning of the game, B is given 1λ and the master public
key of BGG+ (A,B,u). It then gives the handles to 1,W1, . . . , WL corresponding
to G1 and the handle to 1 corresponding to G2 to A. These handles correspond
to the master public key. B also samples j∗ ← [Qkq], k∗ ← [Qzt], and b ← {0, 1}
and keeps them secret.

Key Queries. Given the j-th secret key query for x(j) made by A, B proceeds as
follows. B first forms d(j) ∈ Z

L
q as specified in the key generation algorithm and

returns the handles corresponding to (d(j)1 Δj/W1, . . . , d
(j)
L Δj/WL) in G2 to A.

6 Note that until this step, we have not changed the distribution of {ci}i∈[L] except

that we stop sampling ci for i such that d
(j∗)
i = 1 in Game5,7.

38 S. Agrawal and S. Yamada

Challenge Query. When A makes the challenge query for a circuit F , B
makes a secret key query for F to its challenger and is given r sampled as
r ← [A‖BF]−1

τ (u). B then sets ct0 = (A,B), ct2 := r, and ct1 as the handles
corresponding to the formal variables (C1, . . . , CL) and gives ct = (ct0, ct1, ct2)
to A as the challenge ciphertext.

Generic Group Queries. B honestly handles the queries for the generic group
oracle corresponding to addition, negation, and multiplication (bilinear map)
made by A by keeping track of the underlying encodings in T associated with the
handles. For the k-th zero-test query that refers to an element f in T, B returns
1 if f = 0 over T and 0 otherwise if k < k∗. If k = k∗, B first checks whether
the j∗-th key query has already been made and aborts otherwise, as specified in
Game5.6. It then makes the challenge query for the attribute x(j∗), where x(j∗)

is the attribute for which A has made the j∗-th key query, and the message b to
its challenger. Then B obtains its challenge ciphertext (ψ1, ψ2, {ψ

i,x
(j∗)
i

}i∈[�]). It
then sets ψ0 = 1 and forms {ci}i∈[L] s.t. d

(j∗)
i =1

by vectorizing the terms appropri-
ately. Finally, it checks whether Eq. (4.6) holds or not using {ci}i∈[L] s.t. d

(j∗)
i =1

as specified in Game5.7 and outputs 1 if it holds and 0 otherwise.

Analysis. It is easy to see that B simulates Game5.7 if the challenge ciphertext
for B is the real one and Game5.8 if it is chosen uniformly at random from
the ciphertext space. Therefore, it can be seen that B outputs 1 with proba-
bility Pr[F7] if the challenge bit for B is 0 and Pr[F8] otherwise. Therefore, B’s
advantage against BGG+ is |Pr[F7] − Pr[F8]|. This completes the proof of the
lemma.

Lemma 4.9. We have Pr[F8] = 1/q.

Proof. We observe that F8 occurs only when A makes a zero-test query that
refers to a handle f �= 0 that can be represented as Eq. (4.4) and satisfies Eq. (4.6)
with respect to j∗ where {ci}i∈[L] s.t. d

(j∗)
i =1

are chosen as Game5.8. However,
Eq. (4.6) can happen only with probability at most 1/q since f is represented
as a linear combination of {CiΓΔj}i,j and all entries of {ci}i∈[L] s.t. d

(j∗)
i =1

are
chosen uniformly at random except for the entry that is fixed to be 1.

5 Implications to CP-ABE, BE, and IBBE

In this section, we show that by setting the circuit class supported by our CP-
ABE scheme in Sect. 3 appropriately, we can obtain various new schemes with
different security and efficiency tradeoffs. In particular, we obtain new CP-ABE,
BE, and IBBE schemes from the LWE assumption in the bilinear generic group
model. Our CP-ABE scheme achieves the notable efficiency property that the
sizes of all the parameters in the system do not depend on the size of the cir-
cuits supported by the scheme. Similarly, our BE (resp., IBBE) schemes achieve
optimal parameter size, in the sense that the sizes of all parameters in the sys-
tem are bounded by a fixed polynomial that is independent from the number of

Optimal Broadcast Encryption from Pairings and LWE 39

users (resp., upper bound on the number of recipients). These efficiency proper-
ties have never been achieved without using indistinguishability obfuscation or
multilinear maps.

5.1 New CP-ABE Scheme

By setting FCP := {C�(λ),d(λ)}λ in the construction in Sect. 3, we obtain a CP-
ABE scheme that can deal with the set of circuits whose input length and depth
are �(λ) and d(λ), respectively. In order to prove Ada-IND security for the result-
ing scheme, we need to be able to prove Ada-INDr security for the KP-ABE
scheme BGG+ for the same circuit class as stated in Theorem 4.1. This is pos-
sible by assuming subexponential hardness of LWE as we see in Theorem 2.10.
The notable feature of the resulting scheme is that the sizes of the master public
key, ciphertexts, and secret keys are independent from the size of the circuits
supported by the scheme. The sizes of these parameters are only dependant on
the input length and the depth of the circuits.

Summarizing the above discussion, we get the following theorem.

Theorem 5.1. Assuming the subexponential hardness of LWE, we have a CP-
ABE scheme for circuit class C�,d for arbitrary � = poly(λ) and d = O(log λ)
that satisfies Ada-IND security in the bilinear generic group model. The sizes of
the master public key, ciphertexts, and secret keys are bounded by poly(λ, �, d).

We note that in all previous CP-ABE scheme (e.g., [11,44,48]) for NC1, either
the ciphertext or secret key size depends on the circuit size supported by the
scheme.

5.2 New BE Scheme with Optimal Parameter Size

Here, we show that we can obtain a BE scheme with optimal parameter size
by setting the circuit class F supported by the CP-ABE scheme in Sect. 3
appropriately.

Obtaining DBE from KP-ABE. In order to get the BE scheme, we first
observe that we can implement a DBE scheme by a KP-ABE scheme for the
following circuit class FBE defined as FBE =

{
FS : {0, 1}�log N� → {0, 1}

}
S⊆[N]

where FS(i) =

{
1 if i ∈ S

0 if i �∈ S
. Here, we identify a user index i ∈ [N] and elements

in S with binary strings in {0, 1}�log N� by a natural bijection map between
{0, 1}�log N� and [2�log N�] ⊇ [N]. Since the depth of FS affects the efficiency of
the DBE scheme, we want FS to be as shallow as possible. For this purpose, we
compute FS by first computing bj := (i ?= j) for all j ∈ S in parallel and then
computing ∨j∈Sbj . The first step can be implemented with depth O(log log N)
and the second step with O(log N). This allows us to implement FS with depth
O(log |S|) ≤ O(log N). By the definition of FS , one can see that this KP-ABE
scheme implements the functionality of DBE.

40 S. Agrawal and S. Yamada

Plugging the DBE into Our Construction in Sect. 3. We then instantiate
the KP-ABE for the circuit class FBE with BGG+ and plug this scheme into
our CP-ABE construction in Sect. 3. Since the ciphertext and key attributes
of the CP-ABE scheme are swapped from the underlying KP-ABE scheme, we
obtain a BE scheme as a result. This instantiation is possible since the depth
of the circuits is bounded by O(log N) ≤ O(log λ) and we can take the upper
bound on the depth d(λ) to be larger than this. The sizes of the master public
key, ciphertexts, and secret keys in the resulting BE scheme are bounded by
poly(log N,λ) = poly(λ), which is independent of the number of users, since the
depth and input length of the circuits in FBE is bounded by O(log N). Note that
we crucially rely on the efficiency property of our CP-ABE scheme that the sizes
of all parameters in the system are independent of the size of the circuits being
supported, where the latter can be as large as O(N) for FBE.

Security of the Resulting BE Scheme. In order for the resulting BE scheme
to have Ada-IND security, we need the underlying KP-ABE scheme BGG+ to
have Ada-INDr security as stated in Theorem 4.1. In the general case where
the input length for the circuits is of poly(λ), we need to assume subexponential
hardness of LWE to prove Ada-INDr security for BGG+ as we see in Theorem 2.10.
However, since we restrict the circuit class for BGG+ to be FBE here, we can
avoid assuming subexponential hardness of LWE and base the security of our
scheme on polynomial hardness of LWE. To see this, we first recall that for
proving Sel-INDr security for BGG+, polynomial hardness of LWE is enough
(Theorem 2.10). We then observe that in the special case of DBE, Sel-INDr
and Ada-INDr are actually equivalent, since one can guess the target attribute
i� ∈ [N] chosen by the adversary in the security game with only polynomial
security loss.

Summarizing the above discussion, we get the following theorem.

Theorem 5.2. Assuming the LWE assumption, we have a BE scheme that sat-
isfies Ada-IND security in the bilinear generic group model. The sizes of the
master public key, ciphertexts, and secret keys are bounded by a fixed polynomial
poly(λ) that is independent of N .

In the full version of our paper [5], we show that we can obtain an IBBE
scheme with optimal parameter size by setting the circuit class F supported by
the CP-ABE scheme in Sect. 3 appropriately.

Acknowledgement. We thank anonymous reviewers for helpful comments. Shota
Yamada is supported by JST CREST Grant Number JPMJCR19F6 and JSPS KAK-
ENHI Grant Number 16K16068.

References

1. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and
attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 1

https://doi.org/10.1007/978-3-319-63688-7_1

Optimal Broadcast Encryption from Pairings and LWE 41

2. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 7

3. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

4. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 6

5. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE.
Eprint 2020/228

6. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: IO from LWE, bilinear maps, and weak pseudorandom-
ness. In: Crypto (2019)

7. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. Eprint 2016 (2016)

8. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 23

9. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 3

10. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Auto-
mated analysis of cryptographic assumptions in generic group models. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 95–112. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 6

11. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

13. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

14. Boneh, D., Kim, S.: Single key CP-ABE. Personal Communication (2016)
15. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from

multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 206–223. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 12

16. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Algorithmica 79(4), 1233–1285 (2016).
https://doi.org/10.1007/s00453-016-0242-8

https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-13013-7_23
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/s00453-016-0242-8

42 S. Agrawal and S. Yamada

17. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

18. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

19. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, STOC 2013. ACM (2013)

20. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS (2011)

21. Brakerski, Z., Vaikuntanathan, V.: Lattice-inspired broadcast encryption and suc-
cinct ciphertext policy ABE. Personal communication (2020)

22. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

23. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. Eprint 2016/135

24. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

25. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low level encoding of zero. Eprint 2016/139

26. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

27. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indis-
tinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54365-8 3

28. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 12

29. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73489-5 4

30. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

31. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013). http://eprint.iacr.org/

32. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-540-73489-5_4
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
http://eprint.iacr.org/

Optimal Broadcast Encryption from Pairings and LWE 43

33. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-
9 10

34. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for cir-
cuits. In: STOC (2013)

35. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient abe for branch-
ing programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48797-6 23

36. Goyal, R., Quach, W., Waters, B., Wichs, D.: Broadcast and trace with Nε cipher-
text size from standard assumptions. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 826–855. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 27. https://eprint.iacr.org/2019/636

37. He, K., Weng, J., Liu, J.-N., Liu, J.K., Liu, W., Deng, R.H.: Anonymous identity-
based broadcast encryption with chosen-ciphertext security. In: Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security, ASIA
CCS 2016 (2016)

38. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report
2015/301 (2015)

39. Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for iO.
Cryptology ePrint Archive, Report 2019/1252 (2019). https://eprint.iacr.org/
2019/1252

40. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

41. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

42. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

43. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 84–93 (2009). Extended abstract in STOC 2005

44. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM-CCS, pp. 463–474 (2013)

45. Sakai, R., Furukawa, J.: Identity-based broadcast encryption. IACR Cryptology
ePrint Archive (2007)

46. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

47. Tsabary, R.: Fully secure attribute-based encryption for t-CNF from LWE. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 62–85.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 3

48. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-030-26954-8_27
https://doi.org/10.1007/978-3-030-26954-8_27
https://eprint.iacr.org/2019/636
https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2019/1252
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-26948-7_3
https://doi.org/10.1007/978-3-642-19379-8_4

Private Information Retrieval
with Sublinear Online Time

Henry Corrigan-Gibbs1,2,3(B) and Dmitry Kogan1(B)

1 Stanford University, Stanford, CA, USA
dkogan@cs.stanford.edu

2 EFPL, Lausanne, Switzerland
3 MIT CSAIL, Cambridge, MA, USA

henrycg@csail.mit.edu

Abstract. We present the first protocols for private information
retrieval that allow fast (sublinear-time) database lookups without
increasing the server-side storage requirements. To achieve these effi-
ciency goals, our protocols work in an offline/online model. In an offline
phase, which takes place before the client has decided which database
bit it wants to read, the client fetches a short string from the servers. In
a subsequent online phase, the client can privately retrieve its desired
bit of the database by making a second query to the servers. By pushing
the bulk of the server-side computation into the offline phase (which is
independent of the client’s query), our protocols allow the online phase
to complete very quickly—in time sublinear in the size of the database.
Our protocols can provide statistical security in the two-server setting
and computational security in the single-server setting. Finally, we prove
that, in this model, our protocols are optimal in terms of the trade-off
they achieve between communication and running time.

1 Introduction

A private information retrieval protocol [CGKS95,CGKS98] takes place between
a client, holding an index i ∈ [n], and a database server, holding a string
x = x1x2 · · · xn ∈ {0, 1}n. The protocol allows the client to fetch its
desired bit xi ∈ {0, 1} from the database while hiding the client’s index
i from the server, and using total communication that is sublinear in the
database size n. A beautiful line of work, starting with that of Chor, Goldre-
ich, Kushilevitz, and Sudan [CGKS95], constructs private information retrieval
(PIR) protocols with extremely small communication complexity, either when
the client can access multiple non-colluding servers holding replicas of the
database [Amb97,CG97,BI01,BIKR02,Yek08,Efr12,DG16] or under computa-
tional assumptions [KO97,CMS99,KO00,GR05,OS07].

The full version of this paper is available at https://eprint.iacr.org/2019/1075.
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 44–75, 2020.
https://doi.org/10.1007/978-3-030-45721-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_3&domain=pdf
https://eprint.iacr.org/2019/1075
https://doi.org/10.1007/978-3-030-45721-1_3

Private Information Retrieval with Sublinear Online Time 45

x x

Ω(n) work

o(
n
)
bi
ts

o(n)
bits

client

input i

i xi

Traditional PIR

xx

Ω(n) work

o(n)
bits

o(n)
bits o(

n
)
bi
ts

i xi

client client

input i

x x

o(n) work

o(n) storage

Offline/Online PIR

Fig. 1. A comparison of traditional two-server PIR (left) and offline/online PIR with
sublinear online time (right). The servers store replicas of a database x ∈ {0, 1}n.

PIR is a fundamental privacy-preserving primitive: it has applications to
private messaging [SCM05,AS16,ACLS18], certificate transparency [LG15], pri-
vate media browsing [GCM+16], online anonymity [MOT+11,KLDF16], privacy-
preserving ad targeting [Jue01], and more. In spite of the promise of PIR and
the great advances in PIR protocols, there have been essentially no large-scale
deployments of PIR technology to date. A primary reason is that while modern
PIR protocols have very small communication requirements—as small as poly-
logarithmic in the database size—the computational burden they put on the
server is still prohibitively expensive.

In particular, in all existing PIR schemes, the work at the servers grows
linearly with the database size. That is, the servers essentially take a linear scan
over the entire database to respond to each query. Beimel et al. [BIM04] proved
that this limitation is in fact inherent: even in the multi-server setting, every
secure PIR scheme on an n-bit database must incur Ω(n) total server-side work.
(If the servers probe fewer than n database bits on average in responding to a
client’s query, then it is likely that the client is reading one of the probed bits.)

This Ω(n) server-side cost is the major bottleneck for PIR schemes in theory,
since all other costs in today’s PIR protocols (communication, client time, etc.)
are sublinear, or even polylogarithmic, in the database size. This Ω(n) server-
side cost is also the major bottleneck for PIR schemes in practice, as evidenced
by the many heroic efforts to reduce the server-side computational cost in built
PIR systems [LG15,AS16,GCM+16,TDG16,ACLS18].

In Sect. 1.4, we survey the known approaches to reducing the server-side
computation in PIR-like schemes. All of these methods increase the storage
requirements at the servers and the methods based on standard assumptions
(i.e., not requiring obfuscation) increase the required server storage by potentially
large polynomial factors. These increased storage costs present new barriers to
deployment.

46 H. Corrigan-Gibbs and D. Kogan

1.1 A New Approach: Offline/Online PIR with Sublinear Online
Time

In this paper, we propose a new approach for reducing the server-side computa-
tional burden of PIR. Our idea is to push the (necessary) linear-time server-side
computation into a query-independent offline phase, which allows a subsequent
online phase to complete in sublinear time (Fig. 1). More precisely, we construct
PIR schemes in which the client and servers interact in two phases:

– In an offline phase, which takes place before the client has decided which bit
of the database it wants to retrieve, the client fetches a one-time-use “hint”
from the database servers.

– In a subsequent online phase, which takes place after the client has decided
which bit of the database it wants to retrieve, the client sends a query to the
database servers. Given the servers’ answers to this query, along with the hint
prefetched earlier, the client can recover its database bit of interest.

Prior work has developed PIR offline/online schemes [DIO01,BIM04,BLW17,
PPY18]. In this paper, we construct the first offline/online PIR schemes that
simultaneously:

1. run in online time sublinear in the database size, and
2. do not increase the storage requirements at the servers.

(See Sect. 1.4 and Table 1 for a comparison to prior work.) Furthermore, our
schemes are based on very simple assumptions—one-way functions in the
two-server setting and linearly homomorphic encryption in the single-server
setting—and are concretely efficient. The remaining performance bottleneck of
our schemes is that one of the servers must perform an amount of offline com-
putation in that is linear in the database size.

Our schemes advance the state of the art in PIR by enabling two new usage
models:

1. Do the heavy computation in advance. Our schemes shift the heavy
server-side computation out of the critical path of the client’s request. For
example, we envision deployments of our PIR schemes in which the client
and server execute the offline phase overnight, while the user is asleep and
when computation is relatively inexpensive. In the morning, when the user
wakes up and wants to, say, privately fetch an article from Wikipedia, she
can run the online phase to get her article in sublinear time.
The idea of moving expensive cryptographic work into an input-independent
offline phase has seen tremendous success in the setting of multiparty compu-
tation [BDOZ11,DPSZ12]. Our schemes achieve the same goal for PIR.

2. Process a series of queries in sublinear amortized total time. Often,
a user wants to make a series of adaptive queries to the same database (e.g.,
as one does when jumping from one Wikipedia article to the next). In this
setting, our two-server PIR scheme allows the client to reuse a single hint,
fetched in the offline phase, to make arbitrarily many adaptive online queries

Private Information Retrieval with Sublinear Online Time 47

to the database. By reusing the hint, the amortized total server-side cost
of each query—including both the costs of the offline and online phases—
falls to sublinear in the database size. As far as we know, ours is the first
PIR scheme that achieves sublinear amortized total time for adaptive queries
without dramatically increasing the client or servers’ storage requirements.

1.2 Our Results

We give the following results for offline/online private information retrieval with
sublinear online time:

Two-server PIR. We give a two server offline/online scheme with sublinear
online time. Specifically, for a database consisting of n bits, the offline phase
requires the client to interact with one server, which performs ˜O(n) offline com-
putation. (The notation ˜O(·) hides arbitrary polylogarithmic factors. In this
section, we also elide fixed polynomials in the security parameter.) In the online
phase, the client interacts with the second server, which answers the client’s
query in time ˜O(

√
n). We give a scheme with statistical security that has total

communication ˜O(
√

n). Assuming that one-way functions exist, the online com-
munication cost falls to O(log n).

Two-server PIR with sublinear amortized total time. We extend our
two-server scheme to allow the client to reuse a single offline-phase interaction
to make a series of polynomially many adaptive online-phase queries. With this
scheme, the online cost of each query is still ˜O(

√
n), but after q online queries,

the average total computational cost—including the offline-phase computation—
falls to ˜O(n/q +

√
n), or sublinear in the database size.

Single-server PIR. We show how to combine a linearly homomorphic encryp-
tion scheme and a standard single-server PIR scheme to obtain a single-server
offline/online PIR scheme with sublinear online time. The resulting scheme uses
˜O(n2/3) total communication and the server runs in online time ˜O(n2/3). Fur-
thermore, neither the client nor the server performs any public-key cryptographic
operations in the online phase. Under the stronger assumption that fully homo-
morphic encryption exists, we obtain a single-server scheme with communication
and online time ˜O(

√
n). One drawback is that, unlike its two-server counterpart,

our single-server scheme supports only a single online query after each offline
interaction, and thus we do not achieve sublinear amortized total time. The
main benefit of shifting the heavy server-side computation to the offline phase
remains.

A lower bound. Finally, we prove a lower bound for offline/online PIR schemes
in which the servers store the database in unencoded form and keep no additional
state. Specifically, we show that any scheme of this form, that uses C bits of
communication in the offline phase, and that probes T bits of the database in
the online phase, must satisfy C ·T ≥ ˜Ω(n). This shows that in this model, as far
as communication and online server time are concerned, our two-server scheme
and the FHE-based single-server scheme are optimal, up to logarithmic factors.

48 H. Corrigan-Gibbs and D. Kogan

1.3 Limitations

The primary drawback of our new PIR protocols is that they use more total
communication than standard PIR schemes do. Today’s PIR schemes (with lin-
ear online server-side time) can achieve polylogarithmic communication in the
computational setting [CMS99,GR05,IP07,BGI16,DGI+19] and subpolynomial
communication (nO(

√
log log n/ log n)) in the two-server information-theoretic set-

ting [DG16]. In contrast, our schemes with sublinear online time have commu-
nication ˜Ωλ(

√
n). While we show that it is possible to reduce the online-phase

communication in the computational setting, our lower bound (Theorem 23)
implies that any offline/online PIR scheme with online time ˜O(

√
n)—such as

ours—must have ˜Ω(
√

n) total communication. This limitation is therefore inher-
ent to PIR schemes that have sublinear online server time and in which the
servers store the database in unmodified form.

In many settings, we expect that the
√

n communication cost will be
acceptable. Indeed, a number of built systems using PIR [GDL+14,GCM+16,
AMBFK16,ACLS18] already suffice with

√
n communication complexity, since

server-side computational cost is the limiting factor. If
√

n communication is
still too high, we show in Corollary 18 that it is possible to amortize the

√
n

offline communication cost of our two-server scheme over polynomially many
online reads, each of which requires only logarithmic communication. So, our
results are still relevant to communication-sensitive settings, when having low
amortized complexity is sufficient.

1.4 Related Work

Beimel, Ishai, and Malkin [BIM04] proved that the servers in any secure PIR
scheme must collectively probe all n bits of the database (on average) to respond
to a client’s query. We survey the existing strategies for eliminating this key
performance bottleneck.

Store the database in encoded form. One ingenious way to circumvent the
Ω(n)-server-time lower bound is to have the servers store the database in encoded
form. Beimel et al. [BIM04] introduced the notion of PIR with preprocessing, in
which the servers perform a one-time preprocessing of the database x ∈ {0, 1}n

and store the database in encoded form E(x) ∈ {0, 1}N , where E is a public
encoding function and N � n. In the two-server setting, their PIR schemes with
preprocessing achieve n1/2+ε total communication and n1/2+ε server-side time,
for any ε > 0. The downside of this approach is that the server-side encoding can
be quite large. For example, to achieve n0.6 server-side time and communication
using their two-server scheme requires the server to store an encoded database
of size N = n3.2. Even for modest database sizes (e.g., n ≈ 220), the encoded
database would be much too large to materialize in practice (many petabytes).
While it would be fascinating to construct improved schemes for two-server PIR
with preprocessing—perhaps with encoding size N = 10n and online time and
communication n1/3—this goal appears far out of reach.

Private Information Retrieval with Sublinear Online Time 49

Table 1. A comparison of PIR schemes when cast into the offline/online model, on
database size n, in which each client makes q adaptive online queries, and in which m
clients execute the offline phase before the first client executes the online phase.

– The offline and online costs are per-query costs. Thus, if a scheme has a offline phase
of server cost n, which can be reused over q online queries, we write its per-query
offline cost as n/q.

– If a scheme has a one-time offline phase that can be reused for an unbounded
number of clients and queries (as in [BIM04,BIPW17]), we view the scheme as
having zero offline cost.

– The extra storage cost is the number of bits, in addition to the database, that client
and server must hold between the offline and online phases.

All columns omit poly(λ) factors, for security parameter λ, and also low-order polylog(n)
factors. Here, ε > 0 is an arbitrarily small constant and c refers to some constant in N.

The schemes of Beimel et al. apply only to the multi-server setting. Two recent
works [BIPW17,CHR17] study doubly efficient PIR, which are in some sense
single-server PIR-with-preprocessing schemes. In the designated-client model of

50 H. Corrigan-Gibbs and D. Kogan

doubly efficient PIR, the client encodes the database using a long-term secret key
(hidden from the server) and stores the encoded database on the server. Under a
new cryptographic assumption, the client can subsequently privately query this
encoded database many times, and the server can answer the query in time sub-
linear in the database size. In the public-key analogue of doubly efficient PIR, a
server that stores a single database encoding enables multiple mutually distrust-
ing clients to query the database using a short public key. Boyle et al. [BIPW17]
construct a public-key doubly efficient PIR scheme with sublinear query time,
under a new cryptographic assumption and in a model with virtual black-box
obfuscation.

Hamlin et al. [HOWW18] introduce a notion of private anonymous data
access (“PANDA”) schemes, in which many clients can access an encoded
database such that (1) as in standard PIR schemes, the server does not learn
which bits of the database a client is reading and (2) the server can respond to
a client’s request in time sublinear—even polylogarithmic—in the database size.
Unlike in doubly efficient PIR schemes, the server in PANDA may store muta-
ble state. Hamlin et al. give an instantiation of a PANDA scheme from fully
homomorphic encryption [Gen09]. A limitation of the existing PANDA schemes
is that they require the server storage and time to grow with the number of mali-
cious clients interacting with the system. In our setting, in which the number
of malicious clients could be unbounded, the storage and online server time of a
PANDA scheme would also be unbounded.

The general framework of PIR with preprocessing is extremely promising,
since preprocessing schemes can plausibly allow both polylogarithmic total com-
munication and total work—which is impossible in the offline/online setting.
That said, these preprocessing schemes necessarily increase the storage costs at
the servers, by large polynomial factors in many cases. The single-server prepro-
cessing schemes additionally rely on relatively heavy cryptographic assumptions.
In contrast, in our schemes, the servers store the database x in unencoded form
and keep no additional state. The trade-off is that, in our schemes, the client
and servers must run the linear-server-time offline phase once per client (Sect. 4)
or once per query (Sects. 3 and 5).

Use linear additional storage per query. Beimel, Ishai, and Malkin [BIM04,
Section 7.2], building on earlier work of Di Crescenzo, Ishai, and Ostro-
vsky [DIO98,DIO01], give an alternative way to reduce the server-side online
time in PIR. In their model, the client submits a request to the servers in an
offline phase. The servers use this request to generate a one-time-use n-bit encod-
ing of the n-bit database, which the servers store. In a subsequent online phase,
the client can privately query the servers for a database bit and the servers
use their precomputed encoding to respond in sublinear online time. The total
communication and online server-side work in these schemes can be as low as
polylog(n) [Ish19]. However, the server-side storage costs can be large: for each
client, the servers must store n additional bits until that client makes its online
query. If m clients concurrently access the database, the storage requirements at

Private Information Retrieval with Sublinear Online Time 51

the servers increase to mn bits. (In contrast, the schemes in our work require no
extra server-side storage.)

Use linear online time. Another line of work reduces the server-side com-
putational burden of PIR protocols by working in the offline/online model we
consider. To our knowledge, all prior protocols in the offline/online model require
linear online time at the servers.

Boneh, Lewi, and Wu [BLW17] show that “privately constrained PRFs” imply
a two-server online/offline scheme in which only one of the servers needs to
be active in the online phase. The scheme has polylogarithmic communication
complexity, yet the online server’s work is linear in the database size. Subse-
quent work [BKM17,CC17,BTVW17] constructs such PRFs from standard lat-
tice assumptions.

Towards reducing the server’s computation time in PIR protocols, Patel,
Persiano, and Yeo [PPY18] introduce the notion of private stateful information
retrieval. They give single-server schemes in which, after an offline phase, the
client can privately retrieve a bit from the database while requiring the server to
only perform a number of online public-key operations sublinear in the database
size, along with a linear number of symmetric-key operations. The offline phase of
their protocol requires the client to download a linear number of bits in the offline
phase and the server must perform a linear number of total operations in the
online phase. Their schemes do allow amortizing the linear-communication offline
phase over multiple subsequent queries, although the online time is always linear.
In contrast, our protocols have total communication and online time sublinear
in the database size, even for a single query.

Demmler, Herzberg, and Schneider [DHS14] give a scheme which reduces the
computational burden of each server by means of sharding the database. The
combined work of all servers in their scheme is still linear.

Marginally sublinear online time. The original PIR paper [CGKS95] points
out that a three-party communication protocol of Pudlák and Rödl [PR93, The-
orem 3.5] yields a two-server PIR protocol. (See also the subsequent journal
version [PRS97].) In particular, on an n-bit database, that protocol has total
communication α(n) = O(n log log n

log n), or just slightly sublinear. Closer inspection
of this protocol reveals that one of the two servers can additionally be made
to run in sublinear time α(n), and thus this early scheme can be cast as an
offline/online PIR scheme with just slightly sublinear offline communication. As
far as we know, no prior work has drawn attention to this fact.

Lipmaa [Lip09] constructs a computational single-server PIR protocol with
preprocessing. In its offline phase, the server encodes the database as a branching
program with (n + o(n))/ log n nodes, and stores the branching program, using
n + n/polylog(n) bits. In the online phase, the server homomorphically evalu-
ates the branching program, using a protocol of Ishai and Paskin [IP07], which
requires O(n/ log n) public key operations, or slightly sublinear in the database
size. (The homomorphic ciphertexts must be no shorter than the security param-
eter λ = ω(log n), and so, strictly speaking, the number of bit operations in the
online phase is still linear. However, the running time is dominated by the public
key operations.)

52 H. Corrigan-Gibbs and D. Kogan

The complexity of these two protocols is much larger than ours but we still
find it interesting to see such radically different ways to construct two-server
PIR with sublinear online time.

Amortize work. It is also possible to improve the computational efficiency of
PIR by having each PIR server jointly process a batch of queries. If a server
can process a batch of Q queries to an n-bit database at o(Qn) cost, processing
queries in a batch yields sublinear amortized time per query at the server. This
general strategy is fruitful both when the batched queries originate from the
same client [IKOS04,Hen16,ACLS18] and from different clients [BIM04,IKOS06,
LG15].

Our multi-query scheme of Sect. 4 similarly allows the client to amortize the
server’s linear-time offline computation over many queries—as in batch PIR. The
difference is that our multi-query scheme allows the client to make its queries
adaptively (one at a time), while batch-PIR schemes require the client to make
all queries in a batch non-adaptively (all at once).

Relax the security property. One final approach to reducing the online server
time in PIR is to aim for a weaker security property than standard crypto-
graphic PIR schemes do. Toledo, Danezis, and Goldberg give PIR schemes with
a differential-privacy-style notion of security and show that when some leakage
of the client’s query to the server is allowed, the servers can run in sublinear
online time [TDG16].

1.5 Technical Overview

To illustrate our techniques, we start by presenting a simplified version of our
two-server offline/online PIR scheme with statistical security. The online phase
of this protocol runs in time o(n), and the protocol’s total communication is
o(n).

A toy protocol. Two servers hold a replica of the database x ∈ {0, 1}n. The
two phases of the protocol proceed as follows:

Offline phase. This phase takes place before the client has decided which bit it
wants to read from the database.

– The client divides the database indices {1, . . . , n} at random into
√

n disjoint
sets (S1, . . . , S√

n), each of size
√

n, and sends these sets to the first server.
(Sending these sets explicitly would take Ω(n log n) communication, which is
too much. We explain later how to reduce the communication in this step.)

– The first server receives the sets (S1, . . . , S√
n) from the client. For each such

set Sj , it computes the parity of the database bits indexed by the set. That
is, for j ∈ {1, . . . ,√n}, the server computes the parity hj ← ∑

i∈Sj
xi mod 2.

The server sends these parity bits (h1, . . . , h√
n) to the client.

– The client stores the sets (S1, . . . , S√
n) and the parity bits (h1, . . . , h√

n).

Online phase. This phase begins once the client has decided on the index i ∈ [n]
of the bit it wants to read from the database.

Private Information Retrieval with Sublinear Online Time 53

– The client finds the set Sj that contains its desired index i. The client then
removes a single item i∗ from the set Sj , which it chooses as follows:

• With probability 1 − (
√

n − 1)/n the client chooses i∗ ← i.
• With the remaining probability, the client chooses i∗ randomly from the

set of all other elements in Sj .
The client then sends the set S′ ← Sj �{i∗} to the second server.

– Upon receiving the set S′ from the client, the second server computes and
sends back to the client the parity of the database bits indexed by the set:
a ← ∑

i∈S′ xi mod 2. Computing the answer requires the second server to
probe at most |S′| = O(

√
n) bits of the database, which allows the server to

run in only ˜O(
√

n) time.
– Finally, when the client receives the answer from the second server, it recovers

the value of the database bit xi∗ by computing xi∗ ← hj −a mod 2. Crucially,
since the client has chosen i∗ with a bias towards i, it recovers the value xi

of its bit of interest with high probability 1 − O(1/
√

n). (By iterating the
scheme λ times in parallel, the client can drive the failure probability down
to at most 2−λ.)

With a bit of work, it is possible to show that the set S′ that the client sends to
the second server is a uniformly random subset of [n] of size

√
n − 1. Thus, the

values that both servers see are distributed independently of the index i that the
client is trying to read.

The resulting scheme already achieves the main goal of interest: in the online
phase, the server can respond to the client’s query in time O(

√
n). However, the

toy scheme also has two major shortcomings:

1. The communication in the offline phase is super-linear : sending the sets
(S1, . . . , S√

n) to the first server requires Ω(n log n) bits.
2. The scheme requires Θ(n log n) bits of client storage between the offline phase

and the online phase.

We can address both of these challenges at once by partially derandomizing
the client. In the revised scheme, in the offline phase, the client chooses a single
set S ⊆ [n] of size

√
n. The client also sends to the server

√
n random “shifts”

Δ = {δ1, δ2, . . . , δ√
n} ∈ [n]. The client and server then use S and Δ to construct

a collection of
√

n sets (S1, . . . , S√
n) by setting, for every j ∈ {1, . . . ,√n}, Sj ←

{i + δj | i ∈ S}. The client and the server then run the rest of the toy protocol
using this collection of sets. This modification increases the failure probability,
since there is now some chance that the client’s desired index i will not be in any
of the sets (S1, . . . , S√

n). Even so, the client and servers can repeat the protocol
O(log n) times in parallel to drive down the failure probability.

This modifications reduces both the communication complexity of the offline
phase and the amount of client storage and time to ˜O(

√
n). With some work, we

can also argue that this modification preserves security.

Improvements to the toy scheme. While the above patched two-server
scheme achieves all of our efficiency goals, it leaves a few things to be desired:

54 H. Corrigan-Gibbs and D. Kogan

– Reducing online communication with puncturable pseudorandom sets. In the
protocol sketched above, the communication in the online phase is Θ(

√
n).

Under the assumptions that one-way functions exist, we can reduce the online-
phase communication to poly(λ, log n), for security parameter λ.
To do so, we introduce a new tool, which we call a puncturable pseudorandom
set (Sect. 2). Essentially, a puncturable pseudorandom set allows the client in
the toy scheme above to send the server a compressed representation of the
random set S, in the form of a short key k. Furthermore, the set key is “punc-
turable,” in that for any i∗ ∈ S, the client can produce a punctured set key
ki∗ that is a compressed representation of S�{i∗}. Crucially, the punctured
key ki∗ also hides the identity of the removed element i∗.
We construct a puncturable pseudorandom set from puncturable
PRFs [BW13,KPTZ13,BGI14,SW14] (Theorem 3), which have simple con-
structions from pseudorandom generators. The keys in our construction have
size O(λ log n) for sets of size O(

√
n) over a universe of size n and security

parameter λ. Plugging this puncturable pseudorandom set construction into
the toy scheme above reduces the communication complexity of the online
phase to the length of a single punctured set key, plus the single bit answer,
for O(λ log n) bits total.

– Refreshing the client’s state. The client in the toy scheme can only use the
results of the (computationally expensive) offline phase to read a single bit
from the database. The following modification to the toy scheme allows the
client to “refresh” the bits it downloads in the offline phase, so that it can
reuse these bits for many online queries (Sect. 4).
After the client makes a query for index i ∈ [n] using set Sj , the client
discards that set from its state. Now the client must somehow “refresh” its
local state. Our observation is that the set Sj is a random size-

√
n subset of

[n], conditioned on i ∈ Sj . The client refreshes its state by asking the first
server for the parity of a random size-(

√
n − 1) subset S′ of [n]. Since the

client already knows the value of xi, it can compute and store the parity of
the database bits in the set S′ ∪ {i}. (Ensuring that this refreshing process
maintains security requires handling some technicalities.)
Although this construction requires the client to use independent random sets
(S1, . . . , S√

n), using puncturable pseudorandom sets the client can send to the
offline server all of them using only ˜O(

√
n) bits of communication.

– From two servers to one. Converting the two-server offline/online PIR scheme
to a single-server one is conceptually simple. Say that in the offline phase of
the two-server scheme, the client sends a query q to the first server and receives
an answer a. To convert it into a single-server scheme, we have the client send
an encryption E(q) of its offline query to the server, and we have the server
homomorphically compute and send back the encrypted answer E(a). Since
the server learns nothing about the offline query q, the online phase can pro-
ceed exactly as in the two-server scheme.
With fully homomorphic encryption [Gen09], this transformation is straight-
forward and maintains the communication complexity of the original two-

Private Information Retrieval with Sublinear Online Time 55

server scheme. We show in Theorem 20 that it is possible to execute these
steps using the much lighter-weight tools of linearly homomorphic encryp-
tion and single-server PIR, with slightly worse communication efficiency and
online time: ˜O(n2/3) · poly(λ), for security parameter λ.

– Proving optimality. Finally, we prove a lower bound on the offline communica-
tion and online time using a classic lower bound of Yao [Yao90]. In particular,
we show (the full version of this work) that any offline/online PIR scheme
with small offline communication and online time, and in which the servers
store the database in unmodified form, implies a good solution to “Yao’s Box
Problem.” We then apply a preexisting time/space lower bound against algo-
rithms for Yao’s Box Problem to complete the lower bound (Theorem23).

1.6 Notation

We use N to denote the set of positive integers. For an integer n ∈ N, [n] denotes
the set {1, 2, . . . , n} and 1n denotes the all-ones binary string of length n. For
n ∈ N and s ∈ [n], an s-subset of [n] is a subset of size exactly s, and

(

[n]
s

)

denotes the set of all s-subsets of [n]. Logarithms are taken to the base 2. We
ignore integrality concerns and treat expressions like

√
n, log n, and m/n as

integers.
The expression poly(·) refers to a fixed (unspecified) polynomial in its param-

eter. The notation ˜O(·) hides arbitrary polylogarithmic factors, i.e., f(n) =
˜O(g(n)) if f(n) = O(g(n)) · poly(log n). The notation Oλ(·) hides arbitrary
polynomial factors in (the security parameter) λ, i.e., f(n, λ) = Oλ(g(n)) if
f(n, λ) = O(g(n)) · poly(λ).

For a finite set S, the notation x ←R S refers to choosing x independently
and uniformly at random from the set S. For a distribution D over a set S,
the notation x ←R D refers to choosing x ∈ S according to distribution D. For
p ∈ [0, 1], the notation b ←R Bernoulli(p) refers to choosing the bit b to be ‘1’ with
probability p and ‘0’ with probability 1 − p.

We use the RAM model of computation with the size of the word logarithmic
in the input length and linear in the security parameter. To avoid dependence
on the specifics of the computational model, we usually specify running times
up to polylogarithmic factors. Throughout this text, an efficient algorithm is a
probabilistic polynomial time algorithm. Furthermore, we allow all adversaries
to be non-uniform. (Though this is not fundamental, and, with appropriate mod-
ifications in the security games, the results hold also in the uniform setting.)

We say that a pseudorandom generator (PRG) or pseudorandom permutation
(PRP) is ε-secure if no efficient adversary can distinguish the PRG or PRP from
random with advantage better than ε(λ), on security parameter λ.

2 Puncturable Pseudorandom Sets

In this section, we introduce a new cryptographic primitive called puncturable
pseudorandom sets and give few natural constructions. Puncturable pseudoran-
dom sets are a key component of our PIR schemes.

56 H. Corrigan-Gibbs and D. Kogan

A puncturable pseudorandom set is very closely related to a puncturable
pseudorandom function (“puncturable PRF”) [BW13,KPTZ13,BGI14,SW14,
HKW15]. To explain the difference by analogy: a PRF key is a compressed
representation of a function f : [n] → [n], and a PRF key punctured at point
x∗ ∈ [n] allows its holder to evaluate f at every point in [n] except at the punc-
tured point x∗. The punctured key should reveal nothing about the value of
f(x∗) to its holder. (The formal standard definition appears in the full version
of this work.)

Analogously, the key for a puncturable pseudorandom set is a compressed
representation of a pseudorandom set S ⊆ [n]. The set key punctured at element
x∗ ∈ S allows its holder to recover all elements of S except the punctured element
x∗. The punctured set key reveals nothing about x∗ to its holder, apart from
that fact that x∗ is not one of the remaining elements in S.

2.1 Definitions

Let s : N → N be a function such that s(n) ≤ n. A puncturable pseudorandom
set with set size s consists of a key space K, a punctured-key space Kp, and a
triple of algorithms:

– Gen(1λ, n) → sk, a randomized algorithm that takes as input the security
parameter λ ∈ N, expressed in unary, and a universe size n ∈ N, expressed in
binary, and outputs a set key sk ∈ K,

– Punc(sk, i) → skp, a deterministic algorithm that takes in a key sk ∈ K and
an element i ∈ [n], and outputs a punctured set key skp ∈ Kp, and

– Eval(sk) → S, a deterministic algorithm that takes in a key sk ∈ K ∪ Kp and
outputs a description of a set S ⊆ [n], written as |S| strings of log n bits in
length each.

A puncturable pseudorandom set must satisfy the following notions of efficiency,
correctness and security.

Efficiency. For every security parameter λ ∈ N and universe size n ∈ N, the
routines Gen, Punc, and Eval run in time s(n) · poly(λ, log n), where s(n) is the
set size.

Correctness. For every λ, n ∈ N, if one samples sk ← Gen(1λ, n) and computes
S ← Eval(sk), it holds, with probability 1 over the randomness of Gen, that

1. S ∈ (

[n]
s(n)

)

, where
(

[n]
s(n)

)

denotes the set of all size-s(n) subsets of [n], and
2. for all i ∈ S, Eval(Punc(sk, i)) = S�{i}.

Security. Let Ψ be a puncturable pseudorandom set with set size s : N → N.
Let Wλ,n be the event that adversary A wins in Game 1 with respect to Ψ , with
security parameter λ and universe size n. Then we define A’s guessing advantage
as:

PSAdv[A, Ψ](λ, n) := Pr[Wλ,n] − 1
n − s(n) + 1

. (1)

Private Information Retrieval with Sublinear Online Time 57

A puncturable pseudorandom set Ψ is computationally secure if for every λ ∈
N, every polynomially bounded n = n(λ), and every non-uniform polynomial-
time adversary A, we have that PSAdv[A, Ψ](λ, n) ≤ negl(λ). The puncturable
pseudorandom set is ε-secure if that advantage is smaller than ε(λ, n). We say
that Ψ is perfectly secure if for every λ, n ∈ N and for every (computationally
unbounded) adversary A, we have that PSAdv[A, Ψ](λ, n) = 0.

Game 1 (Puncturable pseudorandom set security). For λ, n ∈ N, and a
puncturable pseudorandom set Ψ = (Gen,Punc,Eval), we define the following game,
played between a challenger and an adversary:

– The challenger executes the following steps:
• sk ← Gen(1λ, n)
• S ← Eval(sk)
• x∗ ←R S
• skp ← Punc(sk, x∗)

and sends 1λ and skp to the adversary.
– The adversary outputs an integer x′ ∈ [n].

We say that the adversary “wins” if x∗ = x′.

In the full version of this work, we show that this security property implies
that the output of Eval on a random key is a pseudorandom set in

(

[n]
s(n)

)

.
Throughout this work, we often refer to puncturable pseudorandom sets as

puncturable pseudorandom sets for brevity.

2.2 Constructions

Fact 2 (Perfectly secure puncturable pseudorandom set with linear-
sized keys). For any function s : N → N with s(n) ≤ n, there is a perfectly
secure puncturable pseudorandom set with set size s. Moreover, for universe size
n, the set keys and punctured keys are both of length (s(n) + O(1)) log n bits.

Proof. The set key is the description of a set S ←R
(

[n]
s

)

—written as s numbers, each
of log n bits in length, along with a description of the universe size n. A punctured
key is just this set of elements with the punctured element removed. �
Theorem 3 (puncturable pseudorandom set with short keys from
puncturable PRFs). Suppose there exists an εF -secure puncturable PRF (we
give the formal definition in the full version of this work) that, on security param-
eter λ and input-space size n, has keys of length κ(λ, n) bits and punctured keys
of length κp(λ, n) bits. Then, there exists an ε-secure puncturable pseudorandom
set with set size Θ(

√
n) that, on security parameter λ and universe size n, has

58 H. Corrigan-Gibbs and D. Kogan

– set keys of length κ(λ, n) + O(log n) bits and
– punctured keys of length κp(λ, n) + O(log n) bits, and
– ε(λ, n) = poly(λ, n) · (εF + 2−λ).

A puncturable pseudorandom set that proves the theorem appears in Con-
struction 4. We prove security and correctness of the construction in the full
version of this work.

Remark 4. The Gen routine in Construction 4 fails with negligible probability,
and therefore, as presented, the construction has imperfect correctness. We can
achieve perfect correctness by having the Eval and Punc routines treat sk = ⊥
as some fixed set (e.g., the set [s]). Our security analysis accounts for this.

Construction 4 (Puncturable pseudorandom set from puncturable PRF).
Given a puncturable PRF F = (PRFGen,PRFPunc,PRFEval), we construct a puncturable
pseudorandom set ΨF = (Gen,Punc,Eval) with set size s(n) :=

√
n/2.

ΨF .Gen(1λ, n) → sk

– Repeat at most λ times:
• Sample k ← PRFGen(1λ, n).
• Compute S ← {PRFEval(k, 1), PRFEval(k, 2), . . . , PRFEval(k, s(n))}.
• If |S| = s(n), halt and output sk ← (n, k). output ⊥.

– After running λ iterations of the loop unsuccessfully, output ⊥.

ΨF .Punc(sk, i) → skp

– Parse the secret key as a pair (n, k).
– Find the least integer � such that PRFEval(k, �) = i.

If no such � exists, output ⊥.
– Compute kp ← PRFPunc(k, �) and output skp ← (n, kp).

ΨF .Eval(sk) → S

– Parse the secret key as a pair (n, k).
– Output the set S ← {PRFEval(k, 1), PRFEval(k, 2), . . . , PRFEval(k, s(n))}.
– (If k is punctured at some value, skip this value when computing S.)

Instantiating Theorem 3 with the puncturable PRF [BW13,KPTZ13,BGI14]
based on the tree-based PRF of Goldreich, Goldwasser, and Micali [GGM86]
leads to a very efficient puncturable pseudorandom set construction from pseu-
dorandom generators. In the full version of this work, we prove the following:

Corollary 6. Assuming that pseudorandom generators (PRGs) exist, there
exists a secure puncturable pseudorandom set with set size Θ(

√
n).

Private Information Retrieval with Sublinear Online Time 59

In particular, for every εG-secure length-doubling PRG G, there exists an ε-
secure puncturable pseudorandom set ΨG with set size

√

n/2, that has, for every
security parameter λ ∈ N and universe size n,

– set keys of λ + O(log n) bits in length,
– punctured keys of O(λ log n) bits in length, and
– ε(λ, n) ≤ poly(λ, n) · (εG(λ) + 2−λ).

A puncturable pseudorandom set with fast membership testing from
PRPs. We say that a puncturable pseudorandom set Ψ on universe size n has
a fast membership test if there exists an algorithm InSet that takes as input
a set key sk and an element i ∈ [n], runs in time poly(λ, log n), and outputs
“1” if i ∈ Ψ.Eval(sk) and “0” otherwise. Crucially, the running time of the fast
membership test must grow only with log n, rather than linearly with the set
size s(n). The following is a construction of such a puncturable pseudorandom
set. The proof appears in the full version of this work.

Theorem 7. Suppose there exists an εP -secure pseudorandom permutation that,
on security parameter λ and input-space size n, has keys of length κ(λ, n) bits.
Then, there exists an ε-secure puncturable pseudorandom set for any set size
s : N → N that, on security parameter λ and universe size n, has

– set keys of length κ(λ, n) bits,
– punctured keys of length s · O(log n) bits,
– ε ≤ poly(λ, n) · εP , and
– a fast membership test.

2.3 Shifting Puncturable Pseudorandom Sets

When using puncturable pseudorandom sets in this paper, we will want to equip
them with two additional functionalities.

1. GenWith(1λ, n, i) → sk is an algorithm that takes in n ∈ N and i ∈ [n],
and outputs a uniformly random puncturable pseudorandom set key sk for a
s(n)-subset of [n], subject to the constraint that i ∈ Eval(sk).

2. Shift(sk, δ) → sk′ is an algorithm that takes in a set key sk ∈ K and an integer
δ ∈ [n], and outputs a set key sk′ such that Eval(sk′) = {i+ δ | i ∈ Eval(sk)}.
(The addition i + δ is done modulo n, and we identify 0 ∈ Zn with n ∈ [n].)

In the full version of this work, we show how to extend any puncturable
pseudorandom set to efficiently support both these functionalities by including
a shift Δ ∈ [n] with every key and interpreting every element i in the base set
as (i + Δ) mod n in the encompassing set. This transformation only increases
the size of the puncturable set keys by an additive O(log n) term. Therefore, we
subsequently assume without a loss of generality that every puncturable set is
equipped with GenWith and Shift.

60 H. Corrigan-Gibbs and D. Kogan

3 Two-Server PIR with Sublinear Online Time

We now formally define two-server offline/online PIR and construct such schemes
that achieve sublinear online time and provide either statistical or computational
security.

3.1 Definition

Informally, a two-server offline/online PIR scheme is a protocol between a client,
an offline server, and an online server. Both servers have access to a database
x ∈ {0, 1}n. The PIR protocol proceeds in five steps:

1. First, the client uses the Setup algorithm to generate its own client key ck,
along with a hint request qh. The client sends the hint request qh to the offline
server. Crucially, the client can run the Setup algorithm before it has decided
which bit of the database it wants to read.

2. The offline server feeds the hint request qh and the database x ∈ {0, 1}n into
the Hint algorithm, which generates a hint h that the offline server returns to
the client.

3. Once the client has decided on the index i ∈ [n] of the bit it wants to read
from the database, it feeds its key ck and index i into the Query algorithm,
which produces a query q. The client sends this query to the online server.

4. The online server feeds the client’s query q into the Answer algorithm that is
further given access to the database. (The focus is on schemes in which the
Answer algorithm probes o(n) bits of the database and run in time o(n).) The
online server then returns the answer a to the client.

5. The client feeds the hint h and the answer a into algorithm Reconstruct, which
outputs the i-th bit of the database.

A secure offline/online PIR scheme should guarantee that neither server inde-
pendently learns anything (in either a statistical or computational sense) about
the client’s private index i.

Definition 8 (Offline/online PIR). An offline/online PIR scheme is a tuple
Π = (Setup,Hint,Query,Answer,Reconstruct) of five efficient algorithms:

– Setup(1λ, n) → (ck, qh), a randomized algorithm that takes in security param-
eter λ and database length n and outputs a client key ck and a hint request qh.

– Hint(x, qh) → h, a deterministic algorithm that takes in a database x ∈ {0, 1}n

and a hint request qh and outputs a hint h,
– Query(ck, i) → q, a randomized algorithm that takes in the client’s key ck and

an index i ∈ [n], and outputs a query q,
– Answerx(q) → a, a deterministic algorithm that takes as input a query q and

gets access to an oracle that:
• takes as input an index j ∈ [n], and
• returns the j-th bit of the database xj ∈ {0, 1},

Private Information Retrieval with Sublinear Online Time 61

outputs an answer string a, and
– Reconstruct(h, a) → xi, a deterministic algorithm that takes as a hint h and

an answer a, and outputs a bit xi.

Furthermore, the scheme Π must satisfy the following properties:

Correctness. For every λ, n ∈ N, x ∈ {0, 1}n, and i ∈ [n], we require that

Pr

⎡
⎢⎢⎣Reconstruct(h, a) = xi :

(ck, qh) ← Setup(1λ, n)
h ← Hint(x, qh)
q ← Query(ck, i)
a ← Answerx(q)

⎤
⎥⎥⎦ = 1, (2)

where the probability is taken over any randomness used by the algorithms.

Security. For λ, n ∈ N, and i, j ∈ [n], define the distribution

Dλ,n,i :=
{

q : (ck, qh) ← Setup(1λ, n)
q ← Query(ck, i)

}
, (3)

and for an adversary A, define the adversary’s advantage as

PIRadv[A,Π](λ, n) := max
i,j∈[n]

{

Pr
[A(1λ,Dλ,n,i) = 1

] − Pr
[A(1λ,Dλ,n,j) = 1

]}

.

Scheme Π is computationally secure if for every polynomially bounded function
n(λ) and every efficient adversary A, the quantity PIRadv[A,Π](λ, n(λ)) is a
negligible function of λ. In particular, we say it is ε-secure if this advantage is
at most ε(λ, n). The scheme is statistically secure if the same holds true even for
computationally unbounded adversaries.

Remark 9 (Online running time). In Definition 8, the online server’s answer
algorithm Answer gets oracle access to the bits of the database x. We do so to
emphasize that, for all of the PIR schemes described in this paper, the online
server runs in time sublinear in the database size n, and can thus reply to the
client’s query after probing only o(n) bits of the database. In practice, the online
server could implement each oracle call using a lookup to the database in ˜O(1)
time, in a reasonable model of computation (e.g., the RAM model).

Remark 10 (Information-theoretic PIR as offline/online PIR). It turns out that
any two-server PIR scheme with perfect information-theoretic security can be
cast as an offline/online PIR scheme. To see why: in a two-server perfectly secure
PIR, the distribution over query strings that the client sends to each server is
independent of the database bit that the client wants to read. (If not, the scheme
cannot possibly be perfectly secure.) Thus, the client can query one of the two
servers server before it knows which database bit it wants to read.

62 H. Corrigan-Gibbs and D. Kogan

However, in all existing two-server perfectly secure PIR schemes, both servers
run in time Ω(n) on databases of size n. Therefore, viewing any standard two-
server PIR scheme as an offline/online scheme yields a two-server offline/online
PIR scheme in which the online running time is Ω(n). In contrast, we construct
offline/online PIR schemes in which the online server runs in time o(n).

3.2 New Constructions

The following theorem, which we prove at the end of this subsection, captures
our main result on two-server offline/online PIR. It shows that it is possible to
simultaneously achieve sublinear total communication and sublinear online time:

Theorem 11 (Two-server statistically secure offline/online PIR). There
exists a statistically secure two-server offline/online PIR scheme, such that on
every n-bit database and every security parameter λ ∈ N:

– the offline phase uses O(λ
√

n log2 n) bits of communication,
– the offline server runs in time ˜Oλ(n),
– the online phase uses O(λ

√
n log n) bits of communication,

– the online server runs in time ˜Oλ(
√

n), and
– the client uses time and memory ˜Oλ(

√
n).

Moreover, the security advantage of any adversary is at most poly(λ, n) · 2−λ.

Remark 12 (Concrete efficiency). For simplicity, we give the running times of
the routines in our schemes up to poly(λ, log n)-factors. It is possible to make
these hidden factors as small as O(λ log n).

Remark 13 (Trading communication for online time). By adjusting the param-
eters of the construction, it is possible to generalize Theorem 11 to give a two-
server offline/online PIR scheme in which, for any function C : N → N with
C(n) ≤ n/2, the offline phases uses C(n) bits of communication, and the online
server runs in time ˜O(n/C(n)). This adjustment requires the client and prepro-
cessing server to have access to a sequence of common random bits, or, in the
computational setting, assuming the existence of pseudorandom generators.

In the full version of this work we discuss additional issues such as support
of databases with longer rows, further reducing the client’s online time via a
connection to the 3-SUM problem, and implications of Theorem 11 for random
self-reductions.

The following theorem, which we prove at the end of this subsection, shows
that, if we settle for only computational—rather than statistical—security, we
can decrease the online communication cost of the PIR scheme of Theorem 11
from Oλ(

√
n log n) to Oλ(log n) without degrading any other efficiency metrics.

It also allows us to slightly decrease the offline communication cost.

Private Information Retrieval with Sublinear Online Time 63

Theorem 14 (Two-server computational offline/online PIR). Assum-
ing the existence of pseudorandom generators, there exists a two-server
offline/online PIR scheme Ψ that satisfies the efficiency criteria of Theorem 11,
except that

– the communication cost of the offline phase decreases to O(λ
√

n log n),
– the communication cost of the online phase decreases to O(λ2 log n), and
– if the underlying PRG is εG-secure, the PIR scheme is ε-secure for ε(λ, n) =

poly(λ, n) · (εG(λ, n) + 2−λ).

The main building block we use to construct two-server PIR schemes with
low communication complexity and low online server time is puncturable pseu-
dorandom sets with small keys. We give the construction in the next subsection,
and prove the following lemma about the construction in the full version of this
work.

Lemma 15. Let s : N → N be any function such that s(n) ≤ n/2. Let Ψ be an
εΨ -secure puncturable pseudorandom set with set size s, key size κ, and punctured
key size κp. Then there exists a two-server ε-secure offline/online PIR scheme
ΠΨ , such that on security parameter λ and every n-bit database, in the offline
phase:

– the client sends λκ + (λn/s(n)) log2 n bits to the server,
– the offline server runs in time n · poly(λ, log n),
– the offline server’s answer is O((λn/s(n)) log n) bits in length.

In the online phase:

– the client sends λκp bits to the server,
– the online server runs in time s(n) · poly(λ, log n), and
– the online server’s answer consists of λ bits.

Furthermore,

– the client runs in time (s(n) + n/s(n)) · poly(λ, log n) and stores O(λκ +
(λn/s(n)) log2 n) bits between the offline and online phases, and

– the advantage ε(λ, n) ≤ poly(λ, n) · (εΨ (λ, n) + 2−λ
)

.

Theorem 11 follows by instantiating Lemma 15 with the information-
theoretic puncturable pseudorandom set construction of Fact 2, which has keys
and puncturable keys of length at most (s+O(1)) log n, and by setting s =

√
n.

Theorem 14 follows by instantiating Lemma 15 with the puncturable pseu-
dorandom set of Corollary 6, which has keys of length O(λ) and punctured keys
of length O(λ log n), and setting s =

√
n. Additionally we reduce the offline com-

munication from O(λ
√

n log2 n) to O(λ
√

n log n) by replacing the random shifts
used in Construction 16 with pseudorandom ones, generated from one seed of
length λ.

64 H. Corrigan-Gibbs and D. Kogan

Construction 16 (Two-server PIR with sublinear online time). The con-
struction is parametrized by set size s : N → N and uses a puncturable pseudo-
random set Ψ = (Gen,Punc,Eval) with key space K, punctured-key space Kp, and
set size s, extended by routines (Shift,GenWith). The final scheme is obtained by
running λ instances of this scheme in parallel. Throughout, let m := (n/s(n)) logn.

Offline phase
Setup(1λ, n) → ck, qh

sk ← Gen(1λ, n)
sample δ1, . . . , δm ←R [n]
ck ← (sk, δ1, . . . , δm)
output ck and qh ← sk

Hint(qh, x ∈ {0, 1}n) → h ∈ {0, 1}m

parse qh as sk ∈ K and δ ∈ [n]m

for j = 1, . . . , m do:
Sj ← Eval(Shift(sk, δj))
hj ← ∑

i∈Sj
xi mod 2

output h ← (h1, . . . , hm)

Online phase

Query(ck, i ∈ [n]) → q ∈ Kp

parse ck as sk ∈ K and δ ∈ [n]m

sample a bit b ←R Bernoulli(s−1
n

)
find a j ∈ [m] s.t. i − δj ∈ Eval(sk)
if such a j ∈ [m] exists:

skq ← Shift(sk, δj)
otherwise:

j ← ⊥
i′ ←R Eval(sk)
skq ← Shift(sk, i − i′)

if b = 0: ipunc ← i
else: ipunc ←R Eval(skq)�{i}
output q ← Punc(skq, ipunc)

Answerx(q ∈ Kp) → a ∈ {0, 1}
S ← Eval(q)
return a ← ∑

i∈S xi mod 2

Reconstruct(h ∈ {0, 1}m, a ∈ {0, 1}) → xi

let j and b be as in Query†

if j = ⊥ or b = 0 then output ⊥
output xi ← hj − a mod 2

† For simplicity, we avoid passing j and b explicitly from Query to Reconstruct.

3.3 Construction of PIR from Puncturable Pseudorandom Sets

We first present an overview of the construction. The formal specification appears
in the full version of this work, and the full analysis appears there as well.

The PIR scheme makes use of a puncturable pseudorandom set Ψ =
(Gen,Punc,Eval) with set size s(n) extended by routines (Shift,GenWith). We
denote s := s(n) and assume without loss of generality that s ≥ log n, as other-
wise, a scheme in which the offline server sends the entire database to the client
trivially satisfies the lemma. We also define m := (n/s) log n. The PIR scheme
operates in two phases, in each of which the client interacts with one of the two
servers:

Offline phase

1. The client samples a random set key sk ← Gen(1λ, n) for universe size n and
set of size s. It also samples m random shifts δ1, . . . , δm ∈ [n]. The client
sends the set key and the shifts to the offline server.

Private Information Retrieval with Sublinear Online Time 65

2. Upon receiving the set key sk and the random shifts δ1, . . . , δm from the client,
the offline server expands the set key to get the set S ← Eval(sk) ⊆ [n]. Each
shift δj ∈ [n] defines a “shifted” set Sj ← {x + δj mod n | x ∈ S} (when
adding elements in [n], we identify it with Zn).
For each shift δj , the offline server computes the parity of the bits pointed by
the shifted set Sj , i.e., sets hj :=

∑

i∈Sj
xi mod 2. These bits constitute the

hint h = (h1, . . . , hm) ∈ {0, 1}m, which the server sends to the client.

Online phase. The client takes as input an index ipir ∈ [n] of the database it
wants to query. The client has its set key sk and the shifts vector δ from the
offline phase and the hint h ∈ {0, 1}m from the offline server.

1. The client expands the set key sk into the set S ← Eval(sk). It then searches
for a value j ∈ [m] such that ipir + δj ∈ S. (The client can execute this search
in O(m + n) time using a hash table.)

– If such a shift δj exists, the client computes the corresponding shifted set
key skq ← Shift(sk, δj), so that ipir falls into the set Eval(skq).

– If such an index does not exist, the client samples an element i ←R S and
computes the shifted set skq ← Shift(sk, ipir − i′).

Either way, we refer to the chosen set key as skq and it holds ipir ∈ Eval(skq).
2. The client samples a bit b ←R Bernoulli((s−1)/n) and then chooses an element

ipunc at which to puncture its set key skq.
– If b = 0, the client punctures the key skq at the point: ipunc ← ipir.
– If b = 1, the client punctures the key skq at a random point: ipunc ←R

Eval(skq)�{ipir}.
The client sends the punctured key q ←R Punc(skq, ipunc) to the online server.
(In the proof, we show that this punctured key computationally hides the
index ipir of the bit that the client wants to fetch from the database.)

3. The online server computes the punctured set S∗ ← Eval(q) ⊆ [n] and views
this set as s−1 pointers to bits in the database x ∈ {0, 1}n. The online server
computes the parity of these s − 1 bits: a ← ∑

i∈S∗ xi mod 2. The online
server then returns this parity to the client. Notice that the online server only
needs to probe s−1 bits of the database and can run in time s ·poly(λ, log n).

4. If, in Step 2, the client’s random bit b = 0, the client can recover the bit at
position ipir in the database from the hint h and the answer a by computing
(h − a) mod 2 =

∑

i∈S xi − ∑

S∗ xi =
∑

i∈S xi − ∑

S�ipir
xi = xipir .

Note that the scheme fails if either ipunc �= ipir or ipir /∈ ∪j∈[m]Sj . The proba-
bility of the former is (s−1)/n and, by setting m ≈ n log n/s, we can drive down
the probability of the latter to be approximately 1/n. By running O(λ) instances
of the scheme in parallel, using independent randomness for each instance, we
can drive the overall failure probability to be negligible in λ.

It is now possible to transform the PIR scheme into one with perfect correct-
ness, at the expense of a negligible security loss. To do so, if the client detects
an error (which happens with only a negligible probability), it simply reads its
desired bit from the database using a non-private lookup. (Achieving perfect
correctness and security is also possible, at the cost of having an offline phase
that runs in expected polynomial time.)

66 H. Corrigan-Gibbs and D. Kogan

4 Two-Server PIR with Sublinear Amortized Time

One shortcoming of the PIR scheme of the previous section is that every exe-
cution of its offline phase supports only one subsequent query. To perform each
additional query, the client and the server must rerun the offline phase. There-
fore, although the online query-processing time is sublinear, the overall cost of
each query, including that of the offline phase, remains linear.

We now extend the scheme of the previous section such that a single execu-
tion of the offline phase enables the client to subsequently query the database
polynomially many times, without ever having to rerun the offline phase. The
extended scheme is nearly as efficient as the basic, single-query scheme. The
only loss in efficiency is the online communication, which increases to ˜O(n1/2).
We stress that the client can choose the retrieved indices adaptively, and so our
scheme does not rely on jointly processing a batch of queries.

Our security definition, given in the full version of this work, accounts for
an active (fully malicious) adversary that controls either of the two servers, and
can adaptively choose the database indices that the client queries. Here, we give
our main result:

Theorem 17 (Two-server multi-query offline/online PIR). Assuming
the existence of pseudorandom permutations, there exists a two-server multi-
query offline/online PIR scheme, such that on every n-bit database and every
security parameter λ ∈ N, in the offline phase:
– the offline server runs in time ˜Oλ(n),
– the total communication is O(λ

√
n log n) bits,

and in the online phase:
– the online server runs in time ˜Oλ(

√
n),

– the total communication is O(λ
√

n log n) bits, and
– if the underlying PRP is εP -secure, the PIR scheme is ε-secure for ε(λ, n) ≤

poly(λ, n) · (εP (λ, n) + 2−λ).

Furthermore, the client uses offline time, storage, and online time ˜Oλ(n1/2).

In the full version of this work, we give the construction that fully specifies
the scheme that proves Theorem 17. The full analysis appears in the full version
of this work, where we also prove the following corollary:

Corollary 18 (Reducing communication). Assuming the existence of pseu-
dorandom generators, there exists a scheme as in Theorem 17, albeit
– the client offline time increases to ˜Oλ(n),
– the client storage and online time increases to ˜Oλ(n5/6), and
– the total online communication decreases to O(λ2 log n).

Remark 19. As in Sect. 3, it is possible to achieve statistical security, by replac-
ing the computationally secure puncturable pseudorandom set in the proof of
Theorem 17, with a perfectly secure one and applying a standard “balancing”
technique [CGKS95, Section 4.3] to get a scheme with online work and commu-
nication ˜Oλ(n2/3).

Private Information Retrieval with Sublinear Online Time 67

4.1 Sketch of the Construction

We sketch the construction here, but refer to In the full version of this work for
the details.

Our starting point is the single-query scheme of Sect. 3. There, the hint con-
sists of a list of m =

√
n log n random sets S1, . . . , Sm ⊆ [n], each of size roughly√

n, represented by m puncturable pseudorandom set keys, along with the parity
of the database bits in each set. In the online phase, to read the ith database
bit, the client finds a set Sj ∈ {S1, . . . , Sm} such that i ∈ Sj and with good
probability sends to the right server the set S′ = Sj �{i}. Once the client has
used the set Sj to make a query, the client cannot use Sj again. If the client used
Sj to query for another index i′, the right server would, with good probability,
see Sj �{i} and Sj �{i′}. Taking the difference of these sets would reveal the
secret indices {i, i′} to the right server, breaking security.

The key to supporting multiple queries with only one execution of the offline
phase is to have the client “refresh” its hint every time it queries the database.
We refer to the two servers as “left” and “right”. The left server provides the hint
to the client in the offline phase, and later helps the client to refresh that hint
after each subsequent read operation. The right server answers the queries that
allow the client to reconstruct the database bits it is attempting to read (as in
our constructions of Sect. 3).

The online-phase interaction with the right server proceeds exactly as in
the single-query scheme: the client sends a punctured set to the right server and
recovers the bit xi. However, the client in the multi-query scheme must somehow
replace the set Sj (and the corresponding parity bit) with a fresh random set
Snew. To make this work, we must answer two questions: (i) How does the client
sample the set Snew? and (ii) How does the client fetch the corresponding parity
bit

∑

i∈Snew
xi mod 2?

First, for correctness and privacy to hold for future queries, the client must
sample the replacement set Snew in a way that preserves the joint distribution of
the sets S1, . . . , Sm. Notice that sampling a fresh random set Snew of the proper
size will not work, since it distorts the joint distribution of the sets. In particular,
replacing a set Sj that contains i with a fresh random set causes the expected
number of sets in S1, . . . , Sm containing i to decrease. What does work is to
have the client sample a fresh random set Snew subject to the constraint that it
contains the index i that the client just read. This is possible since, as described
in Sect. 2.3, punctured sets support biased sampling.

Second, the client needs to construct the correct parity bit hnew =
∑

i∈Snew
xi mod 2 for the new set Snew. The client obtains the new parity bit

by (1) puncturing the set Snew at element i and (2) querying the left server on
the punctured set. The left server then replies with the parity of the bits in the
punctured set Snew�{i}. At this point the client can recover the parity of the
new set Snew by adding the reply from the left server and the value xi, which it
reconstructs, as in the single-query case, using the reply from the right server.

The final complication is that, as in Sect. 5, in order for the punctured set to
look random, the client occasionally needs to send to the servers a set punctured

68 H. Corrigan-Gibbs and D. Kogan

at the retrieved index i. In this case, the read operation fails. When this happens,
the client sends a punctured version of the new set Snew to both servers, the client
leaves its hint state unchanged, and the read operations fails.

As in Sect. 5, by running λ instances of the scheme in parallel we can drive
the overall failure probability to be negligible in λ. We can then trade the failure
probability for a negligible security loss and get a perfectly correct scheme.

5 Single-Server PIR with Sublinear Online Time

In this section, we introduce single-server offline/online PIR. The syntax and cor-
rectness properties of a single-server offline/online PIR scheme, formally defined
in the full version of this work, are exactly as in Definition 8. The key difference
is that, in the single-server setting, the client interacts with the same server in
both the offline phase and the online phase. Still the server should learn nothing
about the database index the client wants to retrieve.

Unlike in the two-server setting, where we can achieve statistical security, in
the single-server setting, we must rely on computational assumptions [CGKS95].
Since non-trivial single-server PIR implies oblivious transfer [DMO00], our
assumptions must imply public-key cryptography.

Our single-server schemes shift all of the expensive work of responding to the
client’s PIR query—the linear-time scan over the database and the public-key
operations—into the offline phase. The server can then respond to the client’s
query in the online phase much more quickly, with

– no public-key cryptographic operations and
– server time sublinear in the size of the database.

Our main construction (Theorem 20) achieves ˜Oλ(n2/3) communication and
online time and ˜Oλ(n) server computational time in the offline phase, using lin-
early homomorphic encryption and standard single-server PIR. We also sketch
an asymptotically superior construction (Theorem 22) that achieves ˜Oλ(n1/2)
communication and online time, at the cost of using fully homomorphic encryp-
tion [Gen09]. Our lower bound of Sect. 6 proves the optimality of this latter
scheme, up to log factors, with respect to the trade-off between offline commu-
nication and online time, given the restriction that the server must store the
database in unencoded from and use no extra storage.

A drawback of our single-server PIR schemes is that they have polynomial
communication Ω(n1/2), which is higher than the polylog(n) communication of
state-of-the-art standard single-server PIR schemes [CMS99]. That said, in some
applications, the benefits of sublinear online time and no public-key cryptography
in the online phase may outweigh the costs.

The main result of this section is:

Theorem 20 (Single-server offline/online PIR). Suppose there exist:

– a linearly homomorphic encryption scheme (as defined in the full version of
this work) with ciphertext space G and

Private Information Retrieval with Sublinear Online Time 69

– single-server PIR with communication cost poly(λ, log n) and server compu-
tation time ˜Oλ(n) (for every database size n and security parameter λ ∈ N).

Then, there exists a single-server offline/online PIR scheme, that makes black-
box use of the group G, such that for every security parameter λ ∈ N and n-bit
database, it uses

– in the offline phase: ˜Oλ(n2/3) bits of communication and ˜Oλ(n) operations
in G, and

– in the online phase: ˜Oλ(n1/3) bits of communication, ˜Oλ(n2/3) time, and no
operations in G.

Moreover, the client uses time and memory ˜Oλ(n2/3).

We prove Theorem 20 in the full version of this work.

Remark 21 (A much simpler scheme). In the full version of this work, we give a
very simple—and likely easy-to-implement—single-server offline/online scheme
that requires only linearly homomorphic encryption and has O(

√
n) total com-

munication, online time, and client storage. The scheme uses no public-key
cryptographic operations in the online phase, and its simplicity makes it poten-
tially attractive for practical applications. The downside is that its online phase
requires a linear number of bit operations (but no public-key operations).

Patel, Persiano, and Yeo [PPY18] give an offline/online scheme with linear
communication and linear online server time (but a sublinear number of online
public-key operations) while this simple scheme has sublinear communication
and no public-key operations in the online phase. In contrast, the client in their
scheme can use a single offline phase for many online operations, while our single-
server scheme requires an offline phase before each online query.

Improving efficiency with higher-order homomorphisms

If we use a homomorphic encryption scheme that supports degree-two [BGN05]
or higher-degree homomorphic computation, we can build offline/online PIR
schemes that provide even better communication efficiency. For example, given
a fully homomorphic encryption scheme [Gen09] (FHE), we can use the idea of
Theorem 20 with the two-server PIR scheme of Construction 16 to obtain:

Theorem 22 (Informal). Assume fully homomorphic encryption exists. Then,
for all security parameters λ ∈ N, there is a single-server offline/online PIR
scheme on n-bit databases that uses ˜Oλ(

√
n) bits of communication and ˜Oλ(

√
n)

server-side time in the online phase.

The observation is that, in the two-server setting (Construction 16), the client
only sends the server a PRG seed. By using FHE, the client in the single-server
setting could send the server an encryption of that seed, and the server could
homomorphically evaluate the offline server’s algorithm on the encrypted seed.
The online phase remains the same. In the full version of this work, we dis-
cuss possible routes towards obtaining a similarly efficient scheme under weaker
assumptions.

70 H. Corrigan-Gibbs and D. Kogan

6 Lower Bound for PIR with Sublinear Online Time

In this section, we prove that the offline/online PIR schemes we construct in
Sect. 3 achieve the optimal trade-off, up to log factors, between

– the number of bits C that the client downloads in the offline phase and
– the running time T of the server in the online phase.

Specifically, we show that any offline/online PIR scheme, in which the servers
store the database in its unmodified form and use no additional storage, and
that succeeds with constant probability on a database of size n, must have (C +
1)(T + 1) = ˜Ω(n).

The fact that we are able to obtain a polynomial lower bound on the commu-
nication complexity of offline/online PIR schemes may be somewhat surprising,
as it has been notoriously difficult to obtain communication lower bounds for
standard two-server PIR, in which the servers’ running time is unbounded. In
particular, in the information-theoretic setting, the best communication lower
bound for two-server PIR stands at C ≥ (5 − o(1)) · log2 n bits. In contrast, for
two-server PIR schemes in which one of the servers is restricted to run in time
T ≤ √

n, we obtain a polynomial communication lower bound of C ≥ ˜Ω(
√

n).
Our lower bound holds even against offline/online PIR schemes that provide

only computational security, as well as against single-server offline/online PIR
schemes. Our PIR schemes of Section 3 achieve this bound, up to logarithmic
factors, as does the single-server scheme of Theorem 22.

Theorem 23. Consider a computationally secure offline/online PIR scheme
such that, on security parameter λ ∈ N and database size n ∈ N,

– the client downloads C bits in the offline phase,
– the online server stores the database in its original form and probes T bits of

the database in the course of processing the client’s query, and
– the client recovers its desired bit with probability at least ε, over the choice of

its randomness.

Then, for polynomially bounded n = n(λ), it holds that

ε ≤ 1/2 + ˜O
(

T/n +
√

C(T + 1)/n
)

+ negl(λ),

and in particular for ε ≥ 1/2 + Ω(1) and large enough λ it holds that

(C + 1) · (T + 1) ≥ ˜Ω(n).

We prove Theorem 23 by showing that an offline/online PIR scheme implies a
solution for a computational task called “Yao’s Box Problem.” Using a preexisting
lower bound for the Box Problem immediately gives a communication-time lower
bound on offline/online PIR schemes. The details appear in the full version of
this work.

Private Information Retrieval with Sublinear Online Time 71

Remark 24. The lower bound of Theorem 23 does not preclude schemes that
achieve better communication and lower bound by virtue of having the servers
store some form of encoding of the database. We discuss schemes of this
form [DIO01,BIM04] in Sect. 1.4. In particular, constructing PIR schemes with
preprocessing [BIM04] that beat the above lower bound (in terms of their com-
munication and online time) seems like an interesting open problem.

7 Open Questions

This work leaves open a number of questions:

– Is it possible to construct offline/online PIR schemes in which the client runs
in total time o(n), stores o(n) bits, and has online running time polylog(n)?

– Does Theorem 22 follow from an assumption weaker than FHE?
– Can we construct a multi-query scheme (Sect. 4) with only one server?
– In the full version of this work, we show how to view our PIR construction

via a new abstraction that we call sparse distributed point functions (“sparse
DPFs”), inspired by the standard notion of DPFs [GI14]. Are there even sim-
pler constructions of sparse DPFs than the ones implied by our PIR schemes?

Acknowledgements. We gratefully acknowledge Dan Boneh for his advice on tech-
nical questions and for supporting our work on this project from the beginning. We
thank Yuval Ishai for answering our questions about PIR, Sam Kim and David Wu
for feedback on early versions of this work, and Helger Lipmaa for kindly pointing us
to related work. Finally, we would like to thank the anonymous Eurocrypt reviewers
for their many constructive comments. This work was supported by CISPA, DARPA,
NSF, ONR, and the Simons Foundation.

References

[ACLS18] Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries
and amortized query processing. In: S&P (2018)

[Amb97] Ambainis, A.: Upper bound on the communication complexity of private
information retrieval. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela,
A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 401–407. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63165-8_196

[AMBFK16] Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.-O.: XPIR: pri-
vate information retrieval for everyone. In: PETS 2016, no. 2, pp. 155–174
(2016)

[AS16] Angel, S., Setty, S.: Unobservable communication over fully untrusted
infrastructure. In: SOSP 2016 (2016)

[BDOZ11] Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
encryption and multiparty computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4_11

https://doi.org/10.1007/3-540-63165-8_196
https://doi.org/10.1007/978-3-642-20465-4_11

72 H. Corrigan-Gibbs and D. Kogan

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudo-
random functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0_29

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements
and extensions. In: CCS 2016 (2016)

[BGN05] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on cipher-
texts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-
7_18

[BI01] Beimel, A., Ishai, Y.: Information-theoretic private information retrieval:
a unified construction. In: Orejas, F., Spirakis, P.G., van Leeuwen, J.
(eds.) ICALP 2001. LNCS, vol. 2076, pp. 912–926. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-48224-5_74

[BIKR02] Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.: Breaking the
O(n1/(2k−1)) barrier for information-theoretic private information
retrieval. In: FOCS 2002 (2002)

[BIM04] Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers’ computation in
private information retrieval: PIR with preprocessing. J. Cryptol. 17(2),
125–151 (2004)

[BIPW17] Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database
both locally and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017.
LNCS, vol. 10678, pp. 662–693. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70503-3_22

[BKM17] Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from
standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7_15

[BLW17] Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions
privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-
7_17

[BTVW17] Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private con-
strained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2_10

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0_15

[CC17] Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from
LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 446–476. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7_16

[CG97] Chor, B., Gilboa, N.: Computationally private information retrieval. In:
STOC 1997 (1997)

[CGKS95] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. In: FOCS 1995 (1995)

[CGKS98] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. J. ACM 45(6), 965–982 (1998)

https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-56620-7_16

Private Information Retrieval with Sublinear Online Time 73

[CHR17] Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private
information retrieval. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS,
vol. 10678, pp. 694–726. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70503-3_23

[CMS99] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X_28

[DG16] Dvir, Z., Gopi, S.: 2-server PIR with subpolynomial communication. J.
ACM 63(4), 39:1–39:15 (2016)

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky,
R.: Trapdoor hash functions and their applications. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 3–32.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_1

[DHS14] Demmler, D., Herzberg, A., Schneider, T.: RAID-PIR: practical multi-
server PIR. In: CCSW 2014 (2014)

[DIO98] Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Universal service-providers for
database private information retrieval. In: PODC (1998)

[DIO01] Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Universal service-providers for
private information retrieval. J. Cryptol. 14(1), 37–74 (2001)

[DMO00] Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private infor-
mation retrieval implies oblivious transfer. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6_10

[DPSZ12] Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5_38

[Efr12] Efremenko, K.: 3-query locally decodable codes of subexponential length.
SIAM J. Comput. 41(6), 1694–1703 (2012)

[GCM+16] Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi, L., Walfish, M.:
Scalable and private media consumption with Popcorn. In: NSDI 2016
(2016)

[GDL+14] Goldberg, I., Devet, C., Lueks, W., Yang, A., Hendry, P., Henry, R.:
Percy++, version 1.0 (2014). http://percy.sourceforge.net/

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis,
Stanford University (2009)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GI14] Gilboa, N., Ishai, Y.: Distributed point functions and their applications.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5_35

[GR05] Gentry, C., Ramzan, Z.: Single-database private information retrieval
with constant communication rate. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol.
3580, pp. 803–815. Springer, Heidelberg (2005). https://doi.org/10.1007/
11523468_65

[Hen16] Henry, R.: Polynomial batch codes for efficient IT-PIR. In: PoPETs 2016,
no. 4, pp. 202–218 (2016)

https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/3-540-45539-6_10
https://doi.org/10.1007/978-3-642-32009-5_38
http://percy.sourceforge.net/
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/11523468_65

74 H. Corrigan-Gibbs and D. Kogan

[HKW15] Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable
pseudorandom functions in the standard model. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_4

[HOWW18] Hamlin, A., Ostrovsky, R., Weiss, M., Wichs, D.: Private anonymous data
access. Cryptology ePrint Archive, Report 2018/363 (2018)

[IKOS04] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their
applications. In: STOC 2004 (2004)

[IKOS06] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from
anonymity. In: FOCS 2006 (2006)

[IP07] Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_31

[Ish19] Ishai, Y.: Private communication (2019)
[Jue01] Juels, A.: Targeted advertising... and privacy too. In: Naccache, D. (ed.)

CT-RSA 2001. LNCS, vol. 2020, pp. 408–424. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45353-9_30

[KLDF16] Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: efficient communica-
tion system with strong anonymity. In: PoPETs 2016, no. 2, pp. 115–134
(2016)

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS 1997 (1997)

[KO00] Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are suffi-
cient for non-trivial single-server private information retrieval. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 104–121. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_9

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: CCS 2013 (2013)

[LG15] Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private infor-
mation retrieval. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol.
8975, pp. 168–186. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47854-7_10

[Lip05] Lipmaa, H.: An oblivious transfer protocol with log-squared communica-
tion. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 314–328. Springer, Heidelberg (2005). https://doi.org/10.
1007/11556992_23

[Lip09] Lipmaa, H.: First CPIR protocol with data-dependent computation. In:
Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14423-
3_14

[MOT+11] Mittal, P., Olumofin, F.G., Troncoso, C., Borisov, N., Goldberg, I.:
PIR-Tor: scalable anonymous communication using private information
retrieval. In: USENIX Security 2011 (2011)

[OS07] Ostrovsky, R., Skeith, W.E.: A survey of single-database private infor-
mation retrieval: techniques and applications. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71677-8_26

[PPY18] Patel, S., Persiano, G., Yeo, K.: Private stateful information retrieval. In:
CCS 2018 (2018)

[PR93] Pudlák, P., Rödl, V.: Modified ranks of tensors and the size of circuits.
In: STOC 1993 (1993)

https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/3-540-45353-9_30
https://doi.org/10.1007/3-540-45539-6_9
https://doi.org/10.1007/978-3-662-47854-7_10
https://doi.org/10.1007/978-3-662-47854-7_10
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/978-3-642-14423-3_14
https://doi.org/10.1007/978-3-642-14423-3_14
https://doi.org/10.1007/978-3-540-71677-8_26

Private Information Retrieval with Sublinear Online Time 75

[PRS97] Pudlák, P., Rödl, V., Sgall, J.: Boolean circuits, tensor ranks, and com-
munication complexity. SIAM J. Comput. 26(3), 605–633 (1997)

[SCM05] Sassaman, L., Cohen, B., Mathewson, N.: The Pynchon Gate: a secure
method of pseudonymous mail retrieval. In: WPES 2005 (2005)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: STOC 2014 (2014)

[TDG16] Toledo, R.R., Danezis, G., Goldberg, I.: Lower-cost ε-private information
retrieval. In: PoPETs 2016, no. 4, pp. 184–201 (2016)

[Yao90] Yao, A.C.-C.: Coherent functions and program checkers. In: STOC 1990
(1990)

[Yek08] Yekhanin, S.: Towards 3-query locally decodable codes of subexponential
length. J. ACM 55(1), 1:1–1:16 (2008)

Obfuscation and Functional Encryption

Candidate iO from Homomorphic
Encryption Schemes

Zvika Brakerski1(B), Nico Döttling2, Sanjam Garg3, and Giulio Malavolta3,4(B)

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 CISPA Helmoltz Center for Information Security, Saarbrücken, Germany
3 UC Berkeley, Berkeley, USA
giulio.malavolta@hotmail.it

4 Carnegie Mellon University, Pittsburgh, USA

Abstract. We propose a new approach to construct general-purpose
indistinguishability obfuscation (iO). Our construction is obtained via a
new intermediate primitive thatwe call split fully-homomorphic encryption
(split FHE),whichwe show tobe sufficient for constructing iO. Specifically,
split FHE is FHE where decryption takes the following two-step syntactic
form: (i) A secret decryption step uses the secret key and produces a hint
which is (asymptotically) shorter than the length of the encryptedmessage,
and (ii) a public decryption step that only requires the ciphertext and the
previously generated hint (and not the entire secret key), and recovers the
encrypted message. In terms of security, the hints for a set of ciphertexts
should not allow one to violate semantic security for any other ciphertexts.

Next, we show a generic candidate construction of split FHE based on
three building blocks: (i) A standard FHE scheme with linear decrypt-
and-multiply (which can be instantiated with essentially all LWE-based
constructions), (ii) a linearly homomorphic encryption scheme with short
decryption hints (such as the Damg̊ard-Jurik encryption scheme, based
on the DCR problem), and (iii) a cryptographic hash function (which
can be based on a variety of standard assumptions). Our approach is
heuristic in the sense that our construction is not provably secure and
makes implicit assumptions about the interplay between these under-
lying primitives. We show evidence that this construction is secure by
providing an argument in an appropriately defined oracle model.

The full version of this paper is available at https://eprint.iacr.org/2020/394.

Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14), Bina-
tional Science Foundation (Grants No. 2016726, 2014276) and European Union Horizon
2020 Research and Innovation Program via ERC Project REACT (Grant 756482) and
via Project PROMETHEUS (Grant 780701).

S.Garg—Supported inpart fromAFOSRAwardFA9550-19-1-0200,AFOSRYIPAward,
NSF CNS Award 1936826, DARPA and SPAWAR under contract N66001-15-C-4065, a
Hellman Award and research grants by the Okawa Foundation, Visa Inc., and Center for
Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the
authors and do not reflect the official policy or position of the funding agencies.

G. Malavolta—Part of the work done while at the Simons Institute for the Theory of
Computing.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 79–109, 2020.
https://doi.org/10.1007/978-3-030-45721-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_4&domain=pdf
https://eprint.iacr.org/2020/394
https://doi.org/10.1007/978-3-030-45721-1_4

80 Z. Brakerski et al.

We view our construction as a big departure from the state-of-the-art
constructions, and it is in fact quite simple.

1 Introduction

The goal of program obfuscation is to transform an arbitrary circuit C into an
unintelligible but functionally equivalent circuit C̃. The notion of program obfus-
cation was first studied by Hada [39] and Barak et al. [10]. However, these works
showed that natural notions of obfuscation are impossible to realize for general
functionalities. Specifically, Barak et al. [10] defined a very natural notion of
security for program obfuscation called virtual black-box (VBB) security, which
requires that an obfuscated program does not revel anything beyond what could
be learned from just the input-output behavior of the original program. In the
same work, they showed that this notion of program obfuscation is impossible
to achieve for arbitrary circuits.

In light of this impossibility result, much of the work on obfuscation focused
on realizing obfuscation for special functionalities. However, this changed with
the work of Garg et al. [28] that proposed the first candidate indistinguishability
obfuscation (iO) construction based on multilinear maps [26]. Furthermore, Garg
et al. [28] showed powerful applications of iO to tasks such as functional encryp-
tion. Loosely speaking, iO requires that the obfuscations of two circuits C0 and C1

that have identical input output behavior are computationally indistinguishable.
Subsequently, significant work on using program obfuscation (e.g., [16,27,55]) has
shown that most cryptographic applications of interest can be realized using iO
(and one-way functions), or that iO is virtually crypto-complete.

Given its importance, significant effort has been poured into realizing secure
obfuscation candidates. The first approach to obfuscation relied on using new
candidate constructions of multilinear maps [22,26,33], an algebraic object that
significantly expands the structure available for cryptographic construction.
Unfortunately, all multilinear map construction so far have relied on ad-hoc and
new computational intractability assumptions. Furthermore, attacks [21,40] on
the multilinear map candidates and attacks [20,51] on several of the multilinear
map based iO constructions [9,18,28] were later found. In light of these attacks,
follow up works (e.g., [31]) offered constructions that defended against these
attacks by giving constructions in the so-called weak multilinear map model [51].
Several of these weak multilinear map model based iO constructions are still con-
jectured to be secure, however, the break-and-repair cycle of their development
has left cryptographers wary, and rightly so.

Around the time when attacks on multilinear map candidates were at an
all time high, cryptographers started exploring new approaches to iO without
using multilinear maps (or reducing their usage). Toward this goal, Bitansky and
Vaikunthanathan [15] and Ananth and Jain [4] showed that iO could be realized
assuming just functional encryption. In another approach, instead of trying to
remove multilinear maps completely, Lin [42] and Lin and Vaikuntanathan [47]
attempted to reduce their usage, i.e., they proposed iO constructions using only

Candidate iO from Homomorphic Encryption Schemes 81

constant degree multilinear maps. With the goal of ultimately basing iO con-
structions on standard assumptions on bilinear maps, cryptographers started
developing new ideas for realizing iO candidates from smaller constant degree
multilinear maps [5,43]. Recently, Lin and Tessaro [45] described a candidate
iO construction from degree-L multilinear maps for any L ≥ 2 and additionally
assuming PRGs with certain special locality properties. Unfortunately, it was
shown the needed PRGs for the case of L = 2 are insecure (in fact it was proved
that they cannot exist) [8,48]. Thus, still leaving a gap between bilinear maps and
iO constructions which could now be based on trilinear maps [46]. Very recent
works [1,3,41] (and cryptanalysis [12]), develop new ideas to resolve these prob-
lems and realize constructions based on bilinear maps. However, these bilinear
map based constructions, which are still conjectured to be secure, additionally
rely on certain pseudorandom objects with novel security properties. Finally, we
note that all the other (perhaps less popular) approaches to iO (e.g., [35]) also
start from new computational hardness assumptions.

Given the prior work, it is plausible that new sources of hardness are nec-
essary for realizing iO candidates. Thus, this break-and-repair cycle would be
necessary as we understand the underlying new assumptions better. In fact, there
is some evidence that iO constructions based on simpler primitives [29,30] are
hard to realize. Making progress on this dilemma is the focus of this work.

1.1 Our Results

We propose a new approach to construct general-purpose indistinguishability
obfuscation. Our approach is heuristic but without using any new sources of
computational hardness. In other words, our constructions use well-studied cryp-
tographic primitives in a generic way to realize obfuscation, while still being
heuristic in the sense that our constructions are not provably secure and make
implicit assumptions about the interplay of the underlying primitives. The prim-
itives we use can themselves be securely realized based on standard assumptions,
namely the hardness of the learning with errors (LWE) and the decisional com-
posite residues (DCR) problem. At a high level, our heuristics are similar in
flavor to (i) the random oracle heuristic that is often used in cryptographic con-
structions [13] and (ii) the circular security heuristic that has been widely used
in the construction of fully-homomorphic encryption schemes (FHE) [32].

Split-FHE. The starting point of our work is the fact that iO can provably be
based on split FHE, a new primitive that we introduce in this work. A split
FHE is an FHE scheme that allows for certain special properties of the decryp-
tion algorithm. Specifically, we consider FHE schemes for which the decryption
algorithm can be split into two subroutines:

– ρ ← PDec(sk, c): A private procedure that takes the FHE secret key and a
ciphertext as input and produces a decryption hint ρ, of size much smaller
than the message encrypted in c.

– m ← Rec(ρ, c): A public procedure that takes as input the decryption hint ρ
(generated by PDec) and the ciphertext c and recovers the full plaintext.

82 Z. Brakerski et al.

The security for a split FHE scheme requires that, for all pairs of messages
(m0,m1) and all circuits C such that C(m0) = C(m1), the encryption of m0

is computationally indistinguishable from the encryption of m1, even given the
decryption hint for the ciphertext evaluated on C.

We show that split FHE alone suffices to construct exponentially-efficient
iO [44], which in turn allows us to build fully-fledged iO. Concretely, we prove
the following theorem.

Theorem 1 (Informal). Assuming sub-exponentially hard LWE and the exis-
tence of sub-exponentially secure split FHE, then there exists indistinguishability
obfuscation for all circuits.

A Generic Candidate. Next, we show a generic candidate construction of split
FHE based on three building blocks: (i) a standard FHE scheme with linear
decrypt-and-multiply (which can be instantiated with essentially all LWE-based
constructions), (ii) a linearly homomorphic encryption scheme with short decryp-
tion hints (such as the Damg̊ard-Jurik encryption scheme [23], based on the DCR
problem), and (iii) a cryptographic hash functions. The security of the scheme
can be based on a new conjecture on the interplay of these primitives, which we
view as a natural strengthening of circular security. In this sense, it is aligned
with Gentry’s heuristic step in the FHE bootstrapping theorem [32]. Addition-
ally, our use of the cryptographic hash function has similarities to the other
heuristic uses of hash functions, e.g., in the Fiat-Shamir transformation [25].

We expect that there will exist instantiations of the underlying primitives
(though contrived) for which this construction is insecure. For example, if the
underlying schemes are not circular secure to begin with, then the resulting
split FHE would also be insecure. However, for natural instantiations of these
primitives, security can be conjectured.

Evidence of Security. In order to build confidence in our construction, we show
evidence that the above-mentioned conjecture on the interplay between the secu-
rity holds in an appropriate oracle model, inspired by the random oracle model.
Thus, pushing all the heuristic aspects of the construction to an oracle. In fact,
we show that security can be proved in this oracle model.

An alternate way to think of this result is that we construct split FHE based
on a obfuscation for a specific program (representing the oracle), for which we
can offer a relatively simple and natural heuristic implementation.

Conceptual Simplicity. Another positive feature of our construction is its con-
ceptual simplicity, which makes it much easier to analyze and thus have con-
fidence in. Finally, we remark that our construction is a big departure from
the previously-mentioned multilinear maps based and local PRG based iO con-
structions and will be accessible to readers without first understanding prior iO
constructions.

Candidate iO from Homomorphic Encryption Schemes 83

1.2 Technical Overview

In the following we give an informal overview of the techniques we develop in
this work and we refer the reader to the technical sections for more precise
statements.

Chimeric FHE. Our starting point is the hybrid FHE scheme recently intro-
duced by Brakerski et al. [17], which we recall in the following. The objective
of their work is to build an FHE scheme with best possible rate (in an asymp-
totic sense) by leveraging the fact that most LWE-based FHE scheme admit an
efficient linear noisy decryption. Specifically, given an FHE ciphertext c and an
LWE secret key (s1, . . . , sn) one can rewrite the decryption operation as a linear
function Lc(·) such that

Lc(s1, . . . , sn) = ECC(m) + e

where e is a B-bounded noise term and ECC is some encoding of the plaintext (in
their scheme m is packed in the high-order bits so that it does not interfere with
the noise term). The idea then is to encrypt the secret key (s1, . . . , sn) under a
(high-rate) linearly homomorphic encryption (LHE) scheme, which allows one
to compress evaluated FHE ciphertext by computing Lc(·) homomorphically.

One interesting property of this approach is that it is completely paramet-
ric in the choice of the schemes, as long as they satisfy some simple structural
requirements: More concretely, one can use any LHE scheme as long as its plain-
text domain matches the LWE modulus of the FHE scheme. As an example, one
can set the LHE to be the Damg̊ard-Jurik encryption scheme [23,52], which we
briefly recall in the following. The public key of the scheme consists of a large
composite N = pq and an integer ζ, and the encryption algorithm a message m
computes

c = rNζ · (1 + N)m mod N ζ+1

for some uniform r ←$ZN . Note that the corresponding plaintext space is ZNζ

and therefore the rate of the scheme approaches 1 as ζ grows. Furthermore, we
observe that the scheme has one additional property that we refer to as split
decryption. A scheme has split decryption if the decryption algorithm can be
divided into a private and a public subroutine:

– The private procedure takes as input a ciphertext c and the secret key φ(N)
and computes a decryption hint

ρ = cN−ζ

mod N

using the extended Euclidean algorithm. It is crucial to observe that ρ ∈ ZN

is potentially much smaller than the plaintext m.
– The public procedure takes as input a ciphertext c and the decryption hint ρ

and recovers the plaintext by computing

(1 + N)m = c/ρNζ

mod N ζ+1

and decoding m in polynomial time using the binomial theorem.

84 Z. Brakerski et al.

In a nutshell, the subgroup homomorphism allows one to compute a compressed
version of the randomness, which can be then publicly stretched and used to
unmask the plaintext. This means that m can be fully recovered by communi-
cating a small hint of size fixed and, in particular, independent of |m|. As we
are going to discuss later, this property is going to be our main leverage to build
general-purpose obfuscation.

Temporarily glossing over the security implications, we point out that the
hybrid scheme of Brakerski et al. [17] already suffices to construct an FHE scheme
with split decryption (in short, split FHE): Simply instantiate the LHE scheme
with Damg̊ard-Jurik and convert evaluated FHE ciphertexts before decryption
using the algorithm described above.

Security for Split FHE. We now delve into the desired security property
for a split FHE scheme. On a high level, we would like to ensure that the
decryption hint does not reveal any additional information, beyond the plain-
text of the corresponding ciphertext. It is instructive to observe that if we do
not insist on this property, then every FHE scheme has a trivial split decryp-
tion procedure which simply outputs the secret key. We formalize this intuition
as an indistinguishability definition that, roughly speaking, demands that for
all plaintext pairs (m0,m1) and every set of circuits (C1, . . . , Cβ) such that
Ci(m0) = Ci(m1), then the encryption of m0 and m1 are computationally indis-
tinguishable, even given the decryption hints ρi of the evaluated ciphertexts.
The condition Ci(m0) = Ci(m1) rules out trivial attacks where the distinguisher
just checks the output of the evaluation. Here β = β(λ) is an arbitrary (but a
priori bounded) polynomial in the security parameter.

Unfortunately, our candidate as described above falls short in satisfying this
security notion: The central problem is that our split decryption procedure
reveals the complete plaintext encoded in the Damg̊ard-Jurik ciphertext. This
means that the distinguisher learns arbitrarily many relations of the form

Lci
(s1, . . . , sn) = ECC(Ci(mb)) + ei

where ci is the evaluated ciphertext and Lci
is a publicly known linear function.

Collecting a large enough sample allows the distinguisher to recompute the FHE
secret key (s1, . . . , sn) via, e.g., Gaussian elimination. A standard approach to
obviate this problem is to smudge the noise ei with some mask ri uniformly
sampled from an exponentially larger domain. Thus, a natural solution would
be to compute a randomizing ciphertext di = DJ.Enc(pkDJ, ri) and output the
decryption hint for

ci · di = DJ.Enc(pkDJ,ECC(Ci(mb)) + ei + ri) ≈ DJ.Enc(pkDJ,ECC(Ci(mb)) + ri)

where ri is sampled from a domain exponentially larger than the noise bound B but
small enough to allow one to decode ECC(Ci(mb)). While it is possible to show that
this approach indeed satisfies the security notion outlined above, it introduces an
overhead in the size of the hint, which now consists of the pair (ρi, di). Note that we

Candidate iO from Homomorphic Encryption Schemes 85

cannot allow the distinguisher to recompute di locally as it is crucial that ri remains
hidden, so we have no other choice but append it to the decryption hint. However
the decryption hint is now of size O(|ci|), which does not satisfy our compactness
requirement and makes our efforts purposeless (one can just set the decryption hint
to be Ci(mb) and achieve better efficiency).

Although we appear to have encountered a roadblock, a closer look reveals that
we still gained something from this approach: The ciphertext di encodes a (some-
what small) randomvalue and in particular is completely independent from ci. Fur-
thermore, the decryption hint of ci ·di can be computed using the secret key alone.
Assume for the moment that we had access to an oracle O that outputs uniform
Damg̊ard-Jurik encryption of bounded random values, then our idea is to delegate
the sampling of di to O. This allows us to bypass the main obstacle: We do not
need to include di in the decryption hint as it can be recomputed by querying O.
One can think of this approach as a more structured version of the Fiat-Shamir
transform [25], which allows us to state the following theorem.

Theorem 2 (Informal). Assuming the hardness of LWE and DCR, then there
exists a split FHE scheme in the O-hybrid model.

Looking ahead to our end goal, another interpretation of this theorem is as a
universality result: Assuming the hardness of LWE and DCR, we can bootstrap
an obfuscator for a specific circuit (i.e., the one that samples a uniform Damg̊ard-
Jurik encryption of a bounded random value) to an obfuscator for all circuits.

Instantiating the Oracle. The most compelling question which arises from our
main theorem is whether there exist plausible instantiations for the oracle O. A
first (flawed) attempt is to devise an oblivious sampling procedure for Damg̊ard-
Jurik ciphertext using a random oracle: Note that Damg̊ard-Jurik ciphertexts
live in a dense domain ZNζ+1 and indeed sampling a random integer ci ←$ZNζ+1

maps to a well-formed ciphertext with all but negligible probability. However,
since ci is uniform in the ciphertext domain, then so is the underlying plaintext
ri ∈ ZNζ . This makes ci unusable for our purposes since we require ri to be
bounded by some value q̃, which is exponentially smaller than Nζ . If we were to
sample ri this way, then it would completely mask the term ECC(Ci(mb)), thus
making the plaintext impossible to decode.

Ideally, we would like to restrict the oblivious sampling to ciphertexts encrypt-
ing q̃-bounded messages. Unfortunately, we are not aware of the existence of any
such algorithm. Instead, our idea is to still sample ci uniformly over the complete
ciphertext domain and remove the high-order bits of ri homomorphically : This can
be done by including an FHE encryption of the Damg̊ard-Jurik secret key, then
homomorphically evaluating the circuit that decrypts ci and computes −�ri/q̃� · q̃.
The evaluated ciphertext is then converted again to the Damg̊ard-Jurik domain
using the linear noisy decryption of the FHE scheme. At this point, one can obtain
a well-formed encryption of a q̃-bounded value by computing

86 Z. Brakerski et al.

DJ.Enc(pkDJ,−�ri/q̃� · q̃ + e) · ci = DJ.Enc(pkDJ,−�ri/q̃� · q̃ + e + ri)
= DJ.Enc(pkDJ, (ri mod q̃) + e)

where the term (ri mod q̃) + e is q̃-bounded with all but negligible probability
by setting q̃ � B. While this approach brings us tantalizingly close to a provably
secure scheme, a careful analysis highlights two lingering conjectures.

(1) Circular Security: Adding and FHE encryption of the Damg̊ard-Jurik secret
key introduces a circular dependency in the security of the two schemes
(recall that our construction already encodes a Damg̊ard-Jurik encryption
of the FHE secret key). While circular security falls outside of the realm of
provable statements, it is widely accepted as a mild assumption and it is
known to be achieved by most natural encryption schemes [11]. We stress
that circular security is also inherent in the the bootstrapping theorem of
Gentry [32], the only known method to construct fully (as opposed to lev-
elled) homomorphic encryption from LWE.

(2) Correlations: While the homomorphically evaluated circuit essentially
ignores the low-order bits of ri, the corresponding decryption noise e might
still depend on (ri mod q̃) in some intricate way. This might introduce some
correlation and bias the distribution of the term (ri mod q̃)+e with respect
to a uniform u ←$Zq̃. However, the noise function is typically highly non-
linear and therefore appears to be difficult to exploit. We also point out
that the distinguisher has no control over the choice of e, which exclusively
depends on an honest execution of the homomorphic evaluation algorithm.
We therefore conjecture that the distribution of (ri mod q̃) + e is compu-
tationally indistinguishable from u.

In light of the above insights, we put forward the conjecture that the proposed
algorithm already gives us a secure implementation of the oracle O. We view this
as a natural strengthening of Gentry’s heuristic for the bootstrapping theorem,
which is justified by our more ambitious objective. As the conjecture pertains
to standard cryptographic material (FHE and Damg̊ard-Jurik encryption) we
believe that any further insight on its veracity would substantially improve our
understanding on these important and well-studied building blocks.

Finally, we mention that many heuristics can be used to weaken the corre-
lation between the decryption noise e and the low-order bits (ri mod q̃), such
as repeated applications of FHE bootstrapping [24]. We also propose a different
heuristic approach to remove correlations based on binary extractors and we
refer the reader to the technical sections for further details.

From Split FHE to iO. What is left to be shown is that split FHE does indeed
suffice to construct program obfuscation. With this goal in mind, we recall a
surprising result by Lin et al. [44] which states that, under the assumption that

Candidate iO from Homomorphic Encryption Schemes 87

the LWE problem is sub-exponentially hard, iO for all circuits is implied by an
obfuscator for circuits with logarithmic-size inputs with non-trivial efficiency.
Here non-trivial efficiency means that the size of the obfuscated circuit C̃ with
input domain {0, 1}η is at most poly(λ, |C|) · 2η·(1−ε), for some constant ε > 0.
This means that it suffices to show that split FHE implies the existence of
an obfuscator (for circuits with polynomial-size input domain) with non-trivial
efficiency.

The transformation is deceptively simple (and similar to [14]): The obfusca-
tor computes a split FHE encryption of the circuit C and partitions the input
domains in 2η/2 disjoint sets (P1, . . . , P2η/2) of equal size. Then, for each par-
tition Pi, the algorithm homomorphically evaluates the universal circuit that
evaluates C on all inputs in Pi and returns the concatenation of all outputs.
Finally it returns the decryption hint ρi corresponding to the evaluated cipher-
text. The obfuscated circuit consists of the public-key of the split FHE scheme,
the encryption of C, and all of the decryption hints (ρ1, . . . , ρ2η/2). Note that
the obfuscated circuit can be evaluated efficiently: On input x, let Px be the
partition that contains x, then the evaluator recomputes the homomorphic eval-
uation (which is a deterministic operation) of C on Px and recovers the output
using the decryption hint ρx. As for non-trivial efficiency, since the size of each
decryption hint is that of a fixed polynomial mp, the total size of the obfuscated
circuit is bounded by poly(λ, |C|) · 2η/2, as desired.

Other Applications. To demonstrate that the scope of our split FHE scheme
goes beyond program obfuscation, we outline two additional applications. In
both cases we only rely on the hardness of the LWE and DCR problem, i.e., we
do not need to introduce any new conjecture.

Two-Party Computation with Pre-Processing. We obtain a (semi-honest) two-
party computation scheme for any circuit C : {0, 1}� → {0, 1}k with an input-
and circuit-independent pre-processing where the communication complexity of
the pre-processing phase is poly(λ, k), whereas the communication complexity
of the online phase is poly (λ) + �. This improves over garbled circuit-based
approaches that require a pre-processing at least linear in |C|. The protocol
works as follows: In the pre-processing phase Alice and Bob exchange their
(independently sampled) public-keys for a split FHE scheme and Alice com-
putes a randomizing ciphertext (in the scheme defined above this corresponds
to a Damg̊ard-Jurik encryption of a bounded random value), which is sent to
Bob. In the online phase, Alice and Bob exchange their inputs encrypted under
their own public keys (to achieve best-possible rate this can be done using hybrid
encryption) and homomorphically compute the multi-key evaluation of f over
both inputs. Note that multi-key evaluation is generically possible for the case
of two parties by nesting the two split FHE evaluations. Then Alice consumes
the randomizing ciphertext computed in the pre-processing and sends a partial
decryption of the evaluated ciphertext in the form of a decryption hint. Bob can
then locally complete the partial decryption using its own secret key and recover
the output.

88 Z. Brakerski et al.

Rate-1 Reusable Garbled Circuits. The work of Goldwasser et al. [37] showed,
assuming the hardness of the LWE problem, how to construct reusable gar-
bled circuits where the size of the input encodings is poly (λ, d, � · k), where
C : {0, 1}� → {0, 1}k and d is the depth of C. Additionally assuming the hard-
ness of the DCR problem, we can bring down the complexity to poly(λ, d, �)+k.
This is done by using their scheme to garble the circuit that computes C homo-
morphically over the input encrypted under a split FHE scheme an returns the
decryption hint of the evaluated ciphertext. This effectively removes the depen-
dency of the underlying reusable garbled circuit on the output size k. However,
we also need to include in the input encoding a randomizing Damg̊ard-Jurik
ciphertext, which reintroduces an additive overhead in k.

1.3 Related Work

In the following we discuss more in depth the relation of our approach when
compared with recent candidate constructions of iO from lattices and bilinear
maps [1,3,41]. Very informally, this line of works leverages weak pseudorandom
generators (PRG) to mask the noise of the LWE decryption. However, the output
domain of such a PRG is only polynomially large: This is because of the usage
of bilinear groups, where the plaintext space is polynomially bounded (decryp-
tion requires one to solve a discrete logarithm). This is especially problematic
because statistical/computational indistinguishability cannot hold in this regime
of parameters. To circumvent this problem, all papers in this line of work assume
a strict bound on the distinguisher’s success probability (e.g., 0.99) and then rely
on amplification techniques. This however requires one to construct a weak PRG
where the advantage of any PPT distinguisher is non-negligible but at the same
time bounded by < 0.99.

On the other hand, we rely on the Damg̊ard-Jurik encryption scheme, where
the message domain is exponential. This allows us to sample the smudging factor
from a distribution that is exponentially larger than the noise bound, which is
necessary in order to argue about statistical indistinguishability. Thus in our
settings, conjecturing that the advantage of the distinguisher is negligible is, at
least in principle, plausible.

2 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl(·) is
negligible if it vanishes faster than any polynomial. Given a set S, we denote
by s ←$ S the uniform sampling from S. We say that an algorithm is PPT if
it can be implemented by a probabilistic machine running in time poly(λ). We
abbreviate the set {1, . . . , n} as [n]. We recall the smudging lemma [6,7].

Lemma 1 (Smudging). Let B1 = B1(λ) and B2 = B2(λ) be positive integers
and let e1 ∈ [B1] be a fixed integer. Let e2 ←$ [B2] chosen uniformly at random.
Then the distribution of e2 is statistically indistinguishable from that of e2 + e1
as long as B1/B2 = negl(λ).

Candidate iO from Homomorphic Encryption Schemes 89

2.1 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO) from [28].

Definition 1 (Indistinguishability Obfuscation). A PPT machine iO is an
indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the following condi-
tions are satisfied:
(Functionality) For all λ ∈ N, all circuit C ∈ Cλ, all inputs x it holds that

Pr
[
C̃(x) = C(x)

∣∣∣C̃ ← iO(C)
]

= 1.

(Indistinguishability) For all polynomial-size distinguishers D there exists a neg-
ligible function negl(·) such that for all λ ∈ N, all pairs of circuit (C0, C1) ∈ Cλ

such that |C0| = |C1| and C0(x) = C1(x) on all inputs x, it holds that

|Pr [1 = D(iO(C0))] − Pr [1 = D(iO(C1))]| = negl(λ) .

2.2 Learning with Errors

We recall the (decisional) learning with errors (LWE) problem as introduced by
Regev [54].

Definition 2 (Learning with Errors). The LWE problem is parametrized
by a modulus q, positive integers n,m and an error distribution χ. The LWE
problem is hard if for all polynomial-size distinguishers D there exists a negligible
function negl(·) such that for all λ ∈ N it holds that

∣∣Pr
[
1 = D(A, s� · A + e)

] − Pr [1 = D(A,u)]
∣∣ = negl(λ) .

where A is chosen uniformly from Z
n×m
q , s is chosen uniformly from Z

n
q , u is

chosen uniformly from Z
m
q and e is chosen from χm.

As shown in [53,54], for any sufficiently large modulus q the LWE problem where
χ is a discrete Gaussian distribution with parameter σ = αq ≥ 2

√
n (i.e. the

distribution over Z where the probability of x is proportional to e−π(|x|/σ)2),
is at least as hard as approximating the shortest independent vector problem
(SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. We
refer to α = σ/q as the modulus-to-noise ratio, and by the above this quantity
controls the hardness of the LWE instantiation. Hereby, LWE with polynomial
α is (presumably) harder than LWE with super-polynomial or sub-exponential
α. We can truncate the discrete Gaussian distribution χ to σ ·ω(

√
log(λ)) while

only introducing a negligible error. Consequently, we omit the actual distribution
χ but only use the fact that it can be bounded by a (small) value B.

90 Z. Brakerski et al.

3 Homomorphic Encryption

We recall the definition of homomorphic encryption in the following.

Definition 3 (Homomorphic Encryption). A homomorphic encryption
scheme consists of the following efficient algorithms.

KeyGen(1λ): On input the security parameter 1λ, the key generation algorithm
returns a key pair (sk, pk).

Enc(pk,m): On input a public key pk and a message m, the encryption algorithm
returns a ciphertext c.

Eval(pk, C, (c1, . . . , c�)): On input the public key pk, an �-inputs circuit C, and
a vector of ciphertexts (c1, . . . , c�), the evaluation algorithm returns an eval-
uated ciphertext c.

Dec(sk, c): On input the secret key sk and a ciphertext c, the decryption algorithm
returns a message m.

We say that a scheme is fully-homomorphic (FHE) if it is homomorphic for all
(unbounded) polynomial-size circuits. If the maximum size of the circuit that can
be evaluated is bounded in the public parameters, then we call such a scheme a
levelled FHE. We also consider a restricted class of homomorphism that supports
linear functions and we refer to such a scheme as linearly-homomorphic encryp-
tion (LHE). We characterize correctness of a single evaluation, which suffices
for our purposes. This can be extended to the more general notion of multi-hop
correctness [34] if the condition specified below is required to hold for arbitrary
compositions of circuits.

Definition 4 (Correctness). A homomorphic encryption scheme (KeyGen,
Enc,Eval,Dec) is correct if for all λ ∈ N, all �-inputs circuits C, all inputs
(m1, . . . ,m�), all (sk, pk) in the support of KeyGen(1λ), and all ci in the support
of Enc(pk,mi) it holds that

Pr [Dec(sk,Eval(pk, C, (c1, . . . , c�))) = C(m1, . . . ,m�)] = 1.

We require a scheme to be compact in the sense that the size of the ciphertext
should not grow with the size of the evaluated circuit.

Definition 5 (Compactness). A homomorphic encryption scheme (KeyGen,
Enc,Eval,Dec) is compact if there exists a polynomial poly(·) such that for all
λ ∈ N, all �-inputs circuits C in the supported family, all inputs (m1, . . . ,m�),
all (sk, pk) in the support of KeyGen(1λ), and all ci in the support of Enc(pk,mi)
it holds that

|Eval(pk, C, (c1, . . . , c�))| = poly(λ) · |C(m1, . . . ,m�)|.

We define a weak notion of security (implied by the standard semantic secu-
rity [38]) which is going to be more convenient to work with.

Candidate iO from Homomorphic Encryption Schemes 91

Definition 6 (Semantic Security). A homomorphic encryption scheme
(KeyGen,Enc,Eval,Dec) is semantically secure if for all polynomial-size distin-
guishers D there exists a negligible function negl(·) such that for all λ ∈ N, all
pairs of message (m0,m1), it holds that

|Pr [1 = D(pk,Enc(pk,m0))] − Pr [1 = D(pk,Enc(pk,m1))]| = negl(λ)

where (sk, pk) ← KeyGen(1λ).

3.1 Linear Decrypt-and-Multiply

We consider schemes with a fine-grained correctness property. Specifically, we
require that the decryption consists of the application of a linear function in
the secret key, followed by some publicly computable function. Furthermore, we
require that such a procedure allows us to specify an arbitrary constant ω that is
multiplied to the resulting plaintext. We refer to such schemes as linear decrypt-
and-multiply schemes. This property was introduced in an oral presentation by
Micciancio [50] and recently formalized by Brakerski et al. [17]. We stress that
all major candidate FHE constructions satisfy (or can be adapted to) such a
constraint, e.g., [2,19,36]. We recall the definition in the following.

Definition 7 (Decrypt-and-Multiply). We call a homomorphic encryption
scheme (KeyGen,Enc,Eval,Dec) a decrypt-and-multiply scheme, if there exists
bounds B = B(λ) and Q = Q(λ) and an algorithm Dec&Mult such that the fol-
lowing holds. For every q ≥ Q, all (sk, pk) in the support of KeyGen(1λ, q), every
�-inputs circuit C, all inputs (m1, . . . ,m�), all ci in the support of Enc(pk,mi)
and every ω ∈ Zq that

Dec&Mult(sk,Eval(pk, C, (c1, . . . , c�)), ω) = ω · C(m1, . . . ,m�) + e mod q

where Dec&Mult is a linear function in sk over Zq and |e| ≤ B with all but
negligible probability.

In our construction, we will need some additional structure for the modulus q.
Fortunately, most LWE-based FHE schemes can be instantiated with an arbi-
trary q that does not depend on any secret input but only on the security param-
eter. Moreover, LWE-based FHE schemes can be instantiated with any (suffi-
ciently large) modulus q without affecting the worst-case hardness of the under-
lying LWE problem [53]. In an abuse of notation, we often write KeyGen(1λ; q)
to fix the modulus q in the key generation algorithm. In favor of a simpler anal-
ysis, we assume that e is always non-negative. Note that this is without loss of
generality as it can be always guaranteed by adding B to the result of Dec&Mult
and setting a slightly looser bound B = 2B.

3.2 Split Decryption

We define the notion of homomorphic encryption with split decryption, which is
going to be central in our work. Loosely speaking, a scheme has split decryption

92 Z. Brakerski et al.

if the decryption algorithm consists of two subroutines: A private algorithm
(that depends on the secret key) that on input a ciphertext c computes a small
hint ρ, and a publicly computable algorithm that takes as input ρ and c and
returns the corresponding plaintext. We henceforth refer to such schemes as
split homomorphic encryption. We introduce the syntax in the following.

Definition 8 (Split Decryption). A homomorphic encryption scheme
(KeyGen,Enc,Eval,Dec) has split decryption if the decryption algorithm Dec con-
sist of the following two subroutines.

PDec(sk, c): On input the secret key sk and a ciphertext c, the partial decryption
algorithm returns a decryption hint ρ.

Rec(ρ, c): On input the hint ρ and a ciphertext c, the recovery algorithm returns
a message m.

The notion of correctness is extended canonically.

Definition 9 (Split Correctness). A homomorphic encryption scheme with
split decryption (KeyGen,Enc,Eval,PDec,Rec) is correct if for all λ ∈ N, all �-
inputs circuits C in the supported family, all inputs (m1, . . . ,m�), all (sk, pk) in
the support of KeyGen(1λ), and all ci in the support of Enc(pk,mi) it holds that

Pr [Rec(PDec(sk, c), c) = C(m1, . . . ,m�)] = 1

where c = Eval(pk, C, (c1, . . . , c�)).

Beyond the standard compactness for homomorphic encryption, a scheme with
split decryption must satisfy the additional property that the size of the decryp-
tion hint ρ is independent (or, more generally, sublinear) of the size of the mes-
sage. Furthermore, the size of the public key and of a fresh encryption of a
message m should depend polynomially in the security parameter and otherwise
be linear in the size of the output. These are the properties that make split
decryption non-trivial and that are going to be our main leverage to bootstrap
this primitive into more powerful machinery. We formally characterize these
requirements below.

Definition 10 (Split Compactness). A homomorphic encryption scheme
with split decryption (KeyGen,Enc,Eval,PDec,Rec) is compact if there exists a
polynomial poly(·) and such that for all λ ∈ N, all �-inputs circuits C in the sup-
ported family, all inputs (m1, . . . ,m�), all (sk, pk) in the support of KeyGen(1λ),
and all ci in the support of Enc(pk,mi) it holds that

– |pk| ≤ poly(λ) · |C(m1, . . . ,m�)|,
– |ci| ≤ poly(λ, |mi|) · |C(m1, . . . ,m�)|, and
– |ρ| ≤ poly(λ)

where ρ = PDec(sk,Eval(pk, C, (c1, . . . , c�))).

Candidate iO from Homomorphic Encryption Schemes 93

Finally the notion of semantic security for split schemes requires that the decryp-
tion hint ρ for a certain ciphertext does not reveal any information beyond the
corresponding plaintext. Note that we define a very weak notion where the above
must hold only for a bounded number of ciphertexts, and the inputs are fixed
prior to the public parameters of the scheme.

Definition 11 (Split Security). A homomorphic encryption scheme with split
decryption (KeyGen,Enc,Eval,PDec,Rec) is secure if for all polynomial-size dis-
tinguishers D there exists a negligible function negl(·) such that for all λ ∈ N,
all polynomials β = β(λ), all pairs of messages (m0,m1), all vectors of circuits
(C1, . . . , Cβ) such that, for all i ∈ [β], Ci(m0) = Ci(m1) it holds that

∣∣Pr
[
1 = D(pk, c0, ρ(1,0), . . . , ρ(β,0))

] − Pr
[
1 = D(pk, c1, ρ(1,1), . . . , ρ(β,1))

] ∣∣
= negl(λ)

where (sk, pk) ← KeyGen(1λ), for all b ∈ {0, 1} define cb ← Enc(pk,mb) and, for
all i ∈ [β] and all b ∈ {0, 1}, define ρ(i,b) ← PDec(sk,Eval(pk, Ci, cb)).

3.3 Damg̊ard-Jurik Encryption

In the following we recall a variant of the Damg̊ard-Jurik encryption linearly
homomorphic encryption scheme [23]. We present a variant of the scheme that
satisfies the notion of split correctness, which is going to be instrumental for
our purposes. The scheme is parametrized by a non-negative integer ζ that we
assume is given as input to all algorithms.

DJ.KeyGen(1λ): On input the security parameter 1λ, sample a uniform Blum
integer N = pq, where p and q are λ-bits primes. Set pk = (N, ζ) and sk =
ϕ(N).

DJ.Enc(pk,m): On input a message m ∈ ZNζ , sample a random r ←$ZN and
compute

c = rNζ · (1 + N)m mod N ζ+1.

DJ.Eval(pk, f, (c1, . . . , c�)): On input a vector of ciphertexts (c1, . . . , c�) and a
linear function f = (α1, . . . , α�) ∈ Z

�
Nζ , compute

c =
�∏

i=1

cα1
i mod N ζ+1.

DJ.PDec(sk, c): On input a ciphertext c, set s = c mod N . Then compute N−ζ

such that N ζ · N−ζ = 1 mod ϕ(N) using the extended Euclidean algorithm.
Return

ρ = sN−ζ

mod N.

DJ.Rec(ρ, c): On input a hint ρ and a ciphertext c, compute

(1 + N)m = c/ρNζ

mod N ζ+1

and recover m using the polynomial-time algorithm described in [23].

94 Z. Brakerski et al.

It is well known that the scheme satisfies (standard) semantic security assuming
the intractability of the decisional composite residuosity (DCR) problem, as
defined in [52]. To prove correctness, we are going to use the fact that

xNζ

mod N ζ+1 = (x mod N)Nζ

mod N ζ+1 (1)

for all non-negative integers (x, ζ). We refer the reader to [49] for a proof of this
equality. Recall that c = rNζ · (1 + N)m and that

ρ = (c mod N)N−ζ

mod N

=
(
rNζ · (1 + N)m mod N

)N−ζ

mod N

=
(
rNζ

mod N
)N−ζ

mod N.

Therefore we have that

ρNζ

mod N ζ+1 =
((

rNζ

mod N
)N−ζ

mod N

)Nζ

mod N ζ+1

=
(
rNζ

mod N
)N−ζ ·Nζ

mod N ζ+1

= rNζ

mod N ζ+1

by an application of Eq. (1). Taking the inverse on both sides of the equation
above we obtain

c/ρNζ

mod N ζ+1 = c/rNζ

mod N ζ+1

= rNζ · (1 + N)m/rNζ

mod N ζ+1

= (1 + N)m mod N ζ+1

as desired for correctness. Although such a scheme does not immediately give
us a secure split LHE, we highlight a few salient properties that we are going to
leverage in our main constructions.

Small Hints: The scheme satisfies a weakened notion of split compactness where
the decryption hint is much smaller than the message space. The hint ρ ∈ ZN

consists of �log(N) bits and in particular is independent of the size of the
message space ZNζ , as the integer ζ can be set to be arbitrarily large (within
the range of polynomials in λ).

Simulatable Hints: Given a ciphertext c and a plaintext value m, one can effi-
ciently compute a ciphertext c̃ such that the homomorphic sum of c and c̃ results
in a uniform encryption of m and the corresponding decryption hint can be com-
puted given only the random coins used to generate c̃. Concretely, let

c̃ =
rNζ · (1 + N)m

c
mod N ζ+1

for some r ←$ZN , then ρ = r.

Candidate iO from Homomorphic Encryption Schemes 95

Dense Ciphertexts: Sampling a random integer in ZNζ+1 gives a well-formed
ciphertext with all but negligible probability. This is because the group order
ϕ(N) · Nζ is close to N ζ+1, i.e., ϕ(N)·Nζ

Nζ+1 = ϕ(N)
N = 1 − negl(λ).

4 Split Fully-Homomorphic Encryption

In the following we present our instantiation of FHE with split decryption. We
first present a scheme from standard assumptions which assumes the existence of
(a structured version of) a random oracle, then we propose plausible candidates
for such an oracle.

4.1 Construction in the Presence of an Oracle

Before we delve into the details of our construction we give a definition of the
oracle function that we consider. The oracle is parametrized by a pair of public
keys for an FHE and an LHE scheme (pkFHE, pkLHE) and two integers (q, q̃). On
input a bitstring x ∈ {0, 1}∗, the oracle returns a uniform LHE encryption of
a random value in Zq and an FHE encryption of the same value rounded to
the closest divisor of q̃. The oracle is deterministic and it is accessible by all
parties, thus on input the same x, the oracle will always output the same pair
of ciphertexts. The interface is formally defined in the following.

O(pkFHE,pkLHE,q,q̃)(x): On input a string x ∈ {0, 1}∗ return two uniformly dis-
tributed ciphertexts

LHE.Enc(pkLHE,m) and FHE.Enc (pkFHE,− �m/q̃� · q̃)

where m ←$Zq.

It is useful to observe that the oracle output, along with an LHE encryption of
the FHE secret key, gives us a uniformly distributed LHE encryption of a uni-
form value in Zq̃. This is because we can leverage the decrypt-and-multiply algo-
rithm Dec&Mult of the FHE scheme (matching the FHE domain with the LHE
paintext space appropriately) to compute LHE.Enc (pkLHE,− �m/q̃� · q̃ + noise),
where noise is the decryption noise of the FHE scheme. Homomorphically sum-
ming up this term with the first output of the oracle we obtain

LHE.Enc (pkLHE,m − �m/q̃� · q̃ + noise) = LHE.Enc (pkLHE, (m mod q̃) + noise)
≈s LHE.Enc (pkLHE, (m mod q̃))

for an appropriate choice of q̃, i.e., we obtain an ciphertext which is statistically
indistinguishable from an LHE encryption of a uniform element of Zq̃.

96 Z. Brakerski et al.

Description. We are now in the position of giving formal description of our
scheme. We assume the existence of the following primitives:

– A fully-homomorphic encryption scheme FHE = (FHE.KeyGen,FHE.Enc,
FHE.Eval,FHE.Dec) with linear decrypt-and-multiply and with noise
bound B.

– A linearly homomorphic encryption LHE = (LHE.KeyGen, LHE.Enc, LHE.Eval,
LHE.PDec, LHE.Rec) with small and simulatable decryption hints (e.g., the
Damg̊ard-Jurik encryption scheme as described in Sect. 3.3).

If the underlying FHE scheme is levelled then so is going to be the resulting split
FHE. Conversely, if the FHE scheme supports the evaluation of unbounded cir-
cuits, then so does the resulting split FHE construction. The scheme is formally
described in the following.

KeyGen(1λ): On input the security parameter 1λ, sample a key pair
(skLHE, pkLHE) ← LHE.KeyGen(1λ). Let Zq be the plaintext space defined
by LHE, then sample (skFHE, pkFHE) ← FHE.KeyGen(1λ; q). Let skFHE =
(s1, . . . , sn) ∈ Z

n
q , then return

sk = skLHE and pk =
(
pkFHE, pkLHE, c(LHE,1), . . . , c(LHE,n)

)

where, for all i ∈ [n], we define c(LHE,i) ← LHE.Enc(pkLHE, si).
Enc(pk,m): On input a message m return

c ← FHE.Enc(pkFHE,m).

Eval(pk, f, (c1, . . . , c�)): On input a circuit C with � bits of input and k bits
of output and a vector of ciphertexts (c1, . . . , c�), let, for all j ∈ [k], Cj

be the circuit that returns the j-th bit of the output of C, then compute

dj ← FHE.Eval(pkFHE, Cj , (c1, . . . , c�)).

Define the following linear function over Zq:

g(x1, . . . , xn) =
k∑

j=1

Dec&Mult
(
(x1, . . . , xn), dj , 2�log(q̃+(k+1)B)�+j

)
.

Compute d ← LHE.Eval(pkLHE, g, (c(LHE,1), . . . , c(LHE,n))), then query
(a, ã) ← O(pkFHE,pkLHE,q,q̃)(d) and define the following linear function over
Zq:

g̃(x1, . . . , xn, xn+1, xn+2) = Dec&Mult ((x1, . . . , xn), ã, 1) + xn+1 + xn+2.

Return

c ← LHE.Eval(pkLHE, g̃, (c(LHE,1), . . . , c(LHE,n), d, a)).

Candidate iO from Homomorphic Encryption Schemes 97

PDec(sk, c): On input an evaluated ciphertext c return

ρ ← LHE.PDec(skLHE, c).

Rec(ρ, c): On input an evaluated ciphertext c, compute

m̃ ← LHE.Rec(ρ, c)

and return the binary representation of m̃ without its �log(q̃+(k+1)B)
least significant bits.

Analysis. We formally analyze our scheme in the following. During the analysis,
we set the parameters on demand and we show afterwards that our choices lead to
a satisfiable set of constraints for which the underlying computational problems
are still conjectured to be hard. The following theorem establishes correctness.

Theorem 3 (Split Correctness). Let q ≥ 2k + 2�log(q̃+(k+1)B)�. Let FHE be
a correct fully-homomorphic encryption scheme with linear decrypt-and-multiply
and let LHE be a split correct linearly-homomorphic encryption scheme. Then
the scheme as described above satisfies split correctness.

Proof. Let us rewrite

m̃ = LHE.Rec(ρ, c) = LHE.Rec(LHE.PDec(skLHE, c), c)

where c = LHE.Eval(pkLHE, g̃, (c(LHE,1), . . . , c(LHE,n), d, a)). We first expand the d
term as

d = LHE.Eval(pkLHE, g, (c(LHE,1), . . . , c(LHE,n)))
= LHE.Eval(pkLHE, g, (LHE.Enc(pkLHE, s1), . . . , LHE.Enc(pkLHE, sn)))

= LHE.Enc

⎛
⎝pkLHE,

k∑
j=1

Dec&Mult
(
(s1, . . . , sn), dj , 2�log(q̃+(k+1)B)�+j

)
⎞
⎠

by the correctness of the LHE scheme, where

dj = FHE.Eval(pkFHE, Cj , (c1, . . . , c�))

and ci = FHE.Enc(pkFHE,mi). Thus by the decrypt-and-multiply correctness of
the FHE scheme we can rewrite

98 Z. Brakerski et al.

d = LHE.Enc

⎛
⎝pkLHE,

k∑
j=1

2�log(q̃+(k+1)B)�+j · Cj(m1, . . . ,m�) + ej

⎞
⎠

= LHE.Enc

⎛
⎜⎜⎜⎜⎝
pkLHE,

k∑
j=1

2�log(q̃+(k+1)B)�+j · Cj(m1, . . . ,m�) +
k∑

j=1

ej

︸ ︷︷ ︸
ẽ

⎞
⎟⎟⎟⎟⎠

.

For the a variable we have that a = LHE.Enc(pkLHE, r), for some uniform r ←$Zq,
by definition of the oracle O(pkFHE,pkLHE,q,q̃). Recall that

g̃(x1, . . . , xn, xn+1, xn+2) = Dec&Mult ((x1, . . . , xn), ã, 1) + xn+1 + xn+2.

where ã = FHE.Enc(pkFHE,−�r/q̃� · q̃). Thus c = LHE.Enc (pkLHE, m̃) where

m̃ = Dec&Mult ((s1, . . . , sn), ã, 1) +

k∑

j=1

2�log(q̃+(k+1)B)�+j · Cj(m1, . . . ,m�) + ẽ + r

= −�r/q̃� · q̃ + e +

k∑

j=1

2�log(q̃+(k+1)B)�+j · Cj(m1, . . . ,m�) + ẽ + r

=
k∑

j=1

2�log(q̃+(k+1)B)�+j · Cj(m1, . . . ,m�) + ẽ + e + (r mod q̃)︸ ︷︷ ︸
r̃

by the correctness of the FHE scheme. Note that the sum ẽ+ e is bounded from
above by (k + 1) · B, whereas the term r̃ is trivially bounded from above by q̃.
This implies that the output of the circuit is encoded in the higher order bits of
m̃ with probability 1, for a large enough q.

We then argue about the split security of the scheme. We remark that we analyze
security in the presence of an oracle and we refer the reader to Sect. 4.2 for
concrete instantiations.

Theorem 4 (Split Security). Let q̃ ≥ 2λ ·(k+1) ·B and let q ≥ 2λ · q̃. Let FHE
be a semantically secure fully-homomorphic encryption scheme and let LHE be
a semantically secure linearly homomorphic encryption scheme with simulatable
decryption hints. Then the scheme as described above satisfies split security in
the O(pkFHE,pkLHE,q,q̃)-hybrid model.

Proof. Let (m0,m1, C1, . . . , Cβ) be the inputs specified by the adversary at the
beginning of the experiments. Consider the following series of hybrids.

Hybrid H0: Is defined as the original experiment. Denote the distribution induced
by the random coins of the challenger by

(pk, c = FHE.Enc(pkFHE,mb), ρ1, . . . , ρβ)

Candidate iO from Homomorphic Encryption Schemes 99

where

pk = (pkFHE, pkLHE, LHE.Enc(pkLHE, s1), . . . , LHE.Enc(pkLHE, sn))

and ρi is computed as PDec(sk,Eval(pk, Ci, c)).

Hybrids H1 . . . Hβ : Let d(i) be the variable d defined during the execution of
Eval(pk, Ci, c). The i-th hybrid Hi is defined to be identical to Hi−1, except that
the oracle O(pkFHE,pkLHE,q,q̃) on input d(i) is programmed to output some a (along
with a well-formed ã) such that the resulting c is of the form

c = LHE.Enc (pkLHE,ECC(Ci(mb)) + ẽ + e + r − �r/q̃� · q̃)

where ECC is the high-order bits encoding defined in the evaluation algorithm,
ẽ + e is the sum of the decryption noises of the ciphertexts (d(1), . . . , d(k), ã), as
defined in the evaluation algorithm, and r ←$Zq. Then ρ̃i is defined to be the
decryption hint of c computed using the random coins of a.

First observe that ẽ + e is efficiently computable given the secret key of
the FHE scheme and therefore ρ̃i is also computable in polynomial time. It is
important to observe that the distribution of c is identical to the previous hybrid
and the difference lies only in the way ρ̃i is computed. Since the LHE scheme
has simulatable hints, it follows that the distribution of Hi is identical to that
of Hi−1 and the change described here is only syntactical. That is,

(pk,FHE.Enc(pkFHE,mb), ρ̃1, . . . , ρ̃i−1, ρi, ρi+1, . . . , ρβ)
= (pk,FHE.Enc(pkFHE,mb), ρ̃1, . . . , ρ̃i−1, ρ̃i, ρi+1, . . . , ρβ) .

Hybrids Hβ+1 . . . H2β : The (β + i)-th hybrid differs from the previous one in the
sense that a is programmed such that

c = LHE.Enc (pkLHE,ECC(Ci(mb)) + ẽ + e + �r/q̃� · q̃ + r̃ − �r/q̃� · q̃)
= LHE.Enc (pkLHE,ECC(Ci(mb)) + ẽ + e + r̃)

where r̃ ←$Zq̃. Note that the distributions induced by the two hybrids differ
only in case where r ∈ R, where R = {q − (q mod q̃), . . . , q}. Since q̃/q ≤ 2−λ

we have that the two distributions are statistically close.

Hybrids H2β+1 . . . H3β : The (β + i)-th hybrid is defined to be identical to the
previous ones except that a is programmed such that

c = LHE.Enc (pkLHE,ECC(Ci(mb)) + r̃) .

I.e., the noise term ẽ is omitted from the computation. Thus the only difference
with respect to the previous hybrid is whether the noise term ẽ + e is included
in the ciphertext or not. Since ẽ + e is bounded from above by (k + 1) · B and
q̃ ≥ 2λ · (k + 1) · B, by Lemma 1 the distribution induced by this hybrid is
statistically indistinguishable from that of the previous one.

100 Z. Brakerski et al.

Hybrids H3β+1 . . . H3β+n: The (3β + i)-th hybrid is defined as the previous one,
except that the ciphertext c(LHE,i) in the public parameters is computed as the
encryption of 0. Note that the secret key of the LHE scheme is no longer used in
the computation of (ρ̃1, . . . , ρ̃β) and therefore indistinguishability follows from an
invocation of the semantic security of the LHE scheme. Specifically, the following
distributions are computationally indistinguishable

(
LHE.Enc(pkLHE, 0), . . . , LHE.Enc(pkLHE, 0), LHE.Enc(pkLHE, si),
LHE.Enc(pkLHE, si+1), . . . , LHE.Enc(pkLHE, sn)

)

≈c

(
LHE.Enc(pkLHE, 0), . . . , LHE.Enc(pkLHE, 0), LHE.Enc(pkLHE, 0),
LHE.Enc(pkLHE, si+1), . . . , LHE.Enc(pkLHE, sn)

)
.

Hybrid H(b)
3β+n: We define the hybrid H(b)

3β+n as H3β+n with the challenger bit
fixed to b. Note that the distribution induced by these hybrids is

(pk, c = FHE.Enc(pkFHE,mb), ρ̃1, . . . , ρ̃β)

where

pk = (pkFHE, pkLHE, LHE.Enc(pkLHE, 0), . . . , LHE.Enc(pkLHE, 0)) .

Observe that the secret key of the FHE scheme is no longer encoded in the
public parameters and is not needed to compute (ρ̃1, . . . , ρ̃β) either. It follows
that any advantage that the adversary has in distinguishing H(0)

3β+n from H(1)
3β+n

cannot be greater than the advantage in distinguishing FHE.Enc(pkFHE,m0) from
FHE.Enc(pkFHE,m1). Thus, computational indistinguishability follows from an
invocation of the semantic security of the FHE scheme. This concludes our proof.

Parameters. When instantiating the LHE scheme with the Damg̊ard-Jurik
encryption scheme (as described in Sect. 3.3) and the FHE scheme with any
LWE-based scheme with linear decrypt-and-multiply (e.g., the scheme proposed
in [36]) we obtain a split FHE which satisfies the notion of split compactness:
The hint ρ is of size N = poly(λ) and in particular is arbitrarily smaller than the
size of the plaintext space q = Nζ . For essentially any choice of the LWE-based
FHE scheme with modulus q, the size of the public key and fresh ciphertexts
depends polynomially in λ and linearly in log(q) = log(N ζ), which gives us the
desired bound. The analysis above sets the following additional constraints:

– q ≥ 2k + 2�log(q̃+(k+1)B)�,
– q ≥ 2λ · q̃, and
– q̃ ≥ 2λ · (k + 1) · B

which are always satisfied for q = Nζ , by setting the integer ζ to be large enough.
Note that this choice of parameters fixes the modulus of the FHE with linear
decrypt-and-multiply to ZNζ , which is super-polynomially larger than the noise
bound B. Finally, the LWE parameter n is free and can be set to any value
for which the corresponding problem (with super-polynomial modulus-to-noise
ratio) is conjectured to be hard.

Candidate iO from Homomorphic Encryption Schemes 101

4.2 Instantiating the Oracle

To complete the description of our scheme, we discuss a few candidate instan-
tiations for the oracle O(pkFHE,pkLHE,q,q̃). We require the underlying LHE scheme
to have a dense ciphertext domain (which is the case for the Damg̊ard-Jurik
encryption scheme). Both of our proposal introduce new circularity assumptions
between the FHE and the LHE schemes.

An alternate way to think of the oracle in Theorem4 is to see it as an obfus-
cation for a special program, which is sufficient for realizing split FHE. The
candidate constructions that we provide below can be seen as a very natural
and simple obfuscation of this special program.

A Simple Candidate. Let C be the ciphertext domain of LHE. Our first
instantiation hardwires an FHE encryption of the LHE secret key cFHE ←
FHE.Enc(pkFHE, skLHE). We fix the random coins of the algorithm (whenever
needed) by drawing them from the evaluation of a cryptographic hash func-
tion Hash over the input. The intuition for our candidate is very simple: The
LHE ciphertext is obliviously sampled without the knowledge of the underly-
ing plaintext (which is the reason why we need dense ciphertexts) whereas the
FHE term is computed by evaluating the decryption circuit homomorphically
and rounding the resulting message to the closest multiple of q̃.

O(pkFHE,pkLHE,q,q̃)(x): On input a string x ∈ {0, 1}∗ sample y ←$C, using Hash(x)
as the random coins, then compute

ỹ ← FHE.Eval (pkFHE,− �LHE.Dec(·, y)/q̃� · q̃, cFHE)

and return (y, ỹ).

Observe that y is an element in the ciphertext domain of LHE and it is of the
form y = LHE.Enc(pkLHE,m), for some m ∈ Zq, since LHE has a dense ciphertext
domain. Furthermore, by the correctness of the FHE and the LHE scheme, we
have that

ỹ = FHE.Eval (pkFHE,− �LHE.Dec(·, y)/q̃� · q̃, cFHE)
= FHE.Eval (pkFHE,− �LHE.Dec(·, y)/q̃� · q̃,FHE.Enc(pkFHE, skLHE))
= FHE.Enc (pkFHE,− �LHE.Dec(skLHE, y)/q̃� · q̃)
= FHE.Enc (pkFHE,− �m/q̃� · q̃) .

It follows that the pair (y, ỹ) is syntactically well formed. However, a closer look
to the oracle instantiation reveals two lingering assumptions.

(1) Circular Security: The addition of cFHE = FHE.Enc(pkFHE, skLHE) introduces
a circular dependency in the security of the LHE and FHE schemes (recall
that our split FHE construction includes in the public key an encryption
of skFHE under pkLHE). Circular security is however widely considered to be
a very mild assumption and currently is the only known approach to con-
struct plain (as opposed to levelled) FHE from LWE via the bootstrapping
theorem [32].

102 Z. Brakerski et al.

(2) Correlations: Although ỹ is an FHE encryption of the correct value, it is
not necessarily uniformly distributed, conditioned on y. In particular the
randomness of ỹ may depend in some intricate way on the low-order bits of
m. For the specific case of LWE-based schemes, the noise term might carry
some information about m mod q̃, which could introduce some harmful
correlation. However, the noise function is typically highly non-linear and
therefore appears to be difficult to exploit. We also stress that we only
consider honest executions of the FHE.Eval algorithm.

While (1) can be regarded as a standard assumption, we view (2) as a nat-
ural conjecture which we believe holds true for any natural/known candidate
instantiation of the FHE and LHE schemes. In light of these considerations, we
conjecture that the implementation as describe above already leads to a secure
split FHE scheme.

Towards Removing Correlations. A natural approach towards removing
the correlation of the LHE and FHE ciphertexts is that of ciphertext sanitiza-
tion [24]: One could expect that repeatedly bootstrapping the FHE ciphertext
would decorrelate the noise from the companion LHE ciphertext. Unfortunately
our settings are different than those typically considered in the literature, in the
sense that the santiziation procedure must be carried out by the distinguisher
and therefore cannot use private random coins. Although it appears hard to
formally analyze the effectiveness of these methods in our settings, we expect
that these techniques might (at least heuristically) help to obliterate harmful
correlations. In this work we take a different route and we suggest a simple
heuristic method to prevent correlations. In a nutshell, the idea is to sample
a set of random plaintexts and define the random string as the sum of a uni-
formly sampled subset S of these plaintext. The key observation is that subset
sum is a linear operation and therefore can be performed directly in the LHE
scheme, which implies that the leakage of the FHE scheme cannot depend on
S. As for the previous construction, our instantiation contains and a ciphertext
cFHE = FHE.Enc(pkFHE, skLHE). The scheme is parametrized by some σ ∈ poly(λ),
which defines the size of the set S. In the following description we present the
algorithm as randomized, although this simplification can be easily bypassed
with standard techniques (e.g., computing the random coins using a crypto-
graphic hash Hash(x)).

O(pkFHE,pkLHE,q,q̃)(x): On input a string x ∈ {0, 1}∗ sample a random set
S ←$ {0, 1}σ.
Then, for all i ∈ [σ], do the following:

– If Si = 1, sample a uniform yi ←$C.
– If Si = 0, sample a uniform encryption yi ←$ LHE.Enc(pkLHE,mi), for a

random known mi.
Then compute

ỹ ← FHE.Eval

(
pkFHE,−

σ∑
i=1

�LHE.Dec(·, yi)/q̃� · q̃, cFHE

)
.

Candidate iO from Homomorphic Encryption Schemes 103

Let f be the following linear function

f(x1, . . . , x|S|) =
∑
i∈S

xi +
∑
i/∈S

�mi/q̃� · q̃

then compute y ← LHE.Eval
(
pkLHE, f, {yi}i∈S

)
and return (y, ỹ).

To see why the implementation is syntactically correct, observe that

ỹ = FHE.Eval

(
pkFHE,−

σ∑
i=1

�LHE.Dec(·, yi)/q̃� · q̃, cFHE

)

= FHE.Enc

(
pkFHE,−

σ∑
i=1

�LHE.Dec(skLHE, yi)/q̃� · q̃

)

= FHE.Enc

(
pkFHE,−

σ∑
i=1

�mi/q̃� · q̃

)

by the evaluation correctness of the FHE scheme. Invoking to the correctness of
the LHE scheme we have that

y = LHE.Eval
(
pkLHE, f, {yi}i∈S

)

= LHE.Eval
(
pkLHE, f, {LHE.Enc(pkLHE,mi)}i∈S

)

= LHE.Enc

(
pkLHE,

∑
i∈S

mi +
∑
i/∈S

�mi/q̃� · q̃

)

= LHE.Enc

⎛
⎜⎜⎜⎜⎝
pkLHE,

∑
i∈S

(mi mod q̃)

︸ ︷︷ ︸
m̃

+
σ∑

i=1

�mi/q̃� · q̃

⎞
⎟⎟⎟⎟⎠

which is exactly what we want, except that m̃ is slightly larger than q̃, by a factor
of at most σ. This can still be used in our main construction by adjusting the
error correcting code accordingly. The intuition why we believe that this variant
is secure is that the leakage in the FHE randomness cannot depend on the set
S, since the distributions of all yi are statistically close (recall that LHE has
dense ciphertexts). Thus, S (which is chosen uniformly) resembles the behavior
of a binary extractor on (mi mod q̃). Nevertheless, proving a formal statement
remains an interesting open question.

5 Split Fully-Homomorphic Encryption =⇒ Obfuscation

In order to construct fully-fledged iO from split FHE, we rely on a theorem from
Lin et al. [44], which we recall in the following. Roughly speaking, the theorem
states that, under the assumption that the LWE problem is sub-exponentially

104 Z. Brakerski et al.

hard, it suffices to consider circuits with a polynomial-size input domain and
obfuscators that output obfuscated circuits of size slightly sublinear in size of
the truth table of the circuit.

Theorem 5 ([44]). Assuming sub-exponentially hard LWE, if there exists a sub-
exponentially secure indistinguishability obfuscator for Plog/poly with non-trivial
efficiency, then there exists an indistinguishability obfuscator for P/poly with
sub-exponential security.

Here Plog/poly denotes the class of polynomial-size circuits with inputs of length
η = O(log(λ)) and by non-trivial efficiency we mean that the size of the obfus-
cated circuit is bounded by poly(λ, |C|) · 2η·(1−ε), for some constant ε > 0. Note
that the above theorem poses no restriction on the runtime of the obfuscator,
which can be as large as poly(λ, |C|) · 2η.

In the following we show how to construct an obfuscator for Plog/poly with
non-trivial efficiency. We assume only the existence of a (levelled) split FHE
scheme sFHE = (KeyGen,Enc,Eval,PDec,Rec).

iO(C): On input the description of a circuit C, sample a fresh key pair (sk, pk) ←
KeyGen(1λ) and compute c ← Enc(pk, C). For all i ∈ [

2η/2
]

define the uni-
versal circuit Ui as

Ui(C) = C
(
(i − 1) · 2η/2

)
‖ . . . ‖C

(
i · 2η/2 − 1

)
.

Then compute ci ← Eval(pk,Ui, c) and ρi ← PDec(sk, ci). The obfuscated
circuit is defined to be (pk, c, ρ1, . . . , ρ2η/2).

First we discuss how to evaluate an obfuscated circuit: On input some x ∈
{0, 1}η, parse it as an integer and round it to the nearest multiple of 2η/2 (let
such integer be x̄) such that x̄ ≤ x. Then compute cx̄ ← Eval(pk,Ux̄, c) and
m ← Rec(ρx̄, cx̄). Read the output as the (x − x̄)-th bit of m.

Analysis. Note that the runtime of the obfuscator is dominated by 2η/2 eval-
uations of the split FHE ciphertext, where each subroutine homomorphically
evaluates the circuit C 2η/2-many times. Thus the total runtime of the obfusca-
tor is in the order of poly(λ, |C|) ·2η. We now argue that our obfuscator has non
trivial efficiency in terms of output size. We analyze the size of each component
of the obfuscated circuit:

– By the compactness of the split FHE scheme, the public key pk grows linearly
with the size of the output domain, i.e., 2η/2, and polynomially in the security
parameter.

– The ciphertext c grows linearly with the size of the encrypted message
and therefore, by the compactness of the split FHE scheme, bounded by
poly(λ, |C|) · 2η/2.

– Each decryption hint ρi is of size poly(λ), since the underlying split FHE is
compact. As an obfuscated circuit consists of 2η/2-many decryption hints, the
size of the vector (ρ1, . . . , ρ2η/2) is poly(λ) · 2η/2.

Candidate iO from Homomorphic Encryption Schemes 105

It follows that the total size of the obfuscated circuit is bounded from above by
poly(λ, |C|) · 2η/2. What is left to be shown is that our obfuscator satisfies the
notion of indistinguishability obfuscation.

Theorem 6 (Indistinguishability Obfuscation). Let sFHE be a sub-
exponentially secure levelled split FHE scheme. Then the scheme as described above
is a sub-exponentially secure indistinguishability obfuscator.

Proof. By the perfect correctness of the split FHE scheme it follows that the
obfuscated circuit is functionally equivalent to the plain circuit. Indistinguisha-
bility follows immediately from the split security of sFHE: If the split FHE is
secure against a distinguisher running in sub-exponential time, then so is iO.

References

1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 7

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

3. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8 10

4. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

5. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd FOCS, pp. 120–129. IEEE Computer Society Press,
October 2011

7. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

8. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). Cryp-
tology ePrint Archive, Report 2017/312 (2017). http://eprint.iacr.org/2017/312

https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
http://eprint.iacr.org/2017/312

106 Z. Brakerski et al.

9. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

10. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

11. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 22

12. Barak, B., Hopkins, S.B., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets
program obfuscation, revisited. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 226–250. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17653-2 8

13. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

14. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016, Part II. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 15

15. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer
Society Press, October 2015

16. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

17. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption:
rate-1 fully-homomorphic encryption and time-lock puzzles. Cryptology ePrint
Archive, Report 2019/720 (2019)

18. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

19. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) ITCS 2014, pp. 1–12. ACM, January 2014

20. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 10

21. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

22. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/978-3-030-17653-2_8
https://doi.org/10.1007/978-3-030-17653-2_8
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26

Candidate iO from Homomorphic Encryption Schemes 107

23. Damg̊ard, I., Jurik, M.: A generalisation, a simpli.cation and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

24. Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 294–310. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 12

25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

26. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

27. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

29. Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation from all-
or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 661–695. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 22

30. Garg, S., Mahmoody, M., Mohammed, A.: When does functional encryption imply
obfuscation? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 82–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 4

31. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

32. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

33. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

34. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption and
rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 9

35. Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products. Cryptology
ePrint Archive, Report 2018/756 (2018)

36. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

37. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June
2013

https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-662-49890-3_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-70500-2_4
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-40041-4_5

108 Z. Brakerski et al.

38. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC, pp. 365–377. ACM
Press, May 1982

39. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 34

40. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 21

41. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

42. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 2

43. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

44. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016, Part II. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49387-8 17

45. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and
block-wise local PRGs. Cryptology ePrint Archive, Report 2017/250, Version
20170320:142653 (2017)

46. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 21

47. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS,
pp. 11–20. IEEE Computer Society Press, October 2016

48. Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudorandom gener-
ators and applications to indistinguishability obfuscation. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 119–137. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 5

49. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol.
11692, pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 22

50. Micciancio, D.: From linear functions to fully homomorphic encryption. Technical
report (2019). https://bacrypto.github.io/presentations/2018.11.30-Micciancio-
FHE.pdf

51. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

https://doi.org/10.1007/3-540-44448-3_34
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-70500-2_5
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://bacrypto.github.io/presentations/2018.11.30-Micciancio-FHE.pdf
https://bacrypto.github.io/presentations/2018.11.30-Micciancio-FHE.pdf
https://doi.org/10.1007/978-3-662-53008-5_22

Candidate iO from Homomorphic Encryption Schemes 109

52. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

53. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM
STOC, pp. 461–473. ACM Press, June 2017

54. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

55. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (eds.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

https://doi.org/10.1007/3-540-48910-X_16

Indistinguishability Obfuscation
Without Maps: Attacks and Fixes

for Noisy Linear FE

Shweta Agrawal1(B) and Alice Pellet-Mary2(B)

1 IIT Madras, Chennai, India
shweta.a@gmail.com

2 imec-COSIC, KU Leuven, Leuven, Belgium
alice.pelletmary@kuleuven.be

Abstract. Candidates of Indistinguishability Obfuscation (iO) can be
categorized as “direct” or “bootstrapping based”. Direct constructions
rely on high degree multilinear maps [28,29] and provide heuristic guar-
antees, while bootstrapping based constructions [2,7,33,36,38,39] rely,
in the best case, on bilinear maps as well as new variants of the Learn-
ing With Errors (LWE) assumption and pseudorandom generators. Recent
times have seen exciting progress in the construction of indistinguishabil-
ity obfuscation (iO) from bilinear maps (along with other assumptions)
[2,7,33,38].

As a notable exception, a recent work by Agrawal [2] provided a con-
struction for iO without using any maps. This work identified a new prim-
itive, called Noisy Linear Functional Encryption (NLinFE) that provably
suffices for iO and gave a direct construction of NLinFE from new assump-
tions on lattices. While a preliminary cryptanalysis for the new assump-
tions was provided in the original work, the author admitted the neces-
sity of performing significantly more cryptanalysis before faith could be
placed in the security of the scheme. Moreover, the author did not sug-
gest concrete parameters for the construction.

In this work, we fill this gap by undertaking the task of thorough crypt-
analytic study of NLinFE. We design two attacks that let the adversary
completely break the security of the scheme. Our attacks are completely
new and unrelated to attacks that were hitherto used to break other can-
didates of iO. To achieve this, we develop new cryptanalytic techniques
which (we hope) will inform future designs of the primitive of NLinFE.

From the knowledge gained by our cryptanalytic study, we suggest
modifications to the scheme. We provide a new scheme which overcomes
the vulnerabilities identified before. We also provide a thorough anal-
ysis of all the security aspects of this scheme and argue why plausible
attacks do not work. We additionally provide concrete parameters with
which the scheme may be instantiated. We believe the security of NLinFE
stands on significantly firmer footing as a result of this work.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 110–140, 2020.
https://doi.org/10.1007/978-3-030-45721-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_5

Indistinguishability Obfuscation Without Maps 111

1 Introduction

Indistinguishability Obfuscation (iO) is one of the most sought-after primitives in
modern cryptography. While introduced in a work by Barak et al. in 2001 [11],
the first candidate construction for this primitive was only provided in 2013
[29]. In this breakthrough work, the authors not only gave the first candidate
for iO but also demonstrated its power by using it to construct the first full
fledged functional encryption (FE) scheme. This work led to a deluge of ever
more powerful applications of iO, ranging from classic to fantastic [13,15,18,19,
34,35,37,45]. Few years later, iO is widely acknowledged to be (almost) “crypto
complete”. We refer the reader to [36] for a detailed discussion.

However, constructions of iO have been far from perfect. The so called “first
generation” constructions relied on the existence of multilinear maps of poly-
nomial degree [9,29,30,47], “second generation” relied on multilinear maps of
constant degree [36,38,39], and in a sequence of exciting recent works, “third
generation” candidates rely only on multilinear maps of degree 2 (i.e. bilinear
maps) along with assumptions on the complexity of certain special types of
pseudorandom generators and new variants of the Learning With Errors (LWE)
assumption [2,7,33]. It is well known that degree 2 maps can be instantiated
on elliptic curve groups, so this brings us closer to realizing iO from believable
assumptions than ever before.

iO Without maps: All the above constructions rely on multilinear maps of degree
≥2. While there exist candidates for multilinear maps of degree ≥3, they have
been subject to many attacks [8,20,22–27,27,32,43,44] and their security is
poorly understood. On the other hand, bilinear maps are well understood and
considered safe to use (at least in the pre-quantum world). Recent works [2,7,33]
have come tantalizingly close to basing iO on bilinear maps while minimizing the
additional assumptions required. There is hope that these efforts will converge
to a candidate whose security we may trust.

While realizing iO from degree 2 maps (along with other plausible assump-
tions) is a very worthy goal, it is nevertheless only one approach to take. Any
cryptographic primitive, especially one of such central importance, deserves to be
studied from different perspectives and based on diverse mathematical assump-
tions. Two works (that we are aware of) attempt to construct iO without using
any maps – one by Gentry, Jutla and Keane [31] and another by Agrawal [2].
The work by Gentry et al. [31] constructs obfuscation schemes for matrix prod-
uct branching programs that are purely algebraic and employ matrix groups
and tensor algebra over a finite field. They prove security of their construction
against a restricted class of attacks. On the other hand, the work of Agrawal for-
malizes a “minimal” (as per current knowledge) primitive called “Noisy Linear
Functional Encryption” (NLinFE) which is showed to imply iO and provides a
direct construction for this using new assumptions on NTRU lattices, which are
quite different from assumptions used so far for building multilinear maps or iO.

Comparison with other approaches. The instantiation of iO via Agrawal’s direct
construction of NLinFE (henceforth referred to simply as NLinFE) has both

112 S. Agrawal and A. Pellet-Mary

advantages and disadvantages compared to other cutting-edge constructions.
For instance, [31] has the advantage that it constructs full fledged iO directly,
while NLinFE has the advantage that untested assumptions are used to con-
struct a much simpler primitive. Next, consider constructions that use bilinear
maps [2,7,33]. On the positive side, NLinFE has potential to be quantum secure,
which evidently is not a property that bilinear map based constructions can hope
to achieve. Additionally, the NLinFE supports outputs of super-polynomial size,
while bilinear map based constructions can support only polynomially sized out-
puts. In particular, this leads to the latter constructions relying on a complicated
and inefficient (albeit cool) “security amplification” step in order to be useful for
iO. Moreover, there is a qualitative advantage to Agrawal’s direct construction:
while bilinear map based constructions use clever methods to compute a PRG
output exactly, the direct construction of NLinFE relaxes correctness and settles
for computing the PRG output only approximately – this allows for the usage of
encodings that are not powerful enough for exact computation.

On the other hand, Agrawal’s encodings are new, while assumptions over
bilinear maps have stood the test of time (in the pre-quantum world). While
bilinear map based constructions must also make new, non-standard assump-
tions, these constructions come with a clean proof from the non-standard
assumptions. Meanwhile, Agrawal’s NLinFE came with a proof in a very weak
security game that only permits the adversary to request a single ciphertext,
and that too from a non-standard assumption. Moreover, the author did not
suggest concrete parameters for the construction, and admitted the necessity
of substantially more cryptanalysis before faith could be placed in these new
assumptions.

Our results. In this work, we undertake the task of thorough cryptanalytic study
of Agrawal’s NLinFE scheme. We design two attacks that let the adversary com-
pletely break the security of the scheme. To achieve this, we develop new crypt-
analytic techniques which (we hope) will inform future designs of the primitive
of NLinFE.

As mentioned above, Agrawal proved the security of her NLinFE in a weak
security game where the attacker is only permitted to request a single ciphertext.
Our first attack shows that this is not a co-incidence: an attacker given access
to many ciphertexts can manipulate them to recover a (nonlinear) equation
in secret terms, which, with some effort, can be solved to recover the secret
elements. We emphasize that this attack is very different in nature from the
annihilation attacks [43] studied in the context of breaking other constructions
of iO. We refer to this attack as the multiple ciphertext attack. To demonstrate
our attack, we formalize an assumption implicitly made by [2], and design an
attack that breaks this assumption – this in turn implies an attack on the scheme.
We implement this attack and provide the code as supplementary material with
this work.

Our second attack, which we call the rank attack exploits a seemingly harm-
less property of the output of decryption in NLinFE. Recall that the primitive of
NLinFE enables an encryptor to compute a ciphertext CT(z), a key generator to

Indistinguishability Obfuscation Without Maps 113

compute a secret key SK(v) and the decryptor, given CT(z) and SK(v) to recover
〈z, v〉 + Nse, where Nse must satisfy some weak pseudorandomness properties.

A detail that is important here is that for NLinFE to be useful for iO, the
term Nse above must be a linear combination of noise terms, each multiplied
with a different (public) modulus. In more detail, the noise term Nse output by
NLinFE has the structure

∑
i piμi where pi for i ∈ [0,D − 2] are a sequence of

increasing moduli and μi are unstructured noise terms. Moreover, for decryption
to succeed, these moduli must be public.

The NLinFE construction takes great care to ensure that the noise terms
computed via NLinFE are high degree polynomials in values that are spread out
over the entire ring, and argues (convincingly, in our opinion) that these may
not be exploited easily. However, while some of the μi in the above equation are
indeed “strong” and difficult to exploit, we observe that some of them are not.
Moreover, since the moduli pi are public, the μi can be “separated” into different
“levels” according to the factor pi. Hence, it is necessary that the noise at each
“level” be “strong”, but NLinFE fails to enforce this. Therefore, while there exist
strong terms in some levels, the existence of a weak noise term in even one other
level enables us to isolate them and use them to construct a matrix, whose rank
reveals whether the message bit is 0 or 1.

From the knowledge gained by our cryptanalytic study, we suggest fixes to
the scheme. The first attack can be overcome by disabling meaningful manip-
ulation between different encodings. We achieve this by making the encodings
non-commutative. The second attack can be overcome by ensuring that the noise
terms for all levels are equally strong. We then provide a new scheme which over-
comes the vulnerabilities described above. We also provide a thorough analysis
of all the security aspects of this scheme and argue why plausible attacks do not
work. We additionally provide concrete parameters with which the scheme may
be instantiated.

Comparison with other attacks on iO. While Agrawal’s NLinFE construction is
quite different from previous iO constructions needing fresh cryptanalysis, there
are still some high-level similarities between the rank attack we propose and
previous attacks on candidate obfuscators [20,21,23,26]. In more detail, these
attacks also combine public elements in a clever way to obtain a matrix, and
computing the eigenvalues or the rank of this matrix then enables an attacker
to break the scheme. We note however that while the main idea of the attack is
the same (we compute a matrix and its rank leaks some secret information), the
way we obtain the matrix is completely different from [20,21,26].

1.1 Our Techniques

We proceed to describe our techniques. We begin by defining the primitive of
noisy linear functional encryption.

Noisy linear functional encryption. Noisy linear functional encryption (NLinFE)
is a generalization of linear functional encryption (LinFE) [1,3]. Recall that in
linear FE, the encryptor provides a CTz which encodes vector z ∈ Rn, the key

114 S. Agrawal and A. Pellet-Mary

generator provides a secret key SKv which encodes vector v ∈ Rn and the decryp-
tor combines them to recover 〈z,v〉. NLinFE is similar to linear FE, except that
the function value is recovered only up to some bounded additive noise term,
and indistinguishability holds even if the challenge messages evaluated on any
function key are only “approximately” and not exactly equal. The functional-
ity of NLinFE is as follows: given a ciphertext CTz and a secret key SKv, the
decryptor recovers 〈z, v〉+ noisez,v where noisez,v is specific to the message and
function being evaluated.

It is well known that functional encryption (FE) for the function class NC1

which achieves sublinear1 ciphertext is sufficient to imply iO [6,16]. Agrawal [2]
additionally showed the following “bootstrapping” theorem.

Theorem 1.1 ([2]) (Informal). There exists an FE scheme for the circuit class
NC1 with sublinear ciphertext size and satisfying indistinguishability based secu-
rity, assuming:

– A noisy linear FE scheme NLinFE with sublinear ciphertext size satisfying
indistinguishability based security and supporting superpolynomially large out-
puts.

– The Learning with Errors (LWE) Assumption.
– A pseudorandom generator (PRG) computable in NC0.

Since the last two assumptions are widely believed, it suffices to construct
an NLinFE scheme to construct the all-powerful iO.

The NLinFE Construction. Agrawal provided a direct construction of NLinFE
which supports superpolynomially large outputs, based on new assumptions that
are based on the Ring Learning With Errors (RLWE) and NTRU assumptions
(we refer the reader to Sect. 2 for a refresher on RLWE and NTRU).

The starting point of Agrawal’s NLinFE scheme is the LinFE scheme of [3],
which is based on LWE (or RLWE). NLinFE inherits the encodings and secret
key structure of LinFE verbatim to compute inner products, and develops new
techniques to compute the desired noise. Since the noise must be computed
using a high degree polynomial for security [10,40], the work of [2] designs new
encodings that are amenable to multiplication as follows.

Let R = Z[x]/〈xn + 1〉 and Rp1 = R/(p1 · R), Rp2 = R/(p2 · R) for some
primes p1 < p2. Then, for i ∈ {1, . . . , w}, sample f1i, f2i and g1, g2 from a discrete
Gaussian over ring R. Set

h1i =
f1i

g1
, h2j =

f2j

g2
∈ Rp2 ∀ i, j ∈ [w]

Thus, [2] assumes that the samples {h1i, h2j} for i, j ∈ [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
1 Here “sublinear” refers to the property that the ciphertext size is sublinear in the

number of keys requested by the FE adversary.

Indistinguishability Obfuscation Without Maps 115

secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i ∈ [w], let D̂(Λ2), D̂(Λ1) be discrete Gaussian distributions
over lattices Λ2 and Λ1 respectively. Then, sample

e1i ← D̂(Λ2), where Λ2 � g2 · R. Let e1i = g2 · ξ1i ∈ small,

e2i ← D̂(Λ1), where Λ1 � g1 · R. Let e2i = g1 · ξ2i ∈ small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j ∈ [w], it holds that:

h1i · e2j = f1i · ξ2j , h2j · e1i = f2j · ξ1i ∈ small

Now, sample small secrets t1, t2 and for i ∈ [w], compute

d1i = h1i · t1 + p1 · e1i ∈ Rp2

d2i = h2i · t2 + p1 · e2i ∈ Rp2

Then, note that the products d1i ·d2j do not suffer from large cross terms for
any i, j ∈ [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original
labels. In more detail,

d1i · d2j =
(
h1i · h2j

) · (t2 t2) + p1 · noise
where noise = p1 · (

f1i · ξ2j · t1 + f2j · ξ1i · t2 + p1 · g1 · g2 · ξ1i · ξ2j

) ∈ small

The encoding d1i ·d2j can be seen an RLWE encoding under a public label – this
enables the noise term p1 ·noise above to be added to the inner product computed
by LinFE, yielding the desired NLinFE. The actual construction [2] does several
more tricks to ensure that the noise term is high entropy and spread across the
ring – we refer the reader to Sect. 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we call
the RLWE problem with correlated noise. The distribution of the elements in
this problem are similar to the one obtained by the encryption procedure of
the NLinFE described above. We then show that this problem can be solved
in polynomial time by an attacker, which in turn translates to an attack on
Agrawal’s NLinFE construction.

116 S. Agrawal and A. Pellet-Mary

The key vulnerability exploited by the attack is that the noise terms across
multiple ciphertexts are correlated. In more detail, we saw above that d1i =
h1i ·t1+p1 ·e1i where e1i lives in the ideal g2 ·R. Now, consider the corresponding
element in another ciphertext: d′

1i = h1i · t′1 +p1 ·e′
1i where e′

1i is also in the ideal
g2 ·R. The key observation we make is that the noise e1i does not only annihilate
the requisite large terms in the encodings of its own ciphertext namely {d2i} – it
also annihilates large terms in the encodings of other ciphertexts, namely {d′

2i}.
This allows us to perform mix and match attacks, despite the fact that each

encoding is randomized with fresh randomness. Consider the large terms in the
following two products:

d1id
′
2j =

(
h1ih2j

) · (t1t′2) + p1 · small

d2jd
′
1i =

(
h2jh1i

) · (t2t′1) + p1 · small

We see above that the labels h1ih2j can be computed in two different ways (but
the secrets are different). In a symmetric manner, if we consider other indices i′

and j′ for the ciphertext elements above, we can obtain

d1id2j =
(
h1ih2j

) · (t1t2) + p1 · small

d2j′d1i′ =
(
h2j′h1i′

) · (t2t1) + p1 · small.

Now, the secret is the same but the labels are changing. By playing on these
symmetries, we can combine the products above (and the symmetric ones) so
that all large terms are canceled and we are left with only small terms.

Intrinsically, what happens here is that in an element d1i = h1i · t1 + p1 · e1i,
we can change the h1i and t1 elements independently (the secret t1 changes
with the ciphertext and the label h1i changes with the index of the element in
the ciphertext). By varying these two elements independently, one can obtain
2 × 2 encodings (for 2 different choices of h1i and 2 different choices of t1), and
consider the 2 × 2 matrix associated. More formally, let us write

d1i = h1i · t1 + p1 · e1i, d1i′ = h1i′ · t1 + p1 · e1i′

d′
1i = h1i · t′1 + p1 · e′

1i, d′
1i′ = h1i′ · t′1 + p1 · e′

1i′

these encodings. We consider the matrix
(

d1i d1i′

d′
1i d′

1i′

)

=
(

t1
t′1

)

· (
h1i h1i′

)
+ p1 ·

(
e1i e1i′

e′
1i e′

1i′

)

.

This matrix is the sum of a matrix of rank 1 with large coefficients plus a full rank
matrix with small coefficients that are multiples of g2. These properties ensure
that its determinant will be of the form g2/g1 · small. By doing the same thing
with the encodings d2i, we can also create an element of the form g1/g2 · small.
By multiplying these two elements, we finally obtain a linear combination of the
encodings which is small. We can then distinguish whether the encodings are
random or are RLWE with correlated noise elements. For more details, please
see Sect. 4.

Indistinguishability Obfuscation Without Maps 117

Unravelling the structure of the Noise. Our second attack, the so called “rank
attack” exploits the fact that for the NLinFE noise to be useful for bootstrapping,
it needs to be linear combination of noise terms, each of which is multiple of a
fixed and public modulus pi, for i ∈ [0,D − 2]. As discussed above, the noise
terms that are multiples of distinct pi may be separated from each other and
attacked individually. In these piece-wise noise terms, we first isolate the noise
term that encodes the message, which is 0 or m (say). Thus, our isolated noise
term is of the form Nse or Nse + m depending on the challenge. Here, Nse is a
complicated high degree multivariate polynomial, but we will find a way to learn
the challenge bit without solving high degree polynomial equations.

To do so, we examine the noise term more carefully. As mentioned above, this
term is a high degree, multivariate polynomial which looks difficult to analyze.
However, we observe that each variable in this polynomial may be categorized
into one of three “colours” – blue if it is fixed across all ciphertexts and secret
keys, red if it is dependent only on the secret key and black if it is dependent
only on the ciphertext. Next, we observe that if the challenge is 0, then the
above polynomial may be expressed as a sum of scalar products, where in every
scalar product one vector depends only on the secret key and the other one
depends only on the cipher text. Concatenating all these vectors, one obtains a
term 〈a,b〉, where a depends only on the secret key and b depends only on the
ciphertext (and they are both secret). The dimension of a and b is the sum of
the dimension of all the vectors involved in the sum above, let us denote this
dimension by N .

Assume that we can make N + 1 requests for secret keys and ciphertexts.
Now, in NLinFE, the message m itself depends on both the secret key and the
ciphertext2 – we denote by mij the message corresponding to the i-th secret key
and the j-th ciphertext, and note that mij is known to the NLinFE adversary.
We write ci,j = 〈ai,bj〉 + (0 or mij) the noise term obtained when computing
decryption with the i-th secret key and the j-th ciphertext. Define C and M the
N ×N matrices (ci,j)i,j and (mij)i,j respectively. Similarly, let A be the matrix
whose rows are the ai and B be the matrix whose columns are the bj .

Then, depending on the challenge, we claim that C or C − M is of rank at
most N . To see this, note that we have C = A · B + (0 or M), where A has
dimension (N + 1) × N and B has dimension N × (N + 1), so that A · B has
rank at most N . On the other hand, the other matrix is of the form A · B ± M ,
which has full rank with good probability. We finish the attack by arguing that
the adversary is indeed allowed to make N + 1 requests for secret keys and
ciphertexts. Thus, by computing the rank of C and C − M, we can learn the
challenge bit. For details, please see Sect. 5.

Fixing the construction. In light of the attacks described above, we propose a
variant of Agrawal’s NLinFE construction [2], designed to resist these attacks.

2 This is created by the bootstrapping step. Intuitively mij is itself a noise term, which
depends on both SK and CT, and we seek to “flood” this term using NLinFE. Please
see [2] for more details.

118 S. Agrawal and A. Pellet-Mary

Recall that for the multi-ciphertexts attack, we used the commutativity of
the elements to ensure that, when multiplying elements in a certain way, the
labels and secrets were the same. Hence, we prevent this attack by replacing
the product of scalars h1i · t1 in the encodings by an inner product 〈h1i , t1〉,
where the elements h1i and t1 have been replaced by vectors of dimension κ (the
security parameter). This fix does not completely prevent the multi-ciphertexts
attack, but the generalization of this attack to this non commutative setting
requires a very large modulus, and is therefore not applicable to the range of
parameters required for correctness.

To fix the rank attack, we first observe that we do not need to construct
directly an NLinFE scheme with structured noise. Indeed, assume first that we
have an NLinFE scheme with arbitrary noise, and we would like to have a noise
term which is a multiple of p0. Then, when we want to encode a vector z, we
simply encode z/p0 with our NLinFE with arbitrary noise. By decrypting the
message, one would then recover 1/p0 · 〈z,v〉 + noise, and by multiplying this by
p0, we obtain 〈z,v〉 + p0 · noise, with the desired noise shape. More generally, if
we want a noise term which is a sum of multiples of pi’s, we could use an additive
secret sharing of z, i.e., compute random vectors zi such that

∑
i zi = z, and

then encode zi/pi with the NLinFE scheme with arbitrary noise. By decrypting
every ciphertexts, one could then recover 1/pi · 〈zi,v〉 + noise for all i’s, and by
scaling and summing them, one will have a noise term of the desired shape.

Once we have made this observation that an NLinFE scheme with arbitrary
noise is sufficient for our purpose, we can prevent the rank attack by removing
the moduli pi from Agrawal’s construction. This means that the noise term we
obtain at the end cannot be split anymore into smaller noise terms by looking at
the “levels” created by the moduli. We now only have one big noise term, which
contains noise terms of high degree and so seems hard to exploit. For technical
reasons, we in fact have to keep one modulus, but the general intuition is the
same as the one given here. For more details, please see Sect. 6.

2 Preliminaries

2.1 Noisy Linear Functional Encryption (NLinFE)

Let R be a ring, instantiated either as the ring of integers Z or the ring of
polynomials Z[x]/f(x) where f(x) = xn + 1 for n a power of 2. We let Rpi

=
R/piR for some prime pi, i ∈ [0, d] for some constant d. Let B1, B2 ∈ R

+ be
bounding values, where B2

B1
= superpoly(κ). Let N > 0 be an integer (N will be

the maximal number of key queries that an attacker is allowed to make). We
define the symmetric key variant below.

Definition 2.1. A (B1, B2, N)-noisy linear functional encryption scheme FE
is a tuple FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) of four probabilistic
polynomial-time algorithms with the following specifications:

– FE.Setup(1κ, R�
pd−1

) takes as input the security parameter κ and the space of
message and function vectors R�

pd−1
and outputs the public key and the master

secret key pair (PK,MSK).

Indistinguishability Obfuscation Without Maps 119

– FE.Keygen(MSK,v) takes as input the master secret key MSK and a vector
v ∈ R�

pd−1
and outputs the secret key SKv.

– FE.Enc(MSK, z) takes as input the public key PK and a message z ∈ R�
pd−1

and outputs the ciphertext CTz.
– FE.Dec(SKv,CTz) takes as input the secret key of a user SKv and the cipher-

text CTz, and outputs y ∈ Rpd−1 ∪ {⊥}.
Definition 2.2 (Approximate Correctness). A noisy linear functional
encryption scheme FE is correct if for all v, z ∈ R�

pd−1
,

Pr

[
(PK,MSK) ← FE.Setup(1κ);

FE.Dec
(
FE.Keygen(MSK,v),FE.Enc(MSK, z)

)
= 〈v, z〉 + noisefld

]
= 1 − negl(κ)

where noisefld ∈ R with ‖noisefld‖ ≤ B2 and the probability is taken over the coins
of FE.Setup, FE.Keygen, and FE.Enc.

Security. Next, we define the notion of Noisy-IND security and admissible adver-
sary.

Definition 2.3 (Noisy-IND Security Game). We define the security game
between the challenger and adversary as follows:

1. Public Key: Challenger returns PK to the adversary.
2. Pre-Challenge Queries: Adv may adaptively request keys for any functions

vi ∈ R�
pd−1

. In response, Adv is given the corresponding keys SK(vi).
3. Challenge Ciphertexts: Adv outputs the challenge message pairs (zi

0, z
i
1) ∈

R�
pd−1

×R�
pd−1

for i ∈ [Q], where Q is some polynomial, to the challenger. The
challenger chooses a random bit b, and returns the ciphertexts {CT(zi

b)}i∈[Q].
4. Post-Challenge Queries: Adv may request additional keys for functions of

its choice and is given the corresponding keys. Adv may also output additional
challenge message pairs which are handled as above.

5. Guess. Adv outputs a bit b′, and succeeds if b′ = b.

The advantage of Adv is the absolute value of the difference between the adver-
sary’s success probability and 1/2.

Definition 2.4 (Admissible Adversary). We say an adversary is admissible
if it makes at most N key requests and if for any pair of challenge messages
z0, z1 ∈ R�

pd−1
and any queried key vi ∈ R�

pd−1
, it holds that |〈vi, z0 −z1〉| ≤ B1.

Structure of Noise. The bootstrapping step in [2] requires that

|〈vi, z0 − z1〉| =
d−2∑

i=0

pi · noisech,i

for some noise terms noisech,i. Hence the flooding noise noisefld that is added by
the NLinFE must also be structured as

∑d−2
i=0 pi · noisefld,i.

120 S. Agrawal and A. Pellet-Mary

Definition 2.5 (Noisy-IND security). A (B1, B2, N) noisy linear FE scheme
NLinFE is Noisy-IND secure if for all admissible probabilistic polynomial-time
adversaries Adv, the advantage of Adv in the Noisy-IND security game is negli-
gible in the security parameter κ.

The works of [2,6,14,16] show that as long as the size of the ciphertext
is sublinear in N , a (B1, B2, N) − NLinFE scheme implies indistinguishability
obfuscation.

2.2 Sampling and Trapdoors

Ajtai [4] showed how to sample a random lattice along with a trapdoor that per-
mits sampling short vectors from that lattice. Recent years have seen significant
progress in refining and extending this result [5,42,46].

Let R = Z[x]/(f) where f = xn + 1 and n is a power of 2. Let Rq � R/qR
where q is a large prime satisfying q = 1 mod 2n. For r ∈ R, we use ‖r‖ to refer
to the Euclidean norm of r’s coefficient vector.

We will make use of the following algorithms from [42]:

1. TrapGen(n,m, q): The TrapGen algorithm takes as input the dimension of the
ring n, a sufficiently large integer m = O(n log q) and the modulus size q and
outputs a vector w ∈ Rm

q such that the distribution of w is negligibly far
from uniform, along with a “trapdoor” Tw ∈ Rm×m for the lattice Λ⊥

q (w) =
{
x : 〈w, x〉 = 0 mod q

}
.

2. SamplePre(w,Tw, a, σ): The SamplePre algorithm takes as input a vector w ∈
Rm

q along with a trapdoor Tw and a syndrome a ∈ Rq and a sufficiently large
σ = O(

√
n log q) and outputs a vector e from a distribution within negligible

distance to DΛa
q (w),σ·ω(

√
log n) where Λa

q(w) =
{
x : 〈w, x〉 = a mod q

}
.

2.3 Random Matrices over Zq

Lemma 2.6. Let q be a prime integer and A be sampled uniformly in
(Z/(qZ))m×m. Then

P
(
det(A) ∈ (Z/(qZ))×)

=
m∏

i=1

(

1 − 1
qi

)

≥ 4 ln(2)
q

.

Proof. The first equality is obtained by counting the number of invertible m ×
m matrices in Z/(qZ). For the lower bound, we observe that 1 − 1/qi ≥ 1/2
for all 1 ≤ i ≤ m. By concavity of the logarithm function, this implies that
log(1 − 1/qi) ≥ −2/qi for all i ≥ 1 (recall that the logarithm is taken in base 2).
We then have

log
m∏

i=1

(

1 − 1
qi

)

=
m∑

i=1

log
(

1 − 1
qi

)

≥
m∑

i=1

−2
qi

≥ −2
q

· 1
1 − 1/q

≥ −4
q

.

Taking the exponential we obtain that P (det(A) ∈ (Z/(qZ))×) ≥ 2−4/q ≥ 1 −
4 ln(2)

q as desired. �

Indistinguishability Obfuscation Without Maps 121

Lemma 2.7 (Corollary 2.2 of [17]). Let q be a prime integer and A be sam-
pled uniformly in (Z/(qZ))m×m. For any x ∈ (Z/(qZ))×, we have

P
(
det(A) = x | det(A) ∈ (Z/(qZ))×)

=
1

|(Z/(qZ))×| =
1

q − 1
.

In other words, det(A) is uniform in (Z/(qZ))× when conditioned on being
invertible.

Corollary 2.2 of [17] even gives explicit values for the probability P(det(A) = x)
for any x. Here, we only use the fact that these values are the same whenever
the gcd of x and q is constant (in our case, the gcd is always 1 because x is
invertible). Observe also that Corollary 2.2 of [17] is stated for a prime power q,
and can be extended to any modulus q by Chinese reminder theorem (but we
only use it here in the case of a prime modulus q).

3 Agrawal’s Construction of Noisy Linear FE

We begin by recapping the construction of NLinFE by Agrawal [2]. The construc-
tion uses two prime moduli p1 and p2 with p1 � p2. The message and function
vectors will be chosen from Rp1 while the public key and ciphertext are from
Rp2 . The construction will make use of the fact that elements in Rp1 as well as
elements sampled from a discrete Gaussian distribution denoted by D, are small
in Rp2 .

NLinFE.Setup(1κ, 1w): On input a security parameter κ, a parameter w denoting
the length of the function and message vectors, do the following:

1. Sample prime moduli p0 < p1 < p2 and standard deviation σ for discrete
Gaussian distributions D, D̂ and D̂′ according to the parameter specification
of [2].

2. Sample w ← Rm
p2

with a trapdoor Tw using the algorithm TrapGen as defined
in Sect. 2.2.

3. Sample E ∈ Dm×w and set a = ETw ∈ Rw
p2

.
4. For i ∈ {1, . . . , r}, � ∈ {1, . . . , k}, sample f �

1i, f
�
2i ← D and g�

1, g
�
2 ← D. If

g�
1, g

�
2 are not invertible over Rp2 , resample. Set

h�
1i =

f �
1i

g�
1

, h�
2i =

f �
2i

g�
2

∈ Rp2

5. Sample a PRF seed, denoted as seed.

Output

MSK =
(

w,Tw,a,E,
{
f �
1i, f

�
2i

}
i∈[r],�∈[k]

,
{
g�
1, g

�
2}�∈[k]

}
, seed

)

122 S. Agrawal and A. Pellet-Mary

NLinFE.Enc(MSK, z): On input public key MSK, a message vector z ∈ Rw
p1

, do:

1. Construct Message Encodings. Sample ν ← Dm, η ← Dw and t1, t2 ← D.
Set s = t1 · t2. Compute:

c = w · s + p1 · ν ∈ Rm
p2

, b = a · s + p1 · η + z ∈ Rw
p2

2. Sample Structured Noise. To compute encodings of noise, do the following:
(a) Define lattices:

Λ�
1 � g�

1 · R, Λ�
2 � g�

2 · R

(b) Sample noise terms from the above lattices as:

e�
1i ← D̂(Λ�

2), ẽ
�
1i ← D̂′(Λ�

2), e�
2i ← D̂(Λ�

1), ẽ
�
2i ← D̂′(Λ�

1) ∀i ∈ [r], � ∈ [k]

Here D̂(Λ�
1), D̂′(Λ�

1) are discrete Gaussian distributions on Λ�
1 and

D̂(Λ�
2), D̂′(Λ�

2) are discrete Gaussian distributions on Λ�
2.

3. Compute Encodings of Noise.
(a) Let

d�
1i = h�

1i · t1 + p1 · ẽ�
1i + p0 · e�

1i ∈ Rp2 ∀i ∈ [r], � ∈ [k].

Here, p1 · ẽ�
1i behaves as noise and p0 · e�

1i behaves as the message. Let
d�
1 = (d�

1i).
(b) Similarly, let

d�
2i = h�

2i · t2 + p1 · ẽ�
2i + p0 · e�

2i ∈ Rp2 ∀i ∈ [r], � ∈ [k].

Here, p1 · ẽ�
2i behaves as noise and p0 · e�

2i behaves as the message. Let
d�
2 = (d�

2i).
4. Output Ciphertext. Output message encodings (c,b) and noise encodings

(d�
1,d

�
2) for � ∈ [k].

NLinFE.KeyGen(MSK,v,v×): On input the master secret key MSK, a NLinFE
function vector v ∈ Rw

p1
and its corresponding noise polynomial (represented

here as a quadratic polynomial) v× ∈ RL
p1

, where L = |1 ≤ j ≤ i ≤ r|, do the
following.

1. Sampling Basis Preimage vectors.
(a) Sample short eij ∈ Rm using SamplePre (please see Sect. 2.2) with ran-

domness PRF(seed, ij) such that

〈w, eij〉 = hij , where hij �
∑

�∈[k]

h�
1ih

�
2j + p0 · Δij + p1 · Δ̃ij

Above Δij , Δ̃ij ← D ∈ R for 1 ≤ j ≤ i ≤ r.

Let E× = (eij) ∈ Rm×L, h× = (hij) ∈ RL
p2

where L = |1 ≤ j ≤ i ≤ r|.

Indistinguishability Obfuscation Without Maps 123

2. Combining Basis Preimages to Functional Preimage. Define

kv = E · v + E× · v× ∈ Rm (3.1)

3. Output (kv,v).

NLinFE.Dec(CTz,SKv): On input a ciphertext CTz =
(

c,b, {d�
1,d

�
2}�∈[k]

)
and

a secret key kv for function v, do the following

1. Compute encoding of noise term on the fly as:

d× � (
∑

�∈[k]

d�
1 ⊗ d�

2) ∈ RL
p2

2. Compute functional ciphertext as:

bv = vTb + (v×)Td× ∈ Rp2

3. Compute bv − kT
vc mod p1 and output it.

Remark on the parameters. In the above scheme, one should think of B1 as being
poly(κ), B2 = superpoly(κ) · B1 and N = (kr log(p2))1+ε for some ε > 0.

4 Multi-ciphertext Attack on Agrawal’s NLinFE

Agrawal [2] provided a proof of security for her construction (under a non-
standard assumption) in a weak security game where the adversary may only
request a single ciphertext. In this section, we show that her construction is in
fact insecure if the adversary has access to multiple ciphertexts.

The problem appearing in Agrawal’s NLinFE construction is a variant of the
RLWE problem, where the random elements in RLWE samples are chosen from
some NTRU-like distribution, are kept secret, and the noise terms are correlated
to these elements. In this section, we first formally define a variant of the RLWE
problem, which we call the RLWE problem with correlated noise. The distribution
of the elements in this problem are similar to the one obtained by the encryption
procedure of the NLinFE described above. We then show that this problem can
be solved in polynomial time by an attacker, hence resulting in an attack on
Agrawal’s NLinFE construction.

Definition 4.1 (RLWE with correlated noise). Let R be some ring isomorphic
to Zn (for instance R = Z[X]/(Xn + 1) for n a power of two, and the isomor-
phism is the coefficient embedding). We define the RLWE problem with correlated
noise as follows. Let m, k, q, σ, σ′ be some parameters (q will be the modulus, m
the number of samples and σ and σ′ are small compared to q). We let Dσ be
the discrete Gaussian distribution over R with parameter σ and U(Rq) be the
uniform distribution over Rq. Sample

124 S. Agrawal and A. Pellet-Mary

– g1, g2 ← Dσ

– f1i, f2i ← Dσ for all 1 ≤ i ≤ k
– t1[j], t2[j] ← Dσ for all 1 ≤ j ≤ m
– e1i[j], e2i[j] ← Dσ′ for all 1 ≤ i ≤ k and 1 ≤ j ≤ m
– u1i[j], u2i[j] ← U(Rq) for all 1 ≤ i ≤ k and 1 ≤ j ≤ m.

The RLWE problem with correlated noise is to distinguish between
(

f1i

g1
t1[j] + e1i[j] · g2 mod q,

f2i

g2
t2[j] + e2i[j] · g1 mod q

)

i,j

and
(u1i[j], u2i[j])i,j .

Remark 4.2. This RLWE problem with correlated noise differs from the classical
RLWE problem in 4 different ways:

– Instead of being uniform, the elements a are of the form fi

g mod q with fi

and g small modulo q,
– There are multiple secrets t1[j] and t2[j],
– The elements fi

g are secret,
– The noise is correlated with the elements fi

g (instead of following a small
Gaussian distribution).

We observe that if we obtain m ciphertexts from the NLinFE construction
described above, and if we only keep in each ciphertext the part corresponding to
� = 1, then the elements obtained follow the RLWE distribution with correlated
noise. The notation [j] refers to the j-th ciphertext, and we dropped the index
� since we are only considering � = 1.

The next lemma explains how we can solve the RLWE problem with corre-
lated noise in polynomial time, using 4 pairs of elements (obtained by varying i
and j).

Lemma 4.3. Assume k,m ≥ 2 and that the modulus q is a prime integer con-
gruent to 1 modulo 2n. Let (b1i[j], b2i[j])1≤i,j≤2 be obtained from either the
RLWE distribution with correlated noise or the uniform distribution over Rq.
Let us define

b :=(b1,1[1] · b2,1[1] · b1,2[2] · b2,2[2] + b1,1[2] · b2,1[2] · b1,2[1] · b2,2[1]
− b1,1[2] · b2,1[1] · b1,2[1] · b2,2[2] − b1,1[1] · b2,1[2] · b1,2[2] · b2,2[1]) mod q.

If the bβi[j] come from the uniform distribution, then ‖b‖∞ ≥ q/4 with high
probability (over the random choice of the (b1i[j], b2i[j])1≤i,j≤2). Otherwise, ‖b‖∞
is small compared to q.

Proof. Let us first consider the case where the bβi[j] are uniform modulo q and
independent. Observe that b can be written as the determinant of a product of
two matrices

M1 =
(

b1,1[1] b1,1[2]
b1,2[1] b1,2[2]

)

and M2 =
(

b2,1[1] b2,1[2]
b2,2[1] b2,2[2]

)

.

Indistinguishability Obfuscation Without Maps 125

These two matrices are uniform over Rq. Because q ≡ 1 mod 2n, we have that
xn +1 =

∏
i(x−αi) mod q and so Rq � Zq[x]/(x−α1)× · · ·×Zq[x]/(x−α1) �

(Zq)n. By Chinese reminder theorem, all the matrices Mb mod (x − αi) are
uniform and independent matrices in Zq. Now, by Chinese reminder theorem
and Lemma 2.6, we have that

P(det(M1) �∈ R×
q) = P(∃i, det(M1 mod (x − αi)) �∈ Z×

q) ≤ O

(
n

q

)

.

Because n � q, this implies that M1 and M2 are invertible with high probability.
Recall from Lemma 2.7 that, when conditioned on being invertible, the determi-
nant of M1 and M2 are uniformly distributed over the invertible elements of Rq.
Hence, we conclude that with high probability, the product det(M1) · det(M2)
is uniform in R×

q and so is likely to have infinity norm larger than q/4.
Let us now assume that the bβi[j] come from the RLWE distribution with

correlated noise. Then, we have

b=

(
f1,1

g1
t1[1] + e1,1[1] · g2

) (
f2,1

g2
t2[1] + e2,1[1] · g1

) (
f1,2

g1
t1[2] + e1,2[2] · g2

) (
f2,2

g2
t2[2] + e2,2[2] · g1

)

+

(
f1,1

g1
t1[2] + e1,1[2] · g2

) (
f2,1

g2
t2[2] + e2,1[2] · g1

) (
f1,2

g1
t1[1] + e1,2[1] · g2

) (
f2,2

g2
t2[1] + e2,2[1] · g1

)

−
(

f1,1

g1
t1[2] + e1,1[2] · g2

) (
f2,1

g2
t2[1] + e2,1[1] · g1

) (
f1,2

g1
t1[1] + e1,2[1] · g2

) (
f2,2

g2
t2[2] + e2,2[2] · g1

)

−
(

f1,1

g1
t1[1] + e1,1[1] · g2

) (
f2,1

g2
t2[2] + e2,1[2] · g1

) (
f1,2

g1
t1[2] + e1,2[2] · g2

) (
f2,2

g2
t2[1] + e2,2[1] · g1

)
,

where the computations are performed modulo q. Observe that in the products
and sums above, all the elements are small. The only things that can be large
are the division modulo q by g1 and g2. We are going to show that if we develop
the products above, then all the terms containing divisions by g1 or g2 are
annihilated. So b will be a polynomial of degree 4 of small elements (with no
denominator) and hence it will be small compared to q.

Let us consider the first line of the equation above
(

f1,1

g1
t1[1] + e1,1[1] · g2

)
·
(

f2,1

g2
t2[1] + e2,1[1] · g1

)
·
(

f1,2

g1
t1[2] + e1,2[2] · g2

)
·
(

f2,2

g2
t2[2] + e2,2[2] · g1

)
.

When we develop this product, we are going to produce terms with denomi-
nators of degree 0, 1, 2, 3 and 4 in the gβ . Observe that the third line is the same
as the first line, where we have exchanged t1[1] and t1[2] and the corresponding
noises. So every term of the first line containing f1,1

g1
t1[1] · f1,2

g1
t1[2] will be the

same as the analogue term in the third line, and so will be annihilated. Simi-
larly, the fourth line is the same as the first line, where we have exchanged t2[1]
and t2[2] and the corresponding noises. So every term of the first line containing
f2,1
g2

t2[1] · f2,2
g2

t2[2] will be the same as the analogue term in the fourth line, and
so will be annihilated. Using this remark, we argue below that all the terms with
denominators in the first line are annihilated.

126 S. Agrawal and A. Pellet-Mary

– The term of degree 4 contains f1,1
g1

t1[1] · f1,2
g1

t1[2] and so is annihilated by the
third line.

– The terms of degree 3 have to contain 3 denominators out of the 4. So they
contain either f1,1

g1
t1[1] · f1,2

g1
t1[2] or f2,1

g2
t2[1] · f2,2

g2
t2[2]. In both cases, they are

annihilated.
– The terms of degree 2 containing either f1,1

g1
t1[1] · f1,2

g1
t1[2] or f2,1

g2
t2[1] · f2,2

g2
t2[2]

are annihilated. It remains the terms of degree 2 whose denominator is g1g2.
But these terms are multiplied by a noise which is a multiple of g1 and another
noise which is a multiple of g2. Hence the denominator is annihilated and these
terms are just polynomials in the small elements.

– The terms of degree 1 have denominator g1 or g2. But they are multiplied by
noises that are multiples of g1 and g2. Hence the denominator is annihilated
and these terms are polynomials in the small elements.

To conclude, all the terms are either eliminated thanks to the symmetries, or
the denominators are removed by multiplication by g1 and g2. Similarly, we can
show that this holds for all the four lines. The sage code for the above attack
is provided as supplementary material with the paper. So b is a polynomial of
constant degree in the gβ , fβi, tβ [j] and eβi[j], which are all much smaller than
q. Hence, b is also much smaller than q.

Concluding the attack. To conclude the attack on Agrawal’s NLinFE scheme, let
us now explain how the distinguishing attack described above can be used to
recover the secret elements of the RLWE with correlated noise instance. We have
seen in Lemma 4.3 that, from four instances of RLWE with correlated noise, one
can compute a quantity b which is significantly smaller than the modulus q. This
means that one can recover b over the ring R, without reduction modulo q. Let
us consider such an element b, obtained from the four RLWE with correlated
noise instances (b1i[j], b2i[j]), (b1i′ [j], b2i′ [j]), (b1i[j′], b2i[j′]), (b1i′ [j′], b2i′ [j′]) (for
simplicity, the lemma above is stated with i, j = 1 and i′, j′ = 2, but it can
be generalized to any choice of (i, j, i′, j′), with i �= i′ and j �= j′). Computing
b as in Lemma 4.3, we obtain a polynomial over R of degree 8 in 16 variables
(the gβ , the t[j]’s, the fβ,i and the eβ,i[j]). More generally, if we consider all
the equations one can create by computing b as above for i, j, i′, j′ varying in
{1, · · · , �}, with i �= i′ and j �= j′, then one can obtain �2(� − 1)2 equations of
degree 8 in 2 + 3� + 2�2 variables. Choosing � = 3 provides 36 equations in 29
variables, hence one may hope that this system has a unique solution, and that
solving it would reveal the values of the secret parameters.

Recall that solving a system of polynomial equations is hard in general, but
the hardness increases with the number of variables. Hence, if the number of
variable is constant (here equal to 29), solving a polynomial system of equations
should be easy. One way to solve such a system is by computing a Gröbner
basis of the ideal generated by the multivariate polynomials. This can be done
in the worst case in time doubly exponential in the number of variables (see for
instance [12,41]), which is constant in our case, as we have a constant number

Indistinguishability Obfuscation Without Maps 127

of variables.3 Once we have a Gröbner basis corresponding to our system of
equations, we can solve it by computing the roots of a constant number of
univariate polynomials over K. Since we know that the solution of our system
is in R29, it is sufficient to compute the roots of the polynomials over K with
precision 1/2, and then round them to the nearest integer element. Solving these
univariate polynomial equations can hence be done in polynomial time (in the
size of the output).

Alternatively, to avoid numerical issues, we could choose a large prime num-
ber p, which we know is larger than all the noise terms arising in the equations,
and then solve the system in R/(pR). Hopefully, the system is still overdeter-
mined modulo p, and so has a unique solution which corresponds to the solution
over R. Thanks to the fact that p is larger than the noise terms, recovering them
modulo p reveals them exactly, so we can recover the solution over R from the
one over R/(pR). This approach can also be done in time doubly exponential in
the number of variables, and polynomial in the degree of K and in log(p).

To conclude, the elements b enables us to recover equations of degree 8 in a
constant number of variables, which can then be solved efficiently. This means
that we can recover the secret elements gβ , t[j], fβ,i and eβ,i[j] of the RLWE with
correlated noise instances in polynomial time (given sufficiently many instances).

5 Rank Attack on Agrawal’s NLinFE

In this section, we present a novel “rank attack” against the NLinFE scheme. The
attack exploits the property that the NLinFE scheme must compute a noise term
with special structure: in detail, the noise term must be expressible as a linear
combination of noise terms which are multiples of moduli pi for i ∈ [0,D − 2].
The moduli pi in this case are public – this enables the attacker to recover noise
terms at different “levels”, namely, corresponding to different moduli. The attack
exploits the fact that while the noise terms corresponding to some moduli are
highly non-linear and difficult to exploit, those corresponding to some others are
in fact linear and may be exploited by carefully arranging them into a matrix
and computing its rank. We provide details below.

5.1 Exploiting the Noise Obtained After Decrypting a Message

Let us first explicit the noise obtained after decryption. When computing bv−kT
vc

for a valid ciphertext and secret key, one obtain something much smaller than p2,
which can hence be recovered exactly. This noise is the following

3 In all this discussion, we are interested in the theoretical complexity. In practice,
solving an arbitrary overdetermined system with 29 variables could take a lot of
time, but this time would not increase with the security parameter κ, hence, it is
constant for our purposes.

128 S. Agrawal and A. Pellet-Mary

bv − k
T
vc

= v
T
z + p1v

T
η − p0(v

×
)
T

Δ · s − p1(v
×
)
T

Δ̃ · s − p1(v
T
E + (v

×
)
T
E

×
)ν

+
∑
�,i,j

v
×
ij

[
p1 ·

(
p1 · (g�

2 · ξ̃
�
1i · g

�
1 · ξ̃

�
2j) + p0 · (g�

2 · ξ̃
�
1i · g

�
1 · ξ

�
2j + g

�
2 · ξ

�
1i · g

�
1 · ξ̃

�
2j)

+ (f
�
1i · t1 · ξ̃

�
2j + f

�
2j · t2 · ξ̃

�
1i)

)
+ p0 ·

(
p0 · (g�

2 · ξ
�
1i · g

�
1 · ξ

�
2j) + (f

�
1i · t1 · ξ

�
2j + ·f�

2j · t2 · ξ
�
1i)

)]
,

where Δ and Δ̃ are vectors of dimension L whose elements are respectively the
Δij and Δ̃ij . This noise term is quite complicated, but since it involves multiples
of p1 and p0, one can distinguish the noise terms that are multiples of p0, p

2
0, p1, p

2
1

and p0p1. Here, we assume that the noise terms that are multiplied to the pi’s are
small enough so that the different multiples do not overlap. While this should be
true for correctness that p1 is much larger than the multiples of p0 appearing in
the term above, this might not be true for instance when splitting the multiple
of p0 from the multiple of p20 (one could for instance think of p0 = 4). As we
should see below however, this will not be a problem for our attack. To see this,
let us write p0 · small1 + p20 · small2 + p1 · small3 the noise term above. As we have
said, for correctness, it should hold that, when reducing this term modulo p1,
we obtain p0 · small1 + p20 · small2 over R. Now, dividing by p0 and reducing the
obtained term modulo p0, we recover small1 mod p0. In the rank attack below,
we exploit the noise term small1, which we might know only modulo p0 (and not
over R). However, all we do on this noise terms is linear algebra, and does not
depend on the ring in which we are considering the elements. Hence, we could
as well perform the attack in Rp0 if we recovered only small1 mod p0.

Recall also that in the distinguishing game, the adversary chooses two mes-
sages z0 and z1 with the constraint that vT z0 = vT z1 + p0 · μ for any vector v
for which she has a secret key (with a small μ). She then gets back the encryp-
tion of one of the two messages and wants to know which one was encoded. In
other words, if z is the encrypted message, the adversary knows that vT z = x or
x+p0 ·μ for some known values of x and μ (with p0 ·μ smaller than some bound
B1), and wants to distinguish between these two cases. We can then assume that
the adversary removes x from the noise term, and is left with either 0 or p0 · μ.
The adversary can then obtain the following noise terms

∑

�

⎛

⎝
∑

i,j

v×
ij · ξ̃�

1iξ̃
�
2j

⎞

⎠ g�
2g

�
1 (5.1)

∑

�

⎛

⎝
∑

i,j

v×
ij · ξ�

1iξ
�
2j

⎞

⎠ g�
2g

�
1 (5.2)

∑

�

⎛

⎝
∑

i,j

v×
ij · (ξ̃�

1iξ
�
2j + ξ̃�

1iξ
�
2j)

⎞

⎠ g�
2g

�
1 (5.3)

Indistinguishability Obfuscation Without Maps 129

∑
i,j,�

v×
ij ·

(
f �
1i · t1 · ξ�

2j + f �
2j · t2 · ξ�

1i

)
+ (v×)T Δ · s + (0 or μ) (5.4)

∑
i,j,�

v×
ij ·

(
f �
1i · t1 · ξ̃�

2j + f �
2j · t2 · ξ̃�

1i

)
+ (v×)T Δ̃ · s + vT η + (vTE + (v×)TE×)ν

(5.5)

In the noise terms above, the blue elements are secret and are fixed for all
ciphertexts and secret keys, the red elements are known and depend only on the
secret key, the black elements are secret and depend only on the ciphertexts and
the brown element is the challenge. The value μ of the challenge can be chosen
by the adversary, and the adversary has to decide, given the above noise terms,
whether (5.4) contains 0 or μ. Recall also that the vector v can be chosen by
the adversary whereas the vector v× is chosen by the challenger as the polyno-
mial that computes a PRG. The blue and red elements above can be modified
independently, by considering another secret key or another ciphertext.

5.2 Rank Attack to Distinguish Bit

The rank attack focuses on the noise term (5.4). As this noise term contains the
challenge, it suffices to distinguish between a noise term with 0 or a noise term
with μ to break the NLinFE construction. Let us rewrite the equation in a more
convenient way.

∑

i,j,�

v×
ij · (

f �
1i · t1 · ξ�

2j + f �
2j · t2 · ξ�

1i

)
+ (v×)T Δ · s + (0 or μ)

=
∑

�

(∑

j

(∑

i

v×
ij · f �

1i

)
· ξ�

2j · t1

)
+

∑

�

(∑

j

(∑

i

v×
ij · f �

2i

)
· ξ�

1j · t1

)

+ ((v×)T Δ) · s + (0 or μ).

Recall that in the equations above, the blue terms are fixed, the red terms depend
only on the secret key and the black terms depend only on the ciphertext. Hence,
one can observe that if the challenge is 0, then the equation above is a sum of
products, where in every product one term depends only on the secret key and
the other one depends only on the ciphertext. Concatenating all these elements
into two vectors, one obtains (5.4) = 〈a,b〉, where a depends only on the secret
key and b depends only on the ciphertext (and they are both secret).

The dimension of a and b is the number of terms in the sum above. In our
case, this dimension is 2rk+1. To see this, note that � ∈ [k] and j ∈ [r], and that
we are summing over � and j so we obtain a sum of kr scalars. Hence, this term
may be expressed as one big inner product of two vectors of dimension 2rk + 1.

Assume that we can make N := 2rk + 2 requests for secret keys and cipher-
texts, and let us write ci,j = 〈ai,bj〉 + (0 or μij) the noise term obtained when
evaluating the NLinFE scheme with the i-th secret key and the j-th ciphertext.

130 S. Agrawal and A. Pellet-Mary

Recall that the values μij are chosen by the adversary. Define C and M the
N × N matrices (ci,j)i,j and (μij)i,j respectively.

Then, depending on the challenge, we claim that C or C − M is of rank at
most N − 1. To see this, note that we have C = A · B + (0 or M), where A has
dimension N × N − 1 and B has dimension N − 1 × N , so that A · B has rank
at most N − 1. On the other hand, the other matrix is of the form A · B ± M ,
which has full rank with good probability (even if M has only rank 1, the sum
of a matrix of rank N − 1 and a matrix of rank 1 is likely to have rank N if the
two matrices are independent, which is the case here).4 Hence, computing the
determinant of the matrix C allows to determine what was the challenge, and
to break the security of the NLinFE scheme.

The case of degree >2. In the general case, if the degree of the NLinFE scheme
is d instead of 2, then the same reasoning applies. The only difference is that
the vectors a and b will have dimension d · k · r + 1, so one needs to be able to
make N := d · k · r + 2 key and ciphertext queries for the attack. More precisely,
in degree d, the term (5.4) becomes

(5.4) =

d∑
δ=1

k∑
�=1

∑
1≤i1,··· ,id≤r

v×
i1,··· ,id

(∏
j �=δ

f �
j,ij

· tj

)
ξ�

δ,iδ
+ (v×)T Δ · s + (0 or μ)

=
d∑

δ=1

k∑
�=1

∑
1≤i1,··· ,id≤r

v×
i1,··· ,id

(∏
j �=δ

f �
j,ij

∏
j �=δ

tj

)
ξ�

δ,iδ
+ (v×)T Δ · s + (0 or μ)

=
d∑

δ=1

k∑
�=1

∑
1≤i1,··· ,id≤r

v×
i1,··· ,id

(∏
j �=δ

f �
j,ij

∏
j �=δ

tj

)
ξ�

δ,iδ
+ (v×)T Δ · s + (0 or μ)

=

d∑
δ=1

k∑
�=1

r∑
iδ=1

(∑
1≤ij≤r,j �=δ

v×
i1,··· ,id

·
∏
j �=δ

f �
j,ij

· ξ�
δ,iδ

·
∏
j �=δ

tj

)
+ (v×)T Δ · s + (0 or μ).

For the first term, we are now summing dkr elements, and each one corresponds
to the product of two scalars. Hence, the left term can be written as one inner
product of two vectors of dimension d · k · r, with one vector depending only on
the secret key and one depending only on the ciphertext. The analysis of the
term (v×)T Δ · s is the same as before. To conclude, taking N = d · k · r + 2
and performing the same attack as above enables us to distinguish whether the
challenge is 0 or μ.

4 Observe that even if the μij are somehow chosen by the adversary, they cannot be
chosen arbitrarily. Indeed, μij is the scalar product between the vector corresponding
to the i-th secret key, with the difference of the two messages of the j-th pair of
challenge messages. Hence, the matrix M has rank at most w, where w is the size
of these vectors. However, as said above, it is sufficient to have M of rank at least
1 for the attack to go through, and this can be ensured by the attacker (it simply
needs to take M �= 0).

Indistinguishability Obfuscation Without Maps 131

We thus obtain the bound N := d · k · r + 2 on the number of key requests
that can be performed by the attacker. Since k, r = poly(κ), the adversary can
obtain this number of keys to conduct the above attack.

6 Modifying Construction to Fix Attacks

In this section, we describe an approach to fix the above two attacks (which
we will refer to as “the multiple ciphertext attack” and as the “rank attack”
respectively).

Intuitively, the reason for the multiple ciphertext attack to work is commuta-
tivity: we mix and match the LWE labels and secrets across multiple ciphertexts
to compute the large term in two different ways. An over-simplification is that if
two ciphertexts CT1 and CT2 have LWE secrets s and t respectively, and a and
b are labels, then CT1 contains encodings with large terms as and bs and CT2

contains encodings with large terms at and bt. But now, (as) · (bt) = (bs) · (at),
which implies that we can multiply encodings from different ciphertexts in two
different ways to get the same large term, which may then be removed by sub-
traction. While the attack developed in Sect. 4 is more elaborate, the intuition
remains the same as in the simplification discussed here.

The reason the the rank attack on the other hand is the presence of the
moduli p0 and p1, which allow to separate the noise terms, and obtain one noise
term which is only linear in the freshly chosen error elements.

Fixing the multiple ciphertext attack. As shown by the above discussion, the chief
vulnerability exploited by the attack is commutativity of polynomials. However,
if we replace scalar product by inner product, we get that the first ciphertext
contains the terms 〈a, s〉 and 〈b, s〉 and the second ciphertext contains the terms
〈a, t〉 and 〈b, t〉. Attempting to launch the above attack shows that:

〈a, s〉 · 〈b, t〉 �= 〈b, s〉 · 〈a, t〉
This prevents the mix and match attacks of the kind discussed in Sect. 4

since each large term now uniquely corresponds to a single product of encodings
and may not be generated in two different ways. As explained in the full version,
the multiple ciphertext attack can still be generalized to this setting, but the
modulus q will need to be exponential in the dimension of the vectors for the
attack to work, and so we can prevent the attack by choosing the dimension to
be larger than log q.

Fixing the rank attack. In order to fix the rank attack, we propose to remove
the modulus p0 from the encodings, i.e., consider encodings of the form d�

1i =
〈h�

1i, t1〉 + p1 · e�
1i + ẽ�

1i. This way, it will be harder to split the noise term at
the end (we will only have three “levels” 1, p1 and p21 instead of 5 before), and
we will show that the noise terms obtained this way seem hard to exploit now.
One may want to also remove the modulus p1 from the construction, and only
consider one noise term, but as we should see in the construction, the modulus

132 S. Agrawal and A. Pellet-Mary

p1 is needed for correctness (not only for the shape of the output noise), and so
cannot be removed easily.

Recall that the modulus p0 were present because we wanted to flood a noise
term of the form noise0 · p0 (the modulus p1 is used because the messages are
living in Rp1). In more generality, in the bootstrapping procedure used in [2] to
construct iO, we will want to flood a noise term of the form noise0 · p0 + · · · +
noiseD−2 · pD−2 for some integer D related to the degree of the FE scheme we
want to construct. We will also want the message space of the NLinFE scheme to
be RpD−1 and the ciphertext space to be RpD

, with p0 < p1 < · · · < pD for prime
numbers pi. We also want for the bootsrapping procedure that the noise output
by the NLinFE scheme be of the form noise′

0 · p0 + · · · + noise′
D−2 · pD−2, so that

when we add this noise to the original noise, we still have a linear combination
of the pi’s, with i ≤ D − 2.

From arbitrary flooding noise to structured flooding noise. When we remove the
moduli from Agrawal’s construction as discussed above, we obtain an NLinFE
scheme where the flooding noise term is arbitrary in R, and so not of the desired
shape noise′

0 ·p0 + · · ·+noise′
D−2 ·pD−2. We can however use this NLinFE scheme

to construct a new NLinFE′ scheme, with a flooding noise term of the desired
shape. Intuitively, the idea is to use an additive secret sharing of the messages
z = z0 + · · · + zD−2, and then encode z0/p0, · · · , zD−2/pD−2 using the NLinFE
scheme without moduli. To recover the scalar product 〈v, z〉, one then compute
p0 · 〈v, z0/p0〉 + · · · + pD−2 · 〈v, zD−2/pD−2〉, and so the noise term will have the
desired shape.

More precisely, the NLinFE′ scheme proceeds as follows

NLinFE′.Setup(1κ, 1w): Run NLinFE.Setup(1κ, 1w) D − 1 times to obtain D − 1
master secret keys MSKi and output (MSK0, · · · ,MSKD−2).

NLinFE′.Enc((MSK0, · · · ,MSKD−2), z): where z ∈ Rw
pD−1

.
1. Sample (z0, · · · , zD−3) uniformly at random in RpD−1 and define zD−2

such that
∑D−2

i=0 zi = z.
2. For i in {0, · · · ,D − 2}, compute CTi = NLinFE.Enc(MSKi, zi/pi). Here,

the division by pi is performed modulo pD−1, and is possible because pi

is coprime with pD−1 for all i ≤ D − 2.
Output CTz = (CT0, · · · ,CTD−2).

NLinFE′.KeyGen(MSK,v,v×): output

SKv = (NLinFE.KeyGen(MSK0,v,v×), · · · ,NLinFE.KeyGen(MSKD−2,v,v×)).

NLinFE′.Dec(CTz,SKv): where z ∈ Rw
pD−1

.
1. Parse CTz as CTz = (CT0, · · · ,CTD−2) and SKv as SKv = (SK1, · · · ,

SKD−2).
2. Compute yi = NLinFE.Dec(CTi,SKi) ∈ RpD−1 for 0 ≤ i ≤ D − 2.

Output
∑D−2

i=0 piyi mod pD−1.

For correctness, observe that in the NLinFE′ decryption algorithm, we have
yi = 〈zi/pi,v〉 + noisei by correctness of NLinFE (if the ciphertexts and secret

Indistinguishability Obfuscation Without Maps 133

keys are valid). So the output is indeed of the form 〈z,v〉 +
∑

i noisei · pi: we
have 〈z,v〉 plus a noise term of the desired shape.

We conclude that, for the bootstrapping procedure of [2], it is sufficient to
construct an NLinFE scheme, with message space RpD−1 , ciphertext space RpD

and arbitrary flooding noise. The new NLinFE construction we propose below
satisfies these conditions.

6.1 The New NLinFE Construction

Below, we present a modified variant of the NLinFE construction of [2], designed
to avoid the multiple ciphertext attack and the rank attack, as discussed above.

NLinFE.Setup(1κ, 1w): On input a security parameter κ, a parameter w denoting
the length of the function and message vectors, do the following:

1. Sample W ← Rm×κ2

pD
with a trapdoor T using the algorithm TrapGen.

2. Sample E ∈ Dm×w and set A = ETW ∈ Rw×κ2

pD
(recall that D is a discrete

Gaussian distribution over R of parameter σ).
3. For i ∈ {1, . . . , r}, � ∈ {1, . . . , k}, sample f �

1i, f
�
2i ← Dκ and g�

1, g
�
2 ← D. If

g�
1, g

�
2 are not invertible over RpD

, resample.
Set

h�
1i =

f �
1i

g�
1

, h�
2i =

f �
2i

g�
2

∈ Rκ
pD

4. Sample a PRF seed, denoted as seed.

Output

MSK =
(

W,T,A,E,
{
f �
1i, f

�
2i

}
i∈[r],�∈[k]

,
{
g�
1, g

�
2}�∈[k]

}
, seed

)

NLinFE.Enc(MSK, z): On input public key MSK, a message vector z ∈ Rw
pD−1

,
do:

1. Sample t1, t2 ← Dκ. Set s = t1 ⊗ t2 ∈ Rκ2
.

2. Construct Message Encodings. Sample ν ← Dm, η ← Dw and compute:

c = Ws + pD−1 · ν ∈ Rm
pD

, b = As + pD−1 · η + z ∈ Rw
pD

,

where z ∈ Rw
pD−1

is seen as a vector of R with coefficients in (−pD−1
2 , pD−1

2]
and then reduced modulo pD.

3. Sample Structured Noise. To compute encodings of noise, do the follow-
ing:
(a) Define lattices:

Λ�
1 � g�

1 · R, Λ�
2 � g�

2 · R

(b) Sample noise terms from the above lattices as:

e�
1i ← D̂(Λ�

2), ẽ
�
1i ← D̂(Λ�

2), e�
2i ← D̂(Λ�

1), ẽ
�
2i ← D̂(Λ�

1) ∀i ∈ [r], � ∈ [k].

Here D̂(Λ�
1) is a discrete Gaussian distribution on Λ�

1 and D̂(Λ�
2) is a

discrete Gaussian distributions on Λ�
2, both of parameter σ.

134 S. Agrawal and A. Pellet-Mary

4. Compute Encodings of Noise.
(a) Let

d�
1i = 〈h�

1i, t1〉 + pD−1 · e�
1i + ẽ�

1i ∈ RpD
∀i ∈ [r], � ∈ [k].

Let d�
1 = (d�

1i).
(b) Similarly, let

d�
2i = 〈h�

2i, t2〉 + pD−1 · e�
2i + ẽ�

2i ∈ Rp2 ∀i ∈ [r], � ∈ [k].

Let d�
2 = (d�

2i).
5. Output Ciphertext. Output message encodings (c,b) and noise encodings

(d�
1,d

�
2) for � ∈ [k].

NLinFE.KeyGen(MSK,v,v×): On input the master secret key MSK, NLinFE func-
tion vectors v ∈ Rw

pD−1
and v× ∈ RL with coefficients small compared to

pD−1, do the following.

1. Sampling Basis Preimage vectors.
(a) Sample short eij ∈ Rm using SamplePre with randomness PRF(seed, ij)

such that

WTeij = hij , where hij �
∑

�∈[k]

h�
1i ⊗ h�

2j + pD−1Δij + Δ̃ij .

Above Δij , Δ̃ij ← Dκ2 ∈ Rκ2
for 1 ≤ j ≤ i ≤ r.

Let E× = (eij) ∈ Rm×L

where L = |1 ≤ j ≤ i ≤ r|.
2. Combining Basis Preimages to Functional Preimage. Define

kv = E · v + E× · v× ∈ Rm (5.6)

3. Output (kv,v,v×).

NLinFE.Dec(CTz,SKv): On input a ciphertext CTz =
(

c,b, {d�
1,d

�
2}�∈[k]

)
and

a secret key kv for function v, do the following

1. Compute encoding of noise term on the fly as:

d× � (
∑

�∈[k]

d�
1 ⊗ d�

2) ∈ RL
pD

2. Compute functional ciphertext as:

bv = vTb + (v×)Td× ∈ RpD

3. Compute (bv − kT
vc mod pD) mod pD−1 and output it.

Indistinguishability Obfuscation Without Maps 135

Correctness. In this section, we establish that the above scheme is correct. To
simplify the analysis, we let smallD−1 denote any term which is small compared
to pD−1 and smallD be any term which is small compared to pD. We also assume
that summing polynomially many smalli terms or multiplying a constant number
of them results in an element which is still a smalli (for i = D − 1 or D). We
also assume that the parameters are set so that σ is small compared to pD−1

and that pD−1 is small compared to pD.
Let us do the analysis by walking through the steps performed by the decrypt

algorithm:

1. We compute an encoding of a correlated noise term on the fly as described in
Fig. 1.

Computing Encoding of Correlated Noise Term for the new construction

We compute d�
1i · d�

2j . Recall that

d�
1i = 〈h�

1i, t1〉 + pD−1 · e�
1i + ẽ�

1i ∈ RpD

d�
2j = 〈h�

2j , t2〉 + pD−1 · e�
2i + ẽ�

2i ∈ RpD

Recall also that e�
1i, ẽ

�
1i are sampled from lattice Λ�

2 and e�
2i, ẽ

�
2i are sampled from

lattice Λ�
1.

Let e�
1i = g�

2 · ξ�
1i, ẽ�

1i = g�
2 · ξ̃�

1i,

and e�
2i = g�

1 · ξ�
2i, ẽ�

2i = g�
1 · ξ̃�

2i

Now, we may compute:

d�
1i · d�

2j =
(
〈h�

1i, t1〉 + pD−1 · e�
1j + ẽ�

1j

)
·
(
〈h�

2j , t2〉 + pD−1 · e�
2j + ẽ�

2j

)

= 〈h�
1i ⊗ h�

2j , (t1 ⊗ t2)︸ ︷︷ ︸
s

〉 + pD−1 ·
(

pD−1 · (g�
2 · ξ�

1i · g�
1 · ξ�

2j)︸ ︷︷ ︸
smallD

+ (g�
2 · ξ̃�

1i · g�
1 · ξ�

2j + g�
2 · ξ�

1i · g�
1 · ξ̃�

2j)︸ ︷︷ ︸
smallD−1

+(〈f �
1i, t1〉 · ξ�

2j + 〈f �
2j , t2〉 · ξ�

1i)︸ ︷︷ ︸
smallD−1

)

+
(
(g�

2 · ξ̃�
1i · g�

1 · ξ̃�
2j) + (〈f �

1i, t1〉 · ξ̃�
2j + 〈f �

2j , t2〉 · ξ̃�
1i)

)
︸ ︷︷ ︸

smallD−1

(recall that smalli is a term that is small compared to pi for i = D − 1 or D).

Thus,
∑
�∈[k]

d�
1i · d�

2j = 〈
∑
�∈[k]

h�
1i ⊗ h�

2j

)
, s〉 + pD−1 · smallD + smallD−1. (6.2)

Fig. 1. Computing encoding of noise term as polynomial of encodings in the new
construction of Sect. 6.

136 S. Agrawal and A. Pellet-Mary

2. The decryption equation is:

bv − kT

vc = (vTb + (v×)Td×) − kT

vc

3. Recall that b = A · s + pD−1 · η + z ∈ Rw
pD

. Hence,

vTb = vTA · s + pD−1 · smallD + vTz

4. Let H×
ij =

(∑

�∈[k]

h�
1i ⊗ h�

2j

)
be the (i, j)th row of H× ∈ RL×κ2

pD
. Since

d× = H×s + pD−1 · smallD + smallD−1

and v× ∈ RL is small compared to pD−1, we have

(v×)Td× = (v×)TH×s + pD−1 · smallD + smallD−1

Hence we have

vTb + (v×)Td× =
(
vTA + (v×)TH×)

s + pD−1 · smallD + smallD−1 + vTz

5. Next, note that

kT

vW = vTA + (v×)TH× + pD−1 · smallD−1 + smallD−1 � av ∈ R1×κ2

pD

6. Recall that c = W · s + pD−1 · ν hence,

kT

vc = aT

vs + pD−1 · 〈ν,kv〉
= (vTA + (v×)TH×) s + smallD−1 + pD−1 · smallD

7. Hence, bv − kT
vc = vTz + smallD−1 + pD−1 · smallD. The right hand side

of this equation is smaller than pD by assumption (if the parameters are
carefully chosen), hence, by computing bv − kT

vc in RpD
, we recover vTz +

smallD−1 +pD−1 · smallD over R. Now, reducing this term modulo pD−1 leads
to vTz + smallD−1 mod p1, where smallD−1 is small compared to pD−1.

On the degree of the noise term. As was already observed in Agrawal’s original
construction [2], the construction above is described with a noise term of degree
d = 2, but it could easily be generalized to any constant degree d. In the case
of a general degree d, we would have d-tuples of encodings (d�

1i, · · · , d�
di), where

the noise in d�
ai is a multiple of

∏
b	=a g�

b. Then, when computing d×, one would
consider all possible products d�

1i1
· · · d�

d,id
and obtain a noise term of degree d.

Please see the full version for details. For simplicity, we described above the variant
with d = 2, but we show in the full version that for security we need d ≥ 3.

Indistinguishability Obfuscation Without Maps 137

7 Setting the Parameters

We provide in the full version a discussion on the security of the new NLinFE
scheme described above. In particular, we generalize the attacks presented in
Sects. 4 and 5 and argue that our new scheme is not vulnerable to them. Below,
we provide an instantiation of the parameters of the scheme which we believe is
secure, even against a quantum computer (see the full version for more details).
Recall that the parameter N is the maximal number of key requests that an
attacker is allowed to performed and that this parameter should be superlin-
early larger than the ciphertext size for the NLinFE scheme to imply iO. In our
construction, the ciphertext size is (rk+m+w) log(pD). One can check that the
choices of parameters proposed below ensure that this size is bounded by N1−ε

for some ε > 0, hence the construction implies iO.

– κ is the security parameter and B1 = poly(κ) is given as input
– d = 3
– k = κ3 and r = κ
– σ = 2κ · B1

– pD−1 = σ2d and pD = σ6d

– m = κd · log pD

– w is arbitrary up to κd+1

– N = κd+2.5.

Acknowledgments. This work was supported in part by CyberSecurity Research
Flanders with reference number VR20192203 and by the Research Council KU Leuven
grant C14/18/067 on Cryptanalysis of post-quantum cryptography.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 7

3. Agrawal, S., Libert, B., Stehle, D.: Fully secure functional encryption for linear
functions from standard assumptions, and applications. In: Crypto (2016)

4. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS, pp. 75–86 (2009)

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/3-540-48523-6_1

138 S. Agrawal and A. Pellet-Mary

6. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

7. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8 10

8. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. Eprint 2016 (2016)

9. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46497-7 21

10. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
649–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 21

11. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

12. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5 Gröbner basis
algorithm. J. Symb. Comput. 70, 49–70 (2015)

13. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: STOC, pp. 439–448 (2015)

14. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: TCC, pp. 391–418 (2016)

15. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 20

16. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS 2015, p. 163 (2015)

17. Brent, R.P., McKay, B.D.: Determinants and ranks of random matrices over ZM.
Discret. Math. 66(1–2), 35–49 (1987)

18. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: STOC, pp. 429–437 (2015)

19. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 19

20. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 10

21. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 20

https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-319-78375-8_21
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-96881-0_20

Indistinguishability Obfuscation Without Maps 139

22. Cheon, J.H., Cho, W., Hhan, M., Kim, J., Lee, C.: Statistical zeroizing attack:
cryptanalysis of candidates of BP obfuscation over GGH15 multilinear map. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694,
pp. 253–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 9

23. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

24. Cheon, J.H., Hhan, M., Kim, J., Lee, C.: Cryptanalyses of branching program
obfuscations over GGH13 multilinear map from the NTRU problem. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 184–210.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 7

25. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 12

26. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistin-
guishability obfuscation over CLT13. Eprint 2016 (2016)

27. Ducas, L., Pellet-Mary, A.: On the statistical leak of the GGH13 multilinear map
and some variants. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I.
LNCS, vol. 11272, pp. 465–493. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03326-2 16

28. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

29. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013). http://eprint.iacr.org/

30. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

31. Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products (2018)
32. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)

EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 21

33. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

34. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: FOCS (2014)

35. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC, pp. 419–428 (2015)

36. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

https://doi.org/10.1007/978-3-030-26954-8_9
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-319-96878-0_7
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-030-03326-2_16
https://doi.org/10.1007/978-3-030-03326-2_16
https://doi.org/10.1007/978-3-642-38348-9_1
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20

140 S. Agrawal and A. Pellet-Mary

37. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS,
vol. 9562, pp. 96–124. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 5

38. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 21

39. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: FOCS (2016)

40. Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local PRGs
with applications to indistinguishability obfuscation. IACR Cryptology ePrint
Archive (2017). http://eprint.iacr.org/2017/301

41. Mayr, E.W.: Some complexity results for polynomial ideals. J. Complex. 13(3),
303–325 (1997)

42. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

43. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

44. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 153–183. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 6

45. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

46. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

47. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 439–467. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
http://eprint.iacr.org/2017/301
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-319-96878-0_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-662-46803-6_15

Combiners for Functional Encryption,
Unconditionally

Aayush Jain(B), Nathan Manohar(B), and Amit Sahai

UCLA, Los Angeles, CA, USA
aayushjainiitd@gmail.com, nmanohar@cs.ucla.edu

Abstract. Functional encryption (FE) combiners allow one to combine
many candidates for a functional encryption scheme, possibly based on
different computational assumptions, into another functional encryption
candidate with the guarantee that the resulting candidate is secure as
long as at least one of the original candidates is secure. The fundamental
question in this area is whether FE combiners exist. There have been a
series of works Ananth et al. (CRYPTO ’16), Ananth-Jain-Sahai (EURO-
CRYPT ’17), Ananth et al. (TCC ’19) on constructing FE combiners
from various assumptions.

We give the first unconditional construction of combiners for func-
tional encryption, resolving this question completely. Our construction
immediately implies an unconditional universal functional encryption
scheme, an FE scheme that is secure if such an FE scheme exists. Pre-
viously such results either relied on algebraic assumptions or required
subexponential security assumptions.

1 Introduction

In cryptography, many interesting cryptographic primitives rely on computa-
tional assumptions. Over the years, many assumptions have been proposed
such as factoring, quadratic residuosity, decisional Diffie-Hellman, learning with
errors, and many more. However, despite years of research, the security of these
assumptions is still not firmly established. Indeed, we do not even know how
to prove P �=NP; our understanding of algebraic hardness is even more specu-
lative. Moreover, we also do not have a strong understanding of how different
cryptographic assumptions compare against each other. For instance, it is not
known whether decisional Diffie-Hellman is a weaker or a stronger assumption
than learning with errors. This inability to adequately compare different cryp-
tographic assumptions induces the following problematic situation: suppose we
have a cryptographic primitive (say, public key encryption) with many candi-
date constructions based on a variety of assumptions, and we want to pick the
most secure candidate to use. Unfortunately, due to our limited knowledge of
how these assumptions compare against each other, we cannot determine which
candidate is the most secure one.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 141–168, 2020.
https://doi.org/10.1007/978-3-030-45721-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_6

142 A. Jain et al.

Unconditional Cryptographic Combiners. Cryptographic combiners were intro-
duced to handle the above issue. Given many candidates of a cryptographic
primitive, possibly based on different assumptions, a cryptographic combiner
takes these candidates and produces another candidate for the same primitive
with the guarantee that this new candidate is secure as long as at least one of the
original candidates is secure. For example, a combiner for public key encryption
can be used to transform two candidates, one based on decisional Diffie-Hellman
and the other on learning with errors, into a new public-key encryption candidate
that is secure provided either decisional Diffie-Hellman or learning with errors
is secure. Thus, this new public-key encryption candidate relies on a strictly
weaker assumption than the original two candidate constructions and allows us
to hedge our bets on the security of the two original assumptions.

Furthermore, even if an underlying primitive, such as public-key encryp-
tion, requires an unproven hardness assumption, the security of a combiner for
that primitive can be unconditional. Therefore, cryptographic combiners stand
out in the world of cryptography in the sense that they are one of the few
useful cryptographic objects that do not inherently require reliance on hard-
ness assumptions. And indeed, combiners for fundamental primitives like one-
way functions, public-key encryption, and oblivious transfer are known to exist
unconditionally [28,38,39,42].

Obtaining unconditional combiners is particularly important because the
entire purpose of constructing combiners is to make cryptographic constructions
future-proof in case assumptions break down. In this work, we study combin-
ers for functional encryption, an area where studying combiners is particularly
important and where, prior to our work, only conditional constructions were
known [2,5,6] (and in fact, these previous results required either algebraic or
sub-exponentially strong assumptions). We obtain the first unconditional com-
biner for functional encryption. Furthermore, we do so by providing a general
compiler, significantly simplifying previous work in this area. Along the way,
we define and provide constructions of input-local MPC protocols, input-local
garbling schemes, and combiner-friendly homomorphic secret sharing schemes,
primitives that may be of independent interest.

Combiners for Functional Encryption. Functional encryption (FE), introduced
by [52] and first formalized by [19,51], is one of the core primitives in the area
of computing on encrypted data. This notion allows an authority to generate
and distribute constrained keys associated with functions f1, . . . , fq, called func-
tional keys, which can be used to learn the values f1(x), . . . , fq(x) given an
encryption of x. Intuitively, the security notion states that the functional keys
associated with f1, . . . , fq and an encryption of x reveal nothing beyond the
values f1(x), . . . , fq(x).

Function encryption has opened the floodgates to important cryptographic
applications that have long remained elusive. These applications include, but are
not limited to, multi-party non-interactive key exchange [34], universal samplers
[34], reusable garbled circuits [36], verifiable random functions [10,13,37], and
adaptive garbling [40]. FE has also helped improve our understanding of impor-
tant theoretical questions, such as the hardness of Nash equilibrium [33,34].

Combiners for Functional Encryption, Unconditionally 143

One of the most important applications of FE is its implication to indistin-
guishability obfuscation (iO for short), which is considered the holy grail of
cryptography [8,15]. In fact, if we are willing to tolerate subexponential security
loss, then even secret-key FE is enough to imply iO [14,43,44].

Over the past few years, many constructions of functional encryption have
been proposed [1,4,7,9,29,30,45–49] and studying what assumptions suffice for
constructing general-purpose FE remains a very important and active area of
investigation. Recent cryptanalytic attacks [11,12,23–26,41,49] on FE schemes
further highlight the importance of careful study. Given these results, we should
hope to minimize the trust we place on any individual FE candidate.

The notion of a functional encryption combiner achieves this purpose. Infor-
mally speaking, a functional encryption combiner allows for combining many
functional encryption candidates in such a way that the resulting FE candidate
is secure as long as at least one of the initial FE candidates is secure. In other
words, a functional encryption combiner says that it suffices to place trust col-
lectively on multiple FE candidates, instead of placing trust on any specific FE
candidate. Furthermore, FE combiners are an important area of study for the
following reasons:

– Most importantly, it gives a mechanism to hedge our bets and distribute our
trust over multiple constructions. This has been highlighted above.

– Often, constructions of FE combiners give rise to constructions of robust FE
combiners generically [2,6]. Any robust FE combiner gives us a universal
construction of FE, which is an explicit FE scheme that is secure as long as
there exists a secure functional encryption scheme.

– Studying FE combiners helps improve our understanding of the nature of
assumptions we need to build FE.

– They give rise to theoretically important results in other branches of cryp-
tography, such as round-optimal low-communication MPC [2].

– Constructions of robust FE combiners have encouraged research on under-
standing correctness amplification for FE, iO [6,16], and other fundamental
cryptographic primitives [17].

– Finally, due to connections to security amplification, techniques used to build
FE combiners are useful to give better constructions of FE. In particular,
the work of [7] used techniques developed from the study of FE combiners to
provide a generic security amplification of FE, which proved pivotal in giving
the first construction of FE that does not rely on multilinear maps and makes
use of simply stated, instance-independent assumptions.

There have been a series of works in this area. The starting point was the
work of two concurrent papers [5,27], both appearing at CRYPTO, that studied
the related question of obfuscation combiners. This was followed up by the work
of [6], which gave a construction of FE combiners (and universal FE) assuming
the existence of a subexponentially secure FE algorithm. They also gave a con-
struction of a robust FE combiner assuming LWE. Then [2] gave construction
of a robust FE combiner (and universal obfuscation) relying on the algebraic
assumption of the existence of constant degree randomizing polynomials (which
are known to exist assuming number-theoretic assumptions such as LWE, DDH,

144 A. Jain et al.

and quadratic residuosity). However, until now, the ultimate question in this
area, of whether FE combiners exist without making any additional assump-
tions, has remained open.

1.1 Our Contributions

In this paper, we consider the following questions.

What is theminimal assumptionnecessary to construct FE combiners and
universal FE?

In particular,

Is it possible to construct FE combiners and universal FE unconditionally?

We resolve the above question in the affirmative and prove the following.

Theorem 1 (Informal). There exists an unconditionally secure FE combiner
for P/poly.

It turns out that our construction of an FE combiner also gives rise to a
robust FE combiner using the results of [2,6].

Corollary 1 (Informal). There exists an unconditionally secure robust FE
combiner for P/poly.

As any robust FE combiner gives a universal FE scheme [5,6], we obtain the
following additional result.

Corollary 2 (Informal). There exists an unconditional construction of a uni-
versal FE scheme for P/poly.

We note that, as was the case in previous constructions, our construction of a
universal FE scheme is parameterized by the maximum run-time of any of the
algorithms of the secure FE scheme.

1.2 Technical Overview

Our starting point is the observation that FE combiners are related to the notion
of secure multi-party computation and function secret sharing (also known as
homomorphic secret sharing [18,20–22,50]). Suppose for a function f , it was
possible to give out function shares f1, . . . , fn such that for any input x, we
can n-out-of-n secret share x into shares x1, . . . , xn and recover f(x) given
f1(x1), . . . , fn(xn). Then, we would be able to build an FE combiner in the fol-
lowing manner. Given an input x, the encryptor would n-out-of-n secret share
x and encrypt the ith share xi under the ith FE candidate FEi (depicted in
Fig. 1). To generate a function key for a function f , FEi would generate a func-
tion key for function share fi. Using these ciphertexts and function keys, it would
be possible to recover fi(xi), from which it would be possible to recover f(x).

Combiners for Functional Encryption, Unconditionally 145

Security would follow from the fact that since at least one FE candidate is
secure, one of the input shares remains hidden, hiding the input. This overall
approach was used in [2,6] to construct FE combiners from LWE. In this work,
we would like to minimize the assumptions needed to construct an FE combiner,
and, unfortunately, we do not know how to construct such a function sharing
scheme for polynomial-sized circuits from one-way functions. Note that since FE
implies one-way functions, any FE combiner can assume the existence of one-
way functions since the individual one-way function candidates arising from each
FE candidate can be trivially combined by independent concatenation (direct
product) of the candidate one-way functions.

FE1 FE2 FEn

Share(x)

Fig. 1. A pictorial overview of splitting x amongst n FE candidates.

Our first step towards constructing an FE combiner unconditionally is that
we observe that it is easy to build an FE combiner for a constant number of
FE candidates by simply nesting the candidates. For example, if we had 2 FE
candidates, FE1 and FE2, we could combine these two candidates by simply hav-
ing encryption encrypt first under FE1 and then encrypt the resulting ciphertext
under FE2. To generate a secret key for a function f , we would generate a func-
tion key SKf,1 for f under FE1 and then generate a function key SKf,2 for the
function that runs FE1.Dec(SKf,1, ·) under FE2. The function key SKf,2 would
then be the function key for f under the combined FE scheme. Using nest-
ings of candidates, we can replace our original FE candidates with these new
nested candidates. For example, if we use 2-nestings, we can consider all possible
2-nestings FEi,j for i, j ∈ [n] as our new set of FE candidates. Observe now that
we have replaced our original n FE candidates with n2 “new” FE candidates.
At first glance, this appears to not have helped much. However, note that previ-
ously, we needed to consider function sharing schemes that were secure against
up to n−1 corruptions. When using nested candidates, it follows that if FEi∗ was
originally secure, then FEi,j with at least one of i, j = i∗ is also secure. We show
how to leverage this new corruption pattern of the candidates in the following
manner (Fig. 2).

Suppose we had a “special” MPC protocol Φ where every bit in the transcript
of an execution of Φ can be computed by a function on the inputs (and random
coins) of a constant number of parties (say 2). Furthermore, the output of Φ can
be determined solely from the transcript and Φ is secure against a semi-honest

146 A. Jain et al.

FE1

FE3 FE4

FE1

FE5 FE7

FE5

FE6 FE8

Share(x)

Fig. 2. A pictorial overview of 3-nested FE candidates (the required level of nesting in
our construction). If FE5 is secure, then FE1,5,7 and FE5,6,8 are secure.

adversary that corrupts up to n−1 parties. If Φ has the above properties, then the
transcript of an execution of Φ can be determined via an alternate computation.
Instead of running Φ normally to obtain the transcript, we can instead compute
jointly on all pairs of parties’ inputs (and randomness) to obtain the transcript.
That is, if a bit τα in the transcript τ can be computed given only the inputs (and
randomness) of parties Pi and Pj (we say it “depends” on parties Pi and Pj),
then we can determine the value of τα in an execution of Φ by computing this
function on (xi, ri) and (xj , rj) (the inputs and randomness of these two parties)
rather than executing the protocol in the normal fashion. Proceeding in the same
manner for every bit in the transcript, we can obtain the same exact transcript
that we would have by executing the protocol normally, but we are able to do
so by only evaluating functions on two parties’ inputs (and randomness).

This observation leads us to the following approach for constructing an
FE combiner. To encrypt an input x, additively secret share x into n shares
(x1, . . . , xn) and encrypt each pair of shares (xi, xj) under FEi,j . To generate
a function key for a function f , consider the MPC protocol that computes
f(x1 ⊕ . . . ⊕ xn). Then, for every bit τα in the transcript of such a protocol,
if τα “depends” on parties Pi, Pj , we would generate a function key under FEi,j

for the circuit Cτα
that computes τα given xi, xj .

This approach immediately runs into the following problem. The MPC proto-
col is randomized, whereas the function keys in an FE scheme are for determin-
istic functions. Moreover, an FE ciphertext needs to be compatible with many
function keys. Fortunately, these problems can easily be solved by having the
encryptor also generate a PRF key Ki for each party Pi. The encryptor now
encrypts (xi, xj ,Ki,Kj) under FE candidate FEi,j and uses Ki and some fixed
tag tagf embedded in the function key for f to generate the randomness of Pi

in the evaluation of the MPC protocol. Now, by using the function keys for the
Cτα

’s, it is possible for the decryptor to recover all the bits in the transcript of
an execution of the protocol and, therefore, recover f(x). Security would follow
from the fact that if candidate FEi∗ is secure, then xi∗ and Ki∗ remain hid-
den, and we can use the security of the MPC protocol to simulate the view of
party Pi∗ .

If such an MPC protocol as described above could be found, the above would
suffice for constructing an FE combiner. However, the goal of this work is to

Combiners for Functional Encryption, Unconditionally 147

construct an FE combiner unconditionally and so we would like to only assume
the existence of one-way functions. However, semi-honest MPC secure against
up to n − 1 corruptions requires oblivious transfer (OT), which we do not want
to assume. To deal with this, we adapt our MPC idea to settings with correlated
randomness, such as the OT-hybrid model.

A first attempt at adapting this idea to protocols in the OT-hybrid model
is the following. Suppose that we have a “special” MPC protocol Φ where every
bit in the transcript of an execution of Φ can be computed by a function on
the inputs (and random coins/correlated randomness) of a constant number of
parties (say 2). Furthermore, the output of Φ can be determined solely from the
transcript and Φ is secure against a semi-honest adversary that corrupts up to
n − 1 parties in the OT-hybrid model.

The first challenge is to instantiate the OT oracle. This can be done by having
shared PRF keys Ki,j between all pairs of parties Pi and Pj . Then Ki,j will be
used to generate correlated randomness between Pi and Pj . We can generate all
the correlated randomness prior to the protocol execution and include it as part
of the input to a party Pi. This allows us to generate correlated randomness,
but we still run into a second issue. Since a party Pi has correlated randomness
between itself and all other parties, its input now depends on all other parties!
So, it appears that constant nestings of FE candidates will no longer suffice.

Fortunately, this second issue can be mitigated by a more refined condition on
the “special” MPC protocol Φ. Let (ri,j , rj,i) denote the correlated randomness
pair between parties Pi and Pj , where ri,j and rj,i are given to Pi and Pj ,
respectively. Instead of having the functions that compute bits of the transcript
of Φ take as input the entire correlated randomness string {ri,j}j �=i∈[n] held by
a party Pi, we instead allow it to take single components ri,j as input. If the
function takes as input ri,j , then both parties Pi and Pj are counted in the
number of parties that the function depends on. More formally, the condition
on the “special” MPC protocol Φ becomes the following. Let (xi, ri) denote the
input and randomness of a party Pi and let ri,j denote the correlated randomness
between parties Pi and Pj held by Pi. Every bit τα in the transcript τ of an
execution of Φ can be computed by some deterministic function fα on input

((xi)i∈Sα
, (ri)i∈Sα

, (ri,j)i,j∈Sα
),

where |Sα| ≤ t for some constant t. We call such an MPC protocol a t-input-local
MPC protocol and define this formally in Sect. 4.

To summarize, if we had a t-input-local MPC protocol for some constant t,
then we would be able to construct an FE combiner unconditionally using the
ideas detailed above. However, it is unclear how to construct such an MPC pro-
tocol, and, unfortunately, no protocol in the literature for all polynomial-sized
circuits in the OT-hybrid model satisfies all our required properties. However,
the 2-round semi-honest MPC protocol of Garg-Srinivasan [35] transformed to
operate in the OT-hybrid model [31] comes close. At a high level, this is because
they compile an MPC protocol into a series of garbled circuits, where each gar-
bled circuit is computed by a single party. However, there are several bottlenecks

148 A. Jain et al.

that make their protocol initially incompatible with our schema. One observa-
tion is that the protocol of [31,35] contains a pre-processing phase that causes
the initial state (effectively input) of each party to be dependent on all other
parties. This might seem like a major issue since messages dependent only on a
single parties’ state can now depend on all parties. Yet, a careful analysis shows
that while individual messages sent by a party might “depend” on all parties in
the protocol, each bit sent by a party still depends on only a constant number
of parties.

The real issue is that in the protocol of [31,35], parties send garbled circuits
of circuits whose descriptions depend on all parties. Thus, the resulting garbled
circuit may depend on all parties. However, we observe that the way these circuits
depend on all parties is very specific. The circuits garbled are keyed circuits of
the form C[v], where v is some hardcoded value. C itself is public and does
not depend on any party. And while v depends on all parties, each bit of v
only depends on a constant number of parties! To obtain an input-local MPC
protocol, we construct a garbling scheme that has the property that garbling
circuits of the form C[v] described above results in a garbled circuit where each
bit of the garbled circuit only depends on a constant number of parties. We
call such a garbling scheme an input-local garbling scheme. By instantiating the
protocol of [31,35] with this input-local garbling scheme, we are able to arrive
at an input-local MPC protocol.

Combiner-Friendly Homomorphic Secret Sharing (CFHSS). In the sketch of our
plan for constructing an FE combiner provided above, we wanted to generate
function keys for various circuits with respect to nested FE candidates. As an
intermediate tool, we introduce the notion of a combiner-friendly homomorphic
secret sharing (CFHSS) scheme. Such an abstraction almost immediately gives
rise to an FE combiner, but will be useful in simplifying the presentation of the
construction.

Informally, a CFHSS scheme consists of input encoding and function encoding
algorithms. The input encoding algorithm runs on an input x and outputs input
shares si,j,k for i, j, k ∈ [n] (we define CFHSS schemes for triples of indices, since
we will require 3-nestings of FE candidates in our construction). The function
encoding algorithm runs on a circuit C and outputs function shares Ci,j,k for
i, j, k ∈ [n]. Then, the decoding algorithm takes as input the evaluation of all
shares Ci,j,k(si,j,k) and recovers C(x). Informally, the security notion of a CFHSS
scheme says that if the shares corresponding to some index i∗ remain hidden,
then the input is hidden to a computationally bounded adversary and only the
evaluation C(x) is revealed.

In order to build an FE combiner from a CFHSS scheme, we will encrypt
the share si,j,k using the nested FE candidate corresponding to indices i, j, k. To
provide a function key for a circuit C, we will issue function keys for the circuit
Ci,j,k with respect to the nested candidate corresponding to indices i, j, k. This
allows the decryptor to compute Ci,j,k(si,j,k) for all i, j, k ∈ [n], which by the
properties of our CFHSS scheme, is sufficient to determine C(x). Note that in
order to argue security, we will have to rely on the Trojan method [3].

Combiners for Functional Encryption, Unconditionally 149

Organization. We begin by defining functional encryption, secure multi-party
computation, and garbling schemes in Sect. 2. Then, in Sect. 3, we define the
notion of a functional encryption combiner. In Sect. 4, we define the notion of
an input-local MPC protocol and then show how to construct such a proto-
col. This is done by constructing a specific garbling scheme that, when used
to instantiate the garbling scheme used in the protocol of [31,35], results in an
input-local MPC protocol. In Sect. 5, we introduce and define the notion of a
combiner-friendly homomorphic secret sharing (CFHSS) scheme and construct
such a scheme using an input-local MPC protocol. In Sect. 6, we construct an
FE combiner from a CFHSS scheme. Finally, in Sect. 7, we observe that our
unconditional FE combiner implies a universal FE scheme.

2 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to
denote the set {1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions
D0,D1 are computationally indistinguishable. We use negl(λ) to denote a func-
tion that is negligible in λ. We use y ← A to denote that y is the output of
a randomized algorithm A, where the randomness of A is sampled from the
uniform distribution. We write A(x; r) to denote the output of A when ran on
input x with randomness r. We use PPT as an abbreviation for probabilistic
polynomial time.

2.1 Functional Encryption

We define the notion of a (secret key) functional encryption candidate and a
(secret key) functional encryption scheme. A functional encryption candidate is
associated with the correctness requirement, while a secure functional encryption
scheme is associated with both correctness and security.

Syntax of a Functional Encryption Candidate/Scheme. A functional encryption
(FE) candidate/scheme FE for a class of circuits C = {Cλ}λ∈N consists of four
polynomial time algorithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ

be the input space of the circuit class Cλ and let Yλ be the output space of Cλ.
We refer to Xλ and Yλ as the input and output space of the candidate/scheme,
respectively.

– Setup, MSK ← FE.Setup(1λ): It takes as input the security parameter λ and
outputs the master secret key MSK.

– Encryption, CT ← FE.Enc(MSK,m): It takes as input the master secret key
MSK and a message m ∈ Xλ and outputs CT, an encryption of m.

– Key Generation, SKC ← FE.KeyGen (MSK, C): It takes as input the master
secret key MSK and a circuit C ∈ Cλ and outputs a function key SKC .

– Decryption, y ← FE.Dec (SKC ,CT): It takes as input a function secret key
SKC , a ciphertext CT and outputs a value y ∈ Yλ.

150 A. Jain et al.

Throughout this work, we will only be concerned with uniform algorithms.
That is, (Setup,Enc,KeyGen,Dec) can be represented as Turing machines (or
equivalently uniform circuits).

We describe the properties associated with the above candidate.

Correctness

Definition 1 (Correctness). A functional encryption candidate FE =
(Setup,KeyGen,Enc,Dec) is said to be correct if it satisfies the following property:
for every C : Xλ → Yλ ∈ Cλ,m ∈ Xλ it holds that:

Pr

⎡
⎢⎢⎣

MSK ← FE.Setup(1λ)
CT ← FE.Enc(MSK,m)

SKC ← FE.KeyGen(MSK, C)
C(m) ← FE.Dec(SKC ,CT)

⎤
⎥⎥⎦ ≥ 1 − negl(λ),

where the probability is taken over the coins of the algorithms.

IND-Security. We recall indistinguishability-based selective security for FE. This
security notion is modeled as a game between a challenger Chal and an adversary
A where the adversary can request functional keys and ciphertexts from Chal.
Specifically, A can submit function queries C and Chal responds with the corre-
sponding functional keys. A can also submit message queries of the form (x0, x1)
and receives an encryption of messages xb for some bit b ∈ {0, 1}. The adversary
A wins the game if she can guess b with probability significantly more than 1/2
and if for all function queries C and message queries (x0, x1), C(x0) = C(x1).
That is to say, any function evaluation that is computable by A gives the same
value regardless of b. It is required that the adversary must declare the challenge
messages at the beginning of the game.

Definition 2 (IND-secure FE). A secret-key FE scheme FE for a class of
circuits C = {Cλ}λ∈[N] and message space X = {Xλ}λ∈[N] is selectively secure if
for any PPT adversary A, there exists a negligible function μ(·) such that for all
sufficiently large λ ∈ N, the advantage of A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1] − Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined
below:

1. Challenge message queries: A submits message queries,
{

(xi
0, x

i
1)

}

with xi
0, x

i
1 ∈ Xλ to the challenger Chal.

2. Chal computes MSK ← FE.Setup(1λ) and then computes CTi ← FE.Enc(MSK,
xi

b) for all i. The challenger Chal then sends {CTi} to the adversary A.

Combiners for Functional Encryption, Unconditionally 151

3. Function queries: The following is repeated an at most polynomial number
of times: A submits a function query C ∈ Cλ to Chal. The challenger Chal
computes SKC ← FE.KeyGen(MSK, C) and sends it to A.

4. If there exists a function query C and challenge message queries (xi
0, x

i
1) such

that C(xi
0) �= C(xi

1), then the output of the experiment is set to ⊥. Otherwise,
the output of the experiment is set to b′, where b′ is the output of A.

Adaptive Security. The above security notion is referred to as selective security
in the literature. One can consider a stronger notion of security, called adaptive
security, where the adversary can interleave the challenge messages and the
function queries in any arbitrary order. Analogous to Definition 2, we can define
an adaptively secure FE scheme. In this paper, we only deal with selectively
secure FE schemes. However, the security of these schemes can be upgraded to
adaptive with no additional cost [3].

Collusions. We can parameterize the FE candidate by the number of function
secret key queries that the adversary can make in the security experiment. If the
adversary can only submit an a priori upper bounded q secret key queries, we say
that the scheme is q-key secure. We say that the functional encryption scheme
is unbounded-key secure if the adversary can make an unbounded (polynomial)
number of function secret key queries. In this work, we will allow the adversary
to make an arbitrary polynomial number of function secret key queries.

FE Candidates vs. FE Schemes. As defined above, an FE scheme must satisfy
both correctness and security, while an FE candidate is simply the set of algo-
rithms. Unless otherwise specified, we will be dealing with FE candidates that
satisfy correctness. We will only refer to FE constructions as FE schemes if it is
known that the construction satisfies both correctness and security.

2.2 Secure Multi-party Computation

The syntax and security definitions for secure multi-party computation can be
found in the full version. In this work, we will deal with protocols that follow
a certain structure, introduced in [31,35], called conforming protocols. The full
syntactic definition of conforming protocols can be found in the full version.

2.3 Garbling Schemes

The definition of garbling schemes can be found in the full version.

2.4 Correlated Randomness Model

In the correlated randomness model, two parties Pi and Pj are given correlated
strings ri,j and rj,i, respectively. If we set ri,j = (k0, k1) for two strings k0, k1

152 A. Jain et al.

and rj,i = (b, kb) for a random bit b and the string kb, then these two parties
can now perform a 2-round information-theoretically secure OT, where Pi is the
sender and Pj is the receiver. In the first round, the receiver sends v = b ⊕ c,
where c is the receiver’s choice bit. Then, the sender responds with (y0, y1) =
(m0 ⊕kv,m1 ⊕k1⊕v). The receiver can then determine mc by computing yc ⊕kb.

In this work, we will often say that parties generate correlated randomness
necessary to perform a certain number of OTs. By this, we simply mean that
the parties repeat the above procedure once for each necessary OT (with the
appropriate party as sender/receiver) and use the above 2-round information-
theoretically secure OT protocol for each necessary OT.

3 FE Combiners: Definition

In this section, we give a formal definition of an FE combiner. Intuitively, an
FE combiner FEComb takes n FE candidates, FE1, . . . ,FEn and compiles them
into a new FE candidate with the property that FEComb is a secure FE scheme
provided that at least one of the n FE candidates is a secure FE scheme.

Syntax of a Functional Encryption Combiner. A functional encryption combiner
FEComb for a class of circuits C = {Cλ}λ∈N consists of four polynomial time algo-
rithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ be the input space
of the circuit class Cλ and let Yλ be the output space of Cλ. We refer to Xλ and
Yλ as the input and output space of the combiner, respectively. Furthermore, let
FE1, . . . ,FEn denote the descriptions of n FE candidates.

– Setup, FEComb.Setup(1λ, {FEi}i∈[n]): It takes as input the security param-
eter λ and the descriptions of n FE candidates {FEi}i∈[n] and outputs the
master secret key MSK.

– Encryption, FEComb.Enc(MSK, {FEi}i∈[n],m): It takes as input the master
secret key MSK, the descriptions of n FE candidates {FEi}i∈[n], and a message
m ∈ Xλ and outputs CT, an encryption of m.

– Key Generation, FEComb.Keygen
(
MSK, {FEi}i∈[n], C

)
: It takes as input

the master secret key MSK, the descriptions of n FE candidates {FEi}i∈[n],
and a circuit C ∈ Cλ and outputs a function key SKC .

– Decryption, FEComb.Dec
({FEi}i∈[n],SKC ,CT

)
: It is a deterministic algo-

rithm that takes as input the descriptions of n FE candidates {FEi}i∈[n], a
function secret key SKC , and a ciphertext CT and outputs a value y ∈ Yλ.

Remark 1. In the formal definition above, we have included {FEi}i∈[n], the
descriptions of the FE candidates, as input to all the algorithms of FEComb.
For notational simplicity, we will often forgo these inputs and assume that they
are implicit.

We now define the properties associated with an FE combiner. The three
properties are correctness, polynomial slowdown, and security. Correctness is
analogous to that of an FE candidate, provided that the n input FE candidates

Combiners for Functional Encryption, Unconditionally 153

are all valid FE candidates. Polynomial slowdown says that the running times
of all the algorithms of FEComb are polynomial in λ and n. Finally, security
intuitively says that if at least one of the FE candidates is also secure, then
FEComb is a secure FE scheme. We provide the formal definitions below.

Correctness

Definition 3 (Correctness). Suppose {FEi}i∈[n] are correct FE candidates.
We say that an FE combiner is correct if for every circuit C : Xλ → Yλ ∈ Cλ,
and message m ∈ Xλ it holds that:

Pr

⎡
⎢⎢⎣

MSK ← FEComb.Setup(1λ, {FEi}i∈[n])
CT ← FEComb.Enc(MSK, {FEi}i∈[n],m)

SKC ← FEComb.Keygen(MSK, {FEi}i∈[n], C)
C(m) ← FEComb.Dec({FEi}i∈[n],SKC ,CT)

⎤
⎥⎥⎦ ≥ 1 − negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is a
negligible function in λ.

Polynomial Slowdown

Definition 4 (Polynomial Slowdown) An FE combiner FEComb satisfies
polynomial slowdown if on all inputs, the running times of FEComb.Setup,
FEComb.Enc,FEComb.Keygen, and FEComb.Dec are at most poly(λ, n), where
n is the number of FE candidates that are being combined.

IND-Security

Definition 5 (IND-Secure FE Combiner). An FE combiner FEComb is
selectively secure if for any set {FEi}i∈[n] of correct FE candidates, it satis-
fies Definition 2, where the descriptions of {FEi}i∈[n] are public and implicit in
all invocations of the algorithms of FEComb, if at least one of the FE candidates
FE1, . . . ,FEn also satisfies Definition 2.

Note that Definition 2 is the IND-security definition for FE.

Robust FE Combiners and Universal FE

Remark 2. We also define the notion of a robust FE combiner. An FE combiner
FEComb is robust if it is an FE combiner that satisfies the three properties (cor-
rectness, polynomial slowdown, and security) associated with an FE combiner
when given any set of FE candidates {FEi}i∈[n], provided that one is a correct
and secure FE candidate. No restriction is placed on the other FE candidates.
In particular, they need not satisfy correctness at all.

Robust FE combiners can be used to build a universal functional encryption
scheme defined below.

154 A. Jain et al.

Definition 6 (T -Universal Functional Encryption). We say that an
explicit Turing machine Πuniv = (Πuniv.Setup,Πuniv.Enc,Πuniv.KeyGen,Πuniv.Dec)
is a universal functional encryption scheme parametrized by T if Πuniv is a correct
and secure FE scheme assuming the existence a correct and secure FE scheme
with runtime < T .

4 Input-Local MPC Protocols

As discussed in Sect. 1.2, if we had a “special” MPC protocol, where every bit of
the transcript is computable by a deterministic function on a constant number of
parties’ inputs and randomness, and the output of the protocol can be computed
solely from the transcript, we could use such a protocol to construct an FE
combiner. Here, we formally define such a protocol and call it an input-local
MPC protocol. Since our goal is to construct FE combiners unconditionally, we
do not want to assume the existence of OT, so we will define our input-local
MPC protocol in the correlated-randomness model.

4.1 Input-Local Protocol Specification

Let Φ be an MPC protocol for n parties P1, . . . , Pn with inputs x1, . . . , xn in the
correlated randomness model. We can view Φ as a deterministic MPC protocol,
where the input of a party Pi is (xi, ri, (ri,j)j �=i), where ri is the randomness used
by Pi and (ri,j , rj,i) for i �= j is the correlated randomness tuple used between
parties Pi and Pj . Φ is called t-input-local if the following holds:

– Input-Local Transcript: Let τ be a transcript of an execution of Φ. Every
bit τα of τ can be written as a deterministic function of the inputs, random-
ness, and correlated randomness dependent on at most t parties. That is,
there exists a deterministic function fα such that

τα = fα ((xi)i∈Sα
, (ri)i∈Sα

, (ri,j)i,j∈Sα
) ,

where |Sα| ≤ t. If i ∈ Sα, then τα depends on party Pi.

– Publicly Recoverable Output: Given a transcript τ of an execution of Φ,
there exists a function Eval such that the output of the protocol Φ for all
parties is given by

y = Eval(τ).

– Security: Φ is simulation secure against n−1 semi-honest corruptions, assum-
ing the existence of one-way functions.

No MPC protocol in the literature for all polynomial-sized circuits in the
correlated randomness model satisfies the specification of a t-input-local MPC
protocol for a constant t. However, the protocols of [31,35] come “close”, and
we show that with a simple transformation, the protocol of [31,35] can be made
t-input-local.

[31,35] show the following.

Combiners for Functional Encryption, Unconditionally 155

Theorem 2 ([31,32,35]). Assuming one-way functions, for any circuit C, there
exists a 2-round MPC protocol in the correlated randomness model that is secure
against semi-honest adversaries that can corrupt up to n − 1 parties.

The MPC protocol satisfying Theorem 2 is the MPC protocol of [35] mod-
ified to operate in the correlated randomness model. In [31], they additionally
modify the protocol of [35] in other ways, since the focus of [31] is on achieving
information-theoretic security for smaller circuit classes and better efficiency.
However, one can simply modify the protocol of [35] to operate in the correlated
randomness model without making the additional modifications present in [31],
a fact which we confirmed with the authors [32].

The MPC protocol of Theorem 2 is not input-local, but can be made input-
local via a simple modification. At a high level, the reason that the above protocol
is not input-local is because parties Pi, as part of the protocol, send garbled
circuits of circuits C[v] that have values v hardcoded in them that depend on
(ri,j)j �=i, the correlated randomness between Pi and all other parties. As a result,
these garbled circuits depend on all parties, and thus, the protocol is not input-
local for a constant t. Fortunately, this issue is easily fixable by instantiating
the garbling scheme used by the protocol in a specific manner. We consider the
garbling scheme for keyed circuits that garbles C[v] by applying Yao’s garbling
scheme to the universal circuit U , where U(C, v, x) = C[v](x). The garbled
circuit of this new scheme consists of Û , the Yao garbling of U , along with input
labels corresponding to C and v. The input labels of this new scheme are the
input labels corresponding to x. Observe now that Û and the input labels for C
are clearly input-local, since they only depend on the party Pi that is garbling.
Furthermore, since every bit of v only depends on a constant number of parties,
each input label for each bit of v also depends on a constant number of parties,
giving us an input-local protocol.

Formally, consider the following garbling scheme.

Definition 7 (Input-Local Garbling Scheme). Let GC = (GrbC,EvalGC)
denote the standard Yao garbling scheme [53] for poly-sized circuits. Let C be a
class of keyed circuits with keyspace V. Let the description length of any C ∈ C
be �1 and of any v ∈ V be �2. Let the input length of any circuit C ∈ C be �3.
Let � = �1 + �2 + �3. Let Ci, vi denote the ith bit of the description of C, v,
respectively. Let GC′ = (GrbC′,EvalGC′) be a garbling scheme for the class of
keyed circuits C defined as follows:

– Garbled Circuit Generation, GrbC′(1λ, C[v]): Let U be the universal cir-
cuit that, on input (C, v, x) with |C| = �1, |v| = �2, and |x| = �3, computes
C[v](x). Compute (Û , (k1, . . . ,k�)) ← GrbC(1λ, U). Output

((Û , kC1
1 , . . . , k

C�1
�1

, kv1
�1+1, . . . , k

v�2
�1+�2

), (k�1+�2+1, . . . ,k�)).

– Evaluation, EvalGC′(Ĉ[v], (kx1
1 , . . . , k

x�3
�3

)): Parse Ĉ[v] as (Û , (k1, k2, . . . ,
k�1+�2)). Run

EvalGC(Û , (k1, . . . , k�1+�2 , k
x1
1 , . . . , k

x�3
�3

))

and output the result.

156 A. Jain et al.

Correctness of the above garbling scheme follows immediately from the cor-
rectness of Yao’s garbling scheme and the definition of U . In particular, for every
keyed circuit C[v], for any x ∈ {0, 1}�3 , EvalGC′ runs EvalGC on Û with input
labels corresponding to (C, v, x), giving U(C, v, x) = C[v](x) as desired.

Theorem 3. The garbling scheme of Definition 7 is secure.

Proof. Let SimGC be the simulator for Yao’s garbling scheme. The simulator
SimGC′ operates as follows. Run

(Û , (k1, . . . , k�)) ← SimGC(1λ, φ(U), C[v](x))

and output
((Û , k1, . . . , k�1+�2), (k�1+�2+1, . . . , k�)).

Suppose there exists an adversary A that can distinguish the output of SimGC′

from the real execution. Then, consider the adversary A′ that breaks the secu-
rity of Yao’s garbling scheme by simply querying its challenger on the pair
(U, (C, v, x)), rearranging the components of its received challenge to match the
output of SimGC′, and running A. A′ outputs the result of A. A′ simulates
the role of A’s challenger exactly and, therefore, must win with nonnegligible
advantage, a contradiction. ��

Armed with the above garbling scheme, we are able to obtain an input-local
MPC protocol. By taking the MPC protocol of Theorem 2 and instantiating
the underlying garbling scheme with the one from Definition 7, we arrive at the
following result.

Theorem 4. Assuming one-way functions, there exists a 3-input-local MPC
protocol for any poly-sized circuit C.

Proof. The proof is included in the full version.

5 Combiner-Friendly Homomorphic Secret Sharing
Schemes

As an intermediate step in our construction of an FE combiner, we define and
construct what we call a combiner-friendly homomorphic secret sharing scheme
(CFHSS). Informally, a CFHSS scheme consists of input encoding and function
encoding algorithms. The input encoding algorithm runs on an input x and
outputs input shares si,j,k for i, j, k ∈ [n]. The function encoding algorithm
runs on a circuit C and outputs function shares Ci,j,k for i, j, k ∈ [n]. Then,
the decoding algorithm takes as input the evaluation of all shares Ci,j,k(si,j,k)
and recovers C(x). Looking ahead, our CFHSS scheme has several properties
that will be useful in constructing an FE combiner. Recall that the high-level
idea of our construction was to view each FE candidate as a party Pi in an
MPC protocol. In our construction of a CFHSS scheme, each input and function
share depends on only the state of a constant number of parties. In particular,

Combiners for Functional Encryption, Unconditionally 157

share si,j,k will depend only on the state of parties Pi, Pj , and Pk. Informally,
the security notion of a CFHSS scheme says that if the shares corresponding
to some index i∗ remain hidden, then the input is hidden to a computationally
bounded adversary and only the evaluation C(x) is revealed.

5.1 Definition

Definition 8. A combiner-friendly homomorphic secret sharing scheme,
CFHSS = (InpEncode,FuncEncode,Decode), for a class of circuits C = {Cλ}λ∈N

with input space Xλ and output space Yλ supporting n ∈ N candidates consists
of the following polynomial time algorithms:

– Input Encoding, InpEncode(1λ, 1n, x): It takes as input the security param-
eter λ, the number of candidates n, and an input x ∈ Xλ and outputs a set
of input shares {si,j,k}i,j,k∈[n].

– Function Encoding, FuncEncode(1λ, 1n, C): It is an algorithm that takes
as input the security parameter λ, the number of candidates n, and a circuit
C ∈ C and outputs a set of function shares {Ci,j,k}i,j,k∈[n].

– Decoding, Decode({Ci,j,k(si,j,k)}i,j,k∈[n]): It takes as input a set of evalua-
tions of function shares on their respective input shares and outputs a value
y ∈ Yλ ∪ {⊥}.
A combiner-friendly homomorphic secret sharing scheme, CFHSS, is required

to satisfy the following properties:

– Correctness: For every λ ∈ N, circuit C ∈ Cλ, and input x ∈ Xλ, it holds
that:

Pr

⎡
⎣

{si,j,k}i,j,k∈[n] ← InpEncode(1λ, 1n, x)
{Ci,j,k}i,j,k∈[n] ← FuncEncode(1λ, 1n, C)
C(x) ← Decode({Ci,j,k(si,j,k)}i,j,k∈[n])

⎤
⎦ ≥ 1 − negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is
a negligible function in λ.

– Security:

Definition 9 (IND-secure CFHSS). A combiner-friendly homomorphic secret
sharing scheme CFHSS for a class of circuits C = {Cλ}λ∈[N] and input space
X = {Xλ}λ∈[N] is selectively secure if for any PPT adversary A, there exists a
negligible function μ(·) such that for all sufficiently large λ ∈ N, the advantage
of A is

AdvCFHSSA =
∣∣∣Pr[ExptCFHSSA (1λ, 1n, 0) = 1] − Pr[ExptCFHSSA (1λ, 1n, 1) = 1]

∣∣∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N and n ∈ N, the experiment
ExptCFHSSA (1λ, 1n, b) is defined below:

1. Secure share: A submits an index i∗ ∈ [n] that it will not learn the input
shares for.

158 A. Jain et al.

2. Challenge input queries: A submits input queries,
(
x�
0, x

�
1

)
�∈[L]

with x�
0, x

�
1 ∈ Xλ to the challenger Chal, where L = poly(λ) is chosen by A.

3. For all �, Chal computes {s�
i,j,k}i,j,k∈[n] ← InpEncode(1λ, 1n, x�

b). For all �, the
challenger Chal then sends {s�

i,j,k}i,j,k∈[n]\{i∗}, the input shares that do not
correspond to i∗, to the adversary A.

4. Function queries: The following is repeated an at most polynomial number
of times: A submits a function query C ∈ Cλ to Chal. The challenger Chal
computes function shares {Ci,j,k}i,j,k∈[n] ← FuncEncode(1λ, 1n, C) and sends
them to A along with all evaluations {Ci,j,k(s�

i,j,k)}i,j,k∈[n] for all � ∈ [L].
5. If there exists a function query C and challenge message queries (x�

0, x
�
1) such

that C(x�
0) �= C(x�

1), then the output of the experiment is set to ⊥. Otherwise,
the output of the experiment is set to b′, where b′ is the output of A.

5.2 Construction

Using 3-input-local MPC protocols {ΦC} for a circuit class C and a PRF, we will
construct a combiner-friendly homomorphic secret sharing scheme for C. For a
circuit C ∈ C and number of parties n, we say that ΦC is an MPC protocol for
C on n parties if it computes the function C(x1 ⊕ . . .⊕xn) on inputs x1, . . . , xn.

Formally, we show the following.

Theorem 5. Given 3-input-local MPC protocols {ΦC} for a circuit class C
and assuming one-way functions, there exists a combiner-friendly homomorphic
secret sharing scheme for C for n = poly(λ) candidates.

Using Theorem 4 to instantiate the 3-input-local MPC protocols, we imme-
diately arrive at the following.

Theorem 6. Assuming one-way functions, there exists a combiner-friendly
homomorphic secret sharing scheme for P/poly for n = poly(λ) candidates.

Notation:

– Let PRF be a pseudorandom function with λ-bit keys that takes λ-bit inputs
and outputs in {0, 1}∗. PRF will be used to generate the randomness needed
for various randomized algorithms. As the length of randomness needed varies
by use case (but is always polynomial in length), we don’t specify the output
length of PRF here and the output length needed will be clear from context.
It is easy to build our required pseudorandom function from one with a fixed
length output. Let PRF′ be a pseudorandom function that maps {0, 1}2λ-
bit inputs to a single output bit in {0, 1}. Then, to evaluate PRF(K,x) to
an appropriate output length �, we would simply compute the output bit
by bit by evaluating PRF′(K,x||1),PRF′(K,x||2), . . . ,PRF′(K,x||�). When we
write (r1, r2, r3) := PRF(K,x), we mean that we generate the randomness

Combiners for Functional Encryption, Unconditionally 159

needed for three different algorithms using this PRF, where the length of
each ri depends on the amount of randomness needed by the algorithm. This
can be done in the same manner, by computing ri bit by bit by evaluating
PRF′(K,x||i||1),PRF′(K,x||i||2), . . . etc.

– For a 3-input-local protocol Φ for a circuit C ∈ C, we use the same syntax as
in Sect. 4 to refer to the various components and algorithms associated with
this protocol. We implicitly assume that the description of the 3-input-local
protocol Φ for C is included in the descriptions of the function shares for C.

– Let Corr(1λ, 1�, i, j) → (ri,j , rj,i) be the function that on input the security
parameter λ, a length parameter �, and indices i �= j ∈ [n] outputs correlated
random strings ri,j and rj,i each in {0, 1}�. We will assume that i < j and
if not, we implicitly assume that the indices are swapped when evaluating
the algorithm. Looking ahead, � is set as the the length of the correlated
randomness required between two parties in the execution of the 3-input-
local protocol. For simplicity, we will omit the parameter � in the description
below when it is clear from the context. We note that Corr can be implemented
by generating random OT-correlations.

– In the construction, for simplicity, we will denote input and function shares
for the tuple of indices (i, i, i) by si and Ci, respectively. Similarly, we will
denote the input and function shares for the tuple of indices (i, j, i) with i �= j
by si,j and Ci,j , respectively. We will denote input and function shares for
the tuple of indices (i, j, k) with i �= j �= k by si,j,k and Ci,j,k respectively.
All other input and function shares are set to ⊥.

Overview: We provided a sketch of our construction in Sect. 1.2. Here, we
provide more details to assist in the understanding of our construction. The
input encoding algorithm will take an input x, n-out-of-n secret share it into
shares x1, . . . , xn, sample PRF keys Ki for i ∈ [n] and shared PRF keys
Kij for i < j ∈ [n]. Shares of the form si will be (xi,Ki), shares of the
form si,j will be (xi, xj ,Ki,Kj ,Kij), and shares of the form si,j,k will be
(xi, xj , xk,Ki,Kj ,Kk,Kij ,Kik,Kjk). These will serve as the inputs to the func-
tion shares {Ci,j,k}i,j,k∈[n]. Intuitively, a share si,j,k (or si,j or si) contains all
the input shares and PRF keys that correspond to the indices i, j, k (or i, j or i).

The description of function shares of the form Ci, Ci,j , and Ci,j,k is given
in Fig. 3, Fig. 4, and Fig. 5, respectively. The purpose of Ci, Ci,j , and Ci,j,k is to
simply output input-local bits in the transcript of ΦC dependent on either only
Pi, the two parties Pi and Pj , or the three parties Pi, Pj , Pk, respectively.

Given evaluations of all the function shares, decoding operates by using the
evaluations to obtain a transcript τ of an execution of ΦC and then running the
evaluation procedure of ΦC .

Construction: We now provide the formal construction.

– Input Encoding, InpEncode(1λ, 1n, x):
• XOR secret share x uniformly at random across n shares such that x1 ⊕

. . . ⊕ xn = x.

160 A. Jain et al.

• For i ≤ j ∈ [n], sample distinct PRF keys Kij . For i > j ∈ [n], set
Kij = Kji. Set Ki = Kii.

• For i ∈ [n], set si = (xi,Ki).
• For i, j ∈ [n] with i < j, set si,j = (xi, xj ,Ki,Kj ,Kij).
• For i, j, k ∈ [n] with i < j < k, set si,j,k = (xi, xj , xk,Ki,Kj ,Kk,

Kij ,Kik,Kjk).
• Set all other shares to ⊥.
• Output all shares {si,j,k}i,j,k∈[n].

– Function Encoding, FuncEncode(1λ, 1n, C): Let Φ denote the 3-input-local
MPC protocol for C on n parties. For every bit τα in τ , a transcript of Φ,
let Sα denote the set of parties that τα depends on and fα be the function
that computes τα with respect to these parties’ inputs and randomness (see
Sect. 4).

• Sample tag
tagrand from {0, 1}λ, uniformly at random.

• For i ∈ [n], function share Ci is given by circuit Ci in Fig. 3.
• For i, j ∈ [n] with i < j, function share Ci,j is given by circuit Ci,j in

Fig. 4.
• For i, j, k ∈ [n] with i < j < k, function share Ci,j,k is given by circuit

Ci,j,k in Fig. 5.
• Set all other function shares to ⊥ and output {Ci,j,k}i,j,k∈[n].

– Decoding, Decode({Ci,j,k(si,j,k)}i,j,k∈[n]): It does the following:
• Rearrange all input-local bits τα output by the function shares to obtain

τ , the transcript of an execution of Φ.
• Run Eval(τ) to obtain the output y.

Correctness: Correctness follows from the correctness of the underlying set of
3-input-local MPC protocols {φC}. In particular, for any circuit C ∈ Cλ and
input x ∈ Xλ, we note that the Decode algorithm obtains τ , the transcript of an
execution of φC . Therefore, by running Eval on τ , Decode obtains

y = C(x1 ⊕ . . . ⊕ xn) = C(x)

as desired.

Ci

Input: Input xi and PRF key Ki.
Hardwired: Index i, tag tagrand in {0, 1}λ.

• Compute ri := PRF(Ki, tagrand).
• For every input-local bit τα in a transcript τ of Φ with Sα = {i}, compute

τα := fα(xi, ri).
• Output (τα)τα input-local with Sα={i}.

Fig. 3. Description of function share Ci.

Combiners for Functional Encryption, Unconditionally 161

Ci,j

Input: Inputs xi, xj and PRF keys Ki, Kj, Kij .
Hardwired: Indices i, j, tag tagrand in {0, 1}λ.

• For u ∈ {i, j}, compute ru := PRF(Ku, tagrand).
• Compute rCorrij := PRF(Kij , tagrand).
• Compute (ri,j , rj,i) := Corr(1λ, i, j; rCorrij).
• For every bit input-local bit τα in a transcript τ of Φ with Sα = {i, j},
compute

τα := fα((xu)u∈Sα , (ru)u∈Sα , (ru,v)u,v∈Sα).

• Output (τα)τα input-local with Sα={i,j}.

Fig. 4. Description of function share Ci,j .

Security: The security proof can be found in the full version.

6 Construction of an FE Combiner from a CFHSS
Scheme

In this section, we show how to use a CFHSS scheme and one-way functions to
construct an FE combiner. Instantiating the CFHSS scheme with the construc-
tion in Sect. 5 and the one-way function with the concatenation of the one-way
function candidates implied by our FE candidates (as described in Sect. 1.2), we
arrive at the following result.

Theorem 7. There exists an unconditionally secure unbounded-key FE com-
biner for n = poly(λ) FE candidates for P/poly.

In the rest of this section, we show Theorem 7.

6.1 d-Nested FE

A tool used in our construction is d-nested FE (for d = 3). d-nested FE is a
new FE candidate that can be created easily from d FE candidates by simply
encrypting in sequence using the d FE candidates. Intuitively, this new FE candi-
date will be secure as long as one of the d candidates is secure since an adversary
should be unable to break the encryption of the secure candidate. d-nested FE
can be viewed as an FE combiner that can only handle a constant number of
FE candidates since the runtime of its algorithms may depend exponentially on
d. The construction and proof of d-nested FE can be found in the full version.

162 A. Jain et al.

Ci,j,k

Input: Inputs xi, xj , xk and PRF keys Ki, Kj , Kk, Kij , Kik, Kjk.
Hardwired: Indices i, j, k, tag tagrand in {0, 1}λ.

• For u ∈ {i, j, k}, compute ru := PRF(Ku, tagrand).
• Compute rCorrij := PRF(Kij , tagrand), rCorrik := PRF(Kik, tagrand), and rCorrjk :=
PRF(Kjk, tagrand).

• Compute (ri,j , rj,i) := Corr(1λ, i, j; rCorrij), (ri,k, rk,i) := Corr(1λ, i, k; rCorrik),
and (rj,k, rk,j) := Corr(1λ, j, k; rCorrjk).

• For every bit input-local bit τα in a transcript τ of Φ with Sα = {i, j, k},
compute

τα := fα((xu)u∈Sα , (ru)u∈Sα , (ru,v)u,v∈Sα).

• Output (τα)τα input-local with Sα={i,j,k}.

Fig. 5. Description of circuit Ci,j,k.

6.2 Construction

We now formally describe the construction. First, we provide some notation that
will be used throughout the construction.

Notation:

– Let FE1, . . . ,FEn denote n FE candidates. In the following construction, we
assume that the descriptions {FEi}i∈[n] are implicit in all the algorithms of
FEComb.

– Let FEijk denote the 3-nested FE candidate derived by nesting FEi, FEj , and
FEk.

– Let CFHSS = (InpEncode,FuncEncode,Decode) be a combiner-friendly homo-
morphic secret sharing scheme. Let �output denote the length of the outputs
obtained from the evaluation of function shares on input shares.

– Let E be any λ-bit CPA-secure secret-key encryption scheme with message
space {0, 1}�output .

– Let �x = �x(λ) denote the length of the messages and let �E = �E(λ) denote
the length of the encryption key for the scheme E.

Construction:

– FEComb.Setup(1λ): On input the security parameter, it runs FEijk.Setup(1λ)
for i, j, k ∈ [n] and E.SK ← E.Setup(1λ). It outputs MSK =
({MSKijk}i,j,k∈[n],E.SK).

– FEComb.Enc(MSK, x ∈ {0, 1}�x): It executes the following steps.

Combiners for Functional Encryption, Unconditionally 163

• First, encode x into n3 shares by running CFHSS.InpEncode(1λ, 1n, x) to
compute {si,j,k}i,j,k∈[n]. Then, for all i, j, k ∈ [n], compute

CTijk = FEij .Enc
(
MSKijk, (si,j,k, 0�E , 0)

)
.

• Output CT = {CTijk}i,j,k∈[n].
– FEComb.KeyGen(MSK, C): It executes the following steps.

• For all i, j, k ∈ [n], it computes ci,j,k ← E.Enc(E.SK, 0�output), where �output
is the length of evaluations of function shares on input shares of CFHSS.

• It computes {Ci,j,k}i,j,k∈[n] ← CFHSS.FuncEncode(1λ, 1n, C).
• For all i, j, k ∈ [n], it computes SKHi,j,k

← FEijk.KeyGen (MSKijk,Hi,j,k),
where circuit Hi,j,k is described in Fig. 6.

• It outputs SKC = ({SKHi,j,k
}i,j,k∈[n]).

Hi,j,k

Input: Input share si,j,k, a string t ∈ {0, 1} E, and a bit b
Hardwired: Ciphertext ci,j,k, circuit Ci,j,k

∗ If b = 0, output E.Dec(t, ci,j,k).

∗ Otherwise, output Ci,j,k(si,j,k).

Fig. 6. Description of the evaluation circuit.

– FEComb.Dec(SKC ,CT): Parse SKC as ({SKHi,j,k
}i,j,k∈[n]) and CT as

{CTijk}i,j,k∈[n]. For all i, j, k ∈ [n], compute yi,j,k = FEijk.Dec(SKHi,j,k
,

CTijk).
Run CFHSS.Decode({yi,j,k}i,j,k∈[n]) and output the result.

Correctness: Correctness follows from the correctness of CFHSS and the fact that
all correct encryptions are encryptions of messages of the form (si,j,k, 0�E , 0).
In particular, for all i, j, k ∈ [n], Hi,j,k(si,j,k, 0�E , 0) = Ci,j,k(si,j,k) and then
CFHSS.Decode({Ci,j,k(si,j,k)}i,j,k∈[n]) = C(x) by the correctness of CFHSS.

Polynomial Slowdown: The fact that all the algorithms of FEComb run in time
poly(λ, n) is immediate from the efficiency of the FE candidates, CFHSS, and E
and the fact that there are n3 = poly(n) different tuples (i, j, k) for i, j, k ∈ [n].

6.3 Security Proof

The security proof can be found in the full version.

164 A. Jain et al.

7 Robust FE Combiners and Universal FE

We can consider a stronger notion of an FE combiner called a robust FE com-
biner. A robust FE combiner is an FE combiner that satisfies correctness and
security provided that at least one FE candidate, FEi, satisfies both correctness
and security. No restrictions are placed on the other FE candidates. In particular,
they may satisfy neither correctness nor security. We note that the FE combiner
constructed in Sect. 6 is not robust. However, [2] showed how to unconditionally
transform an FE combiner into a robust FE combiner.

Theorem 8 ([2]). If there exists an FE combiner, then there exists a robust
FE combiner.

Combining Theorem 8 with Theorem 7, we obtain the following corollary.

Corollary 3. There exists an unconditionally secure unbounded-key robust FE
combiner for n = poly(λ) FE candidates for P/poly.

Universal Functional Encryption: Robust FE combiners are closely related to
the notion of universal functional encryption. Universal functional encryption is
a construction of functional encryption satisfying the following simple guarantee.
If there exists a Turing Machine with running time bounded by some T (n) =
poly(n) that implements a correct and secure FE scheme, then the universal
functional encryption construction is itself a correct and secure FE scheme. Using
the existence of a robust FE combiner (Corollary 3) and the results of [2,5], we
obtain the following corollary.

Corollary 4. There exists a universal unbounded-key functional encryption
scheme for P/poly.

Acknowledgements. We thank Saikrishna Badrinarayanan for helpful discussions
and the anonymous EUROCRYPT reviewers for useful feedback regarding this work.
The authors were supported in part by a DARPA/ARL SAFEWARE award, NSF
Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF
grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. Aayush
Jain was also supported by a Google PhD Fellowship (2018) in the area of Privacy
and Security. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The
views expressed are those of the authors and do not reflect the official policy or position
of the Department of Defense, the National Science Foundation, the U.S. Government,
or Google.

References

1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 7

https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_7

Combiners for Functional Encryption, Unconditionally 165

2. Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE com-
biners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019.
LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36030-6 9

3. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

4. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 10

5. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions
and robust combiners for indistinguishability obfuscation and witness encryption.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 17

6. Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistin-
guishability obfuscation to functional encryption. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 91–121. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 4

7. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multi-
linear maps: iO from LWE, bilinear maps, and weak pseudorandomness. IACR
Cryptology ePrint Archive 2018, 615 (2018)

8. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

9. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 6

10. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: A note on VRFs from verifiable
functional encryption. IACR Cryptology ePrint Archive 2017, 51 (2017)

11. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 649–
679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 21

12. Barak, B., Hopkins, S.B., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets
program obfuscation, revisited. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 226–250. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 8

13. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 19

14. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016, Part II. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 15

https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-662-53008-5_17
https://doi.org/10.1007/978-3-319-56620-7_4
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-319-78375-8_21
https://doi.org/10.1007/978-3-030-17653-2_8
https://doi.org/10.1007/978-3-030-17653-2_8
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-662-53644-5_15

166 A. Jain et al.

15. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

16. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approxi-
mate to exact. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562,
pp. 67–95. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 4

17. Bitansky, N., Vaikuntanathan, V.: A note on perfect correctness by derandom-
ization. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10211, pp. 592–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 20

18. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

19. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

20. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

21. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

22. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: CCS, pp. 1292–1303 (2016)

23. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

24. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for CSPR problems and cryptanalysis
of the GGH multilinear map without an encoding of zero. In: ANTS (2016)

25. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

26. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 21

27. Fischlin, M., Herzberg, A., Bin-Noon, H., Shulman, H.: Obfuscation combiners.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 521–550.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 18

28. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant
hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–
243. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 13

29. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

30. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. IACR Cryptology ePrint Archive 2014, 666 (2014)

https://doi.org/10.1007/978-3-662-49096-9_4
https://doi.org/10.1007/978-3-662-49096-9_4
https://doi.org/10.1007/978-3-319-56614-6_20
https://doi.org/10.1007/978-3-319-56614-6_20
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_18
https://doi.org/10.1007/978-3-540-74143-5_13

Combiners for Functional Encryption, Unconditionally 167

31. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and
black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239,
pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 5

32. Garg, S., Ishai, Y., Srinivasan, A.: Personal communication (2019)
33. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of

finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 20

34. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 6

35. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

36. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC (2013)

37. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

38. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 22

39. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners
for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639 6

40. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 6

41. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 21

42. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

43. Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional
encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 603–648. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 20

44. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 5

45. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2

168 A. Jain et al.

46. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

47. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018, 646 (2018)

48. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 21

49. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: FOCS (2016)

50. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

51. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010, 556 (2010)

52. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

53. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

Impossibility Results for Lattice-Based
Functional Encryption Schemes

Akın Ünal(B)

ETH Zurich, Zürich, Switzerland
auenal@inf.ethz.ch

Abstract. Functional Encryption denotes a form of encryption where a
master secret key-holder can control which functions a user can evaluate
on encrypted data. Learning With Errors (LWE) (Regev, STOC’05) is
known to be a useful cryptographic hardness assumption which implies
strong primitives such as, for example, fully homomorphic encryption
(Brakerski-Vaikuntanathan, FOCS’11) and lockable obfuscation (Goyal
et al., Wichs et al., FOCS’17). Despite its stre ngth, however, there is
just a limited number of functional encryption schemes which can be
based on LWE. In fact, there are functional encryption schemes which
can be achieved by using pairings but for which no secure instantiations
from lattice-based assumptions are known: function-hiding inner prod-
uct encryption (Lin, Baltico et al., CRYPTO’17) and compact quadratic
functional encryption (Abdalla et al., CRYPTO’18). This raises the ques-
tion whether there are some mathematical barriers which hinder us from
realizing function-hiding and compact functional encryption schemes
from lattice-based assumptions as LWE.

To study this problem, we prove an impossibility result for function-
hiding functional encryption schemes which meet some algebraic restric-
tions at ciphertext encryption and decryption. Those restrictions are
met by a lot of attribute-based, identity-based and functional encryption
schemes whose security stems from LWE. Therefore, we see our results as
important indications why it is hard to construct new functional encryp-
tion schemes from LWE and which mathematical restrictions have to be
overcome to construct secure lattice-based functional encryption schemes
for new functionalities.

Keywords: Functional encryption · Function-hiding · Impossibility ·
LWE · Lattice-based · Online/offline

1 Introduction

Functional Encryption (FE) schemes are special encryption schemes in which
the holder of a master secret key can issue secret keys for specific functions to

A. Ünal—The author is supported by ERC Project 724307 ‘PREP-CRYPTO’.
Work done while the author was working at Karlsruhe Institute of Technology.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 169–199, 2020.
https://doi.org/10.1007/978-3-030-45721-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_7

170 A. Ünal

users. By knowing a secret key for a function f and a ciphertext for a message x,
an adversary shall learn nothing more of x than f(x). FE schemes have proven
to be extremely versatile. Not only does their notion generalize other forms
of encryption like Attribute-Based (ABE) or Identity-Based Encryption (IBE),
but also do we know that compact single-key FE and linearly compact FE for
cubic polynomials together with plausible assumptions imply indistinguishability
obfuscation [10,14,29].

Function-Hiding Functional Encryption (FHFE) schemes are an even
stronger subclass of FE where we demand that an adversary – given a secret
key for a function f and a ciphertext for a message x – learns nothing about
f and x except of f(x); i.e., the secret keys now hide the functions they are
supposed to evaluate.

We know that FE schemes with a bounded number of secret keys, an adver-
sary may learn, are already achievable from minimal assumptions [11]. However,
if we try to achieve security for an unbounded number of secret keys, then
we are left with (function-hiding) inner-product encryption, linearly compact
quadratic FE and FE schemes for constant-degree polynomials which are yielded
by relinearizing. Of course, there are special cases of FE like attribute-based and
identity-based encryption schemes. In those schemes, a ciphertext is accompa-
nied with a non-hidden attribute or identity and decryption is successful iff the
attribute/identity matches the policy of the secret key. However, the main focus
in this work are FE schemes, since we are interested in schemes which perform
various computations on hidden inputs. We stress here that for linearly compact
quadratic FE and function-hiding inner-product FE there are just pairing-based
constructions known so far [3,12,13,21,28].

Learning With Errors (LWE) [30] is a well-established hardness assumption.
It states that it is hard to solve a system of linear equations over a modulus q,
if the solution has sufficient entropy, the coefficients of the equations are chosen
uniformly random from Zq and one column of the presented system has been
perturbed by a small noise-vector whose entries are sampled from a suitable
error-distribution. Because of its strong homomorphic properties, there are fully
homomorphic encryption schemes and lockable obfuscation schemes whose secu-
rity can be proven solely under LWE [17,24,32]. Up to now, it is not possible to
construct those schemes from other standard assumptions. Intuitively, one would
assume that its homomorphic properties imply a lot of different FE schemes. But
as we have stressed, the most complex already existing FE schemes cannot be
replicated by lattice-based constructions. In fact, inner product encryption is
the only FE scheme whose security can be based on LWE (again, putting ABE
and IBE aside). Because of the aforementioned amply homomorphic properties
of LWE, this is very surprising and leads us to the following question:

What hinders us from constructing function-hiding inner-product encryption schemes
whose security can be proven solely from the learning with errors assumption?

We show that there are two properties, both very common under LWE-based FE
schemes, which make it impossible for a function-hiding inner-product encryp-
tion scheme to be secure. The first property lies in the decryption algorithms

Impossibility Results for Lattice-Based FE Schemes 171

of LWE-based encryption schemes: If we take a close look at the pairing-based
schemes, we see that decryption is always complex, for it involves computing
discrete logarithms of the target group of the pairing. On the other hand,
a lot of LWE-based IBE and FE schemes have simple decryption algorithms
[2,4,6,7,16,19]. In most cases, for moduli q > p > 1, a secret key sk in such a
scheme usually determines a multivariate polynomial gsk(Y1, . . . , Ys) of constant
total degree, while the ciphertext is a vector ct ∈ Z

s
q. At decryption, the polyno-

mial is evaluated at the ciphertext which yields a value gsk(ct) ∈ Zq; this value
will be rounded to the nearest number of Zp, i.e., it will be divided by �q/p� and
then rounded to the nearest integer in {0, . . . , p − 1}. In full detail, this means

Dec(sk, ct) =
⌈

gsk(ct)
�q/p�

⌋
.

We believe that this property already suffices to render a FHFE scheme insecure.
Therefore, we state here the following conjecture:

Conjecture 1. Let FE = (Setup,KeyGen,Enc,Dec) be a correct private-key func-
tional encryption scheme for computing inner-products of vectors in Z

n
p . If there

is a constant d′ ∈ N and a polynomial s in the security parameter, s.t.

– each ciphertext ct sampled by Enc is a vector in Z
s
q,

– each secret key sk sampled by KeyGen is a multivariate polynomial in
Zq[Y1, . . . , Ys] of total degree ≤ d′

– and the decryption algorithm works by

Dec(sk, ct) =
⌈
sk(ct)
�q/p�

⌋
,

then FE cannot be function-hiding secure for an unbounded number of secret
keys.

We leave it as an open question to prove or refute Conjecture 1. Instead, we
prove in this work a weaker version of the above statement. If we are to
take a closer look at the aforementioned IBE and FE schemes and some ABE
schemes [15,23], we can distinguish an additional property which seems to
be common for some LWE-based schemes. They tend to have very algebraic
encryption algorithms. Take, for example, a closer look at ciphertext encryp-
tion in the LWE-based inner-product encryption schemes of Agrawal et al. [7].
For an input vector x ∈ {0, . . . , p − 1}l and two publicly known matrices
A ∈ Z

m×n
q , U ∈ Z

l×n
q , ciphertexts are generated by sampling a uniformly

random vector s ← Z
n
q , two gaussian noise vectors e0 ← DZm,αq, e1 ← DZl,αq

and outputting ct = (As + e0, Us + e1 + b · x) where b is either �q/K� or
pk−1. Note that we can distinguish two parts in this encryption algorithm:
a very complex offline part, where m + l multivariate degree-1 polynomials
g1(X), . . . , gm(X), h1(X), . . . , hl(X) are sampled by only knowing the public key
(A,U, p, q,K) and without looking at the input x:

gi(X1, . . . , Xl) = 〈ai | s〉 + e0,i,

hi(X1, . . . , Xl) = 〈ui | s〉 + e1,i + �q/K� · Xi.

172 A. Ünal

And, a simple online part which just consists of inserting x in the polynomials
sampled before and outputting the ciphertext ct = (g1(x), . . . , gm(x),
h1(x), . . . , hl(x)). This distinction in a complex offline and a simple online part
can be seen in the other aforementioned schemes, too. Therefore, we extract it
as an additional characteristic of some LWE-based schemes and make it more
precise in the following:

We say Enc is an encryption algorithm of depth d over Zq, if there is a ppt
algorithm Encoffline, s.t. we have for each master secret key msk and input x ∈ Z

n
p :

Enc(msk, x) = {
(r1, . . . , rs) ← Encoffline(msk) (1)
return (r1(x), . . . , rs(x)) (2)

}

where we demand that each ri is a multivariate polynomial in Zq[X1, . . . , Xn] of
total degree ≤ d. We will call line (1) the offline part and line (2) the online part
of Enc. Indeed, with this additional property we can prove an FHFE scheme to
be insecure.

1.1 Contribution

For moduli q = q(λ) > p = p(λ) such that q is prime, q
p is polynomially bounded

and p is not bounded by a constant, we prove the following:

Theorem 1 (Informal Main Theorem). Assume that the prerequisites of
Conjecture 1 hold and that additionally Enc is of depth d over Zq for some
constant d ∈ N.

Then, FE cannot be function-hiding secure for an unbounded number of secret
keys.

To be more precise, we give a bound of the maximum number of secret keys which
can be issued to an adversary before he can break FE (Corollary 4). On a very
high level, our proof idea is to use the algebraic structure of the composition
Dec ◦Enc. By doing so, we show that the decryption noises are generated in
a very algebraic way, are small and contain information about the encrypted
ciphertexts. Therefore, we can prove Theorem1 by analysing them.

As an additional result, we show that private-key encryption schemes where
the encryption algorithms are of constant depth and the ciphertext vectors are
short enough cannot be secure (Theorem 5 and Corollary 3). This result does not
depend on the decryption algorithms of the private-key encryption schemes.

Generality of Our Results. We note here that there are a lot of LWE-based
ABE schemes whose decryption algorithms are too complex to be subsumed by
the equation Dec(sk, ct) =
sk(ct)/�q/p��. This is because they allow policy-
predicates which cannot be computed by constant-depth circuits. Since the
policy-predicate needs to be computed at decryption, their decryption algorithms
must be at least as complicated as the most complex policy-predicate they allow.

Impossibility Results for Lattice-Based FE Schemes 173

However, the aforementioned ABE schemes in [15,23] have decryption algorithms
that become simple enough to fit the equation Dec(sk, ct) =
gsk(ct)/�q/p��, if
we restrict the policy-circuits in those schemes to be of constant depth and if
attributes and policy match at decryption.

Two-Input Quadratic Functional Encryption. We can derive from
Theorem 1 an impossibility result for 2-input quadratic FE schemes. A 2-input
quadratic FE scheme evaluates functions with two distinguished inputs and has
a left and a right encryption algorithm. To decrypt a value f(x, y), one needs a
secret key for f , a left ciphertext for x and a right ciphertext for y. Since such
a scheme contains a secret key for the quadratic function f(x, y) = 〈x | y〉, it
can emulate a function-hiding inner-product encryption scheme, even if it is only
single-key secure.

Corollary 1. Let 2FE = (Setup,KeyGen,EncR,EncL,Dec) be a correct private-
key 2-input functional encryption scheme for quadratic functions f : Zn

p ×Z
n
p →

Zp. If there are s ∈ poly(λ) and a constant d′ ∈ N, s.t.

– EncL is of constant depth d over Zq,
– each ciphertext ctL sampled by EncL is a vector in Z

s
q,

– each pair of a secret key sk and a right ciphertext ctR determines a multivari-
ate polynomial gsk,ctR ∈ Zq[X1, . . . , Xs] of total degree ≤ d′ s.t. the decryption
algorithm works by

Dec(sk, ctL, ctR) =
⌈

gsk,ctR(ct)
�q/p�

⌋
,

then 2FE cannot be single-key secure.

1.2 Interpretation and Open Problems

To prove Theorem 1, we assume that the exterior modulus q of the FHFE scheme
FE is prime. Furthermore, we need that the fraction q/p is bounded by a poly-
nomial in the security parameter λ and that the interior modulus p is for almost
all λ greater than some constant which depends on the depth of FE. Note that
q/p is usually a bound for the error noise used in LWE-based schemes. Since
LWE is assumed to be hard, even if its modulus q is a prime and the deviation
of its error noise is bounded by a polynomial in λ, we do not think that those
requirements are big restrictions for our results.

We see the results in this paper as a useful argument in understanding
the difficulties in constructing LWE-based function-hiding functional encryption
schemes. An even more useful argument would be to close the gap and prove
Conjecture 1. Because of Theorem 1, to prove our conjecture, it now suffices to
transform a function-hiding inner-product encryption scheme which is correct
and secure and fulfils the requirements of the conjecture to one that fulfils the
requirements of Theorem 1. In other words, it suffices to take an FHFE scheme
which already decrypts in an LWE-like manner and simplify its encryption algo-
rithm to one of constant depth which stays secure and correct.

174 A. Ünal

Another way to extend the results here is to prove Theorem 1 for encryption
algorithms where, in the online part, one first computes a bit-decomposition
G−1(x) of an input vector x and then applies the polynomials sampled in the
offline part to G−1(x). A lot of the techniques here would not be suitable for
this task; indeed, one would need to develop more advanced techniques to show
this.

1.3 Related Work

The idea of decomposing encryption algorithms into simple online and complex
offline parts has already been studied with the purpose of finding FE schemes
with practical usages (we cite [8,26] as examples). However, to the best of our
knowledge, this is the first work where the online/offline structure of encryption
has been used to prove an impossibility result.

Ananth and Vaikuntanathan showed that FE for P/poly with a bounded
number of secret keys can already be achieved from minimal assumptions, i.e.
public-key encryption in the asymmetric setting and one-way functions in the
symmetric setting [11]. The ciphertexts in their schemes are growing linearly with
the number of secret keys which can be handed out to an adversary. It is pre-
sumably hard to improve their result, since we know that a bounded FE scheme
with sufficiently compact ciphertexts would already imply indistinguishability
obfuscation [10,14].

As mentioned, it is hard to construct FE schemes for stronger functionali-
ties. In recent years, researchers circumvented this problem and looked at novel
FE schemes with additional properties: Abdalla, Chotard and other researchers
constructed multi-input and decentralized multi-client inner-product encryption
schemes [1,3,5,20]. Those are inner-product encryption schemes where a func-
tion has multiple inputs and to decrypt one needs a secret key and multiple
suitable ciphertexts. In the decentralized schemes, one gets rid of the master
secret key holder. Jain et al. introduced the notion of 3-restricted FE [9,27],
which can be understood as cubic FE where a ciphertext just hides two out of
three factors.

1.4 Technical Overview

To prove Theorem 1, we need to show the existence of a selective adver-
sary who wins the function-hiding IND-CPA game against the function-hiding
inner-product encryption scheme FE. In this game, the adversary submits an
unbounded number of inputs x0

i and functions f0
j for world 0 and an unbounded

number of inputs x1
i and functions f1

j for world 1. Then, the challenger draws a
random bit b ← {0, 1} and sends the corresponding ciphertexts and secret keys
of world b to the adversary. The adversary wins, if he guesses b correctly and if
the submitted inputs and functions would not tell him trivially in which world
he lives, i.e., if we have for all i and j

f0
j (x0

i) = f1
j (x1

i).

Impossibility Results for Lattice-Based FE Schemes 175

We do not directly construct an adversary to break FE. Instead, we show how
an adversary can reduce the problem of breaking FE to the problem of breaking
other encryption schemes with additional properties. To do so, we apply multiple
transformations to FE. Eventually, we end with a private-key encryption scheme
whose ciphertexts are short integer vectors and whose encryption algorithm is
of constant depth. Then, we construct a simple adversary who can break such
encryption schemes.

To make our argument go through, we need the transformations to preserve the
security and correctness of the transformed schemes. It is easy to see that security
is preserved, since we ensure that all changes to FE can be computed by an adver-
sary while he plays the above security game against FE. On the other hand, we can
not always guarantee that our transformations preserve correctness. In fact, one
transformation step applied to FE changes it in such a way that decryption suc-
ceeds only in a non-negligible number of cases. Furthermore, it is important that
at each time we have an encryption algorithm of constant depth. This means, each
transformation step either changes the encryption algorithm without changing its
depth or at most changes its depth to another constant value.

Our proof consists of three major steps:

(1) We first change FE s.t. all ciphertexts have short entries relative to the
modulus q. To do this, the adversary queries a lot of secret keys for the
zero-function and learns, by doing so, the structure of the space of secret
keys. Then, he can exchange a ciphertext with a vector of decryption noises.
Those noises have to be short, because otherwise they would make a correct
decryption impossible. On the other hand, however, we show that those
noises contain enough information about the original ciphertext to make
decryption possible in a non-negligible number of cases. Therefore, we can
assume FE to have short ciphertexts.
Then, we use a straightforward transformation to convert FE to a private-
key encryption scheme SKEq whose ciphertexts are short relative to q and
whose encryption algorithm is of constant depth over Zq.

(2) Since the encryption algorithm of SKEq is of constant depth, SKEq encrypts
a number x by sampling some polynomials, evaluating those polynomials at
x and reducing the result modulo q. To analyse the ciphertexts of SKEq, we
need to get rid of the arithmetic overflows in the online part of its encryption
algorithm. We observe that, if r(X) is a polynomial with small coefficients,
then, for some small x values, r(x) does not change when we reduce it
modulo q. Furthermore, we know the ciphertexts of SKEq to be short relative
to q. By using this fact, we can apply simple changes to the encryption
algorithm of SKEq to ensure that the polynomials sampled by its offline
algorithm have very small coefficients. By doing so, we can change SKEq to
a private-key encryption scheme SKE of constant depth whose ciphertext
vectors are sufficiently short and where no arithmetic overflows do occur in
the online part of its encryption algorithm.

(3) In SKE, a message x gets encrypted by sampling random integer polynomials
r1, . . . , rm of constant degree and computing (r1(x), . . . , rm(x)) as cipher-
text without any arithmetic overflows. Intuitively, such a scheme should not

176 A. Ünal

be secure and, indeed, we show that such a scheme can only be secure,
if its ciphertexts do not contain any information about the encrypted mes-
sages. But this makes decryption impossible. Since we showed that a correct
and secure FHFE scheme FE can be transformed into a secure private-key
encryption scheme whose ciphertexts contain a non-negligible amount of
information, it follows that FE could not be secure and correct in the first
place.

We now take a closer look at the techniques used in each step.

Replacing Ciphertexts with Decryption Noise. We describe here how to
make the ciphertexts of FE short. For simplicity, let us assume that we have
already relinearized ciphertexts and secret keys, i.e. decryption works by

Dec(sk, ct) =
⌈

〈sk | ct〉
�q/p�

⌋
.

Query a lot of secret keys v1, . . . , vm ← KeyGen(msk, 0) for the zero-function
and draw a ciphertext ctx for an arbitrary input x ∈ Z

n
p . Each vi must decrypt

ctx to zero, since this is the value of the zero-function applied to x. Because of
decryption correctness of FE, we can therefore assume that we have for each vi

|〈vi | ctx〉| ≤
⌊

q

p

⌋
.

Otherwise, 〈vi | ctx〉/�q/p� would not round to zero. We can now exchange ctx
with the following new ciphertext for x:

ct′x = (〈v1 | ctx〉, . . . , 〈vm | ctx〉).

This ciphertext just consists of noise values which are generated when decrypting
ctx with secret keys for the zero-function. Therefore, each entry of ct′x is bounded
by �q/p�. The question remains, how much information about x is left in ct′x and
if it is even possible to recover f(x) from ct′x and skf . We show that in a non-
negligible number of cases a successful decryption is still possible. That is because
of the function-hiding property of FE which vaguely implies that a secret key for
f has to lie in spanZq

{v1, . . . , vm} with non-negligible probability.

Getting Rid of Arithmetic Overflows. The key observation in step (2)
is that, if we evaluate a polynomial of degree d with small coefficients at a
small input, reducing the result modulo q will not change its value. However,
the polynomials r1(X), . . . , rm(X) sampled in the offline part of the encryption
algorithm of SKEq do not necessarily have small coefficients. We only know them
to have small output values. We prove that there is a constant c, s.t. each c · ri

has sufficiently small coefficients modulo q. The existence of c can be shown by
using a quasi-inverse1 of the Vandermonde matrix V for the tuple (0, 1, . . . , d),
that is an integer matrix whose product with V equals a scaled identity matrix.
1 Calling such matrices quasi-inverses is ambiguous. However, we will stick to this

notion, since we lack better names.

Impossibility Results for Lattice-Based FE Schemes 177

By simply multiplying ciphertexts of SKEq with c, we can make them behave
like they were outputted from an encryption algorithm of constant depth where
no arithmetic overflows do occur in its online part. Therefore, we can transform
SKEq into SKE.

Quasi-inverses of Vandermonde have been recently used by Esgin et al. to
extract witnesses out of many polynomial relations [22]. However, in this work,
we use a different quasi-inverse than them, which yields better bounds for our
results.

Statistically Distinguishing Random Polynomials. We describe here, how
our adversary breaks SKE in step (3). It suffices to look at the j-th coordinate of
a ciphertext of SKE. At input x, the j-th coordinate is computed by sampling a
random polynomial rj(X) of constant degree d in the offline part and evaluating
it at x. Our adversary works by guessing one x �= 0 and comparing E[rj(x)2]
and E[rj(0)2]. We show, if for each x the means E[rj(x)2] and E[rj(0)2] do not
differ by a non-negligible amount, then rj(X) is of degree at most d − 1 with
overwhelming probability. By inductively using hybrids, one can see that rj(X)
must be of degree 0, i.e. constant, with overwhelming probability. But, if rj(X)
is constant, the value rj(x) does not carry any information about x. Therefore,
if the ciphertexts of SKE contain a non-negligible amount of information about
the encrypted messages, it follows that there must be some j and x �= 0 s.t. our
adversary can successfully distinguish E[rj(x)2] and E[rj(0)2] and, therefore,
successfully distinguish ciphertexts for 0 from ciphertexts for x.

1.5 Organization of This Work

We first introduce some preliminaries in Sect. 2 and some important definitions
and concepts in Sect. 3. Then, in Sect. 4, we give an adversary who breaks private-
key encryption schemes of constant depth which do not make use of arithmetic
overflows. In Sect. 5, we then derive an impossibility result for private-key encryp-
tion schemes of constant depth with short ciphertexts over Zq by transforming
them to schemes we broke in the preceding section. Finally, in Sect. 6, we show
the impossibility of LWE-like FHFE schemes with simple online/offline encryp-
tion by transforming them to schemes of the preceding section.

Due to lack of space, we have ot omit the proofs of some lemmas. The reader
can find those proofs in the full version of this paper [31].

2 Preliminaries

For n ∈ N = {1, 2, 3, . . .}, set [n] := {1, . . . , n}. We define two sets of functions:

poly(λ) := {p : N → N ∃c, d ∈ N ∀λ ∈ N : λc + d ≥ p(λ) ≥ 1} ,

negl(λ) := {ε : N → R ∀c ∈ N : limλ→∞λcε(λ) = 0} .

For functions f, g : N → R, we write f(λ) ≥ g(λ) − negl(λ), if there is an
ε ∈ negl(λ) s.t. we have f(λ) ≥ g(λ) − ε(λ) for all λ.

178 A. Ünal

For x ∈ R, we define the following roundings: �x� := max {z ∈ Z | z ≤ x},

x� := min {z ∈ Z | z ≥ x} and
x� := max {z ∈ Z | 2 · |x − z| ≤ 1}.
For two discrete distributions D1,D2 over a set X we define the statistical
distance of (D1,D2) by Δ(D1,D2) := 1

2

∑
x∈X |D1(x) − D2(x)|.

2.1 Statistical Preliminaries

Theorem 2 (Hoeffding’s Inequality). Let n ∈ N and B, t ≥ 0. For n inde-
pendent random variables X1, . . . , Xn with |Xi| ≤ B, we have

Pr
[∣∣∣∣X1 + . . . + Xn

n
− E

[
X1 + . . . + Xn

n

]∣∣∣∣ ≥ 2Bt

]
≤ 2e−2nt2 .

Corollary 2. Let D be a memoryless source that outputs real numbers which
are bounded by B ≥ 0. Let r ∈ N and set n = 2r3. Let μ be the mean of D and
let En be the random variable which is sampled by n-fold querying D, summing
its outputs and dividing this sum by n. Then, we have

Pr
[
|En − μ| ≤ B

r

]
≥ 1 − 2e−r.

2.2 Algebraic Preliminaries

Theorem 3. Let f(X) =
∑d

i=0 aiX
i be a polynomial of degree d over R. Then

d! · ad =
d∑

k=0

(−1)d−k

(
d

k

)
f(k).

This theorem can be proven by using discrete derivatives. For example, a proof
can be deduced by trick 2 of [25], Section 5.3. Alternatively, the reader can find
a full proof in [31].

Now, let q ∈ N be a modulus.

Definition 1. For a ∈ Z, we define the absolute value modulo q by

|a mod q| := min
z∈qZ

|a + z| ∈
{

0, . . . ,
⌊q

2

⌋}
.

Lemma 1.(a) For a ∈ Z, we have |a mod q| = 0 ⇔ a ∈ qZ.
(b) For a1, . . . , an ∈ Z, we have |

∑n
i=1 ai mod q| ≤

∑n
i=1 |ai mod q|.

(c) For a, z ∈ Z, we have |z · a mod q| ≤ |z| · |a mod q|.

Impossibility Results for Lattice-Based FE Schemes 179

2.3 Learning Theory-Preliminaries

In this subsection, we study the problem of learning vector subspaces. Let F be
an arbitrary field.

Lemma 2. Let s ∈ N0 = {0, 1, 2, . . .} and let D be a discrete distribution over
F

s. For m ∈ N, we have

Pr
v1,...,vm←D

[vm ∈ spanF {v1, . . . , vm−1}] ≥ 1 − s

m
.

Proof. Let m > s and fix v1, . . . , vm ∈ supp(D). Denote by Sm the group
of permutations of the set [m] and by T ⊂ Sm the subgroup of order m
which is generated by the cyclic rotation (123 . . . m). For τ ∈ T set Vτ :=
spanF

{
vτ(1), . . . , vτ(m−1)

}
. Since each vi is an s-dimensional vector, we have

m − s ≤# {j ∈ [m] | vj ∈ spanF {vi | i ∈ [m] \ {j}}} = #
{
τ ∈ T | vτ(m) ∈ Vτ

}
.

Therefore, for each fixed choice v1, . . . , vm ∈ supp(D) we have

Pr
τ←T

[
vτ(m) ∈ Vτ

]
≥ m − s

m
.

Since the vectors v1, . . . , vm are identically and independently distributed, we
furthermore have

Pr
v1,...,vm←D

[vm ∈ spanF {v1, . . . , vm−1}] = Pr
v1,...,vm←D

τ←T

[
vτ(m) ∈ Vτ

]
.

Combining both things, we get

Pr
v1,...,vm←D

[vm ∈ spanF {v1, . . . , vm−1}] = Pr
v1,...,vm←D

τ←T

[
vτ(m) ∈ Vτ

]

=
∑

v1,...,vm∈supp(D)

Pr
τ←T

[
vτ(m) ∈ Vτ

]
· Pr

w1,...,wm←D
[∀i : wi = vi]

≥
∑

v1,...,vm∈supp(D)

m − s

m
· Pr

w1,...,wm←D
[∀i : wi = vi] =

m − s

m
.

��

Theorem 4. Let s ∈ N0 and let D be a discrete distribution over F
s. Then,

there exists an algorithm which makes s queries to D and O(s3)-fold use of the
four basic arithmetic operations in F to compute a number k ≤ s, a matrix
B ∈ F

s×k which consists of k samples of D and a second matrix B+ ∈ F
k×s s.t.

with V := B · Fk

(a) we have B+ · B = 1k×k,
(b) B · B+ is the identity on V , i.e., for all v ∈ V , we have B · B+ · v = v,
(c) a certain proportion of the samples of D lies in V , i.e. Prv←D [v ∈ V] ≥ 1

s .

180 A. Ünal

3 Definitions

In this section, we give basic definitions and state elementary lemmas for this
work.

3.1 Functional Encryption

Throughout this work, let λ denote the security parameter. Let (Fλ)λ be a
family of function descriptions with a family of domains (Xλ)λ and codomains
(Yλ)λ. We tacitly assume in the following that the size of each f ∈ Fλ, x ∈ Xλ

and y ∈ Yλ is bounded by a polynomial in λ, that we can efficiently sample
uniformly random elements of those families and that there is a deterministic
polytime evaluation algorithm which on input (f, x) ∈ Fλ × Xλ outputs the
correct value y ∈ Yλ. We denote the output of this algorithm by f(x).

Definition 2. A functional encryption scheme FE = (Setup,KeyGen,
Enc,Dec) for the family (Fλ)λ is a quadruple of four ppt algorithms where

Setup(1λ) on input 1λ generates a master secret key msk,
KeyGen(msk, f) on input msk and a function f ∈ Fλ generates a secret key skf ,

Enc(msk, x) on input msk and an input value x ∈ Xλ generates a ciphertext
ctx,

Dec(skf , ctx) on input a secret key skf and a ciphertext ctx outputs a value
y ∈ Yλ.

We call FE correct, if we have for each samplable2 (fλ)λ ∈ (Fλ)λ an ε ∈ negl(λ),
s.t. it holds for all (xλ)λ ∈ (Xλ)λ

Pr

⎡
⎣Dec (skf , ctx) = fλ(xλ)

msk ← Setup(1λ),

skf ←KeyGen(msk, fλ),

ctx ←Enc(msk, xλ)

⎤
⎦ ≥ 1 − ε(λ).

We call FE better than guessing (by 1
r), if there exists a polynomial r ∈ poly(λ)

s.t. we have for each (xλ)λ ∈ (Xλ)λ and each samplable (fλ)λ ∈ (Fλ)λ

Pr

⎡
⎣Dec (skf , ctx) = fλ(xλ)

msk ← Setup(1λ)

skf ←KeyGen(msk, fλ),

ctx ←Enc(msk, xλ)

⎤
⎦ ≥ 1

r(λ)
+

1
#Yλ

− negl(λ).

We call FE useless, if we have for each polynomial r ∈ poly(λ)

Pr
msk←Setup(1λ)

[
∀x, y ∈ Xλ : Δ (Enc(msk, x),Enc(msk, y)) <

1
r(λ)

]
≥ 1 − negl(λ).

2 By being samplable, we mean here that there is a uniform deterministic poly-time
algorithm which on input 1λ outputs fλ.

Impossibility Results for Lattice-Based FE Schemes 181

While being correct is a common requirement for encryption schemes, being use-
less implies that a successful decryption is almost impossible, since the cipher-
texts contain nearly no information. Being better than guessing, however, implies
that in some cases the ciphertexts and secret keys contain enough information
for a successful decryption. Now, one would assume that a scheme cannot be
useless and better than guessing at the same time and, indeed, we have the
following lemma:

Lemma 3. Let #Yλ ≥ 2 for all λ and let (Fλ)λ contain a samplable (fλ)λ s.t.
each fλ is surjective. Then, we have:

(a) If FE is correct, it is better than guessing.
(b) If FE is useless, it is not better than guessing.

3.2 Encryption Algorithms

Now, let R be a ring with an associated valuation |·|R : R → N0. In this work,
we always assume R = Z or R = Zq for a prime q = q(λ). In the first case
|·|

Z
= |·| is the archimedean absolute value. In the latter case |·|

Zq
= |· mod q| is

the absolute value modulo q we defined in Definition 1.
Furthermore, let Xλ = {0, . . . , N}n now consist of n-dimensional vectors for

a polynomial n = n(λ) ∈ poly(λ) and some N = N(λ).

Definition 3. We say the scheme FE or rather its encryption algorithm Enc is
of length s over R, if the output of Enc is always an element of Rs. Furthermore,
we say in this case that Enc is of

(a) width B, if the infinity-norm of almost all ciphertexts is bounded by B. I.e.,
there is an ε ∈ negl(λ), s.t. we have for each (xλ)λ ∈ (Xλ)λ

Pr
msk←Setup(1λ)

[∃i ∈ [s] : |ci|R > B | c ← Enc(msk, xλ)] ≤ ε(λ),

(b) depth d, if Enc consists of two parts: an offline part – a ppt algorithm
Encoffline which on input msk generates s polynomials over R[X1, . . . , Xn]
of total degree ≤ d – and an online part which generates a ciphertext by
evaluating the polynomials sampled by Encoffline at the input x. I.e., Enc
works as follows

Enc(msk, x) :
(p1, . . . , ps) ← Encoffline(msk)
ctx := (p1(x), . . . , ps(x))
return ctx

where we demand that each pi is a polynomial of total degree ≤ d over R.

182 A. Ünal

3.3 Security Notions

In this work, we study the notion of selective and function-hiding IND-CPA
security where the adversary is allowed to submit a priori multiple challenge
inputs (x0

i , x
1
i) and a bounded number of challenge functions (f0

j , f1
j). To be

feasible, the adversary must ensure that the output values f b
j (xb

i) do not already
tell him, if he lives in world 0 or world 1, i.e. he must ensure f0

j (x0
i) = f1

j (x1
i).

The challenger will send the adversary the ciphertexts and secret keys for one
random bit b ← {0, 1}. To win, the adversary has to guess the bit b.

Definition 4. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption
scheme for the family (Fλ)λ and let m ∈ poly(λ). We say that FE is selectively
m-bounded function-hiding IND-CPA secure (m-fh-IND-CPA secure),
if each ppt adversary A has a negligible advantage in winning the following game:

Step 1: The adversary A submits two lists3 of possible inputs (x0
i)

n
i=1, (x

1
i)

n
i=1

and two lists of possible functions (f0
j)m

j=1, (f
1
j)m

j=1 to the challenger C.
Step 2: The challenger C generates a master secret key msk ← Setup(1λ) and

draws a secret bit b ← {0, 1}. Then, C computes ctxb
i

:= Enc(msk, xb
i) for each

i = 1, . . . , n, skfb
j

:= KeyGen(msk, f b
j) for each j = 1, . . . , m and sends the

lists (ctxb
i
)n
i=1 and (skfb

j
)m
j=1 to A.

Step 3: The adversary A guesses b.

The adversary wins the above game, if he guesses b correctly, and, if we have
f0

j (x0
i) = f1

j (x1
i) for all i = 1, . . . , n and j = 1, . . . , m. The advantage of A is

defined by

Adv(A) := 2Pr[A wins] − 1 = Pr[A wins | b = 0] + Pr[A wins | b = 1] − 1.

We call FE selectively unbounded function-hiding IND-CPA secure
(fh-IND-CPA secure), if FE is m-fh-IND-CPA secure for each polynomial
m ∈ poly(λ), and we call FE selectively IND-CPA secure
(IND-CPA secure), if FE is 0-fh-IND-CPA secure.

3.4 Private-Key Encryption

We define private-key encryption schemes as a special case of functional encryp-
tion schemes:

Definition 5. A private-key encryption scheme is a functional encryption
scheme SKE = (Setup,KeyGen,Enc,Dec) for a function family (Fλ)λ where each
Fλ only contains the identity function Id : Xλ → Xλ.

3 The size n is determined by the descryiption of A and bounded by A’s running time.
n may be zero, which means that A is always sending two empty lists of inputs.

Impossibility Results for Lattice-Based FE Schemes 183

When discussing private-key encryption schemes we sometimes omit KeyGen from
the header of the scheme and write Dec(msk, ·) instead of Dec(KeyGen(msk, Id), ·).
Note that we call SKE IND-CPA secure, if it is selectively 0-bounded function-
hiding IND-CPA secure in the sense of Definition 4. This differs from the usual
security notion in literature, where the adversary is usually allowed to submit only
one pair of challenge messages and can inquire ciphertexts adaptively. However, by
using a hybrid argument, one can show that the security loss which occurs by allow-
ing multiple challenge messages is polynomially bounded. If we consider message
spaces of superpoly size, then we can construct private-key encryption schemes
which are selectively, but not adaptively, secure. Therefore, the security notion for
SKE we use here is weaker than the usual one in literature.

3.5 Transformations

Definition 6. Let FE = (Setup,KeyGen,Enc,Dec), FE′ = (Setup′,KeyGen′,
Enc′,Dec′) be two functional encryption schemes for the same functionality. We
say that FE is virtually FE′, if Setup = Setup′, KeyGen = KeyGen′, Dec = Dec′

and there is an ε ∈ negl(λ), s.t. for all sequences (xλ)λ ∈ (Xλ)λ the statistical
distance between the following two distributions is bounded from above by ε:

{
(msk, ctx) | msk ← Setup(1λ), ctx ← Enc(msk, xλ)

}
,{

(msk, ct′x) | msk ← Setup(1λ), ct′x ← Enc′(msk, xλ)
}

.

Now, let FE be a functional encryption scheme for functions (Fλ) with inputs
(Xλ) and let FE be one for functions (F ′

λ) with inputs (X ′
λ). We say there

is an adversarial transformation from FE to FE′, if there are ppt algo-
rithms Tct, Tsk, TF , TX s.t. we have the following equalities of distributions for
all x′ ∈ X ′

λ, f ′ ∈ F ′
λ, msk ∈ supp(Setup):

Setup′(1λ) = Setup(1λ),
Enc′(msk, x′) = Tct(Enc(msk, TX(x′))),

KeyGen′(msk, f ′) = Tsk(KeyGen(msk, TF (f ′))).

If (Fλ) = (F ′
λ), then we always assume TF = IdFλ

and TX = IdXλ
.

Let k ∈ N be constant and let (FEi)k
i=1 be a sequence of functional encryption

schemes. We say there is a virtual adversarial transformation from FE1 to
FEk, if, for each i = 1, . . . , k−1, FEi is virtually FEi+1 or there is an adversarial
transformation from FEi to FEi+1.

We can now observe the following facts:

Lemma 4.(a) If FE is virtually FE′, then FE is m-fh-IND-CPA secure, correct,
better than guessing resp. useless iff FE′ is so.

(b) If FE is m-fh-IND-CPA secure and there is an adversarial transformation
from FE to FE′, then FE′ is m-fh-IND-CPA secure.

184 A. Ünal

At some points, we want to ensure that an encryption algorithm Enc of width
B never outputs a ciphertext whose largest entry is not bounded by B. We can
ensure such a behaviour by replacing each ciphertext of Enc which is too big
with the zero vector. It is clear that this change just has a statistically negligible
impact on a scheme. One can even ensure that by doing so we do not harm the
depth of Enc:

Lemma 5. For n = 1, let FE be of length s, width B and depth d over R.
If d is constant and B is polynomial, then FE is virtually a scheme FE′ =
(Setup′,KeyGen′,Enc′,Dec′) of length s and depth d over R where we have
Enc′(msk′, x) ∈ {−B, . . . , B}s for all λ, x ∈ Xλ and msk′ ∈ supp(Setup′(1λ)).

4 Online/Offline Encryption Without Overflows

In this section, we show that private-key encryption schemes of polynomial width
that are better than guessing cannot be IND-CPA secure, if their encryption
algorithms have a very simple online part in which no arithmetical overflows do
occur.

Theorem 5. Let d ∈ N be constant, N ≥ 2d and let SKE be a private-key
encryption scheme of depth d and width B ∈ poly(λ) with message space Xλ =
{0, . . . , N} over Z.

If SKE is selectively IND-CPA secure, then SKE is useless.

Proof (Theorem 5 Part 1). Let SKE be an IND-CPA secure scheme of length s,
depth d and width B over Z for messages Xλ = {0, . . . , N}. If we define SKE′ =
(Setup′,Enc′,Dec′) like in Lemma 5, then SKE is virtually SKE′. In particular,
SKE′ is of the same length and depth and is secure and useless iff SKE is so.
Furthermore, SKE′ is now strictly of width B, i.e., it never outputs a ciphertext
outside of {−B, . . . , B}s. It now suffices to prove that SKE′ is useless. �

To prove Theorem 5, we define an adversary which we will show to have a non-
negligible advantage against SKE′, if SKE′ is not useless.

Definition 7. Let r ∈ poly(λ), N ≥ 2d and s ≥ 1. Set m = 2r3.
We define the following selective adversary A which plays the IND-CPA

security-game in Definition 4 with the scheme SKE′:

Step 1: The adversary A draws y ← [2d] and then, for b = 0, 1, submits the
following two lists of 3m messages each:

xb
i =

⎧⎪⎨
⎪⎩

0, if i ∈ {1, . . . , m},

b · y, if i ∈ {m + 1, . . . , 2m},

y, if i ∈ {2m + 1, . . . , 3m}.

He submits two empty lists of possible functions.

Impossibility Results for Lattice-Based FE Schemes 185

Step 2: The adversary A receives a list of ciphertexts (ct′
xb

i
)3m
i=1. Let ct′

xb
i ,j

denote
the j-th entry of ct′

xb
i
. For k = 0, 1, 2 and j = 1, . . . , s he computes the arith-

metical means

ck,j :=
1
m

(k+1)m∑
i=1+km

(ct′xb
i ,j)

2

Step 3: If there is a j s.t. |c2,j − c1,j | > 2B
r , the adversary outputs 0. Otherwise,

if there is a j s.t. |c0,j − c1,j | > 2B
r , he outputs 1. If none of the above require-

ments should be met, then the adversary outputs a random bit b′ ← {0, 1}.

The following lemma shows in which cases A has a non-negligible advantage.

Lemma 6. Let r ∈ poly(λ) s.t. r ≥ λ. For a fixed msk′, set CT′
y = Enc′(msk′, y).

The adversary in Definition 7 has a non-negligible advantage in the selective
IND-CPA game against SKE′, if the following probability is non-negligible

Pr
msk′←Setup′(1λ)

[
∃j ∈ [s], y∗ ∈ [2d] :

∣∣∣E [(CT′
y∗,j

)2]− E

[(
CT′

0,j

)2]∣∣∣ > 4
B

r

]
.

Proof. Fix for this proof a master secret key msk′ ∈ supp(Setup′(1λ)) and denote
by CT′

y
2 the distribution of drawing ct′y ← Enc′(msk′, y) and squaring all its

entries. In step 2, A approximates the means of CT′
0
2
,CT′

b·y
2 and CT′

y
2. By

Bounded we denote the event that for each k = 0, 1, 2 the distance between ck

and its mean is at most B/r, i.e. the event Bounded holds iff

max
(∣∣∣
∣∣∣c0 − E

[
CT′

0
2
]∣∣∣
∣∣∣
∞

,
∣∣∣
∣∣∣c1 − E

[
CT′

b·y
2
]∣∣∣
∣∣∣
∞

,
∣∣∣
∣∣∣c2 − E

[
CT′

y
2
]∣∣∣
∣∣∣
∞

)
≤ B

r
.

Since Enc′ always outputs values bounded by B, we have, according to Corollary 2,
that the probability that event Bounded will occur is at least (1 − 2e−r)3s ≥ 1 −
6se−r. Therefore, for each fixed msk′, it follows

Pr [A fails b = 0] ≤ Pr
[
||c0 − c1||∞ > 2

B

r

]
+

1
2

≤Pr [¬Bounded] +
1
2

≤ 6se−r +
1
2
.

Similarly, for each fixed msk′ ∈ supp(Setup′(1λ)), we get Pr [A fails b = 1] ≤
6se−r + 1

2 .
Now, assume additionally for msk′ that the following event Seperated does hold

Seperated : ∃y∗ ∈ [2d] :
∣∣∣
∣∣∣E [CT′

0
2
]

− E

[
CT′

y∗
2
]∣∣∣
∣∣∣
∞

> 4
B

r
.

186 A. Ünal

Let y denote the value drawn by A in step 1. If Seperated holds for msk′, then

Pr [A wins b = 0, y = y∗]

≥Pr
[
||c2 − c1||∞ > 2

B

r
b = 0, y = y∗

]

≥Pr[Bounded] · Pr
[
||c2 − c1||∞ > 2

B

r
Bounded, b = 0, y = y∗

]

≥(1 − 6se−r) · 1 = 1 − 6se−r.

Similarly, we get Pr [A wins b = 1, y = y∗] ≥ 1 − 6se−r. Therefore, for msk′ ←
Setup′(1λ), we get now

Pr [A wins Seperated]

=
1
2d

(Pr [A wins Seperated, y = y∗] +
2d − 1

2d
Pr [A wins Seperated, y �= y∗])

≥ 1
2d

(1 − 6se−r) +
2d − 1

2d

(
1
2

− 6se−r

)
≥ 1

4d
+

1
2

− 6se−r.

Now, if we set ε := Pr [Seperated], we have

Pr [A wins] = ε · Pr [A wins Seperated] + (1 − ε) · Pr [A wins ¬Seperated]

≥ ε

(
1
4d

+
1
2

− 6se−r

)
+ (1 − ε)

(
1
2

− 6se−r

)
= ε

1
4d

+
1
2

+ 6se−r.

Since our lemma requires ε to be non-negligible and r ≥ λ, it follows that A has
a non-negligible advantage. ��

To conclude the proof of Theorem5, we need to show that the prerequisites
of Lemma 6 do occur, if SKE′ is not useless. In fact, we show a purely math-
ematical statement in the following which implies the uselessness of SKE′, if
the prerequisites of Lemma 6 are not met. Our statement says that for a dis-
tribution of polynomials the means of the squared outputs of the polynomials
for x = 0, . . . , 2d need to be widespread, because, otherwise, it is very unlikely
for the sampled polynomials to be non-constant. If the polynomials sampled by
Enc′

offline(msk′) are with overwhelming probability constant, then, of course, the
sampled ciphertexts do not carry any information about the encrypted input x.

Lemma 7. Let D be a distribution over integer polynomials of degree d > 0. If
there is a function ε = ε(λ) s.t. for all x ∈ {1, . . . , 2d} we have

∣∣∣∣ E
p←D

[
p(x)2 − p(0)2

]∣∣∣∣ ≤ ε,

then it follows

Pr
p←D

[deg p ≤ d − 1] ≥ 1 − 2ε.

Impossibility Results for Lattice-Based FE Schemes 187

Proof. For p ← D, we set f(X) := p(X)2 − p(0)2. Then, f is a random inte-
ger polynomial of degree 2d. If we have p(X) =

∑d
i=0 aiX

i, then the leading
coefficient of f is a2

d. Now, by Theorem 3, it follows

(2d)! · a2
d =

2d∑
i=0

(−1)2d−i

(
2d

i

)
f(i).

Hence

E
p←D

[
a2

d

]
=

1
(2d)!

∣∣∣∣∣
2d∑

i=0

(−1)2d−i

(
2d

i

)
E

p←D
[f(i)]

∣∣∣∣∣
≤ 1

(2d)!

2d∑
i=0

(
2d

i

) ∣∣∣∣ E
p←D

[f(i)]
∣∣∣∣ ≤ 1

(2d)!

2d∑
i=0

(
2d

i

)
· ε =

22d

(2d)!
ε ≤ 2ε.

If we draw p(X) =
∑d

i=0 aiX
i ← D, it follows

Pr [deg p = d] =
∑

i∈Z\{0}
Pr [ad = i] ≤

∑
i∈Z\{0}

i2 · Pr [ad = i] = E
p←D

[
a2

d

]
≤ 2ε. ��

Lemma 7 already implies that the offline algorithm of an IND-CPA secure
encryption scheme of depth d and polynomial width will – with overwhelm-
ing probability – sample polynomials of degree d − 1. In the following theorem,
we generalize this observation for arbitrary degrees d − k.

Theorem 6. Let D be a distribution over integer polynomials of degree d. If
there are functions ε = ε(λ) and B = B(λ) s.t. for all x ∈ {1, . . . , 2d} and
p ∈ supp(D) we have

∣∣p(x)2 − p(0)2
∣∣ ≤ B2 and

∣∣∣∣ E
p←D

[
p(x)2 − p(0)2

]∣∣∣∣ ≤ 1
2
ε,

then we have for all k = 0, . . . , d

Pr
p←D

[deg p ≤ d − k] ≥ 1 − (2 + 2B2)kε.

Theorem 6 is proven by using induction over k where the base case and the
induction step both follow by Lemma7. Since its proof is very technical, we
omit it here. We can now finish the proof of Theorem5.

Proof (Theorem 5 Part 2). Let A be the adversary in Definition 7. For A to have
negligible advantage against SKE′, according to Lemma 6, it is necessary to have
for all r = 4r′B ∈ poly(λ)

Pr
[
∀j ∈ [s], y ∈ [2d] :

∣∣∣E [(CT′
y,j

)2]− E

[(
CT′

0,j

)2]∣∣∣ ≤ 1
r′

]
≥ 1 − negl(λ)

188 A. Ünal

where we take the probability over msk′ ← Setup′(1λ). But now, by Theorem6,
we have for each r ∈ (2 + 2B2)d · poly(λ)

Pr
[
∀j ∈ [s] : Pr

(p1,...,ps)←Enc′
offline

[deg pj = 0] ≥ 1 − (2 + 2B2)d 1
r

]
≥ 1 − negl(λ).

Therefore, the uselessness of SKE′ and, in particular, the uselessness of SKE
follow. ��

5 Online/Offline Encryption with Short Ciphertexts

In Sect. 4, we showed that encryption schemes of constant depth and polynomial
width without arithmetic overflows cannot be secure. In this section, we show
the same result for encryption schemes of constant depth and polynomial width
which may make use of arithmetic overflows but have short ciphertexts. We do
so by transforming such schemes to encryption schemes without arithmetic over-
flows. I.e., if the ciphertexts are of short width, we can transform their encryption
algorithm to one of constant depth over Z by using a simple multiplication trick.
As before, throughout this section, let λ denote the security parameter and let
B = B(λ), d = d(λ) and N = N(λ) be arbitrary variables depending on λ. Let
s ∈ poly(λ). Additionally, introduce a modulus variable q = q(λ). We prove in
this section the following theorem:

Theorem 7. Let q be a prime, N ≥ d+1 and let SKEq be a private-key encryp-
tion scheme of depth d and width B over Zq for messages Xλ = {0, . . . , N}
s.t.

2(d + 1)2 · (d!)3 · dd · Nd · B ≤ q − 1.

If SKEq is selectively IND-CPA secure, then there exists a virtual adversarial
transformation to an encryption scheme SKE of depth d and width (d!)2B over
Z for messages Xλ = {0, . . . , N} which preserves selective IND-CPA security and
– in both directions – correctness, being better than guessing and uselessness.

Theorems 7 and 5 imply together the following impossibility result:

Corollary 3. Let q be a prime and let SKEq be a private-key encryption scheme
of depth d and width B for messages x = 0, . . . , N over Zq s.t. N ≥ 2d and

2(d + 1)2 · (d!)3 · dd · Nd · B ≤ q − 1.

If SKEq is selectively IND-CPA secure, B ∈ poly(λ) and d ∈ N constant, then
SKEq is useless.

Proof. Because of Theorem 7, there is an IND-CPA secure private-key encryption
scheme SKE over Z of polynomial width (d!)2B and constant depth d ∈ N for
messages Xλ = {0, . . . , N} which is useless iff SKEq is useless. Since N ≥ 2d,
SKE is useless according to Theorem 5. ��

Impossibility Results for Lattice-Based FE Schemes 189

To prove Theorem 7, let q > 2 be a prime and define a map ι : Zq →
{− q−1

2 , . . . , 0, . . . , q−1
2 } ⊂ Z by setting for all a ∈ Zq

ι(a mod q) := a + zq for z ∈ Z s.t. |a + zq| = |a mod q| .

Then, ι preserves absolute values and we have

ι(a mod q) mod q = a mod q.

One first idea for proving Theorem 7 could be to just apply ι component-wise
to each ciphertext, i.e. treat each ciphertext modulo q as it would be an integer
vector. Technically, we would replace Enc by ι ◦ Enc. While ι ◦ Enc would be
indeed of length s and width B over Z, it is not clear, if it would be of depth
d over Z. To make this precise, for p ∈ Zq[X], we denote by I(p mod q) the
coefficient-wise application of ι, i.e.

I

(
d∑

i=0

aiX
i mod q

)
:=

d∑
i=0

ι(ai mod q)Xi.

Then, we have the equation I(p mod q) mod q = p mod q again. Now, for ι◦Enc
to be of depth d over Z, we would need a suitable offline algorithm. We could,
for example, take I ◦Encoffline as candidate. If p is a polynomial over Zq sampled
by Encoffline, we would then need the following kind of equality for all x ∈ Xλ

ι(p(x) mod q) = I(p mod q)(x). (3)

While Eq. (3) holds for polynomials p with small coefficients, it does not hold in
general. Therefore, we need to apply minor changes to the polynomials sampled
by Encoffline as we will see later. To this end, consider the Vandermonde matrix
for the tuple (0, 1, . . . , d)

V := ((i − 1)j−1)i,j=1,...,d+1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 1 1 . . . 1
1 2 4 . . . 2d

...
...

1 d d2 . . . dd

⎞
⎟⎟⎟⎟⎟⎠

∈ Z
(d+1)×(d+1).

We can deduce the coefficients of a polynomial by applying V −1 to its output
values. However, V −1 has very large entries modulo q, therefore we use the
following integer quasi-inverse W with bounded entries.

Lemma 8. There exists an integer matrix W ∈ Z
(d+1)×(d+1) whose entries are

bounded by (d!)3dd, s.t. V · W = W · V = (d!)2 · Id(d+1)×(d+1).

Lemma 9. Let q > 2 be a prime, set c = (d!)2 and let p ∈ Zq[X] be a polynomial
of degree d. Furthermore, let N ≥ d + 1. If we have for all x = 0, . . . , d

|p(x) mod q| ≤ q − 1
2(d + 1)2 · (d!)3 · dd · Nd

,

190 A. Ünal

then we have for all x = 0, . . . , N

I(c · p mod q)(x) = ι(c · p(x) mod q).

Proof. It is clear that we have for any integer polynomial p and any x ∈ Z

I(c · p mod q)(x) mod q = c · p(x) mod q = ι(c · p(x) mod q) mod q.

Therefore, in our case, it suffices to show that the absolute value of
I(c · p mod q)(x) is bounded by q−1

2 , since ι(c · p(x) mod q) is a value of
{− q−1

2 , . . . , q−1
2 } which differs from I(c · p mod q)(x) only by a value in qZ.

Let p(X) =
∑d

i=0 aiX
i ∈ Zq[X] and set a = (a0, . . . , ad) ∈ Z

d+1
q to be the

column vector of p′s coefficients. Then, we have

V · a mod q =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 1 1 . . . 1
1 2 4 . . . 2d

...
...

1 d d2 . . . dd

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

a0

a1

a2

...
ad

⎞
⎟⎟⎟⎟⎟⎠

mod q =

⎛
⎜⎜⎜⎜⎜⎝

p(0)
p(1)
p(2)

...
p(d)

⎞
⎟⎟⎟⎟⎟⎠

mod q.

Let W = (wi,j)i,j ∈ Z
(d+1)×(d+1) be the quasi-inverse of V from Lemma 8. Since

WV a = ca mod q, we have for each ai

c · ai mod q =
d∑

i=0

wi,jp(j) mod q.

In particular, we have now

|c · ai mod q| =

∣∣∣∣∣
d∑

i=0

wi,jp(j) mod q

∣∣∣∣∣ ≤
d∑

i=0

|wi,j | · |p(j) mod q| .

Set
B := max

x=0,...d
|p(x) mod q| ≤ q − 1

2(d + 1)2 · (d!)3 · dd · Nd
.

Since each |wi,j | is bounded by (d!)3dd and each |p(j) mod q| is bounded by B,
we get

|c · ai mod q| ≤
d∑

i=0

|wi,j | · |p(j) mod q| ≤
d∑

i=0

(d!)3ddB = (d + 1)(d!)3ddB.

Impossibility Results for Lattice-Based FE Schemes 191

Therefore, we have for all x = 0, . . . , N

|I(c · p mod q)(x)|

=

∣∣∣∣∣
d∑

i=0

ι (c · ai mod q) xi

∣∣∣∣∣ ≤
d∑

i=0

∣∣ι (c · ai mod q)xi
∣∣

≤
d∑

i=0

|ι (c · ai mod q)| ·
∣∣xi

∣∣ ≤
d∑

i=0

(d + 1)(d!)3ddB · |x|i

≤(d + 1)(d!)3ddB ·
(

d∑
i=0

N i

)
≤ (d + 1)(d!)3ddB · (d + 1)Nd ≤ q − 1

2
.

Ergo, the claim follows. ��
Proof (Theorem 7). Because of Lemma 5, we can – by using the same argument
we used in the first part of the proof of Theorem 5 – w.l.o.g. assume that the
encryption algorithm of SKEq = (Setupq,Encq,Decq) never outputs a ciphertext
whose entries modulo q are not bounded by B. Set

c := (d!)2 ∈ Z, h := c−1 mod q ∈ Zq

and define a scheme SKE = (Setup,Enc,Dec) over Z by applying the following
adversarial transformation to SKEq:

Setup(1λ) :=Setupq(1
λ),

Enc(msk, x) := ι(c · Encq(msk, x) mod q),
Dec(msk, ct) :=Decq(msk, (h · ct mod q)).

It is clear that SKEq is correct, better than guessing (resp. useless) iff SKE is
correct, better than guessing (resp. useless), since we have

(h · (ι(c · ct mod q)) mod q) = (h · (c · ct) mod q) = ct mod q.

Since SKEq is IND-CPA secure and the above transformations are adversarial,
SKE is IND-CPA secure.

It remains to show that Enc is an encryption algorithm of depth d and width
cB over Z. Now, for each (ct1, . . . , cts) ← Encq(msk, x), we have

|ι(c · ctj mod q)| = |c · ctj mod q| ≤ c · |ctj mod q| ≤ cB,

therefore Enc is of width cB over Z. To show that Enc is of depth d we have to
give a feasible offline algorithm Encoffline for Enc = ι(c · Encq). This is done by
setting

Encoffline(msk) := I(c · Encoffline,q(msk) mod q).
Let x ∈ {0, . . . , N}. If we fix the randomness r of Enc(msk, x, r) and set
(p1, . . . , ps) = Encoffline,q(msk, r) and (p′

1, . . . , p
′
s) = Encoffline(msk, r), then

Enc(msk, x, r) = ι(c · Encq(msk, x, r) mod q)
= (ι(c · p1(x) mod q), . . . , ι(c · ps(x) mod q))
(∗)
= (I(c · p1 mod q)(x), . . . , I(c · ps mod q)(x)) = (p′

1(x), . . . , p′
s(x)),

192 A. Ünal

where eq. (∗) follows from Lemma 9. Therefore, Enc(msk, x) is of depth d. ��

6 Lattice-Based Function-Hiding Functional Encryption

In this section, let n(λ) ≥ 1 be a polynomial in λ and let q(λ) > p(λ) ≥ N(λ) ≥ 1.
Further, let Xλ = {0, . . . , p}n, Yλ = {0, . . . , p} and let (Fλ)λ be a function family
which contains (besides other functions) the zero-function 0 ∈ Fλ – which maps
each x ∈ Xλ to zero – and the projection π1 ∈ Fλ – which maps each x ∈ Xλ to
its first coordinate.

Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme for
(Fλ)λ of depth d1 and length s over Zq and let d2 ∈ N be a constant s.t. each
secret key sk ∈ supp(KeyGen) is a polynomial in Zq[X1, . . . , Xs] of total degree
≤ d2 with

Dec(sk, ct) =
sk(ct)/�q/p�� .

Finally, set m =
(
s+d2

d2

)
. We prove in this section the following theorem:

Theorem 8. If q is a prime and FE is selectively (m + 1)-bounded function-
hiding IND-CPA secure and correct, then there exists an adversarial transfor-
mation from FE to a private-key encryption scheme of depth d := d1 · d2, width
�q/p� and length m over Zq for messages x = 0, . . . , N which is selectively IND-
CPA secure and better than guessing.

Corollary 4 (Impossibility Result). Assume that q is a prime, d1 is con-
stant and q

p is bounded by a polynomial in λ and that for almost all λ ∈ N we
have

p(λ) ≥ (d + 1)2 · 2d+1 · (d!)3 · d2d.

Then, FE cannot be both selectively (m + 1)-bounded function-hiding IND-CPA
secure and correct.

Proof. Assume that FE is both and set N = 2d. Because of Theorem 8, we can
transform FE to a private-key encryption scheme over Zq with depth d and width
B := �q/p� for messages X ′

λ = {0, . . . , 2d} which is IND-CPA secure and better
than guessing. Then, we have

B =
⌊

q

p

⌋
≤ q − 1

p
≤ q − 1

2(d + 1)2 · (d!)3 · dd · (2d)d
.

Now, according to Corollary 3, this encryption scheme must be useless and there-
fore cannot be better than guessing. In particular, FE cannot be correct. ��

We prove Theorem 8 by applying adversially three transformations to FE. First,
we relinearize the ciphertexts and secret keys s.t. decryption becomes evaluating
a scalar product, dividing by �q/p� and rounding down. Second, we draw m secret
keys v1, . . . , vm ← KeyGen′(msk, 0) for the zero-function and replace a ciphertext
ct′ with a vector of decryption noises 〈ct′ | vi〉. Because of decryption correctness,
each noise value must be small; therefore, we get a new ciphertext of small width.
By using sufficiently many secret keys, we can ensure that the new ciphertext

Impossibility Results for Lattice-Based FE Schemes 193

contains enough information s.t. the probability of a correct decryption becomes
high enough. We will not always be able to decrypt correctly, but we show that
we are still better than guessing by 1

m . In fact, this is implied by Lemma 10 which
states that a secret key of a non-zero function must sufficiently resemble a secret
key of the zero-function. As a last step, we convert the current FE scheme into a
private-key encryption scheme for messages x ∈ {0, . . . , N} which is better than
guessing and of small width over Zq. Since all transformations can be applied by
an adversary, the scheme stays IND-CPA secure (however, we lose some security
in the second transformation step, since we have to ask for m secret keys). If we
started with a FE scheme of constant depth, then the final scheme will also be
of constant depth.

Proof (Theorem 8 Step 1). As a first step, we relinearize the ciphertexts and
secret keys of FE. Note that each polynomial sk ∈ Zq[X1, . . . , Xs] of total
degree ≤ d2 can be written as a vector of its coefficients. This yields a linear
transformation

Φ : {sk ∈ Zq[X1, . . . , Xs] | deg sk ≤ d2} −→ Z
(s+d2

d2
)

q .

On the other hand, there is a polynomial map Φ+ : Zs
q −→ Z

m
q of degree d2 which

maps each vector to a vector of different products of its entries s.t. we have for
all sk ∈ Zq[X1, . . . , Xs] of total degree ≤ d2 and all ct ∈ Z

s
q

sk(ct) = 〈Φ (sk) | Φ+ (ct)〉. (4)

Now, we define a new scheme FE′ = (Setup′,KeyGen′,Enc′,Dec′) by setting

Setup′(1λ) := Setup(1λ), KeyGen′(msk′, f) := Φ
(
KeyGen(msk′, f)

)
,

Enc′(msk′, x) := Φ+
(
Enc(msk′, x)

)
, Dec′(sk′, ct′) :=

⌈
〈sk′ | ct′〉/�q/p�

⌋
.

Applying Φ and Φ+ together forms an adversarial transformation, therefore FE′

is (m + 1)-fh-IND-CPA secure. Because of Eq. (4), FE′ is correct. Further, Enc′

is of depth d := d1 · d2 and its outputs are vectors of length m =
(
s+d2

d2

)
. �

Lemma 10. For each sampleable (fλ)λ ∈ (Fλ)λ there is an ε ∈ negl(λ) s.t.

Pr

⎡
⎣sk′

f ∈ spanZq
{v1, . . . , vm}

msk′ ← Setup′(1λ)

v1, . . . , vm ← KeyGen′(msk, 0)

sk′
f ← KeyGen′(msk′, fλ)

⎤
⎦ ≥ 1

m + 1
− ε(λ).

Proof. Lemma 2 states

P1 := Pr

⎡
⎢⎣sk′

0 ∈ span
Zq

{v1, . . . , vm}
msk′ ← Setup′(1λ)

v1, . . . , vm ← KeyGen′(msk′, 0)

sk′
0 ← KeyGen′(msk′, 0)

⎤
⎥⎦ ≥ 1 − 1

m + 1
.

Consider an adversary A who plays the IND-CPA game from Definition 4 against
FE′ and works as follows:

194 A. Ünal

Step 1: For b = 0, 1 and i = 1, . . . , m + 1, the adversary sets

gb
i :=

{
0, if i ≤ m or b = 0,

fλ, if i = m + 1 and b = 1.

and submits two empty lists of possible inputs and two lists of possible
functions (g0

i)m+1
i=1 , (g1

i)m+1
i=1 .

Step 2: After receiving (sk′
gb

i
)m+1
i=1 , A computes V := spanZq

{
sk′

gb
1
, . . . , sk′

gb
m

}
.

Step 3: The adversary outputs 0, if sk′
gb

m+1
∈ V , and 1 otherwise.

If we set

P2 := Pr

⎡
⎣sk′

f ∈ spanZq
{v1, . . . , vm}

msk′ ← Setup′(1λ),

v1, . . . , vm−1 ← KeyGen′(msk′, 0),

sk′
f ← KeyGen′(msk′, fλ)

⎤
⎦ ,

then we can compute the advantage of A by

ε := Pr[A wins | b = 0] + Pr[A wins | b = 1] − 1 = P1 + (1 − P2) − 1 = P1 − P2.

ε is negligible, since FE′ is (m + 1)-fh-IND-CPA secure. Therefore

P2 = P1 − ε(λ) ≥ 1
m + 1

− ε(λ). ��

Proof (Theorem 8 Step 2). Let FE′ = (Setup′,KeyGen′,Enc′,Dec′) be a correct
and (m + 1)-fh-IND-CPA secure functional encryption scheme where Enc′ is of
depth d and length m over Zq. Let furthermore Dec′ be computed by

Dec′(sk′, ct′) =
⌈
〈sk′ | ct′〉/�q/p�

⌋
.

We now adversarially transform FE′ to a functional encryption scheme FE′′ for
the same functionality which is 1-fh-IND-CPA secure, better than guessing and
whose encryption algorithm has depth d, width �q/p� and length m over Zq.

In the IND-CPA game against FE′, our adversary first queries m secret keys
v1, . . . , vm ← KeyGen′(msk′, 0) for the zero function and then makes use of the
algorithm B described in Theorem 4 to compute V,A,A+ ← B(v1, . . . , vm) s.t.
V = spanZq

{v1, . . . , vm} and A ∈ Z
m×k
q , A+ ∈ Z

k×m
q are matrices with

V = A · Zk
q and A · A+v = v for all v ∈ V.

After our adversary queried m secret keys, FE′ remains 1-fh-IND-CPA secure.
However, by doing so, the adversary gained the additional data V,A,A+ with

Impossibility Results for Lattice-Based FE Schemes 195

which he can transform FE′ to FE′′ = (Setup′′,KeyGen′′,Enc′′,Dec′′) by setting:

Setup′′(1λ) := Setup′(1λ) Enc′′(msk′′, x) := AT · Enc′(msk′′, x)

KeyGen′′(msk′′, f) :
sk′

f ← KeyGen′(msk′, f)

if sk′
f ∈ V

sk′′
f := A+ · sk′

f

else

sk′′
f := ⊥

return sk′′
f

Dec′′(sk′′, ct′′) :
if sk′′ = ⊥

y ← {0, . . . , p}
else

y ← Dec′(sk′′, ct′′)
return y

FE′′ has the following properties:

Security: The above changes can be applied by an adversary while he plays the
IND-CPA game from Definition 4. Therefore, FE′′ is 1-fh-IND-CPA secure, since
our adversary has to query m secret keys for the zero function which does not
leak any information about encrypted messages.

Depth and Length: Since the transformation of the encryption algorithm is
done by multiplication with the matrix AT ∈ Z

k×m
q , the depth of the encryption

algorithm does not change. Furthermore, Enc′′ is of length4 k ≤ m over Zq.

Width: We have to show that Enc′′ is of width �q/p�. To this end, let (xλ)λ ∈
(Xλ)λ, draw msk′′ ← Setup′′(1λ), ct′′ ← Enc′′(msk′′, xλ) and fix a component
ct′′i of ct′′ = (ct′′1 , . . . , ct′′k) ∈ Z

k
q . Note that the columns of the matrix A =

(vj1 | . . . |vjk
) are some of the vectors v1, . . . , vm ← KeyGen′(msk′, 0) according to

Theorem 4. Since ct′′ = AT ct′ for some ct′ ← Enc′(msk′, xλ), there is, because
of the correctness of FE′, an ε0 ∈ negl(λ) s.t. for all (xλ)λ ∈ (Xλ)λ

Pr
[
|ct′′i | ≤

⌊
q

p

⌋]
= Pr

[∣∣vT
ji

· ct′
∣∣ ≤

⌊
q

p

⌋]
≥ Pr

[⌈
vT

ji
· ct′

�q/p�

⌋
= 0

]

= Pr

⎡
⎢⎣Dec′(vji

, ct′) = 0
msk′ ← Setup′(1λ)

vji ← KeyGen′(msk′, 0),

ct′ ← Enc′(msk′, x)

⎤
⎥⎦ ≥ 1 − ε(λ)

where in the first three terms we take the randomness over the computation of
msk′′ and ct′′. Therefore, Enc′′ is of width �q/p�.
Better than Guessing: It remains to show that FE′′ is better than guessing.
Fix (xλ)λ ∈ (Xλ)λ and a samplable (fλ)λ ∈ (Fλ)λ and draw msk′′ ← Setup′′(1λ),

4 Note that k is not fixed but rather a random variable. However, this is not a problem,
since we can always pad the output of Enc′′ to be of length m over Zq.

196 A. Ünal

sk′′
f ← KeyGen′′(msk′′, fλ), ct′′x ← Enc′′(msk′′, xλ). Then, we have

Pr
[
Dec′′(sk′′

f , ct′′x) = f(x)
]

= Pr
[
Dec′′(sk′′

f , ct′′x) = f(x) sk′′
f = ⊥

]
· Pr

[
sk′′

f = ⊥
]

+ Pr
[
Dec′′(sk′′

f , ct′′x) = f(x) sk′′
f �= ⊥

]
· Pr

[
sk′′

f �= ⊥
]

=
1

p + 1
· Pr

[
sk′′

f = ⊥
]
+ Pr

[
Dec′′(sk′′

f , ct′′x) = f(x) sk′′
f �= ⊥

]
· Pr

[
sk′′

f �= ⊥
]
.

Now, we have sk′′
f �= ⊥ iff sk′

f ∈ V . Because of Lemma 10, the probability for
this is at least 1

m+1 − ε1 for some ε1 ∈ negl(λ). If sk′
f ∈ V , we have

Dec′′(sk′′
f , ct′′x) =Dec′(sk′′

f , ct′′x) =

⌈
〈sk′′

f | ct′′x〉
�q/p�

⌋
=

⌈
〈A+ sk′

f | AT ct′x〉
�q/p�

⌋

=

⌈
〈AA+ sk′

f | ct′x〉
�q/p�

⌋
= Dec′(sk′

f , ct′x).

The last term equals fλ(xλ) with probability at least 1−ε2 for some ε2 ∈ negl(λ).
Now, let λ be big enough s.t. 1 − ε2(λ) ≥ 1

p(λ)+1 , then

Pr
[
Dec′′(sk′′

f , ct′′x) = f(x)
]

=
1

p + 1
· Pr

[
sk′′

f = ⊥
]
+ Pr

[
Dec′′(sk′′

f , ct′′x) = f(x) sk′′
f �= ⊥

]
· Pr

[
sk′′

f �= ⊥
]

≥ 1
p + 1

· (1 − Pr
[
sk′′

f �= ⊥
]
) + (1 − ε2) · Pr

[
sk′′

f �= ⊥
]

=
1

p + 1
+ Pr

[
sk′′

f �= ⊥
](

1 − ε2 − 1
p + 1

)

≥ 1
p + 1

+
(

1
m + 1

− ε1

)(
1 − ε2 − 1

p + 1

)

≥ 1
p + 1

+
p

(m + 1)(p + 1)
− negl(λ). (5)

Therefore, FE′′ is better than guessing by p
(m+1)(p+1) . �

Since (Fλ)λ contains the projection onto the first coordinate, there is a straight-
forward way to adversially transform FE′′ to a private encryption scheme over
Zq with width �q/p� and depth d which is better than guessing and selectively
IND-CPA secure. For this purpose set X̃λ = {0, . . . , N(λ)}.

Proof (Theorem 8 Step 3). Let FE′′ = (Setup′′,KeyGen′′,Enc′′,Dec′′) be the func-
tional encryption scheme of the preceding step. Then, FE′′ is 1-fh-IND-CPA

Impossibility Results for Lattice-Based FE Schemes 197

secure, better than guessing and of depth d and width B := �q/p� over Zq.
Additionally, FE′′ has the special property that for all samplable (fλ)λ there is
an ε ∈ negl(λ), s.t. we have for all (xλ)λ

Pr
msk′′←Setup′′(1λ)

⎡
⎣Dec′′(sk′′

f , ct′′x) = fλ(xλ)
sk′′

f ← KeyGen′′(msk′′, fλ)

ct′′x ← Enc′′(msk′′, xλ)

sk′′
f �= ⊥

⎤
⎦ ≥ 1 − ε(λ).

We adversarially transform FE′′ to a private-key encryption scheme SKE′′′ =
(Setup′′′,Enc′′′,KeyGen′′′,Dec′′′) of depth d and width B over Zq for the message
space X̃λ which is IND-CPA secure and better than guessing. For this end set:

Setup′′′(1λ) := Setup′′(1λ)
Enc′′′(msk′′′, x) := Enc′′(msk′′′, (x, 0 . . . , 0))

KeyGen′′′(msk′′′, Id
˜Xλ

) := KeyGen′′(msk′′′, π1)

Dec′′′(sk′′′, ct′′′) :
if sk′′′ = ⊥

y ← {0, . . . , N}
else

y ← Dec′′(sk′′′, ct′′′)
return y

Note that this adversarial transformation is the only one in this work, where we
have two functional encryption schemes for different functionalities. Now, SKE′′′

is IND-CPA secure, because FE′′ is 1-fh-IND-CPA secure (in fact, FE′′ being
0-fh-IND-CPA secure would already suffice). Enc′′′ is of depth d and width B
over Zq, since Enc′′ is so. The computations marked by the number (5) in the
preceding transformation step show – mutatis mutandis – that SKE′′′ is better
than guessing by N

(m+1)·(N+1) . ��

Acknowledgements. I would like to thank my doctoral supervisor Dennis Hofheinz
and my former colleagues Geoffroy Couteau, Valerie Fetzer, Michael Klooß and Sven
Maier for helpful comments and advices on how to improve this text. Further, I would
like to thank the reviewers and everyone who listened to the talk preceding this work
for their questions and suggestions.

References

1. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II.
LNCS, vol. 11443, pp. 128–157. Springer, Heidelberg (2019). https://doi.org/10.
1007/978-3-030-17259-6 5

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

3. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 597–627. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-319-96884-1 20

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20

198 A. Ünal

4. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

5. Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-
input functional encryption. Cryptology ePrint Archive, Report 2019/356 (2019).
https://eprint.iacr.org/2019/356

6. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

7. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

8. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 173–205.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70500-2 7

9. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilin-
ear maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryptology
ePrint Archive, Report 2018/615 (2018). https://eprint.iacr.org/2018/615

10. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

11. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. Cryptology ePrint Archive, Report 2019/314 (2019). https://eprint.
iacr.org/2019/314

12. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-63688-7 3

13. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 20

14. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer
Society Press, October 2015. https://doi.org/10.1109/FOCS.2015.20

15. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

16. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 26

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM, January 2012. https://doi.org/10.1145/2090236.2090262

https://doi.org/10.1007/978-3-642-13190-5_28
https://eprint.iacr.org/2019/356
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-319-70500-2_7
https://eprint.iacr.org/2018/615
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://eprint.iacr.org/2019/314
https://eprint.iacr.org/2019/314
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-40084-1_26
https://doi.org/10.1145/2090236.2090262

Impossibility Results for Lattice-Based FE Schemes 199

18. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011. https://doi.org/10.1109/FOCS.2011.12

19. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

20. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-030-03329-3 24

21. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang,
B.Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49384-7 7

22. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 115–146.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26948-7 5

23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488677

24. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C. (ed.)
58th FOCS, pp. 612–621. IEEE Computer Society Press, October 2017. https://
doi.org/10.1109/FOCS.2017.62

25. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1994)

26. Hohenberger, S., Waters, B.: Online/offline attribute-based encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54631-0 17

27. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

28. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

29. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-319-63688-7 21

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005. https://doi.org/10.1145/1060590.1060603

31. Ünal, A.: Impossibility results for lattice-based functional encryption schemes.
Cryptology ePrint Archive, Report 2020/163 (2020). https://eprint.iacr.org/2020/
163

32. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: Umans, C. (ed.) 58th FOCS, pp. 600–611. IEEE Computer Society Press, Octo-
ber 2017. https://doi.org/10.1109/FOCS.2017.61

https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1007/978-3-642-54631-0_17
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1145/1060590.1060603
https://eprint.iacr.org/2020/163
https://eprint.iacr.org/2020/163
https://doi.org/10.1109/FOCS.2017.61

Symmetric Cryptanalysis

Mind the Composition: Birthday Bound
Attacks on EWCDMD and SoKAC21

Mridul Nandi(B)

Indian Statistical Institute, Kolkata, India
mridul.nandi@gmail.com

Abstract. In an early version of CRYPTO’17, Mennink and Neves pro-
posed EWCDMD, a dual of EWCDM, and showed n-bit security, where
n is the block size of the underlying block cipher. In CRYPTO’19, Chen
et al. proposed permutation based design SoKAC21 and showed 2n/3-
bit security, where n is the input size of the underlying permutation. In
this paper we show birthday bound attacks on EWCDMD and SoKAC21,
invalidating their security claims. Both attacks exploit an inherent com-
position nature present in the constructions. Motivated by the above
two attacks exploiting the composition nature, we consider some generic
relevant composition based constructions of ideal primitives (possibly in
the ideal permutation and random oracle model) and present birthday
bound distinguishers for them. In particular, we demonstrate a birthday
bound distinguisher against (1) a secret random permutation followed
by a public random function and (2) composition of two secret random
functions. Our distinguishers for SoKAC21 and EWCDMD are direct con-
sequences of (1) and (2) respectively.

Keywords: PRF · Birthday bound · SoKAC21 · EWCDMD

1 Introduction

Motivated from DES block cipher design, Luby and Rackoff [LR88] formally
analyzed a paradigm of constructing a pseudorandom permutation (PRP) from
a pseudorandom function (PRF). However, the opposite trend is more popular
due to wide availability of block ciphers (modeled to be pseudorandom permu-
tations). So pseudorandom functions are traditionally built upon block ciphers.
A straightforward application of the classical PRP-PRF switch [Sho04] gives
security up to the birthday bound. However, in view of lightweight block ciphers
[BPP+17,BKL+07] this bound may not be suitable. For example, a birthday
bound secure PRF construction based on DES (64-bit block cipher) may be bro-
ken in approximately 232 bits of data. In fact, Bhargavan and Leurent [BL16]
performed practical attacks on TLS and OpenVPN when a 64-bit block cipher
is used. To resist such attacks, several beyond birthday bound secure construc-
tions have been proposed. This includes popular constructions such as sum of
permutations (or SoP in short) [HWKS98,Pat08,DHT17,BN18b], truncation of
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 203–220, 2020.
https://doi.org/10.1007/978-3-030-45721-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_8

204 M. Nandi

permutation [HWKS98,BN18a], EDM type constructions [CS16,CS18], Sum-
ECBC [Yas10], Pmac Plus [Yas11], 3Kf9 [ZWSW12], DbHtS [DDNP18] and
1kPmac Plus [DDN+17a].

Apart from block cipher, the recent trend of using ideal (unkeyed) permuta-
tion has also motivated several pseudorandom functions from ideal permutation.
Sponge-based PRF [BDPVA11b,CDH+12,BDPVA11a,ADMVA15] and Farfalle
[BDH+17] are two such examples of PRF from ideal permutations. Recently,
Chen et al. in Crypto 2019 [CLM19] considered permutation versions of SoP and
EDM-dual. Depending on the choice of the keys and the permutation, some of
the constructions provide birthday bound security, while some achieve beyond
the birthday bound. They have also claimed tight security by showing some
matching attacks.

1.1 Some Beyond Birthday Bound Constructions

Most of the constructions mentioned above are sequential in nature. Some of
these constructions can be viewed as composition of two simpler constructions.
For a permutation π, we denote π(x) ⊕ x as π⊕(x) (this is known as Davies-
Meyer function which has been used to define hash functions in case of public
permutation). Let π1 and π2 be two independent keyed random permutations
over {0, 1}n.

EDM and Its Dual. For a message m ∈ {0, 1}n, we define

EDM(m) = π2(π⊕
1 (m)) (1)

In other words, EDM (encrypted Davies-Meyer) is a composition function π2◦π⊕
1 .

Here π1 and π2 are two independently keyed block ciphers (or random permuta-
tions). Dual version of EDM (denoted as EDMD) is defined as the composition
in the other direction:

EDMD(m) = π⊕
1

(
π2(m)

)
.

In [CS16,CS18] it has been proved that EDM is PRF secure up to 22n/3

queries (i.e. 2n/3-bit secure). Later in Crypto 2017 [DHT17], security of EDM
is shown to be at least 3n/4-bit using χ2-method. Independently, Mennink and
Neves in [MN17] proved that EDM and EDMD have n-bit PRF security using
the generalized version of Patarin’s mirror theory [Pat08]. However, the proofs
of mirror theory are extremely sketchy and contain several unverified gaps.

EWCDM and Its Dual. The previous constructions can only process n-bit mes-
sage. With the help of universal hash H, one can extend the message space,
using the Wegman Carter paradigm [WC81]. We now recall the construction
EWCDM [CS16] and its dual version EWCDMD [MN17] (see Fig. 1). For a nonce
(which should be fresh for every execution of MAC) ν ∈ {0, 1}n and a message
m ∈ M, we define

EWCDM(ν,m) = π2(π⊕
1 (ν) ⊕H(m)) (2)

EWCDMD(ν,m) = π⊕
2 (π1(ν) ⊕H(m)) (3)

Mind the Composition 205

ν π1
v

(M)

⊕ π2
x y

c⊕

Fig. 1. EWCDMD: Wegman-Carter followed by Davies-Meyer.

In [CS16], Cogliati and Seurin proved 2n/3-bit PRF (pseudorandom function)
and MAC (message authentication) security for EWCDM in a nonce respecting
model.

SoKAC21. So far we have considered constructions based on secret keyed prim-
itives. Very recently, Chen et al. in CRYPTO 2019 [CLM19] proposed a pseu-
dorandom function, called SoKAC21 (see Fig. 2), based on ideal public permuta-
tions. It is designed for small message space and claimed to be achieving beyond
birthday bound security. For an n-bit message m, and two ideal permutations
πpub
1 , πpub

2 , and an n-bit secret key K, we define

SoKAC21(K,m) = πpub
2

(
πpub
1 (m ⊕ K) ⊕ K

) ⊕ πpub
1 (m ⊕ K) ⊕ K (4)

m

K

⊕ π1
u v

K

⊕ π2
x y

c⊕

Fig. 2. SoKAC21 - Sum of Key Alternating Cipher with a single key.

This construction can be viewed as a composition of Even Mansour followed
by Davies-Meyer. We note that an equivalent view (due to which it is named sum
of key alternating cipher) of the above construction is π2(v⊕K)⊕π1(m⊕K)⊕K
where v = π1(m ⊕ K).

1.2 Composition Constructions and Our Contribution

All the constructions mentioned in the previous subsection can be viewed as
composition of ideal primitives or some functions derived from ideal primitives.

Public and Secret Ideal Primitives. Let γ ←$Func(n) and π ←$Perm(n)
denote n-bit random function and random permutation respectively. A random
function or permutation is called public if adversary has direct access to these

206 M. Nandi

primitives or their inverses whenever exist, in addition with concerned construc-
tions based on these primitives. In this case we call the adversarial model ideal
function or ideal permutation model. We denote the public random function and
permutation as γpub and πpub respectively.

When the ideal primitives are secret (i.e. cannot accessed directly by an
adversary), we denote them as γsec and πsec. Note that secret primitives appears
when a keyed function (e.g. a keyed compression function) or a keyed permuta-
tion (e.g., a block cipher) is replaced by the ideal counterpart through hybrid
argument.

We use subscript notation to denote independent copies of the primitives.
For example, π1, π2 are two independent random permutations (either secret or
public which would be understood from the superscript notation).

Our Contribution. In this paper, we first analyze the PRF or PRP construc-
tions g ◦ f where

f, g ∈ {γpub, γsec, πsec}.

Due to a trivial reason1 we exclude πpub. Moreover, we must assume that at
least one of the functions is secret. In this paper, we show birthday bound PRF
attack on (1) γsec

2 ◦ γsec
1 and (2) γpub ◦ πsec. The idea behind the attacks for

these constructions are simple. For γsec
2 ◦ γsec

1 we expect more collisions than
perfect random function. In other words, we have higher probability of realizing
collision on γsec

2 ◦ γsec
1 than that of γsec. For the second construction, we observe

the outputs of public function γpub and outputs of γpub ◦ πsec (or γsec in case of
ideal oracle). We show that the probability of collision between these two lists
is higher in case of the real world than the ideal world. In the real construction,
collision can happen in two ways – (1) an output of πsec collides with an input
of public function call γpub, (2) accidental collision (which happens in the final
outputs without having collision among inputs).

Birthday Attack on EWCDMD. We exploit the attack idea of γsec
2 ◦ γsec

1 to
describe a PRF attack against EWCDMD in query complexity 2n/2. In an early
version of CRYPTO 20172, Mennink and Neves [MN17] showed almost n-bit
PRF security for EWCDMD. So our result invalidates the initial claim of the
construction.

The main idea of the attack is simple. EWCDMD can be viewed as a compo-
sition of two keyed non-injective functions (and so it follows birthday paradox),
namely π⊕

2 and a function f mapping (ν,m) to π1(ν) ⊕H(m). Thus, we expect
that the collision probability of the composition π⊕

2 ◦ f is almost double of the
collision probability for the random function. So, by observing a collision we can

1 Note that if the outer function g is πpub or the inner function f is πpub then the
composition is essentially reduced to a single primitive. An adversary can always
uncover πpub by making calls to πpub and (πpub)−1.

2 The early version can be accessed on ePrint 2017/473 posted on 28-May-2017. This
paper was initially accepted in CRYPTO 2017. Later, after finding the flaw in the
analysis, authors removed this analysis from the final proceeding.

Mind the Composition 207

distinguish EWCDMD from a random function. Note that EWCDM is a composi-
tion of a permutation and a non-injective keyed function. Hence our observation
is not applicable to it.

Birthday Attack on SoKAC21. Similarly, we exploit the attack idea of γpub ◦
πsec to have birthday bound PRF attack on SoKAC21. In this construction we
have π⊕

2 instead of public random function. However, with a careful analysis (and
using the recent result on sum of permutation) we can have birthday attack on
SoKAC21. This again violates the beyond birthday security claimed in [CLM19].

2 Preliminaries

Notation. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. For n, k ∈ N, such that
n ≥ k, we define the falling factorial (n)k := n!/(n−k)! = n(n−1) · · · (n−k+1).
For a ∈ N, an a-tuple (x1, x2, . . . , xa) and also a multi-set {x1, . . . , xa} is simply
denoted as xa (this should be clear from the context). For any set X, (X)a

denotes the set of all xa so that x1, . . . , xa are distinct. We call all those xa

element-wise distinct. Note, |(X)q| = (|X|)q.
The set of all functions from X to Y is denoted as Func(X,Y) and the

set of all permutations over X is denoted as Perm(X). We use shorthand nota-
tions Perm(n) (or Func(n)) to denote the set of all permutations (or functions
respectively) from {0, 1}n to itself.

For a finite set X, X ←$X denotes the uniform and random sampling of X
from X. We write X1, . . . ,Xa ←$D when Xi’s are chosen uniformly and inde-
pendently from the set D. In other words, X1, . . . ,Xa is a random with replace-
ment sample. We write X1, . . . ,Xa ←worD when Xi’s are chosen randomly from
D in without replacement manner. More precisely, for all element-wise distinct
xa ∈ (D)a,

Pr(X1 = x1, . . . ,Xa = xa) =
1

(|D|)a
.

2.1 Statistical Distance

Let X,Y be two random variables over a sample space S. Then the statistical
distance between X and Y is defined as

D(X,Y) :=
1
2

∑

a∈S

|Pr(X = a) − Pr(Y = a)|.

An equivalent definition of statistical distance is the following:

D(X,Y) = max
E⊆S

|Pr(X ∈ E) − Pr(Y ∈ E)|.

To see why it is an equivalent definition, we first note that the maximization
holds for E1 = {a ∈ S : Pr(X = a) > Pr(Y = a)}. From the definition of E1,

208 M. Nandi

we can write the sum
∑

a∈S |Pr(X = a)−Pr(Y = a)| (after splitting over E1 and
Ec

1) as
∑

a∈E1

(Pr(X = a) − Pr(Y = a)) +
∑

a∈Ec
1

Pr(Y = a) − Pr(X = a)

= Pr(X ∈ E1) − Pr(Y ∈ E1) + Pr(Y ∈ Ec
1) − Pr(X ∈ Ec

1)

= 2
(
Pr(X ∈ E1) − Pr(Y ∈ E1)

)
.

Thus we have established the equivalence.

Lemma 1 (replacement lemma). Let X,Y be two random variables over a
sample space S and Z be independent with X and Y sampled from T. Let E ⊆
S × T then

|Pr((X,Z) ∈ E) − Pr((Y,Z) ∈ E)| ≤ D(X,Y). (5)

Proof. For every z, let Ez = {s ∈ S : (s, z) ∈ E}. Then by independence, we
have

1. p1 := Pr((X,Z) ∈ E) =
∑

z Pr(Z = z) · Pr(X ∈ Ez) and similarly,
2. p2 := Pr((Y,Z) ∈ E) =

∑
z Pr(Z = z) · Pr(Y ∈ Ez).

Hence,

|p1 − p2| = |
∑

z

Pr(Z = z) · Pr(X ∈ Ez) −
∑

z

Pr(Z = z) · Pr(Y ∈ Ez)|

≤
∑

z

Pr(Z = z) · |Pr(X ∈ Ez) − Pr(Y ∈ Ez)|

≤
∑

z

Pr(Z = z) · D(X,Y)

= D(X,Y)

2.2 Sum of Without Replacement Samples

Let D be a set of size N . In [DHT17] it has been proved that sum of two indepen-
dent without replacement sample almost behaves like one with replacement sam-
ple. More precisely, let X1, . . . ,Xa ←worD, Y1, . . . ,Ya ←worD, Z1, . . . ,Za ←$D

and Xa, Ya are independent. Define Wi = Xi ⊕ Yi for all i ∈ [a]. Then, in
[DHT17] it is shown3 that

D(Za,Wa) ≤ 4a

N
. (6)

Due to Lemma 1, we can simply replace sum of random without replacement
sample involved in an event by the random sample at the cost of probability
4a/N . We use this idea of replacement while we analyze SoKAC21 construction.

3 The original bound is 1.5a
N

+ 3
√
a

N
which is less than the bound we consider here for

all a ≥ 3. For a = 2, one can easily establish the bound.

Mind the Composition 209

2.3 Security Definitions

Random Function and Random Permutation. γ ←$Func(X,Y) is said to
be the random function from the set X to Y. Similarly, π ←$Perm(Y) is said
to be the random permutation over the set Y. In this paper we mostly use the
set X = Y = {0, 1}n.

Keyed Function and Permutation. A keyed function with key space K,
domain X and range Y is a function F : K × X → Y and we denote F(K,X)
by FK(X). Similarly, a keyed permutation with key space K and domain X is
a mapping E : K × X → X such that for all key K ∈ K, X
→ E(K,X) is a
permutation over X and we denote EK(X) for E(K,X).

PRF. Given an oracle algorithm A with oracle access to a function from X to
Y, making at most q queries, running time at most t and outputting a single
bit, we define the prf-advantage of A against the family of keyed functions F as

AdvPRF
F (A) := |Pr(K ←$K : AFK = 1) − Pr(γ ←$Func(X,Y) : Aγ = 1)|.

PRP. Given an oracle algorithm A with oracle access to a permutation of X,
making at most q queries, running time at most t and outputting a single bit,
we define the prp-advantage of A against the family of keyed permutations E as

AdvPRP
E (A) := |Pr(K ←$K : AEK = 1) − Pr(π ←$Perm(X) : Aπ = 1)|.

PRF and PRP in Ideal Model. Some keyed constructions uses ideal public
primitive such as a random function and a random permutation. Let P1, . . . , Pr

be such all primitives used for a keyed construction FK := FP1,...,Pr

K . Let P±
i

denotes both Pi and its inverse P−1
i . We define PRF and PRP-advantage in the

public primitive model as follows.

AdvPRF
F (A) := |Pr(AFK ,P±

1 ,...,P±
r = 1) − Pr(Aγ,P±

1 ,...,P±
r = 1)|.

In the above two probabilities, K, γ, P1, . . . , Pr are all independently drawn.
Similarly, we define PRP-advantage in public model as

AdvPRP
F (A) := |Pr(AFK ,P±

1 ,...,P±
r = 1) − Pr(Aπ,P±

1 ,...,P±
r = 1)|.

Almost XOR Universal Hash Function. A keyed hash function HK : D →
R is called ε-AXU (almost xor universal) if Pr(HK(m) ⊕ HK(m′) = δ) ≤ ε for
all m �= m′ and for all δ. Here the probability is computed under randomness of
the key chosen uniformly from the key space.

210 M. Nandi

3 Collision Probability

Let D be a set of size N . We quickly recall collision probability for a uniform
random sample X1, . . . ,Xa ←$D. For any positive integers a ≤ N , we write
dpN (a) := (N)a

Na and cpN (a) := 1−dpN (a). When N is understood from the con-
text, we skip the notation N . If a is very small compared to N (i.e. a/N ≈ 0), a
precise estimation of dpN (a) is e−a(a−1)/2N . This follows from the approximation
1 − ε ≈ e−ε for very small positive ε. In fact the error term |e−ε − (1 − ε)| is in
the order O(ε2).

Given a list L of elements x1, . . . , xa, we write Dist(L) if xi’s are distinct.
Otherwise, we write Coll(L).

Lemma 2 (collision probability). Let D be a set of size N . Let
X1, . . . ,Xa ←$D and let L denote the list containing Xi’s, 1 ≤ i ≤ a. Then,

1. Pr(Dist(L)) = dpN (a).
2. Pr(Coll(L)) = cpN (a) ≤ a2/2N .

We skip the proof as it is straightforward conclusion from the definition. The
second statement follows from the union bound.

Now we compute probability for having a collision between two lists. We say
that there is a collision between two lists, denoted as LColl(L1,L2) if the lists
are not disjoint.

Lemma 3 (list-collision probability for without replacement sample).
Let X1, . . . ,Xp ←worD and Y1, . . . ,Yq ←worD such that Xp and Yq are indepen-
dent. Then,

Pr(LColl(Xp,Yq)) = 1 − (N − p)q

(N)q

Proof. We compute the complement event, i.e., Xp and Yq are disjoint. The
conditional probability of the complement event conditioning on Xp = xp is
(N−p)q
(N)q

. This can be easily seen as the number of choices of Yq is exactly (N−p)q.
As the conditional probability is independent of choice of xp, the unconditional
probability is also same as (N−p)q

(N)q
. This completes the proof. �

We denote the probability 1 − (N−p)q
(N)q

as lcpwor
N (p, q) (or simply lcpwor(p, q)

whenever N is understood from the context).
When L1 := Xp and L2 := Yq, where X1, . . . ,Xp,Y1, . . . ,Yq ←$D, we denote

the list-collision probability Pr(LColl(L1,L2)) as lcp$N (p, q) (or simply lcp$(p, q)
whenever N is understood from the context). Here D is a set of size N .

Lemma 4 (list-collision probability for random samples). For all positive
integers p, q, we have

|lcp$N (p, q) − 1 +
(
1 − q

N

)p| ≤ 2cpN (p). (7)

(When p is small compared to
√

N , the collision probability cpN (p) is almost
zero and in that case, the above result says that 1 − (

1 − p
N

)q is a very good
approximation of lcp$N (p, q).)

Mind the Composition 211

Proof. Let X1, . . . ,Xp,Y1, . . . ,Yq ←$D and E denote the event Dist(Xp). So
Pr(E) = dpN (p). Fix any distinct xp. Then, the list collision LColl(xp,Yq) holds
with probability 1 − (1 − p

N)q. Now,

Pr(LColl(Xp,Yq)) = Pr(LColl(Xp,Yq) ∧ E) + Pr(LColl(Xp,Yq) ∧ Ec)

=
∑

xp∈(D)p

Pr(LColl(xp,Yq) ∧ Xp = xp) + Pr(LColl(Xp,Yq) ∧ Ec)

= (1 − (1 − p

N
)q) ×

∑

xp∈(D)p

Pr(Xp = xp) + Pr(LColl(Xp,Yq) ∧ Ec)

= (1 − (1 − p

N
)q) × Pr(E) + Pr(LColl(Xp,Yq) ∧ Ec)

= (1 − (1 − p

N
)q) × (1 − Pr(Ec)) + Pr(LColl(Xp,Yq) ∧ Ec)

Note that in our notation, Pr(LColl(Xp,Yq)) = lcp$N (p, q). Hence,

|lcp$N (p, q) − 1 +
(
1 − q

N

)p| = |(1 − (1 − p

N
)q) × Pr(Ec) + Pr(LColl(Xp,Yq) ∧ Ec)|

≤ 2 · Pr(Ec).

The lemma follows from the definition that Pr(Ec) = cpN (p). �

4 Birthday Attack on Composition of Ideal Primitives

In this section, we analyze compositions of ideal primitives. We recall that
γ ←$Func(n) and π ←$Perm(n) denote n-bit random function and random per-
mutation respectively. We follow the notations described in Sect. 1.2. Here ≡ is
used to mean two systems equivalent (i.e. the probabilistic behavior of interac-
tion for any adversary would be same for both).

1. It is easy to verify that πsec ◦ γsec ≡ γsec ◦ πsec ≡ γ and πsec
1 ◦ πsec

2 ≡ π. In
[MS15] πsec ◦ πsec (iterated random permutation) has been analyzed and it
almost behaves as πsec with a maximum distinguishing advantage O(q/2n)
where q is the number of queries. Authors of [MS15,Nan15] have actually
analyzed a more general construction πsec ◦ · · · ◦ πsec (applied r times).

2. In [BDD+17], γsec ◦ γsec (iterated random function) has also been analyzed.
This is equivalent to γsec with a maximum distinguishing advantage O(q2/2n).
Authors of [BDD+17] actually analyzed more general construction γsec ◦ · · · ◦
γsec (applied r times). The main idea behind the distinguishing attack is that
the collision probability of an iterated random function is more probable than
that of a random function.
Using a similar argument, we can show that γsec

2 ◦ γsec
1 can be distinguished

from γsec by making 2n/2 queries. Let x1, . . . , xq be q queries and let y1, . . . , yq

be the responses. In case of the real world, yi = γsec
2 (zi) where zi = γsec

1 (xi).
Let μ := cp2n(q). Now,

Pr(Coll(yq)) = Pr(Coll(zq)) + Pr(Coll(yq) | Dist(zq)) × Pr(Dist(zq))
= μ + μ(1 − μ)

212 M. Nandi

Let A return 1 if it observes a collision among outputs. Thus, the distin-
guishing advantage of the adversary is at least μ(1 − μ). When q = 2n/2,
cp(q) ≈ 1 − 1√

e
and hence advantage is 1√

e
× (1 − 1√

e
) which is at least 0.2.

One can also choose q (which should be again O(2n/2)) such that μ ≈ 1/2
and hence the advantage would be about 0.25.
Same attack can be applied to γsec ◦ γpub and γpub ◦ γsec as if the adversary
does not take an advantage of accessing the public random function γpub.

3. Let us consider the construction πsec ◦γpub. An adversary A first finds a colli-
sion pair (m,m′) of γpub by making 2n/2 queries to it. Then, πsec ◦ γpub(m) =
πsec ◦ γpub(m′). Clearly, in the ideal world, γ(m) = γ(m′) holds with prob-
ability 2−n. So A is a PRF-distinguisher against πsec ◦ γpub making about
2n/2 queries to the public random function. The same attack is also applied
to γsec ◦ γpub.

4. Although γsec ◦πsec is equivalent to a random function, we have the following
birthday bound complexity PRF-attack on γpub ◦ πsec (replacing the outer
layer of secret random function by public random function). Here we exploit
the public access of γpub (since otherwise it is equivalent to a random function)
(Fig. 3).

PRF Distinguisher ,γpub

1 : x1, . . . , xp wor {0, 1}n

2 : queries x1, . . . , xp to γpub

3 : yi = γpub(xi), i ∈ [p] be the responses

4 : for i ∈ [q], i is queried to

5 : let ci = (i), i ∈ [q] be the responses

6 : if ∃i, j, yi = cj

7 : return 1

8 : else

9 : return 0

Fig. 3. Distinguisher for composition construction γpub ◦ πsec.

Let E denote the event that there are i, j such that yi = cj .
Ideal World: In the ideal world we have c1, . . . , cq, y1, . . . , yp ←$ {0, 1}n. So

Pr(E) = lcp$(p, q) = μ (say).

Real World: In the real world, let zi = πsec(i). So ci = γpub(zi). Thus,
z1, . . . , zq ←wor {0, 1}n independent of xp. Now, we write the event E as the
disjoint union (denoted as �)

LColl(zq, xp) � (¬LColl(zq, xp) ∧ LColl(cq, yp)
)
.

Mind the Composition 213

Given that zq is distinct from xp, we have c1, . . . , cq, y1, . . . , yp ←$ {0, 1}n.
Now, Pr(LColl(zq, xp)) = lcpwor(p, q) := μ1 (say). Then,

Pr(E) = μ1 + (1 − μ1)μ.

So, the distinguishing advantage of our adversary is μ1(1 − μ). By Lemma 3
and Lemma 4, the distinguishing advantage is at least

(1 − (2n − p)q

(2n)q
) × (

(1 − p

2n
)q − 2cp2n(q)

)
. (8)

Further, we have

(2n − p)q

(2n)q
=

q−1∏

i=0

(1 − p

2n − i
)

≤ (1 − p

2n
)q

≤ 1 − pq

2n
+

pq2

22n+1
.

The last inequality follows from the following fact:

(1 − x)q ≤ 1 −
(

q

1

)
x +

(
q

2

)
x2, 0 ≤ x ≤ 1.

We also have (1 − p
2n)q ≥ 1 − pq

2n . By substituting the above inequalities in
Eq. 8, the distinguishing advantage is at least

(1 − pq

2n
− q2

2n
) × pq

2n
× (1 − q

2n+1
).

Now if we choose p = q =
√

2n/3 then the advantage is at least 1
9 (1− 1

3×2n/2).
This value is almost 1/9 for a reasonably large n.

5 Birthday Attack on SoKAC21

In the previous section we have shown the basic attacks on composition of ideal
primitives. A similar idea can be used for composition of constructions which
are not ideal. However, a more dedicated analysis of advantage computation
is required. In this section we show a birthday attack on a recent proposal
SoKAC21. In the following section we show birthday attack of Dual EWCDM.

We first recall the definition of SoKAC21 (see Fig. 2 and Eq. 4 for details). It
uses two public n-bit random permutations πpub

1 and πpub
2 . Given an n-bit key

K, an n-bit input m, we define SoKAC21 output as

FK(m) := πpub
2 (x) ⊕ x, where x = πpub

1 (m ⊕ K) ⊕ K.

214 M. Nandi

Our attack does not exploit public queries to πpub
1 and hence πpub

1 (m ⊕ K) ⊕
K behaves identically to a secret random permutation πsec(m). Let DM(x) :=
πpub
2 (x)⊕x (Davies-Meyer construction based on a public random permutation).

So SoKAC21 is actually the composition DM ◦ πsec. However, DM is not perfect
random function. But if we choose the inputs of DM in a without replacement
manner, the output of DM can be viewed as the sum of two WOR samples
and hence it is very close to uniform distribution. We use this principle along
with the attack strategy as described in the previous section for the composition
construction γpub ◦ πsec. We simply write πpub instead of πpub

2 and πsec instead of
the Even-Mansour construction on πpub

1 (Fig. 4).

PRF Distinguisher ,πpub

1 : x1, . . . , xp wor {0, 1}n

2 : queries x1, . . . , xp to πpub

3 : x′
i = πpub(xi), i ∈ [p] be the responses

4 : let yi = x′
i ⊕ xi

5 : for i ∈ [q], i is queried to

6 : let ci = (i), i ∈ [q] be the responses

7 : if ∃i, j, yi = cj return 1

8 : else return 0

Fig. 4. Distinguisher for SoKAC21 which can be viewed as the composition construction
DM ◦ πsec.

We define the event E := LColl(cq, yp) (i.e. there exists i, j such that yi = cj).

Ideal World: In the ideal world c1, . . . , cq ←$ {0, 1}n. Moreover, yi is defined
as sum of two without replacement sample. By Eq. 6, yi’s are close to a with
replacement sample y′

1, . . . , y
′
p with the statistical distance at most 4p/2n. More-

over y′
i’s are independent of cq. Let μ := Pr(LColl(cq, (y′)p)) = lcp$(p, q). So by

using Lemma 1,

Pr(E) = Pr(LColl(cq, yp)) ≤ lcp$(p, q) + 4p/2n.

Real World: In the real world, let zi = πsec(i). So ci = πpub(zi) ⊕ zi for all i
and z1, . . . , zq ←wor {0, 1}n independent of xp. Now, the event E can be written
as a disjoint union E1 � E2 where

1. E1 is LColl(zq, xp) and
2. E2 is ¬LColl(zq, xp) ∧ LColl(cq, yp).

Let Pr(E1) = lcpwor(p, q) = μ1 (say).

Mind the Composition 215

Now, we compute the probability of the event E2 which is same as Ec
1 ∧

LColl(cq, yp). Given that zq is distinct from xp (i.e. Ec
1 holds) we have

z1, . . . , zq, x1, . . . , xp ←wor {0, 1}n.

As ci = DM(zi) and yi = DM(xi), ci’s and yi’s are almost uniformly distributed.
More precisely, for c′

1, . . . , c
′
q, y

′
1, . . . , y

′
p ←$ {0, 1}n,

D((cq, yp); ((c′)q, (y′)p)) ≤ 4(p + q)/2n.

So by Lemma 1, Pr(E2) ≥ (1 − μ1) × (μ − 4(p + q)/2n) where μ = lcp$(p, q).
Now,

Pr(E) = Pr(E1) + Pr(E2)

≥ μ1 + (1 − μ1)(μ − 4(p + q)
2n

).

So, subtracting the probability Pr(E) of the real world from that of the ideal
world, the distinguishing advantage is at least

μ1(1 − μ) − 8p + 4q

2n
.

We have already shown that μ1(1−μ) is at least 1
9 − 1

27·2n/2 when p = q =
√

2n/3
(see the last paragraph of our analysis on γpub ◦ πsec). Hence the advantage is at
least 1

9 − 1
2n/2−1 .

6 Birthday Attack on Dual-EWCDM

In this section we provide details of a nonce respecting distinguishing attack
on EWCDMD. For better understanding we consider a specific hash function
H(m) = K · m where K is a nonzero random key chosen uniformly from
{0, 1}n \ {0} and m ∈ M := {0, 1}n. Here K · m means the field multiplica-
tion with respect to a fixed primitive polynomial. Clearly, H is 1

2n−1 AXU hash.
Moreover it is injective hash. In other words, for distinct messages m1, . . . ,mq,
H(m1), . . . ,H(mq) are distinct.

Distinguishing Attack. A choses (ν1,m1), . . . , (νq,mq) ∈ {0, 1}n × M where
all νi’s are distinct and all mi’s are distinct. Suppose T1, . . . , Tq are all responses.
A returns 1 if there is a collision among Ti values, otherwise returns zero.

When A is interacting with a random function, Pr[A → 1] ≤ q(q − 1)/2n+1

(by using the union bound). Now we provide lower bound of Pr[A → 1] while A

is interacting with EWCDMD in which π1, π2 are two independent random per-
mutations and H is the above hash function whose key is chosen independently.
To obtain a lower bound we first prove the following lemma. Let N = 2n.

216 M. Nandi

Lemma 5. Let x1, . . . , xq ∈ {0, 1}n be q distinct values. Let π be a random
permutation. Then, for all distinct ν1, . . . , νq, let C denote the event that there
is a collision among values of π(νi) ⊕ xi, 1 ≤ i ≤ q. Then,

α(1 − β) ≤ Pr[C] ≤ α

where α = q(q−1)
2(N−1) and β = (q−2)(q+1)

4(N−3) . In particular, for distinct xi’s, there is a
collision among π(xi) ⊕ xi values has probability at least α(1 − β).

Proof . Let Ei,j denote the event that π(νi) ⊕ π(νj) = xi ⊕ xj . So for all i �= j,
Pr[Ei,j] = 1/(N − 1). Let C = ∪i�=jEi,j denote the collision event. By using
union bound we can easily upper bound

Pr[C] ≤ α :=
q(q − 1)
2(N − 1)

.

Now, we show the lower bound. For this, we apply Boole’s inequality and we
obtain lower bound of collision probability as

Pr[C] ≥ α −
∑

Pr[Ei,j ∩ Ek,l]

where the sum is taken over all possible choices of {{i, j}, {k, l}}, and the number
of such choices is at most

(
q(q−1)/2

2

)
= q(q − 1)(q + 1)(q − 2)/8. Note that for

each such choice i, j, k, l,

Pr[Ei,j ∩ Ek,l] ≤ 1
(N − 1)(N − 3)

.

Hence,

Pr[C] ≥ α − q(q − 1)(q + 1)(q − 2)
8(N − 1)(N − 3)

(9)

= α(1 − (q − 2)(q + 1)
4(N − 3)

) = α(1 − β). (10)

This completes the proof. �
Advantage Computation. Using the above Lemma we now show that the
probability that A returns 1 while interacting with EWCDMD is significant when
q = O(2n/2).

Let C1 denote the event that there is a collision among the values zi :=
π1(νi) ⊕ H(mi). We can apply our lemma as H(mi)’s are distinct due to our
choice of the hash function. Thus, Pr[C1] ≥ α(1−β). Moreover, Pr[¬C1] ≥ (1−α).
Given ¬C1, T values are outputs of Davies-Meyer based on random permutation
π2 for distinct inputs. So by using previous lemma,

Pr(collision in T values | ¬C1) ≥ α(1 − β).

Mind the Composition 217

Hence,

Pr(A → 1) ≥ Pr(C1) + Pr(collision in Tvalues | ¬C1) × Pr[¬C1]
≥ α(1 − β) + (1 − α) × Pr(collision in Tvalues | ¬C1)
≥ α(1 − β) + α(1 − α)(1 − β)

= (2α − α2)(1 − β) ≥ 2α − 2αβ − α2.

Thus, the advantage of the adversary is at least α − 2αβ − α2. It is easy to see
that when 2q2 ≥ N , we have 1 − 2β − α ≤ 1/2 and hence the advantage is at
least α/2 = q(q − 1)/4(N − 1).

Remark 1. We would like to note that the distinguishing advantages of both
constructions can be made closer to one if we repeat the whole process indepen-
dently O(n) times.

6.1 Issues in the Previous Proofs

Now we briefly describe what were the issues in the proofs of [CLM19,MN17].
Both proofs used H-technique and hence it is broadly divided into two parts:
bounding probability of bad events and finding good lower bound for realizing
any fixed good transcript in the real world. The flaws in their proof lie on the
good transcript analysis.

Suppose π1 and π2 are two random permutations. In the both proofs, good
transcript analysis deals to compute the probability distribution of sum of the
two random permutations. More precisely, for fixed λ1, x1, y1, . . . xq, yq, λq ∈
{0, 1}n, we want to provide a lower bound of the event π1(xi) ⊕ π2(yi) = λi

for all i. This is also known as mirror theory and have been studied in several
papers [Pat10,Pat13,DDN+17a,DDNY19,DDNY18]. A desired lower bounds
are known if the equality patterns of xi and yi’s satisfy certain conditions. In
the proofs of [CLM19,MN17], equality pattern of yi’s depend on the values of
π1(xi) for all i. So, clearly, we cannot use the mirror theory based lower bound.
This is the main flaw of the proofs.

7 Concluding Discussion

We have demonstrated a distinguishing attack on EWCDMD. We would like to
note that this attack does not work for EDM, EWCDM and EDMD as we can not
write them as a composition of two non-injective functions. We also demonstrate
a birthday attack on SoKAC21. Our attack also does not work if we mask the
final output by a key (which is another variant of sum of key alternating ciphers).
However, at the same time, we do not know how to prove its beyond birthday
security.

218 M. Nandi

7.1 Some Open Problems

Followings are some of open problems on which cryptography community could
have interest.

1. We would like to note that our attack against EWCDMD is a PRF attack and
it is not easy to extend to a forging attack in a nonce respecting situation.
Thus, proving MAC security would be an interesting research problem.

2. One can consider the following dual variant:

π2(π1(ν) ⊕H(m)) ⊕ π1(ν). (11)

This is very close to the sum of permutations. However, the presence of H(m)
makes it very difficult to prove (without using Patarin’s claim or conjecture
on the interpolation probability of sum of random permutations). Moreover,
it can not be expressed as a composition function with n-bit outputs. Hence
it is a potential dual candidate of EWCDM.

3. Another possibility is to use three independent random permutations. As
mentioned in [CS16], we can consider

π3

(
π1(ν) ⊕ π2(ν) ⊕H(m)

)
.

This will give 2n security in nonce respecting model assuming that the sum
of permutations would give n-bit PRF security. However, we don’t know the
trade-off between the number of allowed repetition of nonce and the security
bound.

4. Proving beyond birthday security (or demonstrating birthday attacks) of
some other variants of SoKAC21 would be an interesting open problem.

Acknowledgment. This work is supported by the project “Study and Analysis of
IoT Security” under Government of India at R. C. Bose Centre for Cryptology and
Security, Indian Statistical Institute, Kolkata.

References

[ADMVA15] Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of
keyed sponge constructions using a modular proof approach. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48116-5 18

[BDD+17] Bhaumik, R., Datta, N., Dutta, A., Mouha, N., Nandi, M.: The iterated
random function problem. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10625, pp. 667–697. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70697-9 23

[BDH+17] Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G.,
Van Keer, R.: Farfalle: parallel permutation-based cryptography. IACR
Trans. Symmetric Cryptol. 2017, 1–38 (2017)

https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-319-70697-9_23
https://doi.org/10.1007/978-3-319-70697-9_23

Mind the Composition 219

[BDPVA11a] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the
sponge: single-pass authenticated encryption and other applications. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-
0 19

[BDPVA11b] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security
of the keyed sponge construction. In: Symmetric Key Encryption Work-
shop, vol. 2011 (2011)

[BKL+07] Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74735-2 31

[BL16] Bhargavan, K., Leurent, G.: On the practical (in-) security of 64-bit
block ciphers: collision attacks on HTTP over TLS and OpenVPN. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 456–467. ACM (2016)

[BN18a] Bhattacharya, S., Nandi, M.: A note on the chi-square method: a tool
for proving cryptographic security. Cryptogr. Commun. 10(5), 935–957
(2018). https://doi.org/10.1007/s12095-017-0276-z

[BN18b] Bhattacharya, S., Nandi, M.: Revisiting variable output length XOR
pseudorandom function. IACR Trans. Symmetric Cryptol. 2018(1), 314–
335 (2018)

[BPP+17] Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.:
GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 16

[CDH+12] Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A keyed sponge
construction with pseudorandomness in the standard model. In: The
Third SHA-3 Candidate Conference, March 2012, vol. 3, p. 7 (2012)

[CLM19] Chen, Y.L., Lambooij, E., Mennink, B.: How to build pseudorandom func-
tions from public random permutations. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 266–293. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7 10

[CS16] Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure,
nonce-misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 121–149. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 5

[CS18] Cogliati, B., Seurin, Y.: Analysis of the single-permutation encrypted
Davies-Meyer construction. Des. Codes Cryptogr. 86(12), 2703–2723
(2018). https://doi.org/10.1007/s10623-018-0470-9

[DDN+17a] Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
PMAC Plus. IACR Trans. Symmetric Cryptol. 2017(4), 268–305 (2017)

[DDNP18] Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum:
a paradigm for constructing BBB secure PRF. IACR Trans. Symmetric
Cryptol. 2018, 36–92 (2018)

[DDNY18] Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt?
To make a single-key beyond birthday secure nonce-based MAC. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 631–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 21

https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/s12095-017-0276-z
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/s10623-018-0470-9
https://doi.org/10.1007/978-3-319-96884-1_21
https://doi.org/10.1007/978-3-319-96884-1_21

220 M. Nandi

[DDNY19] Datta, N., Dutta, A., Nandi, M., Yasuda, K.: DWCDM+: a BBB secure
nonce based MAC. Adv. Math. Comm. 13(4), 705–732 (2019)

[DHT17] Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguisha-
bility via the chi-squared method. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10403, pp. 497–523. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 17

[HWKS98] Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055742

[LR88] Luby, M., Rackoff, C.: How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

[MN17] Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: towards
optimal security using mirror theory. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 19

[MS15] Minaud, B., Seurin, Y.: The iterated random permutation problem with
applications to cascade encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 351–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 17

[Nan15] Nandi, M.: A simple proof of a distinguishing bound of iterated uniform
random permutation. IACR Cryptol. ePrint Arch. 2015, 579 (2015)

[Pat08] Patarin, J.: A proof of security in O(2n) for the XOR of two random
permutations. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155,
pp. 232–248. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85093-9 22

[Pat10] Patarin, J.: Introduction to mirror theory: analysis of systems of lin-
ear equalities and linear non equalities for cryptography. IACR Cryptol.
ePrint Arch. 2010, 287 (2010)

[Pat13] Patarin, J.: Security in o(2n) for the XOR of two random permutations -
proof with the standard H technique. IACR Cryptol. ePrint Arch. 2013,
368 (2013)

[Sho04] Shoup, V.: Sequences of games: a tool for taming complexity in security
proofs. IACR Cryptol. ePrint Arch. 2004, 332 (2004)

[WC81] Wegman, M.N., Carter, L.: New hash functions and their use in authen-
tication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

[Yas10] Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J.
(ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11925-5 25

[Yas11] Yasuda, K.: A new variant of PMAC: beyond the birthday bound.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 34

[ZWSW12] Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC
beyond the birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 296–312. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 19

https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-662-47989-6_17
https://doi.org/10.1007/978-3-540-85093-9_22
https://doi.org/10.1007/978-3-540-85093-9_22
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-642-34961-4_19

Improving Key-Recovery in Linear
Attacks: Application to 28-Round

PRESENT

Antonio Flórez-Gutiérrez(B) and Maŕıa Naya-Plasencia(B)

Inria, Paris, France
{antonio.florez gutierrez,maria.naya plasencia}@inria.fr

Abstract. Linear cryptanalysis is one of the most important tools in
use for the security evaluation of symmetric primitives. Many improve-
ments and refinements have been published since its introduction, and
many applications on different ciphers have been found. Among these
upgrades, Collard et al. proposed in 2007 an acceleration of the key-
recovery part of Algorithm 2 for last-round attacks based on the FFT.

In this paper we present a generalized, matrix-based version of the
previous algorithm which easily allows us to take into consideration an
arbitrary number of key-recovery rounds. We also provide efficient vari-
ants that exploit the key-schedule relations and that can be combined
with multiple linear attacks.

Using our algorithms we provide some new cryptanalysis on
PRESENT, including, to the best of our knowledge, the first attack on
28 rounds.

Keywords: Linear cryptanalysis · FFT · Walsh Transform ·
Algorithm 2 · Key-recovery algorithm · PRESENT

1 Introduction

The foundation of the trust we have on symmetric primitives is based on the
amount of cryptanalysis these primitives have received. The distance between
the highest number of rounds that can be attacked and the full version is what
determines the security margin of a cipher. For this quantity to have a mean-
ing, the best reduced-round attacks within each known family of attacks should
be accurately determined. In order to facilitate the application of known crypt-
analysis families to new ciphers, generalizing the corresponding algorithms is
an important task as it allows to: (1) accurately and semi-automatically deter-
mine the security margin, (2) find errors or suboptimal parts from previous
attacks and (3) find new improvement ideas thanks to the clearer understand-
ing of the attack. Several such examples exist, including impossible differential
attacks [13,14], invariant attacks [5], and meet-in-the-middle attacks [15], to cite
a few.

Linear cryptanalysis was introduced by Matsui in 1993 [31], and is one of the
main symmetric cryptanalysis families. These statistical attacks, which in their
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 221–249, 2020.
https://doi.org/10.1007/978-3-030-45721-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_9

222 A. Flórez-Gutiérrez and M. Naya-Plasencia

most basic version exploit linear correlations between some bits of the plaintext,
key and ciphertext, have benefited from many improvements and refinements
over the years. For example, the introduction of linear hulls in [36] deepened the
understanding of the underlying principles of linear attacks. There has also been
a progressive development of techniques which exploit several linear approxima-
tions at the same time. In particular, multiple linear attacks were proposed in [7],
and multidimensional attacks in [25,26]. Also important is the construction of
statistical models which effectively predict the parameters of these attacks - in
this respect, we highlight works such as [9,12,21,38].

In [31] Matsui proposed the partial key-recovery attack known as Algorithm 2
in the form of a last round-attack. The time complexity of this algorithm was
greatly improved by the results from Collard et al. [18] using the FFT (Fast
Fourier Transform). Despite the focus of many publications on improved ways of
searching for linear distinguishers and estimating their capacity, little has been
done regarding improvements of the key-recovery part, and the result from [18]
and its application to some last-round multidimensional attacks in [35] are, to
the best of our knowledge, the main known contributions in this direction.

Matsui introduced linear cryptanalysis for an attack on DES [34]. Linear
cryptanalysis is a powerful tool that provides the best known attacks (like [12]
or [24]) on several popular ciphers, such as PRESENT [11], NOEKEON [20],
some variants of Simon [4] and most recently TRIFLE-BC [22].

In particular, the lightweight block cipher PRESENT [11], proposed in 2007
and made an ISO standard in 2012, is a popular cipher that has been the target
of around 30 reduced-round cryptanalysis efforts, and some of the most success-
ful are linear attacks. Out of its 31 total rounds, Ohkuma found a weak-key
linear attack on 24 in [37]. Collard et al. found a statistical saturation attack on
up to 26 rounds in 2009 [17]. Nakahara et al. proposed another 26-round linear
attack in [33], and Cho described a multidimensional attack with a larger suc-
cess probability in 2010 [16]. It wasn’t until 2015 that 27 rounds were reached
by Zheng et al. in [41]. A different 27-round attack was given by Bogdanov et al.
in [12], but no attack on 28 rounds has been proposed.

Motivation of our work. The contrast between the amount of results devoted
to the construction of effective linear distinguishers and the results regarding
the key-recovery algorithms seemed quite surprising to us. In particular, the
nice algorithm provided in [18] considers the simplified version in which only
the final round is inverted and the only key to guess is directly xored to the
ciphertext (though an application for a first and last round key-recovery attack
is also sketched). In [35] a variant for multidimensional attacks with a fixed
input mask is proposed. Many linear attacks and analysis don’t consider this
final round acceleration, for example in [8], or [33]. In [16], the author says
“The computational complexity may be further reduced by applying Fast Fourier
Transform at the cost of the increased memory complexity” without developing
any further. In [27], the authors state “It is not clear if the trick proposed by
Collard, et al. [18] can be used in multiple dimensions”. Of the ones that do, some
only apply it as a black box in the simplified last-round case, like in [3], in [19],
or in [2] where the authors state that “...we note that when the key addition

Improving Key-Recovery in Linear Attacks 223

layer is composed of XOR, we can optimize the parity evaluations by applying
the algorithm of [18]”. Others assume that the same formulas directly apply
in the multiple-round case [6,23,29,30], and a few mention technical extended
versions of the algorithm in dedicated cryptanalysis, for example [12,41], but a
generalized algorithm for an arbitrary number of rounds in the key-recovery part
has never been described in full.

It seems clear from the existing literature that the correct use of the key-
recovery speed-up is not the norm, and its application is far from trivial. Fur-
thermore, the treatment of the key-schedule relations has not been discussed
either. A generalized FFT-based key-recovery algorithm would allow to build
more efficient linear attacks easily. Taking into account the key-schedule rela-
tions and the scenario of multiple linear cryptanalysis in this algorithm also seem
to be important tasks that should be considered.

Our main results. We have been able to provide an efficient generalized key-
recovery algorithm with an associated time complexity formula. The algorithm
is given in a matricial form (as opposed to the vectorial form of previous descrip-
tions) as we believe it to be easier to understand and facilitate optimization in
some cases, such as multiple linear attacks. When considering a linear attack
with M approximations on a key-alternating cipher using N plaintext-ciphertext
pairs with key-recovery on lext bits of the first and last subkey and lin bits of
the rest, the time complexity with our algorithm is

O (N) + O (
Mlext2lext+lin

)
.

In addition, we propose two methods which efficiently exploit the dependence
relationships between the keybits that need to be guessed. The first reduces the
second term to O (

M2lext+lin
)
, if some of the bits of the external keys can be

deduced from the internal keys. The second allows to reduce the time complexity
of this part to O (

M2ltot
)

(where ltot is the strict amount of information bits
about the key which are necessary to deduce all the key-recovery bits) in some
multiple linear attacks.

In our results on PRESENT we consider new multiple linear attacks which
are only possible thanks to our algorithms, the best of which reach 28 rounds
of the cipher for the first time. The expected time complexity was evaluated
using the statistical model from [9]. In order to validate these predictions, we
have implemented reduced-round versions of the attacks and found that the
experimental results closely resemble the theoretical model.

Organization of the paper. Section 2 presents the preliminaries and notations
that will be used throughout the paper, as well as the essential ideas of lin-
ear cryptanalysis, the 2007 FFT algorithm and PRESENT. In Sect. 3 we intro-
duce our new generalized and efficient key-recovery algorithm and its variants.
Section 4 describes the application to PRESENT and our new attacks, including
discussions of the design of our linear distinguishers and key-recovery algorithms,
as well as a comparison with previous attacks and the results of our experimental
simulations. The conclusions of this paper are extracted in Sect. 5.

224 A. Flórez-Gutiérrez and M. Naya-Plasencia

2 Preliminaries

We now cover some preliminaries and notations needed for the other sections
of the paper. We briefly describe Matsui’s Algorithm 2, which is the basis of
linear key-recovery attacks. We also provide a short description of the ideas
behind linear hulls and multiple linear cryptanalysis, as they are essential to
our attacks on PRESENT. The statistical model that was used to compute the
parameters of these attacks is also summarised. Next, we present the FFT-based
algorithm which allows the speed-up of the key-recovery phase and was proposed
in [18]. Finally we outline the specification of the PRESENT block cipher.

In the following, we will consider a block cipher E of length n and key length
κ. Given a plaintext x and a key K, we denote the associated ciphertext by
y = EK(x) = E(x,K), so that E−1(y,K) = E−1

K (y) = x. In particular we
will consider key-alternating ciphers consisting of r rounds, each one being the
composition of a round permutation F and the bitwise addition of a round
subkey Ki which is derived from the master key K with a key schedule. We also
consider that the first round is preceded by the addition of a whitening key K0.

2.1 Matsui’s Algorithm 2

Matsui’s last round attack in [31] separates the last round of the cipher, EK(x) =
(F ◦ E′

K)(x) ⊕ Kr as represented in Fig. 1, and supposes the attacker knows a
correlated linear approximation α · x ⊕ β · ŷ ⊕ γ(K) of E′

K (where · denotes the
dot product). The vectors α and β are the input and output masks, while γ
determines the key mask. The correlation of the approximation is

c(α, β, γ) = Prx,K(α · x ⊕ β · F−1(EK(x) ⊕ Kr) ⊕ γ(K) = 0)

− Prx,K(α · x ⊕ β · F−1(EK(x) ⊕ Kr) ⊕ γ(K) = 1).
(1)

Matsui also proved that (under statistical independence assumptions) the
correlation of the addition of several approximations is the product of their
correlations (piling-up lemma). This allows to construct approximations of a
cipher by chaining approximations of each individual round.

yŷ FE′x

K0, ...,Kr−1 Kr

Key-ScheduleK

Fig. 1. Attack on last round of a cipher.

Improving Key-Recovery in Linear Attacks 225

Algorithm 1: Näıve Matsui’s Algorithm 2
Input: A set D = {(x, y = EK(x))} of N plaintext-ciphertext pairs.
Output: A probable guess for k.
T ← 0;
forall (x, y) ∈ D do // Compute Tk = #{(x, y) : α · x ⊕ f(y|χ ⊕ k) = 0}

for k ← 0 to 2|k| − 1 do
if α · x ⊕ f(y|χ ⊕ k) = 0 then Tk ← Tk + 1;

end

end
return argmaxk(|Tk − N/2|); // Find the Tk most different to N/2

We suppose that computing β · F−1(y ⊕ Kr) from y only requires guessing
|k| < |Kr| = n bits of Kr, which are selected by the mask χ (so that k = Kr|χ).
Here x|χ will denote the vector of length HW (χ) whose components are the
coordinates of x corresponding to non-zero entries of χ, and |x| just denotes
the length of the vector x. We can substitute the term associated to the partial
decryption of the last round for a map f : F|k|

2 −→ F2:

f (y|χ ⊕ Kr|χ) = β · F−1(y ⊕ Kr) for all y ∈ F
n
2 ,Kr ∈ F

n
2 (2)

Given a collection D of N plaintext-ciphertext pairs, the partial subkey k
can be retrieved with Matsui’s Algorithm 2, which relies on the assumption that
for any wrong guess of the last round subkey, the linear approximation will have
value 0 with probability 1/2. Matsui proved that the probability of success is
reasonable when N = O (

1/c(α, β, γ)2
)

pairs are available.
The complexity of the algorithm is N2|k| one-round decryptions and 2|k|

memory registers of up to logN bits to compute the counters Tk, with an addi-
tional 2κ−|k| full encryptions if the rest of the key is searched for exhaustively.

In [32], Matsui noted that since the only information required about each
(x, y) pair are the values of α · x and y|χ, it is possible to first count the number
of occurrences of each (α · x, y|χ) in the data (distillation phase) and then
compute the Tk using these counters (analysis phase). With this technique the
attack takes N parity evaluations and 22|k| one-round decryptions, which reduces
the complexity to O (N) + O (

22|k|) when 2|k| < N , which is often the case.
Algorithm 2 can also be used with an approximation over even less rounds

of the cipher by skipping several rounds at the beginning and/or the end. The
limitation is that the number |k| of involved subkey bits and the time complexity
increase with the number of key-recovery rounds.

2.2 Linear Hulls

The original version of linear cryptanalysis by Matsui assumes that, given an
input mask α and an output mask β, then there exists at most one key mask
which leads to a biased approximation (in modern language, there is a dominant
linear trail). This is often not the case, and there can exist many different sets

226 A. Flórez-Gutiérrez and M. Naya-Plasencia

of round subkey masks (γ0, . . . , γr) or linear trails which contribute to the linear
approximation. Furthermore, when this happens, then the probability of success
of Matsui’s Algorithm 2 is dependant on the key K. Nyberg introduced the idea
of the linear hull of an approximation in [36], as well as its linear potential:

ELP (α, β) = ExpK(c(α, β)2) =
∑

γ0,...,γr

c(α, β, (γ0, . . . , γr))2 (3)

An Algorithm 2 attack using the approximation given by the masks α, β
roughly requires N = O (1/ELP (α, β)) plaintext-ciphertext pairs to succeed,
although the specific success probability depends on the key K.

There are several algorithms which permit the estimation of the ELP of a
linear approximation. In our attacks on PRESENT we used the sparse correlation
matrix method in a similar manner to [1].

2.3 Multiple and Multidimensional Linear Attacks

Linear cryptanalysis can also be extended by using more than one linear approx-
imation. The first approach to allow the use of any set of linear approximations
was introduced by Biryukov et al. in [7], and is commonly referred to as multiple
linear cryptanalysis.

We will now describe a multiple version of Matsui’s Algorithm 2. Let νi be M
linear approximations of E′

K with masks αi, βi. We suppose that βi ·F−1(y⊕Kr)
can be replaced by fi(y|χ ⊕ k) for each approximation. For each guess of k, the
attacker computes the empirical correlations

qi
k = # {(x, y) ∈ D : αi · x ⊕ fi(y|χ ⊕ k) = 0}

− # {(x, y) ∈ D : αi · x ⊕ fi(y|χ ⊕ k) = 1} (4)

which are then aggregated into the multiple linear cryptanalysis statistic

Qk =
1
N

M∑

i=1

(
qi
k

)2
(5)

The guess with the largest associated value of Qk is probably correct. Under
the assumption that all the linear approximations are statistically independent,
the data complexity is inversely proportional to the capacity C of the set of
approximations. If ci(K) is the correlation of the i-th approximation for the key
K, then the capacity for the key K and the overall capacity are defined as

C(K) =
M∑

i=1

(ci(K))2 , C = ExpK (C(K)) =
M∑

i=1

ELP (αi, βi) (6)

Hermelin et al. proposed multidimensional linear cryptanalysis in [25] and
[26]. It uses linear approximations whose input and output masks constitute
linear subspaces of Fn

2 , so that the estimation of the probability of success takes
into account the joint distribution of all these approximations and doesn’t require
the assumption of statistical independence.

Improving Key-Recovery in Linear Attacks 227

2.4 Statistical Models for the Probability of Success

An issue that has also been studied is the probabilistic behaviour of linear
approximations and how it can be used to better estimate the data complex-
ity of a linear attack. In an attack based on Matsui’s Algorithm 2, it is possible
to keep more than one key candidate, which increases the probability of suc-
cess. Selçuk introduced the notion of advantage [38] in order to measure the
effectiveness of this type of attack. An attack that ranks the partial key guesses
k according to a statistic Xk achieves an advantage of a bits if the right key
ranks among the best 2|k|−a key candidates. Given a desired advantage a, the
probability of success is the probability that the actual advantage surpasses a.

Supposing that the key-ranking statistic Xk has the cumulative distribution
function FR for the right key guess and FW for any wrong guess, then the success
probability of the associated statistical attack for a given desired advantage a is

PS = 1 − FR

(
F−1

W (1 − 2−a)
)

(7)

For multiple and multidimensional linear cryptanalysis, Blondeau et al. have
provided estimations of the distributions of the test statistics in [9]. These esti-
mations can also be found in the AppendixC.

Another approach to estimating the probability of success was recently intro-
duced by Bogdanov et al. in [12] with the name multivariate profiling. Its main
advantage is the fact that it allows to use any set of linear approximations
without supposing the statistical independence of the variables. In this case the
estimate for the joint distribution of the correlation of the approximations is
obtained by drawing a large enough sample of random keys, and computing the
individual correlation contribution of each trail (in a large enough set of highly
biased trails) for each of the random keys.

2.5 Last-Round Key-Recovery with FFT/FWT

We now describe the FFT-accelerated version of Algorithm 2 presented in [18],
which applies to the construction from Fig. 1 and will be the starting point of
our work in Sect. 3.

There are 2|k| possibilities for the partial subkey guess, and we recall that χ
is the mask which extracts these relevant bits, so k = Kr|χ. Let f(y|χ ⊕ k) =
β · F−1(y ⊕ Kr) denote the term of the approximation associated to the partial
last round decryption. The attacker wants to compute the vector q ∈ Z

2m

of
experimental correlations whose entries are

qk = # {(x, y) ∈ D : α · x ⊕ f(y|χ ⊕ k) = 0}
− # {(x, y) ∈ D : α · x ⊕ f(y|χ ⊕ k) = 1} (8)

with the aim of extracting the key candidate(s) with the largest |qk| (as qk =
2Tk − N). Each experimental correlation can be rewritten as a sum

qk =
∑

(x,y)∈D
(−1)α·x⊕f(y|χ⊕k) =

2|k|−1∑

j=0

(−1)f(j⊕k)
∑

(x,y)∈D
y|χ=j

(−1)α·x (9)

228 A. Flórez-Gutiérrez and M. Naya-Plasencia

where j represents the relevant |k| bits of the ciphertext. This suggests that the
attack should begin by computing the integer vector a ∈ Z

2|k|
with coordinates

aj =
∑

(x,y)∈D
y|χ=j

(−1)α·x (10)

This constitutes the distillation phase of the algorithm of [18]. We can also define
the matrix C ∈ Z

2|k|×2|k|
with entries

cjk = (−1)f(j⊕k) (11)

The vector q = (q0, . . . , q2|k|−1) can thus be calculated as the product

qT = aT C (12)

However, the time complexity of constructing C and computing the matrix-
vector product is still O

(
22|k|). The product can be computed in a much more

efficient manner by making use of the following result:

Proposition 1. Let f : Fm
2 −→ F2 be a boolean function. We consider a matrix

of 1s and −1s C ∈ Z
2m×2m

whose entries are of the form

cij = (−1)f(i⊕j), 0 ≤ i, j ≤ 2m − 1 (13)

This matrix diagonalizes as

2mC = H2mΔH2m (14)

where H2m is the Hadamard-Sylvester matrix of size 2m whose entries are hij =
(−1)i·j, and Δ = diag(λλλ), λλλ ∈ Z

2m

is a diagonal matrix. The eigenvalue vector
λλλ is the matrix-vector product H2mC·1, where C·1 denotes the first column of C.

The matrix-vector product aT C can then be further decomposed into:

2|k|qT = aT H2|k|diag(H2|k|C·1)H2|k| (15)

The decomposition of C justifies Algorithm 2, which reduces computing q to
three products of the form H2|k|v, which can in turn be evaluated efficiently with
the Fast Walsh Transform (sometimes called Fast Walsh-Hadamard Transform
or simply FWT or FWHT) with |k|2|k| additions/substractions (see the appendix
for more details). We denote by ρD the cost of checking a plaintext-ciphertext
pair in the distillation phase, by ρf the cost of evaluating f(j), by ρA, ρM , ρC

the cost of adding, multiplying and comparing two n-bit integers, by ρE the cost
of one encryption and by a the advantage of the attack.

Proposition 2. The previous algorithm has time complexity

ρDN
︸ ︷︷ ︸

distillation
phase

+ 3ρA|k|2|k| + (ρf + ρM + ρC)2|k|
︸ ︷︷ ︸

analysis phase

+ ρE2κ−a

︸ ︷︷ ︸
search
phase

(16)

The memory requirement is 2 · 2|k| · (n + |k|) bits.

Improving Key-Recovery in Linear Attacks 229

Algorithm 2: The algorithm of [18] (without the final phase)
Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs

(possibly on-the-fly).
Output: The experimental correlations qk (multiplied by 2|k|).
// DISTILLATION PHASE

a ← 0;
forall (x, y) ∈ D do

if α · x = 0 then ay|χ ← ay|χ + 1 else ay|χ ← ay|χ − 1;

end
// ANALYSIS PHASE

for j ← 0 to 2|k| − 1 do λj ← f(j); // First column of C
λλλ ← FWT(λλλ); // Eigenvalues of C
a ← FWT(a); // Apply the FWT to a

for j ← 0 to 2|k| − 1 do aj ← aj · λj ; // Multiply a by λλλ
q ← FWT(a); // Apply the FWT to a

return q;

2.6 The Lightweight Block Cipher PRESENT

PRESENT is a key-alternating block cipher which takes a 64-bit plaintext x =
x63 . . . x0 and an 80-bit (or 128-bit) key K = κ79 . . . κ0 (or K = κ127 . . . κ0) and
returns a 64-bit ciphertext y = y63 . . . y0. The encryption is performed by itera-
tively applying a round transformation to the state b = b63 . . . b0 = w15‖ . . . ‖w0,
where each of the wi represents a 4-bit nibble, wi = b4i+3b4i+2b4i+1b4i.

Both variants of PRESENT consist of 31 rounds, plus the addition of a
whitening key at the output. Each round is the composition of three transfor-
mations:

– addRoundKey: Given the round key Ki = κi
63 . . . κi

0, 0 ≤ i ≤ 31 and the
state b, the round key is XORed bitwise to the state.

– sBoxLayer: A fixed 4-bit S-box S : F4
2 −→ F

4
2 is applied to each nibble wi of

the state. The S-box S is given as a lookup table (in hexadecimal notation):

xxx 0 1 2 3 4 5 6 7 8 9 A B C D E F

SSS(xxx) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

– pLayer: A fixed bitwise permutation P is applied to the state b.

P : {0, . . . 63} −→ {0, . . . , 63}
j �= 63 	−→ 16j mod 63

63 	−→ 63
(17)

Key-schedule. It is the only difference between the 80 and the 128-bit variants,
both algorithms can be found in AppendixA.

230 A. Flórez-Gutiérrez and M. Naya-Plasencia

yE2ŷEMx̂E1x

K0 K1 KM K2 K3

Key-ScheduleK

Fig. 2. The general description of the cipher.

3 Efficient Key-Recovery for Algorithm 2

In this section we will present our generalized efficient key-recovery algorithm
inspired from the one in [18], described in Sect. 2.5.

We were surprised to see that after the publication of [18], many new linear
attack publications did not use the algorithm to speed up the key-recovery part
(see for instance [8,16,33]), or they just used it without getting into the details
as a black box (see [2,3]). A few publications implicitly used extensions of the
technique, such as [12,41], always in the context of a dedicated attack.

Here we propose a generalized version of the algorithm for an arbitrary num-
ber of rounds which encompasses these contributions and permits a finer analysis
of the time complexity. We also propose two variants of the algorithm which effi-
ciently exploit the key-schedule relations between keybits as well as the multiple
approximation setting, which are interesting scenarios requiring consideration.

We believe that the new algorithm and its variants will simplify the evaluation
of the time complexity of an attack given a suitable linear distinguisher, which
would in turn help designers assess the security margin of a block cipher.

3.1 The Extended Algorithm

Consider a block cipher E of block size n and key size κ which can be decomposed
as in Fig. 2. The ciphers E1 and E2 represent the first and last few rounds. They
take some inner keys K1 and K2. The first and last round will be the outer keys
K0 and K3. We suppose that the inner cipher EM has a linear approximation

ν : α · x̂ ⊕ β · ŷ.

As before, we assume that the values of α ·E1(x⊕K0,K1) (resp. β ·E−1
2 (y ⊕

K3,K2)) can be obtained from a part of x (resp. y) by guessing some bits of the
keys K0 and K1 (resp. K3 and K2). We will denote the necessary part of the
plaintext by i (resp. ciphertext, j), while the guessed parts of the subkeys will
be denoted by k0, k1 (resp. k3, k2). We can consider masks χ0, χ1, χ2, χ3, so that

i = x|χ0 , k0 = K0|χ0 , k1 = K1|χ1 , k2 = K2|χ2 , j = y|χ3 , k3 = K3|χ3 (18)

Improving Key-Recovery in Linear Attacks 231

Let f1 : F2|k0|
2 × F

2|k1|
2 −→ F2 and f2 : F2|k3|

2 × F
2|k2|
2 −→ F2 be maps for which

f1 (x|χ0 ⊕ K0|χ0 ,K1|χ1) = α · E1 (x ⊕ K0,K1) for all x,K0,K1 (19)

f2 (y|χ3 ⊕ K3|χ3 ,K2|χ2) = β · E−1
2 (y ⊕ K3,K2) for all y,K3,K2 (20)

The attacker has a set D of N pairs (x, y = E(x,K)) for some fixed key K.
They need to compute, for each possible guess of the subkeys:

q(k0, k1, k2, k3) = # {(x, y) ∈ D : f1(i ⊕ k0, k1) ⊕ f2(j ⊕ k3, k2) = 0}
− # {(x, y) ∈ D : f1(i ⊕ k0, k1) ⊕ f2(j ⊕ k3, k2) = 1} (21)

The attack begins with the distillation phase, in which a matrix A ∈
Z
2|k0|×2|k3|

is constructed from the data. Its entries are

aij = # {(x, y) ∈ D : x|χ0 = i, y|χ3 = j} . (22)

We can rewrite the experimental correlation for any key guess as the sum

q(k0, k1, k2, k3) =
2|k0|−1∑

i=0

2|k3|−1∑

j=0

aij(−1)f1(i⊕k0,k1)(−1)f2(j⊕k3,k2) (23)

Let us now consider that the values of k1 and k2 are fixed. The associated
experimental correlations form a matrix Qk1,k2 ∈ Z

2|k0|×2|k3|
with entries

qk1,k2
k0,k3

= q(k0, k1, k2, k3) (24)

We can see that Qk1,k2 = Bk1ACk2 , where Bk1 ∈ Z
2|k0|×2|k0|

and Ck2 ∈
Z
2|k3|×2|k3|

, and the elements of these matrices are defined as

bk1
k0,i = (−1)f1(i⊕k0,k1), ck2

j,k3
= (−1)f2(j⊕k3,k2) (25)

The matrices Bk1 , Ck2 adhere to the structure described in Proposition 1, and
the Fast Walsh Transform can be used to multiply vector by them.

2|k0|Bk1 = H2|k0|diag
(
λλλk1
1

)
H2|k0| , where λλλk1

1 = H2|k0|Bk1
·1 (26)

2|k3|Ck2 = H2|k3|diag
(
λλλk2
2

)
H2|k3| , where λλλk2

2 = H2|k3|Ck2
·1 (27)

The matrices Qk1k2 can therefore be calculated as

2|k0|+|k3|Qk1k2 = H2|k0|diag
(
λλλk1
1

)
H2|k0|AH2|k3|diag

(
λλλk2
2

)
H2|k3| (28)

As a result, the attack can be performed efficiently using Algorithm 3 as follows:

1. Distillation phase: Construct the matrix A by looking at each plaintext-
ciphertext pair (x, y), finding the associated values of i = x|χ0 and j = y|χ3

and incrementing the corresponding aij by one.

232 A. Flórez-Gutiérrez and M. Naya-Plasencia

Algorithm 3: General FFT algorithm (without the final phase)
Input: A collection D = {(x, y = EK(x))} of N plaintext-ciphertext pairs.
Output: The experimental correlations Qk1,k2

k0,k3
.

// DISTILLATION PHASE

A ← 0;
forall (x, y) ∈ D do ax|χ0 ,y|χ3

← ax|χ0 ,y|χ3
+ 1;

// ANALYSIS PHASE

for i ← 0 to 2|k0| − 1 do Ai· ← FWT(Ai·); // FWT on rows

for j ← 0 to 2|k3| − 1 do A·j ← FWT(A·j); // FWT on columns

for k1 ← 0 to 2|k1| − 1; i ← 0 to 2|k0| − 1 do (λk1
1)i ← f1(i, k1); // Bk1

·1
for k2 ← 0 to 2|k2| − 1; j ← 0 to 2|k3| − 1 do (λk2

2)j ← f2(j, k2); // Ck2
·1

for k1 ← 0 to 2|k1| − 1 do λλλk1
1 ← FWT(λλλk1

1); // Compute λλλk1
1

for k2 ← 0 to 2|k2| − 1 do λλλk2
2 ← FWT(λλλk2

2); // Compute λλλk2
2

for k1 ← 0 to 2|k1| − 1; k2 ← 0 to 2|k2| − 1 do // Compute Qk1,k2
k0,k3

for k0 ← 0 to 2|k0| − 1; k3 ← 0 to 2|k3| − 1 do
Qk1,k2

k0k3
← Ak0k3 · (λk1

1)k0 · (λk2
2)k3 ;

for k0 ← 0 to 2|k0| − 1 do Qk1,k2
k0· ← FWT(Qk1,k2

k0·);

for k3 ← 0 to 2|k3| − 1 do Qk1,k2
·k3

← FWT(Qk1,k2
·k3

);

end

return
{
Qk1,k2

}
k1,k2

;

2. Analysis phase: Compute all the experimental correlations q(k0, k1, k2, k3):
(a) Apply the FWT on all rows and columns of A to obtain a matrix Â.
(b) Construct the eigenvalue vectors λλλk1

1 and λλλk2
2 for all k1, k2 by calculating

the first column of Bk1 or Ck2 and then applying the FWT.
(c) Compute Qk1,k2 for all the values of k1 and k2:

i. Copy Â and multiply each column by λλλk1
1 and each row by λλλk2

2 ele-
mentwise.

ii. Apply the FWT on all the rows and columns to obtain Qk1,k2 .
(d) Select the subkey guesses with the largest values of |q(k0, k1, k2, k3)|.

3. Search phase.

The time complexity of the distillation phase is ρDN binary operations, where
ρD is the cost of checking one pair. The distilled data occupies 2|k0|+|k3| memory
registers of up to n bits. The cost of applying the initial FWTs of step 2(a) is
ρA (|k0| + |k3|) 2|k0|+|k3| (ρA/ρM is the cost of addition/multiplication) with no
additional memory. The eigenvalue vectors can be precomputed with cost

ρf12
|k0|+|k1| + ρf22

|k2|+|k3| + ρA

(
|k0|2|k0|+|k1| + |k3|2|k2|+|k3|

)
(29)

where ρf1 and ρf2 are the costs of evaluating f1 and f2. These vectors are stored
in 2|k0|+|k1| + 2|k2|+|k3| registers of max{|k0|, |k3|} bits. The cost of step 2(c) is

2ρM2|k0|+|k1|+|k2|+|k3| + ρA (|k0| + |k3|) 2|k0|+|k1|+|k2|+|k3| (30)

Improving Key-Recovery in Linear Attacks 233

This computation requires 2|k0|+|k3| working registers of up to n+ |k0|+ |k3| bits.
If the experimental correlations need to be stored in full (for example if the FFT
algorithm is used as a part of a multiple linear attack), then 2|k0|+|k1|+|k2|+|k3|

memory registers of n bits are required (we can divide by 2|k0|+|k3|).
It’s interesting to compare the computational costs ρD, ρf1 , ρf2 , ρA and ρM

with the cost of a block cipher encryption ρE . In general, ρD, ρf1 and ρf2 should
be negligible, as they are much simpler operations. For most cases ρA and ρM

should be comparable to or smaller to the cost of an encryption, though this
depends on the implementations of the cipher and the operations.

The adaptability of this algorithm to multiple and multidimensional linear
attacks should also be considered. The distillation phase only needs to be per-
formed once, which means our approach generalises the results of [35]. If there
is no structure to the set of approximations, then the time cost of the analysis
phase is multiplied by the number of approximations M . Additionally, the cost
of computing the statistic Qk from the correlations of each approximation is

M(ρM + ρA)2|k0|+|k1|+|k2|+|k3| (31)

If there are several approximations which share the same input mask α but differ
in their output masks (or the other way around), then it is possible to reuse some
partial results such as Bk1Â, which only need to be computed once. This can
lead to a further reduction in time complexity.

3.2 Exploiting the Key Schedule of the Cipher

So far, we have assumed that the attacker must guess k0, k1, k2 and k3 indepen-
dently. However, the key schedule of a cipher often induces dependence relation-
ships between these four subkeys. These relationships can be easily exploited in
the implementation of Matsui’s Algorithm 2 without FFT, but it is not obvious
how they can be used in accelerated attacks. We will now consider two strategies.

Walsh Transform Pruning

The first approach consists of applying the FWT algorithm but only comput-
ing the outputs which correspond to possible values of the subkeys, as suggested
in [41]. To this end, we have studied pruned Walsh Transform algorithms, which
efficiently compute a subset of outputs of the classical “full” transform. We have
found a particularly useful pruned algorithm, which is detailed in AppendixB:

Proposition 3. The components of the Walsh Transform of a vector of length
2m which have n fixed bits in their position can be computed with complexity

2m + (m − n − 1)2m−n (32)

We have designed a modified analysis phase which considers the bits of k0
which can be deduced from (k1, k2) and the bits of k3 which can be deduced
from (k0, k1, k2). The roles of k0 and k3 can be easily exchanged if necessary.

234 A. Flórez-Gutiérrez and M. Naya-Plasencia

1. Compute H2k0 AH2k3 as normal.
2. Only compute the products diag(λλλk1

1)H2k0 AH2k3 diag(λλλk2
2) for the values of

(k1, k2) which are possible according to the key schedule.
3. For each pair (k1, k2), consider only the possible values of k0 and prune the

associated (column) Walsh Transforms accordingly.
4. For each of the rows of the resulting matrix, consider the possible values of

k3 and prune the associated Walsh Transform to these positions.

If (k1, k2) can only take 2|k1|+|k2|−l12 different values, l0 bits of k0 can be
deduced from (k1, k2) and l3 bits of k3 can be deduced from (k0, k1, k2) then the
complexity of the “pruned” analysis phase is

ρA(|k0| + |k3|)2|k0|+|k3| + 2ρM2|k0|+|k1|+|k2|+|k3|−l12

+ ρA2|k1|+|k2|+|k3|−l12
(
2|k0| + (|k0| − l0 − 1)2|k0|−l0

)

+ ρA2|k0|−l0+|k1|+|k2|−l12
(
2|k3| + (|k3| − l3 − 1)2|k3|−l3

)
(33)

As l0 and l3 increase with respect to |k0| and |k3|, the complexity approaches

ρA(|k0| + |k3|)2|k0|+|k3| + 2 (ρM + ρA) 2|k0|+|k1|+|k2|+|k3|−l12 (34)

This variant of the attack algorithm requires 2|k0|+|k3| memory registers to hold
the counters from the distillation phase, 2|k0|+|k1| + 2|k2|+|k3| registers for the
eigenvalue vectors and 2|k0|+|k1|+|k2|+|k3|−l12−l0−l3 registers to hold the experi-
mental correlations, if they need to be stored in full.

Since applying Walsh Transform on all the rows and columns of a matrix is
equivalent to performing the Walsh Transform on a vectorization of the matrix,
it should be possible to prune this unique transform to the possible values of
(k0, k3) associated to the current (k1, k2). In particular, it would be interesting
to consider more complex relationships between these bits.

Multiple Linear Cryptanalysis

The previous approach has limited results if 2|k0|+|k3| is already too large. In
the case of multiple linear cryptanalysis, it is possible to reduce the complexity
further by performing the algorithm separately for each linear approximation
and then combining the information to obtain Qk, as done in [41] and [12].

Let νi : αi · x̂ ⊕ βi · ŷ, i = 1, . . . ,M be a linear approximations of the inner
cipher EM . Multiple linear cryptanalysis requires the attacker to compute

Q(k0, k1, k2, k3) =
1
N

M∑

i=1

(
qi(k0, k1, k2, k3)

)2
(35)

In order to calculate one particular qi some subkey bits might be unneces-
sary: some part of the subkey might be necessary for one approximation but

Improving Key-Recovery in Linear Attacks 235

not for a different one. Let us suppose that qi(k0, k1, k2, k3) can be calculated
as q̂i(ki

0, k
i
1, k

i
2, k

i
3) (where ki

0 = k0|χi
0

is a part of k0, and so on), and that
(k0, k1, k2, k3) can be deduced from a part kT of the master key K. We will also
suppose that the sets of masks (χi

0, χ
i
3) and (χi

0, χ
i
1, χ

i
2, χ

i
3) take M1 and M2

different values over the set of M approximations, respectively. In this situation,
the attacker can perform the following modified attack:

1. In the distillation phase, construct M1 tables: for each plaintext-ciphertext
mask pair (X0,X3), the table A(X0,X3) of size 2HW (χi

0) × 2HW (χi
3).

2. For each approximation νi, compute a table of length 2|ki
0|+|ki

1|+|ki
2|+|ki

3| con-
taining all the possible values of qi(ki

0, k
i
1, k

i
2, k

i
3) by using the FFT algorithm

on the appropriate table from the distillation phase, A(χi
0,χi

3)
.

3. Merge the M tables from the previous step into M2 “condensed” tables
by adding the square correlations of approximations corresponding to the
same choice of subkey bits, that is, one table for each possible value of
(X0,X1,X2,X3). The associated condensed table contains the coefficients:

∑

(χi
0,χi

1,χi
2,χi

3)
=(X0,X1,X2,X3)

(
qi(ki

0, k
i
1, k

i
2, k

i
3)

)2
for all (ki

0, k
i
1, k

i
2, k

i
3) (36)

4. For each possible guess of the partial master key kT , use the key schedule
to compute the associated values of ki

0, k
i
1, k

i
2, k

i
3. Use the tables from the

previous step to compute Q(k0, k1, k2, k3).

Note that the individual calls to the FFT linear cryptanalysis algorithm can
also be pruned in order to combine both key schedule exploitation approaches,
and that steps 2 and 3 can be mixed in order to reduce the memory requirement.

The cost of the distillation phase is now M1ρDN . If ρKS denotes the cost of
computing (k0, k1, k2, k3) from kT , then the cost of the analysis phase is

M∑

i=1

(
2ρM2|ki

0|+|ki
1|+|ki

2|+|ki
3| + ρA(|ki

0| + |ki
3|)

(
2|ki

0|+|ki
1|+|ki

2|+|ki
3| + 2|ki

0|+|ki
3|

))

+
M∑

i=1

(
ρM2|ki

0|+|ki
1|+|ki

2|+|ki
3| + ρA2|ki

0|+|ki
1|+|ki

2|+|ki
3|

)
+ (M2ρA + ρKS)2|kT |

(37)
The algorithm requires

∑
(X0,X3)

2HW (X0)+HW (X3) memory positions for
the distillation counters and

∑
(X0,X1,X2,X3)

2HW (X0)+HW (X1)+HW (X2)+HW (X3)

positions for the M2 condensed correlation tables.
This algorithm can produce large gains in the case of multiple linear crypt-

analysis (especially when the |ki
· | are significantly smaller than the |k·|), but its

success is more limited in multidimensional attacks, as there is always a linear
approximation for which the |ki

· | are maximal.

236 A. Flórez-Gutiérrez and M. Naya-Plasencia

Example implementation. We have implemented our key-recovery algorithm on
a toy version of PRESENT with the aim of illustrating how all these different
techniques can be used. The C code can be found at:

https://project.inria.fr/quasymodo/results/codes/.

4 Application to PRESENT

In order to showcase the potential of our key-recovery techniques, in this section
we describe some new attacks on reduced-round variants of the block cipher
PRESENT, which surpass the best previously known attacks (that were also
linear), specifically [12,16,41]. Our results include new attacks on 26 and 27-
round PRESENT which improve the parameters of the aforementioned attacks,
as well as (to the best of our knowledge) the first attacks on 28-round PRESENT.

4.1 Linear Distinguishers for PRESENT

Previous linear attacks on PRESENT [12,16,33,37,41] have used the fact that
the S-box has eight linear approximations with correlation 2−3 and whose input
and output masks have Hamming weight 1. These approximations lead to many
linear trails with one active S-box in each round, which form linear hulls with
high potential and masks of weight 1. Our attacks make use of three different
sets of approximations with masks of weight 1 or 2, which were found as follows.

We begin by computing the correlation of all approximations of one round of
PRESENT which: (1) only have up to two active S-boxes and (2) only require
up to two active S-boxes in the previous and the next rounds. There are 2800
input and output masks which verify these bounds on the number of active
S-boxes, so a 2800×2800 correlation matrix was constructed. Then, the element-
wise square of this matrix can be elevated to the number of rounds r to obtain
an approximation of the ELP of all the linear approximations whose input and
output masks are in this family. A similar approach is detailed in [1].

The analysis of the resulting matrices showed that the linear approxima-
tions of PRESENT with the largest ELP only have one active S-box in the first
and the last rounds. Table 1 contains a classification (according to the ELP) of
approximations with one active S-box in the first and the last round, and masks
of Hamming weight 1 or 2. From these approximations, we have selected three
different sets as linear distinguishers, considering both their linear capacity as
well as the number of keybits involved in a two-round key-recovery.

Set I, with 128 approximations, has the lowest capacity, but only uses masks
of Hamming weight 1 and has a cheaper key-recovery than the others. Set III has
448 approximations and the largest capacity but requires guessing a lot of bits in
the key-recovery, as it has approximations with both masks of Hamming weight
2. Set II is an intermediate where masks of Hamming weight 2 are only used in
the input. The capacity for these three sets can be found in Table 2. We have
also estimated the advantage that is obtained by these sets of approximations
using the statistical model that can be found in [9] and AppendixC.

Improving Key-Recovery in Linear Attacks 237

Table 1. An empirical classification of linear approximations of PRESENT with input
and output masks of Hamming weight 1 or 2 according to their ELP. Indicated are the
active S-box of the first and last rounds, as well as the input and output masks of said
S-boxes. Our three sets of approximations are indicated as I:*, II:◦ and III:†.

Group Mask
Input

S-Box
Input

Mask
Output

S-Box
Output

Qty. r = 22
ELP

r = 23
ELP

r = 24
ELP

A A†
◦ 5†

◦, 6†
◦, 9†

◦, 10†
◦ 2†

◦, 8†
◦, 3†, 9† 5†

◦, 7†
◦, 13†

◦, 15†
◦ 64 2−59.9 2−62.5 2−65.1

B C†
◦ 5†

◦, 6†
◦, 9†

◦, 10†
◦ 2†

◦, 8†
◦, 3†, 9† 5†

◦, 7†
◦, 13†

◦, 15†
◦ 64 2−60.4 2−63.0 2−65.6

C1 A†
◦ 5†

◦, 6†
◦, 9†

◦, 10†
◦ 2†

◦, 8†
◦, 3†, 9† 6†

◦, 9, 11, 14†
◦ 64

2−60.6 2−63.2 2−65.8C2 A 5, 6, 9, 10 4, 5 5, 7, 13, 15 32

C3 A†
◦ 7†, 11†, 13†

◦, 14†
◦ 2†

◦, 8†
◦, 3†, 9† 5†

◦, 7†
◦, 13†

◦, 15†
◦ 64

D ∗2†
◦,∗ 4†

◦, 3, 5 ∗5†
◦,∗ 6†

◦,∗ 9†
◦,∗ 10†

◦ ∗2†
◦,∗ 8†

◦, 3†, 9† ∗5†
◦,∗ 7†

◦,∗ 13†
◦,∗ 15†

◦ 256 2−60.8 2−63.4 2−66.0

E1 C†
◦ 5†

◦, 6†
◦, 9†

◦, 10†
◦ 2†

◦, 8†
◦, 3†, 9† 6†

◦, 9, 11, 14†
◦ 64

2−61.1 2−63.7 2−66.3E2 C 5,6,9,10 4,5 5,7,13,15 32

E3 C†
◦ 7†, 11†, 13†

◦, 14†
◦ 2†

◦, 8†
◦, 3†, 9† 5†

◦, 7†
◦, 13†

◦, 15†
◦ 64

F1 A 5, 6, 9, 10 2, 8, 3, 9 10 16

2−61.3 2−63.9 2−66.5

F2 A 5, 6, 9, 10 4, 5 6, 9, 11, 14 32
F3 A 5, 6, 9, 10 6, C 5, 7, 13, 15 32
F4 A◦ 7, 11, 13◦, 14◦ 2◦, 8◦, 3, 9 6◦, 9, 11, 14◦ 64
F5 A 7, 11, 13, 14 4, 5 5, 7, 13, 15 32
F6 A 15 2, 8, 3, 9 5, 7, 13, 15 16

G1 ∗2◦,∗ 4◦, 3, 5 ∗5◦,∗ 6◦,∗ 9◦,∗ 10◦ ∗2◦,∗ 8◦, 3, 9 ∗6◦, 9, 11,∗ 14◦ 256

2−61.5 2−64.1 2−66.7G2 2, 4, 3, 5 5, 6, 9, 10 4, 5 5, 7, 13, 15 128
G3 8◦, 9 5◦, 6◦, 9◦, 10◦ 2◦, 8◦, 3, 9 5◦, 7◦, 13◦, 15◦ 64
G4 ∗2◦,∗ 4◦, 3, 5 7, 11,∗ 13◦,∗ 14◦ ∗2◦,∗ 8◦, 3, 9 ∗5◦,∗ 7◦,∗ 13◦,∗ 15◦ 256

Table 2. The capacities of our three sets of approximations.

Approx. Capacity (r = 22) Capacity (r = 23) Capacity (r = 24)

I (*) 128 2−54.11 2−56.71 2−59.31

II (◦) 296 2−52.60 2−55.20 2−57.80

III (†) 448 2−51.78 2−54.38 2−56.98

These approximations are not statistically independent (as they are not even
linearly independent). One possible solution would be the application of mul-
tidimensional linear cryptanalysis. However, this would consider all the linear
combinations of the approximations, and the benefits of the masks of low Ham-
ming weight would be lost. Instead, we use the multiple linear cryptanalysis
statistic, and we have estimated the probability of success under the assump-
tion that the approximations are statistically independent. In order to justify
the validity of the resulting estimations, we provide experimental results which
conform to the theoretical predictions for a reduced number of rounds. Another
possible approach would be the multivariate profiling technique of [12].

238 A. Flórez-Gutiérrez and M. Naya-Plasencia

Fig. 3. Advantage obtained by each of our sets of approximations for 22, 23 and 24
rounds of PRESENT with 0.95 probability in a distinct known plaintext scenario.

Fig. 4. Experimental advantage for attacks on 10 (resp. 12) rounds of PRESENT
(using the linear distinguishers over 6 (resp. 8) rounds, with key-recovery on the first
two and last two rounds). The statistic Qk of the right key was compared against a
random sample of 212 (resp. 210) keys. The position of the right-key statistic among
these provides an estimation of the advantage of up to 12 (resp. 10) bits. This was
repeated for 20 different random right keys and 20 different random data samples for
each value of N , providing a sample of 400 values of the advantage. The 5th percentile
was used as an estimation of the advantage that’s achieved with probability 0.95.

Figures 3 and 4 contain our advantage predictions for the 22, 23 and 24 round
distinguishers as well as experiments for 6 and 8 rounds.

4.2 Improved Key-Recovery Attacks on 26 and 27-Round
PRESENT

The first attack on PRESENT that we propose is based on set I of linear approxi-
mations. Since this set is only effective on up to 23 internal rounds and the attack
will perform a key-recovery on the first two and last two rounds, the attack is
effective on up to 27 rounds. In order to describe of these attacks more easily,
we make use of the following properties of the bit permutation:

Improving Key-Recovery in Linear Attacks 239

K0
xxx

S S S S S S S S S S S S S S S S

K1

S S S SS S S SS S S SS S S S

x̂̂x̂xK2

ŷ̂ŷyKr−2

S S S S S S S S S S S S S S S S

Kr−1

S S S SS S S SS S S SS S S S

yyyKr

Fig. 5. The four groups of bits for the key-recovery on the first and last rounds.

Proposition 4 (Key-recovery on PRESENT). Let x̂ be the state at the begin-
ning of the second round of PRESENT. Given two fixed values of i, j between
0 and 3, the four bits x̂48+4i+j , x̂32+4i+j , x̂16+4i+j and x̂4i+j can be obtained
from the 16 bits of the plaintext x16j+15 . . . x16j, as well as the 16 bits of the
first round subkey κ0

16j+15 . . . κ0
16j and the 4 bits of the second round subkey

κ1
16i+4j+3κ

1
16i+4j+2κ

1
16i+4j+1κ

1
16i+4j.

Let ỹ be the state before the application of sBoxLayer in the (r − 1)-th round
of PRESENT. Given two fixed values of i, j between 0 and 3, the four bits
ỹP (16j+12+i), ỹP (16j+8+i), ỹP (16j+4+i) and ỹP (16j+i) can be obtained from the 16
bits of the ciphertext y60+i, y56+i, . . . , y4+i, yi, as well as the 16 bits of the last
round subkey κr

60+i, κ
r
56+i, . . . , κ

r
4+i, κ

r
i and the 4 bits of the previous round sub-

key κr−1
48+4i+jκ

r−1
32+4i+jκ

r−1
16+4i+jκ

r−1
4i+j.

With the help of the previous proposition, we can mount key-recovery attacks
on up to 27-round PRESENT-80 by extending approximation set I with two
rounds of key-recovery at both the top and bottom of the cipher using our
multiple linear cryptanalysis key-recovery algorithm. The parameters of the time
complexity formula can be computed using Proposition 4, and the details on the
key schedule for 26 and 27 rounds can be found in Figs. 6 and 7. In particular

M1 = 4, M2 = 16, |k0| = |k3| = 32, |k1| = |k2| = 12

|ki
0| = |ki

3| = 16, |ki
1| = |ki

2| = 4 for all i

|kT | = 61 for 26 rounds, |kT | = 68 for 27 rounds

(38)

A simple lower bound on the cost of a PRESENT encryption ρE is 2 · 64 ·
r + 64 binary operations (since each round requires at the very least adding the
round subkey and writing each output bit for sBoxLayer). For 26 rounds, this
is 3392 binary operations. On the other hand, ρA
 128, ρM
 3 · 64log2(3)

2143. This means that the time complexity of the analysis phase should be
lower than 265 full encryptions for 26 rounds and 272 full encryptions for 27
rounds. The search phase time complexity depends on the available data and can

240 A. Flórez-Gutiérrez and M. Naya-Plasencia

K26

pLayer

S S S S S S S S S S S S S S S S

K25

pLayer

S S S S S S S S S S S S S S S S

22 rounds

pLayer

S S S S S S S S S S S S S S S S

K1

pLayer

S S S S S S S S S S S S S S S S

K0

Fig. 6. Key-recovery on 26-round PRESENT-80 using approximation set I. The key-
schedule effect is also represented in the figure. In total there are 96 bits of the subkeys
which need to be guessed, which have been indicated by a cross. However, they can all
be deduced from the |kT | = 61 bits of key which have been highlighted in (dark) red.
From these bits of key, all the bits in (light) green can be extracted, which includes all
the necessary bits for the attack. (Color figure online)

K27

pLayer

S S S S S S S S S S S S S S S S

K26

pLayer

S S S S S S S S S S S S S S S S

23 rounds

pLayer

S S S S S S S S S S S S S S S S

K1

pLayer

S S S S S S S S S S S S S S S S

K0

Fig. 7. Key-recovery on 27-round PRESENT-80 using approximation set I.

be estimated thanks to the graphs in Fig. 3. The complexities of both attacks
are given in Table 3. These attacks can be easily extended to the 128-bit key
variant.

4.3 Key-Recovery Attacks on 28-Round PRESENT

Sets II and III can be extended by two rounds of key-recovery at both sides to
construct attacks on up to 28-round PRESENT. As set III has a larger capacity
but requires an expensive key-recovery, we found that set II is best suited to
attack PRESENT-80 and set III gives better results on PRESENT-128.

The parameters for an attack using approximation set II on PRESENT-80,
with the key-schedule analysis represented in Fig. 8 are:

M1 = 8, M2 = 32, |k0| = 48, |k1| = 24, |k2| = 16, |k3| = 32

|ki
0| ≤ 32, |ki

1| ≤ 8, |ki
2| = 4, |ki

3| = 16 for all i, |kT | = 73
(39)

This attack requires use of the Pruned Walsh Transform. There are 160
approximations for which the input and output masks have weight 1. For each of

Improving Key-Recovery in Linear Attacks 241

K28

pLayer

S S S S S S S S S S S S S S S S

K27

pLayer

S S S S S S S S S S S S S S S S

24 rounds

pLayer

S S S S S S S S S S S S S S S S

K1

pLayer

S S S S S S S S S S S S S S S S

K0

K13

.

Fig. 8. Key-recovery on 28-round PRESENT-80 using approximation set II.

K28

pLayer

S S S S S S S S S S S S S S S S

K27

pLayer

S S S S S S S S S S S S S S S S

24 rounds

pLayer

S S S S S S S S S S S S S S S S

K1

pLayer

S S S S S S S S S S S S S S S S

K0

Fig. 9. Key-recovery on 28-round PRESENT-128 using approximation set III.

these approximations, computing the 240 experimental correlations has cost (16+
16) · 216+4+4+16 = 245 operations. For the remaining approximations, the cost
should be (32 + 16)232+8+4+16 = 265.58. However, all these approximations have
an input S-box mask A or C. A look at the key-recovery diagrams shows that
at least 5 bits of ki

0 can be deduced from ki
1. By pruning the Walsh Transforms

corresponding to the matrices Bk1 , the cost is reduced from 237 to 232.9 each. It
also means that the memory requirement for each approximation is reduced by
a factor of 25. After this first pruning, the transforms associated with the last
two rounds (or the matrices Ck2) can be pruned by fixing the bits of k3 which
can be deduced from k0 and k1, reducing the complexity of each transform to
216. This allows to keep the time complexity of the analysis phase below 277 full
PRESENT encryptions, and reduces the memory cost to 251 registers.

For an attack using approximation set III on PRESENT-128, with the key-
recovery part represented in Fig. 9 we have:

M1 = 16, M2 = 96, |k0| = 48, |k1| = 36, |k2| = 36, |k3| = 48

|ki
0| ≤ 32, |ki

1| ≤ 8, |ki
2| ≤ 8, |ki

3| ≤ 32 for all i, |kT | = 114
(40)

This means that the time complexity of the analysis phase of the attack should
be smaller than 2121. The memory is mainly devoted to the condensed corre-
lation tables corresponding to the largest value of |ki

0| + |ki
1| + |ki

2| + |ki
3|, that

is, for approximations which require 80 bits of subkey to be guessed. Since the

242 A. Flórez-Gutiérrez and M. Naya-Plasencia

correlation of these approximations can be condensed into 18 tables, we con-
clude that the memory cost is 18 · 280
 284.6 memory registers of 80 bits. The
complexities of these attacks can be found in Table 3.

For the table we have considered that the full codebook is available, but it is
possible to consider different trade-offs between the available data and the time
complexity of the exhaustive search. For instance, in the case of PRESENT-128,
if N = 263.5 distinct plaintext-ciphertext pairs are available, the advantage is
2.8 bits. This translates into an attack with 2125.2 time complexity.

5 Conclusion

New general and efficient key-recovery algorithm. First and foremost, we have
provided an efficient generalized key-recovery algorithm which applies to any
number of rounds of a key-alternating cipher. We have also proposed two variants
of this algorithm which allow to take key-schedule dependencies into account.

The new algorithm is not only capable of accelerating existing attacks, it
is also sometimes possible to use more effective linear distinguishers than with
previous algorithms. In the case of PRESENT, we chose approximations fitted
to exploit the position of the key-recovery bits.

We expect that, in the future, this algorithm will not only represent a new
cryptanalysis tool, but will also allow to easily and accurately evaluate the secu-
rity margin of new primitives with respect to linear attacks.

Table 3. Comparison of linear attacks on PRESENT. DKP: Distinct known plaintexts.

#
R
ou
n
d
s

K
ey

si
ze

#
K
R
ro
u
n
d
s

#
A
p
p
ro
x.

C
ap
ac
it
y

D
at
a

T
im

e
M
em

or
y

S
u
cc
es
s
p
ro
b
.

S
ou
rc
e

26

80 2 2295 (MD) 2−55.38 264.0 KP 272.0 232.0 0.95 [16]
80 2 2295 (MD) 2−55.38 263.8 KP 272.0 232.0 0.51 [9,16] †
80 4 135 2−55.47 263.0 KP 268.6 248.0 0.95 [12] *
80 4 128 2−54.11 261.1 KP 268.2 244.0 0.95 Set I
80 4 128 2−54.11 260.8 KP 271.8 244.0 0.95 Set I

27
80 4 405 (MD) 2−55.33 264.0 KP 274.0 267.0 0.95 [41] ‡
80 4 135 2−58.06 263.8 DKP 277.3 248.0 0.95 [12] *
80 4 128 2−56.71 263.4 DKP 272.0 244.0 0.95 Set I

28
80 4 296 2−57.80 264.0 DKP 277.4 251.0 0.95 Set II
128 4 448 2−56.98 264.0 DKP 2122 284.6 0.95 Set III

†: [9] reevaluated the success probability of [16] with a more recent statistical model.
‡: [41] effectively uses one fourth of the data, as well as an older statistical model.
*: The capacities differ from those of [12] (2−55.01 and 2−56.38 for 26 and 27 rounds)
due to the different methods for its estimation. Furthermore, here we consider just the
signal component, while [12] also includes noise (second term in Eq. 46).

Improving Key-Recovery in Linear Attacks 243

Best attacks on PRESENT. Thanks to our algorithms, we have been able to
provide the best known attacks on reduced round PRESENT, which in particular
reach 28 rounds, while the best previous ones only reached up to 27. We believe
it would be very hard to extend this attack further without any new ideas, and
PRESENT still seems secure with 3 (instead of 4) rounds of security margin.

Open problems

– It would be interesting to implement semi-automatic tools to find the key-
recovery complexity for a given set of approximations. Or, even further, one
which finds an optimal set of approximations in terms of linear capacity and
cost of key-recovery. The first seems feasible, but the second seems harder. It
would be very interesting to find some results in this direction.

– Better linear attacks on other primitives, like NOEKEON, TRIFLE-BC,
Simon,...

– Future applications to other cryptanalysis families: in [10] an equivalent to
the algorithm from [18] was applied to zero-correlation attacks, and in [39]
the same was done regarding integral attacks. It might be possible to extend
and generalize these algorithms as we did with linear key-recovery.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 714294 - acronym QUASYModo).

A Key-Schedule of PRESENT

Algorithm 4: Key-schedule of PRESENT-80
Input: A master key K of 80 bits, a number of rounds r.
Output: r + 1 round subkeys Ki of 64 bits.
κ0
63 . . . κ0

0 ←− κ79 . . . κ16; // Extract first round subkey
for i ← 1 to r do

κ79 . . . κ0 ←− κ18 . . . κ19; // Rotate 19 bits to the right
κ79κ78κ77κ76 ←− S(κ79κ78κ77κ76); // S on leftmost nibble
κ19κ18κ17κ16κ15 ←− κ19κ18κ17κ16κ15 ⊕ i; // Add round counter
κi
63 . . . κi

0 ←− κ79 . . . κ16; // Extract round subkey

end
return {Ki}r

i=0;

244 A. Flórez-Gutiérrez and M. Naya-Plasencia

Algorithm 5: Key-schedule of PRESENT-128
Input: A master key K of 128 bits, a number of rounds r.
Output: r + 1 round subkeys Ki of 64 bits.
κ0
63 . . . κ0

0 ←− κ127 . . . κ64; // Extract the first round subkey

for i ← 1 to r do
κ127 . . . κ0 ←− κ66 . . . κ67; // Rotate 61 bits to the left

κ127κ126κ125κ124 ←− S(κ127κ126κ125κ124);
κ123κ122κ121κ120 ←− S(κ123κ122κ121κ120); // S on 2 nibbles

κ66κ65κ64κ63κ62 ←− κ66κ65κ64κ63κ62 ⊕ i; // Add round counter

κi
63 . . . κi

0 ←− κ127 . . . κ64; // Extract i-th round subkey

end
return {Ki}r

i=0;

B The (Pruned) Fast Walsh Transform

This appendix discusses the Fast Walsh Transform and how its pruned version
can be computed efficiently in some cases. Other results on the Walsh-Hadamard
matrices are covered by [40], while our pruning approach to the Walsh Transform
is inspired by the treatment of the Fast Fourier Transform that was done in [28].

Definition 1. The recursively-defined matrices

H1 = (1), H2 =

(
1 1
1 −1

)
, H2m =

(
(−1)i·j

)

0≤i,j<2m
= H2 ⊗ H2m−1 ∈ Z

2m×2m

(41)
(where · denotes the inner product of binary vectors) are called Hadamard-
Sylvester matrices. Given a vector x ∈ Z

2m

, we define its Walsh or Walsh-
Hadamard Transform as the product W(x) = H2mx:

W(x)i =
2m−1∑

j=0

(−1)i·jxj (42)

If the absolute values of the coordinates of xxx are bound by the constant M ,
then the coordinates of its Walsh Transform are bound by 2mM .

The Walsh Transform of a vector can be computed efficiently using the result:

Proposition 5. Given any π ∈ Sm, the matrix H2m can be decomposed as:

H2m =
m∏

k=1

(I2m−π(k)+1 ⊗ H2 ⊗ I2π(k)) (43)

Proof. This matrix equality is derived from the mixed product property:

H2m =
m⊗

k=1

H2 =
m⊗

k=1

(
I

m−π(k)+1
2 H2I

π(k)
2

)
=

m∏

k=1

(I2m−π(k)+1 ⊗ H2 ⊗ I2π(k))

Improving Key-Recovery in Linear Attacks 245

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Fig. 10. Two different ways of computing the Pruned Walsh Transform of size 24 = 16
when the leftmost bit of the output coordinates is set to zero and the second rightmost
bit is set to one. The algorithm on the left requires 36 integer operations while the one
on the right only requires 20.

The product of a vector by the matrix Hk
2m = I2m−k+1 ⊗ H2 ⊗ I2k can be

computed with 2m operations. This is represented graphically by 2m−1 “butter-
flies” (a denomination is borrowed from the literature on the FFT) which apply
the matrix H2 on pairs of coordinates.

The Walsh Transform of any vector is thus computable with m2m addi-
tions/substractions. Since we can choose any permutation of the indices k, there
are m! different ways of doing this. There are two examples in Fig. 10.

A pruned Fast Walsh Transform is any algorithm which aims to efficiently
compute a subset of coordinates of W(x). Here we will consider the strict case
in which n binary digits of the output indices are fixed. An approach to pruning
the Fast Walsh Transform is working back from the desired outputs and only
performing the operations which are strictly necessary. Since the number of
required operations depends on the ordering of the matrices of the transform,
we want to know which is the optimal ordering.

Proposition 6. The Pruned Walsh Transform of a vector of length 2m with n
fixed output index bits can be computed with the following number of operations:

2m + (m − n − 1)2m−n (44)

Proof. The number of operations in each stage increases from the last stage of
the transform to the first. This suggests that the last stages should be those
which require the same number of inputs as they do outputs. There are m − n
such stages: those corresponding to the matrices Hk

2m where k is one of the
bits whose values are not fixed. This is true because the output yi2k+j must be
computed iff so must yi2k+2k−1+j . These stages have a cost (m − n)2m−n.
The other n stages, which should be performed at the beginning, successively
double the number of operations from 2m−n to 2m. This means that the total
cost of the optimized pruned FWT is

(m−n)2m−n+
m∑

i=m−n+1

2i−1 = (m−n)2m−n+2m−2m−n = 2m+(m−n−1)2m−n

246 A. Flórez-Gutiérrez and M. Naya-Plasencia

An analysis of the computational cost formula shows that, as n increases, the
second term decreases and the cost quickly approaches 2m (instead of m2m).

C Estimates of the Distribution of the Multiple Linear
Cryptanalysis Statistic

In a multiple linear attack using M linear approximations and N available plain-
texts, the right-key statistic Qk approximately follows a normal distribution:

Qk ∼ N (μR, σR), where
{

μR = ExpD,K(Qk) = BM + NExpK (C(K))
σ2

R = V arD,K(Qk) = 2B2M + 4BNExpK (C(K)) + N2V arK (C(K))

B =
{

1 if repeated plaintexts are allowed
2n−N
2n−1 for distinct known plaintexts

(45)
The moments of C(K) can be estimated using a set S of significant linear trails:

ExpK (C(K))

M∑

i=1

∑

γ∈S
(c(αi, βi, γ))2 + M2−n (46)

V arK (C(K))
 2
M∑

i=1

⎛

⎝
∑

γ∈S
(c(αi, βi, γ))2 + 2−n

⎞

⎠

2

(47)

Meanwhile, if the key guess k̃ �= k is different from the right one, a multiple of
the wrong key statistic follows a χ2 distribution with M degrees of freedom:

1
B + N2−n

Qk̃ ∼ χ2
M , so

{
μW = ExpD,K(Qk̃) = BM + NM2−n

σ2
W = V arD,K(Qk̃) = 2M(B + N2−n)2 (48)

References

1. Abdelraheem, M.A.: Estimating the probabilities of low-weight differential and
linear approximations on PRESENT-like ciphers. In: Kwon, T., Lee, M.-K., Kwon,
D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 368–382. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37682-5 26

2. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 315–342.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 13

3. Bay, A., Huang, J., Vaudenay, S.: Improved linear cryptanalysis of reduced-round
MIBS. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 204–
220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09843-2 16

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015,
pp. 175:1–175:6. ACM (2015)

https://doi.org/10.1007/978-3-642-37682-5_26
https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1007/978-3-319-09843-2_16

Improving Key-Recovery in Linear Attacks 247

5. Beyne, T.: Block cipher invariants as eigenvectors of correlation matrices. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp.
3–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 1

6. Biham, E., Perle, S.: Conditional linear cryptanalysis - cryptanalysis of DES with
less than 242 complexity. IACR Trans. Symmetric Cryptol. 2018(3), 215–264
(2018). https://doi.org/10.13154/tosc.v2018.i3.215-264

7. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 1

8. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
388–404. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 24

9. Blondeau, C., Nyberg, K.: Improved parameter estimates for correlation and capac-
ity deviates in linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(2),
162–191 (2016). https://doi.org/10.13154/tosc.v2016.i2.162-191

10. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation linear
cryptanalysis with FFT and improved attacks on ISO standards Camellia and CLE-
FIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp.
306–323. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-
7 16

11. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

12. Bogdanov, A., Tischhauser, E., Vejre, P.S.: Multivariate profiling of hulls for linear
cryptanalysis. IACR Trans. Symmetric Cryptol. 2018(1), 101–125 (2018). https://
doi.org/10.13154/tosc.v2018.i1.101-125

13. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossible
possible. J. Cryptol. 31(1), 101–133 (2018). https://doi.org/10.1007/s00145-016-
9251-7

14. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 179–
199. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 10

15. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 13

16. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 21

17. Collard, B., Standaert, F.: A statistical saturation attack against the block cipher
PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–210.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 13

18. Collard, B., Standaert, F., Quisquater, J.: Improving the time complexity of Mat-
sui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol.
4817, pp. 77–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
76788-6 7

https://doi.org/10.1007/978-3-030-03326-2_1
https://doi.org/10.13154/tosc.v2018.i3.215-264
https://doi.org/10.1007/978-3-540-28628-8_1
https://doi.org/10.1007/978-3-642-38348-9_24
https://doi.org/10.1007/978-3-642-38348-9_24
https://doi.org/10.13154/tosc.v2016.i2.162-191
https://doi.org/10.1007/978-3-662-43414-7_16
https://doi.org/10.1007/978-3-662-43414-7_16
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.13154/tosc.v2018.i1.101-125
https://doi.org/10.13154/tosc.v2018.i1.101-125
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/978-3-642-40041-4_13
https://doi.org/10.1007/978-3-642-40041-4_13
https://doi.org/10.1007/978-3-642-11925-5_21
https://doi.org/10.1007/978-3-642-11925-5_21
https://doi.org/10.1007/978-3-642-00862-7_13
https://doi.org/10.1007/978-3-540-76788-6_7
https://doi.org/10.1007/978-3-540-76788-6_7

248 A. Flórez-Gutiérrez and M. Naya-Plasencia

19. Collard, B., Standaert, F., Quisquater, J.: Experiments on the multiple linear
cryptanalysis of reduced round serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 382–397. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71039-4 24

20. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: the block
cipher Noekeon. Nessie submission (2000). http://gro.noekeon.org/

21. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptol. 1(3), 221–242 (2007). https://doi.org/10.1515/
JMC.2007.011

22. Datta, N., Ghoshal, A., Mukhopadhyay, D., Patranabis, S., Picek, S., Sadhukhan,
R.: TRIFLE. Candidates to the NIST Lightweight competition (2019). https://
csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates

23. Etrog, J., Robshaw, M.J.B.: The cryptanalysis of reduced-round SMS4. In: Avanzi,
R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 51–65. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4 4

24. Florez-Gutierrez, A.: Cryptanalysis of TRIFLE-BC. Official comment to the NIST-
LWC forum (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.
pdf

25. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis of
reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 15

26. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s
algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03317-9 13

27. Hermelin, M., Nyberg, K.: Linear cryptanalysis using multiple linear approxima-
tions. Cryptology ePrint Archive, Report 2011/093 (2011). https://eprint.iacr.org/
2011/093

28. Hu, Z., Wan, H.: A novel generic fast fourier transform pruning technique and
complexity analysis. IEEE Trans. Signal Process. 53(1), 274–282 (2005). https://
doi.org/10.1109/TSP.2004.838925

29. Kim, T.H., Kim, J., Hong, S., Sung, J.: Linear and differential cryptanalysis of
reduced SMS4 block cipher. IACR Cryptology ePrint Archive 2008, 281 (2008).
http://eprint.iacr.org/2008/281

30. Liu, M., Chen, J.: Improved linear attacks on the Chinese block cipher standard. J.
Comput. Sci. Technol. 29(6), 1123–1133 (2014). https://doi.org/10.1007/s11390-
014-1495-9

31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

32. Matsui, M.: The first experimental cryptanalysis of the data encryption standard.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 1

33. Nakahara, J.J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and algebraic
cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10433-6 5

34. National Institute of Standards and Technology (ed.): “FIPS-46: DataEncryp-
tion Standard (DES)” revised as FIPS 46-1:1988, FIPS 46-2:1993, FIPS46-3:1999
(1979). http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

https://doi.org/10.1007/978-3-540-71039-4_24
https://doi.org/10.1007/978-3-540-71039-4_24
http://gro.noekeon.org/
https://doi.org/10.1515/JMC.2007.011
https://doi.org/10.1515/JMC.2007.011
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://doi.org/10.1007/978-3-642-04159-4_4
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://doi.org/10.1007/978-3-540-70500-0_15
https://doi.org/10.1007/978-3-540-70500-0_15
https://doi.org/10.1007/978-3-642-03317-9_13
https://eprint.iacr.org/2011/093
https://eprint.iacr.org/2011/093
https://doi.org/10.1109/TSP.2004.838925
https://doi.org/10.1109/TSP.2004.838925
http://eprint.iacr.org/2008/281
https://doi.org/10.1007/s11390-014-1495-9
https://doi.org/10.1007/s11390-014-1495-9
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48658-5_1
https://doi.org/10.1007/978-3-642-10433-6_5
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

Improving Key-Recovery in Linear Attacks 249

35. Nguyen, P.H., Wu, H., Wang, H.: Improving the Algorithm 2 in multidimensional
linear cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol.
6812, pp. 61–74. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22497-3 5

36. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995). https://
doi.org/10.1007/BFb0053460

37. Ohkuma, K.: Weak keys of reduced-round PRESENT for linear cryptanalysis. In:
Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp.
249–265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-
7 16

38. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008). https://doi.org/10.1007/s00145-007-9013-7

39. Todo, Y., Aoki, K.: FFT key recovery for integral attack. In: Gritzalis, D., Kiayias,
A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 64–81. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12280-9 5

40. Yarlagadda, R.K., Hershey, J.E.: Hadamard Matrix Analysis and Synthesis - With
Applications to Communications and Signal/Image Processing. The Springer Inter-
national Series in Engineering and Computer Science, vol. 383. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-1-4615-6313-6

41. Zheng, L., Zhang, S.: FFT-based multidimensional linear attack on PRESENT
using the 2-bit-fixed characteristic. Secur. Commun. Netw. 8(18), 3535–3545
(2015). https://doi.org/10.1002/sec.1278

https://doi.org/10.1007/978-3-642-22497-3_5
https://doi.org/10.1007/978-3-642-22497-3_5
https://doi.org/10.1007/BFb0053460
https://doi.org/10.1007/BFb0053460
https://doi.org/10.1007/978-3-642-05445-7_16
https://doi.org/10.1007/978-3-642-05445-7_16
https://doi.org/10.1007/s00145-007-9013-7
https://doi.org/10.1007/978-3-319-12280-9_5
https://doi.org/10.1007/978-1-4615-6313-6
https://doi.org/10.1002/sec.1278

New Slide Attacks on Almost Self-similar
Ciphers

Orr Dunkelman1(B) , Nathan Keller2(B), Noam Lasry2, and Adi Shamir3

1 Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il

2 Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel
nkeller@math.biu.ac.il, noam.lasry@gmail.com

3 Faculty of Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot, Israel

adi.shamir@weizmann.ac.il

Abstract. The slide attack is a powerful cryptanalytic tool which can
break iterated block ciphers with a complexity that does not depend on
their number of rounds. However, it requires complete self similarity in
the sense that all the rounds must be identical. While this can be the case
in Feistel structures, this rarely happens in SP networks since the last
round must end with an additional post-whitening subkey. In addition,
in many SP networks the final round has additional asymmetries – for
example, in AES the last round omits the MixColumns operation. Such
asymmetry in the last round can make it difficult to utilize most of the
advanced tools which were developed for slide attacks, such as deriving
from one slid pair additional slid pairs by repeatedly re-encrypting their
ciphertexts. Consequently, almost all the successful applications of slide
attacks against real cryptosystems (e.g., FF3, GOST, SHACAL-1) had
targeted Feistel structures rather than SP networks.

In this paper we overcome this “last round problem” by developing
four new types of slide attacks. We demonstrate their power by apply-
ing them to many types of AES-like structures (with and without linear
mixing in the last round, with known or secret S-boxes, with periodicity
of 1, 2 and 3 in their subkeys, etc). In most of these cases, the time com-
plexity of our attack is close to 2n/2, the smallest possible complexity for
most slide attacks. Our new slide attacks have several unique properties:
The first uses slid sets in which each plaintext from the first set forms a
slid pair with some plaintext from the second set, but without knowing
the exact correspondence. The second makes it possible to create from
several slid pairs an exponential number of new slid pairs which form a
hypercube spanned by the given pairs. The third has the unusual prop-
erty that it is always successful, and the fourth can use known messages
instead of chosen messages, with only slightly higher time complexity.

1 Introduction

Most modern block ciphers are constructed as a cascade of r keyed components,
called rounds. Each round by itself can be cryptographically weak, but as r

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 250–279, 2020.
https://doi.org/10.1007/978-3-030-45721-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_10&domain=pdf
http://orcid.org/0000-0001-5799-2635
https://doi.org/10.1007/978-3-030-45721-1_10

New Slide Attacks on Almost Self-similar Ciphers 251

Q fk fk fk · · · fk fk fk D

fk fk fk fk · · · fk fkP C

C

Q

Fig. 1. A slid pair

increases, the scheme becomes resistant against almost all the standard crypt-
analytic attacks (e.g., differential cryptanalysis [8], linear cryptanalysis [28]).
However, there is one type of attack called a slide attack (introduced in 1999
by Biryukov and Wagner [9]1) which can handle an arbitrarily large number of
rounds with the same complexity.

The original slide attack targets ciphers that are a cascade of r identical
rounds, i.e.,

Ek = fr
k = fk ◦ fk ◦ · · · ◦ fk,

and tries to find a slid pair of plaintexts (P,Q) such that Q = fk(P), as demon-
strated in Fig. 1. Due to the structure of Ek, the corresponding ciphertexts
C = Ek(P),D = Ek(Q) must satisfy D = fk(C). Hence, if a slid pair (P,Q) is
given, the adversary can use the simplicity of fk to solve the system of equations
to recover k: {

Q = fk(P),
D = fk(C), (1)

The adversary can start from any collection of O(2n/2) plaintexts along with
their ciphertexts, and consider their O(2n) pairs. One of them is likely to be a
slid pair, but the adversary does not know which one it is. By trying to solve the
system of Equation (1) for all the pairs, she gets a simple slide attack whose data
complexity is O(2n/2) known plaintexts, memory complexity is O(2n/2) (which
is used to store the data), and time complexity is O(t · 2n) (where t is the time
required for solving the system (1)).

1.1 Applicability of Slide Attacks to Modern Ciphers

The original slide attack can be used only when fk is so simple that it can be
broken efficiently using only two known input/output pairs. Subsequent papers
(e.g., [4,10,14,16,18]) developed advanced variants of the slide attack that allow
attacking self-similar constructions in which fk is rather complex. A central
observation used in many of these variants is that if (P,Q) is a slid pair, then
(Ek(P), Ek(Q)) is also a slid pair, and thus the adversary can create from a
single slid pair arbitrarily many additional friend pairs by repeatedly encrypting
P and Q in an adaptively chosen message attack. These advanced variants made
1 The slide attack is related to several previous techniques, e.g., the attack of Grossman

and Tucherman on Feistel ciphers [24] and Biham’s related-key attack [6]. Sometimes,
differential, linear, or subspace invariant attacks [27] may also succeed independently
of the number of rounds, when the underlying property is “strong” enough.

252 O. Dunkelman et al.

it possible to attack various generic forms of Feistel constructions with a periodic
key schedule, such as constructions with 1-round [9], 2-round [9], 3-round [4]
and 4-round [10] self similarity. Furthermore, they allowed obtaining practical
attacks on several real life cryptosystems – most notably, breaking the block
cipher Keeloq [1] and the 128-bit key variant of the block cipher GOST [4], and
attacking several hash functions [20].

While the advanced slide attacks extended the applicability of the technique,
the basic requirement that all the round functions must be exactly the same has
remained. As a result, it seemed that slide attacks can be thwarted completely
by inserting into the encryption process round constants that break the full
symmetry between the rounds. This countermeasure has become standard and
is applied in most modern block ciphers.

However, it turned out that round constants are not an ultimate solution,
as in many cases improper choice of the constants or interrelation between the
round constants and other components of the cipher, can be used to mount a
slide attack despite the countermeasure.

A recent example is the format preserving encryption scheme FF3 [11]. This
scheme was selected as a US standard by NIST in 2016, but had to be revised
in 2017 due to a devastating slide attack by Durak and Vaudenay [17]. This
happened even though the slide attack is well known, leading the designers of
the cryptosystem to use the standard countermeasure of using different round
constants to avoid them. Yet another example is the block cipher SHACAL-1
that was broken by Biham et al. [7] using a slide attack, although it used round
constants. It thus turns out that while adding round constants may be a useful
countermeasure, it is far from being a universal countermeasure, and slide attacks
remain highly relevant in practice.

1.2 Slide Attacks on SP Networks

Most of the previously known slide attacks, including the attacks on FF3, GOST,
Lilliput-AE and SHACAL1 described above, apply to Feistel constructions. The
other major type of a block cipher, the Substitution-Permutation (SP) Network,
cannot be directly attacked by a slide attack since its last round is always dif-
ferent from the other rounds.

Consider, for example, an AES-like structure in which each round consists
of XORing a subkey (which we denote by K), applying a parallel layer of S-
boxes (denoted by S), and linearly mixing their outputs (denoted by A). Assume
in addition that two subkeys are used in the cyclic order (k1, k2, k1, k2, . . .).
Simply composing these round functions makes no sense since the last layers of
S-boxes and linear mapping are known and can thus be stripped off. Any sensible
design must thus add to the last round a final post-whitening subkey, such as k1,
before outputting the ciphertext. This makes the last round different from the
other rounds, and we cannot simply complete the construction into a self similar
structure by applying to it A ◦S ◦K ◦A ◦S since we do not know the subkey k2
used in K. A similar situation arises when the S-boxes are secret or when the last
round operation A (before the post-whitening key) differs from previous rounds.

New Slide Attacks on Almost Self-similar Ciphers 253

Any such asymmetry suffices in order to destroy the crucial property that if two
plaintexts (P,Q) are a slid pair then so are their ciphertexts (Ek(P), Ek(Q)),
upon which many advanced slide attacks rely. In fact, the only advanced slide
attack on SP networks published so far, by Bar-On et al. [4, Sect. 2.2, 2.3] on an
AES-like cipher with a 2-round or 3-round self-similarity, applies only under a
non-standard additional assumption on the structure of the cipher.2

1.3 Our Settings

In this paper we overcome the last round problem by developing new slide attacks
that can be applied to SP-networks with an arbitrarily large number of rounds
in which the last round is different from the previous rounds. To be concrete, we
consider ciphers that can be viewed as a cascade

K ◦ A ◦ S ◦ K ◦ A ◦ S ◦ . . . K ◦ A ◦ S ◦ K,

where K denotes the XORing of a secret subkey, S is a non-linear operation (S-
box) applied in parallel to sub-blocks of size s of the state, and A is an affine oper-
ation. We call this structure KSA, and say that it has an �-round self-similarity
if the subkeys have the periodic structure k1, k2, . . . , k�, k1, k2, . . . , k�, We
denote such a structure by �-KSA.

We note that extremely simple key schedules, and in particular periodic
key-schedules with a short period, are widely used in modern lightweight block
ciphers, for the sake of saving place on the hardware taken by the key sched-
ule mechanism. Examples include LED-64 [25], Zorro [19], PRINTcipher [26],
CGEN [29] and MIDORI128 [3] (which have identical subkeys), LED-128 [25],
CRAFT [5] and MIDORI64 [3] (which have period 2), and many others.

Of course, designers of most modern block ciphers protect the ciphers against
slide attacks by adding round constants in order to destroy the self-similarity.
However, as was mentioned above, this countermeasure is not always sufficient. In
addition, some lightweight cryptosystems have a large number of simple rounds,
and XOR’ing a different randomly generated constant to each round greatly
increases the amount of memory required to implement the scheme, which is
very undesirable in many IoT applications. Consequently, designers of such cryp-
tosystems may be tempted to use other forms of asymmetry into their designs,
such as using a different last round, but as we show in this paper, such a simple
countermeasure can be defeated by new variants of slide attacks.

We study two types of KSA constructions: The first is �-KSAf , composed of
a sequence of rounds of the form A ◦ S ◦ K with an �-periodic key, augmented
by a final key whitening – which is the structure of many modern SP networks.
The second type is �-KSAt , which differs from �-KSAf by omission of the affine
operation A in the last round. Such a change is performed in some block ciphers
for implementation reasons—most notably, in the AES.
2 The additional assumption (that was not mentioned in [4]) is that either the final

key whitening step is omitted, or the number of rounds is odd (for 2-round self
similarity) or of the form 3� + 2 (for 3-round self-similarity).

254 O. Dunkelman et al.

We usually assume that the operations S,A are not key-dependent (like in
AES). However, interestingly, some of our new attacks apply with only a small
complexity overhead when S is key-dependent (like in the AES variant with a
secret S-box studied in [21,23,30,31]). We denote the block size by n and the
S-box size by s, and state our results in terms of the parameters n, s.

1.4 Our Contributions

We present four entirely new types of slide attacks, which solve the last round
problem in four different ways:

Slid sets. In this attack, we attach to each candidate slid pair (P,Q) a pair
of sets TP = {P1, P2, . . . , Pd} and TQ = {Q1, Q2, . . . , Qd} such that for each i
there exists j for which (Pi, Qj) is a slid pair. That is, the set TP is transformed
into the set TQ, while we do not know what is the counterpart of each specific
value in TP . Of course, this technique requires entirely different ways to solve
the equation system (1), and we provide such techniques as well.

Hypercube of slid pairs. This technique first uses differential properties of
the cipher to attach to each candidate slid pair (P,Q) a pair of d-tuples TP =
(P1, P2, . . . , Pd) and TQ = (Q1, Q2, . . . , Qd) such that with some unexpectedly
high probability, each (Pi, Qi) is a slid pair. Then, it uses a ‘mixing’ construction
reminiscent of the recently proposed mixture attack [22] to leverage the d-tuples
into 2d-tuples of slid pairs. Roughly speaking, if the slid pairs are placed at d
vertices of a d-dimensional hypercube, the technique allows us to attach to them
2d − d additional slid pairs which are placed at all other vertices of the cube.

Suggestive plaintext structures. This attack uses two plaintext structures
TP and TQ, designed in such a way that the mere knowledge that some P ∈ TP

has a slid counterpart Q ∈ TQ reveals significant key information, which is used
in the solution of the equation system (1). An interesting feature of this attack
is that while its data complexity is 3 · 2n/2, which is only slightly more than the
2n/2 complexity of standard slide attacks, it has 100% success probability. Note
that the success probability of standard slide attacks is about 63%; it can be
increased by using more data, but cannot get to 100% success unless the data
complexity is made extremely large.

Substitution slide. This attack is aimed at truncated �-KSA constructions, in
which in the equation system (1), the second equation is much more complex
than the first one. We use substitution into the (easier) first equation in order
to remove the key dependence from the (harder) second equation and trans-
form it into an even more complex equation which depends only on plaintexts
and ciphertexts and not on the key. This attack type applies even in the more
restrictive (and more realistic, of course) known plaintext model.

1.5 Our Results

Here are a few concrete results that can be obtained with our new slide attacks
(the full summary can be found in Table 1):

New Slide Attacks on Almost Self-similar Ciphers 255

Table 1. Summary of our new results

Cipher Technique Complexity (general) AES-like
Data/Memory Time Data/Memory Time

Known S-Boxes

1-KSAf Slide [4] 2n/2 (KP) 2n/2 264 (KP) 264

2-KSAf Slide [4]� s · 2s+n/2 (ACPC) s · 2s+n/2 269 269

3-KSAfi† Slide [4]�� 2(m+n)/2 (ACPC) 2(m+n)/2 281 281

1-KSAt Suggestive str. (Sect. 5) 3 · 2n/2 (CP) 4 · 2n/2 265.6 (CP) 266

1-KSAt Sub. slide (Sect. 6) 2n/2 (KP) 23n/4 264 (KP) 296

2-KSAf Slid sets (Sect. 3) 2(n+s)/2+1 (CP) 2(n+s)/2+1 269 (CP) 269

2-KSAf Slide + Key Guessing (FV) (n/s)2n/2 (CP) 2n/2+s 268 (CP) 272

2-KSAf Slide + Pt/Ct Coll. (FV)� See Full Version for full details 282‡ (KP) 282

2-KSAtpi† Slid sets (FV) 2(n+m)/2+1 (CP) max{2(n+m)/2+1, 22m} 278 (CP) 278

3-KSAfi† Slid sets (FV) 2(n+m)/2+1 (CP) max{2(n+m)/2+1, 22m} 281 (CP) 281

Secret S-Boxes

1-KSAf Slid sets (Sect. 3) 1.17
√

s2(n+s)/2 (CP) 1.17
√

s2(n+s)/2 270.3 (CP) 270.3

1-KSAf Hypercube (Sect. 4)
√

s2n/2+s(s+3)/4+1 (CP)
√

s2n/2+s(s+3)/4+1 288 (CP) 288

The exact definition of all variants is given in Sect. 2.1
KP – Known Plaintext; CP – Chosen Plaintext; ACPC – Adaptive Chosen Plaintext and Ciphertext
FV—Full version of the paper
For AES-like n = 128, s = 8
† – this version has incomplete diffusion layer, m denotes the “word” size of the linear operation.
‡ – the memory complexity of this attack is 247.
� – this attack works for an odd number of rounds.
�� – this attack works when the number of rounds is 1 mod 3.

1. Using the suggestive plaintext structures technique, we can break 1-KSAt
(e.g. a variant of AES with identical round subkeys and with no MixColumns
operation in the last round) with data and time complexity of 2n/2 (264 in
the special case of AES). In [4], Bar-On et al. presented an attack with the
same complexity, but only on 1-KSAf, or equivalently, AES in which the
MixColumns operation in the last round is not omitted.

2. Using substitution slide, we can break 1-KSAt with complexity of 2(n+4s)/2

known plaintexts and time (280 in the special case of AES).
3. Using slid sets, we can break 2-KSAt (e.g., a variant of AES with 2-periodic

round subkeys and with no MixColumns operation in the last round) with
data and time complexity of 2(n+3s)/2 (276 in the specific case of AES).

Organization of the Paper
In Sect. 2 we present the setting and notations used throughout the paper, as
well as some preliminary steps that are routinely performed in all our attacks.
In addition, we present the previous attack by Bar-On et al. [4] on 1-KSA.
In Sect. 3 we present the slid sets technique and use it for attacking several
constructions (e.g., 2-KSAf and 1-KSA with secret S-boxes). Section 4 presents
the new hypercube of slid pairs technique and presents an attack on 1-KSA
with secret S-boxes. The suggestive plaintext structures technique is presented
in Sect. 5. We introduce the substitution slide in Sect. 6. Several of our attacks
are presented in the full version. Finally, Sect. 7 concludes the paper.

256 O. Dunkelman et al.

2 Preliminaries

In this section we present the setting and notations that are used throughout the
paper, and describe the slide attack of Bar-On et al. [4] on SPNs with a 1-round
self similarity, which provides a simple example of the attack frameworks that
we use in this paper.

2.1 Setting and Notations

While the attacks presented in the paper target many different constructions
and use different techniques, they are all presented using a uniform setting and
set of notations. All these notations are given and explained in this section.

The general structure of the ciphers we study. Throughout the paper, we con-
sider a block cipher E : {0, 1}n × {0, 1}κ → {0, 1}n, which transforms an n-bit
plaintext P into an n-bit ciphertext C, using a κ-bit key k. For the sake of
simplicity, we assume that κ = n, but the results can be easily adapted for
other values of κ. We assume that the cipher is iterative, that is, consists of a
composition of r simpler functions, called rounds. All the attacks we present are
applicable with the same complexity to an arbitrarily large number of rounds.3

We assume that the first r−1 rounds of the cipher have the standard general
structure of an SPN, that is,

(A ◦ S ◦ K)r−1 = A ◦ S ◦ K ◦ A ◦ S ◦ . . . K ◦ A ◦ S ◦ K,

where K denotes key addition, S denotes a non-linear operation (S-box) applied
in parallel to words of s bits into which the state is partitioned, and A denotes an
affine operation. As the cipher essentially consists of repetitions of the sequence
of operations A ◦ S ◦ K, we name it KSA.

The structure of the last round. Regarding the last round, we study two types
of constructions:

– Full last round constructions, in which a single key addition operation is
appended at the end of the last round. That is,

Full r-round KSA = (K ◦ A ◦ S ◦ K) ◦ (A ◦ S ◦ K)r−1 = K ◦ (A ◦ S ◦ K)r.

This structure is exemplified in Fig. 2.
– Truncated last round constructions, in which a key addition is appended at

the end of the last round, and in addition, the last round affine transformation
A is omitted. That is,

Truncated r-round KSA = (K ◦ S ◦ K) ◦ (A ◦ S ◦ K)r−1.

3 The attacks presented in the full version (Slide and Key Guessing, and Slide and
plaintext/ciphertext collision) depend on the residue of r modulo the period of the
subkey sequence, but not on the number of repetitions. All other attacks are inde-
pendent of the number of rounds.

New Slide Attacks on Almost Self-similar Ciphers 257

P

K

⊕k
S A · · ·

K

⊕k
S A

K

⊕k
C

K

⊕k
S A · · ·

K

⊕k
S A

K

⊕k
C

K

⊕k
S A · · ·

K

⊕k
S A

K

⊕k
C

Fig. 2. The structure of 1-KSAf

The first type corresponds to a generic SPN construction, while the second type
corresponds to an AES-like construction, as removal of the last round affine
operation is adopted in the AES design.4

The structure of the operations K, S,A. In addition to the last round, the con-
structions we study differ in the assumptions on the operations K,S,A:

– Key addition: We shall always assume that the operation K in round i
denotes XOR with an n-bit round subkey ki, where the sequence of subkeys
k1, k2, k3, . . . is periodic. We study the variants 1-KSA, 2-KSA, and 3-KSA,
in which the length of the period is 1, 2, and 3, respectively. We assume that
all subkeys are derived from the n-bit secret key K using some “sufficiently
complex” function; hence, we never exploit relations between distinct sub-
keys, and at the same time, we aim for attacks of complexities lower than 2n,
as otherwise, the attack is slower than exhaustive key search. (We note that
such an assumption on the key schedule algorithm is made in many papers
analyzing the security of generic constructions; see, e.g., [2]).

– The S-box layer S: We shall always assume that the operation S consists of
partition of the state into s-bit words and parallel application of the same
function S : {0, 1}s → {0, 1}s to the blocks. We study two types of construc-
tions: the standard type in which the S-box S is publicly known (like in AES),
and the secret S-box type in which S is derived from the secret key using a
complex function, and thus, is unknown to the adversary (like in the variants
of AES studied in [21,23,30,31]). In both types of constructions, we do not
exploit the specific structure of the S-box.

– The affine layer A: We consider two variants of the operation A. In the com-
plete diffusion variant, A applies a publicly known affine transformation to
the entire state (i.e., the state is viewed as an n-bit vector v, and is trans-
formed into A′v + w, where A′ is an n-by-n binary matrix, w ∈ {0, 1}n, and
the operations are performed over Z2). In the incomplete diffusion variant,
the state is partitioned into several parts (e.g., 4 parts in the case of AES),
and the same affine transformation A is applied to each of them in parallel.

4 We note that in AES, only part of the last round affine layer is omitted. Namely, the
MixColumns operation is omitted, while the ShiftRows operation is left unchanged.
While maintaining the ShiftRows operation affects the complexity of some attacks
that exploit the key schedule (just like the omission of MixColumns, see [15]), it has
no effect on our attacks. Hence, for the sake of this paper, the design of the last
round of AES is equivalent to removing the entire affine layer.

258 O. Dunkelman et al.

In this variant, we introduce an additional parameter, m, to denote the size
of each part (e.g., 32 bits in AES).

Summary of types of constructions. To summarize, the constructions we consider
are defined by four parameters:

1. The length of the key period (1, 2, or 3);
2. Type of the last round – full (only a key addition appended) or truncated

(key addition appended and affine operation removed);
3. Type of the substitution layer S – public S-box or secret S-box derived from

the secret key;
4. Type of the affine layer – complete diffusion (i.e., A acts on the entire state)

or incomplete diffusion (i.e., A acts on several parts of the state in parallel).

Notation of types of constructions. The notation we use for the constructions
reflects all four parameters: the number at the beginning is the length of the key
period, then the letter ‘f’ or ‘t’ says whether the last round is full or truncated,
then the letter ‘p’ or ‘s’ denotes whether the S-box is public or secret, and finally,
the letter ‘c’ or ‘i’ denotes whether the diffusion is complete or incomplete. If
some parameter is not included (e.g., neither ‘p’ nor ‘s’ appear), this means that
the attack applies to both types described by that parameter.

For example, 2-KSAfpi denotes KSA with a 2-round key period, full last
round, public S layer and incomplete diffusion. Similarly, 1-KSAtc denotes KSA
with a 1-round key period, truncated last round, and complete diffusion, where
the omission of ‘p’ and ‘s’ means that the corresponding attack works for both
public and secret S-boxes.

Notation of data sets and slid pairs. In all the attacks proposed in this paper,
the data consists of two sets of plaintexts/ciphertext pairs. All the plain-
text/ciphertext pairs (Pi, Ci) are split such that TP contains the plaintexts
Pi, i = 1, 2, . . . , d and TC contains the ciphertexts Ci, i = 1, 2, . . . , d. Similarly,
the plaintext/ciphertext pairs (Qj ,Dj) are split between TQ that contains5

Qj , j = 1, 2, . . . , d′ and TD that contains Dj , j = 1, 2, . . . , d′.
If the considered variant is �-KSA, then a pair (Pi, Qj) of plaintexts is called

a slid pair if (A ◦ S ◦ K)�(Pi) = Qj . If the cipher was completely self-similar
like in standard slide attacks, this would guarantee that the corresponding pair
of ciphertexts (Ci,Dj) satisfies (A ◦ S ◦ K)�(Ci) = Dj . In our case, the relation
depends on whether the considered �-KSA construction is full or truncated. If
(Pi, Qj) is a slid pair, we call Qj the slid counterpart of Pi.

In some of our attacks, in order to save data complexity we use the same
plaintext set T both as TP and as TC . In such cases, we use both notations TP
and TQ for T , and in each candidate slid pair, we denote the ‘left’ element by
Pi ∈ TP and the ‘right’ element by Qj ∈ TQ. In this context, it is worth noting
that the pairs (X,Y) and (Y,X) are distinct candidates for a slid pair, since the
equations (A ◦ S ◦ K)�(X) = Y and (A ◦ S ◦ K)�(Y) = X are not equivalent.
5 In most of the slide attacks d = d′. However, this is not a mandatory requirement

by the attack.

New Slide Attacks on Almost Self-similar Ciphers 259

Modification of the plaintexts and the ciphertexts. In all our attacks, we consider
a pair of plaintexts (Pi, Qj) for which we want to decide whether it is a slid pair
or not, and study the relation between Pi and Qj , and the relation between the
corresponding ciphertexts Ci and Dj . In order to simplify these relations, we
would like to “remove” unkeyed operations that can be computed in advance
for all plaintexts/ciphertexts in the data set. There are two types of operations
we can remove: the first is operations that can be precomputed directly, and the
second is operations that can be precomputed after interchanging the order of
the operations K and A.

Let us exemplify this modification process on a concrete example. In 1-KSAp,
for each slid pair (Pi, Qj), we have

Qj = A ◦ S ◦ K(Pi),

or equivalently, S−1 ◦ A−1(Qj) = K(Pi). The left hand side S−1 ◦ A−1(Qj) can
be computed in advance for any plaintext Qj . We thus replace each Qj ∈ TQ by
Q′

j = S−1 ◦ A−1(Qj), and work with the simplified equation

Q′
j = K(Pi).

Furthermore, the corresponding ciphertexts, (Ci,Dj), satisfy

Dj = K ◦ A ◦ S(Ci),

(or equivalently, A−1 ◦ K−1(Dj) = S(Ci)). The right hand side S(Ci) can be
computed in advance for any ciphertext Ci. As for the left hand side, note that
by distributivity, for every invertible binary matrix A′ and binary vectors x,w, k
the following holds: (A′x + w) + k = A′(x + (A′)−1k) + w. Hence, we can always
interchange the order of the operations A,K, at the expense of replacing the
subkey k in the operation K with (A′)−1k, where A′ is the matrix used in the
operation A. Thus, we have A−1 ◦ K−1(Dj) = (K ′)−1 ◦ A−1(Dj), where K ′

denotes addition of the key A′k. The value D′
j = A−1(Dj) can be computed an

advance for any ciphertext Dj . Thus, we replace each Ci ∈ TC with C ′
i = S(Ci)

and each Dj ∈ TD with D′
j = A−1(Dj), and work with the simplified equation

D′
j = K ′(C ′

i).

Notations for modified plaintexts and ciphertexts. We perform such a change
routinely, whenever there is an unkeyed operation that can be performed in
advance (including cases where one has to interchange the order of the operations
K,A). We use the notation P̄i, C̄i to say that such a modification was performed
to Pi, Ci (respectively), and the notation Q̃j , D̃j to say that such a modification
was performed to Qj ,Dj (respectively). Note that the exact modification differs
between different variants of KSA.

We denote the sets of modified values that correspond to TP , TC , TQ, and TD
by T̄P , T̄C , T̃Q, and T̃D, respectively. We abuse notation and call the pair (P̄i, Q̃j)
a slid pair whenever the corresponding pair (Pi, Qj) is a real slid pair.

260 O. Dunkelman et al.

00

01

02

03

04

05

06

07

08

09

0a

0b

0c

0d

0e

0f

00

05

0a

0f

04

09

0e

03

08

0d

02

07

0c

01

06

0b

52

09

6a

d5

30

36

a5

38

bf

40

a3

9e

81

f3

d7

fb

0a

1b

00

11

1e

07

14

0d

02

13

08

19

16

0f

1c

05

SB SR MC ARK⊕

ki

Fig. 3. An AES round

2.2 AES Notations

As the best-known prototype of the constructions we consider is AES, we shall
present all our attacks in the special case of an AES-like construction with a
periodic key schedule, and then we will briefly explain how do these attacks
apply for generic �-KSA constructions. Hence, for the sake of convenience, we
briefly recall the structure of AES.

The structure of AES. The Advanced Encryption Standard (AES) [13] is an
SPN that supports key sizes of 128, 192, and 256 bits. A 128-bit plaintext is
treated as a byte matrix of size 4 × 4, where each byte represents a value in
GF (28). An AES round, depicted in Fig. 3, applies four operations to the state
matrix:

– SubBytes (SB)—applying the same 8-bit to 8-bit invertible S-box 16 times in
parallel on each byte of the state,

– ShiftRows (SR)—cyclically shifting the i’th row by i bytes to the left,
– MixColumns (MC)—multiplication of each column by a constant 4× 4 matrix

over the field GF (28), and
– AddRoundKey (ARK)—XORing the state with a 128-bit subkey.

Before the first round, an additional AddRoundKey operation takes place.
Thus, we “redefine” an AES round as starting with an AddRoundKey operation,
with the last round AddRoundKey operation serving as a post-whitening key.
In the last round of AES, the MixColumns operation is omitted. The number of
rounds depends on the key size, ranging between 10 and 14.

Notations for the variants of AES we study. Since we use AES-like construc-
tions as a prototype of general KSA constructions, their types and notations
are similar to the types of KSA constructions discussed above. Namely, in all
variants we consider, the key schedule is replaced by a periodic key schedule,
with a period of 1, 2, or 3. Following [4], we denote by �K-AES a variant with
period � in the key schedule. We call the variant truncated if in its last round,
the MixColumns operation is removed (like in original AES), and otherwise, we
call the variant full.6 We say that the S-box is public if it is publicly known (like
in AES), and say that it is secret if it is key-dependent (like in the variants of
6 We note that in [4], the notation �K-AES was used for a variant with a MixColumns

operation in the last round (unlike AES), and the variant with no MixColumns in
the last round was not considered.

New Slide Attacks on Almost Self-similar Ciphers 261

AES studied in [21,23,30,31]). The diffusion of the affine layer in AES (namely,
MC ◦ SR) is inherently incomplete, and so we use �K-AES as a prototype only
for KSA constructions with incomplete diffusion; constructions with complete
diffusion are treated separately.

Like for general KSA constructions, the notation we use for AES-like con-
structions reflects the three relevant parameters: the number at the beginning
is the length of the key period, then the letter ‘f’ or ‘t’ says whether the last
round is full or truncated, and then the letter ‘p’ or ‘s’ denotes whether the
S-box is public or secret. If some parameter is not included (e.g., neither ‘p’ nor
‘s’ appear), this means that the attack applies to both types described by that
parameter. (Note that the letters ‘c’ or ‘i’ are irrelevant in the case of AES as
explained above, and so are always omitted). For example, 3K-AESts denotes a
variant of AES with a 3-round key period, no MixColumns operation in the last
round, and secret S-boxes.

Notations for intermediate values in AES. We denote the bytes of the state
matrix of AES by 0, 1, 2, . . . , 15, in the order described in Fig. 3, and denote
the value of the i’th byte of a state x by xi. When several bytes i1, . . . , i� are
considered simultaneously, they are denoted x{i1,...,i�}. The columns are num-
bered 0, 1, 2, 3; the j’th column of the state x is denoted by xCol(j), and if several
columns are considered simultaneously, we denote them by xCol(j1,...,j�). Some-
times we are interested in ‘shifted’ columns, i.e., the result of the application of
ShiftRows to a set of columns. This is denoted by xSR(Col(j1,...,j�)). Similarly, a
set of ‘inverse shifted’ columns (i.e., the result of the application of SR−1 to a
set of columns) is denoted by xSR−1(Col(j1,...,j�)).

2.3 The Attack of [4] on 1-KSAf

Bar-On et al. [4] considered 1-KSAf, that is, E = K ◦ (A ◦ S ◦ K)r where all
operations K use the same key k. They showed that this variant can be broken
with probability of about 63%, given 2n/2 known plaintexts, and roughly the
same amount of time and memory.

The idea behind the attack is simple. Assume that (Pi, Qj) is a slid pair, i.e.,
that A ◦ S ◦ K(Pi) = Qj . Denoting Q̃j = S−1 ◦ A−1(Qj), we have

Pi ⊕ Q̃j = k. (2)

On the other hand, by the structure of E, the corresponding ciphertexts (Ci,Dj)
must satisfy Dj = K ◦ A ◦ S(Ci). Thus, denoting C̄i = A ◦ S(Ci), we have

Dj ⊕ C̄i = k. (3)

Combining (2) and (3), we get

Pi ⊕ C̄i = Q̃j ⊕ Dj . (4)

This relation allows one to mount the attack described in Algorithm 1. Note that
the data used in the attack consists of a single set T of 2n/2 known plaintexts.

262 O. Dunkelman et al.

Algorithm 1. A Slide Attack on 1-KSAf [4]
Initialize an empty hash table T .
Ask for the encryption of a set T of 2n/2 known plaintexts.
for each plaintext/ciphertext pair (Pi, Ci), where Pi ∈ T do

Compute the value C̄i = A ◦ S(Ci),
Compute the value Pi ⊕ C̄i,
Store in T the value (Pi ⊕ C̄i, Pi).

for each plaintext/ciphertext pair (Qj , Dj), where Qj ∈ T do
Compute the value Q̃j = S−1 ◦ A−1(Qj),
Compute the value Q̃j ⊕ Dj ,
if Q̃j ⊕ Dj is the first coordinate of an entry (Pi ⊕ C̄i, Pi) ∈ T then

Test the key candidate k = Pi ⊕ Q̃j by trial encryption.

As was described above, this single set is treated both as TP and as TQ, and when
we consider a candidate slid pair composed of two elements of T , we denote it
by (Pi, Qj) and denote the corresponding ciphertexts by Ci,Dj .

As the data set contains 2n/2 · (2n/2 − 1) ≈ 2n pairs, the probability that
the data set contains a slid pair, i.e., a pair that satisfies Qj = A ◦ S ◦ K(Pi), is
about 1 − (1 − 2−n)2

n ≈ 1 − 1/e ≈ 0.63. Each slid pair leads to a collision in the
table which suggests the right key candidate. On the other hand, for a random
pair (Pi, Qj), the probability that Pi ⊕ C̄i = Q̃j ⊕ Dj is 2−n, and thus, only
a single collision in the table is expected (though the actual number follows a
Poisson distribution with a mean of 1). Thus, the right key can be found easily
by going over all collisions in the table and checking the values of k they suggest.
The data complexity of the attack is 2n/2 known plaintexts, its time and memory
complexities are about 2n/2 operations, and its success probability is about 63%.

In addition to the attack described above, Bar-On et al. presented a mem-
oryless variant of the attack, based on classical cycle detection algorithms. The
attack requires 2n/2 adaptively chosen plaintexts, 2n/2 time, and a negligible
amount of memory.

3 The Slid Sets Attack

In this section we present a new cryptanalytic technique, the slid sets attack,
and use it to attack 2-KSAfp with complexity O(2(n+s)/2) and 1-KSAs with
complexity O(

√
s · 2(n+s)/2). In particular, our attack allows us to break an

AES-like cipher with secret S-boxes and the same round keys with complexity
of 270.3 – only slightly higher than 264, which is a natural lower bound for the
complexity of a slide attack on a 128-bit cipher.

The key idea behind the slide sets technique is to consider pairs of plain-
text sets U = {Pi}i=1,...,d and V = {Qj}j=1,...,d, such that if for some (i0, j0),
(Pi0 , Qj0) is a slid pair, then the entire set V is the slid counterpart of the entire
set U , in the sense that for any Pi ∈ U , there exists 1 ≤ j ≤ d such that the
slid counterpart of Pi is Qj . Interestingly, we will not be able to know (until

New Slide Attacks on Almost Self-similar Ciphers 263

the very end of the attack) which Qj is the counterpart of a specific Pi. This
attack paradigm stands in contrast with all previously known slide attacks which
treated either single slid pairs or slid tuples (P1, . . . , Pd), (Q1, . . . , Qd) in which
each Qi is the slid counterpart of Pi.

We begin with presenting the attack in the special case of 2-KSAf, where
its application is the simplest one. Then we show the more complex attack on
1-KSAs. Even more complex attacks on 2-KSAtpi and on 3-KSAfpi are given in
full version.

3.1 Slid Sets Attack on 2-KSAf

The setting. For the sake of helping readability, we present the attack in the
special case of 2K-AESfp (i.e., an AES-like cipher with 2-round periodic subkeys,
publicly known S-boxes, and with a MixColumns operation in the last round).
We assume that the number of rounds is even; it will be apparent from the
attack that it applies to the ‘odd’ case without change (as the only difference it
the last round’s key). First, we would like to simplify the problem.

Assume that (Pi, Qj) is a slid pair. This means that

Qj = MC ◦ SR ◦ SB ◦ ARK2 ◦ MC ◦ SR ◦ SB ◦ ARK1(Pi),

where ARK� denotes key addition with the subkey k�. As was described in
Sect. 2.1, we can peel off unkeyed operations by denoting Q̃j = SR−1 ◦ MC−1 ◦
SB−1 ◦ SR−1 ◦ MC−1(Qj), and obtain

Q̃j = ARK ′
2 ◦ SB ◦ ARK1(Pi), (5)

where ARK ′
2 denotes the addition of the subkey MC−1 ◦ SR−1(k2). By the

basic slide property, the relation between the corresponding ciphertexts (Ci,Dj)
is similar to the relation between the plaintexts (but of course, is not the same,
due to the last round asymmetry). Namely, we have

Dj = ARK1 ◦ MC ◦ SR ◦ SB ◦ ARK2 ◦ MC ◦ SR ◦ SB(Ci).

Like with the plaintexts, this relation can be simplified to

D̃j = ARK ′
1 ◦ SB ◦ ARK2(C̄i), (6)

where C̄i = MC ◦ SR ◦ SB(Ci), D̃j = MC−1 ◦ SR−1(Dj), and ARK ′
1 denotes

the addition of the subkey MC−1◦SR−1(k1) The important gain from obtaining
the simplified equations is that now the transformation from Pi to Q̃j consists of
application of 16 independent functions on the bytes of the state, and the same
goes for the transition from C̄i to D̃j . This plays a significant role in the attack.

Construction of candidate slid sets. The idea behind this step is as follows.
Let (Pi, Qj), (Pi′ , Qj′) be slid pairs, and let Q̃j , Q̃j′ be computed from Qj , Qj′ ,
as defined above. The fact that the transformation from Pi to Q̃j consists of

264 O. Dunkelman et al.

application of 16 independent functions on the bytes of the state, implies that if
Pi′ differs from Pi only in a single byte, then Q̃j′ differs from Q̃j only in a single
byte as well.

We observe that this property can be generalized from pairs to sets, as follows.
Consider two sets U = {Pi}, Ṽ = {Q̃j} which form Λ-sets (see [12]) with respect
to byte 0 of the state, i.e., each of them is a set of 256 values that are equal in all
S-boxes but S-box 0, and attains all possible values in S-box 0. (Of course, the
same can be performed with another byte instead of byte 0.) Let V = {Qj} be
the plaintext set obtained from Ṽ by setting Qj = MC ◦SR◦SB◦MC ◦SR(Q̃j)
for each Q̃j ∈ Ṽj . By the above property, if the slid counterpart of some Pi ∈ U
is Qj ∈ V , then any Pi′ ∈ U has a slid counterpart Qj′ in V . We call two sets of
plaintexts U, V that satisfy this property (namely, that each element of U has a
slid counterpart in V and vice versa) slid sets.

The same process can be performed in the converse direction: Each candidate
slid pair (Pi, Qj) suggests a pair of slid sets (U, V), by defining U to be a Λ-set
that contains Pi, defining Ṽ to be a Λ-set that contains Q̃j , and computing V

from Ṽ as described above. (Of course, we have to make sure that the permuted
byte in the Λ-set is the same byte.) Importantly, we do not know which element
in V is the slid counterpart of a given element of U ; we only know that this
counterpart exists in V , if indeed the original pair (Pi, Qj) is a slid pair.

The attack is based on collecting sufficiently many pairs of sets (U, V), such
that with a high probability the data contains a pair of slid sets. Then, the
question is how to find the slid sets among them.

Identifying the slid sets. Let (U, V) be a candidate pair of slid sets. Let W =
{Ci} be the set of ciphertexts corresponding to the plaintexts of U , and let
X = {Dj} be the set of ciphertexts corresponding to the plaintexts of V . Define
the sets W̄ and X̃ by setting C̄i = MC ◦ SR ◦ SB(Ci) for any Ci ∈ W and
D̃j = MC−1 ◦ SR−1(Dj) for any Dj ∈ X. If (U, V) are slid sets, then for each
C̄i ∈ W̄ , there exists D̃j ∈ W̃ such that Eq. (6) holds for the pair (C̄i, D̃j).
However, we have to check many combinations of U and V , and even if we know
that (U, V) are slid sets, we do not know which Qj corresponds to which Pi.

Luckily, the relation (6) consists of applying 16 independent functions on
the bytes of the state. This implies that in each byte separately, for each pair
Ci1 , Ci2 ∈ W , the equality C̄i1 = C̄i2 holds if and only if the equality D̃j1 = D̃j2

holds for some Dj1 ,Dj2 ∈ X ′ (though, we still do not know for which values!).
Consequently, the statistic: “how many values are attained q times in byte �” is
preserved between the sets W̄ and X̃, for any byte � and any multiplicity!

This can be used for obtaining a significant amount of filtering, in the follow-
ing way. We pick sufficiently many Λ-sets U l (all with the same permuted byte),
and for each corresponding W̄ l, for each byte �, we compute the sequence of mul-
tiplicities (i.e., the sequence which records: how many values are not obtained,
how many are obtained once, etc.), defined formally by

a�
q =

∣∣∣ {
v ∈ {0, 1, . . . , 255} : |

{
C̄i ∈ W̄ l : (C̄i)� = v

}
| = q

} ∣∣∣,

New Slide Attacks on Almost Self-similar Ciphers 265

and store the sequence-of-sequences (a�
q)�=0,1,...,15,q=0,1,... in a hash table. Then,

we pick sufficiently many Λ-sets Ṽ l, and for each corresponding V l, we look at
the ciphertext structure X l corresponding to V l. For each corresponding X̃ l, we
compute the sequence {b�

q}�=0,1,...,15,q=0,1,... defined by

b�
q,=

∣∣∣ {
v ∈ {0, 1, . . . , 255} : |

{
D̃j ∈ X̃ l : (D̃j)� = v

}
| = q

} ∣∣∣,
and check for a match in the table. If (U i, V j) are slid sets, a match must occur.

We now analyze the probability that two unrelated sets match, i.e., we cal-
culate an upper bound on the probability that two non-slid sets have the same
sequences. For this analysis, we can safely assume that each of the sets induce a
sequence generated by picking 256 random values selected from {0, 1, . . . , 255}.
If the two vectors have for each multiplicity the same number of elements, then
the sequences collide, i.e., if the number of elements not appearing in both sets
is different, then the sequences do collide. We can thus define the multiplicity
vector for each set—how many elements appear zero times, once, twice, etc.

The actual distribution of the multiplicity vector is a multinomial one. As
we are interested in an upper bound on the collision probability of two such
multiplicity vectors, we offer a lower bound on the entropy of these vectors. To
do so, we consider the number of values that do not appear. While we expect
about 256/e such elements, the exact number of values not appearing follows a
binomial distribution for 256 experiments, each with success probability of 1/e.
The entropy of this binomial distribution is 1

2 log2(2π · e · 256 · 1
e · (1− 1

e)) ≈ 4.99
bits. The same is true also w.r.t. the number of entries which appear once.

Thus, each byte of the sequence carries at least 9.98 bits of information, or
in total for the entire state more than 159 bits of information. This is more than
enough to detect all correct pairs of slid sets (U i, V j) with an overwhelming
probability. We verified experimentally that this statistic contains at least 8 bits
of information in each byte (and thus, at least 128 bits of information in total),
assuming random and uniform distribution of the ciphertexts.

Retrieving the key from a pair of slid sets. Given a pair of slid sets (U i, V j), and
the corresponding sets of values (W̄ i, X̃j) we can easily and efficiently find the
round keys k2 and k′

1 = MC−1(k1). The attack is based on Eq. (6), which consists
of 16 independent byte equations of the form (D̃j)� = (ARK ′

1◦SB◦ARK2(C̄i))�,
as was mentioned above. In each byte �, we know from W the multiplicity of
each value entering this byte (e.g., input value 0 appears once in W̄ i in this byte
position). Note that the statistic we use here is more refined than the statistic
we used above: we do not only ask how many values are obtained q times, but
rather which are the values that are obtained q times.

We now guess the value of byte � of k2 and of k′
1, and so, we can compute

the value (ARK ′
1 ◦ SB ◦ ARK2(C̄i))� for each Ci ∈ W . We compute this value

for every C̄i ∈ W̄ , and check whether the multiplicities of the obtained values
conform to their multiplicities in X̃j . If there is no match, we discard the guess
of (k2)�(k′

1)�.

266 O. Dunkelman et al.

This procedure offers a very strong filtering, and so with overwhelming prob-
ability, in each byte only a single candidate for k2 and k′

1 remains.
We note that this attack algorithm does not rely on the actual order of keys

used in the last two rounds. Thus, even though we presented the attack for the
case of even number of rounds, it can be applied in exactly the same way to an
odd number of rounds (where Eq. (6) is replaced by D̃j = ARK ′

2◦SB◦ARK1(C̄i)
and we obtain a single candidate for k1 and k′

2).

The attack algorithm. As shown in Algorithm 2, we consider two structures
TP , TQ of 268 chosen plaintexts each. The structure TP consists of 260 Λ-sets, all
with the first byte permuted and the rest fixed. Similarly, TQ is chosen such that
T̃Q contains 260 Λ-sets, all with the first byte permuted and the rest fixed. We
then compute for each Λ-set in TP its a�

q statistics and for each Λ-set in TQ its b�
q

statistics, and look for collisions between the statistics. Once such a collision is
found (i.e., a pair of slid sets is identified), we apply the key recovery algorithm.

The data complexity of the attack is 269 chosen plaintexts, the memory com-
plexity is 269 and the time complexity is 269 as well. The success probability
is the probability that the data contains a pair of slid sets. As the probabil-
ity of each set pair of sets U i ∈ TP and V j ∈ TQ to be slid is 2−120 (since a
match in 15 bytes is needed), the probability of containing pair of slid sets is
1 − (1 − 2−120)2

120 ≈ 0.63, which is the success rate of the attack.

Attacking 2-KSAfp. The same attack applies to any variant of 2-KSAfp, either
with complete or incomplete diffusion. The data, memory and time complexities
are 2(n+s)/2+1 = O(2(n+s)/2).

3.2 Slid Sets Attack on 1-KSAs

In this section we show that a modification of the above attack can be used
to break 1-KSA in which the operation S is key-dependent – i.e., consists
of a parallel application of n/s key-dependent permutations on s-bit words.
The complexity of the attack is only slightly higher than the complexity of
the attack described above – namely, data, memory, and time complexity of
2
√

s log 22(n+s)/2 = O(
√

s2(n+s)/2) (i.e., a factor of
√

s log 2 with respect to the
attack of Sect. 3.1).

The setting. For the sake of helping readability, we first present the attack in
the special case of 1K-AESf with a key-dependent S-box. A related variant (1-
KSAfs) was studied in a number of papers, e.g., [21,23,30,31]. First, we would
like to simplify the problem.

Assume that (Pi, Qj) is a slid pair. This means that

Qj = MC ◦ SR ◦ SB ◦ ARK(Pi),

where ARK denotes key addition with the subkey k. We can peel off the unkeyed
operations MC,SR by denoting Q̃j = SR−1 ◦ MC−1(Qj), and obtain

Q̃j = SB ◦ ARK(Pi). (7)

New Slide Attacks on Almost Self-similar Ciphers 267

Algorithm 2. A slide attack on 2K-AESfp using slid sets
Ask for the encryption of two structures TP , TQ, each of size 268, defined above.
Initialize an empty hash table T .
for all Λ-sets U i ∈ TP do

Let the ciphertexts corresponding to the plaintexts U i be W i, and consider the
corresponding set W̄ i,

Compute the sequence-of-sequences (a�
q)�=0,1,...,15,q=0,1,..., and store it in T , along

with the index i.
for all V j ∈ TQ do

Let the ciphertexts of corresponding to the plaintexts of V j be Xj .
Compute from Xj the corresponding X̃j .
Compute the sequence-of-sequences (b�

q)�=0,1,...,15,q=0,1,..., and check for a match-
ing sequence in T .

if a match exists then
Assume that (U i, V j) are slid sets, and consider the corresponding sets

(W̄ i, X̃j).
for all bytes � ∈ {0, . . . , 15} do

for all guesses of byte k2,� and k′
1,� do

Partially encrypt all (C̄i)� ∈ W i and obtain a set of values
{t1, t2, . . . t256}.

if the set {t1, t2, . . . t256} matches the set {D̃j,� : D̃j ∈ X̃} then
Output “the subkey values in byte � are k2,� and k′

1,�”.

By the slide property, the corresponding ciphertexts (Ci,Dj) satisfy

Dj = ARK ◦ MC ◦ SR ◦ SB(Ci).

We can simplify this relation by interchanging the operations ARK and MC, at
the expense of replacing the subkey k with SR−1 ◦ MC−1(k), and then peeling
off MC and SR as well. We obtain

D̃j = ARK ′ ◦ SB(Ci). (8)

Detection of slid sets. Equations (7) and (8) show that the transformation from
Pi to Q̃j consists of application of 16 independent functions on the bytes of the
state, and the same goes for the transition from Ci to D̃j . Hence, we can use the
same algorithm for detecting slid sets in as the previous attack (i.e., using the
sequences a�

q and b�
q that count multiplicities of values).

Deducing slid pairs from slid sets. The remaining goal is to retrieve the subkey
k and the key-dependent S-box S given a few pairs of slid sets (U i, V j). (As
we shall see, a single pair of slid sets does not contain enough information for
determining the S-box uniquely). The simple algorithm for this step described
above cannot be applied here since the S-box S is unknown. Instead, we make
use of a refined statistic that allows us deducing the slid counterpart Qj ∈ V of
each Pi ∈ U . Namely, while in Sect. 3.1 we used the multiplicities of values in

268 O. Dunkelman et al.

Algorithm 3. Retrieving slid pairs from slid sets, for 1K-AESfs
Initialize a list L of candidate slid pairs.
for Each Ci ∈ W do

Compute the sequence (ci
�)�=0,1,...,15, and store in a hash table, along with Pi.

for Each D̃j ∈ X̃ do
Compute the sequence (dj

�)�=0,1,...,15, and check for a match in the table,
for Each match in the hash table do

Add the corresponding pair (Pi, Qj) to L.

each byte separately, here we use the sequence of multiplicities of a value in all
bytes simultaneously.

As in Sect. 3.1, we denote by W,X the sets of ciphertexts that correspond
to the plaintext sets U, V , respectively. Furthermore, we denote by X̃ the set
obtained from X by setting D̃j = SR−1 ◦ MC−1(Dj), for any Dj ∈ X.

For each Ci ∈ W , and for each byte 0 ≤ � ≤ 15, we count the number of other
elements Ci′ ∈ W such that (Ci)� = (Ci′)�. That is, we construct the 16-element
sequence {ci

�}�=0,1,...,15, where

ci
� = |{Ci′ ∈ W : (i′ 	= i) ∧ ((Ci)� = (Ci′)�)}|.

Similarly, for each D̃j ∈ X̃, and for each byte 0 ≤ � ≤ 15, we construct the
16-element sequence {dj

�}�=0,1,...,15, where

dj
� = |{D̃j′ ∈ X̃ : (j′ 	= j) ∧ ((D̃j′)� = (D̃j)�)}|.

We observe that the statistic represented by the sequences {ci
�} and {dj

�} is
preserved by slid pairs. That is, if Qj is the slid counterpart of Pi, then the
corresponding sequences {ci

�}, {dj
�} must be equal! Indeed, if for some i′ we have

(Ci)� = (Ci′)�, then the equality (D̃j)� = (D̃j′)� must hold for D̃j , where Qj′ is
the slid counterpart of Pi′ . Therefore, we can retrieve the right slid pairs (Pi, Qj)
by the simple procedure described in Algorithm 3.

We experimentally checked and found that the statistic (ci
�)�=0,1,...,15 contains

about 27 bits of information, assuming random and uniform distribution of the
ciphertexts. This means that the probability of a random pair (Pi, Qj) to yield
a match in the table is 2−27. As the plaintext sets (U, V) contain only 216 pairs
(Pi, Qj), with a high probability only the right slid pairs match in the table.

Hence, the above algorithm, whose complexity is about 216 operations, finds
the slid counterpart Qj ∈ V of each Pi ∈ U .

Retrieving the secretmaterial, given several pairs of slid sets. By Eq. (8) (applied in
each byte separately), each slid pair (Pi, Qj) provides us with an input/output pair
for the function f�(x) = k′

� ⊕ SB(x), where k′
� denotes the �’s byte of k′ = SR−1 ◦

MC−1(k). Hence, each pair of slid sets provides us with 256 input/output pairs
for each function f�. However, these input/output pairs are not distinct. A rea-
sonable assumption is that the values (Ci)� (where Ci ranges over elements of W)

New Slide Attacks on Almost Self-similar Ciphers 269

are distributed uniformly at random in {0, 1, . . . , 255}. Hence, by the coupon col-
lector’s problem, we need 256 · log 256 input/output pairs in order to recover f�

completely with a high probability. Therefore, about log 256 ≈ 6 pairs of slid sets
are sufficient for recovering all functions f�.

Once the function ARK ′ ◦ SB is recovered, the key k can be recovered
instantly, by picking some (already queried) ciphertext C and partially decrypt-
ing it using the knowledge of the functions ARK ′ ◦ SB, SR,MC. The entire
decryption process can be simulated, except for the initial ARK operation.
Hence, we obtain the value P ⊕ k, where P is the plaintext that corresponds
to C. As P is known, k can be retrieved.

The complexity of the attack. The attack presented above contains two steps, in
addition to the steps of the attack described in Sect. 3.1. The first is a step that
recovers slid pairs from pairs of slid sets. As described above, the complexity
of this step is 216, which is negligible with respect to other steps of the attack.
The second step is recovering the function ARK ′ ◦ SB. Its complexity is also
negligible, but it requires 6 pairs of slid sets, instead of a single pair in the attack
of Sect. 3.1. This increases the data complexity of the attack by a factor of

√
6,

and increases the data and time complexity of the attack accordingly.
Therefore, the data, memory and time complexity of the attack on 1K-AES

with a secret S-box and a MixColumns operation in the last round, is about
270.3, and its success probability is about 63%.

Attacking 1-KSAs. The same attack applies to any variant of 1-KSAfs. The only
difference is that the number of required pairs of slid sets is s log 2 = log(2s)
(instead of log 256 in 1K-AES). Hence, the data, memory, and time complexity
of the attack is 2

√
s log 2 · 2(n+s)/2.

Furthermore, the attack applies with the same complexity also to any vari-
ant of 1-KSAts. Indeed, the difference between 1-KSAfs and 1-KSAts is in the
relation between Ci and Dj , which becomes

Dj = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci).

By replacing ARK with linear operations, we can simplify this equation into

D̃j = ARK ′ ◦ SB ◦ ARK ′′(C̄i), (9)

where D̃j = SR−1(Dj), C̄i = MC(Ci), ARK ′ denotes addition with SR−1(k)
and ARK ′′ denotes addition with MC(k) ⊕ k. Equation (9) has exactly the
same structure as Eq. (8), and hence, the attack described above applies, with
the same complexity, to 1-KSAts.

4 Slide Attack Using a Hypercube of Slid Pairs

In this section we present a new technique which we call a hypercube of slid pairs,
and use it to attack 1-KSAts (with a secret S-box) with data, memory, and time
complexity of

√
s2(n+s(s/2+1)+s/2)/2+1 (in the special case of 1K-AESt: 288). For

sake of concreteness, we demonstrate the attack on 1K-AES.

270 O. Dunkelman et al.

The idea behind the attack. The attack consists of two steps. First we detect a
slid pair, and then we use it to recover the key used in the ARK operation and
in the secret S-box. In order to detect a slid pair, we want to attach to each
candidate slid pair many “friend pairs”, such that if the candidate is indeed a
slid pair, then all the friend pairs are slid pairs as well.

To be specific, we consider 1K-AES with a secret S-box. Consider a slid pair
(Pi, Qj). As was shown in Sect. 3.2, the relation between Pi and Qj can be sim-
plified into the equation Q̃j = SB ◦ ARK(Pi), where Q̃j = SR−1 ◦ MC−1(Qj).
Furthermore, it was shown that if (Pi, Qj), (Pi′ , Qj′) are slid pairs, Q̃j , Q̃j′ are com-
puted from Qj , Qj′ , and if Pi′ differs from Pi only in a single byte, then Q̃j′ differs
from Q̃j only in a single byte as well.

It follows that if we take a, a′ be two vectors that are non-zero only in byte 0
(where they assume arbitrary values), then with probability 2−8, (Pi⊕a, Q̃j ⊕a′)
also corresponds to a slid pair.

In the same way, we take values b, c, d, e which are non-zero only in byte
1, 2, 3, 4, respectively. Then we define b′, c′, d′, e′ similarly to the definition of a′,
and obtain the pairs (Pi ⊕b, Q̃j ⊕b′), . . . , (Pi ⊕e, Q̃j ⊕e′), such that each of them
is a slid pair with probability 2−8. Thus, we may attach to the pair (Pi, Qj) five
friend pairs, such that if (Pi, Qj) is a slid pair, then each of its friend pairs is a
slid pair with probability 2−8.

Constructing a hypercube of slid pairs. We are ready to present the construction
of the hypercube of slid pairs. Assume that all five pairs (Pi⊕a, Q̃j ⊕a′), . . . , (Pi⊕
e, Q̃j ⊕ e′) correspond to slid pairs. We observe that this implies that for any
quintet α = (α1, α2, α3, α4, α5) ∈ {0, 1}5, the pair

(Pi ⊕ α1a ⊕ α2b ⊕ α3c ⊕ α4d ⊕ α5e, Q̃j ⊕ α1a
′ ⊕ α2b

′ ⊕ α3c
′ ⊕ α4d

′ ⊕ α5e
′)

is a slid pair as well. Indeed, in each of the 16 functions applied in parallel, the
two values of the new slid pair are equal either to the values of (Pi, Q̃j) or to the
values of one of its 5 “friends” which we assumed to be slid pairs as well. (For
example, in byte 0 the values are equal either to those of (Pi, Q̃j) or to those of
(Pi ⊕ a, Q̃j ⊕ a′).) We denote the new pair by (Pi,α, Q̃j,α).

This allows us to leverage 5 friend pairs into 25 − 1 friend pairs (or more
generally, t friend pairs into 2t − 1 friend pairs). As the friend pairs we con-
struct correspond to the vertices of the hypercube {0, 1}t, we call this method
of constructing a hypercube of slid pairs. We note that this construction idea is
motivated by the mixture differential attack presented by Grassi [22]. Hence, so
far we have attached to the pair (Pi, Qj) 31 friend pairs, such that if (Pi, Qj) is
a slid pair, then with probability 2−40, all the friend pairs are slid pairs as well.

Using the hypercube of slid pairs in the attack. Consider the ciphertexts (Ci,Dj)
that correspond to a slid pair (Pi, Qj). As was shown in Sect. 3.2, the relation
between Ci and Dj can be simplified into the equation

D̃j = ARK ′ ◦ SB(Ci).

New Slide Attacks on Almost Self-similar Ciphers 271

As both the transformation from Pi to Q̃j and the transformation from Ci to
D̃j consist of application of 16 independent functions on the bytes of the state,
it follows that if for some α, α′ ∈ {0, 1}5 and for some byte � ∈ {0, 1, . . . , 15}, we
have (Ci,α)� = (Ci,α′)�, then we must have (Dj,α)� = (Dj,α′)� as well. Note that
the same property was exploited in the attack of Sect. 3.2. In our attack, the size
of the structure is smaller, which restricts the amount of information that can
be collected. On the other hand, we know that the slid counterpart of each Pi,α

is Qi,α, and this turns out to be sufficient for detecting the slid pairs.
Indeed, the expected number of such collisions is 2−8·

(
32
2

)
·16 = 31. We denote

each such collision by the triple (α, α′, �), and store the list of all collisions in
a lexicographic order. The exhaustive list of all locations of collisions contains
more than 256 bits of information, and thus, the probability that two lists of
triples that do not originate from a slid pair are equal, is negligible. Hence,
equality of two lists implies a slid pair (with overwhelming probability).

Recovering the secret S-box. Once a slid pair (Pi, Qj), along with 31 friend
pairs, are detected, they provide us with 32 input/output values to the function
ARK ◦ SB. As was shown in Sect. 3.2, about 256 log 256 ≈ 1420 input/output
values are needed in order to recover the S-box, and thus, we have to take a
sufficiently large data set so that it will contain at least 45 slid pairs. Namely,
we take two structures TP , TQ of 287 plaintexts each. The structures contain
2174 pairs. As the probability that a pair and all its friend pairs are slid pairs is
2−128 · 2−40 = 2−168, the expected number of slid hypercubes is 64, and so, with
a high probability the number of slid pairs is sufficient for recovering ARK ◦SB.
Once this operation is recovered, all the operations in the cipher except for
the final ARK operation are known, and thus, the key k can be immediately
retrieved. The resulting attack algorithm is given in Algorithm 4.

We note that the plaintext structures can be chosen in such a way that
constructing the friend pairs does not require increasing the data complexity.
Indeed, we can choose each of the structures TP , T̃Q as a union of 247 sub-
structures of size 240, where in each sub-structure, all plaintexts attain some
equal value in bytes 5, 6, . . . , 15 and all possible values in bytes 0, 1, . . . , 4. This
guarantees that for any a, b, c, d, e, α and for any Pi ∈ TP , the value Pi ⊕ α1a ⊕
α2b ⊕ α3c ⊕ α4d ⊕ α5e also belongs to TP , and the same for T̃Q.

As was explained above, the algorithm requires 288 chosen plaintexts, mem-
ory and time, and succeeds with a high probability. The same attack applies
to any variant of 1-KSAts (possibly with a complete diffusion). First, in the
detection of a hypercube of slid pairs of dimension t (given s-bit S-boxes in n-bit
cipher) we get from each candidate hypercube 2−s ·

(
2t

2

)
·n/s values in the list. As

each such value suggests about s bits of entropy (i.e., a total of 2−s ·
(
2t

2

)
·n bits),

and as we have at most 22n sets of slid pairs, we require that 2−s ·
(
2t

2

)
· n ≈ 2n.

In other words, one needs to set 22t−s−1 · n = 2n, i.e., t = �s/2�. Now, if TP

and TQ have D plaintexts each, we expect D2 · 2−n · 2−ts hypercubes of slid
pairs, each suggesting 2t slid pairs. As we need about log 2s · 2s ≈ 0.7 · s · 2s slid

272 O. Dunkelman et al.

Algorithm 4. A Slide Attack on 1K-AES with a Secret S-box using Hypercube
of Slid Pairs

Ask for the encryption of two structures TP , TQ, each of 287 chosen plaintexts, con-
structed as defined above..
Initialize an empty list L (intended to store the detected slid pairs).
for each plaintext/ciphertext pair (Pi, Ci) ∈ TP do

Compute the 31 friend pairs (Pi,α, Ci,α) and the corresponding values D̃i,α,
Find all collisions of the form (C̄i,α)l = (C̃i,α′)l,
Store in a hash table the sequence of triples (α, α′, l) that represent all collisions,

arranged in lexicographic order, along with the value Pi used to create them.

for Each plaintext/ciphertext pair (Qj , Dj) do
Compute the 31 ‘friend values’ Q̄j,α and the corresponding pairs (Qj,α, Dj,α),
Find all collisions of the form (Dj,α)l = (Dj,α′)l,
Compute the sequence of triples (α, α′, l) that represent all collisions and check

for a match in the hash table.
for Each collision in the table do

Add the corresponding pair (Pi, Qj) and its 31 friends to L.

for Each slid pair (Pi, Qj) ∈ L do
Use the relation between Pi and Q̄j to detect an input/output pair of SB ◦ARK

for each byte, until the entire function is detected.

Once SB ◦ARK in all bytes is detected, find the final key whitening operation ARK
using a single trial encryption.

pairs, we need D =
√

s ·2(n+s(s/2+1)+s/2)/2, or a total of data, memory, and time
complexities of

√
s2(n+s(s/2+1)+s/2)/2+1.

We note that the complexity of the ‘hypercube of slides’ attack on 1-KSAts
is inferior to the complexity of the ‘slid sets’ attack of Sect. 3.2. However, this
attack may be advantageous in specific instances of 1-KSAts, e.g., when the
operation S admits differential characteristics with a non-negligible probability.

5 Slide Attack Using Suggestive Plaintext Structures

In this section we present a new technique which we call suggestive plaintext
structures, and use it to attack 1-KSAt (and in particular, 1K-AES) with data,
memory of 3 · 2n/2 and time complexity of 4 · 2n/2. Interestingly, unlike most
other slide attacks, this attack’s success rate is guaranteed at 100%.

The idea behind the attack is using two tailor-made plaintext structures
TP = {Pi}i=1,...,2n/2 and TQ = {Qj}j=1,...,2n/2 , such that the mere knowledge
that some Pi has a slid counterpart in the structure {Qj} (even without the
knowledge of which Qj exactly is the counterpart) yields some key information
that can be used in the attack.

To be specific, we consider 1K-AES. Let TP = {Pi} be a structure of 264

plaintexts that assume the constant value 0 in Col(2, 3), and assume all 264

possible values in Col(0, 1). We let TQ = {Qj} be a structure of 264 plaintexts
such that the plaintexts of the corresponding structure T̃Q = {Q̃j} (where for

New Slide Attacks on Almost Self-similar Ciphers 273

each j, Q̃j = SB−1◦SR−1◦MC−1(Qj)) assume the constant value 0 in Col(0, 1),
and assume all 264 possible values in Col(2, 3).

The main observations behind the attack. Observe that (Pi, Qj) is a slid pair if
and only if the corresponding pair (Pi, Q̃j) satisfies Pi ⊕ Q̃j = k. We use two
conclusions of this observation:

1. Friend pairs for free. If (Pi, Q̃j) is a slid pair, then for any a, (Pi ⊕ a, Q̃j ⊕ a)
is a slid pair as well.
This allows attaching to each candidate slid pair a friend pair, thus enhancing
the filtering condition on the ciphertext side. However, in our case, we have
Q̃j ⊕ a ∈ T̃Q only if aCol(0,1) = 0. In such a case, Pi ⊕ a 	∈ TP , unless a = 0
(which means that the new pair is identical to the initial one).
To overcome this problem, we add to the data set another structure TR = {Ri}
of 264 plaintexts that assume the constant value 0 in Col(2) and the constant
value 1 in Col(3), and assume all 264 possible values in Col(0, 1). Then, we can
attach to each Pi ∈ TP a friend Ri = Pi ⊕ (0, 0, 0, 1) ∈ TR, such that for each
Qj ∈ TQ, the pair (Pi, Q̃j) is a slid pair if and only if (Ri, Q̃j ⊕ (0, 0, 0, 1)) is a
slid pair as well. We denote the ciphertext that corresponds to the plaintext
Ri by Fi. Furthermore, we denote the element of TQ that corresponds to
Q̃j ⊕ (0, 0, 0, 1) ∈ T̃Q by Q′

j , and denote the corresponding ciphertext by D′
j .

2. Key information for free. Since all Q̃j ∈ TQ satisfies (Q̃j)Col(0,1) = 0, it follows
that for any Pi ∈ TP , we may have Pi ⊕ Q̃j = k only if (Pi)Col(0,1) = kCol(0,1).
Therefore, when we consider some Pi ∈ TP as a candidate for being part of
a slid pair (with counterpart from TQ), we immediately obtain a candidate
value for the two initial columns of the key k.
Of course, the adversary does not know whether some Pi ∈ TP has a slid
counterpart in TQ, and so does not obtain the key information directly. How-
ever, this key information can be used indirectly to check the validity of many
slid pair candidates simultaneously, as shown below.

We note that the latter observation also explains why the attack succeeds
deterministically. By the choice of the structure TP , its elements assume all
possible values in Col(0, 1). In particular, for the right secret key k, there exists
Pi ∈ TP such that (Pi)Col(0,1) = kCol(0,1). For that plaintext Pi, we have (Pi ⊕
k)Col(0,1) = 0. However, the structure T̃Q contains all 264 values whose first two
columns are equal to 0. Hence, Q̃j := Pi ⊕k ∈ T̃Q, and so, (Pi, Q̃j) is a slid pair.
Hence, the data set is guaranteed to contain a slid pair.

Exploiting the key information. Assume that (Pi, Qj) is a slid pair. Then, due
to the omission of MixColumns from the last round of AES, the corresponding
ciphertexts satisfy the relation

Dj = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci). (10)

Similarly, since (Ri, Q̃j ⊕ (0, 0, 0, 1)) is a slid pair (by property (1) above), the
corresponding ciphertexts Fi,D

′
j , satisfy

D′
j = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Fi). (11)

274 O. Dunkelman et al.

Algorithm 5. A Slide Attack on 1K-AES
Ask for the encryption of three structures TP , TQ, TR, each of 264 plaintexts, as
described in the text.
Initialize an empty hash table T .
for each plaintext/ciphertext pair (Qj , Dj) ∈ TQ do

Compute the value Q̃j = SB−1 ◦ SR−1 ◦ MC−1(Qj),
Compute the value Q′

j = MC ◦ SR ◦ SB(Q̃j ⊕ (0, 0, 0, 1)),
Denote the corresponding ciphertext by D′

j .
Store in T the pairs ((Dj ⊕ D′

j)SR(Col(0,1)), Qj).

for each plaintext/ciphertext pair (Pi, Ci) ∈ TP do
Set kCol(0,1) = (Pi)Col(0,1),
Compute shifted columns SR(Col(0, 1)) of the value SR ◦ SB ◦ ARK ◦ MC ◦

ARK(Ci) ⊕ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ri),
if the computed value is the first coordinate of an entry (((Dj ⊕

D′
j)SR(Col(0,1)), Qj) then

Test the key candidate k = Pi ⊕ Q̃j by trial encryption.

Now, assume that some specific Pi ∈ TP has a slid counterpart in TQ. By
property (2) above, this implies kCol(0,1) = (Pi)Col(0,1). This allows us to compute
Col(0, 1) of ARK ◦ MC ◦ ARK(Ci) (since we know kCol(0,1)), and consequently,
also shifted columns SR(Col(0, 1)) of the state SR◦SB◦ARK ◦MC ◦ARK(Ci).
In a similar way, we can compute the value of shifted columns SR(Col(0, 1)) of
the state SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Fi). Hence, we can compute the value
of shifted columns SR(Col(0, 1)) of

SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci) ⊕ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Fi)
= ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci)⊕

ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Fi).

By Eqs. (10), (11), this value is equal to (Dj ⊕ D′
j)SR(Col(0,1)). This gives us

a 64-bit filtering condition that can be checked for all j’s simultaneously, by
searching for a collision in a precomputed hash table. This results in the attack
algorithm given in Algorithm 5.

Since the match checked in the hash table is a 64-bit filtering condition, in
expectation a single value of j is suggested for each value of i. As each match
yields a suggestion for the entire key, any random match is almost surely dis-
carded using a single additional encryption operation. (The probability that
some wrong guess survives is as low as 2−64, and so, can be neglected.) On the
other hand, as explained above, the data set must contain a slid pair (Pi, Qj),
and this slid pair suggests the correct value of the secret key.

Therefore, the attack requires data complexity of 3 · 264 chosen plaintexts,
memory complexity of 3 ·264, time complexity of 4 ·264 encryptions, and succeeds
with probability 100%.

The attack applies, with exactly the same complexity, to any variant of 1-
KSAt with incomplete diffusion. Indeed, the only place where the exact structure

New Slide Attacks on Almost Self-similar Ciphers 275

of AES was used in the attack is the ability to compute 64 bits of the value ARK◦
MC ◦ ARK(Ci), given kCol(0,1). The adversary has this ability (or equivalent
ability with some other part of the state) as long as the operation A is applied
to blocks of size at most half of the state. This is indeed the case in any variant
of 1-KSAt with incomplete diffusion. Therefore, we obtain an attack with data
complexity of 3 · 2n/2 chosen plaintexts, memory complexity of 3 · 2n/2, time
complexity of 4 · 2n/2 encryptions, and success probability of 100%.

For 1-KSAt with complete diffusion, the above attack does not apply, and
we are not aware of any attack with complexity close to 2n/2 on this variant.

6 Substitution Slide Attack

We now present a new technique which we call substitution slide, and use it to
attack 1-KSAt (and in particular, 1K-AES) using only 2n/2 known plaintexts,
2n/2 memory and about 23n/4 time. Unlike the attack presented in Sect. 5, this
attack applies also for 1-KSAt with complete diffusion.

The idea behind the attack. As before, we present the attack on 1K-AES for sake
of simplicity. Consider a structure TP of 264 known plaintexts, and let T̃ be the
structure obtained by7 setting P̃i = SB−1 ◦ SR−1 ◦ MC−1(Pi) for any Pi ∈ TP .
As was explained in Sect. 5, if (Pi, Pj) is a slid pair, then we have:

{
Pi ⊕ P̃j = k,

Cj = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci).

The basic observation we use in this attack is that the (simpler) first equation
can be substituted into the (complex) second equation, in order to get rid of key
dependence.

Specifically, the second equation can be rewritten as

SB−1 ◦ SR−1 ◦ ARK(Cj) = ARK ◦ MC ◦ ARK(Ci). (12)

The right hand side of this equation can be written as

ARK ◦ MC ◦ ARK(Ci) = k ⊕ MC(Ci ⊕ k) = MC(k) ⊕ k ⊕ MC(Ci),

Now, we can get rid of the key dependence by substituting the value of k from
the first equation above. We have

MC(k) ⊕ k ⊕ M · Ci = MC(Pi ⊕ P̃j) ⊕ Pi ⊕ P̃j ⊕ MC(Ci).

Hence, Eq. (12) can be rewritten as

SB−1 ◦ SR−1 ◦ ARK(Cj) ⊕ MC(P̃j) ⊕ P̃j = MC(Pi) ⊕ Pi ⊕ MC(Ci). (13)

7 We alert the reader that in this section we use (Pi, Pj) to denote a slid pair (rather
than (Pi, Qj). This was done to emphasize that Pi and Pj , both, are part of a set of
known plaintexts.

276 O. Dunkelman et al.

Algorithm 6. A Known Plaintext Slide Attack on 1K-AES
Ask for 264 known plaintexts/ciphertext pairs (Pi, Ci).
Initialize an empty hash table T .
for each plaintext/ciphertext pair (Pi, Ci) do

Compute the value Pi = MC(Pi) ⊕ Pi ⊕ MC(Ci),
Store in T the triples ((Pi)Col(0), (Pi)SR(Col(0)), (Pi)SR(Col(1,2,3))), indexed by the

first two coordinates.
for each guess of kSR(Col(0)) do

for each plaintext/ciphertext pair (Pj , Cj) do
Compute Column 0 of the value Q = SB−1◦SR−1◦ARK(Cj)⊕MC(Pj)⊕Pj ,
Check for entries in the hash table whose first two coordinates match the pair

((Qj)Col(0), (P̃j ⊕ k)SR(Col(0))).

for Each match found in the table do
Test the key candidate k = Pi ⊕ P̃j .

Equation (13) is almost what we need. The right hand side depends only on
(Pi, Ci) and thus can be computed in advance for all values of i and stored in
a hash table. The left hand side depends on (Pj , Cj); however, it depends also
on the secret key, and thus, we cannot just evaluate it for all j and check for a
match in the table.

In order to evaluate � bytes of the left hand side, we have to guess � bytes
of the key k. However, this does not really provide filtering, as the amount of
filtering we obtain is equal to the amount of key material we have to guess.
Instead, we appeal again to the first equation, and note that it also provides �
bytes of filtering, once � bytes of k are guessed. Therefore, we obtain 2� bytes of
filtering, at the expense of guessing � key bytes.

The attack algorithm. Choosing � = 4, this allows mounting the attack described
in Algorithm 6.

Since the match checked in the hash table is a 64-bit filtering condition,
on expectation a single value of i is suggested for each value of j. As each
match yields a suggestion for the entire key, any random match is almost surely
discarded using a single additional encryption operation. (The probability that
at least one wrong candidate pair is not discarded is as low as 2−32, and thus,
can be neglected). On the other hand, the data set contains a slid pair with
probability 1 − (1 − 2−128)2

128 ≈ 0.63, and for the correct guess of kSR(Col(0)),
each slid pair suggests the correct value of the secret key.

Therefore, the attack requires data complexity of 264 known plaintexts, mem-
ory complexity of 264, and time complexity of 296 encryptions, and succeeds with
probability of about 63%.

The attack applies to any variant of 1-KSAt in which the transformations S, A
are publicly known, including variants with complete diffusion. Indeed, the exact
structure of AES (or more generally, the incomplete diffusion of the MixColumns
transformation) are not used in the attack at all. Therefore, we obtain an attack

New Slide Attacks on Almost Self-similar Ciphers 277

with data complexity of 2n/2 known plaintexts, memory complexity of 2n/2, time
complexity of 23n/4 encryptions, and succeeds probability of about 63%.

We note that the time complexity can be somewhat reduced by choosing
another value of � and using two plaintext structures of different sizes. For exam-
ple, in the case of AES, the time complexity can be reduced to 288, by guessing
5 key bytes (instead of 4), taking two different structures of plaintexts – TP of
size 284 and TQ of size 244, and searching for slid pairs of the form (Pi, Qj) where
Pi ∈ TP and Qj ∈ TQ. However, this leads to a significant increase in the data
and memory complexities (in the case of AES we described – to 284), and thus,
this tradeoff does not seem profitable.

7 Summary and Conclusions

In this paper we studied slide attacks on almost self similar constructions, in
which the symmetry is broken by the last round. As a study case, we concentrated
on SP networks, in which such a symmetry break is inherent due to the final key
whitening step, and especially, on AES-type constructions. We devised four new
techniques: slid sets, hypercube of slid pairs, suggestive plaintext structures and
substitution slides. We used the new techniques to attack various general SPN
schemes—of different key periods, with different structures of the last round,
with known or secret S-boxes, and with full or an incomplete diffusion.

Open problems left for further work include:

– Use the techniques proposed in the paper to attack other general SPN
constructions.

– Find other types of slide attacks on almost self similar constructions.
– Find (lightweight) block ciphers, with periodic key schedule, susceptible to

these attacks.

Acknowledgements. The research was partially supported by European Research
Council under the ERC starting grant agreement n. 757731 (LightCrypt) and by the
BIU Center for Research in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s Office. Orr Dunkelman
was supported in part by the Israel Ministry of Science and Technology, the Center
for Cyber, Law, and Policy in conjunction with the Israel National Cyber Bureau
in the Prime Minister’s Office and by the Israeli Science Foundation through grants
No. 880/18 and 3380/19.

References

1. Aerts, W., et al.: A practical attack on KeeLoq. J. Cryptol. 25(1), 136–157 (2012)
2. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the

indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 29

https://doi.org/10.1007/978-3-642-40041-4_29

278 O. Dunkelman et al.

3. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

4. Bar-On, A., Biham, E., Dunkelman, O., Keller, N.: Efficient slide attacks. J. Cryp-
tol. 31(3), 641–670 (2017). https://doi.org/10.1007/s00145-017-9266-8

5. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019)

6. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology
7(4), 229–246 (1994)

7. Biham, E., Dunkelman, O., Keller, N.: A simple related-key attack on the full
SHACAL-1. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 20–30. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 2

8. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

9. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

10. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 41

11. Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal
(2010). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
bps/bps-spec.pdf

12. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

14. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Reflections on slide with a twist
attacks. Des. Codes Crypt. 77(2–3), 633–651 (2015)

15. Dunkelman, O., Keller, N.: The effects of the omission of last round’s MixColumns
on AES. Inf. Process. Lett. 110(8–9), 304–308 (2010)

16. Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the Even-Mansour
encryption scheme. J. Cryptol. 28(1), 1–28 (2015)

17. Durak, F.B., Vaudenay, S.: Breaking the FF3 format-preserving encryption stan-
dard over small domains. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 679–707. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 23

18. Furuya, S.: Slide attacks with a known-plaintext cryptanalysis. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45861-1 17

19. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

20. Gorski, M., Lucks, S., Peyrin, T.: Slide attacks on a class of hash functions. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 10

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/s00145-017-9266-8
https://doi.org/10.1007/11967668_2
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/3-540-45861-1_17
https://doi.org/10.1007/3-540-45861-1_17
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-540-89255-7_10

New Slide Attacks on Almost Self-similar Ciphers 279

21. Grassi, L.: MixColumns properties and attacks on (round-reduced) AES with a
single secret S-Box. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp.
243–263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 13

22. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2),
133–160 (2018)

23. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

24. Grossman, E.K., Tucherman, B.: Analysis of a weakened Feistel-like cipher. In: Pro-
ceedings of International Conference on Communications 1978, pp. 46.3.1–46.3.5
(1978)

25. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

26. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15031-9 2

27. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 12

28. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

29. Robshaw, M.J.B.: Searching for compact algorithms: cgen. In: Nguyen, P.Q. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 37–49. Springer, Heidelberg (2006).
https://doi.org/10.1007/11958239 3

30. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New Insights on AES-like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
605–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 22

31. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with
a secret S-box. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 175–189.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 9

https://doi.org/10.1007/978-3-319-76953-0_13
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/11958239_3
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-48116-5_9

The Retracing Boomerang Attack

Orr Dunkelman1(B) , Nathan Keller2(B), Eyal Ronen3,4, and Adi Shamir5

1 Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il

2 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
nkeller@math.biu.ac.il

3 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
er@eyalro.net

4 COSIC, KU Leuven, Heverlee, Belgium
5 Faculty of Mathematics and Computer Science, Weizmann Institute of Science,

Rehovot, Israel
adi.shamir@weizmann.ac.il

Abstract. Boomerang attacks are extensions of differential attacks,
that make it possible to combine two unrelated differential properties
of the first and second part of a cryptosystem with probabilities p and
q into a new differential-like property of the whole cryptosystem with
probability p2q2 (since each one of the properties has to be satisfied
twice). In this paper we describe a new version of boomerang attacks
which uses the counterintuitive idea of throwing out most of the data in
order to force equalities between certain values on the ciphertext side.
In certain cases, this creates a correlation between the four probabilistic
events, which increases the probability of the combined property to p2q
and increases the signal to noise ratio of the resultant distinguisher. We
call this variant a retracing boomerang attack since we make sure that the
boomerang we throw follows the same path on its forward and backward
directions. To demonstrate the power of the new technique, we apply it
to the case of 5-round AES. This version of AES was repeatedly attacked
by a large variety of techniques, but for twenty years its complexity had
remained stuck at 232. At Crypto’18 it was finally reduced to 224 (for
full key recovery), and with our new technique we can further reduce the
complexity of full key recovery to the surprisingly low value of 216.5 (i.e.,
only 90, 000 encryption/decryption operations are required for a full key
recovery on half the rounds of AES).

In addition to improving previous attacks, our new technique unveils
a hidden relationship between boomerang attacks and two other crypt-
analytic techniques, the yoyo game and the recently introduced mixture
differentials.

1 Introduction

Differential attacks, which were introduced by Biham and Shamir [9] in 1990, use
the evolution of differences between pairs of encryptions in order to construct
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-45721-1 11) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 280–309, 2020.
https://doi.org/10.1007/978-3-030-45721-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_11&domain=pdf
http://orcid.org/0000-0001-5799-2635
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/978-3-030-45721-1_11

The Retracing Boomerang Attack 281

high probability distinguishers. They can concatenate two short differential prop-
erties with probabilities p and q into a longer property with probability pq, but
only when the output difference of the first property is equal to the input differ-
ence of the second property. To overcome this restriction, Wagner [34] introduced
in 1999 the idea of the boomerang attack, which “throws” two plaintexts through
the encryption process, and then watches the two resultant ciphertexts (with
some modifications) return back through the decryption process. This made it
possible to concatenate two arbitrary differential properties whose probabilities
are p and q into a longer property whose probability is p2q2, since it requires that
four probabilistic events will simultaneously happen. This seems to be inferior to
plain vanilla differential attacks, but in many cases we can find two short unre-
lated differential properties with much higher probabilities p and q, which more
than compensates for their quadratic occurrence in p2q2. A typical example of
the successful application of a boomerang attack is the best known related-key
attack on the full versions of AES-192 and AES-256, presented by Biryukov and
Khovratovich [11]. Consequently, boomerang attacks have become an essential
part of the toolkit of any cryptanalyst, and many variants of this technique had
been developed over the last 20 years.

In this paper we develop a new variant of the boomerang attack. We call
it a retracing boomerang attack, since the boomerang we throw through the
encryption not only returns to the plaintext side, but also follows closely related
paths on its forward and backward journey. In certain cases, this makes it pos-
sible to increase the probability of the combined differential property to p2q,
since an event that happened once with probability q will reoccur a second
time with probability 1. This idea had already been used by Biryukov and
Khovratovich [11] in 2009 to get an extra free round in the middle of the encryp-
tion, but we use it in a different way which yields better attacks on several AES
variants.

The main AES variant we consider in this paper is the 5-round version of
AES. This variant had been repeatedly attacked in many papers by a large
variety of techniques over the last 20 years, but all the published key recovery
attacks had a complexity of 232 or higher. It was only in 2018 that this record had
been broken, when [2] showed how to recover the full secret key1 for this variant
with a complexity of 224. In this paper we use our new retracing boomerang
attack to break the record again, reducing the complexity to 216.5, albeit in the
stronger attack model of adaptive chosen plaintext and ciphertext. This attack
was fully verified experimentally.

Another AES variant we successfully attack is the 5-round version of AES
in which the S-box and the linear mixing operations are secret key-dependent
components of the same general structure as in AES. The best currently known
key-recovery attack on this variant, presented by Tiessen et al. [32] in 2015, had
data and time complexity of 240. In this paper we show how to use our new
techniques in order to reduce this complexity to just 226. A comparison of our

1 Besides the full key recovery attack, the authors of [2] present an attack with com-
plexity of 221.5 that recovers 24 bits of the secret key. Since our attack recovers the
full secret key, we compare it with the full key recovery attack of [2].

282 O. Dunkelman et al.

new attacks on 5-round AES and on 5-round AES with a secret S-box with
previous attacks2 is presented in Table 1.

Apart of allowing us to obtain better results in cryptanalysis of specific AES
variants, our new technique unveils a hidden relation between the boomerang
attack and the yoyo tricks with AES, introduced recently by Rønjom et al. [30].
While the ‘yoyo tricks’ differ significantly from classical boomerang attacks, we
show that they fit naturally into the retracing boomerang framework. In a sim-
ilar way, we show that mixture differentials, introduced recently by Grassi [22],
is closely related to a retracing type of the rectangle attack [6,26] (which is the
chosen plaintext version of the boomerang attack). In the case of mixture differ-
entials, the relation between the attacks is even more surprising, and may unveil
additional interesting features of the mixture differential technique.

This paper is organized as follows. In Sect. 2 we present the previous related
work and introduce our notations. We introduce the retracing boomerang attack
in Sect. 3. We apply our new attack to 5-round AES and to 5-round AES with
a secret S-box in Sects. 4 and 5, respectively. In Sect. 6 we present the retracing
rectangle attack and show a relation between the mixture differential technique
and the rectangle technique. We summarize the paper in Sect. 7.

2 Background and Previous Work

The retracing boomerang attack is related to a number of other variants of
the boomerang attack, as well as to several other previously known techniques.
In this section we briefly present the techniques that are most relevant to our
results, while the other techniques are presented in the full version of the paper.

2.1 The Boomerang Attack

As the boomerang attack builds upon differential cryptanalysis, a short intro-
duction to the latter is due.

Differential cryptanalysis. Introduced by Biham and Shamir [9] in 1990,
differential cryptanalysis is a statistical attack on block ciphers that studies
the development of differences between two encrypted plaintexts through the
encryption process. Assume that we are given an iterative block cipher E :
{0, 1}n × {0, 1}k → {0, 1}n that consists of m (similar) rounds, and denote
the intermediate value at the beginning of the i’th round in the encryption
processes of the plaintexts P and P ′ by Xi and X ′

i, respectively. An r-round
differential characteristic with probability p of a cipher is a property of the form
Pr[Xi+r ⊕ X ′

i+r = ΩO|Xi ⊕ X ′
i = ΩI] = p, denoted in short ΩI

p−→ ΩO.

2 We note that [4,15,21,24,25,31] attacked an intermediate variant, in which only the
S-box is key-dependent, while MixColumns is the same one as in AES. The best
currently known attack on this variant, obtained by Bardeh and Rønjom [4], has
complexity of 232. Obviously, our attack applies to this variant as well.

The Retracing Boomerang Attack 283

Table 1. Attacks on 5-round AES (full key recovery)

Attack Data
(Chosen plaintexts)

Memory
(128-bit blocks)

Time
(encryptions)

5-Round AES

Square [29] 211 small 245

Partial Sum [33] 28 small 240

Improved Square [20] 233 small 235

Imp. Diff. [7] 233.5 238 235

Mixture Diff. [22] 232 232 234

Yoyo [30] 211.3 ACC small 231

Mixture Diff. [2] 224 † 221.5 224 †

Our Attack (Sect. 4) 29 ACC 29 223

Our Attack (Sect. 4) 215 ACC 29 216.5

5-Round AES with Secret S-boxes

Integral [31] 2128 small 2128

Integral [25] 296 28 296

Imp. Diff. [24] 2102 28 2102

Imp. Diff. [21] 276.4 28 276.4

Mult.-of-n. [21] 253.3 216 253.3

Square‡ [32] 240 236 240

Yoyo [4] 232 ACC small 231

Our Attack‡ (Sect. 5) 217.5 ACC 217 229

Our Attack‡ (Sect. 5) 225.8 ACC 217 225.8

†—the data and time complexity for partial key recovery is 221.5

‡—the attack applies also when the linear transformation is key-dependent
ACC—Adaptive Chosen Plaintexts and Ciphertexts

Differential cryptanalysis shows that if there exists a differential characteristic
for most of the rounds of the cipher that holds with a non-negligible probability,
then the cipher can be broken faster than exhaustive search by an attack that
requires O(1/p) chosen plaintexts. Differential cryptanalysis was used to mount
the first attack faster than exhaustive search on the full DES [28], as well as on
many other block ciphers.

The boomerang attack. Introduced by Wagner [34], the boomerang attack
was one of the first techniques to show that non-existence of ‘long’ high-
probability differentials is not sufficient to guarantee security with respect to
differential-type attacks. Suppose that the cipher E can be decomposed as
E = E1 ◦ E0, such that for E0, there exists a differential characteristic α

p−→ β,
and for E1, there exists a differential characteristic γ

q−→ δ, depicted in Fig. 1,
where pq � 2−n/2. Then one can distinguish E from a random permutation,
using Algorithm 1 presented below.

284 O. Dunkelman et al.

Algorithm 1. The Boomerang Attack Algorithm
1: Initialize a counter ctr ← 0.
2: Generate (pq)−2 unique plaintext pairs (P1, P2) with input difference α.
3: for all pairs (P1, P2) do
4: Ask for the encryption of (P1, P2) to (C1, C2).
5: Compute C3 = C1 ⊕ δ and C4 = C2 ⊕ δ. � δ-shift
6: Ask for the decryption of (C3, C4) to (P3, P4).
7: if P3 ⊕ P4 = α then
8: Increment ctr
9: if ctr ≥ 1 then

10: return: This is the cipher E.
11: else
12: return: This is a random permutation.

P1

P2

X1

X2

α
β

E0

C1

C2

E1

C4

X4
γ

X3
γ

C3

β
P3

P4

α

Fig. 1. The boomerang attack

The theoretical analysis of the algorithm is as follows. Denote the interme-
diate values after the partial encryption by E0 of the plaintext Pj by Xj , for
1 ≤ j ≤ 4. Let (P1, P2) by a plaintext pair such that P1 ⊕ P2 = α. By the
differential characteristic of E0, we have

X1 ⊕ X2 = β, (1)

with probability p. On the other side, as the ciphertexts satisfy C1 ⊕ C3 =
C2 ⊕ C4 = δ, by the differential characteristic of E1 we have

(X1 ⊕ X3 = γ) ∧ (X2 ⊕ X4 = γ), (2)

with probability q2. (We recall that the differential characteristic γ
q−→ δ for E1

is identical to the differential characteristic δ
q−→ γ for E−1

1 , in the sense that
both count the same set of input/output pairs for E1.) If both Eq. (1) and (2)
hold, then we have

X3 ⊕ X4 = (X3 ⊕ X1) ⊕ (X1 ⊕ X2) ⊕ (X2 ⊕ X4) = γ ⊕ β ⊕ γ = β. (3)

The Retracing Boomerang Attack 285

Therefore, by the differential characteristic of E0, we have P3 ⊕ P4 = α, with
probability p. Hence, assuming (somewhat non-carefully, as discussed in [27])
that all these events are independent, we have

Pr[P3 ⊕ P4 = α|P1 ⊕ P2 = α] = p2q2. (4)

As we take 1/(pq)2 pairs (P1, P2), then with a high probability (= 1 − e−1 ≈
63%),3 for at least one of them we obtain P3 ⊕P4 = α, and hence, the algorithm
outputs ‘the cipher E’. On the other hand, for a random permutation we have
Pr[P3 ⊕ P4 = α] = 2−n, and hence, the expected number of pairs (P1, P2) for
which P3 ⊕P4 = α holds is 2−n · (pq)−2 	 1 (as we assumed pq � 2−n/2). Thus,
with an overwhelming probability, the algorithm outputs ‘random permutation’.

Therefore, the above algorithm indeed allows distinguishing E from a random
permutation, using in total 4(pq)−2 adaptively chosen plaintexts and ciphertexts
(in the sequel: ACPC).

2.2 The S-Box Switch

In [11], Biryukov and Khovratovich showed that in certain cases, the boomerang
attack can be improved significantly by ‘bypassing for free’ some operations in
the middle of the cipher. One of those cases, called S-box switch, is particularly
relevant to our results. Assume that E = E1 ◦E0, where the last operation in E0

is a layer S of S-boxes applied in parallel (which is the usual scenario in SP net-
works, like the AES). That is, S divides the state ρ into ρ = (ρ1, ρ2, . . . , ρt) and
transforms it to S(ρ) = (f1(ρ1)||f2(ρ2)|| . . . ||ft(ρt)), for t independent (keyed)
functions fj . Suppose that the differential characteristics in E0, E1 are such that
in both β and γ, the difference in the part of the intermediate state X that
corresponds to the output of some fj is Δ. In other words, denoting this part of
the intermediate state X by Xj , if both characteristics hold then we have

(X1)j ⊕ (X2)j = (X1)j ⊕ (X3)j = (X2)j ⊕ (X4)j = Δ.

In such a case, we have (X1)j = (X4)j and (X2)j = (X3)j , and hence, if the
differential characteristic in the function (fj)−1 holds for the pair (X1,X2) then
it must hold for the pair (X3,X4). Thus, the overall probability of the boomerang
distinguisher is increased by a factor of (q′)−1, where q′ is the probability of the
differential characteristic in fj .

This ‘switch’, along with other ‘switches in the middle’, was a key ingredient
in the attack of [11] on the full AES-192 and AES-256. Later on, some of these
switches were generalized in the Sandwich attack of [19] for the case of a prob-
abilistic transition in the middle layer and used to attack KASUMI, the cipher
of 3G cellular networks. Recently, a more complete and rigorous analysis of the
transition between E0 and E1 was suggested, using the Boomerang Connectivity
Table [14] that covers these and related ideas. These developments are described
in more detail in the full version of the paper.
3 The success probability of the attack can be increased by slightly enlarging the data

complexity. If we start with c/(pq)2 pairs, then the success probability is 1 − e−c.

286 O. Dunkelman et al.

2.3 The Yoyo Game and Mixture Differentials

In addition to the classical boomerang attack, two more techniques – the yoyo
game and mixture differentials – are closely related to our attacks. We describe
them very briefly below, but in more detail in the sequel. Our new type of
boomerang attacks allows us to unveil a close relation of these two techniques
to the boomerang and rectangle techniques, respectively.

The yoyo game. The yoyo technique was introduced by Biham et al. [5] in 1998.
Like the boomerang attack, the yoyo game is based on encrypting a pair of plain-
texts (P1, P2), modifying the corresponding ciphertexts (C1, C2) into (C3, C4),
and decrypting them. However, while the boomerang distinguisher just checks
whether the resulting plaintexts (P3, P4) satisfy some property, in the yoyo game
the process continues: (P3, P4) are modified into (P5, P6) which are encrypted
into (C5, C6), those in turn are modified into (C7, C8) which are decrypted into
(P7, P8), etc. The process satisfies the property that all pairs of intermediate
values (X2�+1,X2�+2) at some specific point of the encryption process satisfy
some property (e.g., zero difference in some part of the state). Since for a ran-
dom permutation, the probability that such a property is satisfied by a sequence
of pairs (X2�+1,X2�+2) is extremely low, this property can theoretically be used
for distinguishing the cipher from a random permutation. Practically, exploiting
this property is not so easy, as the adversary does not see the intermediate values
(X2�+1,X2�+2). Nevertheless, Biham et al. showed that in some specific cases,
such a distinguishing is possible and even allows for key recovery [5].

Biham et al. [5] applied the yoyo technique to a 16-round variant of the block
cipher Skipjack. Biryukov et al. [12] applied it to attack generic 5-round Feistel
constructions, and Rønjom et al. [30] used it to attack reduced-round AES with
at most 5 rounds. As the attack of Rønjom et al. [30] is a central ingredient in
our attacks on 5-round AES, it is presented in detail in Sect. 4.

Mixture differentials. The mixture differential technique was presented by
Grassi [22]. The technique works in the following setting. Assume that the
cipher E can be decomposed as E = E1 ◦ E0, where E0 can be consid-
ered as a concatenation of several permutations, i.e., P = (ρ1, ρ2, . . . , ρt) and
E0(P) = f1(ρ1)||f2(ρ2)|| . . . ||ft(ρt)), for t independent functions fj . A well
known example of such E0 is 1.5 rounds of AES, that can be treated as four
parallel super S-boxes (see [16]).

Definition 1. Given a plaintext pair (P 1, P 2), where P 1 = (ρ11, . . . , ρ
1
t) and

P 2 = (ρ21, . . . , ρ
2
t) we say that (P 3, P 4), where P 3 = (ρ31, . . . , ρ

3
t) and P 4 =

(ρ41, . . . , ρ
4
t) is a mixture counterpart of (P 1, P 2) if for each 1 ≤ j ≤ t, the quartet

(ρ1j , ρ
2
j , ρ

3
j , ρ

4
j) consists of two pairs of equal values or of four equal values. The

quartet (P 1, P 2, P 3, P 4) is called a mixture.

The main observation behind the mixture differential technique is that if (P 1, P 2,
P 3, P 4) is a mixture then the XOR of the corresponding intermediate values
(X1,X2,X3,X4) is zero. Indeed, for each j, as (ρ1j , ρ

2
j , ρ

3
j , ρ

4
j) consists of two pairs

The Retracing Boomerang Attack 287

of equal values, then the same holds for (fj(ρ1j), fj(ρ2j), fj(ρ3j), fj(ρ4j)) as well. In
particular, fj(ρ1j)⊕fj(ρ2j)⊕fj(ρ3j)⊕fj(ρ4j)) = 0. As a result, if we have X1⊕X3 =
γ, then X2⊕X4 = γ holds as well. Now, if there exists a differential characteristic
γ

q−→ δ for E1, then with probability q2, the corresponding ciphertexts satisfy
C1 ⊕ C3 = C2 ⊕ C4 = δ.

Grassi [22,23] applied the technique to mount several attacks on AES with
up to 6 rounds. The 5-round attack of Grassi was recently improved in [2] into an
attack with overall complexity of 224 for full key-recovery (or 221.5 for recovering
24 bits of the secret key), that is significantly faster than all other known attacks
on 5-round AES.

3 The Retracing Boomerang Attack

Our new retracing boomerang framework contains two attack types – a shifting
type and a mixing type. In this section we present these two types and discuss
their advantages over the standard boomerang attack and their relation to previ-
ous works. In the following sections and in the appendix we present applications
of the new techniques, along with a few variants and extensions.

3.1 The Shifting Retracing Attack

Assumptions. Suppose that the block cipher E can be decomposed as E =
E12 ◦ E11 ◦ E0, where E12 consists of dividing the state into two parts (a left
part of b bits and a right part of n − b bits) and applying to them the functions
EL

12, E
R
12, respectively. Furthermore, suppose that for E0, there exists a differ-

ential characteristic α
p−→ β, for E11, there exists a differential characteristic

γ
q1−→ (μL, μR), for EL

12, there exists a differential characteristic μL
qL
2−−→ δL, and

for ER
12, there exists a differential characteristic μR

qR
2−−→ δR (see Fig. 2).4

In other words, we make the same assumptions as in the boomerang attack,
with the additional assumption that E1 can be further decomposed into two
sub-ciphers, and that the second sub-cipher has a specific structure. While this
additional assumption may look very restrictive, it applies for a wide class of
block ciphers. For example, if E is a SASAS construction [13], then E12 can be
taken to be the last S layer; a specific such example is AES [29], where E12 can
be taken to be the last 1.5 rounds.

The attack procedure and its analysis. Assuming that pq1q
L
2 qR

2 � 2−n/2,
the standard boomerang attack can be used to distinguish E from a random
permutation, with data complexity of 4(pq1q

L
2 qR

2)−2.
The basic idea of the retracing boomerang attack is to add an artificial (b−1)-

bit filtering in the middle of the attack procedure. Namely, after encrypting

4 A variant of the attack that is applicable when the top part of the cipher can be
further decomposed into two sub-ciphers, is presented in the full version of the paper.

288 O. Dunkelman et al.

P1

P2

X1

X2

Y1

Y2
α

β

E0

C1

C2

E11

E12

C4

Y4μ

X4
γ

X3
γ

C3

Y3μ

β

P3

P4

α

X2 X4
γ

Y L
2

Y R
2

Y L
4

Y R
4

μL

μR

CL
2

CR
2

CL
4

CR
4

L

R

E11

E12

E11

E12

Fig. 2. The retracing boomerang framework

(P1, P2) into (C1, C2), we first check whether

CL
1 ⊕ CL

2 = 0 or δL. (5)

Only if there is equality, we continue with the boomerang process. Otherwise,
we simply discard the pair (P1, P2). See Fig. 3 for the process.

CL
1 CR

1

Y L
1 Y R

1

C1

EL
12 ER

12

CL
2 CR

2

Y L
2 Y R

2

C2

EL
12 ER

12

CL
3 CR

3

Y L
3 Y R

3

C3 C1 ⊕

EL
12 ER

12

CL
4 CR

4

Y L
4 Y R

4

C4 C2 ⊕

EL
12 ER

12

⊕

0?

CL
1 CR

1

Y L
1 Y R

1

C1

EL
12 ER

12

CL
2 CR

2

Y L
2 Y R

2

C2

EL
12 ER

12

CL
3 CR

3

Y L
3 Y R

3

C3 C1 ⊕

EL
12 ER

12

CL
4 CR

4

Y L
4 Y R

4

C4 C2 ⊕

EL
12 ER

12

⊕

L?

Fig. 3. A shifted quartet (dashed line means equality)

This is a surprising move, as the discarded pair may actually be a right pair
with respect to the differential characteristic α → β (i.e., a pair that satisfies
the characteristic). Hence, a natural question arises: What do we gain from this
filtering?

The Retracing Boomerang Attack 289

Note that for any value of δL, if Eq. (5) holds then the two unordered pairs
(CL

1 , CL
3) and (CL

2 , CL
4) are identical. Hence, if one of these pairs satisfies the

differential characteristic δL
qL
2−−→ μL, then the other one must satisfy it as well.

As a result, the probability of the boomerang distinguisher among the examined
pairs is increased by a factor of (qL

2)−1 from (pq1q
L
2 qR

2)2 to (pq1q
R
2)2qL

2 .

Advantages of the new technique. At first glance, our new variant of the
boomerang attack seems completely odd and useless. Note that as the block size
of EL

12 is b bits, then any possible differential characteristic of EL
12 has probability

of at least 2−b+1, and so, the overall probability of the boomerang distinguisher
is increased by a factor of at most 2b−1. On the other hand, our filtering leaves
only 2−b+1 of the pairs, so we either gain nothing (if qL

2 = 2−b+1) or even lose
(otherwise)!

It turns out that there are several advantages to this approach:

1. Improving the signal to noise ratio. Recall that the ordinary boomerang attack
applies if pq1q

L
2 qR

2 � 2−n/2, as otherwise, the probability that P3⊕P4 = α holds
for E is not larger than the respective probability for a random permutation. In
the retracing boomerang attack, the probability that P3 ⊕ P4 = α holds among
the examined pairs is increased by a factor of (qL

2)−1, while the probability for
a random permutation remains unchanged. As a result, the attack can succeed
in cases where the ordinary boomerang attack fails due to insufficient filtering.

Furthermore, the adversary can use the increased gap between the probabil-
ities of the checked event for E and for a random permutation to replace the
differential characteristic β

p−→ α used for the pair (X3,X4) in the backward

direction with a truncated differential characteristic. β
p′
−→ α′ of a higher proba-

bility p′ in which α′ specifies the difference in only some part of the bits, while
still having a larger probability of the event P3 ⊕ P4 = α′ for E than for a ran-
dom permutation. An example of this advantage is demonstrated in the attack
on 5-round AES presented in the full version of the paper.

2. Reducing the data complexity. The new attack saves data complexity on the
decryption side. Indeed, as decryption is performed only to the pairs that satisfy
the filtering condition, the number of decryptions is reduced by a factor of 2b−1.
While usually, the effect of this reduction is not significant as then the encryp-
tions dominate the overall complexity, there are cases in which more queries are
made on the decryption side, and in such cases, the data complexity may be
reduced significantly. This advantage (like the previous one) is demonstrated in
the attack on 5-round AES in the full version of the paper.

3. Reducing the time complexity. The smaller number of pairs on the decryp-
tion side may affect also the time complexity of the attack. This effect is not
significant when the attack complexity is dominated by encryption/decryption
of the data. However, in many cases (e.g., where a round is added before the
distinguisher and the adversary has to guess some key material in the added
round and check whether the condition P3 ⊕ P4 = α holds), the complexity of
the attack is dominated by analysis of the pairs (P3, P4). In such cases, the time

290 O. Dunkelman et al.

complexity may be reduced by a factor of (qL
2)−1, as the number of pairs (P3, P4)

is reduced by this ratio.

Relation to previous works. Our new technique uses several ideas that
already appeared in previous works in different contexts. Those include:

– Discarding part of the data before the analysis. The counter-intuitive idea of
neglecting part of the data appears in various previous works, e.g., in the
context of time-memory tradeoff attacks on stream ciphers [18], and in the
context of conditional linear attacks on DES [8].

– Increasing the probability of the boomerang attack by exploiting dependency
between differentials. As we mentioned above, several previous works on the
boomerang attack used dependency between differentials, and in particular,
situations in which the four inputs to some function in the encryption process
are composed of two pairs of equal values, to increase the probability of the
boomerang distinguisher (see, e.g., [10,11,14,19]). The closest to our attack
is the S-box switch of Biryukov and Khovratovich [11] described in Sect. 2. In
all these attacks, the gain is obtained in the transition between the two sub-
ciphers E0, E1. In contrast, the retracing boomerang exploits dependency
between the two differentials in the same sub-cipher (by forcing dependency
via the artificial filtering).

– Increasing the probability of the boomerang attack by exploiting representation
of a sub-cipher as two (or more) functions applied in parallel. Such a proba-
bility increase was obtained by Biryukov and Khovratovich [11] in the ladder
switch technique, which exploits a subdivision into multiple functions (e.g.,
a layer of S-boxes) along with dependency between differentials, to increase
the probability of the transition between the two sub-ciphers.

– Using quartets of the form (x, x, y, y) to force dependency. This idea was
recently used by Grassi in [22, Theorem 4], in the context of the mixture
differential attack described in Sect. 2.

3.2 The Mixing Retracing Attack

The attack setting. Recall that the shifting retracing boomerang attack
increases the probability of the boomerang distinguisher by forcing equality
between the unordered pairs (CL

1 , CL
2) and (CL

3 , CL
4) that enter (EL

12)
−1. Such

an equality can be forced in an alternative way, without inserting an artificial
filtering.

Instead of working with the same shift δ for all ciphertexts, one may shift
each ciphertext pair (C1, C2) by (CL

1 ⊕ CL
2 , 0), thus obtaining the ciphertexts

C3 = (CL
3 , CR

3) =
(
CL

1 ⊕ (CL
1 ⊕ CL

2), CR
1 ⊕ 0

)
= (CL

2 , CR
1),

and (similarly) C4 = (CL
1 , CR

2), see Fig. 4. In such a case, the unordered pairs
(CL

1 , CL
3) and (CL

2 , CL
4) are equal, and hence, we gain a factor of (qL

2)−1, like in
the shifting retracing attack. Furthermore, in the right part we have CR

1 = CR
3

The Retracing Boomerang Attack 291

and CR
2 = CR

4 , and thus, we gain also a factor of (qR
2)−2 (as both charac-

teristics in ER
12 hold trivially with probability 1). This results in a total gain

of (qL
2)−1(qR

2)−2.

CL
1 CR

1

Y L
1 Y R

1

C1

EL
12 ER

12

CL
2 CR

2

Y L
2 Y R

2

C2

EL
12 ER

12

CL
3 CR

3

Y L
3 Y R

3

C3

EL
12 ER

12

CL
4 CR

4

Y L
4 Y R

4

C4

EL
12 ER

12

Y L
2 =

) = Y R
1

)

Y L
1 =

) = Y R
2

)

Fig. 4. A mixture quartet of ciphertexts (a dashed line means equality)

Relation to ‘yoyo tricks with AES’. Interestingly, in the special case of the
AES, the mixing described here is exactly the core step of the yoyo attack of
Rønjom et al. [30] (presented in detail in Sect. 4). Hence, this type of retrac-
ing boomerang is not entirely novel, but rather generalizes and presents a new
viewpoint on the yoyo attack of Rønjom et al.

Comparison between the two types of retracing boomerang. At first
glance, it seems that the mixing retracing attack is clearly better than the shifting
retracing attack presented above. Indeed, it obtains an even larger gain in the
probability of the distinguisher, while not discarding ciphertext pairs! However,
there are several advantages of the shifting variant that make it more beneficiary
in various scenarios:

– Using structures. A central technique for extending the basic boomerang
attack is adding a round at the top of the distinguisher, using structures.
This technique can be combined with the shifting retracing technique, as
follows. First, the adversary performs the ordinary boomerang attack with
structures (i.e., encrypts structures of plaintexts, shifts all ciphertexts by δ
and decrypts the resulting ciphertexts), and then she checks the artificial
filtering together with the condition on P3, P4, since both can be checked
simultaneously using a hash table. As a result, the data complexity remains
the same as in the ordinary boomerang attack (with structures!), while the
retracing boomerang leads to an improvement in the signal to noise ratio,

292 O. Dunkelman et al.

which can be translated to a reduction in the data complexity, as described
above.
For mixing retracing, such a combination is impossible, since each ciphertext
pair (C1, C2) has to be modified by its own shift (CL

1 ⊕ CL
2 , 0), and so, one

cannot shift entire structures as a single block. Therefore, the reduction of
data complexity by using structures cannot be obtained.
A similar advantage of the shifting variant is the ability to combine it with
extension of the boomerang attack by adding a round at the bottom, as we
demonstrate in our attack on 6-round AES in the full version of the paper.

– Combination with E11. In the mixing variant, since the output difference for
(EL

12)
−1 (namely, (C1)L ⊕ (C2)L), is arbitrary and changes between differ-

ent pairs, in most cases there is no good combination between differential
characteristics of (EL

12)
−1 that can be used and differential characteristics of

(E11)−1. Indeed, in the yoyo attack of [30] on 5-round AES, this part of the
attack succeeds simply because E11 is empty. It seems that while the mixing
retracing technique can be applied also in cases where E11 is non-linear (and,
in particular, non-empty), it will usually (or even almost always) be inferior
to the shifting retracing boomerang in such cases.

– Construction of ‘friend pairs’. An important ingredient in many boomerang
attacks is ‘friend pairs’, which are pairs that are attached to given pairs in
such a way that if some pair satisfies a desired property then all its ‘friend
pairs’ satisfy the same property as well (such pairs are used in most attacks
in this paper). While both types of the retracing boomerang attack allow
constructing several ‘friend pairs’ for each pair, the number of pairs in the
shifting variant is significantly larger, which makes it advantageous in some
cases.

The names of the attacks. The shifting type of the retracing boomerang is
named this way since it preserves the δ-shift of the original boomerang attack,
and uses the filtering to enhance the probability of the original boomerang pro-
cess. The mixing type is named this way since it replaces the δ-shift by a mixing
procedure, like the one used in mixture differentials [22].

4 Retracing Boomerang Attack on 5-Round AES

Our first application of the retracing boomerang framework is an improved
attack on 5-round AES, which allows recovering the full secret key with data
complexity of 215, time complexity of 216.5, and memory complexity of 29. The
attack was fully implemented experimentally. Since our attack is based on cen-
tral components of the yoyo attack of Rønjom et al. [30] on 5-round AES (which
can be seen as a mixing retracing boomerang attack, as was shown in Sect. 3.2),
we begin this section with describing the structure of the AES and presenting
the attack of [30]. Then we present our attack, its analysis, and its experimental
verification.

The Retracing Boomerang Attack 293

00

01

02

03

04

05

06

07

08

09

0a

0b

0c

0d

0e

0f

00

05

0a

0f

04

09

0e

03

08

0d

02

07

0c

01

06

0b

52

09

6a

d5

30

36

a5

38

bf

40

a3

9e

81

f3

d7

fb

0a

1b

00

11

1e

07

14

0d

02

13

08

19

16

0f

1c

05

SB SR MC ARK⊕

ki

Fig. 5. An AES round

4.1 Brief Description of the AES and Notations

The Advanced Encryption Standard (AES) [29] is a substitution-permutation
(SP) network which has 128-bit plaintexts and 128, 192, or 256-bit keys. Since
the descriptions of all attacks we present in this paper are independent of the
key schedule, we do not differentiate between these variants.

The 128-bit internal state of AES is treated as a byte matrix of size 4 × 4,
where each byte represents a value in GF (28). An AES round (described in
Fig. 5) applies four operations to this state matrix:

– SubBytes (SB)—applying the same 8-bit to 8-bit invertible S-box 16 times in
parallel on each byte of the state,

– ShiftRows (SR)—cyclically shifting the i’th row by i bytes to the left,
– MixColumns (MC)—multiplication of each column by a constant 4×4 matrix

over the field GF (28), and
– AddRoundKey (ARK)—XORing the state with a 128-bit subkey.

An additional AddRoundKey operation is applied before the first round, and in
the last round the MixColumns operation is omitted. The number of rounds is
between 10 and 14, depending on the key length. We omit the key schedule, as
it does not affect the description of our attacks.

The bytes of each state of AES are numbered 0, 1, . . . , 15, where for 0 ≤ i, j ≤
3, the j’th byte in the i’th row is numbered i + 4j (see the state after SB in
Fig. 5). We always consider 5-round AES, where the MixColumns operation in
the last round in omitted. The rounds are numbered 0, 1, 2, 3, 4. The subkeys are
numbered k−1, k0, . . . , k4, where k−1 is the secret key XORed to the plaintext
at the beginning of the encryption process. We denote by W,Z, and X the
intermediate states before the MixColumns operation of round 0, at the input
to round 1 and before the MixColumns operation of round 2, respectively. The
j’th byte of a state or a key Xi is denoted by Xi,j or by (Xi)j . When several
bytes j1, . . . , j� are considered simultaneously, they are denoted by Xi,{j1,...,j�}
or by (Xi){j1,...,j�}.

The term ‘	’th shifted column’ (resp. ‘	’th inverse shifted column’) refers to
the result of application of SR (resp., SR−1) to the 	’th column. For example,
the 0’th shifted column consists of bytes 0, 7, 10, 13, and the 0’th inverse shifted
columns consists of bytes 0, 5, 10, 15. We also denote by SR(j) (resp., SR−1(j))
the byte position to which byte j is transformed by SR (resp., SR−1).

When considering differences between the encryption processes of a pair of
plaintexts, we say that a component (e.g., byte or column) at some stage of

294 O. Dunkelman et al.

the encryption process is active if the difference in that component is non-zero.
Otherwise, we call the component passive. Finally, we say that some values
x1, x2, . . . , xm ‘sum up to zero’ if x1 ⊕ x2 ⊕ . . . ⊕ xm = 0.

4.2 The Yoyo Attack of Rønjom et al. on 5-Round AES

The idea behind the attack. The attack decomposes 5-round AES as E =
E12 ◦E11 ◦E0, where E0 consists of the first 2.5 rounds, E11 is the MC operation
of round 2, and E12 consists of rounds 3 and 4. For E0 in the forward direction,
the adversary uses a truncated differential characteristic whose input difference
is zero in three inverse shifted columns, and whose output difference is zero in
a single shifted column. The probability of the characteristic is 4 · 2−8 = 2−6,
since it holds if and only if the output difference of the active column in round 0
is zero in at least one byte. For E12 in the backward direction, recall that 1.5
rounds of AES can be represented as four 32-bit to 32-bit super S-boxes applied
in parallel (see [16]). For each ciphertext pair (C1, C2), the adversary modifies
it into one of its mixture counterparts (see Definition 1) with respect to the
division into super S-boxes, calls the new ciphertext pair (C3, C4), and asks for
its decryption. Due to the mixture construction, the four outputs of each super S-
box are composed of two pairs of equal values, and hence, the four corresponding
inputs to the super S-boxes sum up to 0. As MC is a linear operation, this implies
that X1 ⊕ X2 ⊕ X3 ⊕ X4 = 0. Therefore, with probability 2−6, the difference
X3⊕X4 equals zero in a shifted column. This, in turn, implies that the difference
Z3 ⊕ Z4 equals zero in an inverse shifted column (i.e., one of the four quartets
of bytes: (0, 5, 10, 15), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)).

At this point, the adversary would like to attack bytes 0, 5, 10, 15 of the
subkey k−1, using the fact that in one of the bytes of the first column, we have
Z3 ⊕ Z4 = 0. However, this information provides only an 8-bit filtering, while
32 subkey bits are involved. In order to improve the filtering, the authors of [30]
construct ‘friend pairs’ of the pair (Z3, Z4), such that if we have Z3 ⊕ Z4 = 0 in
byte 	, then the same holds for all friend pairs. The resulting attack algorithm
(of [30]) is given in Algorithm 2.

Analysis of the attack. The data complexity of the attack is about 29, since for
each of 26 pairs (P1, P2), the adversary decrypts four ciphertext pairs (Cj

3 , C
j
4).

The time and memory complexities are dominated by the attack on k−1 in Step 7.
In a naive application, this attack requires about 232 operations for each pair
(P1, P2) and each value of 	 ∈ {0, 1, 2, 3}, and thus, the overall time complexity
of the attack is about 232 · 26 · 4 = 240. The authors of [30] managed to improve
the overall complexity to 231, using a careful analysis of round 0, including
exploitation of the specific matrix used in MC. We do not present this part of
the attack, as it can be replaced by a simpler and stronger tool, as we describe
below. To summarize, the data complexity of the attack is 29 adaptively chosen
plaintexts and ciphertexts, the memory complexity is 29 and the time complexity
is 231 encryptions.

The Retracing Boomerang Attack 295

Algorithm 2. Rønjom et al.’s Yoyo Attack on 5-Round AES
1: Ask for the encryption of 26 pairs (P1, P2) of chosen plaintexts that have non-zero

difference only in bytes 0,5,10,15.
2: for all corresponding ciphertext pairs (C1, C2) do
3: Define four modified ciphertext pairs (Cj

3 , Cj
4) (j = 1, 2, 3, 4) to be mixture

counterparts of the pair (C1, C2).
4: Ask for the decryption of the ciphertext pairs and consider the pairs of inter-

mediate values after round 0, (Zj
3 , Zj

4).
5: for all � ∈ {0, 1, 2, 3} do
6: Assume that all four pairs (Zj

3 , Zj
4) and the pair (Z1, Z2) have zero difference

in byte �.
7: Use the assumption to extract bytes 0, 5, 10, 15 of k−1.
8: if a contradiction is reached then
9: Increment �

10: if � > 3 then
11: Discard the pair

12: else
13: Use the fact that Zj

3 ⊕Zj
4 = 0 in the entire �’th inverse shifted column to

attack the three remaining columns of round 0 (sequentially) and thus to deduce
the rest of k−1.

4.3 A Simple Improvement of the Yoyo Attack on 5-Round AES

A simple improvement of the attack of Rønjom et al. is to use a meet-in-the-
middle (MITM) procedure to attack bytes 0, 5, 10, 15 of k−1 in Step 7.

Denote the intermediate value in byte m before the MC operation of round 0
in the encryption of a plaintext P by Wm. W.l.o.g. we consider the case 	 = 0,
and recall that by the structure of AES, byte 0 in the input to round 1 satisfies

Z0 = 02x · W0 ⊕ 03x · W1 ⊕ 01x · W2 ⊕ 01x · W3. (6)

In the MITM procedure, the adversary guesses bytes 0, 5 of k−1, computes the
value

02x · (W j
3)0 ⊕ 03x · (W j

3)1 ⊕ 02x · (W j
4)0 ⊕ 03x · (W j

4)1 (7)

for j = 1, 2, 3, and stores the concatenation of these values (i.e., a 24-bit value)
in a sorted table. Then she guesses bytes 10, 15 of k−1, computes the value

01x · (W j
3)2 ⊕ 01x · (W j

3)3 ⊕ 01x · (W j
4)2 ⊕ 01x · (W j

4)3 (8)

for j = 1, 2, 3, and checks for a match in the table (which is, of course, equivalent
to the condition (Zj

3)0 = (Zj
4)0 for j = 1, 2, 3). As this condition is a 24-bit

filtering, about 232 · 2−24 = 28 suggestions for bytes 0, 5, 10, 15 of k−1 remain,
and those can be checked using the conditions (Z4

3)0 = (Z4
4)0 and (Z1)0 = (Z2)0.

The data complexity of the attack remains 29. The time complexity is reduced
to 26 · 4 · 216 = 224 operations, where each operation is roughly equivalent to a
computation of one AES round in a single column for 6 plaintexts, or a total of
less than 223 encryptions.

296 O. Dunkelman et al.

It seems that the use of MITM increases the memory complexity of the attack
to about 216. However, one can maintain the memory at 29 using the dissection
technique [17] (see, e.g., [2] for similar applications of dissection). Therefore, the
time complexity of the attack is reduced to 223 encryptions, while the data and
memory complexities remain unchanged at 29.

4.4 An Attack on 5-Round AES with Overall Complexity of 216.5

We now show how one can reduce the time complexity of the attack described
above to 216.5, at the expense of increasing the data complexity to about 215.

The idea behind the attack is to enhance the MITM procedure, such that on
each of the two sides, the number of possible key values is reduced to 28 (instead
of 216). The reduction is obtained using two methods:

Constructing an extra equation by a specific choice of plaintexts. In order to
reduce the number of possible values of k−1,{0,5}, we choose plaintext pairs with
non-zero difference only in bytes 0, 5. For such pairs, the condition (Z1)0 = (Z2)0
simplifies into

02x · (W1)0 ⊕ 03x · (W1)1 ⊕ 02x · (W2)0 ⊕ 03x · (W2)1, (9)

as bytes 2, 3 of W cancel out. This equation depends only on the plaintexts and
on bytes 0, 5 of k−1, and since it is an 8-bit filtering, it leaves only 28 possible
values of k−1,{0,5}. In order to detect these 28 candidates efficiently, we make
our choice of plaintexts even more specific.

We choose only pairs of plaintexts (P1, P2) that satisfy (P1)5 ⊕ (P2)5 = 01x.
In addition, as a precomputation phase we compute the row of the Difference
Distribution Table (DDT) of the AES S-box that corresponds to input difference
01x and store it in memory, where each output difference is stored along with
the value(s) that lead to it.5

As a result, for each pair (P1, P2) and for each guess of k−1,0, we can use
Eq. (9) to compute the output difference of the SB operation in byte 5. As the
input difference is fixed to be 01x, we can use the precomputed row of the DDT
to find the inputs to that SB operation by a single table lookup, and hence, to
retrieve instantly the possible value(s) of k−1,5 that correspond to the guessed
value of k−1,0.

This process allows us to compute the 28 possible values of k−1,{0,5} in about
28 simple operations for each pair.

Eliminating a key byte from the equation by using multiple ‘friend pairs’. In order
to reduce the number of possible values of k−1,{10,15}, we attach to each plaintext
pair (P1, P2) multiple ‘friend pairs’, such that if (P1, P2) satisfies the differential
characteristic of E0, then all friend pairs satisfy the same characteristic as well.

5 Constructing this row takes 29 simple operations, and storing it takes much less than
29 128-bit cells of memory.

The Retracing Boomerang Attack 297

We perform the boomerang process for all friend pairs together with the original
pairs, obtaining many pairs (P j

3 , P j
4). We choose one such pair for which we have

(P j
3)10 ⊕ (P j

4)10 = 0 or (P j
3)15 ⊕ (P j

4)15 = 0. (10)

Assume w.l.o.g. that the equality holds in byte 10. We perform the MITM pro-
cedure presented above with the single pair (P j

3 , P j
4). Note that the first step

provided us with 28 possible values for k−1,{0,5}. Hence, in the MITM attack
there are only 28 possible values for the expression (7). On the other hand, by
the choice of the pair, there is zero difference in byte 2 before the MC opera-
tion, and thus, the subkey byte k−1,10 cancels out from the expression (8). As a
result, this expression depends on a single key byte, and thus, has only 28 possi-
ble values, just like Eq. (7). Thus, the MITM procedure requires about 29 simple
operations and (as the data provides an 8-bit filtering) leaves 28 suggestions for
subkey bytes k−1,{0,5,15}. Finally, we can take any other couple of ‘friend pairs’
and recover the unique value of k−1,{0,5,10,15} by another MITM procedure in
which one side computes the contribution of bytes 0, 1, 3 to Eq. (9) (applied for
the difference (Z3)0 ⊕ (Z4)0) and the other side computes the contribution of
byte 2, as on each side there are about 28 possible values.

Therefore, the complexity of the MITM attack on k−1,{0,5,10,15} is reduced to
about 28 operations for each pair (P1, P2) and each value of 	, or a total of about
216 operations. As for the data complexity, in order to have a friend pair that
satisfies Eq. (10) with a high probability, we have to take about 27 friend pairs
for each of the 26 pairs (P1, P2). Hence, the total data complexity is increased
to about 215. A more precise analysis is given below.

Attack algorithm. The algorithm of our improved attack on 5-round AES is
as follows.

1. Precomputation: Compute the row of the DDT of the AES S-box that
corresponds to input difference 01x, along with the actual values.

2. Online phase: Take 64 pairs (P1, P2) of plaintexts such that in each pair, we
have (P1)5 = 00x and (P2)5 = 01x, in byte 0 the values (P1, P2) are distinct,
and in all other bytes, the values (P1, P2) are equal.

3. To each plaintext pair (P1, P2), attach 27 ‘friend pairs’ (P j
1 , P j

2), such that
for each j we have (P j

1 ⊕ P j
2) = P1 ⊕ P2, and (P j

1){0,5,10,15} = (P1){0,5,10,15}.
4. Do the following for each plaintext pair (P1, P2), and for each 	 ∈ {0, 1, 2, 3}:

[we present the operations for 	 = 0, the other cases are similar.]
(a) For each guess of byte k−1,0, partially encrypt (P1, P2) through the SB

operation in byte 0 of round 0 to find its output difference. Then, assuming
that the pair (P1, P2) satisfies the characteristic of E0 with 	 = 0 (i.e.,
that (Z1)0 = (Z2)0), use Eq. (9) to find the output difference of the SB
operation in byte 5 of round 0. Then use the precomputed DDT to deduce
the actual inputs to that SB operation, and deduce from them the value
of subkey byte k−1,5. Store in a table the 28 possible values k−1,{0,5}.

(b) Ask for the encryption of (P1, P2) and of its 27 ‘friend pairs’ (P j
1 , P j

2).
For each ciphertext pair (C1, C2) or (Cj

1 , C
j
2) we obtain, replace it by

298 O. Dunkelman et al.

one of its mixture counterparts, which we denote by (C3, C4) or (Cj
3 , C

j
4)

(respectively), and ask for its decryption. Denote the resulting plaintext
pairs by (P3, P4) and (P j

3 , P j
4).

(c) Find a value j for which the pair (P j
3 , P j

4) satisfies Eq. (10). [In the follow-
ing steps we assume w.l.o.g. that the condition yields equality in byte 10.
If the equality is in byte 15, the steps should be modified accordingly.]

(d) Perform a MITM attack on Column 0 of round 0, using the plaintext pair
(P j

3 , P j
4). Specifically, use the 28 possible values for k−1,{0,5} computed in

Step 4(a) to obtain 28 possible values for (7) and store them in a table.
Then, for each guess of subkey byte k−1,15, compute (8) and check in the
table for a collision. Each collision provides us with a possible value of
k−1,{0,5,15}.

(e) Perform a MITM attack on Column 0 of round 0, using two other plaintext
pairs (P j′

3 , P j′
4). Specifically, use the 28 possible values for k−1,{0,5,15}

computed in the previous step to obtain the contribution of bytes 0, 1, 3
to Eq. (6) (applied for the difference (Z3)0 ⊕ (Z4)0, for both pairs) and
store it in a table. Then, for each guess of subkey byte k−1,10, compute
the contribution of byte 2 to Eq. (6) and check in the table for a collision.
(Each collision provides us with a possible value of k−1,{0,5,10,15}, along
with a filtering for wrong pairs.) If a contradiction is reached, move to
the next value of 	; if contradiction is reached for all values of 	, discard
the pair (P1, P2) and move to the next pair.

5. Using a pair (P1, P2) for which no contradiction occurred in Step 4 and its
‘friend pairs’, perform MITM attacks on Columns 1, 2, and 3 of round 0
(sequentially), exploiting the fact that Z3 ⊕Z4 equals zero in the 	’th inverse
shifted column (e.g., for 	 = 0 this column consists of bytes 0, 5, 10, 15), to
recover the rest of the subkey k−1.

Attack analysis. The attack succeeds if the data contains a pair that satisfies
the truncated differential characteristic of E0 (i.e., leads to a zero difference in
at least one byte in the active column in round 0), and in addition, for one of
the ‘friend pairs’ of that pair, the corresponding plaintext pair (P j

3 , P j
4) has zero

difference in either byte 10 or 15. With 64 plaintext pairs and 128 ‘friend pairs’
for each pair, each of these events occurs with probability of about 1−e−1 ≈ 0.63,
and hence, under standard randomness assumptions, the success probability of
the attack is about 0.632 ≈ 0.4. This probability can be increased significantly
by increasing the number of pairs we start with and the number of their ‘friend
pairs’. For example, with 128 plaintext pairs and 128 friend pairs for each of
them, the expected success probability is (1 − e−2)(1 − e−1) ≈ 0.54.

We note that the success probability can be increased further by exploiting
other ways to cancel terms in Eq. (8). For example, if for some j, j′, the unordered
pairs {(P j

3)10, (P
j
4)10} and {(P j′

3)10, (P
j′
4 ,)10} are equal, then we can use the

XOR of Eq. (8) for both pairs to cancel out the effect of subkey byte k−1,10 on
the equation. This allows us to apply the efficient MITM attack described above
also in cases where no ‘friend pair’ of (P1, P2) satisfies Eq. (10), thus increasing

The Retracing Boomerang Attack 299

the success probability of the attack. Our analysis shows that under standard
randomness assumptions, for the same amount of 64 initial pairs and 128 ‘friend
pairs’ for each pair considered above, this improvement increases the success
probability of the attack from 0.4 to about 0.5.

The data complexity of the attack, for the success probability 0.4 computed
above, is 2 ·26 ·27 = 214 chosen plaintexts and 214 adaptively chosen ciphertexts.
We note that the amount of chosen plaintexts can be reduced by considering
two structures of 8 plaintexts each (where in the first structure we have (P1)5 =
00x and (P1)0 assumes 8 different values, and in the second structure we have
(P2)5 = 01x and (P2)0 assumes 8 different values) and taking the 64 pairs (P1, P2)
composed of one plaintext in each structure. (In such a case, the ‘friend pairs’ are
also taken in structures obtained by XORing the same value to all elements in the
two initial structures.) This reduces the data complexity to slightly more than
214 adaptively chosen plaintexts and ciphertexts (as the number of encrypted
plaintexts is negligible with respect to the number of decrypted ciphertexts).
On the other hand, this slightly reduces the success probability of the attack,
due to dependencies between the examined pairs (P1, P2), as demonstrated in
the next subsection. To conclude, with data complexity of 215 adaptively chosen
plaintexts and ciphertexts we obtain success probability of more than 50%.

The memory complexity of the attack is no more than 29 128-bit memory
cells, like in the yoyo attack of Rønjom et al. [30].

As for the time complexity, it is dominated by several steps that consist of
about 216 simple operations each. The comparison of these operations to AES
encryptions is problematic, and hence, we adopt a common strategy of counting
the number of S-box applications and dividing it by 80, which is the number of
S-boxes in 5-round AES. The number we obtain (divided by 216), in addition to
the 214 + 211 full encryptions of Step 4(b), is: negligible for Steps 1 and 4(c), 2
for Step 4(a), 6 for Step 4(d), 8 for Step 4(e), and 24 · 3 = 72 for Step 5. Hence,
the total complexity is less than 216.5 full encryptions.

We conclude that our 5-round attack requires 215 adaptively chosen plain-
texts and ciphertexts, 29 memory and 216.5 time, and recovers the full secret key
with success probability of more than 50%.

4.5 Experimental Verification

To verify the success probability of our attack computed above, we implemented
two variants of the 5-round attack. The first variant uses up to 128 independent
plaintext pairs. The second variant uses two structures, one of 8 plaintexts and
another of 16 plaintexts, to create a total of 128 plaintext pairs. For each pair
(P1, P2), we generated 128 friend pairs. We ran the attack on 500 different ran-
domly generated keys. For each success of the attack, we saved the number of
pairs we had to try before finding the key. Then we extracted from this data the
success probability of the attack, as a function of the amount of available data.
Figure 6 shows this success probability, as a function of the number of plaintext
pairs, up to a maximum of 128 pairs.

300 O. Dunkelman et al.

Fig. 6. Attack success probability

It can be seen that the success probability is slightly lower than the probabil-
ity predicted by the above analysis. In particular, for 64 initial pairs, the success
probability is slightly higher than 0.3 (rather than the predicted 0.4). We conjec-
ture that the deviation from the theoretical estimate occurs due to dependency
issues, but leave this small discrepancy for further research. Anyway, for data
complexity of 215, the experimental success probability is well above 50%.

The source code used in the experiments, along with the raw data, is included
as a supplementary material, and will be made public together with the online
version of the paper.

5 Improved Attack on 5-Round AES with a Secret S-Box

In [32], Tiessen et al. initiated the study of AES with a secret S-box, namely a
variant of AES in which the SB operation is replaced by a key-dependent S-box.
They showed that 5 rounds of the new variant can be broken with complexity
of 240 and 6 rounds can be broken with complexity of 290, using variants of the
Square attack on AES [29]. In the last four years, six more papers analyzed 5-
round variants of AES with a secret S-box: in [15,25,31] using the Square attack,
in [24,25] using impossible differentials, in [21] using impossible differentials and
the multiple-of-n property, and in [4] using the yoyo technique. The best cur-
rently known result was obtained by Bardeh and Rønjom [4] – data complexity
of 232 adaptively chosen plaintexts and ciphertexts and time complexity of 231

operations (in addition to generating the data).
In this section we use the retracing boomerang technique to devise an attack

on 5-round AES with a secret S-box with a complexity of 225.8 in the adaptively
chosen plaintext and ciphertext model. Like the attacks of [4,21,24,25,31], our
attack recovers the secret key, without fully recovering the secret S-box. (Actu-
ally, we recover the S-box up to an invertible affine transformation in (GF (2))8;
as our attack is of a differential nature, it cannot distinguish between secret
S-boxes that differ by such transformation.) On the other hand, it applies even
against a stronger variant in which MC is also replaced by a key-dependent MDS
transformation (see [16]) applied on each column. Among the previous attacks,

The Retracing Boomerang Attack 301

only the Square attack of Tiessen et al. [32] applies to this variant and can break
it with complexity of 240.

Our attack uses the same retracing boomerang framework as our attack on 5-
round AES. Namely, we start with plaintext pairs (P1, P2) with difference only in
bytes 0, 5, 10, 15, and for each such pair, we modify the corresponding ciphertext
pair (C1, C2) into one of its mixture counterparts, which we denote by (C3, C4),
and ask for its decryption. We know that with probability 2−6, the corresponding
pair (Z3, Z4) of intermediate values at the input of round 1 has zero difference
in an inverse shifted column (e.g., in bytes 0, 5, 10, 15). (Note that this part does
not use the specific structure of SB or of MC, and hence, can be applied also to
a variant of AES with key-dependent SB and MC operations). Our goal now is
to use this knowledge to attack round 0, as the attack we used for 5-round AES
heavily relies on the fact that the S-box is known to the adversary.

Partial recovery of the secret S-box. To attack round 0, we use the strategy
proposed in the structural attack of Biryukov and Shamir on SASAS [13], that
was already used against AES with a secret S-box in [32], albeit inside the frame-
work of the Square attack. Assume w.l.o.g. that the retracing boomerang predicts
zero difference in byte 0 of the state Z, i.e., yields the equation (Z3)0⊕(Z4)0 = 0.
(In the actual attack, if the procedure with byte 0 leads to a contradiction, the
adversary has to perform it again with bytes 1, 2, 3.) By Eq. (6), we can rewrite
this equation as

0 = (Z3)0 ⊕ (Z4)0 = 02x · ((W3)0 ⊕ (W4)0) ⊕ 03x · ((W3)1 ⊕ (W4)1)
⊕ 01x · ((W3)2 ⊕ (W4)2) ⊕ 01x · ((W3)3 ⊕ (W4)3).

(11)

Note that each of the values (W3)j has the form SB(P3 ⊕ k−1,j′), where for
j = 0, 1, 2, 3, j′ = SR−1(j) takes the value 0, 5, 10, 15, respectively. Therefore, if
we define 4 · 256 = 1024 variables xm,j = SB(m ⊕ k−1,j′) (for m = 0, 1, . . . , 255
and j′ = 0, 1, 2, 3), then each plaintext pair (P1, P2) for which the corresponding
intermediate values (Z3, Z4) satisfy

(Z3)0 ⊕ (Z4)0 = 0, (12)

provides us with a linear equation in the variables {xm,j}.
In order to recover the variables {xm,j} by solving a system of linear equa-

tions, we need many pairs (Z3, Z4) that satisfy Eq. (12) simultaneously. We
obtain these pairs by attaching about 210 ‘friend pairs’ to each original pair
(P1, P2), like we did in the attack on 5-round AES in Sect. 4. Hence, we start
with 26 pairs (P1, P2), and for each pair and about 210 friend pairs we perform
the mixing retracing boomerang process and use each of the pairs to obtain a lin-
ear equation in the variables {xm,j}. (This part of the attack has to be repeated
for 	 = 0, 1, 2, 3, as each value of 	 leads to different equations. The equations
presented above correspond to 	 = 0.) Then, we recover as many as we can of the
variables {xm,j} by solving a system of linear equations. We take a bit more than
210 friend pairs for each pair in order to obtain extra filtering, which allows us
to efficiently discard pairs (P1, P2) that do not satisfy the boomerang property.

302 O. Dunkelman et al.

As was shown in [32], the equations do not allow determining the variables
{xm,j} (and thus, the secret S-box) completely. Indeed, as our basic Eq. (11)
represents differences and not actual values, it is invariant under composition of
the secret S-box with an invertible linear transformation over (GF (2))8. Thus,
the best we can obtain at this stage is four functions S0, S1, S2, S3, such that

Sj(x) = L0(SB(x ⊕ k−1,j′)),

for some unknown invertible linear transformation L0. In addition, by repeating
the attack for three other columns in round 0 (using the fact that for a pair
(P1, P2) that satisfies the boomerang property, an entire inverse shifted column
of Z3 ⊕ Z4 equals zero), we obtain the S-boxes Sj(x) for all j ∈ {0, 1, . . . , 15},
albeit with multiplication by a different matrix Lt in all the S-boxes of (inverse
shifted) Column(t).

Recovering the secret key. While this information does not recover the S-
box completely, it does allow us to recover the secret key k−1, up to 256 possible
values. This is done in two steps.

First, for each j′ ∈ {1, 2, 3} we can easily recover k̄j′ = k−1,0 ⊕ k−1,j′ in time
28, as k̄j′ is the unique value of c such that Sj(x) = S0(x⊕c) for all x. In a similar
way, we can recover each inverse shifted column of k−1 up to 256 possible values
(e.g., to find the values k−1,1 ⊕ k−1,s for s ∈ {6, 11, 12} by attacking Column 3).
This already reduces the number of possible values of k−1 to 232.

Second, we find the differences k−1,0 ⊕ k−1,j for j = 1, 2, 3 by taking several
quartets of values (x1, x2, x3, x4) such that S0(x1)⊕S0(x2)⊕S0(x3)⊕S0(x4) = 0
and finding the unique value of cj such that

Sj(cj ⊕ x1) ⊕ Sj(cj ⊕ x2) ⊕ Sj(cj ⊕ x3) ⊕ Sj(cj ⊕ x4) = 0.

(The quartets are used to eliminate the effect of the difference between the linear
transformations L0 and Lj in the definitions of S0 and Sj .) Thus, in about 212

operations we recover the entire secret key k−1, up to the value of a single
byte k−1,0. Assuming that the secret S-boxes are determined by the secret key,
the attack can be completed by exhaustive search over the 28 remaining key
possibilities. The resulting attack algorithm is given in Algorithm3.

Attack analysis. The data complexity of the attack is 26 · 2 · 210 = 217 chosen
plaintexts and 217 adaptively chosen ciphertexts. Like in the attack on 5-round
AES presented in Sect. 4, we can reduce the required amount of chosen plaintexts
to about 214 using structures, and so the overall data complexity is less than
217.5 adaptively chosen plaintexts and ciphertexts.

The time complexity is dominated by solving a system of 1034 equations
in 1024 variables in Step 10, that has to be performed for each of the 26 pairs
(P1, P2) and for 	 = 0, 1, 2, 3. Using the Four Russians Algorithm ([1]; see [3]
for the motivation for choosing it), each solution of the system takes about
(210)3/ log(210) ≈ 227 simple operations, that are equivalent to about 227/80 ≈
221 encryptions. Hence, the time complexity of the attack is 229. (Note that the

The Retracing Boomerang Attack 303

Algorithm 3. Attack on 5-Round AES with Secret S-Box and MixColumns
1: Ask for the encryption of 26 pairs (P1, P2) of chosen plaintexts that have non-zero

difference only in bytes 0,5,10,15.
2: for all Plaintext pairs (P1, P2) do
3: Generate 210 + 10 ‘friend pairs’ (P j

1 , P j
2), such that for each j: (P j

1 ⊕ P j
2) =

P1 ⊕ P2, and (P j
1){0,5,10,15} = (P1){0,5,10,15}.

4: Ask for the encryption of all ‘friend pairs’ (P j
1 , P j

2)

5: for all pairs (P1, P2) and for each � ∈ {0, 1, 2, 3} do � We present the case of
� = 0, the other cases are similar.

6: for all m ∈ {0, 1, . . . , 255} and j ∈ {0, 1, 2, 3} do
7: Define xm,j = SB(m ⊕ k−1,SR−1(j))

8: Assume that Eq. (11) is satisfied for all Zj
3 , Zj

4 of the ‘friend pairs’ (P j
1 , P j

2)
9: Obtain the corresponding linear system of equations in xm,j

10: Solve the system of 1034 linear equations in 1024 variables
11: if a contradiction is reached then
12: Increment �
13: if � > 3 then
14: Discard the pair

15: else
16: The solution yields four functions Sj(x) = L0(SB(x ⊕ k−1,SR−1(j))), for

some unknown invertible linear transformation L0.

17: Repeat the attack on the other three columns with (P1, P2) to obtain Sj(x) for
j = 4, 5, . . . , 15.

18: Find the rest of the secret key by exhaustive key search (assuming the secret S-box
depends on the master 128-bit key k−1)

solution of a system of equations in Step 17 is much cheaper, as it has to be
performed only for a single pair (P1, P2).)

The memory complexity is dominated by the memory required for solving
the system of equations, which is less than 217 128-bit blocks. (There is no need
to store the plaintext/ciphertext pairs, as they can be analyzed ‘on the fly’.)

We conclude that the data complexity of the attack is 217.5 adaptively cho-
sen plaintexts and ciphertexts, the time complexity is 229 encryptions, and the
memory complexity is 217 128-bit blocks.

Improving the overall complexity by applying a distinguisher before
the attack. Note that in the attack, we have to apply the equation-solving step
28 times, since we do not know which pair (P1, P2) and which value of 	 satisfies
the boomerang property. Hence, if we can obtain this information in some other
way, this will speedup the attack considerably.

A possible way to find a pair that satisfies the boomerang condition is to
apply the yoyo distinguishing attack on 5-round AES of Rønjom et al. [30],
which does not depend on knowledge of the S-box, and thus, can be applied in
the secret S-box setting. (Note however that this attack depends on the MDS
property of MC (see [16]). Hence, unlike the attack described above which applies
when MC is replaced by an arbitrary invertible linear transformation, this attack

304 O. Dunkelman et al.

applies only if the transformation is assumed to satisfy the MDS property.)
The attack of [30] requires 225.8 adaptively chosen plaintexts and ciphertexts,
and in addition to distinguishing 5-round AES from a random permutation, it
finds a pair (P1, P2) with non-zero difference only in bytes 0, 5, 10, 15, such that
the corresponding intermediate values (Z1, Z2) have non-zero difference in only
two bytes. This pair satisfies our boomerang property, and thus, can be used
(along with 1034 friend pairs) in the attack described above. This reduces the
complexity of each equation-solving step to 221, and thus, the overall complexity
of the attack is dominated by the complexity of Rønjom et al.’s attack. We
conclude that this variant of the attack has data and time complexities of 225.8

and memory complexity of 217.

6 The Retracing Rectangle Attack – Connection to
Mixture Differentials

In this section we present the retracing rectangle attack, which is the retrac-
ing variant of the rectangle attack [6]. First we recall the amplified boomerang
(a.k.a. rectangle) attack, then we present and analyze the new retracing rect-
angle attack, and then we use our new framework to expose a relation of the
recently introduced mixture differential attack [22] to the rectangle attack.

6.1 The Amplified Boomerang (a.k.a. Rectangle) Attack

An apparent drawback of the boomerang attack is the need to use adaptively
chosen plaintexts and ciphertexts – a very strong ability for the attacker. In [26],
Kelsey et al. presented the amplified boomerang attack, which imitates the pro-
cedure of the boomerang attack using only chosen plaintexts. In the attack,
the adversary considers pairs of pairs of plaintexts ((P1, P2), (P3, P4)) such that
P1⊕P2 = P3⊕P4 = α, and for each of them, she checks whether the correspond-
ing quartet of ciphertexts ((C1, C2), (C3, C4)) satisfies C1 ⊕ C3 = C2 ⊕ C4 = δ.
For the analysis of the attack, we refer the reader to [26].

Kelsey et al. applied the amplified boomerang attack to the AES’ candidates
MARS and SERPENT. In a subsequent work, Biham et al. [6] presented several
enhancements of the attack, and gave it the name rectangle attack, which is the
currently more commonly-used name.

6.2 The Retracing Rectangle Attack

The transformation from the retracing boomerang attack to the retracing rectan-
gle attack is similar to the transformation from the (classical) boomerang attack
to the rectangle attack.

The Retracing Boomerang Attack 305

The attack setting. We assume that E can be decomposed as E = E1 ◦ E02 ◦
E01, where E01 consists of dividing the state into two parts (a left part of b bits
and a right part of n − b bits) and applying to them the functions EL

01, E
R
01.

Furthermore, we suppose that for EL
01, there exists a differential characteristic

αL
pL
1−−→ μL, for ER

01, there exists a differential characteristic αR
pR
1−−→ μR, for

E02, there exists a differential characteristic μ
p2−→ β, and for E1, there exists a

differential characteristic γ
q−→ δ (see Fig. 7).

P1

P2

W1

W2

X1

X2

α
β

E01

C1

C2

E02

E1

C4

X4γ

W4

μ

W3

μ

C3

X3γ β

P3

P4

α

X1 X2
β

WL
1

WR
1

WL
2

WR
2

μL

μR

PL
1

PR
1

PL
2

PR
2

αL

αR

E01

E02

E01

E02

Fig. 7. The retracing rectangle setting

Assuming that pR
1 pL

1 p2q � 2−n/2, the rectangle attack can be used to distin-
guish E from a random permutation, with data complexity of O((pR

1 pL
1 p2q)−1 ·

2n/2) chosen plaintexts. Recall that in the standard rectangle attack, we con-
sider quartets of plaintexts ((P1, P2), (P3, P4)) such that P1 ⊕P2 = P3 ⊕P4 = α,
and check whether the corresponding quartets of ciphertexts ((C1, C2), (C3, C4))
satisfy C1 ⊕ C3 = C2 ⊕ C4 = δ. In the retracing rectangle attack, we consider
only quartets of plaintexts that satisfy

(P1 ⊕ P2 = α) ∧ (P3 ⊕ P4 = α) ∧ ((P1)L ⊕ (P3)L = 0 or αL). (13)

As a result, the two unordered pairs (PL
1 , PL

2) and (PL
3 , PL

4) are identical, and
hence, if one of them satisfies the differential characteristic of EL

10, then so does
the other. Thus, the probability of the rectangle distinguisher is improved by a
factor of (pL

1)−1.

Advantages. Unlike the shifting retracing boomerang attack, here we obtain
an improvement in the probability of the distinguisher without a need to discard
some part of the data. (This holds since the adversary can choose the plaintexts
as she wishes, and in particular, can force the additional restriction (PL

1 ⊕PL
3 =

0 or αL) ‘for free’.) In addition, the signal to noise ratio is improved, like in the
retracing boomerang attack.

306 O. Dunkelman et al.

It should however be noted that in most applications of the rectangle attack,
the adversary starts with structures S of pairs with input difference α, such that
each pair-of-pairs within the same structure satisfies the initial condition of the
rectangle distinguisher. Then, for each structure, the adversary uses a hash table
to check all these

(|S|
2

)
quartets in time |S|. In the retracing rectangle attack,

one has to either give up the structures and work with each pair-of-pairs that
satisfies Eq. (13) separately, or else perform the ordinary rectangle attack and
then check the additional condition (PL

1 ⊕ PL
3 = 0 or αL) simultaneously with

the condition C1 ⊕C3 = C2 ⊕C4 = δ (which can be done using a hash table). In
either case, the overall data complexity of the attack is not reduced, compared
to the rectangle attack with structures, and thus, improvement of the signal to
noise ratio is the main advantage of the retracing rectangle technique.

A mixing variant – relation to mixture differentials. Like in the mix-
ing retracing boomerang attack, the adversary can force equality between the
unordered pairs (PL

1 , PL
2), (PL

3 , PL
4) by choosing P3 = (PL

2 , PR
1) and P4 =

(PL
1 , PR

2), or in other words, by taking the pair (P3, P4) to be the mixture
counterpart of the pair (P1, P2). As this choice also forces equality between the
pairs (PR

1 , PR
2) and (PR

3 , PR
4), the probability of the rectangle distinguisher is

increased by a factor of (pL
1 pR

1)−1.
Interestingly, it turns out that the core step of the mixture differential attack

of Grassi [22] on 5-round AES fits into the mixture retracing rectangle attack
framework.

Specifically, the core of [22]’s result is a chosen plaintext distinguishing attack
on a 3.5-round variant of AES. In this attack, 3.5-round AES is decomposed as
E1 ◦E02 ◦E01, where E01 consists of the first 1.5 rounds, E02 consists of a single
MC layer, and E1 is composed of the last 1.5 rounds. The attack uses quartets
of plaintexts (P1, P2, P3, P4) constructed by a mixing procedure, as described
in Definition 1, and considers the corresponding quartets (X1,X2,X3,X4) and
(Y1, Y2, Y3, Y4) of intermediate values after E01 and E02, respectively. The repre-
sentation of 1.5-round AES as four Super-S-boxes applied in parallel [16] allows
deducing that X1 ⊕X2 ⊕X3 ⊕X4 = 0 holds with probability 1. As E02 is linear,
the same holds for Y1, Y2, Y3, Y4. Finally, the attack uses a truncated differen-
tial characteristic of E1 with probability 1 that starts with difference 0 in an
inverse shifted column (e.g., bytes 0, 5, 10, 15) and ends with difference 0 in a
shifted column (e.g., bytes 0, 7, 10, 13). (This characteristic also follows from the
Super-S-boxes representation of 1.5-round AES.) If the pair (Y1, Y3) satisfies the
input difference of this characteristic – an event that occurs with probability of
2−32 – then (Y2, Y4) satisfies the input difference as well, and then we know for
sure that both (C1, C3) and (C2, C4) have zero difference in bytes 0, 7, 10, 13.
This provides a 64-bit filtering, that is exploited in [22] to obtain a key recovery
attack on 5-round AES.

While this may not be apparent at a first glance, this attack is indeed a
variant of the mixing retracing rectangle attack described above. The choice of
plaintext quartets is exactly the same, and so is the treatment of E1 (taking
note that the differential characteristics used in a boomerang/rectangle attack

The Retracing Boomerang Attack 307

may be truncated, as mentioned above). The only seeming difference is E0,
where instead of considering a specific differential characteristic we only make
sure that the four outputs sum up to zero. However, this is actually the same
as using all possible differential characteristics simultaneously, as is commonly
done in boomerang/rectangle attacks.

7 Summary and Open Problems

In this paper we introduced a new version of boomerang attacks called a retrac-
ing boomerang attack, and used it to significantly improve the best known key
recovery attacks on 5 rounds of AES (both in its standard form and when the
S-box and the linear transformation are secret key-dependent components). The
most interesting problems left open in this paper are:

– Find additional applications of the new technique.
– Find other types of correlations which can further increase the probability of

the combined differential property.
– Create a “grand unified theory” of boomerang-like attacks which will explore

their hidden relationships and treat them rigorously.

Acknowledgements. The authors thank the anonymous referees and Senyang Huang
for their proposals and suggestions for improving the manuscript.

The research was supported in part by the European Research Council under the
ERC starting grant agreement n. 757731 (LightCrypt), by the BIU Center for Research
in Applied Cryptography and Cyber Security, by the Israel Ministry of Science and
Technology, the Center for Cyber, Law, and Policy, by the Israel National Cyber Bureau
in the Prime Minister’s Office, and by the Israeli Science Foundation through grants
No. 3380/19, No. 880/18 and No. 1523/14.

The first author is a member of the Center for Cyber, Law, and Policy at the
university of Haifa. The second author is a member of the BIU Center for Research in
Applied Cryptography and Cyber Security. The third author is a member of CPIIS.

References

1. Arlazarov, V., Dinic, E., Kronrod, A.M., Faradžev, I.: On economical construction
of the transitive closure of a directed graph. Dokl. Akad. Nauk SSSR 194(11),
1201–1290 (1970)

2. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key
recovery attacks on reduced-round AES with practical data and memory complex-
ities. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
185–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 7

3. Bard, G.V.: Achieving a log(n) speed up for boolean matrix operations and calcu-
lating the complexity of the dense linear algebra step of algebraic stream cipher
attacks and of integer factorization methods. IACR Cryptology ePrint Archive,
2006:163 (2006)

4. Bardeh, N.G., Rønjom, S.: Practical attacks on reduced-round AES. In: Buchmann,
J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 297–
310. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0 15

https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.1007/978-3-030-23696-0_15

308 O. Dunkelman et al.

5. Biham, E., Biryukov, A., Dunkelman, O., Richardson, E., Shamir, A.: Initial obser-
vations on Skipjack: cryptanalysis of Skipjack-3XOR. In: Tavares, S., Meijer, H.
(eds.) SAC 1998. LNCS, vol. 1556, pp. 362–375. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48892-8 27

6. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

7. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael (1999).
Unpublished manuscript

8. Biham, E., Perle, S.: Conditional linear cryptanalysis - cryptanalysis of DES with
less than 242 complexity. IACR Trans. Symmetric Cryptol. 2018(3), 215–264
(2018)

9. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

10. Biryukov, A., De Cannière, C., Dellkrantz, G.: Cryptanalysis of Safer++. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 12

11. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 1

12. Biryukov, A., Leurent, G., Perrin, L.: Cryptanalysis of Feistel networks with secret
round functions. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566,
pp. 102–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6 6

13. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. J. Cryptol. 23(4),
505–518 (2010). https://doi.org/10.1007/s00145-010-9062-1

14. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 22

15. Cui, T., Chen, H., Mesnager, S., Sun, L., Wang, M.: Statistical integral distin-
guisher with multi-structure and its application on AES-like ciphers. Cryptogr.
Commun. 10(5), 755–776 (2018). https://doi.org/10.1007/s12095-018-0286-5

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

17. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 42

18. Dunkelman, O., Keller, N.: Treatment of the initial value in time-memory-data
tradeoff attacks on stream ciphers. Inf. Process. Lett. 107(5), 133–137 (2008)

19. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the
KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptol. 27(4), 824–849
(2013). https://doi.org/10.1007/s00145-013-9154-9

20. Ferguson, N., et al.: Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis,
J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7 15

21. Grassi, L.: MixColumns properties and attacks on (round-reduced) AES with a
single secret S-box. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp.
243–263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 13

https://doi.org/10.1007/3-540-48892-8_27
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/978-3-540-45146-4_12
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-319-31301-6_6
https://doi.org/10.1007/s00145-010-9062-1
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/s12095-018-0286-5
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/s00145-013-9154-9
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-319-76953-0_13

The Retracing Boomerang Attack 309

22. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2),
133–160 (2018)

23. Grassi, L.: Probabilistic mixture differential cryptanalysis on round-reduced AES.
In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 53–84.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5 3

24. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

25. Hu, K., Cui, T., Gao, C., Wang, M.: Towards key-dependent integral and impossible
differential distinguishers on 5-round AES. In: Cid, C., Jacobson Jr., M. (eds.) SAC
2018. LNCS, vol. 11349, pp. 139–162. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10970-7 7

26. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and Serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier,
B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7 6

27. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory
57(4), 2517–2521 (2011)

28. US National Bureau of Standards: Data Encryption Standard, Federal Information
Processing Standards publications no. 46 (1977)

29. US National Institute of Standards and Technology: Advanced Encryption Stan-
dard, Federal Information Processing Standards publications no. 197 (2001)

30. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 217–243. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 8

31. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on AES-like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
605–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 22

32. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with
a secret S-box. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 175–189.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 9

33. Tunstall, M.: Improved “Partial Sums”-based square attack on AES. In: SECRYPT
2012, pp. 25–34 (2012)

34. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

https://doi.org/10.1007/978-3-030-38471-5_3
https://doi.org/10.1007/978-3-030-10970-7_7
https://doi.org/10.1007/978-3-030-10970-7_7
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-48116-5_9
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12

Randomness Extraction

Extracting Randomness from
Extractor-Dependent Sources

Yevgeniy Dodis1, Vinod Vaikuntanathan2(B), and Daniel Wichs3,4(B)

1 NYU, New York, USA
2 MIT, Cambridge, USA
vinod.nathan@gmail.com

3 Northeastern University, Boston, USA
danwichs@gmail.com

4 NTT Research Inc., East Palo Altos, USA

Abstract. We revisit the well-studied problem of extracting nearly uni-
form randomness from an arbitrary source of sufficient min-entropy.
Strong seeded extractors solve this problem by relying on a public ran-
dom seed, which is unknown to the source. Here, we consider a setting
where the seed is reused over time and the source may depend on prior
calls to the extractor with the same seed. Can we still extract nearly uni-
form randomness?

In more detail, we assume the seed is chosen randomly, but the source
can make arbitrary oracle queries to the extractor with the given seed
before outputting a sample. We require that the sample has entropy and
differs from any of the previously queried values. The extracted output
should look uniform even to a distinguisher that gets the seed. We con-
sider two variants of the problem, depending on whether the source only
outputs the sample, or whether it can also output some correlated public
auxiliary information that preserves the sample’s entropy. Our results are:
Without Auxiliary Information: We show that every pseudo-random
function (PRF) with a sufficiently high security level is a good extractor
in this setting, even if the distinguisher is computationally unbounded.
We further show that the source necessarily needs to be computationally
bounded and that such extractors imply one-way functions.
With Auxiliary Information: We construct secure extractors in this
setting, as long as both the source and the distinguisher are computa-
tionally bounded. We give several constructions based on different inter-
mediate primitives, yielding instantiations based on the DDH, DLIN,
LWE or DCR assumptions. On the negative side, we show that one can-
not prove security against computationally unbounded distinguishers in
this setting under any standard assumption via a black-box reduction.
Furthermore, even when restricting to computationally bounded distin-
guishers, we show that there exist PRFs that are insecure as extractors
in this setting and that a large class of constructions cannot be proven
secure via a black-box reduction from standard assumptions.

1 Introduction

Extracting Randomness. Randomness is an important ingredient in many
algorithmic tasks, and is especially crucial in cryptography. Indeed, much of
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 313–342, 2020.
https://doi.org/10.1007/978-3-030-45721-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_12

314 Y. Dodis et al.

cryptography relies on the assumption that parties can sample uniformly ran-
dom bits. However, most natural sources of randomness are imperfect and not
uniformly random. This motivates the study of randomness extraction, whose
goal is to extract (nearly) uniform randomness from imperfect sources.

Ideally, we would have a deterministic function Ext that converts an imper-
fect source of randomness X into a (nearly) uniformly random output Ext(X).
Furthermore, such an extractor should work for all sources of randomness X
having a sufficiently large amount of (min-)entropy. Unfortunately, this is easily
seen to be impossible, even if we only want to output 1 bit [CG85]: for every
extractor function Ext, there is a source X that has almost full min-entropy yet
the output of Ext(X) is completely fixed.

There have been two broad lines of work to get around this. The first
line of work designs extractors for restricted types of sources X that satisfy
additional requirements beyond just having entropy (see e.g., [von51,CGH+85,
Blu86,LLS89,CG85,TV00,BST03,BIW04,CZ16]). While this is an important
research direction, we often know very little about natural sources of random-
ness and they may fail to satisfy the imposed requirements. The second line of
work considers (strong) seeded extractors [NZ93,NZ96], where the extractor is
given a public uniformly random seed S, which is independent of the source
X, and we require that the extracted output Ext(X;S) is close to uniform even
given the seed S.

Extractor-Dependent Sources. In this work, we consider a seeded extrac-
tor and envision a scenario where a single uniformly random seed S is chosen
once and then is reused over time by many different users and/or applications
to extract randomness from various “natural” sources of entropy. For example,
the seed S could be a part of a system random number generator (RNG) that
extracts randomness from physical sources of entropy, such as the timing of
interrupts etc. If the sources are truly independent of the seed S, then stan-
dard (strong) seeded extractors suffice to guarantee that the extracted outputs
are nearly uniform. However, since the seed S is continuously reused, past out-
puts of the extractor will make their way back into “nature” and may affect
the sources in the future. For example, interrupts may depend on processes that
themselves rely on previous outputs of the extractor. Furthermore, since we can-
not assume that all users/applications use the extractor securely, we have to
allow for the possibility that some of the prior calls to the extractor were made
on arbitrary samples that may not have any entropy. Unfortunately, if the source
can depends on prior calls to the extractor with the same seed S, we violate the
condition that the source is independent of the seed and can no longer rely on
the security of standard seeded extractors. We emphasize that, although the seed
S is public, the sources are not fully adversarial and not arbitrarily dependent
on S. (A restriction of this sort is of course necessary to circumvent the obvious
impossibility result.) Instead, we assume that the sources can only depend on
prior calls to the extractor with the given seed S, but are otherwise indepen-
dent of S. We call such sources “extractor-dependent”. Can we design extractors

Extracting Randomness from Extractor-Dependent Sources 315

for extractor-dependent sources (ED-Extractors) that manage to extract nearly
uniform randomness in this setting?

Defining the Problem. We now specify the problem in more detail. Our goal
is to design a seeded extractor EDExt that extracts randomness from extractor-
dependent sources. We consider a setting where a seed S is chosen uniformly at
random. A source SEDExt(·,S) gets oracle access to the extractor with the seed S
and outputs a sample X along with some public auxiliary information AUX. We
say that such a source S is a legal extractor-dependent source of entropy α if two
conditions hold: (1) the (conditional min-entropy) of X given S,AUX is at least
α, and (2) the source never queries the oracle on the value X that it outputs. An
α-ED-Extractor needs to ensure that for all legal extractor-dependent sources
of entropy α, the output EDExt(X,S) is indistinguishable from uniform, even
given the seed S and the auxiliary information AUX.

Discussion on the Legality Conditions. We motivate the reason behind
the two legality conditions imposed by the definition.

Firstly, just like for standard (seeded) extractors, we need to assume that X
has a sufficient level of entropy even conditioned on AUX in order to extract ran-
domness from it. In our case, the source also has access to the oracle EDExt(·, S)
with a random seed S, but we want the entropy to come from the internal ran-
domness of the source rather than from the seed S since the latter is public and
known to the distinguisher. Therefore, it is natural to also condition on S.

The second condition is clearly necessary: without it we could define a source
that queries the oracle on random values and outputs the first such value on
which the extracted output starts with a 0. Such a source would have almost full
entropy, yet the extracted output would be easily distinguishable from uniform.
Moreover, this condition is also reasonable when modeling our intended scenario
since the sample should have entropy even given all the prior extractor calls that
influenced nature, and therefore it should differ from all of them.

In particular, the two legality conditions include the following simpler sub-
class of sources, which already intuitively captures our intended scenario. Con-
sider sources S = (S1,S2) that consists of two components. The first component
SEDExt(·,S)
1 makes arbitrary oracle calls to the extractor and models the influ-

ence that these calls have on nature; it outputs some value state. The second
component S2(state) then outputs X,AUX without making any further oracle
queries and captures the entropic process that produces the sample. The only
condition we impose is that, for every possible fixed value of state, the entropy
of X conditioned on AUX when they are sampled according to S2(state) should
be at least α. If α is large enough then S satisfies both of the previous legality
conditions. In particular, S1 could not have queried the oracle on X since the
entropy of X comes only from the random coins of S2 that are unknown to S1.

Discussion on Auxiliary Info. Our default definition allows the source to
output some public auxiliary info AUX that can be correlated with the sample
X as long as it preserves its (average conditional min-)entropy. It is natural that
some such information may be public (e.g., the source X denotes the timing of

316 Y. Dodis et al.

interrupts, but the adversary can learn some auxiliary info AUX denoting the
high-order bits of such timings by interacting with the system). We also consider
a weaker setting without auxiliary info, where we don’t have AUX. In the case
of standard seeded extractors, it turns out that there is not much difference
between a setting with auxiliary info and without [DORS08]. However, as we
will see, there is a significant difference between the two settings when it comes
to ED-Extractors.

Prior Work. The work of Coretti et al. [CDKT19] initiates the study of
extracting from extractor-dependent sources in the special case where the
extractor is a random oracle. While their definition is specifically tailored to
the random-oracle model, our definition can be seen as the natural extension
of it to the standard model. In particular, they consider the setting where
O(·) = EDExt(·, S) is a truly random function. They show that this is an α-
ED-Extractor for any super-logarithmic entropy α, as long as the source only
makes polynomially many queries, but even if the distinguisher is computation-
ally unbounded and can see the entire truth table of the oracle. This gives
us heuristic evidence that a “good” cryptographic hash function is an ED-
Extractor in the standard model even against computationally unbounded dis-
tinguishers (as long as the source is computationally bounded). The main open
question is therefore whether we can construct ED-Extractors under standard
computational assumptions.

1.1 Our Results

We give positive and negative results for ED-Extractors with and without
auxiliary info.

Without Auxiliary Info. On the positive side, we show that any pseudo-
random function (PRF) with a sufficiently high security level is a good
ED-Extractor without auxiliary info. In particular, assuming the existence of sub-
exponentially secure one-way functions, there exist α-ED-Extractors with any
output size m for entropy α = m + ω(log λ), where λ is the security parame-
ter. Furthermore, such extractors achieve security even against computationally
unbounded distinguishers, as long as the source runs in polynomial time. If we only
want security against polynomial-time distinguishers, we can allow the output size
to grow to an arbitrary polynomial m while only requiring entropy α = λΩ(1).

On the negative side, we show that ED-Extractors imply one-way functions
and therefore cannot be constructed unconditionally. This holds even without
auxiliary info, even if we require that the source has almost full entropy, and
even if the extractor outputs only 1 bit. Furthermore, we show that such ED-
Extractors cannot exist for computationally unbounded sources.

With Auxiliary Info. We construct ED-Extractors in the setting with auxil-
iary info under standard assumptions. In particular, we give three constructions.

– The first construction relies on (adaptively secure) constrained PRFs [BGI14,
KPTZ13,BW13] for NC1 constraints. These can be instantiated under the

Extracting Randomness from Extractor-Dependent Sources 317

sub-exponential security of either the learning with errors (LWE) [BV15]
or the Decisional Diffie-Hellman Inversion (DDHI) assumption in arbitrary
prime-order groups (without requiring pairings) [AMN+18].1

– The second construction relies on shift-hiding shiftable functions [PS18],
which can be seen as a type of constraint-hiding constrained PRFs, and can
be instantiated under LWE without requiring sub-exponential security.

– The third construction relies on lossy functions and can be instantiated under
any of: decisional Diffie-Hellman (DDH), decisional-linear (DLIN), LWE, or
decisional composite residuosity (DCR) assumptions.

In all cases, we prove security against polynomial-time sources and distinguish-
ers. Our α-ED-Extractors can have arbitrarily large polynomial input size n and
output size m, and require entropy α = λΩ(1).

Note that, in the setting without auxiliary info, we achieved security even
against computationally unbounded distinguishers. Furthermore, the random-
oracle based result of [CDKT19] heuristically suggests that good cryptographic
hash functions achieve security against computationally unbounded distinguish-
ers even in the auxiliary info setting. However, our constructions in the auxiliary
info setting from standard assumptions only achieve security against polynomial-
time distinguishers. Unfortunately, we show that this is inherent. In particular,
we show that in the auxiliary info setting, one cannot prove the security of
any ED-Extractor against computationally unbounded distinguishers under any
standard assumption via a black-box reduction.

Furthermore, our instantiations in the auxiliary info setting rely on “crypto-
mania” assumptions (known to imply public-key encryption) rather than one-
way functions, and we ask whether this is necessary. While we do not resolve this
question, we give some evidence that the two settings necessitate substantially
different constructions. Firstly, one may be tempted to conjecture that every
PRF is also a good ED-Extractor even in the auxiliary info setting. We show
that this is not the case: there exist PRFs that are insecure as ED-Extractors
in the auxiliary info setting even for very high levels/rates of entropy α. More-
over, we show that a large class of natural PRFs (e.g., the Naor-Reingold PRF)
cannot be proven to be secure ED-Extractors in the setting of auxiliary info via
a black-box reduction from any standard assumption.

1.2 Our Techniques

ED-Extractors without Auxiliary Info from PRFs. Our first result
shows that every PRF is already a good ED-Extractor in the setting without
auxiliary info. In particular, the seed of the extractor is the PRF key and the
extractor just evaluates the PRF on the sample X. The main difficulty in prov-
ing ED-Extractor security is that the distinguisher gets the seed of the ED-
Extractor, but PRF security only holds if the key is never revealed. Our insight
1 The DDHI assumption in a cyclic group G of order q with generator g states that,

given any polynomially many values of the form (g, ga, ga2
, . . . , gaL

) where a ← Zq,
the value g1/a is computationally indistinguishable from uniform.

318 Y. Dodis et al.

is to design a reduction that never calls the distinguisher – indeed, this allows
us to prove security even for computationally unbounded distinguishers.

Let’s start with the case where the PRF/Extractor only outputs 1 bit. If
the extracted output is statistically far from uniform given the seed, it means
that it is biased towards either 0 or 1, but the direction of the bias is unknown
and may be different for each seed. Consider running the source S twice with
independent randomness, while giving it oracle access to the PRF/Extractor
with the same random key/seed. Let X0,X1 be the samples that the two runs
output respectively. Then the PRF/Extractor evaluations on those samples are
more likely to agree than disagree, since they are biased in the same direction.
But the legality conditions ensure that X0,X1 were never queried during either
of the two runs and are different from each other (since each run cannot query
its own output and the output of the other run should have enough entropy to
be unpredictable). So, given oracle access to the PRF, we can use the source S
to find two values X0,X1 that we haven’t yet queried, but if we then proceed to
query the PRF on them, the outputs are noticeably more likely to agree than
disagree. This cannot be the case given oracle access to a random function, and
therefore allows us to distinguish the two and break PRF security. The analysis
extends to a larger output size m, but the advantage of the reduction shrinks by a
factor of 2−m. Therefore, we need very secure PRFs that cannot be distinguished
from random functions with advantage better than negl(λ)2−m, which requires
sub-exponential security assumptions.

Note that the above argument completely breaks down in the setting with
auxiliary info. The problem is that now the direction of the bias can be different
for each choice of the key/seed and the auxiliary info. But the two independent
runs of the source S are unlikely to produce the same auxiliary info and hence
we cannot argue that the bias would go in the same direction. Indeed, we show
that there are PRFs that are completely insecure as ED-Extractors in the setting
with auxiliary info.

ED-Extractors imply One-Way Functions. We show that ED-Extractors
cannot exist if the source is allowed to be computationally unbounded. This holds
even in the setting without auxiliary info, even if we only consider polynomial-
time distinguishers, even if we require that the source has almost full entropy,
and even if the extractor outputs only 1 bit. The high level idea is that a com-
putationally unbounded source S with oracle access to the function EDExt(·, S)
can learn the function sufficiently well to predict its output on a random value
with high probability. It can then sample a random X subject to predicting that
EDExt(X,S) = 0, without querying the extractor on X. This is a legal source
with almost full entropy, yet the extractor output is highly biased towards 0.
We extend the above argument to showing that such extractors imply one-way
functions.

ED-Extractors with Auxiliary Info from Constrained PRFs. We
construct ED-Extractors in the setting with auxiliary info, using constrained
pseudorandom functions (C-PRF). A C-PRF allows us to constrain a PRF key

Extracting Randomness from Extractor-Dependent Sources 319

k on some constraint function C to yield a constrained key, denoted k{C}. The
constrained key allows us to evaluate the PRF on all points x such that C(x) = 0.
However, given the constrained key k{C}, the PRF outputs at all points x for
which C(x) = 1 look random. We need to rely on adaptively secure constrained
PRFs, where the adversary can choose the constraint C after seeing some PRF
outputs.

Our construction of ED-Extractors uses a constrained PRF and a standard
(seeded) randomness extractors Ext. The seed of the ED-Extractor is a con-
strained PRF key k{CS,U}, with the constraint CS,U (X) that outputs 1 (i.e.,
prevents evaluation) on all points X such that Ext(X;S) = U , where S,U are
chosen randomly. We choose the output size of the extractor to be � = ω(log λ)
and therefore the key is constrained on a negligible fraction of points. On input
X, the ED-Extractor checks if CS,U (X) = 1, in which case it outputs some fixed
dummy value, and otherwise it uses the seed k{CS,U} to evaluate the PRF on X.

To argue ED-Extractor security, we consider a source SEDExt(·,k{CS,U }) that
gets oracle access to the ED-Extractor with a random seed k{CS,U} and out-
puts X,AUX. A distinguisher D then gets the seed k{CS,U} together with AUX
and the extracted output R = EDExt(X, k{CS,U}). We first argue that this
is statistically indistinguishable from giving the source S oracle access to the
unconstrained PRF and setting R to be the output of the PRF with the uncon-
strained key on X (since the probability that any of the queries of S or its
output lie in the constrained set is negligible). Now, instead of giving the distin-
guisher D the constrained key k{CS,U} where U is uniform, we give it the key
k{CS,Ext(X;S)} which is constrained on X. This is statistically indistinguishable
since X has entropy even conditioned on AUX and is sampled independently
of S; therefore Ext(X;S) is close to uniform even given AUX. But now we can
switch R from the output of the PRF on X to uniform, and this is computation-
ally indistinguishable even given the constrained PRF key k{CS,Ext(X;S)} since
it is constrained on X (and we know that the source didn’t query the oracle on
X). This shows that the extracted output is indistinguishable form uniform even
given the ED-Extractor seed and the auxiliary info. (The above proof outline
conveys the intuition but is slightly oversimplified and ignores some subtleties;
see the full proof for details).

Since standard extractors can be evaluated in NC1, we only need constrained
PRFs for NC1 circuits. Fortunately, we have such constructions from the LWE
and DDHI assumptions [BV15,AMN+18]. However, they only achieve selective
security, where the constrained circuit needs to be chosen ahead of time before
any PRF outputs are given out, while we need adaptive security. We can get
this via standard complexity leveraging at the cost of having to assume the
sub-exponential security of the LWE and DDHI assumptions.

Additional Constructions (in the full version). We give two alter-
nate constructions of ED-Extractors in the setting with auxiliary info. The first
uses shift-hiding shiftable functions [PS18], which can be instantiated from stan-
dard LWE, without needing complexity leveraging. The construction and proof

320 Y. Dodis et al.

of security differ substantially from the one above. The second one uses lossy
functions, which are essentially equivalent to lossy trapdoor functions (LTDFs)
[PW08] without requiring a trapdoor. The construction can be instantiated from
several different assumptions (DDH,DLIN,LWE,DCR). Both constructions are
omitted from this proceedings version due to lack of space; please see the full
version [DVW19].

Not all PRFs are ED-Extractors with Aux Info. We construct PRFs,
which fail to be good extractors in the setting of auxiliary info. For example,
consider a PRF which first hashes the input x into a small digest using a collision-
resistant hash function and then applies another PRF on the output. Consider
a source that chooses a random x and sets the auxiliary info to be the hash of x.
Since the hash is small, this does not reduce the entropy of x by much. However,
if the distinguisher is given the PRF key (which is the ED-Extractor seed) and
the auxiliary info, it can compute the PRF on x and therefore easily distinguish
it from uniform. In this example, the auxiliary info reduces the entropy of x by
some small super-logarithmic amount. We give an even more dramatic example
of this type using fully-homomorphic encryption (FHE) where the auxiliary info
reduces the entropy of x by only 1 bit.

Black-Box Separation Results. Lastly, we give two black-box separation
results showing that, in the auxiliary info setting, one cannot prove security (via
a black-box reduction under a standard assumption) against computationally
unbounded distinguishers or for certain natural classes of constructions. Our
results rely on the framework of [Wic13] and rely on the fact that the ED-
Extractor definition is expressed as a two-stage game where the attacker consists
of two components (the source and the distinguisher) that cannot communicate.
This allows us to give black-box separations showing that, in certain cases, we
cannot prove security under any standard assumption which is in the form of a
single-stage game between a challenger and a single stateful adversary.

1.3 Additional Related Work

RNGs. Our scenario is partially motivated by the problem of extracting ran-
domness from physical sources as part of a system Random Number Generator
(RNG). We note that extracting randomness is only one component of a good
RNG; see e.g., [BH05,DPR+13,DSSW14,GT16,Hut16,CDKT19] for works that
formally deal with the broader problem of RNG design.

Universal Computational Extractors (UCE). The notion of universal
computational extractors (UCE) [BHK13,ST17] was originally proposed as a
way of capturing “random-oracle like” security properties of hash functions via
a standard-model definition. While the format of the UCE definition is also
given in terms of an extraction game with a source and a distinguisher, there are
major differences between the UCE definition and that of ED-Extractors, both
in terms of their syntactic structure, but also more conceptually in terms of what
they aim to capture. The key such difference is that the notion of legal source is

Extracting Randomness from Extractor-Dependent Sources 321

defined in the “ideal model”, and permits sources which only have computational
unpredictability in the “real” model (say, conditioned on the auxiliary informa-
tion).2 In contrast, this work only aimed to capture a smaller class of sources
that have entropy even in the “real model”, but could depend of the previous
extractor output.

Unfortunately, it is known that even the weakest form of UCE security can-
not be achieved under standard assumptions (via black-box reductions; this indi-
rectly follows from [Wic13]), while our work shows that ED-Extractors can. It
remains an interesting open problem whether ED-Extractors can be used in place
of UCEs to get any broader cryptographic applications beyond the immediate
ones of extracting randomness.

Low-Complexity Samplers. Introduced by Trevisan and Vadhan [TV00] and
later extended by [KRVZ11], these seedless extractors assume that the entropy
source producing input X is unable to run the extractor even once. In contrast,
our sampler can be much slower than the extractor, but we use a seed and
give the sampler oracle access to the extractor, before releasing the seed to the
distinguisher.

Seed-Dependent condensers. This approach, formalized by Dodis, Risten-
part and Vadhan [DRV12], relaxes the security guarantees of the randomness
extractor to only ensure that the output of the condenser is almost full entropy,
but not necessarily close to uniform. In this sense it is weaker than ED-Extractors.
However, the sampler is given the actual seed, which is stronger than our setting.
Interestingly, the availability of auxiliary information also played a crucial role in
the constructions of seed-dependent condensers from standard assumptions.

2 Preliminaries

When X is a distribution, or a random variable following this distribution, we
let x ← X denote the process of sampling x according to the distribution X. If
X is a set, we let x ← X denote sampling x uniformly at random from X.

Let X,Y be random variables with supports SX , SY , respectively. We define
their statistical difference as

SD(X,Y) =
1
2

∑

u∈SX∪SY

|Pr[X = u] − Pr[Y = u]| .

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X =
x]). Following Dodis et al. [DORS08], we define the (average) conditional min-
entropy of X given Y as: H∞(X|Y) = − log

(
Ey←Y

[
2−H∞(X|Y =y)

])
. Note that

H∞(X|Y) = k iff the optimal strategy for guessing X given Y succeeds with
probability 2−k.

2 Somewhat confusingly, this is true even for so called “UCEs for statistically unpre-
dictable sources”.

322 Y. Dodis et al.

Lemma 1. For any random variables X,Y where Y is supported over a set
of size T we have H∞(X|Y) ≤ H∞(X) − log T .

Definition 1 ((Strong, Average-Case) Seeded Extractor [NZ96]). We
say that an efficient function Ext : {0, 1}n × {0, 1}d → {0, 1}� is an (α, ε)-
extractor if for all random variables (X,Z) such that X is supported over {0, 1}n

and H∞(X|Z) ≥ α we have SD((Z, S,Ext(X;S)), (Z, S, U�)) ≤ ε where S,U� are
uniformly random and independent bit-strings of length d, � respectively.

Theorem 1 ([ILL89]). There exist (α, ε)-extractors with input length n and out-
put length � as long as α ≥ � + 2 log(1/ε).

Definition 2 ((Strong, Average-Case) Two-Source Extractor [CG88]).
We say that an efficient function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m is
an (e1, e2, δ)-strong 2-source extractor if for all random variables (X1,X2, Z)
such that X1,X2 are independent conditioned on Z and H∞(X1|Z) ≥ e1,
H∞(X2|Z) ≥ e2 we have SD((Z,X2, 2Ext(X1;X2)), (Z,X2, Um)) ≤ δ where Um

is a uniformly string of length m.

Theorem 2 ([Raz05]). For any polynomial input length n = poly(λ), any e1 =
λΩ(1) and any e2 = (1/2 + Ω(1))n, there exist (e1, e2, δ)-extractor with input
length n, output length m = λΩ(1) and error δ = 2−λΩ(1)

.

Definition 3. The collision probability of a random variable A is defined as
Col(A) = Pr[a = a′ : a ← A, a′ ← A]. The conditional collision probability of
A given B is defined as Col(A|B) = Pr[a = a′ : b ← B, a ← (A|B = b), a′ ←
(A|B = b)].

Claim 1 (Statistical Distance vs Collision Probability [IZ89]). Let A be
a random variable supported over {0, 1}m such that SD(A,Um) ≥ ε, where Um

is uniform over {0, 1}m. Then Col(A) ≥ 1
2m (1 + 4ε2).

Furthermore, let A,B be correlated random variables, where A is supported
over {0, 1}m and

SD((A,B), (Um, B)) ≥ ε.

Then Col(A|B) ≥ 1
2m (1 + 4ε2).

Learning with Errors. The (n,m, q, χ) LWE assumption states that (A, sA + e)
is computationally indistinguishable from (A, u) where A ← Z

n×m
q , s ← Z

n
q ,

e ← χm and u ← Z
m
q . Throughout this work, the LWE assumption (without

qualification), refers to assuming that there exists some n = poly(λ), some q ≥
2λΩ(1)

and some distribution χ over Z which is poly(λ) bounded such that the
(n,m, q, χ) assumption holds for all m = poly(λ). This is implied by the hardness
of worst-case lattice problems with sub-exponential approximation factors.

Definition 4 (Pseudorandom Function (PRF) [GGM84]). A polynomial-
time function F : {0, 1}� × {0, 1}n → {0, 1}m with key length � = �(λ), input

Extracting Randomness from Extractor-Dependent Sources 323

length n = n(λ) and output length m = m(λ) is a PRF if for any polynomial-time
attacker A there exists some negligible function μ(λ) = negl(λ) such that

| Pr[AF (k,·)(1λ) = 1] − Pr[AO(·)(1λ) = 1] | ≤ μ(λ).

where we choose k ← {0, 1}� and O : {0, 1}n → {0, 1}m is a uniformly random
function. We say that the PRF has security level σ = σ(λ) if μ(λ) ≤ 1/σ(λ).

Definition 5 (Constrained PRFs (CPRF) [BGI14,KPTZ13,BW13]). A
CPRF for a class of constraints C = {Cλ} consists of two polynomial-time algo-
rithms (F,Constrain) where:

– y = F (k, x) is a deterministic polynomial-time function that takes as input
a key k (either constrained or unconstrained) and a value x ∈ {0, 1}n and
outputs y ∈ {0, 1}m for some polynomial length parameters n = n(λ),m =
m(λ) in the security parameter λ.

– k{C} ← Constrain(k,C) takes as input a key k ∈ {0, 1}λ and a constraint
C : {0, 1}n → {0, 1} with C ∈ Cλ. It outputs a constrained key, denoted
k{C}.

We require that the scheme satisfies a correctness and a security property defined
below:

Correctness: We require that no adversary can find an input which is not con-
strained, yet the constrained key disagrees with the original key. More con-
cretely, consider the following game between a stateful adversary A and a
challenger:
– The adversary A(1λ) chooses C ∈ Cλ.
– The challenger chooses k ∈ {0, 1}λ and k{C} ← Constrain(k,C).
– The adversary AF (k,·)(k{C}) gets the constrained key k{C} and oracle

access to F (k, ·). It outputs a value x ∈ {0, 1}n.
We require that, in the context of the above experiment, we have Pr[C(x) =
0 ∧ F (k, x) �= F (k{C}, x)] ≤ negl(λ).

(Adaptive) Security: Consider the following distinguishing game between an
adversary A and a challenger:
– Challenger chooses k ← {0, 1}λ and a bit b ← {0, 1}.
– Adversary AF (k,·)(1λ) gets oracle access to F (k, ·) and outputs a con-

straint C ∈ Cλ and a values x such that C(x) = 1 and x was never
queries to the oracle.

– If b = 0, the challenger sets r = F (k, x) and else it chooses r ← {0, 1}m.
The challenger also computes k{C} ← Constrain(k,C).

– The adversary A is given k{C} and r. It outputs a bit b′.
We require that for all polynomial-time adversaries A, we have |Pr[b = b′] −
1
2 | = negl(λ).

We also consider several variants of the definition. Firstly, we define the notion
of no-constrained-evaluation security, where we restrict the adversary to never
querying the oracle F (k, ·) on a point x for which C(x) = 1. Secondly, we

324 Y. Dodis et al.

consider selective security where the adversary chooses C ∈ Cλ at the begin-
ning of the game before getting oracle access to F (k, c)̇). Lastly, we consider
no-evaluation security where the adversary does not get oracle access to F (k, ·)
at all.

Note that, via a simple guessing argument where we guess the adver-
sary’s choice of C, selective security with a sufficiently high security level
σ(λ) = |Cλ|ω(log λ) implies adaptive security. Furthermore by the same argu-
ment, no-evaluation security (which is inherently selective) with a sufficiently
high security level σ(λ) = |Cλ|ω(log λ) implies no-constrained-evaluation secu-
rity. This is because, if we guess the adversary’s choice of C ahead of time and
gets k{C}, we can answer queries on unconstrained points using k{C} rather
than calling the PRF oracle.

3 Defining ED-Extractors

In this section, we give a formal definition of extractors for extractor-dependent
sources (ED-Extractors) and provide some discussion on the various aspects of
the definition.

Definition 6 (Extractor-Dependent Extraction). An extractor for
α-entropy extractor-dependent sources (α-ED-Extractor) consists of two poly-
nomial-time algorithms (SeedGen,EDExt) with the following syntax:

– seed ← SeedGen(1λ) is a randomized algorithm that generates seed.
– EDExt(x, seed) is a deterministic algorithm that takes a sample x ∈ {0, 1}n,

together with seed and outputs a value y ∈ {0, 1}m for some polynomial length
parameters n = n(λ),m = m(λ).

Consider an adversarial source/distinguisher pair (S,D) and define the following
extraction experiment EDGameS,D(1λ):

– Sample a random bit b ← {0, 1} and a random seed ← SeedGen(1λ).
– Run (x, aux) ← SEDExt(·,seed)(1λ).
– If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
– Let b′ = D(1λ, seed, aux, r).

We say that S is an α-legal extractor-dependent source if the following conditions
hold:

1. The probability that S queries its oracle on the value x that it outputs is
negligible.

2. H∞(X|AUX,SEED) ≥ α(λ), where X,SEED,AUX denotes the joint distribu-
tion of the values x, seed, aux in the above experiment.

An α-ED-Extractor is secure if for all α-legal polynomial-time sources S and all
polynomial-time distinguishers D, the above experiment satisfies

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣ = negl(λ).

Extracting Randomness from Extractor-Dependent Sources 325

We can also define a weaker notion without auxiliary info by restricting aux
to be empty. We can also strengthen security to computationally unbounded
sources or distinguishers by removing the restriction that the source or the dis-
tinguisher runs in polynomial time.

Remark on the Legality Conditions. As we discussed in the introduction, the
legality conditions above may not seem entirely intuitive on first look. For exam-
ple, it may be unclear why we prohibit the source from querying the extractor on
the value it outputs. Another undesirable aspect of definition is that the legality
conditions are construction-dependent: in other words, a source may be legal for
some constructions of the ED-Extractor but illegal for others since the entropy
of the output may depend on the oracle queries. Ideally, the legality of the source
could be checked independently of the construction. For these reasons, we can
also consider an alternate, weaker, definition, which may be more intuitively
compelling and does not suffer from the above issue. We say that source S is
α-super-legal if:

– It can be written as S = (S1,S2) where SEDExt(·,seed)
1 (1λ) gets oracle access to

the extractor and outputs some value state ∈ {0, 1}p(λ) for some polynomial
p, and S2(state) outputs x, aux without getting any further access to the
extractor.

– For all choices of state ∈ {0, 1}p(λ) it holds that H∞(X|AUX) ≥ α(λ), where
(X,AUX) are random variables for the output of S2(state).

Note that “super-legality” is only a condition of S2 which does not have oracle
access to the extractor, and is therefore construction-independent.

We claim that for any α(λ) = ω(log λ), every α-super-legal source S is
also α-legal. Firstly, if S1 only makes polynomially many queries and has a
non-negligible probability of querying the oracle on the value x that S2 out-
puts then there must be some value of state for which we can predict the
value x that S2(state) outputs with non-negligible probability. But this con-
tradicts H∞(X) ≥ H∞(X|AUX) ≥ ω(log λ). Therefore S satisfies the first
legality condition. Secondly, let STATE be a random variable for the value
state ← SEDExt(·,seed)

1 (1λ). Then SEED is independent of (X,AUX) if we con-
dition on STATE. Therefore, H∞(X|AUX,SEED) ≥ H∞(X|AUX,STATE) ≥
minstate H∞(Xstate|AUXstate) ≥ α(λ) where Xstate,AUXstate is the conditional dis-
tribution of X,AUX conditioned on STATE = state, which is just the distribution
of the outputs of S2(state). Therefore S satisfies the second legality condition.

As discussed in the introduction, the super-legality condition can also be
interpreted very intuitively: we think of S1 as capturing all of the influence that
prior extractor call can have on nature and S2 as modeling the entropic process
that’s responsible for generating x, aux. We chose to use “legality” rather than
“super-legality” in our default definition since it makes the definition stronger
and thus gives stronger positive results. We mention that (by simple inspection)
all of our negative results also hold for the weaker definition using super-legality.

326 Y. Dodis et al.

Remark about Conditioning on the Seed. Our legality condition in the formal
definition requires that the entropy H∞(X|AUX,SEED) ≥ α(λ), where we con-
dition on SEED. Note that we could remove this conditioning and have an
alternate, stronger, definition where we only require H∞(X|AUX) ≥ α(λ). We
observe that, assuming one-way functions, any α-ED-Extractor according to
our definition can be converted into an (α′ = α + λε)-ED-Extractor accord-
ing to the stronger definition for any constant ε > 0. The idea is that we can
modify the SeedGen algorithm to only use λε random bits by expanding them
out using a PRG to get as many pseudorandom bits as needed by the original
algorithm. By the security of the PRG, this change cannot harm ED-Extractor
security. But now SEED comes from a domain of size only 2λε

and therefore
H∞(X|AUX,SEED) ≥ H∞(X|AUX) − λε ≥ α′ − λε ≥ α. Hence the new con-
struction is an α′-ED-Extractor according to the stronger definition. The take-
away is that (as long as we’re only considering polynomial-time distinguishers)
it does not make much difference whether or not we condition on the seed in the
definition.

Remark on Output Size. Note that if we have an α-ED-Extractor with output
size m = λε for some constant ε > 0 then, assuming one-way functions, we can
also construct an α-ED-Extractor for arbitrarily large output size m = λc for any
constant c just by using a pseudorandom generator (PRG) to expand the output.
This holds as long as we’re only considering polynomial-time distinguishers.

4 Security Without Auxiliary Info

4.1 Construction from Any PRF

We first show that every pseudorandom function (PRF) with a sufficiently high
level of security is a good ED-Extractor in the setting without auxiliary info.

Theorem 3. Let F (·, ·) : {0, 1}� × {0, 1}n → {0, 1}m be a pseudorandom
function (PRF) with key-length � = �(λ), input length n = n(λ) and output length
m = m(λ), having security level σ(λ) = 2m(λ)ω(log λ). Define (SeedGen,EDExt)
where SeedGen(1λ) outputs seed ← {0, 1}�(λ) and EDExt(x, seed) = F (seed, x).
Then (SeedGen,EDExt) is an α-ED Extractor without auxiliary info for any α ≥
m + ω(log λ). Furthermore, it has security for unbounded distinguishers.

Proof. Assume that (S,D) is some α-legal source and distinguisher pair with
advantage ε = ε(λ) in the ED-Extractor security game. Assume that S runs in
polynomial time, but D can be unbounded. We define a polynomial-time adver-
sary A that has (ε2 − negl(λ))/2m advantage in the PRF game. In particular,
AO(·) is given access to an oracle O and runs SO(·) twice with independent ran-
domness to derive two values x, x′. Then AO(·) computes r = O(x), r′ = O(x′).
If r = r′, it outputs 1 else 0.

Firstly, consider the experiment where we sample k ← {0, 1}�, x ← SF (k,·),
r = F (k, x) and let K,R be the random variables for the values k, r respectively.

Extracting Randomness from Extractor-Dependent Sources 327

Then the statistical distance SD(((K,R), (K,Um)) ≥ ε since D distinguishes the
two distributions with probability ε. Therefore, by Claim 1, we have Col(R|K) ≥
1
2m (1 + 4ε2) where Col denotes the collision probability (Definition 3). It’s easy
to see that, by the definition of A, we have Pr[AF (k,·) = 1 : k ← {0, 1}�] =
Col(R|K) ≥ 1

2m (1 + 4ε2).
Secondly, consider the experiment where we sample k ← {0, 1}� and then

sample x ← SF (k,·), x′ ← SF (k,·) by running S twice with independent ran-
domness and let K,X,X ′ be the random variables for the value k, x, x′ in the
experiment. Since S is an α-legal source we know that:

– The probability that S queried the oracle on x during the first run or on x′

during the second run is negligible.
– Since H∞(X|K) = H∞(X ′|K) ≥ α ≥ m + ω(log λ), the probability that

either (1) S queried the oracle on x′ during the first run or (2) S queried the
oracle on x during the second run or (3) x = x′ is bounded by negl(λ)/2m.

To summarize, in the above experiment, if we define the “bad event’ that x = x′

or that the oracle is queried on one of x, x′ during the course of the experiment,
then the probability of the bad event is at most negl(λ)/2m. Now, consider
the modified experiment where we sample x ← SU(·), x′ ← SU(·) and U is a
truly random function. By σ(λ) security of the PRF, the probability of the bad
even occuring in the modified experiment is still be bounded by negl(λ)/2m.
If the bad event does not occur, then r = U(x), r′ = U(x′) are random and
independent values and therefore Pr[r = r′] = 1

2m . This shows that Pr[AU(·) =
1] ≤ (1 + negl(λ))2m.

This shows that the advantage of A in the PRF security game is (4ε2(λ) −
negl(λ))/2m which must be ≤ 1/σ(λ) ≤ negl(λ)/2m, by the σ(λ) security of the
PRF. Therefore ε(λ) = negl(λ), which concludes the proof of the ED-Extractor
security.

Corollary 1. Assuming the existence of sub-exponentially secure one-way func-
tions, for any polynomial input size n = n(λ) the following holds:

– For any polynomial output size m = m(λ), there exists an α-ED Extractor
in the setting without auxiliary info and with security for unbounded distin-
guishers as long as α ≥ m + ω(log λ).

– For any constant ε > 0 and any polynomial output size m = m(λ), there
exists an α-ED Extractor in the setting without auxiliary info and security
for polynomial-time distinguishers as long as α ≥ λε.

Proof. We note that sub-exponentially secure one-way functions imply the exis-
tence of PRFs with security level 2p(λ) for any polynomial p (by making the
key sufficiency large). Therefore the first part of the corollary follows directly
from the preceding Theorem. The second part follows by using a pseudorandom
generator (PRG) to expand the output-size of the ED-Extractor as discussed in
the Remark on Output Size in Sect. 3.

328 Y. Dodis et al.

4.2 Necessity of One-Way Functions

Theorem 4. For any input length n = n(λ), the existence of an (α = n−1)-ED-
Extractor, even without auxiliary info and even with output length m = 1, implies
the existence of one-way functions. Furthermore, such extractors cannot be secure
for computationally unbounded sources, even if we restrict to polynomial-time
distinguishers.

Proof. Let (SeedGen,EDExt) be an ED Extractor as in the theorem statement.
Assume SeedGen(1λ) uses at most � = �(λ) bits of randomness and let q =
7�+λ. Define the function f(r, x1, . . . , xq) = (x1, . . . , xq, y1, . . . , yq), which takes
as input a uniformly random r ∈ {0, 1}� and xi ∈ {0, 1}n and computes seed =
SeedGen(1λ; r) and yi = EDExt(seed, xi) for i ∈ [q]. Then we claim that f is a
one-way function.

Assume by way of contradiction that a polynomial-size adversary A breaks
the one-wayness of f with non-negligible probability. We define a source
SEDExt(seed,·) as follows:

1. Choose x1, . . . , xq uniformly at random form {0, 1}n. Query the oracle to
learn yi = EDExt(seed, xi) for each i ∈ [q].

2. Run A(xq, . . . , xq, y1, . . . , yq) and get some value (r′, x′
1, . . . , x

′
q).

3. Test if f(r′, xq, . . . , x
′
q) = (x1, . . . , xq, y1, . . . , yq). If not, output a uniformly

random x∗
0 ← {0, 1}n and halt. Else continue.

4. Compute seed′ = SeedGen(1λ; r′). Choose a random x∗
1 ← {0, 1}n and if

EDExt(seed′, x∗
1) = 0 output x∗

1 and halt. Else continue.
5. Choose a random x∗

2 ← {0, 1}n and output it.

We define a corresponding distinguisher D(seed, r), which outputs r. We claim
that the pair (S,D) breaks the (α = n − 1)-ED-Extractor security.

Firstly, we claim that S is an (α = n − 1)-legal source. It is easy to see that
the probability of it outputting a value x that it previously queried is negligible
since it outputs one of x∗

0, x
∗
1, x

∗
2 each of which is individually uniformly random

and independent of the prior queries. To analyze entropy, let us fix any choice
of the values of seed, x1, . . . , xq and randomness of A and let X be the random
variable for the output of S in the above experiment. We argue that, even for
any choice of the fixed values, it holds that H∞(X) ≥ n − 1, which proves the
claim. The fixed values determine whether the test in line 3 passes or fails. If it
fails, then X is uniformly random and so H∞(X) = n. If it passes, then let us
define the variable V which is 0 if x is output in line 4 and 1 if it is output in
line 5. Let us define the value P0 = |{x : EDExt(x, seed) = 0}|. Then we have

max
x

Pr[X = x] = max
x

(Pr[X = x|V = 0] Pr[V = 0] + Pr[X = x|V = 1] Pr[V = 1])

≤ 1

P0
· P0

2n
+

1

2n
(1 − 1

P0
)

≤ 2−(n−1)

and therefore H∞(X) ≥ n − 1.

Extracting Randomness from Extractor-Dependent Sources 329

Next, we analyze the success probability of the pair (S,D) in the ED-
Extractor security game. If the challenger chooses the challenge bit b = 1 then,
since r is uniformly random, we have Pr[b′ = 1] = 1

2 . On the other hand, let’s
analyze the security game when the challenge chooses the bit b = 0. Assume
that the adversary A breaks the security of the one-way function f with some
non-negligible probability ε = ε(λ). Then ε(λ) ≥ 1/p(λ) for some polynomial p
and for infinitely many values of λ. We define several events in the context of
the ED-Extractor security game with the particular sampler defined above:

FAIR: Let’s call a seed biased if Prx←{0,1}n [EDExt(seed, x) = 0] ≤ 1
2 − δ where

we set δ := 1
20p . Let’s define the event FAIR to occur if the seed is not biased.

Since we assumed that the ED-Extractor is secure, it must be the case that
probability that a random seed is biased is negligible (otherwise the sampler
that outputs a random x and the distinguisher that tests if the seed is biased
and if so outputs r else outputs random would break security). Therefore,
Pr[FAIR] = 1 − negl(λ).

INV: Let this be the event that the test in line 3 of the execution of S succeeds,
meaning that A succeeded to invert correctly. By definition Pr[INV] = ε.

CLOSE: Let this be the event that for the value seed′ computed in line 4, it holds
that

Pr
x←{0,1}n

[EDExt(x, seed) = EDExt(x, seed′)] ≥ .9

where, if the process terminates before line 4, we define seed′ = seed. If
CLOSE does not occur, it means that there exists some seed′ for which
Prx←{0,1}n [EDExt(x, seed) = EDExt(x, seed′)] < .9 but for all i ∈ [q] it holds
that EDExt(xi, seed) = EDExt(xi, seed

′). The probability of this happening for
any fixed seed′ is .9q ≤ .97�+λ ≤ 2−�negl(λ). By taking a union bound over
all 2� values of seed′ the probability that some such seed′ exists is negligible
and therefore Pr[CLOSE] ≥ 1 − negl(λ).

For simplicity, we also define the event IFC = INV ∧ FAIR ∧ CLOSE. When b = 0
we therefore have:

Pr[b′ = 0] ≥ Pr[b′ = 0 ∧ INV] + Pr[b′ = 0 ∧ ¬INV]

≥ Pr[b′ = 0 ∧ INV ∧ FAIR ∧ CLOSE] + Pr[b′ = 0 ∧ ¬INV ∧ FAIR]

≥ Pr[b′ = 0|IFC](Pr[INV] − Pr[¬FAIR] − Pr[¬CLOSE])

+ Pr[b′ = 0|¬INV ∧ FAIR](Pr[¬INV] − Pr[¬FAIR])

≥ Pr[b′ = 0|IFC](ε − negl(λ)) + Pr[b′ = 0|¬INV ∧ FAIR](1 − ε − negl(λ))

≥ Pr[b′ = 0|IFC](ε − negl(λ)) +

(
1

2
− δ

)
(1 − ε − negl(λ))

To analyze Pr[b′ = 0|IFC] let us fix all randomness z of the experiment except for
the choice of x∗

1, x
∗
2, such that this fixing makes the event IFC occurs. Let IFCz be

the event that the randomness takes on this value. For any such choice, let E1 be

330 Y. Dodis et al.

the event that EDExt(x∗
1, seed) = 0, let E′

1 be the event that EDExt(x∗
1, seed

′) = 0,
let A be the even that EDExt(x∗

1, seed) = EDExt(x∗
1, seed

′) and let E2 be the event
that EDExt(seed, x∗

2) = 0, where the randomness is only over the choice of x∗
1, x

∗
2.

Since we conditioned on CLOSE we have Pr[A] ≥ .9. Since we conditioned on
FAIR we have Pr[E1] ≥ (1/2 − δ),Pr[E2] ≥ (1/2 − δ). Therefore, for any such
choice of randomness z we have:

Pr[b′ = 0|IFCz] = Pr[E1 ∧ E′
1] + Pr[E2 ∧ ¬E′

1]
= Pr[A ∧ E′

1] + Pr[E2] (1 − Pr[E′
1])

≥ Pr[E′
1] − Pr[¬A] +

(
1
2

− δ

)
(1 − Pr[E′

1])

≥ 1
2

− δ − .1 +
1
2

Pr[E′
1]

≥ 1
2

− δ − .1 +
1
2
(Pr[E1] − Pr[¬A])

≥ 1
2

− δ − .1 +
1
2
(
1
2

− δ − .1)

≥ .6 − 3
2
δ

which also implies that Pr[b′ = 0|IFC] ≥ .6 − 3
2δ. Combining, we have:

Pr[b′ = 0] ≥
(

.6 − 3
2
δ

)
(ε − negl(λ)) +

(
1
2

− δ

)
(1 − ε − negl(λ))

≥ 1
2

− δ + ε(.1 − δ/2) − negl(λ)

≥ 1
2

+ ε/10 − (3/2)δ − negl(λ)

≥ 1
2

+
1

10p(λ)
− 3

40p(λ)
− negl(λ)

≥ 1
2

+
1

40p(λ)
− negl(λ)

for infinitely many values of λ. Therefore Pr[b′ = b] − 1
2 is non-negligible, which

leads to a contradiction and hence f must be one-way.
For the second part of the theorem, note that we showed how to convert an

inverter for f into a source S together with an efficient distinguisher D that
break ED-Extractor security. Since an inefficient inverter for f always exists, it
means that there exists an inefficient source S and an efficient distinguisher D
that break the security of the ED-Extractor.

Extracting Randomness from Extractor-Dependent Sources 331

5 Security with Auxiliary Info

5.1 Construction via Constrained PRFs

We now show how to construct an ED-Extractor in the setting with auxil-
iary info, using constrained PRFs (Definition 5) and standard seeded extractors
(Definition 1).

Construction. Let Ext : {0, 1}n × {0, 1}d → {0, 1}� be an (α′, ε)-seeded extrac-
tor for some lengths n = n(λ), d = d(λ), � = �(λ) and some α′ = α′(λ), ε = ε(λ).
Further let Ext also be a universal hash function. Let (F,Constrain) be a con-
strained PRF with input length n and output length m = m(λ) for the class of
constraints C = {Cs,u}s∈{0,1}d,u∈{0,1}� where Cs,u(x) = 1 iff Ext(x; s) = u. We
construct an ED-Extractor (SeedGen,EDExt) as follows:

– SeedGen(1λ): Choose a random k ← {0, 1}λ. Choose a random s ← {0, 1}d,
u ← {0, 1}� and let Cs,u ∈ C be the corresponding constraint. Let k{Cs,u} ←
Constrain(k,Cs,u). Output seed = k{Cs,u}.

– EDExt(x, seed): Output F (k{Cs,u}, x).

Note that F always outputs some value, even if x is in the constrained set. With-
out loss of generality, we can assume that the constrained key k{Cs,u} reveals
s, u in the clear and that, F (k{Cs,u}, x) outputs 0m whenever Cs,u(x) = 1.

Theorem 5. Assuming the constrained PRF has no-constrained-evaluation
security, the construction above is an α-entropy secure ED-Extractor for α =
α′ + m, as long as the parameters satisfy �(λ) = ω(log λ), and ε(λ) = negl(λ).

Proof. Our proof of security follows by a sequence of hybrid games:

Hybrid 0: This is the game EDGameS,D(1λ) with a source S and a distinguisher
D as in Definition 6. The game proceeds as follows:

– Sample a random bit b ← {0, 1} and a random seed ← SeedGen(1λ).
The latter consists of sampling k ← {0, 1}λ, s ← {0, 1}d, u ← {0, 1}�,
k{Cs,u} ← Constrain(k,Cs,u) and setting seed = k{Cs,u}.

– Run (x, aux) ← SEDExt(·,seed)(1λ).
– If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
– Let b′ = D(1λ, seed, aux, r).

Hybrid 1: In this game, instead of giving the source SEDExt(·;seed) access to the
oracle EDExt(·, seed) = F (k{Cs,u}, ·), we replace it with the oracle F (k, ·)
using the unconstrained key k. Furthermore, if b = 0, instead of setting
r = EDExt(x, seed) = F (k{Cs,u}, x), we now set r = F (k, x). In detail, the
hybrid is defined as follows:
1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ.
2. Run (x, aux) ← SF (k,·)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ←

{0, 1}d, u ← {0, 1}� and seed ← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

332 Y. Dodis et al.

Hybrids 0 and 1 are indistinguishable. The only time Hybrid 0 differs from
Hybrid 1 is if in Hybrid 0 either: (A) some oracle query or the final output
x produced by S satisfy Ext(x; s) = u, or (B) some oracle query or the final
output x produced by S satisfy Cs,u(x) = 0 ∧ F (k, x) �= F (k{Cs,u}, x). Since
u is uniformly random, the probability of (A) happening when S makes q
queries is at most (q + 1)/2� which is negligible. By the correctness of the
constrained PRF, the probability of (B) happening is also negligible.

Hybrid 2: This is the same as Hybrid 1, except that we give the source access
to an oracle EDExt(·; seed′) where seed′ = k{Cs′,u′} ← Constrain(k,Cs′,u′) is
a constrained PRF key for random and independent values s′, u′. In detail,
the hybrid is defined as follows:
1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ. Choose

s′ ← {0, 1}d, u′ ← {0, 1}� and seed′ ← Constrain(k,Cs′,u′).
2. Run (x, aux) ← SEDExt(·,seed′)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ←

{0, 1}d, u ← {0, 1}� and seed ← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 1 and 2 are statistically close. The only time Hybrid 1 differs from
Hybrid 2 is if in Hybrid 2 either: (A) some oracle query xi produced by S
satisfies Ext(xi; s′) = u′, or (B) some oracle query xi produced by S satisfy
Cs′,u′(x) = 0 ∧ F (k, x) �= F (k{Cs′,u′}, x). Since u′ is uniformly random, the
probability of (A) happening when S makes q queries is at most q/2� which
is negligible. By the correctness of the constrained PRF, the probability of
(B) happening is also negligible.

Hybrid 3: This is the same as Hybrid 2, except that in step 3, instead of
choosing u ← {0, 1}� we now set u = Ext(x; s). In detail, the hybrid is defined
as follows:
1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ. Choose

s′ ← {0, 1}d, u′ ← {0, 1}� and seed′ ← Constrain(k,Cs′,u′).
2. Run (x, aux) ← SEDExt(·,seed′)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ← {0, 1}d

u = Ext(x; s) and seed ← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 2 and 3 are statistically close if Ext is an (α, ε)-extractor. To argue
this, let us use capital letters to denote random variables for the correspond-
ing values in the experiment. Firstly, note that the view of the source S in
hybrid 2 is identically distributed to that of hybrid 0.3 Therefore, we can
rely on the legality to S (which is defined relative to the distribution of
hybrid 0) to argue that H∞(X|AUX,SEED′) ≥ α. By Lemma 1, we also have
H∞(X|AUX,SEED′, R) ≥ α − m ≥ α′. Lastly since K is independent of X
when conditioned on SEED′, R, we also have H∞(X|AUX,K,R) ≥ α′. There-
fore, by the security of the extractor, U = Ext(X;S) is statistically close
to a uniformly random and independent U even given AUX,K,R, S. Lastly,
since the view of D in hybrids 2 and 3 is a function of AUX,K,R, S, U where

3 This was the reason for introducing hybrid 2 rather than directly going from 1 to 3.

Extracting Randomness from Extractor-Dependent Sources 333

U = Ext(X;S) in hybrid 3 and U is uniform/independent in hybrid 2, the
two hybrids are statistically close.

Hybrid 4: This is the same as Hybrid 3, except that we switch back from giving
S oracle access to EDExt(·, seed′) to giving it access to the unconstrained PRF
F (k, ·). In detail, the hybrid is defined as follows:
1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ.
2. Run (x, aux) ← SF (k,·)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ← {0, 1}d

u = Ext(x; s) and seed ← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 3 and 4 are indistinguishable by the same argument as the indistin-
guishability of hybrid 1 and 2.

Advantage in Hybrid 4: We now claim that in Hybrid 4, the advantage
|Pr[b = b′] − 1

2 | is negligible by the no-constrained-evaluation security
of the constrained PRF. In particular, we define a reduction that runs
(x, aux) ← SF (k,·)(1λ) by making queries to its PRF oracle. The reduction
chooses s ← {0, 1}d, sets u = Ext(x; s) and gives the constraint Cs,u together
with the value x to its challenger. Since S is a legal source, x was never queried
by the oracle and, by the definition of the constraint, we have Cs,u(x) = 1.
Secondly, since Ext(·; s) is a universal hash function, the probability that of
any of the previous queries xi made by S satisfy Ext(xi; s) = Ext(x; s) is also
negligible. Therefore, our reduction makes no constrained-evaluation queries
to the PRF.
So, the reduction is a legal attacker in the no-constrained-evaluation secu-
rity game of constrained PRF. The reduction receives a value r, which is
either F (k, x) or uniform, along with a constrained key k{Cs,u}. It sets
seed = k{Cs,u} and outputs the bit b′ = D(1λ, seed, aux, r). The advantage of
the reduction in the constrained PRF security game is exactly the same as
that of the adversary in hybrid 3, and therefore the latter is negligible.

Since the advantage in hybrid 3 is negligible and hybrid 3 is indistinguishable
from hybrid 0, the advantage in hybrid 0 must be negligible as well. This proves
the theorem.

Corollary 2. Under the sub-exponential security of either the LWE assump-
tion or the DDHI assumption in an arbitrary prime-order group, there exists an
ED-Extractor for α-entropy sources with auxiliary info, for any α = λΩ(1) and
with any polynomial input length n and output length m. Security holds against
polynomial-time sources and distinguishers.

Proof. The work of [BV15] construct selectively secure constrained PRFs for
all circuits from LWE. We can then use complexity leveraging to get adaptive
security by assuming sub-exponential LWE. The results of [AMN+18] constructs
no-evaluation secure PRFs for NC1 from the DDHI assumption in arbitrary
prime-order groups (the also construct selectively secure PRFs from the DDHI
assumption in specific groups). We then use complexity leveraging to get no-
constrained-evaluation security under sub-exponential DDHI, as discussed in
the remarks after Definition 5.

334 Y. Dodis et al.

We use an extractor with output length α/4 which is secure for entropy
α′ = α/2 with ε = 2−(α/8) = negl(λ). We combine this with a constrained PRF
with output length m = α/2 which ensures α ≥ α′ + m. This gives us an ED-
Extractor with output length α/2 = λΩ(1). We can then use a PRG to then get
arbitrarily large polynomial output size as discussed in the Remark on Output
Size in Sect. 3.

5.2 Negative Results for ED Extractors with Auxiliary Info

Our constructions of ED-Extractors in the auxiliary info setting have several
disadvantages compared to our construction in the setting without auxiliary
info. Firstly, in the auxiliary info setting we needed complex constructions based
on “cryptomania” assumptions (LWE and DDHI), whereas in the setting with-
out auxiliary info, we showed that any sufficiently secure PRF is a good ED-
Extractor. Secondly, in the auxiliary info setting we only achieved security for
polynomial-time distinguishers while in the setting without auxiliary info we got
security even for computationally unbounded distinguishers. In this section, we
give some evidence that the two setting are substantially different and that we
indeed need to work harder and cannot hope for as much in the setting with
auxiliary info.

Not All PRFs Are ED-Extractors with Aux Info. Firstly, we show that
not every PRF is a good ED-Extractor in the setting with auxiliary info. We give
two variants of this result. The first is based on collision-resistant hash functions
(CRHFs) and gives a PRF that is not an α-ED-Extractor for entropy α = n−λε.
The second one is based on fully homomorphic encryption and gives a PRF that
is not an α-ED Extractor even for entropy α = n − 1. In both cases, the result
holds even if the PRF/ED-Extractor only outputs 1 bit.

CRHF-based Construction. Let F ′ : {0, 1}� × {0, 1}n′ → {0, 1} be a PRF
with key-length � = �(λ), input length n′ = n′(λ) and output length 1. Let
H : {0, 1}d × {0, 1}n → {0, 1}n′ be a collision-resistant hash function (CRHF)
with seed length d = d(λ), input length n = n(λ) and output length n′ = n′(λ).
We define a PRF F : {0, 1}�+d × {0, 1}n → {0, 1} as follows. Parse the key
k = (k′, s) with k′ ∈ {0, 1}�, s ∈ {0, 1}d. Define F (k, x):

– If x ≤ d output s[x], where we interpret x as an integer in the range [2n] and
s[x] denotes the x’th bit of s.

– Else output F (k′,H(s, x)).

It is easy to see that F is a PRF if F ′ is a PRF and H is a CRHF. On the other
hand it is not an α = (n − n′)-ED-Extractor. In particular, consider the source
that queries the oracle on values 1, . . . , d to learn the CRHF seed s. It then
chooses a random x ← {0, 1}n and outputs x, aux = H(s, x). It is clearly an α
legal source. Yet we can define a distinguisher D that gets k = (k′, s), aux, r and
outputs 1 iff r = F (k′, aux). Then D always outputs 1 if r is the outputs of the

Extracting Randomness from Extractor-Dependent Sources 335

ED-Extractor on x but only outputs 1 with probability 1/2 if r is truly random,
giving it a non-negligible advantage of 1/2. For parameters, we note that the
existence of CRHFs implies the existence of a CRHF with arbitrary polynomial
input size n = n(λ) and output size λε for any constant ε > 0. Therefore, we get
a PRF with arbitrary polynomial input size n = n(λ) and output size m = 1,
which is not an α-ED-Extractor for α = n − λε.

Theorem 6. Assuming the existence of collision-resistant hash functions, for
every polynomial n = n(λ) and every constant ε > 0 there exists a PRF with
n-bit input and 1-bit output which is not a secure α-ED-Extractor with auxiliary
input for α = n − λε.

FHE-based Construction. Let F ′ : {0, 1}� × {0, 1}n′ → {0, 1} be a PRF
with key-length � = �(λ), input length n′ = n′(λ) and output length 1. Let
(KeyGen,Enc,Dec,Eval) be an FHE scheme capable of evaluating the PRF F ′.
Furthermore assume that the ciphertexts are pseudorandom and that the Eval
procedure is statistically circuit private. Assume that the key-generation algo-
rithm and the encryption algorithm each use at most d = d(λ) bits of random-
ness, and that the encryption of an �-bit message produces an �′-bit ciphertext.
Define the PRF F : {0, 1}�+2d × {0, 1}n → {0, 1} as follows. Parse the key
k = (k′, s1, s2) with k′ ∈ {0, 1}�, s1, s2 ∈ {0, 1}d. Define F (k, x):

– Check if x ≤ �′(where we interpret x as an integer in the range [2n]). If so
let (pk, sk) ← KeyGen(1λ; s1), ct ← Enc(pk, k; s2). Output the x’th bit of ct
denoted by ct[x].

– Else output F (k, x).

It is easy to see that F is a secure PRF: by the security of the FHE with
pseudorandom ciphertexts, we can replace ct by a uniformly random value inde-
pendent of k, and by the security of the PRF F ′ the above is then a good PRF.
On the other hand it is not an α = (n−1)-ED-Extractor. In particular, consider
the source that queries the oracle on values 1, . . . , �′ to learn the the ciphertext
ct. It then chooses a random x ← {0, 1}n and outputs x, aux = Eval(F ′(·, x), ct)
so that aux is an FHE encryption of F ′(k, x). Since Eval is circuit private aux
does not reveal anything about x beyond F (k, x) and therefore is an α = n − 1
legal source. Yet we can define a distinguisher D that gets k = (k′, s1, s2), aux, r
and outputs 1 iff Dec(sk, aux) = r where (pk, sk) ← KeyGen(1λ; s1). Then D out-
puts 1 with probability 1) if r is the outputs of the ED-Extractor on x, but only
outputs 1 with probability 1/2 if r is truly random, giving it a non-negligible
advantage of 1/2 − negl(λ). Therefore, we get a PRF with arbitrary polynomial
input size n = n(λ) and output size m = 1, which is not an α-ED-Extractor for
α = n − 1.

Theorem 7. Assuming the existence of Fully Homomorphic Encryption (FHE)
with statistical circuit privacy and pseudorandom ciphertexts, for every polyno-
mial n = n(λ) there exists a PRF with n-bit input and 1-bit output which is not
a secure α-ED-Extractor with auxiliary input for α = n − 1.

336 Y. Dodis et al.

Black-Box Separations. We now show give two black-box separation results,
showing that certain types of ED-Extractors cannot be proven secure via a
black-box reduction from virtually any “standard” computational assumption
(e.g.,including general assumptions such as the existence of one-way functions
or public-key encryption, as well as specific assumptions such as DDH, LWE,
RSA, etc., even if we assume (sub-)exponential security). In particular, we show
two results of this type. Firstly, we show that one cannot prove the security of any
ED-Extractor in the auxiliary info setting against computationally unbounded
distinguishers (and polynomial-time sources) under such assumptions. This is
contrast to the setting without auxiliary info, where we were able to do so.
Secondly, we show that one cannot prove security in the auxiliary input set-
ting (even for polynomial-time sources and distinguisher) of any ED-Extractor
that has a certain type of seed-committing property: if you query the extractor
EDExt on some polynomial set of values x1, . . . , xq then the output uniquely
fixes a single possible seed that could have produced it. This is true for many
natural constructions, such as the Naor-Reingold PRF or most block-cipher and
hash-function based constructions. (But is crucially not true for our construc-
tions based on constrained PRFs.) We view this as partial evidence that more
complex constructions are necessary in the setting with auxiliary info.

Note that these results do not show that ED-Extractors with such proper-
ties cannot be constructed; in fact the work of Coretti et al. [CDKT19] in the
random-oracle model can be interpreted as showing that “good” hash functions
are heuristically likely to be good ED-Extractors in the auxiliary info setting
with security even against computationally unbounded distinguishers, and they
are also likely to be seed-committing. However, our results show that we cannot
prove security under standard assumptions.

Our results are of the same flavor as the work of Wichs [Wic13]. They define
the class of (single-stage) cryptographic game assumptions, which are modeled
via a game between a challenger and a stateful adversary. They require that any
polynomial-time (or sub-exponential time) attacker has at most a negligible (or
inverse sub-exponential) success probability in winning the game. This captures
essentially all standard assumptions used in cryptography. However, the secu-
rity definition of ED-Extractors is not a single-stage game since it involves two
separate entities (the source and the distinguisher) who cannot share state.

We use the “simulatable attacker” paradigm (also called a meta-reduction) to
prove our black box separations. This paradigm is formalized in [Wic13] and we
give a high-level overview. To prove a separation, we design a class of inefficient
attackers Ah indexed by some h that break the security property but otherwise
satisfy any structural/legality conditions (e.g., being multi-stage, entropy condi-
tions etc.). However we also design an efficient simulator A′ that may not satisfy
such conditions, such that one cannot distinguish between black-box access to Ah

for a random h versus A′. Therefore if some reduction can break an assumption
given black-box access to every Ah it would also be able to do so given access
to A′. If for any polynomial � we can further show such a simulatable attack

Extracting Randomness from Extractor-Dependent Sources 337

which is 2−�(λ) indistinguishable, then we also rule out black-box reductions
under sub-exponential or even exponential assumptions.

Unbounded Distinguishers. We first give a black-box reduction for ED-Extractors
in the auxiliary info setting with security against unbounded distinguishers. Since
the distinguisher can be computationally unbounded, a black-box reduction can-
not call it. Therefore it suffices to construct a class of simulatable inefficient
sources Ah that satisfy the legality conditions and ensure that for the output
(x, aux) it holds that seed, aux,EDExt(x, seed), is statistically far from seed, aux, u
where u is uniform. Our a high level, the source Ah that we construct makes
oracle queries and inefficiently learns the function EDExt(·, seed) sufficiently well
to predict EDExt(x, seed) for a random x with high accuracy without querying
it. It chooses such random x and sets aux to be a “statistically binding com-
mitment” of its prediction for EDExt(x, seed). This ensures that the distribution
of (seed, aux,EDExt(x, seed)) is statistically far from (seed, aux, uniform). The
commitment is generated using an exponentially large random function h and
can therefore be simultaneously statistically hiding and binding. Therefore this
attack is simulatable by an efficient simulator that chooses a random x and
outputs a commitment to a random value.

Theorem 8. For any candidate ED-Extractor (SeedGen,EDExt) with n(λ)-bit
input and 1 bit output and for any polynomial � = �(λ) there exists a 2−�(λ)-
simulatable attack against the α = (n−1)-ED-Extractor security of the candidate
in the setting with auxiliary info and unbounded distinguishers.

In particular, if there is a black-box reduction showing this type of security
for the candidate based on the security of some cryptographic game G, then G is
not secure. If the reduction is based on the 2�(λ)-security of the game G then G
is not 2�(λ) secure.

Proof. Assume that the length of seed ← SeedGen(1λ) is bounded by |seed| ≤
p(λ) for some polynomial p. Let q = q(λ) = 3p(λ) + λ. Let Hλ be the set of
all functions from {0, 1}�(λ) to {0, 1}. For any h ∈ Hλ, consider the inefficient
source Sλ,h that chooses x1, . . . , xq uniformly at random and queries its oracle
on them, gets back y1, . . . , yq, and finds the (lexicographically first) value seed′

such that EDExt(xi, seed
′) = yi for all i ∈ [q]. It chooses a random x, computes

z′ = EDExt(x, seed′) and sets aux = (r, h(r) ⊕ z′) where r ← {0, 1}�.
First we claim that for any h ∈ Hλ, the above source Sλ,h breaks the security

of the ED-Extractor with auxiliary info and an unbounded distinguisher. It’s
easy to see that Sλ,h is a legal source with entropy n − 1 since x is uniformly
random and aux can reveal at most 1-bit of information z′ about x. Secondly, we
claim that if Sλ,h has oracle access to EDExt(·, seed), then with overwhelming
probability the value seed′ that it finds must agree with seed on at least 3/4
of all inputs. Otherwise there exists some seed′ that agrees with seed on < 3/4
inputs yet agrees with it on x1, . . . , xq which occurs with probability at most
2p(3/4)q = negl(λ). This also implies that if we let z′ = EDExt(x, seed′), z =
EDExt(x, seed) in the experiment, then z′ = z′ with probability 3/4−negl(λ). But

338 Y. Dodis et al.

this shows that the distribution (seed, aux, u = EDExt(seed, x)) is statistically
far from (seed, aux, u ← {0, 1}) since in the first case, if we let aux = (r, v) then
h(r)⊕ v = u with probability at least 3/4−negl(λ) while in the second case this
happens with probability at most 1/2.

Secondly, we claim that for a random h ← Hλ, the above source Sλ,h can
be simulated by an efficient S ′

λ that runs in time poly(λ). We define S ′
λ which

chooses x1, . . . , xq uniformly at random and queries its oracle on them, gets back
y1, . . . , yq, and outputs a uniformly random (r, v) ← {0, 1}� × {0, 1}.

The only way that Sλ,h for a random h can be distinguished from S ′
λ using

black-box access is if two different executions of S use the same randomness r.
Given Q queries to S, this happens with probability at most poly(Q)2�.

Seed-Committing Extractors. We show that one cannot prove security in the
auxiliary input setting (even for polynomial-time sources and distinguisher) of
any ED-Extractor that has a certain type of seed-committing property.

Definition 7. An ED-Extractor is seed-committing if there exist some poly-
nomial q = q(λ) and some inputs x1, . . . , xq ∈ {0, 1}n(λ) such that for any
seed, seed′ for which EDExt(xi, seed) = EDExt(xi, seed

′) for all i ∈ [q] it must
hold that for all x∗ we have EDExt(x∗, seed) = EDExt(x∗, seed′).

For example, if we use the Naor-Reingold PRF [NR97] as an ED-Extractor
then it is seed-committing. Moreover, we believe that ED-Extractor construc-
tions using standard hash-functions and block-cipher will be seed-committing.

Theorem 9. For any candidate seed-committing ED-Extractor (SeedGen,
EDExt) with n(λ)-bit input and m(λ) bit output and for any polynomial � = �(λ)
there exists a 2−�(λ)-simulatable attack against the α = (n − 1)-ED-Extractor
security of the candidate in the setting with auxiliary info.

In particular, if there is a black-box reduction showing this type of security
for the candidate based on the security of some cryptographic game G, then G is
not secure. If the reduction is based on the 2�(λ)-security of the game G then G
is not 2�(λ) secure.

Proof. Let Hλ be the set of all pairs of functions h1 : {0, 1}� → {0, 1}q�+1,
h2 : {0, 1}q�+1 → {0, 1}�. First we define (Ench1,h2 ,Dech1,h2) to be an
information-theoretic authenticated encryption scheme whose key is h1, h2. In
particular, Ench1,h2(m) = (r, h1(r) ⊕ m,h2(r, h1(r) ⊕ m)) where r ← {0, 1}�

is uniformly random and Dech1,h2(r, c, σ) = h1(r) ⊕ c if h2(r, c) = σ and ⊥
otherwise.

For any h = (h1, h2) ∈ Hλ, consider an inefficient source/distinguisher pair
Aλ,h = (Sλ,h,Dλ,h) defined as follow. The source Ssec,h chooses x1, . . . , xq

as given by the seed-committing definition and queries its oracle on them,
gets back y1, . . . , yq, and finds the (lexicographically first) seed′ such that
EDExt(xi, seed

′) = yi for all i ∈ [q]. It chooses a random x, computes z′ to
be the first bit of EDExt(x, seed′) and sets aux ← Ench(y1, . . . , yq, z

′). The dis-
tinguisher Dλ,h gets (seed, aux, u), it computes z to be the first bit of u. It sets

Extracting Randomness from Extractor-Dependent Sources 339

Dech(aux) = (y1, . . . , yq, z
′). If EDExt(seed, xi) = yi for all i ∈ [q] and z′ = z it

outputs 0 else 1.
It is easy to see that, for any h, the adversary Aλ,h is an α = (n − 1)-legal

adversary and breaks ED-Extractor security with advantage 1/4: If the challenge
bit is b = 0, the distinguisher always outputs 0 and if the challenge bit is b = 1
the distinguisher only outputs 1 with probability > 1/2.

Secondly, for a random h = (h1, h2) the adversary Aλ,h can be efficiently
simulated by a stateful adversary A′ = (S ′,D′) that acts as both the source and
the distinguisher but allows them to share state. On input y1, . . . , yq to S ′, it
chooses a random x, aux and remembers the tuple (aux, y1, . . . , yq, x). On input
(seed, aux, u) to D′ it checks if it stores a tuple of the form (aux, y1, . . . , yq, x). If
it does store such a tuple and EDExt(seed, xi) = yi for all i ∈ [q] and u is equal
to the first bit of EDExt(x, seed) it outputs 0 else 1.

To show that one cannot distinguish between black-box access to A vs A′

we define an intermediate A∗ which is inefficient but also stateful. In particular,
A∗ = (S∗,D∗) acts just like A, but instead of encrypting, the source S sets
aux to be uniformly random and stores the tuple (aux, y1, . . . , yq, z

′) and instead
of decrypting D∗ retrieves the tuple indexed by aux to uses the corresponding
(y1, . . . , yq, z

′).
Firstly, we claim that A and A∗ are indistinguishable by any (comp.

unbounded) distinguisher that makes Q queries with probability better than
poly(Q) · 2−�. This essentially follows by the authenticated-encryption security
of the encryption scheme.

Secondly, we claim that A∗ and A′ are perfectly indistinguishable. The
only difference between them is that A∗ compares u against the first bit of
EDExt(seed′, x) while A′ compares it against EDExt(seed, x). But since seed, seed′

agree on x1, . . . , xq, the seed-committing property ensures that EDExt(seed′, x) =
EDExt(seed, x).

Acknowledgements. YD was partially supported by gifts from VMware Labs, Face-
book and Google, and NSF grants 1314568, 1619158, 1815546. VV was supported
in part by NSF Grants CNS-1350619 and CNS-1414119, an NSF-BSF grant CNS-
1718161, the Defense Advanced Research Projects Agency (DARPA) and the U.S.
Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236,
an IBM-MIT grant and a Microsoft Trustworthy and Robust AI grant. DW was sup-
ported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795 and the Alfred P.
Sloan Research Fellowship.

References

[AMN+18] Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa,
T.: Constrained PRFs for NC1 in traditional groups. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 543–
574. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0 19

https://doi.org/10.1007/978-3-319-96881-0_19
https://doi.org/10.1007/978-3-319-96881-0_19

340 Y. Dodis et al.

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudo-
random functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 29

[BH05] Barak, B., Halevi, S.: A model and architecture for pseudo-random gen-
eration with applications to /dev/random. In: Atluri, V., Meadows, C.,
Juels, A. (eds.) ACM CCS 2005: 12th Conference on Computer and Com-
munications Security, pp. 203–212. ACM Press, November 2005

[BHK13] Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles
via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 23

[BIW04] Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using
few independent sources. In: 45th Annual Symposium on Foundations of
Computer Science, pp. 384–393. IEEE Computer Society Press, October
2004

[Blu86] Blum, M.: Independent unbiased coin flips from a correlated biased
source-a finite state Markov chain. Combinatorica 6(2), 97–108 (1986)

[BST03] Barak, B., Shaltiel, R., Tromer, E.: True random number generators
secure in a changing environment. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45238-6 14

[BV15] Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs
from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 1

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0 15

[CDKT19] Coretti, S., Dodis, Y., Karthikeyan, H., Tessaro, S.: Seedless fruit is the
sweetest: random number generation, revisited. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 205–234.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 8

[CG85] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity (extended abstract). In: 26th
Annual Symposium on Foundations of Computer Science, pp. 429–442.
IEEE Computer Society Press, October 1985

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput. 17(2),
230–261 (1988)

[CGH+85] Chor, B., Goldreich, O., H̊astad, J., Friedman, J., Rudich, S., Smolensky,
R.: The bit extraction problem of t-resilient functions (preliminary ver-
sion). In: 26th Annual Symposium on Foundations of Computer Science,
pp. 396–407. IEEE Computer Society Press, October 1985

[CZ16] Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and
resilient functions. In: Wichs, D., Mansour, Y. (eds.) 48th Annual ACM
Symposium on Theory of Computing, pp. 670–683. ACM Press, June
2016

https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-540-45238-6_14
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-030-26948-7_8

Extracting Randomness from Extractor-Dependent Sources 341

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. SIAM J.
Comput. 38(1), 97–139 (2008)

[DPR+13] Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security
analysis of pseudo-random number generators with input: /dev/random
is not robust. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS
2013: 20th Conference on Computer and Communications Security, pp.
647–658. ACM Press, November 2013

[DRV12] Dodis, Y., Ristenpart, T., Vadhan, S.: Randomness condensers for effi-
ciently samplable, seed-dependent sources. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 618–635. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28914-9 35

[DSSW14] Dodis, Y., Shamir, A., Stephens-Davidowitz, N., Wichs, D.: How to eat
your entropy and have it too – optimal recovery strategies for compro-
mised RNGs. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
II. LNCS, vol. 8617, pp. 37–54. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 3

[DVW19] Dodis, Y., Vaikuntanathan, V., Wichs, D.: Extracting randomness
from extractor-dependent sources. Cryptology ePrint Archive, Report
2019/1339 (2019). https://eprint.iacr.org/2019/1339

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: 25th Annual Symposium on Foundations of
Computer Science, pp. 464–479. IEEE Computer Society Press, October
1984

[GT16] Gaži, P., Tessaro, S.: Provably robust sponge-based PRNGs and KDFs.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 87–116. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49890-3 4

[Hut16] Hutchinson, D.: A robust and sponge-like PRNG with improved efficiency.
Cryptology ePrint Archive, Report 2016/886 (2016). http://eprint.iacr.
org/2016/886

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: Johnson, D.S. (ed.) Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing, Seat-
tle, Washigton, USA, 14–17 May 1989, pp. 12–24. ACM (1989)

[IZ89] Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: 30th
Annual Symposium on Foundations of Computer Science, pp. 248–253.
IEEE Computer Society Press, October/November 1989

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer and
Communications Security, pp. 669–684. ACM Press, November 2013

[KRVZ11] Kamp, J., Rao, A., Vadhan, S.P., Zuckerman, D.: Deterministic extractors
for small-space sources. J. Comput. Syst. Sci. 77(1), 191–220 (2011)

[LLS89] Lichtenstein, D., Linial, N., Saks, M.E.: Some extremal problems arising
form discrete control processes. Combinatorica 9(3), 269–287 (1989)

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: 38th Annual Symposium on Foundations
of Computer Science, pp. 458–467. IEEE Computer Society Press, Octo-
ber 1997

https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-662-44381-1_3
https://doi.org/10.1007/978-3-662-44381-1_3
https://eprint.iacr.org/2019/1339
https://doi.org/10.1007/978-3-662-49890-3_4
https://doi.org/10.1007/978-3-662-49890-3_4
http://eprint.iacr.org/2016/886
http://eprint.iacr.org/2016/886

342 Y. Dodis et al.

[NZ93] Nisan, N., Zuckerman, D.: More deterministic simulation in logspace. In:
25th Annual ACM Symposium on Theory of Computing, pp. 235–244.
ACM Press, May 1993

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput.
Syst. Sci. 52(1), 43–52 (1996)

[PS18] Peikert, C., Shiehian, S.: Privately constraining and programming PRFs,
the LWE way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II.
LNCS, vol. 10770, pp. 675–701. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-76581-5 23

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on
Theory of Computing, pp. 187–196. ACM Press, May 2008

[Raz05] Raz, R.: Extractors with weak random seeds. In: Gabow, H.N., Fagin,
R. (eds.) 37th Annual ACM Symposium on Theory of Computing, pp.
11–20. ACM Press, May 2005

[ST17] Soni, P., Tessaro, S.: Public-seed pseudorandom permutations. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211,
pp. 412–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 14

[TV00] Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable dis-
tributions. In: 41st Annual Symposium on Foundations of Computer Sci-
ence, pp. 32–42. IEEE Computer Society Press, November 2000

[von51] von Neumann, J.: Various techniques used in connection with random
digits. In: Householder, A.S., Forsythe, G.E., Germond, H.H. (eds.)
Monte Carlo Method. National Bureau of Standards Applied Mathemat-
ics Series, vol. 12, pp. 36–38. U.S. Government Printing Office, Washing-
ton, D.C. (1951)

[Wic13] Wichs, D.: Barriers in cryptography with weak, correlated and leaky
sources. In: Kleinberg, R.D. (ed.) ITCS 2013: 4th Innovations in Theoret-
ical Computer Science, pp. 111–126. Association for Computing Machin-
ery, January 2013

https://doi.org/10.1007/978-3-319-76581-5_23
https://doi.org/10.1007/978-3-319-76581-5_23
https://doi.org/10.1007/978-3-319-56614-6_14
https://doi.org/10.1007/978-3-319-56614-6_14

How to Extract Useful Randomness
from Unreliable Sources

Divesh Aggarwal3(B), Maciej Obremski3(B), João Ribeiro2, Luisa Siniscalchi1,
and Ivan Visconti4

1 Concordium Blockchain Research Center, Aarhus University, Aarhus, Denmark
lsiniscalchi@cs.au.dk

2 Imperial College London, London, UK
j.lourenco-ribeiro17@imperial.ac.uk

3 National University of Singapore, Singapore, Singapore
divesh@comp.nus.edu.sg, obremski.math@gmail.com

4 University of Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. For more than 30 years, cryptographers have been looking
for public sources of uniform randomness in order to use them as a set-
up to run appealing cryptographic protocols without relying on trusted
third parties. Unfortunately, nowadays it is fair to assess that assuming
the existence of physical phenomena producing public uniform random-
ness is far from reality.

It is known that uniform randomness cannot be extracted from a sin-
gle weak source. A well-studied way to overcome this is to consider several
independent weak sources. However, this means we must trust the various
sampling processes of weak randomness from physical processes.

Motivated by the above state of affairs, this work considers a set-
up where players can access multiple potential sources of weak ran-
domness, several of which may be jointly corrupted by a computation-
ally unbounded adversary. We introduce SHELA (Somewhere Honest
Entropic Look Ahead) sources to model this situation.

We show that there is no hope of extracting uniform randomness from
a SHELA source. Instead, we focus on the task of Somewhere-Extraction
(i.e., outputting several candidate strings, some of which are uniformly
distributed – yet we do not know which). We give explicit constructions
of Somewhere-Extractors for SHELA sources with good parameters.

Then, we present applications of the above somewhere-extractor where
the public uniform randomness can be replaced by the output of such
extraction from corruptible sources, greatly outperforming trivial solu-
tions. The output of somewhere-extraction is also useful in other settings,
such as a suitable source of random coins for many randomized algorithms.

In another front, we comprehensively study the problem of
Somewhere-Extraction from a weak source, resulting in a series of bounds.
Our bounds highlight the fact that, in most regimes of parameters
(including those relevant for applications), SHELA sources significantly
outperform weak sources of comparable parameters both when it comes
to the process of Somewhere-Extraction, and in the task of amplification

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 343–372, 2020.
https://doi.org/10.1007/978-3-030-45721-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_13

344 D. Aggarwal et al.

of success probability in randomized algorithms. Moreover, the low qual-
ity of somewhere-extraction from weak sources excludes its use in various
efficient applications.

1 Introduction

Perfect (i.e., uniform) public randomness is an extremely valuable resource in
computer science, and in cryptography in particular. For example, it can be used
to create a Common Reference String (CRS) drawn from an uniform distribu-
tion, which is a widely used set-up for cryptographic protocols. However, the
randomness that we can obtain from physical phenomena (such as solar radia-
tion, temperature readings, and electricity fluctuations) is far from perfect (in
particular when public randomness sources are taken into account). Such phe-
nomena belong to the family of weak randomness sources [20]. These are sources
that carry some min-entropy, but are still very far from uniformly distributed. As
a result, in most applications a so-called randomness extractor must be applied
to the weak sources in order to extract (close to) uniformly distributed bits. A
basic result about randomness extraction dictates that deterministic extraction
from one weak source is not possible. Nevertheless, deterministic extraction is
possible if one has access to at least two independent weak sources.

Sampling from several independent physical weak sources presents serious secu-
rity issues. For example, if different phenomena are being publicly measured (to
ensure some kind of independence), then different instrumentation and potentially
different entities must be involved in the sampling process. Not only that, but sam-
pling may also be compromised by instrument failures. Going back to our CRS
example, if we want to generate CRS from such sources, then we are assuming that
every instrument and entity that took part in sampling the weak sources is trusted.
This is not a desirable situation, and indeed it was previously noticed that gener-
ating a uniformly distributed CRS from such weak sources is complicated [15]. A
natural question follows: Which forms of common public set-up can we achieve (or,
more generally, what kind of randomness can we extract) if some of the sources are
maliciously corrupted, but some of them remain honest?

Intuitively, this scenario leads us to define a structured weak source in an
adversarial setting where a sample from the source is divided into multiple sub-
parts, that we call blocks. One may imagine that each block corresponds to a
different sampling process as per the previous paragraph. In this setting there
is an ordered sequence of samplings from the sub-sources and some of them
are controlled by the adversary. More specifically, the adversary can decide the
positions of the honest blocks since it can decide which sampling processes to
corrupt. Honest blocks correspond to (correct) samples from independent weak
sources (these sources are known to the adversary but are not controlled by the
adversary). Given a sequence of blocks the sampling proceeds by obtaining blocks
in chronological order. As a result, if the i-th block is to be corrupted, then the
adversary is allowed to fix it to any value based on the (already determined)
values from the first through (i − 1)-th blocks.

How to Extract Useful Randomness from Unreliable Sources 345

We will call such source a “t-out-of-�” Somewhere Honest Entropic Look-
Ahead (SHELA) source, where � indicates the total number of blocks, out of
which t must be honest. We consider only the case t ≥ 2, since the case t = 1
essentially reduces to the setting with a single weak source. Moreover, we assume
without loss of generality1 that each block has length n, and the honest blocks
have min-entropy at least k for some decent parameter k. Observe that corrupted
blocks are heavily correlated with previous honest blocks, and may even have
zero min-entropy. Moreover, we allow the number of honest blocks t to be any
function of �, as long as t ≥ 2.

There is a second real-world scenario that can be naturally modelled as a
SHELA source. Some blockchains can be considered as sequences of blocks gen-
erated in chronological order, some of which contain high min-entropy strings.
For instance, such strings could be the new wallet’s identifier used to cash a
reward when a new block is added to the chain, financial data containing some
min-entropy [21], or a random nonce added for some security reasons. It is well-
known [40,59] that in a sequence of blocks of the blockchain there will be a
fraction ν of them added by honest players. Moreover, we could assume that
when a new block is added to the blockchain by an honest player, such a block
(sometimes) contains high min-entropy strings that are independent of the pre-
vious ones already in the blockchain (we notice that a similar assumption has
already been used in [66]). Therefore, if we consider � consecutive blocks and for
each of them we consider the part of the block that, in case the block is honest,
could contain an independent weak source with decent min-entropy, we obtain
a public SHELA source2.

1.1 Our Contributions

Our main goal in this paper is to study SHELA sources and what kind of appli-
cations their availability enables.

The first natural question that arises when encountering SHELA sources is
the following: Are we able to extract independent and (close to) uniformly dis-
tributed bits from it? We will prove in this work that the answer to this question
is negative. Given this, we shift our focus from standard randomness extrac-
tion, and instead we investigate the possibility of constructing a deterministic
somewhere-extractor SomeExt for SHELA sources. Intuitively, the somewhere-
extractor SomeExt takes as input a SHELA source and outputs a distribution
that is close (in statistical distance) to a convex combination of so-called “T -out-
of-L” Somewhere-Random (SR) sources. SR sources are composed of L blocks,
1 Given blocks of different sizes, one can always fill out the shorter blocks with zeros,

similarly given blocks of different min-entropy we can assume k to be the minimum
of min-entropies of honest blocks.

2 In this example we are assuming that when using a blockchain as a SHELA source,
the adversary of the sampling procedure from a SHELA source has no control over
the choices of the honest blocks posted permanently in the blockchain (i.e., the
adversary does not decide which honest block is selected and remains permanently
in the blockchain out of multiple candidates).

346 D. Aggarwal et al.

T of which (at fixed, unknown positions) are jointly independent and uniformly
distributed. We call a convex combination of SR-sources a convSR-source for
short.

It turns out that convSR sources are an extremely useful type of random-
ness. For example, armed with our somewhere-extractor, we show how to build
non-interactive (and thus accepted by any receiver) commitments from one-way
functions and non-interactive (and thus publicly verifiable) witness indistinguish-
able proofs from generic complexity assumptions3 when both players (a sender
and a receiver, or a prover and a verifier, respectively) have access to a pub-
lic SHELA source. Remarkably, convSR-sources are also important intermediate
objects used in the construction of multi-source and non-malleable extractors
for weak sources (we discuss this in more detail later).

Parameters of the somewhere-extractor for SHELA sources. The com-
putational complexity and security of our applications of convSR-sources will
heavily depend on various parameters of the convSR-source: the number of total
blocks L, the number of “good” (i.e., independent and uniformly distributed)
blocks T , and the length m of each block. In turn, these depend on the parame-
ters of the underlying SHELA source and the quality of the somewhere-extractor.

Ideally, we want our somewhere-extractor SomeExt to extract a convSR source
with low error, small number of total blocks, and large block length from a
SHELA source. More precisely, the error ε of SomeExt should satisfy ε = 2−Ω(n),
where n is the block length of the SHELA source, the total number L of blocks
of the convSR source should be at most O(�), where � denotes the total number
of blocks in the SHELA source, and the length m of each output block should
satisfy m = Ω(n). We will comment later that these parameters ensure that
the output of SomeExt can be used in our applications without compromising
security, while ensuring that the efficiency and reliability of the application in
question remain good enough.

Moreover, we do not want to assume that honest blocks in the SHELA source
must have significant amounts of min-entropy for extraction to be successful.
Instead, we aim to extract such high-quality convSR-sources from SHELA sources
whose honest blocks have arbitrary constant min-entropy rate. In other words,
we allow the min-entropy k of each honest n-bit block to satisfy k = δn for an
arbitrarily small constant δ > 0.

A very first naive approach to designing a somewhere-extractor (that we will
denote by NaiveSomeExt) is to apply a c-source extractor, for c ≥ 2, to every
subset of c blocks of a SHELA source. This immediately leads to a convSR-source.
However, the total number of output blocks satisfies L = Θ(�c) for c ≥ 2, where
� denotes the total number of blocks of the SHELA source. This leads to a much
worse efficiency blow-up for applications than what we aim to obtain, as detailed
earlier. Another problem of the naive construction is that, if we wish to minimize
the blowup of L with respect to � by setting c = 2, we run into problems of

3 We will show how to start from any public-coin 2-round WI proof system in the stan-
dard model which in turn means any non-interactive zero-knowledge proof system
in the common random string model [34].

How to Extract Useful Randomness from Unreliable Sources 347

explicitness. In fact, known explicit constructions of 2-source extractors require
sources with high min-entropy to achieve exponentially small error [12,18,46].
We also note that, besides leading to worse efficiency, using a c-source extractor
for c > 2 requires assuming that there are at least c > 2 honest blocks in the
SHELA source, which might not be reasonable in some scenarios.

In this work, we design a non-trivial somewhere-extractor SomeExt that
achieves our ideal goals put forth above. We begin by looking at the setting where
the min-entropy rate k/n of honest blocks in the SHELA source is a large enough
constant. In this case, if X ∈ {0, 1}n·� is a t-out-of-� SHELA source with honest
block min-entropy k = δn, then SomeExt(X) is ε-close to a T -out-of-L convSR-
source Y ∈ {0, 1}m·L with T = t − 1, L = � − 1, ε = 2−Ω(n), and output block
length m = Ω(n). The only thing missing is that, as previously discussed, we wish
to extract with similar parameters from SHELA sources whose honest blocks have
arbitrarily small constant min-entropy rate (i.e., k = δn for arbitrarily small con-
stant δ > 0). Notably, using a modified construction, we are able to transfer these
ideal parameters to the “arbitrary constant min-entropy rate” setting. The only
difference is that now L = O(�).

Somewhere-extraction of SHELA source vs. weak source. We have
already established that we can deterministically extract high-quality convSR-
sources from SHELA sources. However, an attentive reader might notice that
deterministic somewhere extraction is also possible from weak sources. In fact,
any strong seeded (k, ε)-extractor with seed length d yields a somewhere-
extractor with error ε, L = 2d total output blocks, and T = 1 uniform blocks for
weak sources with min-entropy at least k by considering a block for each possible
fixing of the seed. This naive construction of a convSR-source is actually crucial
in many constructions of multi-source extractors (we expand on this later in
this section). However, it has strong limitations. In particular, even if we use an
optimal strong seeded extractor, seed length lower bounds [61] imply that

L = Ω

(
1
ε2

)
. (1)

This means that if we require ε = 2−Ω(n), then L = 2Ω(n), which precludes any
efficient cryptographic application of the resulting convSR-source.

Given the above shortcoming, one might wonder whether significantly better
somewhere-extractors exist for weak sources. We dedicate part of our paper to
the study of this problem. It turns out that the answer to this question is largely
negative. In particular, a disperser-based lower bound shows that, similarly to
the naive construction above, every somewhere-extractor for weak sources with
error ε = 2−Ω(n) and output block length m = Ω(n) must have L = 2Ω(n) total
output blocks.

In our work, we derive a set of lower bounds that complement each other and
succeed in showing that somewhere-extractors for weak sources must perform
significantly worse than the analogous objects for SHELA sources over various
regimes of parameters. We are particularly interested in lower bounds on the total

348 D. Aggarwal et al.

number of blocks of the output convSR-source, as this dictates the computational
complexity blow-up suffered by a protocol when using this source. In the end,
we put forth the conjecture that the above lower bound (1) actually holds for
every somewhere-extractor (regardless of the output block length m), and we
make some progress towards proving it.

Randomized algorithms and amplification of success probability using
SHELA source vs. weak source. We remark that convSR-sources are well-
suited for simulation of randomized algorithms whose outputs can be efficiently
checked for correctness (e.g., searching for witnesses for the membership of some
string in an NP language, or approximation algorithms for NP languages). In
fact, one can simply run the algorithm using each block as its randomness. As a
result, one obtains a few candidate solutions, and can efficiently check if at least
one of them is correct. The success probability of the algorithm is thus amplified
by the number of good (i.e., uniform) blocks.

It is well-known and easy to see that, in the procedure above, we do not need
good blocks to be exactly uniformly distributed. Indeed, it is enough to rely
on the weaker guarantee that good blocks are sufficiently close to uniform in
statistical distance, say, 1/poly(n)-close, where n is some soundness parameter.
We call this weaker family of sources somewhere-amplifiable (SA) sources, and
denote the class of convex combinations of SA-sources as convSA-sources.

While weak sources can be used to efficiently produce convSA-sources, we
show that this comes at a heavy price: Roughly speaking, if one wants to gener-
ate enough, and long enough, good blocks for appropriate and efficient success
probability amplification, then the weak source needs to have very high min-
entropy. Therefore, in many reasonable regimes of parameters, one is unable to
extract suitable convSA-sources from weak sources, while one can extract high-
quality convSR-sources (a stronger notion) from SHELA sources in those regimes.
We refer to Sect. 6 for a more detailed discussion.

We conclude from the two discussions above that there is a fundamental sep-
aration between somewhere-extraction from SHELA and weak sources. Indeed,
we are able to efficiently extract convSR-sources with much higher quality from
a SHELA source than what we can obtain from a weak source.

Non-interactive witness indistinguishable proofs assuming public-coin
ZAPs and relying on public SHELA sources. In a proof system, a prover
proves to a verifier the veracity of some statement x ∈ L (where L is an NP-
language). A soundness property guarantees that it is unlikely that an honest
verifier accepts the proof of a false statement. When a proof system is non-
interactive any verifier is able to check the validity of the proof. Non-interactive
proofs are therefore publicly verifiable and they are very appealing since the
prover computes the proof once, while still it can be useful in many different
cases (i.e., with many different verifiers). Non-interactiveness is usually trivial
since a prover could just send a witness proving membership in the language. The
interesting case consists of offering some form of privacy for the secret (i.e., the
witness) of the prover. We will in particular consider witness indistinguishability

How to Extract Useful Randomness from Unreliable Sources 349

[36] that requires that the proof hides which witness has been used by the prover
out of multiple witnesses. A special category of interactive proof systems is called
“public coin” and refers to the role of the verifier that sends random strings
only as messages. When there is only one message played by the verifier then
a 2-round witness indistinguishable proof system is referred as ZAP [34]. The
round of the verifier can be recycled among any polynomial number of proofs
givens by provers. Since public-coin ZAPs exist, a natural question is whether
the verifier can just be replaced by a sample from a high min-entropy source,
therefore obtaining a non-interactive WI proof under the same computational
assumptions of ZAPs and relying on the existence of SHELA sources. The answer
is unfortunately negative. Indeed, consider the ZAP of [34]. The message of the
prover consists of computing some non-interactive zero-knowledge (NIZK) proofs
in the common random string model. In general, NIZK proofs (e.g., [36]) are not
sound when the common random string is replaced by the output of high min-
entropy sources. In turn, when trying to make a generic public-coin ZAP relying
on a high min-entropy source non-interactive, soundness could be lost. Moreover,
the issue with soundness remains also in case of parallel repetition since for some
high min-entropy sources an accepting proof of a false statement can be produced
with probability 1.

On the positive side, equipped with our constructive results about obtaining
a convSR-source from a SHELA source, we show that assuming a public SHELA
source, non-interactive witness indistinguishable proofs exist by just using a
parallel repetition of any public-coin ZAP4.

Finally, we notice that Goyal and Goyal [41] construct a non-interactive
zero-knowledge argument of knowledge relying on any proof-of-stake (PoS)
blockchain. The construction of [41] requires the existence of non-interactive
witness-indistinguishable proof systems. If the proof-of-stake blockchain can be
used to implement a SHELA source (as discussed previously), then by plugging
our non-interactive witness-indistinguishable proof system in the construction
of [41] we obtain a non-interactive zero-knowledge argument of knowledge with
improved complexity assumptions using specific PoS blockchains.

Non-interactive commitments from one-way functions and SHELA
sources. In a commitment scheme, sender and receiver interact in a commit-
ment phase so that the (even malicious) sender can later on show only one
message consistent with such interaction, while the (even malicious) receiver has
no specific advantage in detecting the message committed by the sender. The
security property for the receiver is called “binding” while the security for the
sender is called “hiding”.

Non-interactive commitments guarantee that the sender has to work only once
to produce a commitment of a message, while this commitment can be used to
convince any receiver about the committed message. We focus on statistically

4 Notice that we are considering generic weak sources and it is unknown whether such
distributions can all be efficiently simulatable. Consequently we cannot obtain a
non-interactive zero knowledge proof.

350 D. Aggarwal et al.

binding commitments where, except with negligible probability, there is a unique
message that is consistent with the transcript of the commitment phase, regardless
of the computational power of the (even malicious) sender. A commitment scheme
is “public coin” if the receiver sends only random strings.

Public-coin statistically binding commitment schemes in two rounds exist
under the minimal assumption of the existence of any one-way function [56]. A
natural question is whether, given any public-coin 2-round commitment scheme
from one-way functions, the receiver can just be replaced by a sample from a high
min-entropy source, therefore obtaining a non-interactive commitment scheme
relying on the existence of SHELA sources5. We show that the answer is in
general negative, by providing a variation of the construction of [56] where the
binding property breaks down when the first round is sampled from a specific
SHELA source. Moreover, parallel repetitions do not help to obtain binding.
The construction of [56] can become non-interactive using any SHELA source,
however in this last case there is a price to pay in communication complexity
since the size of the resulting non-interactive commitment scheme is equal to the
size of the SHELA source X.

The real good news come from using our tool: a convSR-source extracted
from a SHELA source (without adding any computational assumption). Indeed,
in this case we can get a non-interactive statistically binding commitment scheme
just by running a parallel repetition of any public-coin 2-round statistically bind-
ing commitment scheme. When applied to the scheme of [56], we can get better
communication complexity compared to the previously described approach that
consists of using a SHELA source directly. Indeed, consider a 2-round statisti-
cally binding commitment scheme where the first round of the receiver (in the
commitment phase) consists of λ bits, and let us assume that in each high min-
entropy honest block of a 2-out-of-� SHELA there are k bits of min-entropy,
where k � λ. If Y = SomeExt(X) ∈ {0, 1}m·L for L = � − 1 and we set m = λ
(by truncation), then |Y | = m · L � n · � = |X|. Therefore, with the parameters
discussed above, if we instantiate the scheme of [56] using X directly, the result-
ing non-interactive commitment scheme has significantly worse communication
complexity than the one built from the convSR-source.

Additional contributions. In the full version of this work [1], we also consider
somewhere-extraction from an online variant of SHELA sources.

1.2 Related Work

Applications of convSR-sources in pseudorandomness. We would like to
point out that the convSR-sources are also very useful in a context different than
those already presented. Indeed, convSR-sources are key intermediate objects in
several constructions of multi-source and non-malleable randomness extractors
for weak sources. A central approach in such constructions is to reduce the task of
extracting a uniform string from independent weak sources to that of extracting

5 We recall that obviously a SHELA source is also a high min-entropy source.

How to Extract Useful Randomness from Unreliable Sources 351

such a string from one or more independent convSR-sources potentially satisfying
a few additional properties, sometimes coupled with additional independent weak
sources or small uniform seeds.

The connection between multi-source extraction and convSR-sources has been
known since they were first defined [67]. convSR-sources have also been used in
early constructions of seeded extractors [55].

Barak et al. [2] and Raz [64] showed how to convert two independent weak
sources into an convSR-source with few blocks. This reduction was then used
directly to obtain 3- and 4-source extractors with constant error. Such an app-
roach has also proved useful in the construction of dispersers [2,3].

To obtain extractors for a constant number of sources with lower error and
min-entropy requirement nΩ(1), Rao [63] transforms independent input sources
into several independent aligned convSR-sources, i.e., there is at least one posi-
tion at which all convSR-sources have a uniform block. If the number of blocks
in each convSR-source is not too large, then an iterative procedure succeeds in
extracting a uniform string from such independent aligned convSR-sources with
small error. Li [48] also used a similar approach with aligned convSR-sources to
obtain better 3-source extractors.

An important step in many recent constructions of 2- and 3-source extrac-
tors [7,18,50–53] consists in generating convSR-sources with many “good” blocks
(i.e., blocks close to uniform) which additionally satisfy a notion of w-wise inde-
pendence for an appropriate parameter w: Every set of w good blocks is also close
to jointly uniformly distributed. convSR-sources are also used in other recent con-
structions of multi-source extractors [22,23].

The usefulness of convSR-sources extends to more recent notions of random-
ness extraction. In fact, convSR-sources have been used in the construction of
seedless non-malleable extractors [17] for weak sources, which are closely con-
nected to non-malleable codes.

The ubiquity of convSR-sources (generated from weak sources) in extractor
constructions provides one more compelling reason for our study of lower bounds
for deterministic somewhere-extraction from weak sources.

Finally, we should mention that, because of the close connection between
convSR-sources and randomness extraction from general weak sources, several
works other than those already mentioned have focused directly on designing
randomness extractors for the restricted class of convSR-sources [29,31–33,73].
Such extractors are usually called mergers.

Deterministic randomness extraction from restricted classes of sources.
Our work is also related to the fundamental and well-studied problem of determin-
istic randomness extraction. Given the impossibility of deterministic extraction
from general weak sources, the following natural question arises: Under which con-
ditions is deterministic randomness extraction possible from imperfect sources of
randomness?

Several works (some even predating the definition of weak sources [20])
have studied this question from various perspectives. Some works have consid-
ered deterministic randomness extraction from streams of bits generated i.i.d.

352 D. Aggarwal et al.

with unknown bias [35,57], or according to a Markov chain [11]. In a parallel line
of research, settings where some input bits may be (adversarially or not) fixed,
while the remaining ones are random, have also been considered [8,19,24,27,39,
45,54,60,62,69]. Other classes of sources considered in the context of determinis-
tic extraction include sources with efficient sampling procedures [25,68] or sam-
pled in small space [44], sources defined over subspaces [13,14,26,38,49,51,62,72],
sources determined by zero sets of polynomials [30,47], sources sampled by Turing
machines [70] or small circuits [71], and sets of independent weak sources (already
discussed in this section). Some works have constructed such extractors for sub-
classes of Santha-Vazirani sources [4,5], which are known not to admit determinis-
tic extraction in general. We note that Bentov, Gabizon, and Zuckerman [9] stud-
ied deterministic randomness extraction from the blockchain of Bitcoin, which has
some connections to our model. However, their focus is on standard deterministic
extraction, instead of somewhere-extraction. They show that standard determin-
istic extraction is impossible against an adversary with an unbounded budget, and
then study the same problem against a “budget-constrained” adversary.

Although we are not dealing with standard randomness extraction like most
of the works above, we present a result of a similar flavor: The restricted (and
practically motivated) class of SHELA sources allows for deterministic some-
where-extraction with much better parameters than the class of weak sources.

Randomness extraction from adversarial sources. Subsequently to the
announcement of our work, the problem of extracting randomness from adver-
sarial sources (of which SHELA sources are an example) has received significant
attention.

Chattopadhyay, Goodman, Goyal, and Li [16] study randomness extraction
from an adversarial source model similar to SHELA sources. However, there are
important distinctions between the two models, which we discuss next. In both
cases, a source can be divided into blocks, some of which are independently gen-
erated and contain appropriate min-entropy, while other blocks are adversarially
controlled. However, in SHELA sources the adversarial block is allowed to depend
arbitrarily on all previous blocks (but not on subsequent blocks), while in [16] is
only allowed to depend on at most d other arbitrary blocks for a small “locality
parameter” d. Deterministic randomness extraction turns out to be possible in
the adversarial model from [16], while it is impossible in the SHELA model and
we instead study deterministic somewhere-extraction and its applications. Based
on this, the results in these two models are incomparable.

Dodis, Vaikuntanathan, and Wichs [28] study seeded randomness extraction
from so-called extractor-dependent sources. This adversarial model differs signif-
icantly from SHELA sources. At a very high level, a source is sampled by an
adversary that is first allowed to query the extractor on different inputs with the
same seed, with the condition that the source contains enough min-entropy and
other sensible constraints to make the problem non-trivial. Extractor-dependent
sources aim to capture scenarios where a random seed may be re-used several
times.

How to Extract Useful Randomness from Unreliable Sources 353

1.3 Technical Overview on Deterministic Somewhere-Extraction
from SHELA and Weak Sources

Impossibility of deterministic extraction from SHELA sources. We
show that if at most a γ-fraction of the � blocks in a SHELA source are hon-
est, where γ ∈ [0, 1) is an arbitrary constant, and � is a large enough constant
depending on γ, then deterministic randomness extraction is impossible from
this class of SHELA sources. Notably, this impossibility result holds even if we
allow the honest blocks to be uniformly distributed, instead of only requiring
them to have enough min-entropy.

This result is obtained by reducing the problem of deterministic extrac-
tion from SHELA sources to the problem of deterministic extraction from so-
called resettable sources, introduced in [9]. In the same work, the latter problem
has been shown to be closely related to deterministic extraction from Santha-
Vazirani (SV) sources [65], which is widely known to be an impossible task. For
more details we refer to [1].

Constructions of somewhere-extractors for SHELA sources. Our con-
structions of somewhere-extractors for SHELA sources are mainly based on
the following trick, which we illustrate for a SHELA source with three blocks
B1, B2, B3, two of which are honest. If we applied the naive somewhere-extractor
previously discussed with a 2-source extractor, we would obtain a convSR-source
with three rows. Recall that one of our main goals is to reduce the total number
of blocks in the resulting convSR-source as much as possible due to efficiency
concerns. With this in mind, instead of applying the naive somewhere-extractor,
we can notice that there are two cases:

– B3 is honest. Then, B3 and (B1, B2) are two independent weak sources. This
means we can extract randomness from the two sources (B1, B2) and B3;

– B3 is not honest. Then, B1 and B2 are honest, and hence are independent
weak sources. In this case, we can extract randomness from the two sources
B1 and B2.

For the sake of this example, let Ext1 and Ext2 be two-source extractors, and
compute Ext1((B1, B2), B3) and Ext2(B1, B2).6 The key observation, stemming
from the two cases above, is that we are guaranteed that at least one of the two
outputs is close to uniformly distributed. As a result, we obtain a convSR-source
with two rows instead of three.

As already mentioned, we design explicit somewhere-extractors in two main
settings. Our first, simpler, somewhere-extractor can be applied whenever the
underlying SHELA source has t ≥ 2 honest n-bit blocks with min-entropy k =
(1−γ)n for a small enough constant γ > 0. The construction is a generalization of

6 In reality, we are able to use strong seeded extractors (for which we know much
better explicit constructions) in place of two-source extractors. This is due to the
disproportion in the size of the sources. In fact, the size of one of the sources given
to the extractor grows linearly with the total number of blocks.

354 D. Aggarwal et al.

the reasoning we presented for three blocks above. It proceeds by iteratively using
a strong seeded extractor to extract randomness from ever-growing sequences of
blocks (using another block as a seed). A bit more precisely, if X ∈ {0, 1}n·�

is a SHELA source and X = (B1, B2, . . . , B�), then for every i = 2, 3, . . . , � we
consider

B′
i = Exti((B1, . . . , Bi−1), Bi), (2)

where (B1, . . . , Bi−1) acts as the input weak source, Bi acts as the seed, and
Exti is an appropriate strong seeded extractor. Then, we set SomeExt(X) =
(B′

2, . . . , B
′
�). The first problem we run into is that in usual applications of seeded

extractors, the seed is uniformly distributed. This is not the case here, since,
even if Bi is an honest block, it is only guaranteed to have min-entropy (1−γ)n.
However, it is not hard to show, using the strongness of the extractor, that
using a source with high min-entropy as the seed is sufficient. Another issue we
encounter is that we are reutilizing many SHELA blocks when computing output
blocks via (2). This appears to be at odds with the requirement that good output
blocks should be close (in statistical distance) to independent and uniformly
distributed. A careful conditioning argument, again exploiting the strongness
of the extractor, shows that independence and uniformity are actually attained
with small error. In fact, whenever Bi is honest and there is an honest block
in (B1, . . . , Bi−1), we succeed in generating (with small error) a new good block
of the output convSR-source. Instantiating this construction with the nearly-
optimal GUV strong seeded extractor [43] and assuming the SHELA source
X ∈ {0, 1}n·� has t honest blocks, we output a distribution Y ∈ {0, 1}m·L that is
(t · 2−Ω(n))-close to a T -out-of-L convSR-source with m = Ω(n). Moreover, from
the discussion above it follows that L = � − 1 and T = t − 1.

In the second setting, we consider deterministic somewhere-extractors for
SHELA sources with honest blocks having arbitrary constant min-entropy rate
k/n. In other words, we allow the min-entropy requirement k of honest blocks
to satisfy k = δn for arbitrarily small δ > 0. Notably, in this significantly harder
setting we are able to obtain essentially the same parameters as the somewhere-
extractor for the high min-entropy setting detailed above. In fact, all parameters
remain unchanged, except that now we cannot guarantee that L = � − 1, and
instead have the (still highly desirable) relationship L = O(�). The main barrier
towards making the previous construction work in this setting is that if hon-
est blocks do not have high min-entropy, they can no longer be used as seeds
for strong seeded extractors. This issue is surpassed by using the somewhere-
condenser for weak sources from [2,64]. Intuitively, a somewhere-condenser is to
a randomness condenser as a deterministic somewhere-extractor is to an extrac-
tor. On input a weak source with low min-entropy, the somewhere-condenser
SomeCond outputs (with small error) a constant number of (sufficiently long)
blocks with the guarantee that at least one block has very high min-entropy
rate. Because the focus is not on extraction of perfect randomness, somewhere-
condensers for weak sources are allowed to have much better parameters than
somewhere-extractors for the same class of sources. We modify the construc-
tion for honest blocks with high min-entropy above by adding a first step of

How to Extract Useful Randomness from Unreliable Sources 355

somewhere-condensation for each block of the input SHELA source. We show
that our somewhere-extractors designed for SHELA sources can also be applied
to online SHELA sources as is to extract convSR-sources (for full definitions and
discussion please see [1]).

Lower bounds for deterministic somewhere-extraction from weak
sources. We consider the natural problem of understanding the performance of
somewhere-extractors for weak sources, and derive a set of lower bounds which
show that, particularly for parameters relevant to cryptographic applications,
every somewhere-extractor (regardless of efficiency) for weak sources must have
significantly worse parameters than the somewhere-extractors we obtain for the
class of SHELA sources. As previously discussed, these negative results for weak
sources are strong enough that they preclude the use of convSR-sources generated
from weak sources in efficient cryptographic protocols.

Suppose SomeExt : {0, 1}ñ → {0, 1}m·L is a somewhere-extractor for (ñ, k)-
sources7. We begin by noting that a simple reasoning analogous to the proof of
impossibility of deterministic extraction from weak sources immediately shows
that L = Ω(ñ − k). Our first non-trivial lower bound is obtained by relat-
ing a somewhere-extractor to a disperser (for weak sources). Roughly speak-
ing, a disperser is a fundamental pseudorandom object that transforms a weak
source and a short uniform seed into an output distribution that hits every
appropriately large subset of the output space with non-zero probability. Opti-
mal seed length lower bounds are known for dispersers [61]. We show that if
SomeExt : {0, 1}ñ → {0, 1}m·L is a somewhere-extractor for (ñ, k)-sources with
error ε, then the function G : {0, 1}ñ × [L] → {0, 1}m given by

G(x, i) = SomeExt(X)i

is a disperser with seed length log L and error ε. This immediately leads to a
lower bound on the number L of output blocks of SomeExt (excluding a minor
technicality that does not affect the quality of the lower bound),

L = Ω

(
ñ − k

max(ε, 2−m)

)
. (3)

This means, as discussed in more detail in Sect. 5, weak sources behave exponen-
tially worse than comparable SHELA sources for somewhere-extraction in the
linear output block length regime.

Note that the two lower bounds in the previous paragraph do not give any-
thing when k ≈ ñ and m is small. This naturally leads us to consider lower
bounds for L in an extreme 1-bit block setting with k = ñ − 1 and m = 1.
Although we do not obtain a lower bound for extraction of convSR-sources in
this extreme regime, we are able to prove a non-trivial lower bound that scales
with the error for the harder, but related, task of extracting an SR-source from
a weak source (not a convex combination of SR-sources as before). Note that,
7 The set of (ñ, k)-sources consists of all weak sources over {0, 1}ñ with min-entropy

at least k. We use ñ to avoid confusion with the block length of SHELA sources.

356 D. Aggarwal et al.

in particular, the naive somewhere-extractor obtained by enumerating the seed
of a strong extractor satisfies this property. To be precise, we show that in this
setting we must have

L = Ω

(
log

(
1

max(ε, 2−k)

))
. (4)

The lower bound in (4) is obtained by an adaptive version of the basic argument
for the impossibility of deterministic extraction from weak sources. Given a can-
didate function F : {0, 1}ñ → {0, 1}L, our goal is to show the existence of a weak
source X� with enough min-entropy such that every bit F (X�)i is sufficiently
biased. We begin by setting X�

0 to be uniformly distributed over {0, 1}ñ, and
analyze its performance w.r.t. F . If Fi(X�

0) is the first bit close to uniform, we
remove an appropriate set of elements from the support of X�

0 to obtain X�
1

such that Fi(X�) biased enough. Then, we repeat the reasoning with the new
source X�

1 and so on, until every bit is biased8. Then, L must be large enough
to ensure the outcome X� of this process has too small support (and hence does
not satisfy the min-entropy requirement of F), which yields the lower bound.

With these bounds in mind, it is natural to consider whether arguments
that yield lower bounds of this type on the seed length of extractors, more
precisely the granularity argument of Nisan and Zuckerman [58, Theorem 3] and
the techniques due to Radhakrishnan and Ta-Shma [61, Section 2.2], could be
extended to the setting of somewhere-extraction. Unfortunately, such arguments
crucially rely on the ability of picking a seed at random: There, one is only
worried about showing that the bias is large enough on average, while we must
show that the bias is large enough for every choice of the seed9.

1.4 Technical Overview on Non-Interactive Proof Systems
and Commitments from Public SHELA Sources

Non-interactive (publicly verifiable) witness indistinguishable proof
system. We will now describe how to construct a non-interactive (and there-
fore publicly verifiable) Witness Indistinguishable (WI) proof system Πpv from
a public SHELA source X and starting with the existence of a public-coin ZAP
Π. Πpv works as follows: The prover of Πpv receives X and runs the somewhere-
extractor SomeExt on X to obtain (R1, . . . , RL). Then, the prover on input
the witness w for the statement x computes a second-round πi from Π using
Ri for i = 1, . . . , L. The verifier of Πpv, having access to X, also computes
(R1, . . . , RL) = SomeExt(X), and accepts the proof only if all pairs (Ri, πi) are
accepting by the verifier of Π w.r.t. the statement x. Observe that WI of Π is
preserved under parallel composition and holds even when the first round of Π is
chosen by a malicious verifier. Therefore, Πpv also enjoys the WI property. The

8 When biasing the next coordinates, we have to be careful not to ‘spoil’ biases of
previous coordinates. This results in the log factor in the bound.

9 By seed we mean i in Fi(X
�).

How to Extract Useful Randomness from Unreliable Sources 357

soundness of Πpv is based on the observation that T blocks of (R1, . . . , RL)
are negligibly close to a uniform distribution over {0, 1}m. Denote them by
RI1 , . . . , RIT . Then, the soundness of Π ensures that a malicious prover could
not cheat when the second round of Π is computed w.r.t. RI1 , . . . , RIT .

As a result, using known constructions of public-coin ZAPs, we are able to
construct a non-interactive WI proof system from trapdoor permutations that
requires as a set-up a SHELA source only. Notice that a SHELA source is a CRS
that can be corrupted (in a natural, structured manner) by an unbounded adver-
sary. Still, we assume that the adversarial verifier can run only in polynomial time
to distinguish the witness, even though he does not have such restriction when
affecting the sample from the public SHELA source. Previous constructions of non-
interactive WI proof systems either require a common random string as set-up, or
were based on specific number-theoretic hardness assumptions in bilinear groups
[37,42], or on indistinguishability obfuscation and one-way permutations [10].

From another point of view, one can see our result as a Non-Interactive (NI)
WI proof system where the soundness and the WI property hold even when the
set-up phase is partially generated by the adversary. We note that the work of [6]
investigates if soundness and WI of a NIWI proof system hold even when the
adversary takes complete control of the set-up phase. They achieve a positive
result relying on some specific number-theoretic assumption in bilinear groups.
Instead, our NIWI proof system can be instantiated from trapdoor permutations
and the adversary has only a partial control over the set-up.

Notice that [15] studies cryptographic protocols with simulatable security by
considering a simulatable CRS drawn from a high min-entropy distribution. In
this work we do not assume that public sources of randomness are simulatable
and we do not investigate simulatable security. Our CRS is not a generic min-
entropy string but instead corresponds to a structured min-entropy source that
is partially controlled by an unbounded adversary.

Given the above construction of a non-interactive WI proof system Πpv, one
could argue that a convSA-source suffices for constructing Πpv. Recall that a
convSA-source is a convex combination of T -out-of-L SA-sources, which consist
of L blocks, T of which are independent and 1

poly(n) -close to uniform in statis-
tical distance, where n is some relevant security parameter. This is because the
soundness of the protocol can be amplified by using the T “good” blocks, which
correspond to independent parallel repetitions of the underlying protocol Π.

In order to adequately compare the performance of the protocol under
convSA-extraction from weak sources and convSR-extraction from SHELA
sources, we compare a t-out-of-� SHELA source X ∈ {0, 1}n·� with honest blocks
having linear min-entropy k′ with an arbitrary weak (ñ = n · �, k = k′ · t)-source
X̃. We are able to show that convSR-sources extracted from X are much better
suited for applications than convSA-sources generated from X̃ in two aspects:

1. Efficiency: The efficiency of Πpv depends on L. It is not hard to see that
every convSA-source extractor for weak sources X̃ must have Ω(ñ) = Ω(n · �)
total output blocks (even if we only require constant error). On the other
hand, we can extract convSR-sources from X with only O(�) blocks.

358 D. Aggarwal et al.

2. Security: Let us assume that Π requires a first round of m = Ω(k′) bits.
Then, we show that every efficient, low-error convSA-source extractor for
weak sources outputs at most T = O(k/m) = O(k′ · t/m) good blocks of
length m. As a result, if t is constant, it follows that such an extractor only
outputs T = O(1) good blocks. This is not enough to successfully amplify the
soundness of the protocol. Finally, we note that if we build our Πpv starting
from a convSR-source extracted from a t-out-of-� SHELA source with constant
t, the analysis of soundness described in this subsection holds, and therefore
Πpv is sound.

Improving the efficiency of [66]. We note that the work of [66] constructs
a publicly verifiable proof system from any blockchain under some assump-
tions on the min-entropy of honestly generated blocks. Notably, under the same
assumptions the blockchain can be used to implement also a SHELA source.
In [66], the authors construct a publicly verifiable proof system by applying the
naive somewhere-extractor NaiveSomeExt (that we discussed earlier) to extract a
convSR-source from the blockchain. Therefore our somewhere-extractor SomeExt
(instead of NaiveSomeExt) could be used in their work to immediately improve
the efficiency of their proof system. More details are provided in [1].

Non-interactive statistically binding commitments. We introduce now a
construction of non-interactive statistically binding commitments from a public
SHELA source relying on one-way functions. This is achieved by making use of
any two-round public-coin commitment scheme Πcom from one-way functions.

First of all, we remark that one can not simply replace the first round of Πcom

with a sample from a source with linear min-entropy (say, min-entropy 0.5n).
Indeed, start from Πcom and consider a scheme Π ′

com where: (a) the random
string played as first round of Πcom must be twice in length, and (b) the sender
ignores the first half of the first round and continues as in Πcom using the second
half. It is straightforward to see that Π ′

com is a 2-round public-coin statistically
binding commitment scheme from any one-way functions. If we replace the first
round of Π ′

com with the output of a high min-entropy source we might have that
the entire min-entropy is in the first half of the first round and is therefore wasted
completely. The malicious sender could therefore violate binding since it would
end up running Πcom on input a first round with zero min-entropy! Obviously,
in this case parallel repetition does not help.

We now proceed to describe how our scheme Πcompv works starting with
any 2-round public-coin statistically binding commitment scheme (including the
above Π ′

com). Moreover, Πcompv can be run with efficient parameters because of
the use of SomeExt.

Our commitment scheme Πcompv works as follows: First, the sender runs
the somewhere-extractor SomeExt on the public SHELA source X, obtaining
SomeExt(X) = (R1, . . . , RL). Then, the sender on input the message m and
Ri (used as the receiver’s first round) computes a commitment comi and the
opening information deci using the sender of Πcom, for i = 1, . . . , L. In the
opening phase, the receiver on input dec1, . . . , decL having access to X computes

How to Extract Useful Randomness from Unreliable Sources 359

(R1, . . . , RL) = SomeExt(X), and outputs the message m only if it holds that
for all i = 1, . . . , L the message committed in comi is m. Hiding of our scheme
holds from the observation that hiding is preserved under parallel composition
and when the first round of Πcom is chosen by a malicious receiver. The binding
of Πcompv is based on the observation that at least T blocks RI1 , . . . , RIT are
negligibly close to a uniform distribution over {0, 1}m. This implies that there
are at least T commitments computed w.r.t. a good block RIj that is statistically
close to a first round sent by a receiver of Πcom. Therefore, from the statistically
binding of Πcom it follows that a malicious sender could not cheat when the
commitment is computed w.r.t. RI1 , . . . , RIT .

1.5 Open Questions

We present some interesting directions for future research:

– Prove (or disprove) Conjecture 12.
– Given any SHELA or convSR source, we can define its rate as number of

good10 blocks divided by total number of blocks. Our constructions from
Sect. 4 transform SHELA sources with rate t/� into convSR-sources with rate
t−1
�−1 ≤ t

� . We conjecture that the rate of the output convSR-source cannot be
larger than t/�.

– Find good bounds on the number of output blocks of convSA-source extractors
for weak sources.

1.6 Organization of the Paper

We introduce relevant notation and definitions in Sect. 2. SHELA sources are
defined in Sect. 3, and deterministic somewhere-extractors are presented in
Sect. 4. Lower bounds for somewhere-extraction are studied in Sect. 5, and the
limits of SA-source extraction are considered in Sect. 6. Detailed arguments,
along with standard definitions and lemmas, have been deferred to the full
version [1].

2 Preliminaries and Definitions

2.1 Notation

Sets are usually denoted by calligraphic letters such as S and I. Random variables
are usually denoted by uppercase letters such as X, Y , and Z. We may identify a
randomvariableX with its distribution.The support of a distributionX is denoted
by supp(X). We denote the uniform distribution over {0, 1}m by Um. We may write
X ∼ Y to denote that X has the same distribution as Y . All logarithms log are
taken to base 2. The Shannon entropy of a distribution X is denoted by H(X),
and we denote the binary entropy function by h. The notation poly(n) denotes an
arbitrary polynomial in n. We denote a negligible function of a parameter n by
negl(n).
10 For a SHELA source, a good blocks correspond to honest blocks, while they corre-

spond to jointly uniform blocks in convSR-sources.

360 D. Aggarwal et al.

2.2 Somewhere-Random Sources and Somewhere-Extractors

In this section, we define SR- and convSR-sources, along with the notion of a
deterministic somewhere-extractor and a basic result.

Definition 1 (Somewhere-random source). A distribution X = (X1, . . . ,
XL) over {0, 1}m·L is said to be a (T,L,m)-somewhere-random source, SR-
source in short, if there exist indices i1 < i2 < · · · < iT such that the tuple
(Xi1 ,Xi2 , . . . , XiT) is uniformly distributed over {0, 1}m·T . We denote the set of
all (T,L,m)-somewhere-random sources by SRT,L,m, and the set of all convex
combinations of sources in SRT,L,m by convSRT,L,m.

Definition 2 (Somewhere-extractor). Given a set of sources F over {0, 1}ñ,
a function SomeExt : {0, 1}ñ → {0, 1}m·L is said to be a (T,L, ε)-somewhere-
extractor for F if for every X ∈ F there exists Y ∈ convSRT,L,m such that

SomeExt(X) ≈ε Y.

A simple construction shows that strong (k, ε)-extractors imply the existence
of deterministic somewhere-extractors for the class of general (n, k)-sources with
the same error ε.

Lemma 3. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a strong (k, ε)-extractor, and
set {0, 1}d = {s1, s2, . . . , s2d}. Given x ∈ {0, 1}n, define SomeExt(x) : {0, 1}n →
{0, 1}m·2d as

SomeExt(x) = (Ext(x, s1),Ext(x, s2), . . . ,Ext(x, s2d)).

Then, SomeExt is a (1, 2d, ε)-somewhere-extractor for the class of (n, k)-sources.

The construction from Lemma 3 actually guarantees that a very large fraction
of blocks of Y = SomeExt(X) will be close to uniform over {0, 1}m, provided X is
an (n, k)-source. However, there is no guarantee that any pair of blocks (Yi1 , Yi2)
will be close to uniformly distributed over {0, 1}2m, as we cannot ensure that
such blocks are close to being independent. Therefore, we only know that Y is
ε-close to a (1, 2d,m)-somewhere-random source.

2.3 Somewhere-Condensers

In this section, we introduce somewhere-condensers and related notions.

Definition 4 (Somewhere-entropic source). A distribution X = (X1, . . . ,
XL) over {0, 1}m·L is said to be a (T,L,m, k)-somewhere-entropic source if there
exist indices i1 < i2 < · · · < iT such that the random variables Xi1 ,Xi2 , . . . , XiT

are independently distributed and satisfy H∞(Xij) ≥ k for all j. We denote the
set of all (T,L, n, k)-somewhere-entropic sources by SET,L,n,k, and the set of all
convex combinations of sources in SET,L,n,k by convSET,L,n,k.

How to Extract Useful Randomness from Unreliable Sources 361

Definition 5 (Somewhere-condenser). A function SomeCond : {0, 1}n →
{0, 1}m·� is said to be a (k, k′, L, ε)-somewhere condenser if for every (n, k)-
source X there exists Y ∈ convSE1,L,m,k′ such that

SomeCond(X) ≈ε Y.

There exist explicit constructions of somewhere-condensers with a constant
number of output blocks, linear output block length, and exponentially small
error for arbitrarily low linear min-entropy.

Lemma 6 ([64]). For all constants δ, δ′ > 0 there exist constants b, β, ρ > 0 such
that for large enough n there exists an explicit (k, k′, b, ε)-somewhere condenser
SomeCond : {0, 1}n → {0, 1}m·b with k = δn, m = βn, k′ = (1 − δ′)m, and
ε = 2−ρm.

Remark 1. The version of Lemma 6 presented in [64] is specialized for δ′ = δ.
However, inspection of [64, Lemmas 4.2 and 4.3] shows that the construction
works for any constant δ′ > 0, as long as we allow the constants �, β, ρ to depend
simultaneously on δ and δ′. This observation is similar to the remark in [2] after
Theorem 5.2.

3 SHELA Sources

In this section, we give a formal definition of Somewhere Honest Entropic
Look Ahead (SHELA) sources, and present explicit constructions of somewhere-
extractors with good parameters for this class of sources.

Definition 7 (SHELA source). A distribution X ∈ {0, 1}n·� is said to be an
(n, k, t, �)-SHELA source if there exist random variables 1 ≤ I1 < I2 < · · · < It ≤
� with arbitrary joint distribution, t independent (n, k)-sources Z1, Z2, . . . , Zt,
and a (possibly randomized) adversary A such that X is generated as follows:

1. Sample (i1, i2, . . . , it) ← (I1, I2, . . . , It);
2. For each j ∈ [t], set Bij ← Zj;
3. For each i ∈ [�] \ {i1, . . . , it}, A sets Bi = A(B1, . . . , Bi−1, i1, . . . , it);
4. Set X = (B1, B2, . . . , B�).

We denote the set of all such SHELA sources by SHELAn,k,t,�.

A precise definition of online SHELA sources discussed in Sect. 1, along with
associated notions and results on deterministic somewhere-extraction, can be
found in [1].

4 Deterministic Somewhere-Extractors for SHELA
Sources

In this section, we construct deterministic somewhere-extractors for regular
SHELA sources.

362 D. Aggarwal et al.

4.1 Honest Blocks with High Min-Entropy

In this section, we consider the case where each honest block in a SHELA source
has min-entropy (1−γ)n for some sufficiently small constant β > 0. The following
result states that an explicit somewhere-extractor with exponentially small error
and linear output block length exists for such SHELA sources. Notably, it is also
the case that if the number of honest input blocks is t and the total number of
input blocks is �, then the number of uniform output blocks is T = t−1 and the
number of total output blocks is L = � − 1.

Theorem 8. There exists a small enough constant γ > 0 such that for n large
enough and 2 ≤ t ≤ � ≤ poly(n) there exists an explicit (t−1, �−1, ε′)-somewhere
extractor SomeExt : {0, 1}n·� → {0, 1}m·(�−1) for SHELAn,k′,t,� with k′ = (1−γ)n,
m = (1−7γ)n

3 , and ε′ = 2(t − 1) · 2−γn.

The construction we use to prove Theorem 8 makes use of the following
objects: For i ∈ {2, . . . , �}, let Exti : {0, 1}n·(i−1) × {0, 1}n → {0, 1}m be an
average-case strong seeded (k, ε)-extractor with k = 2k′/3, k′ = (1 − γ)n,
m = (1−7γ)n

3 and ε = 2−2γn for a small enough constant γ > 0. These can
be obtained by using the explicit GUV extractor [43] with appropriate param-
eters. The instantiation is detailed in [1]. We are now ready to describe our
construction of the somewhere-extractor SomeExt : {0, 1}n·� → {0, 1}m·(�−1)

for X ∈ SHELAn,k,t,�. First, write X = (B1, B2, . . . , B�). Then, the output
SomeExt(X) can be written as SomeExt(X) = (B′

2, B
′
3, . . . , B

′
�), where each B′

i

is obtained as

B′
i = Exti((B1, B2, . . . , Bi−1), Bi) ∈ {0, 1}m. (5)

4.2 Honest Blocks with Low Linear Min-Entropy

In this section, we construct somewhere-extractors for SHELA sources that have
honest blocks with min-entropy δn for some arbitrarily small constant δ > 0. We
show that there is an explicit somewhere-extractor for such SHELA sources with
exponentially small error and linear output block length. Moreover, if the number
of input honest and total blocks are t and �, respectively, then the number of
output uniform and total blocks are T = t − 1 and L = O(�), respectively.

Theorem 9. For every constant δ > 0 there exist constants a1, a2, a3 > 0 such
that for n large enough and all 2 ≤ t ≤ � ≤ poly(n) there exists an explicit
(T,L, ε′)-somewhere extractor SomeExt : {0, 1}n·� → {0, 1}m·L for SHELAn,k′,t,�
with k′ = δn, m = a1 · n, ε′ = 2(t − 1)2−a2·n, T = t − 1, and L = a3 · �.

We now turn to a precise description of our construction. Fix a con-
stant δ ∈ (0, 1) and consider the (δn, (1 − γ)n′, b, 2−ρn′

)-somewhere-condenser
SomeCond : {0, 1}n → {0, 1}b·n′

from Lemma 6, where γ > 0 is a small constant
to be determined, n′ ≥ βn, and b, β, and ρ depend only on δ and γ. For each
i = 2, . . . , �, consider also the average-case strong (k, ε)-extractor

Exti : {0, 1}b·n′(i−1) × {0, 1}n′ → {0, 1}m

How to Extract Useful Randomness from Unreliable Sources 363

with ε = 2−2γn′
, k = 2(1−3γ)n′

3 , and m = (1−3γ)n′

3 . These extractors can be
instantiated using the strong GUV extractor [43] with appropriate parameters.

We are now ready to define SomeExt(X) for X = (B1, . . . , B�) ∈ SHELAn,k′,t,�.
We write

SomeCond(Bi) = (Bi1, . . . , Bib) ∈ {0, 1}n′·b.

Then, we have
SomeExt(X) = (B′

ij)i∈[�],j∈[b] ∈ {0, 1}m·L

for B′
ij defined as

B′
ij = Exti((Bi′j′)i′<i,j′∈[b], Bij) ∈ {0, 1}m. (6)

5 Lower Bounds for Deterministic Somewhere-Extraction
from Weak Sources

In this section, we study lower bounds for somewhere-extractors that work for the
general class of weak (ñ, k)-sources (we use ñ to avoid confusion with the block
length n of a SHELA source). Here, we are mostly interested in lower bounds
on the number of output blocks generated by such somewhere-extractors with
respect to the length ñ of a source, the length m of an output block, and the
error ε of the somewhere-extractor.

The only known construction of a somewhere-extractor for general (ñ, k)-
sources described in Lemma 3 requires 2d blocks, where d is the seed length
of the underlying strong extractor/non-malleable extractor. As stated in [1], it
holds that d ≥ log(ñ − k) + 2 log(1/ε) + O(1) for every extractor, and so the
somewhere-random source output by the somewhere-extractor from Lemma 3
has

L = Ω

(
ñ − k

ε2

)

blocks. We remark that a probabilistic argument with a random function yields
somewhere-extraction with the same number of output blocks.

The discussion in the previous paragraph leads to the following natural ques-
tions: Is it possible to do better than Lemma 3 for (ñ, k)-sources? In particular,
is it possible to obtain a number of output blocks comparable to that obtained
from SHELA sources?

We present some results that aim to answer this question in several parameter
regimes. The first result comes from the observation that the basic argument for
impossibility of deterministic extraction yields a non-trivial lower bound on the
number of output blocks whenever the min-entropy requirement k is not very
large.

Theorem 10. Suppose F : {0, 1}ñ → {0, 1}m·L is a (1, L, ε)-somewhere extrac-
tor for (ñ, k)-sources with ε ≤ 1−2−c for some 1 ≤ c ≤ m (i.e., ε is not trivial).
Then, it holds that

L ≥ ñ − k

c
.

364 D. Aggarwal et al.

The lower bound from Theorem 10 is already enough to yield a separation
between somewhere-extraction of SHELA and comparable (ñ, k)-sources when-
ever the min-entropy requirement k is not extremely large. Consider a SHELA
source with constant entropy rate and � blocks, each of length n = ñ/� (so that
the total length of the source is ñ). The constructions from Theorems 8 and 9
applied to the SHELA source lead to convSR-sources with L = O(�) blocks
with small error and large output block length if honest blocks have some con-
stant entropy rate. In particular, L does not depend directly on the input block
length n. On the other hand, the lower bound from Theorem 10 forces that
L = Ω(ñ − k) = Ω(n · �) for convSR-sources extracted from (ñ, k)-sources, even
with error ε = 1/2 (assuming k/ñ is constant).

The second result is a disperser-based lower bound on the number of out-
put blocks L. This bound is considerably stronger than the one in Theorem 10
whenever the output block length m is not very small and the error ε is small.

Theorem 11. SupposeF : {0, 1}ñ → {0, 1}m·L is a (1, L, ε)-somewhere extractor
for (ñ, k)-sources with ε ≤ 1/2 and L ≤ (1−max(ε,2−m))2m

2 . Then, it holds that

L = Ω

(
ñ − k

max(ε, 2−m)

)
.

Referring again to the comparison between SHELA and weak (ñ, k)-sources
above, if we want to extract a 1-out-of-L convSR-source with block length Ω(n)
from the weak source with error 2−Ω(n), as is possible for the relevant SHELA
source, then Theorem 11 forces that L = ñ · 2Ω(n) = � · n2Ω(n). On the other
hand, the convSR-source we extract from the relevant t-out-of-� SHELA source
only has O(�) blocks.

While Theorems 10 and 11 imply strong separation between SHELA and
weak sources for any conceivable application, they do not yield useful lower
bounds for some regimes of parameters. For example, in the easiest setting for
somewhere-extraction, when the min-entropy requirement k is very large (say,
k = ñ−1) and the output block length is very small (say, m = 1), both theorems
only give a trivial Ω(1) lower bound on L, even when ε is exponentially small in
ñ. On the other hand, the number of output blocks in the somewhere-extractor
obtained from Lemma 3 instantiated with an optimal strong extractor scales as
1/ε2 even when k = ñ − 1 and m = 1. We believe it is not possible to improve
significantly on the basic construction from Lemma 3, and so we put forth the
following conjecture.

Conjecture 12. Suppose F : {0, 1}ñ → {0, 1}m·L is a (T,L, ε)-somewhere
extractor for (ñ, k)-sources. Then, there exists a constant c > 0 such that if
ε ≤ c, we have

L = Ω

(
ñ − k

ε2

)
. (7)

We do not prove Conjecture 12 and leave it as an interesting open problem.
Nevertheless, we prove a weaker lower bound on L in a similar spirit to (7)

How to Extract Useful Randomness from Unreliable Sources 365

under a stronger property than somewhere-extraction, which is still satisfied by
the construction from Lemma 3. This result can be regarded both as a first step
towards a full proof of Conjecture 12, and a non-trivial lower bound on L (under
this stronger property) that scales with ε and holds even when k is large and m
is small. Before we state our result, we must first define the alternative notion
of somewhere-extraction. Observe that the construction of F from Lemma 3
actually ensures that for every (ñ, k)-source X it holds that F (X) is ε-close to
an element of SRT,L,m, instead of only a convex combination of such elements.
We call a function that satisfies this for all (ñ, k)-sources a strong (T,L, ε, k)-
somewhere extractor.

We may think of a strong (1, L, ε, k)-somewhere-extractor F : {0, 1}ñ →
{0, 1}L as a family of L functions F1, . . . , FL such that for every (ñ, k)-source
X, there is Fi such that Fi(X) ≈ε U1. Therefore, in order to show such a
function F is not a strong somewhere-extractor, we must show the existence
of an (ñ, k)-source X that is “bad” for all Fi’s, in the sense that Fi(X) �≈ε U1

for every i. As previously discussed, existing techniques used in proving lower
bounds for extractors cannot be applied to obtain similar lower bounds for strong
somewhere-extractors. We use a fundamentally different technique to prove the
following lower bound on L for strong somewhere-extractors.

Theorem 13. Suppose F : {0, 1}ñ → {0, 1}m·L is a strong (1, L, ε, k)-somewhere
extractor for k ≤ ñ − 1. Then, there exists an absolute constant c > 0 such that if
ε < c, we have

L = Ω

(
log

(
1

max(ε, 2−k)

))
. (8)

6 Bounds for Somewhere-Amplifiable-Source Extraction
from Weak Sources

The lower bounds obtained in Sect. 5 show that convSR-sources extracted from
SHELA sources are much better (in terms of number of blocks with respect
to desired extraction error) than convSR-sources extracted from weak sources.
This has direct consequences in the time complexity blowup incurred when using
convSR-sources in several applications, as discussed in Sect. 1. However, as dis-
cussed in that same section, it is possible in some scenarios to use a weaker
object than convSR-sources, which we call somewhere-amplifiable sources, where
the good independent blocks are not required to be exactly uniformly distributed.
A precise definition follows.

Definition 14 (Somewhere-amplifiable source). We say Y = (Y1, . . . , YL)
over {0, 1}m·L is a (T,L, ε)-somewhere-amplifiable source if there exist distinct
indices i1, . . . , iT such that Yi1 , . . . , YiT are independent and Yij ≈ε Um for all
j = 1, . . . , T . The set of all such SA sources is denoted by SAT,L,ε, and the set
of all convex combinations of sources in SAT,L,ε is denoted by convSAT,L,ε.

Since the error required from each good block in a convSA-source is not that
small (in fact, it can even be constant), one may hope to transform weak sources

366 D. Aggarwal et al.

into convSA-sources whose number of blocks is much closer to that of convSR-
sources obtained from SHELA sources, and which have blocks long enough to be
used in the applications already discussed in Sect. 1 and later in Sect. 7. To this end,
we define somewhere-amplifiable source extractors (convSA-source extractors).

Definition 15 (Somewhere-amplifiable source extractor). A function
SomeExt : {0, 1}ñ → {0, 1}m·L is said to be a (T,L, k, ε1, ε2)-somewhere-amplifi-
able extractor if for every (ñ, k)-source X there exists Y ∈ convSAT,L,ε2 such that

SomeExt(X) ≈ε1 Y.

We begin by noting that Theorem 10 also applies to convSA-source extractors
for weak sources. This shows that every such extractor (even with constant
error) must have L = Ω(ñ − k). As discussed in Sect. 1, this already provides an
efficiency separation between convSA-source extraction from weak sources and
convSR-source extraction from SHELA sources.

The main result we prove in this section is a different type of separation
between convSA-source extraction from weak sources and convSR-source extrac-
tion from SHELA sources. Roughly speaking, we show that if we want to extract
a convSA-source with many good blocks (necessary to obtain good final error)
from an (ñ, k)-source, then either the resulting convSA-source has too many
blocks to allow for efficient construction of the publicly verifiable protocols, or
the length of each block is very small, and so they may not be usable in some
protocols. This is discussed for the particular case of our publicly verifiable proof
system in Sect. 1.4. A precise statement follows.

Theorem 16. Suppose F : {0, 1}ñ → {0, 1}m·L is a (T,L, k, ε1, ε2)-somewhere-
amplifiable extractor for ε1 = negl(ñ), and ε2 ≤ c2 for some arbitrary constant
c2 ≤ 1 − 2−m (so that ε1 is useful for applications and ε2 is non-trivial). Then,
either the number of blocks L is superpolynomial in ñ (and hence amplification
is inefficient), or we have m = O(k/T).

Some comments are due about Theorem 16. First, Theorem 16 provides
a strong separation between convSA-source extraction from weak sources and
convSR-source extraction from SHELA sources, as already evidenced in Sect. 1.4.
Consider a SHELA source with � blocks of length n, � = poly(n), t = 2 of which
are honest with arbitrary linear min-entropy. Then, Theorem 9 shows we can
efficiently extract (to within error 2−Ω(poly(n))) a convSR-source with poly(n)
number of blocks each of length Ω(n) and at least one good block from the
SHELA source. Such SHELA source can be compared with an arbitrary weak
(ñ = n · �, k = O(n))-source. In this case, Theorem 16 shows that if we want
to obtain a T -out-of-L convSA-source with block length Ω(n) from the weak
source, then T must be constant. This precludes many applications of the result-
ing convSA-source as discussed in Sect. 1. Finally, note that Theorem 16 also
applies to the extraction of convSR-sources with several uniform blocks from
weak sources.

How to Extract Useful Randomness from Unreliable Sources 367

7 Non-Interactive Protocols from Public SHELA Sources

7.1 CRS Generation Through a SHELA Sample

The definitions of proof systems and commitment schemes in the plain model
and in the CRS model are standard and can be found in [1].

Such definitions assume the existence of an efficient CRS generation proce-
dure G that, however, will instead be realized in our protocols through a sample
from a public SHELA source. Our constructions will convert 2-round public-
coin protocols into non-interactive protocols by using a SHELA source and the
somewhere-extractor to replace the first round. Therefore, following the notation
in the CRS model, when running G on input 1m to generate a sufficiently long
CRS, we assume that the CRS is generated through a sample σ ← SHELAn,k,t,�

from a SHELA source such that when running SomeExt(σ) and obtaining blocks
R1, . . . , RL we have that the size of each Ri is equal to the size of the first round
of the 2-round public-coin protocol. We recall that G is not supposed to be effi-
cient and neither simulatable. Moreover, this procedure allows an unbounded
adversary to partially control the sampling process. We obviously require that
the output of G be available to all players. In our protocols, some adversaries
are restricted to run in polynomial-time only, but still can affect the outcome of
the SHELA sample without such restriction.

Fig. 1. Non-interactive WI Proof System Πpv = (G,Ppv,Vpv).

7.2 Non-Interactive WI Proof System Πpv

Here we present our construction of NIWI proof system from SHELA sources
assuming public-coin ZAPs. In order to describe our proof system Πpv =
(G,Ppv,Vpv) for the NP-language L, we will make use of the following tools:
(1) A somewhere extractor SomeExt : {0, 1}n·� → {0, 1}m·L defined in Sect. 411.
(2) A 2-round public-coin WI proof system Π = (P,V). Our Non-Interactive WI
proof system Πpv = (G,Ppv,Vpv) with a CRS generated through a sample from
a SHELA source is described in Fig. 1.
11 With high min-entropy we set L = �−1, while with low min-entropy we set L = O(�).

368 D. Aggarwal et al.

Theorem 17. Assuming the existence of public SHELA sources, if public-coin
ZAPs exist, then Πpv is a non-interactive proof system for all NP-languages.

We stress that our protocol can be instantiated using doubly enhanced trapdoor
permutations. The proof can be found in [1].

7.3 Non-Interactive Commitment Scheme Πpvcom

Here we present our construction of non-interactive statistically binding com-
mitment scheme from SHELA sources assuming 2-round public-coin statis-
tically binding commitments. In order to describe our commitment scheme
Πpvcom = (G,Ppvcom,Vpvcom) for the message space M , we will make use of
the following tools: (1) a somewhere extractor SomeExt : {0, 1}n·� → {0, 1}m·L

defined in Sect. 412; (2) a 2-round public-coin statistically binding commitment
scheme Πcom = (S,R). Our Non-Interactive Commitment Scheme Πpvcom =
(G,Ppvcom,Vpvcom) using a public SHELA source is described in in Fig. 2.

Fig. 2. Non-interactive Commitment Scheme from OWFs Πpvcom = (G,Spvcom,Rpvcom).

Theorem 18. Assuming the existence of public SHELA sources, if 2-round
public-coin statistically binding commitment schemes exist then Πpvcom is a non-
interactive commitment scheme.

We stress that our protocol can be instantiated through a black-box use of any
one-way function.

Acknowledgments. DA and MO were funded by the Singapore Ministry of Educa-
tion and the National Research Foundation under grant R-710-000-012-135. Part of
this work was done while MO was visiting the University of Warsaw (visit supported
by TEAM/2016-1/4 grant from the Foundation for Polish Science). Part of this work
was done while JR was visiting the Centre for Quantum Technologies, National Univer-
sity of Singapore. Part of this work was done while LS was at the University of Salerno
and visiting the Centre for Quantum Technologies, National University of Singapore.
LS and IV were supported in part by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 780477 (project PRIViLEDGE) and
in part by “GNCS - INdAM”.
12 We set L precisely as specified in the previous footnote.

How to Extract Useful Randomness from Unreliable Sources 369

References

1. Aggarwal, D., Obremski, M., Ribeiro, J., Siniscalchi, L., Visconti, I.: How to extract
useful randomness from unreliable sources. Cryptology ePrint Archive, Report
2019/1156 (2019). https://eprint.iacr.org/2019/1156

2. Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating inde-
pendence: new constructions of condensers, Ramsey graphs, dispersers, and extrac-
tors. J. ACM 57(4) (2010). https://doi.org/10.1145/1734213.1734214

3. Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2-source dispersers for no(1) entropy,
and Ramsey graphs beating the Frankl-Wilson construction. Ann. Math. 176(3),
1483–1543 (2012)

4. Beigi, S., Bogdanov, A., Etesami, O., Guo, S.: Optimal deterministic extractors for
generalized Santha-Vazirani sources. In: APPROX/RANDOM 2018. LIPIcs, vol.
116, pp. 30:1–30:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2018). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.30

5. Beigi, S., Etesami, O., Gohari, A.: Deterministic randomness extraction from gen-
eralized and distributed Santha-Vazirani sources. SIAM J. Comput. 46(1), 1–36
(2017). https://doi.org/10.1137/15M1027206

6. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

7. Ben-Aroya, A., Chattopadhyay, E., Doron, D., Li, X., Ta-Shma, A.: A new app-
roach for constructing low-error, two-source extractors. In: CCC 2018, pp. 3:1–3:19.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Germany (2018)

8. Bennett, C.H., Brassard, G., Robert, J.-M.: How to reduce your enemy’s informa-
tion (extended abstract). In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218,
pp. 468–476. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-
X 37

9. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv e-prints arXiv:-
1605.04559, May 2016

10. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28914-9 11

11. Blum, M.: Independent unbiased coin flips from a correlated biased source—a finite
state Markov chain. Combinatorica 6(2), 97–108 (1986). https://doi.org/10.1007/
BF02579167

12. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. Number Theory 01(01), 1–32 (2005)

13. Bourgain, J.: On the construction of affine extractors. GAFA Geom. Funct. Anal.
17(1), 33–57 (2007)

14. Bourgain, J., Dvir, Z., Leeman, E.: Affine extractors over large fields with expo-
nential error. Comput. Complex. 25(4), 921–931 (2016). https://doi.org/10.1007/
s00037-015-0108-5

15. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use an
imperfect reference string. In: FOCS 2007, pp. 249–259, October 2007. https://doi.
org/10.1109/FOCS.2007.70

16. Chattopadhyay, E., Goodman, J., Goyal, V., Li, X.: Extractors for adversarial
sources via extremal hypergraphs. Cryptology ePrint Archive, Report 2019/1450
(2019, to appear in STOC 2020). https://eprint.iacr.org/2019/1450

https://eprint.iacr.org/2019/1156
https://doi.org/10.1145/1734213.1734214
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.30
https://doi.org/10.1137/15M1027206
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/3-540-39799-X_37
https://doi.org/10.1007/3-540-39799-X_37
http://arxiv.org/abs/1605.04559
http://arxiv.org/abs/1605.04559
https://doi.org/10.1007/978-3-642-28914-9_11
https://doi.org/10.1007/BF02579167
https://doi.org/10.1007/BF02579167
https://doi.org/10.1007/s00037-015-0108-5
https://doi.org/10.1007/s00037-015-0108-5
https://doi.org/10.1109/FOCS.2007.70
https://doi.org/10.1109/FOCS.2007.70
https://eprint.iacr.org/2019/1450

370 D. Aggarwal et al.

17. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: STOC 2016, pp. 285–298. ACM, New York
(2016). https://doi.org/10.1145/2897518.2897547

18. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. Ann. Math. 189(3), 653–705 (2019)

19. Chor, B., Goldreich, O., Hasted, J., Freidmann, J., Rudich, S., Smolensky, R.:
The bit extraction problem or t-resilient functions. In: FOCS 1985, pp. 396–407,
October 1985. https://doi.org/10.1109/SFCS.1985.55

20. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988).
https://doi.org/10.1137/0217015

21. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. In:
EVT/WOTE 2010, pp. 1–8. USENIX Association, Berkeley (2010)

22. Cohen, G., Schulman, L.J.: Extractors for near logarithmic min-entropy. In: FOCS
2016, pp. 178–187, October 2016. https://doi.org/10.1109/FOCS.2016.27

23. Cohen, G.: Local correlation breakers and applications to three-source extractors
and mergers. SIAM J. Comput. 45(4), 1297–1338 (2016). https://doi.org/10.1137/
15M1029837

24. Cohen, G., Shinkar, I.: Zero-fixing extractors for sub-logarithmic entropy. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 343–354. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47672-7 28

25. De, A., Watson, T.: Extractors and lower bounds for locally samplable sources. In:
Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM
2011. LNCS, vol. 6845, pp. 483–494. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22935-0 41

26. DeVos, M., Gabizon, A.: Simple affine extractors using dimension expansion. In:
CCC 2010, pp. 50–57. IEEE Computer Society, USA (2010). https://doi.org/10.
1109/CCC.2010.14

27. Dodis, Y.: New imperfect random source with applications to coin-flipping. In:
Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.
297–309. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 25

28. Dodis, Y., Vaikuntanathan, V., Wichs, D.: Extracting randomness from extractor-
dependent sources. Cryptology ePrint Archive, Report 2019/1339 (2019). https://
eprint.iacr.org/2019/1339

29. Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of multi-
plicities, with applications to Kakeya sets and mergers. SIAM J. Comput. 42(6),
2305–2328 (2013)

30. Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for poly-
nomial sources. Comput. Complex. 18(1), 1–58 (2009). https://doi.org/10.1007/
s00037-009-0258-4

31. Dvir, Z., Raz, R.: Analyzing linear mergers. Random Struct. Algorithms 32(3),
334–345 (2008)

32. Dvir, Z., Shpilka, A.: An improved analysis of linear mergers. Comput. Complex.
16(1), 34–59 (2007). https://doi.org/10.1007/s00037-007-0223-z

33. Dvir, Z., Wigderson, A.: Kakeya sets, new mergers, and old extractors. SIAM J.
Comput. 40(3), 778–792 (2011). https://doi.org/10.1137/090748731

34. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000, pp. 283–293,
November 2000. https://doi.org/10.1109/SFCS.2000.892117

35. Elias, P.: The efficient construction of an unbiased random sequence. Ann. Math.
Stat. 43(3), 865–870 (1972)

https://doi.org/10.1145/2897518.2897547
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1137/0217015
https://doi.org/10.1109/FOCS.2016.27
https://doi.org/10.1137/15M1029837
https://doi.org/10.1137/15M1029837
https://doi.org/10.1007/978-3-662-47672-7_28
https://doi.org/10.1007/978-3-662-47672-7_28
https://doi.org/10.1007/978-3-642-22935-0_41
https://doi.org/10.1007/978-3-642-22935-0_41
https://doi.org/10.1109/CCC.2010.14
https://doi.org/10.1109/CCC.2010.14
https://doi.org/10.1007/3-540-48224-5_25
https://eprint.iacr.org/2019/1339
https://eprint.iacr.org/2019/1339
https://doi.org/10.1007/s00037-009-0258-4
https://doi.org/10.1007/s00037-009-0258-4
https://doi.org/10.1007/s00037-007-0223-z
https://doi.org/10.1137/090748731
https://doi.org/10.1109/SFCS.2000.892117

How to Extract Useful Randomness from Unreliable Sources 371

36. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

37. Fuchsbauer, G., Orrù, M.: Non-interactive zaps of knowledge. In: Preneel, B., Ver-
cauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 44–62. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93387-0 3

38. Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields.
In: FOCS 2005, pp. 407–416, October 2005. https://doi.org/10.1109/SFCS.2005.
31

39. Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing sources
by obtaining an independent seed. SIAM J. Comput. 36(4), 1072–1094 (2006)

40. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

41. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using
blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
529–561. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 18

42. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

43. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM 56(4), 20:1–20:34 (2009)

44. Kamp, J., Rao, A., Vadhan, S., Zuckerman, D.: Deterministic extractors for small-
space sources. J. Comput. Syst. Sci. 77(1), 191–220 (2011)

45. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput. 36(5), 1231–1247 (2007)

46. Lewko, M.: An explicit two-source extractor with min-entropy rate near 4/9. Math-
ematika 65(4), 950–957 (2019)

47. Li, F., Zuckerman, D.: Improved extractors for recognizable and algebraic sources.
Electronic Colloquium on Computational Complexity (ECCC) 25, 110 (2018)

48. Li, X.: Improved constructions of three source extractors. In: CCC 2011, pp. 126–
136, June 2011. https://doi.org/10.1109/CCC.2011.26

49. Li, X.: A new approach to affine extractors and dispersers. In: CCC 2011, pp.
137–147, June 2011. https://doi.org/10.1109/CCC.2011.27

50. Li, X.: Extractors for a constant number of independent sources with polylogarith-
mic min-entropy. In: FOCS 2013, pp. 100–109, October 2013. https://doi.org/10.
1109/FOCS.2013.19

51. Li, X.: Improved two-source extractors, and affine extractors for polylogarith-
mic entropy. In: FOCS 2016, pp. 168–177, October 2016. https://doi.org/10.1109/
FOCS.2016.26

52. Li, X.: New independent source extractors with exponential improvement. In:
STOC 2013, pp. 783–792. ACM, New York, June 2013

53. Li, X.: Three-source extractors for polylogarithmic min-entropy. In: FOCS 2015,
pp. 863–882, October 2015. https://doi.org/10.1109/FOCS.2015.58

54. Lichtenstein, D., Linial, N., Saks, M.: Some extremal problems arising from discrete
control processes. Combinatorica 9(3), 269–287 (1989). https://doi.org/10.1007/
BF02125896

55. Lu, C.J., Reingold, O., Vadhan, S., Wigderson, A.: Extractors: optimal up to con-
stant factors. In: STOC 2003, pp. 602–611. ACM, New York (2003)

56. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991). https://doi.org/10.1007/BF00196774

https://doi.org/10.1007/978-3-319-93387-0_3
https://doi.org/10.1109/SFCS.2005.31
https://doi.org/10.1109/SFCS.2005.31
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/11818175_6
https://doi.org/10.1109/CCC.2011.26
https://doi.org/10.1109/CCC.2011.27
https://doi.org/10.1109/FOCS.2013.19
https://doi.org/10.1109/FOCS.2013.19
https://doi.org/10.1109/FOCS.2016.26
https://doi.org/10.1109/FOCS.2016.26
https://doi.org/10.1109/FOCS.2015.58
https://doi.org/10.1007/BF02125896
https://doi.org/10.1007/BF02125896
https://doi.org/10.1007/BF00196774

372 D. Aggarwal et al.

57. von Neumann, J.: Various techniques used in connection with random digits. In:
Monte Carlo Method, National Bureau of Standards Applied Mathematics Series,
vol. 12, chap. 13, pp. 36–38. US Government Printing Office, Washington, DC
(1951)

58. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

59. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

60. Pudlak, P., Rodl, V.: Extractors for small zero-fixing sources. arXiv e-prints
arXiv:1904.07949, April 2019

61. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM J. Discrete Math. 13(1), 2–24 (2000)

62. Rao, A.: Extractors for low-weight affine sources. In: CCC 2009, pp. 95–101, July
2009. https://doi.org/10.1109/CCC.2009.36

63. Rao, A.: Extractors for a constant number of polynomially small min-entropy inde-
pendent sources. SIAM J. Comput. 39(1), 168–194 (2009)

64. Raz, R.: Extractors with weak random seeds. In: STOC 2005, pp. 11–20. ACM,
New York (2005). https://doi.org/10.1145/1060590.1060593

65. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from slightly-
random sources. In: FOCS 1984, pp. 434–440, October 1984. https://doi.org/10.
1109/SFCS.1984.715945

66. Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable proofs from blockchains.
In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 374–401. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 13

67. Ta-Shma, A.: On extracting randomness from weak random sources (extended
abstract). In: STOC 1996, pp. 276–285. ACM, New York (1996)

68. Trevisan, L., Vadhan, S.: Extracting randomness from samplable distributions. In:
FOCS 2000, pp. 32–42. IEEE Computer Society, Washington, DC (2000)

69. Vazirani, U.V.: Towards a strong communication complexity theory or generat-
ing quasi-random sequences from two communicating slightly-random sources. In:
STOC 1985, pp. 366–378. ACM, New York (1985)

70. Viola, E.: Extractors for turing-machine sources. In: Gupta, A., Jansen, K., Rolim,
J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 663–671.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32512-0 56

71. Viola, E.: Extractors for circuit sources. SIAM J. Comput. 43(2), 655–672 (2014)
72. Yehudayoff, A.: Affine extractors over prime fields. Combinatorica 31(2), 245

(2011). https://doi.org/10.1007/s00493-011-2604-9
73. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique

and chromatic number. In: STOC 2006. pp. 681–690. ACM, New York, NY, USA
(2006)

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
http://arxiv.org/abs/1904.07949
https://doi.org/10.1109/CCC.2009.36
https://doi.org/10.1145/1060590.1060593
https://doi.org/10.1109/SFCS.1984.715945
https://doi.org/10.1109/SFCS.1984.715945
https://doi.org/10.1007/978-3-030-17253-4_13
https://doi.org/10.1007/978-3-642-32512-0_56
https://doi.org/10.1007/s00493-011-2604-9

Low Error Efficient Computational
Extractors in the CRS Model

Ankit Garg1(B), Yael Tauman Kalai2(B), and Dakshita Khurana3

1 Microsoft Research India, Bangalore, India
garga@microsoft.com

2 Microsoft Research New England, Cambridge, USA
yael@microsoft.com

3 University of Illinois Urbana-Champaign, Champaign, IL, USA
dakshita@illinois.edu

Abstract. In recent years, there has been exciting progress on build-
ing two-source extractors for sources with low min-entropy. Unfortu-
nately, all known explicit constructions of two-source extractors in the
low entropy regime suffer from non-negligible error, and building such
extractors with negligible error remains an open problem. We investi-
gate this problem in the computational setting, and obtain the following
results.

We construct an explicit 2-source extractor, and even an explicit
non-malleable extractor, with negligible error, for sources with low min-
entropy, under computational assumptions in theCommonRandomString
(CRS) model. More specifically, we assume that a CRS is generated once
and for all, and allow the min-entropy sources to depend on the CRS. We
obtain our constructions by using the following transformations.
1. Building on the technique of [5], we show a general transformation

for converting any computational 2-source extractor (in the CRS
model) into a computational non-malleable extractor (in the CRS
model), for sources with similar min-entropy.
We emphasize that the resulting computational non-malleable
extractor is resilient to arbitrarily many tampering attacks (a prop-
erty that is impossible to achieve information theoretically). This
may be of independent interest.
This transformation uses cryptography, and relies on the sub-
exponential hardness of the Decisional Diffie Hellman (DDH)
assumption.

2. Next, using the blueprint of [1], we give a transformation converting
our computational non-malleable extractor (in the CRS model) into
a computational 2-source extractor for sources with low min-entropy
(in the CRS model). Our 2-source extractor works for unbalanced
sources: specifically, we require one of the sources to be larger than
a specific polynomial in the other.
This transformation does not incur any additional assumptions. Our
analysis makes a novel use of the leakage lemma of Gentry and
Wichs [18].

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 373–402, 2020.
https://doi.org/10.1007/978-3-030-45721-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_14

374 A. Garg et al.

1 Introduction

Randomness is fundamental for cryptography. It is well known that even the
most basic cryptographic primitives, such as semantically secure encryption,
commitments and zero-knowledge proofs, require randomness. In fact, Dodis et
al. [15] proved that these primitives require perfect randomness, and cannot be
constructed using a weak source of randomness, not even one that has nearly
full min-entropy.1

Unfortunately, in reality, perfect randomness is very hard to come by, and
secret randomness is even harder. Indeed, several attacks on cryptographic sys-
tems rely on the fact that the randomness that was used in the implementation
was imperfect. Very recently, this was demonstrated in the regime of cryptocur-
rencies by Breitner and Heninger [6], who computed hundreds of Bitcoin private
keys by exploiting the fact that the randomness used to generate them was
imperfect (other examples include [3,20]).

Randomness Extractors. These attacks give rise to a very natural question: Can
we take weak sources of randomness and “boost” them into perfect random
sources? This is the basic question that underlies the field of randomness extrac-
tors. Extractors are algorithms that extract perfect randomness from weak ran-
dom sources. As eluded to above, one cannot hope to deterministically take only
a single weak random source and generate perfect randomness from it.

Nevertheless, two common types of randomness extractors have been consid-
ered in the literature. The first is a seeded extractor, which uses a uniform seed to
extract randomness from any (n, k) source, for k as small as k = polylog(n). This
seed is typically very short, often of length O(log n). However, it is paramount
that this seed is perfectly random, and independent of the source. In real-
ity, unfortunately, even generating such short perfectly random strings may be
challenging.

The second type of extractor is a 2-source extractor. A 2-source extractor
takes as input two independent weak sources and outputs pure randomness. We
stress that a 2-source extractor does not require perfect randomness at all! It
only requires two independent sources with sufficiently large min-entropy. Such
sources may be arguably easier to generate.

Until recently, we had an explicit construction of a 2-source extractor only
in the high-entropy regime, i.e. assuming one of the sources has min-entropy
k ≥ 0.499n [4,26]. Over the last three years, there has been remarkable and
exciting progress [2,7–9,11–14,24], giving rise to 2-source extractors in the low-
entropy regime, albeit with non-negligible error.

More formally, an (n1, n2, k1, k2, ε) 2-source extractor is a function E:{0, 1}n1×
{0, 1}n2 → {0, 1}m such that for any independent sources X and Y , with min-
entropy at least k1 and k2 respectively, E(X,Y) is ε-close (in statistical distance) to

1 A weak source is modeled as an (n, k)-source, which is a distribution that generates
elements in {0, 1}n with min-entropy k. A distribtion X ⊆ {0, 1}n is said to have
min-entropy k if for every x ∈ {0, 1}n, Pr[X = x] ≤ 2−k.

Low Error Efficient Computational Extractors in the CRS Model 375

the uniform distribution over {0, 1}m. The line of recent breakthroughs discussed
above can support min-entropy as small as O(log(n) log(log(n))) in the balanced
regime n1 = n2 = n. However, in all the above constructions, the running time of
the extractor is proportional to poly(1/ε)!

This state-of-the-art is far from ideal for cryptographic applications, where
typically the error is required to be negligible in the security parameter. Unfor-
tunately, in the negligible error regime, the extractors mentioned above run
in super-polynomial time. The question of whether one can obtain a 2-source
extractor with negligible error, even for sources with min-entropy δn, for a small
constant δ > 0, is one of the most important open problems in the area of
randomness extractors.

In this work, we explore this problem in the computational setting. We note
that solving this problem, even in the computational setting, may facilitate gen-
erating useful randomness for many cryptographic applications.

1.1 Prior Work on Computational Extractors

There has been some prior work [22,23] on building computational extrac-
tors. However, these works rely on extremely strong computational assump-
tions. Loosely speaking, the assumption is (slightly stronger than) assum-
ing the existence of an “optimally exponentially hard” one-way permutation
f : {0, 1}n → {0, 1}n, that is hard to invert even with probability 2−(1−δ)n (this
gives extractors for sources with min-entropy roughly δn).

Intuitively, such a strong assumption seems to be necessary. This is the case
since to prove security we need to construct a reduction that uses an adversary
A, that breaks the 2-source extractor, to break the underlying assumption. If
this assumption is a standard one, then the challenge provided by the assump-
tion comes from a specific distribution (often the uniform distribution). On the
other hand, the adversary A may break the extractor w.r.t. arbitrary indepen-
dent sources X and Y with sufficient min-entropy. It is completely unclear how
one could possibly use (X,Y,A) to break this challenge, since A only helps to
distinguish the specific distribution E(X,Y) from uniform (where E is the 2-
source extractor). Since X and Y are arbitrary low min-entropy distributions, it
is unclear how one could embed the challenge in X or Y , or in E(X,Y).

1.2 Our Results

In this paper, we get around this barrier by resorting to the Common Random
String (CRS) model.2 As a result, under the sub-exponential hardness of DDH
(which is a comparatively mild assumption), we obtain a computational 2-source
extractor, and a computational non-malleable extractor, both with negligible
error, for low min-entropy sources (in the CRS model).

2 Jumping ahead, we note that in the proof we break the assumption by embedding
the challenge in the CRS.

376 A. Garg et al.

At first one may think that constructing such extractors in the CRS model
is trivial since the CRS can be used a seed. However, as mentioned above, we
emphasize that this is not the case, since the CRS is fixed once and for all,
and the sources can depend on this CRS. Indeed, constructing an information
theoretic 2-source extractor in the CRS model is an interesting open problem.

Secondly, one could ask why assuming the existence of a CRS is reasonable,
since our starting point is the belief that fresh randomness is hard to generate,
and thus in a sense assuming a CRS brings us back to square one. However, as
emphasized above, this CRS is generated once and for all, and can be reused
over and over again. Indeed, we believe that true randomness is hard, yet not
impossible, to generate. Thus, reducing the need for true randomness to a single
one-time need, is significant progress. Importantly, we emphasize that in cryp-
tography, there are many natural applications where a CRS is assumed to exist,
and in such applications this same CRS can be used to extract randomness from
weak sources.

The computational CRS model. In our constructions, we assume that a CRS is
(efficiently) generated once and for all. We consider any two weak sources X and
Y . These sources can each depend on the CRS,3 but are required to be indepen-
dent from each other, and each have sufficient min-entropy, conditioned on the
CRS. We require that X and Y are efficiently sampleable given the CRS. This
is needed since we are in the computational setting, and in particular, security
breaks down if the sources can be used to break our hardness assumption.

Our 2-source extractor. We define an (n1, n2, k1, k2) computational 2-source
extractor (in the CRS model) as a function E : {0, 1}n1 × {0, 1}n2 × {0, 1}c →
{0, 1}m such that for all sources (X,Y), which conditioned on the crs, are inde-
pendent, are polynomially sampleable, and have min-entropy at least k1, k2
respectively, it holds that (E(X,Y, crs), Y, crs) is computationally indistinguish-
able from (U, Y, crs), namely, any polynomial size adversary cannot distinguish
(E(X,Y, crs), Y, crs) from (U, Y, crs) with non-negligible advantage.4

We construct such a 2-source extractor (with unbalanced sources) assuming
the sub-exponential security of DDH 5.

Theorem 1 (Informal). Let λ ∈ N denote the security parameter and assume
the sub-exponential hardness of DDH. For every constant ε > 0, there exist con-
stants δ > 0, c > 1 such that there exists an explicit (n1, n2, k1, k2) computational
2-source extractor in the CRS model, with n1 = Ω(λ), n2 ≤ λδ and min-entropy
k1 = nε

1, k2 = logc(λ).
3 In this way, the CRS is different from the seed of a seeded extractor, which must be

completely independent of the source.
4 Requiring the output of the extractor to be random even given the source Y is a

standard requirement, and such an extractor is known as a strong extractor.
5 The sub-exponential DDH assumption asserts that there exists a group G such

that no sub-exponential time algorithm can distinguish between (ga, gb, gab) and
(ga, gb, gc), where g is a fixed generator of G, and where a, b, c are chosen randomly
from Zq, where q denotes the order of G.

Low Error Efficient Computational Extractors in the CRS Model 377

Our non-malleable extractor. We also construct a computational non-malleable
extractor in the CRS model. A non-malleable extractor is a notion that was
introduced by Dodis and Wichs [17]. This notion is motivated by cryptography,
and was used to achieve privacy amplification, i.e., to “boost” a private weak
key into a private uniform one.

Similar to standard extractors, one can consider non-malleable extractors
both in the seeded setting and in 2-source setting. The seeded version is defined
as follows: A strong (k, ε) t-non-malleable-extractor is a function E : {0, 1}n ×
{0, 1}d → {0, 1}m s.t. for all functions f1, . . . , ft : {0, 1}d → {0, 1}d, that have
no fixed points, it holds that

(Y, E(X, Y), E(X, f1(Y)), . . . , E(X, ft(Y))) ≡ε (Y, U, E(X, f1(Y)), . . . , E(X, ft(Y)))

where X,Y,U are independent, X has min-entropy at least k, Y is distributed
uniformly over {0, 1}d and U is distributed uniformly over {0, 1}m. Non-
malleable 2-source extractors are defined similarly to seeded ones, except that
the requirement that Y is uniformly distributed is relaxed; i.e., it is only required
to have sufficient min-entropy and be independent of X. In addition, both the
sources can be tampered independently.

Clearly, in the information theoretic setting, such non-malleable extractors
(both seeded and 2-sources ones) can exist only for a bounded t.

In this work we construct a computational analogue of a non-malleable
extractor in the CRS model. As opposed to the information theoretic setting,
where the number of tampering attacks t is a-priori bounded, in the compu-
tational setting we allow the adversary to tamper an arbitrary (polynomial)
number of times (i.e., we do not fix an a priori bound t on the number of tam-
pering functions). In fact, in addition to giving the adversary Y,E(X,Y), we
can even give the adversary access to an oracle that on input Y ′ �= Y , outputs
E(X,Y ′).

We would like to note that the object we construct is somewhere in between
a seeded and a 2-source non-malleable extractor. While the source Y need not
be uniformly distributed, we only allow tampering with Y , and do not allow
tampering with the other source.

More formally, we define an (n1, n2, k1, k2) computational non-malleable
extractor (in the CRS model) as a function E : {0, 1}n1 × {0, 1}n2 × {0, 1}c →
{0, 1}m such that for all sources X,Y that are polynomially sampleable, are
independent, and have min-entropy at least k1 and k2 respectively, conditioned
on the CRS, it holds that (E(X,Y,CRS),CRS, Y) is computationally indistin-
guishable from (U,CRS, Y), even with respect to PPT adversaries that are given
access to an oracle that on input Y ′ �= Y outputs E(X,Y ′,CRS). Clearly, such
adversaries can obtain E(X,Y ′,CRS) for an arbitrary t = poly(n) number of
different samples Y ′, that depend on Y and the CRS.

In this setting, we obtain the following two incomparable results, in the high
and low min-entropy regimes respectively.

378 A. Garg et al.

Theorem 2 (Informal). Let λ ∈ N denote the security parameter and assume
the sub-exponential security of DDH. For every constant ε > 0, there exists a
constant c > 0 such that there exists an explicit (n1, n2, k1, k2) computational
non-malleable extractor resisting arbitrarily polynomial tamperings where:

n1 = Ω(λ), logc λ ≤ n2, k1 = nε
1, k2 = 0.51n2

Theorem 3 (Informal). Let λ ∈ N denote the security parameter and assume
the sub-exponential security of DDH. For every constant ε > 0, there exist con-
stants δ, c > 0 such that there exists an explicit (n1, n2, k1, k2) computational
non-malleable extractor resisting arbitrarily polynomial tamperings, where:

n1 = Ω(λ), logc λ ≤ n2 ≤ λδ, k1 = nε
1, k2 = logc n2

We mention that in our formal theorems, under the sub-exponential hardness
of DDH, we allow the sources to be sampled in super-polynomial time and the
adversary to run in super-polynomial time. This will be used in Sect. 6 to convert
a non-malleable extractor (in the high entropy regime) into a 2-source extractor
(in the low entropy regime). We refer the reader to Sects. 5 and 6 for more details.

2 Our Techniques

We obtain our results in three steps.

1. We first construct a computational non-malleable extractor in the CRS model,
for sources in the high entropy regime (i.e., assuming one of the sources has
min entropy rate larger than 1/2). Our construction follows the blueprint
of [5], who built leaky pseudo-entropy functions based on the sub-exponential
hardness of DDH. When viewed differently, their construction can be framed
as showing how to use cryptography to convert any (information theoretic)
2-source extractor (with negligible error) into a computational non-malleable
extractor in the CRS model (for sources with roughly the same min-entropy
as in the underlying 2-source extractor). Since we only have information the-
oretic 2-source extractors for sources in the high entropy regime, we obtain
a computational non-malleable extractor (in the CRS model) for sources in
the high entropy regime.
Importantly, this extractor is non-malleable w.r.t. arbitrarily many tampering
functions (a property that is impossible to achieve information theoretically).
This contribution is mainly conceptual.

2. We then describe how this extractor can be used to obtain a computational
2-source extractor (in the CRS model) with negligible error for low min-
entropy sources. This part contains the bulk of the technical difficulty of
this work. Specifically, we follow the blueprint of [1], which shows how to
convert any (information-theoretic) non-malleable extractor into a 2-source
extractor (with negligible error for low min-entropy sources). However, this
transformation assumes that the non-malleable extractor has a somewhat

Low Error Efficient Computational Extractors in the CRS Model 379

optimal dependence between the seed length and the allowable number of
tampering functions. Prior to our work, no explicit constructions of non-
malleable extractors were known to satisfy this requirement.
Our computational non-malleable extractor does satisfy this requirement, and
therefore we manage to use the [1] blueprint to construct the desired 2-source
extractor. Nevertheless, there are multiple unique challenges that come up
when trying to apply their transformation in the computational setting. One
of our key ideas to overcome these challenges involves using the leakage lemma
of Gentry and Wichs [18]. We elaborate on this in Sect. 2.2.

3. To achieve our final construction of a computational non-malleable extractor
(in the CRS model) with negligible error for low min-entropy sources, we
again use the blueprint from [5], however, this time we use our computational
2-source extractor as a building block. To argue security, we prove that the [5]
transformation goes through even if we start with a computational 2-source
extractor. As above, many technical challenges arise when considering the
computational setting.

2.1 From 2-Source Extractors to Non-malleable Extractors

We begin with the observation that the construction of leaky psuedo-random
functions from [5], can be framed more generally as a cryptographic reduction
from (information theoretic) 2-source extractors to computational non-malleable
extractors in the CRS model. Since we only know information theoretic 2-source
extractors (with negligible error) in the high-entropy regime, we obtain a compu-
tational non-malleable extractor (in the CRS model) in the high entropy regime.

Moreover, we generalize the [5] blueprint, by showing that one can convert
any computational 2-source extractor (in the CRS model) to a computational
non-malleable extractor (in the CRS model). This introduces several technical
difficulties which we elaborate on in Sect. 5. This generalization is needed to
obtain our final result, of a computational non-malleable extractor (in the CRS
model) for sources with low min-entropy (i.e., to achieve Item 3 in the overview
above).

We next describe our interpretation of the [5] blueprint for converting any
(information theoretic) 2-source extractor into a computational non-malleable
one (in the CRS model):

Start with any 2-source extractor

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m,

with negligible error (eg., [4,26]).
Assume the existence of the following two cryptographic primitives:

1. A collision resistant function family H, where for each h ∈ H,

h : {0, 1}n2 → {0, 1}k,

where k is significantly smaller than the min-entropy of the second source of
2Ext.

380 A. Garg et al.

A collision resistant hash family has the guarantee that given a random func-
tion h ← H it is hard to find two distinct elements y1, y2 ∈ {0, 1}n2 such that
h(y1) = h(y2).

2. A family of lossy functions F , where for each f ∈ F ,

f : {0, 1}n1 → {0, 1}n1 .

A lossy function family consist of two types of functions: injective and lossy.
Each lossy function loses most of the information about the input (i.e., the
image size is very small). It is assumed that it is hard to distinguish between
a random injective function and a random lossy function in the family.

We note that both these primitive can be constructed under the DDH assump-
tion, which is a standard cryptographic assumption.6

We next show how these cryptographic primites can be used to convert 2Ext
into a computational non-malleable 2-source extractor in the CRS model. We
start by describing the CRS.

The CRS consists of a random function h ← H from the collision-resistant
hash family, and consists of 2k random injective functions from the lossy function
family F , denoted by

f1,0, f2,0, . . . , fk,0

f1,1, f2,1, . . . , fk,1

The computational non-malleable extractor (in the CRS model) is defined by

cnm-Ext(x, y, crs) := 2Ext(fcrs,h(y)(x), y),

where
fcrs,s(x) := f1,s1 ◦ . . . ◦ fk,sk

(x)

In what follows, we recall the proof idea from [5]. To this end, consider any poly-
nomial size adversary A that obtains either (cnm-Ext(x, y), y, crs) or (U, y, crs),
together with an oracle O that has (x, y, crs) hardwired, and on input y′ outputs
⊥ if y′ = y, and otherwise outputs nm-Ext(x, y′, crs). By the collision resistance
property of h, A queries the oracle on input y′ s.t. h(y′) = h(y) only with negli-
gible probability. Therefore, the oracle O can be replaced by a different oracle,
that only hardwires (crs, h(y), x) and on input y′ outputs ⊥ if h(y′) = h(y), and
otherwise outputs cnm-Ext(x, y′).

A key observation is that access to this oracle can be simulated entirely given
only crs, h(y) and (Z1, . . . Zk), where

Zk = fk,1−h(y)k
(x)

Zk−1 = fk−1,1−h(y)k−1(fk,h(y)k
(x))

...
Z1 = f1,1−h(y)1(f2,h(y)2(. . . fk,h(y)k

(x)))

6 The DDH assumption asserts that there exists a group G such that (ga, gb, gab) is
computationally indistinguishable from (ga, gb, gc), where g is a fixed generator of G,
and where a, b, c are chosen randomly from Zq, where q denotes the order of G.

Low Error Efficient Computational Extractors in the CRS Model 381

Since the adversary A cannot distinguish between random injective func-
tions and random lossy ones, we can change the CRS to ensure that functions
f1,h(y)1 , . . . , fk,h(y)k

are injective, whereas the functions f1,1−h(y)1 , . . . , fk,1−h(y)k

are all lossy. By setting k (the size of the output of the hash) to be small
enough, we can guarantee that Y has high min-entropy conditioned on h(y)
and Z = (Z1, . . . , Zk). In addition, by setting the image of the lossy functions to
be small enough, we can guarantee that X also has high min-entropy conditioned
on h(y) and Z = (Z1, . . . , Zk). Moreover, it is easy to seet that X and Y remain
independent conditioned on h(Y) and Z. Thus, we can use the fact that 2Ext
is a (strong) 2-source extractor, to argue that the output of our non-malleable
extractor is close to uniform.

This was, of course, a very simplified overview. A careful reader may have
observed a circularity in the intuition above: Recall that we sample the crs
such that for b = h(y), the functions f1,b1 , . . . , fk,bk

are injective, whereas
f1,1−b1 , . . . , fk,1−bk

are lossy. Thus, the crs implicitly depends on y (via b = h(y)).
This results in a circularity, because y is then sampled as a function of this crs,
and hence may not satisfy that b = h(y). The formal proof requires us to care-
fully deal with this (and other) dependency issues that arise when formalizing
this intuition. In a nutshell, we overcome this circularity by strengthening our
assumption to a sub-exponential one, namely we assume the sub-exponential
hardness of DDH as opposed to the (more standard) polynomial hardness of
DDH.

In addition, as mentioned above, we prove that this transformation goes
through even if the underlying 2-source extractor is a computational one (in the
CRS model). This introduces various other technical difficulties. We refer the
reader to Sect. 5 for the details.

2.2 Our 2-Source Extractor

As mentioned earlier, we construct our computational 2-source extractor by fol-
lowing the blueprint of [1], which shows how to use a non-malleable seeded
extractor to construct a 2-source extractor (in the low entropy regime). How-
ever, they need the non-malleable seeded extractor to have the property that the
seed length is significantly smaller than t log(1/ε), where t is the number of tam-
pering functions that the non-malleable extractor is secure against, and where
ε is the error.7 Unfortunately, all known (information theoretic) non-malleable
extractors require the seed length to be at least t log(1/ε).

We note that in Sect. 2.1, we obtained computational non-malleable extrac-
tor (in the CRS model) for sources in the high-entropy regime (by using a 2-
source extractor from [4,26] as a building block). This extractor, in particular,
can be seen as a non-malleable seeded extractor. Importantly, it satisfies the
requirements of [1], since in our construction the seed length is independent of t.
Thus, one would expect that instantiating the [1] transformation with our com-
putational non-malleable extractor (in the CRS model), would directly yield a

7 The exact parameters are not relevant to this overview.

382 A. Garg et al.

computational 2-source extractor (in the CRS model), with negligible error for
low min-entropy sources. However, this turns out not to be the case.

The reason is that the analysis of [1] crucially requires the underlying non-
malleable extractor to be secure against adversaries that run in unbounded time.
Specifically, even given an efficient adversary that contradicts the security of
the 2-source extractor, [1] obtain an inefficient adversary that contradicts the
security of the underlying non-malleable extractor. Since our underlying non-
malleable extractor is computational, it is not clear if this gets us anywhere.
Moreover, dealing with sources that can depend on the CRS causes further
technical problems. Nevertheless, we show that the construction of [1] can be
instantiated with our computational non-malleable extractor in the CRS model,
but with a substantially different (and more technically involved) analysis. In
particular, in our analysis we make a novel use of the leakage lemma of Gentry
and Wichs [18].

The blueprint of [1]. To better understand these technicalities, we begin by
describing the transformation of [1]. Their transformation uses a disperser as
a building block.

A (K,K ′) disperser is a function

Γ : {0, 1}n2 × [t] → {0, 1}d

such that for every subset A of {0, 1}n2 that is of size ≥ K, it holds that the size
of the set of neighbors of A under Γ is at least K ′.

The [1]-transformation takes a seeded non-malleable extractor

nm-Ext : {0, 1}n1 × {0, 1}d → {0, 1}m

and a disperser
Γ : {0, 1}n2 × [t] → {0, 1}d,

and constructs the following 2-source extractor 2Ext : {0, 1}n1 × {0, 1}n2 →
{0, 1}m, defined by

2Ext(x1, x2) =
⊕

y:∃i s.t. Γ (x2,i)=y

nm-Ext(x1, y)

In this work, we instantiate their transformation in the computational setting.
In what follows, we first describe the key ideas in the proof from [1], and then
we explain the technical difficulties that arise in the computational setting, and
how we resolve them.

Fix any two independent sources X1 and X2 with “sufficient” min-entropy.
One can argue that

(2Ext(X1,X2),X2) ≡ (U,X2)

as follows:

Low Error Efficient Computational Extractors in the CRS Model 383

1. By the definition of an (information-theoretic) t-non-malleable extractor
nm-Ext, for a random y ∈ {0, 1}d, for all y′

1, . . . , y
′
t that are distinct from

y, it holds that

(nm-Ext(X1, y),nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) ≡

(U,nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) .

We call a y that satisfies the above property, a good y. By a standard averaging
argument one can argue that an overwhelming fraction of y’s are good.

2. Fix any x2 for which there exists an i ∈ [t] such that y = Γ (x2, i) is good.
This means that nm-Ext(X1, y) is statistically close to uniform, even given
nm-Ext(X1, Γ (x2, j)) for every j ∈ [t]\{i} such that Γ (x2, j) �= y, which in
turn implies that the XOR of these (distinct) values is close to uniform, which
implies that 2Ext(X1, x2) is close to uniform.

3. It thus suffice to show that for x2 ← X2, with overwhelming probability there
exists an i ∈ [t] such that y = Γ (x2, i) is good. This can be done by relying on
the disperser. Specifically, consider the set of bad x2’s for which y = Γ (x2, i)
is not good for all i ∈ [t]. Loosely speaking, if this set occurs with noticeable
probability, then one can use the property of the disperser to argue that the
support of Γ (x2, i) for x2 ∈ bad, i ∈ [t] covers a large fraction of the y’s, and
by definition, none of these y’s can be good, contradicting the fact that we
argued above that an overwhelming fraction of y’s must be good.

This completes the outline of the proof in [1].

The Computational Setting. The intuitive analysis above, while easy to formalize
in the information theoretic setting, does not carry over to the computational
setting, for various reasons.

1. First, it is not clear that a computational non-malleable extractor satisfies the
first property of the [1] outline. Namely, it is not clear that for an overwhelming
fraction of y ∈ {0, 1}d, it holds that for all y′

1, . . . y
′
t distinct from y,

(cnm-Ext(X1, y), cnm-Ext(X1, y
′
1), . . . , cnm-Ext(X1, y

′
t)) ≈

(U, cnm-Ext(X1, y
′
1), . . . , cnm-Ext(X1, y

′
t)) ,

where ≈ denotes computational indistinguishability. This is because the com-
putational advantage of an efficient adversary on different y’s could cancel
out.

2. More importantly, in the computational setting, we would have to construct
an efficient reduction R that breaks the non-malleable extractor, given any
adversary A that breaks the 2-source extractor.

R obtains input (α, ŷ), where ŷ is a random seed and where α is either
chosen according to cnm-Ext(X1, ŷ) or is chosen uniformly at random. In
addition, R obtains an oracle that outputs cnm-Ext(X1, y

′) on input y′ �= ŷ.
The reduction R is required to efficiently distinguish between the case where
α ← cnm-Ext(X1, ŷ) and the case where α is chosen uniformly at random.

384 A. Garg et al.

In order to use A, R needs to generate a challenge for A that corresponds
either to the output of the 2-source extractor (if α was the output of cnm-Ext)
or uniform (if α was uniform). R also needs to generate a corresponding x2

for A, that is sampled according to X2. How can it generate these values?
If R were allowed to be inefficient, then a simple strategy for R would be the
following:

– Sample x̂2 ← X2 conditioned on the existence of i ∈ [t] such that ŷ =
Γ (x̂2, i).

– Next, query the oracle on inputs (y1, . . . yt) where for every i ∈ [t], yi =
Γ (x̂2, i). As a result, R obtains zi = cnm-Ext(x1, yi) for all i ∈ [t]\̂i, and
sets z =

(⊕
i∈[t] zi

)
⊕ α (after removing duplicates).

– It is easy to see that x̂2 is generated from the distribution X2. Moreover,
if α is the output of cnm-Ext, then z corresponds to 2Ext(x1, x2), and
otherwise to uniform.

– At this point, if A distinguishes z from uniform, R can echo the output
of A to distinguish α from uniform.

Unfortunately, this does not help us much, because the underlying non-
malleable extractor is only guaranteed to be secure against efficient adver-
saries, whereas the adversary R that we just outlined, crucially needs to invert
the disperser. It is not clear that one can build dispersers in our parameter
setting that are efficiently invertible. Moreover, even if there was a way to
invert the disperser, R would need to ensure that the inverse x̂2 is sampled
from the correct distribution, and it is unclear whether this can be done
efficiently.

Our key ideas. Our first key idea is to get around this technicality by using
the leakage lemma as follows: Since R on input ŷ cannot find x̂2 efficiently, we
will attempt to view x̂2 as inefficiently computable leakage on ŷ, and simulate
x̂2 using the following leakage lemma. Informally, this lemma says that any
inefficiently computable function that outputs γ bits, can be simulated in time
roughly O(2γ) relative to all efficient distinguishers.

Lemma 1 [10,18,21]. Fix d, γ ∈ N and fix ε > 0. Let Y be any distribution
over {0, 1}d. Consider any randomized leakage function π : {0, 1}d → {0, 1}γ .
For every T , there exists a randomized function π̂ computable by a circuit of size
poly

(
2γε−1T log T

)
such that for every randomized distinguisher D that runs in

time at most T ,

|Pr[D(Y, π(Y)
)

= 1] − Pr[D(Y, π̂(Y)
)

= 1]| ≤ ε

By Lemma 1, simulating x̂2 given ŷ would take time roughly O(2|x̂2 |).8 While
this simulator is clearly not as efficient as we would like, one can hope that
things still work out if the underlying non-malleable extractor is secure against
adversaries running in time O(2|x̂2 |).
8 Jumping ahead, this is the reason that we end up with a 2-source extractor for

unbalanced sources (see Theorem 3).

Low Error Efficient Computational Extractors in the CRS Model 385

However, any disperser (with our setting of parameter, where t is small) must
be compressing, which means that |x̂2| > |ŷ|. Therefore, the simulator’s running
time would be more than O(2|ŷ|). Howeover, ŷ corresponds to the input of the
non-malleable extractor, and recall that our non-malleable extractor applies a
(compressing) collision-resistant hash function to its input y. Therefore, the non-
malleable extractor is completely insecure against adversaries that run in time
O(2|ŷ|). This creates a circular dependency, and it may appear that this approach
is doomed to fail. Nevertheless, we manage to apply the leakage lemma in a more
sophisticated way. Recall that the adversary outlined above queries its oracle on
{yj}j∈[t]\{i}, where yj = Γ (x̂2, j) and where x̂2 ← X2 such that ŷ = Γ (x̂2, i).
Importantly, we show that the elements in {yj}j∈[t] form a hash collision only
with negligible probability, assuming the sources for the 2-source extractor are
somewhat efficiently sampleable. Otherwise, it would be possible to break the
hash function in time proportional to that required to sample sources for the
2-source extractor.

Thus, in order to use the leakage lemma effectively, we prove a stronger form
of security of our non-malleable extractor: we show that it is secure against
adversaries that potentially run in time larger than the time against which the
hash function is secure; as long as these adversaries do not query the oracle
of the non-malleable extractor on hash collisions. By setting the parameters
appropriately, this allows us to use the leakage lemma, and thus complete the
argument outlined above. We therefore get a construction of a 2-source extractor,
by relying on a non-malleable extractor that is secure against adversaries running
in time O(2|ŷ|), as long as they do not make hash collision queries.

Roadmap. The rest of this paper is organized as follows. In Sect. 3, we provide the
relevant preliminaries. In Sect. 4, we provide our new definitions of computational
2-source extractors and non-malleable extractors in the CRS model.

In Sect. 5 we show how to convert a computational 2-source extractor (in the
CRS model) into a computational non-malleable extractor (in the CRS model),
with similar min-entropy guarantees. By applying this transformation to the
information theoretic 2-source extractors of [4] or [26], we get a computational
non-malleable extractor (in the CRS model) for sources in the high min-entropy
regime.

In Sect. 6 we show how to convert our computatational non-malleable extrac-
tor (in the CRS model) into a computational 2-source extractor (in the CRS
model) in the low entropy regime. Finally, we obtain a computational non-
malleable extractor (in the CRS model) in the low entropy regime, by applying
the transformation from Sect. 5 to the computational 2-source extractor that we
constructed in Sect. 6.

3 Preliminaries

In this section, we discuss some preliminaries needed for the later sections. This
includes facts about min-entropy, lossy functions, dispersers, and the leakage
lemma that we rely on.

386 A. Garg et al.

Definition 1. A function μ : N → N is said to be negligible, denoted by μ =
neg(λ), if for every polynomial p : N → N there exists a constant c ∈ N such that
for every λ > c it holds that

μ(λ) ≤ 1/p(λ).

For any function T : N → N, we say that μ is negligible in T , denoted by
μ(λ) = neg(T (λ)) if for every polynomial p : N → N there exists a constant
c ∈ N such that for every λ > c it holds that

μ(λ) ≤ 1/p(T (λ)).

Definition 2. Two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
said to be T (λ)-indistinguishable if for every poly(T) size circuit A,

∣∣∣∣Prx←Xλ
[A(x) = 1] − Pry←Yλ

[A(y) = 1]
∣∣∣∣ = neg(T (λ))

Definition 3. A distribution X over a domain D is said to have min-entropy
k, denoted by H∞(X) = k, if for every z ∈ D,

Pr
x←X

[x = z] ≤ 2−k.

In this paper, we consider sources with average conditional min entropy, as
defined in [16] (and also in the quantum information literature). This notion
is less restrictive than worst case conditional min-entropy (and therefore this
strengthens our results), and is sometimes more suitable for cryptographic appli-
cations.

Definition 4 [16]. Let X and Y be two distributions. The average conditional
min-entropy of X conditioned on Y , denoted by H∞(X|Y)9 is

H∞(X|Y) = − log Ey←Y max
x

Pr[X = x|Y = y] = − log(Ey←Y [2−H∞(X|Y =y)])

Note that 2−H∞(X|Y) is the highest probability of guessing the value of the random
variable X given the value of Y .

We will rely on the following useful claims about average conditional min-
entropy.

Claim [16]. Let X,Y and Z be three distributions, where 2b is the number of
elements in the support of Y . Then,

H∞(X|Y,Z) ≥ H∞(X,Y |Z) − b

Claim. Let X, Y and Z be three distributions, then

H∞(X|Y) ≥ H∞(X|Y,Z)

We defer the proof of this claim to the full version.
9 This is often denoted by ˜H∞(X|Y) in the literature.

Low Error Efficient Computational Extractors in the CRS Model 387

3.1 Collision Resistan Hash Functions

In this work we rely on the existence of a collision resistant function family. Our
setting of parameters is slightly non-standard, since our input domain may differ
from the security parameter.

Definition 5 (T (λ)-secure collision resistant hash functions). Let n, k :
N → N be functions of the security parameter, and let H = {Hλ}λ∈N be a family
of functions where for every λ ∈ N and every h ∈ Hλ,

h : {0, 1}n(λ) → {0, 1}k(λ).

This function family is said to be a T (λ)-secure collision resistant hash family if
for every poly(T (λ))-size adversary A there exists a negligible function ν such
that for every λ ∈ N,

Pr
h←Hλ

[A(h) = (x1, x2) s.t. (x1 �= x2) ∧ h(x1) = h(x2)] = ν(T (λ)).

Theorem 4. Assuming sub-exponential hardness of DDH, there exists a con-
stant δ > 0 such that for every pair of polynomials n, k : N → N such that
poly(λ) ≥ n(λ) > k(λ) ≥ Ω(λ) and for T (λ) = 2λδ

, there exists a T (λ)-secure
collision resistant hash family Hλ, where for every h ∈ Hλ, h : {0, 1}n(λ) →
{0, 1}k(λ).

3.2 Lossy Functions

Lossy functions were defined by Peikert and Waters in [25]. Loosely speaking
a lossy function family consists of functions of two types: lossy functions and
injective ones. The lossy ones (information theoretically) lose most of the infor-
mation about the input; i.e., the image is significantly smaller than the domain.
The injective functions, on the other hand, are injective. It is required that it is
(computationally) hard to distinguish between a random lossy function in the
family and a random injective function in the family. In our setting, we will need
a lossy function family where the range and the domain are of a similar size
(or close to being a similar size). Intuitively, the reason is that we apply these
functions to our min-entropy source, and if the functions produce output strings
that are much longer than the input strings then we will lose in the min-entropy
rate.

Definition 6 (Lossy functions). A function family F = {Fλ}λ∈N is a
(T, n,w)-lossy function family if the following conditions hold:

– There are two probabilistic polynomial time seed generation algorithms Geninj

and Genloss s.t. for any poly(T (λ))-size A, it holds that
∣∣∣∣Prs←Geninj(1λ) [A(s) = 1] − Prs←Genloss(1λ) [A(s) = 1]

∣∣∣∣ = neg(T (λ)).

388 A. Garg et al.

– For every λ ∈ N and every f ∈ Fλ, f : {0, 1}n(λ) → {0, 1}n(λ).
– For every λ ∈ N and every s ∈ Geninj(1λ), fs ∈ Fλ is injective.
– For every λ ∈ N and every s ∈ Genloss(1λ), fs ∈ Fλ is lossy i.e. its image

size is at most 2n(λ)−w.
– There is a polynomial time algorithm Eval s.t. Eval(s, x) = fs(x) for every

λ ∈ N, every s in the support of Geninj(1λ) ∪ Genloss(1λ) and every x ∈
{0, 1}n(λ).

Modifying the construction in [25] (to ensure that the input and output
lengths of the functions are the same for every n = poly(λ)), [5] gave a construc-
tion of a (T, n,w)-lossy function family, for w = n − nε (where ε > 0 can be any
arbitrary small constant), and for every T assuming the DDH assumption holds
against poly(T)-size adversaries.

In this work, we use the following lemma.

Lemma 2 [5,25]. For any constant ε > 0 there exists a constant δ > 0 such that
for every Ω(λ) ≤ n(λ) ≤ poly(λ) there exists a (T, n,w)-lossy function family,
with T (λ) = 2λδ

and w = n−nε, assuming the sub-exponential DDH assumption.

3.3 Leakage Lemma

We make use of the following lemma, which shows that any inefficient leakage
function can be simulated efficiently relative to a class of distinguishers.

Lemma 3 [10,18,21]. Fix d, γ ∈ N and fix ε > 0. Let Y be any distribution
over {0, 1}d. Consider any randomized leakage function π : {0, 1}d → {0, 1}γ .

For every T , there exists a randomized function π̂ computable by a circuit of
size poly

(
2γε−1T

)
such that for every randomized distinguisher D that runs in

time at most T ,

|Pr[D(Y, π(Y)
)

= 1] − Pr[D(Y, π̂(Y)
)

= 1]| ≤ ε

3.4 Dispersers

Definition 7. A function Γ : [N] × [t] → [D] is a (K,K ′) disperser if for every
A ⊆ [N] with |A| ≥ K it holds that

∣∣ ⋃
a∈A,i∈[t]{Γ (a, i)}∣∣ ≥ K ′.

We will rely on dispersers which follow from the known constructions of seeded
extractors (e.g. [19]).

Theorem 5 (e.g. [19]). There exists a constant c such that the following holds.
For every N,K,K ′,D such that D ≤ √

K and K ′ ≤ D/2, there exists an efficient
(K,K ′)-disperser

Γ : [N] × [t] → [D]

with degree
t = logc(N)

Low Error Efficient Computational Extractors in the CRS Model 389

4 Computational Extractors: Definitions

In this section, we define extractors in the computational setting with a CRS. We
define both a 2-source extractor and a non-malleable extractor in this setting.

In both definitions, we allow the min-entropy sources to depend on the CRS,
but require that they are efficiently sampleable conditioned on the CRS (where
the efficiency is specified by a parameter T). We also allow each source to par-
tially leak, as long as the source has sufficient min-entropy conditioned on the
CRS and the leakage.

At first, it may seem that there is no need to consider leakage explicitly,
since one can incorporate the leakage as part of the definition of the min-entropy
source; i.e., define the source w.r.t. a fixed leakage value. However, the result-
ing source may not be efficiently sampleable. For example, if the leakage on a
source X is h(X), where h is a collision resistant hash function, then sampling
x ← X conditioned on a given leakage value is computationally hard, due to the
collision resistance property of h. Therefore, in the definitions below we consider
leakage explicitely.

More specifically, for two sources X and Y we allow leakage on Y , which we
will denote by Linit; and then allow leakage on X (that can also depend on Linit),
which we will denote by Lfinal. Moreover, both Linit and Lfinal can depend on the
CRS. We mention that a more general leakage model is one which allows first
leakage on Y , then allows leakage on X (that may depend on the initial leakage),
and then again allows leakage on Y (that may depend on all the leakage so far),
etc. Unfortunately, we do not know how to obtain our results in this more general
leakage model.

For technical reasons, we also allow one of the sources (the one which is given
to the adversary in the clear, as part of the definition of a strong extractor) to
be sampled together with auxiliary information AUX. This auxiliary informa-
tion depends on the source and on the CRS. As in the leakage case, we need
to consider this auxiliary information explicitely, since in our proofs we will use
an auxiliary input which is hard to compute given the source and CRS (and
therefore cannot generate it while ensuring the security of our underlying hard-
ness assumption). Importantly, it is easy to generate this auxiliary information
together with the source, jointly as a function of CRS. As opposed to the case
of leakage, the source is not required to have min-entropy conditioned on AUX.

Definition 8 (T -Admissible Leaky (n1, n2, k1, k2) Source Distribution).
A T -admissible leaky (n1, n2, k1, k2) source distribution with respect to a CRS
distribution {CRSλ}λ∈N consists of an ensemble of sources X = {Xλ}λ∈N, Y =
{Yλ}λ∈N, leakage L = {Lλ} and auxiliary input AUX = {AUXλ}, such that for
every λ ∈ N, the following holds:

– For every crs ∈ Supp(CRSλ), Supp(Xλ|crs) ⊆ {0, 1}n1(λ) and Supp(Yλ|crs) ⊆
{0, 1}n2(λ).

– The leakage Lλ consists of two parts, Linit and Lfinal, such that for every
crs ∈ Supp(CRS), (Y,AUX, Linit|crs) is sampleable in time poly(T), and for
every �init ∈ Supp(Linit|crs), (X,Lfinal|crs, �init) is sampleable in time poly(T).

390 A. Garg et al.

– H∞(Xλ|CRSλ, Lλ) ≥ k1 and H∞(Yλ|CRSλ, Lλ) ≥ k2.
– For every crs ∈ CRSλ and � ∈ Supp(Lλ|crs), the distributions (Xλ|crs, �) and

(Yλ,AUXλ|crs, �) are independent.10
– For every aux ∈ Supp(AUXλ), |aux| = O(log T (λ))11.

Definition 9 (Computational strong 2-source extractors in the CRS
model). For functions n1 = n1(λ), n2 = n2(λ), c = c(λ), and m = m(λ), a
function ensemble 2Ext = {2Extλ}λ∈N, where

2Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ),

is said to be a (n1, n2, k1, k2) strong T -computational 2-source extractor in the
CRS model if there is an ensemble {CRSλ}λ∈N where CRSλ ∈ {0, 1}c(λ), such
that the following holds:

For every T -admissible leaky (n1, n2, k1, k2) source distribution (X,Y, L,AUX)
with respect to CRS, for every polynomial p, there exists a negligible function
ν(·) such that for every λ and every p(T (λ))-size adversary A,

∣∣∣∣ Pr
[
A (2Extλ(x, y, crs), y, crs, �, aux) = 1

]
−

Pr
[
A (U, y, crs, �, aux) = 1

]∣∣∣∣ = ν(T (λ)),

where the probabilities are over the randomness of sampling (crs, x, y, �, aux) ←
(CRSλ,Xλ, Yλ, Lλ,AUXλ), and over U which is uniformly distributed over
{0, 1}m(λ) independent of everything else.

Definition 10 (Computational strong non-malleable extractors in the
CRS model). For functions n1 = n1(λ), n2 = n2(λ), c = c(λ), and m = m(λ),
a function ensemble cnm-Ext = (cnm-Extλ)λ∈N, where

cnm-Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ)

is said to be a (n1, n2, k1, k2) strong T -computational non-malleable extractor
in the CRS model if there is an ensemble {CRSλ}λ∈N, where CRSλ ∈ {0, 1}c(λ),
such that the following holds:

For every T -admissible leaky (n1, n2, k1, k2) source distribution (X,Y, L,AUX)
with respect to CRS, for every polynomial p, there exists a negligible function
ν(·) such that for every λ and every p(T (λ))-size adversary A,

∣∣∣∣Pr
[
AOy

x,crs (cnm-Ext(x, y, crs), y, crs, �, aux) = 1
]
−

Pr
[
AOy

x,crs (U, y, crs, �, aux) = 1
] ∣∣∣∣ = ν(T (λ)),

10 This condition follows from the way X and Y are sampled, and we add it only for
the sake of being explicit.

11 We restrict the length of aux to be at most O(log T (λ)) for technical reasons.

Low Error Efficient Computational Extractors in the CRS Model 391

where the oracle Oy
x,crs on input y′ �= y outputs cnm-Ext(x, y, crs), and other-

wise outputs ⊥; and where the probabilities are over the randomness of sampling
(crs, x, y, �, aux) ← (CRSλ,Xλ, Yλ, Lλ,AUXλ), and over U which is uniformly
distributed over {0, 1}m(λ) independent of everything else.

We will occasionally need to impose a different requirement on the error
distribution. In such cases we specify the error requirement explicitly. Specifi-
cally, we say that a (n1, n2, k1, k2) strong T -computational two source (or non-
malleable) extractor has error neg(T ′(λ)) if it satisfies Definition 9 (or Defini-
tion 10), where the adversary’s distinguishing advantage is required to be at
most negligible in T ′(λ).

For our constructions, we will rely on the following theorem from [26] (sim-
plified to our setting). This is a statistical 2-source extractor; i.e., one that con-
siders sources that are sampled in unbounded time, and fools adversaries with
unbounded running time.

Theorem 6 [26]. There exists a (n1, n2, k1, k2) strong statistical 2-source
extractor according to Definition 9 where n2 = ω(log n1), k1 ≥ log n1, and
k2 ≥ αn2 for any constant α > 1

2 , and error exp−Θ(min{k1,k2}).

5 Computational Strong Non-malleable Extractors in the
CRS Model

In this section, we describe our construction of computational non-malleable
extractors in the CRS model, and prove the following theorem.

Theorem 7. Let T, T ′, n1, n2, k1, k2, k3, w : N → N be functions of the security
parameter, where T ≥ 2k3 and such that the following primitives exist.

– A (n1, n2, k1, k2) strong T -computational 2-source extractor with in the CRS
model, denoted by:

2Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ)

– A (T, n1, w)-lossy function family F = {Fλ}λ∈N, according to Definition 6,
where w = n1 − nγ

1 for some constant γ ∈ (0, 1).
– A T ′-secure family of collision resistant hash functions H = {Hλ}λ∈N with

h : {0, 1}n2 → {0, 1}k3 .

Then there exists a (n1, n2,K1,K2) strong T ′-computational non-malleable
extractor, satisfying Definition 10 for K1 = k1+k3(n1−w+1)+1,K2 = k2+k3+1.

Before we describe the construction (Sect. 5.1), we point out that the guaran-
tees of the non-malleable extractor from Theorem 7 are not sufficient to instan-
tiate the compiler in Sect. 6. To this end, we prove (Sect. 5.2) that our non-
malleable extractor construction satisfies a stronger (yet more technical) prop-
erty which turns out to be sufficient.

392 A. Garg et al.

5.1 Construction

We begin by defining the CRS distribution.

Generating the common reference string (CRS). For a given security parameter
λ ∈ N, the common reference string is generated as follows.

1. Sample crs2Ext for the (n1, n2, k1, k2) strong T -computational 2-source extrac-
tor with respect to the security parameter 1λ.

2. Sample h ← Hλ.
3. Sample b = (b1, . . . , bk3) ← {0, 1}k3 .
4. Sample independently k3 pairs of random injective functions from Fλ,

f1,b1 , f2,b2 , . . . , fk3,bk3
← Geninj(1λ).

5. Sample independently k3 pairs of random lossy functions from Fλ,

f1,1−b1 , f2,1−b2 , . . . , fk3,b1−k3
← Genloss(1λ).

Output

crs =
(
crs2Ext, h,

f1,0, f2,0, . . . , fk3,0

f1,1, f2,1, . . . , fk3,1

)

Our computational non-malleable extractor, cnm-Ext = {cnm-Extλ}λ∈N, is
defined as follows: For any λ ∈ N, denote by c = c(λ) = |crs|, then

cnm-Extλ : {0, 1}n1 × {0, 1}n2 × {0, 1}c → {0, 1}m,

where ∀(x, y, crs) ∈ {0, 1}n1 × {0, 1}n2 × {0, 1}c, crs =

(

crs2Ext, h, {fi,b}i∈[k3],b∈{0,1}

)

cnm-Extλ(x, y, crs) = 2Extλ

(
f1,h(y)1 ◦ f2,h(y)2 ◦ . . . ◦ fk3,h(y)k3

(x), y, crs2Ext

)
.

(1)

As mentioned above, Theorem 7 is insufficient for instantiating our compiler
(in Sect. 6) which converts a non-mallealbe extractor into a 2-source extractor.
Rather, we need the non-malleable extractor to have the following more gen-
eral (and more complex) guarantee, which is tailored to our construction (in
Sect. 5.1): If the underlying 2-source extractor 2Ext is T -secure (for T ≥ 2k3)
then the resulting non-malleable extractor is also T -secure with error neg(2k3),
assuming the adversary (i.e., distinguisher) does not query its oracle on y′ such
that h(y) = h(y′). We next formalize this guarantee, and begin by defining the
notion of an H-admissible adversary corresponding to our non-malleable extrac-
tor from Sect. 5.1.

Definition 11 (H-Admissible Adversary). We say that an adversary A is
H-admissible if on any input (v, y, crs, �, aux) (where v is either cnm-Ext(x, y, crs)
or a uniformly random string), it does not query its oracle Oy

x,crs with y′ such
that h(y′) = h(y), where h is the hash function in crs.

Low Error Efficient Computational Extractors in the CRS Model 393

Theorem 8. Let T, n1, n2, k1, k2, k3, w : N → N be functions of the security
parameter, and let H = {Hλ}λ∈N with h : {0, 1}n2 → {0, 1}k3 be a family of
functions. Assume that T ≥ 2k3 and the following primitives exist.

– A (n1, n2, k1, k2) strong T -computational 2-source extractor in the CRS
model, denoted by:

2Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ)

– A (T, n1, w)-lossy function family F = {Fλ}λ∈N, according to Definition 6,
where w = n1 − nγ

1 for some constant γ ∈ (0, 1).

Then the extractor constructed in Sect. 5.1 is a (n1, n2,K1,K2) strong T -
computational non-malleable extractor with error neg(2k3) against H-admissible
adversaries, for K1 = k1 + k3(n1 − w + 1) + 1,K2 = k2 + k3 + 1.

Corollary 1 instantiates Theorem 8 with the 2-source extractor from Theo-
rem 6; this corollary will be used in the next section.

Corollary 1. Let H = {Hλ}λ∈N with h : {0, 1}n2 → {0, 1}k3 be a family of func-
tions. Assume the sub-exponential hardness of DDH, and fix any constant ε > 0.
Then there exists a constant δ > 0 such that for any parameters (n1, n2,K1,K2)
satisfying

Ω(λ) ≤ n1 ≤ poly(λ), n2 = ω(log n1), K1 = nε
1, and K2 = 0.51n2

there exists a (n1, n2,K1,K2) strong T -computational non-malleable extractor
with error neg(2k3) against H-admissible adversaries (satisfying Definition 10)
for T (λ) = 2λδ

and k3 ≤ min{λδ, n
ε/2
1 , n0.9

2 }.

Proof of Corollary 1. Fix a constant ε > 0, and fix n1 = n1(λ) and n2 = n2(λ)
as in the statement of Corollary 1. By Lemma 2, the sub-exponential hardness
of DDH (together with the restrictions on n1 and n2) implies that there exists
a constant δ > 0 for which there exists a (T, n1, w)-lossy function family F =
{Fλ}λ∈N where T (λ) = 2λδ

and w is such that n1 − w = n
ε/3
1 .

By Theorem 6, for n2 = ω(log n1), there exists a (n1, n2, k1, k2) strong
statistical 2-source extractor for k1 = n

ε/3
1 and k2 = 0.501n2 with error

exp−Θ(min(k1,k2)) = neg(2k3). In particular, this extractor is a (n1, n2, k1, k2)
strong T -computational 2-source extractor in the CRS model (where the CRS
is empty).

Note that by our setting of parameters T ≥ 2k3 . Therefore, by Theorem 8,
there exists a (n1, n2,K1,K2) strong T -computational non-malleable extractor
with error neg(2k3) against H-admissible adversaries, where K1 = k1 + k3(n1 −
w+1)+1 ≤ n

ε/3
1 +n

ε/2
1 ·nε/3

1 +1 ≤ nε
1 and K2 = k2+k3+1 ≤ 0.501n2+n0.9

2 +1 ≤
0.51n2, as desired. ��

394 A. Garg et al.

5.2 Analysis

In this section, we prove Theorem 8; namely, we prove the T -security of the non-
malleable extractor against H-admissible adversaries. The proof of Theorem 7
follows from the observation that every adversary A that runs in time poly(T ′)
on input sources sampled in time poly(T ′), cannot query the oracle on hash
collisions, except with probability neg(T ′), and thus is H-admissible (except
with probability neg(T ′)).

The proof proceeds in stages. First we replace the oracle Oy
x,crs with an oracle

Õy
x,crs which refuses to answer when queried on a y′ s.t. the hash values of y

and y′ match. Note that since our adversary is assumed to be H-admissible, it
cannot distinguish between these two oracles since it never makes such a query.
Then we prove that if the adversary succeeds in distinguishing the output of
the non-malleable extractor from random, then he can also distinguish even if
we condition on the event that h(y) = b (recall that b ∈ {0, 1}k3 is used to
determine which functions are lossy or injective in the crs). Finally, we design a
distribution for the 2-source extractor and break it using the supposed adversary
for the non-malleable extractor.

Proof (of Theorem 8). In this proof, we will sometimes suppress the dependence
on λ in the notation for convenience.

Fix any T -admissible leaky (n1, n2,K1,K2) source distribution
(X,Y, L,AUX) with respect to CRS. Suppose for the sake of contradiction, that
there exists a polynomial p, and a poly(T)-size H-admissible adversary A, such
that for infinitely many λ ∈ N,

Pr[AOy
x,crs(cnm-Ext(x, y, crs), y, crs, �, aux) = 1]−

Pr[AOy
x,crs(U, y, crs, �, aux) = 1] ≥ 1

p(2k3)
, (2)

where the probabilities are over (crs, x, y, �, aux) ← (CRS,X, Y, L,AUX) and over
uniformly distribution U ← {0, 1}m.

For any x ∈ {0, 1}n1 and y ∈ {0, 1}n2 , let

zk3 = fk3,1−h(y)k3
(x)

zk3−1 = fk3−1,1−h(y)k3−1(fk3,h(y)k3
(x))

...
z1 = f1,1−h(y)1(f2,h(y)2(. . . fk3,h(y)k3

(x)))

Denote by zx,h(y) = (z1, . . . , zk3).

Let Õy
x,crs (abusing notation we will call it just Õ) be the oracle that on input

y′ ∈ {0, 1}n2 , if h(y′) �= h(y) outputs

Oy
x,crs(y

′) = cnm-Ext(x, y′, crs) = 2Extλ(f1,h(y′)1 ◦ . . . ◦ fk3,h(y′)k3
(x), y′, crs2Ext),

Low Error Efficient Computational Extractors in the CRS Model 395

and otherwise outputs ⊥. The key observation is that this oracle can be simu-
lated efficiently given only (h(y), zx,h(y), crs), without any additional information
about x or y. This will come in handy later.

Since A is H-admissible, by definition, A does not generate a query y′ �= y
such that h(y′) = h(y), and therefore, the oracles are indistinguishable. This,
together with Eq. (2), implies that for infinitely many λ ∈ N,

Pr[A ˜O (cnm-Ext(x, y, crs), y, crs, �, aux) = 1]−
Pr[A ˜O (U, y, crs, �, aux) = 1] ≥ 1

p(2k3)
(3)

where the probabilities are over (crs, x, y, �, aux) ← (CRS,X, Y, L,AUX) and
over uniformly distribution U ← {0, 1}m. Next, the T -security of the lossy func-
tion family, together with the assumption that T ≥ 2k3 , implies that for every
poly(T)-size adversary B (recall b ∈ {0, 1}k3 is used to determine which functions
are lossy or injective in the crs),

2−k3 + neg(T) ≥ Pr[B(crs) = b] ≥ 2−k3 − neg(T). (4)

This, together with the fact that (X,Y, L,AUX|crs) can be sampled in time
poly(T), implies that

2−k3 + neg(T) ≥ Pr
[
h(y) = b

] ≥ 2−k3 − neg(T), (5)

where the probability is over crs ← CRS, and over (x, y, �, aux) ←
(X,Y, L,AUX|crs).
Claim. For infinitely many λ ∈ N,

Pr
[(A ˜O (cnm-Ext(x, y, crs), y, crs, �, aux) = 1

)∣∣∣
(
h(y) = b

)]

− Pr
[(A ˜O (U, y, crs, �, aux) = 1

)∣∣∣
(
h(y) = b

)] ≥ 1
4p(2k3)

(6)

The proof of this claim appears in the full version of our paper.
This Claim, together with Eq. (5), implies that for infinitely many λ ∈ N:

Pr
[(A ˜O (cnm-Ext(x, y, crs), y, crs, �, aux) = 1

) ∧ (
h(y) = b

)]

− Pr
[(A ˜O (U, y, crs, �, aux) = 1

) ∧ (
h(y) = b

)]

= Pr
[(A ˜O (cnm-Ext(x, y, crs), y, crs, �, aux) = 1

)∣∣∣
(
h(y) = b

)] · Pr
[
h(y) = b

]

− Pr
[(A ˜O (U, y, crs, �, aux) = 1

)∣∣∣
(
h(y) = b

)] · Pr
[
h(y) = b

]

≥ 1
4p(2k3)

· (2−k3 − neg(2k3)) ≥ 1
p′′(2k3)

(7)

where the last inequality holds for some polynomial p′′(·).

396 A. Garg et al.

Next, substituting

cnm-Ext(x, y, crs) = 2Ext(f1,h(y)1 ◦ f2,h(y)2 ◦ . . . ◦ fk3,h(Y)k3
(x), y, crs2Ext)

in Eq. (7), we conclude that for infinitely many λ ∈ N,

Pr
[(

A ˜O
(

2Ext(f1,h(y)1 ◦ f2,h(y)2 ◦ . . . ◦ fk3,h(y)k3
(x), y, crs2Ext), y, crs, �, aux

)

= 1
)

∧
(

h(y) = b
)]

− Pr
[(

A ˜O (U, y, crs, �, aux) = 1
)

∧
(

h(y) = b
)]

≥ 1

p′′(2k3)
(8)

We will now use the T -admissible leaky (n1, n2,K1,K2) source distribution
(X,Y, L,AUX) for the non-malleable extractor, to define a new T -admissible
leaky (n1, n2, k1, k2) source distribution (X ′, Y ′, L′,AUX′) for the underlying
two-source extractor with CRS distribution CRS2Ext, where k1 = K1 −k3 · (n1 −
w+1)−1 and k2 = K2−k3−1. Then, we will prove that there exists an adversary
A′ that breaks the (n1, n2, k1, k2) strong T -computational 2-source extractor for
(X ′, Y ′, L′,AUX′).

Define (X ′, Y ′, L′,AUX′|crs2Ext) as follows:

1. We first define (Y ′, L′
init,AUX

′)|crs2Ext):
(a) Sample b ← {0, 1}k3 .

(b) Sample fh =
(

h,
f1,0, f2,0, . . . , fk3,0

f1,1, f2,1, . . . , fk3,1

)
such that {fi,bi

}i∈[k3] are injective

and the rest are lossy. Set crs = (crs2Ext, fh).
(c) Sample (y, �init, aux) ← (Y,Linit,AUX|crs).
(d) Set (y′, aux′) = (y, aux).
(e) Set �′

init = (d, �init, fh, b), where d = 0 if h(y) �= b and 1 otherwise.
2. We next define (X ′, L′

final|crs2Ext, �′
init):

(a) Parse �′
init = (d, �init, fh, b), and set crs = (crs2Ext, fh).

(b) Sample (x, �final) ← (X,Lfinal|crs, �init). Set x′ = f1,b1 ◦f2,b2 ◦ . . .◦fk3,bk3
(x)

and �′
final = (�final, zx,b), where

zx,b = {z1, . . . , zk3} and for every i ∈ [�], zi := fi,1−bi(fi+1,bi+1(. . . fk3,bk3
(x))).

Claim. (X ′, Y ′, L′,AUX′) is a T -admissible leaky (n1, n2, k1, k2) source distri-
bution with respect to CRS2Ext, where k1 = K1 − k3 · (n1 − w + 1) − 1 and
k2 = K2 − k3 − 1.

The proof of this claim appears in the full version of our paper.
We next argue that Equation (8), together with the definition of the dis-

tribution (X ′, Y ′, L′,AUX′|crs2Ext), implies that there exists a T -size adversary
A′, that simulates the adversary A, as well as its oracle, such that for infinitely
many λ ∈ N,

Pr[A′(2Ext(X ′, Y ′, crs2Ext), y′, crs2Ext, �′, aux′) = 1]− (9)

Pr[A′(U, y′, crs2Ext, �′, aux′) = 1] ≥ 1/poly(2k3).

The algorithm A′ on input (α, y′, crs2Ext, �′, aux′) does the following:

Low Error Efficient Computational Extractors in the CRS Model 397

1. Parse �′ = (�′
init, �

′
final) and further parse �′

init = (d, �init, fh, h(y)), �′
final =

(�final, zx,h(y)). and obtain d from �′
init.

2. If d = 0 then output ⊥.
3. Else, set � = (�init, �final), and set crs = (crs2Ext, fh).
4. Output A ˜O(α, y′, crs, �, aux′), where Õ is simulated using (h(y), zx,h(y), crs).

Equation (8) implies that indeed Eq. (9) holds, as desired. This contra-
dicts the fact that 2Ext is a strong T -computational 2-source extractor for
(X ′, Y ′, L′,AUX′). This completes the proof of Theorem 8.

6 Computational Strong 2-Source Extractors in the CRS
Model

In this section, we describe our compiler that converts a computational non-
malleable extractor (in the CRS model) with negligible error for sources in the
high entropy regime, into a computational 2-source extractor (in the CRS model)
with negligible error for sources in the low entropy regime. This construction
is essentially identical to that suggested by [1]. However, the analysis in the
computational setting introduces many technical challenges which result from
the existence of the CRS, and the necessity of building an efficient reduction. Due
to these challenges, our compiler is not as general as the one in the information
theoretic setting. In particular, in Theorem9 below, we use as an ingredient a
collision resistant hash family H, and show how to convert a computational non-
malleable extractor that is secure against H-admissible adversaries (such as the
one from Theorem 8) into a computational 2-source extractor.

Theorem 9. Let T, T ′, n1, n2, k1, k2, k3, d : N → N be functions of the security
parameter, such that T = (T ′)ω(1), T = λΩ(1), n2 = O(log T), k2 = ω(log T ′),
and such that the following primitives exist.

– A family of T ′-secure collision-resistant hash functions functions H =
{Hλ}λ∈N with h : {0, 1}d → {0, 1}k3

– A
(
n1, d, k1, d

)
strong T -computational non-malleable extractor against H-

admissible adversaries in the CRS model with error neg(2k3), where the CRS
is generated by sampling h ← H and sampling crs′ ← CRS′, where CRS′

is a poly(T)-time sampleable distribution, and setting crs = (h, crs′). This
non-mallealbe extractor is denoted by

cnm-Extλ : {0, 1}n1 × {0, 1}d × {0, 1}c → {0, 1}m

– A
(

2k2

T ′ log T ′ , 2d−1
)

disperser

Γ : {0, 1}n2 × [t] → {0, 1}d

with degree t = poly(λ) (according to Definition 7).

398 A. Garg et al.

Then there exists a (n1, n2, k1, 2k2) strong T ′-computational 2-source extractor
in the CRS model (according to Definition 9).

We defer the construction of the 2-source extractor from Theorem 9 to
Sect. 6.1, and defer the analysis to Sect. 6.2. In what follows we present two
corollaries. Corollary 2 instantiates Theorem 9 with the non-malleable extractor
from Corollary 1.

Corollary 2. Fix any constant ε > 0. Then assuming the sub-exponential hard-
ness of the DDH assumption, there exists a constant δ > 0 such that for any
constant c ≥ 1 and any parameters n1, n2, k1, k2, T

′ satisfying

Ω(λ) ≤ n1 ≤ poly(λ), λO(1) ≤ n2 ≤ O(λδ), k1 = nε
1, k2 = logc/δ n2, T ′ = 2log

c λ

there exists a (n1, n2, k1, k2) strong T ′-computational 2-source extractor in the
CRS model (satisfying Definition 9).

Proof. Fix any constant ε > 0. By Corollary 1, there exists a constant δ >
0 for which there exists a (n1, d,K1, d) strong T -computational non-malleable
extractor with error neg(2k3) in the CRS model against H-admissible adversaries,
for H : {0, 1}d → {0, 1}k3 , where T = 2λδ

, k3 = min{n
ε/2
1 , d0.9, λδ}, and for any

n1, d,K1 such that

Ω(λ) ≤ n1 ≤ poly(λ), d = ω(log n1),K1 = nε
1

Moreover, this is the computational non-malleable extractor from Construc-
tion 5.1 where the crs is distributed as required in the theorem statement.

Next, fix any n1 such that Ω(λ) ≤ n1 ≤ poly(λ). By Theorem 5, there exists
a polynomial t = poly(λ) for which there exists a

(
2k2

T ′(log T ′) , 2d−1
)

disperser

Γ : {0, 1}n1 × [t] → {0, 1}d

for any d, k2, T
′ that satisfy

k2 ≥ 2d + log2 T ′. (10)

Fix any constant c ≥ 1, let k2 = logc/δ n2 and let T ′ = 2log
c λ. Set d = k2/4.

Note that Eq. (10) is satisfied by the definition of d and T ′. Also,

k3 = min{λδ, n
ε/2
1 , d0.9} = Ω((log λ)0.9c/δ).

Therefore, assuming the sub-exponential hardness of DDH, and setting the secu-
rity parameter in Theorem4 to be κ = k3, we conclude that there exists a con-
stant δ′ such that there exists a 2kδ′

3 -secure collision resistant hash H : {0, 1}d →
{0, 1}k3 . Assume without loss of generality that δ ≤ 0.9δ′ (otherwise, reduce the
size of δ). This implies that T ′ ≤ 2kδ′

3 .
Theorem 9 implies that there exists a (n1, n2, k1, 2k2) strong T ′-computational

2-source extractor in the CRS model, as long as n2 = O(log T) = O(λδ), and as
long as k2 = ω(log T ′) and in particular for k2 = logc/δ n2.

Low Error Efficient Computational Extractors in the CRS Model 399

By using the 2-source extractor obtained as a result of Corollary 2 to instanti-
ate the non-malleable extractor in Theorem7, we obtain the following corollary:

Corollary 3. Fix any constant ε > 0. Then, assuming the sub-exponential hard-
ness of the DDH assumption, there exists a constant δ > 0 for which there exists a
(n1, n2,K1,K2) strong T ′-computational non-malleable extractor satisfying Def-
inition 10 whenever

Ω(λ) ≤ n1 ≤ poly(λ), λO(1) ≤ n2 ≤ O(λδ), K1 = nε
1, K2 = log1/δ2

n2, T
′ = λ.

Proof. Fix n1, n2 as in the statement of the corollary. Fix any constant ε > 0.
By Corollary 2, assuming the sub-exponential hardness of DDH, there exists a
constant δ > 0 such that for any constant c ≥ 1, there exists a (n1, n2, k1, k2)
strong T -computational 2-source extractor for k1, k2, T satisfying

k1 = n
ε/3
1 , k2 = logc/δ n2, T = 2log

c λ.

Furthermore, the sub-exponential hardness of DDH, together with the fact
that n1 = Ω(λ), implies that the following exist:

– A (T, n1, w)-lossy function family F = {Fλ}λ∈N where each f ∈ Fλ is of the
form f : {0, 1}n1 → {0, 1}n1 , where T (λ) = 2log

c λ as above and w is such
that n1 − w = n

ε/3
1 . This follows from Lemma 2.

– A collision resistant hash family H = {Hλ}λ∈N, where each h ∈ Hλ is of
the form h : {0, 1}n2 → {0, 1}k3 where k3 = log1/δ λ, that is secure against
poly(λ)-size adversaries (this follows by setting the security parameter to be
κ = k3 in Theorem 4.12)

Set c ≥ 1
δ which implies that T ≥ 2k3 . Therefore, by Theorem 7, there exists

a (n1, n2,K1,K2) strong T ′-computational non-malleable extractor for T ′ = λ

for K1 = k1 + k3(n1 − w) + 1 ≤ n
ε/3
1 + log1/δ λ · n

ε/3
1 + 1 < nε

1, and thus in
particular for K1 = nε

1, and for K2 = k2 + k3 + 1 = logc/δ n2 + (log λ)1/δ + 1,
and thus for K2 = logc/δ′

n2 for any constant δ′ < δ. The corollary follows by
reassigning δ to be δ′.

6.1 Construction

In what follows, we construct the 2-source extractor from Theorem 9. To this,
end, fix any parameters T, T ′, n1, n2, k1, k2, d according to Theorem 9. Fix any
collision-resistant hash function H and a

(
n1, d, k1, d

)
strong T -computational

non-malleable extractor against H-admissible adversaries in the CRS model

cnm-Ext : {0, 1}n1 × {0, 1}d × {0, 1}c → {0, 1}m

and any
(

2k2

T ′ log T ′ , 2d−1
)

disperser

Γ : {0, 1}n2 × [t] → {0, 1}d.

12 We assume that δ is small enough so that the hash function is 2κδ

secure.

400 A. Garg et al.

Define a 2-source extractor

2Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}c → {0, 1}m

by
2Ext(x1, x2, crs) =

⊕

y: ∃i s.t. Γ (x2,i)=y

cnm-Ext(x1, y, crs)

6.2 Analysis

We prove the security of the 2-source extractor 2Ext described above in several
steps. We start by assuming (for contradiction) that there exists an adversary
running in time poly(T ′) that breaks the 2-source extractor 2Ext on a specific
(n1, n2, k1, 2k2) T ′-admissible leaky source distribution. Using this adversary, we
define an adversary that breaks the non-malleable extractor (on a distribution to
be defined later). To this end, we define the sets BAD-rand and BAD-seed. These
capture the places where the adversary breaks the non-malleable extractor. Next,
we prove that these sets are large. Finally we define the distribution on which the
adversary breaks the non-malleable extractor. This relies on the leakage lemma.
The complete proof appears in the full version of our paper.

Acknowledgement. We thank Maciej Obremski and João Ribeiro for pointing out
a subtle error in an initial draft of this work.

References

1. Ben-Aroya, A., Chattopadhyay, E., Doron, D., Li, X., Ta-Shma, A.: Low-error,
two-source extractors assuming efficient non-malleable extractors. In: CCC (2017)

2. Ben-Aroya, A., Doron, D., Ta-Shma, A.: Explicit two-source extractors for near-
logarithmic min-entropy. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 23, p. 88 (2016)

3. Bernstein, D.J., et al.: Factoring RSA keys from certified smart cards: Coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
341–360. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 18

4. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. Number Theory 1, 1–32 (2005)

5. Braverman, M., Hassidim, A., Kalai, Y.T.: Leaky pseudo-entropy functions. In:
Innovations in Computer Science (2011)

6. Breitner, J., Heninger, N.: Biased nonce sense: lattice attacks against weak ECDSA
signatures in cryptocurrencies. Cryptology ePrint Archive, Report 2019/023
(2019). https://eprint.iacr.org/2019/023

7. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, pp. 285–298. ACM (2016)

8. Chattopadhyay, E., Li, X.: Explicit non-malleable extractors, multi-source extrac-
tors, and almost optimal privacy amplification protocols. In: 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 158–167.
IEEE (2016)

https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://eprint.iacr.org/2019/023

Low Error Efficient Computational Extractors in the CRS Model 401

9. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory
of Computing, pp. 670–683. ACM (2016)

10. Chung, K., Lui, E., Pass, R.: From weak to strong zero-knowledge and applications.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 66–92. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 4

11. Cohen, G.: Local correlation breakers and applications to three-source extractors
and mergers. SIAM J. Comput. 45(4), 1297–1338 (2016)

12. Cohen, G.: Making the most of advice: new correlation breakers and their applica-
tions. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 188–196. IEEE (2016)

13. Cohen, G.: Non-malleable extractors-new tools and improved constructions. In:
LIPIcs-Leibniz International Proceedings in Informatics, vol. 50. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

14. Cohen, G.: Two-source extractors for quasi-logarithmic min-entropy and improved
privacy amplification protocols. In: Electronic Colloquium on Computational Com-
plexity (ECCC), vol. 23, p. 114 (2016)

15. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: Proceedings of the 45th Symposium on
Foundations of Computer Science (FOCS 2004), Rome, Italy, 17–19 October 2004,
pp. 196–205 (2004). https://doi.org/10.1109/FOCS.2004.44

16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008). https://doi.org/10.1137/060651380

17. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 601–610
(2009). https://doi.org/10.1145/1536414.1536496

18. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8
June 2011, pp. 99–108. ACM (2011). https://doi.org/10.1145/1993636.1993651

19. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM (JACM) 56(4) (2009). Article No.
20

20. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps
and Qs: detection of widespread weak keys in network devices. In: Proceedings
of the 21th USENIX Security Symposium, Bellevue, WA, USA, 8–10 August
2012, pp. 205–220 (2012). https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/heninger

21. Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 24

22. Kalai, Y.T., Li, X., Rao, A.: 2-source extractors under computational assump-
tions and cryptography with defective randomness. In: 2009 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2009, pp. 617–626. IEEE
(2009)

23. Kalai, Y.T., Li, X., Rao, A., Zuckerman, D.: Network extractor protocols. In:
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
Philadelphia, PA, USA, 25–28 October 2008, pp. 654–663 (2008). https://doi.org/
10.1109/FOCS.2008.73

https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1109/FOCS.2004.44
https://doi.org/10.1137/060651380
https://doi.org/10.1145/1536414.1536496
https://doi.org/10.1145/1993636.1993651
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://doi.org/10.1007/978-3-642-54242-8_24
https://doi.org/10.1007/978-3-642-54242-8_24
https://doi.org/10.1109/FOCS.2008.73
https://doi.org/10.1109/FOCS.2008.73

402 A. Garg et al.

24. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1144–1156. ACM (2017)

25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196 (2008)

26. Raz, R.: Extractors with weak random seeds. In: STOC, pp. 11–20 (2005)

Symmetric Cryptography I

Tight Time-Space Lower Bounds
for Finding Multiple Collision Pairs

and Their Applications

Itai Dinur(B)

Department of Computer Science, Ben-Gurion University, Beer Sheva, Israel
dinuri@cs.bgu.ac.il

Abstract. We consider a collision search problem (CSP), where given
a parameter C, the goal is to find C collision pairs in a random func-
tion f : [N] → [N] (where [N] = {0, 1, . . . , N − 1}) using S bits of
memory. Algorithms for CSP have numerous cryptanalytic applications
such as space-efficient attacks on double and triple encryption. The best
known algorithm for CSP is parallel collision search (PCS) published
by van Oorschot and Wiener, which achieves the time-space tradeoff
T 2 · S = Õ(C2 · N).

In this paper, we prove that any algorithm for CSP satisfies T 2 · S =
Ω̃(C2 · N), hence the best known time-space tradeoff is optimal (up to
poly-logarithmic factors in N). On the other hand, we give strong
evidence that proving similar unconditional time-space tradeoff lower
bounds on CSP applications (such as breaking double and triple encryp-
tion) may be very difficult, and would imply a breakthrough in complex-
ity theory. Hence, we propose a new restricted model of computation and
prove that under this model, the best known time-space tradeoff attack
on double encryption is optimal.

Keywords: Collision search problem · Time-space tradeoff · R-way
branching program · Provable security · Cryptanalysis · Parallel
collision search · Double encryption

1 Introduction

A time-space tradeoff for a problem is a curve that quantifies the difficulty of
solving it in terms of the required time complexity T and space complexity
S (and perhaps additional problem-specific parameters). Such tradeoffs play a
significant role in algorithmic research, as they provide a more realistic estimate
of how difficult it is to solve a problem by considering the available space, as
opposed to analysis that only considers the available computation power.

In this work we consider time-space tradeoffs for the collision search problem
(CSP), where given a parameter C and oracle access to a random function f :
[N] → [N], the goal is to find C distinct unordered colliding pairs (i1, i2) ∈
[N]2 in f (i.e., i1 �= i2, but f(i1) = f(i2)) using S bits of memory. We also
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 405–434, 2020.
https://doi.org/10.1007/978-3-030-45721-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_15

406 I. Dinur

consider another variant of CSP, where given oracle access to two random and
independent functions f1, f2 : [N] → [N] the goal is to find C distinct ordered
colliding pairs between f1 and f2 (i.e., (i1, i2) ∈ [N]2 such that f1(i1) = f2(i2))
using S bits of memory.

The best known algorithm for the collision search problem is parallel collision
search (PCS) which was published by van Oorschot and Wiener [32] and has
found numerous applications in cryptanalysis (such as space-efficient attacks on
double and triple encryption and various dedicated meet-in-the-middle attacks).
PCS obtains the time-space tradeoff T 2 ·S = Õ(C2 ·N) for both variants of CSP
(where Õ hides a poly-logarithmic factor in N).

Given the importance of PCS, it is natural to ask whether its time-space
tradeoff is optimal. First, for S ≈ C, the answer is clearly positive (ignoring poly-
logarithmic factors). This follows by simple probabilistic analysis, as evaluating a
random function on T inputs is unlikely to yield more than about T 2/N collisions
(i.e., C = Õ(T 2/N), or T 2 · S = Ω̃(C2 · N)). Therefore, the optimality of the
tradeoff is not straightforward only when S � C, as in this range the limited
amount of space comes into play.

1.1 Applications of the Collision Search Problem for S � C

The parameter regime S � C for CSP may not seem very interesting at first
sight, as it implies that the algorithm has to produce more collisions than it is
able store in memory. However, in many CSP applications, we are only interested
in a particular collision (referred to as the “golden collision” in [32]) and therefore
do not need to store the collisions produced. Thus, the range of parameters where
S � C is, in fact, very important. Below, we demonstrate the relevance of CSP
in case S � C for the classical problem of breaking double encryption.

In the double encryption setting, the adversary obtains plaintext-ciphertext
pairs (pi, ci) for i ∈ {1, 2, . . .}, where ci = E2k2(E1k1(pi)) for block ciphers1

E1, E2 : [N] → [N] and key (k1, k2) ∈ [N]2. The adversary focuses on (p1, c1)
and defines the functions f1, f2 : [N] → [N] as

f1(k) = E1k(p1), and f2(k) = E2−1
k (c1).

Then, the adversary applies a collision search algorithm in order to obtain colli-
sions between f1 and f2. Each output collision gives a candidate for the key pair
(k1, k2), which is then verified against the remaining plaintext-ciphertext pairs.
Note that there is no need to store a wrong key pair. Since f1 and f2 are expected
to have N different colliding pairs, after obtaining about N collisions between
them, the adversary recovers the correct key pair (or the “golden collision”) with
high probability.

Consequently, we can use an algorithm for the collision search problem with
C ≈ N in order to break double encryption given an arbitrary value of S. Plug-
ging C = N into the PCS time-space tradeoff curve gives T 2 ·S = Õ(N3), which

1 We assume for the sake of simplicity that the key and block sizes are equal.

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 407

is the currently best known time-space tradeoff for breaking double encryption
for any value of S.

Besides breaking double encryption, there are numerous additional applica-
tions that are also based on finding a “golden collision” which gives a solution
to the problem for appropriately defined functions f1, f2. A partial list of these
applications includes breaking triple encryption [32], and more generally, break-
ing multiple encryption [17], solving the subset sum problem [16,17] and solving
the generalized birthday problem [33]. Furthermore, in various (more specialized)
settings one can reduce the task of breaking a concrete symmetric-key primitive
to a meet-in-the-middle procedure which can then be reduced to an instance of
the collision search problem with S � C.

1.2 Optimality of the Known Time-Space Tradeoff for the Collision
Search Problem

The importance of CSP (in case S � C) motivates the question of whether the
best known time-space tradeoff for it T 2 · S = Õ(C2 · N) can be improved. In
this paper, we give a strong negative answer to this question. More specifically, we
prove that any algorithm that outputs C distinct collisions in a random function
f : [N] → [N] (or between two independent random functions) with probability at
least N−2, satisfies the time-space tradeoff T 2 ·S = Ω̃(C2 ·N) (where Ω̃ hides poly-
logarithmic factors in N). As an example, given space of S = 10 log N bits, our
lower bound implies that finding C = N/4 collisions in f requires time complexity
T = Ω̃(N3/2). On the other hand, prior to this work, even an algorithm with time
complexity T = N for the problem could not be ruled out.

An immediate consequence of this result is that the time-space tradeoffs for
the cryptanalytic applications mentioned in Sect. 1.1 cannot be improved by a
more efficient collision search procedure (as long as the underlying functions to
which collision search is applied are modeled as random functions).

In order to obtain our bound, we use the R-way branching program model of
computation, which is a standard non-uniform model for analyzing time-space
tradeoffs [11]. In this model, a general approach for proving time-space tradeoff
lower bounds was introduced by Borodin and Cook [11]. Since its introduc-
tion, this technique has been used to prove time-space tradeoff lower bounds for
several problems such as sorting [7,11], matrix multiplication and fast Fourier
transform [36], and universal hashing [25].

We adapt the approach of [11] to the collision search problem, which seems
to be its first application in the domain of cryptography. More specifically, we
divide a branching program for CSP with running time T into L short time
intervals of length T/L, and prove that in each such interval, the program cannot
make a lot of progress towards outputting the desired number of C collisions.
In particular, the probability that the program (starting its computation from
any specific memory state) outputs C/L collisions in an interval is minuscule.
Finally, a union bound over all possible memory states establishes the result.
Our adaptation requires deeper insight about the collision search problem and
a careful choice of parameters.

408 I. Dinur

1.3 Time-Space Tradeoffs in Various Models of Computation

Given the optimality of best known time-space tradeoff for CSP, one may wonder
whether we can prove the optimality of the best known tradeoffs for its appli-
cations (such as the ones mentioned in Sect. 1.1). Unfortunately, we give strong
evidence that proving such a result may be very difficult and would overcome a
variant of a long-standing barrier in complexity theory.

The property of the collision search problem that enables proving tight time-
space tradeoff lower bounds for it, is that its output length is (about) C words.
Since it is possible to find C collisions in f for a small value of C with negligi-
ble space and nearly-optimal time complexity (e.g., by Floyd’s algorithm [24]),
time-space tradeoffs for such parameters are already known to be tight. Hence,
we may assume that the output length C is large (namely C = Nα for some
α > 0). In contrast, the output length in the above applications is very short
(e.g., in breaking double encryption, the output is a short key). The challenge
of proving strong time-space tradeoff lower bounds for such short-output prob-
lems with polynomial-time algorithms2 is open since the study of such tradeoffs
was introduced in 1966 by Cobham [15] (and it has been subject of extensive
research [10]).3 In particular, the technique for proving time-space lower bounds
of [11] (that we adapt here to CSP) is inapplicable to short-output problems
since it is not clear how to measure the progress of an algorithm towards solving
such a problem.

While the barrier of proving time-space lower bounds for short-output prob-
lems seems very difficult to overcome, it only applies to general (unrestricted)
models of computation. On the other hand, under more restricted computational
models, very strong time-space lower bounds are known for various problems.
One such restricted model is the streaming model. Here, the input is a stream of
elements that can be read sequentially, but a (single-pass) streaming algorithm
cannot access a previous element of the stream, unless it is stored in memory.
The streaming model is subject to active research in general (see [2], and [30]
for a recent result), and specifically in the area of cryptography (cf., [13,22,27]).

The pebbling model is another well-studied restricted model of computation
in which strong time-space tradeoff lower bounds are known [29]. In this model,
a pebbling game is played on a specific circuit realizing the function considered.
The circuit is viewed as a directed acyclic graph (DAG) and the goal is to pebble
each of the output nodes given a limited number of pebbles (which model words
of memory). The main rule of the pebbling game is that a non-input node can be
pebbled only if all its processors are pebbled. In the context of cryptography, the

2 The input length of a problem with access to some function f : [M] → [N] is
the number of bits required to represent the function, namely, N log M . With this
encoding, it is clear, for example, that breaking double encryption can be done in
polynomial time in the input length.

3 For general problems in NP, stronger time-space tradeoff lower bounds are known in
the uniform setting for problems such as SAT (cf. [20]). However, as far as we know,
these lower bounds are very loose and do not seem to be relevant to cryptography.

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 409

pebbling model has played a significant role in the design and analysis memory-
hard functions [3,4,19].

We also mention comparison-based models where the algorithm does not have
direct access to the internal representation of the elements of the input, but can
only compare them in pairs. A well-known time-space lower bound in such mod-
els was obtained by Yao for the element distinctness problem [35], where the goal
is to determine whether there exist two identical elements in an array of length
N . While Yao’s bound T · S = Ω(N2−o(1)) for element distinctness is almost
tight in comparison-based models, the algorithm of Beame et al. [8] showed
how to beat this bound and obtained T 2 · S = O(N3) by working outside the
restricted model (i.e., exploiting the internal representations of the elements).
Recently, Tessaro and Thiruvengadam showed bi-directional space-tight reduc-
tions between breaking double encryption and solving the element distinctness
problem [31]. In fact, the algorithm of [8] is a variant of PCS which obtains a
similar tradeoff for breaking double encryption.

Finally, a different restricted model of computation for proving time-space
tradeoff lower bounds in the domain of cryptography was proposed in [6] by
Barkan, Biham and Shamir. This work analyzed the problem of inverting a ran-
dom function f : [N] → [N] with preprocessing, and proposed a model that
generalizes the algorithms of Hellman [21] and Oechslin [28] for the problem.
The main result of [6] was a proof that any algorithm in their model cannot sub-
stantially improve upon the known time-space tradeoffs for the function inversion
problem.

1.4 The Post-filtering Model of Computation

Even though restricted computational models are natural choices for analyzing
a variety of problems, none of the existing ones seems relevant to obtaining
time-space lower bounds for the cryptanalytic problems described in Sect. 1.1.
For example, the streaming model is inapplicable to cryptanalysis of double
encryption, since the best known key-recovery attack requires only two plaintext-
ciphertext pairs (and it does not make sense to restrict access to the block cipher
itself). The pebbling model is irrelevant since it is not clear which circuit should
be pebbled. Considering comparison-based models, one can apply Yao’s bound
for element distinctness to the problem of breaking double encryption (as implied
by the result of Tessaro and Thiruvengadam [31]). However, PCS beats Yao’s
bound, which implies that the model is too restrictive for this specific problem.
Finally, the precomputation setting analyzed in [6,21,28] is quite different from
ours and the tools used in its analysis seem inapplicable in our context.

Nevertheless, we would still like to obtain some meaningful time-space lower
bounds that apply to basic cryptanalytic problems. Hence, we put forward a new
restricted model of computation, which we call the post-filtering model, where
the algorithm obtains full access to a part of the input, while access to the
remaining part is replaced with access to a post-filtering oracle.

The post-filtering model may seem to have little to do with space complexity,
yet it allows proving time-space lower bounds. The reason for this is that in

410 I. Dinur

some problems the input can be partitioned such that given the first part, there
are many equally-likely potential solutions. Consequently, an algorithm with
full access to (only) the first part of the input has to produce many potential
outputs to be post-filtered by the oracle. Thus, the model forces a reduction
from a problem with a short output to a related problem with a long output, for
which time-space tradeoff lower bounds are provable with existing techniques.

In the post-filtering model, we focus on double encryption, as it seems to be
the most fundamental problem listed in Sect. 1.1. Indeed, it is the basis for many
other more involved meet-in-the-middle type of attacks (such as breaking triple
encryption and specialized attacks on concrete symmetric-key constructions). In
our analysis, we give the adversary full access to (p1, c1) and the block ciphers
E1, E2, while access to the remaining plaintext-ciphertext pairs is replaced with
access to a post-filtering oracle that filters out wrong key guesses. We exploit the
fact that there are many possible (k1, k2) pairs that are consistent with (p1, c1),
and prove that any post-filtering attack on double encryption that succeeds with
constant probability satisfies the time-space tradeoff curve T 2 ·S = Ω̃(N3). This
matches the performance of the best known attack that uses PCS.

Technically, we obtain this result based on the optimality of the tradeoff for
CSP, but it is a conceptually stronger result, as the post-filtering model abstracts
away the (lower-level) collision search problem. The optimality of the tradeoff
for double encryption in the post-filtering model implies that if an improved
algorithm exists, then it must deviate from the post-filtering model by simul-
taneously combining information from several plaintext-ciphertext pairs in a
meaningful way. This can be viewed both as a barrier, but also as an opportu-
nity for improvement.

We also mention that a different approach to obtaining meaningful results
for short-output problems (despite the aforementioned barrier) is to use space-
efficient reductions in order to prove relations among tradeoffs for these prob-
lems [5]. The recent work by Tessaro and Thiruvengadam [31] (that showed
reductions between attacking double encryption and solving the element dis-
tinctness problem) is a relevant example of this approach. We note that it is
possible to adapt the post-filtering model to the element distinctness problem,
and obtain a similar bound to the one we obtain for double encryption.

1.5 Paper Organization

The rest of the paper is structured as follows. We describe preliminaries in Sect. 2.
Then, we prove time-space tradeoff lower bounds for collision search in a single
function and between two functions in Sect. 3 and Sect. 4, respectively. We discuss
relevant barriers in complexity theory in Sect. 5 and prove a time-space tradeoff
lower bound for double encryption in the post-filtering model in Sect. 6. Finally,
we conclude the paper in Sect. 7.

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 411

2 Preliminaries

Let N be a natural number and denote [N] = {0, 1, . . . , N − 1}. We use the
standard Õ and Ω̃ notations that suppress poly-logarithmic factors in N .

Let X be a finite set. We write x
$←− X to indicate that x is a random variable

sampled uniformly from X. We denote by x ← D a random variable x sampled
according to the distribution D.

We use a weak version of Stirling’s approximation, which asserts that n! >
(n/e)n for every positive integer n.

In this paper, we are interested in counting distinct collision pairs. A colliding
pair in a function f : [N] → [N] is an unordered pair of indices (i1, i2) ∈ [N]2

such that i1 �= i2 and f(i1) = f(i2). When considering two functions f1, f2 :
[N] → [N], a colliding pair between f1 and f2 is an ordered pair (i1, i2) ∈ [N]2

such that f1(i1) = f2(i2). Two pairs (i1, i2) and (j1, j2) and disjoint if they do
not share any index.

Let f : [N] → [N] be a function. For an integer t ≥ 2, a t-way collision in f
is an (unordered) set of t distinct indices {i1, . . . , it} such that f(i1) = f(i2) =
. . . = f(it). Note that a t-way collision in f contains t(t − 1)/2 distinct colliding
pairs, but can only be partitioned into 	t/2
 disjoint colliding pairs.

We may refer to a function f : [N] → [N] as a vector (or a string) in the
space [N]N , and visa-versa. More specifically a string x ∈ [N]N represents a
function fx : [N] → [N] defined as fx(i) = x[i]. In this paper, we will switch
between these representations. For example, we define a collision in x ∈ [N]N as
an unordered pair of indices (i1, i2) ∈ [N]2 such that i1 �= i2 and x[i1] = x[i2].

2.1 The Collision Search Problem

Let N , C be positive integer parameters. Given random access to a function
f : [N] → [N], the goal in the collision search problem CSP(C) is to output a
multi-set of pairs (i(j)1 , i

(j)
2) ∈ [N]2 for j ∈ {1, 2, . . .} (at any order) such that

each pair is colliding (i.e., f(i(j)1) = f(i(j)2) but i
(j)
1 �= i

(j)
2) and the multi-set

contains at least C distinct (unordered) colliding pairs.
CSP can be extended to two functions f1, f2 : [N] → [N]. Here, the goal is

to output at least C distinct ordered colliding pairs between the functions.
We define CSP such that all distinct colliding pairs are accounted for, as

most CSP applications (such as breaking double encryption) are interested in
each such pair. Of course, if we under-count pairs induced by t-way collisions
(e.g., by considering only disjoint pairs), we can obtain a (slightly) better lower
bound.

In AppendixA we summarize the PCS algorithm that solves CSP(C) and
obtains the time-space tradeoff T 2 · S = Õ(C2 · N).

2.2 R-Way Branching Programs

The model of R-way branching programs is a very general and powerful
non-uniform model of computation, introduced in [11]. An R-way branching

412 I. Dinur

program is a directed acyclic graph in which each node represents a memory
state of the program. At each node, a single input variable is queried and the
program branches to the next state according to the value of this variable (possi-
bly printing an output value along the way). Thus, a path in the graph of length
T represents T time steps (input variable queries) of the program.

Let R ≥ 2 be an integer. Formally, an R-way branching program P on an
input vector consisting of N input variables x = x[1], . . . , x[N] ∈ [R]N is a
directed acyclic graph with a single source node, such that every non-sink node
has out-degree R and is labeled with an index i ∈ [N] corresponding to an input
variable to be queried. Every edge is labeled with an element of [R] (correspond-
ing to the value of the queried variable) such that no edge (u, v) and (u,w)
where v �= w share a label. Furthermore, every vertex v is associated with an
instruction to print a (possibly empty) value p(v).

The computation path of P on input x is the (unique) path π =
(v0, v1), (v1, v2), . . . , (v�−1, v�) such that v0 is the source node, v� is a sink node,
and for all i ∈ {0, . . . , � − 1}, if vi is labeled j, then the label of (vi, vi+1) is
equal to x[j]. We denote by P(x) the output of P on input x. It is defined as the
concatenation of the values printed by the vertices along the computation path
of P on input x, namely, p(v0)p(v1) . . . p(v�).

The height of an R-way branching program P is the length of the longest
path in its graph, and its size is its number of vertices. The time complexity of a
branching program is defined as its length, while the space used by a branching
program is defined as the log of its size. Note that the input and output are not
counted towards the space used by the branching program, and time complexity
is measured only in terms of the number of queries to the input variables.

An R-way branching program is called levelled if its nodes are assigned levels
such that the source is in level 0 and the out-edges of each node at level k go
only to nodes at level k + 1. It is shown in [12] that any branching program of
size 2S can be converted into an equivalent levelled branching program with the
same length and size of at most 22S .

2.3 Our Model of Computation

We use the R-way branching program model in order to prove the time-space
lower bound for collision search in Sect. 3. However, in Sects. 4 and 6 it will be
more natural to consider algorithms rather than branching programs. Neverthe-
less, the model of computation that we use in these sections is equivalent to the
branching program model. More specifically, we consider an algorithm A with
access to input variables in [R] (for a value of R depending on the problem). The
algorithm has space of S bits, where the input and output do not count towards
the space complexity. Each query of A to one of its input variables costs one
time unit, but other operations (such as reading or writing to memory) are for
free. This makes our computational model (and our lower bounds) very strong.
Note that an algorithm A in our model is equivalent to an R-way branching
program P with the same time and space complexities.

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 413

R-Way Branching Programs for Collision Search. We model the algorithm
for CSP(C) as an N -way branching program P of height T and size 2S . We
assume that P is deterministic, but our lower bounds extend to randomized
branching programs as well by Yao’s minimax principle [34].

For convenience, we denote by |P(x)| the number of distinct colliding pairs
(ignoring duplicates) output by P on input x ∈ [N]N , which represents a function
fx : [N] → [N] defined as fx(i) = x[i]. We define |P(x)| = −1 if P(x) is
erroneous, i.e., it outputs a pair which does not collide on x.

Input Representation. In the domain of complexity theory, if an algorithm
A (or branching program P) has random access to x ∈ [N]N , then x is typically
treated as an input, using the notation A(x) (or P(x)). We use such notation
in Sects. 3, 4 and 5. On the other hand, in cryptography, similar random access
of an algorithm A to a function fx : [N] → [N] is typically modeled by viewing
f = fx as an oracle and using the notation Af . We use this notation in Sect. 6.

3 A Time-Space Tradeoff Lower Bound for Collision
Search in a Function

In this section, we prove the following theorem.

Theorem 1. Let N,C, T, S be positive integer parameters such that N > 8,
S ≥ 5(log2 N + log N) and C ≤ N/4. If an N -way branching program P for
CSP(C) of height T and size 2S satisfies

Pr
x

[|P(x)| ≥ C] ≥ N−2, where x
$←− [N]N , then

T 2 · S ≥ 1
(6e · log N)2

· C2 · N.

Remark 1. If S < 5(log2 N + log N), we can apply the theorem with S′ =
5(log2 N + log N). If C > N/4, we can apply the theorem with C ′ = N/4 (note
that with high probability a random function only contains O(N) collisions). In
both cases the loss in the bound is small.

Remark 2. The theorem is formulated for deterministic algorithms (or branching
programs). However, by Yao’s minimax principle it also applies to randomized
algorithms, which are viewed as distributions over deterministic algorithms. In
this case, the probability is also taken over the randomness of the algorithm.

3.1 Overview of the Proof

The proof is an adaptation of the general approach of [11]. This adaptation
requires additional insight which we summarize below.

We first prove that every shallow branching program of a small height T ′

outputs C ′ (distinct) collisions in a random input x with negligible probability,

414 I. Dinur

denoted here by ε = ε(T ′, C ′) (for appropriate values of T ′ and C ′). Note that
this proof has nothing to do with space complexity.

Then, given a branching program P of size 2S and height T , we level it to
obtain a levelled branching program P ′, losing a factor of 2 in its space S. We
then split P ′ into L layers (for a carefully chosen value of L), each of height at
most T ′ = T/L. In order to produce C collisions, at least one such layer has to
produce C ′ = C/L collisions, namely, there exists a subprogram of P ′ (defined
by its source node) of length T ′ in some layer that outputs C ′ collisions. Since
P ′ contains 22S such subprograms, we take a union bound over all of them and
conclude that the probability in which P ′ outputs C (distinct) collisions is upper
bounded by 22S · ε.

With T ′ queries to the input x, the expected number of encountered collisions
is about (T ′)2/N , and we would like to prove a strong concentration inequality
which shows that it is extremely unlikely to encounter C ′ = c ·(T ′)2/N collisions
for sufficiently small c > 1, thus obtaining a strong upper bound on ε. Indeed,
in order to obtain a meaningful upper bound on the success probability of P ′,
we need ε � 2−2S .

The above calculation justifies the relation between C ′ and T ′. It remains to
choose L such that we can indeed prove that ε � 2−2S and obtain the desired
bound T 2 ·S = Ω̃(C2 ·N). Some calculation shows that for the sake of obtaining
a tight bound, we need to choose L such that C ′ is a bit larger than the space
2S. Intuitively, a choice of L such that C ′ is much larger than 2S will artificially
allow the program to output too many collisions (much more than its space) in
limited time and result in a loose bound. On the other hand, if we choose L for
which C ′ is smaller than 2S, P ′ will actually be able to output C ′ collisions with
sufficiently high probability and we will not be able to obtain the required upper
bound on ε such that ε � 2−2S .

Hence, the constraint ε � 2−2S translates into ε = 2−Ω̃(C′). In other words,
we need to prove a concentration inequality that decays exponentially with the
number of collisions per layer C ′. Unfortunately, obtaining such a strong bound
on ε is impossible in general. For example, suppose that T ′ = N3/4, hence
C ′ ≈ N1/2. Note that C ′ ≈ N1/2 distinct colliding pairs can be obtained via a
t-way collision for t ≈ N1/4. The probability of obtaining such a t-way collision
is at least

N−N1/4
= 2− log N ·N1/4 � 2−N1/2 ≈ 2−C′

.

Fortunately, most functions do not contain such a large t-way collision (as proved
in Lemma 1), and for these functions, we can prove the required bound on ε.
Restricting our attention to such functions allows the proof to go through.

We note that the poly-logarithmic factors in Theorem1 can be improved. In
particular, a refined version of Lemma1 (which would consider t-way collisions
for various values of t, rather than merely t = 3 log N) would yield such an
improvement. However, in this paper we opt for simplicity at the expense of
low-level optimizations.

Finally, we also mention the related work by Chakrabarti and Chen [14]
which analyzed time-space tradeoffs for the memory game with cards. This game

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 415

is played with N distinct pairs of cards laid face-down, and the goal is to output
all “colliding” pairs. Although the memory game resembles CSP (and the lower
bound obtained in [14] is similar to ours), its analysis in [14] does not seem to
apply to CSP. This is mainly due to t-way collisions for t > 2 which are possible
in the collision search problem, but not in the memory game where the cards
are composed of distinct pairs.

3.2 Bounding the Number of Collisions Output by Shallow
Branching Programs

Lemma 1. Let t > 0 be an integer. Then,

Pr
x

[x contains a t-way collision] ≤ N

t!
,

where x
$←− [N]N . In particular, for N > 8,

Pr
x

[x contains a 3 log N-way collision] ≤ N

(3 log N)!
≤ N ·

(
e

3 log N

)3 log N

≤ N−3.

Proof. Fix a set of t distinct indices in [N], {i1, . . . , it}. We have

Pr[x[i1] = x[i2] = . . . = x[it]] = N−t+1.

The number of such sets of indices is
(
N
t

) ≤ Nt

t! . Taking a union bound over all
sets,

Pr[x contains a t-way collision] ≤ N t

t!
· N−t+1 =

N

t!
. �

Lemma 2. For all T ′, C ′ and N > 8, any N -way branching program P of height
at most T ′ satisfies

Pr
x

[|P(x)| ≥ C ′ | x does not have a 3 log N -way collision] ≤

2 · N3 log N ·
(

3e · log N · (T ′)2

C ′ · N

)C′/6 log N

, where x
$←− [N]N .

Proof. Denote by E the event that x does not have a 3 log N -way collision. Sup-
pose that x satisfies this condition and assume that C ′ distinct colliding index
pairs are output by P(x). Assume that these pairs form k disjoint sets, where set
i is of size ti for 2 ≤ ti < 3 log N , and gives a ti-way collision. Since a t-way colli-
sion results in t(t− 1)/2 distinct colliding pairs, we have

∑k
i=1 ti(ti − 1)/2 ≥ C ′.

On the other hand, each set of size ti can be partitioned into 	ti/2
 disjoint col-
liding pairs. Altogether, the C ′ distinct colliding index pairs can be partitioned
into

k∑

i=1

	ti/2
 ≥
k∑

i=1

(ti − 1)/2 ≥ 1
3 log N

·
k∑

i=1

ti(ti − 1)/2 ≥ C ′

3 log N

416 I. Dinur

disjoint colliding pairs.
Using the fact that Prx[E] ≥ N−3 log N , we obtain

Pr
x

[|P(x)| ≥ C ′ | E] ≤

Pr
x

[
P(x) is correct and outputs

C ′

3 log N
disjoint colliding pairs | E

]
≤

Pr
x

[
P(x) is correct and outputs

C ′

3 log N
disjoint colliding pairs

]
/Pr

x
[E] ≤

N3 log N · Pr
x

[
P(x) is correct and outputs

C ′

3 log N
disjoint colliding pairs

]
.

It remains to prove that

Pr
x

[P(x) is correct and outputs
C ′

3 log N
disjoint colliding pairs] ≤

2
(

3e · log N · (T ′)2

C ′ · N

)C′/6 log N

.

For K = C′
6 log N , denote by E1 the event that P(x) queries K disjoint colliding

index pairs and by E2 the event that P(x) is correct and outputs K disjoint
colliding index pairs such that in each one, at least one index is not queried.
Note that if P(x) is correct and outputs C′

3 log N disjoint colliding pairs, then
either E1 or E2 occurs.

For a fixed set of disjoint K pairs of query indices, the probability that they
all collide on a uniform input x is N−K . The number of ways to select such K
query index pairs from a set of T ′ index queries is

(
T ′

2K

)
· (2K)!
2K · K!

≤ (T ′)2K

2K · (K/e)K
=

(
(T ′)2

2/e · K

)K

.

Taking a union bound over all sets of K query index pairs, we conclude

Pr[E1] ≤
(

(T ′)2

2/e · K

)K

· N−K .

In addition,
Pr[E2] = N−K .

Finally,

Pr
x

[P(x) is correct and outputs
C ′

3 log N
disjoint colliding pairs] ≤

Pr[E1] + Pr[E2] ≤
(

(T ′)2

2/e · K

)K

· N−K + N−K ≤ 2
(

3e · log N · (T ′)2

C ′ · N

)C′/6 log N

,

as claimed. �

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 417

3.3 Proof of Theorem 1

Proof (of Theorem 1). Let P be a branching program of height T and size 2S .
We prove the contrapositive statement of the theorem by assuming

T 2 · S <
1

(6e · log N)2
· C2 · N, (1)

and showing that
Pr
x

[|P(x)| < C] ≥ 1 − N−2.

Denote by E the event that x does not have a 3 log N -way collision. We lower
bound the failure probability of P by

Pr
x

[|P(x)| < C] ≥ Pr[E] · Pr[|P(x)| < C | E] = (1 − Pr[¬E]) · Pr[|P(x)| < C | E] ≥
Pr[|P(x)| < C | E] − Pr[¬E].

In the following, we prove based on Lemma 2 that

Pr
x

[|P(x)| ≥ C | E] ≤ N−3. (2)

Therefore, combining (2) with Lemma 1,

Pr
x

[|P(x)| < C] ≥ Pr[|P(x)| < C | E] − Pr[¬E] ≥ 1 − N−3 − N−3 ≥ 1 − N−2,

as required.
It remains to prove (2). We first level the branching program to obtain a

levelled branching problem P ′ of length T and size at most 22S . Partition P ′ into
L = T√

S·N layers, each of height at most T ′ = T/L. By an averaging argument,
if P ′ outputs C distinct colliding pairs, then there exists a layer that outputs at
least C ′ = C/L distinct colliding pairs.4 Hence, the probability that P ′ outputs
at least C distinct colliding pairs is upper bounded by the probability that some
layer outputs C ′ pairs. Since there are at most 22S subprograms (each defined
by its source node) in P ′, by Lemma 2 and a union bound over all subprograms
we obtain

Pr
x

[|P ′(x)| ≥ C | E] ≤

22S · 2 · N3 log N ·
(

3e · log N · (T ′)2

C ′ · N

)C′/6 log N

=

22S · 2 · N3 log N ·
(

3e · log N · (T/L)2

C/L · N

)C′/6 log N

=

22S · 2 · N3 log N ·
(

3e · log N · T 2

C · L · N

)C′/6 log N

=

22S · 2 · N3 log N ·
(

3e · log N · T · √S

C · √
N

)C′/6 log N

.

4 Note that C′ = C/L = C·√S·N
T

≈ S, as suggested in the overview at the beginning
of Sect. 3.

418 I. Dinur

If 3e·log N ·T ·√S

C·√N
> 1/2, then T 2 · S > 1

(6e·log N)2 · C2 · N , in contradiction to (1).
Therefore,

22S · 2 · N3 log N ·
(

3e · log N · T · √
S

C · √
N

)C′/6 log N

≤

22S · 2 · N3 log N · 2−C′/6 log N = 22S+1+3 log2 N− 1
6 log N ·C·√S·N/T .

According to (1),

1
6 log N

· C · √
N

T
≥ e ·

√
S.

Hence,

22S+1+3 log2 N− 1
6 log N ·C·√S·N/T ≤ 22S+1+3 log2 N−e·S = 2S(2−e)+1+3 log2 N ≤ N−3

(since S ≥ 5(log2 N + log N)), concluding the proof. �

4 A Time-Space Tradeoff Lower Bound for Collision
Search Between Two Functions

In this section, we analyze the problem of collision search between two inde-
pendent and random functions. For convenience, we consider algorithms rather
than branching programs, even though they are equivalent in the computational
model we consider.

Theorem 2. Let N,C, T, S be positive integer parameters such that S ≥
5(log2 N + log N), C ≤ N and N > 4. Let A be an algorithm that outputs
C colliding pairs between two independent random functions f1, f2 : [N] → [N]
with probability at least N−2, using T queries to f1 and f2 and space of S bits.
Then, A satisfies the time-space tradeoff lower bound

T 2 · S ≥ 1
(24e · log N)2

· C2 · N.

We note that as Theorems 1 and 2 also applies to randomized algorithms.
It is possible to prove Theorem 2 by using the same technique that was used

to prove Theorem 1 (in fact, this results in slightly better parameters). Instead,
we give a simpler proof by a reduction from the problem of collision search in a
single function, under the mild assumption that the output length of A (i.e., the
total number of elements of [N] that it outputs) is not larger than its number
of queries T . This assumption is not needed in general.

Proof. We reduce the problem of outputting C collisions between two inde-
pendent random functions f1, f2 : [N] → [N] from the problem of outputting
C ′ = C/2 collisions in a single random function f : [2N] → [2N].

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 419

Let A be an algorithm for finding colliding pairs between two functions with
domain and range [N]. Let f : [2N] → [2N] be a random function. We devise
an algorithm A′ that outputs C ′ = C/2 collisions in f as follows. Define f1, f2 :
[N] → [N] as

f1(i) = f(i) mod N , and
f2(i) = f(i + N) mod N.

It is easy to verify that f1, f2 are two independent random functions.
The algorithm A′ runs A with parameter C, giving it access to f1, f2. For

every pair (i1, i2) such that f1(i1) = f2(i2) output by A, algorithm A′ checks
whether f(i1) = f(i2 + N), and if so, outputs the pair (i1, i2 + N). Since we
assume that the output length of A is not larger than its number of queries T ,
we have T ′ ≤ 2T . Moreover, the space used by A′ is essentially the same as that
of A (in particular , S′ ≤ 2S).

We call a function f : [2N] → [2N] bad if A outputs at least C collisions on
f1, f2 derived from f , but A′ outputs less than C/2 collision on f . We call f good,
if A outputs at least C collisions on f1, f2 derived from f , and A′ outputs at
least C/2 collision on f . We claim that the number of good functions is at least
the number of bad functions. Indeed, let M be a mapping between functions
f : [2N] → [2N] which maps f to f̂ = M(f), defined as follows:

f̂(i) =

⎧
⎪⎨

⎪⎩

f(i), for i < N

f(i) − N, for i ≥ N and f(i) ≥ N

f(i) + N, for i ≥ N and f(i) < N.

Note that A is run with the same input on f and M(f), hence it produces the
same output. Moreover, for every (i1, i2) ∈ [N]2, if f1(i1) = f2(i2) and f(i1) �=
f(i2 +N) then f̂1(i1) = f̂2(i2) and f̂(i1) = f̂(i2 +N) (where f̂ = M(f)). Hence,
every bad function is mapped by M to a good function. Finally, M(M(f)) = f ,
implying that M is a permutation on the space of functions, proving that the
number of good functions is at least the number of bad functions.

Let X,X ′ be random variables for the number of distinct number of colliding
pairs output by A,A′, respectively. We have shown that

Pr[X ′ ≥ C/2] ≥ 1/2 · Pr[X ≥ C], or Pr[X ≥ C] ≤ 2 · Pr[X ′ ≥ C/2].

Applying Theorem1 with N ′ = 2N,C ′ = C/2, S′ = 2S, T ′ = 2T concludes the
proof. �

5 Time-Space Complexity Barriers and Their
Cryptanalytic Variants

In this section, we argue that it may be very difficult to prove tight time-space
lower bounds (i.e., analogs of Theorems 1 and 2) for cryptanalytic problems
with short outputs, whose most efficient algorithms seem to require substantial

420 I. Dinur

space. The results of this section motivate the restricted post-filtering model
of computation used in Sect. 6 to prove a time-space tradeoff lower bound for
double encryption.

The smallest fundamental complexity barrier (as named in [10], and formu-
lated as a challenge) is to find an explicit Boolean decision problem h : {0, 1}n →
{0, 1} in P for which T · S = O(n log n) is not possible. Since its formulation,
the original barrier has been overcome in [9] by Beame et al. which gave explicit
examples of problems for which any algorithm for computing them with space
of S = n1−ε bits (where ε > 0 is an arbitrarily small constant), requires time
complexity of at least T = Ω(n

√
log n/ log log n). This time-space tradeoff lower

bound was proved for R-way branching programs.
Despite this breakthrough, its does not give any non-trivial lower bound on

the space of an algorithm running in time (say) T = n log n. Therefore, the
complexity barrier was reformulated in [9] to proving a non-trivial time-space
tradeoff lower bound when T = n(log n)ω(1).

In order to generalize this barrier to cryptanalytic problems, we con-
sider problems with longer input variables and longer outputs (but still poly-
logarithmic in the input length). Consequently, we require that T · S = Ω(n1+ε)
for some ε > 0.

As a simple example, we consider the problem of finding a 3-way collision
in a function, represented by an input x ∈ [N]N . The goal in this problem is
to find 3 distinct indices i1, i2, i3 such that x[i1] = x[i2] = x[i3]. Note that the
output length is 3 log N and is short (poly-logarithmic in the length of x which
is n = N · log N). We can formulate the generalized barrier for this problem as
proving that any algorithm requires T ·S = Ω(N1+ε). However, in cryptography,
we are typically interested in average-case, rather than worst-case problems. In
particular, one is typically interested in finding collisions in random functions.

Consider the uniform distribution over x ∈ [N]N and a trivial algorithm
that evaluates T = O(N2/3) arbitrary input variables and looks for a 3-way
collision among them. Simple probabilistic analysis shows that the algorithm
succeeds with high probability. Such sub-linear algorithms demonstrate that we
need to further generalize the challenge above to average-case problems. Below
we formulate a challenge for finding a 3-way collision.

Challenge 1. Prove that there exist ε > 0 and δ > 0 such that any algorithm
that succeeds in finding a 3-way collision in a uniformly chosen x ∈ [N]N for
all sufficiently large N with probability at least 3/4 and T = N2/3+ε, satisfies
S ≥ N δ.

The difficulty in overcoming Challenge 1 stems from the fact that currently
known techniques are not able to prove space lower bounds (of the form S ≥ nδ

for δ > 0) for short-output problems with input size n that are solvable in time T̂
whenever we allow T = T̂ ·nε for some ε > 0. In contrast, for problems where the
output size is nΩ(1), such lower bounds are known. Thus, overcoming Challenge 1
would be a breakthrough and perhaps lead towards overcoming a similar barrier
for decision problems.

We note that the best known time-space tradeoff algorithm for finding a 3-
way collision was published by Joux and Lucks [23] and obtains T · S = Õ(N)

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 421

for T ≥ N2/3. While we would like to prove that it is optimal, we cannot even
overcome Challenge 1 which is generally much weaker (e.g., for the values δ =
ε = 0.01).

Challenge 1 deals with the specific problem of finding a 3-way collision. Sim-
ilar challenges can be formulated for other short-output cryptanalytic problems
whose most time-efficient algorithm seems to require a large amount of space.
The adaptation is performed by adjusting the distribution on inputs and the
exponent 2/3 according to the specific problem. For example, for the problem
of breaking double encryption we would consider an exponent of 1. In the next
section, we propose a restricted model of computation which allows to bypass
the challenge for the specific case of breaking double encryption.

6 A Time-Space Tradeoff Lower Bound for Post-filtering
Attacks on Double Encryption

Double encryption is one of the most fundamental constructions in symmetric-
key cryptography. The classical meet-in-the-middle attack on the scheme (due
to Merkle and Hellman [26]) gives the time-space tradeoff T ·S = Õ(K2) (where
(k1, k2) ∈ [K]2 is the key). This tradeoff was improved by van Oorschot and
Wiener to T 2 · S = Õ(K3) using the PCS algorithm [32]. In terms of lower
bounds, the scheme is known to be secure up to T = O(K) queries [1]. On
the other hand, there are no known unconditional lower bounds that take into
consideration space complexity for S � T . Indeed, in Sect. 5 we argued that
proving such bounds may be very difficult.

In this section, we analyze the security of double encryption assuming that
the space of the adversary is bounded. Our setting is similar to the one con-
sidered by Tessaro and Thiruvengadam in [31]. However, [31] reduced problem
of breaking double encryption (i.e., distinguishing the scheme from a random
permutation) to solving the element distinctness problem, and thus obtained a
conditional result based on the current state-of-the-art for element distinctness
algorithms. On the other hand, we obtain an unconditional security proof for
a class of algorithms which is restricted, yet broad enough to capture the best
known space-efficient attack algorithm (and its potential generalizations).

Let E : [K]× [N] → [N] be a block cipher, which is a permutation on [N] for
each k ∈ [K]. The inverse block cipher is denoted by E−1. Given block ciphers
E1, E2, double encryption DE : [K] × [K] × [N] → [N] is defined as

DEk1,k2(p) = E2k2(E1k1(p)),

for keys (k1, k2) ∈ [K]2.
Let BCK,N be the set of all block ciphers with key space [K] and block space

[N]. Throughout this section, we assume for the sake of simplicity that K = N
and that E1 is independent of E2. It is not difficult to extend our results (with
negligible loss in the bound) to the case of K �= N (as long as K = O(N))
and\or E1 = E2.

422 I. Dinur

Recall from Sect. 1.1 that in the attack based on collision search, except for
the main (p1, c1) plaintext-ciphertext pair, all other pairs are accessed only for
post-filtering purposes. We now define a model which captures this attack and
potentially additional post-filtering attacks on double-encryption (the model also
captures the classical meet-in-the-middle attack [26]). Using this model, we prove
that the time-space tradeoff obtained by the best know attack (which is based
on PCS) is optimal for post-filtering algorithms.

We consider a post-filtering adversary A that attempts to distinguish between
the real world (where ciphertexts are generated by a double encryption scheme)
and an ideal world (where ciphertexts are generated at random). The adversary
has access to the following functionalities:

1. Block ciphers E1, E2 ∈ BCN,N (chosen uniformly at random from the space
of block ciphers), along with their inverses E1−1, E2−1.

2. In the real world, an arbitrary plaintext p ∈ [N], along with c = DEk1,k2(p)
for uniformly and independently chosen (k1, k2) ∈ [N]2. In the ideal world,
the adversary receives p and a uniformly chosen c ∈ [N].

3. A post-filtering oracle O : [N]2 → {0, 1}. In the real world, O(k1,k2)(k
′
1, k

′
2) =

1 if (k′
1, k

′
2) = (k1, k2) and O(k1,k2)(k

′
1, k

′
2) = 0 otherwise. In the ideal world,

O = O⊥ returns 0 on any input.

The access to the post-filtering oracle O is restricted, as it is only invoked on can-
didates (k′

1, k
′
2) that satisfy c = E2k′

2
(E1k′

1
(p)). We thus assume that if A calls

O with input (k′
1, k

′
2) such that c �= E2k′

2
(E1k′

1
(p)), the algorithm is terminated

with failure.
The adversary issues T queries to E1, E2 and their inverses and has space

of S bits. Finally, the adversary outputs a bit which represents a guess as to
whether the interaction occurred in the real world, or in the ideal world.

Formally, we define the advantage of the adversary in the post-filtering double
encryption (PFDE) game as

Adv(A)PFDE
DE[E1,E2] =

|Pr[E1, E2 $←− BCN,N , (k1, k2)
$←− [N]2 :

AE1,E1−1,E2,E2−1,O(k1,k2)(p, c = DEk1,k2(p)) = 1]−
Pr[E1, E2 $←− BCN,N , c

$←− [N] : AE1,E1−1,E2,E2−1,O⊥(p, c) = 1]|.
The main result of this section is given by the theorem below.

Theorem 3. Let N,S, T be parameters such that N ≥ 3000, S ≥ 5(log2 N +
log N). Any adversary A with space of S bits that makes at most T queries to
E1, E2 and E1−1, E2−1 satisfies

Adv(A)PFDE
DE[E1,E2] ≤ min

(
T 2

N2
, 288e · log N · T

√
S

N3/2
+ N−1/2

)

.

Hence, the advantage is o(1) unless T = Ω̃
(

N3/2

S1/2

)
, matching the best known

attack.

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 423

6.1 Proof Overview

In order to prove Theorem 3, we first define the restricted post-filtering double-
encryption game (RPFDE). The difference between this game and its unre-
stricted version above is that the adversary can only query E1k(p) and E2−1

k (c)
for any choice of k, but cannot issue any other query. In Lemma 4, we show that
despite the restriction on the adversary’s queries in RPFSE, the distinguishing
advantage remains the same as in PFSE. Hence it is sufficient to analyze RPFSE.

Next, we denote f1(k) = E1k(p) and f2(k) = E2−1
k (c), which syntactically

transforms RPFSE to the notation used in Sect. 4 and allows to define the equiv-
alent post-filtering collision search (PFCS) game. The goal is to show that in
order to distinguish between the real and ideal worlds in PFCS (and RPFSE)
with high probability, the adversary has to find Ω(N) collisions between f1 and
f2 in the real world. Indeed, there are about N possible collisions between f1
and f2, but only one of them suggests the correct key and is accepted by the
post-filtering oracle. Since the adversary is forced to find Ω(N) collisions, we
can apply Theorem 2 to bound the success probability based on the adversary’s
time and space.

Applying Theorem2 is not immediate since the assumption in this theorem
is that f1 and f2 are independent, but in PFCS (and RPFSE) the functions
are not independent, as they are known to collide for the correct choice of key.
Hence, the application of Theorem 2 is made possible after an additional (hybrid
argument) step that bounds the statistical distance between the dependent and
independent distributions on (f1, f2).

Overall, the proof is somewhat more involved than one may expect. One
reason for this is that we aim to prove security for parameter ranges of T = ω(N)
(assuming S = o(N)), whereas standard security analysis of double encryption
is only valid up to T = N . Consequently, some simple proof strategies that work
up to T = N are not good enough for our purposes.

Throughout the rest of this section, we denote α = α(N) = 24e log N (this
expression appears in the time-space tradeoff formula of Theorem 2).

6.2 Restricted Post-filtering Double Encryption

As noted above, the difference between PFDE and its restricted version is that
in RPFDE the adversary can only query E1k(p) and E2−1

k (c) for any choice of
k, but cannot issue any other query. We denote the advantage of the adversary
in the restricted game as Adv(A)RPFDE

DE[E1,E2].
Theorem 3 follows from the two lemmas below. The first lemma shows that

the restricted game does not hurt the distinguishing advantage of the adversary.
The second lemma upper bounds the distinguishing advantage in RPFDE and
its proof is given in Sect. 6.3.

Lemma 3. Let N,S, T be parameters. If there exists an adversary A with space
of S bits that makes at most T queries to E1, E2 and E1−1, E2−1 in the PFDE

424 I. Dinur

game, then there exists an adversary A′ in the RPFDE game with space S and
time T such that

Adv(A′)RPFDE
DE[E1,E2] = Adv(A)PFDE

DE[E1,E2].

Lemma 4. Let N,S, T be parameters such that N ≥ 3000, S ≥ 5(log2 N +
log N). Then, any adversary A with space of S bits that makes at most T
(restricted) queries to E1 and E2−1 in the RPFDE game satisfies

Adv(A)RPFDE
DE[E1,E2] ≤ 12α · T

√
S

N
√

N
+ N−1/2.

Proof (of Theorem 3). First, Adv(A)PFDE
DE[E1,E2] ≤ T 2

N2 by [1], which provides a
general distinguishing advantage bound for double encryption that obviously
holds here as well.

Moreover, by Lemmas 3 and 4,

Adv(A)PFDE
DE[E1,E2] = Adv(A′)RPFDE

DE[E1,E2] ≤ 12α · T
√

S

N
√

N
+ N−1/2.

�

Proof (of Lemma 3). Given black-box access to adversary A, we describe adver-
sary A′ that can only issue queries of the form E1k(p) and E2−1

k (c) for an
arbitrary choice of k. In order to simulate answers to additional queries to
E1, E2, E1−1 and E2−1, A′ will utilize randomness that is independent of E1, E2
and used in order to construct block ciphers E1′, E2′ : [N] × [N] → [N] that
are chosen uniformly at random from BCN,N , subject to the constraint that for
each k ∈ [N], E1′

k(p) = E1k(p) and (E2′
k)−1(c) = E2−1

k (c).
The adversary A′ runs A and answers every query to E1 or E2 (or their

inverses) by issuing an identical query to E1′ or E2′ (or their inverses) and
feeding the answer back to A. Access to O remains identical. Finally, A′ outputs
the same value as A.

We now describe how E1′, E2′ are constructed. For each k ∈ [N], the ran-
domness of A′ simply complements the constraint E1′

k(p) = E1k(p) to a random
permutation (under this constraint), and similarly, complements the constraint
(E2′

k)−1(c) = E2−1
k (c) to a random permutation (under this constraint). Such

randomness is independent of E1, E2, while a query to E1′, E2′, (E1′)−1, (E2′)−1

can be answered by querying E1k(p) (or E2−1
k (c)) and the randomness.

It remains to analyze the complexity and advantage of A′. We start by ana-
lyzing its advantage. First, note that for any k′

1, k
′
2 such that c = E2k′

2
(E1k′

1
(p)),

we have c = E2′
k′
2
(E1′

k′
1
(p)), hence the behaviour of O remains unchanged by

the simulation (it is only invoked on legal inputs). Second, A′ perfectly simulates
the distribution of answers of E1, E2, E1−1, E2−1 in both the real and the ideal
worlds. In other words, for every choice of E1, E2 in the real world, there is an
equally likely choice of E1′ = E1, E2′ = E2 in the real world for which A′ with

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 425

access to E1′, E2′ answers the same as A (and a similar statement holds in the
ideal world). We conclude that Adv(A′)RPFDE

DE[E1,E2] = Adv(A)PFDE
DE[E1,E2].

In terms of complexity, the block ciphers E1′, E2′ are constructed such that
every query to E1′, E2′ (or their inverses) can be answered with at most one query
to E1k(p) or E2−1

k (c) (for the same value of k). Since A makes at most T queries to
E1, E2, E1−1, E2−1, then A′ makes at most T such (restricted) queries. Further-
more, A′ uses essentially the same space as A (in our model, the use of randomness
is not counted towards the space nor the time complexity). �

Remark 3. In the proof of Lemma 3, it may be tempting to implement E1′, E2′ :
[N]2 → [N] as independent block ciphers, and to query them for each query of
A which is not to E1k(p) or E2−1

k (c). The problem with this implementation is
that the answers that A receives for queries to E1, E2 (and their inverses) may
no longer form a permutation for each k ∈ [N], as they may contain a collision
in the plaintext-ciphertext space for each k (due to the inconsistency between
E1 and E1′ and between E2 and E2′). A single collision per k ∈ [N] may not
be a concern when A issues only T � N queries, but in our case T = ω(N) (for
S = o(N)) is possible.

6.3 Post-filtering Collision Search

Towards proving Lemma 4, we first translate the cryptographic setting of double
encryption to the more generic setting of Sect. 4 and relate these settings in
Lemma 5 below. Lemma 4 then follows from Lemma 5 and Lemma 6 below (whose
proof is given in Sect. 6.4) that bounds the adversary’s advantage in the setting
of Sect. 4.

Let F = {f : [N] → [N]}. We now define the post-filtering collision search
(PFCS) game, where an algorithm A has access to functions f1, f2 : [N] → [N]
and a post-filtering oracle O : [N]2 → {0, 1}, initialized as follows:

1. In the real world, (i1, i2) ∈ [N]2 is chosen uniformly at random. Then f1, f2 :
[N] → [N] are chosen uniformly at random, subject to the constraint that
f1(i1) = f2(i2). We denote this distribution on (f1, f2, i1, i2) by D2. We define
O(i1,i2)(i

′
1, i

′
2) = 1 if (i′1, i

′
2) = (i1, i2) and O(i1,i2)(i

′
1, i

′
2) = 0 otherwise.

2. In the ideal world, f1, f2 : [N] → [N] are chosen uniformly at random and
O⊥ returns 0 on any input.

As previously, access to the post-filtering oracle O is restricted, and it is only
invoked on candidates (i′1, i

′
2) that satisfy f1(i′1) = f2(i′2) (otherwise A is termi-

nated). We define the advantage of the algorithm in the post-filtering collision
search game as

Adv(A)PFCS
f1,f2

=

|Pr[(f1, f2, i1, i2) ← D2 : Af1,f2,O(i1,i2) = 1] − Pr[f1, f2
$←− F : Af1,f2,O⊥ = 1|.

The PFCS game is merely a syntactical transformation of the RPFDE game,
hence the following lemma is straightforward.

426 I. Dinur

Lemma 5. Let N,S, T be parameters. If there exists an adversary A with space
of S bits that makes at most T queries to g1(k) = E1k(p) and g2(k) = E2−1

k (c)
in the RPFCS game, then there exists an algorithm A′ in the PFCS game with
space S that makes at most T queries to f1 and f2 such that

Adv(A′)PFCS
f1,f2

= Adv(A)RPFDE
DE[E1,E2].

Proof. Denoting g1(k) = E1k(p) and g2(k) = E2−1
k (c) as in the theorem,

(g1, g2, k1, k2) in the real world is distributed according to D2, while g1, g2 in
the ideal world are uniform and independent functions. Hence, given black-box
access to an adversary A for RPFCS, an algorithm A′ in PFCS with the desired
properties can be constructed in a straightforward manner. �

In the following, we will prove:

Lemma 6. Let N,T, S be parameters such that N ≥ 3000, S ≥ 5(log2 N +
log N). Then, any algorithm A for PFCS that queries f1 and f2 on T inputs
and has space complexity of S bits satisfies

Adv(A)PFCS
f1,f2

≤ 12α · T
√

S

N
√

N
+ N−1/2.

Based on this lemma, we can prove Lemma 4.

Proof (of Lemma 4). By Lemmas 5 and 6,

Adv(A)RPFDE
DE[E1,E2] = Adv(A′)PFCS

f1,f2
≤ 12α · T

√
S

N
√

N
+ N−1/2. �

6.4 Bounding the Advantage in Post-filtering Collision Search

It remains to prove Lemma 6. The proof is by a hybrid argument. We define
world 1 as an intermediate between the real and ideal worlds in PFCS. In world
1, algorithm A has access to f1, f2 and an oracle O, initialized as follows:

1. The functions f1, f2 : [N] → [N] are chosen uniformly at random. Then, an
index pair (i1, i2) ∈ [N]2 is chosen uniformly at random from the collision set
{(i′1, i

′
2) | f1(i′1) = f2(i′2)} (if the collision set is empty, define (i1, i2) = (0, 0)).

We denote this distribution on (f1, f2, i1, i2) by D1.
2. If the set {(i′1, i

′
2) | f1(i′1) = f2(i′2)} is empty, then O = O⊥ returns 0 on any

input. If the collision set is non-empty, O(i1,i2)(i
′
1, i

′
2) = 1 if (i′1, i

′
2) = (i1, i2)

and O(i1,i2)(i
′
1, i

′
2) = 0 otherwise.

We define Game 1 as the problem of distinguishing the real world in PFCS
from world 1, and Game 2 as the problem of distinguishing world 1 from the
ideal world in PFCS. Correspondingly, we define

Adv(A)G1
f1,f2

=

|Pr[(f1, f2, i1, i2) ← D2 : Af1,f2,O(i1,i2) = 1]−
Pr[(f1, f2, i1, i2) ← D1 : Af1,f2,O(i1,i2) = 1]|,

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 427

and

Adv(A)G2
f1,f2

=

|Pr[(f1, f2, i1, i2) ← D1 : Af1,f2,O(i1,i2) = 1] − Pr[f1, f2
$←− F : Af1,f2,O⊥ = 1|.

We will prove the following two lemmas.

Lemma 7. Any algorithm A in Game 1 satisfies

Adv(A)G1
f1,f2

≤ N−1/2 + 2e−N/120.

Lemma 8. Let N,T, S be parameters such that N ≥ 3000, S ≥ 5(log2 N +
log N). Then, any algorithm A in Game 2 that makes T queries to f1 and f2
and has space of S bits satisfies

Adv(A)G2
f1,f2

≤ 10α · T
√

S

N
√

N
.

Proof (of Lemma 6). By a hybrid argument,

Adv(A)PFCS
f1,f2

≤ Adv(A)G1
f1,f2

+ Adv(A)G2
f1,f2

≤
10α · T

√
S

N
√

N
+ N−1/2 + 2e−N/120 ≤ 12α · T

√
S

N
√

N
+ N−1/2,

where the penultimate inequality is due to Lemmas 7 and 8, and the final inequal-
ity follows since α = 24e log N and N ≥ 3000. �

It remains to prove Lemmas 7 and 8. The proof of these lemmas requires an
auxiliary lemma whose proof is given in AppendixB. We denote Col(f1, f2) =
|{(i1, i2) | f1(i1) = f2(i2)}|, i.e., the size of the collision set. Lemma 9 provides
concentration inequalities for Col(f1, f2), when f1, f2 are independent random
functions (which is the case when they are chosen according to D1).

Lemma 9. Let c > 0 be any constant and suppose that f1, f2 are selected inde-
pendently and uniformly at random from F . Then,

Pr
f1,f2

[|Col(f1, f2) − N | ≥ c · N1/2] ≤ c−2.

Moreover,
Pr

f1,f2
[Col(f1, f2) < N/8] ≤ 4e−N/120.

Remark 4. It is possible to prove concentration inequalities for Col(f1, f2) which
are sharper than the ones of Lemma 9. However, Lemma 9 is sufficient for our
purposes and is relatively easy to prove.

428 I. Dinur

Proof (of Lemma 7). We have

Adv(A)G1
f1,f2

≤ SD(D1,D2),

where SD(D1,D2) is the statistical distance between D1 and D2. Hence, it suf-
fices to prove that

SD(D1,D2) ≤ N−1/2 + 2e−N/120.

We denote by Λ the space

{(f1, f2, i1, i2) ∈ F × F × [N] × [N] | f1(i1) = f2(i2)},

where |Λ| = N2N+1. Recall that in order to sample according to D2, we first
sample a uniform index pair (i1, i2) and then uniformly sample (f1, f2) under
the restriction f1(i1) = f2(i2). Hence, D2 is the uniform distribution over Λ,
namely, for each (f ′

1, f
′
2, i

′
1, i

′
2) ∈ Λ,

Pr
(f1,f2,i1,i2)←D2

[(f1, f2, i1, i2) = (f ′
1, f

′
2, i

′
1, i

′
2)] = 1/|Λ| = N−2N−1.

On the other hand, in order to sample according to D1, we first sample
(f1, f2) uniformly and then sample (i1, i2) from the collision set. Therefore, for
each (f ′

1, f
′
2, i

′
1, i

′
2) ∈ Λ,

Pr
(f1,f2,i1,i2)←D1

[(f1, f2, i1, i2) = (f ′
1, f

′
2, i

′
1, i

′
2)] =

Pr[(f1, f2) = (f ′
1, f

′
2)] · Pr[(i1, i2) = (i′1, i

′
2) | (f1, f2) = (f ′

1, f
′
2)] =

N−2N · 1
Col(f ′

1, f
′
2)

=
N

Col(f ′
1, f

′
2) · |Λ| ,

whereas

Pr
(f1,f2,i1,i2)←D1

[(f1, f2, i1, i2) /∈ Λ] = Pr[Col(f1, f2) = 0] ≤ 4e−N/120,

by the second part of Lemma 9. Hence, treating the distributions D1,D2 as
vectors over F × F × [N] × [N],

SD(D1,D2) =

1/2 ·
∑

(f1,f2,i1,i2)∈Λ

|D1(f1, f2, i1, i2) − D2(f1, f2, i1, i2)|+

1/2 ·
∑

(f1,f2,i1,i2)/∈Λ

|D1(f1, f2, i1, i2) − D2(f1, f2, i1, i2)| ≤

1/2 ·
∑

(f1,f2,i1,i2)∈Λ

|D1(f1, f2, i1, i2) − D2(f1, f2, i1, i2)| + 2e−N/120.

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 429

It remains to upper bound the first term above by N−1/2. We have

1/2 ·
∑

(f1,f2,i1,i2)∈Λ

|D1(f1, f2, i1, i2) − D2(f1, f2, i1, i2)| ≤

1/2 · 1

|Λ| ·
∑

(f1,f2,i1,i2)∈Λ

∣∣∣∣
N

Col(f1, f2)
− 1

∣∣∣∣ =

1/2 · 1

|Λ| ·
∑

(f1,f2)

⎛

⎝
∑

{(i1,i2)|f1(i1)=f2(i2)}

∣∣∣∣
N

Col(f1, f2)
− 1

∣∣∣∣

⎞

⎠ =

1/2 · 1

|Λ| ·
∑

(f1,f2)

Col(f1, f2) ·
∣∣∣∣

N

Col(f1, f2)
− 1

∣∣∣∣ =

1/2 · 1

|Λ| ·
∑

(f1,f2)

|N − Col(f1, f2)| =

1/2 · N−1 · Ef1,f2 [|Col(f1, f2) − N |] =

1/2 · N−1 ·
∞∑

i=0

Pr
f1,f2

[|Col(f1, f2) − N | ≥ i] =

1/2 · N−1 ·
⎛

⎝
N1/2−1∑

i=0

Pr
f1,f2

[|Col(f1, f2) − N | ≥ i] +

∞∑

i=N1/2

Pr
f1,f2

[|Col(f1, f2) − N | ≥ i]

⎞

⎠ ≤

1/2 · N−1 ·
⎛

⎝N1/2 +

∞∑

i=N1/2

Pr
f1,f2

[
|Col(f1, f2) − N | ≥ (i · N−1/2) · N1/2

]
⎞

⎠ ≤

1/2 · N−1

⎛

⎝N1/2 +

∞∑

i=N1/2

(i · N−1/2)−2

⎞

⎠ = 1/2 ·
⎛

⎝N−1/2 +

∞∑

i=N1/2

i−2

⎞

⎠ ≤ N−1/2,

where the penultimate inequality is by the first part of Lemma9. This completes
the proof. �

Remark 5. In D2, the dependency of f1 and f2 is only due to the index pair
(i1, i2). Such a dependency is unnoticeable to an algorithm A as long as it does
not query both i1 and i2, which occurs with probability of at most T 2

N2 . Hence, if
we were interested in bounding the advantage of A only up to T = N , we could
easily replace the proof of Lemma 7 by a simpler proof. However, it is not clear
how to obtain such a simple proof that gives a meaningful bound for T = ω(N)
(when S = o(N)).

Proof (of Lemma 8). Denote by E the event that O is invoked with (i1, i2) (and
answers 1) in world 1. Note that Adv(A)G2

f1,f2
≤ Pr[E], as conditioned on ¬E in

world 1, both worlds are identical and the advantage is 0.
We focus on world 1. For C ≥ 0, denote by EC the event that Af1,f2,O calls

the oracle O with at most C distinct pairs (i′1, i
′
2) such that f1(i′1) = f2(i′2).

According to the distribution D1, the probability that any pair (i′1, i
′
2) satisfies

(i′1, i
′
2) = (i1, i2) is 1/Col(f1, f2). Hence, for any positive value of Col(f1, f2) and

0 ≤ C ≤ Col(f1, f2),

Pr[E | EC] ≤ C

Col(f1, f2)
.

430 I. Dinur

By the above inequality and the second part of Lemma9,

Pr[E | EC] ≤
Pr[E | EC ∧ Col(f1, f2) ≥ N/8] + Pr[Col(f1, f2) < N/8] ≤ 8

N
· C + 4e−N/120.

(3)

Define Ĉ = α·T√
S√

N
. We have

Adv(A)G2
f1,f2

≤ Pr
(f1,f2,i1,i2)←D1

[E] ≤ Pr
[E | EĈ

]
+ Pr

[¬EĈ

] ≤

8
N

· α · T
√

S√
N

+ 4e−N/120 + N−2 ≤ 10α · T
√

S

N
√

N
,

where the penultimate inequality is by (3) and Theorem 2, and the final inequal-
ity follows since α = 24e log N and N ≥ 3000. �

7 Conclusions and Future Work

In this paper we proved that the well-known time-space tradeoff T 2 ·S = Õ(C2 ·
N) for the collision search problem is optimal using the framework of Borodin
and Cook. We further proved that the best known time-space tradeoff attack on
double encryption is optimal among post-filtering algorithms.

In the future it would be interesting to find more problems in cryptography
for which time-space tradeoff lower bounds can be proved by the method of
Borodin and Cook. Another research direction is to extend the post-filtering
model and prove time-space tradeoff lower bounds for additional (short-output)
cryptanalytic problems under reasonable restrictions.

Acknowledgements. The author was supported by the Israeli Science Foundation
through grant No. 573/16 and by the European Research Council under the ERC
starting grant agreement No. 757731 (LightCrypt).

A The Parallel Collision Search Algorithm [32]

In this section, we briefly summarize the PCS algorithm for computing C col-
liding pairs in a random function f : [N] → [N]. For more details, refer to [32].
Given Õ(S) bits of memory, PCS builds a chain structure containing S chains,
where a chain starts at an arbitrary point x0 ∈ [N] and computed iteratively as
xi+1 = f(xi). Each chain is terminated after about

√
N/S evaluations, hence

the structure contains a total of about S · √
N/S =

√
N · S distinct points. As

the chains are of length
√

N/S, each chain collides with a different chain in
the structure with constant probability according to the birthday paradox, since
the number of relevant pairs of points is

√
N/S · √

N · S = N . Therefore, the
structure contains an expected number of about S colliding pairs.

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 431

The collisions can be recovered efficiently by defining a set of
√

N · S distin-
guished points according to an easily verifiable condition on the points xi ∈ [N].
Each chain in the structure is terminated at a distinguished point (and hence its
expected length is N/

√
N · S =

√
N/S as required). The PCS algorithm stores

the distinguished points sorted in memory and collisions between chains are
detected at their distinguished points. The actual collisions in f are recovered
by recomputing the colliding chains.

In total, PCS finds C = Θ(S) distinct colliding pairs in f using space of Õ(S)
bits and time complexity T = Õ(

√
N · S).

When C > S collisions are required, the algorithm is repeated O(C/S) times.
In order to (heuristically) eliminate the dependency between the different execu-
tions, in repetition i we run PCS on the function fi = πi◦f , where πi : [N] → [N]
is some simple permutation. Note that a collision in fi gives a collision in f . Alto-
gether, PCS finds C distinct colliding pairs in f using space of Õ(S) bits and time
complexity T = Õ(C/S · √

N · S) = Õ(C · √
N/S), which gives the time-space

tradeoff curve T 2 · S = Õ(C2 · N).

B Proof of Lemma9

Proof (of Lemma 9). We begin by proving the first part of the lemma. For every
(i1, i2) ∈ [N]2 define an indicator random variable Ci1i2 that is equal to 1 if
f1(i1) = f2(i2). We have

E[Ci1i2] = Pr[Ci1i2 = 1] = N−1, and

Var[Ci1i2] = E[(Ci1i2)
2] − (E[Ci1i2])

2 = N−1 − N−2 < N−1.

Hence,

E[Col(f1, f2)] = E

⎡

⎣
∑

(i1,i2)∈[N]2

Ci1i2

⎤

⎦ =
∑

(i1,i2)∈[N]2

E[Ci1i2] = N2 · N−1 = N.

Since the random variables {Ci1i2} are pairwise independent,

Var[Col(f1, f2)] = Var

⎡

⎣
∑

(i1,i2)∈[N]2

Ci1i2

⎤

⎦ =
∑

(i1,i2)∈[N]2

Var[Ci1i2] < N2 · N−1 = N.

For a parameter c > 0, Chebyshev’s inequality gives

Pr
[
|Col(f1, f2) − E[Col(f1, f2)]| ≥ c ·

√
Var[Col(f1, f2)]

]
≤ c−2.

Therefore, we obtain

Pr[|Col(f1, f2) − N | ≥ c · N1/2] ≤ c−2,

as required.

432 I. Dinur

For the second part of the lemma, we view the process of sampling f1 (and
f2) as a classical Balls-and-Bins problem, where we throw N balls into N bins
uniformly at random, and ball i falls into bin f1(i). Denote by Z1 the number of
empty bins induced by f1 (i.e., the number of points x ∈ [N] with no preimage
under f1) and by Z2 the number of empty bins induced by f2. Hence, the number
of non-empty bins (image points) induced by f1 and f2 are N − Z1 and N − Z2,
respectively. The number of colliding pairs between f1, f2 is at least the size of the
intersection of the non-empty bins, which is at least (N − Z1) + (N − Z2) − N =
N − Z1 − Z2.

Hence, if Col(f1, f2) < N/8, then N − Z1 − Z2 < N/8, which implies that
Z1 + Z2 > 7N/8. Therefore, either Z1 > 7N/16, or Z2 > 7N/16. By [18, p. 75],
we have

Pr[|Z1 − E[Z1]| > t] ≤ 2e−2t2/N ,

and the same holds for Z2.
The probability that any particular bin is empty is (1−N−1)N ≤ 1/e, hence

E[Z1] ≤ N/e. Therefore,

Pr[Z1 > 7N/16] = Pr[Z1 − N/e > 7N/16 − N/e] ≤ Pr[Z1 − E[Z1] > N/15] ≤
Pr[|Z1 − E[Z1]| > N/15] ≤ 2e−N/120.

Finally,

Pr[Col(f1, f2) < N/8] ≤ Pr[Z1 > 7N/16] + Pr[Z2 > 7N/16] ≤ 4e−N/120.

�

References

1. Aiello, W., Bellare, M., Crescenzo, G.D., Venkatesan, R.: Security amplifica-
tion by composition: the case of doubly-iterated, ideal ciphers. In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 390–407. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055743

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

3. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 2

4. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, 14–17 June 2015, pp. 595–603. ACM (2015)

5. Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 101–132. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 4

6. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/memory tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 1–21. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 1

https://doi.org/10.1007/BFb0055743
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-63688-7_4
https://doi.org/10.1007/11818175_1

Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs 433

7. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput. 20(2), 270–277 (1991)

8. Beame, P., Clifford, R., Machmouchi, W.: Element distinctness, frequency
moments, and sliding windows. In: 54th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013, 26–29 October, 2013, Berkeley, CA, USA,
pp. 290–299. IEEE Computer Society (2013)

9. Beame, P., Saks, M.E., Sun, X., Vee, E.: Time-space trade-off lower bounds for
randomized computation of decision problems. J. ACM 50(2), 154–195 (2003)

10. Borodin, A.: Time space tradeoffs (getting closer to the barrier?). In: Ng, K.W.,
Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS,
vol. 762, pp. 209–220. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57568-5 251

11. Borodin, A., Cook, S.A.: A Time-Space Tradeoff for Sorting on a General Sequen-
tial Model of Computation. SIAM J. Comput. 11(2), 287–297 (1982)

12. Borodin, A., Fischer, M.J., Kirkpatrick, D.G., Lynch, N.A., Tompa, M.: A time-
space tradeoff for sorting on non-oblivious machines. J. Comput. Syst. Sci. 22(3),
351–364 (1981)

13. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-
saries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

14. Chakrabarti, A., Chen, Y.: Time-space tradeoffs for the memory game. CoRR,
abs/1712.01330 (2017)

15. Cobham, A.: The recognition problem for the set of perfect squares. In: 7th Annual
Symposium on Switching and Automata Theory, Berkeley, California, USA, 23–25
October 1966, pp. 78–87. IEEE Computer Society (1966)

16. Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and LPN algo-
rithms via multiple collisions. IACR Cryptology ePrint Archive 2019, 804 (2019)

17. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 42

18. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, Cambridge (2009)

19. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 3

20. Fortnow, L., Lipton, R.J., van Melkebeek, D., Viglas, A.: Time-space lower bounds
for satisfiability. J. ACM 52(6), 835–865 (2005)

21. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

22. Jaeger, J., Tessaro, S.: Tight time-memory trade-offs for symmetric encryption. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 467–497.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 16

23. Joux, A., Lucks, S.: Improved generic algorithms for 3-collisions. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10366-7 21

24. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms. Addison-Wesley, Boston (1969)

25. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. Theor. Comput. Sci. 107(1), 121–133 (1993)

https://doi.org/10.1007/3-540-57568-5_251
https://doi.org/10.1007/3-540-57568-5_251
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/978-3-030-17653-2_16
https://doi.org/10.1007/978-3-642-10366-7_21

434 I. Dinur

26. Merkle, R.C., Hellman, M.E.: On the security of multiple encryption. Commun.
ACM 24(7), 465–467 (1981)

27. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992). https://doi.org/10.1007/BF01305237

28. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 36

29. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Math.
Syst. Theory 10, 239–251 (1977). https://doi.org/10.1007/BF01683275

30. Raz, R.: Fast learning requires good memory: a time-space lower bound for parity
learning. J. ACM 66(1), 3:1–3:18 (2019)

31. Tessaro, S., Thiruvengadam, A.: Provable time-memory trade-offs: symmetric cryp-
tography against memory-bounded adversaries. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 3–32. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03807-6 1

32. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

33. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

34. Yao, A.C.: Probabilistic computations: toward a unified measure of complexity
(extended abstract). In: 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October–1 November, pp. 222–227.
IEEE Computer Society (1977)

35. Yao, A.C.: Near-optimal time-space tradeoff for element distinctness. SIAM J.
Comput. 23(5), 966–975 (1994)

36. Yesha, Y.: Time-space tradeoffs for matrix multiplication and the discrete Fourier
transform on any general sequential random-access computer. J. Comput. Syst.
Sci. 29(2), 183–197 (1984)

https://doi.org/10.1007/BF01305237
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/BF01683275
https://doi.org/10.1007/978-3-030-03807-6_1
https://doi.org/10.1007/978-3-030-03807-6_1
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Tight Security Bounds for Double-Block
Hash-then-Sum MACs

Seongkwang Kim(B), Byeonghak Lee(B), and Jooyoung Lee(B)

KAIST, Daejeon, Korea
{ksg0923,lbh0307,hicalf}@kaist.ac.kr

Abstract. In this work, we study the security of deterministic MAC
constructions with a double-block internal state, captured by the double-
block hash-then-sum (DbHtS) paradigm. Most DbHtS constructions,
including PolyMAC, SUM-ECBC, PMAC-Plus, 3kf9 and LightMAC-Plus,
have been proved to be pseudorandom up to 2

2n
3 queries when they are

instantiated with an n-bit block cipher, while the best known generic
attacks require 2

3n
4 queries.

We close this gap by proving the PRF-security of DbHtS construc-
tions up to 2

3n
4 queries (ignoring the maximum message length). The

core of the security proof is to refine Mirror theory that systematically
estimates the number of solutions to a system of equations and non-
equations, and apply it to prove the security of the finalization function.
Then we identify security requirements of the internal hash functions to
ensure 3n/4-bit security of the resulting constructions when combined
with the finalization function.

Within this framework, we prove the security of DbHtS whose internal
hash function is given as the concatenation of a universal hash function
using two independent keys. This class of constructions include PolyMAC
and SUM-ECBC. Moreover, we prove the security of PMAC-Plus, 3kf9 and
LightMAC-Plus up to 2

3n
4 queries.

Keywords: Message authentication codes · Beyond-birthday-bound
security · Pseudorandom functions · Mirror theory

1 Introduction

MACs. A message authentication code (MAC) is typically built from a block
cipher, e.g., CBC-MAC [3], PMAC [5], OMAC [10], LightMAC [13] or from a cryp-
tographic hash function, e.g., HMAC [2]. At a high level, many of these construc-
tions follow the well-established UHF-then-PRF design paradigm: a message is
first mapped onto a short string through a universal hash function (UHF), and

J. Lee was supported by a National Research Foundation of Korea (NRF) grant
funded by the Korean government (Ministry of Science and ICT), No. NRF-
2017R1E1A1A03070248.
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 435–465, 2020.
https://doi.org/10.1007/978-3-030-45721-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_16

436 S. Kim et al.

then encrypted through a fixed-input-length PRF to obtain a short tag. This
method is simple, in particular, being deterministic and stateless, yet its secu-
rity caps at the so-called birthday bound; any collision at the output of the UHF,
which translates into a tag collision, is usually enough to break the security of the
scheme. However, the birthday bound security might not be enough, in particu-
lar, when the MAC construction is instantiated with a lightweight block cipher
such as PRESENT [6], LED [9], GIFT [1] operating on small blocks.

Double-block Hash-then-Sum. Many studies tried to tweak the UHF-then-
PRF design in order to obtain beyond-birthday secure MACs, while they possess
a similar structural design; the internal state of the hash function is doubled,
the two n-bit hash values are encrypted by a block cipher using independent
keys, and the outputs are xored to generate the final tag. Datta et al. [7] have
dubbed this generic design principle the double-block hash-then-sum (DbHtS)
paradigm. Within this unified framework, they revisited the security proof of
existing DbHtS constructions, including PolyMAC (based on polynomial evalu-
ation [4,8,17]), SUM-ECBC [18], PMAC-Plus [19], 3kf9 [20] and LightMAC-Plus
[14], and confirmed that all the constructions are secure up to 2

2n
3 queries (ignor-

ing the maximum message length) when they are instantiated with an n-bit block
cipher. Recently, Leurent et al. [12] proposed generic attacks on all these con-
structions using 2

3n
4 (short message) queries, leaving a gap between the upper

and lower bounds for the provable security of DbHtS constructions.

Our Results. The goal of this paper is to close this gap by proving the exact
PRF-security of DbHtS constructions. In order to do this, we take a modular
approach; the first step is to refine Mirror theory [15,16] that systematically
estimates the number of solutions to a system of equations and non-equations
in order to prove the security of the finalization function up to 2

3n
4 queries.

However, we cannot directly apply Mirror theory to the problem in a black box
manner since it requires that ξ2maxq ≤ 2n in its original form, where ξmax and q
denote the maximum component size and the number of equations, respectively.
So we refine Mirror theory by distinguishing components of size two and larger
ones, and make sharp estimation for components of size two, while we use the
fact that the number of larger components is probabilistically small.

The next step is to identify security requirements of the internal hash func-
tions to ensure 3n/4-bit security of the entire constructions, combined with the
finalization function. Existing security proofs limit the probability of having a
trail of length 3 in the transcript graph when an adversary makes 2

2n
3 queries,

while our proof allows an adversary making 2
3n
4 queries. So in this case, we need

to limit the probability of having a trail of length 4 in the transcript graph;
this is the most challenging part of the proof (e.g., Lemma 4 for the proof of
PMAC-Plus) that needs a careful case analysis.

As a result, we prove the security of various DbHtS constructions including
PolyMAC, SUM-ECBC, PMAC-Plus, 3kf9 and LightMAC-Plus up to 2

3n
4 queries,

ignoring the maximum message length. Table 1 compares our new bounds to
the old ones given in [7]. For some constructions, one cannot simply ignore the
influence of the maximum message length on the security bounds. As seen in

Tight Security Bounds for Double-Block Hash-then-Sum MACs 437

Fig. 1, our bound for PMAC-Plus is better than the old one when � is relatively
small (while our bound is worse for a larger �). So our new bound should be seen
as complementary to the old one. However, we also remark that our security
proof does not use independent randomness of two masking keys Δ0 and Δ1;
a single masking key is sufficient for our security proof. We would be able to
remove the �2q/2n term from the security bound by a more complicated proof
using the independent randomness of two masking keys.

Table 1. New security bounds for DbHtS MACs. The number of queries and the maxi-
mum message length (in blocks) are denoted q and �, respectively. All the constructions
(except PolyMAC) are based on an n-bit block cipher. LightMAC-Plus uses an additional
parameter s, which is the size of the prefix for each block cipher call; one can assume
� = 2s − 1.

Construction # Keys Rate Old bound New bound

PolyMAC 4 − �2q3/22n �q
4
3 /2n

SUM-ECBC 4 1
2 �2q/2n + q3/22n �o(1)q

4
3 /2n + �4q

4
3 /22n

PMAC-Plus 3 1 �q3/22n + �2q2/22n �/2
n
2 + �

2
3 q

4
3 /2n + �2q/2n

3kf9 3 1 �4q3/22n �
4
3 q

4
3 /2n + �2q2/22n + �6q4/23n

LightMAC-Plus 3 n−s
n q3/22n q

4
3 /2n

2 Preliminaries

Basic Notation. In all of the following, we fix a positive integer n, and denote
N = 2n. We denote 0n (i.e., n-bit string of all zeros) by 0. The set {0, 1}n is
sometimes regarded as a set of integers {0, 1, . . . , 2n − 1} by converting an n-
bit string an−1 · · · a1a0 ∈ {0, 1}n to an integer an−12n−1 + · · · + a12 + a0. We
also identify {0, 1}n with a finite field GF(2n) with 2n elements. For a positive
integer q, we write [q] = {1, . . . , q}.

Given a non-empty set X , x ←$ X denotes that x is chosen uniformly at
random from X . The set of all functions from X to Y is denoted Func(X ,Y), and
the set of all permutations of X is denoted Perm(X). The set of all permutations
of {0, 1}n is simply denoted Perm(n). The set of all sequences that consist of b
pairwise distinct elements of X is denoted X ∗b. For integers 1 ≤ b ≤ a, we will
write (a)b = a(a − 1) · · · (a − b+1) and (a)0 = 1 by convention. If |X | = a, then
(a)b becomes the size of X ∗b.

When two sets X and Y are disjoint, their (disjoint) union is denoted X �Y.
For a set X ⊂ {0, 1}n and λ ∈ {0, 1}n, we will write X ⊕ λ = {x ⊕ λ : x ∈ X}.

PRFs and PRPs. Let F : K × X → Y be a keyed function with key space K,
domain X , and range Y, where X is a subset of {0, 1}∗. We will denote FK(X) for

438 S. Kim et al.

(a) n = 64 and = 28 (b) n = 128 and = 216

Fig. 1. Upper bounds on distinguishing advantage for PMAC-Plus. The solid and the
dotted lines represent the new and the old bounds, respectively. The dashed line rep-
resents the security bound �q2/2n for PMAC. The x-axis gives the log (base 2) of q,
and the y-axis gives the security bounds.

F (K,X). A (q, t, �)-distinguisher against F is an algorithm D with oracle access
to a function from X to Y, making at most q oracle queries, each of length at
most � in blocks, running in time at most t, and outputting a single bit. The
advantage of D in breaking the PRF-security of F , i.e., in distinguishing F from
a uniformly randomly chosen function R ←$ Func(X ,Y), is defined as

Advprf
F (D) =

∣
∣Pr

[

K ←$ K : DFK = 1
] − Pr

[

R ←$ Func(X ,Y) : DR = 1
]∣
∣ .

When X = Y and F (K, ·) is a permutation for each K ∈ K, the PRP-security
of F is defined as

Advprp
F (D) =

∣
∣Pr

[

K ←$ K : DFK = 1
] − Pr

[

R ←$ Perm(X ,Y) : DR = 1
]∣
∣ .

For atk ∈ {prf, prp}, we define Advatk
F (q, t, �) as the maximum of Advatk

F (D)
over all (q, t, �)-distinguishers against F . We will consider PRP-security only for
a block cipher whose input size is fixed (e.g., X = {0, 1}n); in this case, we will
simply drop the parameter �. On the other hand, when we consider information
theoretic security, we will drop the parameter t.

Almost Universal Hash Functions. Let δ > 0, and let H : Kh × X → Y
be a keyed function for three non-empty sets Kh, X , and Y. H is said to be
δ-almost universal if for any distinct X and X ′ ∈ X ,

Pr [Kh ←$ Kh : HKh
(X) = HKh

(X ′)] ≤ δ.

Tight Security Bounds for Double-Block Hash-then-Sum MACs 439

Double-block Hash-then-Sum Constructions. Let

H : Kh × M −→ {0, 1}n × {0, 1}n

(Kh,M) 	−→ HKh
(M)

be a keyed function. We will write the 2n-bit function H as the concatenation
of two n-bit functions F and G. So we have

HKh
(M) = (FKh

(M), GKh
(M)) .

Given a block cipher

E : K × {0, 1}n −→ {0, 1}n

(K,X) 	−→ EK(X),

one can define the DbHtS construction based on H and E as follows.

DbHtS[H,E] : (Kh × K2) × M −→ {0, 1}n

((Kh,K1,K2),M) 	−→ EK1(FKh
(M)) ⊕ EK2(GKh

(M)).

In a typical MAC based on an n-bit block cipher, the message space is given as
the set of all binary strings, namely {0, 1}∗, and a padding scheme

pad : {0, 1}∗ −→
∞⋃

i=1

({0, 1}n)i

is used, where pad is a public injective function. Since the padding scheme does
not affect the PRF-security of its MAC, we will simply assume that

M =
�⋃

i=1

({0, 1}n)i ,

where � denotes the maximum message length in blocks (after padding).

H-coefficient Technique. Consider the DbHtS construction based on H and
E using keys K = (Kh,K1,K2). The first step of the security proof is to replace
the keyed permutations EK1 and EK2 by independent random permutations; the
resulting construction will be denoted DbHtS[H] instead of DbHtS[H,E].

Suppose that a distinguisher D adaptively makes q queries to the construc-
tion oracle, which is either DbHtS[H]Kh,π1,π2 for a random key Kh ∈ Kh and
independent random permutations π1 and π2 (in the real world) or a truly ran-
dom function R (in the ideal world), recording all the queries (Mi, Ti)1≤i≤q. So
according to the instantiation, it would imply either DbHtS[H]Kh,π1,π2(Mi) = Ti

or R(Mi) = Ti.
At the end of the interaction, we will give Kh to D for free. In the ideal

world, a dummy key Kh will be selected uniformly at random from Kh, and

440 S. Kim et al.

given to D. This will not degrade the adversarial distinguishing advantage since
the distinguisher is free to ignore this additional information. We will call

τ = (Kh, (M1, T1), . . . , (Mq, Tq))

the transcript of the attack; it contains all the information that D has obtained
at the end of the attack. We will assume that D is information theoretic, so we
can further assume that D is deterministic without making any redundant query.

A transcript τ is called attainable if the probability to obtain this transcript
in the ideal world is non-zero. Any key Kh ∈ Kh and any sequence (T1, . . . , Tq) ∈
({0, 1}n)q uniquely determine an attainable transcript τ = (Kh, (Mi, Ti)1≤i≤q)
containing them, for some (Mi) ∈ ({0, 1}n)q. We denote Γ the set of attainable
transcripts. We also denote Tre (resp. Tid) the probability distribution of the
transcript τ induced by the real world (resp. the ideal world). By extension, we
use the same notation to denote a random variable distributed according to each
distribution.

In order to upper bound the advantage of the distinguisher, we will partition
the set of attainable transcripts Γ into a set of “good” transcripts Γgood such that
the probabilities to obtain some transcript τ ∈ Γgood are close in the real and in
the ideal world, and a set Γbad of “bad” transcripts such that the probability to
obtain any τ ∈ Γbad is small in the ideal world, and use the following theorem.

Lemma 1. Fix a distinguisher D. Let Γ = Γgood � Γbad be a partition of the set
of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Γgood,

Pr [Tre = τ]
Pr [Tid = τ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ Γbad] ≤ ε2. Then one has

Advprf
DbHtS[H](D) ≤ ε1 + ε2.

3 Mirror Theory

The goal of this section is to lower bound the number of solutions to a certain
type of systems of equations and non-equations. We will represent a system of
equations and non-equations by a simple graph containing no loops or multiple
edges; each vertex denotes an n-bit unknown (for a fixed n), and each edge is
labeled with an element in {0, 1}n ∪ {�=}, where �= is a special symbol meaning
non-equality. Let G = (V, E) be a graph and let PQ ∈ E be an edge for P , Q ∈ V.
If this edge is labeled with λ ∈ {0, 1}n, then it means an equation P ⊕ Q = λ,
while if it is labeled with a special symbol �=, then it means that P and Q

are distinct. We will sometimes write P
�− Q when an edge PQ is labeled with

� ∈ {0, 1}n ∪ {�=}.

Tight Security Bounds for Double-Block Hash-then-Sum MACs 441

Fig. 2. A bipartite graph G= with two parts P and Q.

Let G= denote the graph obtained by deleting all �=-labeled edges from G.
For � > 0 and a trail1

L : P0

λ1− P1

λ2− · · · λ�− P�

in G=, its label is defined as

λ(L) def= λ1 ⊕ λ2 ⊕ · · · ⊕ λ�.

In this work, we will focus on a graph G = (V, E) with certain properties, as
listed below.

1. G= contains no isolated vertex; every vertex is incident with at least one edge.
2. The vertex set V is partitioned into two disjoint parts, denoted P and Q; the

edge set E contains P
�=− P ′ for any different P , P ′ ∈ P, and Q

�=− Q′ for any
different Q, Q′ ∈ Q.

3. G= contains no cycle.
4. λ(L) �= 0 for any trail L of even length in G=.

Any graph G satisfying the above properties will be called a nice graph. For a
nice graph G, G= is a bipartite graph with no cycle, where every edge connects
a vertex in P to one in Q. So G= is decomposed into its connected components,
all of which are trees; let

G= = C1 � C2 � · · · � Cα � D1 � D2 � · · · � Dβ

for some α, β ≥ 0, where Ci denotes a component of size greater than 2, and
Di denotes a component of size 2. We will also write C = C1 � C2 � · · · � Cα and
D = D1 � D2 � · · · � Dβ (Fig. 2).

Any solution to G (identifying G with its corresponding system of equations
and non-equations) should satisfy all the equations in G=, while all the variables
in P (resp. Q) should take on different values. We remark that if we assign any
value to a vertex P , then the labeled edges determine the values of all the other
vertices in the component containing P , where the assignment is unique since G=

contains no cycle, and the values in the same part are all distinct since λ(L) �= 0
for any trail L of even length.

1 A trail is a walk in which all edges are distinct.

442 S. Kim et al.

On the other hand, the number of possible assignments of distinct values
to the vertices in P (resp. Q) is (N)|P| (resp. (N)|Q|). One might expect that
when such an assignment is chosen uniformly at random, it would satisfy all the
equations in G= with probability 1/Nq, where q denotes the number of edges
(i.e., equations) in G=. Indeed, we can prove that the number of solutions to G
is close to (N)|P|(N)|Q|

Nq up to a certain error (that can be negligible according to
the parameters).

Theorem 1. Let G be a nice graph, and let q and qc denote the number of edges
of G= and C, respectively. If q < N

8 , then the number of solutions to G, denoted
h(G), satisfies

h(G)Nq

(N)|P|(N)|Q|
≥ 1 − 9q2c

8N
− 3qcq

2

2N2
− q2

N2
− 9q2cq

8N2
− 8q4

3N3
.

Proof. For i = 1, . . . , α, Ci is a bipartite graph, where one part consists of the
vertices in P and the other vertices in Q; the two parts are denoted Pi and Qi,
respectively. Let ri = |Pi| and si = |Qi|, let di = ri + si.

Let hc(i) be the number of solutions to C1 � · · · � Ci. In order to find a
relation between hc(i) and hc(i+1), we fix a solution to C1 � · · · � Ci. If we fix
a vertex P ∗ ∈ Pi+1 and assign any value to P ∗, then the other unknowns are
uniquely determined, since there is a unique trail from P ∗ to any other vertex
in Ci+1. In order to satisfy the non-equations, it is sufficient that

P ∗ /∈
⋃

1≤j≤i
P∈Pi+1

(Pj ⊕ λP) ∪
⋃

1≤j≤i
Q∈Qi+1

(Qj ⊕ λQ) ,

where λX denotes the label of the unique trail from P ∗ to X if X �= P ∗ and
λP ∗ = 0. The number of such choices is at least

N − (r1 + · · · + ri)ri+1 − (s1 + · · · + si)si+1.

Then we have

hc(α) ≥ Nα
(
1 − r1r2 + s1s2

N

)
· · ·

(
1 − (r1 + · · · + rα−1)rα + (s1 + · · · + sα−1)sα

N

)

≥ Nα

⎛
⎝1 − 1

N

∑
1≤i<j≤α

(rirj + sisj)

⎞
⎠

≥ Nα

(
1 − 1

2N

(
α∑

i=1

di

)2)

≥ Nα

(
1 − 9q2c

8N

)
(1)

since hc(1) = N ,
∑α

i=1 di = α + qc and α ≤ qc/2.

Tight Security Bounds for Double-Block Hash-then-Sum MACs 443

For i = 1, . . . , β, we will write

Di : Pi

λi− Qi

where Pi ∈ P and Qi ∈ Q. Let hd(i) be the number of solutions to C � D1 �
· · · � Di for i = 1, . . . , β. Note that hd(0) = hc(α) and hd(β) = h(G). In order to
find a relation between hd(i) and hd(i+1), we fix a solution to C�D1 � · · · � Di.
Then we can choose Pi+1 from {0, 1}n \ (Xi ∪ (Yi ⊕ λi+1)), where

Xi
def=

⊔

1≤j≤α

Pj � {P1, . . . , Pi},

Yi
def=

⊔

1≤j≤α

Qj � {Q1, . . . , Qi}.

For i = 0, . . . , β − 1, let

Ri = r1 + · · · + rα + i,

Si = s1 + · · · + sα + i.

Then, since |Xi| = Ri and |Yi| = Si, we have

hd(i + 1) =
∑

solutions to
C	D1	···	Di

(N − |Xi ∪ (Yi ⊕ λi+1)|)

=
∑

solutions to
C	D1	···	Di

(N − Ri − Si + |Xi ∩ (Yi ⊕ λi+1)|)

= (N − Ri − Si)hd(i) +
∑

solutions to
C	D1	···	Di

|Xi ∩ (Yi ⊕ λi+1)|. (2)

For X ∈ Xi and Y ∈ Yi, let h′(X,Y) denote the number of solutions to C �D1 �
· · · � Di such that X ⊕ Y = λi+1. Then we have

∑

solutions to
C	D1	···	Di

|Xi ∩ (Yi ⊕ λi+1)| =
∑

X∈Xi,Y ∈Yi

h′(X,Y)

≥
∑

X∈{P1,...,Pi}
Y ∈{Q1,...,Qi}

h′(X,Y). (3)

If X = Pj , Y = Qj , and λi+1 = λj for some j = 1, . . . , i, then the additional
equation X ⊕ Y = λi+1 is redundant, and hence h′(X,Y) = hd(i). Suppose that
X = Pj and Y = Qj′ for distinct j and j′, and λi+1 /∈ {λj , λj′}. In this case,
and for i ≥ 2, we have

h′(X,Y) ≥ hd(i)
N

(

1 − 2(Ri + Si)
N

)

(4)

444 S. Kim et al.

since

h′(X,Y) ≥ (N − 2(Ri + Si − 4))hd(i − 2) ≥ (N − 2(Ri + Si))hd(i − 2),

hd(i − 2)N2 ≥ hd(i − 2) (N − (Ri + Si − 4)) (N − (Ri + Si − 2)) ≥ hd(i).

Let

G = |{1 ≤ j ≤ i : λj = λi+1}| ,
H =

∣
∣
{

(j, j′) ∈ [i]∗2 : λj �= λi+1, λj′ �= λi+1

}∣
∣ .

Then we have
H ≥ i(i − 1) − 2iG. (5)

By (3), (4), (5), and since 2i ≤ 2q ≤ N , we have

∑

solutions to
C	D1	···	Di

|Xi ∩ (Yi ⊕ λi+1)| ≥
(

G +
i(i − 1) − 2iG

N

(

1 − 2(Ri + Si)
N

))

hd(i)

≥ i(i − 1)
N

(

1 − 2(Ri + Si)
N

)

hd(i),

and by (2),

hd(i + 1) ≥ (N − Ri − Si)hd(i) +
i(i − 1)

N

(

1 − 2(Ri + Si)
N

)

hd(i).

Since Ri+Si

2 ≤ q < N
8 and R0 + S0 = α + qc ≤ 3qc

2 , we have

hd(i + 1)N
hd(i)(N − Ri)(N − Si)

≥
N2 − (Ri + Si)N + (i2 − i)

(

1 − 2(Ri+Si)
N

)

N2 − (Ri + Si)N + RiSi

= 1 −
RiSi − (i2 − i)

(

1 − 2(Ri+Si)
N

)

N2 − (Ri + Si)N + RiSi

≥ 1 − (R0 + i)(S0 + i) − (i2 − i) + 2(Ri+Si)i
2

N

N2/2

≥ 1 − 2R0S0

N2
− 2(R0 + S0 + 1)i

N2
− 4(Ri + Si)i2

N3

≥ 1 − 9q2c
8N2

− 3qci + 2i
N2

− 8qi2

N3
. (6)

Tight Security Bounds for Double-Block Hash-then-Sum MACs 445

Since q = qc + β, |P| = R0 + β, |Q| = S0 + β and α + qc = R0 + S0, and by (1)
and (6), we have

h(G)Nq

(N)|P|(N)|Q|
=

h(G)Nqc+β

(N)R0(N − R0)β(N)S0(N − S0)β

=
hc(α)Nqc

(N)R0(N)S0

β−1
∏

i=0

(
hd(i + 1)N

hd(i)(N − Ri)(N − Si)

)

≥ hc(α)
Nα

β−1
∏

i=0

(
hd(i + 1)N

hd(i)(N − Ri)(N − Si)

)

≥
(

1 − 9q2c
8N

) β−1
∏

i=0

(

1 − 9q2c
8N2

− 3qci + 2i
N2

− 8qi2

N3

)

≥
(

1 − 9q2c
8N

)(

1 −
β−1
∑

i=0

(
9q2c
8N2

+
3qci + 2i

N2
+

8qi2

N3

))

≥
(

1 − 9q2c
8N

)(

1 − 9q2cq

8N2
− 3qcq

2

2N2
− q2

N2
− 8q4

3N3

)

≥ 1 − 9q2c
8N

− 9q2cq

8N2
− 3qcq

2

2N2
− q2

N2
− 8q4

3N3

which completes the proof. ��

4 A Framework for Security Proof of DbHtS MACs

In this section, we consider DbHtS[H,E] based on a 2n-bit function H and an
n-bit block cipher E. A message M is encrypted as

EK1(FKh
(M)) ⊕ EK2(GKh

(M))

by keys Kh, K1 and K2, where we write HKh
(M) = (FKh

(M), GKh
(M)) (see

Sect. 2).
Up to the PRP-security of E, the keyed permutations EK1 and EK2 can

be replaced by independent random permutations π1 and π2, in which case we
simply write DbHtS[H] instead of DbHtS[H,E]. The goal of this section is to
establish a general framework for security proof of DbHtS[H] using Theorem 1.

Graph Representation of Transcripts. At the end of the attack, the dis-
tinguisher D will be given Kh for free. Then, from the transcript

τ = (Kh, (Mi, Ti)1≤i≤q) ,

HKh
(Mi) = (Ui, Vi) are fixed for i = 1, . . . , q. The core of the security proof is to

estimate the number of possible ways of fixing π1(Ui) and π2(Vi) in a way that

446 S. Kim et al.

π1(Ui) ⊕ π2(Vi) = Ti for i = 1, . . . , q. So {π1(Ui)} and {π2(Vi)} are identified
with two sets of unknowns

P = {P1, . . . , Pq1},

Q = {Q1, . . . , Qq2},

respectively, where q1, q2 ≤ q, since there might be collisions between Ui’s or
between Vi’s. Assuming that P and Q are disjoint, we connect Pj and Qj′ with
an edge of label Ti if π1(Ui) = Pj and π2(Vi) = Qj′ for some i. Any pair of
vertices in the same set of either P or Q are connected by a �=-labeled edge.
In this way, we obtain a graph on P � Q, called the transcript graph of τ and
denoted Gτ .

Good Transcripts. Fix a parameter q̄c (to be optimized later). A transcript
τ = (Kh, (Mi, Ti)1≤i≤q) is defined as good if

1. the transcript graph Gτ is nice (as defined in Sect. 3);
2. the number of edges in C (i.e., edges in the components of size greater than

two) is not greater than q̄c.

If a transcript τ is not good, then it will be called a bad transcript.
For a transcript graph Gτ , let G=

τ denote the graph obtained by deleting all �=-
labeled edges from Gτ . Then G=

τ is a bipartite graph with q edges. By definition,
G=

τ has no isolated vertices. So in order to see if Gτ is nice, it is sufficient to
check out if

1. G=
τ has no cycle;

2. λ(L) �= 0 for any trail L of even length.

A Framework for Security Proof. Once bad transcripts have been defined,
we will show that

Pr[Tid ∈ Γbad] ≤ ε2

for a small ε2 > 0. Next, we fix a good transcript τ . Obviously, we have

Pr [Tid = τ] =
1

|Kh| · Nq
.

The probability of obtaining τ in the real world is computed over the randomness
of π1 and π2. By Theorem 1 and since qc ≤ q̄c, the number of possible ways of
fixing π1(Ui) and π2(Vi) (i.e., h(Gτ)) is lower bounded by

(N)|P|(N)|Q|
Nq

(1 − ε1)

where

ε1
def=

9q̄2c
8N

+
3q̄cq

2

2N2
+

q2

N2
+

9q̄2cq

8N2
+

8q4

3N3
. (7)

Tight Security Bounds for Double-Block Hash-then-Sum MACs 447

The probability that π1 and π2 realize each assignment is exactly 1/(N)|P|(N)|Q|.
So we have

Pr [Tre = τ]
Pr [Tid = τ]

≥ 1 − ε1,

and by Lemma 1,
Advprf

DbHtS[H](D) ≤ ε1 + ε2.

5 Concatenating Universal Hash Functions

In this section, we will prove the security of DbHtS when the underlying hash
function H is defined as the concatenation of two copies of an almost universal
hash function using independent keys.

Let δ > 0, and let F : K×M → {0, 1}n be a δ-almost universal hash function.
We will consider DbHtS[H], where

H : (K × K) × M −→ {0, 1}n × {0, 1}n

((K1,K2),M) 	−→ (FK1(M), FK2(M)).

We fix the parameter q̄c, and define bad events as follows.

– Bad1 ⇔ there is a pair of distinct queries (Mi,Mj) such that FK1(Mi) =
FK1(Mj) and FK2(Mi) = FK2(Mj).

– Bad2 ⇔ Bad2a ∨ Bad2b, where
• Bad2a ⇔ there is a quadruple of distinct queries (Mi1 ,Mi2 ,Mi3 ,Mi4)

such that FK1(Mi1) = FK1(Mi2), FK2(Mi2) = FK2(Mi3), FK1(Mi3) =
FK1(Mi4),

• Bad2b ⇔ there is a quadruple of distinct queries (Mi1 ,Mi2 ,Mi3 ,Mi4)
such that FK2(Mi1) = FK2(Mi2), FK1(Mi2) = FK1(Mi3), FK2(Mi3) =
FK2(Mi4).

– Bad3 ⇔ there is a pair of distinct queries (Mi,Mj) such that Ti ⊕Tj = 0 and
either FK1(Mi) = FK1(Mj) or FK2(Mi) = FK2(Mj).

– Bad4 ⇔ Bad4a ∨ Bad4b, where
• Bad4a ⇔ the number of distinct queries (Mi,Mj) such that FK1(Mi) =

FK1(Mj) is greater than q̄c/4,
• Bad4b ⇔ the number of distinct queries (Mi,Mj) such that FK2(Mi) =

FK2(Mj) is greater than q̄c/4.

We observe that

1. G=
τ contains no cycle of length 2 without Bad1;

2. G=
τ contains no trail of length 4 without Bad2;

3. λ(L) �= 0 for any trail L of length 2 without Bad3.

448 S. Kim et al.

A distinct pair of “half-colliding” queries such that either FK1(Mi) = FK1(Mj) or
FK2(Mi) = FK2(Mj) will add an edge to any component containing it, and make
the size of the component greater than two; the number of edges in C cannot
be twice as many as the number of half-collisions. So the number of edges in C
is not greater than q̄c without Bad4. With this observation, we conclude that a
transcript is good without any bad event above; namely,

Pr[Tid ∈ Γbad] ≤ Pr[Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4].

We can upper bound the probability of each bad event as follows.

1. The probability that there exists a pair of distinct queries (Mi,Mj) such
that FK1(Mi) = FK1(Mj) and FK2(Mi) = FK2(Mj) is upper bounded by
q2δ2 since K1 and K2 are independent. Namely,

Pr[Bad1] ≤ q2δ2.

2. By the Markov inequality, we have

Pr[Bad4a], Pr[Bad4b] ≤ 4q2δ
q̄c

.

3. Given that the number of FK1-collisions is upper bounded by q̄c/4, the proba-
bility that there exist two FK1-colliding pairs (Mi1 ,Mi2) and (Mi3 ,Mi4) such
that FK2(Mi2) = FK2(Mi3) is upper bounded by q̄2

cδ
16 . Namely, we have

Pr[Bad2a | ¬Bad4a] ≤ q̄2cδ

16
.

Similarly, we have

Pr[Bad2b | ¬Bad4b] ≤ q̄2cδ

16
.

4. For each pair of distinct queries (Mi,Mj), the probability that Ti ⊕ Tj = 0
is 1/N , and the probability that either FK1(Mi) = FK1(Mj) or FK2(Mi) =
FK2(Mj) is upper bounded by δ. Since the two events are independent and
by the union bound, we have

Pr[Bad3] ≤ q2δ

N
.

All in all, we have

Pr[Tid ∈ Γbad] ≤ Pr[Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4]
≤ Pr[Bad1] + Pr[Bad3] + Pr[Bad4a] + Pr[Bad2a | ¬Bad4a]
+ Pr[Bad4b] + Pr[Bad2b | ¬Bad4b]

≤ q2δ2 +
q2δ

N
+

8q2δ
q̄c

+
q̄2cδ

8
. (8)

Tight Security Bounds for Double-Block Hash-then-Sum MACs 449

Combining (7) and (8), we have

Advprf
DbHtS[H](D) ≤ q2δ2 +

q2δ

N
+

8q2δ
q̄c

+
q̄2cδ

8

+
9q̄2c
8N

+
3q̄cq

2

2N2
+

q2

N2
+

9q̄2cq

8N2
+

8q4

3N3

for any distinguisher D making q queries, and for any q̄c > 0. When q̄c = 4q
2
3

(by setting 8q2δ/q̄c = q̄2cδ/8), we obtain the following theorem.

Theorem 2. Let δ > 0, and let F : K × M → {0, 1}n be a δ-almost universal
hash function. Let

H : (K × K) × M −→ {0, 1}n × {0, 1}n

((K1,K2),M) 	−→ (FK1(M), FK2(M)).

Then one has

Advprf
DbHtS[H](D) ≤ 4q

4
3 δ + q2δ2 +

q2δ

N
+

18q
4
3

N

+
6q

8
3

N2
+

18q
7
3

N2
+

q2

N2
+

8q4

3N3
.

When δ ≈ 1
N , DbHtS[H] becomes a PRF that is secure up to 2

3n
4 queries.

5.1 Security of PolyMAC

An n-bit keyed function PolyHash is defined with key space K = {0, 1}n,
where {0, 1}n is identified with a finite field GF(2n) with 2n elements. For a
padded message M = M [1]‖M [2]‖ · · · ‖M [m] where m ≤ �, and a key K ∈ K,
PolyHashK(M) is defined using finite field addition and multiplication, denoted
⊕ and ·, respectively.

Function PolyHashK(M)
Z[0] ← 0
for α ← 1 to m do

Z[α] ← K · (Z[α − 1] ⊕ M [α])

return Z[m]

The PolyMAC MAC is defined as DbHtS[H], where

H : (K × K) × M −→ {0, 1}n × {0, 1}n

((K1,K2),M) 	−→ (PolyHashK1
(M),PolyHashK2

(M)).

It is not hard to show that PolyHash is �
N -almost universal. Therefore, by The-

orem2, we obtain the following theorem.

450 S. Kim et al.

Theorem 3. When PolyMAC is based on a block cipher E, one has

Advprf
PolyMAC(q, t, �) ≤ (4� + 18)q

4
3

N
+

6q
8
3

N2
+

18q
7
3

N2
+

(�2 + � + 1)q2

N2
+

8q4

3N3

+ 2Advprp
E (q, t + t′),

where t′ is the time complexity necessary to compute E for q times.

5.2 Security of SUM-ECBC

An n-bit hash function CBC is based an n-bit block cipher E using k-bit keys.
For a padded message M = M [1]‖M [2]‖ · · · ‖M [m] where m ≤ �, and a key
K ∈ {0, 1}k, CBCK(M) is defined as follows.

Function CBCK(M)
Z[0] ← 0
for α ← 1 to m do

Z[α] ← EK (Z[α − 1] ⊕ M [α])

return Z[m]

The SUM-ECBC MAC is defined as DbHtS[H] (Fig. 3), where

H : ({0, 1}k × {0, 1}k) × M −→ {0, 1}n × {0, 1}n

((K1,K2),M) 	−→ (CBCK1(M),CBCK2(M)).

For m ≤ �, let d(m) be the number of divisors of m and let d′(�) = maxm≤� d(m).
It is known that d′(�) = �o(1). In [11, Corollary 2], it has been proved that CBC
is δ-almost universal when the underlying block cipher is replaced by a truly
random permutation, where

δ =
d′(�)

N − 2�
+

16�4

N2
.

Therefore, by Theorem 2, we obtain the following theorem.

Theorem 4. Assume that � ≤ N/4. When SUM-ECBC is based on a block cipher
E, one has

Advprf
SUM-ECBC(q, t, �) ≤ (8d′(�) + 18)q

4
3

N
+

6q
8
3

N2
+

18q
7
3

N2
+

(4d′(�)2 + 2d′(�) + 1)q2

N2

+
64�4q

4
3

N2
+

8q4

3N3
+

(64d′(�) + 16)�4q2

N3
+

256�8q2

N4

+ 4Advprp
E (�q, t + t′),

where t′ is the time complexity necessary to compute E for �q times.

Tight Security Bounds for Double-Block Hash-then-Sum MACs 451

Fig. 3. SUM-ECBC based on a block cipher E using four keys Ki, i = 1, 2, 3, 4.

6 Security of PMAC-Plus

A 2n-bit hash function PHash is based an n-bit block cipher E using k-bit keys.
For a padded message M = M [1]‖M [2]‖ · · · ‖M [m] where m ≤ �, and a key
K ∈ {0, 1}k, PHashK(M) is defined as follows.

Function PHashK(M)
Δ0 ← EK(0)
Δ1 ← EK(1)
for α ← 1 to m do

X[α] ← M [α] ⊕ 2α · Δ0 ⊕ 22α · Δ1

Y [α] ← EK(X[α])

U ← Y [1] ⊕ Y [2] ⊕ · · · ⊕ Y [m]
V ← Y [1] ⊕ 2 · Y [2] ⊕ · · · ⊕ 2m−1 · Y [m]
return (U, V)

The PMAC-Plus MAC is defined as DbHtS[PHash] (Fig. 4).
For simplicity of proof, we will replace keyed permutations EK1 , EK2 , EK3

by independent random permutations π, π′, π′′, respectively, up to the PRP-
security of E (to be captured by the term 3Advprp

E (�q, t + t′) in Theorem 5).
So we will focus on PHash based on a truly random permutation π, and upper
bound the probability of bad transcripts (as defined in Sect. 4).2

2 We will simply omit key π ∈ Perm(n) in PHash and its halves F and G.

452 S. Kim et al.

Fig. 4. PMAC-Plus based on a block cipher E using three keys K1, K2, K3, where
Δ0 = EK1(0) and Δ1 = EK1(1).

Bad Events. Note that PHash(M) = (F (M), G(M)) for any message M . We
fix a parameter q̄c, and define bad events as follows.

– Bad1 ⇔ there is a pair of distinct queries (Mi,Mj) such that PHash(Mi) =
PHash(Mj).

– Bad2 ⇔ there is a quadruple of distinct queries (Mi1 ,Mi2 ,Mi3 ,Mi4) such that
F (Mi1) = F (Mi2), G(Mi2) = G(Mi3), F (Mi3) = F (Mi4).

– Bad3 ⇔ there is a quadruple of distinct queries (Mi1 ,Mi2 ,Mi3 ,Mi4) such that
G(Mi1) = G(Mi2), F (Mi2) = F (Mi3), G(Mi3) = G(Mi4) and Ti1 ⊕ Ti2 ⊕
Ti3 ⊕ Ti4 = 0.

– Bad4 ⇔ there is a pair of distinct queries (Mi,Mj) such that Ti ⊕ Tj = 0
and either F (Mi) = F (Mj) or G(Mi) = G(Mj).

– Bad5 ⇔ Bad5a ∨ Bad5b, where
• Bad5a ⇔ the number of distinct queries (Mi,Mj) such that F (Mi) =

F (Mj) is greater than q̄c/4,
• Bad5b ⇔ the number of distinct queries (Mi,Mj) such that G(Mi) =

G(Mj) is greater than q̄c/4.

We distinguish two types of trails of length 4; a trail of type M consists of two
F -collisions and one G-collision, while a trail of type W consists of two
G-collisions and one F -collision. Then we observe that

1. G=
τ contains no cycle of length 2 without Bad1;

2. G=
τ contains no trail of type M without Bad2;

3. G=
τ contains no trail of type W whose label is 0 without Bad3;

4. G=
τ contains no trail of length 2 whose label is 0 without Bad4;

5. the number of edges in C is not greater than q̄c without Bad5.

Tight Security Bounds for Double-Block Hash-then-Sum MACs 453

Without Bad2, G=
τ contains neither a cycle of length 4 nor a trail of length 5.

We also note that λ(L) �= 0 for any trail L of even length without Bad2, Bad3
and Bad4. Therefore, we have

Pr[Tid ∈ Γbad] ≤ Pr[Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4 ∨ Bad5].

Auxiliary Events. For each i = 1, . . . , q, the i-th message is denoted Mi =
Mi[1]‖ · · · ‖Mi[mi], where mi is the length of Mi in blocks. For distinct i, j ∈ [q],
let

NEQi,j
def= {α ∈ [min{mi,mj}] : Mi[α] �= Mj [α]}
� {α : min{mi,mj} < α ≤ max{mi,mj}} .

Since Mi[α] = Mj [α] for any index α /∈ NEQi,j , we can simply ignore such an
index when we consider F - and G-collisions. We also note that NEQi,j �= ∅ if Mi

and Mj are distinct.
Once Δ0 = π(0) and Δ1 = π(1) are fixed, we obtain Xi = Xi[1]‖ · · · ‖Xi[mi],

where Xi[α] = Mi[α] ⊕ 2α · Δ0 ⊕ 22α · Δ1. Let

Icol
def= {(i, j) ∈ [q]∗2 : Xi[α] = Xj [β] for some α, β such that α �= β},

I′
col

def= {(i, j) ∈ [q]∗2 : min{NEQi,j} ≤ mi and Xi[min{NEQi,j}] = Xj [β] for some β}.

In order to analyze the probability of the bad events, we need to introduce
certain auxiliary events as follows.

– Aux1 ⇔ either π(0) = 0 or π(1) = 0;
– Aux2 ⇔ Xi[α] = Xi[β] for some i ∈ [q] and two distinct indices α and β;
– Aux3 ⇔ Xi[α] ∈ {0, 1, π−1(0)} for some i ∈ [q] and α ∈ [mi];
– Aux4 ⇔ |Icol| > q̂c;
– Aux5 ⇔ |I ′

col| > q̄c.

Note that q̄c has been introduced in Sect. 3, while q̂c is a new one. Let Aux =
Aux1 ∨ Aux2 ∨ Aux3 ∨ Aux4 ∨ Aux5. It is not hard to see that if � ≤ N , then

Pr[Aux1 ∨ Aux3] ≤ 3�q
N − 2

+
2
N

, Pr[Aux2] ≤ �2q

2N
,

Pr[Aux4] ≤ �2q2

q̂cN
, Pr[Aux5] ≤ �q2

q̄cN

over the random choice of π(0), π(1), π−1(0). Simplifying the bounds, we have

Pr[Aux] ≤ (�2 + 8�)q
2N

+
�2q2

q̂cN
+

�q2

q̄cN
. (9)

Almost Universality. The almost universality of each half of PHash will be
used to upper bound the probability of Bad4 and Bad5.

454 S. Kim et al.

Lemma 2. Let PHash(M) = (F (M), G(M)) for any message M . If � ≤ N/4,
then F and G are δ-almost universal, where

δ =
8�
N

.

We refer to [19] for the proof of Lemma 2.

Classifying X-Variables. In order to upper bound the probability of Bad1,
Bad2, Bad3, we need to classify X-variables for each pair of messages, assuming
that Aux has not occurred; let

Xi,j = Xī,j � Xi,j̄ � Xī,j̄

where

Xī,j
def= {Xi[α] : α ∈ NEQi,j} \ {Xj [α] : α ∈ NEQi,j},

Xi,j̄
def= {Xj [α] : α ∈ NEQi,j} \ {Xi[α] : α ∈ NEQi,j},

Xī,j̄
def= {Xi[α] : α ∈ NEQi,j} ∩ {Xj [α] : α ∈ NEQi,j}.

We make the following observations.

1. If X ∈ Xī,j̄ , then we have X = Xi[α] = Xj [β] for distinct indices α and β.
2. If Xī,j ∪ Xi,j̄ = ∅, then F (Mi) = F (Mj) (regardless of π); the probability

that Xī,j ∪ Xi,j̄ = ∅ is upper bounded by �
N−1 over the random choice of Δ0

and Δ1.
3. If Xī,j ∪ Xi,j̄ contains either one or two elements, then it is not possible that

F (Mi) = F (Mj).

4. The probability that Xī,j̄ �= ∅ is upper bounded by �2

N−1 over the random
choice of Δ0 and Δ1.

By relabeling, let

Xi,j = {X[1], . . . ,X[t]},

Yi,j = {Y [1], . . . , Y [t]},

where t = |Xi,j | and Y [α] = π(X[α]) for α = 1, . . . , t. We also partition the set
of indices {1, . . . , t} into three subsets; {1, . . . , t} = Iī,j � Ii,j̄ � Iī,j̄ , where

α ∈ Iī,j ⇔ X[α] ∈ Xī,j ,

α ∈ Ii,j̄ ⇔ X[α] ∈ Xi,j̄ ,

α ∈ Iī,j̄ ⇔ X[α] ∈ Xī,j̄ .

Then we can represent F - and G-collisions by equations in Y [α] as follows.

F (Mi) = F (Mj) ⇔ A1 · Y [1] ⊕ · · · ⊕ At · Y [t] = 0, (10)
G(Mi) = G(Mj) ⇔ B1 · Y [1] ⊕ · · · ⊕ Bt · Y [t] = 0, (11)

Tight Security Bounds for Double-Block Hash-then-Sum MACs 455

where

1. Aα = 1 if α ∈ Iī,j ∪ Ii,j̄ , and Aα = 0 if α ∈ Iī,j̄ ;
2. Bα = 2β for some β if α ∈ Iī,j ∪ Ii,j̄ , and Bα = 2β ⊕ 2γ for distinct β and γ

if α ∈ Iī,j̄ .

Each unknown Y [α] can be seen as a random variable whose value is taken from
a set of size N − 3, namely {0, 1}n \ {0, π(0), π(1)}.

Upper Bounding the Probability of Bad Events. We are now ready to
upper bound the probability of each bad event above.

Lemma 3. Assume that � ≤ N
8 . Then, in the ideal world, one has

Pr[Bad1 ∧ ¬Aux] ≤ 4�q2

N2
.

Proof. We fix distinct i, j ∈ [q], and distinguish the following two cases.

Case 1: Xī,j ∪ Xi,j̄ = ∅. This case happens with probability at most �
N−1 over

the random choice of Δ0 and Δ1. Since all the coefficients Bα in (11) are nonzero,
the probability that G(Mi) = G(Mj) is upper bounded by (N − 3)t−1/(N − 3)t,
which is not greater than 1

N−2�−2 since t ≤ 2�.

Case 2: Xī,j ∪ Xi,j̄ �= ∅. It should be the case that |Xī,j ∪ Xi,j̄ | ≥ 2 since
otherwise we have F (Mi) �= F (Mj). Consider Eqs. (10) and (11) (with the same
pair of i and j). There are at least two indices α, α′ ∈ Iī,j ∪ Ii,j̄ , where Aα =
Aα′ = 1, Bα = 2β and Bα′ = 2γ for distinct β and γ. So the system of equations
has rank 2, and hence the equations are satisfied with probability at most (N −
3)t−2/(N − 3)t, which is not greater than 1

(N−2�−1)(N−2�−2) .

Overall, we have Pr[Bad1 ∧ ¬Aux] ≤ 4�q2

N2 since � ≤ N
8 . ��

Lemma 4. Assume that � ≤ N
16 . Then, in the ideal world, one has

Pr[Bad2 ∧ ¬Aux] ≤ 2q̄c
2

N
+

4q̂c

N
+

2
N

+
2
√
2q2

N
3
2

+
8q̂cq

2

N2
+

96q2

N2
+

8q4

N3
.

Proof. We partition the set [q]∗4 of quadruples into five subsets; [q]∗4 = J1 �
J2 � J3 � J4 � J5, where

J1
def=

{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) ∈ Icol

}

,

J2
def=

{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) /∈ Icol ∧ (i1, i2) ∈ Icol ∧ (i3, i4) ∈ Icol

}

,

J3
def=

{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) /∈ Icol ∧ (i1, i2) /∈ Icol ∧ (i3, i4) ∈ Icol

}

,

J4
def=

{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) /∈ Icol ∧ (i1, i2) ∈ Icol ∧ (i3, i4) /∈ Icol

}

,

J5
def=

{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) /∈ Icol ∧ (i1, i2) /∈ Icol ∧ (i3, i4) /∈ Icol

}

.

For (i1, i2, i3, i4) ∈ [q]∗4, let

Badi1,i2,i3,i4
2 ⇔ F (Mi1) = F (Mi2) ∧ G(Mi2) = G(Mi3) ∧ F (Mi3) = F (Mi4).

456 S. Kim et al.

Then we have
Bad2 ⇔

∨

(i1,i2,i3,i4)∈[q]∗4

Badi1,i2,i3,i4
2 ,

and hence,
Pr [Bad2 ∧ ¬Aux] ≤ p1 + p2 + p3 + p4 + p5,

where

pj
def= Pr

⎡

⎣

⎛

⎝
∨

(i1,i2,i3,i4)∈Jj

Badi1,i2,i3,i4
2

⎞

⎠ ∧ ¬Aux
⎤

⎦

for j = 1, 2, 3, 4, 5.
For a fixed quadruple (i1, i2, i3, i4), we can represent Badi1,i2,i3,i4

2 by a system
of three linear equations;

F (Mi1) = F (Mi2) ⇔ A1,1 · Y [1] ⊕ · · · ⊕ A1,t · Y [t] = 0,
G(Mi2) = G(Mi3) ⇔ A2,1 · Y [1] ⊕ · · · ⊕ A2,t · Y [t] = 0,
F (Mi3) = F (Mi4) ⇔ A3,1 · Y [1] ⊕ · · · ⊕ A3,t · Y [t] = 0

for some Aj,α, where each column corresponds to a variable in

Xī1,i2 ∪ Xi1,ī2 ∪ Xi2,i3 ∪ Xī3,i4 ∪ Xi3,ī4 ,

so the number of columns, denoted t, is the size of this set. This system of equa-
tions can also be regarded as a 3 × t matrix (Aj,α). This matrix will sometimes
be denoted A(i1,i2,i3,i4) to specify the corresponding quadruple. For j = 1, 2, 3,
the j-th row of (Aj,α) is denoted A

(i1,i2,i3,i4)
j , or simply Aj . We observe that the

second row A2 is always nonzero, namely, the G-collision is nontrivial.

Upper Bounding p1. We have
⎛

⎝
∨

(i1,i2,i3,i4)∈J1

Badi1,i2,i3,i4
2

⎞

⎠∧ ¬Aux ⇒
⎛

⎝
∨

(i2,i3)∈Icol

G(Mi2) = G(Mi3)

⎞

⎠∧ ¬Aux.

Since |Icol| ≤ q̂c and the G-collision is nontrivial, the probability of the event on
the right-hand side is upper bounded by q̂c/(N − 2� − 2). So we have

p1 ≤ 2q̂c

N
. (12)

Upper Bounding p2. We have
⎛

⎝
∨

(i1,i2,i3,i4)∈J2

Badi1,i2,i3,i4
2

⎞

⎠ ∧ ¬Aux ⇒
⎛

⎝
∨

(i1,i2)∈Icol\I′
col

F (Mi1) = F (Mi2)

⎞

⎠

∧

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∨

(i1,i2)∈I′
col

(i3,i4)∈I′
col

(i2,i3)/∈Icol

G(Mi2) = G(Mi3)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∧ ¬Aux

Tight Security Bounds for Double-Block Hash-then-Sum MACs 457

We see that

1. for any pair of messages in Icol \ I ′
col, their F -collision is nontrivial;

2. for any pair of messages in [q]∗2 \ Icol, their G-collision is nontrivial;
3. |Icol \ I ′

col| ≤ q̂c and |I ′
col| ≤ q̄c.

Therefore we have

p2 ≤ q̂c

N − 2� − 2
+

q̄c
2

N − 2� − 2
≤ 2q̂c

N
+

2q̄c
2

N
. (13)

Upper Bounding p3. Fix a quadruple (i1, i2, i3, i4) ∈ J3, and consider the corre-
sponding matrix A(i1,i2,i3,i4) = (Aj,α). A1 is a zero-one matrix, but nonzero since
(i1, i2) /∈ Icol, while A2 contains at least two entries, say 2β and 2γ for distinct
β and γ. This implies that A2 cannot be a multiple of A1, and hence (Aj,α) has
rank at least two. Therefore the probability that random variables Y [1], . . . , Y [t]
satisfy the system of equations is upper bounded by (N − 3)t−2/(N − 3)t, which
is 1/(N − t − 1)(N − t − 2). Since the number of quadruples (i1, i2, i3, i4) ∈ [q]∗4

such that (i2, i3) /∈ Icol is at most q̂cq
2 and since t ≤ 4�, we have

p3 ≤ q̂cq
2

(N − 4� − 1)(N − 4� − 2)
≤ 4q̂cq

2

N2
. (14)

Upper Bounding p4. In a similar manner to the analysis of p3, we obtain

p4 ≤ q̂cq
2

(N − 4� − 1)(N − 4� − 2)
≤ 4q̂cq

2

N2
. (15)

Upper Bounding p5. Fix a quadruple (i1, i2, i3, i4) ∈ J5, and consider the
corresponding matrix A(i1,i2,i3,i4) = (Aj,α). We can assume that A1 and A3

contain at least three 1’s, since otherwise we will not have two F -collisions for
A1 and A3. Every entry of A2 should be given as 2α for some α (since (i2, i3) /∈
Icol), and for each α, 2α appears at most twice in the row. Furthermore, A2

should contain at least two distinct entries, since otherwise we will not have the
G-collision (with distinct nonzero Y -variables). So A2 cannot be a multiple of
A1, and hence the rank of (Aj,α) is at least two. In this case, we have two
possibilities; one is that A1 = A3, and the other is that A2 = CA1 ⊕ DA3 for
some nonzero constants C and D.

All in all, J5 can be represented by a union of three subsets; J5 = J5,1 ∪
J5,2 ∪ J5,3, where

J5,1
def=

{

(i1, i2, i3, i4) ∈ J5 : A(i1,i2,i3,i4) has rank 3
}

,

J5,2
def=

{

(i1, i2, i3, i4) ∈ J5 : A
(ij)
1 = A

(ij)
3

}

,

J5,3
def=

{

(i1, i2, i3, i4) ∈ J5 : A
(ij)
2 = CA

(ij)
1 ⊕ DA

(ij)
3 for nonzero C and D

}

.

458 S. Kim et al.

For (i1, i2, i3, i4) ∈ J5,1, it is not hard to see that the probability of Y -variables
satisfying the corresponding system of equations is upper bounded by (N −
3)t−3/(N − 3)t, which is 1/(N − t)(N − t − 1)(N − t − 2). Since t ≤ 4�, we have

Pr

⎡

⎣

⎛

⎝
∨

(i1,i2,i3,i4)∈J5,1

Badi1,i2,i3,i4
2

⎞

⎠ ∧ ¬Aux
⎤

⎦

≤ q4

(N − 4�)(N − 4� − 1)(N − 4� − 2)
≤ 8q4

N3
. (16)

In order to upper bound the probability of Badi1,i2,i3,i4
2 for (i1, i2, i3, i4) ∈

J5,2, we need to define an equivalence relation, denoted ∼, on [q]∗2 \ Icol, where

(i1, i2) ∼ (i3, i4) ⇔ Xī1,i2 � Xi1,ī2 = Xī3,i4 � Xi3,ī4 .

The relation (i1, i2) ∼ (i3, i4) implies that A1 = A3 for A(i1,i2,i3,i4). In other
words, F (Mi1) = F (Mi2) ⇔ F (Mi3) = F (Mi4), namely, the two F -collisions are
dependent on each other. We will assume that this relation partitions [q]∗2 \ Icol

into r subsets, denoted I1, . . . , Ir, respectively. So we have

[q]∗2 \ Icol = I1 � · · · � Ir.

For j = 1, . . . , r, let

Ej ⇔ F (Mi1) = F (Mi2) for every (i1, i2) ∈ Ij .

Then we have
Pr [Ej ∧ ¬Aux] ≤ 1

N − 2� − 2
.

Given ¬Aux, we have
⎛

⎝
∨

(i1,i2,i3,i4)∈J5,2

Badi1,i2,i3,i4
2

⎞

⎠ ⇒
⎛

⎝
∨

j∈[r]

∨

(i1,i2),(i3,i4)∈Ij

Badi1,i2,i3,i4
2

⎞

⎠ .

For each j = 1, . . . , r, we have

Pr

⎡

⎣

⎛

⎝
∨

(i1,i2),(i3,i4)∈Ij

Badi1,i2,i3,i4
2

⎞

⎠ ∧ ¬Aux
⎤

⎦

≤ Pr [Ej ∧ ¬Aux] · Pr
⎡

⎣
∨

(i1,i2),(i3,i4)∈Ij

G(Mi2) = G(Mi3)

∣
∣
∣
∣
∣
Ej ∧ ¬Aux

⎤

⎦

≤ 1
N − 2� − 2

· min

(

|Ij |2
N − 3� − 2

, 1

)

Tight Security Bounds for Double-Block Hash-then-Sum MACs 459

since the first and the second rows of A(i1,i2,i3,i4) are always linearly independent.
Overall, we have

Pr

⎡

⎣

⎛

⎝
∨

(i1,i2,i3,i4)∈J5,2

Badi1,i2,i3,i4
2

⎞

⎠ ∧ ¬Aux
⎤

⎦ ≤
r∑

j=1

2
N

· min

(

2 |Ij |2
N

, 1

)

(17)

where we use � ≤ N/16. Subject to the condition
∑r

j=1 |Ij | = q2 (and with no

restriction on r),
∑r

j=1 min
(

2|Ij |2
N , 1

)

is maximized when r =
⌊

q2/
(

N
2

) 1
2
⌋

+ 1,

|Ij | = (N
2)

1
2 for j = 1, . . . , r − 1 and |Ir| = q2 − (r − 1)

(
N
2

) 1
2 , in which case we

have
r∑

j=1

2
N

· min

(

2 |Ij |2
N

, 1

)

≤ 2
√
2q2

N
3
2

+
2
N

. (18)

Finally, we focus on A(i1,i2,i3,i4) for (i1, i2, i3, i4) ∈ J5,3. We note that A2 is
represented by a linear combination of A1 and A3, where we can assume that

1. A2 does not contain the same entry more than twice;
2. A2 contains at least two different nonzero entries;
3. each of A1 and A3 contains at least three 1’s.

Therefore the supports of A1 and A3 cannot intersect at more than two positions,
nor be disjoint each other. So we should be able to find a 3 × 3 submatrix

⎡

⎣

1 1 0
C C ⊕ D D
0 1 1

⎤

⎦

where C = 2α and D = 2β for distinct α and β. Furthermore, it should be the
case that 2α ⊕ 2β = 2γ for some γ since (i2, i3) /∈ Icol. Since a linear combination
of A1 and A3 generates at most three different nonzero values in A2, we conclude
that NEQi2,i3 = {α, β, γ}.

Suppose that we begin with two messages Mi2 and Mi3 such that |NEQi2,i3 | =
3, and try to find Mi1 and Mi4 such that (i1, i2, i3, i4) ∈ J5,3. Let NEQi2,i3 =
{α, β, γ}, where 2α ⊕ 2β ⊕ 2γ = 0 and α < β < γ. Then A2 is uniquely
determined by Mi2 and Mi3 , and its nonzero elements are 2α, 2β , 2γ , each
of which appears once or twice in the row. Once we choose a pair of distinct
coefficients (C,D) ∈ {2α, 2β , 2γ}∗2, we can fix A1 and A3 such that CA1 ⊕
DA3 = A2. For example, if every nonzero element appears exactly twice in A2,
and if C = 2α and D = 2β , then A will contain a 3 × 6 submatrix

⎡

⎣

1 0 1 1 0 1
2α 2β 2γ 2α 2β 2γ

0 1 1 0 1 1

⎤

⎦

with all the other entries being zero. Since we have at most two possibilities for
Mi1 (resp. Mi4) yielding A1 (resp. A3), the number of possible ways of choosing

460 S. Kim et al.

Mi1 and Mi4 is at most 24 (given Mi2 and Mi3), and for each of such quadru-
ples, the probability that the Y -variables satisfy the corresponding system of
equations is upper bounded by 1/(N − 4� − 1)(N − 4� − 2). Therefore we have

Pr

⎡

⎣

⎛

⎝
∨

(i1,i2,i3,i4)∈J5,3

Badi1,i2,i3,i4
2

⎞

⎠ ∧ ¬Aux
⎤

⎦

≤ 24q2

(N − 4� − 1)(N − 4� − 2)
≤ 96q2

N2
. (19)

By (16), (17), (18), (19), we have

p5 ≤ 2
N

+
2
√
2q2

N
3
2

+
96q2

N2
+

8q4

N3
. (20)

The proof is now complete by (12), (13), (14), (15), (20). ��
Lemma 5. Assume that � ≤ N

8 . Then, in the ideal world, one has

Pr[Bad3 ∧ ¬Aux] ≤ 6�2q4

N3
.

Proof. Fix a quadruple of distinct queries. For simplicity of notation and without
loss of generality, we will consider (M1,M2,M3,M4). In the ideal world, the
probability that T1 ⊕ T2 ⊕ T3 ⊕ T4 = 0 is 1

N .
Next, we will upper bound the probability that F (M1) = F (M2) and

G(M2) = G(M3), focusing on the first three messages. We consider the following
three cases.

Case 1: X1̄,2 ∪ X1,2̄ = ∅. The analysis is similar to Case 1 in Lemma3; the
probability that F (M1) = F (M2) and G(M2) = G(M3) in this case is upper
bounded by �

(N−1)(N−2�−2) .

Case 2: X1̄,2 ∪ X1,2̄ �= ∅ and X2̄,3̄ �= ∅. The probability that X2̄,3̄ �= ∅ (over the
random choice of Δ0 and Δ1) is upper bounded by �2

N−1 . Once Δ0 and Δ1 are
fixed, the probability that F (M1) = F (M2) (over the random choice of π) is
upper bounded by 1

N−2�−2 .

Case 3: X1̄,2 ∪ X1,2̄ �= ∅ and X2̄,3̄ = ∅. It should be the case that |X1̄,2 ∪ X1,2̄| ≥ 2.
The F - and G-collisions can be represented by a system of equations

A1,1 · Y [1] ⊕ · · · ⊕ A1,t · Y [t] = 0,
A2,1 · Y [1] ⊕ · · · ⊕ A2,t · Y [t] = 0,

for some Aj,α, where t = |X1̄,2 ∪ X1,2̄ ∪ X2,3|. We can also partition the set of
indices {1, . . . , t} into two subsets; {1, . . . , t} = I1 � I2, where

α ∈ I1 ⇔ X[α] ∈ X1̄,2 � X1,2̄,

α ∈ I2 ⇔ X[α] ∈ X2,3 \ (X1̄,2 ∪ X1,2̄).

Tight Security Bounds for Double-Block Hash-then-Sum MACs 461

We note that A1,α = 1 for every α ∈ I1 and A1,α = 0 for every α ∈ I2.
Furthermore, for every α ∈ I2, A2,α is nonzero. So if I2 is nonempty, then (Ai,α)
contains a 2 × 2 submatrix [

1 0
∗ 2β

]

for some β, and hence the system of equations has rank 2.
If I2 is empty, then X2̄,3 ∪ X2,3̄ ⊂ X1̄,2 � X1,2̄. We also have |X2̄,3 ∪ X2,3̄| ≥ 2

since otherwise G(M2) �= G(M3). So we have two indices α, α′ ∈ I1 such that
X[α], X[α′] ∈ X2̄,3 ∪ X2,3̄. Since A2,α = 2β and A2,α′ = 2γ for distinct β and γ,
(Ai,α) contains a 2 × 2 submatrix

[
1 1
2β 2γ

]

for distinct β and γ, and hence the system of equations has rank 2. So in any case,
the system of equations are satisfied with probability at most 1

(N−2�−1)(N−2�−2) .

Overall, we have Pr[Bad3 ∧ ¬Aux] ≤ 6�2q4

N3 since � ≤ N
8 . ��

The following two lemmas are easy to prove using the Markov inequality and
the almost universality of F and G.

Lemma 6. In the ideal world, one has

Pr[Bad4] ≤ 16�2q2

N2
.

Lemma 7. In the ideal world, one has

Pr[Bad5] ≤ 64�q2

q̄cN
.

By Lemma 3, 4, 5, 6, 7, and (9), we can upper bound the probability of Bad, and
then combining it with (7) (setting q̂c = �N

1
2 /2

√
2 and q̄c = 2�

1
3 q

2
3), we obtain

the following theorem.

Theorem 5. Assume that � ≤ N/16. When PMAC-Plus is based on a block
cipher E, one has

Advprf
PMAC-Plus(q, t, �) ≤

√
2�

N
1
2
+

45�
2
3 q

4
3

N
+

(�2 + 8�)q
2N

+
2
N

+
(4

√
2� + 2

√
2)q2

N
3
2

+
3�

1
3 q

8
3

N2
+

9�
2
3 q

7
3

2N2
+

(16�2 + 4� + 97)q2

N2
+

(18�2 + 32)q4

3N3

+ 3Advprp
E (�q, t + t′),

where t′ is the time complexity necessary to compute E for �q times.

Note that all the constant coefficients are loosely estimated in our bounds; most
large coefficients appear since we replace N − c� by N/2 for any small integer c.

462 S. Kim et al.

Fig. 5. 3kf9 based on a block cipher E using three keys K1, K2, K3.

7 Security of 3kf9 and LightMAC-Plus

In this section, we provide upper bounds on the PRF-security of 3kf9 and
LightMAC-Plus. Due to space constraints, the proof is deferred to the full version
of this paper. We remark that the security proof of LightMAC-Plus is much sim-
pler than PMAC-Plus; the structure of LightMAC-Plus is similar to PMAC-Plus,
while domain separation by distinct prefixes removes most bad events in the
proof.

7.1 Security of 3kf9

A 2n-bit hash function 3kf9Hash is based an n-bit block cipher E using k-bit
keys. For a padded message M = M [1]‖M [2]‖ · · · ‖M [m] where m ≤ �, and for
a key K ∈ {0, 1}k, 3kf9HashK(M) is defined as follows.

Function 3kf9HashK(M)
Z[0] ← 0
for α ← 1 to m do

Z[α] ← EK (Z[α − 1] ⊕ M [α])

U ← Z[m]
V ← Z[1] ⊕ Z[2] ⊕ · · · ⊕ Z[m]
return (U, V)

The 3kf9 MAC is defined as DbHtS[3kf9Hash] (Fig. 5). We prove the security of
3kf9 as follows.

Theorem 6. Assume that � ≤ N/8. When 3kf9 is based on a block cipher E,
one has

Advprf
3kf9(q, t, �) ≤ 18�

4
3 q

4
3

N
+

2�
2
3 q

8
3

N2
+

2�
4
3 q

7
3

N2
+

11�2q2

N2
+

11�6q4

N3

+ 3Advprp
E (�q, t + t′),

Tight Security Bounds for Double-Block Hash-then-Sum MACs 463

Fig. 6. LightMAC-Plus based on a block cipher E using three keys K1, K2, K3.

where t′ is the time complexity necessary to compute E for �q times.

7.2 Security of LightMAC-Plus

A 2n-bit hash function LHash is based an n-bit block cipher E using k-bit keys.
In this construction, a message is padded so that its length is a multiple of n−s,
where s is a fixed parameter such that 0 < s < n. So a padded message M can
be broken into (n − s)-bit blocks; let

M = M [1]‖M [2]‖ · · · ‖M [m],

where m < 2s and M(α) is n− s bits for α = 1, . . . ,m. Let 〈α〉s denote the s-bit
binary representation of integer α. Then for a key K ∈ {0, 1}k, LHashK(M) is
defined as follows.

Function LHashK(M)
for α ← 1 to m do

X[α] ← 〈α〉s‖M [α]
Y [α] ← EK(X[α])

U ← Y [1] ⊕ Y [2] ⊕ · · · ⊕ Y [m]
V ← 2m−1 · Y [1] ⊕ 2m−2 · Y [2] ⊕ · · · ⊕ Y [m]
return (U, V)

The LightMAC-Plus MAC is defined as DbHtS[LHash] (Fig. 6). We prove the
security of LightMAC-Plus as follows.

Theorem 7. Assume that � ≤ N/16. When LightMAC-Plus is based on a block
cipher E, one has

Advprf
LightMAC-Plus(q, t, �) ≤ 17q

4
3

2N
+

2
N

+
2
√
2q2

N
3
2

+
3q

8
3

N2
+

9q
7
3

2N2
+

30q2

N2
+

44q4

3N3

+ 3Advprp
E (�q, t + t′),

where t′ is the time complexity necessary to compute E for �q times.

464 S. Kim et al.

References

1. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

3. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

4. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On families of hash
functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2_28

5. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_25

6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

7. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: a
paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol.
2018(3), 36–92 (2018)

8. den Boer, B.: A simple and key-economical unconditional authentication scheme.
J. Comput. Secur. 2, 65–72 (1993)

9. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_22

10. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39887-5_11

11. Jha, A., Nandi, M.: Revisiting structure graphs: applications to CBC-MAC and
EMAC. J. Math. Cryptol. 10(3–4), 157–180 (2016)

12. Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-
bound MACs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 306–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1_11

13. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_3

14. Naito, Y.: Blockcipher-based MACs: beyond the birthday bound without message
length. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
446–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_16

15. Patarin, J.: Introduction to mirror theory: analysis of systems of linear equali-
ties and linear non equalities for cryptography. IACR Cryptology ePrint Archive,
Report 2010/287 (2010). http://eprint.iacr.org/2010/287

16. Patarin, J.: Mirror theory and cryptography. IACR Cryptology ePrint Archive,
Report 2016/702 (2016). http://eprint.iacr.org/2016/702

17. Taylor, R.: An integrity check value algorithm for stream ciphers. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 40–48. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2_4

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/3-540-48329-2_28
https://doi.org/10.1007/3-540-48329-2_28
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-662-52993-5_3
https://doi.org/10.1007/978-3-319-70700-6_16
http://eprint.iacr.org/2010/287
http://eprint.iacr.org/2016/702
https://doi.org/10.1007/3-540-48329-2_4

Tight Security Bounds for Double-Block Hash-then-Sum MACs 465

18. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-
RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5_25

19. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9_34

20. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the
birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 296–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4_19

https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-642-34961-4_19
https://doi.org/10.1007/978-3-642-34961-4_19

Modeling for Three-Subset Division
Property Without Unknown Subset
Improved Cube Attacks Against Trivium

and Grain-128AEAD

Yonglin Hao1(B), Gregor Leander2, Willi Meier3, Yosuke Todo4(B),
and Qingju Wang5

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
haoyonglin@yeah.net

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
gregor.leander@rub.de

3 FHNW, Windisch, Switzerland
willimeier48@gmail.com

4 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan
yosuke.todo.xt@hco.ntt.co.jp

5 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
qingju.wang@uni.lu

Abstract. A division property is a generic tool to search for integral dis-
tinguishers, and automatic tools such as MILP or SAT/SMT allow us to
evaluate the propagation efficiently. In the application to stream ciphers,
it enables us to estimate the security of cube attacks theoretically, and it
leads to the best key-recovery attacks against well-known stream ciphers.
However, it was reported that some of the key-recovery attacks based
on the division property degenerate to distinguishing attacks due to the
inaccuracy of the division property. Three-subset division property (with-
out unknown subset) is a promising method to solve this inaccuracy prob-
lem, and a new algorithm using automatic tools for the three-subset divi-
sion property was recently proposed at Asiacrypt2019. In this paper, we
first show that this state-of-the-art algorithm is not always efficient and
we cannot improve the existing key-recovery attacks. Then, we focus on
the feature of the three-subset division property without unknown subset
and propose another new efficient algorithm using automatic tools. Our
algorithm is more efficient than existing algorithms, and it can improve
existing key-recovery attacks. In the application to Trivium, we show
a 841-round key-recovery attack. We also show that a 855-round key-
recovery attack, which was proposed at CRYPTO2018, has a critical flaw
and does not work. As a result, our 841-round attack becomes the best
key-recovery attack. In the application to Grain-128AEAD, we show that
the known 184-round key-recovery attack degenerates to distinguishing
attacks. Then, the distinguishing attacks are improved up to 189 rounds,
and we also show the best key-recovery attack against 190 rounds.

Keywords: Stream ciphers · Cube attack · Division property ·
Three-subset division property · MILP · Trivium · Grain-128AEAD

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 466–495, 2020.
https://doi.org/10.1007/978-3-030-45721-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_17

Modeling for Three-Subset Division Property Without Unknown Subset 467

1 Introduction

Division Property. Integral cryptanalysis [1], a.k.a. Square attacks [2] or
higher-order differential attacks [3], are one of the most powerful cryptanaly-
sis techniques. Let CI be the set of chosen plaintexts. The integral distinguisher
for a cipher Ek is defined as the property

⊕
p∈CI

Ek(p) = 0 for any secret key k.
Since the probability that such a zero-sum property holds is low for ideal ciphers,
we can distinguish Ek from an ideal one.

The division property, as originated in [4], is the most accurate and generic
tool to search for integral distinguishers. Ever since its proposal, it has been
widely applied to many block ciphers ([5–8] etc.). For a set of texts X ⊆ F

n
2 , its

division property is defined by dividing a set of u’s into two subsets: vectors
u ∈ F

n
2 of the 1st subset satisfy

⊕
x∈X

xu = 0 (referred as 0-subset hereafter),
and those of the 2nd subset make

⊕
x∈X

xu undetermined (referred as unknown
subset hereafter). The initial division property is defined according to a set of
chosen plaintexts, and those of the intermediate states are deduced round by
round according to propagation rules. Finally, the division property for the set
of corresponding ciphertexts is evaluated, and the integral distinguisher can be
derived accordingly. The propagation of the division property was evaluated with
the breadth-first search algorithm in [4,5,7], but it is computationally imprac-
tical for ciphers with large block size. Then, Xiang et al. introduced the useful
concept called division trail and propose an MILP-based algorithm [9], enabling
us to apply the division property to various ciphers ([10–12] etc.). Nowadays, the
division property is often used not only for third party cryptanalysis but also
for the design of new ciphers ([13,14] etc.).

Although the division property can find more accurate integral distinguishers
than other methods, the accuracy is never perfect. As is pointed out by Todo and
Morii [7], the practically verified 15-round integral distinguisher for Simon32 [15]
cannot be proved with the conventional division property. To find more accurate
distinguishers, the three-subset division property was proposed in [7]. A set of u’s
is divided into three subsets rather than two ones: the first one is the 0-subset,
another one is the unknown subset, and the third one is the subset satisfying⊕

x∈X
xu = 1 (referred as 1-subset hereafter). The three-subset division property

enables us to prove the 15-round integral distinguisher of Simon32 [7].
Despite of its successful combination of the MILP and the conventional divi-

sion property, the MILP modeling technique does not work quite well with the
three-subset version. Very recently, two methods were proposed to tackle this
problem. The first method is a variant of the three-subset division property [16].
Although it sacrifices quite some accuracy of the three-subset division property,
this method has MILP-model-friendly propagation rules and improves some inte-
gral distinguishers. The latter, proposed by Wang et al. [17], models the prop-
agation for the three-subset division property accurately. Wang et al.’s idea is
to combine the MILP with the original breadth-first search algorithm [7]. In
their algorithm, each node on the breadth-first search algorithm is regarded as
the starting point of division trails, and the MILP evaluates whether there is a

468 Y. Hao et al.

feasible solution from every node. When there is no feasible solution, we can
prune these nodes from the breadth-first search algorithm as redundant ones.

Cube Attack. The cube attack was proposed by Dinur and Shamir in [18]. For
a cipher with public variables v ∈ F

m
2 and secret variables x ∈ F

n
2 , the cipher

can be regarded as a polynomial of v,x denoted as f(x,v). A set of indices,
referred as the cube indices, is selected as I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}.
Such an I determines a specific structure called cube, denoted as CI , containing
2|I| values where variables in {vi1 , vi2 , . . . , vi|I|} take all possible combinations
of values and all remaining (key and non-cube IV) variables are static. Then the
sum of f over all values of the cube CI is

⊕

CI

f(x,v) =
⊕

CI

(tI · p(x,v) + q(x,v)) = p(x,v),

where tI denotes a monomial as tI = vi1 · vi2 · · · vi|I| , and each term of q(x,v)
misses at least one variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the
superpoly of the cube CI . The cube attack consists of two steps. First, attackers
recover the superpoly in the offline phase. Then, attackers query the cube to the
encryption oracle, compute the summation, and get the value of the superpoly.
The secret key can be recovered when the polynomial p(x,v) is simple. Therefore,
the superpoly recovery plays the critical role in the cube attack.

Previously, superpolies could only be recovered experimentally. Therefore,
the size of cube indices |I| had to be limited within practical reach. In [11],
the division property was first introduced to cube attacks, and it enables us to
identify the secret variables NOT involved in the superpoly efficiently. After
removing such secret variables, the remaining variables are stored into the set
J as the secret variables that might be involved. It enables the attackers to
recover the truth table of the superpoly with a time complexity 2|I|+|J|. Then,
Wang et al. improved it by introducing flag and term enumeration technique
that can lower the complexities for the superpoly recoveries [12]. It is noticeable
that neither [11] nor [12] recovers the superpoly directly, and it only guarantees
the time complexity to recover the superpoly p(x,v). They only identify the
key variables (or monomials [12]) and make the assumption that such variables
(monomials) might be involved in the superpoly. If such an assumption does
not hold, the superpoly can be much simpler than estimated, or even in the
extreme case: p ≡ 0 degenerates key-recovery attacks to distinguishing attacks.
Such degeneration issues are reported in [19] and [17], where Wang et al.’s attack
on 839-round Trivium in [12] cannot recover secret keys because p ≡ 0.

Motivation. Our work is motivated by the latest three-subset division prop-
erty model with pruning technique [17]. In its application to the cube attack,
they claim that the three-subset division property without unknown subset can
recover the actual superpoly because it deterministically divides the set of u ∈ F

n
2

into two subsets whose summations are either 0 or 1. We do not need to assume

Modeling for Three-Subset Division Property Without Unknown Subset 469

Table 1. Summary of flaws or issues in some of the previous best key-recovery attacks

Cipher # Rounds Ref. Note Where discovered

Trivium 839 [12] Degeneration to distinguisher [17,19]

Trivium 855 [20] Attack does not work because of
a flaw in the degree estimation

This paper

Grain-128a 184 [12] Degeneration to distinguisher This paper

the accuracy of the division property, and the recovered superpolies are always
accurate. In spite of such a powerful tool, it was used to degenerate the key-
recovery attack against 839-round Trivium in [12]. Such a degeneration from
key-recovery to distinguisher implies unexpectedly simpler superpolies. There-
fore, we can expect that the superpolies for 840-round Trivium are also simpler
than previous estimations, and the key-recovery attacks can be carried out to 840
or more rounds. Thus, we implemented and executed the algorithm based on the
pruning technique, and we find that the algorithm is not always efficient: we can-
not recover the superpoly of 840-round Trivium in reasonable time. To recover
the more complicated superpoly, a more efficient algorithm for the three-subset
division property is required.

Our Contribution. We propose a new modeling method for the three-subset
division property without unknown subset. Here, we first introduce a modified
three-subset division property that is completely equivalent with the three-subset
division property without unknown subset. While the original three-subset divi-
sion property without unknown subset is defined by using the set L, the modified
one is defined by using the multiset L̃ instead of the set L, and it is suited to
modeling with MILP or SAT/SMT solvers. The previous algorithm focuses on
the feasibility of the model, but our algorithm focuses on all feasible solutions
that are enumerated by using the solver.

To demonstrate the efficiency of our new algorithm, we apply it to cube and
cube-like attacks against Trivium and Grain-128AEAD. We have two types of
contributions. The first one is to show flaws or issues in some of the best previous
key-recovery attacks, and these results are summarized in Table 1. The second
one is the best key-recovery attacks against Trivium and Grain-128AEAD, and
these results are summarized in Table 2.

We first apply our algorithm to the superpoly recovery for 840-round Triv-
ium, which was impossible in the previous algorithm. As a result, we can recover
the exact superpoly for not only 840-round Trivium but also for 841-round
Trivium. Moreover, the recovered superpolies are simple balanced Boolean func-
tions. In other words, we can recover 1-bit of information on the secret key
against 840- and 841-round Trivium, and exhaustive search with the recovered
superpoly allows us to recover the entire secret key with the time complexity
279. Note that the recovered superpoly is accurate and there is no assumption
like in the theoretical superpoly recoveries [11,12]. We next use our algorithm to

470 Y. Hao et al.

Table 2. Summary of our results

Cipher # Rounds Type of attacks Time complexity

Trivium 840 Key recovery 279

Trivium 841 Key recovery 279

Grain-128AEAD 184, 185, 186, 187, 188, 189 Distinguisher 296

Grain-128AEAD 190 Key recovery 2123

verify a new-type of cube attack [20] shown by Fu et al. In the new-type of cube
attack, the part of secret key bits is first guessed, one bit of the intermediate
state (denoted by P1) is computed, and the sum of (1 + P1) · z over the cube
is evaluated, where z denotes the key stream bit. The authors claimed that the
sum of (1 + P1) · z can be simpler than the sum of z by choosing P1 appro-
priately. As a result, they claimed that the algebraic degree of (1 + P1) · z is
at most 70. Unfortunately, this claim was based on their algorithm including
some man-made work that is not written in the paper, and a cluster of 600–2400
cores is necessary to run their code. Thus, no one can verify their algorithm.
Our algorithm is very simple, can run on a normal PC, and recovers the exact
superpoly. As we recover the superpoly of (1+P1) ·z over the cube, we find that
the algebraic degree of (1+P1) ·z is not bounded by 70, and there is a monomial
whose degree is 75 + 26 = 101. In other words, even if we guess the correct P1,
the sum of (1 + P1) · z over the cube is not 0. It implies that we cannot attack
855-round Trivium by using their method.

Another application is Grain-128AEAD, which was previously referred to as
Grain-128a. Grain-128AEAD is one of the 2nd round candidates of the NIST
LWC standardization process. And the specification is slightly revised from
Grain-128a according to [21,22]. Assuming that the first pre-output key stream
can be observed, there is no difference between Grain-128AEAD and Grain-128a
in the context of the cube attack. As a result, we show that the key-recovery
attack against 184-round Grain-128AEAD shown in [12] is a distinguisher rather
than a key recovery. Moreover, we show that the distinguishing attack can be
improved up to 189 rounds. From 190 rounds onwards, the superpoly involves
some secret key bits, and it can be used in a key-recovery attack. However, since
the recovered superpoly is highly biased toward 0, using one superpoly is not
sufficient to recover any secret key bit. Therefore, we recover 15 different super-
polies for 190-round Grain-128AEAD, and show an attack procedure to recover
the secret key by using their superpolies. As a result, we can recover the secret
key of 190-round Grain-128AEAD with 2123 time complexity.

2 Brief Introduction of Division Property

We first introduce some notations for bitvectors. For any bitvector x ∈ F
m
2 ,

x[i] denotes the ith bit of x. Given two bitvectors x ∈ F
m
2 and u ∈ F

m
2 , xu =∏m

i=1 x[i]u[i]. Moreover, x � u denotes x[i] ≥ u[i] for all i ∈ {1, 2, . . . ,m}.

Modeling for Three-Subset Division Property Without Unknown Subset 471

2.1 Conventional Division Property

The (conventional) division property was proposed at Eurocrypt 2015, and it is
regarded as the generalization of the integral property.

Definition 1 ((Bit-based) division property). Let X be a multiset whose
elements take a value of Fm

2 , and k ∈ F
m
2 . When the multiset X has the division

property D1m

K
, it fulfills the following conditions:

⊕

x∈X

xu =

{
unknown if there are k ∈ K s.t. u � k,

0 otherwise.

For example, when a multiset X ⊂ F
4
2 has the division property

D14

{1100,1010,0011}, it guarantees that
⊕

x∈X
xu = 0 for any u ∈ {0000, 1000, 0100,

0010, 0001, 1001, 0110, 0101}.

2.2 Three-Subset Division Property

The set of u is divided into two subsets in the conventional division property,
where one is the subset such that

⊕
x∈X

xu is unknown and the other is the
subset such that the sum is 0. Three-subset division property was proposed in
[7], where the number of divided subsets is extended from two to three.

Definition 2 (Three-subset division property). Let X be a multiset whose
elements take a value of Fm

2 , and k ∈ F
m
2 . When the multiset X has the three-

subset division property D1m

K,L, it fulfills the following conditions:

⊕

x∈X

xu =

⎧
⎪⎨

⎪⎩

unknown if there are k ∈ K s.t. u � k,

1 else if there is � ∈ L s.t. u = �,

0 otherwise.

For example, when a multiset X ⊂ F
4
2 has the three-subset division property

D14

K,L, where K = {1100, 1010, 0011} and L = {1000, 0010, 0110}, it guarantees
that

⊕
x∈X

xu is 0 for any u ∈ {0000, 0100, 0001, 1001, 0101} and 1 for any
u ∈ {1000, 0010, 0110}.

2.3 Propagation Rules for Division Property

The propagation rule of the division property is shown for three basic operations:
“copy,” “and,” and “xor” in [7].

Rule 1 (copy). Let F be a copy function, where the input x ∈ F
m
2 and the

output is calculated as (x[1], x[1], x[2], x[3], . . . , x[m]). Let X and Y be the

472 Y. Hao et al.

input and output multisets, respectively. Assuming that X has D1m

K,L, Y has
D1m+1

K′,L′ , where K
′ and L

′ are computed as

K
′ ←

{
(0, 0, k[2], . . . , k[m]), if k[1] = 0

(1, 0, k[2], . . . , k[m]), (0, 1, k[2], . . . , k[m]), if k[1] = 1
,

L
′ ←

{
(0, 0, �[2], . . . , �[m]), if �[1] = 0

(1, 0, �[2], . . . , �[m]), (0, 1, �[2], . . . , �[m]), (1, 1, �[2], . . . , �[m]) if �[1] = 1
.

from all k ∈ K and all � ∈ L, respectively. Here, K
′ ← k (resp. L

′ ← �)
denotes that k (resp. �) is inserted into K

′ (resp. L′).
Rule2 (and). Let F be a function compressed by an AND, where the input

x ∈ F
m
2 and the output is calculated as (x[1]∧x[2], x[3], . . . , x[m]). Let X and

Y be the input and output multisets, respectively. Assuming that X has D1m

K,L,
Y has D1m−1

K′,L′ , where K
′ is computed from all k ∈ K as

K
′ ←

(⌈
k[1] + k[2]

2

⌉

, k[3], k[4], . . . , k[m]
)

.

Moreover, L′ is computed from all � ∈ L s.t. (�1, �2) = (0, 0) or (1, 1) as

L
′ ←

(⌈
�[1] + �[2]

2

⌉

, �[3], �[4], . . . , �[m]
)

.

Rule3 (xor). Let F be a function compressed by an XOR, where the input
x ∈ F

m
2 , and the output is calculated as (x[1]⊕x[2], x[3], . . . , x[m]). Let X and

Y be the input and output multisets, respectively. Assuming that X has D1m

K,L,
Y has D1m−1

K′,L′ , where K
′ is computed from all k ∈ K s.t. (k[1], k[2]) = (0, 0),

(1, 0), or (0, 1) as

K
′ ← (k[1] + k[2], k[3], k[4], . . . , k[m]).

Moreover, L
′ is computed from all � ∈ L s.t. (�[1], �[2]) = (0, 0), (1, 0), or

(0, 1) as

L
′ x←− (�[1] + �[2], �[3], �[4], . . . , �[m]) .

Here, L′ x←− � denotes that � is inserted if it is not included in L
′. If it is already

included in L
′, � is removed from L

′. Hereinafter, we call this property the
cancellation property.

Another important rule is that bitvectors in L influence K. Assuming that a
state has D1m

K,L, the secret key is XORed with the first bit in the state. Then, for
all � ∈ L satisfying �[1] = 0, a new bitvector (1, �[2], . . . , �[m]) is generated and
stored into K. Hereinafter, we call this property the unknown-producing property.

Modeling for Three-Subset Division Property Without Unknown Subset 473

2.4 Various Algorithms to Evaluate Propagation of Division
Property and Three-Subset Division Property

Breadth-First Search Algorithm. Evaluating the propagation of the division
property is not easy. The first few papers [4,5,7] use the so-called breadth-first
search algorithm, where Ki+1 (resp. Li+1) is computed from Ki (resp. Li) from
i = 0 to i = R − 1 step by step to evaluate R-round ciphers. Each node in the
depth level i corresponds to each bitvector in Ki and Li. When the block length
is large, the sizes of Ki and Li increase explosively. Therefore, we cannot manage
all nodes, and the in breadth-first search algorithm becomes impractical.

MILP Modeling for Conventional Division Property. Xiang et al. showed
that a mixed integer linear programming (MILP) can efficiently evaluate the
propagation of the conventional division property [9]. First, they introduced the
division trail as follows.

Definition 3 (Division Trail). Let DKi
be the division property of the input

for the ith round function. Let us consider the propagation of the division prop-
erty {k} def= K0 → K1 → K2 → · · · → Kr. Moreover, for any bitvector
k∗

i+1 ∈ Ki+1, there must exist a bitvector k∗
i ∈ Ki such that k∗

i can prop-
agate to k∗

i+1 by the propagation rule of the division property. Furthermore,
for (k0,k1, . . . ,kr) ∈ (K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round iterated cipher. If we can prove that there is no
division trail k0

Ek−−→ ei, which is an unit vector whose ith element is 1, the ith
bit of r-round ciphertexts is always balanced.

Using MILP we can efficiently solve this problem. Three fundamental opera-
tions, i.e., copy, xor, and and, can be modeled by using MILP. We generate an
MILP model that covers all division trails, and the MILP solver evaluates the
feasibility whether there are division trails from the input division property to
the output one or not. If the solver guarantees that there is no division trail, we
can prove that the target bit is balanced.

MILP Modeling for Variant Three-Subset Division Property. Unlike
the conventional division property, evaluating the propagation of the three-
subset division property is difficult. The main difficulty comes from the can-
cellation property in Rule 3 (xor) and the unknown-producing property. The
cancellation property implies that just focusing on the single trail is not enough,
and the unknown-producing property implies that we need to know Li when the
secret key is XORed.

Hu and Wang tackled this problem [16], and they built the so-called variant
three-subset division property, where only the cancellation property is neglected
from the original one. The accuracy of the variant three-subset division property
is worse than the original three-subset division property because of this neglect.
However, they showed that such a variant is still useful and it is at least more
accurate than the conventional division property.

474 Y. Hao et al.

Pruning Technique for Three-Subset Division Property. The technique
for the accurate modeling for three-subset division property was proposed by
Wang et al. [17]. The new idea is the combination between the breadth-first
search algorithm and an intelligent MILP-based pruning technique. The first
step of their algorithm is the same as the breadth-first search algorithm. The
pruning technique is applied to Ki and Li for every i. For all � ∈ Li, we create an
MILP model of the conventional division property for the (R − i)-round cipher,
and evaluate the feasibility of the division trail from � to the observed bit. Then,
the bitvector � can be removed from Li if it is infeasible. We also apply the
similar pruning technique to Ki. As a result, this pruning technique allows the
sizes of Ki and Li to decrease dramatically, and the evaluation of the three-subset
division property becomes possible.

They applied this new modeling technique to Simon, Simeck, PRESENT,
RECTANGLE, LBlock, and TWINE. Moreover, they also applied this algorithm
to the cube attack against Trivium. As a result, they showed that the 839-round
key recovery attack proposed in [12] degenerates into a zero-sum distinguisher.

3 Cube Attack and Division Property

3.1 Cube Attack

The cube attack was proposed by Dinur and Shamir in [18]. A cipher is regarded
as a public Boolean function whose input is divided into two parts: secret vari-
ables x and public ones v. Then, the algebraic normal form of the Boolean
function is represented as

f(x,v) =
⊕

u∈F
n+m
2

af
u (x‖v)u .

For a set of indices I = i1, i2, . . . , i|I| ⊂ {1, 2, . . . ,m}, which is referred as cube
indices, tI denotes a monomial as tI = vi1 · vi2 · · · vi|I| . The Boolean function
f(x,v) can also be decomposed as

f(x,v) = tI · p(x,v) + q(x,v).

Let CI , which is referred as a cube (defined by I), be a set of 2|I| values where
variables in {vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values, and
all remaining variables are fixed to any value. The sum of f over all values of
the cube CI is

⊕

CI

f(x,v) =
⊕

CI

tI · p(x,v) +
⊕

CI

q(x,v) = p(x,v)

because tI = 1 for only one case in CI and each term in q(x,v) misses at least
one variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the superpoly of the
cube CI , and the goal of the cube attack is to recover the superpoly.

Modeling for Three-Subset Division Property Without Unknown Subset 475

3.2 Division Property and Cube Attack

The division property is formally developed as the generalization of the integral
property, and it has been initially used to evaluate the integral distinguisher.
When the division property is applied to the cube attack [11], the authors showed
the relationship between the division property and the algebraic normal form of
public functions.

Lemma 1 ([11]). Let f(x) be a polynomial from F
n
2 to F2 and af

u ∈ F2 (u ∈ F
n
2)

be the ANF coefficients. Let k be an n-dimensional bitvector. Then, assuming
that the initial division property D1n

{k} cannot propagate to D1
1 after evaluating

the function f , af
u is always 0 for u � k.

Even if the function f is complicated and practically impossible to describe the
algebraic normal form, the partial information can be recovered by using the
division property. The division property based cube attack first evaluates secret
variables that are not involved in the superpoly. Let J̄ be the set of such secret
variables, and the set J := {1, 2, . . . , n} \ J̄ denotes secret variables that could
be involved in the superpoly. Then, we can recover the superpoly with the time
complexity of 2|I|+|J|.

In the ANF of the superpoly recovered by the division property, if certain
coefficients are 0, it is guaranteed that these coefficients are 0. However, if certain
coefficients are 1, they cannot be guaranteed to be 1. Therefore, only using
the division property does not allow us to recover the exact algebraic normal
form. This limitation of the division property causes the so-called strong and
weak assumptions in [11], i.e., they assume af

u = 1 when the division property
D1n

u can propagate to D1
1. When these assumptions do not hold, the superpoly

can be much simpler than estimated, and in the extreme case, the superpoly
becomes a constant function. Then, the key-recovery attack degenerates into
the distinguishing attack. Such degeneration is reported in [19] and [17], where
the key-recovery attack against 839-round Trivium in [12] degenerates into the
distinguishing attack.

3.3 Three-Subset Division Property and Cube Attack

The authors in [17] showed that these assumptions can be removed by using
three-subset division property. Proposition 4 in [17] addresses this problem, but
a more simple formula is enough for our application.

Lemma 2 (Simple case of [17]). Let f(x) be a polynomial from F
n
2 to F2 and

af
u ∈ F2 (u ∈ F

n
2) be the ANF coefficients. Let � be an n-dimensional bitvector.

Then, assuming that the initial division property D1n

φ,{�} propagates to D1
φ,1 after

evaluating the function f , af
� = 1.

Note that we only consider the case that the function f is a public function.
Then, since the function f is not key-dependent, the propagation for K and
that for L are perfectly independent. In other words, we no longer consider the
propagation for K because the initial division property is empty φ.

476 Y. Hao et al.

0 8 16 24 32 40 46
0
8

16
24
32
40
48

number of rounds

si
ze

of
L
i

Fig. 1. Size of Li after applying the pruning technique. Check if the superpoly involves
K[61] in the cube shown in [12].

4 Three-Subset Division Property w/o Unknown Subset

4.1 Motivation and Limitation of Pruning Technique

Our initial motivation is to verify the potential of the state-of-the-art modeling
technique with the pruning technique [17]. They claimed that the exact superpoly
can be recovered, but the application for the largest number of rounds was the
degeneration from the key-recovery attack to a zero-sum distinguisher.1 The
natural question is why they did not show improved key-recovery attacks. Since
such a degeneration implies unexpectedly simpler superpoly, we can expect that
the cube described in [12] leads to a key-recovery attack for 840-round Trivium.
If we can recover the superpoly of such a cube, we can directly improve the key-
recovery attack against Trivium. Therefore, we implemented their algorithm
by ourselves and verified whether or not we can recover the actual superpoly
of 840-round Trivium. As a result, in order to make the breadth-first search
algorithm with pruning technique feasible, it requires an assumption that almost
all elements in Li must be pruned.

We first verify that the breadth-first search algorithm with pruning technique
is feasible to prove that the 839-round cube attack shown in [12] cannot recover
any secret key bit. In this attack, the number of cube bits is 78, where all IV
bits except for IV [34] and IV [47] are active and these constant bits are fixed
as (IV [34], IV [47]) = (0, 1). Then, the conventional division property shows
that a secret key bit K[61] could be involved in the superpoly [12]. We now
evaluate the same cube by using the three-subset division property. According to
[17], the corresponding initial property L0 consists of sixteen 288-bit bitvectors,
where 1 is assigned for cube bits and involved-key bit, any value is assigned for
four constant-1 bits (s93+47, s286, s287, s288), and 0 is assigned for other bits. We
applied the pruning technique to sixteen bitvectors, and only two bitvectors are
remaining and the other fourteen bitvecotrs can be removed. We applied the

1 They showed that the superpoly of 842-round Trivium can be recovered with the
complexity 232, but the unit of the complexity is the breadth-first search algorithm
with pruning technique. Even one unit requires to solve many MILPs, and the com-
plexity of the algorithm is not bounded. Therefore, unlike the previous theoretical
cube attack [11,12], we cannot guarantee that it is faster than the exhaustive search.

Modeling for Three-Subset Division Property Without Unknown Subset 477

0 1 2 3 4 5
0

64
128
196
256
320

number of rounds

si
ze

of
L
i

Fig. 2. Size of Li after applying the pruning technique. Check if the superpoly for
840-round Trivium has constant-1 term.

pruning technique in every round, and Fig. 1 summarizes the size of Li for the
ith round. The size of Li is bounded by a reasonable range and all bitvectors
are removed in 46 rounds. It implies that the actual superpoly does not involve
K[61].

We next try whether or not the breadth-first search algorithm with pruning
technique is available to attack 840-round Trivium. We use a cube similar to
the one above, but non-cube bits (IV [34], IV [47]) are fixed to 0 in order for
the superpoly to be more simplified. Before we recover all monomials in the
superpoly, as the first step, we aim to identify if the superpoly has the constant-
1 term. In other words, we evaluate whether or not 840-round Trivium has a
monomial

∏
i∈{1,2,...,80}\{34,47} s93+i. Figure 2 shows the increase of Li. The more

the size of Li increases, the more MILP instances we need to solve. We used
Gurobi Optimizer on a server (Intel Xeon CPU E5-2699 v3, 18 cores, 128 GB
RAM), and we spent almost two weeks to even draw Fig. 2, where only five
rounds are evaluated. To recover the superpoly for 841-round Trivium, we need
to finish this algorithm and apply the same algorithm to all other monomials that
could be involved. Therefore, we conclude that the breadth-first search algorithm
with pruning technique cannot recover the superpoly for 841-round Trivium in
reasonable time. It is inefficient unless the size of Li is bounded by reasonable
size, e.g., 100, for all i.

4.2 Three-Subset Division Property Without Unknown Subset

The pruning technique is not always efficient to evaluate the cube attack, and
we cannot improve the key-recovery attack against Trivium due to the explosive
increase of |Li|. To address this problem, we need to develop a new modeling
technique. Two properties, i.e., the unknown-producing property and the can-
cellation property, make it difficult to model the three-subset division property
directly. Thus, we first explain how to overcome these properties.

Unknown-Producing Property. Due to the unknown-producing property, we
need to evaluate the accurate L when the secret key is XORed. Otherwise, we
cannot generate accurate bitvectors that are newly inserted to K. Unfortunately,

478 Y. Hao et al.

no efficient model is known to handle the accurate intermediate L by using
automatic tools.

The simplest solution to address this property is the use of three-subset divi-
sion property without unknown subset. Recall the definition of the division prop-
erty. The unknown subset is defined as the set of u in which a parity

⊕
x∈X

xu

is unknown, where “unknown” means that the parity depends on the secret key.
The unknown subset is used to evaluate the key-dependent function such as in
block ciphers. On the other hand, when we evaluate the ANF coefficients of the
public function, we do not need to use the unknown subset. At first glance, it
looks like the application is restricted to public functions, but it does not matter
in the application to the cube attack. Besides, if the key-schedule function is
also included into the evaluated function, we can regard the block cipher as the
public function.

Cancellation Property. Another property that we need to address is the can-
cellation property. Our idea to overcome this property is to count the number of
solutions by using an MILP instead of evaluating the feasibility2. To understand
our modeling, we introduce the following slightly modified definition. Note that
this definition is equivalent to the definition of the three-subset division property
without unknown subset. It is introduced only for ease of understanding of our
modeling, and by itself does not yield new insight.

Definition 4 (Modified three-subset division property). Let X be a mul-
tiset whose elements take a value of Fm

2 . Let L̃ be also a multiset whose elements
take a value of Fm

2 . When the multiset X has the modified three-subset division
property (shortly T 1m

L̃
), it fulfils the following conditions:

⊕

x∈X

xu =

{
1 if there are odd-number of u’s in L̃,

0 otherwise.

Note that xu =
∏m

i=1 x[i]u[i].

Instead of considering the cancellation property, we count the number of appear-
ances in each bitvector in the multiset L̃ and check its parity. Since we do not
need to consider the cancellation property, the modeling for xor is simplified as
follows:

Rule3’ (xor). Let F be a function compressed by an XOR, where the input
x ∈ F

m
2 , and the output is calculated as (x[1] ⊕ x[2], x[3], . . . , x[m]). Let X

and Y be the input and output multisets, respectively. Assuming that X has
T 1m

L̃
, Y has T 1m−1

L̃′ , where L̃′ is computed from all � ∈ L s.t. (�[1], �[2]) = (0, 0),
(1, 0), or (0, 1) as

L̃
′ ← (�[1] + �[2], �[3], �[4], . . . , �[m]) .

2 The same idea was already described in [17] although the authors did not use the
idea in their model.

Modeling for Three-Subset Division Property Without Unknown Subset 479

Here, L̃ and L̃
′ are multisets, and L̃

′ ← � allows the same � is stored into L̃
′

several times.

We no longer use insertions with the cancellation property, and the produced
bitvector is always inserted to a multiset. We introduce a three-subset division
trail, which is similar to the division trail.

Definition 5 (Three-Subset Division Trail). Let T
L̃i

be the three-subset
division property of the input for the ith round function. Let us consider the prop-
agation of the three-subset division property {�} def= L̃0 → L̃1 → L̃2 → · · · → L̃r.
Moreover, for any bitvector �∗

i+1 ∈ L̃i+1, there must exist a bitvector �∗
i ∈ L̃i such

that �∗
i can propagate to �∗

i+1 by the propagation rule of the modified three-subset
division property. Furthermore, for (�0, �1, . . . , �r) ∈ (L̃0 × L̃1 × · · · × L̃r) if �i

can propagate to �i+1 for all i ∈ {0, 1, . . . , r − 1}, we call (�0 → �1 → · · · → �r)
an r-round three-subset division trail.

The modified three-subset division property implies that we do not need to
consider the cancellation property in every round. We just enumerate the number
of three-subset division trails �

f−→ ei. When the number of trails is odd, the
algebraic normal form of f contains x� . Otherwise, it does not contain x� .

In summary, removing the unknown subset allows us to skip recovering the
accurate L when the secret key is XORed. Using multisets instead of sets allows
us to handle the cancellation property by automatic tools such as MILP easily.

4.3 New Modeling Method

Unlike the pruning technique in [17], our method no longer uses the breadth-
first search algorithm and it just uses an MILP model. The previous algorithm
uses the MILP model for the conventional division property. On the other hand,
we use the MILP model for the modified three-subset division property, and all
feasible solutions are enumerated by using an off-the-shelf MILP solver3.

Proposition 1 (MILP Model for copy). Let a
copy−−−→ (b1, b2) be a three-

subset division trail of copy. The following inequalities are sufficient to describe
the propagation of the modified three-subset division property for copy.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M.var ← a, b1, b2 as binary.
M.con ← b1 + b2 ≥ a

M.con ← a ≥ b1
M.con ← a ≥ b2

3 Our model is very similar to the model for variant three-subset division property
proposed in [16], but there are two differences. First, we do not treat the unknown
subset. Second, the goal of our model is to enumerate all feasible solutions, but the
goal in [16] is to evaluate the feasibility of the model.

480 Y. Hao et al.

When the or operation is supported in the MILP solver, e.g., Gurobi optimizer
supports the or operation, we can simply write M.con ← a = b1 ∨ b2. Unlike
the conventional division property, we need to allow the following propagation
1

copy−−−→ (1, 1). Otherwise, we miss any feasible solutions.

Proposition 2 (MILP Model for and). Let (a1, a2, . . . , am)
and−−→ b be a three-

subset division trail of and. The following inequalities are sufficient to describe
the propagation of the modified three-subset division property for and.

{
M.var ← a1, a2, . . . , am, b as binary.
M.con ← b = ai for all i ∈ {1, 2, . . . , m}

Some feasible propagation on the conventional division property becomes infeasi-
ble. For example, (1, 1, 0) and−−→ 1 is feasible for the conventional division property,
but it is not so in the modified three-subset division property.

Proposition 3 (MILP Model for xor). Let (a1, a2, . . . , am)
xor−−→ b be a three-

subset division trail of xor. The following inequalities are sufficient to describe
the propagation of the modified three-subset division property for xor.

{
M.var ← a1, a2, . . . , am, b as binary.
M.con ← a1 + a2 + · · · + am = b

Note that this is the same as the one for the conventional division property.
While the goal of the previous method is to find one feasible solution or to

prove its infeasibility, the goal of our method is to enumerate all feasible solu-
tions. Three Propositions are enough to represent any cipher, but such a straight-
forward model sometimes increases the number of feasible solutions explosively.
A more clever model is sometimes required to avoid the explosive increase of
feasible (but redundant) solutions, and we discuss this in Sect. 6 in detail.

4.4 Algorithm to Recover ANF Coefficients of Public Function

Let f be a public Boolean function whose input denotes an n-bit string x =
(x[1], x[2], . . . , x[n]), and let it consist of the iteration of simple public functions.
Then, the algebraic normal form of f is represented as

f(x) =
⊕

u∈Fn
2

af
uxu .

Our goal is to recover the value of af
u for some u. We first prepare an MILP

model M that represents the modified three-subset division property of the
function f . Algorithm 1 shows the algorithm to recover an ANF coefficient af

u .
The initial modified three-subset division property is defined by u, and the
number of feasible solutions is enumerated by using the MILP solver. Note that

Modeling for Three-Subset Division Property Without Unknown Subset 481

Algorithm 1. Algorithm to recover an ANF coefficient af
u

1: procedure attackFramework(M, u)
2: Let xi be an MILP variable of M corresponding to the ith input of f .
3: M.con ← xi = 1 for all i s.t. u[i] = 1.
4: M.con ← xi = 0 for all i s.t. u[i] = 0.
5: solve MILP model M and enumerate all feasible solutions
6: if the number of solutions is odd then
7: af

u = 1
8: else
9: af

u = 0
10: end if
11: end procedure

Algorithm 2. Algorithm to recover the superpoly
1: procedure attackFramework(M, I, (C0))
2: Let xi be an MILP variable of M corresponding to the ith secret variable.
3: Let vi be an MILP variable of M corresponding to the ith public variable.
4: M.con ← vi = 1 for all i ∈ I
5: M.con ← vi = 0 for all i ∈ C0

6: prepare a hash table J whose key is (n + m)-bit string and value is counter.
7: solve MILP model M and enumerate all feasible solutions
8: for all feasible solutions do
9: get u = (x1, x2, . . . , xn, v1, v2, . . . , vm) in every found solution

10: increase J [u] by 1
11: end for
12: prepare a polynomial p = 0
13: for all u whose J [u] is an odd number do
14: p = p + (x‖v)u .
15: end for
16: return p/tI
17: end procedure

the efficiency of Algorithm 1 depends on the number of feasible solutions. When
there are too many solutions, it is practically impossible to enumerate all feasible
solutions. In other words, the necessary condition that Algorithm1 stops by
reasonable time is that the number of feasible solutions is bounded by reasonable
size, e.g., at most 216.

While Algorithm 1 is very simple, it is less efficient for the application to
the cube attack because we need to recover all monomials in the superpoly.
The number of monomials that Algorithm 1 can evaluate is only one. Therefore,
we need to repeat Algorithm 1 many times while changing the input u until all
monomials are recovered exactly. One of the advantages of our modeling method
is that we can simply extend the algorithm to recover the superpoly, and the
extended algorithm uses only one MILP model. Algorithm2 shows the dedi-
cated algorithm to recover the superpoly. Unlike Algorithm1, the initial division
property is not determined and only the part corresponding to the cube bits is

482 Y. Hao et al.

fixed to 1. When we enumerate all feasible solutions under such constraints, all
monomials that could be involved in the superpoly can be found as the feasible
solutions. The third input C0 is an option to declare that some public variables
are fixed to 0. Specific attention should be paid to the situation that C0 = φ.
In this case, Algorithm 2 gives the ANF of p(x,v) consisting of all secret and
non-cube public variables. In other words, we do not need to specify the assign-
ment of non-cube public variables in advance. This is an obvious advantage of
our method over the existing breadth-first search algorithm with pruning tech-
nique. On the other hand, when the assignment of non-cube public variables
is determined in advance, C0 should be set because it decreases the number of
three-subset division trails and increases the efficiency of the algorithm.

As far as we applied these algorithms to the cube attack against Triv-
ium or Grain-128AEAD, Algorithm2 is not only simpler but also more efficient
than the iteration of Algorithm1. Unfortunately, we cannot say the explicit
reason because it depends on the inside of MILP solvers. As one observation,
many three-subset division trails with different initial division property share
the same trail in the last several rounds. Therefore, we expect that their trails
are efficiently enumerated in Algorithm 2. On the other hand, the iteration of
Algorithm 1 needs to find the shared part of trails every time.

5 Improved Cube Attacks Against Trivium

5.1 Specification of Trivium and Its MILP Model

Trivium [23] is an NLFSR-based stream cipher, and the internal state is repre-
sented by a 288-bit state (s1, s2, . . . , s288). The 80-bit secret key K is loaded to
the first register, and the 80-bit initialization vector IV is loaded to the second
register. The other state bits are set to 0 except the last three bits in the third
register. Namely, the initial state bits are represented as

(s1, s2, . . . , s93) = (K[1],K[2], . . . ,K[80], 0, . . . , 0),
(s94, s95, . . . , s177) = (IV [1], IV [2], . . . , IV [80], 0, . . . , 0),

(s178, s279, . . . , s288) = (0, 0, . . . , 0, 1, 1, 1).

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93, t2 ← s162 ⊕ s177, t3 ← s243 ⊕ s288,

z ← t1 ⊕ t2 ⊕ t3,

t1 ← t1 ⊕ s91s92 ⊕ s171, t2 ← t2 ⊕ s175s176 ⊕ s264, t3 ← t3 ⊕ s286s287 ⊕ s69,

where z denotes the key stream. The state of the next round is computed as

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92),
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176),
(s178, s279, . . . , s288) ← (t2, s178, . . . , s287).

Modeling for Three-Subset Division Property Without Unknown Subset 483

Algorithm 3. Model for modified three-subset division property for Trivium

1: procedure TriviumCore(M, x1, . . . , x288, i1, i2, i3, i4, i5)
2: M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3: M.con ← xij = yij ∨ zj for all j ∈ {1, 2, 3, 4}
4: M.con ← a = z3
5: M.con ← a = z4
6: M.con ← yi5 = xi5 + a + z1 + z2
7: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
8: yi = xi
9: end for

10: return (M, y1, . . . , y288)
11: end procedure

1: procedure TriviumEval(round R)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, 2, . . . , 288}
4: for i = 81 to 93 and i = 93 + 80 to 285 do
5: M.con ← s0i = 0

6: end for
7: for r = 1 to R do
8: (M, x1, . . . , x288) = TriviumCore(M, sr−1

1 , . . . , sr−1
288 , 66, 171, 91, 92, 93)

9: (M, y1, . . . , y288) = TriviumCore(M, x1, . . . , x288, 162, 264, 175, 176, 177)
10: (M, z1, . . . , z288) = TriviumCore(M, y1, . . . , y288, 243, 69, 286, 287, 288)
11: (sr1, . . . , s

r
288) = (z288, z1, . . . , z287)

12: end for
13: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
14: M.con ← sRi = 0

15: end for
16: M.con ← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = 1

17: return M
18: end procedure

In the initialization, the state is updated 1152 times without producing an out-
put. After the initialization, one bit key stream is produced by every update
function.

MILP Model. TriviumEval in Algorithm 3 generates a model M as the input
of Algorithm 1 or 2, and all three-subset division trails are included as feasible
solutions of this model M. TriviumCore in Algorithm 3 generates MILP vari-
ables and constraints of the update function for each register.

5.2 Practical Verification

To verify our new algorithm, we select the same parameters as the one in the
previous works [11,12]. Example 1 takes parameters from [11] and set the empty
set φ for C0. Then, Algorithm 2 recovers the algebraic normal form of p(x,v)
involving all key and non-cube IV bits.

484 Y. Hao et al.

Table 3. The monomial (x‖v)u /tI ’s and their J [u]’s corresponding to Example 1

Parity J [u] (x‖v)u /tI Parity J [u] (x‖v)u /tI

0 2 x60v22 1 1 v9v20

1 1 x60v19v20 1 1 v6v7v8v20

1 1 x60v20 0 2 v22v72

1 1 x60v6v20 1 1 v7v8

1 1 x60v7 1 1 v6v9v20

1 1 v7v8v19v20 1 1 v19v20v72

0 2 v7v8v22 1 1 v7v9

1 1 v9v19v20 1 1 v20v72

0 2 v9v22 1 1 v6v20v72

1 1 v7v8v20 1 1 v7v72

Example 1 (Parameters from [11]). We let I = {1, 11, 21, 31, 41, 51, 61, 71}
and evaluate z590. We first run Algorithm 3 as M ← TriviumEval(590) and get
the MILP model based three-subset division property. Then, we set C0 = φ and
acquire p(x,v) by running Algorithm 2 as p(x,v) ← attackFramework(I,M, φ).
The monomial (x‖v)u/tI ’s along with their J [u]’s are listed in Table 3. The ANF
of p(x,v) can therefore be determined as

p(x) = x60(v19v20 + v20 + v6v20 + v7)
+ (v7v8v19v20 + v9v19v20 + v7v8v20 + v9v20 + v6v7v8v20 + v7v8

+ v6v9v20 + v19v20v72 + v7v9v20v72 + v6v20v72 + v7v72)

5.3 Cube Attacks Against 840-Round and 841-Round Trivium

To demonstrate that our modeling method is more efficient than the previous
method, we applied it to Trivium. For R-round Trivium, the model M is
generated as M ← TriviumEval(R) by calling Algorithm 3. Then, we set all
non-cube IV bits to constant 0, i.e., for arbitrary cube I, the corresponding
parameter C0 is defined as the complement of I: C0 ← {0, . . . , 80}\I. With such
M, I and C0, the superpoly is defined as p(x) ← attackFramework(M, I, C0)
by calling Algorithm 2. As a result, we can successfully recover the superpoly of
840-round and 841-round Trivium. In other words, we show key-recover attacks
against 840- and 841-round Trivium without any assumption. The detailed
parameters of the two attacks are as follows:

Superpoly of 840-Round Trivium. We used the same cube as the one shown
in Sect. 4.1, i.e., the cube indices are

I = {1, 2, . . . , 33, 35, 36, . . . , 46, 48, 49, . . . , 80},

and IV [34] = IV [47] = 0. Note that the previous algorithm cannot recover the
corresponding superpoly as we already showed in Sect. 4.1. As a result, 12, 909

Modeling for Three-Subset Division Property Without Unknown Subset 485

feasible three-subset division trails are enumerated, and J [u] in Algorithm2 is
non zero for 228 different u’s. Out of 228 u’s, there are 67 u’s whose J [u] is
an odd number. In other words, the superpoly is represented as the sum of 67
monomials, and the following

p(x) = 1 + x80 + x79 + x79x80 + x78x79 + x76x77 + x75x76x78 + x75x76x77

+ x70 + x68 + x68x80 + x68x79x80 + x68x78x79 + x68x69 + x66x67

+ x66x67x80 + x66x67x79x80 + x66x67x78x79 + x65 + x64x66 + x64x65

+ x63x64 + x59x63 + x54x68 + x54x66x67 + x53x68 + x53x66x67 + x52

+ x52x53 + x51x77 + x51x75x76 + x51x52 + x50x78 + x50x76x77 + x50x51

+ x43 + x41 + x41x80 + x41x79x80 + x41x78x79 + x41x54 + x41x53 + x39

+ x39x64 + x38 + x37x38 + x35x55 + x33x34x55 + x27 + x26 + x22x66

+ x22x64x65 + x22x39 + x20x21x66 + x20x21x64x65 + x20x21x39 + x12

+ x8x78 + x8x77 + x8x76x77 + x8x75x76 + x8x55 + x8x51 + x8x50

+ x1x35 + x1x33x34 + x1x8

is the recovered superpoly, where x = (x1, x2, . . . , x80) denotes the secret key,
i.e., xi = K[i]. This superpoly is a balanced Boolean function because there is a
monomial x12 that is independent of other monomials. Therefore, we can recover
1 bit of information by using 278 data and time complexities. The dominant part
of the whole key recovery attack is the exhaustive search after 1-bit key recovery,
which is 279 time complexity.

Superpoly of 841-Round Trivium. We next aim to recover the superpoly
of 841-round Trivium, but it has too many trails to enumerate all of them.
Therefore, we heuristically change cube indices such that the number of trails is
not large. As a result, the following cube is considered:

I = {1, 2, . . . , 8, 10, 11, . . . , 78, 80},

and IV [9] = IV [79] = 0. As a result, 30, 177 feasible three-subset division trails
are enumerated, and J [u] in Algorithm 2 is non zero for 216 different u’s. Out
of 216 u’s, there are 53 u’s whose J [u] is an odd number. In other words, the
superpoly p(x) is represented as the sum of 53 monomials, and the following

p(x) = x78 + x76 + x75x76 + x74 + x74x75 + x74x75x77 + x74x75x76 + x72x73

+ x68 + x67 + x63 + x61x62 + x59 + x59x72 + x59x70x71 + x59x61 + x58

+ x58x80 + x58x78x79 + x58x66 + x58x59 + x53x58 + x51x74 + x51x73

+ x51x72x73 + x51x71x72 + x50x76 + x50x74x75 + x49 + x49x77

+ x49x75x76 + x49x50x74 + x49x50x73 + x49x50x72x73 + x49x50x71x72

+ x47 + x47x51 + x47x49x50 + x46x51 + x46x49x50 + x45x59 + x36 + x32

+ x30x31 + x24 + x24x74 + x24x73 + x24x72x73 + x24x71x72 + x24x47

+ x24x46 + x9 + x5

486 Y. Hao et al.

is the recovered superpoly. This superpoly is also a balanced Boolean function
because there is a monomial x5 that is independent of other monomials. There-
fore, we can recover 1 bit of information by using 278 data and time complexities.
The dominant part of the whole key recovery attack is the exhaustive search after
1-bit key recovery, which is 279 time complexity.

5.4 Verification of 855-Round Attack from CRYPTO2018 [20]

In CRYPTO2018, a new type of cube attacks was proposed, where a key recovery
attack against 855-round Trivium was shown. The authors claimed the following
statement.

Statement 1 ([20]). When IV [31] = IV [49] = IV [61] = IV [75] = IV [76] = 0,
the degree of (1 + s21094)z855 is bounded by 70.

Attackers first guess the part of a secret key involved in s21094 and compute the
sum of (1 + s21094)z855 over cubes whose dimension is larger than 70. When the
correct key is guessed, the sum must be 0. In other words, if the sum is 1, we
can discard the guessed key.

To prove Statement 1, the authors developed a new algorithm to evaluate
the upper bound of the degree. However, their algorithm includes some man-
made work that is not written in their paper, and a cluster of 600–2400 cores
is necessary to run their code. As a result, no one can verify their algorithm
and the correctness of Statement 1. The only supportive material is the practical
example by using 721-round Trivium4. Later, Hao et al. reviewed Statement 1
by using the conventional bit-based division property [24]. They showed that
the sum of (1 + s21094)z855 over 75-dimensional cube could involve all 80 key
bits with degree bound 27. According to this result, Hao et al. pointed out that
Statement 1 unlikely holds. However, as we already pointed out, the conventional
bit-based division property is not always accurate. Therefore, the correctness of
Statement 1 becomes an open question.

In comparison with Fu et al.’s algorithm, our algorithm using three-subset
division property has three advantages:

– Cheap implementation cost. Our task is to generate an MILP model, and the
complicated part is solved by using off-the-shelf MILP solvers. Our verification
code using Gurobi C++ API contains about 300 lines.

– Run on the normal PC. We do not need to prepare many clusters.
– Tight bound is proven. Our algorithm can recover the ANF coefficient af

u for
some u accurately.

With such a method, we inspect Statement 1.
4 In [20], the authors showed that the degree of (1+s29094)z721 is bounded by 32 when the

correct s29094 is guessed. However, Hao et al. pointed out that the degree is bounded
by 32 even if we guess s29094 with incorrect secret key, as a consequence we cannot
distinguish the correct key from the wrong keys [24]. Response to this error, Fu et
al. reproduced the practical example for 721-round Trivium [25].

Modeling for Three-Subset Division Property Without Unknown Subset 487

s01 s093 s094 s0177 s0178 s0288

s2101 s21093 s21094 s210177 s210178 s210288

210 rounds

645 rounds

s85566 s85593 s855162 s855177 s855243 s855288

1

(1 + s21094)z855

o
p

q

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Fig. 3. Overview of new type of cube attack for 855-round Trivium

MILP Model to Verify 855-Round Attack. To verify Statement 1, we
consider a circuit shown in Fig. 3 and generate the corresponding MILP
model by calling Algorithm 4 as M ← TriviumSecEval(855, 210). Corre-
sponding to the setting of [20], we set I as the largest possible cube, i.e.,
I = {1, . . . , 80} \ {31, 49, 61, 75, 76}, and all non-cube IVs are set to 0, i.e.,
C0 = {31, 49, 61, 75, 76}. Then, with such M, I, C0, we run Algorithm 2 as
p(x) ← attackFramework(M, I, C0) to check whether p(x) is constant 0.
According to the result by Hao et al. by using the conventional bit-based division
property, we first evaluated whether or not p(x) has monomials whose degree
is 27. Then, the number of appearance J [u] is non-zero for the following two
27-degree monomials

∏

i∈{29,30,41,42,44,45,46,47,49,54,55,56,57,59,60,63,66,67,68,69,70,71,72,73,74,75,76}
xi,

∏

i∈{29,30,41,42,43,44,45,46,47,49,54,55,56,57,59,60,63,66,67,69,70,71,72,73,74,75,76}
xi,

but J [u] = 2 for the two monomials above. Therefore, these monomials do not
appear in p(x). We next evaluated whether or not p(x) has monomials whose
degree is 26. Since there are quite many candidates of u whose J [u] is non zero,
we randomly picked one from these candidates and evaluated the number of
trails. As a result, J [u] = 1 in the following monomial

∏

i∈{40,41,42,53,54,55,56,57,58,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,78,79}
xi.

Note that finding one u such that J [u] is an odd number is enough to disprove
Statement 1.

488 Y. Hao et al.

Algorithm 4. Model for modified three-subset division property of Trivium
corresponding to the Fu et al.’s method in [20]
1: procedure TriviumSecEval(round R, sector round R′)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, 2, . . . , 288} and M.var ← o

4: for i = 81 to 93 and i = 93 + 80 to 285 do
5: M.con ← s0i = 0

6: end for
7: M.var ← o
8: for i = 81 to 93 and i = 93 + 80 to 285 do
9: M.con ← s0i = 0

10: end for
11: for r = 1 to R do
12: (M, x1, . . . , x288) = TriviumCore(M, sr−1

1 , . . . , sr−1
288 , 66, 171, 91, 92, 93)

13: (M, y1, . . . , y288) = TriviumCore(M, x1, . . . , x288, 162, 264, 175, 176, 177)
14: (M, z1, . . . , z288) = TriviumCore(M, y1, . . . , y288, 243, 69, 286, 287, 288)
15: (sr1, . . . , s

r
288) = (z288, z1, . . . , z287)

16: if r = R′ then
17: M.var ← ~sR

′
94, p, q

18: M.con ← sR
′

94 = ~sR
′

94

∨
p

19: M.con ← q = o + p

20: sR
′

94 = ~sR
′

94

21: end if
22: end for
23: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
24: M.con ← sRi = 0

25: end for
26: M.con ← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = q

27: M.con ← q = 1

28: return M
29: end procedure

6 Improved Cube Attacks Against Grain-128AEAD

6.1 Specification of Grain-128AEAD and Its MILP Model

Grain-128AEAD [26] is a member of Grain family and also one of the 2nd-round
candidates of the NIST LWC standardization process. Grain-128AEAD inherits
many specifications from Grain-128a, which was proposed in 2011 [27]. There
are four differences between Grain-128AEAD and Grain-128a: (1) larger MACs,
(2) no encryption-only mode, (3) initialization hardening, and (4) keystream
limitation. These differences do not come only from the requirement for the
NIST LWC standardization process but also from recent cryptanalysis result
against Grain-128a [21,22].

The internal state is represented by two 128-bit states, (b0, b1, . . . , b127) and
(s0, s1, . . . , s127). The 128-bit key is loaded to the first register b, and the 96-bit
initialization vector is loaded to the second register s. The other state bits are

Modeling for Three-Subset Division Property Without Unknown Subset 489

set to 1 except the least one bit in the second register. Namely, the initial state
bits are represented as

(b0, b1, . . . , b127) = (K1,K2, . . . ,K128),
(s0, s1, . . . , s127) = (IV1, IV2, . . . , IV96, 1, . . . , 1, 0).

The pseudo code of the update function in the initialization is given as follows.

g ← b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13 + b17b18 + b27b59

+ b40b48 + b61b65 + b68b84 + b88b92b93b95 + b22b24b25 + b70b78b82, (1)
f ← s0 + s7 + s38 + s70 + s81 + s96, (2)
h ← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94, (3)
z ← h + s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89, (4)
(b0, b1, . . . , b127) ← (b1, . . . , b127, g + s0 + z),
(s0, s1, . . . , s127) ← (s1, . . . , s127, f + z).

In the initialization, the state is updated 256 times without producing an output.
After the initialization, the update function is tweaked such that z is not fed to
the state, and z is used as a pre-output key stream. Hereinafter, we assume that
the first bit of the pre-output key stream can be observed. Note that there is no
difference between Grain-128a and Grain-128AEAD under this assumption.

MILP Model. Grain128aEval in Algorithm 5 generates MILP model M as
the input of Algorithm1 and 2, and the model M can evaluate all three-subset
division trails for Grain-128AEAD whose initialization rounds are reduced to R.
funcZ generates MILP variables and constraints for Eq. (3) and Eq. (4), funcG
generates MILP variables and constraints for Eq. (1), and funcF generates MILP
variables and constraints for Eq. (2).

6.2 Verification of 184-Round Attack from [12]

In [12], the cube attack against 184-round Grain-128AEAD (Grain-128a) was
shown. Here, the following cube indices

I = {1, 2, . . . , 46, 48, 49, . . . , 96},

where IV [47] = 0 are used.5 The conventional bit-based division property with
flag technique reveals that the algebraic degree of the corresponding superpoly
is at most 14 and the number of monomials is at most 214.61. It implies that the
corresponding superpoly can be recovered with 295+14.61 time complexity.

We run Algorithm2 with the model generated by Algorithm 5. Surprisingly,
the superpoly does not involve the secret key. There are 16, 384 three-subset
5 The first bit of IV is included in the cube index. When the target is Grain-128a,

this attack requires queries to both authentication and encryption-only modes. Note
that the first bit of IV can also be active in Grain-128AEAD.

490 Y. Hao et al.

Algorithm 5. Model for Grain-128AEAD
1: procedure Grain128aEval(round R)
2: Prepare empty MILP Model M
3: M.var ← b0i for i ∈ {0, 1, . . . , 127} as binary
4: M.var ← s0i for i ∈ {0, 1, . . . , 127} as binary
5: M.con ← s0127 = 0

6: for r = 1 to R do
7: (M, b′

0, . . . , b
′
127, s

′
0, . . . , s

′
127, z

r) = funcZ(M, br−1
0 , . . . , br−1

127 , sr−1
0 , . . . , sr−1

127)
8: M.var ← zg, zf as binary
9: M.con ← zr = zg ∨ zf

10: (M, b′′
0 , . . . , b′′

127, g) = funcG(M, b′
0, . . . , b

′
127)

11: (M, s′′
0 , . . . , s′′

127, f) = funcF(M, s′
0, . . . , s

′
127)

12: for i = 0 to 126 do
13: bri = b′′

i+1

14: sri = s′′
i+1

15: end for
16: M.var ← br127, s

r
127 as binary

17: M.con ← b′′
0 = 0

18: M.con ← br127 = g + s′′
0 + zg

19: M.con ← sr127 = f + zf

20: end for
21: (M, b′

0, . . . , b
′
127, s

′
0, . . . , s

′
127, z) = funcZ(M, bR0, . . . , b

R
127, s

R
0, . . . , s

R
127)

22: for all i ∈ {0, 1, . . . , 127} do
23: M.con ← b′

i = 0

24: M.con ← s′
i = 0

25: end for
26: M.con ← z = 1

27: return M
28: end procedure

division trails, but only three initial properties can be feasible (see Table 4, where
x = (x1, x2, . . . , x128) denotes the secret key). Moreover, all of them have even-
number of trails, i.e., the superpoly shown in [12] is constant-0. Therefore, the
cube attack against 184-round Grain-128AEAD is a zero-sum distinguisher.

6.3 Additional Constraints and Superpoly for 190 Rounds

Algorithm 5 evaluates funcZ, funcG, and funcF independently, and combines
them. While this algorithm can enumerate all three-subset division trails, it
includes many redundant trails. For example, let us consider that there are two
propagations for one round from the fixed bitvector to fixed one. Then, consider-
ing such propagations is redundant because the number of three-subset division
trails including such propagations in its inside is always even number. There-
fore, we should remove such propagations from the model in advance to reduce
the number of feasible three-subset division trails. We carefully checked three-
subset division trails found in the attack against 184-round Grain-128AEAD. As
a result, we find a frequently used (but redundant) propagation.

Modeling for Three-Subset Division Property Without Unknown Subset 491

Table 4. Detailed results for superpoly against 184-round Grain-128AEAD.

Parity # Trails Monomial

0 4096 x34x39x53x62x64x81x83x84x95x125

0 4096 x34x39x49x53x62x64x81x83x84x95x123x127x128

0 8192 x23x39x48x49x53x58x59x62x64x83x84x98x118x120

Property 1. In any round r, either sr0 or zr must be 0.

Proof. In round r, we assume that sr0 = 1 and zr = 1. The keystream bit
(zr = 1) can propagate to the rightmost bit of NFSR (br+1

127) and the rightmost
bit of LFSR (sr+1

127). The leftmost bit of the LFSR (sr0) can also propagate to the
same two bits. Therefore, unless either of sr+1

127 , br+1
127 , or sr+1

127 ·br+1
127 has monomial

sr
0 · zr, such a propagation is infeasible. Clearly, sr+1

127 and br+1
127 do not have such

a monomial. Moreover, the monomial sr
0 · zr is always canceled out in

sr+1
127 · br+1

127 = (fr + zr) · (gr + zr + sr
0)

= fr · gr + fr · sr
0 + (fr + gr + 1 + sr

0) · zr

= fr · gr + fr · sr
0 + (sr

7 + sr
38 + sr

70 + sr
81 + sr

96 + gr + 1) · zr.

��

Property 1 is very simple and powerful. We just add the following constraint

M.con ← sr0 + zr ≤ 1

between the line 6 and 7 in Algorithm5. We re-run Algorithm 2 by using the
model generated by Algorithm 5 with the modification above. Then, 16, 384 trails
become impossible, and there is no feasible solution.

Superpoly from 185 to 189 rounds. We showed that the 184-round attack
is a zero-sum distinguisher and cannot recover any secret key bit. Similarly to
the case of Trivium, we expect that the number of rounds that we can attack
can be improved. To attack more rounds, we use cube indices I = {1, 2, . . . , 96},
where all IV bits are active. As a result, there is no feasible solution up to 189
rounds. In other words, we find zero-sum distinguishers from 185 to 189 rounds.

Superpoly for 190 rounds. From 190 rounds onwards, secret key bits can be
involved. As a result, 7, 621 feasible three-subset division trails are enumerated,
and J [u] in Algorithm 2 is non zero for 3, 006 different u’s. Out of 3, 006 u’s, there
are 1, 097 u’s whose J [u] is an odd number. In other words, the superpoly is rep-
resented as the sum of 1, 097 monomials. Interestingly, the recovered superpoly
has completely different features of the one of Trivium. While the superpoly of
Trivium is a very low-degree and simple Boolean function, the recovered super-
poly for Grain128-AEAD has algebraic degree 21 and is a complicated Boolean

492 Y. Hao et al.

function with no monomials of degree lower than 6. Since the Boolean function is
too complicated to evaluate its weight theoretically, we experimentally evaluated
the balancedness. We picked 215 secret keys randomly and compute the output
of the Boolean function. As a result, it is highly biased, and the fraction of keys
that output 1 is about 0.032. Therefore, the information recovered from this
superpoly is very small. Indeed, if the superpoly in the online phase evaluates to
one, we gain almost 5 bit (i.e. − log2(0.032)) in an attack when filtering wrong
keys. However, in the case where the superpoly evaluates to zero, we gain less
than 0.04 bits (i.e. − log2(1 − 0.032)) in an attack. The average gain, given by
the entropy, is only

−0.032 log2(0.032) − (1 − 0.032) log2(1 − 0.032) ≈ 0.2

which limits the interest in this approach.

6.4 Towards Efficient Key-Recovery Attacks

To recover more bits of information, we use multiple cubes whose size decreases
from 96 to 95. However, if the cube index misses one IV bit, the number of three-
subset division trails increases. We need to pick appropriate non-cube indices,
where the number of three-subset division trails does not expand to much. We
were able to compute the representation of 15 superpolys pj where the cube
index set was {1..96} \ j with

j ∈ J = {27, 30, 31, 32, 34, 41, 44, 45, 46, 48, 58, 59, 64, 70, 72}.

Those polynomials vary significantly in size (between 176 and 19, 925 monomi-
als) but also share interesting properties. Again, due to their size, some of the
properties can only be estimated experimentally.

Interestingly, all polynomials are highly biased toward zero and none of the
polynomials involves all key bits. In particular none of the polynomials depends
on the key bits

K1,K2,K3,K6 and K9.

Moreover, all polynomials can be evaluated rather efficiently on average. The
details are given in Table 5. Note that the average total cost of evaluating the
polynomials is an upper bound on the number of XORs and ANDs needed. This
bound was derived using a time-memory tradeoff for the evaluation process,
by fixing 14 key bits that appear frequently in all 15 polynomials. Fixing to
all 214 possible values resulted in 15 · 214 polynomials. Those polynomials are
significantly simpler and simply counting the number of required AND and XOR
operations in a trivial evaluation process resulted in the numbers in Table 5 that
are sufficient for our attack. In particular, the average cost of evaluating all
15 polynomials together is smaller than 212, which is smaller than producing a
single key stream bit with Grain128-AEAD reduced to 190 rounds.

Besides being highly unbalanced, the polynomials are also not independent
when evaluated on random keys. In order to estimate how many wrong keys are

Modeling for Three-Subset Division Property Without Unknown Subset 493

Table 5. Properties of the superpolys for Grain128-AEAD.

Poly p27 p30 p31 p32 p34 p41 p44 p45 p46 p48 p58 p59 p64 p70 p72

Nb. of ind. Ki 7 6 12 8 6 13 14 47 6 16 6 10 12 11 8

Pr(pj = 0) 0.077 0.116 0.055 0.089 0.090 0.099 0.019 0.012 0.081 0.055 0.123 0.196 0.097 0.156 0.083

Av. cost 544 408 107 196 452 148 19 10 199 213 406 497 432 336 205

filtered on average, we estimated the entropy of (p27, . . . , p72) when evaluated at
uniformly random chosen keys. That is, for vj ∈ {0, 1} we estimated

Pr((P27, . . . , P72) = (v27, . . . , v72))

for all 215 possible outcomes. The distribution is still highly biased, in partic-
ular Pr(0, . . . , 0) ≈ 0.57. However, the entropy, which was estimated using 225

samples, increased to 5.03 which now makes the following attack possible.

1. The attacker evaluates in the online phase the values of the 15 superpolys for
the given secret key.

2. The attacker guesses all key-bits except the bits K1,K2,K3,K6,K9 and for
each guess filters with the correct values of the superpolys given from the
online phase.

3. For each guess that passes the filtering, the attacker runs through all possible
values of K1,K2,K3,K6,K9 and verifies the key against given key-stream.

The cost of the online phase is 15 × 295 time and 296 data, i.e. using all possible
IV values for the given secret key.

In the second step, the number of guesses is 2128−5 and, due to the entropy,
the average amount of not filtered guesses is 2128−5−5.03. As evaluating the poly-
nomials is cheaper than evaluating Grain128-AEAD, the cost for this step is less
than 2123 evaluations of Grain128-AEAD.

In the third step, the average cost is 25 · 2128−5−5.03, i.e. less than 2123 evalu-
ations of Grain128-AEAD as well. To conclude, the attack has an average time
complexity of less than 2123 evaluations of Grain128-AEAD and a data com-
plexity of 296. Note that this complexity is averaged over the given secret key.
In particular, after the first step of the attack, the attacker already knows how
efficient filtering will be in her particular case. For some keys filtering is signif-
icantly stronger. This observation might be further elaborated into a stronger
attack for a smaller fraction of keys, i.e. a weak-key attack.

7 Conclusion

In this paper, we proposed a new modeling technique for the three-subset division
property without unknown subset. Our technique is significant for the applica-
tion to the cube attack. Unlike the previous experimental or theoretical cube
attacks, our method does not need any assumption and can recover the actual
superpoly in practical time. Our method leads to the best key-recovery attack
on two of the most important stream ciphers.

494 Y. Hao et al.

Acknowledgement. The authors thank the anonymous Eurocrypt 2020 reviewers for
careful reading and many helpful comments. Yonglin Hao is supported by National Key
Research and Development Program of China (No. 2018YFA0306404). Gregor Leander
is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. Qingju
Wang is funded by the University of Luxembourg Internal Research Project (IRP)
FDISC.

References

1. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

2. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

3. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptog-
raphy. SECS, vol. 276, pp. 227–233. Springer, Boston (1994). https://doi.org/10.
1007/978-1-4615-2694-0 23

4. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 287–314.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

5. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 20

6. Sasaki, Y., Todo, Y.: New differential bounds and division property of Lilliput:
block cipher with extended generalized Feistel network. In: Avanzi, R., Heys, H.
(eds.) SAC 2016. LNCS, vol. 10532, pp. 264–283. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69453-5 15

7. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

8. Sugio, N., Igarashi, Y., Kaneko, T., Higuchi, K.: New integral characteristics of
KASUMI derived by division property. In: Choi, D., Guilley, S. (eds.) WISA 2016.
LNCS, vol. 10144, pp. 267–279. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56549-1 23

9. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 24

10. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for
ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 5

11. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part
III. LNCS, vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 9

https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-319-69453-5_15
https://doi.org/10.1007/978-3-319-69453-5_15
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-319-56549-1_23
https://doi.org/10.1007/978-3-319-56549-1_23
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9

Modeling for Three-Subset Division Property Without Unknown Subset 495

12. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 275–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 10

13. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

14. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present - towards reaching the limit of lightweight encryption. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

15. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 9

16. Hu, K., Wang, M.: Automatic search for a variant of division property using
three subsets. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 412–432.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 21

17. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of searching
division property using three subsets and applications. In: Galbraith, S.D., Moriai,
S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 398–427. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 14

18. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

19. Ye, C.D., Tian, T.: Revisit division property based cube attacks: key-recovery or
distinguishing attacks? IACR Trans. Symm. Cryptol. 2019(3), 81–102 (2019)

20. Fu, X., Wang, X., Dong, X., Meier, W.: A key-recovery attack on 855-round Triv-
ium. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 160–184. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 6

21. Hamann, M., Krause, M.: On stream ciphers with provable beyond-the-birthday-
bound security against time-memory-data tradeoff attacks. Cryptogr. Commun.
10(5), 959–1012 (2018). https://doi.org/10.1007/s12095-018-0294-5

22. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revis-
ited - cryptanalysis on full Grain-128a, Grain-128, and Grain-v1. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 129–159.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 5

23. Cannière, C.D., Preneel, B.: Trivium specifications. eSTREAM portfolio, Profile 2
(HW) (2006)

24. Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Observations on the
dynamic cube attack of 855-round TRIVIUM from Crypto ’18. Cryptology ePrint
Archive, Report 2018/972 (2018). https://eprint.iacr.org/2018/972

25. Fu, X., Wang, X., Dong, X., Meier, W., Hao, Y., Zhao, B.: A refinement of “a
key-recovery attack on 855-round Trivium” from crypto 2018. Cryptology ePrint
Archive, Report 2018/999 (2018). https://eprint.iacr.org/2018/999

26. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: Grain-128AEAD: a
lightweight AEAD stream cipher. Lightweight Cryptography (LWC) Standardiza-
tion (2019)

27. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. IJWMC 5(1), 48–59 (2011)

https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-13039-2_9
https://doi.org/10.1007/978-3-030-12612-4_21
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-319-96881-0_6
https://doi.org/10.1007/978-3-319-96881-0_6
https://doi.org/10.1007/s12095-018-0294-5
https://doi.org/10.1007/978-3-319-96881-0_5
https://eprint.iacr.org/2018/972
https://eprint.iacr.org/2018/999

Secret Sharing

Blackbox Secret Sharing Revisited:
A Coding-Theoretic Approach

with Application to Expansionless
Near-Threshold Schemes

Ronald Cramer1,2(B) and Chaoping Xing3(B)

1 CWI Amsterdam, Amsterdam, The Netherlands
cramer@cwi.nl

2 Leiden University, Leiden, The Netherlands
cramer@math.leidenuniv.nl

3 Shanghai Jiao Tong University, Shanghai, China
xingcp@sjtu.edu.cn

Abstract. A blackbox secret sharing (BBSS) scheme works in exactly
the same way for all finite Abelian groups G; it can be instantiated for
any such group G and only black-box access to its group operations and
to random group elements is required. A secret is a single group element
and each of the n players’ shares is a vector of such elements. Share-
computation and secret-reconstruction is by integer linear combinations.
These do not depend on G, and neither do the privacy and reconstruction
parameters t, r. This classical, fundamental primitive was introduced by
Desmedt and Frankel (CRYPTO 1989) in their context of “threshold
cryptography.” The expansion factor is the total number of group ele-
ments in a full sharing divided by n. For threshold BBSS with t-privacy
(1 ≤ t ≤ n − 1), t + 1-reconstruction and arbitrary n, constructions with
minimal expansion O(log n) exist (CRYPTO 2002, 2005).

These results are firmly rooted in number theory; each makes (dif-
ferent) judicious choices of orders in number fields admitting a vector
of elements of very large length (in the number field degree) whose cor-
responding Vandermonde-determinant is sufficiently controlled so as to
enable BBSS by a suitable adaptation of Shamir’s scheme. Alternative
approaches generally lead to very large expansion. The state of the art
of BBSS has not changed for the last 17 years.

Our contributions are two-fold. (1) We introduce a novel, nontrivial,
effective construction of BBSS based on coding theory instead of number
theory. For threshold-BBSS we also achieve minimal expansion factor
O(log n). (2) Our method is more versatile. Namely, we show, for the
first time, BBSS that is near-threshold, i.e., r − t is an arbitrarily small
constant fraction of n, and that has expansion factor O(1), i.e., individ-
ual share-vectors of constant length (“asymptotically expansionless”).
Threshold can be concentrated essentially freely across full range. We
also show expansion is minimal for near-threshold and that such BBSS
cannot be attained by previous methods.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 499–528, 2020.
https://doi.org/10.1007/978-3-030-45721-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_18

500 R. Cramer and C. Xing

Our general construction is based on a well-known mathematical prin-
ciple, the local-global principle. More precisely, we first construct BBSS
over local rings through either Reed-Solomon or algebraic geometry
codes. We then “glue” these schemes together in a dedicated manner
to obtain a global secret sharing scheme, i.e., defined over the integers,
which, as we finally prove using novel insights, has the desired BBSS
properties. Though our main purpose here is advancing BBSS for its
own sake, we also briefly address possible protocol applications.

Keywords: Foundations of secret sharing · Blackbox secret sharing

1 Introduction

This paper advances the state of the art in blackbox secret sharing (BBSS), a
classical, fundamental primitive first studied by Desmedt and Frankel [14,15] in
the late 1980s, motivated by their context of “threshold cryptography.” A BBSS
scheme works in exactly the same way for all finite Abelian groups G. I.e., it
can be instantiated for any such group G and only black-box access to its group
operations and to random group elements is required. The secret-space equals
G (so the secret is a single group element) and the share-space for each of n
players is a fixed finite product over G (so each share is a vector). Viewing G
additively and using the basic fact that G may be viewed as a Z-module,1 each
share is obtained by applying Z-linear forms2 on a vector consisting of secret
and random group elements; likewise for secret-reconstruction from appropriate
shares. Whether a given player set is reconstructing or gives privacy does not
depend on structural information on G (e.g. access to its order), other than it
being finite Abelian. This also holds for the integer coefficients of the forms in
share computation and secret reconstruction. In this section, we first discuss
the technical background of BBSS and its history. Then we overview our results
and method. We also argue why our main claim cannot be achieved by previous
methods. Finally, we briefly discuss possible protocol applications.

1.1 Background on BBSS

BBSS is conveniently formalized and elucidated mathematically by Integer Span
Programs (ISP). The latter notion, introduced in [10], is not only sufficient for
BBSS but also necessary; it captures exactly the principles laid out above. In
a nutshell, an ISP is characterized by a positive integer e and Z-submodules
V1, . . . , Vn ⊂ Z

e. Note that, by standard theory, any such submodule is free, i.e.,
has a basis. Let V0 denote the Z-module spanned by the “target vector” μe =

1 Briefly, “vectorspace axioms are satisfied except that scalars are defined over Z

instead of a field.”
2 Owing to Z-module structure, a form maps (g1, . . . , gm) ∈ Gm to

∑
i λigi ∈ G for a

fixed vector (λ1, . . . , λm) ∈ Z
m.

Blackbox Secret Sharing Revisited 501

(1, 0, . . . , 0) ∈ Z
e, i.e., V0 consists of all its integer multiples.3 For a nonempty

subset A ⊂ {1, . . . , n} we write VA =
∑

i∈A Vi, the Z-span of the Vi’s with i ∈ A.
A set A is a reconstructing set if V0 ⊂ VA. It is a privacy set if there is a Z-linear
form φA : Z

e → Z such that φA(VA) ≡ 0, whereas φA(V0) = Z. The latter is
equivalent to the condition VA ∩ V0 = {0}.4

One may easily rephrase this definition in terms of matrices; this way one
readily observes that a matrix whose rows are partitioned into n blocks each
constituting a basis of a different space Vi can be used to define computation of
shares by having the matrix act on a vector whose first coordinate is the secret
and whose remaining ones are random group elements. Reconstruction is derived
from the integer coefficients according to a span of the target vector. Privacy
can be verified using the linear form in question, in a way familiar from schemes
over finite fields.

Note that there is similarity with Monotone Span Programs or MSP [19], a
notion due to Karchmer and Wigderson known to be intimately connected with
linear secret sharing over finite fields, as first shown by Beimel [1]. In MSPs,
the dividing line between the two types sets of sets is “to span or not to span
the target vector.” This is not the case for ISPs. The reconstruction condition
is still equivalent to “the target vector being in the span.” However, the privacy
condition is not simply its negation; since we work over Z and not over a field it
could be so that some nonzero multiple of the target vector is spanned but not
the target vector itself. Indeed, write VA ∩ V0 = (a)μe for some principal ideal
(a) of the ring Z with a �= 0,±1. Then choose, for instance, a prime number p
dividing a and a prime number p′ not dividing it. Now, if we take G as the cyclic
group of order p, the set A is a privacy set, whereas, if we take G as the cyclic
group of order p′, it is a reconstructing set. In particular, the ISP definition is
not just a verbatim translation of the MSP definition from finite fields to the
integers. For more discussion, see [8,10].

The expansion factor in BBSS is the length of a full vector of n shares (i.e.,
the total number of group elements) divided by n. For threshold BBSS with
t-privacy (1 ≤ t ≤ n − 1), t + 1-reconstruction and arbitrary positive n, Cramer
and Fehr [10] show a construction that achieves expansion O(log n), which is
minimal. This improved the O(n) expansion from the earlier construction due
to Desmedt and Frankel [14,15]. In [12], Cramer, Fehr and Stam prove that
absolutely minimal expansion (up to an additive constant) can be achieved. For
the lower bounds, please refer to [10,12].5

3 In fact, any vector whose coordinates do not have a nontrivial common divisor may
be taken as the target vector.

4 The implication starting from the form-based definition is trivial. In the other direc-
tion, it follows e.g. using basic structural theory of finitely-generated modules over
principal ideal domains, such as Z.

5 Note that the case t = 0 is trivial and that the case t = n − 1 is expansionless
via “additive n-out-of-n secret sharing.” Hence the restriction on t above. For those
“interesting” t, the first step to lower bounds is the observation that threshold BBSS
gives binary linear secret sharing for threshold access structures.

502 R. Cramer and C. Xing

These results are firmly rooted in number theory. More precisely, each makes
a judicious choice of orders in algebraic number fields6 admitting a finite, large
dedicated set of points that is sufficiently controlled so as to enable BBSS by
a suitable adaptation of Shamir’s secret sharing over finite fields. The choice of
order, the control, and the exact way BBSS is realized all vary across these known
results. In a nutshell, these methods all use “polynomials” whose coefficients are
chosen in the tensor-product R ⊗Z G, where R is the order in question. The
latter object is an R-module in a natural way. Thus, such a “polynomial” can
be evaluated in a set of points in R. Getting a threshold BBSS in this way,
mimicking Shamir’s scheme to a certain degree, is down to a Vandermonde-
determinant determined by these points satisfying one out of several possible
convenient number-theoretical properties. The central issue in construction is
then to find an infinite family of orders R such that Z-rank of R tends to infinity
and such that R admits a dedicated evaluation-point set constrained as indicated
above that is very large compared to the Z-rank of R, since the number of players
n equals the cardinality of this set and the expansion factor equals the Z-rank of
R divided by n. In addition, care must be taken such that each positive number
n of players can be accommodated.

In [14,15], this determinant attached to the evaluation-point set is required to
be a multiplicative unit of R, so that the Lagrange Interpolation Theorem holds
over R. This is best forced by using cyclotomic number fields. But the result-
ing expansion is O(n). In [10], two evaluation sets are required whose attached
determinants are co-prime in R. It is shown how to construct orders R admitting
two such sets of cardinality 2k where k is the Z-rank of R. One of these sets can
be taken simply as {1, . . . , n}, the other being more intricate and depending on
R. This gives minimal expansion O(log n). In [12], the two sets are reduced to
a single one by requiring the attached determinant to be primitive, i.e., its only
rational integers divisors are ±1. It is shown that orders R of rank k exist that
admit evaluation-point sets of cardinality 2k. So expansion is minimal here too, in
fact, better by an additive constant. The latter result, though, is not explicit and
is significantly more intricate, mathematically. For a full treatment of threshold
BBSS, please refer to [8]. There are alternative, more generic approaches. E.g.,
one can combine Benaloh-Leichter secret sharing [2] with Valiant’s result on
polynomial-size monotone Boolean formulas for threshold functions [28]. But
this leads to very large expansion (but still polynomial in n). The state of the
art of BBSS has not changed for the last 15 years.

1.2 Our Contributions

Our contributions here are two-fold.

1. We introduce a completely different, nontrivial effective construction of BBSS
based on coding theory instead of number theory. For the threshold case we

6 An order O in an algebraic number field K of degree k is a subring O of its ring of
integers OK such that O has finite index in OK as a Z-submodule, i.e., |OK/O| is
finite. In particular, O has rank k as Z-module, just as OK .

Blackbox Secret Sharing Revisited 503

also achieve minimal expansion factor O(log n) as before. The threshold can
be chosen freely.

2. Our general method is more versatile than previous methods. As an appli-
cation not attainable by any previous method (as argued below), we demon-
strate, for the first time, BBSS that is near-threshold, i.e., t-privacy and
r-reconstruction are such that r− t is an arbitrarily small constant fraction of
n, and that achieves expansion factor O(1), i.e., a constant number of group
elements per share. Moreover, it is supported for arbitrary n and thresholds
can be chosen essentially freely, for instance, concentrated around n/2. This
result is asymptotically expansionless and minimal for near-threshold, as we
also prove (see Main Theorem 1).

We now give an informal discussion why an expansionless, near-threshold
BBSS cannot be fulfilled by previous methods. We restrict to the general app-
roach from [10,12] based on “polynomial interpolation” involving number fields
(since this approach gives exponentially smaller expansion anyway). Towards a
contradiction, suppose, first, that BBSS as claimed above is achieved by evalua-
tions of a single polynomial with coefficients in R⊗ZG (for some given R). Then
the Z-rank of R must be a constant c (equivalently, the number field in question
has constant degree), since otherwise the O(1) expansion claim is not met. We
may assume there are at least n evaluation points in R used and each share cor-
responds to one or more (but at most a constant number of them) evaluations
of a given polynomial.

Now fix a prime number p and an order R in a number field. Note that
|R/(p)| = pc is also a constant. Suppose n
 pc. If we restrict the assumed
BBSS work over G = Z/pZ and consider that, when taken modulo p, the set
of evaluation points used “collapses” to at most c distinct ones, this set can be
partitioned into at most c “blocks” such that, within each block, polynomial
evaluation gives the same result across the entire block. In other words, there is
just “a constant number of evaluations that matter”; the others are always dupli-
cates. Combining this with the fact that the assumed BBS ensures, in particular,
that a full vector of shares determines the secret, there is in fact a constant-sized
set of players that can reconstruct the secret jointly in case G = Z/pZ: a con-
tradiction with the assumed parameters. Second, this argument extends to the
case where various polynomials are used instead of just one7 and where R may
differ per polynomial. Also note that the argument does not depend on R being
an order in a number field; it extends to any commutative ring R that has finite
rank as a Z-module, which exactly represents the minimal requirement on R for
the BBSS paradigm from [10,12] to make sense anyway.

1.3 Our Method

Our general construction is based on a well-known mathematical principle, the
local-global principle. More precisely, we first construct BBSS over local rings

7 In [10], two polynomials are used, whereas in [12,14,15] there is a single one.

504 R. Cramer and C. Xing

through either Reed-Solomon or algebraic geometry codes. We then “glue” these
schemes together in a dedicated manner to obtain a global secret sharing scheme,
i.e., defined over the integers, which, as we finally prove, has the desired BBSS
properties.

In some more detail, we start from an observation exploited in [10] and
earlier in [25]. Namely, a weak form of threshold BBSS is achievable simply by
taking “polynomials” with coefficients in G and then evaluating in the integer
points 0, 1, . . . , n. Defining Δ =

∏
0≤i<j≤n(j − i), the free coefficient is taken as

Δ · s, with s ∈ G equal to the secret. The other coefficients are random in G.
It is now straightforward to show that, using polynomials of degree ≤ t (with
1 ≤ t < n), there is t-privacy, and, in addition, there is (t + 1)-reconstruction
not of the secret s itself but of a multiple Δ2 · s, In [10], an order of rank log n
is then hand-crafted that admits evaluation points 0, α1, . . . , αn ∈ R such that,
also by weak-BBSS with t-privacy, there is (t + 1)-reconstruction of the value
(Δ′)2 · s, where Δ′ is a Vandermonde determinant defined by the αi’s and such
that Δ,Δ′ are coprime in R. This leads to a “double-sharing” approach: by secret
sharing a given secret independently according to each of these two weak-BBSS
schemes, the secret can be reconstructed by a known linear combination over R
(translated into linear combinations over Z). This gives the desired BBSS. On a
high level, we also follow this double-sharing approach, starting with weak-BBSS
from polynomial-evaluation at integer points. However, our approach towards
creating the second weak-BBSS, which, together with the first, should enforce
the co-primality property, is completely different.

Let P (n) denote the set of prime numbers p with 2 ≤ p ≤ n. For the moment,
fix n arbitrarily. For each p ∈ P (n), we select an Fp-linear secret sharing scheme
with secret-space dimension 1 and “small” share-space dimension. We construct
these schemes from linear codes as in [9], i.e., via codes with large distance
as well as large dual distance (but, in the present case, without consideration
of multiplicative properties). We also fix generator matrices for each, or, more
precisely, monotone span programs. The privacy and reconstruction parameters
are designed such that they match (sufficiently well) with the desired values t, r
in each case. Note that this influences the constant in share-space dimension;
e.g., if this constant was just 1, then this upperbounds the achievable r, t just
on account of (dual-) distance bounds on binary linear codes.

Now, we glue these |P (n)| schemes together in two steps: First, we apply
Chinese Remaindering to the monotone span programs at hand, and second, we
arbitrarily lift the result to the integers. Somewhat surprisingly, as a result, we
obtain a weak-BBSS with t-privacy and r-reconstruction of a λ-multiple of the
secret, where λ is an integer coprime with Δ. Indeed, this is by no means obvious
since, at face value, this procedure does not even seem to account for behavior
over groups whose order is (divisible by) a power of a prime in P (n), a class
of groups that is obviously finite for each n. But still we get around this issue
thanks to novel, nontrivial ideas on lifting of linear secret sharing over finite
fields to rings while preserving the relevant parameters. In the particular case
of ours here, that means lifting schemes over Fp to schemes over Z/pk

Z; this is

Blackbox Secret Sharing Revisited 505

a key ingredient for making our local-global approach work, i.e., this allows to
reduce the “global” problem to addressing, for each n, just a finite number of
“local” problems.

As for recovering log n expansion for threshold BBSS, we may work with
Shamir’s scheme defined over a large enough extension of a prime field Fp with
p ∈ P (n) and turn it into a linear scheme over Fp in a standard way; simply
“expand” extension field elements into coordinate-vectors over the base field,
after selection of a basis; this turns out to work for our purposes. Since, in
this case, we need threshold secret sharing over e.g. F2 in particular, it is clear
that share-space dimension (over F2) will be log n in the worst case (as we go
through L(n)). Note that the expansion achieved here matches exactly that of
the number-theoretic approach from [10]. We do not necessarily say that the
approach for threshold-BBSS in the present paper is conceptually/technically
simpler than that of [10]: each feels “mathematically right” albeit seen from
different standpoints. However, the result in [12], also number-theoretic and more
intricate than [10], is still better by an additive constant.

Finally, we get to our claim on expansionless, flexible near-threshold BBSS,
which is not attainable by previous methods as we have argued. We choose, for
each prime p, linear secret sharing schemes over Fp with appropriate asymp-
totic properties. Here, asymptotic theory of linear codes comes into play here;
asymptotic results from [9] show at once that all the necessary connections can
be made. Indeed, by choosing a large enough fixed extension of a base field Fp,
one gets, asymptotically, that distance and dual distance can be concentrated
around an arbitrary constant fraction of n, with the difference between distance
and dual distance being an arbitrarily small constant fraction of n. This trans-
lates into similar properties for t-privacy and r-reconstruction in corresponding
linear secret sharing schemes with share-space of constant dimension over the
base field. As in the threshold case, schemes over extension fields are turned into
schemes over the base field in a standard way.

It is for these reasons that we can achieve expansionless, flexible near-
threshold BBSS. The gluing procedure is then by a form of diagonalization.
I.e., index rows by the positive integers n and index the columns by the prime
numbers. In location (n, p), we have a linear secret sharing scheme over Fp sup-
porting n players and achieving the desired privacy and reconstruction. Then,
for each n, we glue along the n-th row “up to the diagonal,” i.e., up to location
(n, p) where p is the largest prime p ≤ n. Finally, for the compound BBSS to
be explicit (poly-time) the underlying codes are required to be explicit. This
means we need to resort to algebraic-geometric codes (AG). However, the latter
cannot be taken off-the-shelf since we need to ensure that the compound BBSS
works for each and every n and achieves the desired parameters. This leads us
to handcraft the required AG-codes. In addition, we encounter several technical
issues of parameter fine-tuning that have been suppressed in our overview for
sake of brevity but that are still necessary for our approach.

506 R. Cramer and C. Xing

1.4 Brief Remarks on Possible Protocol Applications

Though our primary purpose here is to advance the theoretical state of the art in
BBSS, we briefly address some potential applications. Threshold-RSA [14] was
eventually realized very efficiently without recourse to BBSS, exploiting specifics
of RSA not generally present in cryptosystems over groups with secret of hard
to compute order. Very briefly, “Shamir-sharing over the integers” can be used
here for the purpose of practical threshold-RSA signatures [25]. Even though
only reconstruction of a multiple of the secret can be guaranteed when doing so,
this works for RSA if the constant scalar in this multiple is co-prime both to
the public exponent and to the order of the (sub-group) of the “RSA-group” in
question. The latter is by forcing existence of an easily accessible constant-index
subgroup of the “RSA-group” whose order only has very large prime factors
(implied by requiring prime factors of RSA-modulus to be Sophie Germain) and
the former by requiring that the public exponent is a prime exceeding the number
of players.

By applying our techniques for expansionless near-threshold BBSS to prac-
tical ranges of n (making some practical substitutions for the codes), one may,
in principle remove the lower bound condition on the public exponent, with the
benefit of rendering faster signature verification, while maintaining “practical-
ity” and active security. In case of passive security only, the Sophie Germain
requirement may also be removed. Note that, in the active case, the Sophie
German condition facilitates the efficient zero knowledge proofs of correct “par-
tial verification” in the style of Schnorr-proofs with exponentially large challenge
space for exponentially small error probability in a single run. Without that
condition one would have to resort to repetition of proofs supporting a 1-bit
challenge space only (so error 1/2 per run), leading to efficiency loss. However,
using amortization techniques for zero knowledge [6], this effect can be neutral-
ized if many statement are proven simultaneously. Thus, if many signatures are
verified simultaneously, we may also remove the Sophie-Germain condition in
the active case. Alternatively, we may thus also consider deploying these ideas
towards improved threshold-RSA decryption. We suggest that this all merits
further study.

Moreover, in [13], ISPs are shown to imply “integer linear secret sharing” with
statistical privacy, by selecting secret and randomness from an appropriately
large bounded range of integers instead of blackbox groups. Clearly, ISPs allow
for full secret-reconstruction, not just a multiple. Known applications are to
threshold cryptosystems based on class groups.8 Also results also apply directly
here. We believe there are other useful applications, for instance in MPC over the
integers.9 This may offer advantages for certain functions, compared to methods
which emulate integer operations by first working over e.g. finite fields. But more
research is needed still for this to be conclusive.
8 Whereas these seemed out of fashion for some time, they appear to be making a

comeback in the blockchain context presently.
9 A topic which, surprisingly, has not seen much attention lately, especially given the

surge in MPC research.

Blackbox Secret Sharing Revisited 507

1.5 Organization of the Paper

In Sect. 2, we introduce monotone span programs and near-threshold black-box
secret sharing schemes. We also show how to lift a monotone span programs mod-
ulo prime powers to a monotone span program over Z. In Sect. 3, we show a lower
bound on expansion factor on near-threshold black-box secret sharing schemes.
This generalizes the lower bound on threshold black-box secret sharing schemes.
Section 4 presents our gluing technique that glues a Vandermonde matrix with a
generator matrix modulo an integer. Section 5 shows how to construct a genera-
tor matrix over Z that gives a linear code with both good minimum distance and
dual minimum distance modulo every small prime p. The last section collects the
results prepared in the previous sections to form our main result of this paper.

2 Monotone Span Programs and Near-Threshold
Black-Box Secret Sharing Schemes

Throughout the paper, we denote by [n] the set {1, 2, 3, · · · , n}. We denote by
2[n] the set of all subsets of [n]. Then 2[n] has size 2n.

2.1 Monotone Span Program

Monotone span programs (MSP for short) over finite fields were introduced by
Karchmer and Wigderson [19]. Monotone span program is an efficient tool to
construct linear secret sharing scheme (LSSS for short) for a given access struc-
ture. It is well known that there is a one-to-one correspondence between mono-
tone span programs over finite fields with linear secret sharing schemes over
finite fields (see e.g. [1,16]). Monotone span programs over rings (in particu-
lar over integers Z) were introduced in [10,12] and it turns out that they have
a similar correspondence with black-box secret sharing schemes. In addition,
monotone span programs over rings are the basis for multi-party computation
over black-box rings, as studied in [11]. In particular, the techniques of [7] for
secure multiplication and VSS apply to this flavor of monotone span program as
well.

Definition 1. The pair (Γ,Δ) with Γ,Δ ⊆ 2[n] is called an access structure on
[n] if ∅ ∈ Δ, [n] ∈ Γ and Γ ∩ Δ = ∅. Furthermore, it is called a monotone access
structure if Γ is monotonously increasing and Δ is monotonously decreasing,
i.e.,

(i) if S1 ∈ Γ and S1 ⊆ S2, then S2 ∈ Γ ;
(ii) if T1 ∈ Δ and T2 ⊆ T1, then T2 ∈ Δ.

Let t, r, n ∈ Z with 0 < t < r < n. Then Rt,r,n = (Δt,n, Γr,n) is defined to be
the access structure satisfying

(i) Δt,n = {T ⊆ [n] : |T | ≤ t}, and
(ii) Γr,n = {S ⊆ [n] : |S| ≥ r}.

508 R. Cramer and C. Xing

A monotone increasing set Γ can be efficiently described by the set Γ− consisting
of the minimal elements (sets) in Γ , i.e., the elements in Γ for which no proper
subset is also in Γ . Similarly, the set Δ+ consists of the maximal elements (sets)
in Δ, i.e., the elements in Δ for which no proper superset is also in Δ. It is
obvious that (Γ−,Δ+) generates a monotone access structure (Γ,Δ), i.e., Γ
consists of subsets of [n] containing an element of Γ− and Δ consists of subsets
of [n] that are contained in an element of Δ+.

Definition 2. A monotone access structure (Γ,Δ) is said to be complete if
Γ ∪ Δ = 2[n]. Thus, if r = t + 1, then Rt,r,n is complete. In this case, we say
that it is a threshold access structure and denote Rt,t+1,n by Rt,n.

We provide necessary and sufficient conditions under which a (Γ,Δ)-scheme
is a black-box secret sharing scheme for (Γ,Δ). This is a generalization of thresh-
old monotone span programs over rings introduced in [10], where the latter was a
generalization of monotone span program over finite fields introduced by Karch-
mer and Wigderson [19]. We will show that monotone span programs in this
paper have a similar correspondence with black-box secret sharing schemes.

Let R be a ring and let (Γ,Δ) be a monotone access structure on [n] and
M ∈ Rh×e with h ≥ n. We define a surjective function Ψ : [h] → [n] to group
the rows of M . We say that “the j-th row is labelled by Ψ(j)” or “Ψ(j) owns
the j-th row.” For any S ⊆ [n], we write MS to denote the submatrix obtained
by keeping the rows Mi such that Ψ(i) ∈ S (and not i ∈ S). Denote by hS the
cardinality |Ψ−1(S)|. For any vectors x of length n, we define xS analogously.
Furthermore, for each S ∈ Γ , there exists a vector λ(S) ∈ RhS which is called a
reconstruction vector. Denote by R the collection of reconstruction vectors. We
denote by B the quadruple (R,M,Ψ,R). Throughout this paper, all vectors are
row vectors and we denote by u′ the transpose of a vector u.

Definition 3. A Monotone Span Program (MSP) M over a ring R is a quadru-
ple (R,M,Ψ,μe), where M is an h × e matrix over R with n ≤ h, Ψ : [h] → [n]
is a surjective function and μe = (1, 0, 0, . . . , 0) ∈ Re is a vector that is called
the target vector. The size of M is the number h of rows of M and is denoted as
size(M). If R = Z, we call it an integer monotone span program. The expansion
factor of M is defined to be the ratio h/n, where h is the number of rows of M .

Definition 4. Let R be a ring and let (Γ,Δ) be a monotone access structure on
[n]. We say that a monotone span program M = (R,M,Ψ,μe) computes (Γ,Δ)
if

(P1) for any S ∈ Γ , μe ∈ im(M ′
S), where M ′

S is the transpose of MS and im(M ′
S)

stands for the row space of MS ; and
(P2) for any T ∈ Δ, there exists a vector λ ∈ Re with the first coordinate λ1 = 1

such that MT λ′ = 0′.

As noted in [10], if R is a field, then μe �∈ im(M ′
S) implies that there exists a

vector λ ∈ Re with the first coordinate λ1 = 1 such that MSλ′ = 0′. If R is not
a field this does not necessarily hold.

Blackbox Secret Sharing Revisited 509

Using representations of monotone access structures as monotone Boolean
formulas and using induction in a similar style as in [2], it is straightforward
to verify that for every monotone access structure (Γ,Δ), there is an integer
monotone span program that computes (Γ,Δ).

Lemma 1. A monotone span program M = (R,M,Ψ,μe) computes (Γ,Δ) if
and only if

(R1) for any S ∈ Γ , the equation xMS = μe is solvable in R;
(R2) for any T ∈ Δ, the equation

(
μe
MT

)
x = μ′

hT +1 is solvable in R.

Proof. It is clear that (P1) and (R1) are equivalent. To see the equivalence of
(P2) and (R2), we note that μe · λ′ = 1 implies that the first coordinate of λ
is 1.

The above result converts a monotone span program M = (R,M,Ψ,μe)
computing (Γ,Δ) to solvability of linear equations in R. If R is the integer ring,
then we can reduce solvability of linear equations in Z to solvability of linear
equations in Zp� for every prime p and integer � ≥ 1.

Lemma 2. Let N ∈ Z
m×n and b ∈ Z

m. Then Nx′ = b′ is solvable over Z if
and only if it is solvable over Zp� for all prime p and integer � ≥ 1.

Proof. The “only if” part is clear.
Now we prove the “if” part. By [10, Lemma 1], it is sufficient to show that

Nx′ = b′ is solvable modulo k for every integer k ≥ 2. Let k have the canonical
factorization k =

∏r
i=1 pei

i . Assume that ui is a solution of Nx′ ≡ b′ (mod pei
i).

By the Chinese Remainder Theorem, we can find a vector u ∈ Zk such that
u ≡ ui (mod pei

i). This implies that u is a solution of Nx′ ≡ b′ (mod k).

Theorem 1. Let (Γ,Δ) be a monotone access structure on [n]. Then M =
(Z,M, Ψ,μe) is a monotone span program computing (Γ,Δ) if and only if Mp� =
(Zp� ,M, Ψ,μe) is a monotone span program computing (Γ,Δ) for every prime p
and integer � ≥ 1, where M and μe in Mp are viewed as a vector and a matrix
modulo p�, respectively.

Proof. Assume that M = (Z,M, Ψ,μe) is a monotone span program computing
(Γ,Δ). By taking modulo p�, we can easily show that Mp = (Zp� ,M, Ψ,μe) is a
monotone span program computing (Γ,Δ) for every prime p and integer � ≥ 1.

Now we prove the other direction. By Lemma 1, the conditions (R1) and
(R2) are satisfied for R = Zp� for every prime p and integer � ≥ 1. By Lemma 2,
the conditions (R1) and (R2) are satisfied for R = Z. By Lemma 1 again,
M = (Z,M, Ψ,μe) is a monotone span program computing (Γ,Δ).

This is an interesting mathematical result that obeys the local-global principle,
also known as the Hasse principle. In mathematics (in particular number theory),
the local-global principle says that a phenomenon is true globally if and only if it
is true locally. A well-known example obeying this the local-global principle is the

510 R. Cramer and C. Xing

Hasse-Minkowski theorem which states that the local-global principle holds for
the problem of representing 0 by quadratic forms over the rational numbers. Of
course, there are also some examples that do not obey the local-global principal.
A counterexample by Ernst S. Selmer shows that the Hasse-Minkowski theorem
cannot be extended to forms of degree 3 (see [21, pp. 250–258]).

Theorem 1 is a bridge to connect integer monotone span programs with
monotone span programs over Zp� . This in turns allows us to construct integer
monotone span programs via monotone span programs over finite fields.

Theorem 2. Let (Γ,Δ) be a monotone access structure on [n]. Let p be a prime
and let (Zp,M, Ψ) be a triple defined in Subsect. 2.1. If M ∈ Z

h×e
p and

(O1) for any S ∈ Γ , the Fp-rank of MS is e; and
(O2) for any T ∈ Δ, the Fp-rank of NT is hT , where N is the h× (e− 1) matrix

obtained from M by removing the first column,

Then for any integer � ≥ 1, (Zp� ,M (�), Ψ,μe) is a monotone span program com-
puting (Γ,Δ), where M (�) is viewed as a lifting of M modulo p�, i.e., each entry
a of M can be replaced by any element b satisfying b ≡ a (mod p�).

Proof. By Lemma 1, it is sufficient to show that the conditions (R1) and (R2)
hold for the quadruple (Zp� ,M (�), Ψ,μe). Let S ∈ Γ , then by (O1) the Fp-rank
of MS is e, there is an e × e submatrix A of MS such that det(A) �≡ 0 mod p.
This implies that A (mod p�) is invertible. Thus, there exists a vector u ∈ Z

e
p�

such that uA ≡ μe (mod p�). Without loss of generality, we may assume that
M (�) =

(
A
C

)
for some (h−e)×e matrix C over Fq. Then (u,0)M (�) = (u,0)

(
A
C

)
=

uA ≡ μe (mod p�). This proves (R1) for the quadruple (Zp� ,M (�), Ψ,μe).
Let M = (b′|N). By (O2), for any T ∈ Δ, the Fp-rank of NT is hT . Hence,

there is an hT × hT submatrix E of NT such that det(E) �≡ 0 mod p. This
implies that E (mod p�) is invertible. Thus, there exists a vector v ∈ Z

hT

p� such
that Ev′ ≡ −b′ (mod p�). Without loss of generality, we may assume that
M

(�)
T = (b′|E,F). Then M

(�)
T (1,v,0)′ = (b′|E,F)(1,v,0)′ = b + Ev′ = 0

(mod p�). This proves (R2) for the quadruple (Zp� ,M (�), Ψ,μe).

We are interested in the smallest size of a monotone span program M computing
(Γ,Δ). This is because this number determines the secret size (see Theorem 3).

Definition 5. For a given (Γ,Δ), denote by mspR(Γ,Δ) the smallest size
of a monotone span program M over R computing (Γ,Δ). We also denote
mspZ(Γ,Δ) by msp(Γ,Δ).

The main purposes of this paper are (i) to derive a lower bound on msp(Γ,Δ);
and more importantly (ii) to explicitly construct an MSP over Z with expansion
factor achieving this lower bound up to a constant multiplicative factor.

Blackbox Secret Sharing Revisited 511

2.2 Black-Box Secret Sharing Scheme

In this subsection, we will prove a one-to-one correspondence between black-box
secret sharing schemes and integer monotone span programs. Now we introduce
black-box secret sharing schemes.

Definition 6. Let (Γ,Δ) be a monotone access structure on [n]. A black-
box secret sharing scheme (BBSSS for short) for (Γ,Δ) is a quadruple B =
(Z,M, Ψ,R) defined in Subsect. 2.1 satisfying the following requirement. Let G
be an arbitrary finite Abelian group and S ⊆ [n] be a non-empty set. For a
uniformly distributed s ∈ G,g = (g1, · · · , ge) ∈ Ge given that g1 = s, define
s = gM ′ ∈ Z

h. Then:

(Q1) (Completeness) If S ∈ Γ, then λ(S) · s′
S = s with probability 1.

(Q2) (Privacy) If T ∈ Δ, then sT contains no Shannon information on s.

If (Γ,Δ) = Rt,r,n, we say B is a near-threshold black-box secret sharing scheme
with privacy t and reconstruction r. Furthermore, if (Γ,Δ) = Rt,n, we say B is
a threshold black-box secret sharing scheme.

In [10], it was proved that there is a one-to-one correspondence between
threshold black-box secret sharing schemes and integer monotone span programs.
We also note that [10] gives a characterization on threshold black-box secret
sharing schemes.

Theorem 3. Let (Γ,Δ) be a monotone access structure on [n]. Then there is a
black-box secret sharing scheme B = (Z,M, Ψ,R) for (Γ,Δ) if and only if there
exists an integer monotone span program M = (Z,M, Ψ,μe) computing (Γ,Δ).

Proof. Assume that M = (Z,M, Ψ,μe) is an integer monotone span program
computing (Γ,Δ), i.e., the conditions (P1) and (P2) are given. Now we want to
show that the conditions (Q1) and (Q2) are satisfied.

Let us fix a finite Abelian group G. Sample s ∈ G uniformly at random
and sample g = (s, g2, · · · , ge) uniformly at random from {s}×Ge−1. Lastly, let
s = gM ′. Let S ∈ Γ , by (P1), there exists a vector u ∈ Z

hS such that uMS = μe.
This gives s = μe · g′ = (uMS) · g′ = u · s′

S . To prove (Q2), we have to show
that for any T ∈ Δ and any s1, s2 ∈ G, given a vector g1 ∈ Z

e with the first
coordinate of g1 equal to s1, there exists g2 such that s2 is the first coordinate
of g2 and MTg′

1 = MTg′
2. Let λ ∈ Z

e with the first coordinate equal to 1 such
that MT λ′ = 0′. Put g2 = g1 + (s2 − s1)λ. Then the first coordinate of g2 is s2.
Furthermore, we have MTg′

2 = MT (g1+(s2−s1)λ)′ = MTg′
1+(s2−s1)MT λ′ =

MTg′
1.

Now we prove the other direction. We prove one by one. For any S ∈ Γ , let
λ(S) ∈ R. Choose a prime p such that p is bigger than the maximal absolute
value of all entries of λ(S)MS . Set G = Zp and let gi ∈ Ge be the vector such
that the ith position of gi is 1 and the rest are 0. Then for j ∈ [e], we have

δ1,j ≡ λ(S)MSg′
i (mod p),

512 R. Cramer and C. Xing

where δ1,j is the Kronecker-delta function. Combining these e equations together,
we obtain μe ≡ λ(S)MS (mod p). As p is bigger than all entries of λ(S)MS , we
get μe = λ(S)MS ∈ im(M).

Suppose that T ∈ Δ. Recall that we want to show the existence of v =
(1, v2, · · · , ve) ∈ Z

e such that MTv′ = 0′. Let MT = (b′|NT), where b′ ∈ Z
hT

is the first column of MT and NT ∈ Z
hT ×(e−1). Then the existence of such v

is equivalent to the solvability of −b′ = NTx in Z. So by Lemma 2, to show
that −b′ = NTx is solvable over Z, it is equivalent to showing that it is solvable
modulo k for any integer k ≥ 2.

Fix k ≥ 2 and set G = Zk. Now for T ∈ Δ, it follows from the privacy
condition (Q2) that there exists g1 ∈ Z

e such that the first coordinate of g1 is
s − 1 and g1(MT)′ = g(MT)′. Setting v = g − g1, Then the first coordinate of
v is 1 and MTv′ = 0′, i.e., −b′ = NTx is solvable over Zk.

Definition 7. Let (Γ,Δ) be a monotone access structure on [n]. The expansion
factor
 of a black-box secret sharing scheme B = (Z,M, Ψ,R) for (Γ,Δ) is
defined to be the ratio h

n , where h is the number of rows of M .

3 A Lower Bound on Expansion Factors

In this section, we are going to derive a lower bound on the expansion factor
so that we know how far our construction of BBSSS is away from optimality.
In literatures, some lower bounds have been derived (see [3,5]). For the sake of
completeness, we derive a lower bound via a simple argument.

The idea is to obtain a lower bound on monotone span programs over finite
fields Fp for primes p. As an integer monotone span program gives rise to a
monotone span program modulo a prime with the same expansion factor, any
lower bound on expansion factors of monotone span programs modulo primes is
also a lower bound on integer monotone span programs. As one can expect, the
worst lower bound on expansion factors of monotone span programs are from
modulo 2. Thus, by deriving a lower bound on monotone span programs modulo
2 for the access structure Rt,r,n, we obtain a lower bound on the expansion factor
of BBSSS.

Let write msp2(Γ,Δ) for mspF2
(Γ,Δ). We first provide a lower bound on

msp2(R1,r,n).

Proposition 3. One has msp2(R1,r,n) ≥ n log n
r−1 .

Proof. Let M = (Z2,M, Ψ,μe) be a monotone span program computing R1,r,n.

For M ∈ Z
h×e
2 , we write Mi ∈ Z

hi×e
2 and hi to represent M{i} and h{i}, respec-

tively. Since we are going to find a lower bound on h, we want to bound them
when hi is minimized. So we assume that all rows of Mi are Z2-linearly inde-
pendent for any 1 ≤ i ≤ n.

Define H0 = {(0, v2, · · · , ve) ∈ Z
e
2} and H1 = {(1, v2, · · · , ve) ∈ Z

e
2}. Since

{i} ∈ Δ(R1,r,n), there exists c ∈ ker(Mi) with the first coordinate equal to 1,
where ker(Mi) denotes the solution space of Mix′ = 0′. Hence, ker(Mi)∩H1 �= ∅.

Blackbox Secret Sharing Revisited 513

We claim that | ker(Mi)∩H0| = | ker(Mi)∩H1| = 2e−1−hi . Note that ker(Mi) ⊆
H0 ∪ H1 = Z

e
2 and | ker(Mi)| = 2hi . To prove our claim, it is sufficient to show

that | ker(Mi) ∩ H0| = | ker(Mi) ∩ H1|. This is true as one can easily verify that
c + ker(Mi) ∩ H0 = | ker(Mi) ∩ H1.

Let S be a subset of [n] of size r, we have S ∈ Γ (R1,r,n). Thus, μe belongs
to im(M ′

S). In other words, the first column of MS is not a linear combination
of the others. This implies that ker(MS) ∩ H1 = ∅. This means that for any
v ∈ H1, it can appears in ker(Mi) ∩ H1 for at most (r − 1) of i ∈ S. This gives
the following inequality

(r − 1)2e−1 = (r − 1)|H1| ≥
n∑

i=1

|ker(Mi) ∩ H1| =
n∑

i=1

2e−1−hi ,

i.e.,
∑n

i=1 2−hi ≤ r − 1.
Recall that by the Log Sum Inequality, for any non-negative a1, · · · , an,

b1, · · · , bn, we have
n∑

i=1

ai log
ai

bi
≥ a log

a

b
,

where a =
∑n

i=1 ai and b =
∑n

i=1 bi. Let ai = 1 and bi = 2−hi . Then a = n and
b =

∑n
i=1 2−hi ≤ r − 1. Then

h =
n∑

i=1

hi =
n∑

i=1

1 · log
1

2−hi
≥ n log

n
∑n

i=1 2−hi
≥ n log

n

r − 1
.

To find lower bounds on the expansion factor of the access structure Rt,r,n, let
us consider the dual of Rt,r,n.

Definition 8. The dual (Γ ∗,Δ∗) of a monotone access structure (Γ,Δ) on [n]
is defined by

(i) Δ∗ = {T ⊆ [1, n] : T̄ ∈ Γ}, where T̄ is the complement of T , i.e., (T̄) =
[n] \ T .

(ii) Γ ∗ = {S ⊆ [1, n] : S̄ ∈ Δ}.

It is easy to verify that (Γ ∗,Δ∗) is a monotone access structure [n] as long as
(Γ,Δ) is.

Remark 1. One has R∗
t,r,n = Rn−r,n−t,n.

Lemma 4 (See [19]). For any finite field F and monotone access structure
(Γ,Δ), we have the equality mspF(Γ,Δ) = mspF(Γ ∗,Δ∗).

Remark 2. It follows from Lemma 4 that mspF(Rt,r,n) = mspF(Rn−t,n−r,n).
Thus, to find mspF(Tt,r,n), we can always assume that r ≥ n−1

2 .

Theorem 4. If 1 ≤ t < r < n, then msp2(Rt,r,n) ≥ n log n+1
2(r−t+1) .

514 R. Cramer and C. Xing

Proof. By Remark 2, we may assume that r ≥ n−1
2 . Consider any MSP M =

(F2,M, Ψ, ε) computing Rt,r,n. Without loss of generality, we may assume that
h1 ≤ h2 ≤ · · · ≤ hn. It is clear that (M ′

1|M ′
2| · · · |M ′

r+1)
′ is an MSP computing

Rt,r,r+1. So we have
∑r+1

i=1 hi ≥ msp2(Rt,r,r+1). Note that for any j > r+1, hj ≥
hr+1 ≥ msp2(Rt,r,r+1)

r+1 . Hence,

h =
r+1∑

i=1

hi +
n∑

j=r+2

hi ≥ msp2(Rt,r,r+1) +
n − (r + 1)

r + 1
msp2(Rt,r,r+1)

=
n

r + 1
msp2(Rt,r,r+1).

This gives

msp2(Rt,r,n) ≥ n

r + 1
msp2(Rt,r,r+1) =

n

r + 1
msp2(R1,r+1−t,r+1)

≥ n log
r + 1

r − t + 1
≥ n log

n + 1
2(r − t + 1)

and the proof is completed.

By considering modulo 2, we obtain the following lower bound.

Theorem 5. For all integers r, t, n with 0 < t < r < n, one has msp(Rt,r,n) ≥
n · log n+1

2(r−t+1) .

Remark 3. It follows from [3,5] that, for all integers r, t, n with 0 < t < r < n,
one has

msp(Rt,r,n) ≥ max
{

n · log
n − t + 1

r − t
, n · log

r + 1
r − t

}

≥ n·log
n + r − t + 2

2(r − t)
. (1)

The lower bound in (1) is slightly better than the one given in Theorem 5.

4 Gluing Method

In Subsect. 2.1, we witnessed that an integer monotone span program obeys the
local-global principle. Thus, given an access structure Rt,r,n, construction of an
integer monotone span program computing Rt,r,n is equivalent to construction of
a monotone span program computing Rt,r,n modulo every prime power. However,
it is usually not easy to directly construct an integer monotone span program
computing Rt,r,n that is also a monotone span program computing Rt,r,n modulo
every prime power. On the other hand, it is much easier to develop a monotone
span program computing Rt,r,n modulo one given prime power. Thus, by the
Chinese Remainder Theorem, for any given finite number n, we can lift monotone
span programs computing Rt,r,n modulo all prime p ≤ n to an integer monotone
span program. The question is how to make it into an integer monotone span
program modulo all prime p > n.

Blackbox Secret Sharing Revisited 515

Our idea is to glue two integer monotone span programs, one is a monotone
span program modulo primes p ≤ n and other one modulo primes p > n. The
first one can be obtained by lifting monotone span programs modulo every prime
power p ≤ n. The other one can be constructed via an integer Vandermonde
matrix. As a result, the integrated matrix gives an integer monotone span pro-
gram that is also a monotone span program modulo every prime power. Hence,
by the local-global principal, we obtain an integer monotone span program.

For positive integers x1, x2, . . . , xn, let us define the Vandermonde matrix

Δi(x1, x2, . . . , xn) =

⎛

⎜
⎜
⎜
⎝

xi
1 x1+i

1 x2+i
1 . . . xn−1+i

1

xi
2 x1+i

2 x2+i
2 . . . xn−1+i

2
...

...
...

...
...

xi
n x1+i

n x2+i
n . . . xn−1+i

n

⎞

⎟
⎟
⎟
⎠

.

We further denote by δ(x1, x2, . . . , xn) the determinant of Δ1(x1, x2, . . . , xn), i.e.,
δ(x1, x2, . . . , xn) = (

∏n
i=1 xi)

(∏
1≤i<j≤n(xj − xi)

)
. It is clear that every prime

divisor of δ(x1, x2, . . . , xn) is at most max{x1, x2, . . . , xn}. The matrix defined in
the following lemma gives a threshold black-box secret sharing scheme modulo
large primes.

Lemma 5. Define the matrix

L =

⎛

⎜
⎜
⎜
⎝

1 1 1 . . . 1
2 22 23 . . . 2t

...
...

...
...

...
n n2 n3 . . . nt

⎞

⎟
⎟
⎟
⎠

∈ Z
n×t. (2)

Then we have

(i) For every subset T of [n] of size t, the equation
(

1 0
δ1′ LT

)

x′ = μ′
t+1 is solvable

modulo p� for any prime p > n and integer � ≥ 1, where δ = δ(1, 2, . . . , n).
(ii) For every subset S of [n] of size r with r ≥ t + 1, the equation x(δ1′, LS) =

μt+1 is solvable modulo p� for all primes p > n and integers � ≥ 1.

Proof. To prove part (i), we let |T | = t with T = {i1, i2, . . . , it}. Then the
matrix LT is in fact the matrix Δ1(i1, i2, . . . , it). As det(Δ1(i1, i2, . . . , it)) =
δ(i1, i2, . . . , it) is co-prime to p� for every prime p > n and � ≥ 1, we can find a
matrix A ∈ Z

t×t such that Δ1(i1, i2, . . . , is)A is the identity matrix It modulo
p�, thus we have δ1′ ≡ δLT A1′ (mod p�), i.e, (1,−δ1A′) ∈ Z

t+1
p� (mod p�) is a

solution of (δ1′,Δ1(i1, i2, . . . , it))x′ ≡ 0′ modulo p�. Thus, it is also a solution

of
(

1 0
δ1′ LT

)

x′ = μ′
t+1 modulo p�.

Now let |S| = r ≥ t + 1 and denote S = {i1, i2, . . . , ir}. Then

(δ1′, LS) =
(

Δ(δ)(i1, . . . , it+1)
B

)

, (3)

516 R. Cramer and C. Xing

for a matrix B in Z
(r−t−1)×(t+1), where Δ(δ)(i1, . . . , it+1) is the matrix obtained

from Δ0(i1, . . . , it+1) by multiplying δ to the first column. As Δ0(i1, . . . , it+1) is
invertible modulo p�, Δ(δ)(i1, . . . , it+1) is also invertible modulo p�. Hence, there
is a solution c ∈ Z

t+1
p� of the equation xΔ(δ)(i1, i2, . . . , it+1) = μt+1 modulo p�.

Thus, (c,0) ∈ Z
r is a solution of the equation x(δ1′, LS) ≡ μt+1 modulo p�.

We now present our gluing method.

Theorem 6. Let Ni ∈ Z
m×(l−1) with mt < l ≤ mr be a matrix for 1 ≤ i ≤ n.

Let ci ∈ Z
m. Put

G =

⎛

⎜
⎜
⎜
⎝

c′
1 N1

c′
2 N2

...
...

c′
n Nn

⎞

⎟
⎟
⎟
⎠

, N =

⎛

⎜
⎜
⎜
⎝

N1

N2

...
Nn

⎞

⎟
⎟
⎟
⎠

.

Suppose that for every prime p ≤ n, every subset T of [n] of size t and every
subset S of [n] of size r, the Zp-ranks of NT and GS are mt and l, respectively.
Then there exists a monotone span program M = (Z,M, Ψ,μt+l) computing
Rt,r,n with M ∈ Z

(m+1)n×(t+l). As a result, msp(Rt,r,n) ≤ (m + 1)n.

Proof. Define the product

ρN =
∏

S⊂[n],|S|=t

⎛

⎝
∏

A∈Mt(NS),det(A) �=0

det(A)

⎞

⎠ ,

where Mt(NS) stands for the set of mt × mt submatrices of NS . By the given
condition, we know that ρN is well defined and it is a nonzero integer. We write
the above ρN into the product ρN = ζN × ηN such that gcd(ζN ,

∏
p≤n p) = 1,

and all prime divisors of ηN are less than or equal to n.
Define

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ 0 e1
ζNc′

1 N1 0
δ 0 e2

ζNc′
2 N2 0

...
...

...
δ 0 en

ζNc′
n Nn 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4)

where δ = δ(1, 2, . . . , n) and ei = (i, i2, . . . , it) for 1 ≤ i ≤ n. Let Ψ be the map
splitting M into the blocks of (4). We claim that M = (Z,M, Ψ,μt+l) is an
integer monotone span program computing Rt,r,n.

To prove privacy, by Lemma 1, it is sufficient to show that for every subset
T = {i1, i2, . . . , it} of [n] of size t and every prime power p�, the equation

(
μt+l

MT

)

x′ ≡ μ′
(m+1)t+1 (mod p�) (5)

Blackbox Secret Sharing Revisited 517

has solutions in Z
t+l
p� . For p ≤ n, we let L be the matrix defined in (2). Then

LT = Δ1(i1, i2, . . . , it). It is clear that one can find D ∈ Z
t×t such that LT D ≡

det(LT)It (mod p�). As det(LT) is a divisor of δ, (1,− δ
det(LT)1D′) is a solution

of the equation
(

1 0
δ1′ LT

)

x′ ≡ μt (mod p�). On the other hand, it follows from

the given condition that there exists an mt × mt submatrix A of NT such that
gcd(det(A), p�) = 1. Then there exists an integer g such that g det(A) ≡ 1
(mod p�). Without loss of generality, we may assume that NT = (A,B) with B ∈
Z

mt×(l−1−mt). Let H ∈ Z
mt×mt
p� such that AH = det(A)Imt. Then (1,−gcH ′,0)

is a solution of the equation
(

1 0
c′ NT

)

x′ =
(

1 0 0
c′ A B

)

x′ = μl modulo p�, where

c = ζN (ci1 , ci2 , . . . , cit
). In conclusion, the vector (1,−gcH ′,0,− δ

det(LT)1D′) is
a solution of (5).

If p > n, by Lemma 5 the equation
(

1 0
δ1′ LT

)

x′ ≡ μ′
t+1 (mod p�) has a

solution (1,u) ∈ Z
t+1. On the other hand, by the given condition, there exists

an mt×mt submatrix E of NT such that det(E) �= 0. Without loss of generality,
we may assume that NT = (E,F) with F ∈ Z

mt×(l−1−mt). Assume that e ≥ 0
is an integer such that pe|det(E) and pe+1

� det(E). Then by the definition of
ζN , we have pe|ζN . Let ζN = pea and let det(E) = peb with gcd(b, p) = 1. Then
there exists an integer d such that bd ≡ 1 (mod p�). Let C ∈ Z

mt×mt
p� such that

AC = det(E)Imt = pebImt. Hence, (1,−advC ′,0) is a solution of the equation(
1 0
c′ NS

)

x′ =
(

1 0 0
c′ E F

)

x′ ≡ μmt+1 (mod p�), where c = ζN (ci1 , ci2 , . . . , cit
)

and v = (ci1 , ci2 , . . . , cit
). Thus, the vector (1,−advC ′,0,u) is a solution of (5).

To prove reconstruction, by Lemma 1, it is sufficient to show that for every
subset S = {i1, i2, . . . , ir} of [n] of size r and every prime power p�, the equation

xMS ≡ μl+e (mod p�) (6)

is solvable. If p ≤ n, then Zp-rank of GS is l. Without loss of generality, we may
write GS =

(
b′ E
c′ F

)
such that (b′, E) is an l × l invertible matrix modulo p�. As

ζN is co-prime with p, (ζNb′, E) is also an l × l invertible matrix modulo p�.
Thus, there exists a vector v ∈ Z

l such that vE ≡ μl (mod p�). Hence, (v,0) is
a solution of (6).

If p > n, let S1 = {i1, i2, . . . , it+1} ⊆ S. By Lemma 5, there is a vector
a ∈ Z

t+1
p� such that a(δ1, LS1) ≡ μt+1 (mod p�). This implies that (6) is solvable

modulo p�.

5 Lifting Codes over Prime Fields

As we have seen in the previous section, to construct a monotone span program,
it is sufficient to construct a matrix G satisfying the conditions in Theorem 6. Our
idea is to construct generator matrices over Zp of the same size for every prime

518 R. Cramer and C. Xing

p such that each generator matrix over Zp satisfies the conditions in Theorem 6.
Then we lift these matrices using the Chinese Remainder Theorem to obtain the
desired matrix G in Theorem 6.

It has been known that linear secret sharing schemes with same secret and
share spaces are equivalent to linear codes (see e.g. [4,20]).

Let us first review some notions from coding theory (see e.g. [22,23]) that are
relevant to this work. Let Fq be a finite field of q elements. A q-ary linear code C
of length n is an Fq-subspace of F

n
q . Then dimension of this code is defined to be

the dimension of C as an Fq-linear space. We denote by [n, k]q a q-ary linear code
of length n and dimension k. In case there is no confusion, we just denote [n, k]q
by [n, k] or q-ary [n, k]-linear code. The (Euclidean) dual code of C, denote by
C⊥, is defined to be the set {x ∈ Fq : 〈c,x〉 = 0 for all c ∈ C}, where 〈·, ·〉 is the
Euclidean inner product. Then it is well known from linear algebra that C⊥ is
a q-ary [n, n − k]-linear code. Apart from length and dimension, there is a third
parameter d, called minimum distance which plays an important role in coding
theory. We denote by [n, k, d]q a q-ary linear code of length n, dimension k and
minimum distance d. We use d⊥ to denote the minimum distance of the dual
code. We also call d⊥ the dual distance of C. The distance d and dual distance
d⊥ are closely related to privacy and reconstruction of the linear secret sharing
scheme arising from this code (see e.g. [4,20]).

For an [n, k]q-linear code C, a matrix G is called a generator matrix of C if
the columns of G form an Fq-basis of C (note that this is different from the usual
definition in which rows of G form an Fq-basis of C). Thus, G has the size n× k.
A generator matrix of C⊥ is called a parity-check matrix of C. Hence, H has size
n × (n − k). It is clear that a linear code C is uniquely determined by either a
generator matrix or a parity-check matrix. Therefore, all three parameters of a
linear code C are completely determined by a generator matrix G or a parity-
check matrix H. The length and dimension of C are determined by size of G or
H in an obvious way. The following result shows how the minimum distance is
determined by G or H.

Lemma 6 (see [22,29]). Let C be a q-ary [n, k]-linear code with a generator
matrix G or a parity-check matrix H. Then

(i) C has minimum distance d if and only if every (n−d+1)×k submatrix of G
has rank k; and there is a (n − d) × k submatrix of G with rank less than k.

(ii) C has minimum distance d if and only if every (d − 1) × (n − k) submatrix
of H has rank d − 1; and there is a d × (n − k) submatrix of H with rank less
than d.

In coding theory, there is a well-known propagation rule to construct new codes
from given codes, called concatenation rule. Let C1 be a pk0-ary [n1, k1, d1]-linear
code and let C0 be a p-ary [n0, k0, d0]-linear code. We fix an Fp-isomorphism τ
between Fpk0 and C0. Then the concatenated code C is defined by {(τ(c1), τ(c2),
. . . , τ(cn)) : (c1, c2, . . . , cn) ∈ C1}. Furthermore, C is an [n0n1, k0k1,≥ d0d1]p-
linear code (see e.g. [22]). However, usually C has small dual distance. In fact, the
dual distance of C is at most the dual distance of C0. On the other hand, if C0 is
the trivial code F

k0
q , then the dual distance of C is at least the dual distance of C1.

Blackbox Secret Sharing Revisited 519

Fix an Fp-basis γ1, γ2, . . . , γm of Fpm . Let β1, β2, . . . , βm be an orthogonal
basis of γ1, γ2, . . . , γm, i.e, Tr(γiβj) = δij , where Tr is the trace map from
Fpm to Fp and where δi,j is the Kronecker-delta function. We define maps ϕ
and ψ from Fpm to F

m
p by setting ϕ(α) = (a1, a2, . . . , am) if α =

∑m
i=1 aiγi

and ψ(α) = (b1, b2, . . . , bm) if α =
∑m

i=1 biβi, respectively. Then both maps
are Fp-isomorphisms from Fpm to F

m
p . Furthermore, we have 〈ϕ(α), ψ(β)〉 =

Tr(αβ). We can extend these two Fp-isomorphisms: F
n
pm → F

mn
p by defining

ϕ(α1, α2, . . . , αn) = (ϕ(α1), ϕ(α2), . . . , ϕ(αn)) and ψ(α1, α2, . . . , αn) = (ψ(α1),
ψ(α2), . . . , ψ(αn)), respectively. Then they become Fp-isomorphisms from F

n
pm

to F
mn
p .

Lemma 7. If C is a pm-ary [n, k, d]-linear code with dual distance d⊥. Then
ϕ(C) is a p-ary [nm, km]-linear code with distance at least d and dual distance
at least d⊥. Furthermore, the dual code of ϕ(C) is ψ(C⊥).

Proof. ϕ(C) (and ψ(C⊥), respectively) is the concatenated code with the outer
code C (and C⊥, respectively) and trivial inner code F

m
p . Thus, ϕ(C) is a p-ary

linear code with the desired parameters. It remains to prove that ϕ(C)⊥ is ψ(C⊥).
Since the Fp-dimension of ϕ(C)⊥ is nm − dimFp

ϕ(C) = nm − dimFp
C =

nm − mk = dimFp
ψ(C⊥), it is sufficient to show that codewords of ϕ(C) and

those of ψ(C⊥) are orthogonal. Let u = (ϕ(α1), ϕ(α2), . . . , ϕ(αn)) ∈ ϕ(C)
with (α1, α2, . . . , αn) ∈ C. Let v = (ψ(λ1), ψ(λ2), . . . , ψ(λn)) ∈ ψ(C⊥) with
(λ1, λ2, . . . , λn) ∈ C⊥. Then the inner product of these vectors are

〈u,v〉 =
n∑

i=1

〈ϕ(αi), ψ(λi)〉 =
n∑

i=1

Tr(αiλi) = Tr

(
n∑

i=1

αiλi

)

= 0.

This completes the proof.

Corollary 8. Let C be a pm-ary [n, k, d]-linear code with dual distance d⊥. Let
(aij)1≤i≤n,1≤j≤k be a generator matrix of C. Then the matrix in F

mn×km
p given

below

G =

⎛

⎜
⎜
⎜
⎝

ϕ(γ1a11) ϕ(γ2a11) · · · ϕ(γma11) · · · · · · ϕ(γ1a1k) ϕ(γ2a1k) · · · ϕ(γma1k)
ϕ(γ1a21) ϕ(γ2a21) · · · ϕ(γma21) · · · · · · ϕ(γ1a2k) ϕ(γ2a2k) · · · ϕ(γma2k)

...
...

...
...

...
...

...
...

...
...

ϕ(γ1an1) ϕ(γ2an1) · · · ϕ(γman1) · · · · · · ϕ(γ1ank) ϕ(γ2ank) · · · ϕ(γmank)

⎞

⎟
⎟
⎟
⎠

(7)
is a generator matrix of ϕ(C), where each ϕ(γiajl) is viewed as a column vector
of length m. Furthermore, define Ψ to be the map from [mn] to [n] such that the
first m numbers of [mn] are mapped to 1 and the second m numbers of [mn] are
mapped to 2 and so on. Then

(i) for any S ⊆ [n] with |S| ≥ n − d + 1, ϕ(GS) has Fp-rank equal to mk;
(ii) for any T ⊆ [n] with |T | ≤ d⊥ − 1, ϕ(GT) has Fp-rank equal to mt, where

t = |T |.

520 R. Cramer and C. Xing

Proof. It is clear that every column of G is a codeword of ϕ(C). By Lemma 7,
ϕ(G) has dimension mk. Thus, to show that ϕ(G) is a generator matrix
of ϕ(C), it is sufficient to show that all columns of ϕ(C) are linearly inde-
pendent. Let g′

1,g
′
2, . . . ,g

′
k be column vectors of G. We want to show that

{ϕ(γigj)}1≤i≤m,1≤j≤k are Fp-linearly independent. Suppose that
∑m

i=1

∑k
j=1 λij

ϕ(γigj) = 0 for some λij ∈ Fp, i.e., ϕ
(∑m

i=1

∑k
j=1 λijγigj

)
= 0. As ϕ is an

isomorphism, we get
∑m

i=1

(∑k
j=1 λijγi

)
gj = 0. Since g1,g2, . . . ,gk are Fpm -

linearly independent, this forces that
∑k

j=1 λijγi = 0 for i = 1, 2, . . . , k. This
gives γij = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ k.

Now let S ⊆ [n] with |S| ≥ n − d + 1. Consider the new code C1 that is
obtained from C by deleting n − |S| positions at i ∈ [n] \ S. Then C1 is pm-ary
[n − |S|, k,≥ d − n + |S|]-linear code. By the first part of this lemma, we know
that of ϕ(GS) is a generator matrix of ϕ(C1). Hence, it has rank mk.

Let T ⊆ [n] with |T | ≤ d⊥−1. If uT ∈ F
mt
p is a solution of xϕ(GT) = 0. Then

(uT ,0[n]\T) is a solution of xϕ(G) = 0. By Lemma 7, (uT ,0[n]\T) is a codeword
in ψ(C⊥). Hence ψ−1(uT ,0[n]\T) is a codeword of C⊥. As the Hamming weight
of ψ−1(u,0[n]\T) is at most |T | ≤ d⊥ − 1, we conclude that u = 0. This implies
that the Zp-rank of ϕ(G′

T) is mt. The proof is completed.

Given a matrix A = (aij)1≤i≤n,1≤j≤k ∈ F
n×k
pm , we denote by ϕ(A) the matrix

given in (7).

5.1 Reed-Solomon Codes

In this subsection, we are going to make use of Reed-Solomon codes to construct
a matrix G satisfying the conditions of Theorem 6.

Let m = �log n�. Then for any prime p, we have n ≤ 2m ≤ pm. Choose
n distinct elements α1, α2, . . . , αn ∈ Fpm . We denote by Fpm [x]<t the set of
polynomials in Fpm [x] of degree less than t. Then Fpm [x]<t is an Fpm -space of
dimension t with a canonical basis {1, x, , x2, . . . , xt−1}. A Reed-Solomon code
is defined below

RS[n, t] := {(f(αi), f(α2), . . . , f(αn)) : f ∈ Fpm [x]<t}.

The code RS[n, t] is a pm-ary [n, t]-linear code with distance d = n − t + 1 and
dual distance d⊥ = t + 1, respectively.

Fix an Fpm -basis f2, f3, . . . , ft+1 of Fpm [x]<t. Extend this basis to an Fpm -
basis {fi}t+1

i=1 of Fpm [x]≤t. Define the matrix

A(p) =

⎛

⎜
⎜
⎜
⎝

f1(α1) f2(α1) f3(α1) · · · ft+1(α1)
f1(α2) f2(α2) f3(α2) · · · ft+1(α2)

...
...

...
...

...
f1(αn) f2(αn) f3(αn) · · · ft+1(αn)

⎞

⎟
⎟
⎟
⎠

(8)

Then A(p) is a generator matrix of RS[n, t + 1] = [n, n − t − 1]pm .

Blackbox Secret Sharing Revisited 521

Lemma 9. Put G(p) = ϕ(A(p)). Then

(i) for any subset S of [n] of size t + 1, G
(p)
S has Fp-rank equal to (t + 1)m; and

(ii) for any subset T of [n] of size t, NT has Fp-rank mt, where N is obtained
from G(p) by removing the first column from the left.

Proof. As A(p) is a generator matrix of RS[n, t+1] whose distance is n− t, Part
(i) directly follows from Corollary 8 (i). To prove Part (ii), we consider B(p) that
is obtained from A(p) by removing the first column. Then B(p) is a generator
matrix of RS[n, t] whose dual distance is t + 1. By Corollary 8 (ii), ϕ(B(p)

T) has
Fp-rank mt. Furthermore, ϕ(B(p)) is in fact obtained from NT by removing the
first m − 1 columns. As a result, NT has Fp-rank mt as well.

Corollary 10. For any integer n ≥ 2 and any integer t with 0 < t < n, there
exists a triple (Z, G, Ψ) defined in Subsect. 2.1 such that G ∈ Z

nm×(t+1)m with
m ≥ �log n� and |Ψ−1(j)| = m for all 1 ≤ j ≤ n such that, for every prime
p ≤ n, if G is viewed a matrix modulo p, then

(i) for any subset S of [n] of t + 1, GS has Fp-rank equal to (t + 1)m; and
(ii) for any subset T of [n] of t, NT has Fp-rank mt, where N is obtained from

G by removing the first column from the left.

Proof. By Lemma 9, for every prime p ≤ n, we can construct a matrix
G(p) ∈ Z

nm×(t+1)m satisfying the two conditions in Lemma 9. By the Chinese
Remainder Theorem, we can lift all G(p)’s to one matrix G ∈ Z

nm×(t+1)m such
that G ≡ G(p) (mod p). Then G is the desired matrix.

5.2 Algebraic Geometry Codes

In the previous section, we made use of Reed-Solomon codes to construct a
matrix G satisfying the conditions in Theorem 6. This would give a threshold
BBSSS (see Theorem 7). However, in this case, the expansion factor h is nm =
n�log n�, i.e., the ratio is h

n = �log n� is unbounded. If we want to get a bounded
ratio h

n , then the lower bound in Theorem 5 indicates that we have to use a
near-threshold BBSSS. As in the case of linear secret sharing schemes, we can
use algebraic geometry codes to get a bounded ratio h

n .
Let us first introduce an algebraic geometry codes very briefly. The reader

may refer to the books [26,27] for the details on this topic. For convenience of
the reader, we start with some background on global function fields over finite
fields. The reader may refer to [24,26] for detailed background on function fields
and algebraic-geometric codes.

For a prime power q, let Fq be the finite field of q elements. An algebraic
function field over Fq in one variable is a field extension F ⊃ Fq such that F is
a finite algebraic extension of Fq(x) for some x ∈ F that is transcendental over
Fq. The field Fq is called the full constant field of F if the algebraic closure of
Fq in F is Fq itself. Such a function field is also called a global function field.
From now on, we always denote by F/Fq a function field F with the full constant
field Fq.

522 R. Cramer and C. Xing

A discrete valuation of F/Fq is a map from F to Z∪{+∞} satisfying certain
properties (see [26, Definition 1.19]). Then each discrete valuation ν from F/Fq

to Z ∪ {+∞} defines a valuation ring O = {f ∈ F : ν(f) ≥ 0} that is a local
ring [26, Theorem 1.1.13]. The maximal ideal P of O is given by P = {f ∈
F : ν(f) > 0} and it is called a place. We denote the valuation ν and the
local ring O corresponding to P by νP and OP , respectively. The residue class
field OP /P , denoted by FP , is a finite extension of Fq. The extension degree
[FP : Fq] is called degree of P , denoted by deg(P). A place of degree one is
called a rational place. For a nonzero function z ∈ F , the principal divisor of
z is defined to be div(z) =

∑
P∈PF

νP (z)P . The zero and pole divisors of z are
defined to be div(z)0 =

∑
νP (z)>0 νP (z)P and div(z)∞ = −∑

νP (z)<0 νP (z)P ,
respectively. Then we have deg(div(z)) = 0, i.e, deg(div(z)0) = deg(div(z)∞).
For two functions f, g ∈ F and a place P , we have νP (f+g) ≥ min{νP (f), νP (g)}
and the equality holds if νp(f) �= νP (g) (note that νP (0) = +∞). This implies
that f + g �= 0 if νP (f) �= νP (g).

If F is the rational function field Fq(x), then every discrete valuation of F/Fq

is given by either ν∞ or νp(x) for an irreducible polynomial p(x), where ν∞ is
defined by ν∞(f/g) = deg(g) − deg(f) and νp(x)(f/g) = a − b with p(x)a||f and
p(x)b||g for two nonzero polynomials f, g ∈ Fq[x]. It is straightforward to verify
that the degrees of places corresponding to ν∞ and νp(x) are 1 and deg(p(x)),
respectively.

Let PF denote the set of places of F . The divisor group, denoted by
Div(F), is the free abelian group generated by all places in PF . An element
D =

∑
P∈PF

nP P of Div(F) is called a divisor of F , where nP = 0 for almost all
P ∈ PF . We denote np by νP (D). The support, denoted by Supp(D), of D is the
set {P ∈ PF : nP �= 0}. Thus, Supp(D) of a divisor D is always a finite subset
of PF . For a divisor D of F/Fq, we define the Riemann-Roch space associated
with D by

L(D) := {f ∈ F ∗ : div(f) + D ≥ 0} ∪ {0},

where F ∗ denotes the set of nonzero elements of F . Then L(D) is a finite
dimensional space over Fq and its dimension dimFq

L(D) is determined by the
Riemann-Roch theorem which gives

dimFq
L(D) = deg(D) + 1 − g + dimFq

L(W − D),

where g is the genus of F and W is a canonical divisor of degree 2g−2. Therefore,
we always have that dimFq

L(D) ≥ deg(D) + 1 − g and the equality holds if
deg(D) ≥ 2g − 1 [26, Theorems 1.5.15 and 1.5.17].

Let p be a prime and let n > l ≥ 2 be two integers. Let F/Fpm be a function
field with genus g and n + 1 distinct Fpm -rational places P∞, P1, P2, . . . , Pn.
Define the ordered set P = {P1, P2, . . . , Pn}. Denote by C(lP∞,P) the algebraic
geometric code defined by

C(lP∞,P) = {(f(P1), f(P2), . . . , f(Pn)) : f ∈ L(lP∞)}. (9)

Blackbox Secret Sharing Revisited 523

Lemma 11 (see [26, Theorem 2.2.4]). Let g < k < n − g. Then C((k + g −
1)P∞,P) is a pm-ary [n, k,≥ n−k−g+1]-linear code and C⊥((t+2g−1)P∞,P)
is a pm-ary [n, n − k,≥ k − g + 1]-linear code. Furthermore, the matrix

A =

⎛

⎜
⎜
⎜
⎝

f1(P1) f2(P1) f3(P1) · · · fk(P1)
f1(P2) f2(P2) f3(P2) · · · fk(P2)

...
...

...
...

...
f1(Pn) f2(Pn) f3(Pn) · · · fk(Pn)

⎞

⎟
⎟
⎟
⎠

(10)

is a generator matrix of C((k + g− 1)P∞,P) whenever f1, f2, . . . , fk are a basis
of L((k + g − 1)P∞).

Similar to Corollary 10, we have the following result.

Lemma 12. Let g < k < n − g. Let f2, f3, . . . , fk−1 be a Fpm-basis of L((k +
g−2)P∞) and let f1, f2, f3, . . . , ft+g+1 be an Fpm-basis of L((k +g−1)P∞). Let
A be the matrix defined in (10) and put G(p) = ϕ(A). Furthermore, define Ψ to
be the map from [mn] to [n] such that the first m numbers of [mn] are mapped
to 1 and the second m numbers of [mn] are mapped to 2 and so on. Then

(i) for any subset S of [n] of size at least k + g, G
(p)
S has Fp-rank equal to

(t + g + 1)m; and
(ii) for any subset T of [n] of size t with t ≤ k−g−1, NT has Fp-rank mt, where

N is obtained from G(p) by removing the first column from the left.

Proof. Note that A is a generator matrix of L((t + 2g)P∞) with minimum dis-
tance at least n − 2g. Part (i) follows from Corollary 8.

Let B be the matrix of A obtained from A by removing the first column of
A. Then B is a generator matrix of C((k + g− 2)P∞,P). By mimicking proof of
Corollary 10(ii), we can Part (ii).

Corollary 13. Let m ≥ 2 be an even integer. Then for any integer n ≥ 2 and
any integer k with 2(n+1)

2m/2−1
< k < n− 2(n+1)

2m/2−1
, there exists a triple (Z, G, Ψ) defined

in Subsect. 2.1 such that G ∈ Z
nm×km and |Ψ−1(j)| = m for all 1 ≤ j ≤ n such

that, for every prime p ≤ n, if G is viewed as a matrix modulo p, then

(i) for any subset S of [n] of size r with r ≥ k + 2(n+1)
2m/2−1

, GS has Fp-rank equal
to km; and

(ii) for any subset T of [n] of size t with t ≤ k − 2(n+1)
2m/2−1

− 1, NT has Fp-rank mt,
where N is obtained from G by removing the first column from the left.

Proof. If pm ≥ n, then the desired result follows from Corollary 10. Now we
assume that pm < n.

Define

i(p,m, n) =
⌈

logp

(
n

pm − 1

)⌉

. (11)

524 R. Cramer and C. Xing

We claim that

pi(p,m,n)−1(pm − 1) < n ≤ pi(p,m,n)(pm − 1). (12)

To prove (12), it is sufficient to verify that pi(p,m,n)−1 < n
pm−1 ≤ pi(p,m,n), i.e,

i(p,m, n) − 1 < logp

(
n

pm−1

)
≤ i(p,m, n) for all primes p.

Define

i(m,n) = max
pm≤n

pi(p,m,n)(pm/2 + 1). (13)

For pm ≤ n, we have

pi(p,m,n)(pm/2 + 1) ≤ p1+logp(n+1
pm−1)(pm/2 + 1) ≤ p

(
n + 1
pm − 1

)

(pm/2 + 1)

=
p(n + 1)
pm/2 − 1

≤ 2(n + 1)
2m/2 − 1

.

For every p with pm ≤ n, by Lemma 14, there exists an algebraic function
field F/Fpm of genus g ≤ i(p,m, n) such that it has at least n + 1 distinct
Fpm -rational points. We label these n + 1 pairwise distinct Fpm -rational points
P∞, P1, P2, . . . , Pn. Let f2, f3, . . . , ft+g+1 be a Fpm -basis of L((t + 2g − 1)P∞)
and extend to a Fpm -basis f1, f2, f3, . . . , ft+g+1 of L((t + 2g)P∞). Let A be the
matrix defined in (10) and put G(p) = ϕ(A).

By Corollary 13, for any subset S of [n] or size r with r ≥ k + 2(n+1)
2m/2−1

≥
k + g, G

(p)
S has Fp-rank equal to km; and for any subset T of [n] of size t with

t ≤ k − 2(n+1)
2m/2−1

− 1 ≤ k − g − 1, NT has Fp-rank mt. Now by the Chinese
Remainder Theorem, we can lift all G(p) to a matrix G ∈ Z

nm×km such that
G ≡ G(p) (mod p). The desired result follows.

6 The Main Results

We are ready to state our final results by collecting some previous results.

Theorem 7. For any 0 < t < n, there is a threshold BBSSS over the access
structure Rt,n whose expansion factor
 satisfies log n+3

2 ≤
 ≤ 1 + �log n�.
Proof. The lower bound follows from Remark 3 directly. By applying the matrix
G obtained in Corollary 10 to Theorem 6, we obtain the desired upper bound.

The above upper bound is better than the one given in [10] by an additive
constant and worse than the one given in [12] by an additive constant.

Theorem 8. Let m ≥ 2 be an even integer. Then for any integer n ≥ 2 and
any integer k with

2(n + 1)
2m/2 − 1

< k < n − 2(n + 1)
2m/2 − 1

, r ≥ k +
2(n + 1)
2m/2 − 1

, t ≤ k − 2(n + 1)
2m/2 − 1

− 1,

Blackbox Secret Sharing Revisited 525

one has msp(Rt,r,n) ≤ n(1 + m). As a result, for any 0 < t < n − 2
⌈

2(n+1)
2m/2−1

⌉

and r with r = t + 2
⌈

2(n+1)
2m/2−1

⌉
+ 1, there is a near-threshold BBSSS over the

access structure Rt,r,n whose expansion factor
 satisfies

m

2
− 3 ≈ log

n + 1
2(r − t)

≤
 ≤ m + 1.

Proof. The lower bound on msp(Rt,r,n) follows Theorem 5 directly. By applying
the matrix G obtained in Corollary 13 to Theorem 6, we obtain the desired
upper bound msp(Rt,r,n).

An immediate consequence of Theorem 8 is the following result showing that
our near-threshold black-box secret sharing schemes are expansionless.

Main Theorem 1. For any odd integer
 ≥ 3, there exists a near-threshold
BBSSS over the access structure Rt,r,n with expansion factor
 and r − t =
exp(−O(
))n. Furthermore, this is expansionless, i.e., every near-threshold
BBSSS over the access structure Rt,r,n with expansion factor
 must obey
r − t = exp(−Ω(
))n.

Proof. The first part follows from Theorem 8, while the second part follows from
Theorem 5.

Acknowledgments. We are grateful to Dr. Ivan Tjuawinata for his help on some
preliminary part and several discussions. The work of Ronald Cramer was supported
in part by ERC Advanced Grant No. 74079 (ALGSTRONGCRYPTO).

A The Subfields of the Garcia-Stichtenoth Tower

In the original Garcia-Stichtenoth tower {Ei/Fpm}∞
i=1 (see [17,18]), the extension

degree [Ei+1 : Ei] = pm for all i ≥ 1. However, in order to have a tower of slowly
growing genus, we split each extension Ei+1/Ei into m extensions of degree p.

Lemma 14. Let m be an even number and let p be a prime. Then there exists
a function field family {Fi/Fpm}∞

i=1 such that, for every i ≥ 1, the genus g(Fi)
is upper bounded by pi(pm/2 + 1) and the number N(Fi) is lower bounded by
pi(pm − 1).

Proof. Put r = pm/2. Let E1 ⊆ E2 ⊆ . . . be the tower of global function fields
over Fpm constructed by Garcia and Stichtenoth [17], that is, E1 = Fpm(x1) is a
rational function field and En+1 = En(zn+1) for n = 1, 2, . . . with

zr
n+1 + zn+1 = xr+1

n and xn+1 =
zn+1

xn
.

Then En+1/En is a Galois extension of degree r and Gal(En+1/En) � Z
m/2
p for

each n ≥ 1. Hence there exists a chain of fields

En = Kn,0 ⊂ Kn,1 ⊂ . . . ⊂ Kn,m/2 = En+1

526 R. Cramer and C. Xing

such that [Kn,i+1 : Kn,i] = p for 0 ≤ i ≤ m/2 − 1. From results in [17] we know
that for all n ≥ 1 we have

g(En) ≤ rn + rn−1, N(En) ≥ (pm − 1)rn−1 + 1.

The last inequality implies

N(Kn,i) ≥ N(En+1)
[En+1 : Kn,i]

≥ pi(pm − 1)rn−1 + 1 for 0 ≤ i ≤ m/2.

Next we establish an upper bound for g(Kn,i). From [17] we know that for
each place P of En that is ramified in the extension En+1/En we have νP (xn) =
−1, and therefore we obtain νP (xr+1

n) = −r − 1. It follows that P is totally
ramified in En+1/En. According to [17], the sum of the degrees of these places
P is equal to r�n/2�, and so the same holds for the sum of the degrees of the
places P ′ of Kn,i that are ramified in En+1/Kn,i, where 0 ≤ i ≤ m/2 − 1. For
any such P ′ and the unique place P ′′ of En+1 lying over it we have

d(P ′′|P ′) = (pm/2−i − 1)(r + 2).

By combining these facts with the Hurwitz genus formula, we obtain

2g(En+1) − 2 = pm/2−i(2g(Kn,i) − 2) + r�n/2�(r + 2)(pm/2−i − 1)

for 0 ≤ i ≤ m/2, and so

g(Kn,i) ≤ pi

r
(g(En+1) − 1) − 1

2
r�n/2�−1(r + 2)(r − pi) + 1 ≤ pi

(
rn + rn−1

)
.

Taking {Fi} be the family {K0,0,K0,1, . . . ,K0,m/2,K1,0,K1,1, . . . ,K1,m/2, . . . }
gives the desired result.

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Technion, Haifa (1996)

2. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New
York (1990). https://doi.org/10.1007/0-387-34799-2 3

3. Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear
size alphabet. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 471–
484. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 18

4. Cascudo, I., Chen, H., Cramer, R., Xing, C.: Asymptotically good ideal linear
secret sharing with strong multiplication over any fixed finite field. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 466–486. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 28

5. Cascudo, I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing
and its applications. IEEE Trans. Inf. Theory 59(9), 5600–5612 (2013)

https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/978-3-662-53644-5_18
https://doi.org/10.1007/978-3-642-03356-8_28

Blackbox Secret Sharing Revisited 527

6. Cramer, R., Damg̊ard, I., Keller, M.: On the amortized complexity of zero-
knowledge protocols. J. Cryptol. 27(2), 284–316 (2013). https://doi.org/10.1007/
s00145-013-9145-x

7. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

8. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cmabridge (2015)

9. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 17

10. Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary Abelian
groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 18

11. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation
over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 37

12. Cramer, R., Fehr, S., Stam, M.: Black-box secret sharing from primitive sets in
algebraic number fields. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
344–360. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 21

13. Damg̊ard, I., Thorbek, R.: Linear integer secret sharing and distributed exponenti-
ation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol.
3958, pp. 75–90. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 6

14. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

15. Desmedt, Y., Frankel, Y.: Perfect homomorphic zero-knowledge threshold schemes
over any finite Abelian group. SIAM J. Discrete Math. 7(4), 667–679 (1994)

16. Gál, A.: Combinatorial methods in Boolean function complexity. University of
Chicago, Ph.D. thesis (1995)

17. Garcia, A., Stichtenoth, H.: A tower of Artin-Schreier extensions of function fields
attaining the Drinfeld-Vladut bound. Invent. Math. 121, 211–222 (1995)

18. Garcia, A., Stichtenoth, H.: On the asymptotic behavior of some towers of function
fields over finite fields. J. Number Theory 61, 248–273 (1996)

19. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in
Complexity Theory 1993, pp. 102–111. IEEE Computer Society Press (1993)

20. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th
Joint Swedish-Russian Workshop on Information Theory, pp. 269–279 (1993)

21. Lang, S.: Survey of Diophantine Geometry. Springer, New York (1997)
22. Ling, S., Xing, C.: Coding Theory: A First Course. Cambridge University Press,

Cambridge (2004)
23. van Lint, J.H.: Introduction to Coding Theory. Graduate Texts in Mathematics.

Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-58575-3
24. Niederreiter, H., Xing, C.P.: Rational Points on Curves over Finite Fields: Theory

and Applications, LMS 285. Cambridge University Press, Cambridge (2001)
25. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

https://doi.org/10.1007/s00145-013-9145-x
https://doi.org/10.1007/s00145-013-9145-x
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/3-540-45708-9_18
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/11535218_21
https://doi.org/10.1007/11745853_6
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-642-58575-3
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15

528 R. Cramer and C. Xing

26. Stichtenoth, H.: Algebraic Function Fields and Codes. Graduate Texts in Mathe-
matics, vol. 254. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
76878-4

27. Tsfasman, M.A., Vlăduţ, S.G.: Algebraic-Geometric Codes. Kluwer, Amsterdam
(1991)

28. Valiant, L.: Short monotone formulae for the majority function. J. Algorithms 5(3),
363–366 (1984)

29. Xing, C., Yeo, S.L.: Construction of global function fields from linear codes and
vice versa. Trans. Am. Math. Soc. 361, 1333–1349 (2009)

https://doi.org/10.1007/978-3-540-76878-4
https://doi.org/10.1007/978-3-540-76878-4

Evolving Ramp Secret Sharing
with a Small Gap

Amos Beimel(B) and Hussien Othman(B)

Department of Computer Science, Ben Gurion University, Beer Sheva, Israel
amos.beimel@gmail.com, hussien.othman@gmail.com

Abstract. Evolving secret-sharing schemes, introduced by Komargod-
ski, Naor, and Yogev (TCC 2016b), are secret-sharing schemes in which
there is no a-priory upper bound on the number of parties that will par-
ticipate. The parties arrive one by one and when a party arrives the
dealer gives it a share; the dealer cannot update this share when other
parties arrive. Motivated by the fact that when the number of parties
is known, ramp secret-sharing schemes are more efficient than threshold
secret-sharing schemes, we study evolving ramp secret-sharing schemes.
Specifically, we study evolving (b(j), g(j))-ramp secret-sharing schemes,
where g, b : N → N are non-decreasing functions. In such schemes, any
set of parties that for some j contains g(j) parties from the first parties
that arrive can reconstruct the secret, and any set such that for every j
contains less than b(j) parties from the first j parties that arrive cannot
learn any information about the secret.

We focus on the case that the gap is small, namely g(j)−b(j) = jβ for
0 < β < 1. We show that there is an evolving ramp secret-sharing scheme

with gap tβ , in which the share size of the j-th party is Õ(j
4− 1

log2 1/β).
Furthermore, we show that our construction results in much better share
size for fixed values of β, i.e., there is an evolving ramp secret-sharing
scheme with gap

√
j, in which the share size of the j-th party is Õ(j).

Our construction should be compared to the best known evolving g(j)-
threshold secret-sharing schemes (i.e., when b(j) = g(j) − 1) in which
the share size of the j-th party is Õ(j4). Thus, our construction offers
a significant improvement for every constant β, showing that allowing a
gap between the sizes of the authorized and unauthorized sets can reduce
the share size.

In addition, we present an evolving (k/2, k)-ramp secret-sharing
scheme for a constant k (which can be very big), where any set of par-
ties of size at least k can reconstruct the secret and any set of parties
of size at most k/2 cannot learn any information about the secret. The
share size of the j-th party in our construction is O(log k log j). This is

This work was done while the first author was visiting Georgetown university, supported
by NSF grant no. 1565387, TWC: Large: Collaborative: Computing Over Distributed
Sensitive Data. The authors are also supported by ISF grant 152/17, by a grant from
the Cyber Security Research Center at Ben-Gurion University of the Negev, and by
the Frankel center for computer science. The second author is also supported by a
scholarship from the Israeli Council For Higher Education.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 529–555, 2020.
https://doi.org/10.1007/978-3-030-45721-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_19

530 A. Beimel and H. Othman

an improvement over the best known evolving k-threshold secret-sharing
schemes in which the share size of the j-th party is O(k log j).

1 Introduction

In secret-sharing schemes (as in many cryptographic primitives) the number of
parties is known in advance. If the number of parties is not known in advance, the
dealer can assume an upper bound on this number. On one hand, if this upper
bound is too pessimistic (e.g., very few parties are active), then the shares are
unnecessarily large. On the other hand, if the upper bound is too optimistic and
the number of parties exceeds the upper bound, then either new parties cannot
join the system or the dealer needs to refresh the shares of all existing parties,
which is very costly. Komargodski, Naor, and Yogev [14] suggested evolving
secret-sharing schemes as a solution to this problem. In such schemes, there is
no upper bound on the number of parties and the parties arrive one after the
other. When a party arrives the dealer gives it a share; the dealer cannot update
this share when other parties arrive.

Continuing our previous work [1], we consider evolving ramp secret-sharing
schemes. In a traditional (b, g)-ramp secret-sharing schemes (with a fixed number
of parties n, where b < g ≤ n), sets of parties of size at least g should be able
to reconstruct the secret, while sets of parties of size at most b should get no
information on the secret.1 There are no requirements on sets with more than
b parties but less than g parties. Allowing a gap between b and g results in
schemes that are more efficient than threshold secret-sharing schemes. Ramp
secret-sharing schemes were first presented by Blakley and Meadows [4], and
were used to construct efficient secure multiparty computation (MPC) protocols,
starting in the work of Franklin and Yung [11]. In evolving (b, g)-ramp secret-
sharing schemes (without an upper bound on the number of parties), g and b are
non-decreasing functions g, b : N → N such that b(j) < g(j) for every j ∈ N, sets
of parties that for some j contain at least g(j) parties from the first j parties that
arrive are authorized (i.e., should be able to reconstruct the secret), while sets of
parties that for every j contain at most b(j) parties from the first j parties that
arrive are unauthorized (i.e., should get no information on the secret). Again,
there are no requirements on sets that do not satisfy either of the requirements.
In this work we investigate evolving ramp secret-sharing schemes, where the gap
between g and b is small, e.g., g(j)−b(j) = jβ for some constant β or b(j) = k/2
and g(j) = k for some constant k.

Before presenting our results, we describe several results on evolving secret-
sharing schemes. Komargodski, Naor, and Yogev [14] showed that every evolv-
ing access structure (i.e., collection of authorized sets) can be realized by a
secret-sharing scheme, where the size of the share of the j-th party is 2j−1

(even if the dealer does not know the access structure in advance). They also

1 The letters b and g stand for “bad” parties (that should not learn information about
the secret) and “good” parties (that can reconstruct the secret).

Evolving Ramp Secret Sharing with a Small Gap 531

showed evolving k-threshold secret-sharing schemes (where any set of k par-
ties can reconstruct the secret), in which the share size of the j-th party is
(k − 1) log j + O(log log j). Komargodski and Paskin-Cherniavsky [15] consid-
ered evolving dynamic-threshold secret-sharing schemes in which the threshold
is defined by a function g : N → N; in such a scheme a set of parties is autho-
rized if for some j the set contains at least g(j) parties from the first j parties
that arrive; all other parties are unauthorized. For every non-decreasing func-
tion 1 ≤ g(j) ≤ j, they constructed an evolving g(j)-threshold secret-sharing
scheme in which the share size of the j-th party is O(j4 log j). As the number of
parties is unbounded, this share size can be quite large. Beimel and Othman [1]
constructed for any constants 0 < α < γ < 1 an evolving (b(j) = αj, g(j) = γj)-
ramp secret-sharing scheme (i.e., the gap is a constant fraction of the parties)
where the size of the share of the j-th party is O(1).

Evolving ramp secret-sharing schemes with small gap are motivated due two
reasons. First, they are step towards understanding the evolving dynamic thresh-
old schemes, i.e., when the gap is 1. Second, it is a very interesting theoretical
question to understand how the evolving ramp schemes behave as a function of
the size of the gap. Namely, we know that when the gap is a constant fraction
then the share size is O(1) and when the gap is 1 the best share size of the
j-th party is Õ(j4); understanding what the share size is in between these two
extremes is a natural question.

1.1 Our Results

In this work we continue the investigation of evolving ramp secret-sharing
schemes. We study the share size in ramp evolving secret-sharing schemes when
the gap between g(j) and b(j) is small, i.e., o(j). Can the share size be smaller
than j4 – the share size in the evolving threshold secret-sharing schemes of [15]?
We give positive results when g(j) − b(j) ≤ jβ for some constant β. We prove
the following theorem:

Theorem 1.1. For every constants 0 < β < 1 and 0 < γ < 1, there exists an
evolving (b(j) = γj−jβ , g(j) = γj)-ramp secret-sharing scheme, where the share
size of party pj, for j ∈ N, is

O
(
j
4−O(1

log2(1/β)
) log2 j

)
.

For β ≥ 1/2, we prove the following better result.

Theorem 1.2. Let β > 0 and 0 < γ ≤ 1. There exists an evolving (γt − tβ , γt)-
ramp secret-sharing scheme in which for every j ∈ N the share size of pj is
O(j(1−β)/β log j).

As instantiations of Theorem1.2 we get:

– When g(j) − b(j) = j
polylog(j) , the share size in our scheme is polylog(j)

(Theorem 1.2 with β = 1 − Θ(log log j
log j)).

532 A. Beimel and H. Othman

– When g(j) − b(j) =
√

j, the share size in our scheme is Õ(j) (Theorem 1.2
with β = 1/2).

Thus, our constructions offer a significant improvement for a constant β com-
pared to [15], showing that allowing a gap between g(j) and b(j) can reduce
the share size in known evolving secret-sharing schemes compared to schemes in
which there is no gap (i.e., g(j) − b(j) = 1).

In addition, we present a construction of evolving (k/2, k)-ramp secret-
sharing schemes for a constant k (where any set of parties of size at least k
can reconstruct the secret and any set of parties of size at most k/2 cannot
learn any information about the secret). The share size of the j-th party in our
construction is O(log k log j). We prove the following theorem:

Theorem 1.3. For every constant k ∈ N, there exists an evolving (k, k/2)-
ramp secret-sharing scheme, where the share size of party pj, for j ∈ N, is
O(log k log j).

This is an improvement over the evolving k-threshold secret-sharing schemes
of [14] in which the share size of the j-th party is O(k log j). Our result can be
either seen as a first step in constructing improved evolving k-threshold secret-
sharing schemes or as showing that for constant k evolving (k/2, k)-ramp secret-
sharing schemes are more efficient.

1.2 Our Techniques

We next describe the ideas of our construction for an evolving (b(j) = j/2 −
jβ , g(j) = j/2)-ramp secret-sharing scheme. We start in Sect. 3 by reducing the
problem of realizing an evolving ramp secret-sharing scheme with an infinite
number of parties to a problem of constructing secret-sharing realizing access
structures with a finite number of parties. Specifically, for a given t ∈ N, we
define an access structure Γt containing the parties {ptβ , . . . , p2t}. A set A whose
maximal party is pk should be able to reconstruct the secret in Γt if k > t and
|A| ≥ k/2 − tβ/2. A set that should not learn any information on the secret
in the evolving (j/2 − jβ , j/2)-ramp secret-sharing scheme, should not get any
information on the secret in Γt. Given secret-sharing schemes realizing Γt, we
construct an evolving (j/2 − jβ , j/2)-ramp secret-sharing scheme by executing
a secret-sharing scheme realizing Γt for every t that is a power of 2. That is,
for every � ∈ N, when party ptβ for t = 2� arrives, we share the secret by a
secret-sharing scheme realizing Γt with parties {ptβ , . . . , p2t}. When party pj for
tβ ≤ j ≤ 2t arrives, we give pj the share of pj in the scheme realizing Γt (notice
that pj gets shares in the scheme for Γt for many values of t). The correctness
of the scheme is explained by the fact that we “lose” at most tβ parties from
the beginning; since we allow a gap of at most tβ parties, we will not miss any
authorized set.

We present two constructions of secret-sharing schemes realizing the above
access structure Γt. The first construction, described in Sect. 4, uses the so-
called segments technique, where we have a sequence n0, n1, . . . , nr of integers,

Evolving Ramp Secret Sharing with a Small Gap 533

where t < n0 < n1 < · · · < nr ≤ 2t and we share the secret among the parties
{ptβ , . . . , pni

} for every 0 ≤ i ≤ r using a threshold secret-sharing scheme, with
an appropriate threshold. We choose the sequence of number of parties and
thresholds so the correctness and security hold. This construction yields our
best result when β ≥ 1/2. For β = 1/2 we get an evolving secret-sharing scheme
in which the share size of the j-th party is O(j log j).

Our second construction, described in Sect. 6, uses the so called tree technique
(which also uses the segments technique). The tree technique was introduced in
[15] (generalizing ideas of [14]). In the tree technique, we construct a tree, where
for every edge in the tree we assign a set of consecutive parties and a weight. We
define an access structure for this tree, where a set of parties A should be able
to reconstruct the secret if there is a path from the root to a leaf such that for
every edge in the path whose weight w the set A contains at least w parties from
the set of parties assigned to the edge. In [15], an infinite tree is constructed with
appropriate sets and weights such that the resulting scheme is an evolving g(n)-
threshold secret-sharing scheme; in this scheme the share size of the j-th party
is Õ(j4). Using the fact that we have a gap between b and g and our reduction to
finite access structures, we can construct finite trees resulting in more efficient
evolving secret-sharing schemes. For example, we optimize our construction for
the evolving (j/2− j1/8, j/2)-ramp secret-sharing scheme, resulting in share size
Õ(j2.32) for the j-th party. For every β < 1/2 the share size of the j-th party in
our evolving (t/2 − tβ , t/2)-ramp secret-sharing scheme is O(j4− 1

log2 1/β log2 j).
The results in Sect. 4 proves Theorem 1.2 only for a constant γ ≤ 1/2. In

Sect. 7, we prove Theorem 1.2 for any constant γ > 0. This is done by a reduction,
where we use an evolving (j/d − ((j/dγ)β − 1), j/d)-ramp secret-sharing scheme
Π for any constant d to construct an evolving (γj − jβ , γj)-ramp secret-sharing
scheme Π ′. The reduction is simple, the share of the j-th party in Π ′ is the share
of the �γdt�-th party in Π. Verifying that the reduction is correct is quite easy
(see proof of Theorem 7.1).

In Sect. 8, we construct an evolving (k/2, k)-ramp secret-sharing scheme in
which the share size of the j-th party is O(log k log j). The idea of the construc-
tion is as follows. We use the evolving k-threshold secret-sharing scheme of [14]
as a building box. The secret-sharing scheme of [14] is recursive and its bottle-
neck is a procedure that shares k secrets v1, . . . , vk among a set of parties of
size j, where each secret vi is independently shared using an i-out-of-j thresh-
old secret-sharing scheme. Since each sharing results in a share of size log j, the
total share of the j-th party is k log j. For the ramp scheme, we use a similar
procedure, however we use only log k threshold secret-sharing schemes, where
for every � ∈ {0, . . . , log k} we share v2� , . . . , v2�+1−1 using a 2�-out-of-j thresh-
old secret-sharing scheme. For the security of the scheme we observe that a set
of size k/2 obtains less than k shares of the evolving k-threshold secret-sharing
scheme, thus learns nothing about the secret. Since sharing k short secrets in a
2�-out-of-j threshold secret-sharing scheme requires only shares of size log j, the
share size in our scheme is O(log k log j).

534 A. Beimel and H. Othman

In Sect. 9, we analyze the share size in the schemes Πseg and Πtree – our
schemes from Sect. 4 and Sect. 6 respectively. We prove that for β > 1/2 the share
size in the scheme Πseg is better than the share size in every implementation of
Πtree, that is, for β > 1/2 the best share size achievable using our schemes is
j(1−β)/β . Furthermore, we prove a weak lower bound of Ω(j) on the best share
size in Πseg and Πtree for β ≤ 1/2.

1.3 Previous Works

Secret-sharing schemes were introduced by Shamir [17] and Blakley [3] for thresh-
old access structures, and by Ito, Saito, and Nishizeki for the general case [12].
Shamir’s [17] and Blakley’s [3] constructions are efficient both in the size of the
shares and in the computation required for sharing and reconstruction. The size
of the share in Shamir’s scheme for sharing an �-bit secret among n parties is
max{�, log n}. Kilian and Nisan [13] proved a log(n − k + 2) lower bound on the
share size for sharing a 1-bit secret for the k-out-of-n threshold access structure
(see [7]). This lower bound implies that Ω(log n) bits are necessary when k is
not too close to n. Bogdanov, Guo, and Komargodski [5] proved that the lower
bound of Ω(log n) bits applies to any secret-sharing scheme realizing k-out-of-n
threshold access structures for every 1 < k < n. When k = 1 or k = n, schemes
with share size of 1 are known.

Ramp secret-sharing schemes. Ramp secret-sharing schemes were presented by
Blakley and Meadows [4]. For long enough secrets, they constructed a (b, g)-
ramp secret-sharing scheme with share size 1/(g − b) times the size of the secret.
Ramp schemes have found numerous applications in cryptography, including effi-
cient secure multiparty computation (MPC) protocols (Franklin and Yung [11]
and many follow-up works), broadcast encryption (Stinson and Wei [18]) and
error decodable secret sharing (Martin, Paterson, and Stinson [16]). Cascudo,
Cramer, and Xing [7] proved lower bounds on the share size in ramp secret-
sharing schemes: If every set of size at least an can reconstruct the secret while
every set of size at most bn cannot learn any information on the secret, then the
length of the shares is at least log((1 − b)/(a − b)). Bogdanov et al. [5] showed
that for all 0 < b < a < 1, in any ramp secret sharing the size of the shares is at
least log(a/(a − b)). On the positive side, Chen et al. [8] proved that for every
ε > 0 there is a ramp secret-sharing scheme with share size O(1) in which every
set of size at least (1/2 + ε)n can reconstruct the secret while every set of size
at most (1/2 − ε)n cannot learn any information on the secret.

Evolving and online secret-sharing schemes. D’Arco et al. [10] constructed evolv-
ing k-threshold secret-sharing schemes, where the secret is reconstructed only
with probability p < 1, however the share size is O(1). Komargodski and Paskin-
Cherniavsky [15] showed how to transform any evolving secret-sharing scheme
to a robust scheme, where a shared secret can be recovered even if some par-
ties hand-in incorrect shares. Cachin [6] and Csirmaz and Tardos [9] considered
online secret sharing, which is similar to evolving secret-sharing schemes. As in

Evolving Ramp Secret Sharing with a Small Gap 535

evolving secret-sharing scheme, in on-line secret-sharing, parties can enroll in
any time after the initialization, and the number of parties is unbounded. How-
ever, in the works on online secret-sharing, the number of authorized sets a party
can join is bounded.

2 Preliminaries

In this section we present formal definitions of secret-sharing schemes and evolv-
ing secret-sharing schemes.

Notations. We denote the logarithmic function with base 2 by log. We use the
notation [n] to denote the set {1, 2, . . . , n}. When we refer to a set of parties
A = {pi1 , pi2 , . . . , pit

}, we assume that i1 < i2 < · · · < it.

2.1 Secret-Sharing Schemes

We next present the definition of secret-sharing schemes. Our definition is of
non-perfect secret-sharing schemes, where some sets of parties can reconstruct
the secret, some sets should not get any information on the secret, and there are
no requirements on all other sets.

Definition 2.1 (Access structures). Let P = {p1, . . . , pn} be a set of parties.
A collection Γ ⊆ 2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure Γ = (ΓYES, ΓNO) is a pair of collections of sets such that
ΓYES, ΓNO ⊆ 2{p1,...,pn}, the collections ΓYES and 2{p1,...,pn}\ΓNO are monotone,
and ΓYES ∩ ΓNO = ∅. Sets in ΓYES are called authorized, and sets in ΓNO are
called unauthorized. The access structure is called an incomplete access structure
if there is at least one subset of parties A ⊆ P such that A �∈ ΓYES ∪ ΓNO.
Otherwise, it is called a complete access structure.

Definition 2.2 (Secret-sharing schemes). A secret-sharing Σ = 〈Π,μ〉
over a set of parties P = {p1, . . . , pn} with domain of secrets K is a pair, where μ
is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K × R to a set of n-tuples K1 × K2 × · · · × Kn (the
set Kj is called the domain of shares of pj). A dealer distributes a secret k ∈ K
according to Σ by first sampling a random string r ∈ R according to μ, com-
puting a vector of shares Π(k, r) = (s1, . . . , sn), and privately communicating
each share sj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(k, r) as
the restriction of Π(k, r) to its A-entries (i.e., the shares of the parties in A).
The size of the secret is defined as log |K| and the size of the share of party pj

is defined as log |Kj |.
A secret-sharing scheme 〈Π,μ〉 with domain of secrets K realizes an access

structure Γ = (ΓYES, ΓNO) if the following two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of par-
ties. That is, for any set B = {pi1 , . . . , pi|B|} ∈ ΓYES, there exists a reconstruc-
tion function ReconB : Ki1 × · · · × Ki|B| → K such that for every secret k ∈ K

and every random string r ∈ R, ReconB

(
ΠB(k, r)

)
= k.

536 A. Beimel and H. Othman

Security. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T ∈ ΓNO, every two secrets a, b ∈ K, and every
possible vector of shares 〈sj〉pj∈T ,

Pr[ΠT (a, r) = 〈sj〉pj∈T] = Pr[ΠT (b, r) = 〈sj〉pj∈T],

where the probability is over the choice of r from R at random according to μ.

Remark 2.3. For sets of parties A ⊆ P such that A �∈ ΓYES ∪ ΓNO there are no
requirements, i.e., they might be able to reconstruct the secret, they may have
some partial information on the secret, or they may have no information on the
secret.

Definition 2.4 (Threshold access structures). Let 1 ≤ k ≤ n. A k-out-
of-n threshold access structure Γ over a set of parties P = {p1, . . . , pn} is the
complete access structure accepting all subsets of size at least k, that is, ΓYES =
{A ⊆ P : |A| ≥ k} and ΓNO = {A ⊆ P : |A| < k}.

The well known scheme of Shamir [17] for the k-out-of-n threshold access
structure (based on polynomial interpolation) is an efficient threshold secret-
sharing scheme, whose properties are summarized in the following claim.

Claim 2.5 (Shamir [17]). For every n ∈ N and 1 ≤ k ≤ n, there is a secret-
sharing scheme for secrets of size m realizing the k-out-of-n threshold access
structure in which the share size is �, where � = max{m, �log(n + 1)�}.
Definition 2.6 (Ramp secret-sharing schemes [4]). Let 0 ≤ b < g ≤ n.
The (b, g)-ramp access structure over a set of parties P = {p1, . . . , pn} is the
incomplete access structure Γb,g = (ΓYES, ΓNO), where ΓYES = {A ⊆ P : |A| ≥
g} and ΓNO = {A ⊆ P : |A| ≤ b}. A (b, g)-ramp scheme with n parties is a
secret-sharing scheme realizing Γb,g.

Chen et al. [8] showed the existence of ramp secret-sharing schemes with
share size O(1).

Claim 2.7 (Chen et al. [8]). For every constant 0 < ε < 1/2 there are integers
� and n0 such that for every n ≥ n0 there is a ((1/2 − ε)n, (1/2 + ε)n)-ramp
secret-sharing scheme with n parties and share size �.

The next corollary, which can be found in [1], shows the existence of ramp
secret-sharing schemes for any gap of Θ(n).

Corollary 2.8. For every constants 0 < b < g < 1 there are integers � and n0

such that for every n ≥ n0 there is a (b, g)-ramp secret-sharing scheme with n
parties and share size �.

Evolving Ramp Secret Sharing with a Small Gap 537

2.2 Secret Sharing for Evolving Access Structures

We proceed with the definition of an evolving access structure, introduced in [14].

Definition 2.9. (Evolving access structures). Let P = {pi}i∈N be an infi-
nite set of parties. An evolving access structure Γ = (ΓYES, ΓNO) is a pair of
collections of sets ΓYES, ΓNO ⊂ 2P , where each set in ΓYES ∪ ΓNO is finite and
for every t ∈ N the collections Γ t � (ΓYES ∩ 2{p1,...,pt}, ΓNO ∩ 2{p1,...,pt}) is an
access structure as defined in Definition 2.1.

Definition 2.10. (Evolving secret-sharing schemes). Let Γ be an evolving
access structure, K be a domain of secrets, where |K| ≥ 2, and {Rt}t∈N, {Kt}t∈N

be two sequences of finite sets. An evolving secret-sharing scheme with domain
of secrets K is a pair Σ = 〈{Πt}t∈N, {μt}t∈N〉, where, for every t ∈ N, μt is a
probability distribution on Rt and Πt is a mapping Πt : K ×R1 ×· · ·×Rt → Kt

(this mapping returns the share of pj).
An evolving secret-sharing scheme Σ = 〈{Πt}t∈N, {μt}t∈N〉 realizes Γ if for

every t ∈ N the secret-sharing scheme 〈μ1 × · · · × μt,Πt〉, where Πt(k, (r1, . . . ,
rk)) = 〈Π1(k, r1), . . . , Πt(k, r1, . . . , rt)〉, is a secret-sharing scheme realizing Γ t

according to Definition 2.2.

Definition 2.11. (Evolving ramp access structures). For two non-
decreasing functions b, g : N → N such that 0 ≤ b(t) < g(t) ≤ t for every
t ∈ N, the evolving (b(t), g(t))-ramp incomplete access structure is the evolving
incomplete access structure Γb(t),g(t), where for a set A whose maximum party
is pt:

– A is authorized if |A ∩ {p1, . . . , pj}| ≥ g(j) for some 1 ≤ j ≤ t,
– A is unauthorized if |A ∩ {p1, . . . , pj}| ≤ b(j) for every 1 ≤ j ≤ t.

In other words, A is authorized in Γb(t),g(t) if it is authorized in the
(b(j), g(j))-ramp incomplete access structure for some j ≤ t and it is unautho-
rized in Γb(t),g(t) if it is unauthorized in the (b(j), g(j))-ramp incomplete access
structure for every j ≤ t. In the above definition, there are no requirements on
sets where |A ∩ {p1, . . . , pj}| < g(j) for every j and |A ∩ {p1, . . . , pj}| > b(j) for
at least one j. We abuse notation and consider g, b : N → R (e.g., g(t) = t/2);
in this case, we actually consider �g(t)� and �b(t)�.

In the rest of the paper, the secret is taken from {0, 1}.

3 Reduction to an Access Structure with a Finite
Number of Parties

Our goal is to construct an evolving (γt − f(t), γt)-ramp secret-sharing scheme
for any constant 0 < γ < 1 and some function 0 < f(t) ≤ γt such that γt − f(t)
is non-decreasing. We show that to construct a ramp evolving secret-sharing
scheme (with an unbounded number of parties) it suffices to construct a secret-
sharing scheme for an access structure Γ f

t,ρ,γ with a finite number of parties.

538 A. Beimel and H. Othman

The ramp evolving secret-sharing schemes we construct will use many copies of
a scheme realizing Γ f

t,ρ,γ (for every t that is a power of 2). In the definition of
Γ f

t,ρ,γ , there is a parameter 0 < ρ ≤ 1. This parameter adds flexibility to our
reductions and we use different values of ρ in our two constructions.

Definition 3.1. (The access structure Γ f
t,ρ,γ). Let 0 < γ < 1 be a constant

and f : N → N be a function such that 0 < f(j) < γj for every j ∈ N and γt−f(t)
is non-decreasing, let t be an integer, and let 0 < ρ ≤ 1. The incomplete access
structure Γ f

t,ρ,γ over the set of parties {pρ·f(t), pρ·f(t)+1, . . . , p2t} is the following
access structure, where for a set A = {pi1 , . . . , pik

} ⊆ {pρ·f(t), . . . , p2t}:
– if ij > t and j ≥ γij − γρ · f(t) for some j ∈ [k], then A is authorized.
– If j ≤ γij − f(ij) for every j ∈ [k], then A is unauthorized.

Example 3.2. Consider the function f(t) =
√

t and the access structure Γ
√

j
t,1,1/2

whose parties are {p√
t, . . . , p2t}. Next we show examples of authorized and unau-

thorized subsets. The subset A = {p(t+
√

t+3)/2, . . . , pt+1} is authorized since it
contains (t + 1)/2 − √

t/2 parties. The subset B = {p3t/2+1, . . . , p2t} is unau-
thorized for t > 32 since for every pij

in the set it holds that ij/2 − √
ij >

3t/4 − √
2t ≥ t/2 ≥ j. Notice that the unauthorized set B is bigger than the

authorized set A. Such sets imply that realizing Γ f
t,ρ,γ is non-trivial.

Theorem 3.3. Let 0 < ρ ≤ 1. If for every t there is a secret-sharing scheme
Πf

t,ρ,γ realizing the access structure Γ f
t,ρ,γ , where, for ρ · f(t) ≤ j ≤ t, the size

of the share of party pj is ct(j), then the scheme Πreduction, described in Fig. 1,
realizes the evolving access structure Γγt−f(t),γt, where the size of the share of
pj is

∑
t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t ct(j).

The Scheme Πreduction

– For every � ∈ N do:
• Let t = 2�

• When party pρ·f(t) arrives, prepare the shares of Πf
t,ρ,γ , denote these

shares by st,ρ·f(t), . . . , st,2t.
– The share of party pj is (st,j){ t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t }.

Fig. 1. The scheme Πreduction that realizes the evolving ramp access structure
Γγt−f(t),γt, assuming a scheme Πf

t,ρ,γ realizing Γ f
t,ρ,γ .

Proof. We first prove the correctness of the scheme Πreduction. Consider a min-
imal authorized set A = {pi1 , . . . , pik

} of Γγt−f(t),γt, thus, k ≥ γik. Let � ∈ N

be the index such that 2� < ik ≤ 2�+1 and let t = 2�, thus, t < ik ≤ 2t.

Evolving Ramp Secret Sharing with a Small Gap 539

As A is a minimal authorized set, it contains less than γρ · f(t) parties among
the parties {p1, . . . , pρ·f(t)−1}, i.e., it contains at least γik −γρ ·f(t) parties from
{pρ·f(t), . . . , p2t}. This implies that A is authorized in Γ f

t,ρ,γ and the parties in
A can reconstruct the secret from their shares in Πf

t,ρ,γ .
We now prove the security of the scheme. Consider a set A that is unau-

thorized in Γγt−f(t),γt. By definition, it is unauthorized in all Γ f
t,ρ,γ , thus, the

parties in A have no information on the secret.
The share of pj contains shares of Πf

t,ρ,γ for every value t such that t is a
power of 2 and ρ · f(t) ≤ j ≤ 2t, that is, the size of pj ’s share is

∑
t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t

ct(j).

��
For the case that f(t) = tβ for some 0 < β < 1, the reduction in Theorem3.3

yields the following result.

Corollary 3.4. Let 0 < β < 1 be a constant and c : N → N be a function. If
for every t there exists a scheme realizing Γ

f(t)=tβ

t,ρ,γ where the size of the share
of each party pj, for ρtβ < j ≤ 2t, is c(j), then there exists a scheme realizing
Γγt−tβ ,γt in which the size of the share of each party pj, for j ∈ N, is c(j) log j.

Our main challenge in Sects. 4 to 6 is to construct efficient schemes realizing
the access structure Γ f

t,ρ,γ for some parameter ρ.

Example 3.5. Consider the evolving (t/4, t/2)-ramp access structure, i.e., f(t) =
t/4. In this case, Γ

f(t)=t/4
t,1,1/2 is an access structure over the parties {pt/4, . . . , p2t}.

A first attempt to realize Γ
f(t)=t/4
t,1,1/2 is to use one threshold secret-sharing scheme.

This attempt fails since the set {p5t/8+1, . . . , pt+1} is an authorized set of size
≈ 3t/8, while {p3t/2, . . . , p2t} is an unauthorized set of size 2t/4 = t/2. To solve
this problem, we use 4 threshold schemes. That is, to realize Γ

f(t)=t/4
t,1,1/2 , for every

α = 1, 2, 3, 4, we share the secret s using a (2+α)t/8-out-of-(4+α−1)t/4 among
the parties {pt/4, . . . , pt+αt/4}. In the next two paragraphs we prove that this
scheme realizes Γ

f(t)=t/4
t,1,1/2 .

Consider a minimal authorized set A = {pi1 , . . . , pik
} of Γ

f(t)=t/4
t,1,1/2 and let α

be such that t+(α−1)t/4 < ik ≤ t+αt/4. This set contains at least ik/2−t/8 ≥
(1 + (α − 1)/4)t/2 − t/8 = (2 + α)t/8 parties from the set {pt/4, . . . , pt+αt/4},
thus it can reconstruct the secret.

Consider an unauthorized set A of Γ
f(t)=t/4
t,1,1/2 . For every α = 1, 2, 3, 4, it con-

tains at most (1+α/4)t/4 parties among the parties {pt/4, . . . , pt+αt/4} (as such
set contains at most a quarter of the parties ending at party (1 + α/4)t). Since
(1 + α/4)t/4 < (2 + α)t/8, the parties in A cannot learn any information on the
secret from each of the 4 schemes, thus, cannot learn any information on the
secret.

540 A. Beimel and H. Othman

The size of the share of party pj in this scheme for Γ
f(t)=t/4
t,1,1/2 is O(log t) =

O(log j) (as this is the share size in Shamir’s scheme). If instead of sharing the
secret using a threshold secret-sharing scheme, we share the secret using a (non-
evolving) ((1 + α/4)t/4, (2 + α)t/8)-ramp secret-sharing scheme, the size of the
share will be reduced to O(1), by [8] (see Corollary 2.8). By Theorem 3.3, the
size of the share of pj in the evolving scheme realizing Γt/4,t/2 is the sum of the
shares in the schemes realizing Γ

f(t)=t/4
t,1,1/2 , where t is a power of two such that

t/4 < j < 2t. Thus, the share size of pj is O(1).

4 First Scheme Realizing Γ
f (t)
t,1,γ : The Segments Technique

In this section we construct a simple scheme Πseg realizing Γ f
t,1,γ for 0 < γ ≤ 1/2,

proving Theorem 1.2 for 0 < γ ≤ 1/2. We analyze the share size of the evolving
ramp scheme resulting by using Πseg in Πreduction for a function f(t) = tβ for
some β < 1. For β ≥ 1/2 this is our best scheme. For smaller values of β, the
scheme presented in Sect. 6 is more efficient.

The scheme Πseg is a generalization of the scheme presented in Example 3.5;
we realize Γ f

t,1,γ using several threshold secret-sharing schemes on increasing
segments of parties, where for larger segments we use larger thresholds. The
scheme is described in Fig. 2.

The Scheme Πseg

– For α = 1 to �t/f(t)�,
• Share s using Shamir’s (�γ(t + (α − 2)f(t))� + 1)-out-of-

(t + (α − 1)f(t)) secret-sharing scheme among the parties
{pf(t), . . . , pt+αf(t)}; let sα,f(t), sα,f(t)+1, . . . , sα,t+αf(t) be the
shares in this scheme.

– The share of pj is (sα,j){α:α≥max{1,(j−t)/f(t)}}.

Fig. 2. A scheme Πseg realizing the access structure Γ f
t,1,γ .

Lemma 4.1. Let 0 < γ ≤ 1/2. The secret-sharing scheme Πseg, described in
Fig. 2, realizes the access structure Γ f

t,1,γ with share size O(t/f(t) log t).

Proof. We start by proving the correctness of the scheme Πseg. Consider a min-
imal authorized set A = {pi1 , pi2 , . . . , pik

} of Γ f
t,1,γ and let α be such that

t + (α − 1)f(t) < ik ≤ t + αf(t). Since A is a minimal authorized set,

|A| = k ≥ γik − γf(t) > γ(t + (α − 1)f(t)) − γf(t) = γ(t + (α − 2)f(t)).

Evolving Ramp Secret Sharing with a Small Gap 541

Since |A| is an integer,

|A| ≥ �γ(t + (α − 2)f(t))� + 1.

By the construction, the parties in A can reconstruct the secret from the thresh-
old scheme for the parties {pf(t), . . . , pt+αf(t)}.

We continue by proving the security of the scheme. Consider an unauthorized
set A. We show that for every α, the parties in A cannot learn any information
about the secret from the threshold scheme for {pf(t), . . . , pt+αf(t)}. Note that
f(t + αf(t)) ≥ f(t) ≥ 2γf(t). Since A is unauthorized, the number of parties in
A ∩ {pf(t), . . . , pt+αf(t)} is at most

γ(t + αf(t)) − f(t + αf(t)) ≤ γ(t + αf(t)) − 2γf(t) = γ(t + (α − 2)f(t)).

Thus, the parties in A cannot learn any information about the secret from the
shares of each threshold scheme. As these schemes are executed with independent
randomness, the parties in A cannot learn any information about the secret.

Finally, we analyze the share size of each party in the scheme. Each party
gets at most O(t/f(t)) shares of Shamir’s secret-sharing scheme with O(t)
parties; the size of each such share is O(log t). Thus, the total share size is
O(t/f(t) log t). ��

We next present two conclusions of Lemma 4.1.

Theorem 4.2. For every constants 0 < δ < γ ≤ 1/2, the evolving (δt, γt)-ramp
access structure can be realized by an evolving secret-sharing scheme with share
size O(1) for every party.

Proof. Let b = γ − δ. In this case f(t) = bt and Γ
f(t)=bt
t,1,γ is an access struc-

ture whose parties are {pbt, . . . , p2t}. By Lemma 4.1, Πseg realizes Γ
f(t)=bt
t,1,γ with

share size O(log t) (since b is constant). We next show how to reduce the
share size to O(1). By the construction, the secret is shared among the par-
ties {pbt, . . . , pt+btα} for every α = 1 to �1/b� by a (�γt(1 + bα − 2b)� + 1)-
out-of-(t + (α − 1)bt) threshold secret-sharing scheme. However, in an unau-
thorized set there are at most δ(t + btα) = (γ − b)(t + btα) = γt(1 + bα −
b/γ − b2α/γ) < γt(1 + bα − 2b) parties. Therefore, we can share the secret by
a (γt(1 + bα − b/γ − b2α/γ), γt(1 + bα − 2b) + 1)-ramp secret-sharing scheme.
By Corollary 2.8, we realize Γ

f(t)=bt
t,1,γ with share size O(1) for every party. By

Theorem 3.3, the size of the share of pj in the evolving scheme realizing Γδt,γt

is the sum of the shares in the schemes realizing Γ
f(t)=bt
t,1,γ , where t is a power of

two such that δt < j < 2t. There are O(1) schemes. Thus, the share size of pj is
O(1). ��

The same result was proved in [1]. However, the analysis of the new scheme
is much simpler than the one in [1]. We next prove Theorem1.2 for γ ≤ 1/2 (the
case of 1/2 < γ ≤ 1 is obtained from the following lemma in Sect. 7).

542 A. Beimel and H. Othman

Lemma 4.3. For every β > 0 and 0 < γ ≤ 1/2, there exists an evolving (γt −
tβ , γt)-ramp secret-sharing scheme in which for every j ∈ N the share size of pj

is O(j(1−β)/β log j).

Proof. Consider the scheme Πreduction with Πseg as the scheme realizing Γ
f(t)=tβ

t,1,γ .

By Lemma 4.1, the scheme Πseg realizes Γ
f(t)=tβ

t,1,γ , where the share size of pj is
ct(j) = O(t1−β log t). Thus, by Theorem 3.3, Πreduction realizes the evolving ramp
access structure Γγt−tβ ,γt, where the share size of the party pj is

∑
t : ∃i∈Nt=2i∧tβ≤j≤2t

ct(j) =
∑

t : ∃i∈Nt=2i∧j/2≤t≤j1/β

ct(j).

The largest value of t in the above sum is j1/β and cj1/β (j) = O(j(1−β)/β log j);
the second largest value of t in the above sum is j1/β/2 and cj1/β/2(j) =
O(j(1−β)/β/21−β log j) and so on. Thus, the share size of pj is a sum of a geo-
metric sequence and is O(j(1−β)/β log j). ��

5 Realizing Weighted Trees Access Structures

In this section, we review and generalize the tree technique introduced in [15]
(generalizing ideas of [14]) in order to construct a scheme for the evolving major-
ity access structure.

Next we overview and generalize the tree technique. In Sect. 6, we construct
a specific tree that we use in our constructions.

5.1 A Secret Sharing Scheme Realizing Finite Trees

In this section, we define a complete access structure from a tree and show how
to realize it. This scheme is a special case of the scheme realizing the connectivity
access structure [2].

For a directed tree T = (V,E), we define the following access structure. The
edges in the tree represent the parties in the access structure. A set of edges
is authorized if it contains a path from the root to a leaf, otherwise it is an
unauthorized and should not learn any information on the secret.

We next describe a simple scheme ΠT realizing this tree. Let k ∈ {0, 1} be
the secret. The share of each edge (u, v) is a bit ru,v computed as follows: if v
is not a leaf, then it is a uniformly distributed random bit. Otherwise, if v is
a leaf and P = (v0, v1, . . . , vn−1 = u, vn = v) is the path from the root to v,
then ru,v = ⊕n−2

i=0 rvi,vi+1 ⊕k. To see that this scheme is correct, observe that the
edges on a path can reconstruct the secret by computing the exclusive-or of the
shares given to the parties (edges) of the path.

To see that this scheme is secure consider an unauthorized set, that is, a set
of edges F not containing a path from s to a leaf. Define the set of nodes V1 such
that vi ∈ V1 if there exists a path from the root to vi in (V, F). By definition,

Evolving Ramp Secret Sharing with a Small Gap 543

s ∈ V1 and V1 does not contain leaves. Furthermore, for every (vi, vj) ∈ F either
both nodes vi, vj are in V1 or both of them are not in V1. Let {ri,j}(vi,vj)∈F be
a set of shares generated for the parties in F with a secret k ∈ {0, 1}, where ri,j

is the share given to party (vi, vj). We next show that the same set of shares
can be used to share the secret k ⊕ 1. Complete the shares {ri,j}(vi,vj)∈F of the
parties in F to shares {ri,j}(vi,vj)∈E of all the parties in the tree for the secret
k. Consider the shares r′

i,j such that r′
i,j = ri,j ⊕ 1 if vi ∈ V1 and vj �∈ V1 and

r′
i,j = ri,j otherwise. Notice that r′

i,j = ri,j for every (vi, vj) ∈ F . We claim that
the shares {r′

i,j}(vi,vj)∈E are shares for the secret k ⊕ 1. This is true since for
any simple path s = v0, v1, . . . , vn−1, vn = v from the root to a leaf contains
exactly one edge (vi, vi+1) such that vi ∈ V1 and vi+1 /∈ V1 and the exclusive or
of the shares given to the parties (edges) on the path is k ⊕ 1. As we describe
a bijection between the shares of k and k ⊕ 1, the probabilities of {ri,j}(vi,vj)∈F

given k and k ⊕ 1 are equal, thus the security holds.

5.2 Secret-Sharing Schemes Realizing Finite Weighted Trees

Following [15], we describe an access structure for a finite directed weighted tree
T = (V,E), where each edge (u, v) has weight wu,v. In addition, for each edge
we assign a set of parties; informally, any set of at least wu,v parties among the
parties assigned to an edge can reconstruct “the bit of the edge”.

We remark that the tree used in [15] is infinite. However, since we allow a
gap between the sizes of authorized and unauthorized sets, we can use a scheme
realizing a finite tree.

Terminology: We use the following notations in our constructions.

– The i-th layer of the tree contains nodes of distance exactly i from the root.
– A node in the i-th layer is identified by the sequence of weights assigned to

the edges along the path from the root to that node; the node is denoted
by uw1,w2,...,wi

, where w1, . . . , wi are the weights of the edges from the root
to the node. That is, the root is uε and for every nodes uw1,w2,...,wi−1 and
uw1,w2,...,wi−1,wi

in the (i − 1)-th and i-th layers respectively there is an edge
with weight wi connecting them. We assume that for every node in the tree
the weights of its outgoing edges are distinct, thus, the notation uw1,...,wi

uniquely identifies a node.
– We assign parties to each edge of the tree. That is, we consider a function

q : V → N such that q(uε) is the index of the first party in the scheme and
for every (u, v) ∈ E it holds that q(v) > q(u), the parties {pq(u)+1, . . . , pq(v)}
are assigned to the edge (u, v).

Definition 5.1. Given a finite weighted tree T = (V,E) with a weight function
w : E → N and a function q : V → N, let umax = maxv∈V {q(v)}. We define the
complete access structure ΓT,w,q with parties {pq(uε), . . . , pq(umax)}, where a set
A is authorized in the access structure if and only if there exists a leaf uw1,...,wi

in the tree and a path

(uε, uw1), (uw1 , uw1,w2), . . . , (uw1,...,wi−1 , uw1,...,wi
)

such that |A ∩ {pq(uw1,...,wj−1)+1, . . . , pq(uw1,...,wj
)}| ≥ wj for every 1 ≤ j ≤ i.

544 A. Beimel and H. Othman

Given a finite weighted tree T , we construct a secret-sharing scheme, denoted by
Πwt, realizing ΓT,w,q. We next informally describe Πwt: we first share the secret
using the scheme of Sect. 5.1. Then for every edge (u, v) we share the bit given
to (u, v) by a threshold secret-sharing scheme among the parties assigned to the
edge; the threshold used is the weight of the edge. The formal description of Πwt

appears in Fig. 3.

The Scheme Πwt

– Run ΠT on the tree T . Denote the share given to an edge (u, v) by ru,v,
where if w(e) = 0 then re = 0 (instead of a random bit).

– For every edge (vw1,w2,...,wi−1 , vw1,w2,...,wi−1,wi) such that wi > 0,
share the bit rvw1,w2,...,wi−1 ,vw1,w2,...,wi−1,wi

among the par-
ties {pq(vw1,w2,...,wi−1)+1, . . . , pq(vw1,w2,...,wi−1,wi

)} by a wi-out-of-
q(vw1,w2,...,wi−1,wi) − q(vw1,w2,...,wi−1)

)
threshold secret-sharing scheme.

Fig. 3. The scheme Πwt that realizes the access structure ΓT,w,q.

Lemma 5.2. The scheme Πwt realizes ΓT,w,q.

Proof. Since we share the secret using ΠT, a set A can reconstruct the secret iff it
can reconstruct the bits rvε,v1 , rv1,v2 , . . . , rvc−1,vc

for some path (vε, . . . , vc) from
the root to a leaf. Let w1, . . . , wc be the weights of the edges on this path. The
bit rvj−1,vj

is shared by a wj-out-of-(q(vj) − q(vj−1)) threshold secret-sharing
scheme among the parties {pq(vj−1)+1, . . . , pq(vj)} and A can learn the bit rvj−1,vj

if and only if |A ∩ {pq(vj−1)+1, . . . , pq(vj)}| ≥ wj . ��

6 The Second Scheme Realizing Γ f
t,1/2,γ : The Tree

Technique

In this section, we prove Theorem 1.1. We show how to use the secret sharing for
weighted trees described in Sect. 5 to realize Γ f

t,1/2,γ , thus, to construct evolving
ramp secret-sharing schemes. Our scheme Πtree can be used for arbitrary func-
tions f(t), however to simplify the analysis of the share size, we only consider
functions f(t) = tβ for some constant 0 < β < 1. In Fig. 4, we define a weighted
tree Tramp. The tree contains n+1 layers for some constant n. The first n layers
partition the parties pf(t)/2, . . . , ptα (for some α ≤ 1 as will be defined later) to
n sets of consecutive parties, and the parties corresponding to edges from the
(i − 1)-th layer to the i-th layer are the parties from the i-th set. The (n + 1)-th
layer adds, for every node of layer n, edges as in the segment construction in
Sect. 4 for the set of parties ptα+1, . . . , p2t. We construct a scheme Πtree:

– Execute Πwt on Tramp.

Evolving Ramp Secret Sharing with a Small Gap 545

1. Parameters:
– n: the number of layers in the tree (to be fixed later).
– q0, q1, q2, . . . , qn: q0 = f(t)

2
, qn ≤ t, qn+1 = 2t, where q1, q2, . . . , qn will

be chosen later.
– Let di = t + if(t) for 0 ≤ i < t

f(t)
; m = � t

f(t)
� and dm = 2t.

– Let Wi = {0, γf(t)
2n

, 2γf(t)
2n

, . . . , � 2nqi
γf(t)

� · γf(t)
2n

} for 0 ≤ i ≤ n.
2. Layer V0 contains the root uε with q(uε) = q0.
3. For every 1 ≤ i ≤ n, for each uw1,w2,...,wi−1 ∈ Vi−1

and wi ∈ Wi ∪ {∑i−1
j=1 wj} such that wi ≥ ∑i−1

j=1 wj , add
the node u

w1,w2,...,wi−1,wi−∑i−1
j=1 wj

in layer Vi, add the edge

(uw1,w2,...,wi−1 , u
w1,w2,...,wi−1,wi−∑i−1

j=1 wj
) (with weight wi − ∑i−1

j=1 wj),

and define q(uw1,...,wi−1,wi) = qi.
4. Add an additional layer Vn+1: For every 0 ≤ i ≤ t

f(t)
, for every

uw1,w2,...,wn ∈ Vn, add the node uw1,w2,...,wn,w to Vn+1, where w =
�γdi − ∑n

i=1 wi − γf(t)�, add the edge (uw1,w2,...,wn , uw1,w2,...,wn,w), and
define q(uw1,w2,...,wn,w) = di+1.

Fig. 4. The weighted tree Tramp used for realizing Γ f
t,1/2,γ .

Lemma 6.1. Let f be a function such that f(t+f(t)) > f(t). The scheme Πtree

realizes the access structure Γ f
t,1/2,γ .

Proof. We start by proving the correctness of the scheme, that is, if A =
{pi1 , pi2 , . . . , pik

} such that t < ik ≤ 2t and k ≥ γik − γf(t)
2 , then A can recon-

struct the secret. By Lemma 5.2, we need to prove that there is a path from the
root to a leaf uw1,...,wn+1 such that

|A ∩ {pq(uw1,...,wi−1)+1, . . . , pq(uw1,...,wi
)}| ≥ wi (1)

for every 1 ≤ i ≤ n + 1. Let zi = |A ∩ {pqi−1+1, . . . , pqi
}| for 1 ≤ i ≤ n. We

define the weights inductively. Assume that we defined w1, . . . , wi−1 such that
(1) holds for them. Let wi = max{w − ∑i−1

j=1 wj : w ∈ Wi, w ≤ ∑i−1
j=1 wj + zi}.

By the construction of Wi, wi ≥ zi − γ
2nf(t). The path from the root to uw1,...,wn

satisfies (1) for every 1 ≤ i ≤ n and

n∑
i=1

wi ≥ |A ∩ {pf(t)/2, . . . , ptαn }| − γf(t)
2

. (2)

546 A. Beimel and H. Othman

Let j be the index such that dj < ik ≤ dj + f(t) and let wn+1 =
�γdj − ∑n

i=1 wi − γf(t)�. By the construction of Tramp there is an edge between
uw1,...,wn

and uw1,...,wn,wn+1 . To complete the proof of the correctness, we need
to show that |A ∩ {ptαn+1, . . . , pdj+f(t)}| ≥ wn+1:

|A ∩ {ptαn+1, . . . , pdj+f(t)}| = |A| − |A ∩ {pf(t)/2, . . . , ptαn }|

≥ γik − γf(t)
2

−
(

n∑
i=1

wi +
γf(t)

2

)

≥ γdj −
n∑

i=1

wi − γf(t).

Since |A ∩ {ptαn+1, . . . , pdj+f(t)}| is an integer, |A ∩ {ptαn+1, . . . , pdj+f(t)}| ≥
�γdj − ∑n

i=1 wi − γf(t)� = wn+1.
We next prove the security of the scheme. Let A be an unauthorized set of

Γ f
t,1/2,γ . By Lemma 5.2, we need to prove that there is no path from the root to

a leaf uw1,...,wn+1 such that

|A ∩ {pqw1,...,wi−1+1 , . . . , pqw1,...,wi
}| ≥ wi

for every i = 1, . . . , n + 1. Fix such a leaf uw1,...,wn+1 and let j be the index
such that wn+1 = �γdj − ∑n

i=1 wi − γf(t)� and q(uw1,...,wn+1) = dj+1. Since A
is unauthorized,

|A ∩ {pf(t)/2, . . . , pdj+1}| ≤ γdj+1 − f(dj+1) < γdj+1 − f(t), (3)

where the last inequality is implied by the assumption that f(t + (j + 1)f(t)) ≥
f(t + f(t)) > f(t) for every t. If |A ∩ {pqw1,...,wi−1+1, . . . , pqw1,...,wi

}| < wi for
some i = 1, . . . , n, then we are done. Otherwise,

|A ∩ {ptαn+1, . . . , pdj+1}| = |A ∩ {pf(t)/2, . . . , pdj+1}| − |A ∩ {pf(t)/2, . . . , ptαn }|

< (γdj+1 − f(t)) −
n∑

i=1

wi ≤ wn+1.

��

6.1 Analysis of the Share Size

We next analyze the share size of the scheme Πtree for a function f(t) = tβ for
some 0 < β < 1. In this case, it would be convenient to write q0 = tα0 , q1 =
tα1 , . . . , qn = tαn , qn+1 = 2tαn+1 = 2t (where αn+1 = 1) and express the share
size as a function of α0, . . . , αn, αn+1.

Lemma 6.2. Let q0 = tβ/2, α0 = β, αn+1 = 1, qn+1 = 2t, and let n and
α1, α2, . . . , αn, αn be constants such that β < α1 < α2 < · · · < αn ≤ αn+1 = 1.
Denote qi = tαi for i = 1, . . . , n. For every 1 ≤ i ≤ n + 1 and qi−1 < j ≤ qi, the

share size of the party pj in Πtree is O

(
j

∑i
�=1 α�−iβ

αi−1 log j

)
.

Evolving Ramp Secret Sharing with a Small Gap 547

Proof. The share of party pj is composed of many shares of Shamir’s threshold
secret-sharing scheme with O(t) parties; the size of each such share is O(log t).
The number of shares of a threshold secret-sharing that party pj gets is the
number of edges between layer i − 1 and layer i in Tramp, i.e., the number of
nodes in layer i in Tramp; this number is bounded from above by

i∏
�=1

|W�| =
i∏

�=1

2nq�

γf(t)
=

i∏
�=1

2n

γ
tα�−β =

(
2n

γ

)i

· t(
∑i

�=1 α�)−iβ .

This holds also for parties ptαn+1, . . . , p2t by taking αn+1 = 1 and |Wn+1| = t1−β .

As n, i, αi = O(1), the total share size of pj is O

(
j

∑i
�=1 α�−iβ

αi−1 log j

)
. ��

By Theorem 3.3 and Lemma 6.2 we get the following lemma.

Lemma 6.3. Let n and α0, α1, . . . , αn, αn+1 be constants such that β = α0 <
α1 < α2 < · · · < αn ≤ αn+1 = 1. Define

C = max

{∑i
�=1 α� − iβ

αi−1
: 1 ≤ i ≤ n + 1

}
.

Then, there is a secret-sharing scheme realizing Γ
f(t)=tβ

t,1/2,γ , where the size of the
share of pj, for tβ/2 < j ≤ 2t, is O(jC log j) and there is an evolving secret-
sharing scheme realizing Γγt−tβ ,γt, where the size of the share of pj, for j ∈ N,
is O(jC log2 j).

In order to find the best share size, we should find the number of layers n
and the values of α1, . . . , αn that minimize the above value C.

Example 6.4. Take α0 = β and αi = 2αi−1 for 0 ≤ i ≤ log 1/β and let i, j be
such that tαi−1 < j ≤ tαi . In this case n = log(1/β). The share size of party pj

in the scheme realizing Γ
f(t)=tβ

t,1/2,γ is O(jC log j), where

C =
∑i

�=1 α� − iβ

αi−1
=

∑i
�=1 2�β − iβ

2i−1β
=

2i+1 − 1 − i

2i−1
≤ 4 − 2β log(1/β),

where the last inequality is implied by the fact that i ≤ log(1/β). By Corol-
lary 3.4, this implies a scheme realizing the evolving access structure Γγt−tβ ,γt

with share size O(j4−β log(1/β) log2 j). This should be compared to the secret-
sharing scheme of [15], which realizes the dynamic majority access structure
(i.e., Γt/2−1,t/2) with share size Õ(j4). Thus, our scheme improves on the scheme
of [15] for every constant β > 0, showing that allowing a gap between the sizes of
the authorized and unauthorized sets reduces the share size, in the best known
schemes.

548 A. Beimel and H. Othman

Our goal in the rest of the section is to find better choices of α1, . . . , αn, αn

that will reduce the share size. For β = 1/8 this is done in Example 6.6; similar
optimization can be done for every fixed β. For general values of β this is done
in Claim 6.8, where we care about the asymptotic dependency of the exponent
in the share size on β.

Example 6.5. We next analyze the optimal share size that we can get by our
scheme using one layer. We need to choose β < α1 ≤ 1. By Lemma 6.2, the share
size of the parties pj where tβ/2 ≤ j ≤ tα1 is O(j

α1−β
β log j), and the share size

of the parties pj where tα1 < j ≤ 2t is O(j
α1+1−2β

α1 log j). We need to find α such
that max{α1−β

β , α1+1−2β
α1

} is minimized. The solution of this problem is when
α1−β

β = α1+1−2β
α1

(since increasing α1 will increase α1−β
β and decrease α1+1−2β

α1
),

therefore, α1 = β +
√

β − β2 and the exponent in the share size is
√

1/β − 1.
Note that by using zero layers, the exponent in share size is 1/β − 1. When
β > 1/2 it holds that 1/β − 1 <

√
1/β − 1, and zero layers are better in this

case than one layer. When β < 1/2, one layer is better than zero layers.

Example 6.6. We present an upper bound for the share size that can be achieved
by our construction for β = 1

8 . We get this upper bound for n = 2, that is, when
q0 = t1/8

2 , q1 = tα1 , q2 = tα2 , q3 = 2t. We need to find α1 and α2. By Lemma 6.2,

the share size of the parties pj , where t1/8/2 ≤ j ≤ tα1 , is O(j
α1−1/8

1/8 log j), the

share size of the parties pj , where tα1 < j ≤ tα2 , is O(j
α1+α2−2/8

α1 log j), and the

share size of the parties pj , where tα2 < j ≤ 2t, is O(j
α1+α2+1−3/8

α2 log j). In order
to find the an upper bound, we solve the following non-linear program.

Minimize C subject to:

α1 − 1/8 ≤ C/8
α2 + α1 − 2/8 ≤ Cα1

1 + α1 + α2 − 3/8 ≤ Cα2

1/8 < α1 < α2 ≤ 1

A possible solution for this problem is α1 = 0.413857, α2 = 0.792505. In this
case, C = 2.310852. However, we do not know if this solution is optimal.

Theorem 6.7. There is an evolving secret-sharing scheme realizing the evolving
access structure Γγt−t1/8,γt, where the share size of party pj is O(j2.32 log2 j).

Choosing the Parameters for the General case. In this subsection, we
show how to choose good parameters for a general 0 < β < 1/2. To minimize
the share size, we need to minimize

∑i
�=1 α�−iβ

αi−1
. As the saving we aim to is bigger

Evolving Ramp Secret Sharing with a Small Gap 549

than iβ, we will ignore this term and minimize
∑i

�=1 α�

αi−1
=

∑i−2
�=1 α�

αi−1
+ 1 + αi

αi−1
.

In Example 6.4, we saw that if we take the values of αi as a geometric sequence
with common ratio 2, then we get an exponent slightly smaller than 4. If α� is
much smaller than 2α�−1 for many values on �, then

∑i−2
�=1 α� will be greater

than αi−1 and the exponent in the share size will be larger than 4. On the other
hand, if αi is bigger than 2αi−1, then αi−1

αi
> 2 and, also in this case, the share

size will be larger than 4. Thus, we take a sequence that is close to geometric
sequence with common ratio 2.

Claim 6.8. Let α0 = β and αi = (2+ 1
2i)·αi−1 until the first n such that αn ≥ 1

(and define αn = 1). Then, for every i

∑i
i=1 α� − iβ

αi−1
≤

(
4 − O

(
1

log2(1/β)

))
.

Proof. Note that αi > 2αi−1, so n ≤ log(1/β). Furthermore, for every � ≤ i

α� =
αi(

2 + 1
2(�+1)

)
· . . . · (

2 + 1
2i

) ≤ αi

(2 + 1
2i)

i−�
.

Thus,

i∑
�=1

αj ≤
i∑

�=1

αi(
2 + 1

2i

)i−�

=
αi(

2 + 1
2i

)i

(
2 + 1

2i

)i+1 − (
2 + 1

2i

)
(
1 + 1

2i

)

≤ αi

(
2 +

1
2i

) (
1 − 1

2i + 1

)
.

For every 2 ≤ i ≤ n,
∑i

�=1 α� − iβ

αi−1
≤

∑i−1
�=1 α� + αi

αi−1

≤
(

2 +
1

2(i − 1)

)(
1 − 1

2(i − 1) + 1

)
+

αi

αi−1

≤ 4 − 1
2i(2i − 1)

≤ 4 − O

(
1

log2(1/β)

)
,

where the last inequality is implied by the fact that i ≤ n ≤ log(1/β). Note that
for i = n + 1 it holds that αn

αn−1
= 1 and therefore the inequality holds. ��

For example, for β = 2−20 the exponent is less than 4 − 1/(40 · 39) < 3.9994.
This should be compared to the simpler solution given in Example 6.4, where
the exponent is 4 − 40/220 > 3.99996.

550 A. Beimel and H. Othman

By Lemma 6.3 and Claim 6.8, we obtain our evolving ramp secret-sharing
scheme, proving Theorem 1.1.

Remark 6.9. In our analysis in Sect. 6.1 we ignore the factor of iβ in the exponent
in the share size. This implies that in our construction of Tramp we can take
Wi = {0, 1, . . . , qi}. The saving in this case, compared to the scheme of [15],
stems from the fact that we take a collection of finite trees, where in each tree
we ignore the first f(t)/2 parties.

7 Reduction Between Evolving Ramp Secret-Sharing
Schemes

In this section we show how to construct an evolving secret-sharing scheme real-
izing Γγt−tβ ,γt for some constants γ, β from an evolving secret-sharing scheme
realizing Γt/d−((t/dγ)β−1),t/d for a constant d such that γ > 1/d. This construc-
tion is used to prove Theorem 1.2 from Lemma 4.3.

Theorem 7.1. Let 0 < β < 1, d ∈ N, and 1/d < γ < 1 be constants, and let
Π be a scheme that realizes the evolving ramp access structure Γt/d−((t

γd)β−1),t/d

such that the length of the share of party pj is c(j). Then there is a scheme
realizing the evolving ramp access structure Γγt−tβ ,γt such that the size of the
share of party pj is c(�γdj�).
Proof. In Fig. 5 we describe the scheme Π ′ that realizes the evolving access
structure Γγt−tβ ,γt. Next we prove the correctness and security of this scheme
as well as analyzing its share size.

The Scheme Π ′

For every j ∈ N:

1. Give party pj the share of party p�γdj� in Π.

Fig. 5. The scheme Π ′ that realizes the evolving access structure Γγt−tβ ,γt.

First we observe that, as γd > 1, for every j > j′, parties pj and pj′

in Π ′ get shares of parties p	γdj
 and p	γdj′
 in Π, respectively, such that
�γdj� ≥ �γd(j′ + 1)� ≥ �(γdj′) + 1� > �γdj′�, thus, the parties in Π ′ get shares
of different parties in Π.

Correctness: Let A = {pi1 , . . . , pik
} be a minimal authorized set, i.e., |A| =

k ≥ γik. The parties in A get shares of parties in the set {p1, . . . , p	γdik
} in Π
and |A| ≥ �γdik�/d, thus they can reconstruct the secret.

Evolving Ramp Secret Sharing with a Small Gap 551

Security: Let A = {pi1 , . . . , pik
} be an unauthorized set. Thus, for every 1 ≤

j ≤ k, parties pi1 , . . . , pij
in Π ′ get shares of parties in the set {p1, . . . , p	γdij
},

and

j ≤ γij − (ij)β ≤ �γdij� + 1
d

−
(�γdij�

γd

)β

≤ �γdij�
d

−
((�γdij�

γd

)β

− 1

)
.

Thus, for every 1 ≤ j ≤ k, parties pi1 , . . . , pij
in Π ′ get shares of an unauthorized

set in Γt/d−((t
γd)β−1),t/d, and the parties pi1 , . . . , pik

get no information about
the secret.

Share size: Party pj gets the share of party p	γdj
 in Π. Therefore, the share
size of party pj is c(�γdj�). ��

By applying the reduction of Theorem7.1 to the scheme of Lemma 4.3, we
obtain Theorem 1.2.

8 An Evolving (k/2, k)-Ramp Secret-Sharing Scheme

Komargodski et al. [14] presented an evolving secret-sharing scheme for the
evolving k-threshold access structure for a constant k (i.e., the complete access
structure containing all sets of size at least k). In their construction, the j-th
party’s share size is O(k log j), we denote this construction by Π0. An interest-
ing open question is whether the dependency on k can be improved. We study
a relaxation of the problem, namely evolving (k/2, k)-ramp secret-sharing for
constant k; where every set that contains at least k parties can reconstruct the
secret, and any set of size at most k/2 cannot learn any information about the
secret. We require nothing regarding the sets of size greater than k/2 but smaller
than k. We construct an evolving (k/2, k)-ramp secret-sharing scheme with share
size O(log k log j). In our construction, we use the scheme Π0 of [14] as a building
box.

In Fig. 6 we describe the scheme Πk/2,k that realizes the evolving (k/2, k)-
threshold access structure. As in [14], we first partition the parties into sets,
called generations, according to the order they arrive, where the i-th generation
contains the parties p2ki , . . . , p2k(i+1)−1.

We use the following observation in order to analyze the share size in Πk/2,k.

Observation 8.1. Shamir’s t-out-of-n secret-sharing scheme shares m differ-
ent secrets s1, s2, . . . , sm with sizes �1, . . . , �m among n parties using share size
max{�log(n + 1)�, �1 + �2 + · · · + �m}.
Proof. We simply share the secret s = s0◦s1◦· · ·◦sm by Shamir’s secret-sharing
scheme (where ◦ is the concatenation of string). ��

552 A. Beimel and H. Othman

The Scheme Πk/2,k

Let Π0 be the evolving k-threshold scheme of [14].
When party p2ki arrives, the dealer prepares shares for all the parties
{p2ki , . . . , p2k(i+1)−1}.
1. Generate the next k shares from the scheme Π0. Denote these shares by

vi
1, v

i
2, . . . , v

i
k.

2. For � ∈ {0, 1, . . . , log k}, share vi
2� , . . . , v

i
2�+1−1 by a 2�-out-of-(2k(i+1)−2ki)

secret-sharing scheme among the parties {p2ki , . . . , p2k(i+1)−1}. Denote
this scheme by Πi

� . That is, the share vi
1 is shared with threshold 1 using

Πi
1, the shares vi

2, v
i
3 are shared with threshold 2 using Πi

2, the shares
vi
4, . . . , v

i
7 are shared with threshold 4 using Πi

3, etc.

Fig. 6. The scheme Πk/2,k realizing the evolving (k/2, k)-access structure.

Theorem 8.2. The scheme Πk/2,k realizes the evolving ramp access structure
Γk/2,k with share size O(log k log j) for party pj.

Proof. Correctness: we show that any set of size at least k can reconstruct the
secret. Let A = {pi1 , pi2 , . . . , pik

} be a minimal authorized set such that pik
is

in the g-th generation, that is, 2kg ≤ ik ≤ 2k(g+1) − 1. For 1 ≤ j ≤ g, let cj be
the number of of parties in A from the j-th generation. By the construction, cj

parties in generation j can reconstruct at least cj shares from generation j (this
is true since every vj

� is shared by threshold of at most �). Therefore, the set A

can reconstruct at least
∑k

j=1 cj = k shares of Π0, thus, by the correctness of
Π0, the set A can reconstruct the secret.

Security: Let A be an unauthorized set of size at most k/2 ending in gen-
eration g. By the construction, cj parties from the j-th generation can recon-
struct at most 2cj − 1 shares from generation j (this is true since every vj

� is
shared by threshold of at least ��/2�), thus the set A can reconstruct at most∑g

j=1(2cj − 1) < k shares of Π0. By the security of Π0, the set A cannot learn
any information about the secret.

Share size analysis: the share of party pj in generation g is composed of the
shares from the schemes Πi

� for every � ∈ {0, 1, . . . , log k}. The size of generation
g is 2k(g+1) − 2kg ≤ 2kg · 2k. Party pj is in the � log j

k �-th generation. The log of
the generation size of the generation of pj is less than kg + k ≤ k log j

k + k =
log j + k. The scheme Πi

� for every 0 ≤ � ≤ log k requires share size max{log j +
k, |vg

2� |+· · ·+|vg
2�+1−1

|} (by Observation 8.1). The shares vg
1 , . . . , v

g
k are generated

from Π0; recall that the share size of the n-th party in Π0 is k log n. By the
construction, k(g−1) shares from Π0 were generated for the previous generations.
Therefore,

|vg
� | ≤ |vg

k| ≤ k log kg ≤ k log k
log j

k
= k log log j.

Evolving Ramp Secret Sharing with a Small Gap 553

Thus, the share size in Πg
� is at most

max{log j + k, 2� · k log log j}.

The total share size is:
log k∑
�=0

max{log j + k, 2� · k log log j} ≤ (log k + 1)(log j + k) + 2k2 log log j.

��
When j > 22k2

, the share size of pj is O(log k log j).

9 Properties of Optimal Choices of Parameters
for the Tree Technique

In this section we show the limitations of the tree technique for β ≥ 1/2. We
also give an upper bound on the number of layers minimizing the share size in
our scheme for general β.

9.1 The Share Size in Πtree

In this subsection, we analyze the share size in Πtree and prove that for 1/2 ≤
β < 1 the optimal share size is obtained when n = 0, i.e., it is Θ(j

1−β
β).

Claim 9.1. For every β ≥ 1/2, the share size in Πtree is Ω(j
1−β

β) for at least
one party pj.

Proof. Let j = tαn + 1. By Lemma 6.2, the share size of the party pj is Ω(jC),

where C = 1+
∑n−1

�=1 α�+αn−β(n+1)

αn
. It holds that,

n−1∑
�=1

α� = αn(C − 1 − β

β
) + (n + 1)β − 2β − 1

β
αn − 1

≤ αn(C − 1 − β

β
) + (n + 1)β − (2β − 1) − n − 1

= αn(C − 1 − β

β
) + (n − 1)β,

where the inequality follows from the fact that αn > β and 2β−1 ≥ 0. As α� > β
for every 1 ≤ � ≤ n − 1, we get that αn(C − 1−β

β) ≥ ∑n−1
�=1 α� − (n − 1)β ≥ 0,

i.e., C ≥ 1−β
β . ��

Remark 9.2. For every n > 0 and β > 1/2, Πtree with n layers has shares greater
than Πseg (since, 2β−1

β αn > 2β − 1 as αn > β).

Claim 9.3. For every β < 1/2 there is at least one party pj such that the share
size of pj in Πtree is Ω(j).

Proof. Let j = tαn + 1. The share size of party pj is Ω(jC′
) where C ′ =

1+
∑n−1

�=1 α�+αn−β(n+1)

αn
≥ αn

αn
= 1 (since α� ≥ β for every 1 ≤ � ≤ n − 1). ��

554 A. Beimel and H. Othman

9.2 Upper Bound on the Number of Layers in the Optimal Solution
for Πtree

In this section, we show that, for every β < 1/2, there exists a choice of the
parameters n, α1, . . . , αn that minimizes the share size of Πtree and the number
of layers n is at most O(log(1/β)).

Claim 9.4. Let n, α1, . . . , αn be parameters for Πtree. If the share size of party
pj, for every j ∈ N, in Πtree is less than j4 and there exist indices 1 ≤ i1 < i2 ≤
n − 2 such that αi2 < 2αi1 and αi1 ≥ 2β, then i2 ≤ i1 + 15.

Proof. By the assumption of the lemma, αi1 − β ≥ αi1 − 0.5αi1 = 0.5αi1 . Recall
that the the share size of party pj where j = tαi2 + 1 is greater than jC , where

C =
∑i2+1

�=1 α�−(i2+1)β

αi2
. We next analyze this expression, using the fact that α� >

β for 1 ≤ � ≤ i1 − 1 and α� ≥ αi1 for � ≥ i1.
∑i2+1

�=1 α� − (i2 + 1)β
αi2

≥
∑i2+1

�=i1
(αi1 − β)
αi2

≥
∑i2+1

�=i1
0.5αi1

2αii

≥ i2 + 1 − i1
4

.

Since we assume that the exponent is at most 4, we obtain that i2 ≤ i1 + 15. ��
Lemma 9.5. For every β < 1/2, there exists a choice of the parameters n, β <
α1 < · · · < αn ≤ 1 that minimizes the share size in Πtree and the number of
layers n is at most 15 log(1/β) + 2.

Proof. First, let i be the largest index such that αi ≤ 2β. If i ≥ 2, we consider the
parameters n−i+1, αi, . . . , αn with n−i+1 layers. This choice of parameters can
only decrease the share size of parties ptαi+1, . . . , p2t (since α1, . . . , αi−1 > β).
The share size of party pj , where tβ/2 ≤ j ≤ tαi , is Õ(jC) where C = (αi −
β)/β ≤ 1. By Claim 9.3, for every β ≤ 1/2, the exponent of the share size is at
least 1. Thus, n − i + 1, αi, . . . , αn is also optimal.2

Second, the optimal solution has exponent less than 4 (by our construction
in Sect. 6.1). Thus, by Claim 9.4, for every 1 ≤ log(1/β), in the interval 2dβ +
1, . . . , 2d+1β there are at most 15 layers. Thus, the total number of layers is as
most 15 log(1/β) + 2. ��

References

1. Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 313–332. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 17

2 In fact, for every β < 1/2, it must hold that α2 > β, as the exponent in this case is
greater than 1.

https://doi.org/10.1007/978-3-319-98113-0_17

Evolving Ramp Secret Sharing with a Small Gap 555

2. Benaloh, J., Rudich, S.: Private communication (1989)
3. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS, p. 313 (1979)
4. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakley, G.R., Chaum,

D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-39568-7 20

5. Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear
size alphabet. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 471–
484. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 18

6. Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) Cryptography and Coding
1995. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60693-9 22

7. Cascudo Pueyo, I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret
sharing and its applications. IEEE Trans. Inf. Theory 59, 5600–5612 (2013)

8. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 17

9. Csirmaz, L., Tardos, G.: On-line secret sharing. Des. Codes Cryptogr. 63(1), 127–
147 (2012)

10. D’Arco, P., De Prisco, R., De Santis, A., Pérez del Pozo, A., Vaccaro, U.: Proba-
bilistic secret sharing. In: 43rd International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2018). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 117, pp. 64:1–64:16 (2018)

11. Franklin, M.K., Yung, M.: Communication complexity of secure computation. In:
STOC 1992, pp. 699–710 (1992)

12. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Proceedings of the Globecom 1987, pp. 56–64 (1987)

13. Kilian, J., Nisan, N.: Private communication (1990)
14. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M.,

Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 19

15. Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: dynamic thresh-
olds and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678,
pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-
3 12

16. Martin, K.M., Paterson, M.B., Stinson, D.R.: Error decodable secret sharing and
one-round perfectly secure message transmission for general adversary structures.
Cryptogr. Commun. 3, 65–86 (2011)

17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
18. Stinson, D.R., Wei, R.: An application of ramp schemes to broadcast encryption.

Inform. Process. Lett. 69, 131–135 (1999)

https://doi.org/10.1007/3-540-39568-7_20
https://doi.org/10.1007/978-3-662-53644-5_18
https://doi.org/10.1007/3-540-60693-9_22
https://doi.org/10.1007/3-540-60693-9_22
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-662-53644-5_19
https://doi.org/10.1007/978-3-319-70503-3_12
https://doi.org/10.1007/978-3-319-70503-3_12

Lower Bounds for Leakage-Resilient
Secret Sharing

Jesper Buus Nielsen(B) and Mark Simkin(B)

Aarhus University, Aarhus, Denmark
{jbn,simkin}@cs.au.dk

Abstract. Threshold secret sharing allows a dealer to split a secret into
n shares such that any authorized subset of cardinality at least t of those
shares efficiently reveals the secret, while at the same time any unautho-
rized subset of cardinality less than t contains no information about the
secret. Leakage-resilience additionally requires that the secret remains
hidden even if one is given a bounded amount of additional leakage from
every share.

In this work, we study leakage-resilient secret sharing schemes and
prove a lower bound on the share size and the required amount of ran-
domness of any information-theoretically secure scheme. We prove that
for any information-theoretically secure leakage-resilient secret sharing
scheme either the amount of randomness across all shares or the share
size has to be linear in n. More concretely, for a secret sharing scheme
with p-bit long shares, �-bit leakage per share, where ̂t shares uniquely
define the remaining n − ̂t shares, it has to hold that

p ≥ �(n − t)

̂t
.

We use this lower bound to gain further insights into a question that was
recently posed by Benhamouda et al. (CRYPTO’18), who ask to what
extend existing regular secret sharing schemes already provide protection
against leakage. The authors proved that Shamir’s secret sharing is 1-bit
leakage-resilient for reconstruction thresholds t ≥ 0.85n and conjectured
that it is also 1-bit leakage-resilient for any other threshold that is a
constant fraction of the total number of shares. We do not disprove their
conjecture, but show that it is the best one could possibly hope for.
Concretely, we show that for large enough n and any constant 0 < c < 1
it holds that Shamir’s secret sharing scheme is not leakage-resilient for
t ≤ cn/logn.

In contrast to the setting with information-theoretic security, we show
that our lower bound does not hold in the computational setting. That
is, we show how to construct a leakage-resilient secret sharing scheme in
the random oracle model that is secure against computationally bounded
adversaries and violates the lower bound stated above.

J. B. Nielsen—Supported by the Independent Research Fund Denmark project BETHE
and the Concordium Blockchain Research Center, Aarhus University, Denmark.
M. Simkin—Supported by the European Unions’s Horizon 2020 research and innovation
program under grant agreement No. 669255 (MPCPRO) and No. 731583 (SODA).

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 556–577, 2020.
https://doi.org/10.1007/978-3-030-45721-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_20

Lower Bounds for Leakage-Resilient Secret Sharing 557

1 Introduction

Threshold secret sharing, introduced by Shamir [Sha79] and Blakley [Bla79], is a
fundamental building block in modern cryptography. It allows a dealer to split a
secret into n shares such that any subset of cardinality at least t of those shares
efficiently reveals the secret, while at the same time any subset of cardinality
less than t contains no information about the secret in the information theoretic
sense. Due to its computational simplicity, its strong privacy guarantees, and its
information-theoretic security, it has found applications in various areas of cryp-
tography ranging from secure multiparty computation [BGW88,CCD88,RB89]
over threshold cryptography [Des88,DF90,Sho00] to attribute-based encryp-
tion [GPSW06,Wat11]. Stronger notions, like robust [RB89] and verifiable secret
sharing [CGMA85] address the lack of authenticity in the original definition and
prevent the participants or the dealer from tampering with the shares. All these
classical notions of secret sharing have in common that they assume that any
share is either fully corrupted or completely hidden from the adversary.

In contrast to these notions, a recent line of works [DP07,BGK14,GK18a,
GK18b,ADN+18,KMS18,SV18,BS18] considers secret sharing in the context of
side-channel attacks, where an adversary gets some form of restricted access to
all shares. Generally, these works consider two types of adversaries. Active adver-
saries that may tamper with all shares and passive adversaries that may leak
some bounded amount of information from each share. Constructing secret shar-
ing schemes that remain secure in the presence of such powerful adversaries is a
challenging task and, unsurprisingly, existing constructions are less efficient than
regular secret sharing schemes in one way or another. Understanding what price
one has to pay for such strong security guarantees is a foundational theoretical
question and of significant practical importance when real-world resources are
limited. While the efficiency of regular threshold secret sharing is well under-
stood [BGK16], little is known about the price of additional security against
side-channel attacks.

In this work, we focus on leakage-resilient secret sharing and we measure
efficiency in terms of share size and the amount of randomness needed for secret
sharing a value. The share size is an important measure to optimize, since it
directly affects the efficiency of cryptographic primitives, like multiparty com-
putation protocols, that are built on top of secret sharing. The celebrated BGW
protocol [BGW88] for secure multiparty computation, for instance, exhibits a
one-to-one correspondence between share size of the underlying secret shar-
ing scheme and overall communication complexity of the protocol. That is, an
increase of the share size by a factor of 2 directly translates to an increase of
the overall communication complexity of the protocol by the same factor. The
amount of randomness that cryptographic primitives require is an important
measure to optimize for real-world applications. In research, it is often assumed
that randomness is simply there when needed it, yet in reality it turns out to
be a precious resource with limited availability. Generating good randomness is
difficult and cryptographic primitives that required more randomness than what
was available have led to devastating large-scale attacks [HDWH12].

558 J. B. Nielsen and M. Simkin

1.1 Our Contribution

We prove that for any leakage-resilient secret sharing scheme with information-
theoretic security either the amount of randomness across all shares or the share
size has to be large.

Theorem 1 (Informal). Let S be a t-out-of-n secret sharing scheme, let p be
the bit length of each share, and let � be the number of bits leaked from each
share. If S is leakage-resilient against a computationally unbounded adversary
and ̂t shares uniquely define the remaining n − ̂t shares, then

p ≥ �(n − t)
̂t

For instance, for a O (1)-out-of-n secret sharing scheme with 1-bit leakage,
where O (1) shares uniquely define the remaining shares, the theorem tells us
that the share size has to be linear in the number of shares. On the other hand,
if we want the share size to be o(n), then the theorem tells us that virtually all
shares have to contain some independent, yet meaningful information1.

We prove our lower bound by presenting a conceptually simple generic adver-
sary, who breaks the leakage-resilience of any secret sharing scheme that violates
our bound. More concretely, the adversary is given leakage from each share and
its goal is to determine the secret value. The high-level idea behind our attack
is to apply one separate uniformly random leakage function to each share. By
correctness of a secret sharing scheme, we know that any two vectors of secret
shares corresponding to two different secrets will always differ in at least n−t+1
positions. If the output of each leakage function is � bits long, then two different
shares produce the same leakage with probability 2−�. The smaller the threshold
t, the larger the number of differing shares. The main observation behind our
lower bound is that, with an increasing n, we quickly reach a point, where the
leakage excludes all but one of the secrets that could have produced the given
leakage.

We use our lower bound to gain further insights into an intriguing question
that was recently posed by Benhamouda et al. [BDIR18], who ask to what extent
existing regular secret sharing schemes already provide protection against leak-
age. Among other results, the authors show that Shamir’s secret sharing scheme
over a field F2k with small characteristic is not leakage-resilient. Specifically, the
authors present an attack, which obtains one bit of the secret shared value from
1-bit leakage from each share. On the positive side, the authors show that t-out-
of-n Shamir secret sharing over a prime order field Fq is 1-bit leakage-resilient if
t ≥ 0.85n. The authors leave it open to prove or disprove the leakage-resilience
of Shamir secret sharing over Fq for other parameter ranges and conjecture:

Conjecture 1 ([BDIR18]). Let 0 < c ≤ 1 be a constant and let q ≈ n be a
prime. For large enough n, it holds that cn-out-of-n Shamir secret sharing over
Fq is 1-bit leakage-resilient.

1 We will precise define what we mean by meaningful information in Sect. 3.1.

Lower Bounds for Leakage-Resilient Secret Sharing 559

Threshold

Leakage

log q

log q
2

log q
4

1
n

n −O(logn)

cn/logn n/5 n/32

L
em

m
a
2

Le
mm

a
3

[B
D
IR

18
]

[BDIR18]
Conjecture

Fig. 1. Overview of our results on the leakage-resilience of Shamir’s secret sharing
over a prime order field Fq for an arbitrary number of parties n. The y-axis depicts the
leakage per share in bits, the x-axis shows the reconstruction threshold. The red area
indicates parameter ranges in which it is not leakage-resilient. The green area indicates
parameter ranges where it is. The white area indicates parameter ranges, where we do
not know anything. n is the number of parties, log q is the number of bits per share,
and 0 < c < 1 is an arbitrary, but fixed constant. (Color figure online)

We do not disprove their conjecture, but show that it is basically the best
one could hope for. More concretely, we show that for a large enough n and
any constant 0 < c < 1 it holds that Shamir’s secret sharing scheme is not
leakage-resilient for t ≤ cn/ log n. Our results regarding the leakage-resilience of
Shamir’s secret sharing scheme are illustrated in Fig. 1. Whereas the negative
results above crucially rely on a computationally unbounded adversary, we also
show that for the specific case of 2-out-of-n Shamir secret sharing there exists a
computationally efficient attack.

Given the lower bound for information-theoretically secure secret sharing
schemes, it may be natural to hope the same bound may apply to schemes that
only need to be sure against a computationally bounded adversary. We show that
this is not the case by presenting a leakage-resilient secret sharing scheme in the
random oracle model that has a share size of p = O (n + λ + �) and is secure
against any computationally bounded adversary that runs in time poly(λ). By
setting, for instance, � > n one can see that such a scheme violates our lower
bound from above for sufficiently large n.

2 Preliminaries

For random variables V and W we use V ≈ε W to denote that the distributions
of V and W are at most ε apart in L1 distance.

Our definition of threshold secret sharing follows the definition of
Beimel [Bei11]. We additionally define a full reconstruction threshold ̂t, which

560 J. B. Nielsen and M. Simkin

defines how many shares are needed to reconstruct all shares of a particular secret
sharing. In other words, the full reconstruction threshold ̂t can also be seen as
an upper bound on the total entropy among all shares of a secret sharing. In
our definition and the remainder of the paper we assume perfectly correct secret
sharing schemes. This is done for the sake of simplicity and all proofs easily
extend to the case, where the reconstruction may fail with some probability.

Definition 1 (Threshold Secret Sharing Scheme). Let Share : {0, 1}k →
({0, 1}p)n be an efficient randomized algorithm mapping k bit secrets into n
shares each of length p. Let Rec : ({0, 1}p)n → {0, 1}k be a deterministic algo-
rithm that maps a collection of t shares back to a secret. The notion generalises
in a straight forward manner to schemes Share : {0, 1}k → ∏n

i=1{0, 1}pi , where
the shares possibly have different length. The pair (Share,Rec) is called a t-
out-of-n secret sharing if:

1. Perfect Correctness: Any t-out-of-n shares can be used to reconstruct the
secret correctly. For any x ∈ {0, 1}k, for any set T ⊆ [n] with |T | ≥ t,

Pr[Rec(Share(x)T) = x] = 1

where the probability is taken over the randomness of the sharing function
and Share(x)T denotes the restriction of the n shares produced by Share(x)
to the ones identified by the set T .

2. Perfect Privacy: Less than t shares reveal no information about the under-
lying secret. More formally, for any two x, y ∈ {0, 1}k, any set T ⊆ [n] with
|T | < t, Share(x)T is identically distributed to Share(y)T .

3. Full Reconstruction: A secret sharing scheme has ̂t-full-reconstruction if
Share(x) can be computed from any subset Share(x)T with |T | ≥ ̂t.

The notion of Full Reconstruction is non-standard, but essential to our
study. Leakage-resilient secret sharing schemes like [SV18] with very high leakage
resilience all seem to use some notion of non-trivial correlated randomness which
makes the full reconstruction threshold larger than the reconstruction threshold.
To some extend our results will explain why this is the case. If you have a scheme
with low full reconstruction threshold you get poor leakage resilience. So if you
have a scheme with a low reconstruction threshold and good leakage resilience,
then the full reconstruction threshold must be larger than the reconstruction
threshold.

To model leakage-resilient secret sharing, we use the local leakage model
as defined by Goyal and Kumar [GK18a] and Benhamouda et al. [BDIR18].
Intuitively, it allows the adversary to compute arbitrary independent leakage
functions on all shares, which are only restricted in the size of their leakage
output. For the sake of exposition, we split the definition in weak and regular
local leakage-resilience. In weak local leakage-resilience the adversary is only
given the output of the leakage functions. In regular local leakage-resilience, it is
additionally given θ full shares. As such weak local leakage-resilience is a special
case of regular local leakage-resilience for θ = 0.

Lower Bounds for Leakage-Resilient Secret Sharing 561

Definition 2 (Leakage Function). We call Leak = (Leak1, . . . ,Leakn)
an �-leakage function for (Share,Rec) if Share : {0, 1}k → ∏n

i=1{0, 1}pi

and Leaki : {0, 1}pi → {0, 1}�. For (sh1, . . . , shn) ← Share(s) we define
(b1, . . . , bn) = Leak(sh1, . . . , shn) by bi = Leaki(shi).

Definition 3 (Weak Local Leakage-Resilience). A secret sharing scheme
(Share,Rec) is said to be (ε, �)-weakly-local-leakage-resilient (W-IND-LLR) if
for every �-leakage function vector Leak and every pair of secrets x, y ∈ {0, 1}k

it holds that
Leak(Share(x)) ≈ε Leak(Share(y)).

We also define leakage-resilience against a class of adversaries. Let B be a possi-
bly randomized interactive algorithm. First the adversary outputs a pair of secrets
(x0, x1) and a leakage function Leak. Then the game flips a uniformly random
challenge bit c and inputs Leak(Share(xc)) to B. Then run B to get a guess
g ∈ {0, 1}. Let AdvB = 2|Pr[g = c] − 1/2|. We say that (Share,Rec) is (ε, �)-
weakly-local-leakage-resilient for a class B of adversaries if for all B ∈ B it holds
that

AdvB ≤ ε .

Definition 4 (Local Leakage-Resilience). A secret sharing scheme (Share,
Rec) is said to be (ε, �, θ)-local-leakage-resilient (IND-LLR) if for every �-leakage
function vector Leak, for any set T ⊆ [n] with |T | < θ, and every pair of secrets
x, y ∈ {0, 1}k it holds that

(Share(x)T ,Leak(Share(x))) ≈ε (Share(y)T ,Leak(Share(y))) .

We also add a one-way notion, which we will use for proving our lower bound.
We will make the notion as weak as possible while still being meaningful, which
makes our lower bound as strong as possible.

Definition 5 (Weak One-Way Local Leakage-Resilience). We define what
it means for a secret sharing scheme (Share,Rec) to be �-weakly one-way local-
leakage-resilient (WOW-LLR). Let A be a possibly randomized interactive algo-
rithm. Let x ∈ {0, 1}k be a secret. The game WOWA(x) proceeds as follows.
First the adversary outputs a leakage function Leak. Then the game samples
(sh1, . . . , shn) ← Share(x) and we input Leak(Share(x)) to A, who outputs a
guess y ∈ {0, 1}k ∪ {⊥}. The output of WOWA(x) is 1 if and only if y = x. We
call A admissible if it always holds for all x that y = x or y = ⊥. We require
that for all admissible A there exist x for which Pr[WOWA(x) = 1] < 1/2.

Note that one-wayness is a very weak security notion, it only requires that all
of the secret cannot be learned. Requiring that the adversary must only make
guesses it knows are correct further weakens the notion, as it limits the set of
adversaries, which in turn makes it easier to be WOW-LLR. We also weaken
the notion by requiring only that Pr[WOWA(x) = 1] < 1/2, as opposed to
requiring that Pr[WOWA(x) = 1] is negligible. And finally we only require
that (Share,Rec) hides one x from the adversary, meaning that it might in

562 J. B. Nielsen and M. Simkin

principle be possible for A to recover almost all x with certainty. It seems hard
to meaningfully further weaken the notion. Not surprisingly, W-IND-LLR implies
WOW-LLR, but for completeness we prove a technical lemma to this effect.

Lemma 1. Let (Share,Rec) be a secret sharing scheme. If (Share,Rec) is
(1/2, �)-W-IND-LLR then (Share,Rec) is �-WOW-LLR.

Proof. Assume that (Share,Rec) is not WOW-LLR. This means that there
exists an admissible A such that

Pr[WOWA(x) = 1] > 1/2

for all x. Now let B be W-IND-LLR adversary which first runs as follows. First
pick x0 and x1 to be any distinct secrets. Run A to get a leakage function Leak.
Output (x0, x1) and Leak. Get back

(b1, . . . , bn) = Leak(Share(xc)) .

Input (b1, . . . , bn) to A and get back a guess y. If y = ⊥, then output a uniform
random guess g. Otherwise, since A is admissible we know that y = xc for c = 0
or c = 1. In that case, output g = c. We know that the probability that A guesses
xc is larger than 1/2. So, clearly

AdvB = 2|Pr[g = c] − 1/2|
≥ 2(1 · Pr[y �= ⊥] + 1/2 · Pr[y = ⊥] − 1/2)
> 2(1 · 1/2 + 1/2 · 1/2 − 1/2)
= 1/2.

This implies that (Share,Rec) is not (1/2, �)-W-IND-LLR.

2.1 Shamir’s Secret Sharing

In t-out-of-n Shamir secret sharing [Sha79] the secrets and the shares come from
a field Fq, where q is usually chosen to be the smallest prime larger than n. Let
α1, . . . , αn ∈ Fq be distinct non-zero elements known to all parties. To share a
secret s ∈ Fq, the dealer picks a uniformly random polynomial P of degree t − 1
with p(0) = s. The share of party i is shi = P (αi).

To reconstruct the secret, a sufficiently large subset of parties interpolates
the polynomial P from their shares and evaluates the interpolated polynomial
at position 0. Correctness follows from the fact that, in a field, any t points
uniquely define a polynomial of degree t − 1. Privacy follows from the fact that
for any t− 1 points any secret s is still possible and all secrets are equally likely.

Lower Bounds for Leakage-Resilient Secret Sharing 563

3 Lower Bound

In this section we prove our main result.

Theorem 2. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
̂t-full-reconstruction. If S is �-WOW-LLR and � ≥ 1, then

p ≥ �(n − t)
̂t

.

Proof. We prove the theorem by exhibiting an explicit admissible adversary that
breaks �-WOW-LLR of any secret sharing scheme with a share size p < �(n−t)/̂t.
We provide an inefficient, randomized algorithm A that exactly recovers the
secret shared value from the given leakage with probability at least 1/2. Note
that throughout the paper we give attacks succeeding with constant probability.
It with be enough to present attacks succeeding with non-negligible probability.
However, this does not seem to allow to strengthen our lower bounds.

The algorithm A proceeds as follows. Pick a random Leak = (Leak1, . . . ,
Leakn) where each Leaki : {0, 1}p → {0, 1}� is an independent, uniformly
random function mapping p-bit strings to �-bit strings. Submit it to the leakage
game and get back

(b1, . . . , bn) = (Leak1(sh1), . . . ,Leakn(shn)) ,

where
(sh1, . . . , shn) ← Share(s; r)

is a secret sharing of the secret s that the algorithm should try to recover. Now
iterate over all secrets s′ and randomizers r′ and compute

(sh′
1, . . . , sh

′
n) ← Share(s′; r′) .

Let
S = {s′ | ∃r : (b1, . . . , bn) = (Leak1(sh′

1), . . . ,Leakn(sh′
n))} .

This is the set of secrets s′ which are consistent with the leakage (b1, . . . , bm). If
|S| > 1, then output ⊥. Otherwise, let {s} = S and output s. Let succ be the
event that the output is not ⊥.

It is trivial to see that s ∈ S. Hence if |S| = 1, then indeed S = {s}. So when
A does not output ⊥, it outputs the correct secret s. Hence A is admissible.

We now prove that Pr[succ] ≥ 1/2. Let (sh1, . . . , shn) ← Share(s; r) be
the secret sharing of the secret that A is trying to guess and denote by bi ←
Leaki(shi) the leakage from the i-th share. Let (sh′

1, . . . , sh
′
n) ← Share(s′; r′)

be the secret sharing of some arbitrary but fixed secret s′ with s �= s′ and let
b′
i ← Leaki(sh′

i) be the corresponding leakage. By correctness of the secret shar-
ing scheme, it is guaranteed that there exists a set I ⊆ [n] with |I| ≥ n − t + 1
such that shi �= sh′

i for all i ∈ I. So it clearly holds that

Pr
Leak

[(b1, . . . , bn) = (b′
1, . . . , b

′
n)] ≤ 2−�(n−t+1),

where the randomness is taken over a random Leak.

564 J. B. Nielsen and M. Simkin

Since each share is p bits long and since ̂t shares uniquely define any particular
secret sharing, it follows that there exists at most a total of 2p̂t possible secret
sharings.

Let coll be the event that there exists any (s′, r′) with s′ �= s such that
(b1, . . . , bn) = (Leak1(sh′

1), . . . ,Leakn(sh′
n)) when (sh′

1, . . . , sh
′
n) ← Share(s′;

r′). By a union bound we get that

Pr[coll] ≤ 2p̂t−�(n−t+1)

Pr[¬coll] ≥ 1 − 2p̂t−�(n−t+1) .

Observe that the event succ = ¬coll. If all secret sharings of all values s′ �= s
are inconsistent with the given leakage, then we can conclude that the secret
shared value is s. For the probability of ¬coll to be larger than 1/2, it suffices
that

1 − 2p̂t−�(n−t+1) > 1/2

2p̂t−�(n−t+1) < 1/2

p̂t − �(n − t + 1) < −1

�(n − t + 1) − 1 > p̂t

�(n − t + 1) − 1
̂t

> p

To prevent the attack described above, we therefore need that

�(n − t + 1) − 1
̂t

≤ p

has to hold. Finally, we observe that when � ≥ 1, then �(n − t + 1) − 1 ≥
�(n − t). �

As an immediate corollary of the theorem it follows that any secret sharing
scheme, which only requires a constant number of shares for full reconstruction,
has to have a share size that is linear in the number of shares if it wants to be
leakage-resilient.

Corollary 1. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
̂t-full-reconstruction, where t and ̂t are constants. If S is (1/2, 1)-W-IND-LLR,
then its share size p is in Ω(n).

When given some complete shares in addition to the leakage, then we obtain
the following bound:

Theorem 3. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
̂t-full-reconstruction. If S is (1/2, �, θ)-IND-LLR, and � ≥ 1, then

p ≥ �(n − t)
̂t − θ

.

Lower Bounds for Leakage-Resilient Secret Sharing 565

Proof. The proof here is almost identical to the proof of Theorem 2. In addition
to the leakage, we are now given θ complete shares. As before, let (b1, . . . , bn)
and (b′

1, . . . , b
′
n) be the leakage of some arbitrary, but fixed secret sharings a =

Share(s; r) and a′ = Share(s′; r′) with s �= s′. Let T ⊆ [n] with |T | < θ be the
subset of indices of shares that we get to see in addition to the leakage. We have
already established that

Pr[(b1, . . . , bn) = (b′
1, . . . , b

′
n)] ≤ 2−�(n−t+1),

which implies

Pr[(b1, . . . , bn, aT) = (b′
1, . . . , b

′
n, a′

T)] ≤ 2−�(n−t+1).

Let us now consider the event coll that, for an arbitrary but fixed (s, r),
there exists any (s′, r′) with s′ �= s such that (b1, . . . , bn, aT) = (b′

1, . . . , b
′
n, a′

T).
There are at most 2p̂t possible secret sharings and at most 2p(̂t−θ) possible secret
sharings that match the shares aT at the indices T . By a union bound we have

Pr[¬coll] ≥ 1 − 2p(̂t−θ)−�(n−t+1).

For the probability of ¬coll to be larger than 1/2 it thus suffices that

�(n − t + 1) − 1
̂t − θ

> p.

To prevent the attack described above it must therefore hold that

�(n − t + 1) − 1
̂t − θ

≤ p,

which for � ≥ 1 is true if

�(n − t)
̂t − θ

≤ p.
�

3.1 A Lower Bound via Randomness Complexity

In this section we prove a lower bound via randomness complexity. To motivate
it, consider the bound in Theorem 2 for the case t = o(n). In this case we have
that

p ≥ �n

̂t
.

So, if we consider the relative leakage, then we have that

�

p
≤ ̂t

n
.

566 J. B. Nielsen and M. Simkin

This means that to have a constant leakage rate2, one still needs ̂t ∈ Ω(n). That
is, after having enough shares to reconstruct, there still needs to be randomness
left in many of the other remaining shares. This explains existing constructions
of leakage-resilient secret sharing schemes, where shares contain a lot more ran-
domness than what is actually needed to get privacy against t − 1 parties.

However, the above theorem does not give a quantitative enough handle on
this phenomenon. One could trivially get ̂t = n by adding an unused uniformly
random bit to each share. But intuitively, this should not help against leakage-
resilience. These bits are trivial in the sense that they could just be deleted.
Neither should it help if we added a little bit of non-trivial randomness to the
shares, as it could just be leaked. Below we prove a theorem which gets a better
quantative handle of how much randomness there must be in the shares.

The following definition will be helpful in removing trivial randomness from
consideration.

Definition 6. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme
where share number i has length pi. We call comp = (comp1, . . . , compn) a
compression of S if it holds for i = 1, . . . , n that compi : {0, 1}pi → {0, 1}qi and
qi ≤ pi. Define Sharecomp by

(sh′
1, . . . , sh

′
n) = Sharecomp(s; r)

where
(sh1, . . . , shn) = Share(s; r)

and
(sh′

1, . . . , sh
′
n) = (comp1(sh1), . . . , compn(shn)) .

We call a compression a correct compression of S if for some Rec′ it holds that
Scomp = (Sharecomp,Rec′) is again a t-out-of-n secret sharing scheme.

We now introduce a crude measure of the randomness complexity.

Definition 7. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme. Let

size S = |{Share(s; r)|s ∈ {0, 1}k, r ∈ {0, 1}∗}| .

Let
ranS = log min

comp
size Scomp ,

where the minimum is taken over all correct compressions of S. We call a correct
compression comp for S for which it holds that log2 size Scomp = ranS a max-
compression of comp.

Notice that the above measure is via max-entropy. This is a very crude notion
of randomness, but for illustrating the phenomenon that a lot of randomness is
left in each share, it works well and allows for a significantly simpler proof.
2 The leakage rate is defined as the ratio between the number of bits leaked per share

and the share size in bits.

Lower Bounds for Leakage-Resilient Secret Sharing 567

Notice that if you secret share a random secret s using a random r, then you
will hit all possible secret sharings with non-zero probability. So, the length of
the random s and r must be at least ranS. So, if we can lower bound ranS,
we also lower bounded the amount of randomness needed to sample a secret
sharing.

To connect the randomness complexity to the above theorems, notice that if
a secret sharing scheme S has share size p, then ranS ≤ ̂tp.

Theorem 4. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
̂t-full-reconstruction. If S is (1/2, �)-weakly-leakage-resilient and � ≥ 1, then

ran S ≥ �(n − t) .

Proof. We prove the theorem by showing a generic attack that breaks �-WOW-
LLR of any secret sharing scheme with ran S < �(n − t). The adversary A
proceeds as follows.

1. Let comp = (comp1, . . . , compn) be a max-compression for S =
(Share,Rec), where compi : {0, 1}pi → {0, 1}qi .

2. For i = 1, . . . , n, pick a uniformly random Leaki : {0, 1}qi → {0, 1}�.
3. For i = 1, . . . , n, let Leak′

i = Leaki ◦ compi.
4. Submit Leak′ = (Leak′

1, . . . ,Leak
′
n) to the WOW-LLR.

5. Get back (b1, . . . , bn) = (Leak1(comp1(sh1)), . . . ,Leakn(compn(shn)))
where (sh1, . . . , shn) ← Share(s; r) is a secret sharing of the secret s that
the algorithm should try to recover.

6. Call s′ ∈ {0, 1}k consistent with (b1, . . . , bn) if there exists r′ such that

(b1, . . . , bn) = (Leak1(sh′
1), . . . ,Leakn(sh′

n))

when
(sh′

1, . . . , sh
′
n) ← Sharecomp(s′; r′) .

Compute

S = {s′ ∈ {0, 1}k | s′ is consistent with (b1, . . . , bn)} .

7. If |S| > 1, then output ⊥. Otherwise, let {s} = S and output s.

Let succ be the event that the output is not ⊥. It is trivial to see that s ∈ S.
Hence if |S| = 1, then indeed S = {s}. So when A does not output ⊥, it outputs
the correct secret s and wins the WOW-LLR. We conclude the theorem by
proving that Pr[succ] ≥ 1/2.

Let (sh1, . . . , shn) ← Share(s; r) be the secret sharing of the secret that A
is trying to guess and denote by

bi ← Leaki(compi(shi))

the leakage from the i-th share. Let

(sh′
1, . . . , sh

′
n) ← Sharecomp(s′; r′)

568 J. B. Nielsen and M. Simkin

be the secret sharing of some arbitrary but fixed secret s′ with s �= s′ and let
b′
i ← Leaki(sh′

i) be the corresponding leakage. By correctness of comp we have
that (Sharecomp,Rec) is correct. This guarantees that there exists a set I ⊆ [n]
with |I| ≥ n − t + 1 such that shi �= sh′

i for all i ∈ I. So it clearly holds that

Pr
Leak

[(b1, . . . , bn) = (b′
1, . . . , b

′
n)] ≤ 2−�(n−t+1),

where the randomness is taken over a the random (Leak1, . . . ,Leakn).
Let coll be the event that there exists any (s′, r′) with s′ �= s such

that (b1, . . . , bn) = (Leak1(sh′
1), . . . ,Leakn(sh′

n)) when (sh′
1, . . . , sh

′
n) ←

Sharecomp(s′; r′). Observe that succ = ¬coll. By definition there are at most
2ranS possible secret sharings. So, by a union bound we get that

Pr[coll] ≤ 2ranS−�(n−t+1)

Pr[¬coll] ≥ 1 − 2ranS−�(n−t+1)

1 − 2ranS−�(n−t+1) > 1/2

2ranS−�(n−t+1) < 1/2

ranS − �(n − t + 1) < −1
�(n − t + 1) − 1 > ran S

To prevent the attack described above, we therefore need that

ranS ≥ �(n − t + 1) − 1 = �(n − t) + � − 1 ≥ �(n − t) ,

where we used that � ≥ 1. �

To illustrate the theorem, consider a secret sharing scheme with constant
threshold t, share size p, which tolerates leakage � = (1 − o(1))p. The theorem
tells us that it must be the case that

ran S ≥ p(n − 2) ≈ pn .

So on average there are p bits of randomness in each share. In particular, after
learning the constant number of shares needed to reconstruct, there is still about
p bits of randomness left in each share that was not used for reconstructing. This
quantifies that almost all randomness goes into achieving leakage-resilient and
not into privacy of the secret sharing.

As another example, consider a secret sharing scheme with t < cn for a
constant c < 1/2 and � = dp for a constant d. We get that

ran S ≥ �(1 − c)n .

We have that
n − t = (1 − c)n

and thus
�(n − t) = dp(1 − c)n .

Lower Bounds for Leakage-Resilient Secret Sharing 569

So after learning t shares of length p the average number of bits of randomness
left per share is at least

dp(1 − c)n − tp

n − t
=

dp(1 − c)n − cnp

(1 − c)n
= p

d(1 − c) − c

(1 − c)
= p

(

d − c

(1 − c)

)

.

So if
d >

c

(1 − c)

there is still randomness left in the shares.

4 Leakage-Resilience of Shamir’s Secret Sharing

Benhamouda et al. [BDIR18] investigate the local leakage-resilience of Shamir’s
secret sharing. Among other results, the authors show that Shamir’s scheme
is not leakage-resilient if either the number of parties is constant or the secret
sharing is done over a field with small characteristic. Using Fourier analytic
techniques and additive combinatorics they show that t-out-of-n Shamir secret
sharing is (negl(n), �log q/4�)-W-IND-LLR in prime order fields Fq, whenever t =
n − O (log n). In the recently published full version of the same paper3, the
authors further show that it is 1-bit leakage-resilient for t ≈ 0.85n. They leave
it open to find other parameter ranges in which local leakage-resilience does
or does not hold and postulate Conjecture 1, which was already stated in the
introduction.

Our lower bound does not disprove Benhamouda et al.’s conjecture, but it
does tell us how large n and thus the shares would have to be if the conjecture
is indeed true. By plugging in the concrete parameters from the conjecture into
Theorem 2, we get that

n − t

t
≤ p ⇔ n − cn

cn
≤ p ⇔ 1 − c

c
≤ p ⇔ 1

c
− 1 ≤ p

has to hold for the conjecture to be true. Since p = log q = log n it follows that
the share size has to be in Ω(1/c) and thus n ∈ Ω(2

1
c).

Furthermore, using Theorem 2, we can show that Shamir’s secret sharing is
not local leakage-resilient for a large range of parameters. Concretely, we show
that two natural strengthenings of Benhamouda et al.’s conjecture are not true.
In Lemma 2 we consider a mildly smaller reconstruction threshold of cn/log n.
In Lemma 3 we consider a larger leakage. See Fig. 1 in the introduction for an
overview of these results. A possible interpretation of these results is that the
original conjecture of Benhamouda et al. is essentially the best one can hope for.

Lemma 2. Let q be the smallest prime larger than n. Then for any constant
0 < c < 1 and large enough n it holds that (cn/log n)-out-of-n Shamir secret
sharing over Fq is not (1/2, 1)-W-IND-LLR.

3 https://eprint.iacr.org/2019/653.

https://eprint.iacr.org/2019/653

570 J. B. Nielsen and M. Simkin

Proof. Via Theorem 2, we know that the adversary successfully breaks leakage-
resilience, whenever

p <
n − t

t
=

n

t
− 1

Combining this inequality with the parameters from the stated theorem, we get
that

p <
log n

c
− 1

has to hold, which is true for any 0 < c < 1 for large enough n, since
p = log n. �
Lemma 3. Let q be the smallest prime larger than n. For any constant 0 < c <
1/2 and any n, there exists a constant 0 < d < 1, such that cn-out-of-n Shamir
secret sharing over Fq is not (1/2, d log n)-W-IND-LLR.

Proof. For the attack from Theorem 2 to work we need that

�(n − cn)
cn

> p ⇔ �(1 − c)
c

> p ⇔ � >
c

1 − c
p

Since p = log n, and (1 − c) > c, it follows that the inequality holds for any
� ≥ log n with any d < c/1−c . �

Lemma 3 provides an interesting insight into the relationship between the
number of bits sufficient for reconstruction and the number of leaked bits suffi-
cient for breaking local leakage-resilience. In general, cn-out-of-n Shamir secret
sharing requires cn full shares and thus cn log n bits in total for reconstructing
the secret4. Reconstruction can be seen as a form of structured leakage, where cn
full shares are leaked. Lemma 3 shows that (inefficient) reconstruction is possible
from unstructured leakage when the leakage is a small constant fraction larger
than what is needed for reconstruction anyways, e.g. if c = 1/5, then we need
n/5 log n bits for regular reconstruction and n/4 log n bits for reconstruction from
the leakage.

4.1 An Efficient Attack for 2-Out-of-n Shamir Secret Sharing

All the results described above only apply to secret sharing schemes with
information-theoretic security, since the proof of Theorem 2 relies on an adver-
sary that can enumerate all possible secret sharings and thus runs in time at least
exponential in the share size p. In the following, we show that for the specific case
of 2-out-of-n Shamir secret sharing, we can break weak local leakage-resilience
using only a single bit of leakage per share in a highly efficient manner. Our
attack only requires O(n) field operations and does not depend on any partic-
ular properties of the underlying field.
4 Over certain fields reconstruction can be performed with significantly fewer bits,

but this approach does not work over general fields. See for example Guruswami and
Wootters [GW16].

Lower Bounds for Leakage-Resilient Secret Sharing 571

x

f(x)

s0

s1

Share(s1)

α1 α2 α3

Fig. 2. Illustration of our efficient attack on 2-out-of-n Shamir secret sharing. The
secret shared value is s1 and the solid line represents the linear function that was
used during the secret sharing. The dashed lines depict the linear functions that are
interpolated from the shares under the assumption that the secret shared value is s0.
Two distinct incorrect points at x = α1 are extrapolated.

Theorem 5. For any δ < 1 − 2−n, 2-out-of-n Shamir secret sharing over an
arbitrary field Fq is not (δ, 1)-W-IND-LLR. More concretely, there exists a dis-
tinguisher B that performs O(n) field operations and breaks weak local leakage-
resilience with a success probability of 1 − 2−n−1.

Proof. Let s0 and s1 be two arbitrary distinct secrets that are output by the
adversary. Let f1 be a uniformly random leakage function. For 2 ≤ i ≤ n, we
hardcode s0, public values (α1, αi), and f1 into the leakage function fi. On input
shi, the function fi interpolates a linear function Pi between the points (0, s0) and
(αi, shi). It outputs f1(Pi(α1)). The adversary receives the leaked bits b1, . . . , bn

and has to decide whether s0 or s1 was secret shared. If b1 = b2 = · · · = bn, then
the adversary outputs guess g = 0. Otherwise it outputs g = 1.

Let us consider two cases. If s0 was secret shared, then (0, s0) lies on a line
with all shares and thus, for 2 ≤ i ≤ n, each fi interpolates the P that was
initially used to compute the shares. Therefore, it holds that each Pi(α1) = sh1
and it follows that all leakage functions output the same bit f1(sh1). If s1 was
secret shared, then (s1, 0) does not lie on a line with the shares. It follows that, for
each 2 ≤ i ≤ n, fi interpolates a distinct line Pi. All these lines intersect in (s1, 0)
and therefore if follows that all (Pi(α1), α1) are distinct. Since f1 is a uniformly
random function, we can conclude that the probability that b1 = b2 = · · · = bn

is 2−n. A visual illustration of the reasoning above is depicted in Fig. 2. Let sc

572 J. B. Nielsen and M. Simkin

be the secret shared value. Based on the above observations we get

AdvB = 2|Pr[g = c] − 1/2|
= 2(1 · 1/2 + 1/2 · (1 − 2−n) − 1/2)

= 1 − 2−n.

�

Assuming a stronger definition of leakage-resilience and thus a stronger adver-
sary, we can extent the attack described above to larger thresholds. The basic
idea behind the attack is that each leakage function can interpolate a linear
function using a hardcoded candidate secret and the given share. Assuming
our adversary can first see t − 2 shares and then adaptively select the leakage-
functions, then the same attack goes through in a straightforward manner for
t-out-of-n Shamir secret sharing, because the adversary can hardcode t−2 shares
in addition to some candidate secret and let each leakage function interpolate a
degree t polynomial.

Corollary 2. For any δ < 1 − 2−n, t-out-of-n Shamir secret sharing over an
arbitrary field Fq is not (δ, 1)-W-IND-LLR against an distinguisher that sees
t − 2 shares before choosing the leakage functions. In particular, there exists a
distinguisher that performs O(n) field operations and breaks weak local leakage-
resilience with a success probability of 1 − 2−n−1.

5 Computational Leakage-Resilient Secret Sharing

A natural question is whether our lower bound from Sect. 3 also applies to compu-
tationally secure secret sharing schemes. In this section we answer this question
in the negative by presenting a leakage-resilient secret sharing scheme, which
violates our lower bound, in the random oracle model that is secure against
computationally bounded adversaries.5 More concretely we show:

Theorem 6. Let λ be a security parameter. In the random oracle model
there exists a (negl(λ) , �)-W-IND-LLR 2-out-of-n secret sharing scheme S =
(Share,Rec) for 1-bit secrets with share size p = O(� + λ + n) and full recon-
struction threshold ̂t = 2 that is secure against computationally bounded adver-
saries that run in time poly(λ).

5 Note that our lower bound easily extends to information-theoretically secure secret
sharing schemes in the random oracle model. And unbounded distinguisher can learn
the entire RO, so the RO does not help more than an exponentially long, uniformly
random, common reference string (CRS). Our lower bound clearly generalises to the
case with a CRS, as it goes via counting the expected number of secret sharings
consistent with a given leakage. This counting argument is not affect by a public
CRS.

Lower Bounds for Leakage-Resilient Secret Sharing 573

Remark 1. Note that, for instance for � > n for sufficiently large n, such a secret
sharing scheme violates the bound for information-theoretically secure schemes.
For � > n and n > λ the share size is p = O(� + λ + n) = O(�). And we have
that the secret sharing scheme tolerates �-bits of leakage from each share. When
̂t = 2 and information theoretic (negl(λ) , �)-W-IND-LLR 2-out-of-n would need
to have share size p ≥ �(n−t)

t̂
= Θ(n�). So the computational version beats the

information theoretic one by a factor n in share size.

Proof. For the sake of simplicity, assume we have access to the following multiple
random oracles:

Hs :{0, 1}λ → {0, 1}2(λ+1)

HL :{0, 1}λ+�log n� → {0, 1}λ+�

HR :{0, 1}λ+�log n� → {0, 1}λ

He :{0, 1}λ → {0, 1}λ+�

We construct the secret sharing scheme for 1-bit secrets m ∈ {0, 1} from the
theorem statement as follows.

Share(m;s):

1. Pick a seed s ← {0, 1}λ uniformly at random.
2. Compute s1‖s2 = Hs(s).
3. Define linear function g over Z2(λ+1) through g(1) = s1 and g(2) = s2
4. Extrapolate si = g(i) for i = 0, . . . , n.
5. Compute c = (s‖m) ⊕ s0.
6. Compute Li = HL(s‖i) and Ri = HR(s‖i) for i = 1, . . . , n.
7. Compute R′

i = He(Ri) for i = 1, . . . , n.
8. Compute ei,j = si ⊕ 〈Li, R

′
j〉 for i, j = 1, . . . , n with i �= j.

9. Pi’s share shi is defined as (Li, Ri, {ei,j}j=1,...,n, c).

Reconstruction works as follows.

Rec(shi, shj):

1. Compute si = ei,j ⊕ 〈Li,He(Rj)〉 and sj = ej,i ⊕ 〈Lj ,He(Ri)〉.
2. Interpolate g from si and sj and compute s0 = g(0).
3. Compute (s‖m) = c ⊕ s0 and return m.

It is easy to see that the proposed scheme is correct.
Note that besides learning m in reconstruction we also learn the seed s. From

s we can recompute Share(m; s). The full reconstruction threshold ̂t is 2, since
given access to the random oracles, m, and s, any two parties can compute all
Li, Ri, ei,j , and thus all shares shi.

Since each party Pi holds exactly one Li, one Ri, and n−1 bits ei,j , it follows
that the share size p is (� + λ) + λ + (n − 1) = O(� + λ + n).

It is straight forward to see that Share is a secret sharing scheme with
threshold 2. Assume we are given one share (Li, Ri, {ei,j}j=1,...,n, c). We have to

574 J. B. Nielsen and M. Simkin

argue that the share leaks no information on m. There are two cases, the query
case and the no-query case. In the query case, at some point a query of one of
the following forms were made HR(s‖·), HL(s‖·), or Hs(a). The non-query case
is the complement.

If we are in the no-query case, then because we are in the random oracle
model we can replace the secret sharing procedure with this one:

Share2(m):

1. Pick a seed s ← {0, 1}λ uniformly at random.
2. Sample uniformly random s1, s2 ∈ {0, 1}2(λ+1).
3. Define linear function g over Z2(λ+1) through g(1) = s1 and g(2) = s2
4. Extrapolate si = g(i) for i = 0, . . . , n.
5. Compute c = (s‖m) ⊕ s0.
6. Sample uniformly random Li ∈ {0, 1}λ+� and Ri ∈ {0, 1}λ for i = 1, . . . , n.
7. Compute R′

i = He(Ri) for i = 1, . . . , n.
8. Compute ei,j = si ⊕ 〈Li, R

′
j〉 for i, j = 1, . . . , n with i �= j.

9. Pi’s share shi is defined as (Li, Ri, {ei,j}j=1,...,n, c).

It is straight forward to see that for all j �= i we can replace He(Rj) by a
uniformly random string, as there is not enough information in shi to learn Rj

and query He on this point. Namely, even if the adversary is given si, the values
〈Li, R

′
j〉 leaks at most one bit on Rj . This gives this hybrid:

Share3(m):

1. Pick a seed s ← {0, 1}λ uniformly at random.
2. Sample uniformly random s1, s2 ∈ {0, 1}2(λ+1).
3. Define linear function g over Z2(λ+1) through g(1) = s1 and g(2) = s2
4. Extrapolate si = g(i) for i = 0, . . . , n.
5. Compute c = (s‖m) ⊕ s0.
6. Sample uniformly random Li ∈ {0, 1}λ+� and Ri ∈ {0, 1}λ for i and let

R′
i = He(Ri).

7. Sample uniformly random Lj ∈ {0, 1}λ+� and R′
j ∈ {0, 1}λ+� for j �= i.

8. Compute ei,j = si ⊕ 〈Li, R
′
j〉 for i, j = 1, . . . , n with i �= j.

9. Pi’s share shi is defined as (Li, Ri, {ei,j}j=1,...,n, c).

Now given shi without {ei,j}j=1,...,n all the values 〈Li, R
′
j〉 are statistically

close to uniformly random and independent. Hence we can jump to this hybrid:

Share4(m):

1. Pick a seed s ← {0, 1}λ uniformly at random.
2. Sample uniformly random s1, s2 ∈ {0, 1}2(λ+1).
3. Define linear function g over Z2(λ+1) through g(1) = s1 and g(2) = s2
4. Extrapolate si = g(i) for i = 0, . . . , n.
5. Compute c = (s‖m) ⊕ s0.
6. Sample uniformly random Li ∈ {0, 1}λ+� and Ri ∈ {0, 1}λ for i and let

R′
i = He(Ri).

Lower Bounds for Leakage-Resilient Secret Sharing 575

7. Sample uniformly random Lj ∈ {0, 1}λ+� and R′
j ∈ {0, 1}λ+� for j �= i.

8. Sample uniformly random bits ei,j for i, j = 1, . . . , n with i �= j.
9. Pi’s share shi is defined as (Li, Ri, {ei,j}j=1,...,n, c)

Now shi has no information on s1 and s2 and hence s0 is uniformly random given
shi. Therefore we can replace c = (s‖m) ⊕ s0 by a uniformly random value. At
this point shi contains no information on m or s.

This sequence of indistinguishable hubrids shows that when we are in the
no-query case, then shi is statistically close to independent from s and m, as
desired. Note in particular that during an execution it holds until the point in
time where we go into the query-case (because an oracle was queried on s for the
first time) that shi is statistically close to independent of s. This means that to
query an oracle on s the adversary has to guess close to λ bits of min-entropy on
s. This happens with probability at most 2−λ. Therefore the query case happens
with negligible probability. This concludes the proofs that Share is a secret
sharing scheme with t = 2.

We then argue that the secret sharing scheme is leakage resilient against � bits
of leakage from each share. Here it is important that we are on the non-adaptive
leakage case, where all leakage functions are picked before any leakage is seen.
This ensures that when Leaki((Li, Ri, {ei,j}j=1,...,n, c) is computed the leakage
function has no information on s by the argument above that we are dealing with
a secret sharing scheme with threshold t = 2. Hence by the sequence of hybrids
above we see that R′

j is uniformly random in the view of Leaki as it did not
query He(Rj) except with negligible probability in polynomial time. Now notice
that Leaki((Li, Ri, {ei,j}j=1,...,n, c) will leave λ bits of min-entropy in Ri, as Ri

has length � + λ and the leakage is at most � bits.
In guessing the values 〈Li,He(Rj)〉 the adversary is therefore playing the

following game.

Game1: Pick Li ∈ {0, 1}�+λ uniformly at random. Ask for � bits of leakage on
Li. Then be given Rj and try to guess 〈Li,He(Rj)〉.

An adversary winning this game, can be modified to win the following game
by programming that random oracle at Rj .

Game2: Pick Li ∈ {0, 1}�+λ uniformly at random. Ask for � bits of leakage on
Li. Then be given uniformly random R′

j ∈ {0, 1}�+λ and try to guess 〈Li, R
′
j〉.

By the hard-core bit theorem, an adversary winning this game with non-
negligible probability can guess Li with non-negligible probability, a contradic-
tion.

At this point the argument follows the one for secret sharing. We can first
replace {ei,j}j=1,...,n by uniformly random values and then replace c by a uni-
formly random value. At this point there is no more information on m in the
secret sharing.

Acknowledgements. We would like to thank Maciej Obremski for helpful discussions
during the initial stages of this project.

576 J. B. Nielsen and M. Simkin

References

[ADN+18] Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable
secret-sharing schemes for general access structures. Cryptology ePrint
Archive, Report 2018/1147 (2018). https://eprint.iacr.org/2018/1147

[BDIR18] Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local
leakage resilience of linear secret sharing schemes. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 531–561.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 18

[Bei11] Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al.
(eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20901-7 2

[BGK14] Boyle, E., Goldwasser, S., Kalai, Y.T.: Leakage-resilient coin tossing.
Distrib. Comput. 27(3), 147–164 (2014)

[BGK16] Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing
requires a linear size alphabet. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9986, pp. 471–484. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 18

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th Annual ACM Symposium on Theory of Computing,
pp. 1–10. ACM Press, May 1988

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys, pp. 313–317. AFIPS
Press (1979)

[BS18] Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret
sharing. Cryptology ePrint Archive, Report 2018/1144 (2018). https://
eprint.iacr.org/2018/1144

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally
secure protocols (extended abstract). In: 20th Annual ACM Sympo-
sium on Theory of Computing, pp. 11–19. ACM Press, May 1988

[CGMA85] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret
sharing and achieving simultaneity in the presence of faults (extended
abstract). In: 26th Annual Symposium on Foundations of Computer
Science, pp. 383–395. IEEE Computer Society Press, October 1985

[Des88] Desmedt, Y.: Society and group oriented cryptography: a new concept.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 8

[DF90] Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 28

[DP07] Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In:
48th Annual Symposium on Foundations of Computer Science, pp. 227–
237. IEEE Computer Society Press, October 2007

[GK18a] Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas,
I., Kempe, D., Henzinger, M. (eds.) 50th Annual ACM Symposium on
Theory of Computing, pp. 685–698. ACM Press, June 2018

[GK18b] Goyal, V., Kumar, A.: Non-malleable secret sharing for general access
structures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10991, pp. 501–530. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96884-1 17

https://eprint.iacr.org/2018/1147
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-662-53644-5_18
https://doi.org/10.1007/978-3-662-53644-5_18
https://eprint.iacr.org/2018/1144
https://eprint.iacr.org/2018/1144
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-319-96884-1_17

Lower Bounds for Leakage-Resilient Secret Sharing 577

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryp-
tion for fine-grained access control of encrypted data. In: Juels, A.,
Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006:
13th Conference on Computer and Communications Security, pp. 89–98.
ACM Press, October/November 2006. Available as Cryptology ePrint
Archive Report 2006/309

[GW16] Guruswami, V., Wootters, M.: Repairing reed-solomon codes. In:
Wichs, D., Mansour, Y. (eds.) 48th Annual ACM Symposium on The-
ory of Computing, pp. 216–226. ACM Press, June 2016

[HDWH12] Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining
your PS and QS: detection of widespread weak keys in network devices.
In: Proceedings of the 21st USENIX Security Symposium, Bellevue,
WA, USA, 8–10 August 2012, pp. 205–220 (2012)

[KMS18] Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. Cryp-
tology ePrint Archive, Report 2018/1138 (2018). https://eprint.iacr.
org/2018/1138

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty proto-
cols with honest majority (extended abstract). In: 21st Annual ACM
Symposium on Theory of Computing, pp. 73–85. ACM Press, May 1989

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613
(1979)

[Sho00] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45539-6 15

[SV18] Srinivasan, A., Vasudevan, P.V.: Leakage resilient secret sharing and
applications. Cryptology ePrint Archive, Report 2018/1154 (2018).
https://eprint.iacr.org/2018/1154

[Wat11] Waters, B.: Ciphertext-policy attribute-based encryption: an expres-
sive, efficient, and provably secure realization. In: Catalano, D., Fazio,
N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp.
53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19379-8 4

https://eprint.iacr.org/2018/1138
https://eprint.iacr.org/2018/1138
https://doi.org/10.1007/3-540-45539-6_15
https://eprint.iacr.org/2018/1154
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4

Fault-Attack Security

Friet: An Authenticated Encryption
Scheme with Built-in Fault Detection

Thierry Simon1,4(B), Lejla Batina1, Joan Daemen1(B), Vincent Grosso1,2,
Pedro Maat Costa Massolino1, Kostas Papagiannopoulos1,5,

Francesco Regazzoni3, and Niels Samwel1

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
{lejla,joan,P.Massolino,k.papagiannopoulos,n.samwel}@cs.ru.nl

2 CNRS/Univ. Lyon, Laboratoire Hubert Curien, UMR 5516, Saint-Etienne, France
vincent.grosso@univ-st-etienne.fr

3 ALaRI, University of Lugano, Lugano, Switzerland
regazzoni@alari.ch

4 STMicroelectronics Diegem, Diegem, Belgium
thierry.simon.13@gmail.com

5 NXP Semiconductors Hamburg, Hamburg, Germany

Abstract. In this work we present a duplex-based authenticated
encryption scheme Friet based on a new permutation called Friet-P.
We designed Friet-P with a novel approach for cryptographic permu-
tations and block ciphers that takes fault-attack resistance into account
and that we introduce in this paper.

In this method, we build a permutation fC to be embedded in a larger
one, f . First, we define f as a sequence of steps that all abide a chosen
error-correcting code C, i.e., that map C-codewords to C-codewords.
Then, we embed fC in f by first encoding its input to an element of C,
applying f and then decoding back from C. This last step detects a fault
when the output of f is not in C.

We motivate the design of the permutation we use in Friet and
report on performance in soft- and hardware. We evaluate the fault-
detection capabilities of the software and simulated hardware implemen-
tations with attacks. Finally, we perform a leakage evaluation. Our code
is available at https://github.com/thisimon/Friet.git.

Keywords: Design of cryptographic primitives · Fault injection
countermeasures · Side channel attack · Lightweight implementations

1 Introduction

Our daily routine relies on bank and transportation cards, car keys, phones and
other mobile and embedded devices. Many of these should consume little energy
and their continuous shrinking puts firm constraints on area and memory size.

These devices may be exposed to side channel attacks that exploits physical
leakage such as response time, power consumption or electromagnetic radiation
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 581–611, 2020.
https://doi.org/10.1007/978-3-030-45721-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_21&domain=pdf
https://github.com/thisimon/Friet.git
https://doi.org/10.1007/978-3-030-45721-1_21

582 T. Simon et al.

to extract cryptographic keys or other secrets. Another vulnerability are fault
injection attacks, where an attacker provokes faults in the cryptographic com-
putation and uses the (faulty) outputs to recover the key. Side channel and fault
injection attacks have led to an active research field where the main challenge is
to come up with affordable and effective countermeasures.

The need for lightweight cryptography resistant to side channel and fault
injection attacks has been partially addressed by the cryptographic community
with many designs for (tweakable) block ciphers with small block sizes. The
concept of building efficient (authenticated) encryption schemes from a crypto-
graphic permutation such as proposed by the Bertoni et al. [7] has led to the
emergence of several lightweight solutions. Despite their larger width, the over-
head for permutation-based modes is smaller than that of block cipher-based
modes and the total solution often takes significantly less resources than a block
cipher-based solution.

At the primitive level, side channel attack countermeasures have been taken
into account by adopting a round function of algebraic degree 2, ideal for
masking. This includes the Keccak-f permutation, Ascon [18], Gimli [4] and
Xoodoo [13].

1.1 Related Work

Here we mention some related previous works that are proposing certain
modifications to crypto algorithms to defend against side channel and fault
attacks. Intra-Instruction Redundancy [24] and Internal Redundancy Counter-
measure [23] are generic countermeasures that can be applied to any cipher and
they imply interleaving k copies of the plaintext with some fixed data. While
the method can detect up to k faults, it is also quite expensive.

Some other approaches aim at combining resistance against both fault and
side channel attacks. Schneider et al. [29] introduce a countermeasure for cryp-
tographic hardware implementations that combines the concept of threshold
implementation with an error detecting approach. Similarly to this, Reparaz
et al. [27] propose a countermeasure that claims security against higher-order
SCA, multiple-shot DFA and also combined attacks.

Craft [3] is a cipher designed to be used in conjunction with various linear
codes which aims at implementations resistant against fault attacks. Craft differs
from the approaches mentioned above because the technique is not applied to
existing ciphers as an add-on, but takes into account fault attack resistance in
the design phase.

Our approach goes one step further as we design a permutation for a specific
linear code. This allows us to build the permutation from the most efficient step
functions for that code, resulting in a very lightweight round function.

1.2 Our Contributions

The main contributions of this paper are our novel design method for ciphers with
efficient fault-detecting implementations and the concrete authenticated encryp-
tion scheme Friet implemented with a new permutation Friet-P designed with

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 583

our method. Moreover, we provide a design rationale for the permutation, per-
formance evaluations in software and hardware including comparison with other
relevant permutations, results of fault detection experiments and an evaluation
of the impact of our method on leakage.

1.3 Organization of This Paper

The remainder of paper is organized as follows. In Sect. 2 we explain our method.
The new authenticated encryption scheme Friet is presented in Sect. 3 where
we also discuss its properties and provide a security claim. The scheme is based
on a permutation called Friet-P and its embedding Friet-PC that we present
in Sect. 4. We provide rationale for the design choices in Friet-PC in Sect. 5.
Section 6 reports on our implementation results. In Sects. 7 and 8 we present
fault resistance and leakage evaluation results respectively. Section 9 concludes
the paper and gives directions for future work.

2 Code-Abiding Permutations

2.1 Permutations Abiding Some Error-Detecting Code

A (block) code C with block length n and message length k, with k < n, repre-
sents k-symbol messages with n-symbol codewords. The symbols belong to an
alphabet whose size is denoted by α. The αk codewords form a subset of the set
of all αn n-symbol vectors. With some abuse of notation, we denote the set of
codewords by C. The Hamming distance between two codewords is the number
of positions at which the corresponding symbols are different. The distance d of
a code is the minimum of the Hamming distance over all pairs of its codewords.
Often codes are characterized by their dimension parameters in the following
notation: [n, k, d]α.

We can now define a code-abiding permutation.

Definition 1. A permutation f on the set of n-symbol vectors is code-abiding
for code C if f(C) = C.

2.2 Protecting Against Faults by Permutation Embedding

As each codeword represents a message word, f induces a permutation over the
space of all k-symbol vectors. We denote this permutation by fC . We can express
fC as the composition of three steps: fC = decC ◦f ◦encC with encC encoding the
k-symbol input as a n-symbol codeword in C and decC decoding the resulting
n-symbol to a k-symbol output. We call fC the embedding of f by C.

In general, the decoding decC of the output of f to a k-symbol message word
can fail: it only succeeds if the output of f is in C. It follows that if there is a
fault in the computation of f , it is likely that decoding fails. As a matter of fact,
the probability that a random fault is undetected is αk−n. Concretely, if f is y
bits wider than fC , this probability is 2−y.

584 T. Simon et al.

Hence, we can build a fault-resistant k-symbol permutation fC by choosing a
code C, designing a permutation f that abides C and embedding fC in f by C.
We call this design approach code embedding. Note that the datapath and key
(or tweakey) schedule of block ciphers are also permutations and can therefore
be designed with the code embedding approach.

2.3 Step Functions Abiding a Linear Code

The question is now: how do we choose a suitable code C and how do we define
a permutation f that abides that code? The latter problem is the easier to break
down: we define it as the iteration of a round function that abides C. That round
function can in turn be defined as a sequence of steps that abide C.

We target permutations that can be efficiently implemented in hardware and
in software using bitwise Boolean instructions and (cyclic) shifts. With this in
mind, we target codes that are linear over GF(2). In a linear [n, k, d]2-code, a
codeword satisfies n − k linear binary equations, the so-called parity equations.
Encoding simply consists in taking the k-bit message and appending n − k bits
so that the result satisfies the parity equations. We call the appended bits the
parity bits. Decoding consists in verifying whether the n-bit vector satisfies the
parity equations and if so, truncating to the first k bits. If the parity equations
are not satisfied, decoding will return an error message.

We consider permutations having a state of b bits. To allow some flexibility
in our choice of step functions, we apply a small code in parallel to parts of the
state. We call those parts slices. Each slice is n bits wide and has n − k bits
of redundancy, i.e., its bits satisfy the n − k parity equations. We denote the
first k bits of a slice as its native part and its last n − k bits as the parity part.
We index the slices by j from 0 to b/n − 1 and denote their number b/n by �,
typically a power of two. Orthogonal to the slices, we partition the state in n
equally sized limbs. A limb is an array of � bits that are indexed by j from 0
to � − 1. In short, we arrange the b bits of the state in a two-dimensional array
consisting of n limbs by � slices. As a consequence, we call the first k limbs the
native ones and the last n − k limbs the parity ones.

We propose two types of step functions for the round function:

limb adaptation. This modifies a native limb, say with index j, by bitwise
adding to it a function φ of the state. It also adds the function φ to each
parity limb that depends on native limb j. This is code-abiding as each parity
equation remains satisfied. This operation is not inherently invertible and care
must be taken in the function φ and the part of the state it operates on. For
fault detection it is important to freshly compute φ for every adapted limb.
Indeed, if φ would be computed once for all adapted limbs, one fault in its
computation could lead to an incorrect output that decodes successfully.

limb transposition. This is a re-ordering of the limbs, with a possible correcting
adaptation to leave the parity equations invariant. We distinguish between
native and non-native limb transpositions. In the former case, two native
limbs swap and in the latter a native limb swaps places with a parity limb.

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 585

In many implementations, swapping two limbs as such has no cost: in software
it can be dealt with at indexing level, in a combinatorial circuit in dedicated
hardware, it is merely re-wiring. The correcting adaptation depends on the
code C and the indices of the limbs being swapped. Typically, this cost is
lower than the cost of a limb adaptation. For the simple code used in our
permutation Friet-P there is no correcting adaptation and in Appendix A,
we give an example of a limb transposition that costs an additional bitwise
limb addition.

A round function of a modern cipher consists of four types of operations.
Each of these can be implemented with our two types of step functions:

• non-linearity, as in AES SubBytes [15], with limb adaptation with a non-linear
function φ,

• mixing, as in AES MixColumns, with limb adaptation with a linear function
φ and a non-native limb transposition,

• shuffling, as in ShiftRows, with native limb transposition,
• round constant (or key) addition, as in AES AddRoundKey, with limb adap-

tation where φ consists of a mere round constant or key.

2.4 Fault Detection Capacity of Code-Abiding Permutations

The protection offered by code embedding is that faults in the computation of
the permutation are likely to lead to a decoding error. A decoding error implies
that a fault occurred, but the converse is not necessarily true. If faults lead to
an incorrect output that decodes successfully, we speak of undetected faults.

In order to analyze more precisely the fault detection capacity of code-abiding
permutations, we use a single-limb fault model. A single-limb fault, also simply
called single fault, is a fault that modifies the value of only one limb. If imple-
mented correctly, a single fault in the computation of a code-abiding permuta-
tion is guaranteed to give a decoding error. To establish this, we analyze what
happens when single faults are injected in a limb adaptation and transposition.

A limb transposition either involves no computation at all or a correcting
adaptation. In the latter case a single fault would only modify the value of one
parity limb, while leaving the native limbs unchanged. The corresponding parity
equation would then be not satisfied and decoding would fail.

In a limb adaptation, fresh computations of φ are added to a native limb and
one or more parity limbs. If the input of the limb adaptation is correct, it can
only lead to an incorrect output that decodes successfully if at least d limbs are
computed incorrectly, i.e. in the presence of d single faults, with d the distance
of the code. At first sight, this is an argument for taking C with high distance
d. However, this comes at a computational cost: limb adaptation adapts a single
native limb at a cost that is a d-fold of that.

So far, we have only treated the case of a single step starting from a correct
state. However, faults may be injected in different steps. As a fault in a single
limb may, and typically will, propagate to other limbs, in principle a fault may

586 T. Simon et al.

be compensated by another fault some steps later and result in an erroneous
state that decodes successfully. To prevent this, one may do intermediate checks
of the parity equations in between the steps. However, the fault will typically
propagate in a hard to predict way and compensating a fault becomes harder and
harder as computation continues. This makes it an uninteresting attack path and
we believe that intermediate parity checks are not worth their cost. Therefore,
we think that a single parity check at the end of the permutation gives the best
tradeoff between performances and fault detection.

Besides single faults, there are other types of faults that are not covered by
the code embedding and must be countered with other means. For example,
skipping a full step, round or number of rounds, will not lead to unsuccessful
decoding. Another example are faults in the decoding operation itself, e.g., just
faulting the reporting of the outcome from false to true. Clearly, implementations
must have some redundancy in the control flow logic for the handling of the steps
and the decoding operation. For an implementation to offer resistance against
fault attacks, it must additionally have mechanisms to detect such faults.

A recently introduced type of fault attack, coined statistical ineffective fault
attacks (SIFA) [17], can retrieve secrets even in the presence of fault checks. Here,
one inject faults in repeated computations and the only information the attacker
needs is the knowledge whether a fault occurred or not. Clearly, in the presence
of a fault detection countermeasure such as code embedding, this information
is available to the attacker. Using SIFA one can determine (secret) bits of the
state if the probability that a fault occurs depends on their value. The simplest
example is a fault in the computation of a multiplication in GF(2), say c = a · b
with a, b and c bits. Let us assume the adversary can inject faults in a. These
faults will propagate to c if and only if b = 1. Such an attack would require
knowledge of implementation details and on top of that the accurate injection
of single-bit fault in a. However, using statistical techniques one can relax the
latter requirement at the cost of more fault attempts. In Sect. 5.6 we present an
architecture for a specific permutation that results in resistance against SIFA.

2.5 Our Approach: The Parity Check Code

Due to the fact that the computation cost of limb adaptation grows linearly with
the distance of the code, we choose for the simple parity check code [n, n−1, 2]2.
This code has a single parity limb that is the sum of all n − 1 native limbs.

Adopting such a code simplifies limb adaptation and transpositions as follows:

• Limb adaptation modifies a limb and the parity limb. Its computation cost is
twice as large as if it was computed on the native state alone.

• None of the n! possible limb transpositions requires a correcting adaptation,
as all limbs are in the (single) parity equation. Paradoxically, as a non-native
limb transposition on the parity check code has no computation cost, it is
cheaper to compute it than do the equivalent embedded mapping that requires
n − 2 bitwise limb additions.

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 587

The primary goal of our approach is the guaranteed detection of any single-
limb fault in the computation. The secondary goal is that it should be hard to
enforce two or more compensating faults in the computation or in the registers.
The easiest attack on limb adaptation would be to inject two compensating faults
in the two φ computations. In this respect it is a good idea in software implemen-
tations to use different computation sequences and/or different registers so that
the attacker has to induce two different faults for them to be compensating. For
the same reason, in dedicated hardware implementations one shall not use the
same combinatorial circuit for both φ. Instead of attacking the computation, an
attacker could attack the registers and inject compensating faults on two limbs.
To be successful, such attacks would require knowledge of the implementation
details and the ability to inject faults very precisely.

The parity check code offers fault detection capabilities that are close to
duplication. It detects any single-limb fault instead of any single fault, but not
multiple faults. On the other hand, it can be implemented much more efficiently
thanks to the cheap limb transpositions and uses less memory, since the state
size increases only by 1/(n − 1) instead of 2.

3 The Authenticated Encryption Scheme Friet

We showcase the practicality of code embedding with a lightweight authenti-
cated encryption (AE) scheme, called Friet. It is permutation-based and uses
SpongeWrap [7], a mode on top of the duplex [7] construction, similar to CAE-
SAR candidate Ketje [8] NIST lightweight competition submissions Ascon [18],
Gimli [4] and Xoodyak [11].

The permutation underlying our AE scheme is called Friet-PC and it is the
result of embedding a code on a permutation Friet-P. We do not see Friet
(and Friet-P) as the ultimate fault-attack resistant design but rather as a proof
of concept, quite competitive with modern AE schemes (and permutations).

In this section we specify the mode and provide its security claim.

3.1 The Permutation AE Mode SpongeWrap

We adopt the AE mode proposed in the paper that introduced the duplex con-
struction and its modes [7], namely SpongeWrap. SpongeWrap has the nice prop-
erty that it supports AE in sessions. A session AE scheme converts sequences of
messages, each consisting of (optional) associated data AD and plaintext P , both
bit strings of arbitrary length, into a sequences of cryptograms, each consisting
of possible associated data, ciphertext C (the enciphered plaintext) and a tag
T . The session aspect is related to the tag T : this is not only computed on the
associated data and ciphertext of its own cryptogram, but the full sequence of
cryptograms that were generated since the start of the session. In other words, a
session AE scheme is stateful. One can see session AE as support for intermediate
tags.

588 T. Simon et al.

Algorithm 1. SpongeWrap[f, ρ, τ], with permutation f , block length ρ and tag
length τ .
Interface: T ← start(K, D)

s ← 0∗ (State s is a persistent data element during the session)
absorb(K, none)
absorb(D, encrypt)
T ← squeeze(τ)
return T

Interface: (C, T) ← wrap(AD, P)
absorb(AD, none)
C ← absorb(P, encrypt)
T ← squeeze(τ)
return (C, T)

Interface: P ← unwrap(AD, C, T)
absorb(AD, none)
P ← absorb(C, decrypt)
T ′ ← squeeze(τ)
if (T ′ �= T) then return error
return P

Internal interface: Y ← absorb(X, op) with op ∈ {none, encrypt, decrypt}
Let x[n] be X split in ρ-bit blocks, with n > 0 and last block possibly shorter
Y ← ε
for all blocks of x[n] do

if (op = none) then b ← 0 else b ← 1
if (this is the last block) then b ← b + 1
if op = decrypt then

temp ← x[i] + (s truncated to |x[i]|)
Y ← Y ‖temp
duplex(temp‖b)

else if op = encrypt then
temp ← x[i] + (s truncated to |x[i]|)
Y ← Y ‖temp
duplex(x[i]‖b)

else
duplex(x[i]‖b)

return Y

Internal interface: Z ← squeeze(�) with � the requested length of the output Z
Z ← ε
while |Z| < � do

Z ← Z‖(s truncated to ρ bits)
duplex(0)

return Z truncated to � bits

Internal interface: duplex(σ) with |σ| ≤ ρ
s ← s + σ‖1‖0∗

s ← f(s)

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 589

We do not take SpongeWrap [7] as such, but make three minor modifications.
First, in the session startup we absorb a dedicated non-secret diversifier D that
should be a nonce for sessions started with the same key K. Second, we have
the session startup return a tag. Third, we allow for tag lengths longer than the
sponge rate. We specify the SpongeWrap mode, with the duplex construction
integrated, in Algorithm 1. Here, all parameters are arbitrary-length bit strings
with |X| denoting the length of a string X in bits.

SpongeWrap has a b-bit state, with b the width of the underlying permuta-
tion f . It has a block length ρ and all input strings are first split up into ρ-bit
blocks, with the last block possibly shorter. Before a block is absorbed in the
state, SpongeWrap appends a domain separation bit to indicate whether the
next output will be used as keystream (1) or as tag or not at all (0). Then the
block is padded with a single 1 followed by zeroes. The so-called duplex rate r is
the size of the part of the state that is directly affected by absorbing, the outer
part. Due to the domain separation bit and the first bit of the padding, we have
r = ρ+2. The remaining part of the state is called the inner part and its size is
called the capacity c. We have c = b − r = b − ρ − 2.

The encryption of a message simply consists of splitting AD and P in blocks,
padding each block, adding it to the state s and performing the permutation f .
Concurrently, each plaintext block is encrypted by bitwise adding to it the outer
part of the state at that point. Finally, SpongeWrap squeezes the tag T from
the state with a (number of) duplex call(s). Decryption is very similar. After
a message has been encrypted or decrypted, one can continue the session with
more messages.

The state is initialized by absorbing first the key K and then the diversifier
D. For confidentiality the couple (K,D) must be unique per session.

Because it uses the duplex construction, SpongeWrap lends itself quite well to
the use of a code-embedded permutation fC . Actually, we just have to instantiate
duplex with the code-abiding permutation f and make some minor modifications:

• The state initialization must set the state to the codeword that encodes the
all-0 vector. For linear codes, this is just the all-0 vector.

• When absorbing σ, it must first be converted to a valid codeword. If σ is one
limb (as it turn out in Friet-PC), it suffices to (bitwise) add it to one limb
and the parity limbs that depend on it.

• Before using the outer part of the state as tag or keystream, one must check
whether the state is a valid codeword and return an error if not.

3.2 Exposure of Friet to Cryptanalysis and Side Channel Attacks

During a session, the outer state serves for in- and output and the inner state
remains secret. A feature setting duplex apart from block cipher modes is the
absence of a fixed key during operation. The state does depend on the key K, but
evolves. Doing statistical (side channel) attacks, such as differential and linear
cryptanalysis or DPA, require starting many sessions. If diversifier uniqueness is
respected, these attacks are limited to absorbing of the diversifier D.

590 T. Simon et al.

In typical use cases, Friet would secure communication between devices that
may both be accessible to attackers, such as IoT devices. We assume the two
devices share a secret key K and can keep track of a session counter that serves as
diversifier when a new session needs to be started. Whenever a session is started,
one device (master) initiates the session and determines the session counter D
and the other device (slave) follows and just must accept the session counter D.
Consequently, the slave can be forced in starting a session multiple times with
the same diversifier D. The slave can only be sure the session request comes from
a valid device when verifying the session startup tag. If this tag is invalid, it can
be a part of a denial of service attack, a statistical attack, or just corrupt due
to a noisy communication channel. One typically offers protection against such
attacks by having the slave keep track of two counters. The first of these two
is the session counter and the slave only accepts session startup requests that
have a higher session counter than any previously successful session. The second
is a session retry counter. A successful session startup increments the session
counter by 1 and resets the session retry counter to 0. An unsuccessful session
startup just increments the session retry counter. If the session retry counter
reaches some limit, the slave device refuses to use the key any longer. This limit
shall be set to a value small enough to prevent an adversary to collect enough
traces to conduct a statistical attack but large enough to still keep the session
robust in the presence of noise communication.

Another attack vector on the slave device is a fault attack. In such an attack,
an adversary forces a slave to start multiple sessions with the same diversifier
D and injects faults in at least one of it. She can then mount a differential
fault attacks to extract information about the secret inner state from a single
faultless output and faulted ones. This is where our fault detection capability
comes in. As soon as the slave device detects a fault, it will immediately abort
the computation and with that the session.

3.3 Dimension Parameters and Security Claim for Friet

The permutation in Friet is called Friet-PC and it has a width b of 384 bits,
similar to the permutations Gimli [4] and Xoodoo [13].

A bound for the resistance of the keyed duplex construction against generic
attacks was proven in [14] and it is mostly determined by the capacity c, the
length of the key k = |K| and the ability of an attacker to manipulate inputs.

Without access restrictions, and assuming c > r, the advantage of an attacker
to distinguish the output of m keyed duplex instances from random bits, assum-
ing the underlying permutation is randomly chosen, can be simplified to:

mN

2k
+

MN

2c
, (1)

with N the computational complexity and M the data complexity, expressed in
the number of executions of Friet-PC, respectively offline and online.

From this advantage and the tag length τ , the integrity and confidentiality
security of SpongeWrap built on top of this duplex object follows immediately:

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 591

• Integrity is determined by forgery attacks, where forgery is the successful
decryption of a cryptogram by a slave where the cryptogram was not created
by the master. For generic attacks, this is upper bounded by (1) plus q2−τ

where q is the number of forgery attempts.
• Confidentiality is broken if keystream, i.e., keyed duplex output, can be pre-

dicted or successful decryption of a cryptogram by a slave where the cryp-
togram was not created by the master can be performed. For generic attacks,
this is the same bound as for forgery.

In Friet we choose a block length ρ = 128, implying a rate r = ρ+ 2 = 130
and a capacity c = b − r = 254. We limit the key length to k ≥ 160 and take
as tag length τ = 128. If we would assume that the underlying permutation
Friet-PC would be strong enough so that there are no attacks better than
generic ones, we could just take as security claim (1) plus q2−τ . We take some
safety margin by using in our claim a smaller value for the parameter c, namely
c = 192.

Claim. The success probability of forgery or breaking confidentiality of Friet
is upper bounded by:

mN

2k
+

MN

2192
+

q

2128
,

with m the number of instances under attack, N the computational complexity,
M the data complexity, q the number of decryption attempts and k (≤ 160) the
key length. We assume independent and uniformly random k-bit keys.

Clearly, this is a claim for 128-bit security. In our claim we assume that the
adversary respects the nonce requirement for the diversifier and does not get
access to deciphered ciphertext of cryptograms with an invalid tag.

3.4 Rationale for the Mode and Dimensions

After the publication of SpongeWrap, many variants were published with each
specific advantages We opted for a slight SpongeWrap variant with large capac-
ity for the following reasons. First, the bounds obtained in the security proofs
assume ideal permutations and there may be better attacks that exploit specific
properties of the permutation. The difference between claim capacity 192 and
actual Friet capacity 254 leaves safety margin. Second, in the duplex construc-
tion side channel leakage can be modeled as an increase of rate and hence a
reduction of capacity. Also here this margin is advantageous.

4 Specification of the Permutations Friet-PC and
Friet-P

In this section, we specify Friet-P, the permutation implemented in Friet.
Besides, we specify Friet-PC, its embedding by the linear code [4, 3, 2]2 with
parity bit the sum of the 3 native bits. As the propagation properties of
Friet-PC are most relevant, we introduce Friet-PC first and Friet-P second.

592 T. Simon et al.

4.1 The Permutation Friet-PC

Friet-PC has width 384 and has a round function Ri operating on three limbs
denoted as a, b and c. We index the bits of a limb by i ranging from 0 to 127.
Limb a and the bits of limb b with indices 0 and 1 form the outer part. The
nominal number of rounds is 24 and the round function Ri has 6 steps:

• two non-native limb transpositions τ1 and τ2,
• a round constant addition δi that is a limb adaptation,
• two mixing steps μ1 and μ2 that are limb adaptations,
• a non-linear step ξ, also a limb adaptation.

We specify the Friet-PC permutation in Algorithm 2 using following notation:

• x ⊕ y, the exclusive or (XOR) of limbs x and y,
• x ∧ y, the bitwise logical AND of limbs x and y,
• x ≪ n, the cyclic shift to the left by offset n of limb x. We assume the bits

with low indices at the right, so if y ← x ≪ n, then yn = x0

The round constants are in Table 1 and the Friet-PC round function Fig. 1.

Algorithm 2. Friet-PC
Input: a, b, c ∈ {0, 1}128

Output: (a′, b′, c′) ← Friet-PC(a, b, c)
for Round index i from 0 to 23 do

(a, b, c) ← Ri(a, b, c)
return (a, b, c)

Here Ri is specified by the following sequence of steps:
c ← c ⊕ rci δi
(a, b, c) ← (a ⊕ b ⊕ c, c, a) τ1
b ← b ⊕ (c ≪ 1) μ1

c ← c ⊕ (b ≪ 80) μ2

(a, b, c) ← (a, a ⊕ b ⊕ c, c) τ2
a ← a ⊕ ((b ≪ 36) ∧ (c ≪ 67)) ξ

Table 1. Round constants rci in hexadecimal notation, omitting the leading zero digits

i rci i rci i rci i rci i rci i rci
0 1111 4 101 8 1001 12 1 16 1110 20 1011

1 11100000 5 10110000 9 100000 13 110000 17 11010000 21 1100000

2 1101 6 110 10 100 14 111 18 1010 22 1100

3 10100000 7 11000000 11 10000000 15 11110000 19 1010000 23 10010000

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 593

Fig. 1. Round of Friet-PC Fig. 2. Round of Friet-P

4.2 The Round Function of Code-Abiding Permutation Friet-P

We build a code-abiding permutation Friet-P such that its embedding by the
parity code [4, 3, 2]2 is Friet-PC. Friet-P has width 512, i.e., 4 limbs.

We denote the parity limb d and after any step the parity equation d = a⊕b⊕c
should be satisfied. It is now straightforward to derive the round function of
Friet-P from the round specification in Algorithm 2 by substituting (a⊕ b⊕ c)
by d in limb transpositions steps and duplicating all limb adaptations in d. This
results in:

c ← c ⊕ rci d ← d ⊕ rci δi

(a, b, c, d) ← (d, c, a, b) τ1
b ← b ⊕ (c ≪ 1) d ← d ⊕ (c ≪ 1) μ1

c ← c ⊕ (b ≪ 80) d ← d ⊕ (b ≪ 80) μ2

(a, b, c, d) ← (a, d, c, b) τ2
a ← a ⊕ ((b ≪ 36) ∧ (c ≪ 67)) d ← d ⊕ ((b ≪ 36) ∧ (c ≪ 67)) ξ

We transfer limb transpositions τ1 and τ2 to the end and merge them, yielding:

c ← c ⊕ rci d ← d ⊕ rci δi

b ← b ⊕ (a ≪ 1) c ← c ⊕ (a ≪ 1) μ1

a ← a ⊕ (c ≪ 80) b ← b ⊕ (c ≪ 80) μ2

c ← c ⊕ ((a ≪ 67) ∧ (b ≪ 36)) d ← d ⊕ ((a ≪ 67) ∧ (b ≪ 36)) ξ
(a, b, c, d) ← (d, b, a, c) τ

This sequence of steps is depicted in Fig. 2 of the Friet-P round function.

594 T. Simon et al.

5 Design Rationale of Friet-PC

An earlier version of the Friet-PC permutation, called Frit appeared on eprint
in a paper by the same authors as this one [30]. This was soon followed by attacks
exploiting weaknesses of Frit in the form of slow increase of algebraic degree
through the rounds, by Dobraunig et al. [19]. While these attacks did not assume
the target use case of authenticated encryption in a duplex-based mode, an
attack that was published somewhat later by Qin et al. did [25]. The Friet-PC
permutation has been designed taking into account these attacks. In this section,
we give a rationale for the design choices in Friet-PC: its structure, number
of rounds, shift offsets and round constants. For the concrete choice of the step
functions and their order, we considered the following propagation properties of
iteration of the round function in forward and backward direction:

• increase in algebraic degree,
• diffusion properties: full diffusion and (strict) avalanche criterion ((S)AC),
• existence of exploitable invariants.

The non-native limb transpositions τ1 and τ2 are attractive, requiring no com-
putation in Friet-P while still achieving intra-slice mixing. Additionally, τ1
shuffles the limbs between the rounds. To complement this, a very simple way
to obtain mixing between slices consist in bitwise adding (XOR) to a limb the
cyclic shift of another, as done by mixing steps μ1 and μ2. The simplest invert-
ible non-linear function is the addition to a limb of the bitwise multiplication
(AND) of two limbs. To avoid destructive intra-slice interaction with the limb
transposition steps, we opted for integrating cyclic shifts in ξ. Finally, round
constant addition δi breaks the shift-invariance of the round function.

Furthermore, all steps of the round function except τ1 are involutions. As
a consequence, the inverse round function is δi ◦ τ−1

1 ◦ μ1 ◦ μ2 ◦ τ2 ◦ ξ. The
similarity with the forward round function simplifies the analysis of the diffusion
and algebraic properties of Friet-PC in the backward direction.

We see Friet-PC as a permutation dedicated for use in Friet and hence
its propagation analysis shall be seen in that light. Namely, an adversary does
not have full access to the input and output of the Friet-PC permutation
in Friet. She can only apply chosen or known inputs to the outer state and
observe the outer part of the state at the output of Friet-PC. For the input,
in most attack scenario’s the full input is secret and the adversary can only
add (bitwise) a known or chosen value to the outer part of the state. If the
implementation permits, the adversary can do this repeatedly for the same state
and conduct statistical attacks or apply higher order differential techniques such
as cube attacks [16]. In any case, she is limited to inject only r = 130 bits to the
state or extract only 128 bits from it. Moreover, if the implementation of Friet
imposes that diversifier uniqueness is respected and does not release deciphered
ciphertext prior to tag validation, the adversary’s access is even much less. In
our analysis we have anticipated the worst case.

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 595

5.1 Algebraic Degree

Permutations with low algebraic degree are vulnerable to attacks that make use
of higher order differentials, such as cube attacks [16]. Therefore, it is important
to verify that the algebraic degree of Friet-PC and its inverse is not too small.

Let f(r, x, i) be the Boolean function defined by the restriction of r rounds of
Friet-PC to output bit xi, where x ∈ {a, b, c} denotes the limb. This output bit
can be expressed as a polynomial over F2 in the input bits of f(r, x, i), which is
the algebraic normal form (ANF) of the boolean function. The algebraic degree
of f(r, x, i) is defined as the degree of its ANF. Similarly, we define finv(r, x, i)
for r inverse rounds of Friet-PC. We will study the algebraic degree of these
Boolean functions in terms of the number of rounds r.

Both the round function and its inverse have algebraic degree 2. Hence the
functions f(r, x, i) and finv(r, x, i) can have at most degree 2r. Since limbs b and c
are not modified by the linear operation ξ in the last round of the round-reduced
Friet-PC, f(r, b, i) and f(r, c, i) can be further bounded by 2r−1. Moreover, as
the round function is invertible, the maximum degree, irrespective of r, is 383.

These are just upper bounds and the actual algebraic degrees of f(r, x, i)
and finv(r, x, i) can be lower. Indeed, the structure of the round function does
not exclude possible cancellations in the terms of high degrees. The occurrence
of such cancellations depends on the values of the cyclic offsets. If the resulting
algebraic degree after 24 − ε rounds is well below 130, then Friet may be
vulnerable to cube attacks. Here ε accounts for the 1 or possibly 2 rounds that
may be skipped by carefully choosing the cube variables as in [31]. This is what
happened in our previous design and was exploited in [19] and [25].

To avoid that, we verified that the theoretical upper bound on the degree
for Friet-PC and its inverse was satisfied up to 4 rounds by finding maximum
degree monomials for all bit positions. For 5 rounds, we identified monomials of
degree 32 for f(5, a, 0) and finv(5, a, 0) given respectively by

b9b10b12b26b27b29b40b57b59b76b77b89b106b107b110b127c16c26c27c29c43c44c46c57c74c76c93c94c106c123

c124c127,

b0b27b28b29b30b45b187b59b77b78b79b106b109b123b124b125c14c28c44c46c47c48c75c78c92c93c94c97c124c125

c126c127.

We conclude from this analysis that it is extremely unlikely that Friet is vul-
nerable to attacks using higher order differentials.

5.2 Diffusion Analysis

A property that is very informative about the vulnerability of a cryptographic
primitive against structural distinguishers such as impossible differentials, inte-
gral cryptanalysis or truncated differentials is diffusion. We say a cryptographic
permutation achieves full diffusion if every output bit depends on every input bit.
Often one takes the rule of thumb that a permutation achieving full diffusion in
r rounds is unlikely to have exploitable structural distinguishers covering more
than 2r rounds. We evaluated Friet-PC with respect to 3 avalanche-related
diffusion metrics introduced in [13] by Daemen et al..

596 T. Simon et al.

Let T : Fb
2 → F

b
2 be a cryptographic primitive and Δ be an input difference

of Hamming weight 1. Daemen et al. define the avalanche probability vector PΔT

as the vector where component i is the probability that bit i of the output of T
flips due to input difference Δ. They then propose the three following metrics:

Avalanche dependence. Number of output bits that may flip due to Δ:

Dav(T,Δ) = b −
b−1∑

i=0

δ(PΔT [i]),

with δ(x) = 1 if x = 0 and 0 otherwise. Full diffusion means Dav(T,Δ) = b
for all choices of Δ.

Avalanche weight. Expected number of bits that flip due to Δ:

wav(T,Δ) =
n−1∑

i=0

PΔT [i].

AC is satisfied if wav(T,Δ) ≈ b/2 for all choices of Δ.
Avalanche entropy. The uncertainty about whether output bits flip due to

input difference Δ:

Hav(T,Δ) =
n−1∑

i=0

(−PΔT [i] log2(PΔT [i]) − (1 − PΔT [i]) log2(1 − PΔT [i])).

SAC is satisfied if Hav(T,Δ) ≈ b for all choices of Δ.

Table 2 reports on the diffusion performance of round-reduced Friet-PC and
its inverse. We generated the avalanche probability vectors for these results from
250 000 random samples. We evaluated each metric on all 384 input differences
Δ of Hamming weight 1 and, as is done for Xoodoo in [13], we report on the
worst-case values. From the table, one can observe that 8 rounds are needed for
Friet-PC and its inverse to exhibit the same behaviour as a random 384-bit
permutation with respect to the three metrics, i.e. Dav(T,Δ) = 384, wav(T,Δ) ≈
192 and Hav(T,Δ) ≈ 384. Note moreover that 7 rounds are enough to achieve
full diffusion in the forward direction and 6 rounds in the inverse direction. This
suggests that it will be very hard to find structural distinguishers over more
than 14 rounds. Moreover, in Friet the adversary has only access to 1/3 of the
permutation’s input and output greatly limiting the degrees of freedom when
trying to exploit such distinguishers.

5.3 Invariant Attack

All round function steps except δi act uniformly on the limbs of the state. Let
F be the round function with the round constant addition step δi removed. We
observe that F satisfies the shift-invariance F◦ρk = ρk ◦F, with k ∈ {0, . . . , 127}
and where ρk(a, b, c) = (a ≪ k, b ≪ k, c ≪ k). The addition of round constants
in step δi breaks these symmetries in the round function of Friet-PC.

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 597

Table 2. Diffusion results

Round 0 1 2 3 4 5 6 7 8

Friet-PC
Dav 1 3 18 79 211 350 383 384 384
wav 1.0 2.5 10.5 33.1 75.5 128.7 174.8 189.6 191.8
Hav 0.0 1.0 12.2 62.2 161.7 298.0 374.3 383.7 384.0

Friet-PC−1
Dav 1 5 27 91 210 342 384 384 384
wav 1.0 5.0 18.0 45.2 90.2 150.7 184.6 191.6 191.9
Hav 0.0 0.0 18.0 71.0 175.3 304.1 378.6 384.0 384.0

Additionally, properly chosen round constants can defeat invariant attacks,
including slide attacks, invariant subspace attacks and non-linear invariant
attacks. As observed by Beierle et al. [2], both invariant subspace attacks and
non-linear invariant attacks use a non-trivial invariant subspace of the linear
layer. More formally, if we denote by λ the linear layer without the round con-
stant addition and by D the set containing the bitwise differences (XOR) of the
round constants, then the attacks require the existence of a non-trivial subspace
VD of Fb

2 such that D ⊂ VD and λ(VD) ⊂ VD.
In the case of Friet-P, we generated a sequence (un)n∈N of 4-bit values from

a Fibonacci linear-feedback shift register with polynomial 1 + x+ x4 and initial
state u0 = 0b1111. The round constant rci at round i is then obtained by setting
its bits at indices 0, 4, 8 and 12 according to ui if i is even and at indices 16, 18, 20
and 24 if i is odd. This particular choice allows for a very efficient bit-interleaved
implementation of the round constant addition in software.

We verified with a simple SageMath [32] script that the smallest invariant
subspace containing D is of maximal dimension, i.e., it equals the state space
F
384
2 , a trivial invariant space. Remarkably, this holds true when the set D is

reduced to the single difference between the two first round constants.

5.4 Choosing Shift Offsets

The round function has 4 shift offsets: One in each of μ1 and μ2 and two in
ξ. With some abuse of notation we denote the shift offsets by μ1, μ2, ξ1 and
ξ2. Because of Friet-PC’s shift invariance, we can fix μ1 to 1 without loss of
generality. Moreover, we can also choose ξ1 < ξ2 to reduce the number of possible
4-tuples to 220. In order to choose the 4 offsets, we ranked all possible 4-tuples
following the avalanche dependence metric.

Testing all these offset combinations, we found that the best ones reach full
diffusion after 6 rounds. From those we selected the one reaching degree 16 after
4 rounds, both forwards and backwards, with the best worst-case diffusion after
5 rounds. This gave the offset tuple (μ1, μ2, ξ1, ξ2) = (1, 80, 36, 67) that we finally
used in the Friet-P round function.

598 T. Simon et al.

5.5 Analysis of Differential and Linear Propagation

We conducted a couple of experiments to study the differential propagation and
linear propagation in Friet-PC. Concretely, we searched for low-weight trails
on round-reduced Friet-PC.

We first remind the reader of what differential and linear trails are, then
characterize the differential and linear propagation through the non-linear step
of the Friet-PC round function and then report on our experiments.

Differential trails. An r-round differential trail q is a sequence of r+1 differ-
ence patterns q0, q1, q2, . . . , qr and its differential probability DP(q) is equal to
the probability that input pair (x, x+ q0) with x uniformly random will exhibit
the sequence of differences through the rounds. Assuming that the conditions due
to the round differentials are independent, DP(q) is the product of the proba-
bilities of the round differentials (qi−1, qi). We have DP(q) ≈ ∏

i DP(qi−1, qi).
The weight of a differential w(qi−1, qi) is usually defined by DP(qi−1, qi) =
2−w(qi−1,qi) and the weight of a trail as the sum of the weight of its round
differentials. It follows that in the round differential independence assumption
we have DP(q) ≈ 2−w(q).

We call input difference p and output difference q compatible if DP(p, q) > 0.
We now characterize the differential propagation properties of the Friet-PC
round function by splitting it into a linear layer λ and a non-linear layer. Clearly
ξ is the only non-linear step and forms the non-linear layer, and we denote
the remainder of the round function as λ. The weight of a round differential
(λ−1(p), q) is equal to that of the differential (p, q) over ξ.

Linear trails. Besides studying the differential propagation probabilities, we
also studied the input-output correlation properties. In other words, we tried
to find linear trails on round-reduced Friet-PC that exhibit high correlation
contributions.

An r-round linear trail q is a sequence of r + 1 masks q0, q1, . . . , qr. The
round correlation C(qi, qi+1) associated with two consecutive masks within a
linear trail corresponds to the correlation between qT

i f(x) and qT
i+1x for all x,

i.e. the correlation between the linear combination of the output bits of the round
function whose coefficients are determined by mask qi and the linear combination
of the input bits of the round function whose coefficients are determined by mask
qi+1. Analogously to the differential probability, the correlation contribution of
a trail C(q) is the product of its round correlations. The correlation weight of
a round correlation wC(qi, qi+1) is then defined by C2(qi, qi+1) = 2−wC(qi,qi+1)

and the correlation weight of the trail by wC(q) =
∑

i wC(qi, qi+1).
We say that an output mask q and an input mask p over a mapping are com-

patible if C(p, q) > 0. Clearly, the output mask q and the input mask p over the
linear layer are compatible if and only if q = λT (p) and the corresponding cor-
relation weight is 0. It follows that the correlation weight of a round correlation
(q, (λT)−1p) is given by that of the correlation (q, p) over ξ.

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 599

Propagation properties of ξ. Proposition 1 and its corollary characterize the
behaviour of a differential over ξ.

Proposition 1. A non-zero difference p = (pa, pb, pc) at the input and a non-
zero difference q = (qa, qb, qc) at the output of ξ are compatible if

qb = pb, qc = pc, (qa ⊕ pa) ∧ ((pb ≪ 36) ∨ (pc ≪ 67)) = 0.

Corollary 1. The weight of a differential (p, q) over ξ is equal to Hw(pb∨(pc ≪
31)) or equivalently Hw(qb ∨ (qc ≪ 31)), with Hw the Hamming weight.

Proposition 2 and its corollary characterize the behaviour of a correlation
over ξ.

Proposition 2. A mask q = (qa, qb, qc) at the output and a mask p = (pa, pb, pc)
at the input of ξ are compatible if

qa = pa, qa ∨
[
((qb ≪ 36) ⊕ (qb ≪ 36)) ∧ ((pc ≪ 67) ⊕ (pc ≪ 67))

]
= 1.

Corollary 2. The correlation weight of a correlation (p, q) over ξ is equal to
2Hw(pa) or equivalently 2Hw(qa).

Trail experiments. Because an adversary can only access the outer state in
Friet, we restricted our analysis to differential trails with input differences in
limb a and to linear trails starting from a mask q0 = (q0,a, q0,b, q0,c) such that
q0,a has small Hamming weight and q0,b = q0,c = 0.

Table 3 provides the minimum weights for differential trails starting with 1,
2 and 3-bit differences/masks in limb a.

Table 3. Minimum weight of trails starting from an n-bit difference/mask in limb a

differential linear
Rounds 1 2 3 4 1 2 3 4 5 6

n = 1 4 10 18 29 2 4 6 12 22 36
n = 2 6 12 22 ? 4 8 12 20 ? ?
n = 3 8 14 ? ? 6 8 14 ? ? ?

Expanding from the minimum-weight 4-round trail starting from a 1-bit dif-
ference in limb a, we obtained a 6-round trail with weight 59 depicted in Table 4.

Expanding the minimum-weight 6-round linear trail starting from a 1-bit
mask in limb a, we obtained a 8-round trail with weight 80 depicted in Table 5.

These preliminary results are quite promising and give us reasonable confi-
dence that differential and linear cryptanalysis are no threat to Friet.

600 T. Simon et al.

Table 4. A 6-round differential trail for Friet-PC, in the form of limb differences at
the input of ξ in 6 successive rounds in hexadecimal notation and zeroes denoted as
dots.

round pa pb pc weight
012...................22...................1 4
121...........2........1 6
22...................3 ...2.......4...........1.......4 ...2.......5...........3.......2 8
33...........2.......5 ...1.......4...2...............2 ...3.......6...2.......1.......3 11
4 ...2.......1...........3.......4 ...4.......b...1.......4...2...8 ...5.......a...3.......2...2...5 15
5 ...3...........2.......5.......9 ...4...2...4...........a...1.... ...6...2...c...1.......b...3...4 15

Table 5. A 8-round linear trail for Friet-PC in the form of masks at the output of ξ
in the 8 successive rounds.

round δa δb δc weight
01 2
1111 2
28...............1 2
38...8..........18...............8..1............ 6
44..18...8......18..........11........8...8..........1 10
54..1........4..14...8...8...4..1....8.......8...........4..18...8..1...1 14
6 8...c..14.......2...c......18..14..1............4.......8...4..18......14...4.......8... 22
7 8.......c......16...a...8..1...1 8...8...4.......2...8......1...1 8..18..14.......2...c......1...1 22

5.6 Combined Resistance Against 1st Order DPA and SIFA

A straightforward Friet-P implementation is vulnerable to SIFA [17] and SIFA-
like attacks [28]. A realistic attack scenario would be the following. An adversary
has access to the outer part of the state at a given time and can inject a fault
during the computation of the permutation in order to recover some information
on the inner part of the state. Provided that she can redo the attack multiple
times on the same initial state, She could then try to inject a fault in the first
round to modify one of the inputs of the AND operation in ξ. A bitflip in an input
of a binary AND only propagates to its output if the other input is 1 and hence
is only effective in that case. It can hence be simply be derived from the behavior
of the fault-detection mechanism. Simulating probabilistic or less precise fault
models such as, e.g., the random-AND fault model or a byte-based fault model
would also yield exploitable results, although the adversary might need to profile
the fault behavior of the device in advance with fault templates [28].

Figure 3 depicts an architecture for the Friet round function offering resis-
tance against first order DPA and SIFA, using countermeasures as introduced in
[12]. This architecture can be used as the basis for dedicated hardware or a soft-
ware implementation. It uses two-share masking, where the shares are indicated
by subscripts 0 and 1, effectively duplicating each limb. We divide the round
function processing in 4 algorithmic blocks that each operate on 4 limbs.

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 601

– α covers the linear steps μ1 and μ2, the addition of the round constants δ (at
one side only), and the part of the non-linear step ξ that only takes input
from a single share. The two α blocks operate on the two shares separately.

– β covers the part of the nonlinear step ξ that takes input from both shares.
Each β block takes only a single share per limb.

Fig. 3. Hardware architecture of Friet secured against DPA and SIFA.

When instantiating this architecture in hard- or software, the main require-
ment is that the implementation must ensure that the computations of the
blocks, and their internal variables, are kept separated from each other to avoid
share recombination [1]. In hardware this can be achieved by hardwiring the 4
blocks in combinatorial logic and putting registers between the α and β layers,
giving rise to a two-stage pipeline of the round functions. In software the four
blocks will be executed serially and care must be taken to keep shares belonging
to the same limb separated, e.g., not overwrite a register containing a0 with a1.

This results in resistance to first-order DPA and with it resistance against
SIFA attacks that exploit faulty computations limited to a single block. Indeed,
every block only takes a single share for each limb and hence the occurrence of
a fault at the output of a block is independent of any native variable.

6 Implementation Results

In this section we discuss implementation specifics and we give results for dedi-
cated hardware (FPGA and ASIC) and software (embedded ARM Cortex M4).

602 T. Simon et al.

Although we envision Friet to be implemented with the fault attack counter-
measure in place, so by implementing Friet-P and embedding Friet-PC in it,
for comparison purposes we also implemented Friet with Friet-PC directly.
We refer to such an implementation as Friet-C, where C stands for compact.

6.1 Hardware

We implemented Friet and Friet-C both in 2 versions, one with 1 round per
clock cycle (1R), and another with 2 rounds per clock cycle (2R). We wrapped all
4 versions in a similar testing architecture and a full Friet circuit as illustrated
in Fig. 4.

Fig. 4. Hardware architecture for Friet.

The Friet circuit has 5 registers: State_IO, State_D, State_Inner, rc_c
and rc_d. The State_IO register holds the outer part of the state, State_Inner
the inner part. The State_IO register is a circular shift register that loads 32
bits every clock cycle and has size 160 bits. The sponge rate is 130 and not 160
and thus the remaining 30 bits in State_IO register actually belong to the inner
part that is supposedly in State_Inner. The State_D holds the parity limb. The
rc_c and rc_d registers hold the round constants. The Friet-C circuit differs
from that of Friet by the absence of registers State_D and rc_d.

The circuit communicates through a single 32-bit bus via a 3-field protocol:
the command (4 bytes) encoding one of {reset, duplex-none, duplex-encrypt,
duplex-decrypt, tag generate, tag verify}, the data length (4 bytes) and the data
itself (variable). After receiving a command and data length, it takes 4 cycles
to feed 16 bytes into the State_IO register. Then it performs the Friet-P
permutation, during which the circuit does not acknowledge the data in the
“din” port. This takes 24 cycles int the 1R case and 12 in the 2R case.

When the circuit starts or receives a reset command, all state registers are
reset with zeroes, thus satisfying the parity check. If the circuit receives data

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 603

though the “din”, then the new data is fed into State_IO and State_D simulta-
neously, keeping the parity unchanged. A dedicated circuit does a parity check
every clock cycle for detecting faults. If it detects a fault, it sets a register “fault
detected” to 1. We assume our circuit to be used with another circuit that mon-
itors the state of this register and performs the appropriate action. During the
design of the Friet circuit, it was necessary to enforce the tools to not optimize
the redundant part of the circuit.

Table 6 shows the hardware results for Friet after place and route in FPGA
and ASIC. We compare our results with Ketje-Sr from Guido Bertoni GitHub
repository [6].

Table 6. Xilinx Virtex-7 xc7vx485tffg1761-3 and ASIC Nangate 45 nm standard cell
results for Ketje Sr., Friet, Friet-C.

FPGA ASIC
Resources Freq. Throu. Area Freq. Throu. Power (μW)

AE Scheme Slice LUT FF (MHz) (Mb/s) (GE) (MHz) (Mb/s) static dynamic
Ketje-Sr[6] 452 452 448 282 9037 9478 503 16096 161 2152
Friet (1R) 251 905 494 410 1874 6943 508 2322 110 1724
Friet-C (1R) 450 1653 628 399 1828 9253 508 2322 148 2226
Friet (2R) 385 1401 493 391 3135 8890 508 4064 141 1737
Friet-C (2R) 601 2258 628 366 2909 11100 508 4064 174 2245

6.2 Software

We implemented and benchmarked Friet-PC and Friet-P on an embedded
ARM Cortex-M4 microcontroller.

The bitwise logical operations and cyclic shifts on the 128-bit limbs can be
implemented very efficiently on the M4’s 32-bit architecture using the technique
of bit interleaving [5]. More precisely, we represent every 128-bit limb x as four
32-bit words x0, x1, x2 and x3 such that the word xi contains the bits of x with
indices congruent to i modulo 4. We also assume that input and output of the
permutation are directly mapped to the bit-interleaved format in the state. The
bit-interleaving representation offers two main advantages:

• The mixing steps, sum operations and the non-linear layer only require a sin-
gle register as temporary variable. This allows computing Friet-PC within
the 14 registers that can be freely used.

• The mixing and non-linear steps combine bitwise logical operations with cyclic
shifts. The barrel shifter, a feature of the Cortex M4, allows computing the
shift operations alongside the bitwise Boolean instructions at no extra cost.
This reduces the cost of a mixing step in Friet-PC to 4 XOR operations
and that of a non-linear step to 4 XOR and 4 AND operations.

604 T. Simon et al.

The round constants were chosen such that they could be represented in bit-
interleaved representation as the shift of an 8-bit value. As a consequence, the
round constant addition consists in a single XOR operation for Friet-PC and
2 XOR operations for Friet-P. In Friet-PC, the limb transposition takes
8 XOR instructions, while in Friet-P it comes naturally for free. All in all,
one round of Friet-PC requires 29 XOR and 4 AND instructions and one
round of Friet-P takes 26 XOR, 8 AND and 4 load and store instructions
because the 512-bit state does not fit into the registers. To further increase the
performance, we fully unrolled the 24 rounds of the permutation. The Friet-PC
permutation takes 853 cycles and the Friet-P permutation takes 1163. Hence
in this implementation the code embedding results in an overhead of about 36%
mostly due to the additional load and store instructions.

We compare our implementations in Table 7 with other permutations, ranked
by decreasing cycles per byte per round ratio. We also provide the cycles per byte
ratios. However, these results should be taken with a grain of salt as, the security
margin taken in terms of the number of rounds and the amount of propagation
achieved by a single round differs from one permutation to the other.

Table 7. Performance Comparison on Cortex-M3/M4

Permutation Width Rounds Cycles/byte Cycles/byte Device
(bits) per round

Xoodoo [13] 384 12 1.10 13.20 Cortex-M3
Friet-P (this work) 384 24 1.01 24.23 Cortex-M4
Gimli [4] 384 24 0.91 21.81 Cortex-M3
Friet-PC (this work) 384 24 0.74 17.78 Cortex-M4

7 Fault Resistance Evaluation

In this section we report on a number of experiments we conducted on imple-
mentations of Friet to test the fault detection capability of our countermeasure.

7.1 Fault Attack on the Simulated Hardware Implementation

In this section we describe the simulation flow we used to evaluate the resistance
against fault attacks of Friet-P in hardware and the results we obtained. The
flow we used for carrying out simulated attacks is implemented using standard
electronic design automation commodities, and it is composed by a logic simula-
tor (Modelsim 10.4d), a synthesis tool (Synopsys design compiler), and a number
of custom made scripts. The routine to inject the faults is integrated into the
logic simulator by means of dedicated test benches.

Resistance against fault attacks can be verified at different stages of the
design flow. The first stage is called Register Transfer Level (RTL). At this
level, it is possible only to examine the cycle-accurate behavior hardware circuit.

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 605

RTL does not map the circuit to a technological library that will compose the
hardware and therefore information such as the exact delay of the circuit is not
present yet. Still, verification at RTL allows confirming that injected faults can
be effectively detected with granularity of a clock cycle. Furthermore, this level
of simulation is independent from the target hardware platform.

The second stage is the netlist level. We carried out the synthesis using
Synopsys Design Compiler as synthesis tool and the Nangate 45 nm open cell
library as target technological library. Designs used in these experiments are
obtained imposing a minimal area constraints to the design tool. The synthesis
maps the RTL description on the gates of the technological library. After this
step, we fully know the library gates that our circuit consists of and we have
precise information about their delay. However, the results obtained at this stage
are specific to the implementation and using a different technological libraries
may lead to other conclusions.

We simulated fault injections by forcing a signal (or a set of signals) to a
specific value, for a certain amount of time. With this approach, we simulated
glitches injected with a minimum granularity of one bit (for instance, a single
output of a flip flop or a single output of a gate) and a glitch minimal length
equal to the time resolution of the simulation tool, which, in our case, was
pico seconds. We randomly injected 500 000 single-bit glitch faults during the
permutation execution on different signals of the design. We carried out the
same analysis at RTL level and on the post-synthesis netlist.

In both cases the hardware cores under attack have been simulated till the
completion of the permutation execution. All the faults we injected have been
correctly detected. The results we obtained in simulation confirmed that all the
single faults injected are indeed detected as expected by the hardware imple-
menting Friet-P, both at RTL level and after synthesis.

7.2 Fault Attack on the Software Implementation

Here we describe the setup that we use to evaluate the fault resistance of the
permutation. We apply electro-magnetic fault injection, which is accomplished
by emitting a short EM pulse from a specific position close to the target.

Figure 5 shows an overview of the setup. Our target is an STM32F407IG
development board containing an ARM Cortex-M4F microcontroller. The xy-
table moves a probe across the target with high precision. The VC Glitcher sends
a signal so the probe will emit a pulse and it also controls a reset line, in case
the pulse was too strong and the board is unable to respond. An oscilloscope is
used together with a current probe to measure the power consumption in order
to determine a time window where the fault should be injected.

We conducted an electro-magnetic fault injection experiment where we
scanned the whole chip. We divided the surface of the chip in a 100 by 100
grid, injected 10 faults per position and repeated this 10 times. This resulted
in a total of 1 000 000 faults. For the experiment, we focused on the last round.
Table 8 shows the fault detection results of the experiment. Each fault has four
possible outcomes:

606 T. Simon et al.

Current Probe

Target XY-Table

EM-FI
Transient Probe

VC Glitcher

Picoscope

Fig. 5. The setup.

• Normal: no fault has occurred and the device behaves as expected,
• Reset: the EM pulse was too strong and the device was unable to respond so

the device was reset,
• Undetected: a fault occurred that was not detected,
• Detected: a fault occurred that was detected.

Table 8. Experimental results of 1 000 000 glitches.

Result Normal Reset Detected Undetected
Number 860488 138916 596 0

The table shows that all faults are detected by our implementation. To
achieve this, we added another countermeasure to the implementation. Dur-
ing preliminary experiments, we noticed in a handful of cases that a single glitch
was able to modify bits from different words in the same bit-position. To counter
this effect, we store the limbs in bit-interleaved format, where the 32-bit words
representing limb b, c and d undergo a circular shift to the left by 1 bit for b, 2
bits for c and 3 bits for d. The rotated words in each limb ensure a glitch causing
a fault in multiple words in the same bit position is still detected. During our
fault resistance analysis we did not consider ineffective faults [9].

8 Side Channel Attack Evaluation

Many applications require protection against both fault injection and side chan-
nel attacks. The doubling of the φ function evaluations due to embedding sug-
gests an increase in leakage. Regazzoni et al. [26] showed that, in the context of
an AES S-box, various error detection mechanisms increase the vulnerability to
power analysis attacks. Using a similar approach, Cojocar et al. [10] investigated

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 607

the effect of instruction duplication and ineffective faults and their contribution
to the overall side channel leakage. Both works note that standard side channel
attacks, such as univariate correlation power analysis or even templates, are often
unable to exploit the increase in leakage due to fault analysis countermeasures.
In order to exploit this redundancy, horizontal attacks should be considered.

We investigate the impact of the code-abiding technique on the side chan-
nel attack vulnerability of Friet-P with Soft Analytical Side Channel Attacks
(SASCA) [33]. SASCA is a horizontal type of side channel attack based on the
Belief Propagation (BP) algorithm [22]. The structure of SASCA allows exploita-
tion of leakage of any instruction/gate and for our case it can also take advantage
of the parity limb (up to XOR limitation studied in [20,21]).

Our SASCA evaluation has the following goals:

• Assess the increase in leakage between Friet-PC and Friet-P.
• Compare the side channel leakage of Friet-P with that of a duplication

Friet-PC.

We simulate the leakage measurements of each 1-bit intermediate variable
v using a Normal distribution N (v, σ2), where the mean is the identity leakage
function of the variable and the standard deviation σ is the same for all variables.
The goal of the attack is to retrieve the value of bit b0 of the initial state. Attacks
are similar for other bits, and can be recovered with independent attacks in order
to reduce computational cost of SASCA.

Figure 6 shows average success rate of simulated experiments for SNR = 0.1
in function of the number of traces used for the attack. Analyzing how fast the
different success rates converge to 1, we can make three observations.

• BP converges to success rate 1 faster on Friet-P than on Friet-PC. Using
SASCA we are able to observe and quantify the extra leakage penalty that is
incurred by the fault-detecting extension.

• BP on Friet-P converges slower than on duplicated Friet-PC. Hence, our
code-abiding leads to less exploitable leakage than duplication. As a result,
considering side channel and fault injection attacks jointly, Friet-P offers a
better overall security level than duplicated Friet-PC.

• We underline the need for such horizontal exploitation. The limited scope of
standard techniques such as univariate correlation and templates can produce
misleading results. Most forms of redundancy (such as the CRAFT/ Friet-P
error-detecting codes, the IIR method or duplication) can remain undetected
without horizontal techniques that can cause extra leakage.

9 Conclusions and Future Work

We have presented a novel method to design cryptographic permutations and
block ciphers such that they have efficient fault-detecting implementations by
building code-abiding permutations and embedding a permutation in that. By
a judicious choice of components, these permutations can be very lightweight,

608 T. Simon et al.

Fig. 6. Success rate of simulated SASCA

as demonstrated by our permutation Friet-P that can be used to build an AE
scheme Friet offering 128 bits of claimed security. The result can compete with
similar schemes that do not offer efficient protection against faults. We have
evaluated the fault detection capabilities of Friet-P in two instantiations and
those results are very encouraging. As for the protection against side channel
attacks, we only see a slight increase in leakage due to our embedding technique.
All in all, this design method seems to be a very promising research avenue.

Acknowledgments. Joan Daemen is supported by the European Research Council
under the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980
ESCADA. Francesco Regazzoni received support from the European Union Hori-
zon 2020 research and innovation program under CERBERO project (grant agree-
ment number 732105). Lejla Batina and Pedro Maat C. Massolino were supported
by the Technology Foundation STW (project 13499 - TYPHOON), from the Dutch
government.

A Design Strategy for a [6, 3, 3]2-abiding Permutation

In this section, we discuss adapting the code embedding technique on a larger
linear code. We focus on code C = [6, 3, 3]2 and showcase the different limb
transposition operations that a C-abiding permutation could take advantage of.

Let fC be a C-abiding permutation on a state (a, b, c, d, e, f), with a, b, c
native limbs and d, e, f parity limbs satisfying equations:

d = b + c, e = a + c, f = a + b.

Let’s say that a native and a parity limb are related when both of them appear in
the same parity equation. In particular, limb a is related to limbs e and f , but not
to d. A native limb transposition then requires swapping two native limbs and the
two parity limbs that are related to only one of the two native limbs involved. An
example for such operation is given by π(a, b, c, d, e, f) = (a, c, b, d, f, e). On the
other hand, a non-native limb transposition requires swapping a native limb x

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 609

with a parity limb x+y and bitwise add the other native limb y to the other parity
limb related to x. An example for this is ρ(a, b, c, d, e, f) = (e, b, c, d, a, f+c). Note
that this the same computational cost of one bitwise addition as the associated
embedded operation ρC(a, b, c) = (a + c, b, c). By contrast, a limb adaptation
operation requires three times as much computation as its embedded equivalent.

References

1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3_5

2. Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against
invariant attacks: how to choose the round constants. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 647–678. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0_22

3. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR ToSC
2019(1), 5–45 (2019). https://doi.org/10.13154/tosc.v2019.i1.5-45

4. Bernstein, D., et al.: Gimli 20190927, September 2019. http://csrc.nist.gov/
CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-
rnd2/gimli-spec-round2.pdf

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keccak implemen-
tation overview, May 2012. https://keccak.team/papers.html

6. Bertoni, G.: Ketje keyak vhdl. GitHub repository (2019). https://github.com/
guidobertoni/KetjeKeyakVHDL

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0_19

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Caesar sub-
mission: Ketje v. 2 (2016)

9. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_13

10. Cojocar, L., Papagiannopoulos, K., Timmers, N.: Instruction duplication: leaky
and not too fault-tolerant!. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS 2017.
LNCS, vol. 10728, pp. 160–179. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-75208-2_10

11. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Xoodyak, a
lightweight cryptographic scheme, April 2018. http://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Xoodyak-
spec-round2.pdf

12. Daemen, J., Dobraunig, C., Eichlseder, M., Gross, H., Mendel, F., Primas, R.:
Protecting against statistical ineffective fault attacks. IACR ePrint Archive, Report
2019/536 (2019). https://eprint.iacr.org/2019/536

13. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and
Xoofff. IACR ToSC 2018(4), 1–38 (2018). https://doi.org/10.13154/tosc.v2018.i4.
1-38

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-63715-0_22
https://doi.org/10.13154/tosc.v2019.i1.5-45
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gimli-spec-round2.pdf
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gimli-spec-round2.pdf
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gimli-spec-round2.pdf
https://keccak.team/papers.html
https://github.com/guidobertoni/KetjeKeyakVHDL
https://github.com/guidobertoni/KetjeKeyakVHDL
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-540-74735-2_13
https://doi.org/10.1007/978-3-319-75208-2_10
https://doi.org/10.1007/978-3-319-75208-2_10
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Xoodyak-spec-round2.pdf
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Xoodyak-spec-round2.pdf
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Xoodyak-spec-round2.pdf
https://eprint.iacr.org/2019/536
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38

610 T. Simon et al.

14. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9_21

15. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

16. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. IACR
ePrint Archive 2008, 385 (2008)

17. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
TCHES 2018(3), 547–572 (2018). https://doi.org/10.13154/tches.v2018.i3.547-
572

18. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2. Submission
to the CAESAR Competition (2016)

19. Dobraunig, C., Eichlseder, M., Mendel, F., Schofnegger, M.: Algebraic cryptanal-
ysis of variants of Frit. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS,
vol. 11959, pp. 149–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-38471-5_7

20. Green, J., Roy, A., Oswald, E.: A systematic study of the impact of graphical
models on inference-based attacks on AES. IACR ePrint Archive 2018, 671 (2018)

21. Guo, Q., Grosso, V., Standaert, F.: Modeling soft analytical side-channel attacks
from a coding theory viewpoint. IACR ePrint Archive 2018, 498 (2018)

22. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

23. Lac, B., Canteaut, A., Fournier, J.J.A., Sirdey, R.: Thwarting fault attacks using
the internal redundancy countermeasure (IRC). IACR ePrint Archive 2017, 910
(2017)

24. Patrick, C., Yuce, B., Ghalaty, N.F., Schaumont, P.: Lightweight fault attack resis-
tance in software using intra-instruction redundancy. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 231–244. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-69453-5_13

25. Qin, L., Dong, X., Jia, K., Zong, R.: Key-dependent cube attack on reduced Frit
permutation in duplex-ae modes. IACR ePrint Archive 2019, 170 (2019)

26. Regazzoni, F., Breveglieri, L., Ienne, P., Koren, I.: Interaction between fault attack
countermeasures and the resistance against power analysis attacks. In: Joye, M.,
Tunstall, M. (eds.) Fault Analysis in Cryptography, pp. 257–272. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-29656-7_15

27. Reparaz, O., et al.: CAPA: the spirit of beaver against physical attacks. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 121–
151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_5

28. Saha, S., Roy, D.B., Bag, A., Patranabis, S., Mukhopadhyay, D.: Breach the gate:
Exploiting observability for fault template attacks on block ciphers. IACR ePrint
Archive, Report 2019/937 (2019). https://eprint.iacr.org/2019/937

29. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 302–332. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5_11

30. Simon, T., et al.: Towards lightweight cryptographic primitives with built-in fault-
detection. IACR ePrint Archive 2018, 729 (2018)

https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.13154/tches.v2018.i3.547-572
https://doi.org/10.13154/tches.v2018.i3.547-572
https://doi.org/10.1007/978-3-030-38471-5_7
https://doi.org/10.1007/978-3-030-38471-5_7
https://doi.org/10.1007/978-3-319-69453-5_13
https://doi.org/10.1007/978-3-319-69453-5_13
https://doi.org/10.1007/978-3-642-29656-7_15
https://doi.org/10.1007/978-3-319-96884-1_5
https://eprint.iacr.org/2019/937
https://doi.org/10.1007/978-3-662-53008-5_11

Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 611

31. Song, L., Guo, J., Shi, D., Ling, S.: New MILP modeling: improved conditional
cube attacks on keccak-based constructions. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11273, pp. 65–95. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3_3

32. TS Developers: SageMath (2016)
33. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel

attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45611-8_15

https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15

Fault Template Attacks on Block Ciphers
Exploiting Fault Propagation

Sayandeep Saha1(B), Arnab Bag1(B), Debapriya Basu Roy1,3,
Sikhar Patranabis1,2, and Debdeep Mukhopadhyay1

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, Kharagpur, India

{sahasayandeep,arnabbag,debdeep}@iitkgp.ac.in
2 Department of Computer Science, ETH Zurich, Zürich, Switzerland

sikhar.patranabis@inf.ethz.ch
3 Technische Universität München, Munich, Germany

debapriya.basu-roy@tum.de

Abstract. Fault attacks (FA) are one of the potent practical threats
to modern cryptographic implementations. Over the years the FA tech-
niques have evolved, gradually moving towards the exploitation of device-
centric properties of the faults. In this paper, we exploit the fact that
activation and propagation of a fault through a given combinational cir-
cuit (i.e., observability of a fault) is data-dependent. Next, we show that
this property of combinational circuits leads to powerful Fault Template
Attacks (FTA), even for implementations having dedicated protections
against both power and fault-based vulnerabilities. The attacks found
in this work are applicable even if the fault injection is made at the
middle rounds of a block cipher, which are out of reach for most of
the other existing fault analysis strategies. Quite evidently, they also
work for a known-plaintext scenario. Moreover, the middle round attacks
are entirely blind in the sense that no access to the ciphertexts (cor-
rect/faulty) or plaintexts are required. The adversary is only assumed to
have the power of repeating an unknown plaintext several times. Prac-
tical validation over a hardware implementation of SCA-FA protected
PRESENT, and simulated evaluation on a public software implementa-
tion of protected AES prove the efficacy of the proposed attacks.

Keywords: Fault attack · Fault propagation · Masking

1 Introduction

Implementation-based attacks are practical threats to modern cryptography.
With the dramatic increase in the usage of embedded devices for IoT and mobile

D. B. Roy—Worked on this project during his stay at IIT Kharagpur.
S. Patranabis—Worked on this project during his stay at IIT Kharagpur.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-45721-1 22) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 612–643, 2020.
https://doi.org/10.1007/978-3-030-45721-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_22
https://doi.org/10.1007/978-3-030-45721-1_22
https://doi.org/10.1007/978-3-030-45721-1_22

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 613

applications, such attacks have become a real concern. Most of the modern
embedded devices carry cryptographic cores and are physically accessible by
the adversary. Therefore, suitable countermeasures are often implemented to
protect the cryptographic computations from exploitation.

Side-channel attacks (SCA) [1] and Fault attacks (FA) [2,3] are the two most
widely explored implementation attack classes till date. The main idea behind the
first one is to passively exploit the operation dependency (simple-power-analysis)
or data-dependency (differential/correlation power analysis) of the cryptographic
computation to infer the secret key by measuring power or electromagnetic (EM)
signals. In contrast, fault attacks are active in nature, as they work by corrupting
the intermediate computation of the device in a controlled manner. Intentionally
injected faults create a statistical bias in some of the intermediate computation
states. Such bias is exploited by the adversary (either analytically or statistically)
to reduce the entropy of the unknown key and thereby recovering the key [3].

The protection mechanisms found in modern devices mostly try to mitigate
the two abovementioned classes of attacks. In this context, hardening the cipher
algorithm itself with countermeasures is often preferred than the sensor and
shield-based physical countermeasures. This is due to the fact that algorithm-
level countermeasures are flexible in terms of usability. Moreover, they often
provide provable security guarantees. Masking is the most prominent and widely
deployed countermeasure so far, against passive SCA [4–7]. Masking is a class of
techniques which implement secret sharing at the level of cryptographic circuits.
Each cipher variable x is split into a certain number (say d + 1) of shares in
masking which are statistically independent by their own, and also while con-
sidered in groups of size up to d. Each underlying function of the cipher is also
shared into d+1 component functions (respecting the correctness) to process the
shared variables. The order of protection d intuitively means that an adversary
has to consider SCA leakages for d + 1 points, simultaneously, in order to gain
some useful information about the intermediate computation. In the context of
FA, detection-type countermeasures are the most common ones. The main prin-
ciple of these FA countermeasures is to detect the presence of a fault via some
redundant computation (time/space redundancy or information redundancy),
and then react by either muting or randomizing the corrupted output [8,9].
Another alternative way is to avoid the explicit detection step altogether, and
perform the computation in a way so that it gets deliberately randomized in the
presence of an error in computation (infective countermeasure) [10].

Symmetric key primitives (such as block ciphers) are the most widely ana-
lyzed class of cryptographic constructs in the context of implementation-based
attacks. Quite evidently, the current evaluation criteria for a block cipher design
takes the overhead due to SCA and FA protections directly into account. In other
words, countermeasures are nowadays becoming an essential part of a cipher. In
practice, there exist proposals which judiciously integrate these two counter-
measures for block ciphers [11]. Whether such hardened algorithms are actually
secured or not is, however, a crucial question to be answered.

614 S. Saha et al.

Recent developments in FA show that the answer to the above-mentioned
question is negative. Although combined countermeasures are somewhat
successful in throttling passive attacks, they often fall prey against active adver-
saries. In [12,13], it was shown that if an adversary has the power of injecting a
sufficient number of faults, even the correct ciphertexts can be exploited for an
attack. The attack in [12], also known as Statistical Ineffective Fault Analysis
(SIFA), changed the widely regarded concept that fault attacks require faulty
ciphertexts to proceed. Most of the existing FA countermeasures are based on
this belief and thus were broken. In a slightly different setting, the so-called Per-
sistent Fault Analysis (PFA) [14,15] presented a similar result. The main reason
behind the success of SIFA and PFA is that they typically exploit the statisti-
cal bias in the event when a fault fails to alter the computation. However, this
seemingly simple event can be exploited in several other ways, too, which may
lead to more powerful attacks on protected implementations. Particularly, in this
paper, we show that once a fault is injected, whether it propagates to the output
through the circuit or not is data-dependent. This data dependency works as a
source of information leakage which eventually leads towards the recovery of the
secret even from protected cipher implementations. In contrast to SIFA or PFA,
we do not require access to the correct/faulty ciphertexts. Our contributions in
this paper are discussed below.

Our Contributions: In this paper, we propose a new attack strategy for pro-
tected implementations which exploits fundamental principles of digital gates to
extract the secret. The main observation we exploit is that the output observabil-
ity of a fault, injected at one input of an AND gate depends on the values of the
other inputs. In general, the activation and propagation of a fault inside a circuit
depends upon the value under process, which is indeed a side-channel leakage.
Based on this simple observation we devise attacks which can break masking
schemes of any arbitrary order, even if it is combined with FA countermeasures.
The strongest feature of this attack strategy is that it can enable attacks in the
middle round of a cipher without requiring any explicit access to the ciphertexts
even if they are correct. Just knowing whether the outcome of the encryption is
faulty or not would suffice. The plaintexts are need not be known explicitly in all
scenarios, but the adversary should be able to repeat a plaintext several times.
One should note that the attacks like SIFA require ciphertext access and are
also not applicable to the middle rounds.1

The fault model utilized in this attack is similar to the one exploited
for SIFA [12]. However, the exploitation methodology of the faults is entirely

1 Several modern symmetric-key protocols do not expose the ciphertexts. One promi-
nent example is the Message Authentication Codes (MAC) in certain application
scenarios. Furthermore, for many existing Authenticated Encryption schemes, direct
access to the plaintext is not available for the block ciphers used within the scheme.
However, fixing the plaintext value may be achieved. Also, in real devices, the acces-
sibility of plaintexts cannot be assumed in every scenario. One typical example is
the shared root key usage in UMTS [16].

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 615

Table 1. Comparison of FTA with other competing attacks

Attack

Algorithm

Breaks

Masking?

Breaks

Fault

Countermeasure?

Requires

Ciphertext

Access?

Middle

Round

Attack?

Comments

SIFA ✓ ✓ ✓ ✗
Breaks SCA-FA

protection

PFA ✓ ✓ ✓ ✗
Breaks SCA-FA

protection

SEA ✗ ✓ ✗ ✓
Masking

is a countermeasure

BFA ✗ Not All ✗ ✓
Masking

is a countermeasure

FTA ✓ ✓ ✗ ✓
Breaks SCA-FA

protection

different from SIFA. While SIFA uses statistical analysis based on the correct
ciphertexts, we propose a novel strategy based on fault templates. The Fault
Template Attack strategy, abbreviated as FTA, efficiently exploits fault charac-
teristics from different fault locations for constructing distinguishing fault pat-
terns, which enable key/state recovery. In principle, FTA is closer to SCA than
FAs, and hence, the evaluation of masking against this attack becomes essential.

The attacks proposed in this paper require multiple fault locations to extract
the entire key. Note that, we do not require multiple fault locations to be corrupted
at the same time, but injections can be made one location at a time in differ-
ent independent experiments. The spatial and temporal control of the faults are
practically feasible, as we show by means of an EM fault injection setup in this
paper. In particular, we target a hardware implementation of PRESENT with
first-order Threshold Implementation (TI) [17] for SCA protection, and dupli-
cation based FA protection. Although in our practical experiments, we target
hardware implementations, similar faults can be generated for software as well.
To establish this, we simulate the desired faults on a publicly available masked
software implementation of AES augmented with an FA countermeasure and
perform the key recovery for it. One advantage of FTA attack strategy is that
an implementation similar to the target one can be extensively profiled before
attack, and parameters for obtaining the desired faults can be identified.

The idea of FA without direct access to the plaintext and ciphertext has
been explored previously. The closest to our proposal are the so-called Blind
Fault Analysis (BFA) [18], the Safe-Error-Attack (SEA) [19] and the Fault Sen-
sitivity Analysis (FSA) [20]. However, none of these attacks exploit the inherent
circuit properties as we do in our case. Finally, BFA and SEA can be throttled
by masking, and FSA on masked implementations require timing information of
the S-Boxes along with the faults. The greatest advantage of our proposal lies
at the point that our attacks are applicable for masking countermeasures even
while combined with a state-of-the-art FA countermeasure. Although SIFA and

616 S. Saha et al.

(a) (b)

a

b

a

b
oo

0

1

11

0/1

0

Fig. 1. Fault propagation: (a) XOR gate; (b) AND gate. The inputs for activation
and propagation are in blue and the value of the stuck-at fault is in red. (Color figure
online)

PFA work on masking, both of them require ciphertext access. The differences
of our attack from other competing ones are summarized in Table 1.

In order to validate our idea both theoretically and practically, we choose the
block cipher PRESENT as a test case [21]. This choice is motivated by that fact
that PRESENT is a fairly well-analyzed design and also an ISO standard [22].
The choice of a lightweight cipher is also motivated by the fact that countermea-
sures are extremely crucial for such ciphers as they are supposed to be deployed
on low cost embedded devices. However, the attacks are equally applicable to
larger block ciphers like AES. Our validation on masked AES justifies this claim.

The rest of the paper is organized as follows. We begin by explaining the
fundamental principles behind the attacks in Sect. 2 through interpretable exam-
ples. Feasibility of the attacks for unmasked but FA protected implementations
are discussed in Sect. 3 taking PRESENT as an example. Attacks on combined
countermeasures are proposed in Sect. 4 (on PRESENT), followed by a brief
discussion on the practical evaluation of the attack in Sect. 5. We conclude the
paper in Sect. 6. An extended version of this paper is available on eprint2 pro-
viding further details on the practical experiments, and a brief discussion on the
implication of FTA on state-of-the-art countermeasures.

2 The Fundamental Principle

2.1 Fault Activation and Propagation

The concept of fault activation and propagation is instrumental for structural
fault testing of digital circuits. Almost every Automatic Test Pattern Generation
(ATPG) algorithm relies on these two events. Consider a combinational circuit
C and an internal net i in this circuit. The problem is to test if the net has been
stuck at a value 0 or 1. A test pattern for exposing this fault to the output is
required to perform the following two events in sequence:

1. Fault Activation: The test pattern is required to set the net i to value x
such that i carries the complement of x (i.e., x) in the presence of a fault and
x, otherwise.

2. Fault Propagation: The test pattern has to ensure that the effect of the
fault propagates to the output of the circuit C.

2 https://eprint.iacr.org/2019/937.

https://eprint.iacr.org/2019/937

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 617

Both the activation and propagation events strongly depend upon the struc-
ture of the circuit graph, and the gates present in the circuit. However, under-
standing the fault activation and propagation property of each gate is the very
first step to have an insight into the attacks we are going to propose. Let us
first consider a linear 2-input XOR gate as shown in Fig. 1(a). Without loss of
generality, we consider a stuck-at-0 fault at the input register a, while the input
register b may take values independently. In order to activate the fault at a, one
must set a = 1. The next step is to propagate the fault at the output. One may
observe that setting the input b to either 0 or 1 will expose the fault at a to the
output o. A similar phenomenon can be observed for an n-input XOR gate. This
observation is summarized in the following statement:

Given an n-input XOR gate having an input set I, (|I| = n), an output O,
and a faulted input i ∈ I, the fault propagation to Odoes not depend upon the
valuations of the subset I \ {i}.

An exactly opposite situation is observed for the nonlinear gates like
AND/OR. For the sake of illustration, let us consider the two-input AND gate in
Fig. 1(b). Here a stuck-at fault (either stuck-at-0 or stuck-at-1) at input register
a can propagate to the output o if and only if the input b is set to the value
13. An input value of 1 for an AND gate is often referred to as non-controlling
value4. The activation and propagation property of the AND gates, thus, can be
stated as follows:

For an n-input AND gate with input set I, output O, and one faulty input i ∈ I,
the fault propagation takes place if an only if every input in the subset I \ {i}is
set to its non-controlling value.

2.2 Information Leakage Due to Fault Propagation

Now we describe how information leaks due to the propagation of faults. Once
again, we consider the AND and the XOR gate for our illustration. Let us assume
that the gates are processing secret data and an active adversary A can only
have the information whether the output is faulty or not. The adversary can,
however, inject a stuck-at fault at one of the input registers of the gate5. We also
consider that the adversary has complete knowledge about the type of the gate
she is targeting. With this adversary model, now we can analyze the information
leakage due to the presence of faults.

First, we consider the XOR gate. Without loss of generality, let us assume
the fault to be stuck-at-0, and the injection point as a. Then the fault will
propagate to the output whenever it gets activated. In other words, just by

3 The fault activation takes place if a is set to 1 (stuck-at-0) or 0 (stuck-at 1).
4 A controlling input value of a gate is defined as a value, which, if present for at least

one input, sets the output of the gate to a known value. Non-controlling value is the
complement of the controlling value.

5 Although for simplicity we are considering stuck-at faults here, our arguments are
also valid for single bit toggle faults, and later on, we show how such faults can be
injected in an actual hardware.

618 S. Saha et al.

0 f
b
c

a t

b

c
a t

(a) (b)

0/1 0 f
1

0/1

0/1

0

1

1

0/1

Fig. 2. Fault propagation through combinational circuits: (a) Injection at XOR gate
input; (b) Injection at AND gate input. The inputs for activation and propagation are
shown in blue and the nature of the stuck-at fault is shown in red. The propagated
faulty intermediate value is shown in green. (Color figure online)

observing whether the output is faulty A can determine the value of a. More
precisely, if the output is fault-free a = 0 and a = 1, otherwise.

The situation is slightly different in the case of AND gates. Here the output
becomes faulty only if the fault is activated at a and b is set to its non-controlling
value. In this case, the adversary can determine the values of both a and b.
However, one should note that the fault will only propagate if both a and b are
set to unity. For all other cases the output will remain uncorrupted and A cannot
determine what value is being processed by the gate. Putting it in another way,
the adversary can divide the value space of (a, b) into two equivalence classes.
The first class contains values (0, 0), (0, 1)(1, 0), whereas the second class contains
only a single value (1, 1). One should note that the intra-class values cannot be
distinguished from each other.

One general trend in FA community is to quantify the leakage in terms of
entropy loss. The same can be done here for both the gates. Without the fault the
entropy of (a, b), denoted as H((a, b)), is 2. In the case of XOR gate, the entropy
reduces after the first injection event. Depending on the value of the observable
Of1 , which we set to 1 if the fault is observed at the output (and 0, otherwise),
the actual input value at the fault location can be revealed. More formally, we
have H((a, b)|Of1 = 0) = 1 and H((a, b)|Of1 = 1) = 1. Therefore, the remaining
entropy H((a, b)|Of1) = 1

2 × H((a, b)|Of1 = 0) + 1
2 × H((a, b)|Of1 = 1) = 1.

In other words, the entropy of (a, b) reduces to 1 after one fault injection. The
situation is slightly different in the case of AND gate. Here the remaining entropy
can be calculated as H((a, b)|Of1) = 3

4 × log2 3+ 1
4 × log2 1 = 1.18. Although the

leakage here is slightly less compared to the XOR gate, one should note that it
is conditional on the non-faulty inputs of the gate too. In other words, partial
information regarding both a and b are leaked, simultaneously. In contrast, XOR
completely leaks one bit but does not leak anything about the other inputs.

As we shall show later in this paper, both AND and XOR gate leakages can
be cleverly exploited to mount extremely strong FAs on block ciphers. In the
next subsection, we extend the concept of leakage for larger circuits.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 619

y1

x1
x2
x4

0
1
1

1

Remaining
Combinational

Logic

Fig. 3. Fault propagation through S-Box Polynomials. The input pattern causing the
propagation is shown in blue. The stuck-at fault type is shown in red. (Color figure
online)

2.3 Fault Propagation in Combinational Circuits

One convenient and general way of realizing different sub-operations of a block
cipher is by means of algebraic expressions over GF (2) also known as Algebraic
Normal Form (ANF). For the sake of explanation, we also use ANF representa-
tion of the circuits throughout this paper. ANF representation is also common
while implementing masking schemes. Therefore, a good starting point would be
to analyze the effect of faults on an ANF expression. For example, let us consider
the ANF expression f = b + ca and its corresponding circuit in Fig. 2.6 As in
the previous case, we assume that the adversary A can only observe whether
the output is faulty or not, but cannot observe the actual output of the circuit.
Also, the inputs are not observable but can be kept fixed. With this setting the
adversary injects a stuck-at-0 fault in b (see Fig. 2(a)). Now, since the input is
fixed, a fault at the output would imply that b = 1. On the other hand, the
output will be correct only if b = 0. The property of the XOR gate mentioned in
the previous subsection ensures that the other input coming from the product
term does not affect the recovery of the bit b. Similarly, one can recover the
output of the product term ca.

Let us now consider recovery of the bits a and c, with the fault injected at
a. From the properties of an AND gate, the fault will propagate to the wire t
(see Fig. 2(b)) if and only if c = 1 and a = 1. This fault, on the other hand,
will directly propagate to the output as the rest of the circuit only contain an
XOR gate. However, from adversary’s point of view, entropy reduction due to a
non-faulty output is not very significant (non-faulty output may occur for (c, a)
taking values (0, 0), (0, 1) and (1, 0)). Moreover, no further information is leaked
even if the attacker now targets the input c with another fault. It may seem that
the AND gates are not very useful as leakage sources. However, it is not true if
we can somehow exploit the fact that it leaks information about more than one
bits. The next subsection will elaborate the impact of this property on S-Boxes.

6 Note that the “+” represents XOR operation here.

620 S. Saha et al.

2.4 Propagation Characteristics of S-Boxes

The S-Boxes are one of the most common constituents of modern block ciphers.
In most of the cases, they are the only non-linear function within a cipher.
Mathematically, they are vectorial Boolean functions consisting of high degree
polynomials over GF (2). Such polynomials contain high degree monomials which
are nothing but several bits AND-ed together. As a concrete example, we con-
sider the S-Box polynomials for PRESENT as shown in Eq. (1). This S-Box has 4
input bits denoted as x1, x2, x3, x4 and 4 output bits y1, y2, y3, y4 (where x1 and
y1 are the Most Significant Bits (MSB) and x4 and y4 are the Least Significant
Bits (LSB)).

y1 = x1x2x4 + x1x3x4 + x1 + x2x3x4 + x2x3 + x3 + x4 + 1
y2 = x1x2x4 + x1x3x4 + x1x3 + x1x4 + x1 + x2 + x3x4 + 1
y3 = x1x2x4 + x1x2 + x1x3x4 + x1x3 + x1 + x2x3x4 + x3

y4 = x1 + x2x3 + x2 + x4

(1)

Let us consider the first polynomial in this system without loss of generality. Also,
we consider a stuck-at-1 fault at x1 during the computation of the first monomial
x1x2x4 in this polynomial. The exact location of this fault in the circuit is
depicted in Fig. 3. Given this fault location, the fault propagates to the output
only if (x1 = 0, x2 = 1, x3 = 0, x4 = 1) or (x1 = 0, x2 = 1, x3 = 1, x4 = 1).
For the rest of the cases, the output remains unaltered. Consequently, if the
S-Box inputs are changing and the value is inaccessible for the adversary, she
can still detect when the S-Box processes the input (0, 1, 0, 1) or (0, 1, 1, 1), as
compared to other inputs. In the next subsection, we shall show how this simple
observation results in key leakage for an entire cipher.

3 Fault Observability Attacks

In this section, we describe how information leakage from gates eventually results
in key leakage for so-called FA resilient block cipher implementations. For the
sake of simplicity, we begin with implementations having redundancy-based
detection-type FA countermeasures. Implementations having both masking and
FA countermeasures will be considered in the subsequent sections. The detection-
type FA countermeasures under consideration may use any form of redundancy
(space, time or information redundancy) [8,9]. However, the attacks we are going
to describe are equally applicable to any member of this classical countermea-
sure class. For the sake of simplicity, we, therefore, consider the most trivial
form where the redundancy check happens at the end of the computation before
outputting the ciphertexts.

3.1 Template-Based Fault Attacks

Before going to the actual attack instances, let us first describe our general
attack strategy, which is based on constructing templates. Similar to the tem-
plate attacks in SCA, fault template attacks also consist of two phases, namely:

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 621

Algorithm 1. BUILD TEMPLATE
Input: Target Implementation C, Fault fl
Output: Template T

T := ∅
w := GET SBOX SIZE() � Get the width of the S-Box
for (0 ≤ k < 2w) do � Vary one key word

Ft := ∅
for (0 ≤ p < 2w) do � Vary one w-bit plaintext word

x := p ⊕ k
yf := C(x)fl � Inject fault in one of the S-Boxes for each execution.
yc := C(x)
if DETECT FAULT(yf, yc) == 1 then � Fault detection function

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for
T := T ∪ {(Ft, k)}

end for
Return T

Note that C(x) (resp. C(x)fl) is effectively S(x+k) where S(·) is an S-Box. This is true for other
template building algorithms as well in this paper

1. Template Building (offline): This is an offline phase where an implementa-
tion similar (preferably from the same device family) to the target is profiled
extensively to construct an informed model for the attack. The aim of this
informed modeling is to reason about some unknown directly in the online
phase of the attack on the actual target, based on some observables from the
online experiment7. Formally, a template T for fault attack can be represented
as a mapping T : F −→ X , where an a ∈ F is constructed by computing some
function on the observables (i.e. a = G(O)). The location for a fault injection
can be used as auxiliary information while computing the function from the
observable set to the set F . The range set X of the template T either repre-
sents a part of an intermediate state, (for example, the value of a byte/nibble)
or a part of the secret key.

2. Template Matching (online): In this online phase, an implementation
(identical to one profiled in the offline phase) with an unknown key is targeted
with fault injection. The injection locations may be pre-decided from the
template construction phase. The unknown is supposed to be discovered by
first mapping the observables from this experiment to a member of the set
F and then by finding out the corresponding value of the unknown from the
set X using the template T .

Unlike differential or statistical fault attacks, the key recovery algorithms
in fault template attacks are fairly straightforward in general. The fault com-
plexity of the attacks is comparable with that of the statistical fault attacks.
However, one great advantage over statistical or differential fault attacks is that
access to ciphertexts or plaintexts is not essential. The attacker only requires to

7 The observable (denoted as O), for example, can be the knowledge that whether the
output of an encryption is faulty or not.

622 S. Saha et al.

know whether the outcome is faulted or not. More precisely, FTA can target the
middle rounds of block ciphers, which are otherwise inaccessible by statistical
or differential attacks due to extensive computational complexity. Apart from
that, the FTA differs significantly from all other classes of fault attacks in the
way it exploits the leakage. While differential or statistical attacks use the bias
in the state due to fault injection as a key distinguisher, template-based attacks
directly recover the intermediate state values. From this aspect, this attack is
closer to the SCA attacks. However, there are certain dissimilarities with SCA
as well, in the sense that SCA template attacks try to model the noise from the
target device and measurement equipment. In contrast, FTA goes beyond noise
modeling and build templates over the fault characteristics of the underlying
circuit.

Algorithm 2. MATCH TEMPLATE
Input: Protected cipher with unknown key Ck, Fault fl, Template T
Output: Set of candidate correct keys kcand

kcand := ∅ � Set of candidate keys
w := GET SBOX SIZE()
Ft := ∅
for (0 ≤ p < 2w) do � Vary a single w bit word of the plaintext

O := (Ck(p))fl � Inject fault for each execution
if (O == 1) then � Fault detected

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for
kcand := kcand ∪ {T (Ft)}
Return kcand

3.2 Attacks on Unmasked Implementations: Known Plaintext

In this subsection, we present the first concrete realization of FTA. The first
attack we present requires the plaintexts to be known and controllable. However,
explicit knowledge of the ciphertexts is not expected. The adversary is only
provided with the information whether the outcome of an encryption is faulty or
not. One practical example of such attack setup is a block-cipher based Message-
Authentication Code (MAC), where the authentication tag might not be exposed
to the adversary, but the correctness of the authentication is available. We also
assume a stuck-at-1 fault model for simplicity. However, the attack also applies
to stuck-at-0 and bit-flip models. For the sake of illustration, we mainly consider
the PRESENT block cipher. The attack consists of two phases as detailed next.

Offline Phase – Template Building: Perhaps the most important aspect of
the attacks we describe is the fault location. As elaborated in Sect. 2.4, leakage
from the non-linear or the linear gates can be exploited. For this particular case
we choose an AND gate for fault injection as in Sect. 2.4, respecting the fact
that information regarding multiple bits are leaked, simultaneously. The same

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 623

fault location as in Sect. 2.4 is utilized. The observables, in this case, are the 0,1
patterns, from the protected implementation where 0 represents a correct outcome
and 1 represents a faulty outcome. The domain set F of the template consists
of patterns called fault patterns (denoted as Ft in the algorithm) constructed
from the observables. The fault location, in this case, is fixed. The process of
transforming the observables to fault patterns and then mapping them to the
set X is outlined in Algorithm 18. For each choice of the key nibble (which
is a member from set X), all 16 possible plaintext nibbles are fed to the S-Box
equations according to a predefined sequence, and the stuck-at-1 fault is injected
for each of the cases. Consequently, for each choice of the key nibble, one obtains
a bit-string of 16 bits which is the desired fault pattern (Ft). The fault patterns
are depicted in Table 2. It can be observed that corresponding to each fault
pattern, there can be two candidate key suggestions. One should also note that
changing the fault location might change the fault patterns and the mapping
T : F −→ X .

Online Phase – Template Matching: The online phase of the attack is fairly
straightforward. The attacker now targets an actual implementation (similar to
that used in the template building phase) with an unknown key and constructs
the fault patterns. The fault patterns are constructed for each S-Box at a time,
by targeting the first round9. Next, the template is matched, and the key is
recovered directly. The algorithm for the online phase is outlined in Algorithm 2
for each nibble/byte. Few intricacies associated with the attack are addressed in
the following paragraphs.

Unique key recovery: The template used in the proposed attack reduces the
entropy of each key nibble to 1-bit (that is, there are two choices per key nibble).
The obvious question is whether the entropy can be reduced to zero or not. In
other words, is it somehow possible to create a template which provides unique
key suggestions for each fault pattern? The answer is negative for this particular
example. This is because with the chosen fault (bit x1 in the monomial x1x2x4 of
the first polynomial in Eq. (1)) location, no leakage happens for the variable x3.
In fact, there is no such location in the S-Box equations which can simultaneously
leak information regarding all the bits. Therefore, one-bit uncertainty will always
remain for the given template and for all other similar templates. However,
the key can still be recovered uniquely if another template, corresponding to a
different fault location, is utilized. The choice of this fault location should be
such that it leaks about x3. The main challenge in this context is to keep the
number of injections as low as possible for the second template. Fortunately, it
was observed that the second template can be constructed in a way so that it only

8 Note that, in this attack in all our subsequent attacks, constructing the template
for one S-Box is sufficient. The same template can be utilized for extracting all key
nibbles of a round one by one.

9 Extraction of round keys in a per-nibble/byte basis is done for all the attacks
described in this paper.

624 S. Saha et al.

Table 2. Template-1 for attacking the
first round of PRESENT by varying the
plaintext nibble. The black cells repre-
sent 1 (faulty output) and the gray cells
represent 0 (correct output).

0 1 2 3 4 5 6 7 8 9 a b c d e f Key

13, 15

9, 11

4, 6

5, 7

12, 14

1, 3

0, 2

8, 10

Table 3. Template-2 for attacking the
first round of PRESENT. The black
cells represent 1 (faulty output) and the
gray cells represent 0 (correct output).

0 Key

2, 3, 6, 7, 10, 11, 14, 15

0, 1, 4, 5, 8, 9, 12, 13

requires a single fault injection. The trick is to corrupt a linear term x3 in the
same polynomial (The template is depicted in Table 3). Due to the activation-
propagation property of the XOR gates, a single injection would reveal the value
of the bit x3. In practice, we take the intersection between the key suggestions
obtained from two different templates and can identify the key uniquely. As a
concrete example for why it works, consider the key suggestion (13, 15) from the
first template. The second template will provide either of the two suggestion sets
described in it. Now, since 13 and 15 only differ by the bit x3, the suggestion
set returned by template-2 is supposed to contain only one of 13 and 15. Hence
taking the intersection of this second key suggestion set with the first one would
uniquely determine the key.

Required number of faults: The proposed attack performs the key recovery in a
nibble-wise manner. A straightforward application of Algorithm 2 for template
matching here would require total 17 fault injections (16 for the first template
matching and 1 for the second template matching) per nibble, and thus 17×16 =
272 fault injections for recovering the entire round key in the online phase.
However, given the regularity of the fault patterns in template-1 (as shown in
Table 2), the number of injections per nibble can be reduced further. Note that,
each pattern consists of two faulty outputs (black cells in Table 2). If we consider
the first faulty outcome from each pattern, the index of them are unique per
pattern. In other words, if the index of the first faulty outcome in a pattern Ft is
denoted as Ind1(Ft) then we have ∀s, t, 0 ≤ s, t ≤ 7, s �= t. Ind1(Fs) �= Ind1(Ft).
With this observation, the average number of injection for matching template-1
becomes 7.6, which is the expected value of Ind1(Ft)’s for all Ft. In summary,
with roughly 8 + 1 = 9 fault injections on average, one can recover a key nibble.
Another general trick for reducing the number of faults is to choose the highest
degree monomial for injection so that the maximum number of bits can be

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 625

leaked at once. The remaining bits can then be leaked by choosing lower degree
terms and constructing templates for them. This trick reduces the number of key
suggestions per pattern in a template. Moreover, we note that all fault locations
within a single higher degree monomial are equivalent in terms of leakage. This
fact gives extra flexibility while choosing the fault locations for an attack.

It should be observed that although the attack described in this subsection
requires at most two fault locations to be corrupted to recover the key uniquely,
the corruptions need not be simultaneous. In practice, one can run independent
fault campaigns on the target implementation and combine the results to recover
the key. A similar attack is also applicable for AES (see supplementary materiel
in the extended version for a brief description of this attack). In the next sub-
section, we will explore the situations where the fault is injected at a middle
round of the cipher. As we shall see, the attack methodology of our still allows
the recovery of the key within reasonable computational and fault complexity.

3.3 Attacks on Unmasked Implementations: Middle Rounds

Classically FAs target the outer rounds of block ciphers. Attacking middle rounds
are not feasible due to the extensive exhaustive search complexity involved, which
becomes equal to the brute force complexity. However, the proposed template-
based attack techniques do not suffer from this limitation. In this subsection, we
shall investigate the feasibility of FTA on the middle rounds of a block cipher.

The main challenge in a middle round attack is that the round inputs are
not accessible. Therefore, the attacks described in the last subsections cannot be
directly applied in this context. However, template construction is still feasible. A
single attack location, in this case, cannot provide sufficient exploitable leakage.
The solution here is to corrupt multiple chosen locations and to construct a single
template combining the information obtained. Unlike the previous case, where
the plaintext was varying during the attack phase, in this case, it is required to

Algorithm 3. BUILD TEMPLATE MIDDLE ROUND
Input: Target implementation C, Faults fl0, fl1, ..., flh
Output: Template T

T := ∅
w := GET SBOX SIZE() � Get the width of the S-Box
for (0 ≤ x < 2w) do � The key is known and fixed here and x is an

intermediate S-Box input
Ft := ∅
for each fl ∈ {fl0, fl1,..., flh} do

yf := C(x)fl � Inject fault in one copy of the S-Box for each execution
yc := C(x)
if DETECT FAULT(yf, yc) == 1 then � Fault detection function

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for
T := T ∪ {(Ft, x)}

end for
Return T

626 S. Saha et al.

Algorithm 4. MATCH TEMPLATE MIDDLE ROUND
Input: Protected cipher with unknown key Ck, Faults fl0, fl1, ..., flh, Template T
Output: Set of candidate correct states xcand

xcand := ∅ � Set of candidate states
w := GET SBOX SIZE()
Ft := ∅
for each fl ∈ {fl0, fl1, ...flh} do

O := (Ck(p))fl � Inject fault for each execution
if (O == 1) then � Fault detected

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for
xcand := xcand ∪ {T (Ft)}
Return xcand

be kept fixed. Formally, the mapping from the set of observables to the set F , in
this case, is a function of fault locations. Also, the range set X of the template,
in this case, contains byte/nibble values from an intermediate state instead of
keys (more precisely, the inputs of the S-Boxes).

One aspect of this attack is to select the fault locations, which would lead to
maximum possible leakage. In contrast to the previous attack, where corrupting
the highest degree monomials leak the maximum number of bits, in this new
attack we observe that linear monomials are better suited as fault locations. This
is because linear monomials leak information irrespective of the value of their
input or the other inputs of the S-Box, and as a result, the total number of fault
injections would be minimized for them. Considering the example of PRESENT,
one bit is leaked per fault location and hence 4 different locations have to be
tried to extract a complete intermediate state nibble. The template building and
the attack algorithm (in per S-Box basis) are outlined in Algorithm 3 and 4.

The template for the middle round attack on PRESENT is shown in Table 4,
where each fli denotes a fault location. Since the linear terms are corrupted,
each intermediate can be uniquely classified. In the online phase of the attack,
the plaintext is held fixed. The specified fault locations are corrupted one at
a time, and the fault patterns are constructed. An intermediate state can be
recovered with this approach immediately (by applying the Algorithm 4 total 16
times). However, one should notice that recovering a single intermediate state
does not allow the recovery of the round key. At least two consecutive states
must be recovered for the actual key recovery. Fortunately, recovery of any state
with the proposed attack strategy is fairly straightforward. Hence, one just need
to recover the states corresponding to two consecutive rounds and extract one
round of key in a trivial manner. In essence, the round key corresponding to any
of the middle rounds can be recovered. The number of faults required for entire
round key recovery is 128 in this case for PRESENT.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 627

3.4 Discussion

The attack technique outlined for the middle rounds requires the fault to be
injected at many different locations. Although the SEA attacks would also
require a similar number of fault injections10, as we show in the next section, the
proposed attack strategy still works when masked implementations are targeted.
This is clearly an advantage over SEA or BFA or as they are not applicable on
masking implementations [18].

It is interesting to observe that a trade-off is involved regarding the required
number of fault locations with the controllability of the plaintext. If the plain-
text is known and can be controlled, the number of required fault locations are
low. On the other hand, the number of different fault locations increases if the
plaintext is kept fixed. This can be directly attributed to the leakage characteris-
tics of the gates. The leakage from AND gates is more useful while its inputs are
varying and it is exactly opposite for the XOR gates. It is worth mentioning that
the middle round attacks can also be realized by corrupting several higher-order
monomials in the S-Box polynomials. However, due to the relatively low leakage
from AND gates for one fault, the number of injections required per location is
supposed to be higher.

From the next section onward, we shall focus on attacking masked implemen-
tations. Although, masking is not meant for fault attack prevention, in certain
cases it may aid the fault attack countermeasures [18]. The study on masking
becomes more relevant in the present context because our attacks, in principle,
are close to SCA attacks (in the sense that both tries to recover values of some
intermediate state).

Table 4. Template for attacking the middle rounds of PRESENT. Here fl0 = x1 in
polynomial of y1, fl1 = x3 in polynomial of y1, fl2 = x4 in polynomial of y1, and
fl3 = x2 in polynomial of y4.

fl0 fl1 fl2 fl3 State fl0 fl1 fl2 fl3 State

0 8

1 9

2 a

3 b

4 c

5 d

6 e

7 f

10 In fact, one can perform the same attack at the key addition stages to recover the
key directly.

628 S. Saha et al.

4 Attack on Masked Implementations

Masking is a popular countermeasure for SCA attacks. Loosely speaking, mask-
ing implements secret sharing at the level of circuits. Over the years, several
masking schemes have been proposed, the most popular one being the Threshold-
Implementation (TI) [6]. For illustration purpose, in this work, we shall mostly
use TI implementations.

Before going into the details of our proposed attack on masking, let us briefly
comment on why SEA does not work on masking. Each fault injection in the
SEA reveals one bit of information. However, each actual bit of a cipher is shared
in multiple bits in the case of masking, and in order to recover the actual bit, all
shares of the actual bit have to be recovered, simultaneously. Moreover, the mask
changes at each execution of the cipher. Hence, even if a single bit is recovered
with SEA, it becomes useless as the next execution of the cipher is suppose
to change this bit with probability 1

2 . By the same argument, attacking linear
terms in the masked S-Box polynomials would not work for key/state recovery,
as attacking linear monomials typically imply faulting an XOR gate input. As an
XOR gate only leaks about the faulted input bit, in this case, the attacker will
end up recovering a uniformly random masked bit. However, the FTA attack
we propose next, works even while masks are unknown and varying
randomly in each execution (such as in TI). The only requirement is to
repeat an unknown plaintext several times.

4.1 Leakage from Masking

Let us recall the unique property of AND gates that they leak about multiple
bits, simultaneously. We typically exploit this property for breaching the security
of masked implementations. To illustrate how the leakage happens, we start with
a simple example. Consider the circuit depicted in Fig. 4, which corresponds to
the first-order masked AND gate. The corresponding ANF equations are given as
q0 = x0y0 +r0,1 and q1 = x1y1 +(r0,1 +x0y1 +x1y0). Here (q0, q1) represents the
output shares and (x0, x1), (y0, y1) represent the input shares. We assume that
actual unmasked input to the gate (denoted as x and y) remains fixed. However,
all the shares vary randomly due to the property of masking. Consequently, all
the inputs to the constituent gates of the masked circuit also vary randomly.
Without loss of generality, let us now consider that a stuck-at-1 fault is induced
at the input share x0 during the computation of both the output shares. Now,
from the ANF expression it can be observed that x0 is AND-ed with y0 and y1

in two separate shares (i.e. x0y0 in q0 and x0y1 in q1). So, faulting x0 would
leak information about both y0 and y1. From the properties of the AND gate,
the stuck-at-1 fault will propagate to the output only if x0 = 0 and yi = 1
with i ∈ {0, 1}. However, it should also be noted that if faults from both of the
gates propagate simultaneously, then they (the faults) will cancel each other. The
actual output of the masked AND circuit (i.e. q0 + q1) will be faulty only if one
of the constituent AND gates propagate the fault effect. More specifically, the
effective fault propagation requires either (y0 = 0, y1 = 1) or (y0 = 1, y1 = 0).

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 629

x0 x1 y1r0,1

q0

q1

1

00/1 0/10/1 0/1
y0

Fig. 4. Fault propagation through masked AND gate.

In summary, the fault will propagate if and only if the actual unshared bit y
(y = y0 +y1) equals to 1 and x0 = 0. There will be no fault propagation if y = 0.
The fact is illustrated in the truth table at Table 5.

The above-mentioned observation establishes the fact that a properly placed
fault can leak the actual unshared input bits from a masked implementation.
This observation is sufficient for bypassing masking countermeasures as we shall
show subsequently in this paper. However, to strongly establish our claim, we
go through several examples before describing a complete attack algorithm.

4.2 Leakage from TI AND Gates

The second example of our involves a TI implemented AND gate. We specifically
focus on a four-share realization of a first-order masked AND gate proposed in [6].
The ANF representation of the implementation is given as:

q0 = (x2 + x3)(y1 + y2) + y1 + y2 + y3 + x1 + x2 + x3

q1 = (x0 + x2)(y0 + y3) + y0 + y2 + y3 + x0 + x2 + x3

q2 = (x1 + x3)(y0 + y3) + y1 + x1

q3 = (x0 + x1)(y1 + y2) + y0 + x0

(2)

Here (x0, x1, x2, x3), (y0, y1, y2, y3) and (q0, q1, q2, q3) represent the 4-shared
inputs and output, respectively. Let us consider a fault injection at the input
share x3 which sets it to 0. An in-depth investigation of the ANF equations
reveals that x3 is multiplied with y1 + y2 and y0 + y3. The leakage due to this
fault will reach the output only when y0 + y1 + y2 + y3 = y = 1. One may
notice that x3 also exists as linear monomial in the ANF expressions. However,
the effect of this linear monomial gets canceled out in the computation of the
actual output bit. Hence the fault effect of this linear term does not hamper the
desired fault propagation. In essence, the TI AND gate is not secured against
the proposed attack model.

TI AND gates are often utilized as constituents for Masked S-Boxes. One
prominent example of this is a compact 4-bit S-Box from [23]. The circuit dia-
gram of the S-Box is depicted in Fig. 5 with 4-shared TI gates. We specifically

630 S. Saha et al.

Table 5. Output status for faulted masked AND gate for different input values. The
variables x and y are used for representing the unshared variables (i.e. x0 +x1 = x and
y0 + y1 = y). C and F denote correct and faulty outputs.

x0 x y0 y r0,1 C/F

0 0 0 0 0 C

0 0 0 1 0 F

0 1 0 0 0 C

0 1 0 1 0 F

0 0 1 1 0 F

0 0 1 0 0 C

0 1 1 1 0 F

0 1 1 0 0 C

1 1 0 0 0 C

1 1 0 1 0 C

1 0 0 0 0 C

1 0 0 1 0 C

1 1 1 1 0 C

1 1 1 0 0 C

1 0 1 1 0 C

1 0 1 0 0 C

x0 x y0 y r0,1 C/F

0 0 0 0 1 C

0 0 0 1 1 F

0 1 0 0 1 C

0 1 0 1 1 F

0 0 1 1 1 F

0 0 1 0 1 C

0 1 1 1 1 F

0 1 1 0 1 C

1 1 0 0 1 C

1 1 0 1 1 C

1 0 0 0 1 C

1 0 0 1 1 C

1 1 1 1 1 C

1 1 1 0 1 C

1 0 1 1 1 C

1 0 1 0 1 C

target the highlighted AND gate in the structure, which is TI implemented. If
we inject the same fault as we did for the TI AND gate example, the fault effect
propagates to the output with the same probability as of the TI AND. This is
because there is no non-linear gate in the output propagation path of this fault.
As a result, we can conclude that even this S-Box leaks. It is worth mentioning
that the choice of the target AND gate is totally arbitrary and, in principle, any
of the TI AND gates depicted in the circuit can be targeted. One may also target
the OR gate based on the same principle. However, the non-controlling input of
OR being 1, the leakage will happen for the input value 0 instead of value 1.

x

y

z

w

a

b

c

d

x

y

4 bit reg

4 bit reg

4 bit reg

4 bit reg

4 bit reg

4 bit reg

1
Single bit fault

Fig. 5. Fault propagation through an S-Box having TI gates. Note that each constituent
AND gate is 4-shared, and thus each wire and register are of 4-bit.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 631

One important practical question is how many of such desired fault locations
may exist for a masked implementation. It turns out there are plenty of such
locations even for the simple TI AND gate implementation. It is apparent that
any of the input shares from (x0, x1, x2, x3) or (y0, y1, y2, y3) can be faulted for
causing leakage. In fact, changing the target input share will enable recovery of
both x and y separately. Another point here is that whether there will always
exist such favorable situations where faulting a share will lead to the leakage of
an unmasked bit. We argue that it will always be the case because the output
of any masking scheme must always satisfy the property of correctness. Putting
it in a different way, the output of the masked AND gate must always result in
q = xy = (x0+x1+x2+x3)(y0+y1+y2+y3). Although shares are never supposed
to be combined during the masked computation, ensuring correctness always
requires that the monomials x3y0 x3y1, x3y2 and x3y3 are computed at some
share during the masked computation (considering x3 to be the fault location).
Hence, irrespective of the masking scheme used, we are supposed to get fault
locations which are exploitable for our purpose (i.e., leaks (y0+y1+y2+y3) = y).
Finding out such locations becomes even easier with our template-based setup
where extensive profiling of the implementation is feasible for known key values.

So far we have discussed regarding the feasibility of leakage for masked AND
gates, and S-Boxes constructed with masked gates. The obvious next step is to
verify our claim for explicitly shared S-Boxes which we elaborate in the next
subsection. As it will be shown, attacks are still possible for such S-Boxes.

4.3 Leakage from Shared S-Boxes

There are numerous examples of TI S-Boxes in the literature. For the sake of illus-
tration, we choose the 4×4 S-Box from the GIFT block cipher [24]. For our pur-
pose, we select the three-share TI implementation of this S-Box proposed in [25].
One should note that the GIFT S-Box is originally cubic. In order to realize a
three-shared TI, the original S-Box function S : GF (2)4 −→ GF (2)4 is broken into
two bijective sub-functions F : GF (2)4 −→ GF (2)4 and G : GF (2)4 −→ GF (2)4,
such that S(X) = F (G(X)). Both F and G are quadratic functions for which
three-share TI is feasible. In [25], it was found that for the most optimized imple-
mentation in terms of Gate Equivalence (GE), F and G should be constructed
as follows:

G(x3, x2, x1, x0) = (g3, g2, g1, g0)
g3 = x0 + x1 + x1x2

g2 = 1 + x2

g1 = x1 + x2x0

g0 = x0 + x1 + x1x0 + x2 + x3

(3)

F (x3, x2, x1, x0) = (f3, f2, f1, f0)
f3 = x1x0 + x3

f2 = 1 + x1 + x2 + x3 + x3x0

f1 = x0 + x1

f0 = 1 + x0

(4)

Here x0 is denotes the LSB and x3 is the MSB. Both G and F are shared
into three functions each denoted as G1, G2, G3 and F1, F2, F3, respectively.
Details of these shared functions can be found in [25]. For our current purpose,

632 S. Saha et al.

Table 6. Output status for faulted masked AND gate for different input values with
bit-flip fault. The variables x and y are used for representing the unshared variables
(i.e. x0 + x1 = x and y0 + y1 = y).

x0 x y0 y r0,1 C/F

0 0 0 0 0 C

0 0 0 1 0 F

0 1 0 0 0 C

0 1 0 1 0 F

0 0 1 1 0 F

0 0 1 0 0 C

0 1 1 1 0 F

0 1 1 0 0 C

1 1 0 0 0 C

1 1 0 1 0 F

1 0 0 0 0 C

1 0 0 1 0 F

1 1 1 1 0 F

1 1 1 0 0 C

1 0 1 1 0 F

1 0 1 0 0 C

x0 x y0 y r0,1 C/F

0 0 0 0 1 C

0 0 0 1 1 F

0 1 0 0 1 C

0 1 0 1 1 F

0 0 1 1 1 F

0 0 1 0 1 C

0 1 1 1 1 F

0 1 1 0 1 C

1 1 0 0 1 C

1 1 0 1 1 F

1 0 0 0 1 C

1 0 0 1 1 F

1 1 1 1 1 F

1 1 1 0 1 C

1 0 1 1 1 F

1 0 1 0 1 C

we only focus on the shares corresponding to the bit g0 of G. The ANF equations
corresponding to this bit are given as follows:

g10 = x3
0 + x3

1 + x3
2 + x3

3 + x2
0x

2
1 + x2

0x
3
1 + x3

0x
2
1

g20 = x1
0 + x1

1 + x1
2 + x1

3 + x1
0x

3
1 + x3

0x
1
1 + x3

0x
3
1

g30 = x2
0 + x2

1 + x2
2 + x2

3 + x1
0x

1
1 + x1

0x
2
1 + x2

0x
1
1

(5)

Here xi = x3
i + x2

i + x1
i for i ∈ {0, 1, 2, 3}, and g0 = g10 + g20 + g30.

We now search for suitable fault locations for our purpose. One such feasible
location is x2

0. One should observe that the leakage due to this fault injection
actually depends upon (x1

1 + x2
1 + x3

1 + 1) = x1 + 1. Hence the fault propagation
will take place in this case while x1 is equal to zero. In a similar fashion, it can be
shown that a fault injection at x2

1 will leak the actual value of x0. One interesting
observation here is that fault injection at any of the shares of an input bit xi is
equivalent to the injection at any other share of the same input. This is because
all of them cause the leakage of the other unshared input bit associated. This is,
in fact, extremely useful from an attacker’s point of view as she may select any
one of them for leaking information.

4.4 Different Fault Models

So far, in this paper, we have mostly utilized stuck-at faults for all our illus-
trations. The attacks are equivalent for stuck-at-0 and stuck-at-1 fault models.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 633

Interestingly, they are also equally applicable while the fault flips the value of the
target bit. To show why it works, we recall the concept of fault activation and
propagation described at the beginning of this work. Fault reaches the output
of a gate from its input only while these two events are satisfied, simultane-
ously. Considering AND gates (and other non-linear gates), the fault activation
depends on specific values at the target input for stuck-at faults (value 0 for
stuck-at 1, and value 1 for stuck-at 0). However, for the bit-flip fault model,
the fault is always active. In other words, in the case of stuck-at faults, the
fault activation event happens with probability 1

2 , whereas, for bit-flip faults,
it happens with probability 1. The fault propagation, however, still depends on
the occurrence of a non-controlling value at other inputs of the gate. Hence,
the main property we exploit for attacking masking schemes (that is, the fault
propagation to the output depends on the value of unmasked bits) still holds for
bit-flip fault models, and attacks are still feasible. In fact, it is found that the
required number of injections become roughly half for bit-flip faults compared
to stuck-at faults. In other words, in a noise-free scenario, one injection per fault
location can recover the target unshared bit for bit-flip faults. To support our
claim, we present the truth table corresponding to the simple first-order masked
AND gate once again in Table 6, this time for a bit flip fault at x0.

4.5 Template Attack on Masked PRESENT: Main Idea

In this subsection, we utilize the concepts developed in the previous subsec-
tions for attacking a complete block cipher implementation. A three-share TI
implementation of PRESENT, with simple redundancy countermeasure, is con-
sidered for our experiments. As for the three-shared TI, we implemented the
lightweight scheme proposed in [17]. Considering the fact that PRESENT S-Box
is also cubic, it is first represented as a combination of two quadratic bijective
mappings F and G. Each of these mappings is then converted to three-shared
TI implementations. Generally, registers are used to interface the outputs of G
and inputs of F . The implementation of the linear mappings is straightforward.
For the sake of completeness, the keys are also masked. As for the fault counter-
measure is concerned, we implemented the most common form of redundancy,
where the redundancy check happens at the final stage just before outputting
the ciphertext. Two separate copies of the masked PRESENT with different
mask values are instantiated as two redundant branches of computation. Upon
detection of a fault, the output is muted or randomized11.

The three-shared ANF equations for F and G functions can be found in [17].
For our purpose, it is sufficient to focus only on the shared implementation of F ,
which is given below. For the sake of illustration, we first present the unshared
version of F (Eq. (6)), and then the shares corresponding to it (Eq. (7)). Note
that, in Eq. (6) x0 denote the LSB and x3 denote the MSB.

11 Actually, our attacks do not depend on this choice and would equally apply for any
detection-type countermeasure.

634 S. Saha et al.

F (x3,x2, x1, x0) = (f3, f2, f1, f0)
f3 = x2 + x1 + x0 + x3x0; f2 = x3 + x1x0; f1 = x2 + x1 + x3x0;
f0 = x1 + x2x0.

(6)

f10 = x2
1 + x2

2x
2
0 + x2

2x
3
0 + x3

2x
2
0

f20 = x3
1 + x3

2x
3
0 + x1

2x
3
0 + x3

2x
1
0

f30 = x1
1 + x1

2x
1
0 + x1

2x
2
0 + x2

2x
1
0

f11 = x2
2 + x2

1 + x2
3x

2
0 + x2

3x
3
0 + x3

3x
2
0

f21 = x3
2 + x3

1 + x3
3x

3
0 + x1

3x
3
0 + x3

3x
1
0

f31 = x1
2 + x1

1 + x1
3x

1
0 + x1

3x
2
0 + x2

3x
1
0

(7)

f12 = x2
3 + x2

1x
2
0 + x2

1x
3
0 + x3

1x
2
0

f22 = x3
3 + x3

1x
3
0 + x1

1x
3
0 + x3

1x
1
0

f32 = x1
3 + x1

1x
1
0 + x1

1x
2
0 + x2

1x
1
0

f13 = x2
2 + x2

1 + x2
0 + x2

3x
2
0 + x2

3x
3
0 + x3

3x
2
0

f23 = x3
2 + x3

1 + x3
0 + x3

3x
3
0 + x1

3x
3
0 + x3

3x
1
0

f33 = x1
2 + x1

1 + x1
0 + x1

3x
1
0 + x1

3x
2
0 + x2

3x
1
0

4.6 Middle Round Attacks

The most interesting question in the current context is how to attack the middle
rounds of a cipher without direct access to the plaintexts or ciphertexts. The
attacks in the first round with known plaintext will become trivial once the
middle round attacks are figured out. Note that, in all of these attacks (even for
the known-plaintext case), we assume the plaintext to be fixed, whereas the masks
vary randomly. The attacker is only provided with the information whether the
outcome is faulty or not, and nothing else. For the case of middle-round attacks,
the value of the fixed plaintext is unknown to the adversary.

Template Construction: The very first step of the attack is template-building.
The attacker is assumed to have complete knowledge of the implementation and
key, and also can figure out suitable locations for fault injection. One critical
question here is how many different fault locations will be required for the attack
to happen. Let us take a closer look at this issue in the context of the shared
PRESENT S-Box. Without loss of generality, let us assume the input share x2

0 as
the fault injection point during the computation of the shares (f10, f20, f30). It
is easy to observe that this fault leaks about the expression (x2

2 +x3
2 +x1

2) = x2.
In a similar fashion the fault location x2

0 during the computation of the shares
(f11, f21, f31) leaks about x3; the location x2

0 during the computation of the
shares (f12, f22, f32) leaks about x1; and the location x2

3 during the computation
of (f13, f23, f33) leaks about x0. Consequently, we obtain the template shown in
Table 7 for independent injections at these selected locations.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 635

Algorithm 5. BUILD TEMPLATE MASK
Input: Masked cipher C, Faults fl0, fl1, · · ·, flh, Number of masked executions per input M
Output: Template T

T := ∅
w := GET SBOX SIZE() � Get the width of the S-Box
for (0 ≤ x < 2w) do

Ft := ∅
for each fl ∈ {fl0, fl1, · · ·, flh} do

V := ∅
for mind ≤ M do

m := GEN MASK() � Generate fresh mask for each execution

yf := C(x, m)fl � Inject fault in one copy of the S-Box for each execution
m := GEN MASK()
yc := C(x, m)
if DETECT FAULT(yf, yc) == 1 then � Fault detection function

V := V ∪ {1}
else

V := V ∪ {0}
end if

end for
if V ∼ D1 then

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for
T := T ∪ {(Ft, x)}

end for
Return T

The template construction algorithm is outlined in Algorithm 5. The aim is to
characterize each S-Box input (denoted as x in the Algorithm 5) with respect to
the fault locations. The plaintext nibble is kept fixed in this case during each fault
injection campaign, while the mask varies randomly. One important observation
at this point is that the fault injection campaign has to be repeated several times
with different random mask for each valuation of an S-Box input. To understand
why this is required, once again, we go back to the concept of fault activation
and propagation. Let us consider any of the target fault locations; for example,
x2

0. The expression which leaks information is (x2
2 + x3

2 + x1
2). Now, for the fault

to be activated in a stuck-at fault scenario, x2
0 must take a specific value (0 or

1 depending on the fault). Since all the shared values change randomly at each
execution of the cipher, we can expect that the fault activation happens with
probability 1

2
12. Once the fault is activated, the propagation happens depending

on the value of the other input of the gate which actually causes the leakage.
In order to let the fault activate, the injection campaigns have to run several
times, corresponding to a specific fault location for both the template building
and online attack stage. Given the activation probability of 1

2 , 2 executions
(injections) with different valuations at x2

0, would be required on average.
As a consequence of performing several executions of the cipher corresponding

to one fault location, we are supposed to obtain a set of suggestions for the
valuation of the bit to be leaked. For example, for two separate executions we

12 For bit-flip faults the fault activation will happen with probability 1.

636 S. Saha et al.

Table 7. Template for attacking TI PRESENT (middle round). The black cells indicate
a faulty outcome and gray cells represent correct outcome.

fl0 = x2
0

(f10,

f20,

f30)

fl1 = x2
0

(f11,

f21,

f31)

fl2 = x2
0

(f12,

f22,

f32)

fl3 = x2
3

(f13,

f23,

f33)

State

fl0 = x2
0

(f10,

f20,

f30)

fl1 = x2
0

(f11,

f21,

f31)

fl2 = x2
0

(f12,

f22,

f32)

fl3 = x2
3

(f13,

f23,

f33)

State

0 8

1 9

2 a

3 b

4 c

5 d

6 e

7 f

may get two separate suggestions for the value of (x2
2 + x3

2 + x1
2). If the fault

at x2
0 is not activated, the suggestion will always be 0. However, if the fault

is activated, the suggestion reflects the actual value of x2. There is no way of
understanding when the fault at x2

0 gets activated. So, a suitable technique has
to be figured out to discover the actual value of x2 from the obtained set of
values. Fortunately, the solution to this problem is simple. Let us consider the
set of observables corresponding to a specific fault location as a random variable
V taking values 0 or 1. The value of V is zero if no fault propagates to the output
and 1, otherwise. Mathematically, V can be assumed as a Bernoulli distributed
random variable. Now, it is easy to observe that if the actual value to be leaked is
0, V will never take a value 1 (that is, the fault never propagates to the output).
Therefore, the probability distribution of V for this case can be written as:

D0 : P[V = 0] = 1 and P[V = 1] = 0 (8)

If the value to be leaked is 1, the probability distribution of V becomes13:

D1 : P[V = 0] =
1
2

and P[V = 1] =
1
2

(9)

The template construction procedure becomes easy after the identification of
these two distributions. More precisely, if V ∼ D0 the corresponding location in
the template takes a value 0. The opposite thing happens for V ∼ D1.

13 In the case of bit-flip faults D1 : P[V = 0] = 0 and P[V = 1] = 1, as the fault always
gets activated in this case.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 637

Algorithm 6. MATCH TEMPLATE MASK
Input: Protected cipher with unknown key Ck, Faults fl0, fl1, · · ·, flh, Template T
Output: Set of candidate correct states xcand

xcand := ∅ � Set of candidate states
w := GET SBOX SIZE()
Ft := ∅
for each fl ∈ {fl0, fl1, · · ·, flh} do

V := ∅
for mind ≤ M do

O := (Ck(P))fl � Inject fault for each masked execution
if (O == 1) then � Fault detected

V := V ∪ {1}
else

V := V ∪ {0}
end if

end for
if V ∼ D1 then

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for
xcand := xcand ∪ {T (Ft)}
Return xcand

Online Phase: The online phase of the attack algorithm is outlined in
Algorithm 6. Fundamentally it is similar to the template construction phase.
We keep the plaintext fixed and run the fault campaigns at pre-decided loca-
tions. The templates are decided by observing the output distributions of the
random variable V as described in the previous section. At the end of this step,
one round of the cipher is recovered. In order to recover the complete round key,
recovery of two consecutive rounds is essential. Recovery of another round is
trivial with this approach, and therefore, a round key can be recovered uniquely.

Number of Faults: In the case of PRESENT, we use 4 fault locations, and each
of them requires several fault injections with the mask changing randomly. The
number of injections required for each of these locations depends upon the num-
ber of samples required to estimate the distribution of the variable V accurately.
In an ideal case, two fault injections on average should reveal the actual leak-
age for stuck-at faults. Experimentally, we found that 4–5 injections on average
are required to reveal the actual distribution of V14. The increased number is
caused by the fact that an entire mask of 128-bit is generated randomly in our
implementation and the activation of an injected fault happens with a slightly
different probability than expected. Assuming, 5 injections required per fault
location, the total number of fault requirements for a nibble becomes roughly
20. Therefore, around 32 × 20 = 640 faults are required to extract the entire
round key of the PRESENT cipher (For bit-flip faults the count is 128 in a
noise-free case.)15. Note that, in practical experiments, these numbers may rise
14 For bit-flip faults, the number of injections per location is 1.
15 Given the fact, that PRESENT uses an 80-bit master key, and 64-bit round keys,

the remaining keyspace after one round key extraction would be of size 216, which
is trivial to search exhaustively.

638 S. Saha et al.

given the fact that some of the injections may be unsuccessful or the fault may
hit wrong locations. In the next subsection, we show that the FTA is robust
against such random noise in fault injection.

4.7 Handling Noisy Fault Injections

Noise in fault injection is a practical phenomenon. The primary sources of noise
are the injection instruments and certain algorithmic features. The manifestation
could be either a missed injection or injection at an undesired location. However,
in both cases, the observable distribution may directly get affected. In this sub-
section, we investigate how noise in fault injection affects the attacks proposed
in this work. For simplicity, here, we shall mainly consider the scenario where
noise is random and uncorrelated with the actual information. A different noise
scenario (where the noise is algorithmic and correlated with the signal), in the
context of infective countermeasures, has been discussed in the supplementary
material of the extended version.

The main reason behind the noise affecting the observable is that wherever
a fault happens, it propagates to the output. As a result, the fault patterns
for template matching cannot be constructed properly during the online phase.
However, given the fact that a similar device is available for profiling in the
offline phase, the noise distribution can be characterized quite efficiently, which
eventually makes the attacks successful. As described in Sect. 4.6, for a specific
fault location inside the S-Box the observable is a Bernoulli distributed random
variable (V). The random variable corresponding to the noisy version of this
distribution is denoted as V ′

. In order to make the attacks happen, we need
to decide actual fault patterns by compensating the effect of noise. As already
shown in Eq. (8), and (9), the noise-free distributions D0 and D1 only depend
upon the leaked values. The main task there was to decide whether the noise-free
random variable for the observable V is distributed according to D0 or D1.

Let us now characterize the noisy distribution. For convenience, let us define
another random variable Vn denoting the distribution of the noise. The noisy
random variable V ′

is then distributed as either of D′
0 or D′

1 defined as follows:

D′
0 :P [V ′

= 1] = psig × P [V = 1|x = 0] + (1 − psig) × P [Vn = 1]

P [V ′
= 0] = 1 − P [V ′

= 1]
(10)

and

D′
1 :P [V ′

= 1] = psig × P [V = 1|x = 1] + (1 − psig) × P [Vn = 1]

P [V ′
= 0] = 1 − P [V ′

= 1]
(11)

Here psig represents the signal probability, which can be characterized during
the template building phase along with Vn. The random variable x denotes the
leaking intermediate (one component of the fault pattern). The decision making
procedure for fault pattern recovery now can be stated as:

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 639

Decide the outcome (one component of the target fault pattern) to be 0 (no fault
propagation) if V ′

∼ D′
0, and to be 1, otherwise.

Let us now try to see how the fault patterns can be recovered from the noisy
distributions. The expected value µVn

of Vn (which is nothing but P [Vn = 1])
is normally distributed by Central Limit Theorem. This makes the mean of
D′

0 (denoted as Dμ0) and D′
1 (Dμ1) normally distributed as well. In order to

make the abovementioned decision process work with high confidence, both the
means should be accurately estimated, and their distributions should overlap as
less as possible. We now state our detection procedure for the fault patterns.
Corresponding to each fault location, we perform the fault injection campaign
for several different mask values and gather a sufficient number of observations
for the noisy observable random variable V ′

. The mean of V ′
is next estimated

as µV′ . In the next step, we estimate the probability of µV′ belonging to any of
the two distributions Dμ0 or Dμ1 . More precisely, we calculate the following:

P [Dμ0 | µV′] and P [Dμ1 | µV′] (12)

The outcome (one component of the target fault pattern) is assumed to take the
value for which the probability is the highest.

In order to consider random noise distribution, here we set P [Vn = 1] =
P [Vn = 0] = 0.5 (ref. Eq. (10) and (11)) without loss of generality. However, the
proposed method also works for other noise distributions. Both signal probability
psig and the noise distribution are considered to be known from the initial profil-
ing and template building phase. In the online phase, the mean of the collected
observables are calculated (per fault location), and its probability for belonging
to any of Dμ0 or Dμ1 is calculated. The higher among these two probabilities
give us the correct answer corresponding to that fault location. Once the entire
fault pattern is recovered, the intermediate state can be found. It is observed
that by increasing the number of injections per location at the online stage, it is
possible to recover the desired states accurately even for very low signal values.
Figure 6 presents the variation of fault injection count (per location) with the
noise probability (1 − psig). Evidently, low signal probability requires a higher
number of injections.

Fig. 6. Variation in number of injections with respect to noise probability. 100 inde-
pendent experiments (with different key-plaintext pairs) have been performed for each
probability value, and the median is plotted.

640 S. Saha et al.

5 Practical Validation

The applicability of the proposed FTA attacks has been validated for both hard-
ware and software implementations. Our first validation experiment performs
the FTA attack on a hardware implementation of PRESENT having first-order
TI [17] (and temporal redundancy-based fault detection) with Electromagnetic
(EM) pulse-based fault injection. We found that EM-induced faults are precise
enough to perform the FTA. Moreover, the EM injection does not require chip
de-packaging and explicit access to the clock/voltage lines. Our target platform
is an FPGA implementation of the protected PRESENT. We assume that the
adversary has complete access to one of the FPGA implementations on which she
can construct the fault templates. The target also belongs to the same FPGA
family, and the configuration bit file of the design is the same one. The FTA
attack we perform in this case is the one described in Sect. 4.6. In order to real-
ize the desired faults, we target the internal registers situated at the inputs of
the F function of the shared PRESENT S-Box.

The hardware experiment in this context is detailed in the supplementary
material of the extended version. The faults injected in this experiment were bit
faults targeted to precise locations within a register. One of the key observations
is that different bit locations within a register can be targeted by vary-
ing the fault injection parameters (especially the location of the EM
probe over the target chip). Moreover, the generated faults are repeatable in
the sense that they can induce the same fault effect arbitrary number of times at
a given location with the injection parameters kept fixed. Indeed there are some
noise during injection. However, the noise effect can be undone by increasing
the number of observations at a specific location. During the profiling phase the
noisy injections were detected assuming the knowledge of the key and masks, and
the probability of the noise is estimated as the fraction of noisy injections among
the total samples collected at a specific fault location. Perhaps the most crucial
property of the fault injections is their reproducability. By reproducability,
we mean that the faults can be regenerated on another device from
the same family with the same injection parameters found during the
template-building phase. This property has been validated practically in our
experiments on FPGA platforms. Finally, we were able to perform complete
key recovery from the hardware platform with 3150–3300 faults for different
plaintext-key pairs.

The second example of ours performs simulated fault injection for a pub-
licly available masked implementation of AES from [26], which uses Trichina
Gates [27]. One should note that profiling of the target implementation to detect
desired fault locations is an important factor in FTA attacks. This particular
example demonstrates how to perform such profiling for a relatively less under-
stood public implementation. The target implementation of ours is targeted
for 32-bit Cortex M4 platform with Thumb-2 instruction set. Since the origi-
nal implementation, in this case, lacks fault countermeasure, we added simple
temporal redundancy, that is the cipher is executed multiple times, and the
ciphertexts are matched before output. In all of our experiments, the observable

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 641

is a string of 0, 1 bits with its corresponding interpretations. Further details on
this validation experiment can be found in the extended version of this paper.

6 Conclusion

Modern cryptographic devices incorporate special algorithmic tricks to throttle
both SCA and FA. In this paper, we propose a new class of attacks which
can efficiently bypass most of the state-of-the-art countermeasures against SCA
and FA even if they are incorporated together. The attacks, abbreviated as
FTA, are template-based and exploit the characteristics of basic gates under the
influence of faults for information leakage. Although the fault model is similar
to the SIFA attacks, the exploitation mechanism is entirely different from SIFA.
Most importantly, FTA enables attacks on middle rounds of a protected cipher
implementation, which is beyond the capability of SIFA or any other existing
FA technique proposed so far. Middle round attacks without explicit knowledge
of plaintexts and ciphertexts may render many well-known block cipher-based
cryptographic protocols vulnerable. Practical validation of the attacks has been
shown for an SCA-FA protected hardware implementation of PRESENT and a
publicly available protected software implementation of AES. A comprehensive
discussion on the impact of FTA over certain other classes of FA countermeasures
is presented in the extended version of this paper.

Several future directions can be pointed out at this point to enhance FTA
attacks. One feature of the current version of the attack is that it prefers bit
faults. Although repeatable and reproducable bit faults are found to be prac-
tical, one potential future work could be to investigate if this requirement can
be relaxed further. Another interesting exercise is to analyze the recently pro-
posed SIFA [28] countermeasures. An FTA adversary, enhanced with the power
of side channel analysis should be able to exploit some basic features of such
countermeasures (such as correction operation) for potential information leak-
age. One future application would be to make these attacks work for secured
public key implementations. Another potential future work is to figure out a
suitable countermeasure against FTA attacks.

Acknowledgements. Debdeep Mukhopadhyay would like to acknowledge Synopsys
Inc, USA (for partial support through the grant entitled “Formal Methods for Phys-
ical Security Verification of Cryptographic Designs Against Fault Attacks”), Defence
Research and Development Organisation (DRDO), India (for partial support through
the grant entitled, “Secure Resource-constrained Communication Framework for Tac-
tical Networks using Physically Unclonable Functions”), and Department of Science
and Technology (DST), Government of India (for partial support through the Swarna-
jayanti Fellowship grant).

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

https://doi.org/10.1007/3-540-36400-5_3

642 S. Saha et al.

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052259

4. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

5. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 37

6. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

7. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

8. Guo, X., Mukhopadhyay, D., Jin, C., Karri, R.: Security analysis of concurrent
error detection against differential fault analysis. J. Cryptogr. Eng. 5(3), 153–169
(2014). https://doi.org/10.1007/s13389-014-0092-8

9. Kulikowski, K., Karpovsky, M., Taubin, A.: Robust codes for fault attack resistant
cryptographic hardware. In: FDTC, pp. 1–12 (2005)

10. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with ran-
domization. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
93–111. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3 6

11. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 302–332. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 11

12. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas,
R.: SIFA: exploiting ineffective fault inductions on symmetric cryptography. In:
TCHES, pp. 547–572 (2018)

13. Dobraunig, C., Eichlseder, M., Gross, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked AES with fault countermeasures. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp.
315–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 11

14. Zhang, F., et al.: Persistent fault analysis on block ciphers. In: TCHES, pp. 150–172
(2018)

15. Pan, J., Zhang, F., Ren, K., Bhasin, S.: One fault is all it needs: breaking higher-
order masking with persistent fault analysis. In: 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 1–6. IEEE (2019)

16. Niemi, V., Nyberg, K.: UMTS Security. Wiley, Hoboken (2006)
17. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel

resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011). https://
doi.org/10.1007/s00145-010-9086-6

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/s13389-014-0092-8
https://doi.org/10.1007/978-3-662-44709-3_6
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/s00145-010-9086-6

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 643

18. Korkikian, R., Pelissier, S., Naccache, D.: Blind fault attack against SPN ciphers.
In: FDTC, pp. 94–103. IEEE (2014)

19. Yen, S.M., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)

20. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 320–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15031-9 22

21. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

22. ISO/IEC 29192–2:2012: information technology-security techniques-lightweight
cryptography-part 2: block ciphers. https://www.iso.org/standard/56552.html

23. Ullrich, M., De Canniere, C., Indesteege, S., Küçük, Ö., Mouha, N., Preneel, B.:
Finding optimal bitsliced implementations of 4× 4-bit S-boxes. In: SKEW 2011
Symmetric Key Encryption Workshop, Copenhagen, Denmark, pp. 16–17 (2011)

24. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 16

25. Jati, A., Gupta, N., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold
implementations of GIFT : a trade-off analysis. IEEE Trans. Inf. Forensics Secur.
15, 2110–2120 (2020)

26. Masked-AES-implementation. https://github.com/Secure-Embedded-Systems/
Masked-AES-Implementation

27. Trichina, E.: Combinational logic design for AES subbyte transformation on
masked data. IACR Cryptology ePrint Archive 2003/236 (2003)

28. Saha, S., Jap, D., Basu Roy, D., Chakraborty, A., Bhasin, S., Mukhopadhyay, D.:
A framework to counter statistical ineffective fault analysis of block ciphers using
domain transformation and error correction. IEEE Trans. Inf. Forensics Secur. 15,
1905–1919 (2020)

https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-540-74735-2_31
https://www.iso.org/standard/56552.html
https://doi.org/10.1007/978-3-319-66787-4_16
https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation
https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation

Security of Hedged Fiat–Shamir
Signatures Under Fault Attacks

Diego F. Aranha1(B), Claudio Orlandi2(B), Akira Takahashi2,
and Greg Zaverucha3

1 Department of Engineering, DIGIT, Aarhus University, Aarhus, Denmark
dfaranha@eng.au.dk

2 Department of Computer Science, DIGIT, Aarhus University, Aarhus, Denmark
{orlandi,takahashi}@cs.au.dk

3 Microsoft Research, Redmond, USA
gregz@microsoft.com

Abstract. Deterministic generation of per-signature randomness has
been a widely accepted solution to mitigate the catastrophic risk of ran-
domness failure in Fiat–Shamir type signature schemes. However, recent
studies have practically demonstrated that such de-randomized schemes,
including EdDSA, are vulnerable to differential fault attacks, which enable
adversaries to recover the entire secret signing key, by artificially provok-
ing randomness reuse or corrupting computation in other ways. In order
to balance concerns of both randomness failures and the threat of fault
injection, some signature designs are advocating a “hedged” derivation of
the per-signature randomness, by hashing the secret key, message, and a
nonce. Despite the growing popularity of the hedged paradigm in practical
signature schemes, to the best of our knowledge, there has been no attempt
to formally analyze the fault resilience of hedged signatures.

We perform a formal security analysis of the fault resilience of signa-
ture schemes constructed via the Fiat–Shamir transform. We propose a
model to characterize bit-tampering fault attacks, and investigate their
impact across different steps of the signing operation. We prove that, for
some types of faults, attacks are mitigated by the hedged paradigm, while
attacks remain possible for others. As concrete case studies, we then apply
our results to XEdDSA, a hedged version of EdDSA used in the Signal mes-
saging protocol, and to Picnic2, a hedged Fiat–Shamir signature scheme
in Round 2 of the NIST Post-Quantum standardization process.

1 Introduction

Deterministic Signatures and Fault Attacks. Some signature schemes require a
fresh, secret random value per-signature, sometimes called a nonce. Nonce misuse
is a devastating security threat intrinsic to these schemes, since the signing key
can be computed after as few as two different messages are signed using the same
value. The vulnerability can result from either programming mistakes attempt-
ing to implement non-trivial cryptographic standards, or faulty pseudo-random
number generators. After multiple real-world implementations were found to
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 644–674, 2020.
https://doi.org/10.1007/978-3-030-45721-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_23

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 645

be surprisingly vulnerable to this attack [22,36] researchers and practitioners
proposed deterministic signature schemes, such as EdDSA [16], as a counter-
measure, in which per-signature randomness is derived from the message and
secret key as a defense-in-depth mechanism. However, it has been shown that
simple low-cost fault attacks during the computation of the derandomized sign-
ing operation can leak the secret key by artificially provoking nonce reuse or by
corrupting computation in other ways [3,7,9,68]. Recent papers have experimen-
tally demonstrated the feasibility of these attacks [62,66,67]. Moreover, [23] and
[64] extended such fault attacks to exploit deterministic lattice-based signature
schemes among round two candidates of the NIST Post-Quantum Cryptography
Standardization Process [2], where resistance to side-channel attacks is a design
goal. Despite these attacks, deterministic signature generation is still likely a
positive outcome in improving security, since fault attacks are harder to mount.

Fault Resilience of Hedged Signatures. In order to balance concerns of both nonce
reuse and the threat of fault injection, some signature designs are advocating
deriving the per-signature randomness from the secret key sk, message m, and
a nonce n. The intention is to re-introduce some randomness as a countermea-
sure to fault injection attacks, and gracefully handle the case of poor quality
randomness, to achieve a middle-ground between fully-deterministic and fully-
probabilistic schemes. We call constructions following this paradigm hedged sig-
natures. Despite the growing popularity of the hedged paradigm in practical
signature schemes (such as in XEdDSA, VXEdDSA [61], qTESLA [17], and
Picnic2 [72]), to the best of our knowledge, there has been no attempt to for-
mally analyze the fault resilience of hedged signatures in the literature. While
the hedged construction intuitively mitigates some fault attacks that exploit the
deterministic signatures, it does add a step where faults can be injected, and
it has not been shown if faults to the hedging operation allow further attacks,
potentially negating the benefit. Therefore, we set out to study the following
question within the provable security methodology:

To what extent are hedged signatures secure against fault attacks?

Concretely, we study fault attacks in the context of signature schemes con-
structed from identification schemes using the Fiat–Shamir transform [40]. We
propose a formal model to capture the internal functioning of signature schemes
constructed in the hedged paradigm, and characterize faults to investigate their
impact across different steps of the signature computation.

We prove that for some types of faults, attacks are mitigated by the hedged
paradigm, while for others, attacks remain possible. This provides important
information when designing fault-tolerant implementations. We then apply our
results to hedged EdDSA (called XEdDSA) and the Picnic2 post-quantum sig-
nature scheme [72], both designed using the hedged construction. The XEdDSA
scheme is used in the Signal protocol [27] which is in turn used by instant mes-
saging services such as WhatsApp, Facebook Messenger and Skype.

Threat Model. We consider a weaker variant of the standard adversary assumed
in the fault analysis literature [50], who is typically capable of injecting a fault
into an arbitrary number of values. Our adversary is capable of injecting a single-
bit fault each time a signature is computed. We further restrict the faults to be

646 D. F. Aranha et al.

injected at the interfaces between the typical commit, challenge, and response
phases of Fiat–Shamir signatures, i.e., only those function inputs and outputs
can be faulted. This models transient faults injected into registers or memory
cells, but does not fully capture persisting faults that permanently modify values
in key storage, voltage glitches to skip instructions or micro-architectural attacks
to modify executed instructions (such as RowHammer and variants [56]).

We argue that, even if our model does not capture all possible fault attacks,
it provides a meaningful abstraction of a large class of fault attacks, and thus our
analysis provides an important first step towards understanding the security of
hedged signatures in the presence of faults. This way, designers and implementers
can focus on protecting the portions of the attack surface that are detected as
most relevant in practice. We observe that the effects of fault attacks found in
the literature targeting deterministic signatures can be essentially characterized
as simple bit-tampering faults on function input/output, even though some of
actual experiments cause faults during computation [23]. Moreover, an abstract
model is needed to prove general results, and the general functions common to
all Fiat–Shamir signatures are a natural candidate for abstraction.

We consider two single-bit tampering functions to set or flip individual bits,
respectively: flip biti(x) to perform a logical negation of the i-th bit of x, and
set biti,b(x) to set the i-th bit of x to b. This captures both stuck-at and bit-flip
fault injection attacks [51], introduced as data flows through the implementation.
Such attacks are practically targeted at various components of the device, e.g.,
memory cells, processor registers, or data buses.

1.1 Our Contributions

A New Security Model for Analyzing Fault Attacks. We establish a formal secu-
rity model tailored to Fiat–Shamir type signatures (hedged, deterministic or
fully probabilistic). We survey the literature on fault attacks, showing that our
model captures many practical attacks. As a first step, we abstract real-world
hedged signature schemes, basing our formalization on Bellare and Tackmann’s
nonce-based signatures [15] and Bellare, Poettering and Stebila’s de-randomized
signatures [14]. We call this security notion unforgeability under chosen message
and nonce attacks UF-CMNA. In this security experiment, when submitting a
message to the signing oracle, the adversary may also choose the random input
to the hedged extractor, a function that derives the per-signature randomness
from a nonce, the secret key, and the message.

Then we extend UF-CMNA to include resilience to fault attacks. In this secu-
rity experiment the adversary plays a game similar to the UF-CMNA game, but
the signing oracle also allows the attacker to specify a fault to be applied to a
specific part of the signing algorithm. We identify eleven different fault types
that the adversary can apply to the signing algorithm, and we denote them by
f0, . . . , f10. For example, fault type f1 applies set bit or flip bit to the secret
key input to the hedged extractor. This notion is called unforgeability under
faults, chosen message and nonce attacks, and is denoted F -UF-fCMNA where
F is a set of fault types.

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 647

HE Com H Resp CSF
sk
n

m

pk

σ

�

�

ρ a

St �

e z

Fig. 1. Overview of our results for hedged Fiat–Shamir type signature schemes. ✓

indicates security against 1-bit fault on the corresponding wire value, and ✗ indicates
an attack or counterexample. A � (resp. �) indicates that security only holds for the
schemes derived from subset-revealing ID (resp. input-delayed ID) protocols. The func-
tion components HE,Com,H,Resp, and CSF stand for hedged extractor, commitment,
hash function, response, and canonical serialization function, respectively (see Sects. 2
and 3 for the formal definitions).

Fault Resilience of Hedged Fiat–Shamir Signatures. We then prove that hedged
Fiat–Shamir signature schemes are secure against attacks using certain fault
types. Of the eleven fault types in our model, we found that the generic hedged
Fiat–Shamir signature scheme is resilient to six of them (summarized in Fig. 1).
As our model gives the attacker nearly full control of the RNG by default,
our main results indicate that the hedged scheme can resist additional faults
even in this (usually dire) scenario. The only constraint is that message-nonce
pairs do not repeat as otherwise the scheme degenerates to a pure deterministic
construction and attacks become trivial. When the underlying ID scheme has
an additional property that we call subset revealing, the corresponding hedged
signature scheme is secure against attacks that use eight of the eleven fault
types. Overall, our results give a full characterization of which fault attacks
are mitigated as intended by the hedged construction, and which fault attacks
remain. Our conclusion is that hedging is never worse than the deterministic
construction with respect to faults, plus it has the additional benefit of hedging
against poor randomness.

Fault Resilience of XEdDSA and Picnic2. We use the Schnorr signature scheme
throughout the paper as an example. As an application of our results, we show
that hedged Schnorr resists attacks for six of the eleven fault types in our
model. One implication is that the hedged scheme XEdDSA does provide better
resistance to fault attacks than (deterministic) EdDSA. In particular, XEdDSA
resists all fault injection attacks against EdDSA described in the literature that
rely on nonce reuse without skipping nonce generation entirely [3,9,62,66,67].
We also show to what extent the Picnic2 signature scheme is secure against the

648 D. F. Aranha et al.

fault attacks in our model. Because it is subset-revealing, resistance to eight of
the eleven fault types is immediately established by our results for generic ID
schemes. For the remaining three, we prove security for one (using specific details
of Picnic2), and show attacks for the other two.

1.2 Related Work

To the best of our knowledge, ours is the first work considering fault attacks on
hedged constructions. However, the modeling and construction of secure cryp-
tographic schemes in the presence of faults or tampering attacks has received
plenty of attention in recent years. We survey some of this work below. Related
work on fault attacks to deterministic signature schemes is given in Sect. 2.3.

De-randomized and Hedged Constructions. Bellare and Tackmann [15] studied
cryptography that is hedged against randomness failures. They also describe
the “folklore construction”, where the signing key and message to be signed
are used to derive the per-signature randomness, and additional randomness
may or may not be included in the derivation. Schnorr signatures with this
construction have been analyzed by M’Raihi et al. [59]. A generic version of the
folklore derandomization construction was proven UF-CMA secure by Bellare,
Pottering and Stebila [14]. Other works on hedged cryptography include [65]
and [11,12,19,47] when considering hedged public-key encryption in particular.

Fault Attacks and Tamper-Resilient Signatures. Tamper-resilient cryptography
has received plenty of attention, both in the context of theoretical and practical
cryptographic research, dating back at least to the early paper of Boneh, Demillo
and Lipton [20] considering fault attacks on RSA signatures (here it is noted
that some attacks fail when a random padding is used, since it ensures that the
same message is never signed twice). Later Coron and Mandal [28] proved that
RSA-PSS is protected against random faults, and Barthe et al. [10] extends this
to non-random faults as well. All of the above works contain examples of how
randomization improves the security of signature schemes against fault attacks
(in a provable way).

Other early work includes Gennaro et al. [43] that provides an early frame-
work for proving tamper resilience, and Ishai et al. [49] which proposes generic
transformation for tamper-resilient circuits. In a later work by Faust et al. [39]
a different and incomparable model was considered, which in particular guaran-
tees security against tampering with arbitrary number of wires. We note that
our model is similar to theirs since it also considers adversaries that are allowed
to flip or reset each bit in the circuit. Similar ideas are also used in practice when
considering fault resilient masking (e.g., [32]).

In our model the adversary is only allowed to tamper with part of the
computation. Similar limitations have been considered before in the literature
to circumvent impossibility results, in particular in the so called split-state
model [35]. Several constructions have been proposed in this model including:
non-malleable codes (Dziembowski, Pietrzak and Wichs [35]), signature schemes
(Faonio et al. [37]), and more (Liu and Lysyanskaya [57]).

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 649

Other related work on tamper resilient signature schemes includes [6,31,38,
42]. Most of this previous work has focused on constructing novel tamper resilient
signature schemes, or understanding the limits of tamper resilience, in theory.
Instead, we focus on analyzing the tamper resilience of a popular transformation
used in practice.

Related key attacks (RKA) can be seen as a special case of tampering. Bellare and
Kohno [13] initiated the formal study of related-key attacks. Morita et al. [58]
analyzed RKA security of Schnorr signatures.

Ineffective Fault Attacks (IFA) and Countermeasures. In this paper we consider
not only flip bit fault attacks, but also set bit faults for the following rea-
son. Clavier [26] proposed ineffective fault attacks (IFA), in which the adversary
forces a certain intermediate bit value to be stuck at 0 or 1, and tries to recover
the secret internal state by observing whether the correct output is obtained
(i.e., the injected fault was ineffective). IFA is very powerful, and works even
if the target algorithm contains typical countermeasures against fault attacks,
such as a correctness check after redundant operations [8] and the infective coun-
termeasure [71]. IFA has been recently superseded by statistical ineffective fault
attacks (SIFA) [33,34], that use statistical analysis to enable mounting IFA with
low-precision bit-fixing, random or bit-flip faults. Daemen et al. [29] provided
several practical countermeasures against SIFA, and their abstract adversarial
model is close to ours in the sense that the adversaries are allowed to flip or set
a single bit wire value in the circuit per query, though their security argument
does not follow the provable security methodology.

Concurrent Work. An independent work by Fischlin and Günther [41] proposes
a memory fault model for digital signatures and authenticated encryption. Their
main result about a generic hedged signature scheme is two-fold: it is provably
secure when the nonce is fully faulted, or when the message, nonce, and hedged
extractor output are all differentially faulted in each signing query. The former
essentially coincides with our Lemma 3, but with a different proof technique.
For the latter, the outcome diverges because the adversarial power in our model
is different in the following ways: 1. the adversary can locally inject a fault into
sk as a hedged extractor input, 2. the adversary can inject a bit-fixing fault, not
only a bit-flip (i.e., differential) fault, 3. the adversary has nearly full control
over the nonce, instead of assuming nonces are randomly generated and subject
to bit flips later on, but 4. the adversary cannot inject multi-bit faults into
multiple variables in a query. We additionally consider fault attacks on other
various intermediate values inside the signing operation. Our treatment is then
more fine-grained and successfully captures typical existing attacks on deployed
deterministic schemes (like attacks that fault the challenge hash), while [41] does
not. The upside of the generic approach in [41] is that the result applies to more
signature schemes.

650 D. F. Aranha et al.

Gen(1λ)

(pk, sk) ← IGen(1λ)

return (pk, sk)

H(x)

If HT[x] = ⊥ :

HT[x] ←$ DH

return HT[x]

Sign(sk, m; ρ)

(a, St) ← Com(sk; ρ)

e ← H(a, m, pk)

z ← Resp(sk, e, St)

σ ← CSF(a, e, z)

return σ

Verify(pk, m, σ)

(a, e, z) ← CDF(σ, pk)

return V(a, e, z, pk) ?= 1

∧ H(a, m, pk) ?= e

Fig. 2. The Fiat–Shamir transform applied to canonical ID with serialization CSF,
to construct the signature scheme FS[ID,CSF] = (Gen, Sign,Verify). The function H :
{0, 1}∗ → DH is constructed with a cryptographic hash function which we model as a
random oracle.

2 Preliminaries

Notation. The notation | · | denotes two quantities depending on the context:
|S| denotes the cardinality of a set S, and |s| denotes the length of a bit string
s. The notation x ←$ X means that an element x is sampled from the set X
uniformly at random. We often use the notation [n] as a short hand for a set
{1, . . . , n} where n ∈ N. When we explicitly mention that an algorithm A is
randomized, we use the notation A(x; ρ) meaning that it is executed on input x
with random tape ρ. We also remark that if the lemmas/theorems are marked
with “(informal)”, then it means that asymptotic bounds are omitted. The full
version [5] includes more rigorous statements for all of them.

Fiat–Shamir type Signature Schemes. This paper studies the robustness of Fiat–
Shamir type signature schemes against fault attacks. The details of these algo-
rithms appear in the full version. The Schnorr signature scheme [69] is one
of the most well-known signature schemes using the Fiat–Shamir transform,
and EdDSA and XEdDSA are essentially deterministic and hedged variants
of Schnorr. The Picnic2 signature scheme [72] is constructed by applying the
Fiat–Shamir transform to a three-round zero-knowledge proof system by Katz
et al. [52], which follows so-called “MPC-in-the-head” paradigm [48]. The hedg-
ing strategy we study in this paper is recommended in its specification.

2.1 Definitions

In this subsection we recall several basic definitions related to digital signa-
tures constructed from the identification protocols. Since this paper deals with
Fiat–Shamir signatures, we always assume that the signing algorithm of digital
signature schemes takes some randomness as input.

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 651

We now define a three-round public-coin identification protocol, the basis of
Fiat–Shamir-type signatures. The definition below essentially follows the formal-
ization of [54] unless explicitly stated.

Definition 1 (Canonical Identification Protocol). A canonical identifica-
tion protocol, denoted by a tuple of algorithms ID = (IGen,Com,Resp,V), is a
three-round protocol defined as follows:

– IGen(1λ), where λ is a security parameter, outputs a key pair (sk, pk). In the
context of identification protocols, pk and sk are sometimes called statement
and witness. We assume that IGen defines a hard-relation, and that pk defines
the parameters of the scheme including: randomness space Dρ, commitment
space A, challenge space DH and response space Z.

– Prover invokes a committing algorithm Com on a secret key sk and random-
ness ρ ∈ Dρ as input, and outputs a commitment a ∈ A and state St.

– Verifier samples a challenge e from the challenge space DH ⊆ {0, 1}∗.
– Prover executes a response algorithm Resp on (sk, e, St) to compute a response

z ∈ Z ∪ {⊥}, where ⊥ /∈ Z is a special symbol indicating failure. On top of
this standard formalization, we further require that Resp returns ⊥ whenever
it receives a malformed challenge ẽ /∈ DH , as such a simple sanity check is
performed in most practical implementations.

– Verifier executes a verification algorithm V on (a, e, z, pk) as input, to output
1 (i.e., accept) or 0 (i.e., reject).

We call a triple (a, e, z) ∈ A×DH×Z∪{⊥,⊥,⊥} a transcript, and it is said to be
valid with respect to pk if V(a, e, z, pk) = 1. We say that ID is correct if for every
pair (pk, sk) output by IGen, for every ρ ∈ Dρ, and for every transcript (a, e, z)
from an honest execution of the protocol between Prover(sk; ρ) and Verifier(pk),
Pr[V(a, e, z, pk) = 1] = 1.

Remark. The response algorithm in the above definition does not explicitly take
a commitment a as input. We decided to do so since a is generally not required
to compute z, such as in the Schnorr identification scheme and, if needed, we
assume that St contains a copy of a.

The following definition is adapted from [46, Chapter 6]. We explicitly dif-
ferentiate three flavors of the special HVZK property depending on a level of
indistinguishability, following the approach found in [44, Chapter 4]. Note that
εHVZK below is equal to 0 for special perfect HVZK.

Definition 2 (Special c/s/p-HVZK). Let ID = (IGen,Com,Resp,V) be a
canonical identification protocol. ID is said to be special computational/statisti-
cal/perfect honest-verifier zero knowledge (special c/s/p-HVZK) if there exists
a probabilistic polynomial-time simulator M, which on input pk and e outputs
a transcript of the form (a, e, z) that is computationally/statistically/perfectly
indistinguishable from a real transcript between an honest prover and verifier on
common input pk. We also denote by εHVZK the upper bound on the advantage
of all probabilistic polynomial-time distinguishing algorithms.

652 D. F. Aranha et al.

In our security analysis of specific hedged-signature schemes in the presence of
faults we will provide a concrete bound on the min-entropy of the associated
ID scheme. But here we present a useful lemma stating that the commitment
message a of any secure identification scheme must have high min-entropy. The
lemma might be folklore but we were unable to find a reference to it, so we
include it for completeness in the full version.

Lemma 1. Let ID be a canonical identification protocol as in Definition 1, sat-
isfying special-soundness and HVZK (as in Definition 2). Then, the min-entropy
α of the commitment message a (given the public key) is at least α = ω(log(λ))

Definition 3 (Subset Revealing Identification Protocol). Let ID =
(IGen,Com,Resp,V) be a canonical identification protocol. We say that ID is sub-
set revealing if ID satisfies the following. (1) St is a set of c states {St1, . . . , Stc},
(2) Resp first derives an index set I ⊂ [c] using only e as input, and outputs Sti
for i ∈ I as z, and (3) |St| and |DH | are both polynomial in λ.

Remark. Similar definitions were previously given by Kilian et al. [53] and Chail-
loux [24], where they make zero-knowledge or identification protocols simply
reveal a subset of committed strings. Our definition generalizes their notion so
that it can cover some protocols that reveal arbitrary values other than commit-
ted strings. Also notice that the Resp function of subset revealing ID schemes
does not use sk at all. The above definition includes the Picnic2 identification pro-
tocol (discussed in more detail in Sect. 6), and many classic three-round public-
coin zero-knowledge proof protocols, such as the ones for graph isomorphism,
Hamilton graphs, and 3-colorable graphs [45]. We also emphasize that |St| and
|DH | need to be restricted for efficiency reasons – otherwise any identification
protocol (including Schnorr) could be made subset revealing by simply precom-
puting (exponentially many) responses for every possible challenge and storing
them in the state.

Serialization of Transcripts. For efficiency purposes, most Fiat-Shamir based sig-
nature schemes do not include the entire transcript of the identification protocol
as part of the signature. Instead, redundant parts are omitted and recomputed
during the verification phase. Different signature schemes omit different parts of
the transcript: in some cases a is omitted and in others e is omitted. To cap-
ture this in our framework without loss of generality we introduce a serialization
function that turns the transcript of an identification protocol into a signature.

Definition 4 (Canonical Serialization Function). Let ID = (IGen,Com,
Resp,V) be a canonical identification protocol, and let pk be a public key out-
put by IGen. We call a function CSF : {0, 1}∗ → {0, 1}∗ a canonical serialization
function if CSF is efficiently computable and deterministic, and satisfies the fol-
lowing basic properties: (1) it is valid, meaning that there exists a corresponding
de-serialization function CDF which satisfies the following: for any transcript
(a, e, z) ∈ A × DH × Z ∪ {⊥,⊥,⊥} such that V(a, e, z, pk) = 1, it holds that
CDF(CSF(a, e, z), pk) = (a, e, z), and (2) it is sound with respect to invalid
responses, meaning that it returns ⊥ upon receiving z = ⊥ as input.

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 653

Definition 5 (Fiat–Shamir Transform). The Fiat–Shamir transform,
denoted by FS, takes a canonical identification protocol ID and canonical seri-
alization function CSF as input, and outputs a signature scheme FS[ID,CSF] =
(Gen,Sign,Verify) defined in Fig. 2. For convenience, this paper refers to such
schemes as Fiat–Shamir type signature schemes.

Remarks. By construction, it holds that if ID is correct, then FS[ID,CSF] is
a correct signature scheme. We assume ID is correct throughout the paper. In
Fig. 2, the verification condition may appear redundant. However, the above def-
inition allows us to capture several variations of the Fiat–Shamir transform. For
instance, a type of Fiat–Shamir transform found in some papers e.g., Ohta–
Okamoto [60] and Abdalla et al. [1] can be obtained by letting CSF(a, e, z)
output σ := (a, z) and letting CDF(σ, pk) call e ← H(a,m, pk) inside to recon-
struct the whole transcript. In contrast, if ID is commitment-recoverable [54],
one can instantiate its serialization as follows: CSF(a, e, z) outputs σ := (e, z)
and CDF(σ, pk) calls a ← Recover(pk, e, z) inside to reconstruct the transcript.

2.2 Relation Between UF-KOA Security and UF-CMA Security

The security notion unforgeability against key-only attacks (UF-KOA), is the same
as UF-CMA, but with the restriction that the adversary is only given the public
key, and no Sign oracle. The following result is a mild generalization of [55,
Lemma 3.8]: the original lemma only covers perfect HVZK and does not include
the serialization function which we use in this work. The proof is very similar
to the original one and is provided in the full version. In Sect. 4, we extend this
result, showing that for some signature schemes security against key-only attacks
implies security against certain fault attacks.

Lemma 2 (UF-KOA → UF-CMA (informal)). Let ID be a correct canonical
identification protocol and CSF be a canonical serialization function for ID. Sup-
pose ID is special c/s/p-HVZK and has α-bit min-entropy. If FS := FS[ID,CSF]
is UF-KOA secure, then FS is UF-CMA secure in the random oracle model.

2.3 Fault Attacks on Deterministic Fiat–Shamir Signatures

In recent years, several papers [3,9,62,66,67] presented differential fault attacks
against deterministic Fiat–Shamir-type schemes. We present the conceptual
overview of those previous attacks. A more detailed survey is given in the full
version [5].

Special Soundness Attack (SSND). This type of attack exploits the special sound-
ness property of the underlying canonical identification protocol. That is, there
exists an efficient algorithm that extracts the witness sk corresponding to the
statement pk, given two accepting transcripts (a, e, z) and (a, e′, z′), where
e 	= e′ [30]. Note in fact that it is easier to extract the secret key for an attacker
than for a knowledge extractor in a proof of security, since the attacker can

654 D. F. Aranha et al.

assume that the prover honestly follows the protocol while the special soundness
property considers possibly cheating provers. SSND can be cheaply achieved by
injecting a fault into commitment output, or hash input/output.

Large Randomness Bias Attack (LRB). This attack slightly modifies the random-
ness ρ to ρ′ = ρ + Δ using, e.g., flip bit fault. The attack highly relies on the
deterministic property because the adversary knows that all signatures on the
same message m use the same ρ, and if ρ is slightly perturbed by some suffi-
ciently small Δ, he can find Δ with an exhaustive search. Then the adversary
can recover the secret key by querying two deterministic signatures on the same
message, which were computed using correlated randomness ρ and ρ + Δ. LRB
can be cheaply achieved by injecting a fault into the deterministic randomness
derivation phase, or the randomness as response input.

3 Formal Treatment of Hedged Signatures

In this section, we give formal definitions for a hedged signature scheme and its
security notion, based on Bellare–Tackmann’s nonce-based signatures [15, § 5]
and Bellare–Poettering–Stebila’s de-randomized signatures [14, § 5.1]. Then we
define our new security notion for hedged Fiat–Shamir signature schemes, which
guarantees resilience against 1-bit faults on function inputs/outputs.

HSign(sk, m, n)

ρ ← HE(sk, (m, n))

σ ← Sign(sk, m; ρ)

return σ

ExpUF-CMNA
HSIG,HE (A)

M ← ∅; HET ← ∅
(sk, pk) ← Gen(1λ)

(m∗, σ∗) ← AOHSign,HE(pk)

v ← Verify(m∗, σ∗)

return (v = 1) ∧ m∗ /∈ M

OHSign(m, n)

σ ← HSign(sk, m, n)

M ← M ∪ {m}
return σ

HE(sk′, (m′, n′))

If HET[sk′, m′, n′] = ⊥ :

HET[sk′, m′, n′] ←$ Dρ

return HET[sk′, m′, n′]

Fig. 3. Hedged signature scheme HSIG = R2H[SIG,HE] = (Gen,HSign,Verify) and
UF-CMNA experiment. Key generation and verification are unchanged.

3.1 Security of Hedged Signature Schemes

We now consider a simple transformation R2H, which converts a randomized
signature scheme to a so-called “hedged” one, and its security notion UF-CMNA
(unforgeability against chosen message and nonce attacks). See Fig. 3 for the
full details. Parts of the transformation appear in the literature independently,
but by combining them, we can model the concrete hedged signature schemes of

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 655

interest. We now describe the differences and similarities between R2H and the
transformations that appeared in previous works.

On one hand, a hedged signing algorithm HSign takes a nonce n along with a
message m, and derives the randomness ρ ∈ Dρ (of length 	ρ bits) with a hedged
extractor HE with (sk, (m,n)) as input. We do not specify how the nonces are
generated here, but in practice they are the output of a pseudorandom number
generator. As we will see soon, low entropy nonces do not really degrade the
security of hedged signatures as long as the underlying randomized signature
scheme is secure. The hedged construction we presented is essentially based on
the approach taken in [15]. Note that HE is in practice a cryptographic hash
function, that we will model as a random oracle.

On the other hand, we use the signing key sk as the key for the hedged
extractor, whereas Bellare and Tackmann used a separately generated key (which
they called the “seed”), that must be stored with sk. We chose to do so in order
to model concrete hedged Fiat–Shamir type schemes, such as XEdDSA and
Picnic2. In fact, the security of the deterministic construction that hashes sk
and m to derive ρ (with no nonce) was formally treated by Bellare–Poettering–
Stebila [14], and our security proof in the next section extends their result.
Moreover, the signing oracle OHSign in our UF-CMNA experiment takes m and
n as input adaptively chosen by the adversary A. This can be regarded as the
strongest instantiation of the oracle provided in [15], where nonces are derived
via what they call a nonce generator (NG). Indeed, one of their results for nonce-
based signatures (Theorem 5.1) does not impose any restrictions on NG, and it
implicitly allows adversaries to fully control how the nonces are chosen in the
signing oracle.

Now we formally define a security notion for hedged signature schemes, as
a natural extension of the standard UF-CMA security definition. We also give
a tweaked version of Theorem 4 in [14], where they only consider the signing
oracle that doesn’t take adversarially chosen nonces. Note that Lemma 3 applies
to any secure signature schemes and hence it may be of independent interest.
We present a proof in the full version [5] for completeness.

Definition 6 (UF-CMNA). A hedged signature scheme HSIG = (Gen,HSign,
Verify) is said to be UF-CMNA secure in the random oracle model, if for any
probabilistic polynomial time adversary A, its advantage

AdvUF-CMNA
HSIG,HE (A) := Pr

[
ExpUF-CMNA

HSIG,HE (A) = 1
]

is negligible in security parameter λ, where ExpUF-CMNA
HSIG,HE (A) is described in Fig. 3.

Lemma 3 (UF-CMA → UF-CMNA (informal)). Let SIG := (Gen,Sign,Verify)
be a randomized digital signature scheme, and let HSIG := R2H[SIG,HE] =
(Gen,HSign,Verify) be the corresponding hedged signature scheme with HE mod-
eled as a random oracle. If SIG is UF-CMA secure, then HSIG is UF-CMNA
secure.

656 D. F. Aranha et al.

ExpUF-fCMA
FS (A) ExpUF-fCMNA

HFS,HE (A)

M ← ∅; HT ← ∅; HET ← ∅
(sk, pk) ← Gen(1λ)

(m∗, σ∗) ← AOFaultSign,H(pk)

(m∗, σ∗) ← AOFaultHSign,H,HE(pk)

v ← Verify(m∗, σ∗)

return (v = 1) ∧ m∗ /∈ M

OFaultHSign(m, n, j, φ)

fj := φ; fk := Id for k �= j

ρ ← f2(HE(f1(sk), f0(m, n)))

(a, St) ← f4(Com(f3(sk; ρ)))

â, m̂, p̂k ← f5(a, m, pk)

e ← f6(H(â, m̂, p̂k))

z ← f8(Resp(f7(sk, e, St)))

σ ← f10(CSF(f9(a, e, z)))

M ← M ∪ {m̂}; return σ

Fig. 4. UF-fCMNA and UF-fCMA security experiments and faulty signing oracles for
both hedged (HFS) and plain (FS) Fiat–Shamir signature schemes. Id stands for the
identity function. The function H and HE (not shown), are the same as in Figs. 2 and 3,
respectively. The procedure OFaultSign(m, j, φ) (omitted) is the same as OFaultHSign,
but the line assigning to ρ is replaced with ρ ←$ Dρ; ρ ← f2(ρ).

3.2 Security of Hedged FS Type Signature Schemes Against Fault
Adversaries

1-bit Transient Fault on Function Input/Output. To model transient fault attack-
ers on data flow, recall that we consider the following 1-bit tampering func-
tions: (1) flip biti(x), which does a logical negation of the i-th bit of x, and
set biti,b(x), which sets the i-th bit of x to b. Using flip biti(x) (for instance,
with a random position i), we can model a typical bit-flip induced from fault
injection to the memory cells, CPU register values, or data buses of the target
device. Beyond faults, we also wish to capture the case in which the random-
ness has a 1-bit bias, which has been shown to be a serious threat for some
Fiat–Shamir type signatures [4]. We can model this using set biti,b: when this
function is applied to ρ, we can ensure that the first bit of ρ is “stuck” at zero
by setting i = 0 and b = 0 to model 1-bit bias. Moreover, set bit is a typical
way to achieve so-called ineffective fault attacks [26,34]. Our formalization cov-
ers many fault attacks found in the surveyed literature (in the full version), as
they rely only on low precision faults like random bit flips of the function input
or output.

As a notable difference between our fault adversary model and actual attacks,
some surveyed papers caused faults on several bits/bytes of function input or
output when performing fault attack experiments. This is not to take advantage
of multiple-bit faults, but rather because reliably causing a fault on a specific
target memory cell is difficult in practical experiments. In fact, the attacks we
classified as SSND and LRB can be achieved with uncontrolled 1-bit flip faults,
and hence our model at least seems to capture the essence of previous attacks
exploiting the deterministic nature of signing. A natural generalization is to

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 657

allow set bit to work on multiple bits, for example to model word faults, or
word zeroing faults. We can also model stronger attacks that are uncommon
in the literature, such as setting words to arbitrary values. However, we focus
on 1-bit faults in this paper as a first attempt to perform the formal analyses.
We leave the security analysis against multi-bit faults for future work. In the
full version, we describe some more fault attacks that are not covered by our
model, to illustrate the limitations of our analysis. Each of these issues makes
an interesting direction for future work.

Equipping UF-CMNA Adversaries with Faults. Now we are ready to define secu-
rity against fault adversaries using the above tampering functions. In Fig. 4, we
give the modified hedged signing oracle OFaultHSign, which additionally takes
a tampering function φ ∈ {set biti,b, flip biti, Id} and j ∈ [0, 10] as input,
where Id is the identity function. This way, the adversary can specify for each
query the tampering function (φ) as well as the target input/output position
(j) within the signing operation to be faulted. For example, when j = 6, φ is
applied to the output of the hash function H, and when j = 5 it is applied to the
input to H. The other positions are not faulted. Notice that we also allow the
adversary to set φ := Id in arbitrary signing queries, so OFaultHSign includes
the behavior of the non-faulty oracle OHSign as a special case. A generalization
we considered but decided against, is allowing faults on multiple wire values per
sign query. The combinatorial complexity of security analysis in this setting is
daunting, and we did not find this to be relevant in practice, based on our survey
of practical attacks.

Definition 7 (UF-fCMNA). A hedged Fiat–Shamir signature scheme

HFS := R2H[FS[ID,CSF],HE] = (Gen,HSign,Verify)

is said to be F -UF-fCMNA secure, if for any probabilistic polynomial time adver-
sary A who makes queries to OFaultHSign with a fault function fj ∈ F ⊆
{f0, . . . , f10} for each query (called F -adversary), its advantage

AdvUF-fCMNA
HFS,HE (A) := Pr

[
ExpUF-fCMNA

HFS,HE (A) = 1
]

is negligible in security parameter λ, where ExpUF-fCMNA
HFS,HE (A) is described in Fig. 4.

In the next section, we also use the following intermediate security notion, which
essentially guarantees the security of plain randomized Fiat–Shamir signature
scheme against fault adversaries.
Definition 8 (UF-fCMA). A Fiat–Shamir signature scheme

FS := FS[ID,CSF] = (Gen,Sign,Verify)

is said to be F -UF-fCMA secure, if for any probabilistic polynomial time adver-
sary A who makes queries to OFaultSign with a fault function fj ∈ F ⊆
{f2, . . . , f10} per each query (called F -adversary), its advantage

AdvUF-fCMA
FS (A) := Pr

[
ExpUF-fCMA

FS (A) = 1
]

is negligible in security parameter λ, where ExpUF-fCMA
FS (A) is described in Fig. 4.

658 D. F. Aranha et al.

Trivial Faults on the Root Input Wire Values. We remark the existence of two
faults on the left most input wires in Fig. 1, which we do not explicitly consider
in our model, but its (in)security can be proven trivially. First, faulting message
m before it is loaded by the signing oracle can be regarded as a situation where
the adversary queries a faulty message m̂ to begin with, since the oracle stores
m̂ in M . Hence we can just treat such a query as one to non-faulty signing oracle
(OSign). Second, the adversary could easily recover the entire secret key after
roughly |sk| signing queries by injecting set bit faults to sk before it is loaded
by the signing oracle, and the faulty secret key s̃k is globally used throughout
the signing operation: for example, if the most significant bit of sk is set to
0 at the very beginning of signing and its output still passed the verification,
then the adversary can conclude that sk has 0 in the most significant bit with
high probability. In doing so, the adversary iteratively recovers sk bit-by-bit if
the fault is transient. The attack above is essentially a well-known impossibility
result by Gennaro et al. [43] and such an attack can be practically achieved with
ineffective faults. To overcome this issue, one would require an additional strict
assumption on the upper-bound of faulty signing queries [31], or the signing
algorithm needs to have some sophisticated features like self-destruct or key-
updating mechanisms, which, however, are not yet widely implemented in real-
world systems and are beyond the scope of this paper.

Winning Condition of Fault Adversaries. As described in Fig. 4, the UF-fCMNA
experiment keeps track of possibly faulty messages m̂ instead of queried messages
m, and it does not regard σ∗ as valid forgery if it verifies with m̂ that A caused
in prior queries. This may appear artificial, but we introduced this condition to
rule out a trivial forgery “attack”: if the experiment only keeps track of queried
message mi in i-th query, and adversaries target f5 at mi as hash input, they
obtain a valid signature σ̂i on message m̂i, yet m̂i is not stored in a set of
queried messages M . Hence the adversary can trivially win UF-fCMNA game by
just submitting (σ̂i, m̂i), which of course verifies. This is not an actual attack,
since what A does there is essentially asking for a signature on m̂i from the
signing oracle, and hence outputting such a signature as forgery should not be
considered as a meaningful threat.

Note that the OFaultHSign oracle in Fig. 4 stores all queried messages in
the same set M , whether the adversary A decides to inject a fault (i.e., φ ∈
{set biti,b, flip biti}) or not (i.e., φ := Id), and so a forgery (m∗, σ∗) output
by A is not considered valid even if m∗ was only queried to OFaultHSign to
obtain a faulty invalid signature. For some signature algorithms and fault types
this is required; for example with Fiat–Shamir type signatures (derived from a
commitment recoverable identification [54]), one can query OFaultHSign to get a
signature (e, z) with a single bit-flip in z, and create a valid forgery by unflipping
the bit.

Validity of Oracle Output. The signature output by OFaultHSign does not need
to verify, but it may need to be well-formed in some way. Typically we show with
a hybrid argument that OFaultHSign can be simulated without use of the private
key, in a similar way to OHSign. In order for simulated outputs of OFaultHSign to

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 659

be indistinguishable from real outputs, simulated signatures must be correctly
distributed. In [10,28], the security proof shows that the faulty signature is
statistically close to a value drawn from the uniform distribution, so OFaultHSign
can output a random value. For the Fiat–Shamir type signature schemes we
study this is not the case, for some fault types the real output of OFaultHSign
verifies with an appropriately faulted hash function, and our proofs must take
care to maintain these properties when simulating OFaultHSign.

4 Security of Hedged Signatures Against Fault Attacks

In this section we establish the (in)security of the class of hedged Fiat–Shamir
signatures schemes. We give here a short overview of the main intuition behind
the results in Table 1: f0 faults (on the (message, nonce) pair which is input
to the hedged-extractor) cannot be tolerated since they allow the adversary to
get two signatures with the same randomness. On the other hand f1 faults (on
the secret key input to the hedged-extractor) can be tolerated since they do
not significantly change the distribution input to the hedged-extractor. If the
adversary faults the output of the hedged extractor (using f2), we cannot prove
security in general (and we can list concrete attacks e.g., against the Schnorr
signature schemes), but we can prove security for the specific case of Picnic2,
since the output of the hedged-extractor is not used directly, but is given as input
to a PRG – thus the small bias is “absorbed” by PRG security. We remark that,
while present, this attack is much less devastating than the large randomness
bias LRB attack on deterministic schemes (described in Sect. 2.3). With the LRB
attack, the adversary only needs two signatures to recover the full key, while the
attack we will show on Schnorr signature requires a significant amount of faulty
biased signatures as input in practice. This indicates that hedged constructions
do, to some extent, mitigate the effect of faults on the synthetic randomness.

The hedged approach does not help when the adversary faults the input to
the commitment function (via f3), since in this case the adversary can attempt to
set the bits of the secret key one at the time and check if the output signature is
valid or not. Note that in some kinds of ID schemes like Schnorr (known as input-
delayed protocols [25]) the secret key is not used in the commitment function.
Faulting the input of the commitment function can still lead to insecurity, e.g.,
in Schnorr the adversary can bias the randomness, which in turns leads to a
total break of the signature scheme. Next, the adversary can fault the output
of the commitment function (via f4): this leads to insecurity in general, e.g.,
in Schnorr this also leads to randomness bias. However, for a large class of ID
schemes (which we call subset-revealing), including Picnic2, this fault does not
lead to insecurity: intuitively either the adversary faults something that will be
output as part of the response (which can easily be simulated by learning a non-
faulty signature and then applying the fault on the result), or it is not part of the
output and therefore irrelevant. Attacking the input or the output of the random
oracle used to derive the challenge (f5 and f6) does not lead to insecurity, since
the distribution of the random oracle does not change due to the fault (note that

660 D. F. Aranha et al.

Table 1. Summary of results for UF-fCMNA security of the hedged Fiat–Shamir type
construction, for all fault types. ✓ indicates a proof of UF-fCMNA security, and ✗ indi-
cates an attack or counterexample.

Fault type ID is subset-revealing ID not subset-revealing XEdDSA Picnic2

f0 ✗ Lemma 11 ✗ ✗

f1 ✓ Lemma 4 ✓ Corollary 1 ✓ Corollary 3

f2 ✗ Lemma 13 ✗ ✓ Lemma 19

f3 ✗ Lemma 12 ✗ ✗ Sect. 6

f4 ✓ Lemma 10 ✗ Lemma 15 ✗ ✓ Corollary 3

f5 ✓ Lemma 7 ✓ Corollary 1

f6 ✓ Lemma 8

f7 ✓ Lemma 9 ✗ Lemma 14

f8, f9, f10 ✓ Lemma 6

this would not be the case for deterministic signatures, where this kind of fault
would be fatal). Faults against the input of the response function (via f7) can
break non-subset revealing signatures (once again, we can show that this fault
can be used to break Schnorr signatures), but do not help the adversary in the
case of a subset-revealing signature like Picnic2: similar to the case of f4 faults,
we use the fact that if the response function only outputs subsets of its input,
faulting part of the input either has no effect or can be efficiently simulated
given a non-faulty signature. Similarly, faults against the output of the response
function or the input/output of the serialization function (fault types f8, f9, f10)
can also be easily simulated from a non-faulty signature.

We expand this high-level intuition into full proofs by carefully measuring
the concrete security loss in the reductions which is introduced by the different
kind of faults. More precisely, we present a concrete reduction from UF-KOA to
{f1, f4, . . . , f10}-UF-fCMNA security for schemes derived from subset-revealing
ID schemes, and to {f1, f5, f6, f8, f9, f10}-UF-fCMNA when ID is non-subset-
revealing. Our theorems generalize and adapt results from [14] and [55] with-
out introducing significant additional concrete security loss. Then in Sect. 4.7,
we describe attacks for the remaining fault types (f0, f2 and f3), completely
characterizing the security of generic R2H[FS[ID,CSF],HE] signature schemes
for fault types f0, . . . , f10.

4.1 Main Positive Result

Theorem 1 (UF-KOA → UF-fCMNA). Let ID be a canonical identification pro-
tocol and CSF be a canonical serialization function for ID. Suppose ID satisfies
the same properties as in Lemma 2 and it is subset revealing, and moreover,
let us assume that A does not query the same (m,n) pair to OFaultHSign more
than once. Then if FS := FS[ID,CSF] is UF-KOA secure, HFS := R2H[FS,HE]
is {f1, f4, . . . , f10}-UF-fCMNA secure in the random oracle model. Concretely,
given {f1, f4, . . . , f10}-adversary A against HFS running in time t, and making

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 661

at most Qs queries to OFaultHSign, Qh queries to H and Qhe queries to HE, one
can construct another adversary B against FS such that

AdvUF-fCMNA
HFS,HE (A) ≤ 2 ·

(
AdvUF-KOA

FS (B) +
(Qs + Qh)Qs

2α−1
+ Qs · εHVZK

)
,

where B makes at most Qh queries to its hash oracle, and has running time
t plus Qhe · |sk| invocations of Sign and Verify of FS. Moreover, if we do not
assume the subset-revealing property of ID and assume all the other conditions
above, then we have that HFS is {f1, f5, f6, f8, f9, f10}-UF-fCMNA secure.

Proof. The proof is two-fold. See Lemmas 4 and 5.

For the rest of this section we will assume that ID satisfies the properties in
Lemma 2. As a first step, we give a reduction from UF-fCMA to UF-fCMNA secu-
rity, and then we later give a reduction from UF-KOA to UF-fCMA. We observe
that the UF-CMA-to-UF-CMNA reduction in Lemma 3 is mostly preserved, even
in the presence of 1-bit faults on sk as a hedged extractor key. However, our proof
shows that such a fault does affect the running time of the adversary because
the reduction algorithm needs to go through all secret key candidates queried
to random oracle and their faulty bit-flipped variants. We present a proof in the
full version.

Lemma 4 (F -UF-fCMA → F ∪ {f1}-UF-fCMNA). Suppose the fault adversary
A does not query the same (m,n) pair to OFaultHSign more than once. If FS :=
FS[ID,CSF] is F -UF-fCMA secure, then HFS := R2H[FS,HE] is F ′-UF-fCMNA
secure in the random oracle model, where F ′ = F ∪ {f1}. Concretely, given an
F ′-adversary A against HFS running in time t, and making at most Qs queries
to OFaultHSign, Qh queries to H and Qhe queries to HE, one can construct
F -adversary B against FS such that

AdvUF-fCMNA
HFS,HE (A) ≤ 2 · AdvUF-fCMA

FS (B),

where B makes at most Qs queries to its signing oracle OFaultSign and Qh

queries to its hash oracle, and has running time t′ ≈ t + Qhe · |sk|.

Remarks. Our reduction above crucially relies upon the assumption that adver-
saries are not allowed to query the same (m,n) pair. Without this condition,
OFaultHSign must return a faulty signature derived from the same random-
ness ρ if the same (m,n) is queried twice, and thus one could not simulate it
using OFaultSign as an oracle, since OFaultSign uses the fresh randomness even
if queried with the same message m. In fact, by allowing the same (m,n) query
the hedged construction HFS degenerates to a deterministic scheme and thus the
SSND or LRB type fault attacks would become possible as we saw in Sect. 2.3. For
the same reason, once we allow the adversaries to mount a fault f0 on (m,n)
right before HE is invoked during the signing query, the security is completely
compromised. We will revisit this issue as a negative result in Lemma 11.

662 D. F. Aranha et al.

Lemma 5 (UF-KOA → UF-fCMA). Suppose ID is subset revealing. If FS :=
FS[ID,CSF] is UF-KOA secure, then FS is {f4, . . . , f10}-UF-fCMA secure in the
random oracle model. Concretely, given {f4, . . . , f10}-adversary A against FS
running in time t, and making at most Qs queries to OFaultSign, Qh queries to
H, one can construct another adversary B against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs + Qh)Qs

2α−1
+ Qs · εHVZK ,

where B makes at most Qh queries to its hash oracle, and has running time t.
If we do not assume the subset-revealing property of ID and assume all the other
conditions above, then we have that FS is {f5, f6, f8, f9, f10}-UF-fCMA secure.

Proof. We obtain the results by putting together Lemmas 6 to 10 for FS derived
from subset-revealing ID, and Lemmas 6 to 8 for FS derived from non-subset-
revealing ID. The proofs for these lemmas appear in the full version.

Our proof extends the UF-KOA-to-UF-CMA reduction in [55]. We show that
UF-KOA security of a randomized Fiat–Shamir signature scheme FS can be bro-
ken by a successful UF-fCMA adversary A by constructing an adversary B that
uses A as a subroutine and simulates OFaultSign without using sk. We denote
the random oracle and hash table in UF-fCMA experiment (resp. UF-KOA exper-
iment) by H and HT (resp. H′ and HT′).

Preparation of Public Key. Upon receiving pk in the UF-KOA game, B forwards
pk to A.

Simulation of Random Oracle Queries. Upon receiving a random oracle query
H(a,m, pk) from A, B forwards the input (a,m, pk) to its own random oracle
(H′ from the UF-KOA game) and provides A with the return value.

Simulation of Faulty Signing Queries. Suppose A chooses to use a fault function
fji

in each faulty signing oracle query i ∈ [Qs]. Then B answers i-th query by
simulating the signature on mi (or m̂i if A chooses to apply f5 to the message
as hash input) using only pk as described in the lemma for fji

. Notice that the
simulations are independent except they share the random oracle H and the set
M storing (possibly faulty) queried messages. The hash input (âi, m̂i, p̂k) in each
signature simulation has at least (α − 1) bits of min-entropy (see the simulation
in Lemma 7 in the full version). Because HT has at most Qh+Qs existing entries,
B fails to program the random oracle with probability at most (Qh + Qs)/2α−1

for each query. Moreover, A distinguishes the simulated signature from the one
returned by the real signing oracle OFaultHSign with probability at most εHVZK

for each query, since we use the special c/s/p-HVZK simulator M to derive a
signature in every simulation.

Recalling that the number of signing queries is bounded by Qs, and by a
union bound, A overall distinguishes its simulated view from that in UF-fCMA
game with probability at most

(Qh + Qs)Qs

2α−1
+ Qs · εHVZK .

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 663

Forgery. Suppose that at the end of the experiment A outputs its forgery
(m∗, σ∗) that verifies and m∗ /∈ M = {m̂i : i ∈ [Qs]}. (Recall from Fig. 4 that
M stores possibly faulty messages m̂i here instead of queried messages mi, and
thus A cannot win the game by simply submitting a signature on some faulty
message that has been used for random oracle programming.) This means that
the reconstructed transcript (a∗, e∗, z∗) ← CDF(σ∗, pk) satisfies

V(a∗, e∗, z∗, pk) = 1 and H(a∗,m∗, pk) = e∗.

Here we can guarantee that the HT[a∗,m∗, pk] has not been programmed by
signing oracle simulation since m∗ is fresh, i.e., m∗ 	∈ M . Hence we ensure that
e∗ = HT[a∗,m∗, pk] has been directly set by A, and e∗ = HT′[a∗,m∗, pk] holds
due to the hash query simulation. This implies (m∗, σ∗) is a valid forgery in the
UF-KOA game as well.

4.2 Faulting Serialization Input/Output and Response Output

As a warm-up, we begin with the simplest analysis where faults do not have
any meaningful impact on the signing oracle simulation. As we will show below,
faulting with f8, f9 and f10 has no more security loss than the plain UF-KOA-
to-UF-CMA reduction [55] does.

Lemma 6 (UF-KOA → {f8, f9, f10}-UF-fCMA (informal)). If FS :=
FS[ID,CSF] is UF-KOA secure, then FS is {f8, f9, f10}-UF-fCMA secure in the
random oracle model.

Remark. As we briefly remarked after Definition 5, Lemma 6 holds for any
instantiation of serialization as long as CSF and CDF are efficiently computable.

4.3 Faulting Challenge Hash Input

Recall that f5 is the fault type that allows the attacker to fault the input
(a,m, pk) to the hash function used to compute the challenge. Here we prove
that randomized Fiat–Shamir signature schemes are secure against this type
of fault attack, under the same conditions required for the plain UF-KOA-to-
UF-CMA reduction [55]. Note that the proof of lemma below introduces a slight
additional security loss compared to the plain UF-KOA-to-UF-CMA reduction
because set bit faults to the hash input increase the failure probability of ran-
dom oracle programming.

Lemma 7 (UF-KOA → {f5}-UF-fCMA (informal)). If FS := FS[ID,CSF] is
UF-KOA secure, then FS is {f5}-UF-fCMA secure in the random oracle model.

664 D. F. Aranha et al.

4.4 Faulting Challenge Hash Output

Recall that f6 is the fault type that allows the attacker to fault the challenge
hash function output, i.e., he can fault the bit string e = H(a,m, pk). We show
that, unlike the fault with f5, this type of fault does not introduce any additional
loss in concrete security as long as the Resp function fails for invalid challenges
outside the challenge space DH .

Lemma 8 (UF-KOA → {f6}-UF-fCMA (informal)). If FS := FS[ID,CSF] is
UF-KOA secure, then FS is {f6}-UF-fCMA secure in the random oracle model.

Remarks. The above lemma relies on the fact that faulty ẽi is necessarily a “well-
formed” challenge. For example, the challenge in some subset-revealing schemes
has a specific structure (e.g., a list of pairs (ci, pi) where the ci are distinct, as
in Picnic2). Computing Resp with a malformed challenge may cause σ to leak
private information. This is why we required Definition 1 to have the condition
that Resp validates ẽi ∈ Dh and otherwise returns ⊥. This way, the signing
algorithm does not leak information when a malformed challenge is input to the
response phase, and eventually outputs ⊥ as a signature because CSF is sound
with respect to invalid response (see Definition 4).

Note that the proof can be generalized to the multi-bit fault setting. More
specifically, the random oracle programming becomes unnecessary for output
replacement faults (i.e., f6 applies set bit to every bit of e) because in that
case the fault adversary would no longer be able to observe any relation between
faulty ẽi and the original, unfaulty e.

4.5 Faulting Response Input

Next we prove the security against tampering function f7, which lets an attacker
fault the input (sk, e, St) to the Resp function. We only guarantee security assum-
ing that the signature scheme is based on a subset revealing identification proto-
col (see Definition 3), and Resp and CSF make sure to rule out invalid challenge
and response, respectively. As we will see in the next section, Picnic2 satisfies
these additional properties.

Lemma 9 (UF-KOA → {f7}-UF-fCMA (informal)). Suppose ID is subset
revealing. If FS := FS[ID,CSF] is UF-KOA secure, then FS is {f7}-UF-fCMA
secure in the random oracle model.

Remark. Intuitively, subset revealing ID schemes are secure against faults on St
because the adversary only obtains what they could have computed by changing
non-faulty signatures by themselves. On the other hand, the Schnorr signature
scheme is not secure against tampering with f7 and we describe concrete fault
attacks in Lemma 14.

As we remarked after Definition 3, one can consider a highly inefficient version
of Schnorr signature that enumerates all possible responses in St and opens one
of them. In doing so, the Resp function avoids any algebraic operations involving

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 665

sk and ρ, and we can mitigate the risk of faulty response input attacks described
above. This countermeasure is of course impractical since the challenge space is
too large, but it illustrates a concrete case where subset revealing ID schemes
are more robust against fault attacks, in our model.

4.6 Faulting Commitment Output

Recall that a fault of type f4 allows the attacker to fault the output of Com(sk; ρ),
the commitment function in the first step of the ID scheme. Here we prove that
randomized Fiat–Shamir signature schemes are secure against this type of fault
attack, under the same conditions as ones in Lemma 9.

Lemma 10 (UF-KOA → {f4}-UF-fCMA (informal)). Suppose ID is subset
revealing. If FS := FS[ID,CSF] is UF-KOA secure, then FS is {f4}-UF-fCMA
secure in the random oracle model.

4.7 Negative Results

Here we show that fault attacks of type f0, f2 and f3 are not mitigated by the
hedged construction for an ID scheme with the same properties as in Theorem 1.

Lemma 11. There exist canonical ID schemes such that R2H[FS[ID,CSF],HE]
is UF-CMNA-secure, but not {f0}-UF-fCMNA secure.

Proof. We consider the Schnorr scheme that returns (e, z) as a signa-
ture for which FS[ID,CSF] is known to be UF-CMA secure and there-
fore R2H[FS[ID,CSF],HE] is UF-CMNA secure due to Lemma 3. Our {f0}-
adversary’s strategy is as follows. The adversary first calls OFaultHSign with
some (m,n) without fault (i.e., φ = Id) to obtain a legitimate signature (e, z).
Next, the adversary calls OFaultHSign with φ = flip biti, j = 0 and (m′, n),
where m′ is identical to m except at the i-th bit. This way, it can fault m′ back
to m before the invocation of HE and hence the signature is derived from the
same ρ as in the previous query, while the challenge and response are different
since e′ = H(a,m′, pk) and z = ρ + e′ · sk mod q. Hence we can recover sk with
the SSND attack in Sect. 2.3 and break the scheme.

Lemma 12. There exist canonical ID schemes such that R2H[FS[ID,CSF],HE]
is UF-CMNA-secure, but not {f3}-UF-fCMNA secure.

Proof. We describe a simple attack that works for the Picnic ID scheme. Recall
that f3 is applied to input of Com(sk; ρ). When querying OFaultHSign, the
attacker uses set bit to set the i-th bit of sk, denoted ski to 0, then observes
whether the signature output is valid. If so, then the true value of ski is 0, and if
not, then ski is one. By repeating this for each of the secret key bits, the entire
key may be recovered. Some ID schemes may include internal checks and abort
if some computations are detected to be incorrect relative to the public key, in
this case the attacker checks whether OFaultHSign aborts.

666 D. F. Aranha et al.

Note that Lemma 12 only applies to ID schemes where sk is used by the Com
function. For the Schnorr scheme and other so-called input delayed protocols [25],
sk is only used by the Resp function. In this way subset-revealing ID schemes
and input delayed ID schemes have the opposite behavior, since subset-revealing
schemes do not use sk in the Resp function, but they must use it in the Com
function.

The sensitivity of ephemeral randomness ρ in Schnorr-like schemes is well
known, and once the attacker obtains sufficiently many biased signatures, the
secret key can be recovered by solving the so-called hidden number problem
(HNP) [21]. Previous works have shown that even a single-bit bias helps to
recover sk by making use Bleichenbacher’s solution to HNP [4,18]. However, the
currently known algorithms for the HNP do not give an asymptotically efficient
attack, they only reduce the concrete security of the scheme sufficiently to allow
a practical attack on some parameter sets. For instance, with the current state-
of-the-art algorithm based on Bleichenbacher’s attack found in the literature [70,
Theorem 2], one can practically break 1-bit biased signatures instantiated over
192-bit prime order groups, using 229.6 signatures as input, and with 229.6 space
and 259.2 time, which is tractable for computationally well-equipped adversaries
as of today.

To attack Schnorr-like schemes with f3, the adversary would instead target
the randomness ρ to cause a single-bit bias in it, and this situation is essentially
same as faulting with f2. Such an attack would be also powerful enough to
recover the entire signing key, which we describe below.

Lemma 13. Relative to an oracle for the hidden number problem, there exist
a non-subset revealing canonical ID scheme such that R2H[FS[ID,CSF],HE] is
UF-CMNA-secure, but neither {f2}-UF-fCMNA nor {f3}-UF-fCMNA secure.

Proof. We describe an attack that works for the Schnorr signature scheme. Recall
that both f2 and f3 can tamper with ρ in Schnorr, as its St contains the ran-
domness ρ. If f2 or f3 is set bit and always targets at the most significant bit
of ρ to fix its value, the attacker can introduce 1-bit bias in ρ.

Relative to an oracle for the HNP, the Schnorr scheme with unbiased ρ
remains secure, however, the scheme with biased ρ is broken. We must assume
here that the HNP oracle does not help an attacker break the Schnorr scheme
with unbiased nonces (otherwise the Theorem is trivial). It is easy to see that
the HNP with uniformly random nonces does not give a unique solution – the
adversary is given a system of Qs equations with Qs + 1 unknowns, so a direct
application of the HNP oracle does not help. However, there may be other ways
to use the HNP oracle, so we must make the assumption.

For fault types f7 and f4, we have shown that R2H[FS[ID,CSF],HE] is secure
assuming ID is subset-revealing. The following two lemmas give counterexamples
when ID is not subset revealing, showing that canonical ID schemes are not
generically secure for faults f7 and f4.

Lemma 14. There exist non-subset-revealing canonical ID schemes such that
R2H[FS[ID,CSF],HE] is UF-CMNA-secure, but not {f7}-UF-fCMNA secure.

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 667

Proof. We describe two attacks that work for the Schnorr signature scheme.

– If f7 is set bit and targeted at sk, the adversary can use the strategy of
Lemma 12 to learn each bit of sk by checking whether the faulty signatures
pass verification.

– If f7 is flip bit and targeted at the most significant bit of St = ρ, the
adversary obtains (e, z′) such that z′ = e · sk + f7(ρ), and he can recover the
“faulty” commitment a′ = [f7(ρ)]G. Recall that the non-faulty commitment
a = [ρ]G satisfies H(a,m, pk) = e, so the adversary can learn 1-bit of ρ by
checking whether H(a′ + [2�ρ−1]G,m, pk) = e or H(a′ − [2�ρ−1]G,m, pk) = e
holds, where 	ρ is the bit length of ρ. Since we now have the most significant
bit of ρ, we use the same argument as in Lemma 13 to show the scheme is
vulnerable to fault attacks.

Lemma 15. There exist non-subset-revealing canonical ID schemes such that
R2H[FS[ID,CSF],HE] is UF-CMNA-secure, but not {f4}-UF-fCMNA secure.

Proof. Recall that f4 is applied to (a, St), the output of Com. In the Schnorr
signature scheme, St contains the per-signature ephemeral value ρ, which is
the output of the hedged extractor. Therefore, the same attack as described in
Lemma 14 for f7-faults can be mounted with an f4-fault.

5 Analysis of XEdDSA

In this section we apply the results of Sect. 4 to the XEdDSA signature scheme.
The scheme is presented in the full version [5]. The associated ID scheme
is the Schnorr ID scheme (denoted ID-Schnorr). Then we define Schnorr :=
FS[ID-Schnorr,CSF] and XEdDSA := R2H[Schnorr,HE], where CSF returns
(a, z). We start by establishing some well-known properties of ID-Schnorr. Proof
is given in the full version [5]. As noted in Sect. 2 ID-Schnorr is not subset-
revealing.

Lemma 16. ID-Schnorr is perfect HVZK (therefore εHVZK = 0) and has 2λ bits
of min-entropy.

UF-KOA Security Let AdvUF-KOA
Schnorr (A) be the (concrete) UF-KOA security of

Schnorr against an adversary A running in time t. As non-hedged XEdDSA is
identical to Schnorr in the UF-KOA setting, the concrete analysis for Schnorr of
[55, Lemmas 3.5-3.7] and [63, Lemma 8] are applicable. We do not repeat those
results here (as they are lengthy and don’t add much to the present paper),
but instead state our results in terms of AdvUF-KOA

Schnorr (A). We can now apply the
results of Sect. 4.

Corollary 1. XEdDSA is {f1, f5, f6, f8, f9, f10}-UF-fCMNA secure.

Proof. We’ve shown above that ID-Schnorr is perfect HVZK (so εHVZK = 0) and
has α = 2λ bits of min-entropy. Then we can apply Theorem 1, to obtain

AdvUF-fCMNA
XEdDSA (A) ≤ 2

(
AdvUF-KOA

Schnorr (B) +
(Qs + Qh)Qs

22λ−1

)

668 D. F. Aranha et al.

Remaining Fault Types. We now consider the faults of type f0, f2, f3, f4, and
f7 where we can’t prove security. For each of these, we have given an attack
elsewhere in the paper, for Schnorr signatures, but that also applies to XEdDSA.
For type f0 see Lemma 11, for types f2 and f3 see Lemma 13, for type f4 see
Lemma 15 and for type f7 see Lemma 14.

6 Analysis of Picnic2

In this section we analyze the Picnic2 variant of the Picnic signature scheme
using our formal model for fault attacks. Since Picnic is constructed from a
subset-revealing ID scheme, more of the results from Sect. 4 apply, reducing
our effort in this section. We use ID-Picnic2 to denote the ID scheme, and
Picnic2 := FS[ID-Picnic2,CSF] and HS-Picnic2 := R2H[Picnic2,HE] to denote
the randomized and hedged signature schemes. Proofs for this section, and details
of the signature scheme are in the full version [5]. We begin with some general
properties of Picnic2.

ID-Picnic2 Is a Subset-Revealing ID Scheme. Note that its St consists of
{hj , h

′
j , seed

∗
j , {ẑj,α}, statej,i, ,j,i ,msgsj,i}j∈[M],i∈[n] and Resp simply reveals a

subset of it depending on a challenge C and P.

The Picnic2 Specification Is an Instance of R2H. The specification recom-
mends a hedging construction that is an instance of the R2H construction from
Sect. 3. In this case, the salt and random seeds are derived deterministically from
sk‖m‖pk‖n where n is a 2λ-bit random value (acting as the nonce in the nota-
tion of Sect. 3). The function HE is instantiated with the SHA-3 based derivation
function SHAKE. The security analysis in [72] applies to the randomized ver-
sion of the signature scheme, so we must use Lemma 3 to establish UF-CMNA
security of the hedged variant.

Lemma 17. For security parameter λ, ID-Picnic2 has α ≥ 2λ + 256 bits of
min-entropy.

The next corollary shows that Picnic2 is secure against key-only attacks, and
it follows from the unforgeability security proof of Picnic2 from [72].

Corollary 2. The signature scheme Picnic2 is UF-KOA secure, when the hash
functions H0,H1,H2 and G are modeled as random oracles with 2λ-bit outputs,
and key generation function Gen is (t, εOW)-one-way.

In particular, we have that

AdvUF-KOA
Picnic2 (A) ≤ 3Qh

2

22λ
+ 2εOW +

Qh

2λ
.

Lemma 18. ID-Picnic2 is a special c-HVZK proof, under the following assump-
tions: the hash functions H0,H1 and H2 are modeled as random oracles, and

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 669

the PRG is (t, εPRG)-secure. Simulated transcripts are computationally indistin-
guishable from real transcripts, and all polynomial-time distinguishing algorithms
succeed with probability at most

εHVZK ≤ (n + 2)τ · εPRG +
q0τ + q2M

2λ
.

where q0 and q2 are the number of queries to H0 and H2, λ is the security
parameter, and (M,n, τ) are parameters of the scheme.

We can now apply our results from Sect. 4.

Corollary 3. HS-Picnic2 is {f1, f4, . . . , f10}-UF-fCMNA secure.

Proof. Recall that by Corollary 2, Picnic2 is UF-KOA secure with

AdvUF-KOA
Picnic2 (A) ≤ 3Qh

2

22λ
+ 2εOW +

Qh

2λ

and the min-entropy α is 2λ + 256 as shown in Lemma 17.
We can apply Theorem 1, to obtain

AdvUF-fCMNA
HS-Picnic2 (A) ≤ 6Qh

2

22λ
+ 4εOW +

2Qh

2λ
+

(Qs + Qh)Qs

22λ+254
+ 2Qs · εHVZK ,

where εHVZK is given in Theorem 18.

Fault type f2 Recall that f2 is a fault on ρ, the output of the hedged extractor.
Intuitively, HS-Picnic2 is {f2}-UF-fCMNA secure since ρ is not used directly, ρ
is the list of seed∗

j values, which are used as input to a PRG when deriving the
seedi,j values. Applying a 1-bit fault to a seed∗

j value reduces the min-entropy
by at most one bit, so only a small change to the security proof and analysis is
required. Concretely we have:

Lemma 19. HS-Picnic2 is {f2}-UF-fCMNA secure. AdvUF-fCMNA
HS-Picnic2 (A) is the

same as given in Corollary 3, except that α is reduced by 1.

Fault type f3 Recall that f3 faults are applied to Com(f3(sk; ρ)). By setting bits
of sk, the attacker can recover sk with an IFA.

7 Concluding Remarks

This paper explored the effects of bit-tampering fault attacks on various internal
values in hedged Fiat–Shamir signing operations, within the provable security
methodology. Our security model is general enough to capture a large class
of signatures, but also fine-grained enough to cover existing attacks surveyed
in Sect. 2.3. We remark, however, that there are several more advanced, yet
practically relevant fault types that are not covered by our model: (1) faulting

670 D. F. Aranha et al.

global parameters, (2) multiple bit and word faults, (3) faults within the Com
and Resp functions, (4) multiple faults per signature query, and (5) persisting
faults. A detailed discussion for each is given in the full version [5], to illustrate
the limitations of our analysis. Each of these issues makes an interesting direction
for future work.

Acknowledgments. This research was supported by: the Concordium Blockchain
Research Center, Aarhus University, Denmark; the Carlsberg Foundation under the
Semper Ardens Research Project CF18-112 (BCM); the European Research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation programme
under grant agreement No 803096 (SPEC); the Danish Independent Research Council
under Grant-ID DFF-6108-00169 (FoCC). We thank anonymous reviewers for their
valuable comments and suggestions.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Alagic, G., et al.: Status report on the first round of the NIST post-quantum
cryptography standardization process (2019)

3. Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differential
attacks on deterministic signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS,
vol. 10808, pp. 339–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76953-0 18

4. Aranha, D.F., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Tibouchi, M., Zapalow-
icz, J.-C.: GLV/GLS decomposition, power analysis, and attacks on ECDSA sig-
natures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014, Part I. LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45611-8 14

5. Aranha, D.F., Orlandi, C., Takahashi, A., Zaverucha, G.: Security of hedged Fiat-
Shamir signatures under fault attacks. Cryptology ePrint Archive, Report 2019/956
(2019)

6. Austrin, P., Chung, K., Mahmoody, M., Pass, R., Seth, K.: On the impossibility of
cryptography with tamperable randomness. Algorithmica 79(4), 1052–1101 (2017)

7. Baert, M.: Ed25519 leaks private key if public key is incorrect #170. https://
github.com/jedisct1/libsodium/issues/170

8. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

9. Barenghi, A., Pelosi, G.: A note on fault attacks against deterministic signature
schemes. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016. LNCS, vol. 9836, pp.
182–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44524-3 11

10. Barthe, G., Dupressoir, F., Fouque, P.-A., Grégoire, B., Tibouchi, M., Zapalowicz,
J.-C.: Making RSA–PSS provably secure against non-random faults. In: Batina,
L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 206–222. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44709-3 12

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-662-45611-8_14
https://github.com/jedisct1/libsodium/issues/170
https://github.com/jedisct1/libsodium/issues/170
https://doi.org/10.1007/978-3-319-44524-3_11
https://doi.org/10.1007/978-3-662-44709-3_12

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 671

11. Bellare, M., et al.: Hedged public-key encryption: how to protect against bad ran-
domness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 14

12. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627–656. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 21

13. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

14. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 15

15. Bellare, M., Tackmann, B.: Nonce-based cryptography: retaining security when
randomness fails. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part
I. LNCS, vol. 9665, pp. 729–757. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49890-3 28

16. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/
s13389-012-0027-1

17. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and
Technology. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-
submissions

18. Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes.
Presentation at IEEE P1363 Working Group Meeting (2000)

19. Boldyreva, A., Patton, C., Shrimpton, T.: Hedging public-key encryption in the
real world. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol.
10403, pp. 462–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 16

20. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-69053-0 4

21. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 11

22. Brengel, M., Rossow, C.: Identifying key leakage of bitcoin users. In: Bailey, M.,
Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050,
pp. 623–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-
5 29

23. Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice sig-
natures. IACR TCHES 2018(3), 21–43 (2018)

24. Chailloux, A.: Quantum security of the Fiat-Shamir transform of commit and open
protocols. Cryptology ePrint Archive, Report 2019/699 (2019)

25. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016,
Part II. LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 5

https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-49890-3_28
https://doi.org/10.1007/978-3-662-49890-3_28
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-319-63697-9_16
https://doi.org/10.1007/978-3-319-63697-9_16
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-030-00470-5_29
https://doi.org/10.1007/978-3-030-00470-5_29
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49099-0_5

672 D. F. Aranha et al.

26. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 13

27. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: EuroS&P, pp. 451–466. IEEE
(2017)

28. Coron, J.-S., Mandal, A.: PSS is secure against random fault attacks. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 653–666. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10366-7 38

29. Daemen, J., Dobraunig, C., Eichlseder, M., Gross, H., Mendel, F., Primas, R.:
Protecting against statistical ineffective fault attacks. Cryptology ePrint Archive,
Report 2019/536

30. Damg̊ard, I.: On Σ-protocols. http://www.cs.au.dk/∼ivan/Sigma.pdf
31. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how

to go beyond the algebraic barrier. J. Cryptol. 30(1), 152–190 (2015). https://doi.
org/10.1007/s00145-015-9218-0

32. De Meyer, L., Arribas, V., Nikova, S., Nikov, V., Rijmen, V.: M&M: masks and
macs against physical attacks. IACR TCHES 1, 25–50 (2019)

33. Dobraunig, C., Eichlseder, M., Gross, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked AES with fault countermeasures. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp.
315–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 11

34. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
TCHES 3, 547–572 (2018)

35. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4),
20:1–20:32 (2018)

36. fail0verflow: Console hacking 2010 - PS3 epic fail. 27th Chaos Communications
Congress (2010)

37. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 121–139. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93387-0 7

38. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage
and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 877–907. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 32

39. Faust, S., Pietrzak, K., Venturi, D.: Tamper-proof circuits: how to trade leakage
for tamper-resilience. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 391–402. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22006-7 33

40. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

41. Fischlin, M., Günther, F.: Modeling memory faults in signature and authenticated
encryption schemes. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp.
56–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 4

42. Fujisaki, E., Xagawa, K.: Public-key cryptosystems resilient to continuous tam-
pering and leakage of arbitrary functions. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 908–938. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 33

https://doi.org/10.1007/978-3-540-74735-2_13
https://doi.org/10.1007/978-3-642-10366-7_38
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/s00145-015-9218-0
https://doi.org/10.1007/s00145-015-9218-0
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-642-22006-7_33
https://doi.org/10.1007/978-3-642-22006-7_33
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-40186-3_4
https://doi.org/10.1007/978-3-662-53887-6_33

Security of Hedged Fiat-Shamir Signatures Under Fault Attacks 673

43. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
Tamper-Proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

44. Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University Press,
New York (2000)

45. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
FOCS, pp. 174–187. IEEE Computer Society Press (1986)

46. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. ISC. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14303-8

47. Huang, Z., Lai, J., Chen, W., Au, M.H., Peng, Z., Li, J.: Hedged nonce-based
public-key encryption: adaptive security under randomness failures. In: Abdalla,
M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 253–279. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 9

48. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: 39th ACM STOC, pp. 21–30. ACM Press (2007)

49. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 19

50. Joye, M., Tunstall, M.: Fault analysis in cryptography, Information Security and
Cryptography, vol. 147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29656-7

51. Karaklajic, D., Schmidt, J., Verbauwhede, I.: Hardware designer’s guide to fault
attacks. IEEE Trans. VLSI Syst. 21(12), 2295–2306 (2013)

52. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM CCS 2018, pp. 525–537. ACM
Press (2018)

53. Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs
(extended abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
545–546. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 47

54. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–586. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 18

55. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 2

56. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: ISCA, pp. 361–372. IEEE Computer Society
(2014)

57. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

58. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the schnorr signature scheme and dsa against related-key attacks. In: Kwon, S.,
Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 20–35. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30840-1 2

https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-319-76578-5_9
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/0-387-34805-0_47
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-319-30840-1_2

674 D. F. Aranha et al.

59. M’Räıhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alterna-
tives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC 1998.
LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48892-8 6

60. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–
369. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055741

61. Perrin, T.: The XEdDSA and VXEdDSA Signature Schemes. Signalrevision 1.
https://signal.org/docs/specifications/xeddsa/

62. Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rosler, P.: Attacking
deterministic signature schemes using fault attacks. In: Euro S&P 2018, pp. 338–
352. IEEE (2018)

63. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

64. Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Exploiting deter-
minism in lattice-based signatures: practical fault attacks on pqm4 implementa-
tions of NIST candidates. In: Asia CCS 2019, pp. 427–440. ACM (2019)

65. Ristenpart, T., Yilek, S.: When good randomness goes bad: virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS 2010. The Internet
Society (2010)

66. Romailler, Y., Pelissier, S.: Practical fault attack against the Ed25519 and EdDSA
signature schemes. In: FDTC 2017, pp. 17–24 (2017)

67. Samwel, N., Batina, L.: Practical fault injection on deterministic signatures: the
case of EdDSA. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018.
LNCS, vol. 10831, pp. 306–321. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89339-6 17

68. Schmidt, B.: [curves] EdDSA specification. https://moderncrypto.org/mail-
archive/curves/2016/000768.html

69. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

70. Takahashi, A., Tibouchi, M., Abe, M.: New bleichenbacher records: fault attacks
on qDSA signatures. IACR TCHES 3, 331–371 (2018)

71. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)

72. Zaverucha, G., et al.: Picnic. Technical report, National Institute of Standards and
Technology. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-
submissions

https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/BFb0055741
https://signal.org/docs/specifications/xeddsa/
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-89339-6_17
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://doi.org/10.1007/BF00196725
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Succinct Proofs

Transparent SNARKs from DARK
Compilers

Benedikt Bünz1(B), Ben Fisch1(B), and Alan Szepieniec2

1 Stanford, Stanford, USA
{benedikt,bfisch}@cs.stanford.edu

2 Nervos Foundation, Panama City, Panama

Abstract. We construct a new polynomial commitment scheme for uni-
variate and multivariate polynomials over finite fields, with logarithmic
size evaluation proofs and verification time, measured in the number of
coefficients of the polynomial. The underlying technique is a Diophantine
Argument of Knowledge (DARK), leveraging integer representations of
polynomials and groups of unknown order. Security is shown from the
strong RSA and the adaptive root assumptions. Moreover, the scheme
does not require a trusted setup if instantiated with class groups. We
apply this new cryptographic compiler to a restricted class of algebraic
linear IOPs, which we call Polynomial IOPs, to obtain doubly-efficient
public-coin interactive arguments of knowledge for any NP relation with
succinct communication. With linear preprocessing, the online verifier’s
work is logarithmic in the circuit complexity of the relation.

There are many existing examples of Polynomial IOPs (PIOPs) dating
back to the first PCP (BFLS, STOC’91). We present a generic compi-
lation of any PIOP using our DARK polynomial commitment scheme.
In particular, compiling the PIOP from PLONK (GWC, ePrint’19), an
improvement on Sonic (MBKM, CCS’19), yields a public-coin interactive
argument with quasi-linear preprocessing, quasi-linear (online) prover
time, logarithmic communication, and logarithmic (online) verification
time in the circuit size. Applying Fiat-Shamir results in a SNARK, which
we call Supersonic.

Supersonic is also concretely efficient with 10 KB proofs and under
100 ms verification time for circuits with 1 million gates (estimated for
120-bit security). Most importantly, this SNARK is transparent : it does
not require a trusted setup. We obtain zk-SNARKs by applying a hiding
variant of our polynomial commitment scheme with zero-knowledge eval-
uations. Supersonic is the first complete zk-SNARK system that has both
a practical prover time as well as asymptotically logarithmic proof size
and verification time. The full version of the paper is available online [19].

1 Introduction

In recent years, there has been a surge of industry interest in verifiable out-
sourced computation [52] (such as trustless cloud computing) as well as zero-
knowledge proofs. In particular, blockchains use efficient zero-knowledge proofs
as a solution for balancing privacy and publicly-verifiable integrity: examples
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 677–706, 2020.
https://doi.org/10.1007/978-3-030-45721-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_24

678 B. Bünz et al.

include anonymous transactions in ZCash [5,37] and verifying Ethereum smart
contracts over private inputs [27]. In these applications, zero-knowledge proofs
are posted to the blockchain ledger as a part of transactions and nodes must
verify many proofs in the span of a short period of time. Therefore, succinctness
and fast verification are necessary properties for the deployment of such proof
systems. Verifiable computation is also being explored as a scaling solution for
blockhain transactions [20], and even as a way to entirely eliminate the need for
maintaining historical blockchain data [40].

Following this pragmatic interest, there has also been a surge of research
focused on obtaining proof systems with better concrete efficiency characteristics:
succinctness (the proof size is sublinear in the original computation length T),
non-interactivity (the proof is a single message), prover-scalability (proof genera-
tion time scales linearly or quasi-linearly in T), and verifier-scalability (verification
time is sublinear in T). Proof systems that achieve all of these properties for general
NP statements are called SNARGs (“succinct non-interactive arguments”). The
proof is called an argument when it is only sound assuming the prover is compu-
tationally bounded, i.e., computationally sound as opposed to statistically sound.
Succinct statistically sound proofs are unlikely to exist [32].

Currently, there are numerous constructions that achieve different trade-
offs between proof size, proof time, and verification time, but also under dif-
ferent trust models as well as cryptographic assumptions. Some constructions
also achieve better efficiency by relying on a preprocessing model in which a
one-time expensive setup procedure is performed in order to generate a com-
pact verification key VK, which is later used to verify proof instances efficiently.
Somewhat unfortunately, the best performing proof systems to date (consider-
ing proof size and verification time) require a trusted preprocessing. These are
the pairing-based SNARKs extending from GGPR [6,9,31,35,47], which have
been implemented in numerous libraries [6,16], and even deployed in live sys-
tems such as the ZCash [1] cryptocurrency. The trusted setup can be performed
via multi-party computation (MPC) by a committee of parties, such that trust
in only one of the parties is sufficient. This has been done on two occasions for
the ZCash blockchain, involving elaborate “ceremonies” to engender public trust
in the process [54].

A proof system is called transparent if it does not involve any trusted setup.
Recent progress has yielded transparent proof systems for special types of com-
putations: zk-STARKs [4] generate zero-knowledge proofs of size O(log2 T) for a
uniform computation1, and the GKR protocol produces interactive proofs with
communication O(d log T) for computations expressed as low-depth circuits of
total size T and depth d [33]. In both cases, non-interactivity can be achieved
in the random oracle model with the Fiat-Shamir heuristic [21,28]. These trans-
parent proof systems perform significantly worse than SNARKs based on pre-
processing. For computations expressed as an arithmetic circuit of 1-million

1 A uniform computation is expressed as a RAM program P and a time bound T on
the running time of the program. A uniform computation depends on the size of P ’s
description but not on the time bound T .

Transparent SNARKs from DARK Compilers 679

gates, STARKs [4] report a proof size of 600 KB, whereas preprocessing SNARKs
achieve 200 bytes [35]. Bulletproofs [13,18] is a transparent zero-knowledge proof
system whose proofs are much smaller than those of STARK, but these proofs
have a verification time that scales linearly in the size of the circuit; for an arith-
metic circuit of one million gates the verification time is close to 1 min, more
than 1,000 times more expensive than verifying a STARK proof for the same
computation.

Another thread of research has produced proof systems that remove trust
from the circuit preprocessing step, and instead have a universal (trusted) setup:
a one-time trusted setup that can be reused for any computation [30,43,55]. All
of these systems build SNARKs by combining an underlying reduction of circuit
satisfiability to probabilistic testing of polynomials (with degree at most linear in
the circuit size) together with polynomial commitment schemes. In a polynomial
commitment scheme, a prover commits to a μ-variate polynomial f over F of
total degree at most d with a message that is much smaller than sending all
the coefficients of f . The prover can later produce a non-interactive argument
that f(z) = y for arbitrary z ∈ F

μ and y ∈ F. The trusted portion of the
universal SNARK is entirely confined to the polynomial commitment scheme’s
setup. These constructions use variants of the Kate et al. commitment scheme
for univariate polynomials [39], which requires a trusted setup.

1.1 Summary of Contributions

Following the observations of the recent universal SNARK constructions
[30,43,55], SNARKs can be built from polynomial commitment schemes where
all the trust is confined to the setup of the commitment scheme. The main techni-
cal contribution of our work is thus a new polynomial commitment scheme with-
out trusted setup (i.e., a transparent polynomial commitment scheme), which
we can use to construct transparent SNARKs. The observation that transparent
polynomial commitments imply transparent SNARKs was also implicit in the
recent works that build transparent SNARKs from multi-round classical PCPs,
and specifically interactive oracle proofs of proximity (IOPPs) [3]. As a sec-
ondary contribution, we present a framework that unifies all existing approaches
to constructing SNARKs from polynomial commitments using the language of
interactive oracle proofs (IOPs) [7,45]. We view polynomial commitment schemes
as a compiler for Polynomial IOPs, and re-characterize the results of prior works
as providing a variety of Polynomial IOPs for NP.

New polynomial commitment scheme. We construct a new polynomial
commitment scheme for μ-multivariate polynomials of total degree d with
optional zero-knowledge arguments of knowledge for correct evaluation that
have O(μ log d) size proofs and are verifiable in O(μ log d) time. The commit-
ment scheme requires a group of unknown order: two candidate instantiations
are RSA groups and class groups of an imaginary quadratic order. Using RSA
groups, we can apply the scheme to obtain universal preprocessing SNARKs
with constant-size setup parameters, as opposed to the linear-size parameters

680 B. Bünz et al.

from previous attempts. Using class groups, we can remove the trusted setup
from trusted-setup SNARKs altogether, thereby making them transparent. Our
polynomial commitment scheme leverages the power of integer commitments
and Diophantine Arguments of Knowledge [42]; accordingly, we classify this tool
(and others of its kind) as a DARK proof system.

Polynomial IOP formalism. All SNARK constructions can be viewed as com-
bining an underlying information-theoretic statistically-sound protocol with a
“cryptographic compiler” that transforms the underlying protocol into a suc-
cinct argument at the cost of computational soundness. We define a Polynomial
IOP as a refinement of algebraic linear IOPs [9,11,38], where in each round of
interaction the prover provides the verifier with oracle access to a multivariate
polynomial function of bounded degree. The verifier may then query this oracle
to evaluate the polynomial on arbitrary points of its choice. The existing uni-
versal and transparent SNARK constructions provide a variety of statistically-
sound Polynomial IOPs for circuit satisfiability (or RAM programs, in the case
of STARKs); these are then cryptographically compiled using some form of a
polynomial commitment, typically using Merkle trees or pairing groups.

The precise definition of Polynomial IOPs as a central and standalone notion
raises the question about its exact relation to other IOP notions. We present a
univariate Polynomial IOP for extracting an indicated coefficient of a polyno-
mial. Furthermore, we present a univariate Polynomial IOP for proving that the
inner product between the coefficient vectors of two polynomials equals a given
value. This proof system is of independent interest. Together with an offline pre-
processing phase during which the correctness of a multivariate polynomial is
ascertained, these two tools enable us to show that any algebraic linear IOP can
be realized with a multivariate Polynomial IOP.

Polynomial IOP compiler. We present a generic compilation of any public-
coin Polynomial IOP into a doubly-efficient public-coin interactive argument of
knowledge using an abstract polynomial commitment scheme. We prove that if
the commitment scheme’s evaluation protocol has witness-extended emulation,
then the compiled interactive argument has this knowledge property as well.
If the commitment scheme is hiding and the evaluation is honest-verifier zero
knowledge (HVZK), then the compiled interactive argument is HVZK as well.
Finally, public-coin interactive arguments may be cryptographically compiled
into SNARKs using the Fiat-Shamir heuristic.

New SNARK without trusted setup. The main practical outcome of this
work is a new transparent proof system (Supersonic) for computations repre-
sented as arbitrary arithmetic circuits, obtained by cryptographically compiling
the Polynomial IOPs underlying Sonic [43], PLONK [30], and Marlin [22] using
the DARK polynomial commitment scheme. Supersonic improves the proof size
by an order of magnitude over STARKs without compromising on verification
time. For one million gates, Supersonic’s proofs are just 7.8 KB and take around
75 ms to verify. Using the notation Oλ(·) to hide multiplicative factors depen-
dent on the security parameter λ, STARKs have size and verification complexity

Transparent SNARKs from DARK Compilers 681

Oλ(log2 T) whereas Supersonic has size and verification complexity Oλ(log T).
(The additional multiplicative factors dependent on λ are actually better for
Supersonic as well.) As a caveat, while the prover time in Supersonic is asymp-
totically on par with STARKs (i.e., quasilinear in T), the concrete efficiency is
much worse due to the use of heavy-weight “crypto operations” over 1200 bit
class group elements in contrast to the light-weight FFTs and hash functions
in STARKs. Furthermore, Supersonic is not quantum-secure due to its reliance
on groups of unknown order, whereas STARKs are a candidate quantum-secure
SNARK.

1.2 Related Work

Arguments based on hidden order groups. Fujisaki and Okamoto [29]
proposed homomorphic integer commitment schemes based on the RSA group.
They also provide protocols to prove that a list of committed integers satisfy
modular polynomial equations as opening a commitment bit by bit. Damg̊ard
and Fujisaki [25] patched the soundness proof of that protocol and were the first
to suggest using class groups of an imaginary quadratic order as a candidate
group of unknown order. Lipmaa drew the link between zero-knowledge proofs
constructed from integer commitment schemes and Diophantine complexity [42],
coining the term Diophantine Arguments of Knowledge. Recently, Couteau et al.
study protocols derived from integer commitments specifically in the RSA group
to reduce the security assumptions needed; in the process they develop proofs
for polynomial evaluation modulo a prime π that is not initially known to the
verifier, in addition to a proof showing that an integer X lies in the range [a, b]
by showing that 1 + 4(X − a)(b − X) decomposes as the sum of 3 squares [24].

Pietrzak [44] developed an efficient proof of repeated squaring, i.e., proving
that x2T = y with O(log T) proof size and verification time in order to build a
conceptually simple verifiable delay function [10] based on the RSW time-lock
puzzle [46]. Wesolowski [53] improves on this result by proposing a single-round
protocol to prove correct repeated squaring in groups of unknown order with
a constant size proof. Boneh et al. [12] observe that this protocol generalizes
to arbitrary exponents (PoE) and develop a proof of knowledge of an integer
exponent (PoKE), as well as a zero-knowledge variant. They use both PoE and
PoKE to construct efficient accumulators and vector commitment schemes.

Transparent polynomial commitments. Whaby et al. constructed a trans-
parent polynomial commitment scheme [51] for multilinear polynomials by com-
bining a matrix commitment of Bootle et al. [14] with the inner-product argu-
ment of Bünz et al. [18]. For polynomials of degree d it has commitments of
size O(

√
d) and evaluation arguments with O(

√
d) communication. Recently,

Vlasov and Panarin [50], concurrently with Zhang et al. [56], show how to
build a transparent polynomial commitment based on FRI (Fast Reed Solomon
IOPP) [3]. The scheme has O(λ) size commitments and evaluation arguments
with O(k · log2 d) communication for repetition parameter k.

682 B. Bünz et al.

Polynomial IOP formalism. In concurrent work Chiesa et al. [22] introduce an
information theoretic framework called algebraic holographic proofs (AHP). They
also show that with a polynomial commitment scheme an AHP can be compiled
to a preprocessing SNARK. The AHP framework is essentially equivalent to
our Polynomial IOP framework. In other concurrent work, Chiesa, Ojha, and
Spooner show interesting connections between algebraic holographic proofs and
recursive proof composition. In the same work, the authors develop an AHP-
based transparent SNARK called Fractal [23].

2 Technical Overview

This technical overview provides an informal description of our key technical con-
tribution: a polynomial commitment scheme with logarithmic evaluation proofs
and verification time. The commitment scheme relies on four separate tools.

1. Integer encoding of polynomials. Given a univariate polynomial f(X) ∈
Zp[X] the prover first encodes the polynomial as an integer. Interpreting
the coefficients of f(X) as integers in2 [0, p), define f̂(X) to be the inte-
ger polynomial with these coefficients. The prover computes f̂(q) ∈ Z for
some large integer q ≥ p. This is an injective map from polynomials with
bounded coefficients to integers and is also decodable: the coefficients of f(q)
can be recovered from the base-q expansion of f̂(q). For example, suppose
that f(X) = 2X3 + 3X2 + 4X + 1 ∈ Z5[X] and q = 10. Then the integer
f̂(10) = 2341 encodes the polynomial f(X) because its coefficients appear in
the decimal expansion of f̂(10).
Note that this encoding is also additively homomorphic, assuming that q
is sufficiently large. For example, let g(X) = 4X3 + 1X2 + 3 such that
ĝ(10) = 4103. Then f̂(10)+ ĝ(10) = 6444 = (ĝ + f̂)(10). The more homomor-
phic operations we want to permit, the larger q needs to be. The encoding
additionally permits multiplication by polynomials (f̂(q) · qk is equal to the
encoding of f(X) · Xk).

2. Succint integer commitments. The integer x ← f̂(q) encoding a degree
d polynomial f(X) lies between qd and qd+1; in other words, its size is
(d + 1) log2 q bits. The prover commits to x using a succinct integer com-
mitment scheme that is additively homomorphic. Specifically, we use expo-
nentiation in a group G of unknown order: the commitment is the single group
element gx for a base element g ∈ G specified in the setup. (Note that if the
order n of G is known then this is not an integer commitment; gx could be
opened to any integer x′ ≡ x mod n.)

3. Evaluation protocol. The evaluation protocol is an interactive argument to
convince a verifier that C is an integer commitment to f̂(q) such that f(z) = y
at a provided point z ∈ Zp. The protocol must be evaluation binding : it should

2 The choice to represent the coefficients by integers in [0, p) optimizes for clarity, but
later on we will in fact choose a balanced set of representatives, i.e., [− p−1

2
; p−1

2
].

Transparent SNARKs from DARK Compilers 683

be infeasible for the prover to succeed in arguing that f(z) = y and f(z) = y′

for y �= y′. The protocol should also be an argument of knowledge, which
informally means that any prover who succeeds at any point x must “know”
the coefficients of the committed f .
As a warmup, we first describe how a prover can efficiently convince a verifier
that C is a commitment to an integer polynomial of degree at most d with
bounded coefficients. Assume for now that d = 2k − 1. The protocol uses a
recursive divide-and-combine strategy. In each step we split f(X) into two
degree d′ = �d

2	 polynomials fL(X) and fR(X). The left half fL(X) contains
the first d′ + 1 coefficients of f(X) and the right half fR(X) the second, such
that f(X) = fL(X)+Xd′+1fR(X). The prover now commits to fL and fR by
computing CL ← gf̂L(q) and CR ← gf̂R(q). The verifier checks the consistency

of these commitments by testing CLC
qd′+1

R = C. The verifier then samples
random α ∈ Zp and computes C′ ← Cα

LCR, which is an integer commitment
to αf̂L(q)+ f̂R(q). The prover and verifier recurse on the statement that C′ is
a commitment to a polynomial of degree at most d′, thus halving the “size”
of the statement. After log2(d + 1) rounds, the commitment C′ exchanged
between prover and verifier is a commitment to a polynomial of degree 0, i.e.,
to a scalar c ∈ Zp. So C′ is of the form gĉ where ĉ is some integer congruent
to c modulo p. The prover sends ĉ to the verifier directly. The verifier checks
that gĉ = C′ and also that ĉ < q.3
To also show that f(z) = y at a provided point z, the prover additionally
sends yL = fL(z) mod p and yR = fR(z) mod p in each round. The verifier
checks consistency with the claim, i.e., that yL + zd′+1yR = y, and also
computes y′ ← αyL + yR mod p to proceed to the next round. (The recursive
claim is that C′ commits to f ′ such that f ′(z) = y′ mod p.) In the final round
of recursion, the value of the constant polynomial in z is the constant itself.
So in addition to testing C = gĉ and ĉ < q, the verifier also checks that
ĉ ≡ y mod p.

4. Outsourcing exponentiation for efficiency. The evaluation protocol
requires communicating only 2 group elements and 2 field elements per round.

However, the verifier needs to check that CLC
(qd′+1)
R = C, and näıvely per-

forming the exponentiation requires Ω(d·log q) work. To reduce this workload,
we employ a recent technique for proofs of exponentiation (PoE) in groups
of unknown order due to Wesolowski [53] in which the prover computes this
exponentiation and the verifier verifies it in essentially constant time. This
outsourcing reduces the total verifier time (i.e., of the entire protocol) to a
quantity that is logarithmic in d.

3 Preliminaries

3.1 Assumptions

The cryptographic compilers make extensive use of groups of unknown order,
i.e., groups for which the order cannot be computed efficiently. Concretely, we
3 In the full scheme, the verifier actually checks that ĉ < B for a bound B < q that

depends on the field size p and the polynomial’s maximum degree d.

684 B. Bünz et al.

require groups for which two specific hardness assumptions hold. First the Strong
RSA Assumption [2] which roughly states that it is hard to take arbitrary roots
of random elements. Secondly, the much newer Adaptive Root Assumption [53]
which is the dual of the Strong RSA Assumption and states that it is hard to
take random roots of arbitrary group elements. Both of these assumptions hold
in generic groups of unknown order [12,26].

The r-strong RSA assumption as presented below is a parameterization on
the Strong RSA assumption. For r = 1, our definition is identical to the standard
Strong RSA Assumption. Higher values of r allows the adversary to take certain
roots efficiently. For r = 2, the adversary is efficiently able to take square roots.
In class groups of imaginary quadratic order taking square roots is easy. In rth
order class groups taking rth roots is easy.

Assumption 1 (r-Strong RSA Assumption). The r-Strong RSA Assump-
tion states that an efficient adversary cannot compute �th roots for a given ran-
dom group element, if � not a power of r. Specifically, it holds for GGen if for
any probabilistic polynomial time adversary A:

Pr

⎡
⎣u� = g ∧ � �= rk, k ∈ N :

G ← GGen(λ)

g
$← G

(u, �) ∈ G × N ← A(G, g)

⎤
⎦ ≤ negl(λ) .

Assumption 2 (Adaptive Root Assumption). The Adaptive Root
Assumption holds for GGen if there is no efficient adversary (A0,A1) that suc-
ceeds in the following task. First, A0 outputs an element w ∈ G and some st.
Then, a random prime � in Primes(λ) is chosen and A1(�, st) outputs w1/� ∈ G.
For all efficient (A0,A1):

Pr

⎡
⎢⎢⎢⎣u

� = w �= 1 :

G
$← GGen(λ)

(w, st) $← A0(G)

�
$← Primes(λ)

u ← A1(�, st)

⎤
⎥⎥⎥⎦ ≤ negl(λ).

Groups of unknown order. We consider two candidate groups of unknown
order. Both have their own upsides and downsides.

RSA Group. In the multiplicative group Z
∗
n of integers modulo a product n = p·q

of large primes p and q, computing the order of the group is as hard as factoring
n. The Adaptive Root Assumption does not hold for Z

∗
n because −1 ∈ Z

∗
n

can be easily computed and has order two. This can be resolved though by
working instead in the quotient group Z

∗
n/〈−1〉 ∼= QRn. The downside of using

an RSA group, or more precisely, the group of quadratic residues modulo an
RSA modulus, is that this modulus cannot be generated in a publicly verifiable
way without exposing the order, and thus requires a trusted setup.

Transparent SNARKs from DARK Compilers 685

Class Group. The class group of an imaginary quadratic order is defined as the
quotient group of fractional ideals by principal ideals of an order of a number
field Q(

√
Δ), with ideal multiplication. A class group C�(Δ) is fully defined

by its discriminant Δ, which needs to satisfy only public constraints such as
Δ ≡ 1 mod 4 and −Δ must be prime. As a result, Δ can be generated from
public coins, thus obviating the need for a trusted setup. A group element can
be represented by two integers strictly smaller (in absolute value) than −Δ,
which in turn is on the same order of magnitude as RSA group elements for a
similar security level. We refer the reader to Buchmann and Hamdy’s survey [17]
and Straka’s accessible blog post [49] for more details.

Working in C�(Δ) does present an important difficulty: there is an efficient
algorithm due to Gauss to compute square roots of arbitrary elements [15], and
by repetition, arbitrary power of two roots. As a result, such class groups cannot
be used to commit to integers but rather to dyadic rationals, which are ratio-
nal numbers whose denominator is a power of two. Additionally, the standard
Strong RSA Assumption is broken if computing square roots is easy. We therefore
give a weakening of the Strong RSA assumption, called 2-Strong-RSA assump-
tion, which is believed to still hold even if computing square roots is easy. The
2-Strong-RSA assumption assumes that computing non square roots is hard.

3.2 Interactive Arguments of Knowledge

Interactive arguments are interactive proofs [34] in which security holds only
against a computationally bounded prover. In an interactive argument of knowl-
edge for a relation R, the prover convinces the verifier that it “knows” a witness
w for a statement x such that (x,w) ∈ R. In this paper, knowledge means that
the argument has witness-extended emulation.

Definition 1 (Interactive Argument). Let (P,V) denote a pair of PPT inter-
active algorithms and Setup denote a non-interactive setup algorithm that outputs
public parameters pp given a security parameter. Both P and V have access to pp.
Let 〈P(pp, x, w),V(pp, x)〉 denote the output of V on input x after its interaction
with P , who has witness w. The triple (Setup,P,V) is called an argument for rela-
tion R if for all non-uniform PPT adversaries A the following properties hold:

– Perfect Completeness.

Pr
[

(x,w) �∈ R or
〈P(pp, x, w),V(pp, x)〉 = 1 : pp ← Setup(1λ)

(x,w) ← A(pp)

]
= 1

– Computational soundness.

Pr
[

∀w (x,w) �∈ R and
〈A(pp, x, st),V(pp, x)〉 = 1 : pp ← Setup(1λ)

(x, st) ← A(pp)

]
≤ negl(λ)

Definition 2 (Witness-extended emulation [36,41]). Given a public-coin
interactive argument tuple (Setup,P,V) and arbitrary prover algorithm P∗, let
Record(P∗, pp, x, st) denote the message transcript between P∗ and V on shared

686 B. Bünz et al.

input x, initial prover state st, and pp generated by Setup. Furthermore, let
ERecord(P∗,pp,x,st) denote an machine E with a transcript oracle for this interaction
that can be rewound to any round and run again on fresh verifier randomness.
The tuple (Setup,P,V) has witness-extended emulation if for every deterministic
polynomial time P∗ there exists an expected polynomial time emulator E such
that for all non-uniform polynomial time adversaries A the following condition
holds:

Pr

⎡
⎣A(tr) = 1 :

pp ← Setup(1λ)
(x, st) ← A(pp)

tr ← Record(P∗, pp, x, st)

⎤
⎦ ≈

Pr

⎡
⎣ A(tr) = 1 and
tr accepting ⇒ (x, w) ∈ R :

pp ← Setup(1λ)
(x, st) ← A(pp)

(tr, w) ← ERecord(P∗,pp,x,st)(pp, x)

⎤
⎦

3.3 Commitment Schemes

In defining the syntax of the various protocols, we use the following convention
with respect to public values (known to both the prover and the verifier) and
secret ones (known only to the prover). In any list of arguments or returned
tuple (a, b, c; d, e) those variables listed before the semicolon are public, and
those variables listed after it are secret. When there is no secret information, the
semicolon is omitted.

Definition 3 (Commitment scheme). A commitment scheme Γ is a tuple
Γ = (Setup,Commit,Open) of PPT algorithms where:

– Setup(1λ) → pp generates public parameters pp;
– Commit(pp;x) → (c; r) takes a secret message x and outputs a public com-

mitment c and (optionally) a secret opening hint r (which might or might not
be the randomness used in the computation).

– Open(pp, c, x, r) → b ∈ {0, 1} verifies the opening of commitment c to the
message x provided with the opening hint r.

A commitment scheme Γ is binding if for all PPT adversaries A:

Pr

⎡
⎢⎢⎣b0 = b1 �= 0 ∧ x0 �= x1 :

pp ← Setup(1λ)
(c, x0, x1, r0, r1) ← A(pp)
b0 ← Open(pp, c, x0, r0)
b1 ← Open(pp, c, x1, r1)

⎤
⎥⎥⎦ ≤ negl(λ)

We now extend the syntax to polynomial commitment schemes. The follow-
ing definition generalizes that of Kate et al. [39] to allow interactive evaluation
proofs. It also stipulates that the polynomial’s degree be an argument to the
protocol, contrary to Kate et al. where the degree is known and fixed.

Definition 4 (Polynomial commitment). A polynomial commitment scheme is a
tuple of protocols Γ = (Setup,Commit,Open,Eval) where (Setup,Commit,Open) is
a binding commitment scheme for a message space R[X] of polynomials over some
ring R, and

Transparent SNARKs from DARK Compilers 687

– Eval(pp, c, z, y, d, μ; f(X)) → b ∈ {0, 1} is an interactive public-coin protocol
between a PPT prover P and verifier V. Both P and V have as input a
commitment c, points z, y ∈ R, and a degree d. The prover additionally knows
the opening of c to a secret polynomial f(X) ∈ R[X] with deg(f(X)) ≤ d.
The protocol convinces the verifier that f(z) = y. In a multivariate extension
of polynomial commitments, the input μ > 1 indicates the number of variables
in the committed polynomial and z ∈ Rμ.

A polynomial commitment scheme is correct if an honest committer can
successfully convince the verifier of any evaluation. Specifically, if the prover is
honest then for all polynomials f(X) ∈ R[X] and all points z ∈ R,

Pr

⎡
⎢⎢⎢⎢⎣

b = 1 :

pp ← Setup(1λ)
(c; r) ← Commit(pp, f(X))
y ← f(z)
d ← deg(f(X))
b ← Eval(pp, c, z, y, d; f(X), r)

⎤
⎥⎥⎥⎥⎦

= 1 .

Knowledge soundness. Any successful prover in the Eval protocol must know
a polynomial f(X) such that f(z) = y and c is a commitment to f(X). More
formally, since Eval is a public-coin interactive argument we define this knowledge
property as a special case of witness-extended emulation (Definition 2).

Define the following NP relation given pp ← Setup(1λ):

REval(pp) =

{
〈(c, z, y, d), (f(X), r)〉 :

f ∈ R[X] and deg(f(X)) ≤ d and f(z) = y
and Open(pp, c, f(X), r) = 1

}

The correctness definition above implies that if Γ = (Setup,Commit,Open,Eval)
is correct then Eval is a correct interactive argument for REval(pp), with over-
whelming probability over the randomness of Setup. We say that Γ has witness-
extended emulation if Eval has witness-extended emulation as an interactive
argument for REval(pp).

3.4 Proofs of Exponentiation

Wesolowski [53] introduced a simple yet powerful proof of correct exponenti-
ation (“PoE”) in groups of unknown order. A prover can efficiently convince
a verifier that a large exponentiation in such a group was done correctly. For
instance, the prover wishes to convince the verifier that w = ux for known group
elements u,w ∈ G and exponent x ∈ Z, and the verifier wants to verify this
with much less work than performing the exponentiation. To do this, the verifier
samples a large enough prime � at random and the prover provides him with
Q ← uq where q = �x

� 	. The verifier then simply computes the remainder r ← (x
mod �) and checks that Q�ur = w. The protocol is an argument for the relation
RPoE = {〈(u,w, x), ∅〉 : ux = w}. The proof verification uses just O(λ) group
operations. When x is x = qd the verifier can compute r ← x mod � using just
log(d)�-bit multiplications.

688 B. Bünz et al.

PoE(u,w, x) :

1. V samples �
$← Primes(λ) and sends � to P

2. P computes quotient q and remainder r such that x = q� + r and
r ∈ {0, . . . , � − 1}

3. P computes Q ← uq and sends it to V
4. V computes r ← (x mod �) and checks that Q�ur = w
5. if check passes then return 1 else return 0

Lemma 1 (PoE soundness [53]). PoE is an argument system for Relation
RPoE with negligible soundness error, assuming the Adaptive Root Assumption
(Assumption 2) holds for GGen.

4 Polynomial Commitments from Groups of Unknown
Order

4.1 Information-Theoretic Abstraction

Before we present our concrete polynomial commitment scheme based on groups
of unknown order, we present the underlying information theoretic protocol that
abstracts the concrete cryptographic instantiations. The purpose of this abstrac-
tion is two-fold: first, it provides an intuitive stepping stone from which present-
ing and studying the concrete cryptographic protocol is easier; and second, it
opens the door to alternative cryptographic instantiations that provide the same
interface but based on alternative hardness assumptions.

Let [[∗]] : Zp[X] → S be a homomorphic commitment function that sends
polynomials over a prime field to elements of some set S. Moreover, let S be
equipped with operations ∗ + ∗ : S × S → S and ∗ · ∗ : Zp[X] × S → S that
accommodate two homomorphisms for [[∗]]:

– a linear homomorphism: a · [[f(X)]] + b · [[g(X)]] = [[af(X) + bg(X)]]
– a monomial homomorphism: Xd · [[f(X)]] = [[Xdf(X)]].

For now, assume both prover and verifier have oracle access to the function [[∗]]
and to the operations ∗ · ∗ and ∗ + ∗. (Later on, we will instantiate this commit-
ment function using groups of unknown order and an encoding of polynomials as
integers.)

The core idea of the evaluation protocol is to reduce the statement that is
being proved from one about a polynomial f(X) of degree d and its evaluation
y = f(z), to one about a polynomial f ′(X) of degree d′ = �d

2	 and its evaluation
y′ = f ′(z). For simplicity, assume that d + 1 is a power of 2. The prover splits
f(X) into fL(X) and fR(X) such that f(X) = fL(X) + Xd′+1fR(X) and such
that both halves have degree at most d′. The prover obtains a random challenge
α ∈ Zp from the verifier and proceeds to prove that f ′(X) = α · fL(X) + fR(X)
has degree d′ and that f ′(z) = y′ = αyL + yR with yL = fL(z) and yR = fR(z).

The proof repeats this reduction by using f ′(X), z, y′ and d′ as the input to
the next recursion step. In the final step, f(X) = f is a constant and the verifier
checks that f = y.

Transparent SNARKs from DARK Compilers 689

The commitment function binds the prover to one particular polynomial
for every commitment held by the verifier. In particular, at the start of every
recursion step, the verifier is in possession of a commitment [[f(X)]] to f(X). The
prover provides commitments [[fL(X)]] and [[fR(X)]], and the verifier checks their
soundness homomorphically by testing [[f(X)]] = [[fL(X)]]+Xd′+1·[[fR(X)]]. From
these commitments, the verifier can also compute the commitment to f ′(X)
homomorphically, via [[f ′(X)]] = α·[[fL(X)]]+[[fR(X)]]. In the last step, the verifier
checks that the constant polynomial f matches the commitment by computing
[[f]] outright.

4.2 Integer Polynomial Encoding

We propose using integer commitments in a group of unknown order as a con-
crete instantiation of the homomorphic commitment scheme required for the
abstract protocol presented in Sect. 4.1. At the heart of our protocol is thus an
encoding of integer polynomials with bounded coefficients as integers, which also
has homomorphic properties. Any commitment scheme which is homomorphic
over integer polynomials is automatically homomorphic over Zp[X] polynomials
as well (by reducing integer polynomials modulo p). Polynomials over Zp[X] can
be lifted to integer polynomials in a canonical way by choosing representatives in
[0, p). Therefore, from here on we will focus on building a homomorphic integer
encoding of integer polynomials, and how to combine this with a homomorphic
integer commitment scheme.

Strawman encoding. In order to encode integer polynomials over an odd prime
field Fp, we first lift them to the ring of polynomials over the integers by choos-
ing representatives in [0, p). In the technical overview (Sect. 2) we noted that a
polynomial f ∈ Z[X] with positive coefficients bounded by q can be encoded as
the integer f(q). The coefficients of f can be recovered via the base q decompo-
sition of f(q). This encoding is an injective mapping from polynomials in Z[X]
of degree at most d with positive coefficients less than q to the set [0, qd+1).
The encoding is also partially homomorphic. If f is encoded as f(q) and g is
encoded as g(q) where coefficients of both g, f are less than q/2, then the base-q
decomposition of f(q) + g(q) gives back the polynomial f + g. By choosing a
sufficiently large q � p it is possible to perform several levels of homomorphic
operations on encodings.

What goes wrong? Unfortunately, this simple encoding scheme does not
quite work yet for the protocol outlined in Sect. 2. The homomorphic consis-
tency checks ensure that if [[fL(X)]] is a homomorphic integer commitment to
the encoding of fL ∈ Z[X], [[fR(X)]] is a homomorphic integer commitment
to the encoding of fR ∈ Z[X], and both fL, fR are polynomials with q/2-
bounded coefficients, then [[f(X)]] is an integer commitment to the encoding
of fL + Xd′

fR. (Moreover, if fL(z) = yL mod p and fR(z) = yR mod p then
f(z) = yL + zd′

yR mod p).

690 B. Bünz et al.

However, the validity of [[fL(X)]] and [[fR(X)]] are never checked directly.
The verifier only sees the opening of the commitment at the bottom level of
recursion. If the intermediate encodings use integer polynomials with coefficients
larger than q/2 the homomorphism is not preserved. Furthermore, even if [[f(X)]]
is a commitment to f∗(q) with positive q-bounded coefficients, an adversarial
prover could find an integer polynomial g∗ that does not have positive q-bounded
coefficients such that g∗(q) = f∗(q) and g∗ �≡ f∗ mod p (i.e, g∗ with coefficients
greater than q or negative coefficients). The prover could then commit to g∗

L(q)
and g∗

R(q), and recurse on αg∗
L(q)+ g∗

R(q) instead of αf∗
L(q)+ f∗

R(q). This would
be non-binding. (For example f∗(X) = q−1 and g∗(X) = X−1, or f∗(X) = q+1
and g∗(X) = X + 1).

Inferring coefficient bounds. So what can the verifier infer from the opened
commitment [[f ′]] at the bottom level of recursion? The opened commitment
is an integer f ′ = αfL + fR. From f ′, the verifier can infer a bound on the
absolute value of the coefficients of the integer polynomial f(X) = fL + XfR,
given that fL and fR were already committed in the second to last round. The
bound holds with overwhelming probability over the randomness of α ∈ [0, p).
This is reasoned as follows: if f ′

0 ← α0fL + fR and f ′
1 ← α1fL + fR such that

max(|f ′
0|, |f ′

1|) < q/(2p) for some distinct α0 �= α1, then |fL| ≤ |f ′
1 − f ′

0| < q/p
and |fR| ≤ |α0f

′
1 − α1f

′
0| < q/2. If no such pair exists, i.e. the bound only holds

for a unique α, then there is a negligibly small probability 1/p that f ′ would
have passed the bound check.

What about negative coefficients? As shown above, the verifier can infer a
bound on the absolute values of fL and fR, but still cannot infer that fL and
fR are both positive integers. Moreover, if fR > 0 and fL < 0, then it is still
possible that fL + qfR > 0, and thus that there is a distinct g �= f with q-
bounded positive coefficients such that g(q) = f(q). For example, say fR = q/2
and fL = −1 then fL + qfR = q2/2 − 1, and αfL + fR = q/2 − α > 0 for every
α ∈ [0, p). Yet, also q2/2 − 1 = g(q) for g(X) = (q/2 − 1)X + q − 1.

Ensuring injectivity. How can we ensure the encoding scheme is injective
over polynomials with either positive/negative coefficients bounded in absolute
value? Fortunately, it is a fact that if |fL| < q/2 and |fR| < q/2 then at least
one coefficient of g must be larger than q/2. In other words, if the prover had
committed instead to f∗

L and f∗
R such that g(X) = f∗

L + Xf∗
R then the verifier

could reject the opening of αf̂∗
L + f̂∗

R with overwhelming probability based on
its size.

More generally, for every integer z in the range B = (− qd+1

2 , qd+1

2) there
is a unique degree (at most) d integer polynomial h(X) with coefficients whose
absolute values are bounded by q/2 such that h(q) = z. We prove this elementary
fact below and show how the coefficients of h can be recovered efficiently from z
(Fact 1). If the prover is committed to h(q) at level i of the protocol, there is a
unique pair of integers polynomial hL and hR with coefficients of absolute value
bounded by q/2 such that hL(q) + q

d+1
2 hR(q) = h(q), and if the prover recurses

Transparent SNARKs from DARK Compilers 691

on any other h∗
L and h∗

R with larger coefficients then the verifier’s bound check
at the bottom level of recursion will fail with overwhelming probability.

Final Encoding scheme. Let Z(b) := {x ∈ Z : |x| ≤ b} denote the set of
integers with absolute value less than or equal to b. Define Z(b)[X] := {f ∈
Z[X] : ||f ||∞ ≤ b}, the set of integer polynomials with coefficients from Z(b).
(For a polynomial g ∈ Z[X] the norm ||g||∞ is the maximum over the absolute
values of all individual coefficients of g.)

– Encoding. For any integer q, the function Enc : Z(b)[X] → Z maps h(X) �→
h(q). A polynomial f(X) ∈ Zp[X] is first mapped to Z(p/2)[X] by replacing
each coefficient of f with its unique integer representative from (−p/2, p/2)
of the same equivalence class modulo p.

– Decoding. Decoding works as follows. Define the partial sum Sk :=∑k
i=0 fiq

i with S−1 := 0. Assuming |fi| < q/2 for all i, observe that for
any partial sum Sk we have |Sk| < qk+1

2 . Therefore, when Sk < 0 then
Sk mod qk+1 > qk+1/2 and when Sk ≥ 0 then Sk mod qk+1 < qk+1/2.
This leads to a decoding strategy for recovering Sk from y ∈ Z. The decode
algorithm sets Sk to y mod qk+1 if this value is less than qk+1/2 and to
qk+1 − (y mod qk+1) otherwise. Two consecutive partial sums yield a coef-
ficient of f(X): fk = Sk−Sk−1

qk ∈ Z(b). These operations give rise to the
following algorithm.

Dec(y ∈ Z) :

1. for each k in [0, �logq(|y|)] do:
2. Sk−1 ← (y mod qk)
3. if Sk−1 > qk/2 then Sk−1 ← qk − Sk−1 end if
4. Sk ← (y mod qk+1)
5. if Sk > qk+1/2 then Sk ← qk+1 − Sk end if
6. fk ← (Sk − Sk−1)/qk

7. returen f(X) =
∑�logq(|y|)�

k=0 fkXk

Fact 1. Let q be an odd integer. For any z in the range B = (− qd+1

2 , qd+1

2) there
is a unique degree (at most) d integer polynomial h(X) in Z(q−1

2)[X] such that
h(q) = z.

4.3 Concrete Polynomial Commitment Scheme

We now instantiate the abstract homomorphic commitment function [[∗]]. To this
end we sample a group of unknown order G, and sample a random element g from
this group. Lift the field polynomial f(X) ∈ Zp[X] to an integer polynomial with
bounded coefficients, i.e., f̂(X) ∈ Z(p−1

2)[X] such that f̂(X) mod p = f(x). We
encode f̂(X) as an integer by evaluating it at a “large enough” integer q. Finally
we use exponentiation in G to commit to the integer. Therefore, [[f(X)]], corre-
sponds to gf̂(q). This commitment function inherits the homomorphic properties

692 B. Bünz et al.

of the integer encoding for a limited number of additions and multiplications-by-
constant. The monomial homomorphism for Xd is achieved by raising the group
element to the power qd. To maintain consistency between the prover’s witness
polynomials and the verifier’s commitments, the prover operates on polynomials
with integer coefficients f̂(X), ĝ(X), etc., without ever reducing them modulo p.

The Setup,Commit and Open functionalities are presented formally below.
Note that the scheme is parameterized by p and q.

– Setup(1λ) : Sample G
$← GGen(λ) and g

$← G. Return pp = (λ, G, g, q).
– Commit(pp; f(X) ∈ Zp[X]) : Compute C ← gf̂(q) and return (C; f̂(X)).
– Open(pp,C, f(X), f̂(X)) : Check that f̂(X) ∈ Z(q/2)[X] and gf̂(q) = C and

f(X) = f̂(X) mod p.

Evaluation protocol. Using the cryptographic compilation of the informa-
tion theoretic protocol we get an Eval protocol with logarithmic communica-
tion. In every round, however, the verifier needs to check consistency between

[[fL(X)]], [[fR(X)]] and [[f(X)]]. This is done by checking that CL · Cqd′+1

R = C.
This naive check is highly inefficient as the exponent qd′+1 has O(d) bits. To
resolve this inefficiency, we utilize a proof of exponentiation (PoE) [44,53] to
outsource the computation to the prover. The PoE protocol is an argument that
a large exponentiation in a group of unknown order was performed correctly.
Wesolowski’s PoE [53] is public coin, has constant communication and verifica-
tion time, and is thus particularly well-suited here.

We now specify subtleties that were previously glossed over. First, we handle
the case where d+1 is not a power of 2. Whenever d+1 is odd in the recursion,
the polynomial is shifted by one degree—specifically, f ′(X) = Xf(X) and the
protocol proceeds to prove that f ′(X) has degree bounded by d′ = d + 1 and
evaluates to y′ = zy at z. The verifier obtains the matching commitment C′ ←
Cq.

Second, the coefficients of f(X) grow by a factor of p+1
2 in every recursion

step, but eventually the transmitted constant f has to be tested against some
bound because if it is too large it should be rejected. However, the function inter-
face provides no option to specify the allowable size of coefficients. We therefore
define and use a subroutine EvalBounded, which takes an additional argument
b and which proves, in addition to what Eval proves, that all coefficients fi of
f(X) satisfy |fi| ≤ b. Importantly, b grows by a factor for p+1

2 in every recur-
sion step. This subroutine is also useful if commitments were homomorphically
combined prior to the execution of EvalBounded. The growth of these coeffi-
cients determines a lower bound on q: q should be significantly larger than b.
Exactly which factor constitutes “significantly” is determined by the knowledge-
soundness proof.

In the final round we check that the constant f satisfies |f | ≤ b and the
protocol’s correctness is guaranteed if b = p−1

2 (p+1
2)�log2(d+1)	. However, q needs

to be even larger than this value in order for extraction to work (and hence, for
the proof of witness-extended emulation to go through). In RSA groups, where

Transparent SNARKs from DARK Compilers 693

computing square roots is hard, we need q > p2 log(d+1)+1; whereas in class groups
where computing square roots is easy, we need p3 log(d+1)+1. When this condition
is satisfied, we can prove that the original committed polynomial has coefficients
smaller than q

2 . To avoid presenting two algorithms whose only difference is
the one constant, we capture this constant explicitly in the variable ςp,d and

set its value depending on the context: ςp,d =
{

p log2(d+1) (in RSA groups)
p 2 log2(d+1) (in class groups)

.

We now present the full, formal Eval protocol below.

Eval(pp,C ∈ G, z ∈ Zp, y ∈ Zp, d ∈ N; f̃(X) ∈ Zp[X]) : // f̃(X) =
∑d

i=0 f̃iX
i

1. P computes fi ∈ [− p−1
2

, p−1
2

] such that fi ≡ f̃i mod p for all i ∈ [0, d].

2. P computes f(X) ← ∑d
i=0 fi · Xi ∈ Z(p−1

2
)[X] ⊂ Z[X]

3. P and V run EvalBounded(pp,C, z, y, d, p−1
2

; f(X))

EvalBounded(pp,C ∈ G, z ∈ Zp, y ∈ Zp, d ∈ N, b ∈ Z; f(X) ∈ Z(b)[X])

1. if d = 0:
2. P sends f(X) ∈ Z to the verifier. // f = f(X) is a constant

3. V checks that b · ςp,d < q// ςp,d = O(p2 log(d)) (see Theorem 1 and 2)

4. V checks that |f | ≤ b
5. V checks that f ≡ y mod p
6. V checks that gf = C
7. V outputs 1 if all checks pass, 0 otherwise.
8. if d + 1 is odd
9. d′ ← d + 1,C′ ← Cq, y′ ← y · z mod p and f ′(X) ← X · f(X).

10. P and V run EvalBounded(pp,C′, z, y′, d′, b; f ′(X))
11. else: // d ≥ 1 and d + 1 is even

12. P and V compute d′ ← d+1
2

− 1

13. P computes fL(X) ←
d′∑

i=0

fi · Xi and fR(X) ←
d′∑

i=0

fd′+1+i · Xi

14. P computes yL ← fL(z) mod p and yR ← fR(z) mod p
15. P computes CL ← gfL(q) and CR ← gfR(q)

16. P sends yL, yR,CL,CR to V. // See full version for an optimization

17. V checks that y = yL + zd′+1 · yR mod p, outputs 0 if check fails.

18. P and V run PoE(CR,C/CL, qd′+1)// Showing that CLC
(qd

′+1)
R = C

19. V samples α
$← [− p−1

2
, p−1

2
] and sends it to P

20. P and V compute y′ ← αyL + yR mod p, C′ ← Cα
LCR, b′ ← b p+1

2
.

21. P computes f ′(X) ← α · fL(X) + fR(X) ∈ Z[X] // deg(f ′(X)) = d′

22. P and V run EvalBounded(pp,C′, z, y′, d′, b′; f ′(X))

4.4 Security Analysis

Lemma 2. The polynomial commitment scheme is binding for polynomials in
Z(b)[X] for b < q/2 if either the Adaptive Root Assumption or the Strong RSA
Assumption hold.

694 B. Bünz et al.

Lemma 3. The polynomial commitment scheme is correct for polynomials in
Zp[X] of degree at most d if q > p�log2(d+1)	+1.

All security proofs are in the full version of this paper [19, §A.1–§A.2]. Next is
the main security theorem, which states that the evaluation protocol has witness-
extended emulation. We start with a high-level intuitive overview where we also
identify potential obstacles.

Proof idea. The goal is to construct an extractor by recursively computing
f(X) from f ′(X). In the final round the verifier receives f such that |f | ≤ b,
and therefore the extractor possesses this constant polynomial as well. Working
backwards from here, the extractor uses rewinding in every step to find fL(X)
and fR(X) and thereby finds f(X) = fL(X) + Xd′+1fR(X). Specifically, in
each round the extractor has f ′(X) = αfL(X) + fR(X). Suppose the extractor
also possesses f ′′(X) = α′fL(X) + fR(X). From f ′(X), f ′′(X), α and α′ it
is easy to compute fL(X) and fR(X). The extractor then computes f(X) =
fL(X) + Xd′+1fR(X). A careful analysis shows that if the coefficients of f ′(X)
are bounded by b then fL(X) and fR(X) must have coefficients bounded by b ·p
in absolute value. Using a similar analysis we can show that f(z) mod p = y for
the extracted polynomial f(X).

This argument shows that there is an extractor algorithm X capable of
extracting the witness f(X) from a binary tree of accepting transcripts. More-
over, a tree-finding algorithm T can output such a tree by repeatedly rewinding
the prover, running it with fresh verifier randomness each time, and recording the
resulting transcripts. As a result, the Generalized Forking Lemma [14] applies
and establishes that the protocol has witness-extended emulation.

The full proof takes into account the cryptographic compilation of the proto-
col using the integer encoding and the commitment scheme based on groups of
unknown order. Additionally the full proof will need to support dyadic rationals
because taking square roots is easy in class groups.

Theorem 1. The polynomial commitment scheme for polynomials in Zp[X] of
degree at most d = poly(λ), instantiated using q > p2�log2(d+1)	+1 and GGen,
has witness extended emulation (Definition 2) if the Adaptive Root Assumption
and the Strong RSA Assumption hold for GGen.

Theorem 2. Let GGen generate groups G of unknown order such that the order
of G is odd, and such there exists a PPT algorithm for taking square roots in
G. The polynomial commitment scheme for polynomials in Zp[X] of degree at
most d = poly(λ), instantiated using q > p3�log2(d+1)	+1 and GGen, has wit-
ness extended emulation (Definition 2) if the Adaptive Root Assumption and the
2-Strong RSA Assumption hold for GGen.

The proof of Theorem 2 is nearly identical to the proof of Theorem 1 but the
extracted polynomials are polynomials over the dyadic rationals and not over
the integers. This requires the bound on q to be larger by a factor of plog(d+1).
Both proofs are presented in the full version of this paper [19, §A.3–§A.4].

Transparent SNARKs from DARK Compilers 695

4.5 Optimizations and Extensions

Out of space constraints, a number of interesting but non-essential sections are
omitted. The full version of this paper [19] presents a range of optimizations for
greater prover and verifier efficiency and smaller proof size. It also shows how to
achieve extend the commitment to multivariate polynomials and shows how to
make the commitment hiding with a ZK evaluation protocol.

4.6 Comparison

In Table 1 we give a comparison between different polynomial commitment
schemes in the literature. In particular, we evaluate the size of the reference
string (|pp|), the prover and verifier time, as well as the size of the evaluation
proof (|π|). Column 2 indicates whether the setup is transparent, i.e., whether
the reference string is structured. The symbol GU denotes a group of unknown
order, GB a group with a bilinear map (pairing), and GP a group with prime
(and known) order. Furthermore, EXP refers to exponentiation of a λ bit number
in these groups, and H is either the size of a hash output, or the time it takes to
compute a hash, depending on context.

Note that even when precise factors are given, the numbers should be inter-
preted as estimates. For example we chose to not display smaller order terms.
Note also that the prover time for the group based schemes could be brought
down by a log factor when using multi-exponentiation techniques.

Table 1. Comparison table between different polynomial commitment schemes for an
μ-variate polynomial of degree d.

Scheme Transp. |pp| Prover Verifier |π|
DARK (this work) yes O(1) O(dμμ log(d))EXP 3μ log(d) EXP 2μ log(d)GU

Based on Pairings no dμ
GB O(dμ)EXP μPairing μ GB

[14,
√·] yes

√
dμGP O(dμ) EXP O(

√
dμ)EXP O(

√
dμ)GP

Bulletproofs yes 2dμ
GP O(dμ) EXP O(dμ)EXP 2μ log(d)GP

FRI (μ = 1)[56] yes O(1) O(λd)H O(λ log2(d))H O(λ log2(d))H

5 Transparent SNARKs via Polynomial IOPs

5.1 Algebraic Linear IOPs

An interactive oracle proof (IOP) [7,45] is a multi-round interactive PCP: in
each round of an IOP the verifier sends a message to the prover and the prover
responds with a polynomial length proof, which the verifier can query via random
access. A t-round �-query IOP has t rounds of interaction in which the verifier
makes exactly � queries in each round. Linear IOPs [11] are defined analogously
except that in each round the prover sends a linear PCP [38], in which the prover

696 B. Bünz et al.

sends a single proof vector π ∈ F
m and the verifier makes linear queries to π.

Specifically, the PCP gives the verifier access to an oracle that receives queries
of the form q ∈ F

m and returns the inner product 〈π,q〉.
Bitansky et al. [9] defined a linear PCP to be of degree (dQ, dV) if there is an

explicit circuit of degree dQ that derives the query vector from the verifier’s random
coins, and an explicit circuit of degree dV that computes the verifier’s decision from
the query responses. In a multi-query PCP, dQ refers to the maximum degree over
all the independent circuits computing each query. Bitansky et al. called the linear
PCP algebraic for a security parameter λ if it has degree (poly(λ), poly(λ)). The
popular linear PCP based on Quadratic Arithmetic Programs (QAPs) implicit in
the GGPR protocol [31] and follow-up works is an algebraic linear PCP with dQ ∈
O(m) and dV = 2, where m is the size of the witness.

For the purposes of the present work, we are only interested in the algebraic
nature of the query circuit and not the verifier’s decision circuit. Of particular
interest are linear PCPs where each query-and-response interaction corresponds
to the evaluation of a fixed μ-variate degree d polynomial at a query point in
F

μ. This description is equivalent to saying that the PCP is a vector of length
m =

(
d+μ

μ

)
and the query circuit is the vector of all μ-variate monomials of

degree at most d (in some canonical order) evaluated at a point in F
μ. We call

this a (μ, d) Polynomial PCP and define Polynomial IOPs analogously. As we
will explain, we are interested in Polynomial PCPs where μ � m because we
can cryptographically compile them into succinct arguments using polynomial
commitments, in the same way that Merkle trees are used to compile classical
(point) IOPs.

In general, evaluating the query circuit for a linear PCP requires Ω(m) work.
However, a general “bootstrapping” technique can reduce the work for the veri-
fier: the prover expands the verifier’s random coins into a full query vector, and
then provides the verifier with a second PCP demonstrating that this expansion
was computed correctly. It may also help to allow the verifier to perform O(m)
work in a one-time preprocessing stage (for instance, to check the correctness of
a PCP oracle), enabling it to perform sublinear “online” work when verifying
arbitrary PCPs later. We call this a preprocessing IOP. In fact, we will see that
any t-round (μ, d) algebraic linear IOP can be transformed into a (t + 1)-round
Polynomial IOP in which the verifier preprocesses (μ, d) Polynomial PCPs, at
most one for each distinct query.

We recall the formal definition of public-coin linear IOPs as well an algebraic
linear IOPs. Since we are not interested in the algebraic nature of the decision
algorithm, we omit specifying the decision polynomial. From here onwards we
use algebraic linear IOP as shorthand for algebraic query linear IOP.

Definition 5 (Public-coin linear IOP). Let R be a binary relation and F a
finite field. A t-round �-query public-coin linear IOP for R over F with soundness
error ε and knowledge error δ and query length m = (m1, ...,mt) consists of
two stateful PPT algorithms, the prover P, and the verifier V = (Q,D), where
the verifier consists in turn of a public deterministic query generator Q and a
decision algorithm D, that satisfy the following requirements:

Transparent SNARKs from DARK Compilers 697

Protocol syntax. For each ith round there is a prover state stPi and a verifier
state stVi . For any common input x and R witness w, at round 0 the states are
stP0 = (x,w) and stV0 = x. In the ith round (starting at i = 1) the prover outputs
a single4 proof oracle P(stPi−1) → πi ∈ F

mi . The verifier samples public random

coins coinsi
$← {0, 1}∗ and the query generator computes a query matrix from

the verifier state and these coins: Q(stVi−1, coinsi) → Qi ∈ F
mi×�. The verifier

obtains the linear oracle response vector π�
i Qi = ai ∈ F

1×�. The updated prover
state is stPi ← (stPi−1,Qi) and verifier state is stVi ← (stVi−1, coinsi,ai) Finally,
D(stVt) returns 1 or 0.

(Querying prior round oracles: The syntax can be naturally extended so that
in the ith round the verifier may query any oracle, whether sent in the ith round
or earlier.)

Argument of Knowledge. As a proof system, (P,V) satisfies perfect complete-
ness, soundness with respect to the relation R and with soundness error ε, and
witness-extended emulation with respect R with knowledge error δ.

Furthermore, a linear IOP is stateless if for each i ∈ [t], Q(stVi−1,
coinsi) = Q(i, coins i). It hasalgebraic queries if, additionally, for each i ∈ [t],

the map coinsi
Q(i,·)�−−−−→ Qi ∈ F

mi×� decomposes into two maps, coinsi
Q0(i,·)�−−−−→

Σi
Q1(i,·)�−−−−→ Qi, where Σi ∈ F

μi×� is a matrix of μi < mi rows and � and Q1(i, ·)
is described by �μi-variate polynomial functions of degree at most d = poly(λ):
p1, . . . ,p� : F

μi → F
mi such that for all k ∈ [�], pk(σi,k) = qi,k, where σi,k and

qi,k denote the kth column of Σi and Qi, respectively.

We note that the separation into two maps coinsi
Q0(i,·)�−−−−→ Σi

Q1(i,·)�−−−−→ Qi subtly
relaxes the definition of Bitansky et al. [9], which instead requires that Qi be

determined via p1, . . . ,p� evaluated at a random r
$← F

μi . The [9] definition
corresponds to the special case that Q0(i, ·) samples a random element of F

μi

based on coinsi. The point is that Q0 can also do other computations that do not
necessarily sample r uniformly, or even output a matrix rather than a vector.
The separation into two steps is only meaningful when μi is smaller than mi.
The significance to SNARK constructions is that the query can be represented
compactly as Σi, and the prover will take advantage of the algebraic map Q1(i, ·)
to demonstrate that Σi was expanded correctly into Qi and applied to the proof
oracle πi. We first present a standalone definition of Polynomial IOPs, and then
explain how it is a special case of Algebraic Linear IOPs.

Definition 6 (Public coin Polynomial IOP). Let R be a binary relation
and F a finite field. Let X = (X1, . . . , Xμ) be a vector of μ indeterminates. A
(μ, d) Polynomial IOP for R over F with soundness error ε and knowledge error

4 The prover may also output more than one proof oracle per round, however this
doesn’t add any power since two proof oracles of the same size may be viewed as a
single (concatenated) oracle of twice the length.

698 B. Bünz et al.

δ consists of two stateful PPT algorithms, the prover P, and the verifier V, that
satisfy the following requirements:

Protocol syntax. For each ith round there is a prover state stPi and a veri-
fier state stVi . For any common input x and R witness w, at round 0 the
states are stP0 = (x,w) and stV0 = x. In the ith round (starting at i = 1)
the prover outputs a single proof oracle P(stPi−1) → πi, which is a polyno-
mial πi(X) ∈ F[X]. The verifier deterministically computes the query matrix

Σi ∈ F
μ×� from its state and a string of public random bits coinsi

$← {0, 1}∗,
i.e, V(stVi−1, coinsi) → Σi. This query matrix is interpreted as a list of � points
in F

μ denoted (σi,1, . . . ,σi,�). The oracle πi is queried on all points in this list,
producing the response vector (πi(σi,1), . . . , π�(σi,�)) = ai ∈ F

1×�. The updated
prover state is stPi ← (stPi−1,Σi) and verifier state is stVi ← (stVi−1,Σi,ai).
Finally, V(stVt) returns 1 or 0.

(Extensions: multiple and prior round oracles; various arity. The syntax can
be naturally extended such that multiple oracles are sent in the ith round; that
the verifier may query oracles sent in the ith round or earlier; or that some of
the oracles are polynomials in fewer variables than μ.)

Argument of Knowledge. As a proof system, (P,V) satisfies perfect completeness,
soundness with respect to the relation R and with soundness error ε, and witness-
extended emulation with respect R with knowledge error δ.

Furthermore, a Polynomial IOP is stateless if for each i ∈ [t],
V(stVi−1, coinsi) = V(i, coins i).

Polynomial IOPs as a subclass of Algebraic Linear IOPs. In a Poly-

nomial IOP, the two-step map coinsi
V(i,·)�−−−→ (σi,1, . . . ,σi,�)

M�−→ (qi,1, . . . ,qi,�) is

a special case of the two-step map coinsi
Q0(i,·)�−−−−→ Σi

Q1(i,·)�−−−−→ Qi in an algebraic
linear IOP. Here M : F

μ → F
m represents the vector of monomials of degree at

most d (in some canonical order) and the map associated with M is evaluation.
Note that there are m =

(
μ+d

d

)
such monomials. Furthermore, for any qi,k, the

inner product πT
i qi,k corresponds to the evaluation at σi,k of the polynomial

πi(X) ∈ F[X], whose coefficient vector (in the same canonical monomial order)
is equal to πi.

5.2 Polynomial IOP Reductions

In this section we show that one can construct any algebraic linear IOP from a
(multivariate) Polynomial IOP. This construction rests on two tools for univari-
ate Polynomial IOPs. These tools are treated explicitly in the full version of this
paper [19]. They can be realized with a small constant number of evaluations.

– Coefficient queries. The verifier verifies that an indicated coefficient of a poly-
nomial oracle has a given value.

– Inner products. The verifier verifies that the inner product of the coefficient
vectors of two polynomial oracles equals a given value.

Transparent SNARKs from DARK Compilers 699

Reducing algebraic linear IOPs to polynomial IOPs.

Theorem 3. Any public-coin t-round stateless algebraic linear IOP can be
implemented with a t + 1-round Polynomial IOP with preprocessing. Suppose
the original �-query IOP is (μ, d) algebraic with query length (m1, ...,mt) then
the resulting Polynomial IOP has for each i ∈ [t]: 2� degree mi univariate polyno-
mial oracles, � pre-processed multivariate oracles of degree d and μ+1 variables,
� degree 2mi univariate polynomial oracles and 2� degree 2mi univariate polyno-
mial oracles. There is exactly one query to each oracle on a random point in F.
The soundness loss of the transformation is negl(λ) for a sufficiently large field
(i.e., whose cardinality is exponential in λ).

We formally prove Theorem 3 in the full version of this paper [19]. Here we
present the transformation without proof.

By definition of a (μ, d) algebraic linear IOP, in each ith round of the IOP
there are � query generation functions pi,1, . . . ,pi,� : F

μ → F
mi , where each

pi,k is a vector whose jth component is a μ-variate degree-d polynomial pi,k,j .
These polynomials are applied to a seed matrix σi,k ∈ F

μ (which is identifiable
with or derived from the verifier’s ith round public-coin randomness coinsi); this
evaluation produces pi,k(σi,k) = qi,k ∈ F

mi for all k ∈ [�]. The vectors qi,k are
the columns of the query matrix Qi ∈ F

mi×�.

Preprocessed oracles. For each round i of the original algebraic linear IOP,
the prover and verifier preprocess (μ + 1)-variate degree-d polynomial oracles.
For each k ∈ [�], the vector of polynomials pi,k = (pi,k,1, . . . , pi,k,mi

) ∈ (F[X])mi

with X = (X1, . . . , Xμ) is encoded as a single polynomial in μ + 1 variables
as follows. Introduce a new indeterminate Z, and then define P̃i,k(X, Z) :=∑mi

j=1 pi,k,j(X)Zj ∈ F[X, Z]. The prover and verifier establish the oracle P̃i,k,
meaning that the verifier queries this oracle on enough points to be reassured
that it is correct everywhere.

The transformed IOP. The original algebraic linear IOP is modified as
follows.

– Wherever the original IOP prover sends an oracle πi of length mi, the new
prover sends a degree mi−1 univariate polynomial oracle fπi

whose coefficient
vector is the reverse of πi.

– Wherever the original IOP verifier makes � queries within a round to a partic-
ular proof oracle πi, where queries are defined by query matrix Qi ∈ F

mi×�,
consisting of column query vectors (qi,1, ...,qi,�), the new prover and verifier
engage in the following interactive subprotocol for each k ∈ [�] in order to
replace the kth linear query 〈πi,qi,k〉:

• Verifier: Run the original IOP verifier to get the public coin seed matrix
Σi and send it to the prover.

• Prover: Derive the query matrix Qi from Σi using the polynomials
pi,1, . . . ,pi,�. Send an oracle for the polynomial Fi,k whose coefficient
vector is qi,k.

700 B. Bünz et al.

• Verifier: Sample uniform random β
$← F and query both Fi,k and P̃i,k

(the kth preprocessed oracle for round i) at β in order to check that
Fi,k(β) = P̃i,k(σi,k, β). If the check fails, abort and output 0.

• Prover: Compute ai,k = 〈π,qi,k〉 and send ai,k to the verifier.
• The prover and verifier run the inner product Polynomial IOP on the

oracles Fi,k and fπi
to convince the verifier that ai,k = 〈qi,k,πi〉. If the

inner product subprotocol fails the verifier aborts and outputs 0.

If all substeps succeed, then the verifier obtains correct output of each ora-
cle query; in other words, the responses are identical in the new and original
IOP. These outputs are passed to the original verifier decision algorithm, which
outputs 0 or 1.

5.3 Compiling Polynomial IOPs

Let Γ = (Setup,Commit,Open,Eval) be a multivariate polynomial commitment
scheme. Given any t-round Polynomial IOP for R over F, we construct an inter-
active protocol Π = (Setup,P,V) as follows. For clarity in our explanation, Π
consists of t outer rounds corresponding to the original IOP rounds and sub-
rounds where subprotocols may add additional rounds of interaction between
outer rounds.

– Setup: Run pp ← Setup(1λ)
– In any round where the IOP prover sends a (μ, d) polynomial proof oracle

π : F
μ → F, in the corresponding outer round of Π, P sends the commitment

cπ ← Commit(pp;π)
– In any round where the IOP verifier makes an evaluation query z to a (μ, d)

polynomial proof oracle π, in the corresponding outer round of Π, insert
an interactive execution of Eval(pp, cπ, z, y, μ, d;π) between P and V, where
π(z) = y.

If V does not abort in any of these subprotocols, then it receives a simulated
IOP transcript of oracle queries and responses. It runs the IOP verifier decision
algorithm on this transcript and outputs the result.

Theorem 4. If the polynomial commitment scheme Γ has witness-extended
emulation, and if the t-round Polynomial IOP for R has negligible knowledge
error, then Π is a public-coin interactive argument for R that has witness-
extended emulation.

5.4 Concrete Instantiations

Several proof systems use Polynomial IOPs and our compiler can be applied
to them. We present PLONK [30] here and discuss several other proof systems
[4,22,31,43,48] in the full version [19].

Theorem 6 provides the main theoretical result of this work, tying together
the new DARK polynomial commitment scheme (Theorem 1), the compilation

Transparent SNARKs from DARK Compilers 701

of Polynomial IOPs into SNARKs with preprocessing using polynomial commit-
ments (Theorem 4), and a concrete univariate Polynomial IOPs. To enable this
tie-up, we re-characterize the result of PLONK in terms of Polynomial IOPs,
making use of the coefficient query technique (Sect. 5.2) as necessary.

Theorem 5 (PLONK, [30]). There is a 3-round HVZK Polynomial IOP with
preprocessing for any NP relation R (with arithmetic complexity n) that makes
12 queries overall to 12 univariate degree n polynomial oracles. The total number
of distinct query points is 2. The preprocessing verifier does O(n) work to check
7 of the univariate degree n polynomials.

Combining the PLONK Polynomial IOP with the new transparent polynomial
compiler of Sect. 4 gives the following result. Analogous results are obtained by
using Sonic [43] or Marlin [22] instead.

Theorem 6 (New Transparent zk-SNARK). There exists an O(log n)-
round public-coin interactive argument of knowledge for any NP relation with
arithmetic complexity n that has O(log n) communication, O(log n) “online”
verification, quasilinear prover time, and a preprocessing step that is verifiable
in quasilinear time. The argument of knowledge has witness-extended emulation
assuming it is instantiated with a group G for which the Strong RSA Assumption,
and the Adaptive Root Assumption hold.

6 Evaluation

We now evaluate Supersonic, the trustless-setup SNARK built on the Polynomial
IOPs underlying Sonic [43], PLONK [30], and Marlin [22] and compiled using our
DARK polynomial commitment scheme. The commitment scheme has several
useful batching properties. It is possible to evaluate k polynomials of degree at
most d using only 2 group elements and (k+1) field elements. To take advantage
of this we delay the evaluation until the last step of the protocol. We present
the proof size for both the compilation of Sonic, PLONK and Marlin in Table 2.
We use 1600 bits as the size of class group elements and λ = 120. The security
of 1600 bit class groups is believed to be equivalent to 3048bit RSA groups and
have 120 bits of security [8,17]. This leads to proof sizes of 16.5 KB for Sonic,
10.1 KB using PLONK and 12.3 KB using Marlin for circuits with n = 220 (one
million) gates. Using 3048-bit RSA groups the proof sizes becomes 18.4 KB for
the compilation of PLONK. If 100 bits of security suffice then a 1200 bit class
group can be used and the compiled PLONK proofs are 7.8 KB for the same
setting. In a 2048-bit RSA group this becomes 12.7 KB.

The comparison between the Polynomial IOPs is slightly misleading because
n represents different indicators of complexity. Nevertheless this calculation
shows that there are Polynomial IOPs that can be compiled using the DARK
polynomial commitment scheme to SNARKs of roughly 10 KB in size. These
numbers stand in contrast to STARKs which achieve proofs of 600 KB for com-
putation of similar complexity [4]. We compare Supersonic to different other

702 B. Bünz et al.

proof systems in Table 3. Supersonic is the only proof system with efficient ver-
ifier time, small proof sizes that does not require a trusted setup. Using 10µs
per group operation5, this gives a verification time of around 72 ms.

Table 2. Proof size for Supersonic. Column 2 says how many polynomials are commit-
ted to in the SRS (offline oracles) and how many are sent by the prover (online oracles).
Column 3 states the number of distinct evaluation points. The proof size calculation
uses |Zp| = 120 and |G| = 1600 for n = 220 gates.

Polynomial IOP Polynomials Eval points |SNARK| Concrete size

Sonic [43] 12 in pp + 15 12 (15 + 2 log2(n))G
+(12+13 log2(n))Zp

15.3 KB

PLONK [30] 7 in pp + 7 2 (7 + 2 log2(n))G
+ (2 + 3 log2(n))Zp

10.1 KB

Marlin [22] 9 in pp + 10 3 (10 + 2 log2(6n))G
+ (3 + 4 log2(6n))Zp

12.3 KB

Table 3. Comparison table between different succinct arguments. In column order we
compare on transparent setup, CRS size, prover and verifier time, asymptotic proof
size and concrete proof for an NP relation with arithmetic complexity 220. Even when
precise factors are given the numbers should be seen as estimates. For example, we
chose to not display smaller order terms. The symbol GU denotes an element in group
of unknown order, GB one in a group with a bilinear map (pairing), GP one in a prime
order group with known order. Furthermore, EXP refers to exponentiation of λ-bit
numbers in these groups, and H is either the size of a hash output or the time it takes
to compute a hash. The prover time for the group based schemes can be brought down
by a log factor when using multi-exponentiation techniques.

Scheme Transp. |pp| Prover Verifier |π| n = 220

Supersonic yes O(1) O(n log(n))EXP 3 log(n) EXP 2 log(n) GU 10.1KB

PLONK [30] no 2n GB O(n)EXP 1Pairing O(1)GB 720 b

Groth16 [35] no 2n GB O(n)EXP 1Pairing O(1)GB 192 b

BP [18] yes 2n GP O(n) EXP O(n) EXP 2 log(n)GP 1.7KB

STARK yes O(1) O(λT)H O(λ log2(T))H O(λ log2(T))H 600 KB

7 Conclusion

In this work we presented the DARK compiler: a polynomial commitment scheme
from falsifiable assumptions in groups of unknown order with evaluation proofs
that can be verified in logarithmic time. We also presented Polynomial IOPs, a

5 The estimate comes from the recent Chia Inc. class group implementation com-
petition. The competition used a larger 2048 bit discriminant but only performed
repeated squaring. https://github.com/Chia-Network/vdfcontest2results.

https://github.com/Chia-Network/vdfcontest2results

Transparent SNARKs from DARK Compilers 703

unifying information-theoretical framework underlying the information theoretic
foundation of several recent SNARK constructions. Polynomial IOPs can be com-
piled into a concrete SNARK using a polynomial commitment scheme and the
Fiat-Shamir transform. We showed that applying the DARK compiler to recent
Polynomial IOPs yields the first trustless SNARKs (i.e., with a transpar-
ent untrusted setup) that have practical proof sizes and verification
times. In particular, this is the first trustless/transparent SNARK construction
that has asymptotically logarithmic verification time (ignoring the λ-dependent
factors, which are comparable to λ-dependent factors in prior works). Finally,
unlike all known SNARKs in bilinear groups, the construction does not require
knowledge of exponent assumptions. Several important open questions remain:

– Our polynomial commitment scheme has prover time linear in the total num-
ber of coefficients, even for zero coefficients. Consequently for a sparse bivari-
ate polynomial of degree d in each variable the prover time is quadratic in d.
A sparse polynomial commitment scheme would directly enable an efficient
compilation of simple information theoretic protocols such as QAPs.

– Asymptotically, Supersonic’s prover time is on par with pairing-based SNARK
constructions, however, a concrete implementation and performance compar-
ison remains open.

– This work further motivates the study of class groups and groups of unknown
order. In particular we rely on a recently introduced Adaptive Root Assump-
tion.

– Our polynomial commitment scheme uses a simple underlying information
theoretic protocol that could be compiled using a (partially) homomorphic
commitment scheme over polynomials, or even another type of integer homo-
morphic commitment scheme. This leaves open whether there are differ-
ent ways of instantiating our DARK compiler under different cryptographic
assumptions.

Acknowledgements. We thank Dan Boneh for helpful discussions and comments.
This work was supported by NSF, SGF, ONR, the Simons Foundation, the Nervos
Foundation and the Findora Foundation.

References

1. Zcash. https://z.cash
2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature

schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive
oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., San-
nella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17. Schloss Dagstuhl,
July 2018

https://z.cash
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33

704 B. Bünz et al.

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 23

5. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press, May 2014

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

7. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

8. Biasse, J., Jacobson Jr., M.J., Silvester, A.K.: Security estimates for quadratic
field based cryptosystems. CoRR abs/1004.5512 (2010). http://arxiv.org/abs/
1004.5512

9. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

10. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

11. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 67–97. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 3

12. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 20

13. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. Cryptology ePrint
Archive, Report 2016/263 (2016). http://eprint.iacr.org/2016/263

14. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016)

15. Bosma, W., Stevenhagen, P.: On the computation of quadratic 2-class groups. J.
Theor. Nombr. 8, 283–313 (1996)

16. Bowe, S.: Bellman zk-SNARKS library (2016). https://github.com/zkcrypto/
bellman

17. Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Public-Key Cryptog-
raphy and Computational Number Theory, pp. 1–15 (2001)

18. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018

19. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compil-
ers. Cryptology ePrint Archive, Report 2019/1229 (2019). https://eprint.iacr.org/
2019/1229

https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-53644-5_2
http://arxiv.org/abs/1004.5512
http://arxiv.org/abs/1004.5512
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26948-7_20
http://eprint.iacr.org/2016/263
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1229

Transparent SNARKs from DARK Compilers 705

20. Buterin, V.: ZK rollup (2016). https://ethresear.ch/t/on-chain-scaling-to-
potentially-500-tx-sec-through-mass-tx-validation/3477

21. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press, June 2019

22. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. Cryptology ePrint Archive,
Report 2019/1047 (2019). https://eprint.iacr.org/2019/1047

23. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive
proofs from holography (2019). https://eprint.iacr.org/2019/1076

24. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assumption
from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part II. LNCS, vol. 10211, pp. 321–350. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 11

25. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 8

26. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 17

27. Eberhardt, J.: Zokrates. https://zokrates.github.io/
28. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and

signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

29. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

30. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

31. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

32. Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic
prover. Comput. Complex. 11(1/2), 1–53 (2002)

33. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–
122. ACM Press, May 2008

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press,
May 1985

35. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

36. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 22

37. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (2019).
https://zips.z.cash/protocol/protocol.pdf

https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1076
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://zokrates.github.io/
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BFb0052225
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-540-78967-3_22
https://zips.z.cash/protocol/protocol.pdf

706 B. Bünz et al.

38. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs
(2007)

39. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

40. Labs, O.: Coda protocol (2018). https://codaprotocol.com/
41. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computa-

tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 10

42. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 26

43. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updatable structured reference strings. Cryptology
ePrint Archive, Report 2019/099 (2019). https://eprint.iacr.org/2019/099

44. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoreti-
cal Computer Science Conference, ITCS 2019, San Diego, California, USA, 10–12
January 2019, pp. 60:1–60:15 (2019)

45. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC,
pp. 49–62. ACM Press, June 2016

46. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto.
MIT Technical report (1996)

47. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation (2013)

48. Setty, S.: Spartan: efficient and general-purpose zKSNARKs without trusted setup.
Cryptology ePrint Archive, Report 2019/550 (2019). https://eprint.iacr.org/2019/
550

49. Straka, M.: Class groups for cryptographic accumulators (2019). https://www.
michaelstraka.com/posts/classgroups/

50. Vlasov, A., Panarin, K.: Transparent polynomial commitment scheme with polylog-
arithmic communication complexity. Cryptology ePrint Archive, Report 2019/1020
(2019). https://eprint.iacr.org/2019/1020

51. Wahby, R.S., Tzialla, I., shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943. IEEE Computer Society Press, May 2018

52. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them:
from theoretical possibility to near practicality. Commun. ACM 58(2), 74–84
(2015)

53. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 379–407. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 13

54. Wilcox, Z.: The design of the ceremony (2016). https://z.cash/blog/the-design-of-
the-ceremony.html

55. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. Cryptology ePrint Archive,
Report 2019/317 (2019). https://eprint.iacr.org/2019/317

56. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation
and its applications to zero knowledge proof. Cryptology ePrint Archive, Report
2019/1482 (2019). https://eprint.iacr.org/2019/1482

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://codaprotocol.com/
https://doi.org/10.1007/3-540-44647-8_10
https://doi.org/10.1007/978-3-540-40061-5_26
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://www.michaelstraka.com/posts/classgroups/
https://www.michaelstraka.com/posts/classgroups/
https://eprint.iacr.org/2019/1020
https://doi.org/10.1007/978-3-030-17659-4_13
https://z.cash/blog/the-design-of-the-ceremony.html
https://z.cash/blog/the-design-of-the-ceremony.html
https://eprint.iacr.org/2019/317
https://eprint.iacr.org/2019/1482

SPARKs: Succinct Parallelizable
Arguments of Knowledge

Naomi Ephraim1(B), Cody Freitag1(B), Ilan Komargodski2, and Rafael Pass1

1 Cornell Tech, New York, NY 10044, USA
{nephraim,cfreitag,rafael}@cs.cornell.edu
2 NTT Research, Palo Alto, CA 94303, USA
ilan.komargodski@ntt-research.ac.il

Abstract. We introduce the notion of a Succinct Parallelizable Argu-
ment of Knowledge (SPARK). This is an argument system with the
following three properties for computing and proving a time T (non-
deterministic) computation:

– The prover’s (parallel) running time is T + polylog T . (In other
words, the prover’s running time is essentially T for large compu-
tation times!)

– The prover uses at most polylog T processors.
– The communication complexity and verifier complexity are both

polylog T .
While the third property is standard in succinct arguments, the combina-
tion of all three is desirable as it gives a way to leverage moderate paral-
lelism in favor of near-optimal running time. We emphasize that even a
factor two overhead in the prover’s parallel running time is not allowed.

Ourmain results are the following, all for non-deterministic polynomial-
time RAM computation. We construct (1) an (interactive) SPARK based
solely on the existence of collision-resistant hash functions, and (2) a non-
interactive SPARK based on any collision-resistant hash function and any
SNARK with quasi-linear overhead (as satisfied by recent SNARK con-
structions).

1 Introduction

Interactive proof systems, introduced by Goldwasser, Micali and Rackoff [27],
are one of the most fundamental concepts in theoretical computer science. Such
systems consist of a prover who is able to convince a verifier of the validity of
some statement if and only if it is true. The “if” direction is called completeness
and the “only if” direction is called soundness. Proof systems where soundness
is only guaranteed to hold for efficient (i.e., polynomial-time) provers are called
argument systems.

We focus on succinct argument systems for NP: argument systems where
the total communication is essentially independent of the size of the verification
circuit of the language and even shorter than the statement. Since their introduc-
tion [12,31,34], succinct argument systems have drawn significant attention due
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 707–737, 2020.
https://doi.org/10.1007/978-3-030-45721-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_25

708 N. Ephraim et al.

to their appealing efficiency properties. Nowadays they are widely implemented
and used in various systems, most notably in numerous blockchain platforms.

One aspect of such argument systems that has been the center of many
recent works (e.g., [13,18,28,43] to name a few) is prover efficiency. Consider
the application of succinct arguments to delegating (possibly non-deterministic)
computation, where a prover performs some expensive computation and then
uses a succinct argument to convince an efficient verifier the validity of the out-
put. If computing the proof takes much longer than the computation (even, say,
a multiplicative factor of two), this would cause a significant delay making the
system useless in various realistic settings. This motivates the following question:

Is it possible to compute the proof in parallel
to the computation while incurring no additional delay?

SPARKs. In this work, we answer the above question affirmatively. We
introduce succinct parallelizable arguments of knowledge (SPARKs) where the
prover’s running time is “essentially” optimal. More precisely, an interactive
argument (P, V) is a SPARK if instances solvable in (non-deterministic) sequen-
tial time T can be proven with the following efficiency requirements (ignoring
dependence on the security parameter or statement size):

– The prover’s parallel time is T + polylog T .1 (In other words, the prover’s
running time is essentially T for large computations!)

– The total prover complexity is T · polylog T and only uses polylog T parallel
threads.

– The communication complexity and verifier complexity are polylog T .

Note that the third property is standard for succinct arguments. The first two
properties stipulate that the running time of a prover with only a moderate
amount of parallel processors is optimal—even a factor two overhead in terms
of a prover running time is not allowed. Without the first property, there are
existing succinct arguments with time T ·polylog T using only a single processor
(e.g., [7,10,28]). Without the second property, there are existing constructions
with parallel time T + polylog T using roughly T processors (e.g., [7]).

1.1 Our Results

For our main theorem, we show the existence of SPARKs for NP based on
the existence of collision-resistant hash functions. The formal theorem and full
details are deferred to the full version of the paper.

Theorem 1.1 (Informal). Assuming collision resistant hash functions, there
exists a four-round SPARK for non-deterministic polynomial-time RAM com-
putation.

1 Only the additive polylog T term is allowed to additionally depend on the security
parameter or statement size.

SPARKs: Succinct Parallelizable Arguments of Knowledge 709

If we additionally assume succinct non-interactive arguments of knowledge
(SNARKs) where the prover’s sequential running time is quasi-linear in the
verification time, then we obtain non-interactive SPARKs. The formal theorem
and full details are deferred to the full version of the paper.

Theorem 1.2 (Informal). Assuming collision resistant hash functions and a
SNARK for NP with a quasi-linear prover, there exists a non-interactive SPARK
for non-deterministic polynomial-time RAM computation.

Our results are obtained by a generic construction that assumes collision
resistant hash functions and any succinct argument of knowledge for a specific
NP language, where the prover’s sequential running time is quasi-linear (i.e.
T ·polylog T when using a single processor for T time computations), and results
with a SPARK, where the prover’s parallel time is essentially optimal. More
precisely, we prove the following theorem.

Theorem 1.3 (Informal; see Theorem 5.6). Assuming collision resistant
hash functions, any succinct argument of knowledge for NP with a quasi-linear
prover can be generically transformed into a SPARK for non-deterministic poly-
nomial time RAM computation. Additionally, if the original succinct argument
of knowledge is non-interactive, then so is the resulting SPARK.

Applying the transformation to Kilian’s protocol [31] instantiated with a
quasi-linear size PCP [10,19] yields a SPARK with poly-logarithmically many
rounds. A simple modification to this transformation, when instantiated with
Kilian’s protocol, preserves the round complexity and yields Theorem 1.1.
Theorem 1.2 follows by applying the above theorem to any SNARK where the
prover has quasi-linear overhead (e.g., based on Micali’s CS proofs [34] instanti-
ated with a quasi-linear size PCP [10,19]; see also [7,28]).

Model of Computation. We define and build SPARKs for sequential RAM
computations, whereas our construction of SPARKs is in the parallel RAM
model. While the RAM model of computation is very expressive in theory, there
is clearly not an exact one-to-one correspondence with real computers. For exam-
ple, we do not take into account the performance of caches or other optimizations
in modern processors that can easily result in additional overhead. As such, we
view the results in this paper as showing a theoretical feasibility for practical
implementations of SPARKs. We next briefly discuss and justify both the model
of computation and the notion of time used in this work. For further details, see
Sect. 3.1.

Recall that a RAM machine is a Turing machine with random access to its
memory string. Between accesses, the machine applies some transition function
to determine its next memory access. Each access is either a read or write, and
we additionally assume that every time a process writes a value to a location in
memory, it receives the previous value at that location. We define the running
time of a RAM machine as the number of memory accesses it makes. For parallel
RAM machines, we define the parallel running time as the number of “rounds”

710 N. Ephraim et al.

of memory accesses made by all processors, so if two processors access memory
during the same logical round, we only count it as a single unit of parallel time.
In other words, a SPARK proves a RAM computation that makes T sequential
accesses in T + polylog T rounds of parallel accesses.

Similar models have been used in other contexts for delegating RAM compu-
tation (see e.g., [28,29]), but they were much less sensitive to the model since
they did not care about small multiplicative overheads. However, we believe that
the above timing model we propose is reflective of real programs. For memory-
intensive programs, our model captures the fact that memory accesses are prac-
tically the most time-consuming operations. For compute-intensive tasks, where
the memory accesses are more sparse, it is only better that the overhead of a
SPARK scales with the number of memory accesses and not the computation
time itself.

1.2 Applications

SPARKs are a variant of succinct argument systems where the prover both com-
putes and proves validity of the computation in parallel time which is essentially
as efficient as possible. While our focus here is on establishing a theoretical
feasibility result, we expect that our ideas may also be useful in practical con-
structions, which we leave for future work. Below we present applications of
SPARKs.

Time-Tight Delegation of RAM Computation. In the problem of verifiable
delegation of computation [26,29,39], there is a client who wishes to outsource
an expensive computation M on an input x to a powerful yet untrusted server.
The server should not only produce the output y but also a proof that the
computation was done correctly.

A non-interactive SPARK directly gives a delegation protocol for sequen-
tial RAM computation. This is because SPARKs satisfy a “delayed-output”
property—the output y of the computation need not be known to the SPARK
prover or verifier in advance, as it is computed in parallel to the proof. Therefore,
using a non-interactive SPARK, a server can perform a RAM computation as
well as a proof with essentially no overhead over the sequential running time.
Specifically, for T -time computations, the server runs in time T + polylog T and
uses at most polylog T processors. We call delegation schemes with this prop-
erty time-tight. Previously, the best that was known was where the server uses
a single processor and runs in time T · polylog T [7,10,28], or where the server
uses roughly T processors and runs in parallel time T + polylog T [7].

Our time-tight delegation protocol also works for non-deterministic compu-
tations. For example, consider the case where a client wants to outsource a RAM
computation over a large database (stored at the server) but only knows a hash
of the database. The server can perform the computation while proving both
that the output is correct and the database is consistent with the client’s hash.
Furthermore, if both the server and the client have agreed upon the hash at
the beginning of the protocol, the running time depends only on the time of

SPARKs: Succinct Parallelizable Arguments of Knowledge 711

the RAM computation (otherwise, the server will need to prove that the initial
database hashes to the correct value, which requires computing a hash over the
whole database and will be expensive if the database is large).

Towards VDFs from Sequential Functions. Verifiable delay functions
(VDFs) are functions that require some “long” time T to compute (where T is a
parameter given to the function), yet the answer to the computation can be effi-
ciently verified given a proof that can be jointly generated with the output (with
only small overhead) [14,15,38,42]. The original work of Boneh et al. [14] sug-
gests a theoretical construction of VDFs based on succinct non-interactive argu-
ments (SNARGs) and any iteratively sequential function (ISF).2 Other known
constructions of VDFs [38,42] rely on the repeated squaring assumption—a con-
crete ISF.

Let us recall what ISFs are. A sequential function (SF) is a function that
takes a long time to compute, even if one has many parallel processors. An ISF
is the iteration of some round function and the assumption is that iterating the
round function is the fastest way to evaluate the ISF, even if one has many
parallel processors. Clearly, any VDF implies an SF and so any construction of
VDFs will necessarily rely on such (but this is not the case for an ISF3). It is
thus a very natural question whether we can get a VDF based on only SFs and
SNARGs. Note that the construction of Boneh et al. [14] inherently relies on the
iterated structure of the underlying sequential function.4

Towards answering this question, we observe that any non-interactive SPARK
for computing and proving an SF implies a VDF: simply compute the non-
interactive SPARK for the SF. If the SF does not require any parallelism to
compute, then by our main theorem, any SF, SNARK (with quasi-linear over-
head), and collision-resistant hash function imply a VDF. However, in general,
a moderate amount of parallelism may help to speed up the computation of an
SF, and thus for this application, we would require a SPARK for (moderately)
parallel computation. We defer this extension of our main theorem to the full
version.

In fact, one way to view our main construction is by improving existing
techniques for constructing verifiable computation for iterated functions from

2 Actually, their original construction relied on incremental verifiable computation [41],
which exists based on SNARKs [12], and any ISF. In an updated version they show
that actually SNARGs, along with ISFs, are sufficient.

3 However, a continuous VDF [24] does imply an ISF.
4 In the construction based on SNARGs and ISFs, they need to be able to “break”

the computation of the function in various mid-points of the computation and the
internal “state” in those locations has to be small for efficiency of the construction.
In the construction based on SNARKs and ISFs, they rely on a tight construction
of incremental verifiable computation but the number of parallel processors required
for the latter is as large as the cost of a single step [8,12,36], and so many steps are
needed.

712 N. Ephraim et al.

SNARGs to arbitrary functions using SNARKs (and collision resistant hash func-
tions). An interesting open question is how to construct verifiable computation
for arbitrary functions from only SNARGs, rather than SNARKs.

Memory-Hard VDFs. A particularly appealing extension of the application
above is to the existence of memory-hard VDFs. Recall that VDFs only guar-
antee that a long computation has been performed (and anyone can verify this
publicly). It is very natural to require that not only a time-consuming computa-
tion was performed but also that the computation required many resources, for
example, a large portion of the memory across time.

Clearly any VDF that is based on an ISF is not memory hard. The reason is
that even if the basic round function is memory-hard, upon every iteration the
memory consumption goes to 0! Since the VDF construction discussed above
does not necessarily have to be instantiated with an ISF but rather any SF
(and a SPARK for computing it), we can use a memory hard sequential func-
tion (e.g., [1–4,22,23]) and get a VDF where the computation not only takes a
long time, but also requires large memory throughout. As above, this requires
a SPARK for a memory hard function, which may require using more than one
parallel processor, and as such we give this extension in the full version.

1.3 Related Work

Succinct Arguments with Efficient Provers. We elaborate on the existing
succinct arguments that focus on prover efficiency. First, we recall that Kilian’s
succinct argument consists of a prover who commits to a PCP using a Merkle
tree and locally opens a set of random locations specified by the verifier. As
such, efficient PCP constructions immediately give rise to succinct arguments
with an efficient prover. Specifically in [7,10], they show how to construct PCPs
in quasi-linear time, which yield succinct arguments with a prover running in
T · polylog T time for T -time computations. In [7], they show how to construct
a quasi-linear size PCP where every bit can be computed in polylog T depth
given the transcript of the computation. This results in a succinct argument
where the prover runs in parallel time T + polylog T using roughly T proces-
sors (as opposed to polylog T processors as required by SPARKs). Furthermore,
the above arguments can be made non-interactive by applying the Fiat-Shamir
transformation [25,34].

A different line of work has focused additionally on the prover’s space com-
plexity. Bitansky et al. [12] (following Valiant’s [41] incrementally verifiable com-
putation framework using recursive proof composition) construct complexity-
preserving SNARKs, in which both the time and space of the underlying com-
putation up to (multiplicative) polynomial factors in the security parameter. For
the task of delegating deterministic T -time S-space computation, Holmgren and
Rothblum [28] give a prover with T · polylog T time and S + o(S) space assum-
ing sub-exponential LWE. We leave as future work the question of additionally
reducing the prover’s space complexity for SPARKs.

SPARKs: Succinct Parallelizable Arguments of Knowledge 713

Tight VDFs. As we describe shortly in Sect. 2, our construction splits the
computation into “chunks” and proves each of them in parallel. This idea is
inspired by the recent transformations of Boneh et al. and Döttling et al. [14,20]
in the context of verifiable delay functions (VDFs) [14,15]. Those works show
how to use a VDF for an iterated sequential function where the honest evaluator
has some overhead into a VDF where the honest evaluator uses multiple parallel
processors and has essentially no parallel time overhead at all. However, iterated
functions can be naturally split into chunks and so most of the technical difficulty
in our work does not arise in that context. See Sect. 2 for more details.

IOPs. In an effort to bring down the quasi-linear overhead of PCPs, Ben-Sasson
et al. [9] and Reingold et al. [39] introduced the concept of interactive oracle
proofs (IOPs).5 IOPs are a type of proof system that combines aspects of inter-
active proofs (IPs) and PCPs: in every round a prover sends a possibly long
message but the verifier is allowed to read only a few bits. IOPs also generalize
Interactive PCPs [30]. The most recent IOP is due to Ron-Zewi and Rothblum
[40] (improving Ben-Sasson et al. [6]) and achieves nearly optimal overhead in
proof length (i.e., a 1 + ε factor for an arbitrary ε > 0) and constant rounds
and query complexity, however the prover’s running time is some unspecified
polynomial.

2 Technical Overview

In this section, we present the main techniques underlying our transformation
from succinct arguments of knowledge with quasilinear overhead to SPARKs.

2.1 Warmup: SPARKs for Iterated Functions

Our starting point stems from the recent works of Boneh et al. and Döttling
et al. [14,21]. For concreteness, we describe the setting of [14], which focuses
on the simplified case of proving correctness of the output of an iterated
function g(T)(x0) = (g ◦ . . . ◦ g)(x0) for some T ∈ N. Rather than proving
that g(T)(x0) = xT directly, they split the computation into different sub-
computations of geometrically decreasing size such that the proof for every sub-
computation completes by time T .

To demonstrate this idea, suppose for simplicity that each iteration takes one
unit of time to compute and that there is a succinct argument that can non-
interactively prove any computation of k iterations of g in 2k additional time.
Then, in order to prove that g(T)(x0) = xT , they first perform 1/3 of the compu-
tation to obtain g(T/3)(x0) = xT/3 and then prove its correctness. Observe that
xT/3 can be computed in time T/3 and the proof can be generated in time 2T/3
by assumption, so the proof that g(T/3)(x0) = xT/3 completes by time T .

5 To clarify notation, IOPs (introduced by [9]) are equivalent to the notion of Proba-
bilistically Checkable Interactive Proofs (introduced concurrently and independently
by [39]).

714 N. Ephraim et al.

In parallel to proving that g(T/3)(x0) = xT/3, they additionally compute and
prove 1/3 of the remaining computation (namely, that g((T−T/3)/3)(xT/3) =
x5T/9) in a separate parallel thread, which also will finish by time T . They con-
tinue in this fashion recursively until the remaining computation can be verified
directly.

In this construction, the prover only needs to start at most O(log T) par-
allel computation threads and finishes in essentially parallel time T . The final
proof consists of O(log T) proofs of the intermediate sub-computations. The ver-
ifier checks each proof for the sub-computations independently and accepts if all
checks pass and the proposed inputs and outputs are consistent with each other.
More generally, if the given non-interactive argument had α multiplicative over-
head, the resulting number of threads needed would be O(α · log T). So, when
the overhead is quasi-linear (i.e. α ∈ polylog T), the resulting argument is still
succinct.

2.2 Extending SPARKs to Arbitrary Computations

The focus of this work is extending the above example to handle arbitrary non-
deterministic polynomial-time computation (possibly with a long output) which
introduces many complications. Specifically, suppose we are given an statement
(M,x, T) with witness w, where M is a RAM machine and we want to prove
that M(x,w) outputs some value y within T steps. We emphasize that our goal
is to capture general non-deterministic, polynomial-time computation where the
output y is not known in advance, so we would like to simultaneously compute
y given (M,x, T) and w, and prove its correctness. Since M is a RAM machine,
it has access to some (potentially large) memory D ∈ {0, 1}n where n consists
of at most 2|x| bits. To capture NP computation, we let the security parameter
λ be roughly the input size |x|, and we let T be a arbitrary polynomial in λ. Let
us try to employ the above strategy in this more general setting.

As M does not necessarily implement an iterated function, the first problem
we encounter is that there is no natural way to split the computation into many
sub-computations with small input and output. For intermediate statements, the
näıve solution would be to prove that running the RAM machine M for k steps
starting at some initial memory Dstart results in final memory Dfinal. However,
this is a problem because the size of the memory, n, may be large—perhaps even
as large as the full running time T—so the intermediate statements we need to
prove may be huge!

A natural attempt to mitigate this would be to instead provide a succinct
commitment to the memory at the beginning and end of each sub-computation,
and then have the prover additionally prove that it knows a memory string con-
sistent with each commitment. Concretely, each sub-computation corresponding
to k steps of computation would contain commitments cstart, cfinal. The prover
would show that there exist strings Dstart, Dfinal such that (1) cstart, cfinal are com-
mitments to Dstart, Dfinal, respectively, and (2) starting with memory Dstart and
running RAM machine M for k steps results in memory Dfinal. This seems like

SPARKs: Succinct Parallelizable Arguments of Knowledge 715

a step in the right direction, since the statement size for each sub-computation
would only depend on the output size of the commitment and not the size of
the memory. However, the prover’s witness—and hence running time to prove
each sub-computation—still scales linearly with the size of the memory in this
approach. Therefore, the main challenge we are faced with is removing the depen-
dence on the memory size in the witness of the sub-computations.

Using Local Updates. To overcome the above issues, we observe that in each
sub-computation the prover only needs to prove that the transition from the
initial commitment cstart to the final commitment cfinal is consistent with k steps
of computation done by M . At a high level, we do so by proving that there
exists a sequence of k local updates to cstart which result in cfinal. Then in order
to verify a sub-computation corresponding to k steps, we can simply check the
k local updates to the commitment of the memory, rather than checking the
memory in its entirety. To formalize this idea, we rely on short commitments
that allow for local updates which can be efficiently computed in parallel to
the main computation. We call such commitments concurrent locally updatable
commitments.

Given such commitments, will use a succinct argument of knowledge (PsARK,
VsARK) for an NP language Lupd that corresponds to checking that a sequence
of local updates are valid. Specifically, a statement (M,x, k, cstart, cfinal) ∈ Lupd if
and only if there exists a sequence of updates u1, . . . , uk such that, starting with
short commitment cstart, running M on input x for k steps specifies the updates
u1, . . . , uk that result in a commitment cfinal. Then, as long as the updates are
themselves succinct, the size of the witness scales only with the number of steps
of the computation and not with the size of the memory.

In order to make the above approach work, we need locally updatable com-
mitments that satisfy the following two properties:

1. Updates can be computed efficiently in parallel to the main computation.
2. Local updates can be verified as modifying at most a single location in the

committed memory.

We next explain how we obtain the required commitments satisfying the above
properties. We believe that this primitive and the techniques used to obtain it
are of independent interest.

Concurrent Locally Updatable Commitments. Roughly speaking, a con-
current locally updatable commitment is a standard computationally binding
string commitment scheme with a local update property which supports updat-
ing a single bit in the underlying message without re-committing to the whole
message. For efficiency we additionally require that one can perform several local
updates concurrently. For soundness, we require that no efficient adversary can
find two different openings for the same location even if it is allowed to perform
polynomially-many update operations. A formal definition appears in Sect. 4.

716 N. Ephraim et al.

Our construction relies on Merkle trees [33] and hence can be instanti-
ated with any collision resistant hash function. Recall that a Merkle tree
uses a compressing hash function, which we assume for simplicity is given by
h : {0, 1}2λ → {0, 1}λ, and is obtained via a binary tree structure where nodes
are associated with values. The leaves are associated with arbitrary values and
each internal node is associated with a value that is the hash of the concatenation
of its children’s values.

It is well known that Merkle trees, when instantiated with a collision resis-
tant hash function h, act as short commitments with local opening. The latter
property enables proving claims about specific blocks in the input without open-
ing the whole input, by revealing the authentication path from some input bit to
the root (i.e. the hashes corresponding to sibling nodes along the path from the
leaf to the root). Not only do Merkle trees have the local opening property, but
the same technique allows for local updates. Namely, one can update the value of
a specific bit in the input and compute the new root value without recomputing
the whole tree (by updating the hashes along the authentication path of the bit).
All of these local procedures cost time which is proportional to the depth of the
tree, log n, as opposed to the full memory n. We denote this update time as β
(which may additionally depend polynomially on λ, for example, to compute the
hash function at each level in the tree).

Let us see what happens when we use Merkle trees as our commitment.
Recall that the Merkle tree contains the hash of the memory at every step
of the computation, and we update its value after each such step. The latter
operation, as mentioned above, takes β time. So even with local updates, using
Merkle trees näıvely incurs a β delay for every update operation which implies
a β multiplicative delay for the whole computation (which we want to avoid)!
To handle this, we use a pipelining technique to perform the local updates in
parallel.

Pipelining Local Updates. Consider two updates u1 and u2 that we want to
apply to the current Merkle tree sequentially. We observe that since Merkle
trees updates work “level by level,” we can first update the first level of the
tree (corresponding to the leaves) according to u1. Then, update the second
layer according to u1 and in parallel update the first layer using u2. Continuing
in this fashion, we can update the third layer according to u1 and in parallel
update the second layer using u2, and so on. The idea can be generalized to
pipeline u1, . . . , uk, so that the final update uk completes after (k −1)+β steps,
and the memory is consistent with the Merkle tree given by performing update
operations u1, . . . , uk sequentially. The implementation of this idea requires β
additional parallel threads since the computation for at most β updates will
overlap at a given time. A key point that allows us to pipeline these concurrent
updates is that the operations at each level in the tree are data-independent in a
standard Merkle tree. Namely, each processor can perform all of the reads/writes
to a given level in the tree at a single time step, and the next processor can
continue in the next time step without incurring any delay.

SPARKs: Succinct Parallelizable Arguments of Knowledge 717

Ensuring Optimal Prover Run-Time. Using the above ingredients, we dis-
cuss how to put everything together to ensure optimal prover run-time. Con-
cretely, suppose we have a concurrent locally updatable commitment where each
update takes time β, and a succinct non-interactive argument of knowledge with
α ∈ polylog T multiplicative overhead.

As discussed above, to prove that M(x,w) output a value y in T steps, we
split the computation into m sub-computations which all complete by time T .
The ith sub-computation will consist of a “compute” phase, where we compute
ki steps of the total T computation steps, and a “proof” phase, where we use
the succinct argument to prove correctness of those ki steps. For the “compute”
phase, recall that performing ki steps of computation while also updating the
commitment takes ki ·β total work. However, as described above, we can pipeline
these updates so that the parallel time to compute these updates is only (ki −
1) + β.

For the “proof” phase, recall that we that we use a succinct argument for
the update language Lupd such that a statement (M,x, k, cstart, cfinal) ∈ Lupd if
there exists a sequence of k updates such that (1) the updates are consistent
with the computation of M and (2) applying these updates to cstart results in
cfinal. To compute the proofs in the desired amount of time, we need to set the
values of ki appropriately. As the total work to compute ki steps with updates
is ki · β, this implies that each proof takes at most ki · α · β time. Therefore, the
largest “chunk” of computation we can compute and prove by time T time is
T/(αβ +1). For convenience, let γ � αβ +1. Then, in the first sub-computation,
we can compute and prove k1 = T/γ steps of computation. In each subsequent
computation, we compute and prove a γ fraction of the remaining computation.
Putting everything together, we get that ki = (T/γ) · (1−1/γ)i−1 for i ∈ [m−1]
and then km < γ is the number of remaining steps such that

∑m
i=1 ki = T .

In Fig. 1 we show the structure of the compute and proof phases for all m sub-
computations. We emphasize that the entire protocol completes within T + β
parallel time. As β ∈ polylog T , this implies that only have a small additive
rather than multiplicative overhead. This is tight in the sense that computing
the commitment for T steps of computation with updates takes T +β time, so all
of the proofs about the updates to the commitments are computed completely in
parallel. Next, we note that we have a β gap between the time that the “compute”
phase ends and the “proof” phase begins for a particular sub-computation. This
is because we have to wait β additional time to finish computing the updates
before we can start the proofs. However, we can immediately start computing
the next sub-computation without waiting for the updates to complete. Lastly,
the number of processors used in the protocol is β at all times in the constantly
running “compute” phase which is additionally computing updates to the com-
mitment in parallel. Then we have at most m − 1 additional processors for the
proofs of the first m − 1 sub-computations. The last sub-computation, we don’t
have the prover compute the proof, and instead the prover will send the updates
in the clear for the verifier to check directly.

718 N. Ephraim et al.

Parallel time T β

k1 k1 · α · β
β-gap

k2 k2 · α · β

k3 k3 · α · β

k4 k4 · α · β

k5

β

Fig. 1. The “compute” and “proof” phases for each of m sub-computations. For i ∈
[m − 1], the ith sub-computation consists of ki steps, while pipelining updates which
each take β time. After finishing all updates, the prover computes the proof which
takes ki · α · β time. In the final sub-computation, we send the updates to the verifier
in the clear instead of giving a proof.

Computing the Initial Commitment. Before giving the full protocol, we
address a final issue, which is for the prover to compute the commitment to
the initial memory string. Specifically, the prover needs to commit to a string
D ∈ {0, 1}n, which the RAM machine M assumes contains its inputs (x,w).
Directly committing to the string x||w would require roughly |x|+ |w| additional
time, which could be as large as T . To circumvent the need to compute the
initial commitment, we simply do not commit to the initial memory! Instead,
we start with a commitment to an uninitialized memory that can be computed
efficiently and allows each position to be initialized exactly once whenever it is
first accessed. In Sect. 4, we discuss the full details of how we deal with this issue
for our commitments.

2.3 Our SPARK Construction

We now summarize our full SPARK construction. Suppose that we have (1) a
concurrent locally updatable commitment that starts as uninitialized where each
update takes time β and (2) a succinct non-interactive argument of knowledge
(PsARK, VsARK) for the update language Lupd with α ∈ polylog T multiplicative
overhead. Let γ � αβ +1, as described above, which is the fraction of remaining
computation done at each step. The protocol (P, V) for a statement (M,x, T) is
as follows:

1. V samples public parameters pp for the commitment and sends them to P .

SPARKs: Succinct Parallelizable Arguments of Knowledge 719

2. Using pp, P computes the commitment cstart for the uninitialized memory
Dstart = ⊥n.

3. P computes T/γ steps of M(x,w) while in parallel updating Dstart and the
corresponding local updates to c1 = cstart.

4. After completing the T/γ steps of the computation (but not necessarily com-
pleting all corresponding updates), P starts recursively computing and prov-
ing the remaining T − T/γ steps in parallel.

5. Let u1, . . . , uT/γ be the current updates, which result in commitment c′
1. After

computing the current updates, P uses PsARK(u1, . . . , uT/γ) for language Lupd

to prove that starting with commitment c1, running M on input x for T/γ
steps results in commitment c′

1.
6. P continues until there are at most γ steps of the computation. At this point,

P computes the remaining steps and sends the corresponding updates to V
in the clear to be verified directly.

7. After finishing the computation and all corresponding updates, P uses the
final commitment to open the output y and give a proof of its correctness. V
accepts if the proof certifying y verifies and VsARK accepts all sub-protocols,
which are consistent with each other.

Handling Interactive Protocols. The same transformation described above
applies to interactive r-round succinct argument of knowledge. However, since
the protocol is interactive, the prover starts an interactive protocol in order to
prove that sub-computations were performed correctly. It is not necessarily the
case that the messages in the various interactive arguments will be “synced”
up, and so our transformation suffers from (at most) a polylog T factor increase
in the round complexity. For specific underlying succinct argument, however, it
may be the case that it is easy to synchronize the rounds in reduce the round
complexity.

Security Proof and Argument of Knowledge Definition. We note that
proving security in the above construction is somewhat non-trivial. The key
issue is that we need to simultaneously extract witnesses from super logarith-
mically many concurrent or parallel arguments of knowledge, without causing
a blow-up in the complexity of the resulting extractor. Towards resolving this
issue, we introduce a new argument of knowledge definition, which (1) enables
dealing with this issue in our proof of security, yet (2) is satisfied by known suc-
cinct arguments of knowledge for NP. We view this definition as an additional
independent contribution. For more details, see Sect. 5.2.

3 Preliminaries

We defer some standard notation to the full version of the paper and instead
focus on the necessary ingredients for our construction. We also defer the formal
definition of succinct arguments of knowledge, as it is a natural analogue to the
SPARK definition given in Sect. 5.2.

720 N. Ephraim et al.

3.1 Random Access Memory

RAM computation consists of a machine M which keeps some local state state
and has read/write access to memory D ∈ ({0, 1}λ)n (equivalent to the tape of
a Turing machine). Here, λ is the security parameter and length of a word,6 and
n ≤ 2λ is the number of words in memory used by M . When we write M(x)
to denote running M on input x, this means that M expects its initial memory
D to be equal to x||0nλ−|x|. The computation is defined using a function step,
which has the following syntax:

(state′, op, �, vwt) = step(M, state, vrd).

Specifically, step takes as input the description of the machine M , the current
state state, and a word vrd that was read in the last step from memory. Then,
it outputs the next state state′, the operation op ∈ {rd,wt} to do next, the next
location � ∈ [n] to access, and the word vwt to write next if op = wt (or ⊥ if
op = rd).

Using step, we can define each step of RAM computation to run step, and
then either do a read or a write. We assume that each write operation returns
the value in the memory location before the write. Formally, starting with an
initially empty state state0 and letting brd0 = ⊥, the ith step of computation for
i ≥ 1 is defined as:

1. Compute (statei, opi, �i, v
wt
i) = step(M, statei−1, v

rd
i−1).

2. If opi = rd, let vrd
i be the word in location �i of D.

3. If opi = wt, let vrd
i be the word at location �i in D and write vwt

i to that
location.

The computation halts when step outputs a special halting value with the
output y of M(x) written at the start of the memory, where we assume that M
specifies its output length. Without loss of generality, we assume that the state
size can hold O(log n) bits.

We also consider the parallel-RAM (PRAM) setting, where each step of the
machine can potentially branch to multiple processors that have access to the
same memory D. We formalize this by allowing step to output multiple values for
(state′, op, �, vwt), each associated with a process identifier specifying the process
to continue the computation from that state. The computation halts when there
are no running processors. We are in the exclusive-read exclusive-write (EREW)
model, i.e., the most restrictive PRAM model, where if some process accesses a
location (either a read or a write) in memory while another process accesses the
same location (either a read or a write), there are no guarantees for the resulting
effect. We also assume that n words in memory can be allocated and initialized
to zeros for free.

6 We note that the length of a word only needs to be greater than log n, but can be
as large as any fixed polynomial in λ. We set it to λ for simplicity.

SPARKs: Succinct Parallelizable Arguments of Knowledge 721

(P)RAM Complexity. Each step of RAM computation is allowed to make a
single access to memory. We think of step, which computes the transition function
from state to state′, as being implemented by an efficient CPU algorithm with
access to a constant number of words. As a result, we define the running time of a
RAM machine M as the number of accesses it makes to its working memory. For
PRAM machines, each step of computation may make multiple parallel accesses
to memory via different processors.

To model the complexity of a (P)RAM machine M , we consider two com-
plexity measures: work and depth. Specifically, we let workM (x) denote the total
amount of computation done by all processors measured in steps (or equiva-
lently memory accesses). When M is a non-deterministic machine, we denote
this by workM (x,w) where w is the witness. We let depthM (x) (analogously,
depthM (x,w)) denote the number of sequential steps until M halts, where steps
that occur in parallel are counted as one step. For a (non-parallel) RAM machine,
we simply denote its running time by workM (x).

3.2 Universal and NP Relations

Next, we define a variant of the universal relation, introduced by [5]. For effi-
ciency reasons, it will be helpful to define this relative to different computa-
tional models, so we give definitions for Turing machine computation and RAM
machine computation.

Definition 3.1. The universal relation for Turing machines RTM
U is the set of

instance-witness pairs ((M,x, t, L, y), w) where M is a Turing machine such that
M(x,w) outputs y within t steps, and additionally |y| ≤ L. We let LTM

U be the
corresponding universal language. We similarly define RRAM

U and LRAM
U to the be

universal relation and language, respectively, for RAM computation, where the
given machine M is a RAM machine.

Following [11,17], we define the NP relation RTM
c as follows. For every c ∈ N,

we let RTM
c ⊆ RTM

U be a subset of the universal relation consisting of pairs
((M,x, t, L, y), w) where t ≤ |x|c. We let LTM

c be the corresponding language.
The relation RRAM

c and language LRAM
c are defined analogously for the case where

M is a RAM machine.
The main difference between our definition and the standard universal rela-

tion of [5] is that we consider computation with long outputs y, and we also
include an upper bound L on the length of y. We include y so as to have a defi-
nition which captures both deterministic and non-deterministic polynomial-time
computation. A similar relation was given in [17] to define a canonical relation
for P. Moreover, the universal relation of [5] is linear-time reducible to our defini-
tion above. With regards to L, we include this because in our main construction
of SPARKs, the output y of the computation will not be known in advance.
However, the complexity of the scheme inherently depends on L (as the output
of the protocol is y).

Finally, we note that for a statement (M,x, y, L, t) with respect to RAM
computation, we do not place any restriction on the length of the witness w.

722 N. Ephraim et al.

Specifically, the machine M may only access t positions in w, but it could be
the case that |w| is significantly greater than t.

4 Concurrent Locally Updatable Commitment

In this section we define and construct a commitment that allows for local
updates. Furthermore, we require that these local updates can be computed
concurrently using multiple processors in a pipelined fashion (described in more
detail below). We define our construction in the PRAM model.

For a security parameter λ ∈ N, our commitment will be for strings D con-
sisting of n ≤ 2λ words of length λ. It will also be helpful for us to capture the
case when D is not defined at every location, that is, some words are set to ⊥.
To formalize this, below we define the notion of a partial string, which is simply
a succinct way to represent strings over ({0, 1}λ ∪ {⊥})n.

Definition 4.1 (Partial string). For any string s ∈ ({0, 1}λ ∪{⊥})∗ of words,
we define the partial string D which represents s as follows. D is given by tuple
(n, I,A), where n is the number of words (or ⊥ elements) in s, I ⊆ [n] is the
set of non-⊥ locations in s, and A ∈ {0, 1}|I| is the assignment to those indices.
We let Di denote the ith word in s.

4.1 Concurrent Locally Updatable Commitment

Our commitment scheme C consists of algorithms with the following syntax:7

• pp ← C.Gen(1λ): A PPT algorithm that on input the security parameter λ,
outputs a key pp.

• (ptr, com) = C.Commit(pp,D): A deterministic algorithm that on input a key
pp and a partial string D = (n, I,A), outputs a pointer ptr to a location in
memory and a string com.

• (v, π) = C.Open(pp, ptr, �): A read-only deterministic algorithm that on input
a key pp, a pointer ptr, and a location � ∈ [n], outputs a value v ∈ {0, 1}λ ∪
{⊥}, and a proof π.

• (com, τ) = C.Update(pp, ptr, �, v): A deterministic algorithm that on input a
key pp, a pointer ptr, a location � ∈ [n], and a word v ∈ {0, 1}λ, outputs a
commitment com and a proof τ .

• b′ = C.VerOpen(pp, com, �, v, π): A deterministic algorithm that on input a
key pp, a commitment com, a location � ∈ [n], a value v ∈ {0, 1}λ ∪ {⊥}, and
a proof π, outputs a bit b′.

• b′ = C.VerUpd(pp, com, �, v, com′, τ): A deterministic algorithm that on input
a key pp, a commitment com, a location � ∈ [n], a word v ∈ {0, 1}λ, a
commitment com′, and a proof τ , outputs a bit b′.

7 For simplicity, the only randomized algorithm in our definition is the key generation
algorithm, and the rest are deterministic. However, with minor modifications to our
main protocol, we could use a commitment where all algorithms may be randomized.

SPARKs: Succinct Parallelizable Arguments of Knowledge 723

We require the following properties.

Definition 4.2 (Completeness). Let λ ∈ N, pp in the support of C.Gen(1λ),
and let D = (n, I,A) be a partial string. For any m ≥ 0, and �i ∈ [n], vi ∈ {0, 1}λ

for i ∈ [m], do the following:

1. Compute (ptr, com0) = C.Commit(pp,D).
2. For i = 1, . . . , m, compute (comi, τi) = C.Update(pp, ptr, �i, vi).

Let D′ be the partial string resulting from writing vi to D�i
for i = 1, . . . , m.

Then, the following hold for any � ∈ [n]:

• Open Completeness. Let (v, π) = C.Open(pp, ptr, �). Then,

C.VerOpen(pp, comm, �, v, π) = 1 ∧ D′
� = v.

• Update Completeness. For any v ∈ {0, 1}λ, let (com, τ) = C.Update(pp,
ptr, �, v). It holds that

C.VerUpd(pp, comm, �, v, com, τ) = 1.

Definition 4.3 (Soundness). For all non-uniform PPT adversaries A =
{Aλ}λ∈N, there exists a negligible function negl such that for all λ ∈ N, it holds
that

Pr

⎡

⎢
⎢
⎣

C.VerOpen(pp, com0, �0, v0, π0) = 1 ∧
∀i ∈ [m] : C.VerUpd(pp, comi−1, �i, vi, comi, τi) = 1 ∧
C.VerOpen(pp, comm, �0, v, π) = 1 ∧
v = vj

⎤

⎥
⎥
⎦ ≤ negl(λ),

where j is the largest index with �j = �0, and the probability is over the choice of
pp ← C.Gen(1λ) and (m, {(comi, �i, vi, τi)}i∈[m], com0, �0, v0, π0, v, π) ← Aλ(pp).

Lastly, we require the following efficiency properties, which at a high level
say that any sequence of k updates can be computed (while opening the previous
values) in a pipelined fashion with only additive overhead.

Definition 4.4 (Efficiency). Let λ ∈ N and let D = (n, I,A) be a partial string
where n ≤ 2λ. We say that a concurrent locally updatable commitment satisfies
efficiency if there exists a polynomial β = β(λ, log n) such that the following hold:

– The algorithms C.Open, C.Update, C.VerOpen, and C.VerUpd can each be com-
puted with β work.

– Computing C.Commit(pp,D) can be done with β · (|I| + 1) work.
– For any key pp, pointer ptr, location � ∈ [n], and word v, define (π, com, τ)

as follows:
• (v′, π) = C.Open(pp, ptr, �)
• (com, τ) = C.Update(pp, ptr, �, v)

724 N. Ephraim et al.

There exists an algorithm OpenUpdate(pp, ptr, �, v) which outputs (v′, π, com,
τ), such that k sequential calls to OpenUpdate can be computed with kβ work,
which can be decoupled into depth (k − 1) + β using β processors.

We say that a concurrent locally updatable commitment satisfies β-efficiency if
the above hold with respect to a particular function β.

Remark 4.5. We emphasize that the completeness and soundness properties we
give for concurrent locally updatable commitments must hold for any sequence of
m “valid” local updates. At a high level, these notions stipulate that an opening
will always give the correct value (with a proof) and that no adversary can
find an opening for a value you wouldn’t expect (based on the local updates).
Furthermore, we require C.VerUpd to ensure that a local update a one location
does not affect any other locations.

We note that our definition generalizes standard notions of completeness and
position binding for vector commitments [16], as when there are no updates (i.e.,
m = 0), they are equivalent. Our definition also generalized the read and write
security properties of other Merkle tree commitments, such as those in [29]. We
note that it does not suffice to consider the properties to hold with respect to a
single update (i.e., when m = 1). This is because our commitments keep state,
so it may be the case that it internally keeps a counter and artificially breaks
completeness or soundness after some m > 1 updates have occurred.

4.2 Construction

Before giving our construction, we discuss the building blocks we will be using.

Merkle Trees. Let h : {0, 1}2λ → {0, 1}λ be a compressing hash function. A
Merkle tree [33] for a string D ∈ {0, 1}nλ consists of a complete binary tree of
log n + 1 levels labelled 0, . . . , log n where level i consists of n/2i nodes. Each
node is associated with a value in {0, 1}λ. The leaves at level 0 correspond to D,
split into n blocks of length λ. The value of each node at level i > 0 is defined to
be the hash (using h) of the concatenation of its children’s values at level i − 1.
The single node at level log n is referred to as the root or commitment of the
Merkle tree.

An authentication path π = (π0, . . . , πlog n−1) for a leaf i ∈ [n] consists of the
values in the tree corresponding to the siblings of all nodes along the path from
the leaf to the root, ordered from level 0 to log n − 1. An authentication path
π = (π0, . . . , πlog n−1) for a leaf i is said to be a valid opening for v ∈ {0, 1}λ

with respect to a commitment com if when hashing the value v at leaf i with
π0, hashing the resulting value with π1, and so on for all values in π, the final
value equals com. Whenever updating the value of a leaf i with block block, we
additionally re-compute the hash values along the path to the root using its
authentication path. The overall size needed to store the Merkle tree in memory
is 2nλ bits.

Assuming the underlying hash function h is collision resistant, it is well known
that a Merkle tree is a binding commitment to a fully defined string that allows

SPARKs: Succinct Parallelizable Arguments of Knowledge 725

for local opening and updates. Moreover, it is known that a standard Merkle tree
satisfies the standard completeness and binding properties of a commitment.

In our construction, we will want to use a Merkle tree for values v ∈ {0, 1}λ ∪
{⊥}. Therefore, we will use a Merkle tree for 2λ-bit values, so that we can
uniquely encode each element of {0, 1}λ ∪ {⊥} as a string of length 2λ and each
node in the Merkle tree corresponds to two consecutive words in memory.

Segment Tree. A segment tree is a data structure that provides a way for the
prover to efficiently check if a range of indices in the partial string D = (n, I,A)
are ⊥. To this end, we want to represent the set I (which will be constantly
updated) in a way that allows us to check if [i1, i2] ∩ I = ∅ in O(log n) time and
independent of |I| and |i2 − i1|.

To do so, we use a segment tree which mirrors the Merkle tree and consists of
a complete binary tree with n leaves. Each node has an associated bit which is 1
if the corresponding node in the Merkle tree has been initialized and 0 otherwise.
Every time a leaf in the Merkle tree is updated, we initialize all nodes in the tree
along the path to the root, meaning we set the corresponding bits in the segment
tree to 1. Then, if any node in the segment tree has a bit of 0, it guarantees that
all indices corresponding to the leaves that are descendants of this node are ⊥.
This implies that for any range [i1, i2], we can check if [i1, i2]∩I = ∅ by checking
the bits of O(log n) nodes in the tree that cover this range of indices. This data
structure only requires 2n additional bits to store.

Our Construction. Let H = {Hλ}λ∈N be a collision-resistant hash function
family ensemble with h : {0, 1}4λ → {0, 1}2λ for each h ∈ Hλ. Let thash(λ) be
an upper bound on the running time of each h ∈ Hλ. We also assume that we
have a canonical, deterministic encoding of each value in {0, 1}λ ∪{⊥} to 2λ-bit
strings, denoted by block(v) for v ∈ {0, 1}λ ∪ {⊥}, which can efficiently decoded
(for example, we could represent v ∈ {0, 1}λ as v||0λ and ⊥ as 12λ).

We now give our full concurrent updatable commitment construction C =
(C.Gen,C.Commit,C.Open,C.Update,C.VerOpen,C.VerUpd).

• pp ← C.Gen(1λ): Sample h ← Hλ and output pp = h.
• (ptr, com) = C.Commit(pp,D):

1. Allocate 4nλ + 2n + 2λ log n bits of memory at a pointer ptr, starting
with a Merkle tree with n leaves at ptr, a corresponding segment tree at
pointer segtree, and log n extra blocks of size 2λ at pointer aux.
We assume that all memory is initialized to 0.

2. Define dummy(0) = block(⊥). Let h = pp, and for j = 1, . . . , log n, com-
pute dummy(j) = h(dummy(j − 1)||dummy(j − 1)) and write it to the
next block of free memory at aux.

3. Recall that D = (n, I,A) specifies a set I of non-⊥ indices. For
each location � ∈ I, run the update procedure defined below by
C.Update(pp, ptr, �,D�).

4. Let com be the value of the root in ptr and output (ptr, com).
• (v, π) = C.Open(pp, ptr, �): Let segtree be the pointer to the segment tree in

memory. For j ∈ {0, . . . , log(n) − 1}, let nodej be the ancestor of leaf � at

726 N. Ephraim et al.

level j and let sibj be its sibling.
For each level j = 0, . . . , log(n) − 1:
1. Read nodej in ptr, and let its value be yj .
2. Read nodej in segtree, and if its value is 0, let yj = block(⊥).
3. Read sibj in ptr, and let its value be πj .
4. Read sibj in segtree, and if its value is 0, set πj = dummy(j).

Let v ∈ {0, 1}λ ∪ {⊥} be the value such that y0 = block(v), or ⊥ if there is
no such value. Output (v, π) where π = (π0, π1, . . . , πlog(n)−1).

• (com, τ) = C.Update(pp, ptr, �, v): Let segtree be the pointer to the segment
tree in memory. For j ∈ {0, . . . , log(n) − 1}, let nodej be the ancestor of leaf
� at level j and let sibj be its sibling. Let y0 = block(v).
For each level j = 0, . . . , log(n) − 1:
1. Access Step. Do the following in parallel:

(a) Write yj to nodej in ptr, and let zj ∈ {0, 1}2λ be the value overwritten
at that location.8

(b) Write 1 to nodej in segtree.
(c) Read sibj in ptr, and let its value be πj .
(d) Read sibj in segtree, and if its value is 0, set πj = dummy(j).

2. Hash Steps. Let yj+1 be the hash of the concatenation yj and πj (with
the leftmost sibling first), using pp.

Let v′ ∈ {0, 1}λ ∪ {⊥} be the value such that z0 = block(v′), or ⊥ if there is
no such value. Output (com, τ) where com = ylog n and τ = v′||(π0, π1, . . . ,
πlog(n)−1).

• b′ = C.VerOpen(pp, com, �, v, π): Verify that the authentication path π for leaf
� is valid for value block(v) with respect to com.

• b′ = C.VerUpd(pp, com, �, v, com′, τ): Output 1 if and only if the following
hold:
1. τ can be parsed as v′||π where v′ ∈ {0, 1}λ∪{⊥} and π is an authentication

path.
2. C.VerOpen(pp, com, �, v′, π) = 1.
3. C.VerOpen(pp, com′, �, v, π) = 1.

We now prove that our construction satisfies the completeness, soundness,
and efficiency properties above assuming collision-resistant hash functions.

Theorem 4.6. Assuming the existence of collision-resistant hash function fam-
ilies, there exists a concurrently updatable commitment scheme.

We prove this theorem by showing that C, as described above, satisfies com-
pleteness, soundness, and efficiency. The proofs are deferred to the full version.

8 Note that this is one place where we use the fact that writing to a location in memory
returns the value being overwritten. We use this to put the value v′ at leaf � in the
Merkle tree before the update into the update proof τ , which is used to verify that
the commitment before the update and the commitment after the update only differ
at one location.

SPARKs: Succinct Parallelizable Arguments of Knowledge 727

5 Succinct Parallelizable Arguments of Knowledge

In this section, we define SPARKs and show how to construct them from any
concurrent locally updatable commitment and succinct argument of knowledge
with quasilinear overhead, for a specific NP language, defined in Sect. 5.1. More
precisely, we construct a succinct argument system where the prover runs in
optimal parallel time (i.e., depth). We define Succinct Parallelizable Arguments
of Knowledge formally below, using the following syntax for interactive protocols.
We denote by 〈P (w), V 〉 the output of V in the interaction, which may be of
arbitrary (polynomial) length. Furthermore, we let V output ⊥ to indicate reject,
and output y = ⊥ to accept the output y.

Definition 5.1 (SPARK). A Succinct Parallelizable Argument of Knowledge
(SPARK) for a relation R ⊆ RRAM

U is a tuple of probabilistic interactive machines
(P, V) where P is a PRAM machine, satisfying the following properties:

• Completeness: For every λ ∈ N and ((M,x, y, L, t), w) ∈ R,

Pr
[〈P (w), V 〉(1λ, (M,x, t, L)) = y

]
= 1,

where the probability is over the random coins of P and V .
• Argument of Knowledge: There exists a probabilistic oracle machine E

and a polynomial q such that for every non-uniform polynomial-time prover
P � = {P �

λ}λ∈N, there exists a negligible function negl such that for every
λ ∈ N, (M,x, t, L) ∈ {0, 1}∗ with |M,x, t| ≤ λ and L ≤ λ, and z, s ∈ {0, 1}∗,
the following hold.
Let P �

λ,z,s denote the machine P �
λ with auxiliary input z and randomness s

fixed, let Vr denote the verifier V using randomness r ∈ {0, 1}�(λ) where �(λ)
is a bound on the number of random bits used by V (1λ, ·). Then:
1. The expected running time of EP �

λ,z,s,Vr (1λ, (M,x, t, L)) is bounded by
q(λ, t), where the expectation is over r ← {0, 1}�(λ) and the random coins
of E.

2. It holds that

Pr

⎡

⎣
r ← {0, 1}�(λ)

y = 〈P �
λ,z,s, Vr〉(1λ, (M,x, t, L))

w ← EP �
λ,z,s,Vr (1λ, (M,x, t, L))

: y = ⊥ ∧ ((M,x, y, L, t), w) ∈ R

⎤

⎦

≤ negl(λ).

• Succinctness: There exist polynomials p and q such that for any λ ∈ N and
M,x, t, L ∈ {0, 1}∗, it holds that

workV (1λ, (M,x, t, L)) ≤ p(λ, |(M,x)|, L, log t)

and the length of the transcript produced in the interaction between P (w) and
V on common input (1λ, (M,x, t, L)) is bounded by q(λ,L, log t).

728 N. Ephraim et al.

• Optimal prover depth: There exists a polynomial p such that for all λ ∈ N

and ((M,x, t, L, y), w) ∈ R, it holds that

depthP (1λ, (M,x, t, L), w) = t + p(λ, |(M,x)|, L, log t)

and the total number of processors used by P is in poly(λ,L, log t).

A SPARK for NP is a uniformly computable ensemble {(Pc, Vc)}c∈N where
(Pc, Vc) is a SPARK for RRAM

c .

We next remark about some subtleties in our definition and compare to
related notions.

Remark 5.2 (Delayed output). We note that our definition of SPARKs has a
“delayed output” property where the prover picks the output of the protocol
rather than it being known a priori to both the prover and verifier. For typical
NP languages, this distinction is not important because the prover is always
trying to prove that the relation outputs 1. However, for proving more general
polynomial-time computation, the output may not be known in advance, so the
prover must compute both the output and a proof.

Remark 5.3 (Execution by execution extraction). Since there may be many pos-
sible outputs y of the computation, it is very important that the extractor finds
a witness for the actual output y that V accepts in the interaction. Morally, this
definition should capture the fact that the prover actually knows a witness for
that output, instead of a witness for an arbitrary output y′ that the prover may
never convince the verifier of. This is particularly relevant for NP relations, since
when a prover convinces a verifier of an accepting witness (i.e., one where the
relation outputs 1) it is not meaningful to extract a witness which makes the
relation output 0. Note that it does not suffice to run the protocol and simply
give the extractor y (and require the extractor to provide a witness for that
output), as the malicious prover may only convince V of any particular y with
small probability.

A similar challenge motivated the work on precise proofs of knowledge [35],
where they defined arguments of knowledge where the extractor’s behavior
depended on a specific instance of the protocol.9 To capture this, their extractor
receives a uniformly sampled view of the prover in the protocol and extracts a
consistent witness. In our definition above, we choose to give the extractor oracle
access to the fixed prover as well as the verifier with fixed randomness which
results in accepting a particular output y. This is akin to giving the extractor an
interactive version of the view, while additionally making the extractor black-
box in both the malicious prover and (fixed) verifier. As such, the extractor can
emulate the interaction to deterministically figure out the output y it needs to
extract for.

9 They considered instances with different running times, whereas we consider
instances with different outputs.

SPARKs: Succinct Parallelizable Arguments of Knowledge 729

Remark 5.4 (On composition). It is often important for an argument of knowl-
edge to be composable—that is, to be able to be used as a sub-protocol (possibly
many times). Indeed, we require this for our transformation from arguments of
knowledge to SPARKs. Often, the challenge with composing proofs of knowledge
is obtaining the desired running time of the final extractor.

One definition which composes well is precise argument of knowledge [35]. As
explained above, in that definition the extractor receives the prover’s view in the
protocol, and for every view, the running time of the extractor is a fixed polyno-
mial (in the prover’s running time on that view). However, this notion is quite
strong, and hence is not known to hold for standard arguments of knowledge.

A more standard notion is witness-extended emulation [32], where the extrac-
tor is not given a view, but instead must output a uniformly distributed view
of the verifier as well as a witness. Moreover, the extractor only needs to run in
expected polynomial time, and may use rewinding. However, when this is used
as a sub-protocol, the view picked by the extractor may not be compatible with
the external view in the rest of the protocol.

To fix this issue, our definition essentially gives the extractor a uniformly
sampled view, and we require that the extractor runs in expected polynomial
time over the choice of the view. This can be seen as a relaxation of precise
argument of knowledge, since it doesn’t need to be efficient for every view, but
also as a strengthening of witness-extended emulation, because the extractor
must work on a given view, rather than being able to sample one itself.

Remark 5.5 (Standard arguments of knowledge). The definition we use for a suc-
cinct argument of knowledge (rather than SPARKs) can be obtained from the
above definition by including y in the statement (as is standard for arguments)
and making the necessary syntactic changes. The formal definition is deferred
to the full version. We note that for succinct arguments of knowledge, the cor-
responding extraction definition is implied by the definition used in [37].

We our now ready to state our main result.

Theorem 5.6 [Restatement of Theorem 1.3]. Suppose there exists a succinct
argument of knowledge for NP with quasilinear overhead and a concurrent locally
updatable commitment. Then, there exists a SPARK for NP.

Next, we discuss some implications and details of this theorem. Then, to
prove Theorem 5.6, we describe a helper language (Sect. 5.1) and then give the
protocol (Sect. 5.2). We defer the proofs to the full version. We also discuss
various extensions of the protocol in the full version.

The round complexity, prover’s space complexity, and verifier’s efficiency in
the SPARK from the above theorem are all preserved from the underlying suc-
cinct argument up to poly(λ, |M,x| , L, log t) factors. Furthermore, we observe
that our SPARK has universal completeness, prover runtime, and succinctness,
meaning that these three properties hold with respect to the universal relation
RRAM

U . Our soundness guarantee, however, requires knowing a polynomial upper
bound on t, and as such we construct a protocol for RRAM

c for each c such that

730 N. Ephraim et al.

t = |x|c. Alternatively, we could have achieved universal soundness by relying
on a superpolynomial assumption on the soundness of the commitment scheme.

We can instantiate Theorem 5.6 with Kilian’s 4-round succinct argument of
knowledge [31], which exists assuming only collision resistant hash functions. Fur-
thermore, we can instantiate the PCP used by Kilian’s succinct argument with
an efficient PCP (say [10] which has quasilinear prover running time and poly-
logarithmic verifier running time). Since we already assume collision resistant
hash functions for the commitment, this shows that we can achieve SPARKs for
NP from collision resistance alone. Applying the transformation as specified, the
round complexity of the resulting transformation would be poly(λ, |M,x| , log t).
However, we can use the fact that for the standard implementation of Kilian
(where the prover stores the entire PCP), the prover can compute the last two
rounds in poly(λ, log t) time, so we can do the last two rounds of Kilian in par-
allel to reduce the round complexity to four. This gives Theorem 1.1. The full
details of this modification are described in the full version.

By suitably modifying the SPARK definition to be non-interactive, and rely-
ing on any SNARK with quasi-linear overhead, the above transformation can be
used to obtain a non-interactive SPARK. This gives Theorem 1.2, for which the
formal details are also deferred to the full version.

5.1 The Update Language

For any c ∈ N, we would like to give a SPARK for RRAM
c . Let (M,x, y, L, t)

be any statement in LRAM
c , where M is a RAM program with access to a string

D ∈ {0, 1}nλ in memory for n ≤ 2λ. To help with our construction, we define the
language Lupd in Fig. 2. This language corresponds to k steps of a RAM compu-
tation where at each step we additionally update a commitment corresponding
to the memory of M . Specifically, a statement

(M,x, k, pp, state0, com0, v
rd
0 , statefinal, comfinal, v

rd
final)

is in Lupd if there exists a sequence of k consistent updates starting at state
state0 and ending at statefinal. The ith update specifies the commitment comi

after that step, the value vrd
i read from memory during that step (if any), and

proofs πi, τi validating the operation (read or write) performed at that step.
The relation of this language is defined relative to the values given by

(statei, opi, �i, v
wt
i) = step(M, statei−1, v

rd
i−1) for i ∈ [k]. The relation first checks

that the final state statek and commitment and comk match those given by the
statement. Then, for every step i, it checks (1) that the update from comi−1 to
comi is valid (using proof τi) and (2) in the case of a read operation, namely
opi = rd, there is a valid opening for comi−1 at position �i (using proof πi).
Specifically, this check guarantees that vrd

i either already appeared in position �i

in comi−1, or that the position was ⊥ before step i and was initialized correctly
to vrd

i in step i.
The key properties of this language are (1) the witness scales with the length

of the computation and not the size of the memory, and (2) witnesses for con-
secutive Lupd computations can be merged into a single witness for a larger Lupd

SPARKs: Succinct Parallelizable Arguments of Knowledge 731

Language Lupd:

Statement. (M, x, k, pp, state0, com0, v
rd
0 , statefinal, comfinal, v

rd
final)

Witness. (u1, . . . , uk), where ui = (comi, v
prev
i , vrd

i , πi, τi) for all i ∈ [k]
Relation Rupd. Let (statei, opi, �i, v

wt
i) = step(M, statei−1, v

rd
i−1) for i ∈ [k].

Then, (statek, comk, vrd
k) = (statefinal, comfinal, v

rd
final) and for all i ∈ [k] the

following hold:
1. C.VerUpd(pp, comi−1, �i, v

opi
i , comi, τi) = 1.

2. C.VerOpen(pp, comi−1, �i, v
prev
i , πi) = 1.

3. vprev
i ∈ {⊥, vrd

i

}
.

4. If vprev
i = ⊥ and �i < |x|, then vrd

i = x�i .

Fig. 2. A language for verifying k steps of a RAM computation M on input x from
initial state state0 to final state statefinal.

computation. This allows us to prove that (M,x, y, L, t) ∈ LRAM
c with witness

w by splitting a proof that M(x,w) = 1 into proofs of many sub-computations,
where the proof of each sub-computation will correspond to a statement in Lupd.

The Complexity of Lupd. Note that the language Lupd is a standard NP
language. In particular, verifying that an instance-witness pair corresponding
to k updates is in the relation for Lupd can be done by a circuit C with
|C| = k · p(λ, |M,x| , log n) for a polynomial p. Since we will only be using the
succinct argument to prove statements in Lupd, we only need it to have quasi-
linear overhead with respect to the circuit (or Turing Machine) complexity of
this language.

5.2 The Protocol

Before defining our protocol in Figs. 3 and 4, we give an overview to introduce
the necessary notation and emphasize certain aspects that were omitted for sim-
plicity from the technical overview. Let (PsARK, VsARK) be the succinct argument
of knowledge and let α be its prover efficiency. Let C be the concurrent locally
updatable commitment and let β be its efficiency.

As mentioned in Sect. 5.1, to prove that ((M,x, y, L, t), w) ∈ RRAM
c , we

split the computation of M(x,w) into m sub-computations in such a way that
the proof of each sub-computation completes roughly by time t. The ith sub-
computation consists of a “compute” phase, where we compute ki steps of the
total t steps of computation and maintain a commitment to the memory at each
step, and a “proof” phase, where we use (PsARK, VsARK) to prove correctness
of those ki steps. For the “compute” phase, recall that performing ki steps of
computation while also updating the commitment takes ki · β total work, yet
computed in depth (ki − 1) + β using β processors by Theorem 4.6.

To complete the “proof” phase in the desired amount of time, suppose that
the work of the prover in the interactive protocol (PsARK, VsARK) is bounded by a
function α of the security parameter and total work of the computation (where
we recall that the security parameter also upper bounds the statement size).

732 N. Ephraim et al.

For any k ≤ t steps of computation, it will be convenient to consider α� to
be an upper bound on the multiplicative overhead of computing a proof for a
statement in Lupd. We define this formally below, but it can be roughly thought
of as a value upper bounded by α(λ, β · t)/(β · t). Then, the largest number of
steps of the computation that we can compute and prove and ensure we finish
before time t is k1 = t/(α� · β + 1) steps. This is because it takes k1 + β steps
to compute (with corresponding hash updates using β processors) and then can
be proven in time k1 · α� · β. Put these together, computing and proving will
finish roughly in time t + β. Furthermore, after computing the first k1 steps, we
can recursively carve out the next largest piece of computation we can finish in
time t.

In general, let γ � α� · β + 1. The size of the ith sub-computation will be
ki = (t/γ)·(1−1/γ)i−1, which intuitively holds because at each sub-computation
we are left with a (1 − 1/γ) fraction of the total remaining computation. We
continue recursively until the remaining computation is less than log λ steps,
which the verifier can then compute directly given the witness, and thus in total
recurse for m = γ log t steps. We formalize the above idea in Fig. 3 with the
algorithm Compute-and-prove.

In the full protocol (formalized in Fig. 4), the verifier V first sends public
parameters for the commitment (which alternatively could be part of a trusted
common reference string in the non-interactive setting). The prover P then
hashes an initially empty string (corresponding to uninitialized memory) and
allocates memory to store the memory D for use when emulating M . M expects
D to start with x and w. One way to achieve this would be for P to copy x,w
to the start of D in |x| + |w| time, but we want to avoid having P run in time
depending on |w| since this could be large. To resolve this, we instead have P
translate all accesses to D that correspond to the witness to instead access its
own memory where w is located. Because w is only needed to emulate M , if
M overwrites the memory containing w, it will not cause any other issues for
P . Finally, the prover P runs Compute-and-prove with V as discussed above.
After proving all sub-computations, the prover sends the output y and a proof
authenticating each word in y. Finally, V accepts if all sub-protocols are valid,
the claimed statements are consistent with each other, and if the proofs of the
claimed output are valid.

Parameters. For ease of readability for the protocol and corresponding proofs,
we define the parameters and assumptions for the protocol with respect to λ ∈ N,
the relation RRAM

c , and M,x, t, L ∈ {0, 1}∗ as follows:

– β � β(λ, log(n)) is the efficiency of C.
– α is a function representing the prover efficiency of (PsARK, VsARK). For any

security parameter Λ, machine and input of total length X, and time bound
T , we assume that α(Λ,X, T)/T ∈ poly(Λ,X, log T) and is an increasing
function in each of its inputs.

SPARKs: Succinct Parallelizable Arguments of Knowledge 733

Compute-and-prove

Input: T, state0, com0, v
rd
0

Prover Input: Witness w, ptr
Hardcoded Values: 1λ, M, x, γ, pp
Protocol:
1. If T ≥ γ, set k = �T/γ�, which will be the number of steps to compute,

and otherwise set k = T .

2. P does the following for i = 1, . . . , k:
(a) Compute (statei, opi, �i, v

wt
i) = step(M, statei−1, v

rd
i−1).

(b) If opi = wt, update D with vwt
i in location �wti and let vrd

i be the value
at that location that was overwritten.

(c) If opi = rd, let vrd
i be the value at location �i in D.

(d) Spawn a parallel process to compute OpenUpdate(pp, ptr, �i, v
opi
i)

(specified by Definition 4.4) and let (vprev
i , πi, comi, τi) be the output.

3. Without waiting Step 2d to halt, if T ≥ γ, P spawns a process to run
Compute-and-prove with V on input (T − k, statek, comk, vrd

k).

4. Once step 2d halts, set statement = (M, x, k, pp, state0, com0, v
rd
0 , statek,

comk, vrd
k) and wit = ((com1, v

prev
1 , vrd

1 , π1, τ1), . . . , (comk, vprev
k , vrd

k , πk, τk)).

5. If T ≥ γ, P spawns a process to run an interactive argument of knowledge
with V to prove that statement ∈ Lupd using (PsARK(wit), VsARK).

6. Otherwise, when T < γ, P sends wit to V , and V uses wit directly to
verify that statement ∈ Lupd.

Fig. 3. A parallel algorithm, used in the SPARK in Fig. 4, that computes and proves
T steps of RAM computation.

– α� � α(λ, |M,x|+6λ+�Gen(λ)+log t, tβ)/(tβ) is the worst-case multiplicative
overhead of running PsARK to prove a statement in Lupd corresponding to at
most t steps of computation, where �Gen(λ) is the output length of C.Gen(1λ),
and so |M,x| + 6λ + �Gen(λ) + log t is an upper bound on the length of the
Lupd statements. Note that α� is a function of λ, M , x, t, and β.

– γ � α� ·β +1 is the fraction of remaining computation done at each recursive
call to Compute-and-prove. Note that γ is a function of λ, M , x, t, and β.

We formalize the protocol in Figs. 3 and 4. We prove Theorem 5.6, that
this protocol is a SPARK by showing completeness, argument of knowledge,
succinctness, and prover efficiency. The proofs are deferred to the full version.

734 N. Ephraim et al.

Protocol Π(1λ, (M, x, t, L)) for RRAM
c between P (w) and V :

1. V computes pp ← C.Gen(1λ) and (∗, comstart) = C.Commit(pp, D⊥), where
where D⊥ is the empty partial string. V sends pp to P .

2. Both parties compute γ (as in the parameters paragraph), initialize
statestart as the initial (empty) state of M , and set vrd

start = ⊥.

3. P computes (ptr, comstart) = C.Commit(pp, D⊥). P additionally allocates
memory for M , denoted D, and initialized to zeros (which we assume is
free), and copies x to the start of the D. Whenever P needs to access
a location � in D that would correspond to the witness (i.e., |x| < � <
|x| + |w|), it instead accesses the corresponding location in w in its own
memory. For simplicity, when we write that P accesses a location in D,
we implicitly assume it translates the location appropriately.

4. P and V run the sub-protocol Compute-and-prove(t, statestart, comstart,
vrd
start). For i ∈ [m], let Πi be the ith sub-protocol proving statementi :=
(Mi, xi, ki, ppi, statei, comi, v

rd
i , state′

i, com
′
i, v

rd′
i).

5. P computes (yi, πi,final) = C.Open(pp, ptr, i) for i ∈ [L′] where L′ = �L/λ�.
Then, P sends y = y1‖ . . . ‖yL′) and πfinal = (π1,final, . . . , πL′,final) to V .

6. V outputs y if the following hold, and outputs ⊥ otherwise:
(a) VsARK accepts in Π1, . . . , Πm−1 and V accepts in Πm.

(b) For all i ∈ [m], it holds that (Mi, xi, ppi) = (M, x, pp).

(c)
∑m

i=1 ki = t and t ≤ |x|c.
(d) (statestart, comstart, v

rd
start) = (state1, com1, v

rd
1).

(e) (state′
i, com

′
i, v

rd′
i) = (statei+1, comi+1, v

rd
i+1) for all i ∈ [m − 1].

(f) state′
m is a halting state, |y| ≤ L, and C.VerOpen(pp, comm, i, yi,

πi,final) accepts for all i ∈ [L′].

Fig. 4. A SPARK for RRAM
c .

Acknowledgements. This work was supported in part by NSF Award SATC-
1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267, and by NSF
Award DGE-1650441. This research is based upon work supported in part by the
Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of ODNI, IARPA, or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.

References

1. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative mem-
ory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 1

https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_1

SPARKs: Succinct Parallelizable Arguments of Knowledge 735

2. Alwen, J., Blocki, J., Pietrzak, K.: Sustained space complexity. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 99–130. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 4

3. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On
the complexity of scrypt and proofs of space in the parallel random oracle model.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
358–387. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 13

4. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: STOC, pp. 595–603. ACM (2015)

5. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

6. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive ora-
cle proofs with constant rate and query complexity. In: 44th International Collo-
quium on Automata, Languages, and Programming, ICALP, pp. 40:1–40:15 (2017)

7. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: STOC, pp. 585–594. ACM (2013)

8. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for
C: verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

9. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

10. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008)

11. Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017)
12. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-

tance to succinct non-interactive arguments of knowledge, and back again. In:
ITCS, pp. 326–349. ACM (2012)

13. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 16

14. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

15. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. IACR
Cryptology ePrint Archive 2018,712 (2018)

16. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

17. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
p-certificates. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pp. 50–59 (2013)

18. Costello, C., et al.: Geppetto: versatile verifiable computation. In: IEEE Sympo-
sium on Security and Privacy, pp. 253–270. IEEE Computer Society (2015)

19. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
20. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor

hash functions and their applications. IACR Cryptology ePrint Archive 2019,639
(2019)

https://doi.org/10.1007/978-3-319-78375-8_4
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-642-36362-7_5

736 N. Ephraim et al.

21. Döttling, N., Garg, S., Malavolta, G., Vasudevan, P.N.: Tight verifiable delay func-
tions. IACR Cryptology ePrint Archive 2019,659 (2019)

22. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 25

23. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 3

24. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. IACR Cryptology ePrint Archive 2019,619 (2019)

25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

26. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. J. ACM 62(4), 27:1–27:64 (2015)

27. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

28. Holmgren, J., Rothblum, R.: Delegating computations with (almost) minimal time
and space overhead. In: 59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS, pp. 124–135 (2018)

29. Kalai, Y., Paneth, O.: Delegating RAM computations. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 91–118. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 4

30. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 44

31. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 723–
732. ACM (1992)

32. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptol. 16(3), 143–184 (2003)

33. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

34. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

35. Micali, S., Pass, R.: Local zero knowledge. In: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006,
pp. 306–315 (2006)

36. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. Commun. ACM 59(2), 103–112 (2016)

37. Pass, R., Rosen, A.: Concurrent nonmalleable commitments. SIAM J. Comput.
37(6), 1891–1925 (2008)

38. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical
Computer Science Conference, ITCS, pp. 60:1–60:15 (2019)

39. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC, pp. 49–62 (2016)

40. Ron-Zewi, N., Rothblum, R.D.: Local proofs approaching the witness length. IACR
Cryptology ePrint Archive 2019,1062 (2019)

https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21

SPARKs: Succinct Parallelizable Arguments of Knowledge 737

41. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

42. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

43. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero
knowledge proof system. In: USENIX Security Symposium, pp. 675–692. USENIX
Association (2018)

https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-030-17659-4_13

Marlin: Preprocessing zkSNARKs
with Universal and Updatable SRS

Alessandro Chiesa1(B), Yuncong Hu1, Mary Maller2, Pratyush Mishra1(B),
Noah Vesely1, and Nicholas Ward1

1 UC Berkeley, Berkeley, USA
{alexch,yuncong hu,pratyush,psi,npward}@berkeley.edu

2 Ethereum Foundation, London, UK
mary.maller@ethereum.org

Abstract. We present a methodology to construct preprocessing
zkSNARKs where the structured reference string (SRS) is universal
and updatable. This exploits a novel use of holography [Babai et al.,
STOC 1991], where fast verification is achieved provided the statement
being checked is given in encoded form.

We use our methodology to obtain a preprocessing zkSNARK where
the SRS has linear size and arguments have constant size. Our construc-
tion improves on Sonic [Maller et al., CCS 2019], the prior state of the
art in this setting, in all efficiency parameters: proving is an order of
magnitude faster and verification is thrice as fast, even with smaller SRS
size and argument size. Our construction is most efficient when instan-
tiated in the algebraic group model (also used by Sonic), but we also
demonstrate how to realize it under concrete knowledge assumptions.
We implement and evaluate our construction.

The core of our preprocessing zkSNARK is an efficient algebraic holo-
graphic proof (AHP) for rank-1 constraint satisfiability (R1CS) that
achieves linear proof length and constant query complexity.

1 Introduction

Succinct non-interactive arguments (SNARGs) are efficient certificates of mem-
bership in non-deterministic languages. Recent years have seen a surge of interest
in zero-knowledge SNARGs of knowledge (zkSNARKs), with researchers study-
ing constructions under different cryptographic assumptions, improvements in
asymptotic efficiency, concrete performance of implementations, and numerous
applications. The focus of this paper is SNARGs in the preprocessing setting, a
notion that we motivate next.

When is fast verification possible? The size of a SNARG must be, as a
minimum condition, sublinear in the size of the non-deterministic witness, and
often is required to be even smaller (e.g., logarithmic in the size of the non-
deterministic computation). The time to verify a SNARG would be, ideally,
as fast as reading the SNARG. This is in general too much to hope for, how-
ever. The verification procedure must also read the description of the compu-
tation, in order know what statement is being verified. While there are natural
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 738–768, 2020.
https://doi.org/10.1007/978-3-030-45721-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_26

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 739

computations that have succinct descriptions (e.g., machine computations), in
general the description of a computation could be as large as the computation
itself, which means that the time to verify the SNARG could be asymptotically
comparable to the size of the computation. This is unfortunate because there is
a very useful class of computations for which we cannot expect fast verification:
general circuit computations.

The preprocessing setting. An approach to avoid the above limitation is
to design a verification procedure that has two phases: an offline phase that
produces a short summary for a given circuit; and an online phase that uses
this short summary to verify SNARGs that attest to the satisfiability of the
circuit with different partial assignments to its input wires. Crucially, now the
online phase could in principle be as fast as reading the SNARG (and the partial
assignment), and thus sublinear in the circuit size. This goal was captured by
preprocessing SNARGs [Gro10,Lip12,Gen+13,Bit+13], which have been studied
in an influential line of works that has led to highly-efficient constructions that
fulfill this goal (e.g., [Gro16]) and large-scale deployments in the real world that
benefit from the online fast verification (e.g., [Zcash]).

The problem: circuit-specific SRS. The offline phase in efficient construc-
tions of preprocessing SNARGS consists of sampling a structured reference string
(SRS) that depends on the circuit that is being preprocessed. This implies that
producing/validating proofs with respect to different circuits requires different
SRSs. In many applications of interest, there is no single party that can be
entrusted with sampling the SRS, and so real-world deployments have had to
rely on cryptographic “ceremonies” [ZcashMPC] that use secure multi-party
sampling protocols [Ben+15,BGG17,BGM17]. However, any modification in the
circuit used in an application requires another cryptographic ceremony, which is
unsustainable for many applications.

A solution: universal SRS. The above motivates preprocessing SNARGs
where the SRS is universal, which means that the SRS supports any circuit
up to a given size bound by enabling anyone, in an offline phase after the SRS is
sampled, to publicly derive a circuit-specific SRS.1 Known techniques to obtain
a universal SRS from circuit-specific SRS introduce expensive overheads due to
universal simulation [Ben+14a,Ben+14b]. Also, these techniques lead to univer-
sal SRSs that are not updatable, a property introduced in [Gro+18] that sig-
nificantly simplifies cryptographic ceremonies. The recent work of Maller et al.
[Mal+19] overcomes these shortcomings, obtaining the first efficient construction
of a preprocessing SNARG with universal (and updatable) SRS. Even so, the
construction in [Mal+19] is considerably more expensive than the state of the
art for circuit-specific SRS [Gro16]. In this paper we ask: can the efficiency gap
between universal SRS and circuit-specific SRS be closed, or at least significantly
reduced?

1 Even better than a universal SRS would be a URS (uniform reference string). How-
ever, achieving preprocessing SNARGs in the URS model with small argument size
remains an open problem; see Sect. 1.2.

740 A. Chiesa et al.

Concurrent work. A concurrent work [GWC19] studies the same question as
this paper. See Sect. 1.2 for a brief discussion that compares the two works.

1.1 Our Results

In this paper we present Marlin, a new preprocessing zkSNARK with univer-
sal (and updatable) SRS that improves on the prior state of the art [Mal+19,
Sonic] in essentially all relevant efficiency parameters.2 In addition to reducing
argument size by several group and field elements and reducing time complexity
of the verifier by over 3×, our construction overcomes the main efficiency draw-
back of [Mal+19, Sonic]: the cost of producing proofs. Indeed, our construction
improves time complexity of the prover by over 10×, achieving prover efficiency
comparable to the case of preprocessing zkSNARKs with circuit-specific SRS. In
Fig. 1 we provide a comparison of our construction and [Mal+19, Sonic], includ-
ing argument sizes for two popular elliptic curves; the table also includes the
state of the art for circuit-specific SRS. We have implemented Marlin in a
Rust library,3 and report evaluation results in Fig. 2.

Our zkSNARK is the result of several contributions that we deem of inde-
pendent interest, summarized below.

(1) A new methodology. We present a general methodology to construct
preprocessing SNARGs (and also zkSNARKs) where the SRS is universal (and
updatable). Our methodology produces succinct interactive arguments that can
be made non-interactive via the Fiat–Shamir transformation [FS86], and so
below we focus on preprocessing arguments with universal and updatable SRS.

Our key observation is that the ability to preprocess a circuit in an offline
phase is closely related to constructing “holographic proofs” [Bab+91], which
means that the verifier does not receive the circuit description as an input but,
rather, makes a small number of queries to an encoding of it. These queries
are in addition to queries that the verifier makes to proofs sent by the prover.
Moreover, in this paper we focus on the setting where the encoding of the circuit
description consists of low-degree polynomials and also where proofs are them-
selves low-degree polynomials—this can be viewed as a requirement that honest
and malicious provers are “algebraic”. We call these algebraic holographic proofs
(AHPs); see Sect. 4 for definitions.

We present a transformation that “compiles” any public-coin AHP into a
corresponding preprocessing argument with universal (and updatable) SRS by
using suitable polynomial commitments.

Theorem 1. There is an efficient transformation that combines any public-coin
AHP for a relation R and an extractable polynomial commitment scheme to

2 Maller et al. [Mal+19] discuss two variants of their protocol, a cheaper one for the
“helped setting” and a costlier one for the “unhelped setting”. The variant that is
relevant to this paper is the latter one, because it is a preprocessing zkSNARK. (The
former variant does not achieve succinct verification, and instead achieves a weaker
guarantee that applies to proof batches.).

3 https://github.com/scipr-lab/marlin.

https://github.com/scipr-lab/marlin

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 741

construction argument size over BN-256 (bytes) argument size over BLS12-381 (bytes)

27412511]91+laM[cinoS
Marlin [this work] 1088 1296
Groth16 [Gro16] 128 192

zkSNARK
construction

ytixelpmocemitsezis

|ipk| |ivk| |π| generator indexer prover verifier

Sonic
[Mal+19]

G1 8M — 20 8 f-MSM(M) 4 v-MSM(3m) 273 v-MSM(m) 7 pairings
G2 8M 3 — 8 f-MSM(M) — —
Fq — — 16 — O(m log m) O(m log m) O(| | + log m)

Marlin
[this work]

G1 6M 2 13 1 f-MSM(6M) 9 v-MSM(m) 21 v-MSM(m) 2 pairings
G2 — 2 — — — —
Fq — — 21 — O(m log m) O(m log m) O(| | + log m)

Groth16
[Gro16]

G1 4n O(| |) 2 4 f-MSM(n)
N/A

4 v-MSM(n) 1 v-MSM(| |)
G2 n O(1) 1 1 f-MSM(n) 1 v-MSM(n) 3 pairings
Fq — — — O(m + n log n) O(m + n log n) —

n: number of multiplication gates in the circuit
m: total number of (addition or multiplication) gates in the circuit
M : maximum supported circuit size (= number of addition and multiplication gates)

Fig. 1. Comparison of two preprocessing zkSNARKs with universal (and updatable)
SRS: the prior state of the art and our construction. We include the current state
of the art for circuit-specific SRS (in gray), for reference. Here G1/G2/Fq denote the
number of elements or operations over the respective group/field; also, f-MSM(m) and
v-MSM(m) denote fixed-base and variable-base multi-scalar multiplications (MSM)
each of size m, respectively. The number of pairings that we report for Sonic’s verifier
is lower than that reported in [Mal+19] because we account for standard batching
techniques for pairing equations.

Fig. 2. Measured performance of Marlin and [Gro16] over the BLS12-381 curve. We
could not include measurements for [Mal+19, Sonic] because at the time of writing
there is no working implementation of its unhelped variant.

742 A. Chiesa et al.

obtain a public-coin preprocessing argument with universal SRS for the relation
R. The transformation preserves zero knowledge and proof of knowledge of the
underlying AHP. The SRS is updatable provided the SRS of the polynomial com-
mitment scheme is.

The above transformation provides us with a methodology to construct pre-
processing zkSNARKs with universal SRS (see Fig. 3). Namely, to improve the
efficiency of preprocessing zkSNARKs with universal SRS it suffices to improve
the efficiency of simpler building blocks: AHPs (an information-theoretic primi-
tive) and polynomial commitments (a cryptographic primitive).4

The improvements achieved by our preprocessing zkSNARK (see Fig. 1) were
obtained by following this methodology: we designed efficient constructions for
each of these two building blocks (which we discuss shortly), combined them via
Theorem 1, and then applied the Fiat–Shamir transformation [FS86].

Methodologies that combine information-theoretic probabilistic proofs and
cryptographic tools have played a fundamental role in the construction of effi-
cient argument systems. In the particular setting of preprocessing SNARGs, for
example, the compiler introduced in [Bit+13] for circuit-specific SRS has paved
the way towards current state-of-the-art constructions [Gro16], and also led to
constructions that are plausibly post-quantum [Bon+17,Bon+18]. We believe
that our methodology for universal SRS will also be useful in future work, and
may lead to further efficiency improvements.

public-coin
AHP

extractable
polynomial commitments

Theorem 1
(our compiler)

public-coin
preprocessing argument

with universal SRS

Fiat–Shamir
transformation

preprocessing SNARK
with universal SRS

Fig. 3. Our methodology for constructing preprocessing SNARGs with universal SRS.

(2) An efficient AHP for R1CS. We design an algebraic holographic proof
(AHP) that achieves linear proof length and constant query complexity, among
other useful efficiency features. The protocol is for rank-1 constraint satisfiability
(R1CS), a well-known generalization of arithmetic circuits where the “circuit
description” is given by coefficient matrices (see definition below). Note that
the relations that we consider consist of triples rather than pairs, because we
need to split the verifier’s input into a part for the offline phase and a part
for the online phase. The offline input is called the index, and it consists of
the coefficient matrices; the online input is called the instance, and it consists
of a partial assignment to the variables. The algorithm that encodes the index
(coefficient matrices) in the offline phase is called the indexer.
4 The methodology also captures as a special case various folklore approaches used in

prior works to construct non-preprocessing zkSNARKs via polynomial commitment
schemes (see Sect. 1.2), thereby providing the first formal statement that clarifies
what properties of algebraic proofs and polynomial commitment schemes are essen-
tial for these folklore approaches.

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 743

Definition 1 (informal). The indexed relation RR1CS is the set of triples
(i,x,w) =

(
(F, n,m,A,B,C), x, w

)
where F is a finite field, A,B,C are n × n

matrices over F, each containing at most m non-zero entries, and z := (x,w)
is a vector in F

n such that Az ◦ Bz = Cz. (Here “◦” denotes the entry-wise
product.)

Theorem 2 (informal). There exists a constant-round AHP for the indexed
relation RR1CS with linear proof length and constant query complexity. The
soundness error is O(m/|F|), and the construction is a zero knowledge proof
of knowledge. The arithmetic complexity of the indexer is O(m log m), of the
prover is O(m log m), and of the verifier is O(|x| + log m).

The literature on probabilistic proofs contains algebraic protocols that are
holographic (e.g., [Bab+91] and [GKR15]) but none achieve constant query com-
plexity, and so applying our methodology (Theorem 1) to these would lead to
large argument sizes (many tens of kilobytes). These prior algebraic protocols
rely on the multivariate sumcheck protocol applied to certain multivariate poly-
nomials, which means that they incur sizable communication costs due to (a)
the many rounds of the sumcheck protocol, and (b) the fact that applying the
methodology would involve using multivariate polynomial commitment schemes
that (for known constructions) lead to communication costs that are linear in
the number of variables.

In contrast, our algebraic protocol relies on univariate polynomials and
achieves constant query complexity, incurring small communication costs. Our
algebraic protocol can be viewed as a “holographic variant” of the algebraic pro-
tocol for R1CS used in Aurora [Ben+19a], because it achieves an exponential
improvement in verification time when the verifier is given a suitable encoding
of the coefficient matrices.

(3) Extractable polynomial commitments. Polynomial commitment sche-
mes, introduced in [KZG10], are commitment schemes specialized to work with
univariate polynomials. The security properties in [KZG10], while sufficient for the
applications therein, do not appear sufficient for standalone use, or even just for
the transformation in Theorem 1. We propose a definition for polynomial com-
mitment schemes that incorporates the functionality and security that we believe
to suffice for standalone use (and in particular suffices for Theorem 1). Moreover,
we show how to extend the construction of [KZG10] to fulfill this definition in
the plain model under non-falsifiable knowledge assumptions, or via a more effi-
cient construction in the algebraic group model [FKL18] under falsifiable assump-
tions. These constructions are of independent interest, and when combined with
our transformation, lead to the first efficient preprocessing arguments with univer-
sal SRS under concrete knowledge assumptions, and also to the efficiency reported
in Fig. 1.

We have implemented in a Rust library5 the polynomial commitment
schemes, and our implementation of Marlin relies on this library. We deem
this library of independent interest for other projects.
5 https://github.com/scipr-lab/poly-commit.

https://github.com/scipr-lab/poly-commit

744 A. Chiesa et al.

1.2 Related Work

In this paper we study the goal of constructing preprocessing SNARGs with
universal SRS, which achieve succinct verification regardless of the structure of
the non-deterministic computation being checked. The most relevant prior work
is Sonic [Mal+19], on which we improve as already discussed (see Fig. 1). The
notion of updatable SRS was defined and achieved in [Gro+18], but with a less
efficient construction.

Concurrent work. A concurrent work [GWC19] studies the same question as
this paper, and also obtains efficiency improvements over Sonic [Mal+19]. Below
is a brief comparison.

– We provide an implementation and evaluation of our construction, while
[GWC19] do not. The estimated costs reported in [GWC19] suggest that
an implementation may perform similarly to ours.

– Similarly to our work, [GWC19] extends the polynomial commitment in
[KZG10] to support batching, and proves the extension secure in the alge-
braic group model. We additionally show how to prove security in the plain
model under non-falsifiable knowledge assumptions, and consider the prob-
lem of enforcing different degrees for different polynomials (a feature that is
not needed in [GWC19]).

– We show how to compile any algebraic holographic proof into a preprocessing
argument with universal SRS, while [GWC19] focus on compiling a more
restricted notion that they call “polynomial protocols”.

– Our protocol natively supports R1CS, and can be viewed as a holographic
variant of the algebraic protocol in [Ben+19a]. The protocol in [GWC19]
natively supports a different constraint system, and involves a protocol that,
similar to [Gro10], uses a permutation argument to attest that all variables
in the same cycle of a permutation are equal (e.g., (1)(2, 3)(4) would require
that the second and third entries are equal).

Preprocessing SNARGs with a URS. Setty [Set19] studies preprocessing
SNARGs with a URS (uniform reference string), and describes a protocol that
for n-gate arithmetic circuits and a chosen constant c ≥ 2 achieves proving time
Oλ(n), argument size Oλ(n1/c), and verification time Oλ(n1−1/c). The protocol
in [Set19] offers a tradeoff compared to our work: preprocessing with a URS
instead of a SRS, at the cost of asymptotically larger argument size and verifica-
tion time. The question of achieving processing with a URS while also achieving
asymptotically small argument size and verification time remains open.

The protocol in [Set19] is obtained by combining the multivariate polynomial
commitments of [Wah+18] and a modern rendition of the PCP in [Bab+91]
(which itself can be viewed as the “bare bones” protocol of [GKR15] for circuits
of depth 1). [Set19] lacks an analysis of concrete costs, and also does not discuss
how to achieve zero knowledge beyond stating that techniques in other papers
[Zha+17a,Wah+18,Xie+19] can be applied. Nevertheless, argument sizes would
at best be similar to these other papers (tens of kilobytes), which is much larger
than our argument sizes (in the SRS model).

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 745

We conclude by noting that the informal security proof in [Set19] appears
insufficient to show soundness of the argument system, because the polynomial
commitment scheme is only assumed to be binding but not also extractable
(there is no explanation of where the witness encoded in the committed poly-
nomial comes from). Our definitions and security proofs, if ported over to the
multivariate setting, would fill this gap.

Non-preprocessing SNARGs for arbitrary computations. Checking arbi-
trary circuits without preprocessing them requires the verifier to read the cir-
cuit, so the main goal is to obtain small argument size. In this setting of non-
preprocessing SNARGs for arbitrary circuits, constructions with a URS (uniform
reference string) are based on discrete logarithms [Boo+16,Bün+18] or hash
functions [Ame+17,Ben+19a], while constructions with a universal SRS (struc-
tured reference string) combine polynomial commitments and non-holographic
algebraic proofs [Gab19]; all use random oracles to obtain non-interactive argu-
ments.6

We find it interesting to remark that our methodology from Theorem 1 gen-
eralizes protocols such as [Gab19] in two ways. First, it formalizes the folklore
approach of combining polynomial commitments and algebraic proofs to obtain
arguments, identifying the security properties required to make this approach
work. Second, it demonstrates how for algebraic holographic proofs the resulting
argument enables preprocessing.

Non-preprocessing SNARGs for structured computations. Several works
study SNARGs for structured computations. This structure enables fast verifi-
cation without preprocessing. A line of works [Ben+17,Ben+19c,Ben+19b] com-
bines hash functions and various interactive oracle proofs. Another line of works
[Zha+17b,Zha+18,Zha+17a,Wah+18,Xie+19] combines multivariate polyno-
mial commitments [PST13] and doubly-efficient interactive proofs [GKR15].

While in this paper we study a different setting (preprocessing SNARGs for
arbitrary computations), there are similarities, and notable differences, in the
polynomial commitments used in our work and prior works. We begin by noting
that the notion of “multivariate polynomial commitments” varies considerably
across prior works, despite the fact that most of those commitments are based
on the protocol introduced in [PST13].

– The commitments used in [Zha+17b,Zha+18] are required to satisfy
extractability (a stronger notion than binding) because the security proof
of the argument system involves extracting a polynomial encoding a witness.
The commitment is a modification of [PST13] that uses knowledge commit-
ments, a standard ingredient to achieve extractability under non-falsifiable
assumptions in the plain model. Neither of these works consider hiding com-
mitments as zero knowledge is not a goal for them.

6 The linear verification time in most of the cited constructions can typically be par-
tially mitigated via techniques that enable an untrusted party to help the verifier to
check a batch of proofs for the same circuit faster than checking each proof individ-
ually (the linear cost in the circuit is paid only once per batch rather than once for
each proof in the batch).

746 A. Chiesa et al.

– The commitments used in [Zha+17a,Wah+18] must be compatible with the
Cramer–Damg̊ard transform [CD98] used in constructing the argument sys-
tem. They consider a modified setting where the sender does not reveal the
value of the commitment polynomial at a desired point but, instead, reveals
a commitment to this value, along with a proof attesting that the committed
value is correct. For this modified setting, they consider commitments that
satisfy natural notions of extractability and hiding (achieving zero knowledge
arguments is a goal in both papers). The commitments constructed in the
two papers offer different tradeoffs. The commitment in [Zha+17a] is based
on [PST13]: it relies on a SRS (structured reference string); it uses pair-
ings; and for �-variate polynomials achieves Oλ(�)-size arguments that can be
checked in Oλ(�) time. The commitment in [Wah+18] is inspired from [BG12]
and [Bün+18]: it relies on a URS (uniform reference string); it does not use
pairings; and for �-variate multilinear polynomials and a given constant c ≥ 2
achieves Oλ(2�/c)-size arguments that can be checked in Oλ(2�−�/c) time.

– The commitments used in [Xie+19] are intended for the regular (unmodified)
setting of commitment schemes where the sender reveals the value of the poly-
nomial, because zero knowledge is later achieved by building on the algebraic
techniques described in [CFS17]. The commitment definition in [Xie+19] con-
siders binding and hiding, but not extractability. However, the given security
analysis for the argument system does not seem to go through for this defini-
tion (there is no explanation of where the witness encoded in the committed
polynomial comes from). Also, no commitment construction is provided in
[Xie+19], and instead the reader is referred to [Zha+17a], which considers
the modified setting described above.

In sum there are multiple notions of commitment and one must be precise about
the functionality and security needed to construct an argument system. We now
compare prior notions of commitments to the one that we use.

First, since in this paper we do not use the Cramer–Damg̊ard transform for
zero knowledge, commitments in the modified setting are not relevant. Instead,
we achieve zero knowledge via bounded independence [Ben+16], and in particular
we consider the familiar setting where the sender reveals evaluations to the
committed polynomial. Second, prior works consider protocols where the sender
commits to a polynomial in a single round, while we consider protocols where
the sender commits to multiple polynomials of different degrees in each of several
rounds. This multi-polynomial multi-round setting requires suitable extensions
in terms of functionality (to enable batching techniques to save on argument
size) and security (extractability and hiding need to be strengthened), which
means that prior definitions do not suffice for us.

The above discrepancies have led us to formulate new definitions of func-
tionality and security for polynomial commitments (as summarized in Sect. 2.2).
We conclude by noting that, since in this paper we construct arguments that
use univariate polynomials, our definitions are specialized to commitments for
univariate polynomials. Corresponding definitions for multivariate polynomi-
als can be obtained with straightforward modifications, and would strengthen

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 747

definitions appearing in some prior works. Similarly, we fulfill the required defini-
tions via natural adaptations of the univariate scheme of [KZG10], and analogous
adaptations of the multivariate scheme of [PST13] would fulfill the multivariate
analogues of these definitions.

2 Techniques

We discuss the main ideas behind our results. First we describe the two build-
ing blocks used in Theorem 1: AHPs and polynomial commitment schemes
(described in Sects. 2.1 and 2.2 respectively). We describe how to combine these
to obtain preprocessing arguments with universal SRS in Sect. 2.3. Next, we dis-
cuss constructions for these building blocks: in Sect. 2.4 we describe our AHP
(underlying Theorem 2), and in Sect. 2.5 we describe our construction of poly-
nomial commitments.

Throughout, instead of considering the usual notion of relations that consist
of instance-witness pairs, we consider indexed relations, which consist of triples
(i,x,w) where i is the index, x is the instance, and w is the witness. This
is because i represents the part of the verifier input that is preprocessed in
the offline phase (e.g., the circuit description) and x represents the part of the
verifier input that comes in the online phase (e.g., a partial assignment to the
circuit’s input wires). The indexed language corresponding to an indexed relation
R, denoted L(R), is the set of pairs (i,x) for which there exists a witness w
such that (i,x,w) ∈ R.

2.1 Building Block: Algebraic Holographic Proofs

Interactive oracle proofs (IOPs) [BCS16,RRR16] are multi-round protocols
where in each round the verifier sends a challenge and the prover sends an oracle
(which the verifier can query). IOPs combine features of interactive proofs and
probabilistically checkable proofs. Algebraic holographic proofs (AHPs) modify
the notion of an IOP in two ways.
– Holographic: the verifier does not receive its input explicitly but, rather, has

oracle access to a prescribed encoding of it. This potentially enables the ver-
ifier to run in time that is much faster than the time to read its input in full.
(Our constructions will achieve this fast verification.)

– Algebraic: the honest prover must produce oracles that are low-degree poly-
nomials (this restricts the completeness property), and all malicious provers
must produce oracles that are low-degree polynomials (this relaxes the sound-
ness property). The encoded input to the verifier must also be a low-degree
polynomial.

Since in this paper we only work with univariate polynomials, our definitions
focus on this case, but they can be modified in a straightforward way to be more
general.

Informally, a (public-coin) AHP over a field F for an indexed relation R is
specified by an indexer I, prover P, and verifier V that work as follows.
– Offline phase. The indexer I receives as input the index i to be preprocessed,

and outputs one or more univariate polynomials over F encoding i.

748 A. Chiesa et al.

– Online phase. For some instance x and witness w, the prover P receives
(i,x,w) and the verifier V receives x; P and V interact over some (in this
paper, constant) number of rounds, where in each round V sends a challenge
and P sends one or more polynomials; after the interaction, V(x) probabilisti-
cally queries the polynomials output by the indexer and the polynomials out-
put by the prover, and then accepts or rejects. Crucially, V does not receive i
as input, but instead queries the polynomials output by I that encode i. This
enables the construction of verifiers V that run in time that is sublinear in |i|.

The completeness property states that for every (i,x,w) ∈ R the probability
that P(i,x,w) convinces VI(i)(x) to accept is 1. The soundness property states
that for every (i,x) /∈ L(R) and admissible prover P̃ the probability that P̃
convinces VI(i)(x) to accept is at most a given soundness error ε. A prover is
“admissible” if the degrees of the polynomials it outputs fit within prescribed
degree bounds of the protocol. See Sect. 4 for details on AHPs.

2.2 Building Block: Polynomial Commitments

Informally, a polynomial commitment scheme [KZG10] allows a prover to pro-
duce a commitment c to a univariate polynomial p ∈ F[X], and later “open”
p(X) at any point z ∈ F, producing an evaluation proof π showing that the
opened value is consistent with the polynomial “inside” c at z. Turning this
informal goal into a useful definition requires some care, however, as we explain
below. In this paper we propose a set of definitions for polynomial commitment
schemes that we believe are useful for standalone use, and in particular suffice
as a building block for our compiler described in Sect. 2.3.

First, we consider constructions with strong efficiency requirements: the com-
mitment c is much smaller than the polynomial p (e.g., c consists of a constant
number of group elements), and the proof π can be validated very fast (e.g., in
a constant number of cryptographic operations). These requirements not only
rule out natural constructions, but also imply that the usual binding property,
which states that an efficient adversary cannot open the same commitment to
two different values, does not capture the desired security. Indeed, even if the
adversary were to be bound to opening values of some function f : F → F, it
may be that the function f is consistent with a polynomial whose degree is
higher than what was claimed. This means that a security definition needs to
incorporate guarantees about the degree of the committed function.7

Second, in many applications of polynomial commitments, an adversary pro-
duces multiple commitments to polynomials within a round of interaction and
across rounds of interaction. After this interaction, the adversary reveals values
7 This consideration motivates the strong correctness property in [KZG10], which

states that if the adversary knows a polynomial that leads to the claimed com-
mitment c then this polynomial has bounded degree. This notion, while sufficient
for the application in [KZG10], does not seem to suffice for standalone use because
there is no a priori guarantee that an adversary that can open values to a com-
mitment knows a polynomial inside the commitment. In some sense, a knowledge
assumption is hidden in this hypothesis.

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 749

of all of these polynomials at one or more locations. This setting motivates a
number of considerations. First, it is desirable to rely on a single set of pub-
lic parameters for committing to multiple polynomials, even if the polynomials
differ in degree. A construction such as that of [KZG10] can be modified in a nat-
ural way to achieve this is by committing both to the polynomial and its shift to
the maximum degree, similarly to techniques used to bundle multiple low-degree
tests into a single one [Ben+19a]. This modification needs to be addressed in
any proof of security. Second, it would be desirable to batch evaluation proofs
across different polynomials for the same location. Again, the construction in
[KZG10] can support this, but one must argue that security still holds in this
more general case.

The preceeding considerations require an extension of previous definitions
and motivate our re-formulation of the primitive. Informally, a polynomial com-
mitment scheme PC is a tuple of algorithms PC = (Setup,Trim,Commit,Open,
Check). The setup algorithm PC.Setup takes as input a security parameter and
maximum supported degree bound D, and outputs public parameters pp that
contain the description of a finite field F. The “trimming” algorithm PC.Trim
then deterministically specializes these parameters for a given set of degree
bounds and outputs a committer key ck and a receiver key rk. The sender can
then invoke PC.Commit with input ck and a list of polynomials p with respec-
tive degree bounds d to generate a set of commitments c. Subsequently, the
sender can use PC.Open to produce a proof π that convinces the receiver that
the polynomials “inside” c respect the degree bounds d and, moreover, evaluate
to the claimed set of values v at a given query set Q that specifies any number
of evaluation points for each polynomial. The receiver can invoke PC.Check to
check this proof.

The scheme PC is required to satisfy extractability and efficiency properties,
and also, optionally, a hiding property. We outline these properties below, and
provide detailed definitions in the full version.

Extractability. Consider an efficient sender adversary A that can produce a
commitment c and degree bound d ≤ D such that, when asked for an evaluation
at some point z ∈ F, can produce a supposed evaluation v and proof π such
that PC.Check accepts. Then PC is extractable if for every maximum degree
bound D and every sender adversary A who can produce such commitments,
there exists a corresponding efficient extractor EA that outputs a polynomial
p of degree at most d that “explains” c so that p(z) = v. While for simplicity
we have described the most basic case here, our definition considers adversaries
and extractors who interact over multiple rounds, wherein the adversary may
produce multiple commitments in each round and the extractor is required to
output corresponding polynomials on a per-round basis (before seeing the query
set, proof, or supposed evaluations).

In this work we rely on extractability to prove the security of our compiler
(see Sect. 2.3); we do not know if weaker security notions studied in prior works,
such as evaluation binding, suffice. More generally, we believe that extractability
is a useful property that may be required across a range of other applications.

750 A. Chiesa et al.

Efficiency. We require two notions of efficiency for PC. First, the time required
to commit to a polynomial p and then to create an evaluation proof must be
proportional to the degree of p, and not to the maximum degree D. (This ensures
that the argument prover runs in time proportional to the size of the index.)

On the receiver’s side, the commitment size, proof size, and time to verify an
opening must be independent of the claimed degrees for the polynomials. (This
ensures that the argument produced by our compiler is succinct.)

Hiding. The hiding property of PC states that commitments and proofs of
evaluation reveal no information about the committed polynomial beyond the
publicly stated degree bound and the evaluation itself. Namely, PC is hiding
if there exists an efficient simulator that outputs simulated commitments and
simulated evaluation proofs that cannot be distinguished from their real coun-
terparts by any malicious distinguisher that only knows the degree bound and
the evaluation.

Analogously to the case of extractability, we actually consider a more general
definition that considers commitments to multiple polynomials within and across
multiple rounds; moreover, the definition considers the case where some polyno-
mials are designated as not hidden (and thus given to the simulator) because in
our application we sometimes prefer to commit to a polynomial in a non-hiding
way (for efficiency reasons).

2.3 Compiler: From AHPs to Preprocessing Arguments
with Universal SRS

We describe the main ideas behind Theorem 1, which uses polynomial commit-
ment schemes to compile any (public-coin) AHP into a corresponding (public-
coin) preprocessing argument with universal SRS. In a subsequent step, the
argument can be made non-interactive via the Fiat–Shamir transformation, and
thereby obtain a preprocessing SNARG with universal SRS.

The basic intuition of the compiler follows the well-known framework of
“commit to oracles and then open query answers” pioneered by Kilian [Kil92].
However, the commitment scheme used in our compiler leverages and enforces
the algebraic structure of these oracles. While several works in the literature
already take advantage of algebraic commitment schemes applied to algebraic
oracles, our contribution is to observe that if we apply this framework to a
holographic proof then we obtain a preprocessing argument.

Informally, first the argument indexer invokes the AHP indexer to generate
polynomials, and then deterministically commits to these using the polynomial
commitment scheme. Subsequently, the argument prover and argument verifier
interact, each respectively simulating the AHP prover and AHP verifier. In each
round, the argument prover sends succinct commitments to the polynomials out-
put by the AHP prover in that round. After the interaction, the argument verifier
declares its queries to the polynomials (of the prover and of the indexer). The
argument prover replies with the desired evaluations along with an evaluation
proof attesting to their correctness relative to the commitments.

This approach, while intuitive, must be proven secure. In particular, in the
proof of soundness, we need to show that if the argument prover convinces the

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 751

argument verifier with a certain probability, then we can find an AHP prover
that convinces the AHP verifier with similar probability. This step is non-trivial:
the AHP prover outputs polynomials, while the argument prover merely outputs
succinct commitments and a few evaluations, which is much less information. In
order to deduce the former from the latter requires extraction. This motivates
considering polynomial commitment schemes that are extractable, in the sense
described in Sect. 2.2. We do not know whether weaker security properties, such
as the evaluation binding property studied in some prior works, suffice for proving
the compiler secure.

The compiler outlined above is compatible with the properties of argument
of knowledge and zero knowledge. Specifically, we prove that if the AHP is a
proof of knowledge, then the compiler produces an argument of knowledge; also,
if the AHP is (bounded-query) zero knowledge and the polynomial commitment
scheme is hiding, then the compiler produces a zero knowledge argument.

See the full version for more details on the compiler.

2.4 Construction: An AHP for Constraint Systems

In prior sections we have described how we can use polynomial commitment
schemes to compile AHPs into corresponding preprocessing SNARGs. In this
section we discuss the main ideas behind Theorem 2, which provides an efficient
AHP for the indexed relation corresponding to R1CS (see Definition 1). The
preprocessing zkSNARK that we achieve in this paper (see Fig. 1) is based on
this AHP.

Our protocol can be viewed as a “holographic variant” of the non-holographic
algebraic proof for R1CS constructed in [Ben+19a]. Achieving holography
involves designing a new sub-protocol that enables the verifier to evaluate low-
degree extensions of the coefficient matrices at a random location. While in
[Ben+19a] the verifier performed this computation in time poly(|i|) on its own,
in our protocol the verifier performs it exponentially faster, in time O(log |i|),
by receiving help from the prover and having oracle access to the polynomials
produced by the indexer. We introduce notation and then discuss the protocol.

Some notation. Consider an index i = (F, n,m,A,B,C) specifying coefficient
matrices, an instance x = x ∈ F

∗ specifying a partial assignment to the variables,
and a witness w = w ∈ F

∗ specifying an assignment to the other variables
such that the R1CS equation holds. The R1CS equation holds if and only if
Az ◦ Bz = Cz for z := (x,w) ∈ F

n. Below, we let H and K be prescribed
subsets of F of sizes n and m respectively; we also let vH(X) and vK(X) be the
vanishing polynomials of these two sets. (The vanishing polynomial of a set S is
the monic polynomial of degree |S| that vanishes on S, i.e.,

∏
γ∈S(X − γ).) We

assume that both H and K are smooth multiplicative subgroups. This allows
interpolation/evaluation over H in O(n log n) operations and also makes vH(X)
computable in O(log n) operations (and similarly for K). Given an n×n matrix
M with rows/columns indexed by elements of H, we denote by M̂(X,Y) the
low-degree extension of M , i.e., the polynomial of individual degree less than n
such that M̂(κ, ι) is the (κ, ι)-th entry of M for every κ, ι ∈ H.

752 A. Chiesa et al.

A non-holographic starting point. We sketch a non-holographic protocol
for R1CS with linear proof length and constant query complexity, inspired from
[Ben+19a], that forms the starting point of our work. In this case the prover
receives as input (i,x,w) and the verifier receives as input (i,x). (The veri-
fier reads the non-encoded index i because we are describing a non-holographic
protocol.)

In the first message the prover P sends the univariate polynomial ẑ(X) of
degree less than n that agrees with the variable assignment z on H, and also
sends the univariate polynomials ẑA(X), ẑB(X), ẑC(X) of degree less than n that
agree with the linear combinations zA := Az, zB := Bz, and zC := Cz on H.
The prover is left to convince the verifier that the following two conditions hold:

(1) Entry-wise product: ∀κ ∈ H , ẑA(κ)ẑB(κ) − ẑC(κ) = 0.

(2) Linear relation: ∀M ∈ {A,B,C} , ∀κ ∈ H , ẑM (κ) =
∑

ι∈H

M [κ, ι]ẑ(ι).

(The prover also needs to convince the verifier that ẑ(X) encodes a full assign-
ment z that is consistent with the partial assignment x, but we for simplicity we
ignore this in this informal discussion.)

In order to convince the verifier of the first (entry-wise product) condi-
tion, the prover sends the polynomial h0(X) such that ẑA(X)ẑB(X) − ẑC(X) =
h0(X)vH(X). This polynomial equation is equivalent to the first condition (the
left-hand side equals zero everywhere on H if and only if it is a multiple of H’s
vanishing polynomial). The verifier will check the equation at a random point
β ∈ F: it queries ẑA(X), ẑB(X), ẑC(X), h0(X) at β, evaluates vH(X) at β on its
own, and checks that ẑA(β)ẑB(β) − ẑC(β) = h0(β)vH(β). The soundness error
is the maximum degree over the field size, which is at most 2n/|F|.

In order to convince the verifier of the second (linear relation) condition, the
prover expects a random challenge α ∈ F from the verifier, and then replies in a
second message. For each M ∈ {A,B,C}, the prover sends polynomials hM (X)
and gM (X) such that

r(α, X)ẑM (X) − rM (α, X)ẑ(X) = hM (X)vH(X) + XgM (X)

for rM (Z, X) :=
∑

κ∈H r(Z, κ)M̂(κ, X)

where r(Z,X) is a prescribed polynomial of individual degree less than n such
that (r(Z, κ))κ∈H are n linearly independent polynomials. Prior work [Ben+19a]
on checking linear relations via univariate sumchecks shows that this polynomial
equation is equivalent, up to a soundness error of n/|F| over α, to the second
condition.8 The verifier will check this polynomial equation at the random point
β ∈ F: it queries ẑ(X), ẑA(X), ẑB(X), ẑC(X), hM (X), gM (X) at β, evaluates
vH(X) at β on its own, evaluates r(Z,X) and rM (Z,X) at (α, β) on its own,
and checks that r(α, β)ẑM (β) − rM (α, β)ẑ(β) = hM (β)vH(β) + βgM (β). The
additional soundness error is 2n/|F|.
8 In particular, we are using the fact from [Ben+19a] that, given a multiplicative

subgroup S of F, a polynomial f(X) sums to σ over S if and only if f(X) can be
written as h(X)vS(X)+Xg(X)+σ/|S| for some h(X) and g(X) with deg(g) < |S|−1.

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 753

The above is a simple 3-message protocol for R1CS with soundness error
max{2n/|F|, 3n/|F|} = 3n/|F| in the setting where the honest prover and mali-
cious provers send polynomials of prescribed degrees, which the verifier can query
at any location. The proof length (sum of all degrees) is linear in n and the query
complexity is constant.

Barrier to holography. The verifier in the above protocol runs in time that is
Ω(|i|) = Ω(n+m). While this is inherent in the non-holographic setting (because
the verifier must read i), we now discuss how exactly the verifier’s computation
depends on i. We shall later use this understanding to achieve an exponential
improvement in the verifier’s time when given a suitable encoding of i.

The verifier’s check for the entry-wise product is ẑA(β)ẑB(β) − ẑC(β) =
h0(β)vH(β), and can be carried out in O(log n) operations regardless of the
coefficient matrices contained in the index i. In other words, this check is efficient
even in the non-holographic setting. However, the verifier’s check for the linear
relation is r(α, β)ẑM (β) − rM (α, β)ẑ(β) = hM (β)vH(β) + βgM (β), which has a
linear cost. Concretely, evaluating the polynomial rM (Z,X) at (α, β) requires
Ω(n + m) operations.

In the holographic setting, a natural idea to reduce this cost would be to
grant the verifier oracle access to the low-degree extension M̂ for M ∈ {A,B,C}.
This idea has two problems: the verifier still needs Ω(n) operations to evaluate
rM (Z,X) at (α, β) and, moreover, the size of M̂ is quadratic in n, which means
that the encoding of the index i is Ω(n2). We cannot afford such an expensive
encoding in the offline preprocessing phase. We now describe how we overcome
both of these problems, and obtain a holographic protocol.

Achieving holography. To overcome the above problems and obtain a holo-
graphic protocol, we rely yet again on the univariate sumcheck protocol. We
introduce two additional rounds of interaction, and in each round the verifier
learns that their verification equation holds provided the sumcheck from the
next round holds. The last sumcheck will rely on polynomials output by the
indexer, which the verifier knows are correct.

We address the first problem by letting the prover and verifier interact in an
additional round, where we rely on an additional univariate sumcheck to reduce
the problem of evaluating rM (Z,X) at (α, β) to the problem of evaluating M̂
at (β2, β) for a random β2 ∈ F. Namely, the verifier sends β to the prover, who
computes

σ2 := rM (α, β) =
∑

κ∈H

r(α, κ)M̂(κ, β).

Then the prover replies with σ2 and the polynomials h2(X) and g2(X) such that

r(α,X)M̂(X,β) = h2(X)vH(X) + Xg2(X) + σ2/n.

Prior techniques on univariate sumcheck [Ben+19a] tell us that this equation is
equivalent to the polynomial r(α,X)M̂(X,β) summing to σ2 on H. Thus the
verifier needs to check this equation at a random β2 ∈ F: r(α, β2)M̂(β2, β) =
h2(β2)vH(β2) + β2g2(β2) + σ2/n. The only expensive part of this equation for

754 A. Chiesa et al.

the verifier is computing the value M̂(β2, β), which is problematic. Indeed, we
have already noted that we cannot afford to simply let the verifier have oracle
access to M̂ , because this polynomial has quadratic size (it contains a quadratic
number of terms).

We address this second problem as follows. Let uH(X,Y) := vH(X)−vH(Y)
X−Y

be the formal derivative of the vanishing polynomial vH(X), and note that
uH(X,Y) vanishes on the square H × H except for on the diagonal, where it
takes on the (non-zero) values (uH(a, a))a∈H . Moreover, uH(X,Y) can be eval-
uated at any point in F × F in O(log n) operations. Using this polynomial, we
can write M̂ as a sum of m = |K| terms instead of n2 = |H|2 terms:

M̂(X,Y) :=
∑

κ∈K

uH(X, ˆrowM (κ)) · uH(Y, ĉolM (κ)) · v̂alM (κ),

where ˆrowM , ĉolM , v̂alM are the low-degree extensions of the row, column, and
value of the non-zero entries in M according to some canonical order over K.9

This method of representing the low-degree extension of M suggests an idea:
let the verifier have oracle access to the polynomials ˆrowM , ĉolM , v̂alM and do yet
another univariate sumcheck, but this time over the set K. The verifier sends
β2 to the prover, who computes

σ3 := M̂(β2, β) =
∑

κ∈K

uH(β2, ˆrowM (κ)) · uH(β, ĉolM (κ)) · v̂alM (κ).

Then the prover replies with σ3 and the polynomials h3(X) and g3(X) such that

uH(β2, ˆrowM (X))uH(β, ĉolM (X))v̂alM (X) = h3(X)vK(X) + Xg3(X) + σ3/m.

The verifier can then check this equation at a random β3 ∈ F, which only requires
O(log m) operations.

The above idea almost works; the one remaining problem is that h3(X) has
degree Ω(nm) (because the left-hand size of the equation has quadratic degree),
which is too expensive for our target of a quasilinear-time prover. We overcome
this problem by letting the prover run the univariate sumcheck protocol on the
unique low-degree extension f̂(X) of the function f : K → F defined as f(κ) :=
uH(β2, ˆrowM (κ))uH(β, ĉolM (κ))v̂alM (κ). Observe that f̂(X) has degree less than
m. The verifier checks that f̂(X) and uH(β2, ˆrowM (X))uH(β, ĉolM (X))v̂alM (X)
agree on K.

From sketch to protocol. In the above discussion we have ignored a num-
ber of technical aspects, such as proof of knowledge and zero knowledge (which
are ultimately needed in the compiler if we want to construct a preprocess-
ing zkSNARK). We have also not discussed time complexities of many alge-
braic steps, and we omitted discussion of how to batch multiple sumchecks into
fewer ones, which brings important savings in argument size. For details, see our
detailed construction in Sect. 5.
9 Technicality: v̂al(κ) actually equals the value divided by uH(ˆrowM (κ), ˆrowM (κ))

uH(ĉolM (κ), ĉolM (κ)).

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 755

2.5 Construction: Extractable Polynomial Commitments

We now sketch how to construct a polynomial commitment scheme that achieves
the strong functionality and security requirements of our definition in Sect. 2.2.
Our starting point is the PolyCommitDL construction of Kate et al. [KZG10],
and then describe a sequence of natural and generic transformations that extend
this construction to enable extractability, commitments to multiple polynomials,
and the enforcement of per-polynomial degree bounds. In fact, once we arrive
at a scheme that supports extractability for committed polynomials at a single
point, our transformations build on this construction in a black box way to first
support per-polynomial degree bounds, and then query sets that may request
multiple evaluation points per polynomial. See the full version for details of these
transformations.

Starting point: PolyCommitDL. The setup phase samples a cryptographically
secure bilinear group (G1,G2,GT , q,G,H, e) and then samples a committer key
ck and receiver key rk for a given degree bound D. The committer key consists
of group elements encoding powers of a random field element β, namely, ck :=
{G, βG, . . . , βDG} ∈ G

D+1
1 . The receiver key consists of the group elements

rk := (G,H, βH) ∈ G1 × G
2
2. Note that the SRS, which consists of the keys ck

and rk, is updatable because the coefficients of group elements in the SRS are
all monomials.

To commit to a polynomial p ∈ Fq[X], the sender computes c := p(β)G. To
subsequently prove that the committed polynomial evaluates to v at a point z,
the sender computes a witness polynomial w(X) := (p(X) − p(z))/(X − z), and
provides as proof a commitment to w: π := w(β)G. The idea is that the witness
function w is a polynomial if and only if p(z) = v; otherwise, it is a rational
function, and cannot be committed to using ck.

Finally, to verify a proof of evaluation, the receiver checks that the commit-
ment and proof of evaluation are consistent. That is, it checks that the proof
commits to a polynomial of the form (p(X) − p(z))/(X − z) by checking the
equality e(c − vG,H) = e(π, βH − zH).

Achieving extractability. While the foregoing construction guarantees cor-
rectness of evaluations, it does not by itself guarantee that a commitment actu-
ally “contains” a suitable polynomial of degree at most D. We study two methods
to address this issue, and thereby achieve extractability. One method is to modify
the construction to use knowledge commitments [Gro10], and rely on a concrete
knowledge assumption. The main disadvantage of this approach is that each
commitment doubles in size. The other method is to move away from the plain
model, and instead conduct the security analysis in the algebraic group model
(AGM) [FKL18]. This latter method is more efficient because each commitment
remains a single group element.

Committing to multiple polynomials at once. We enable the sender to
simultaneously open multiple polynomials [pi]ni=1 at the same point z as follows.
Before generating a proof of evaluation for [pi]ni=1, the sender requests from
the receiver a random field element ξ, which he uses to take a random linear

756 A. Chiesa et al.

combination of the polynomials: p :=
∑n

i=1 ξipi, and generates a proof of evalu-
ation π for this polynomial p.

The receiver verifies π by using the fact that the commitments are additively
homomorphic. The receiver takes a linear combination of the commitments and
claimed evaluations, obtaining the combined commitment c =

∑n
i=1 ξici and

evaluation v =
∑n

i=1 ξivi. Finally, it checks the pairing equations for c, π, and v.
Completeness of this check is straightforward, while soundness follows from

the fact that if any polynomial does not match its evaluation, then the combined
polynomial will not match its evaluation with high probability.

Enforcing multiple degree bounds. The construction so far enforces a single
bound D on the degrees of all the polynomials pi. To enforce a different degree
bound di for each pi, we require the sender to commit not only to each pi, but
also to “shifted polynomials” p′

i(X) := XD−dipi(X). The proof of evaluation
proves that, if pi evaluates to vi at z, then p′

i evaluates to zD−divi.
The receiver checks that the commitment for each p′

i corresponds to an eval-
uation zD−divi so that, if z is sampled from a super-polynomial subset of Fq,
the probability that deg(pi) �= di is negligible. This trick is similar to the one
used in [BS08,Ben+19a] to derive low-degree tests for specific degree bounds.

However, while sound, this approach is inefficient in our setting: the witness
polynomial for p′

i has Ω(D) non-zero coefficients (instead of O(di)), and so con-
structing an evaluation proof for it requires Ω(D) scalar multiplications (instead
of O(di)). To work around this, we instead produce a proof that the related poly-
nomial p�

i (X) := p′
i(X)− pi(z)XD−di evaluates to 0 at z. As we show in the full

version, the witness polynomial for this claim has O(di) non-zero coefficients, and
so constructing the evaluation proof can be done in O(di) scalar multiplications.
Completeness is preserved because the receiver can check the correct evaluation
of p�

i by subtracting pi(z)(βD−diG) from the commitment to the shifted poly-
nomial p′

i, thereby obtaining a commitment to p�
i , while security is preserved

because p′
i(z) = zD−divi ⇐⇒ p�

i (z) = 0.

Evaluating at a query set instead of a single point. To support the case
where the polynomials [pi]ni=1 are evaluated at a set of points Q, the sender pro-
ceeds as follows. Say that there are k different points [zi]ki=1 in Q. The sender
partitions the polynomials [pi]ni=1 into different groups such that every polyno-
mial in a group is to be evaluated at the same point zi. The sender runs PC.Open
on each group, and outputs the resulting list of evaluation proofs.

Achieving hiding. To additionally achieve hiding, we follow the above
blueprint, replacing PolyCommitDL with the hiding scheme PolyCommitPed
described in [KZG10].

3 Preliminaries

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]ni=1 as a short-hand for
the tuple (a1, . . . , an), and [ai]ni=1 = [[ai,j]mj=1]

n
i=1 as a short-hand for the tuple

(a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes the number of entries in a. If x
is a binary string then |x| denotes its bit length. If M is a matrix then ‖M‖

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 757

denotes the number of nonzero entries in M . If S is a finite set then |S| denotes
its cardinality and x ← S denotes that x is an element sampled at random from
S. We denote by F a finite field, and whenever F is an input to an algorithm
we implicitly assume that F is represented in a way that allows efficient field
arithmetic. Given a finite set S, we denote by F

S the set of vectors indexed by
elements in S. We denote by F[X] the ring of univariate polynomials over F in
X, and by F

<d[X] the set of polynomials in F[X] with degree less than d.
We denote by λ ∈ N a security parameter. When we state that n ∈ N for

some variable n, we implicitly assume that n = poly(λ). We denote by negl(λ)
an unspecified function that is negligible in λ (namely, a function that vanishes
faster than the inverse of any polynomial in λ). When a function can be expressed
in the form 1 − negl(λ), we say that it is overwhelming in λ. When we say that
A is an efficient adversary we mean that A is a family {Aλ}λ∈N of non-uniform
polynomial-size circuits. If the adversary consists of multiple circuit families
A1,A2, . . . then we write A = (A1,A2, . . .).

Given two interactive algorithms A and B, we denote by 〈A(x), B(y)〉(z) the
output of B(y, z) when interacting with A(x, z). Note that this output could be
a random variable. If we use this notation when A or B is a circuit, we mean that
we are considering a circuit that implements a suitable next-message function
to interact with the other party of the interaction.

3.1 Indexed Relations

An indexed relation R is a set of triples (i,x,w) where i is the index, x is the
instance, and w is the witness; the corresponding indexed language L(R) is the
set of pairs (i,x) for which there exists a witness w such that (i,x,w) ∈ R. For
example, the indexed relation of satisfiable boolean circuits consists of triples
where i is the description of a boolean circuit, x is a partial assignment to its
input wires, and w is an assignment to the remaining wires that makes the
circuit to output 0. Given a size bound N ∈ N, we denote by RN the restriction
of R to triples (i,x,w) with |i| ≤ N.

4 Algebraic Holographic Proofs

We define algebraic holographic proofs (AHPs), the notion of proofs that we use.
For simplicity, the formal definition below is tailored to univariate polynomials,
because our AHP construction is in this setting. The definition can be modified
in a straightforward way to consider the general case of multivariate polynomials.

We represent polynomials through the coefficients that define them, as
opposed to through their evaluation over a sufficiently large domain (as is typi-
cally the case in probabilistic proofs). This definitional choice is due to the fact
that we will consider verifiers that may query the polynomials at any location
in the field of definition. Moreover, the field of definition itself can be chosen
from a given field family, and so we make the field an additional input to all
algorithms; this degree of freedom is necessary when combining this component
with polynomial commitment schemes. Finally, we consider the setting of indexed

758 A. Chiesa et al.

relations (see Sect. 3.1), where the verifier’s input has two parts, the index and
the instance; in the definition below, the verifier receives the index encoded and
the instance explicitly.

Formally, an algebraic holographic proof (AHP) over a field family F for
an indexed relation R is specified by a tuple

AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V
are three algorithms known as the indexer, prover, and verifier. The parameter k
specifies the number of interaction rounds, s specifies the number of polynomials
in each round, and d specifies degree bounds on these polynomials.

In the offline phase (“0-th round”), the indexer I receives as input a field
F ∈ F and an index i for R, and outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈
F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0)) respectively. Note that the
offline phase does not depend on any particular instance or witness, and merely
considers the task of encoding the given index i.

In the online phase, given an instance x and witness w such that (i,x,w) ∈
R, the prover P receives (F, i,x,w) and the verifier V receives (F,x) and oracle
access to the polynomials output by I(F, i). The prover P and the verifier V
interact over k = k(|i|) rounds.

For i ∈ [k], in the i-th round of interaction, the verifier V sends a message
ρi ∈ F

∗ to the prover P; then the prover P replies with s(i) oracle polynomials
pi,1, . . . , pi,s(i) ∈ F[X]. The verifier may query any of the polynomials it has
received any number of times. A query consists of a location z ∈ F for an oracle
pi,j , and its corresponding answer is pi,j(z) ∈ F. After the interaction, the verifier
accepts or rejects.

The function d determines which provers to consider for the completeness and
soundness properties of the proof system. In more detail, we say that a (possibly
malicious) prover P̃ is admissible for AHP if, on every interaction with the
verifier V, it holds that for every round i ∈ [k] and oracle index j ∈ [s(i)] we
have deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to be admissible
under this definition.

We say that AHP has perfect completeness and soundness error ε if the
following holds.

– Completeness. For every field F ∈ F and index-instance-witness tuple
(i,x,w) ∈ R, the probability that P(F, i,x,w) convinces VI(F,i)(F,x) to
accept in the interactive oracle protocol is 1.

– Soundness. For every field F ∈ F , index-instance pair (i,x) /∈ L(R), and
admissible prover P̃, the probability that P̃ convinces VI(F,i)(F,x) to accept
in the interactive oracle protocol is at most ε.

The proof length l is the sum of all degree bounds in the offline and online
phases, l(|i|) :=

∑k(|i|)
i=0

∑s(i)
j=1 d(|i|, i, j). The intuition for this definition is that in

a probabilistic proof each oracle would consist of the evaluation of a polynomial
over a domain whose size (in field elements) is linearly related to its degree

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 759

bound, so that the resulting proof length would be linearly related to the sum
of all degree bounds.

The query complexity q is the total number of queries made by the verifier to
the polynomials. This includes queries to the polynomials output by the indexer
and those sent by the prover.

All AHPs that we construct achieve the stronger property of knowledge
soundness (against admissible provers), and optionally also zero knowledge. We
define both of these properties below.

Knowledge soundness. We say that AHP has knowledge error ε if there exists
a probabilistic polynomial-time extractor E for which the following holds. For
every field F ∈ F , index i, instance x, and admissible prover P̃, the probability
that EP̃(F, i,x, 1l(|i|)) outputs w such that (i,x,w) ∈ R is at least the prob-
ability that P̃ convinces VI(F,i)(F,x) to accept minus ε. Here the notation EP̃

means that the extractor E has black-box access to each of the next-message
functions that define the interactive algorithm P̃. (In particular, the extractor
E can “rewind” the prover P̃.) Note that since E receives the proof length l(|i|)
in unary, E has enough time to receive, and perform efficient computations on,
polynomials output by P̃.

Zero knowledge. We say that AHP has (perfect) zero knowledge with query
bound b and query checker C if there exists a probabilistic polynomial-time simu-
lator S such that for every field F ∈ F , index-instance-witness tuple (i,x,w) ∈ R,
and (b,C)-query algorithm Ṽ the random variables View(P(F, i,x,w), Ṽ) and
SṼ(F, i,x), defined below, are identical. Here, we say that an algorithm is (b,C)-
query if it makes at most b queries to oracles it has access to, and each query indi-
vidually leads the checker C to output “ok”.

– View(P(F, i,x,w), Ṽ) is the view of Ṽ, namely, is the random variable
(r, a1, . . . , aq) where r is Ṽ’s randomness and a1, . . . , aq are the responses
to Ṽ’s queries determined by the oracles sent by P(F, i,x,w).

– SṼ(F, i,x) is the output of S(F, i,x) when given straightline access to Ṽ (S
may interact with Ṽ, without rewinding, by exchanging messages with Ṽ and
answering any oracle queries along the way), prepended with Ṽ’s randomness
r. Note that r could be of super-polynomial size, so S cannot sample r on
Ṽ’s behalf and then output it; instead, as in prior work, we restrict S to not
see r, and prepend r to S’s output.

A special case of interest. We only consider AHPs that satisfy the following
properties.

– Public coins: AHP is public-coin if each verifier message to the prover is a
uniformly random string of some prescribed length (or an empty string). All
verifier queries can be postponed, without loss of generality, to a query phase
that occurs after the interactive phase with the prover.

– Non-adaptive queries: AHP is non-adaptive if all of the verifier’s query loca-
tions are solely determined by the verifier’s randomness and inputs (the field
F and the instance x).

760 A. Chiesa et al.

Given these properties, we can view the verifier as two subroutines that exe-
cute in the query phase: a query algorithm QV that produces query locations
based on the verifier’s randomness, and a decision algorithm DV that accepts
or rejects based on the answers to the queries (and the verifier’s randomness).
In more detail, QV receives as input the field F, the instance x, and random-
ness ρ1, . . . , ρk, ρk+1, and outputs a query set Q consisting of tuples ((i, j), z)
to be interpreted as “query pi,j at z ∈ F”; and DV receives as input the field
F, the instance x, answers (v((i,j),z))((i,j),z)∈Q, and randomness ρ1, . . . , ρk, ρk+1,
and outputs the decision bit.

While the above properties are not strictly necessary for the compiler that
we describe in the full version, all “natural” protocols that we are aware of
(including those that we construct in this paper) satisfy these properties, and so
we restrict our attention to public-coin non-adaptive protocols for simplicity.

5 AHP for Constraint Systems

We construct an AHP for rank-1 constraint satisfiability (R1CS) that has linear
proof length and constant query complexity. Below we define the indexed relation
that represents this problem, and then state our result.

Definition 1 (R1CS indexed relation). The indexed relation RR1CS is the
set of all triples

(i,x,w) =
(
(F,H,K,A,B,C), x, w

)

where F is a finite field, H and K are subsets of F, A,B,C are H ×H matrices
over F with |K| ≥ max{‖A‖, ‖B‖, ‖C‖}, and z := (x,w) is a vector in F

H such
that Az ◦ Bz = Cz.

Theorem 1. There exists an AHP for the indexed relation RR1CS that is a zero
knowledge proof of knowledge with the following features. The indexer uses
O(|K| log |K|) field operations and outputs O(|K|) field elements. The prover and
verifier exchange 7 messages. To achieve zero knowledge against b queries (with a
query checker C that rejects queries in H), the prover uses O((|K|+b) log(|K|+b))
field operations and outputs a total of O(|H|+b) field elements. The verifier makes
O(1) queries to the encoded index and to the prover’s messages, has soundness error
O((|K| + b)/|F|), and uses O(|x| + log |K|) field operations.

Remark 1 (restrictions on domains). Our protocol uses the univariate sumcheck
of [Ben+19a] as a subroutine, and in particular inherits the requirement that the
domains H and K must be additive or multiplicative subgroups of the field F.
For simplicity, in our descriptions we use multiplicative subgroups because we
use this case in our implementation; the case of additive subgroups involves
only minor modifications. Moreover, the arithmetic complexities for the indexer
and prover stated in Theorem 1 assume that the domains H and K are “FFT-
friendly” (e.g., they have smooth sizes); this is not a requirement, since in general
the arithmetic complexities will be that of an FFT over the domains H and K.
Note that we can assume without loss of generality that |H| = O(|K|), for
otherwise (if |K| < |H|/3) then are empty rows or columns across the matrices
that we can drop and reduce their size. Finally, we assume that |H| ≤ |F|/2.

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 761

This section is organized as follows: in Sect. 5.1 we introduce algebraic nota-
tions and facts used in this section, and then in Sect. 5.2 we describe an AHP
for checking linear relations. Due to space constraints, we describe how to use
this latter AHP to construct our AHP for R1CS only in the full version.

Throughout we assume that H and K come equipped with bijections
φ

H
: H → [|H|] and φ

K
: K → [|K|] that are computable in linear time. More-

over, we define the two sets H[≤ k] := {κ ∈ H : 1 ≤ φ
H

(κ) ≤ k} and
H[> k] := {κ ∈ H : φ

H
(κ) > k} to denote the first k elements in H and

the remaining elements, respectively. We can then write that x ∈ F
H[≤|x|] and

w ∈ F
H[>|x|].

5.1 Algebraic Preliminaries

Polynomial encodings. For a finite field F, subset S ⊆ F, and function f : S →
F we denote by f̂ the (unique) univariate polynomial over F with degree less than
|S| such that f̂(a) = f(a) for every a ∈ S. We sometimes abuse notation and
write f̂ to denote some polynomial that agrees with f on S, which need not
equal the (unique) such polynomial of smallest degree.

Vanishing polynomials. For a finite field F and subset S ⊆ F, we denote
by vS the unique non-zero monic polynomial of degree at most |S| that is zero
everywhere on S; vS is called the vanishing polynomial of S. If S is an additive or
multiplicative coset in F then vS can be evaluated in polylog(|S|) field operations.
For example, if S is a multiplicative subgroup of F then vS(X) = X |S| − 1 and,
more generally, if S is a ξ-coset of a multiplicative subgroup S0 (namely, S = ξS0)
then vS(X) = ξ|S|vS0(X/ξ) = X |S| − ξ|S|; in either case, vS can be evaluated in
O(log |S|) field operations.

Derivative of vanishing polynomials. We rely on various properties of a
bivariate polynomial uS introduced in [Ben+19b]. For a finite field F and subset
S ⊆ F, we define

uS(X,Y) :=
vS(X) − vS(Y)

X − Y
,

which is a polynomial of individual degree |S|−1 because X−Y divides Xi−Y i for
any positive integer i. Note that uS(X,X) is the formal derivative of the vanishing
polynomial vS(X). The bivariate polynomial uS(X,Y) satisfies two useful alge-
braic properties. First, the univariate polynomials (uS(X, a))a∈S are linearly inde-
pendent, and uS(X,Y) is their (unique) low-degree extension. Second, uS(X,Y)
vanishes on the square S × S except for on the diagonal, where it takes on the
(non-zero) values (uS(a, a))a∈S .

If S is an additive or multiplicative coset in F, uS(X,Y) can be evaluated at
any (α, β) ∈ F

2 in polylog(|S|) field operations because in this case both vS (and
its derivative) can be evaluated in polylog(|S|) field operations. For example, if
S is a multiplicative subgroup then uS(X,Y) = (X |S| − Y |S|)/(X − Y) and
uS(X,X) = |S|X |S|−1, so both can be evaluated in O(log |S|) field operations.

Univariate sumcheck for subgroups. Prior work [Ben+19a] shows that,
given a multiplicative subgroup S of F, a polynomial f(X) sums to σ over S if

762 A. Chiesa et al.

and only if f(X) can be written as h(X)vS(X) + Xg(X) + σ/|S| for some h(X)
and g(X) with deg(g) < |S| − 1. This can be viewed as a univariate sumcheck
protocol, and we shall rely on it throughout this section.

5.2 AHP for the Lincheck Problem

The lincheck problem for univariate polynomials considers the task of deciding
whether two polynomials encode vectors that are linearly related in a prescribed
way. In more detail, the problem is parametrized by a field F, two subsets H and
K of F, and a matrix M ∈ F

H×H with |K| ≥ ‖M‖ > 0. Given oracle access to
two low-degree polynomials f1, f2 ∈ F

<d[X], the problem asks to decide whether
for every a ∈ H it holds that f1(a) =

∑
b∈H Ma,b·f2(b), by asking a small number

of queries to f1 and f2. The matrix M thus prescribes the linear relations that
relate the values of f1 and f2 on H.

Ben-Sasson et al. [Ben+19a] solve this problem by reducing the lincheck
problem to a sumcheck problem, and then reducing the sumcheck problem to
low-degree testing (of univariate polynomials). In particular, this prior work
achieves a 2-message algebraic non-holographic protocol that solves the lincheck
problem with linear proof length and constant query complexity. In this section
we show how to achieve a 6-message algebraic holographic protocol, again with
linear proof length and constant query complexity. In Sect. 5.2.1 we describe the
indexer algorithm, in Sect. 5.2.2 we describe the prover and verifier algorithms.
In the full version we provide a diagram that summarizes the protocol, and
provide completeness, soundness, and efficiency analyses.

5.2.1 Offline Phase: Encoding the Linear Relation
The indexer I for the lincheck problem receives as input a field F, two subsets
H and K of F, and a matrix M ∈ F

H×H with |K| ≥ ‖M‖. The non-zero entries
of M are assumed to be presented in some canonical order (e.g., row-wise or
column-wise). The output of I is three univariate polynomials ˆrow, ĉol, v̂al over
F of degree less than |K| such that the following polynomial is a low-degree
extension of M :

M̂(X,Y) :=
∑

κ∈K

uH(X, ˆrow(κ))uH(Y, ĉol(κ))v̂al(κ). (1)

The three aforementioned polynomials are the (unique) low-degree extensions
of the three functions row, col, val : K → F that respectively represent the row
index, column index, and value of the non-zero entries of the matrix M . In more
detail, for every κ ∈ K with 1 ≤ φ

K
(κ) ≤ ‖M‖:

– row(κ) := φ−1
H

(tκ) where tκ is the row index of the φ
K

(κ)-th nonzero entry
in M ;

– col(κ) := φ−1
H

(tκ) where tκ is the column index of the φ
K

(κ)-th nonzero entry
in M ;

– val(κ) is the value of the φ
K

(κ)-th nonzero entry in M , divided by
uH(row(κ), row(κ))uH(col(κ), col(κ)).

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 763

Also, val(κ) returns the element 0 for every κ ∈ K with φ
K

(κ) > ‖M‖, while
row(κ) and col(κ) return an arbitrary element in H for such κ. The evaluation
tables of these functions can be found in O(|K| log |H|) operations, from which
interpolation yields the desired polynomials in O(|K| log |K|) operations.

Recall from Sect. 5.1 that the bivariate polynomial uH(X,Y) vanishes on the
square H ×H except for on the diagonal, where it takes on the (non-zero) values
(uH(a, a))a∈H . By construction of the polynomials ˆrow, ĉol, v̂al, the polynomial
M̂(X,Y) agrees with the matrix M everywhere on the domain H × H. The
individual degree of M̂(X,Y) is less than |H|. Thus, M̂ is the unique low-degree
extension of M .

We rewrite the polynomial M̂(X,Y) in a form that will be useful later:

Claim 1.

M̂(X,Y) =
∑

κ∈K

vH(X)
(X − ˆrow(κ))

· vH(Y)

(Y − ĉol(κ))
· v̂al(κ). (2)

Proof. Note that vH(ˆrow(κ)) = vH(ĉol(κ)) = 0 for every κ ∈ K because ˆrow(X)
and ĉol(X) map K to H and vH vanishes on H. Therefore:

M̂(X,Y) =
∑

κ∈K

uH(X, ˆrow(κ)) · uH(Y, ĉol(κ)) · v̂al(κ)

=
∑

κ∈K

vH(X) − vH(ˆrow(κ))
X − ˆrow(κ)

· vH(Y) − vH(ĉol(κ))

Y − ĉol(κ)
· v̂al(κ)

=
∑

κ∈K

vH(X)
(X − ˆrow(κ))

· vH(Y)

(Y − ĉol(κ))
· v̂al(κ). ��

5.2.2 Online Phase: Proving and Verifying the Linear Relation
The prover P for the lincheck problem receives as input a field F, two subsets
H and K of F, a matrix M ∈ F

H×H with |K| ≥ ‖M‖, and two polynomials
f1, f2 ∈ F

<d[X]. The verifier V for the lincheck problem receives as input the
field F and two subsets H and K of F; V also has oracle access to the polynomials
ˆrow, ĉol, v̂al output by the indexer I invoked on appropriate inputs.

The protocol begins with a reduction from a lincheck problem to a sumcheck
problem: V samples a random element α ∈ F and sends it to P. Indeed, let-
ting r(X,Y) denote the polynomial uH(X,Y), P is left to convince V that the
following univariate polynomial sums to 0 on H:

q1(X) := r(α,X)f1(X) − rM (α,X)f2(X) (3)

where rM (X,Y) :=
∑

κ∈H r(X,κ)M̂(κ, Y).
We rely on the univariate sumcheck protocol for this step: P sends to V the

polynomials g1(X) and h1(X) such that q1(X) = h1(X)vH(X) + Xg1(X). In
order to check this polynomial identity, V samples a random element β1 ∈ F

with the intention of checking the identity at X := β1. For the right-hand side, V

764 A. Chiesa et al.

queries g1 and h1 at β1, and then evaluates h1(β1)vH(β1)+β1g1(β1) in O(log |H|)
operations. For the left-hand side, V queries f1 and f2 at β1 and then needs
to ask help from P to evaluate r(α, β1)f1(β1) − rM (α, β1)f2(β1). The reason
is that while r(α, β1) is easy to evaluate (it requires O(log |H|) operations),
rM (α, β1) =

∑
κ∈H r(α, κ)M̂(κ, β1) in general requires Ω(|H||K|) operations.

We thus rely on the univariate sumcheck protocol again. We define

q2(X) := r(α,X)M̂(X,β1) (4)

V sends β1 toP, and thenP replies with the sum σ2 :=
∑

κ∈H r(α, κ)M̂(κ, β1) and
the polynomials g2(X) and h2(X) such that q2(X) = h2(X)vH(X) + Xg2(X) +
σ2/|H|. In order to check this polynomial identity, V samples a random element
β2 ∈ F with the intention of checking the identity at X := β2. For the right-hand
side, V queries g2 and h2 at β2, and then evaluates h2(β2)vH(β2) + β2g2(β2) +
σ2/|H| in O(log |H|) operations. To evaluate the left-hand side, however, V needs
to ask help from P. The reason is that while r(α, β2) is easy to evaluate (it requires
O(log |H|) operations), M̂(β2, β1) in general requires Ω(|K|) operations.

We thus rely on the univariate sumcheck protocol (yet) again: V sends β2

to P, and then P replies with the value σ3 := M̂(β2, β1), which the verifier
must check. Note though that we cannot use the sumcheck protocol directly to
compute the sum obtained from Eq. (1):

M̂(β2, β1) =
∑

κ∈K

uH(β2, ˆrow(κ))uH(β1, ĉol(κ))v̂al(κ).

The reason is because the degree of the above addend, if we replace κ with an
indeterminate, is Ω(|H||K|), which means that the degree of the polynomial h3

sent as part of a sumcheck protocol also has degree Ω(|H||K|), which is not
within our budget of an AHP with proof length O(|H| + |K|). Instead, we make
the minor modification that in the earlier rounds β1 and β2 are sampled from
F\H instead of F, and we will leverage the sumcheck protocol to verify the
equivalent (well defined) expression from Eq. (2):

M̂(β2, β1) =
∑

κ∈K

vH(β2)vH(β1)v̂al(κ)

(β2 − ˆrow(κ))(β1 − ĉol(κ))
.

This may appear to be an odd choice, because if we replace κ with an indeter-
minate in the sum above, we obtain a rational function that is (in general) not a
polynomial, and so does not immediately fit the sumcheck protocol. Nevertheless,
we are still able to use the sumcheck protocol with it, as we now explain.

Define f3(X) to be the (unique) polynomial of degree less than |K| such that

∀κ ∈ K, f3(κ) =
vH(β2)vH(β1)v̂al(κ)

(β2 − ˆrow(κ))(β1 − ĉol(κ))
. (5)

The prover computes the polynomials g3(X) and h3(X) such that

f3(X) = Xg3(X) + σ3/|K|,

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 765

h3(X)vK(X) = vH(β2)vH(β1)v̂al(X) − (β2 − ˆrow(X))(β1 − ĉol(X))f3(X).

The first equation demonstrates that f3 sums to σ3 over K, and the second
equation demonstrates that f3 agrees with the correct addends over K. These
two equations can be combined in a single equation that involves only g3(X)
and h3(X):

h3(X)vK(X) = vH(β2)vH(β1)v̂al(X)

− (β2 − ˆrow(X))(β1 − ĉol(X))(Xg3(X) + σ3/|K|).

The prover thus only sends the two polynomials g3(X) and h3(X). In order
to check this polynomial identity, V samples a random element β3 ∈ F with
the intention of checking the identity at X := β3. Then V queries g3, h3, ˆrow,
ĉol, v̂al at β3, and then evaluates vH(β2)vH(β1)v̂al(β3) − (β2 − ˆrow(β3))(β1 −
ĉol(β3))(β3g3(β3) + σ3/|K|) = h3(β3)vK(β3) in O(log |K|) operations.

If this third test passes then V can use the value σ3 in place of M̂(β2, β1)
to finish the second test. If this latter passes, V can in turn use the value σ2 in
place of rM (α, β1) to finish the first test.

Acknowledgments. This research was supported by: an Engineering and Physical
Sciences Research Council grant (EP/N028104/1), a Google Faculty Award, the RISE-
Lab at UC Berkeley, and donations from the Ethereum Foundation and the Interchain
Foundation. The authors thank Dev Ojha and Nicholas Spooner for identifying and
helping to fix an error in a prior version of our AHP for the lincheck problem.

References

[Ame+17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: CCS 2017
(2017)

[Bab+91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations
in polylogarithmic time. In: STOC 1991 (1991)

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In:
Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 2

[BG12] Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of
a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 17

[BGG17] Bowe, S., Gabizon, A., Green, M.: A multi-party protocol for construct-
ing the public parameters of the Pinocchio zk-SNARK. ePrint Report
2017/602 (2017)

[BGM17] Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for
zk-SNARK parameters in the random Beacon model. ePrint Report
2017/1050 (2017)

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17

766 A. Chiesa et al.

[Bit+13] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct
non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36594-2 18

[Bon+17] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and
their application to more efficient obfuscation. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 9

[Bon+18] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via
linear multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10822, pp. 222–255. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 8

[Boo+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 12

[BS08] Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity.
SIAM J. Comput. 38(2), 551–607 (2008)

[Bün+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: S&P
2018 (2018)

[CD98] Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic,
or: can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0055745

[CFS17] Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and
its applications. ePrint Report 2017/305 (2017)

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and
its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 2

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[Gab19] Gabizon, A.: Improved prover efficiency and SRS size in a Sonic-like sys-
tem. ePrint Report 2019/601 (2019)

[Gen+13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GKR15] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. JACM 62(4), 1–64 (2015)

[Gro+18] Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKs.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993,
pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96878-0 24

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS 767

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 19

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 11

[GWC19] Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations
over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge. ePrint Report 2019/953 (2019)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
STOC 1992 (1992)

[KZG10] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8 11

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9 10

[Mal+19] Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-
knowledge SNARKs from linear-size universal and updateable structured
reference strings. In: CCS 2019 (2019)

[PST13] Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 13

[RRR16] Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive
proofs for delegating computation. In: STOC 2016 (2016)

[Set19] Setty, S.: Spartan: efficient and general-purpose zkSNARKs without
trusted setup. ePrint Report 2019/550 (2019)

[Wah+18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zkSNARKs without trusted setup. In: S&P 2018 (2018)

[Xie+19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 24

[Zcash] Zcash. https://z.cash/
[ZcashMPC] The Zcash Ceremony. https://z.cash/blog/the-design-of-the-ceremony.

html
[Zha+17a] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A

zero-knowledge version of vSQL. ePrint Report 2017/1146 (2017)
[Zha+17b] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou,

C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced
databases. In: S&P 2017 (2017)

[Zha+18] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.:
vRAM: faster verifiable RAM with program-independent preprocessing.
In: S&P 2018 (2018)

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-030-26954-8_24
https://z.cash/
https://z.cash/blog/the-design-of-the-ceremony.html
https://z.cash/blog/the-design-of-the-ceremony.html

768 A. Chiesa et al.

[Ben+14a] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowl-
edge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 16

[Ben+14b] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-
interactive zero knowledge for a von Neumann architecture. In: USENIX
Security 2014 (2014)

[Ben+15] Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure
sampling of public parameters for succinct zero knowledge proofs. In:
S&P 2015 (2015)

[Ben+16] Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size
zero knowledge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 2

[Ben+17] Ben-Sasson, E., et al.: Computational integrity with a public random
string from quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10212, pp. 551–579. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 19

[Ben+19a] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

[Ben+19b] Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner,
N.: Linear-size constant-query IOPs for delegating computation. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 494–
521. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-
7 19

[Ben+19c] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowl-
edge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 23

https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-36033-7_19
https://doi.org/10.1007/978-3-030-36033-7_19
https://doi.org/10.1007/978-3-030-26954-8_23

Fractal: Post-quantum and Transparent
Recursive Proofs from Holography

Alessandro Chiesa(B), Dev Ojha, and Nicholas Spooner(B)

UC Berkeley, Berkeley, USA
{alexch,dojha,nick.spooner}@berkeley.edu

Abstract. We present a new methodology to efficiently realize recur-
sive composition of succinct non-interactive arguments of knowledge
(SNARKs). Prior to this work, the only known methodology relied on
pairing-based SNARKs instantiated on cycles of pairing-friendly elliptic
curves, an expensive algebraic object. Our methodology does not rely on
any special algebraic objects and, moreover, achieves new desirable prop-
erties: it is post-quantum and it is transparent (the setup is public coin).

We exploit the fact that recursive composition is simpler for SNARKs
with preprocessing, and the core of our work is obtaining a preprocess-
ing zkSNARK for rank-1 constraint satisfiability (R1CS) that is post-
quantum and transparent. We obtain this latter by establishing a connec-
tion between holography and preprocessing in the random oracle model,
and then constructing a holographic proof for R1CS.

We experimentally validate our methodology, demonstrating feasibil-
ity in practice. (The full version of this work is available at https://ia.
cr/2019/1076.)

Keywords: Succinct arguments · Holographic proofs · Recursive proof
composition · Post-quantum cryptography

1 Introduction

Succinct non-interactive arguments (SNARGs) are cryptographic proofs for non-
deterministic languages that are small and easy to verify. In the last few years,
researchers from across multiple communities have investigated many aspects
of SNARGs, including constructions under different cryptographic assumptions,
improvements in asymptotic efficiency, concrete performance of implementations,
and real-world applications. The focus of this paper is recursive composition, a
notion that we motivate next.

Recursive composition. The time to validate a SNARG can be exponentially
faster than the time to run the non-deterministic computation that it attests
to, a property known as succinct verification. This exponential speedup raises
an interesting prospect: could one produce a SNARG about a computation that
involves validating prior SNARGs? Thanks to succinct verification, the time
to run this (non-deterministic) computation would be essentially independent
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 769–793, 2020.
https://doi.org/10.1007/978-3-030-45721-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_27&domain=pdf
https://ia.cr/2019/1076
https://ia.cr/2019/1076
https://doi.org/10.1007/978-3-030-45721-1_27

770 A. Chiesa et al.

of the time of the prior computations. This recursive composition of SNARGs
enables incrementally verifiable computation [56] and proof-carrying data [18,30].
A critical technicality here is that, for recursive composition to work, the SNARG
must be an argument of knowledge, i.e., a SNARK. This is because the security
of a SNARG holds only against efficient adversaries, and the knowledge property
ensures that prior SNARGs must have been efficiently produced, and so we can
rely in turn on their security. A formal treatment of this can be found in [18],
which discusses how the “strength” of a SNARG’s knowledge property relates to
how many recursions the SNARG supports.

Efficient recursion. Theory tells us that any succinct-verifier SNARK is recur-
sively composable [18]. In practice, however, recursive composition is exceedingly
difficult to realize efficiently. The reason is that, even if we have a SNARK that
is concretely efficient when used “standalone”, it is often prohibitively expensive
to express the SNARK verifier’s computation through the language supported
by the SNARK. Indeed, while by now there are numerous SNARK construc-
tions with remarkable concrete efficiency, to date there is only a single efficient
approach to recursion. The approach, due to [15], uses pairing-based SNARKs
with a special algebraic property discussed below.1 This has enabled real-world
applications such as Coda [51], a cryptocurrency that uses recursive composition
to achieve strong scalability properties.

Limitations. The above efficient approach to recursion suffers from significant
limitations.

– It is pre-quantum. Pairing-based SNARKs rely (at least) on the hardness of
extracting discrete logarithms, and so are insecure against quantum attacks.
Hence the approach of [15] is also insecure against quantum attacks. Devising
an efficient post-quantum approach to recursion is an open problem.

– It introduces toxic waste. All known pairing-based SNARKs that can be used
in the approach of [15] rely on a structured reference string (SRS). Sampling
the SRS involves secret values (the “toxic waste”) that must remain secret for
security. Ensuring that this is the case in practice is difficult: the SRS must be
sampled by some trusted party or via a cryptographic ceremony [1,12,21,22].
Devising an efficient transparent (toxic-waste free) approach to recursion is
an open problem.

– It uses expensive algebra. The approach of [15] uses pairing-based SNARKs
instantiated via pairing-friendly cycles of elliptic curves. Only a single cycle
construction is known, MNT cycles ; it consists of two prime-order elliptic
curves, with embedding degrees 4 and 6 respectively. Curves in an MNT
cycle must be much bigger than usual in order to compensate for the loss
of security caused by the small embedding degrees. Moreover the fields that
arise from MNT cycles are imposed on applications rather than being cho-
sen depending on the needs of applications, causing additional performance

1 A recent note sketches an alternative approach to recursion based on batch verifica-
tion [23]. We omit a discussion of this note due to lack of sufficient detail (it does not
provide definitions, full constructions, security arguments, or an efficiency analysis).

Fractal: Post-quantum and Transparent Recursive Proofs 771

overheads. Attempts to find “better” cycles, without these limitations, have
resulted in some negative results [26]. Indeed, finding any other cycles beyond
MNT cycles is a challenging open problem.

1.1 Our Results

We present a new methodology for recursive composition that simultaneously
overcomes all of the limitations discussed above. We experimentally validate our
methodology, demonstrating feasibility in practice.

The starting point of our work is the observation that recursive composition
is simpler when applied to a SNARG (of knowledge) that supports preprocess-
ing, as we explain in Sect. 2.1. This property of a SNARG means that in an
offline phase one can produce a short summary for a given circuit and then, in
an online phase, one may use this short summary to verify SNARGs that attest
to the satisfiability of the circuit with different partial assignments to its inputs.
The online phase can be as fast as reading the SNARG (and the partial assign-
ment), and in particular sublinear in the circuit size even for arbitrary circuits.
Throughout, by “preprocessing SNARG” we mean a SNARG whose verifier runs
in time polylogarithmic in the circuit size.2

Our methodology has three parts: (1) a transformation that maps any “holo-
graphic proof” into a preprocessing SNARG in the random oracle model; (2) a
holographic proof for (rank-1) constraint systems, which leads to a correspond-
ing preprocessing SNARG; (3) a transformation that recurses any preprocessing
SNARK (once the random oracle is heuristically instantiated via a cryptographic
hash function).

We now summarize our contributions for each of these parts.

(1) From holographic proofs to preprocessing SNARGs. A probabilistic
proof is holographic if the verifier does not receive the circuit description as
an input but, rather, makes a small number of queries to an encoding of the
circuit [7]. Recent work [27] has established a connection between holography
and preprocessing (which we review in Sect. 1.2). The theorem below adds to
this connection, by showing that interactive oracle proofs (IOPs) [14,52] that
are holographic can be compiled into preprocessing SNARGs that are secure in
the quantum random oracle model [20,28].

Theorem 1 (informal). There is an efficient transformation that compiles
any holographic IOP for a relation R into a preprocessing SNARG for R that
is unconditionally secure in the random oracle model. If the IOP is a (honest-
verifier) zero knowledge proof of knowledge then the transformation produces a
zero knowledge SNARG of knowledge (zkSNARK). This extends to hold in the
quantum random oracle model.
2 In contrast, non-preprocessing SNARGs can achieve fast verification only for struc-
tured circuits, because the verification procedure must at a minimum read the
description of the circuit whose satisfiability it checks. The description of a cir-
cuit can be much smaller than the circuit itself only when the circuit has suitable
structure, e.g., repeated sub-components in parallel or in series.

772 A. Chiesa et al.

By applying Theorem1 to known holographic proofs for non-deterministic
computations (such as the PCP in [7] or the IPCP in [41]), we obtain the first
transparent preprocessing SNARG and the first post-quantum preprocessing
SNARG. Unfortunately, known holographic proofs are too expensive for practi-
cal use, because encoding the circuit is costly (as explained in Sect. 1.2). In this
paper we address this problem by constructing an efficient holographic proof,
discussed below.

We note that holographic proofs involve relations R that consist of triples
rather than pairs because the statement being checked has two parts. One part
is called the index, which is encoded in an offline phase by the indexer and this
encoding is provided as an oracle to the verifier. The other part is called the
instance, which is provided as an explicit input to the verifier. For example, the
index may be a circuit description and the instance a partial assignment to its
inputs. We refer to this notion as indexed relations.

(2) Efficient protocols for R1CS. We present a holographic IOP for rank-1
constraint satisfiability (R1CS), a standard generalization of arithmetic circuits
where the “circuit description” is given by coefficient matrices. We describe the
corresponding indexed relation.

Definition 1 (informal). The indexed relation RR1CS is the set of triples
(i,x,w) =

(
(F, n,m,A,B,C), x, w

)
where F is a finite field, A,B,C are n × n

matrices over F, each containing at most m non-zero entries, and z := (x,w)
is a vector in F

n such that Az ◦ Bz = Cz. (Here “◦” denotes the entry-wise
product.)

Theorem 2 (informal). There exists a public-coin holographic IOP for the
indexed relation RR1CS that is a zero knowledge proof of knowledge with the
following efficiency features. In the offline phase, the encoding of an index is
computable in O(m logm) field operations and consists of O(m) field elements.
In the online phase, the protocol has O(logm) rounds, with the prover using
O(m logm) field operations and the verifier using O(|x|+logm) field operations.
Proof length is O(m) field elements and query complexity is O(logm).

The above theorem improves, in the holographic setting, on prior IOPs for
R1CS (see Fig. 1): it offers an exponential improvement in verification time com-
pared to the linear-time verification of [13], and it offers succinct verification for
all coefficient matrices compared to only structured ones as in [11].

Armed with an efficient holographic IOP, we use our compiler to construct
an efficient preprocessing SNARG in the random oracle model. The following
theorem is obtained by applying Theorem 1 to Theorem 2.

Theorem 3 (informal). There exists a preprocessing zkSNARK for R1CS that
is unconditionally secure in the random oracle model (and the quantum random
oracle model) with the following efficiency features. In the offline phase, anyone
can publicly preprocess an index in time Oλ(m logm), obtaining a corresponding
verification key of size Oλ(1). In the online phase, the SNARG prover runs
in time Oλ(m logm) and the SNARG verifier runs in time Oλ(|x| + log2 m);
argument size is Oλ(log2 m).

Fractal: Post-quantum and Transparent Recursive Proofs 773

We have implemented the protocol underlying Theorem 3, obtaining the first
efficient realization of a post-quantum transparent preprocessing zkSNARK.

For example, for a security level of 128 bits over a 181-bit prime field, argu-
ments range from 80 kB to 200 kB for instances of up to millions of constraints.
These argument sizes are two orders of magnitude bigger than pre-quantum non-
transparent preprocessing zkSNARKs (see Sect. 1.2), and are 2× bigger that the
state of the art in post-quantum transparent non-preprocessing zkSNARKs [13].
Our proving and verification times are comparable to prior work: proving takes
several minutes, while verification takes several milliseconds regardless of the
constraint system. (See the full version [29] for performance details.)

Besides its application to post-quantum transparent recursion, our prepro-
cessing zkSNARK provides attractive benefits over prior constructions, as we
discuss in Sect. 1.2.

Note that, when the random oracle in the construction is heuristically instan-
tiated via an efficient cryptographic hash function (as in our implementation), the
resulting preprocessing zkSNARK is in the uniform reference string (URS) model,
which means that the system parameters consist of a uniformly random string of
fixed size.3 The term “transparent” refers to a construction in the URS model.

(3) Post-quantum transparent recursion. We obtain the first efficient real-
ization of post-quantum transparent recursive composition for SNARKs. The
cryptographic primitive that formally captures this capability is known as proof
carrying data (PCD) [18,30], and so this is what we construct.

Theorem 4 (informal). There is an efficient transformation that compiles
any preprocessing SNARK in the URS model into a preprocessing PCD scheme
in the URS model. Moreover, if the preprocessing SNARK is post-quantum secure
then so is the preprocessing PCD scheme.

The above transformation, which preserves the “transparent” property and
post-quantum security, is where recursive composition occurs. For details, includ-
ing the definition of PCD, see the full version [29].

Moreover, we provide an efficient implementation of the transformation in
Theorem 4 applied to our implementation of the preprocessing zkSNARK from
Theorem 3. The main challenge is to express the SNARK verifier’s computation
in as few constraints as possible, and in particular to design a constraint system
for the SNARK verifier that on relatively small instances is smaller than the
constraint system that it checks (thereby permitting arbitrary recursion depth).
Via a combination of computer-assisted design and recent advances in algebraic
hash functions, we achieve this threshold for all computations of at least 2 million
constraints. Specifically, we can express a SNARK verifier checking 2 million
constraints using only 1.7 million constraints, and this gap grows quickly with
the computation size. This is the first demonstration of post-quantum transparent
recursive composition in practice.
3 We stress that this step is a heuristic due to well-known limitations to the random ora-

cle methodology [24,40]. Investigating how to provably instantiate the random oracle
for many natural constructions is an active research frontier.

774 A. Chiesa et al.

yreuqfoorpdnuorrefiirevrevorprexedniSC1R
instances holographic? time time time complexity length complexity

[13] arbitrary NO N/A O(m + n logn) O(| | + m) O(log n) O(n) O(log n)

[11] † semi-succinct NO N/A O(m + n logn) O(| | + logn) O(log n) O(n) O(log n)

this work arbitrary YES O(m logm) O(m logm) O(| | + logm) O(logm) O(m) O(logm)

X

X

X

Fig. 1. Comparison of IOPs for R1CS: two prior non-holographic IOPs, and our holo-
graphic IOP. Here n denotes the number of variables and m the number of non-zero coef-
ficients in the matrices. †: The parameters stated for [11] reflect replacing the constant-
query low-degree test in the construction with a concretely-efficient logarithmic-query
low-degree test such as [9], to simplify comparison.

, ,

holographic IOP

security against
all adversaries

Theorem 1 preprocessing SNARK
in the (Q)ROM

()

security against
query-bounded adversaries

ℐ
P V

I()

ivkipk

ρρ

ρ

,

π

in
st

an
tia

te
 r

an
do

m
 o

ra
cl

e preprocessing SNARK
with a URS

Theorem 4 preprocessing PCD
with a URS

ivkipk

π
,

(urs,)ℐ

security against
(quantum) poly-size adversaries

ivkipk (urs,)

ℙ
security against

(quantum) poly-size adversaries

, loc

(i, i)i

π

Fig. 2. Diagram of our methodology to recursive composition that is post-quantum
and transparent.

1.2 Comparison with Prior Work

We provide a comparison with prior work in the three areas to which we contribute:
holographic proofs (Sect. 1.2); preprocessing SNARGs (Sect. 1.2); and recursive
composition of SNARKs (Sect. 1.2). We omit a general discussion of the now
ample literature on SNARGs, and in particular do not discuss non-preprocessing
SNARGs for structured computations (e.g., [10,57], and many others).

Prior holographic proofs. The verifier in a proof system cannot run in time
that is sublinear in its input, because it must at a minimum read the input in
order to know the statement being checked. Holographic proofs [7] avoid this
limitation by considering a setting where the verifier does not receive its input
explicitly but, instead, has query access to an encoding of it. The goal is then to
verify the statement in time sublinear in its size; note that such algorithms are
necessarily probabilistic.4

4 The goal of sublinear verification via holographic proofs is similar to, but distinct
from, the goal of sublinear verification via proximity proofs (as, e.g., studied in
[17,33,35,46,53]). In this latter setting, the verifier has oracle access to an input
that is not promised to be encoded and, in particular, cannot in general decide if
the input is in the language without reading all of the input. To allow for sublinear
verification without any promises on the input, the decision problem is relaxed: the
verifier is only asked to decide if the input is in the language or far from any input
in the language.

Fractal: Post-quantum and Transparent Recursive Proofs 775

In Fig. 3 we compare the efficiency of prior holographic proofs and our holo-
graphic proof for the case of circuit satisfiability, where the input to the verifier
is the description of an arbitrary circuit. There are two main prior holographic
proofs in the literature. One is the PCP construction in [7], where it suffices
for the verifier to query a few locations of a low-degree extension of the circuit
description. Another one is the “bare bones” protocol in [41], which is a holo-
graphic IP for circuit evaluation that can be re-cast as a holographic IPCP for
circuit satisfaction; the verifier relies on the low-degree extensions of functions
that describe each layer of the circuit. The constructions in [7] and [41] are unfit
for practical use as holographic proofs in Theorem 1, because encoding the circuit
incurs a polynomial blowup due to the use of multivariate low-degree extensions
(which yield encodings with inverse polynomial rate).

In the table we exclude the “algebraic holographic proof” of Marlin [27],
because the soundness guarantee of such a proof is incompatible with Theorem 1.

Comparison with this work. Our holographic proof is the first to achieve
efficient asymptotics not only for the prover and verifier, but also for the indexer,
which is responsible for producing the encoding of the circuit.

proof indexer prover verifier
type time time time

[7] PCP poly(N) poly(N) poly(| |+ log(N))
[41] IPCP poly(N) poly(| |) +O(N) O(| |+D logW)

this work IOP O(N logN) O(N logN) O(| |+ logN)
W X

X

X

Fig. 3. Comparison of holographic proofs for arithmetic circuit satisfiability. Here x
denotes the known inputs, w the unknown inputs, and N the total number of gates; if
the circuit is layered, D denotes circuit depth and W circuit width. Our Theorem 1 can
be used to compile any of these holographic proofs into a preprocessing SNARG. (For
better comparison with other works, [41] is stated as an IPCP for circuit satisfiability
rather than as an IP for circuit evaluation; in the latter case, the prover time would be
O(N). The prover times for [41] incorporate the techniques for linear-time sumcheck
introduced in [57].)

Prior preprocessing SNARGs. Prior works construct preprocessing
SNARGs in a model where a trusted party samples, in a parameter setup phase,
a structured reference string (SRS) that is proportional to circuit size. We sum-
marize the main features of these constructions, distinguishing between the case
of circuit-specific SRS and universal SRS.

776 A. Chiesa et al.

– Circuit-specific SRS: a circuit is given as input to the setup algorithm, which
samples a (long) proving key and a (short) verification key that can be used
to produce and validate arguments for the circuit. Preprocessing SNARGs
with circuit-specific SRS originate in [19,39,43,47], and have been studied in
an influential line of work that has led to highly-efficient constructions (e.g.,
[44]) and large-scale deployments (e.g., [34]). They are obtained by combin-
ing linear interactive proofs and linear-only encodings. The argument sizes
achievable in this setting are very small: less than 200 bytes.

– Universal SRS: a size bound is given as input to the setup algorithm, which
samples a (long) proving key and a (short) verification key that can be used
to produce and validate arguments for circuits within this bound. A public
procedure can then be used to specialize both keys for arguments relative to
the desired circuit. Preprocessing SNARGs with universal (and updatable)
SRS were introduced in [45], and led to efficient constructions in [27,38,49].
They are obtained by combining “algebraic” holographic proofs (see below)
and polynomial commitment schemes. The argument sizes currently achiev-
able with universal SRS are bigger than with circuit-specific SRS: less than
1500 bytes.

Comparison with this work. Theorem 1 provides a methodology to obtain
preprocessing SNARGs in the (quantum) random oracle model, which heuris-
tically implies (by suitably instantiating the random oracle) preprocessing
SNARGs that are post-quantum and transparent. Neither of these properties
is achieved by prior preprocessing SNARGs. Theorem 1 also develops the con-
nection between holography and preprocessing discovered in [27], which considers
the case of holographic proofs where the completeness and soundness properties
are restricted to “algebraic provers” (which output polynomials of prescribed
degrees). We consider the case of general holographic proofs, where complete-
ness and soundness are not restricted.

Moreover, our holographic proof (Theorem 2) leads to a preprocessing
SNARG (Theorem3) that, as supported by our implementation, provides attrac-
tive benefits over prior preprocessing SNARGs.

– Prior preprocessing SNARGs require cryptographic ceremonies to securely
sample the long SRS, which makes deployments difficult and expensive. This
has restricted the use of preprocessing SNARGs to proving relatively small
computations, due to the prohibitive cost of securely sampling SRSs for large
computations. This is unfortunate because preprocessing SNARGs could be
useful for “scalability applications”, which leverage succinct verification to
efficiently check large computations (e.g., verifying the correctness of large
batches of trades executed at a non-custodial exchange [8,55]).
The transparent property of our preprocessing SNARG means that the long
SRS is replaced with a fixed-size URS (uniform reference string). This simpli-
fies deployments and enables scalability applications.

– Prior preprocessing SNARGs are limited to express computations over the
prime fields that arise as the scalar fields of pairing-friendly elliptic curves.

Fractal: Post-quantum and Transparent Recursive Proofs 777

Such fields are imposed by parametrized curve families that offer little flexi-
bility for optimizations or applications. (Alternatively one can use the Cocks–
Pinch method [37] to construct an elliptic curve with a desired scalar field,
but the resulting curve is inefficient.)
In contrast, our preprocessing SNARG is easily configurable across a range
of security levels, and supports most large prime fields and all large binary
fields, which offers greater flexibility in terms of performance optimizations
and customization for applications.

Remark 1 (weaker forms of preprocessing). Prior work proved recursive com-
position only for non-interactive arguments of knowledge with succinct verifiers
[18]; this is the case for our definition of preprocessing SNARGs. In this paper
we show that recursive composition is possible even when the verifier is merely
sublinear in the circuit size, though the cost of each recursion is much steeper
than in the polylogarithmic case.

This provides additional motivation to the study of preprocessing with sub-
linear verifiers, as recently undertaken by Setty [54]. In this latter work, Setty
proposes a non-interactive argument in the URS (uniform reference string) model
where, for n-gate arithmetic circuits and a chosen constant c ≥ 2, proving time
is Oλ(n), argument size is Oλ(n1/c), and verification time is Oλ(n1−1/c).

Recursion for pairing-based SNARKs. The approach to recursive composi-
tion of [15] uses pairing-based (preprocessing) SNARKs based on pairing-friendly
cycles of elliptic curves. This approach applies to constructions with circuit-
specific SRS (e.g. [44]) and to those with universal SRS (e.g. [27,38,45,49]).

Informally, pairing-based SNARKs support languages that involve the satis-
fiability of constraint systems over a field that is different from the field used
to compute the SNARK verifier — this restriction arises from the mathematics
of the underlying pairing-friendly elliptic curve used to instantiate the pairing.
This seemingly mundane fact has the regrettable consequence that expressing
the SNARK verifier’s computation in the language supported by the SNARK
(to realize recursive composition) is unreasonably expensive due to this “field
mismatch”. To circumvent this barrier, prior work leveraged two pairing-based
SNARKs where the field to compute one SNARK verifier equals the field of the
language supported by the other SNARK, and vice versa. This condition enables
each SNARK to efficiently verify the other SNARK’s proofs.

These special SNARKs rely on pairing-friendly cycles of elliptic curves, which
are pairs of pairing-friendly elliptic curves where the base field of one curve equals
the scalar field of the other curve and vice versa. The only known construction
is MNT cycles, which consist of two prime-order elliptic curves with embedding
degrees 4 and 6 respectively. An MNT cycle must be much bigger than usual in
order to compensate for the low security caused by the small embedding degrees.
For example, for a security level of 128 bits, curves in an MNT cycle must be
defined over a prime field with roughly 800 bits; this is over three times the 256
bits that suffice for curves with larger embedding degrees. These performance
overheads can be significant in practice, e.g., Coda [51] is a project that has

778 A. Chiesa et al.

deployed MNT cycles in a product, and has organized a community challenge
to speed up the proof generation for pairing-based SNARKs [32]. A natural
approach to mitigate this problem would be to find “high-security” cycles (i.e.,
with higher embedding degrees) but to date little is known about pairing-friendly
cycles beyond a few negative results [26].

Comparison with this work. The approach to recursion that we present in
this paper is not tied to constructions of pairing-friendly cycles of elliptic curves.
In particular, our approach scales gracefully across different security levels, and
also offers more flexibility when choosing the desired field for an application. In
addition, our approach is post-quantum and, moreover, uses a transparent (i.e.,
public-coin) setup.

On the other hand, our approach has two disadvantages. First, argument
size is about 100 times bigger than the argument size achievable by cycle-based
recursion. Second, the number of constraints needed to express the verifier’s com-
putation is about 45 times bigger than those needed in the case of cycle-based
recursion (e.g., the verifier of [44] can be expressed in about 40,000 constraints).
The vast majority of these constraints come from the many hash function invo-
cations required to verify the argument.

Both of the above limitations are somewhat orthogonal to our approach and
arguably temporary: the large proof size and many hash invocations come from
the many queries required from current constructions of low-degree tests [9,16].
As the state of the art in low-degree testing progresses (e.g., to high-soundness
constructions over large alphabets), both argument size and verifier size will also
improve.

2 Techniques

We discuss the main ideas behind our results. In Sect. 2.1 we explain how pre-
processing simplifies recursive composition. In Sect. 2.2 we describe our compiler
from holographic IOPs to preprocessing SNARGs (Theorem 1). In Sect. 2.3 we
describe our efficient holographic IOP (Theorem 2), and then in Sect. 2.4 we
discuss the corresponding preprocessing SNARG (Theorem 3). In Sect. 2.5 we
describe how to obtain post-quantum and transparent PCD (Theorem 4). In
Sect. 2.6 we discuss our verifier circuit.

Recall that indexed relations consist of triples (i,x,w) where i is the index,
x is the instance, and w is the witness. We use these relations because the
statements being checked have two parts, the index i (e.g., a circuit description)
given in an offline phase and the instance x (e.g., a partial input assignment)
given in an online phase.

2.1 The Role of Preprocessing SNARKs in Recursive Composition

We explain why preprocessing simplifies recursive composition of SNARKs. For
concreteness we consider the problem of incrementally proving the iterated appli-
cation of a circuit F : {0, 1}n → {0, 1}n to an initial input z0 ∈ {0, 1}n. We are

Fractal: Post-quantum and Transparent Recursive Proofs 779

thus interested in proving statements of the form “given zT there exists z0 such
that zT = FT (z0)”, but wish to avoid having the SNARK prover check the cor-
rectness of all T invocations at once. Instead, we break the desired statement
into T smaller statements “{zi = F (zi−1)”}T

i=1 and then inductively prove them.
Informally, for i = 1, . . . , T , we produce a SNARK proof πi for this statement:

“Given a counter i and claimed output zi, there exists a prior output zi−1

such that zi = F (zi−1) and, if i > 1, there exists a SNARK proof πi−1 that
attests to the correctness of zi−1.”

Formalizing this idea requires care, and in particular depends on how the SNARK
achieves succinct verification (a prerequisite for recursive composition). There
are two methods to achieve succinct verification.

(1) Non-preprocessing SNARKs for structured computations. The SNARK sup-
ports non-deterministic computations expressed as programs, i.e., it can be
used to prove/verify statements of the form “given a program M , primary
input x, and time bound t, there exists an auxiliary input w such that
M accepts (x,w) in t steps”. (More generally, the SNARK could support
any computation model for which the description of a computation can be
significantly smaller than the size of the described computation.)

(2) Preprocessing SNARKs for arbitrary computations. The SNARK supports
circuit satisfiability, i.e., it can be used to prove/verify statements of the form
“given a circuit C and primary input x, there exists an auxiliary input w such
that C(x,w) = 0”. Preprocessing enables the circuit C to be summarized
into a short verification key ivkC that can be used for succinct verification
regardless of the structure of C. (More generally, the SNARK could support
any computation model as long as preprocessing is possible.)

We compare the costs of recursive composition in these two cases, showing why the
preprocessing case is cheaper. Throughout we consider SNARKs in the uniform
reference string model, i.e., parameter setup consists of sampling a fully random
string urs of size poly(λ) that suffices for proving/verifying any statement.

(1) Recursion without preprocessing. Let (P,V) be a non-preprocessing
SNARK for non-deterministic program computations. In this case, recursion is
realized via a program R, which depends on urs and F , that checks one invocation
of the circuit F and the validity of a prior SNARK proof relative to the reference
string urs. The program R is defined as follows:

Primary input: a tuple x = (M, i, zi) consisting of the description of a
program M , counter i, and claimed output zi. (We later set M := R
to achieve recursion, as explained shortly.)

Auxiliary input: a tuple w = (zi−1, πi−1) consisting of a previous
output zi−1 and corresponding SNARK proof πi−1 that attests to its
correctness.

Code: R(x,w) accepts if zi = F (zi−1) and, if i > 1, V(urs,M,xi−1,
t, πi−1) = 1 where xi−1 := (M, i − 1, zi−1) and t is a suitably chosen
time bound.

780 A. Chiesa et al.

The program R can be used to incrementally prove the iterated applica-
tion of the circuit F . Given a tuple (i − 1, zi−1, πi−1) consisting of the cur-
rent counter, output, and proof, one can use the SNARK prover to obtain
the next tuple (i, zi, πi) by setting zi := F (zi−1) and computing the proof
πi := P(urs, R, (R, i, zi), t, πi). Note that we have set M := R, so that (the
description of) R is part of the primary input to R. A tuple (i, zi, πi) can then
be verified by running the SNARK verifier, as V(urs, R, (R, i, zi), t, πi).5

We refer the reader to [18] for details on how to prove the above construction
secure. The aspect that we are interested to raise here is that the program R
is tasked to simulate itself, essentially working as a universal machine. This
means that every elementary operation of R, and in particular of F , needs to
be simulated by R in its execution. This essentially means that the computation
time of R, which dictates the cost of each proof composition, is at least a constant
c > 1 times the size of |F |. This multiplicative overhead on the size of the circuit
F , while asymptotically irrelevant, is a significant overhead in concrete efficiency.

(2) Recursion with preprocessing. We describe how to leverage preprocess-
ing in order to avoid universal simulation, and in particular to avoid any mul-
tiplicative performance overheads in recursive composition. Intuitively, prepro-
cessing provides a “cryptographic simplification” to the requisite recursion, by
enabling us to replace the description of the computation with a succinct cryp-
tographic commitment to it.

Let (I,P,V) be a preprocessing SNARK for circuits. Recursion is realized
via a circuit R that depends on urs and F , and checks one invocation of F and
a prior proof. The circuit R is defined as follows:

Primary input: a tuple x = (ivk, i, zi) consisting of an index verification
key ivk, counter i, and claimed output zi. (We later set ivk := ivkR to
achieve recursion.)

Auxiliary input: a tuple w = (zi−1, πi−1) consisting of a previous out-
put zi−1 and corresponding SNARK proof πi−1 that attests to its
correctness.

Code: R(x,w) accepts if zi = F (zi−1) and, if i > 1, V(urs, ivk,xi−1,
πi−1) = 1 where xi−1 := (ivk, i − 1, zi−1).

The circuit R can be used for recursive composition as follows. In the offline
phase, we run the indexer I on the circuit R, obtaining a long index proving
key ipkR and a short index verification key ivkR that can be used to produce
and validate SNARKs with respect to the circuit R. Subsequently, in the online

5 The astute reader may notice that we could have applied the Recursion Theorem
to the program R to obtain a new program R∗ that has access to its own code,
and thereby simplify primary inputs from triples x = (M, i, zi) to pairs x = (i, zi).
This, however, adds unnecessary complexity. Indeed, here we can rely on the SNARK
verifier to provide R with its own code as part of the primary input, obviating this
extra step. (For reference, the Recursion Theorem states that for every program
A(x, y) there is a program B(y) that computes A(〈B〉, y), where the angle brackets
emphasize that the first argument is the description of the program B).

Fractal: Post-quantum and Transparent Recursive Proofs 781

phase, one can use the prover P to go from a tuple (i − 1, zi−1, πi−1) to a new
tuple (i, zi, πi) by letting zi := F (zi−1) and πi := P(urs, ipkR, (ivkR, i, zi), πi).
Note that we have set ivk := ivkR, so that the verification key ivkR is part of the
primary input to the circuit R. A tuple (i, zi, πi) can then be verified by running
the SNARK verifier, as V(urs, ivkR, (ivkR, i, zi), πi).

Crucially, the circuit R does not perform any universal simulation involving
the circuit F , and in particular does not incur multiplicative overheads. Indeed,
|R| = |F | + |V| = |F | + o(|F |). This was enabled by preprocessing, which let us
provide the index verification key ivkR as input to the circuit R.

In fact, preprocessing is already part of the efficient approach to recursive
composition in [15]. There the preprocessing SNARK uses a structured, rather
than uniform, reference string but the benefits of preprocessing are analogous
(even when the reference string depends on the circuit or a bound on it).

In summary. Preprocessing SNARKs play an important role in efficient recur-
sive composition. Our first milestone is post-quantum and transparent prepro-
cessing SNARKs, which we then use to achieve post-quantum and transparent
recursive composition.

2.2 From Holographic Proofs to Preprocessing with Random
Oracles

We describe the main ideas behind Theorem 1, which provides a transformation
that compiles any holographic IOP for an indexed relation R into a correspond-
ing preprocessing SNARG for R. For more details, see the full version [29].

Warmup: holographic PCPs. We first consider the case of PCPs, a spe-
cial case of IOPs. Recall that the Micali transformation [50] compiles a (non-
holographic) PCP into a (non-preprocessing) SNARG. We modify this transfor-
mation to compile a holographic PCP into a preprocessing SNARG, by using the
fact that the SNARG verifier output by the Micali transformation invokes the
PCP verifier as a black box.

In more detail, the main feature of a holographic PCP is that the PCP
verifier does not receive the index as an explicit input but, rather, makes a small
number of queries to an encoding of the index given as an oracle. If we apply
the Micali transformation to the holographic PCP, we obtain a SNARG verifier
that must answer queries by the PCP verifier to the encoded index. If we simply
provided the index as an input to the SNARG verifier, then we cannot achieve
succinct verification and so would not obtain a preprocessing SNARG. Instead,
we let the SNARG indexer compute the encoded index, compute a Merkle tree
over it, and output the corresponding root as an index verification key for the
SNARG verifier. We can then have the SNARG prover extend the SNARG proof
with answers to queries to the encoded index, certified by authentication paths
relative to the index verification key. In this way the SNARG verifier can use
the answers in the SNARG proof to answer the queries to the encoded index by
the underlying PCP verifier.

782 A. Chiesa et al.

This straightforward modification to the Micali transformation works: one
can prove that if the soundness error of the holographic PCP is ε then the
soundness error of the preprocessing SNARG is tε + O(t2 · 2−λ) against t-query
adversaries in the random oracle model. (A similar expression holds for quantum
adversaries.)

General case: holographic IOPs. While efficient constructions of holographic
PCPs are not known, in this paper we show how to construct an efficient holo-
graphic IOP (see Sect. 2.3). Hence we are actually interested in compiling holo-
graphic IOPs. In this case our starting point is the BCS transformation [14],
which compiles a (non-holographic) IOP into a (non-prepreprocessing) SNARG.
We adopt a similar strategy as above: we modify the BCS transformation to
compile a holographic IOP into a preprocessing SNARG, using the fact that the
SNARG verifier output by the BCS transformation invokes the IOP verifier as
a black box. Indeed, the main feature of a holographic IOP is the fact that the
IOP verifier makes a small number of queries to an encoding of the index given
as an oracle. Therefore the SNARG indexer can output the Merkle root of the
encoded index as an index verification key, which subsequently the SNARG ver-
ifier can use to authenticate answers about the encoded index claimed by the
SNARG prover.

An important technical difference here is the fact that the soundness error
of the resulting preprocessing SNARG is not related to the soundness error of
the holographic IOP but, instead, to its state-restoration soundness (SRS) error,
a stronger notion of soundness introduced in [14]. Namely, we prove that if
the SRS error of the holographic PCP is εsr(t) then the soundness error of the
preprocessing SNARG is εsr(t)+O(t2 · 2−λ). This phenomenon is inherited from
the (unmodified) BCS transformation.

PoK and ZK. If the holographic IOP is a proof of knowledge, our transforma-
tion yields a preprocessing SNARG of knowledge (SNARK). If the holographic
IOP is honest-verifier zero knowledge, the preprocessing SNARG is statistical
zero knowledge. These features are inherited from the BCS transformation.

2.3 An Efficient Holographic Proof for Constraint Systems

We describe the main ideas behind Theorem 2, which provides an efficient con-
struction of a holographic IOP for rank-1 constraint satisfiability (R1CS). See
Definition 1 for the indexed relation representing this problem.

Our starting point: Marlin. Our construction borrows ideas from the alge-
braic holographic proof (AHP) underlying Marlin, a pairing-based zkSNARK due
to [27]. An AHP is similar to a holographic IOP, except that the indexer and
the prover (both honest and malicious) send low-degree univariate polynomials
rather than evaluations of functions. The verifier may evaluate these polynomials
at any point in the field.

To understand how AHPs and holographic IOPs differ, it is instructive to
consider how one might construct a holographic IOP from an AHP. A natural

Fractal: Post-quantum and Transparent Recursive Proofs 783

approach is to construct the indexer and prover for the hIOP as follows: run the
indexer/prover of the AHP, and whenever the indexer/prover outputs a polyno-
mial, evaluate it and send this evaluation as the oracle. There are several issues
with this approach. First, hIOPs require a stronger soundness guarantee: sound-
ness must hold against malicious provers that send arbitrary oracles. Second,
evaluating the polynomial requires selecting a set L ⊆ F over which to evaluate
it. In general, since the verifier in the AHP may query any point in F, we would
need to take L := F, which is prohibitively expensive for the indexer and prover
if F is much larger than the instance size (as it often is, for both soundness and
application reasons). Third, assuming that one manages to decouple L and F,
the soundness error of one invocation of the AHP will (at best) decrease with
1/|L| instead of 1/F, which requires somehow reducing the soundness error of
the AHP to, say, 1/2λ, and simply re-running in parallel the AHP for λ− log |L|
would be expensive in all relevant parameters.

The first issue could be resolved by composing the resulting protocol with a
low-degree test. This introduces technicalities because we cannot hope to check
that the oracle is exactly low-degree (as required in an AHP)—we can only check
that the oracle is close to low-degree. The best way to resolve the second issue
depends on the AHP itself, and would likely involve out-of-domain sampling [16].
Finally, resolving the third issue may not be possible in general (in fact, we do
not see how resolve it for the AHP in Marlin).

These above issues show that, despite some similarities, there are markedly
different design considerations on hIOPs versus AHPs. For this reason, while we
will follow some of the ideas outlined above, we do not take the Marlin AHP as
a black box. Instead, we will draw on the ideas underlying the Marlin AHP in
order to build a suitable hIOP for this paper. Along the way, we also show how
to reduce the round complexity of the Marlin AHP from 3 to 2, an ideas that
we use to significantly improve the efficiency of our construction.

Aurora. The structure of our holographic IOP, like the Marlin AHP, follows
the one of Aurora [13], an IOP for R1CS that we now briefly recall. Given an
R1CS instance (A,B,C), the prover sends to the verifier fz, the RS-encoding of
a vector z, and three oracles fA, fB , fC which are purportedly the RS-encodings
of the three vectors Az,Bz,Cz respectively. The prover and verifier then engage
in subprotocols to prove that (i) fA, fB , fC are indeed encodings of Az,Bz,Cz,
and (ii) fA · fB − fC is an encoding of the zero vector.

Together these checks ensure that (A,B,C) is a satisfiable instance of R1CS.
Testing (ii) is a straightforward application of known probabilistic checking tech-
niques, and can be achieved with a logarithmic-time verifier. The primary chal-
lenge in the Aurora protocol (and protocols based on it) is testing (i).

In the Aurora protocol this is achieved via a reduction to univariate sumcheck,
a univariate analogue of the [48] sumcheck protocol. Univariate sumcheck also
has a logarithmic verifier, but the reduction itself runs in time linear in the
number of nonzero entries in the matrices A,B,C. A key technical contribution
of the Marlin AHP is showing how to shift most of the cost of the reduction to
the indexer in order to reduce the online cost of verification to logarithmic, as
we now explain.

784 A. Chiesa et al.

Challenges. We describe the original lincheck protocol of [13], and explain
why it is not holographic. The lincheck protocol, on input a matrix M ∈ F

k×k

and RS-encodings of vectors �x, �y ∈ F
k, checks whether �x = M�y. It makes use

of the following two facts: (i) for a vector of linearly-independent polynomials
�u ∈ F[X]k and any vectors �x, �y ∈ F

k, if �x �= �y then the polynomials 〈�u, �x〉 and
〈�u, �y〉 are distinct, and so differ with high probability at a random α ∈ F, and
(ii) for any matrix M ∈ F

k×k, 〈�u,M�y〉 = 〈�uM, �y〉. The lincheck verifier sends
a random α ∈ F to the prover, and the prover then convinces the verifier that
〈�uM, �y〉(α) − 〈�u, �x〉(α) = 0 using the univariate sumcheck protocol.

This requires the verifier to evaluate the low-degree extensions of �uα and �uαM
at a point β ∈ F, where �uα ∈ F

k is obtained by evaluating each entry of �u at α.
This is equivalent to evaluating the bivariate polynomials u(X,Y), uM (X,Y) ∈
F[X,Y], obtained respectively by extending �u, �uM over Y , at a random point
in (α, β) ∈ F

2. By choosing �u appropriately, we can ensure that u(X,Y) can be
evaluated in logarithmic time [11]. But, without help from an indexer, evaluating
uM (α, β) requires time Ω(‖M‖).

A natural suggestion in the holographic setting is to have the indexer evaluate
uM over some domain S ⊆ F× F, and make this evaluation part of the encoded
index. This does achieve the goal of logarithmic verification time. Unfortunately,
the degree of uM in each variable is about k, and so even writing down the
coefficients of uM requires time Ω(k2), which for sparse M is quadratic in ‖M‖.

In the Marlin lincheck the indexer instead computes a certain linear-size
(polynomial) encoding of M , which the verifier then uses in a multi-round proto-
col with the prover to evaluate uM at its chosen point. Our holographic lincheck
improves upon this protocol, reducing the number of rounds by one; we describe
it next.

Our holographic lincheck. Recall from above that the lincheck verifier needs
to check that 〈�u, �x〉 and 〈�uM, �y〉 are equal as polynomials in X. To do this, it will
choose a random α ∈ F and send it to the prover, then engage in the univariate
sumcheck protocol to show that

∑
h u(α, h)x̂(h)− uM (α, h)ŷ(h) = 0, where x̂, ŷ

are low-degree extensions of x and y.
To verify the above sum, the verifier must compute u(α, β) and uM (α, β)

for some β ∈ F. The former can be computed in by the verifier in logarithmic
time as discussed; for the latter, we ask the prover to help. Specifically, we show
that uM ≡ M̂∗, the unique bivariate low-degree extension of a matrix M∗ which
can be computed in quasilinear time from M (and in particular has ‖M∗‖ =
‖M‖). Hence to show that uM (α, β) = γ the prover and verifier can engage in a
holographic matrix arithmetization protocol for M∗ to show that M̂∗(α, β) = γ.
Marlin makes use of a similar matrix arithmetization protocol, but for M itself,
with a subprotocol to compute uM from M̂ , which is a cost that we completely
eliminate. Another improvement is that for our matrix arithmetization protocol
we can efficiently reduce soundness error even when using a low-degree test, due
to its non-recursive use of the sumcheck protocol.

Fractal: Post-quantum and Transparent Recursive Proofs 785

Matrix arithmetization. Our matrix arithmetization protocol is a holographic
IOP for computing the low-degree extension of a matrix M ∈ F

H×H (provided
in the index). It is useful here to view M in its sparse representation as a map
〈M〉 : K → H × H × F for some K ⊆ F, where if 〈M〉(k) = (a, b, γ) for some
k ∈ K then Ma,b = γ, and Ma,b = 0 otherwise.

The indexer computes ˆrow, ĉol, v̂al which are the unique low-degree extensions
of the functions K → F induced by restricting 〈M〉 to its first, second, and third
coordinates respectively, and outputs their evaluations over L. It is not hard to
verify that

M̂(α, β) =
∑

k∈K

LH, ˆrow(k)(α)LH,ĉol(k)(β)v̂al(k) ,

for any α, β ∈ F, where LH,a is the polynomial of minimal degree which is 1 on a
and 0 on H \{a}. In order to check this equation using the sumcheck protocol we
must modify the right-hand side: the summand must be a polynomial which can
be efficiently evaluated. To this end, we make use of the “unnormalized Lagrange”
polynomial uH(X,Y) := (vH(X)− vH(Y))/(X − Y) from [11]. This polynomial
has the property that for every a, b ∈ H, uH(a, b) is 0 if a �= b and nonzero
if a = b; and it is easy to evaluate at every point in F. By having the indexer
renormalize v̂al appropriately, we obtain

M̂(X,Y) ≡
∑

k∈K

uH(ˆrow(k), α)uH(ĉol(k), β)v̂al(k).

We have made progress, but now the summand has quadratic degree: Ω(|H||K|)
because we compose the polynomials uH and ˆrow, ĉol. Next we show how to
remove this composition.

Observe that since the image of K under ˆrow, ĉol is contained in H,
vH(ˆrow(k)) = vH(ĉol(k)) = 0. Hence the rational function

vH(α)
(α − ˆrow〈M〉(X))

· vH(β)

(β − ĉol〈M〉(X))
· v̂al〈M〉(X)

agrees with the summand on K; it is a rational extension of the summands.
Moreover, the degrees of the numerator and denominator of the function are both
O(|K|). Now it remains to design a protocol to check the sum of a univariate
rational function.

Rational sumcheck. Suppose that we want to check that
∑

k∈K p(k)/q(k) =
γ, where p, q are low-degree polynomials. First, we have the prover send the
(evaluation of the) unique polynomial f of degree |K| − 1 which agrees with p/q
on K; that is, the unique low-degree extension of p/q viewed as a function from
K to F. We can use the standard univariate sumcheck protocol from [13] to test
that

∑
k∈K f(k) = γ.

It then remains to check that f does indeedagreewith p/q onK. This is achieved
using standard techniques: if p(k)/q(k) = f(k) for all k ∈ K, then p(k) = q(k)·f(k)
for all k ∈ K (at least if q does not vanish on K). Then p − q · f is a polynomial

786 A. Chiesa et al.

vanishing on K, and so is divisible by vK . This can be checked using low-degree
testing. Moreover, the degree of this equation is max(deg(p),deg(q) + |K|); in the
matrix arithmetization protocol, this is O(|K|).
Proof of knowledge and zero knowledge. Our full protocol for R1CS is a
proof of knowledge, because when the verifier accepts with high enough proba-
bility it is possible to decode fz into a satisfying assignment. We further achieve
zero knowledge via techniques inherited from [13]. (Note that zero knowledge
is not relevant for the matrix arithmetization protocol because the constraint
matrices A,B,C are public.)

2.4 Post-quantum and Transparent Preprocessing

If we apply the compiler described in Sect. 2.2 (as captured in Theorem 1) to
the efficient holographic proof for R1CS described in Sect. 2.3 (as captured in
Theorem 2) then we obtain an efficient preprocessing zkSNARK for R1CS that
is unconditionally secure in the (quantum) random oracle model (as captured in
Theorem 3). We refer to the resulting construction as Fractal.

Implementation. We have implemented Fractal by extending the libiop
library to support generic compilation of holographic proofs into preprocessing
SNARGs, and then writing in code our holographic proof for R1CS. Our imple-
mentation supports a range of security levels and fields. (The only requirement
on the field is that it contains certain smooth subgroups.) See the full version
[29] for more details on the implementation.

Clearly, the security of our implementation relies on the random oracle
methodology applied to preprocessing SNARGs produced by our compiler,
namely, we assume that if we replace every call to the random oracle with a
call to a cryptographic hash function then the resulting construction, which for-
mally is in the URS model, inherits the relevant security properties that we
proved in the (quantum) random oracle model.

Evaluation. We have evaluated Fractal, and its measured performance is con-
sistent with asymptotic predictions. In particular, the polylogarithmic argument
size and verification time quickly become smaller than native witness size and
native execution time as the size of the checked computation increases.

We additionally compare the costs of Fractal to prior preprocessing
SNARGs, finding that (a) our prover and verifier times are comparable to prior
constructions; (b) argument sizes are larger than prior constructions (that have
an SRS). The larger argument sizes of Fractal are nonetheless comparable
with other post-quantum transparent non-preprocessing SNARGs. See the full
version [29] for more details on evaluation.

2.5 Post-quantum and Transparent Recursive Composition

We summarize the ideas behind our contributions to recursive composition of
SNARKs.

Fractal: Post-quantum and Transparent Recursive Proofs 787

Proof-carrying data. Recursive composition is captured by a cryptographic
primitive called proof-carrying data (PCD) [18,30], which will be our goal. Con-
sider a network of nodes, where each node receives messages from other nodes,
performs some local computation, and sends the result on. PCD is a primitive
that allows us to check the correctness of such distributed computations by
recursively producing proofs of correctness for each message. Here “correctness”
is locally specified by a compliance predicate Φ, which takes as input the mes-
sages received by a node and the message sent by that node (and possibly some
auxiliary local data). A distributed computation is then considered Φ-compliant
if, for each node, the predicate Φ accepts the node’s messages (and auxiliary
local data).

PCD captures proving the iterated application of a circuit as in Sect. 2.1, in
which case the distributed computation evolves along a path. PCD also captures
more complex topologies, which is useful for supporting distributed computa-
tions on long paths (via “depth-reduction” techniques [18,56]) and for expressing
dynamic distributed computations (such as MapReduce computations [31]).

From random oracle model to the URS model. While we have so far dis-
cussed constructions that are unconditionally secure in the (quantum) random
oracle model, for recursion we now leave this model (by heuristically instantiat-
ing the random oracle with a cryptographic hash function) and start from prepro-
cessing SNARKs in the URS model. The reason for this is far from mundane (and
not motivated by implementation), as we now explain. The verifiers from Theo-
rem 1 make calls to the random oracle, and therefore proving that the verifier has
accepted would require using a SNARK that can prove the correctness of compu-
tations in a relativized world where the oracle is a random function. There is sub-
stantial evidence from complexity theory that such SNARKs do not exist (e.g.,
the PCP Theorem does not relativize with respect to a random oracle [25,36]).
By instantiating the random oracle, all oracle calls can be “unrolled” into compu-
tations that do not involve oracle gates, and thus we can prove the the correctness
of the resulting computation.6 We stress that random oracles cannot be securely
instantiated in the general case [24], and so we will assume that there is a secure
instantiation of the random oracle for the preprocessing SNARKs produced via
Theorem 1 (which, in particular, preserves proof of knowledge).

From SNARK to PCD. We prove that any preprocessing SNARK in the URS
model can be transformed into a preprocessing PCD scheme in the URS model.7
The construction realizes recursive composition by following the template given
6 The necessity to instantiate the random oracle before recursion also arises in the first

construction of incrementally verifiable computation [56]. One way to circumvent this
difficulty is to consider oracles that are equipped with a public verification procedure
[30], however this requires embedding a secret in the oracle, which does not lend itself
to straightforward software realizations and so we do not consider this approach in
this paper.

7 Analogously to a SNARK, here preprocessing denotes the fact that the PCD scheme
enables succinct verification regardless of the computation expressed by the compli-
ance predicate Φ (as opposed to only for structured computations).

788 A. Chiesa et al.

in Sect. 2.1, except that the compliance predicate Φ may expect multiple input
messages. This construction simplifies that of [18] for preprocessing SNARKs in
the SRS model: we do not need to rely on collision-resistant hash functions to
shrink the verification key ivk because we require it to be succinct.8

Security against quantum adversaries. A key feature of our result is that
we prove that if the SNARK is secure (i.e., is a proof of knowledge) against
quantum adversaries then so is the resulting PCD scheme (i.e., it is also a proof of
knowledge). Therefore, if we assume that Fractal achieves proof of knowledge
against quantum adversaries when the random oracle is suitably instantiated,
then by applying our result to Fractal we obtain a post-quantum preprocessing
PCD scheme in the URS model.

We highlight here an important subtlety that arises when proving security
against quantum adversaries. The proof of [18] makes use of the fact that, in the
classical case, we may assume that the adversary is deterministic by selecting its
randomness. This is not the case for quantum adversaries, since a quantum cir-
cuit can create its own randomness (e.g. by measuring a qubit in superposition).
This means that we must be careful in defining the proof-of-knowledge prop-
erty we require of the underlying SNARK. In particular, we must ensure that
when we recursively extract proofs, these proofs are consistent with previously
extracted proofs. When the adversary is deterministic, this is trivially implied
by standard proof of knowledge; for quantum adversaries, it is not. We give a
natural definition of proof of knowledge that suffices for the security reduction,
and prove that it is realized by our SNARK construction (in the random oracle
model).

2.6 The Verifier as a Constraint System

In order to recursively compose Fractal (the preprocessing zkSNARK dis-
cussed in Sect. 2.4), we need to express Fractal’s verifier as a constraint system.
The size of this constraint system is crucial because this determines the threshold
at which recursive composition becomes possible. Towards this goal, we design
and implement a constraint system that applies to a general class of verifiers,
as outlined below. Fractal’s verifier is obtained as an instantiation within this
class. See the full version [29] for details.

Hash computations introduced by the compiler.Our compiler (Theorem 1)
transformsanyholographic IOP into a correspondingpreprocessingSNARG,while
preserving relevant zero knowledge or proof of knowledge properties. The prepro-
cessing SNARG verifier makes a black-box use of the holographic IOP verifier,
which means that we can design a single (parametrized) constraint system repre-
senting the transformation that works for any holographic IOP. All additional com-
putations introduced by the compiler involve cryptographic hash functions (which

8 In contrast, the verification key ivk in [18] is allowed to grow linearly with the public
input to the circuit that it summarizes, and so recursion required replacing ivk with
a short hash of it, and moving ivk to the witness of the recursion circuit.

Fractal: Post-quantum and Transparent Recursive Proofs 789

heuristically instantiate the random oracle). In particular, there are two types of
hash computations: (1) a hash chain computation used to derive the randomness
for each round of the holographic IOP verifier, based on the Merkle roots provided
by the preprocessing SNARG prover; and (2) verification of Merkle tree authenti-
cation paths in order to ensure the validity of the query answers provided by the
preprocessing SNARG prover. We design generic constraint systems for both of
these tasks. Since we are designing constraint systems it is more efficient to con-
sider multiple hash functions specialized to work in different roles: a hash function
to absorb inputs or squeeze outputs in the hash chain; a hash function to hash leaves
of the Merkle tree; a many-to-one hash function for the internal nodes of the Merkle
tree; and others.

Choice of hash function. While our implementation is generic with respect
to the aforementioned hash functions (replacing any one of them with another
would be a rather straightforward task), the choice of hash function is nonethe-
less critical for concrete efficiency as we now explain. Expressing standard cryp-
tographic hash functions, such as from the SHA or Blake family, as a constraint
system requires more than 20,000 constraints. While this is acceptable for certain
applications, these costs are prohibitive for hash-intensive computations, as is
the case for the verifiers output by our compiler. Fortunately, the last few years
have seen exciting progress in the design of algebraic hash functions [2–4,6,42],
which by design can be expressed via a small number of arithmetic constraints
over large finite fields. While this is an active research front, and in particular
no standards have been agreed upon, many of the proposed functions are signifi-
cantly cheaper than prior ones, and their security analyses are promising. In this
work we decide to use one of these as our choice of hash function (Rescue [4]).
We do not claim that this is the “best” choice among the currently proposed ones.
(In fact, we know how to achieve better results via a combination of different
choices.) We merely make one choice that we believe to be reasonable, and in
particular suffices to demonstrate the feasibility of our methodology in practice.

Holographic IOP computations. The constraint system that represents the
holographic IOP verifier will, naturally, depend on the specific protocol that is
provided as input to the compiler.

That said, all known efficient IOPs, holographic or otherwise, are obtained as
the combination of two ingredients: (1) a low-degree test for the Reed–Solomon
(RS) code; and (2) an RS-encoded IOP, which is a protocol where the verifier out-
puts a set of algebraic claims, known as rational constraints, about the prover’s
messages. Examples of IOPs that fall in this category include our holographic
IOP for R1CS, as well as protocols for R1CS in [5,11,13] and for AIRs in [10].

We thus provide two constraint systems that target these two components.
First, we provide a constraint system that realizes the FRI low-degree test [9],
which is used in many efficient IOPs, including in our holographic IOP for R1CS.
Second, we provide infrastructure to write constraint systems that express a
desired RS-encoded IOP. This essentially entails specifying how many random ele-
ments the verifier should send in each round of the protocol, and then specifying

790 A. Chiesa et al.

constraints that express the rational constraints output by the verifier at the end
of the RS-encoded IOP.

We then use the foregoing infrastructure to express the verifier of our holo-
graphic IOP for R1CS as a constraint system. We note that the very same
generic infrastructure would make it straightforward to express the verifiers of
other protocols with the same structure [5,10,11,13].

Remark 2 (succinct languages). We stress that our work in writing constraints
for the verifier is restricted to non-uniform computation models such as R1CS
(i.e., we are not concerned about the global structure of the constraint system).
We do not claim to have an efficient way to express the same verifier via succinct
languages such as AIR [10] or Succinct-R1CS [11]. Doing so remains a chal-
lenging open problem, that would open up additional opportunities in recursive
composition of non-preprocessing SNARKs.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zając, M.: UC-secure
CRS generation for NARKs. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99–117. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-23696-0_6

2. Albrecht, M.R., et al.: Algebraic cryptanalysis of STARK-friendly designs: appli-
cation to MARVELlous and MiMC. IACR Cryptology ePrint Archive, Report
2019/419 (2019)

3. Albrecht, M.R., et al.: Feistel structures for MPC, and more. IACR Cryptology
ePrint Archive, Report 2019/397 (2019)

4. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Cryptology
ePrint Archive, Report 2019/426 (2019)

5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Proceedings of the 24th ACM Confer-
ence on Computer and Communications Security, CCS 2017, pp. 2087–2104 (2017)

6. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic
primitives. IACR Cryptology ePrint Archive, Report 2018/1098 (2018)

7. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC 1991, pp. 21–32 (1991)

8. Barry Whitehat: Rollup (2018). https://github.com/barryWhiteHat/roll_up
9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive

oracle proofs of proximity. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming, ICALP 2018, pp. 14:1–14:17 (2018)

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8_23

11. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.:
Linear-size constant-query IOPs for delegating computation. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 494–521. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7_19

https://doi.org/10.1007/978-3-030-23696-0_6
https://github.com/barryWhiteHat/roll_up
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-36033-7_19

Fractal: Post-quantum and Transparent Recursive Proofs 791

12. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: Proceedings of the 36th
IEEE Symposium on Security and Privacy, S&P 2015, pp. 287–304 (2015)

13. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2_4. Full version available at
https://eprint.iacr.org/2018/828

14. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5_2

15. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1_16. Extended version at http://eprint.iacr.org/2014/595

16. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness (2019). eCCC TR19-044

17. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),
889–974 (2006)

18. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: Proceedings of the 45th ACM
Symposium on the Theory of Computing, STOC 2013, pp. 111–120 (2013)

19. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2_18

20. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0_3

21. Bowe, S., Gabizon, A., Green, M.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive, Report
2017/602 (2017)

22. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017)

23. Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without a
trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)

24. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

25. Chang, R., Chari, S., Ranjan, D., Rohatgi, P.: Relativization: a revisionistic retro-
spective. Bull. Eur. Assoc. Theor. Comput. Sci. 47, 144–153 (1992)

26. Chiesa, A., Chua, L., Weidner, M.: On cycles of pairing-friendly elliptic curves. SIAM
J. Appl. Algebra Geom. 3(2), 175–192 (2019). https://arxiv.org/abs/1803.02067

27. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. Cryptology ePrint Archive,
Report 2019/1047 (2019)

https://doi.org/10.1007/978-3-030-17653-2_4
https://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
http://eprint.iacr.org/2014/595
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://arxiv.org/abs/1803.02067

792 A. Chiesa et al.

28. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random
oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892,
pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_1.
Available as Cryptology ePrint Archive, Report 2019/834

29. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography (full version of this work). Cryptology ePrint Archive,
Report 2019/1076 (2019). https://ia.cr/2019/1076

30. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: Proceedings of the 1st Symposium on Innovations in Computer Science,
ICS 2010, pp. 310–331 (2010)

31. Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 371–403. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_13

32. Coda: The SNARK Challenge (2019). https://coinlist.co/build/coda
33. Dinur, I., Reingold, O.: Assignment testers: towards a combinatorial proof of the

PCP theorem. In: Proceedings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2004, pp. 155–164 (2004)

34. Electric Coin Company: Zcash Cryptocurrency (2014). https://z.cash/
35. Ergün, F., Kumar, R., Rubinfeld, R.: Fast approximate probabilistically checkable

proofs. Inf. Comput. 189(2), 135–159 (2004)
36. Fortnow, L.: The role of relativization in complexity theory. Bull. Eur. Assoc. Theor.

Comput. Sci. 52, 229–244 (1994)
37. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.

J. Cryptol. 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-9048-z
38. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-

bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953 (2019)

39. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

40. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2003, pp. 102–113 (2003)

41. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. J. ACM 62(4), 27:1–27:64 (2015)

42. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.:
Starkad and Poseidon: new hash functions for zero knowledge proof systems. IACR
Cryptology ePrint Archive, Report 2019/458 (2019)

43. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

44. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

45. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

https://doi.org/10.1007/978-3-030-36033-7_1
https://ia.cr/2019/1076
https://doi.org/10.1007/978-3-662-46803-6_13
https://coinlist.co/build/coda
https://z.cash/
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24

Fractal: Post-quantum and Transparent Recursive Proofs 793

46. Gur, T., Rothblum, R.D.: Non-interactive proofs of proximity. In: Proceedings
of the 6th Innovations in Theoretical Computer Science Conference, ITCS 2015,
pp. 133–142 (2015)

47. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

48. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

49. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updateable structured reference strings.
Cryptology ePrint Archive, Report 2019/099 (2019)

50. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS 1994

51. O(1) Labs: Coda Cryptocurrency (2017). https://codaprotocol.com/
52. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for

delegating computation. In: Proceedings of the 48th ACM Symposium on the The-
ory of Computing, STOC 2016, pp. 49–62 (2016)

53. Rothblum, G.N., Vadhan, S.P., Wigderson, A.: Interactive proofs of proximity:
delegating computation in sublinear time. In: Proceedings of the 45th ACM Sym-
posium on the Theory of Computing, STOC 2013, pp. 793–802 (2013)

54. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
Cryptology ePrint Archive, Report 2019/550 (2019)

55. StarkWare & 0x: StarkDEX (2019). https://www.starkdex.io/
56. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply

time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1

57. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8_24

https://doi.org/10.1007/978-3-642-28914-9_10
https://codaprotocol.com/
https://www.starkdex.io/
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-030-26954-8_24

Author Index

Aggarwal, Divesh I-343
Agrawal, Shweta I-13, I-110
Agrikola, Thomas II-96
Alagic, Gorjan III-759, III-788
Aranha, Diego F. I-644
Asharov, Gilad II-403
Auerbach, Benedikt III-475

Badrinarayanan, Saikrishna III-642
Bag, Arnab I-612
Bao, Zhenzhen II-641
Bardet, Magali III-64
Basu Roy, Debapriya I-612
Batina, Lejla I-581
Beimel, Amos I-529
Belaïd, Sonia III-311
Bellare, Mihir II-3, III-507
Beullens, Ward III-183
Bonnetain, Xavier II-493
Brakerski, Zvika I-79, II-551
Briaud, Pierre III-64
Bros, Maxime III-64
Bünz, Benedikt I-677

Castryck, Wouter II-523
Chiesa, Alessandro I-738, I-769
Cohen, Ran II-828
Coron, Jean-Sébastien III-342
Corrigan-Gibbs, Henry I-44
Couteau, Geoffroy III-442
Cramer, Ronald I-499

D’Anvers, Jan-Pieter III-3
Daemen, Joan I-581
Dagand, Pierre-Évariste III-311
Davis, Hannah II-3
de Boer, Koen II-341
Dinur, Itai I-405, II-433
Dodis, Yevgeniy I-313
Döttling, Nico I-79, II-551, II-768
Ducas, Léo II-341, II-608
Dulek, Yfke III-729
Dunkelman, Orr I-250, I-280

Ephraim, Naomi I-707, III-125
Esser, Andre III-94

Fehr, Serge II-341
Fernando, Rex III-642
Fisch, Ben I-677
Fischlin, Marc III-212
Flórez-Gutiérrez, Antonio I-221
Fouque, Pierre-Alain III-34
Freitag, Cody I-707, III-125
Fuchsbauer, Georg II-63

Gaborit, Philippe III-64
Galbraith, Steven II-608
Garay, Juan II-129, II-828
Garg, Ankit I-373
Garg, Sanjam I-79, II-373, II-768
Ghazi, Badih II-798
Ghoshal, Ashrujit II-33
Giacon, Federico III-475
Goldwasser, Shafi II-373
Gong, Junqing III-278
Goyal, Vipul III-668
Grassi, Lorenzo II-674
Greuet, Aurélien III-342
Grilo, Alex B. III-729
Grosso, Vincent I-581
Günther, Felix II-3
Guo, Chun II-641
Guo, Jian II-641

Hajiabadi, Mohammad II-768
Hao, Yonglin I-466
Harasser, Patrick III-212
Hazay, Carmit II-184, III-599
Heath, David III-569
Hofheinz, Dennis II-96
Hosoyamada, Akinori II-249
Hu, Yuncong I-738

Jain, Aayush I-141, III-642
Jain, Abhishek III-668

Janson, Christian III-212
Jaques, Samuel II-280
Jayanti, Siddhartha II-159
Jeffery, Stacey III-729
Jin, Zhengzhong III-668

Kalai, Yael Tauman I-373
Kastner, Julia II-96
Katsumata, Shuichi III-379, III-442
Keller, Nathan I-250, I-280
Khurana, Dakshita I-373, III-642
Kiayias, Aggelos II-129
Kiltz, Eike III-475
Kim, Sam II-576
Kim, Seongkwang I-435
Kirchner, Paul III-34
Kogan, Dmitry I-44
Kolesnikov, Vladimir III-569
Komargodski, Ilan I-707, II-403, III-125
Kuchta, Veronika III-703

Lasry, Noam I-250
Leander, Gregor I-466
Lee, Byeonghak I-435
Lee, Jooyoung I-435
Li, Bao III-538
Libert, Benoît III-410
Lin, Huijia III-247
Lin, Wei-Kai II-403
Lombardi, Alex III-620
Lüftenegger, Reinhard II-674
Luo, Ji III-247

Majenz, Christian III-729, III-759, III-788
Malavolta, Giulio I-79, III-668
Maller, Mary I-738
Manohar, Nathan I-141
Manurangsi, Pasin II-798
Masny, Daniel II-768
Massolino, Pedro Maat Costa I-581
May, Alexander III-94
Meier, Willi I-466
Mercadier, Darius III-311
Mishra, Pratyush I-738
Morgan, Andrew II-216
Mukhopadhyay, Debdeep I-612
Musa, Saud Al III-538

Naehrig, Michael II-280
Naito, Yusuke II-705
Nandi, Mridul I-203
Nayak, Kartik II-403
Naya-Plasencia, María I-221, II-311
Neiger, Vincent III-64
Nielsen, Jesper Buus I-556
Nishimaki, Ryo III-379

Obremski, Maciej I-343
Ojha, Dev I-769
Orlandi, Claudio I-644
Ostrovsky, Rafail M. II-129
Othman, Hussien I-529

Pagh, Rasmus II-798
Panagiotakos, Giorgos II-129
Panny, Lorenz II-523
Papagiannopoulos, Kostas I-581
Pass, Rafael I-707, II-216, III-125, III-599
Passelègue, Alain III-410
Patranabis, Sikhar I-612
Peikert, Chris II-463
Pellet-Mary, Alice I-110
Peserico, Enoch II-403
Pinkas, Benny II-739
Plouviez, Antoine II-63
Polychroniadou, Antigoni II-216
Prest, Thomas II-608

Raghuraman, Srinivasan II-159
Rechberger, Christian II-674
Regazzoni, Francesco I-581
Ribeiro, João I-343
Rivain, Matthieu III-311
Roetteler, Martin II-280
Ronen, Eyal I-280
Rossi, Mélissa III-3
Rosulek, Mike II-739
Rotaru, Dragos II-674
Rotem, Lior III-155
Ruatta, Olivier III-64
Russell, Alexander III-759, III-788

Saha, Sayandeep I-612
Sahai, Amit I-141, III-642
Sakzad, Amin III-703

796 Author Index

Samwel, Niels I-581
Sasaki, Yu II-249, II-705
Schaffner, Christian III-729
Schofnegger, Markus II-674
Schrottenloher, André II-311, II-493
Segev, Gil III-155
Seurin, Yannick II-63
Shahaf, Ido III-155
Shamir, Adi I-250, I-280
Shi, Elaine II-403
Silverberg, Alice I-3
Simkin, Mark I-556
Simon, Thierry I-581
Siniscalchi, Luisa I-343
Song, Fang III-788
Song, Ling II-641
Spooner, Nicholas I-769
Stehlé, Damien III-703
Steinfeld, Ron III-703
Stepanovs, Igors III-507
Sugawara, Takeshi II-705
Sun, Shi-Feng III-703
Szepieniec, Alan I-677

Takahashi, Akira I-644
Tessaro, Stefano II-33
Tibouchi, Mehdi III-34
Tillich, Jean-Pierre III-64
Todo, Yosuke I-466
Trieu, Ni II-739

Ünal, Akın I-169
Ursu, Bogdan III-442

Vaikuntanathan, Vinod I-313, III-620
Vasudevan, Prashant Nalini II-373
Velingker, Ameya II-798
Venkitasubramaniam, Muthuramakrishnan

II-184, III-599
Vercauteren, Frederik II-523
Vesely, Noah I-738
Virdia, Fernando II-280, III-3
Visconti, Ivan I-343
Vyas, Nikhil II-159

Wallet, Alexandre III-34
Wang, Qingju I-466
Ward, Nicholas I-738
Wee, Hoeteck III-278, III-410
Weiss, Mor II-184
Wichs, Daniel I-313, II-768, III-620
Wintersdorff, Raphaël III-311
Wu, David J. III-410

Xing, Chaoping I-499

Yamada, Shota I-13, III-379
Yamakawa, Takashi III-379
Yanai, Avishay II-739
Yu, Wei III-538
Yu, Yang II-608, III-34

Zaverucha, Greg I-644
Zeitoun, Rina III-342
Zikas, Vassilis II-129, II-828

Author Index 797

	Preface
	Eurocrypt 2020
	Fine-Grained Cryptography: A New Frontier? (Abstracts of Invited Talk)
	Contents - Part I
	Contents – Part II
	Contents – Part III
	Invited Talk
	Mathematics and Cryptography: A Marriage of Convenience?
	1 Introduction
	2 Fruitful Interactions
	3 Looking Toward the Future
	3.1 Computing on Encrypted Data and Fully Homomorphic Encryption
	3.2 Cryptographic Multilinear Maps
	3.3 Cryptography that Will Survive Future Attacks
	3.4 Cryptanalysis

	4 Working Well Together

	Best Paper Awards
	Optimal Broadcast Encryption from Pairings and LWE
	1 Introduction
	1.1 Our Techniques
	1.2 Related Works

	2 Preliminaries
	2.1 Attribute Based Encryption
	2.2 Lattice Preliminaries
	2.3 KP-ABE Scheme by Boneh et al. ch2BGGsps14
	2.4 Bilinear Map Preliminaries

	3 Our Construction of CP-ABE
	4 Security Proof for Our CP-ABE
	5 Implications to CP-ABE, BE, and IBBE
	5.1 New CP-ABE Scheme
	5.2 New BE Scheme with Optimal Parameter Size

	References

	Private Information Retrieval with Sublinear Online Time
	1 Introduction
	1.1 A New Approach: Offline/Online PIR with Sublinear Online Time
	1.2 Our Results
	1.3 Limitations
	1.4 Related Work
	1.5 Technical Overview
	1.6 Notation

	2 Puncturable Pseudorandom Sets
	2.1 Definitions
	2.2 Constructions
	2.3 Shifting Puncturable Pseudorandom Sets

	3 Two-Server PIR with Sublinear Online Time
	3.1 Definition
	3.2 New Constructions
	3.3 Construction of PIR from Puncturable Pseudorandom Sets

	4 Two-Server PIR with Sublinear Amortized Time
	4.1 Sketch of the Construction

	5 Single-Server PIR with Sublinear Online Time
	6 Lower Bound for PIR with Sublinear Online Time
	7 Open Questions
	References

	Obfuscation and Functional Encryption
	Candidate iO from Homomorphic Encryption Schemes*-3pt
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Indistinguishability Obfuscation
	2.2 Learning with Errors

	3 Homomorphic Encryption
	3.1 Linear Decrypt-and-Multiply
	3.2 Split Decryption
	3.3 Damgård-Jurik Encryption

	4 Split Fully-Homomorphic Encryption
	4.1 Construction in the Presence of an Oracle
	4.2 Instantiating the Oracle

	5 Split Fully-Homomorphic Encryption -3mu Obfuscation
	References

	Indistinguishability Obfuscation Without Maps: Attacks and Fixes for Noisy Linear FE
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	2.1 Noisy Linear Functional Encryption (NLinFE)
	2.2 Sampling and Trapdoors
	2.3 Random Matrices over Zq

	3 Agrawal's Construction of Noisy Linear FE
	4 Multi-ciphertext Attack on Agrawal's NLinFE
	5 Rank Attack on Agrawal's NLinFE
	5.1 Exploiting the Noise Obtained After Decrypting a Message
	5.2 Rank Attack to Distinguish Bit

	6 Modifying Construction to Fix Attacks
	6.1 The New NLinFE Construction

	7 Setting the Parameters
	References

	Combiners for Functional Encryption, Unconditionally
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Functional Encryption
	2.2 Secure Multi-party Computation
	2.3 Garbling Schemes
	2.4 Correlated Randomness Model

	3 FE Combiners: Definition
	4 Input-Local MPC Protocols
	4.1 Input-Local Protocol Specification

	5 Combiner-Friendly Homomorphic Secret Sharing Schemes
	5.1 Definition
	5.2 Construction

	6 Construction of an FE Combiner from a CFHSS Scheme
	6.1 d-Nested FE
	6.2 Construction
	6.3 Security Proof

	7 Robust FE Combiners and Universal FE
	References

	Impossibility Results for Lattice-Based Functional Encryption Schemes
	1 Introduction
	1.1 Contribution
	1.2 Interpretation and Open Problems
	1.3 Related Work
	1.4 Technical Overview
	1.5 Organization of This Work

	2 Preliminaries
	2.1 Statistical Preliminaries
	2.2 Algebraic Preliminaries
	2.3 Learning Theory-Preliminaries

	3 Definitions
	3.1 Functional Encryption
	3.2 Encryption Algorithms
	3.3 Security Notions
	3.4 Private-Key Encryption
	3.5 Transformations

	4 Online/Offline Encryption Without Overflows
	5 Online/Offline Encryption with Short Ciphertexts
	6 Lattice-Based Function-Hiding Functional Encryption
	References

	Symmetric Cryptanalysis
	Mind the Composition: Birthday Bound Attacks on EWCDMD and SoKAC21
	1 Introduction
	1.1 Some Beyond Birthday Bound Constructions
	1.2 Composition Constructions and Our Contribution

	2 Preliminaries
	2.1 Statistical Distance
	2.2 Sum of Without Replacement Samples
	2.3 Security Definitions

	3 Collision Probability
	4 Birthday Attack on Composition of Ideal Primitives
	5 Birthday Attack on SoKAC21
	6 Birthday Attack on Dual-EWCDM
	6.1 Issues in the Previous Proofs

	7 Concluding Discussion
	7.1 Some Open Problems

	References

	Improving Key-Recovery in Linear Attacks: Application to 28-Round PRESENT
	1 Introduction
	2 Preliminaries
	2.1 Matsui's Algorithm 2
	2.2 Linear Hulls
	2.3 Multiple and Multidimensional Linear Attacks
	2.4 Statistical Models for the Probability of Success
	2.5 Last-Round Key-Recovery with FFT/FWT
	2.6 The Lightweight Block Cipher PRESENT

	3 Efficient Key-Recovery for Algorithm 2
	3.1 The Extended Algorithm
	3.2 Exploiting the Key Schedule of the Cipher

	4 Application to PRESENT
	4.1 Linear Distinguishers for PRESENT
	4.2 Improved Key-Recovery Attacks on 26 and 27-Round PRESENT
	4.3 Key-Recovery Attacks on 28-Round PRESENT

	5 Conclusion
	A Key-Schedule of PRESENT
	B The (Pruned) Fast Walsh Transform
	C Estimates of the Distribution of the Multiple Linear Cryptanalysis Statistic
	References

	New Slide Attacks on Almost Self-similar Ciphers
	1 Introduction
	1.1 Applicability of Slide Attacks to Modern Ciphers
	1.2 Slide Attacks on SP Networks
	1.3 Our Settings
	1.4 Our Contributions
	1.5 Our Results

	2 Preliminaries
	2.1 Setting and Notations
	2.2 AES Notations
	2.3 The Attack of ch10EfficientSlide on 1-KSAf

	3 The Slid Sets Attack
	3.1 Slid Sets Attack on 2-KSAf
	3.2 Slid Sets Attack on 1-KSAs

	4 Slide Attack Using a Hypercube of Slid Pairs
	5 Slide Attack Using Suggestive Plaintext Structures
	6 Substitution Slide Attack
	7 Summary and Conclusions
	References

	The Retracing Boomerang Attack*-7.5pt
	1 Introduction
	2 Background and Previous Work
	2.1 The Boomerang Attack
	2.2 The S-Box Switch
	2.3 The Yoyo Game and Mixture Differentials

	3 The Retracing Boomerang Attack
	3.1 The Shifting Retracing Attack
	3.2 The Mixing Retracing Attack

	4 Retracing Boomerang Attack on 5-Round AES
	4.1 Brief Description of the AES and Notations
	4.2 The Yoyo Attack of Rønjom et al. on 5-Round AES
	4.3 A Simple Improvement of the Yoyo Attack on 5-Round AES
	4.4 An Attack on 5-Round AES with Overall Complexity of 216.5
	4.5 Experimental Verification

	5 Improved Attack on 5-Round AES with a Secret S-Box
	6 The Retracing Rectangle Attack – Connection to Mixture Differentials
	6.1 The Amplified Boomerang (a.k.a. Rectangle) Attack
	6.2 The Retracing Rectangle Attack

	7 Summary and Open Problems
	References

	Randomness Extraction
	Extracting Randomness from Extractor-Dependent Sources*-18pt
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Additional Related Work

	2 Preliminaries
	3 Defining ED-Extractors
	4 Security Without Auxiliary Info
	4.1 Construction from Any PRF
	4.2 Necessity of One-Way Functions

	5 Security with Auxiliary Info
	5.1 Construction via Constrained PRFs
	5.2 Negative Results for ED Extractors with Auxiliary Info

	References

	How to Extract Useful Randomness from Unreliable Sources
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Technical Overview on Deterministic Somewhere-Extraction from SHELA and Weak Sources
	1.4 Technical Overview on Non-Interactive Proof Systems and Commitments from Public SHELA Sources
	1.5 Open Questions
	1.6 Organization of the Paper

	2 Preliminaries and Definitions
	2.1 Notation
	2.2 Somewhere-Random Sources and Somewhere-Extractors
	2.3 Somewhere-Condensers

	3 SHELA Sources
	4 Deterministic Somewhere-Extractors for SHELA Sources
	4.1 Honest Blocks with High Min-Entropy
	4.2 Honest Blocks with Low Linear Min-Entropy

	5 Lower Bounds for Deterministic Somewhere-Extraction from Weak Sources
	6 Bounds for Somewhere-Amplifiable-Source Extraction from Weak Sources
	7 Non-Interactive Protocols from Public SHELA Sources
	7.1 CRS Generation Through a SHELA Sample
	7.2 Non-Interactive WI Proof System pv
	7.3 Non-Interactive Commitment Scheme pvcom

	References

	Low Error Efficient Computational Extractors in the CRS Model
	1 Introduction
	1.1 Prior Work on Computational Extractors
	1.2 Our Results

	2 Our Techniques
	2.1 From 2-Source Extractors to Non-malleable Extractors
	2.2 Our 2-Source Extractor

	3 Preliminaries
	3.1 Collision Resistan Hash Functions
	3.2 Lossy Functions
	3.3 Leakage Lemma
	3.4 Dispersers

	4 Computational Extractors: Definitions
	5 Computational Strong Non-malleable Extractors in the CRS Model
	5.1 Construction
	5.2 Analysis

	6 Computational Strong 2-Source Extractors in the CRS Model
	6.1 Construction
	6.2 Analysis

	References

	Symmetric Cryptography I
	Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs and Their Applications
	1 Introduction
	1.1 Applications of the Collision Search Problem for S C
	1.2 Optimality of the Known Time-Space Tradeoff for the Collision Search Problem
	1.3 Time-Space Tradeoffs in Various Models of Computation
	1.4 The Post-filtering Model of Computation
	1.5 Paper Organization

	2 Preliminaries
	2.1 The Collision Search Problem
	2.2 R-Way Branching Programs
	2.3 Our Model of Computation

	3 A Time-Space Tradeoff Lower Bound for Collision Search in a Function
	3.1 Overview of the Proof
	3.2 Bounding the Number of Collisions Output by Shallow Branching Programs
	3.3 Proof of Theorem 1

	4 A Time-Space Tradeoff Lower Bound for Collision Search Between Two Functions
	5 Time-Space Complexity Barriers and Their Cryptanalytic Variants
	6 A Time-Space Tradeoff Lower Bound for Post-filtering Attacks on Double Encryption
	6.1 Proof Overview
	6.2 Restricted Post-filtering Double Encryption
	6.3 Post-filtering Collision Search
	6.4 Bounding the Advantage in Post-filtering Collision Search

	7 Conclusions and Future Work
	A The Parallel Collision Search Algorithm ch15OorschotW99
	B Proof of Lemma9
	References

	Tight Security Bounds for Double-Block Hash-then-Sum MACs
	1 Introduction
	2 Preliminaries
	3 Mirror Theory
	4 A Framework for Security Proof of DbHtS MACs
	5 Concatenating Universal Hash Functions
	5.1 Security of PolyMAC
	5.2 Security of SUM-ECBC

	6 Security of PMAC-Plus
	7 Security of 3kf9 and LightMAC-Plus
	7.1 Security of 3kf9
	7.2 Security of LightMAC-Plus

	References

	Modeling for Three-Subset Division Property Without Unknown Subset
	1 Introduction
	2 Brief Introduction of Division Property
	2.1 Conventional Division Property
	2.2 Three-Subset Division Property
	2.3 Propagation Rules for Division Property
	2.4 Various Algorithms to Evaluate Propagation of Division Property and Three-Subset Division Property

	3 Cube Attack and Division Property
	3.1 Cube Attack
	3.2 Division Property and Cube Attack
	3.3 Three-Subset Division Property and Cube Attack

	4 Three-Subset Division Property w/o Unknown Subset
	4.1 Motivation and Limitation of Pruning Technique
	4.2 Three-Subset Division Property Without Unknown Subset
	4.3 New Modeling Method
	4.4 Algorithm to Recover ANF Coefficients of Public Function

	5 Improved Cube Attacks Against Trivium
	5.1 Specification of Trivium and Its MILP Model
	5.2 Practical Verification
	5.3 Cube Attacks Against 840-Round and 841-Round Trivium
	5.4 Verification of 855-Round Attack from CRYPTO2018ch16C:FWDM18

	6 Improved Cube Attacks Against Grain-128AEAD
	6.1 Specification of Grain-128AEAD and Its MILP Model
	6.2 Verification of 184-Round Attack from ch16C:WHTLIM18
	6.3 Additional Constraints and Superpoly for 190 Rounds
	6.4 Towards Efficient Key-Recovery Attacks

	7 Conclusion
	References

	Secret Sharing
	Blackbox Secret Sharing Revisited: A Coding-Theoretic Approach with Application to Expansionless Near-Threshold Schemes
	1 Introduction
	1.1 Background on BBSS
	1.2 Our Contributions
	1.3 Our Method
	1.4 Brief Remarks on Possible Protocol Applications
	1.5 Organization of the Paper

	2 Monotone Span Programs and Near-Threshold Black-Box Secret Sharing Schemes
	2.1 Monotone Span Program
	2.2 Black-Box Secret Sharing Scheme

	3 A Lower Bound on Expansion Factors
	4 Gluing Method
	5 Lifting Codes over Prime Fields
	5.1 Reed-Solomon Codes
	5.2 Algebraic Geometry Codes

	6 The Main Results
	A The Subfields of the Garcia-Stichtenoth Tower
	References

	Evolving Ramp Secret Sharing with a Small Gap
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Previous Works

	2 Preliminaries
	2.1 Secret-Sharing Schemes
	2.2 Secret Sharing for Evolving Access Structures

	3 Reduction to an Access Structure with a Finite Number of Parties
	4 First Scheme Realizing f(t)t,1,: The Segments Technique
	5 Realizing Weighted Trees Access Structures
	5.1 A Secret Sharing Scheme Realizing Finite Trees
	5.2 Secret-Sharing Schemes Realizing Finite Weighted Trees

	6 The Second Scheme Realizing ft,1/2,: The Tree Technique
	6.1 Analysis of the Share Size

	7 Reduction Between Evolving Ramp Secret-Sharing Schemes
	8 An Evolving (k/2,k)-Ramp Secret-Sharing Scheme
	9 Properties of Optimal Choices of Parameters for the Tree Technique
	9.1 The Share Size in tree
	9.2 Upper Bound on the Number of Layers in the Optimal Solution for tree

	References

	Lower Bounds for Leakage-Resilient Secret Sharing
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Shamir's Secret Sharing

	3 Lower Bound
	3.1 A Lower Bound via Randomness Complexity

	4 Leakage-Resilience of Shamir's Secret Sharing
	4.1 An Efficient Attack for 2-Out-of-n Shamir Secret Sharing

	5 Computational Leakage-Resilient Secret Sharing
	References

	Fault-Attack Security
	Friet: An Authenticated Encryption Scheme with Built-in Fault Detection
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Organization of This Paper

	2 Code-Abiding Permutations
	2.1 Permutations Abiding Some Error-Detecting Code
	2.2 Protecting Against Faults by Permutation Embedding
	2.3 Step Functions Abiding a Linear Code
	2.4 Fault Detection Capacity of Code-Abiding Permutations
	2.5 Our Approach: The Parity Check Code

	3 The Authenticated Encryption Scheme Friet
	3.1 The Permutation AE Mode SpongeWrap
	3.2 Exposure of Friet to Cryptanalysis and Side Channel Attacks
	3.3 Dimension Parameters and Security Claim for Friet
	3.4 Rationale for the Mode and Dimensions

	4 Specification of the Permutations Friet-PC and Friet-P
	4.1 The Permutation Friet-PC
	4.2 The Round Function of Code-Abiding Permutation Friet-P

	5 Design Rationale of Friet-PC
	5.1 Algebraic Degree
	5.2 Diffusion Analysis
	5.3 Invariant Attack
	5.4 Choosing Shift Offsets
	5.5 Analysis of Differential and Linear Propagation
	5.6 Combined Resistance Against 1st Order DPA and SIFA

	6 Implementation Results
	6.1 Hardware
	6.2 Software

	7 Fault Resistance Evaluation
	7.1 Fault Attack on the Simulated Hardware Implementation
	7.2 Fault Attack on the Software Implementation

	8 Side Channel Attack Evaluation
	9 Conclusions and Future Work
	A Design Strategy for a [6, 3, 3]2-abiding Permutation
	References

	Fault Template Attacks on Block Ciphers Exploiting Fault Propagation
	1 Introduction
	2 The Fundamental Principle
	2.1 Fault Activation and Propagation
	2.2 Information Leakage Due to Fault Propagation
	2.3 Fault Propagation in Combinational Circuits
	2.4 Propagation Characteristics of S-Boxes

	3 Fault Observability Attacks
	3.1 Template-Based Fault Attacks
	3.2 Attacks on Unmasked Implementations: Known Plaintext
	3.3 Attacks on Unmasked Implementations: Middle Rounds
	3.4 Discussion

	4 Attack on Masked Implementations
	4.1 Leakage from Masking
	4.2 Leakage from TI AND Gates
	4.3 Leakage from Shared S-Boxes
	4.4 Different Fault Models
	4.5 Template Attack on Masked PRESENT: Main Idea
	4.6 Middle Round Attacks
	4.7 Handling Noisy Fault Injections

	5 Practical Validation
	6 Conclusion
	References

	Security of Hedged Fiat–Shamir Signatures Under Fault Attacks
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Definitions
	2.2 Relation Between UF-KOA Security and UF-CMA Security
	2.3 Fault Attacks on Deterministic Fiat–Shamir Signatures

	3 Formal Treatment of Hedged Signatures
	3.1 Security of Hedged Signature Schemes
	3.2 Security of Hedged FS Type Signature Schemes Against Fault Adversaries

	4 Security of Hedged Signatures Against Fault Attacks
	4.1 Main Positive Result
	4.2 Faulting Serialization Input/Output and Response Output
	4.3 Faulting Challenge Hash Input
	4.4 Faulting Challenge Hash Output
	4.5 Faulting Response Input
	4.6 Faulting Commitment Output
	4.7 Negative Results

	5 Analysis of XEdDSA
	6 Analysis of Picnic2
	7 Concluding Remarks
	References

	Succinct Proofs
	Transparent SNARKs from DARK Compilers
	1 Introduction
	1.1 Summary of Contributions
	1.2 Related Work

	2 Technical Overview
	3 Preliminaries
	3.1 Assumptions
	3.2 Interactive Arguments of Knowledge
	3.3 Commitment Schemes
	3.4 Proofs of Exponentiation

	4 Polynomial Commitments from Groups of Unknown Order
	4.1 Information-Theoretic Abstraction
	4.2 Integer Polynomial Encoding
	4.3 Concrete Polynomial Commitment Scheme
	4.4 Security Analysis
	4.5 Optimizations and Extensions
	4.6 Comparison

	5 Transparent SNARKs via Polynomial IOPs
	5.1 Algebraic Linear IOPs
	5.2 Polynomial IOP Reductions
	5.3 Compiling Polynomial IOPs
	5.4 Concrete Instantiations

	6 Evaluation
	7 Conclusion
	References

	SPARKs: Succinct Parallelizable Arguments of Knowledge
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Related Work

	2 Technical Overview
	2.1 Warmup: SPARKs for Iterated Functions
	2.2 Extending SPARKs to Arbitrary Computations
	2.3 Our SPARK Construction

	3 Preliminaries
	3.1 Random Access Memory
	3.2 Universal and NP Relations

	4 Concurrent Locally Updatable Commitment
	4.1 Concurrent Locally Updatable Commitment
	4.2 Construction

	5 Succinct Parallelizable Arguments of Knowledge
	5.1 The Update Language
	5.2 The Protocol

	References

	Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Techniques
	2.1 Building Block: Algebraic Holographic Proofs
	2.2 Building Block: Polynomial Commitments
	2.3 Compiler: From AHPs to Preprocessing Arguments with Universal SRS
	2.4 Construction: An AHP for Constraint Systems
	2.5 Construction: Extractable Polynomial Commitments

	3 Preliminaries
	3.1 Indexed Relations

	4 Algebraic Holographic Proofs
	5 AHP for Constraint Systems
	5.1 Algebraic Preliminaries
	5.2 AHP for the Lincheck Problem

	References

	Fractal: Post-quantum and Transparent Recursive Proofs from Holography
	1 Introduction
	1.1 Our Results
	1.2 Comparison with Prior Work

	2 Techniques
	2.1 The Role of Preprocessing SNARKs in Recursive Composition
	2.2 From Holographic Proofs to Preprocessing with Random Oracles
	2.3 An Efficient Holographic Proof for Constraint Systems
	2.4 Post-quantum and Transparent Preprocessing
	2.5 Post-quantum and Transparent Recursive Composition
	2.6 The Verifier as a Constraint System

	References

	Author Index

