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Preface

Eurocrypt 2020, the 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Zagreb, Croatia, during May 10-14,
2020." The conference was sponsored by the International Association for Cryptologic
Research (IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan
Picek (Delft University of Technology, The Netherlands) were responsible for the local
organization. They were supported by a local organizing team consisting of Marin
Golub and Domagoj Jakobovic (University of Zagreb, Croatia). Peter Schwabe acted as
the affiliated events chair and Simona Samardjiska helped with the promotion and local
organization. We are deeply indebted to all of them for their support and smooth
collaboration.

The conference program followed the now established parallel-track system where
the works of the authors were presented in two concurrently running tracks. The invited
talks and the talks presenting the best paper/best young researcher spanned over both
tracks.

We received a total of 375 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 57 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 81 papers. The revised versions of these papers are included in these three
volume proceedings, organized topically within their respective track.

The PC decided to give the Best Paper Award to the paper “Optimal Broadcast
Encryption from Pairings and LWE” by Shweta Agrawal and Shota Yamada and the
Best Young Researcher Award to the paper “Private Information Retrieval with
Sublinear Online Time” by Henry Corrigan-Gibbs and Dmitry Kogan. Both papers,
together with “Candidate iO from Homomorphic Encryption Schemes” by Zvika
Brakerski, Nico Déttling, Sanjam Garg, and Giulio Malavolta, received invitations for
the Journal of Cryptology.

The program also included invited talks by Alon Rosen, titled “Fine-Grained
Cryptography: A New Frontier?”, and by Alice Silverberg, titled “Mathematics and
Cryptography: A Marriage of Convenience?”.

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of very good papers
which did not find a slot in the sparse number of accepted papers. We sincerely hope
that these works eventually get the attention they deserve.

We are also indebted to the members of the PC and all external reviewers for their
voluntary work. The PC work is quite a workload. It has been an honor to work with

! This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions related to the coronavirus.
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everyone. The PC’s work was simplified by Shai Halevi’s submission software and his
support, including running the service on IACR servers.

Finally, we thank everyone else — speakers, session chairs, and rump-session
chairs — for their contribution to the program of Eurocrypt 2020. We would also like to
thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

May 2020 Anne Canteaut
Yuval Ishai
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Fine-Grained Cryptography: A New Frontier?
(Abstracts of Invited Talk)

Alon Rosen

IDC Herzliya

Abstract. Fine-grained cryptography is concerned with adversaries that are only
moderately more powerful than the honest parties. We will survey recent results
in this relatively underdeveloped area of study and examine whether the time is
ripe for further advances in it.

One approach for weakening the assumptions underlying cryptographic constructions
is to require less from them. For instance, rather than requiring a super-polynomial gap
between the running time of the honest parties and that of the adversary, one could
settle for some fixed polynomial gap. This fine-grained approach to cryptography was
considered as early as 1974 by Merkle, who relied on a random oracle to construct a
key-exchange protocol in which the honest parties run in time O(n), while security
holds against O(n?)-time adversaries.

Merkle’s scheme demonstrates how in a fine-grained setting, public-key encryption
can be obtained from a primitive as unstructured as a random oracle. While the lack of
structure renders the scheme less susceptible to cryptanalysis than its traditional
counterparts, it does have its limitations. As proved by Barak and Mahmoody in 2009,
the quadratic gap in Merkle’s construction is optimal. If one were to increase the gap
between honest and malicious parties, it will be necessary to rely on structured com-
putational problems.

Structured problems are often computationally easy, and hence are less desirable
from a cryptographic standpoint. But they do offer their own advantages. After all, it is
the most structured problems within P that admit the only known lower bounds in
complexity theory. Could it actually be a structured problem that will give rise to
unconditionally secure cryptography?

But even forgoing unconditional security, structure may be used to attain larger than
quadratic gaps between honest and malicious parties. For instance, recent advances in
fine-grained complexity have increased our confidence in the hardness of a host of
problems in P, along with a web of interconnectedness between them. Based on such
problems, we now have new candidate proofs of work with any arbitrary fixed poly-
nomial gap between parties.

Could such results be extended to constructing fine-grained one-way functions? This
is a necessary step we need to take if we were to bypass the optimality of the gap in

Supported by ISF grant No. 1399/17 and by Project PROMETHEUS (780701).
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Merkle’s key-exchange protocol. Looking even further, suppose we do succeed in our
quest. Should we stop there? And what about the foundations? Shouldn’t they also be
revisited and adapted to the fine-grained setting?
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Abstract. Mathematics and cryptography have a long history together,
with the ups and downs inherent in any long relationship. Whether it
is a marriage of convenience or a love match, their progeny have lives
of their own and have had an impact on the world. This invited lecture
will briefly recall some high points from the past, give speculation and
encouragement for the future of this marriage, and give counseling on
how to improve communication, resolve conflicts, and play well together,
based on personal experience and lessons learned.

1 Introduction

For a number of years, I have been moving within and between the overlap-
ping mathematics and cryptography communities. My background is in number
theory, and I became intrigued with cryptography after elliptic curves were intro-
duced to the field. My cryptography-related research includes work on traitor
tracing, hierarchical identity based encryption, bilinear and multilinear maps,
torus-based cryptography, efficient use of elliptic curves and abelian varieties in
cryptography, primality proving, fully homomorphic encryption, and lattices. For
the past seven years I've been organizing conferences and workshops designed
to bring together mathematicians and cryptographers to work on cryptography
questions of common interest. In the talk, I will tell some stories about my
adventures, give observations based on my experiences, and share some of what
I've learned that I hope will be helpful for others.

I have some specific goals and some general goals for the talk. Specific aims
include recalling some of the fruitful interactions between mathematics and cryp-
tography from the past and how they came about, discussing problems for the
future, and suggesting productive ways to move forward. Many of the impedi-
ments to making full use of mathematics to solve cryptographic questions are
social rather than technical. Cultural differences between the fields can lead to
obstacles and misunderstanding that delay the progress of science. I will attempt
to share some thoughts and ideas for how to move forward in constructive ways.
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I hope that some of these suggestions will also have wider applicability, to our
daily lives and our interactions with others.

My more general goals come from a sense that we live in dangerous times.
Communication between people is breaking down. Norms for social behavior
are changing. The value systems on which we based our decisions and our lives
are being called into question. We wonder whether it makes sense to continue
working as before, when the problems of the world seem so weighty. In an effort
to act locally while thinking globally, in the talk I plan to give some suggestions
that T hope will not only help the cryptography and mathematics communities
work together, but will also be useful more generally, in working with others or
communicating across cultures.

Due to the (necessarily) short time frame I was given to write this paper,
there are aspects I was not able to include. In particular, I apologize for the
lack of careful referencing. Ideally, I would be setting a good example by giving
a complete bibliography of relevant sources, and I regret not having the time
to do so. I thank the many people who contributed to the research mentioned
below, and I hope they will forgive me for not citing them explicitly.

2 Fruitful Interactions

There is a long history of fruitful interactions between mathematics and cryp-
tography. Much of it involves number theory, a field of mathematics that extends
back thousands of years.

One of the most well known mathematical cryptosystems is RSA, from the
1970s, whose security is based on the (presumed) difficulty of factoring products
of large prime numbers.

Diffie-Hellman key exchange and El Gamal encryption, while originally based
on properties of finite fields and their multiplicative groups, have been extended
to make use of other groups, including groups coming from elliptic curves
and, more generally, abelian varieties such as Jacobian varieties of hyperelliptic
curves.

Understanding and generalizing the mathematics underlying these schemes
has led to torus-based cryptography, including the LUC, XTR, and CEILIDH
cryptosystems. These cryptosystems can be understood in terms of certain vari-
eties from algebraic geometry that are called algebraic tori, which are them-
selves generalizations of the multiplicative group of a finite field. The algorithms
in these cryptosystems can be reinterpreted as compression and decompression
algorithms that allow you to send shorter transmissions for the same security. On
the other hand, these compression algorithms can be viewed as telling us that one
actually gets less security than had been realized, for discrete log cryptography
over extensions of finite fields.

The Weil pairing on elliptic curves was first used destructively in cryptog-
raphy as an attack on the elliptic curve discrete log problem, and then used
constructively in pairing-based cryptography. This seems to me like an area that
could have progressed sooner and faster, had there been a longer and deeper tra-
dition of mathematicians and computer scientists working more closely together
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on cryptographic questions. The interest in pairing-based cryptography led to
the introduction into cryptography of other number theoretic pairings, such as
what cryptographers call the Tate pairing or the Tate-Lichtenbaum pairing. The
use in cryptography of pairings on elliptic curves also led to the construction
of identity-based encryption schemes. Work on ways to use abelian varieties to
make pairing-based cryptography more efficient led to compression algorithms
for points on elliptic curves over a certain class of finite fields, and this in turn
led to some of the torus-based cryptography and compression results in finite
fields mentioned above.

Lattice-based cryptography, which hopes to survive the advent of quantum
computers, comes from a field of number theory that is traditionally called the
geometry of numbers. Research in this area makes use of the arithmetic and
geometry of algebraic number fields. This thriving area has great potential for
future interactions between mathematics and security research.

While both factoring-based cryptography and discrete log-based cryptogra-
phy, including standard elliptic curve cryptography, are threatened by the poten-
tial advent of quantum computers, a possibly quantum-resistant use of elliptic
curves was recently discovered. It makes use of isogenies on elliptic curves, and
its security is based on the presumed difficulty of actually finding an isogeny
between two elliptic curves that have one.

Permeating these themes is the power of mathematics to make or break the
security of modern-day cryptography. As alluded to above, the constructive use of
mathematics in cryptography has a flip side, namely mathematical cryptanalysis,
which has a long history, even before mathematics was used in a serious way
to build cryptosystems. As algorithms for solving mathematics problems get
better and stronger, cryptography is under threat. All that is needed is a new
mathematical idea, for problems that were presumed hard to suddenly become
easy. This has the potential to not only make currently used cryptosystems
obsolete, but also to reveal our past secrets that we had assumed were secure,
potentially including financial, medical, military, or government secrets, for good
or ill.

3 Looking Toward the Future

I believe that mathematics and cryptography are no longer just staying together
for the sake of the children. They have now committed to each other and to
making it work out. Where do they go from here? Next, I give a sampling of
problems.

3.1 Computing on Encrypted Data and Fully Homomorphic
Encryption

Creating efficient and secure methods to compute on encrypted data, for example
with efficient fully homomorphic encryption, is an area where mathematical ideas
have been and can continue to be helpful. Efficient and secure fully homomorphic
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encryption would allow people to calculate aggregate statistics from collections
of sensitive data from different sources while maintaining privacy. In the history
of fully homomorphic encryption thus far, both the constructions and attacks
make use of ideas from both cryptology and mathematics, including the theory
of lattices (geometry of numbers) and algebraic number theory.

3.2 Cryptographic Multilinear Maps

Pairing-based cryptography uses bilinear maps, namely, maps
Gl X G2 — G3

that are linear in each input variable, where the G; are finite groups in which
the discrete logarithm problem is believed to be hard. This necessitates the
introduction of new hard problems that I would feel more comfortable with if
they were better known in and carefully studied by the mathematical community.

A natural generalization is to have more than two inputs. This leads to the
open problem of finding cryptographically useful multilinear maps.

The candidate multilinear maps that we have seen so far look very different
from what I envisioned when I first started thinking about cryptographic mul-
tilinear maps. They don’t fall neatly into the original framework. For me, this
is one of a number of examples that demonstrate the richness and potential of
cryptography. It is a field in which mathematicians can be surprised by the clever
ideas of computer scientists, and computer scientists can make use of deep ideas
from mathematics. When the two perspectives build on one another in fruitful
ways, the result is pleasing.

The theory of multilinear maps is closely connected to the theory of indistin-
guishability obfuscation (i0). While it’s tempting to want to prove that efficient
indistinguishability obfuscation cannot exist, it’s unlikely that we will see a proof
of that soon, since an unconditional impossibility result for iO would imply that
P # NP.

3.3 Cryptography that Will Survive Future Attacks

Mathematics is useful for generating new ideas for post-quantum cryptography,
i.e., cryptography that will withstand attacks by quantum computers, in addition
to being useful for analyzing the security of proposed systems. Below are some
areas where I think it would be helpful if there were more mathematicians looking
more deeply at these questions.

Lattice-based cryptography. Interesting open questions include the question
of whether supposedly hard lattice problems are as hard in ideal lattices as they
are in general lattices. We should be able to use more algebraic number theory
to give deeper insights to help us better understand this problem.
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Isogeny-based cryptography. While a sufficiently good quantum computer
would break classical elliptic curve cryptography, an interesting new area of
research is cryptography based on the presumed difficulty of finding (high degree)
isogenies between isogenous elliptic curves. As with much of public key cryptog-
raphy, this is an area where a little mathematics has gone a long way. More work
is needed to understand the security of the proposed schemes.

3.4 Cryptanalysis

Mathematics is especially powerful for cryptanalysis. When the security of a
cryptosystem is based on the presumed difficulty of some mathematics problem,
then one good mathematical idea or algorithm might suffice to break the system.
I worry that security of some systems might be based largely on the lack of
awareness of the “hard problem” by the mathematicians who would be most
capable of breaking it. The more mathematicians work in this area, the more
confident we can be in the security of systems that rely on relatively new or
unfamiliar “hard problems”.

4 Working Well Together

Cryptology and computer security would benefit from continued and greater
input of mathematical ideas. I think it would be good if more mathematicians
become part of the cryptography community, and if more cryptographers become
part of the mathematics community. I found it easy to assimilate into the cryp-
tography community. The community was welcoming, and was willing to explain
concepts and jargon. More difficult is for computer scientists without mathe-
matics degrees to participate in math conferences. There is room for the math
community to learn how to bring others in. Each community can learn from the
other.

Different groups have different cultures with regard to territoriality, giving or
withholding credit, transparency, speed of publication, and choices about where
to publish (for example, journals versus conference proceedings). These choices
are sometimes motivated by publication pressures coming from academia, or
by patents or other intellectual property or financial concerns. These cultural
differences might depend in part on whether you're a mathematician, theoretical
or applied computer scientist, or engineer, and on whether you work in academia,
industry, or government. The incentives in your workplace might encourage you
to maintain secrecy or to publicize findings, to be generous with giving credit,
deserved or otherwise, or to only give limited acknowledgement to the work of
others. Such differences might make it hard for people from different workplace
cultures to work together, and might lead to misunderstandings or conflict.

I’'m not convinced that the research that gets done under tight deadlines and
page limits, with short time windows for reviewers, is better than research done
carefully and correctly, with all details filled in, that reviewers have time to fully
check. The mathematics community has started to borrow the deadline and page
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limit culture from the computer science community, but I’'m not convinced that
this is a good way to publish papers or encourage correct and careful research.

NTRU and braid group cryptography can perhaps be seen as illustrative
examples for how better contact between the mathematics and cryptography
communities might have been helpful. The usefulness of NTRU might have been
recognized sooner had the communities been closer. For braid group cryptog-
raphy, a succession of proposals and breaks have led some cryptographers to
dismiss anything braid-related. Someone pointed out to me that if one comes up
with a good cryptosystem based on braids, in order to have credibility in the
crypto community it might be best to suppress the word “braid”. This raises
the question of whether a succession of proposals and breaks is a bad thing.
On the one hand, earlier contact and better communication between proposers
and cryptanalysts might lead to fewer insecure proposals. On the other hand,
too cosy a relationship between proposers and cryptanalysts might not be a
good thing; adversarial or competitive relationships might lead to more secure
cryptosystems.

People don’t like to be told what to do. I worry that if I write in the imper-
ative, some readers will be rubbed the wrong way. However, sound bites are
easy to remember. I hope you will forgive me for writing in the imperative, and
will understand the below advice not as commands, but as (hopefully helpful!)
suggestions.

Behave professionally. Treat your colleagues respectfully, and behave profes-
sionally.

In the late 1980s I spent a year at one of IBM’s research centers. Afterwards I
would tell people that the main difference I noticed between IBM and academia
was that at IBM, they knew the law and obeyed it. Many of the problems and
conflicts that I have seen over the years could have been avoided had people
simply remembered to behave professionally, legally, and ethically.

Whether you are an advisor to students, a journal editor, a reviewer of papers,
a program committee member, a manager, a student, a colleague, a chair or dean,
and whether or not your behavior is questioned, ask yourself: Am I behaving
professionally? Am I acting ethically? Am I setting a good example for others?
Is this the way I want others to treat me? Could I do better?

Mathematicians and computer scientists sometimes have different ideas about
what constitutes professional and ethical behavior. When working across disci-
plines, one needs to navigate and negotiate the terms of the relationship.

Learn constructive ways to communicate. Good communication is impor-
tant not only to help cryptographers and mathematicians work well together, or
more generally to help communicate across cultures; it’s also useful in all our
interactions. I find that it’s important to keep communication channels open.
Cutting off communication can close doors.

Many misunderstandings come from mistakenly thinking that you can cor-
rectly read the minds of other people, and attributing bad motives to them.
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If you want to know what someone is thinking or feeling, ask them. Moreover,
don’t assume that others are correctly reading your mind.

Avoid jargon. When communicating across fields, avoid jargon, and avoid
abbreviations.

It’s hard for mathematicians to attend talks by computer scientists because
of the unfamiliar abbreviations. “Learning with errors” has the same number of
syllables as “LWE,” so when you give a talk, you might as well say the words.

It’s hard for computer scientists to read technical papers written by mathe-
maticians. I think it would be helpful if mathematicians wrote more survey talks,
in less technical language, in order to explain their technical papers to people
outside their specialities who might be able to make use of the results.

Listen. Listen, and learn from what others have to offer. Listen to different
points of view.

Ask for advice. Listen to advice (solicited or otherwise) with an open mind;
you don’t have to follow it.

Be curious. Be curious, open-minded, and open to opportunities.

It’s helpful to try to see things from the point of view of the other person.
Ask questions.

For every experience, good or bad, ask yourself “What can I learn from this?”

I learned the phrase “Get curious, not furious” from the book A New Map for
Relationships: Creating True Love at Home and Peace on the Planet by Dorothie
Hellman and Martin Hellman. That book makes an eloquent case for curiosity,
and for not getting angry.

Be kind. As Lewis Carroll wrote about Alice in Alice’s Adventures in Won-
derland, “She generally gave herself very good advice (though she very seldom
followed it).” 'm much better at giving advice, than following my own advice.
For most of the advice that I'm giving here, I'm still learning how to follow it,
and not doing as well as I would like.

It took me a very long time to learn that being kind solves many problems,
and prevents many problems. To be clear, being kind does not mean that you
let other people get their way. Being kind can include enforcing boundaries,
standing up for what’s right, sticking up for others, and being kind to yourself.
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Abstract. Boneh, Waters and Zhandry (CRYPTO 2014) used multilin-
ear maps to provide a solution to the long-standing problem of public-key
broadcast encryption (BE) where all parameters in the system are small.
In this work, we improve their result by providing a solution that uses
only bilinear maps and Learning With Errors (LWE). Our scheme is fully
collusion-resistant against any number of colluders, and can be general-
ized to an identity-based broadcast system with short parameters. Thus,
we reclaim the problem of optimal broadcast encryption from the land
of “Obfustopia”.

Our main technical contribution is a ciphertext policy attribute based
encryption (CP-ABE) scheme which achieves special efficiency properties
— its ciphertext size, secret key size, and public key size are all indepen-
dent of the size of the circuits supported by the scheme. We show that
this special CP-ABE scheme implies BE with optimal parameters; but
it may also be of independent interest. Our constructions rely on a novel
interplay of bilinear maps and LWE, and are proven secure in the generic
group model.

1 Introduction

Broadcast Encryption (BE) [30] enables a sender to encrypt a message for a
subset of users who are listening on a broadcast channel. In more detail, in a
BE system, a sender can encrypt to any set S of its choice, and any user in S
can decrypt the broadcast using its secret key. The system is said to be fully
collusion resistant if no collection of users outside S can learn anything about
the plaintext.

Introduced in a seminal work by Fiat and Naor [30], the primitive of broadcast
encryption has received significant attention, with diverse constructions achiev-
ing different tradeoffs in the sizes of ciphertext, secret key and public parameters.
Of particular importance is the size of the ciphertext overhead: namely, the size
of the ciphertext beyond what is necessary for the description of the recipient set
S and the symmetric encryption of the plaintext message. A BE scheme is said
to have low overhead if the ciphertext overhead depends at most logarithmically

© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 13-43, 2020.
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on the number of users in the system (NN, say). In this work, we focus on BE
systems that are public key, have low ciphertext overhead and are fully collusion
resistant.

The first work to satisfy the above desiderata was by Boneh, Gentry, and
Waters [13], and was based on hardness assumptions on bilinear maps. This
construction achieved optimal (constant) ciphertext overhead and short secret
keys, but suffered from public parameter size which is linear in the number of
users IN. Follow-ups based on bilinear maps improved some aspects of this con-
struction [8,28,29,33,37,45], but could not improve the public key size. Indeed,
even relying on the existence of the powerful indistinguishability obfuscation [31],
BE with short public key remained elusive (though it achieved other remarkable
properties) [16].

This state of affairs was improved considerably by the work of Boneh, Waters
and Zhandry [15] who provided the first construction of broadcast encryption,
achieving optimal parameters including short public key, by relying on mul-
tilinear maps. This marked the first solution to a long standing open problem.
However, the constructions suggested by [15] also have some limitations. In more
detail, the [15] provide three broadcast encryption systems that use an O(log N)
way multilinear map — this necessitates the degree of the map to be polynomial
when N is exponential. More importantly, existing candidates of multilinear
maps have been subject to many attacks [7,23-27,38,42] and their security is
poorly understood. Thus, the question of broadcast encryption with optimal
parameter size has so far, remained squarely in the land of “Obfustopia”.

Our Results. In this work, we reclaim broadcast encryption from Obfustopia
by providing a solution that uses only bilinear maps and Learning With Errors
(LWE). Our scheme is public key, fully collusion-resistant against any number
of colluders, and can be generalized to an identity-based broadcast system with
short parameters. Along the way, we provide the first ciphertext policy attribute
based encryption scheme whose ciphertext size, secret key size, and public key
size are all independent of the size of the circuits supported by the scheme. This
construction may be of independent interest. Our constructions rely on a novel
interplay between bilinear maps and LWE and are proven secure in the generic
group model.

1.1 Our Techniques

Recasting BE as CP-ABE: Our starting observation is that the question of
broadcast encryption can be re-stated in terms of the notion of ciphertext policy
attribute based encryption (CP-ABE). In a CP-ABE scheme, a ciphertext for a
message m is labelled with a function (policy) f, and secret keys are labelled
with public attributes x from the domain of f. Decryption succeeds to yield
the hidden message m if and only if the attribute satisfies the policy, namely
f(x) = 1. To see BE as a special case of CP-ABE, note that the ciphertext
may encode a circuit Fg that checks membership of a given user index in a
set of recipients S, and the attributes x may encode user index in the set V.
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Thus, a user ¢ can use her CP-ABE secret key to test whether i is a member of
the set S encoded in the ciphertext, and recover the message m if and only if
this is true. Then, a natural approach to construct BE is to leverage CP-ABE
schemes. However, unsurprisingly, constructions of CP-ABE achieving optimal
parameters that suffice for BE, has been elusive.

From Pairings to LWE: All known constructions of BE from standard assumptions
(i.e. without relying on the existence of multilinear maps or indistinguishability
obfuscation) are based on various assumptions on bilinear groups. Since the ques-
tion of optimal BE from pairings has met with little progress for over a decade, it
is evidently meaningful to look at assumptions on other mathematical structures
to seek a way forward. The most obvious candidate that presents itself is the ver-
satile Learning With Errors (LWE) assumption, which has led to breakthroughs
in similar primitives, notably in fully homomorphic encryption [17,18,20].

Let us then examine what is known from LWE in this context. The dual
notion of key-policy ABE has met with fantastic success from LWE — the works of
Gorbunov et al. [34] and Boneh et al. [12] show how to construct KP-ABE for all
circuits (on the other hand, constructions based on pairings could only support
the much weaker circuit class NCy). KP-ABE is the same as CP-ABE with the
roles of circuit and attributes swapped. Additionally, the KP-ABE construction
of Boneh et al. [12], henceforth denoted as BGG™, manages to encode the circuit
very succinctly — in more detail, the size of the public and secret keys in the
BGG™ construction are independent of the circuit size and depend only on the
depth of the circuit. Additionally, the size of the ciphertext is also independent
of the circuit size and depends only on input length. Since the input length for
the circuit Fg that checks membership in S is an encoding of a user index, it
is of size O(log N). Moreover, it is easy to check that the depth of Fg is also
O(log N). Therefore, if we have a CP-ABE with analogous efficiency, namely, so
that the public key size, secret key size, and ciphertext size do not depend on
the size but only input length and depth of the circuit, it follows that we can
obtain BE with optimal parameters.

Constructing CP-ABE from LWE: Thus, it suffices to ask whether we can have
a CP-ABE scheme, denoted by cpABE, with the desired efficiency. To lever-
age the succinctness of the circuit encoding of BGG", a naive idea is to set
cpABE.CT(Fs) = BGGT.SK(Fs). Two immediate problems present themselves:
(i) Where to embed the message m', and (ii) Computing BGG'.SK(Fs) requires
the master secret but encryption is a public key algorithm.

To address these challenges, a first idea is to exploit the decomposability of
BGG™. In more detail, decomposability means that the ciphertext for attribute
x and message m may be decomposed into |x|+ 1 encodings, one for each bit x;
of the attribute string and message m — these are tied together using common
randomness used during their generation. Let us denote the encoding corre-
sponding to bit x; as v; »,. Then, a natural idea is to let the encryptor sample
a fresh instance of the BGG™ scheme, generate BGG™.SK(Fs) and encrypt each

! This question is surprisingly non-trivial even in the symmetric key setting.
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;b using a different public key encryption scheme, say with PKE key PK, ;.
This yields a CP-ABE with the desired efficiency, inherited directly from the
succinctness of the BGGT key and the decomposability of the BGG™ ciphertext.

Constraining the Information Leaked (Or, Back to Pairings): However, this
scheme is obviously not collusion resistant: a user with keys for x and X can
decrypt every ciphertext. To make the scheme collusion resistant, we would like
to replace the naive use of public key encryption above into a more sophisticated
scheme, which hides all but the output of the BGG™ decryption algorithm. This
description bears close resemblance to a functional encryption scheme for some
restricted functionality, for which we turn to—pairings! In particular, we isolate
the 1; , by randomizing and lifting them to the exponent of a bilinear group.
The hope is that we may provide a secret key for some attribute x such that it
only allows the appropriate 1); ,, to be selected and combined so that only the
output of the BGG' decryption is revealed, and that the randomization, which
will be unique to every cpABE ciphertext and secret key pair, prevents collusion
attacks.

Evaluation of NC; Circuit in the Exponent: Several questions arise. First, we dis-
cussed above that the circuit for checking membership in set S is in NC; — however,
pairings are only capable of supporting at most quadratic operations. How then,
do we hope to compute an NC; circuit in the exponent of a bilinear group? The
answer lies in the specific structure of the BGG™' evaluation algorithm, which, even
for a circuit in P is linear in the encodings and the secret key, followed by a final
rounding step to remove the noise. Indeed, the knowledgeable reader may observe
that this very linearity of the BGGT evaluation procedure has been the cause of
attacks in other contexts [1] — what is a “curse” there is a “blessing” here! How-
ever, the rounding step remains — this is in NC; and clearly cannot be performed
in the exponent.

An approach is to perform the linear computation (which represents the cir-
cuit Fs) in the exponent, recover the output via discrete log, and then compute
the rounding in the clear. Again, it is unclear this satisfies either correctness or
security. For the former, note that recovering the encoded output from the expo-
nent requires that the output be polynomially bounded. In this case, the output
is the message bit plus some noise that resulted from the homomorphic evalua-
tion. While the noise in this context may be superpolynomial in general, we can
convert our NC; circuit into a branching program and leverage the asymmetric
noise growth for BP evaluation of BGG" encodings to ensure that the noise is
bounded by a polynomial [35].

The more worrisome issue is that of security. It is well known that the noise
that results from homomorphic evaluation of encodings leaks the noise in the
original encodings and is often a security threat —in fact, the savvy reader may
have observed that this leakage is one of the main barriers in constructing iO
from standard assumptions [2,6]. However, here we are rescued by the serendip-
itous fact that what we are trying to build here is a kind of attribute based
encryption, not functional encryption! In more detail, the leakage caused by the
noise is a security threat in the context of functional encryption, as formalized
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in [1,2,6] — this is because a decryptor who possesses some secret keys for a
functional encryption scheme must still not be able to learn anything about the
encrypted message beyond what the keys reveal. On the other hand, attribute
based encryption is a much simpler “all or nothing” primitive — if the adver-
sary possesses a single key that decrypts a ciphertext, there are no more secrets
the scheme withholds from her. Hence, if the adversary has a key that lets her
recover the value encoded in the exponent, the additional leakage created by the
noise terms do not pose a security threat.

Preventing Mix and Match Attacks: To prevent collusions, we design the decryp-
tion algorithm so that the decryptor obtains a randomized version of the cipher-
text components in the exponents as ggfpi’”, where gr is the target group, ¥; ,,
are BGG™ encodings as defined above and ¢ is user specific randomness. Since 0§ is
user specific, the attacker cannot combine partial decryption results of multiple
users, preventing mix and match attacks.

Hence, it suffices to restrict our attention to the single user case. Here, we

5 m, .
must ensure that the adversary only gets components {gTw #i1; corresponding

to the particular key x issued to her, instead of all the components { g;w'i'b }ip for
b € {0,1}. Furthermore, we must ensure that the attribute vector x is processed
in the correct sequence —i.e., its bits are not permuted. To prevent these attacks,
we bind each entry of the ciphertext and each bit of the secret key attribute x
to the corresponding positions. This is possible by setting the master public
key to be {g"*};, where w;; are randomly chosen for each position ¢ and b €

{0,1} and setting the secret key and ciphertext as {gg/wi’” }; and {gqf“bwi‘b}i,b
respectively. We remark that we need to use asymmetric pairings to prevent
ciphertext (respectively key) components from being paired between themselves
to leak information. By tying element values to their positions, we ensure that
pairing of the ciphertext and secret key components corresponding to different
positions result in a term which looks like g;wi’bwi’b/wi/’b/ for (i,b) # (¢,V).
Now, we claim that a term of the form ¢%%*/%.+ is useless to the attacker —
to see this, note that in the generic group model, an attacker cannot obtain any
information about a value encoded in the exponent unless she finds a non-trivial
linear relation that contains that term. However, since the term dw;p/wy i
appears only when we pair the ciphertext component with position (i,b) with
the secret key component with position (i’,b") and cannot appear anywhere else,
it follows that it cannot appear as a term in a linear combination that results in
0 (except with negligible probability). Thus, by using {w; 4}, we enforce that
the computation follows the desired path.

Combining the above ideas, we obtain our final CP-ABE scheme. By setting
the circuit class appropriately, this yields BE and even Identity Based BE (or
IBBE). Please see Sect. 3 for the CP-ABE and Sect. 5 for the construction of BE
and IBBE.

Security in the Generic Group Model: We prove security in the generic group
model, which closely follows the intuition we explained so far. Specifically, we
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will show that the adversary cannot find any non-trivial linear relation among
the partial decryption results of the ciphertext components. The main challenge
in the security proof is that the partial decryption results obtained by using

different secret keys are correlated — in more detail, they can contain terms gfwi’ﬂ

and gf,%’l where 1; o and 1; 1, if learned simultaneously, lead to a complete
break of security. Simulating these in the standard model using the security of
BGG™ appears difficult.

To address the issue we first observe that the adversary cannot take a linear
combination among partial decryption results obtained by two different secret
keys in a meaningful way, since they are randomized by the user specific ran-
domness introduced for preventing collusions. This implies that if the adversary
manages to find a non-trivial linear relation among the partial decryption results,
all the terms involved should be obtained from the same secret key. We also
observe that until the point when the adversary finds the first non-trivial linear
relation, the simulator can simulate the generic group oracles without knowing
the corresponding encodings. This can be done by simply pretending that there
is no non-trivial linear relation among the terms.

The above observations allow us to concentrate on the security proof for the
single-key case without worrying about the partial decryption results by other
keys. We can then conclude by using the security of the BGG' scheme. In more
detail, an adversary who can find a non-trivial linear relation among the partial
decryption results can be used to distinguish a BGG™ ciphertexts from random
ones, since the partial decryption result by a single key essentially corresponds
to a BGG™ ciphertext in exponent and it cannot find any non-trivial linear
relation among the random ciphertext components as long as the modulus size
is exponential.

1.2 Related Works

In an independent work (that predates ours), Brakerski and Vaikuntanathan
[21] also construct broadcast encryption achieving optimal parameters. Their
techniques as well as final result are very different from ours — while our work
crucially uses pairings in conjunction with LWE, they rely entirely on LWE and
new assumptions in the regime of lattices. Both works can be seen as following
the broad approach of starting with a succinct single-key CP-ABE from LWE?,
and adding collusion resistance using pairings (ours) or new techniques in the
lattice regime (theirs).

The techniques in our work are similar in spirit to a growing line of work that
uses “the best of both” of pairings and LWE [2,6,36,39], but quite different in
details. Closest to our work are techniques used to construct key policy functional
encryption [2,6,39], which use FHE (based on LWE) for encrypted evaluation
and pairings for performing FHE decryption in the exponent. While a major
challenge in these constructions is the leakage caused by FHE decryption noise,

2 The single key CP-ABE with succinct CT was also discovered by Boneh and Kim
[14].
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we sidestep this issue altogether because BE is an “all or nothing primitive”
with no secrets from a legitimate key holder. On the other hand, we need new
tricks to handle the functionality and security of a ciphertext-policy scheme — for
instance, we need to use position-wise randomness on the exponent to prevent
ciphertext and secret key components from being paired in illegitimate positions
to leak information.

2 Preliminaries

In this section, we define some preliminaries that we require.

2.1 Attribute Based Encryption

Let R = {Ry) : Ay x By — {0,1}}, be a relation where Ay and B, denote
“ciphertext attribute” and “key attribute” spaces. An attribute-based encryption
(ABE) scheme for R is defined by the following PPT algorithms:

Setup(1*) — (mpk, msk): The setup algorithm takes as input the unary repre-
sentation of the security parameter A\ and outputs a master public key mpk
and a master secret key msk.

Enc(mpk, X, 1) — ct: The encryption algorithm takes as input a master public
key mpk, a ciphertext attribute X € Ay, and a message bit p. It outputs a
ciphertext ct.

KeyGen(mpk, msk,Y) — sky: The key generation algorithm takes as input the
master public key mpk, the master secret key msk, and a key attribute Y € B).
It outputs a private key sky.

Dec(mpk, ct, X,sky,Y) — u or L: We assume that the decryption algorithm
is deterministic. The decryption algorithm takes as input the master public
key mpk, a ciphertext ct, ciphertext attribute X € Ay, a private key sky, and
private key attribute Y € B). It outputs the message p or 1 which represents
that the ciphertext is not in a valid form.

Definition 2.1 (Correctness). An ABE scheme for relation family R is cor-
rect if for all A € N, X € A\, Y € By such that R(X,Y) = 1, and for all
messages |1 € M,

(mpk, msk) « Setup(1%), sky « KeyGen(mpk, msk,Y),

Pr ct — Enc(mpk, X, u) : Dec(mpk,sky7 Y,ct,X) # 1 = negl(3)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.2 (Ada-IND security for ABE). For an ABE scheme ABE =
{Setup, Enc, KeyGen, Dec} for a relation family R = {Ry : Ax x By — {0,1}}
and a message space { Mx}ren and an adversary A, let us define Ada-IND secu-
rity game as follows.
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1. Setup phase: On input 1%, the challenger samples (mpk, msk) « Setup(1*)
and gives mpk to A.

2. Query phase: During the game, A adaptively makes the following queries,
in an arbitrary order. A can make unbounded many key queries, but can make
only single challenge query.

(a) Key Queries: A chooses an input Y € By. For each such query, the
challenger replies with sky «— KeyGen(mpk, msk,Y").

(b) Challenge Query: At some point, A submits a pair of equal length
messages (o, p11) € (M)? and the target X* € Ay to the challenger.
The challenger samples a random bit b — {0,1} and replies to A with
ct — Enc(mpk, X*, 11p).

We require that R(X*,Y) = 0 holds for any Y such that A makes a key query

for'Y in order to avoid trivial attacks.

3. Output phase: A outputs a guess bit V' as the output of the experiment.

We define the advantage Advﬁganu\\'D(l/\) of A in the above game as
AdVﬁgaE-,IA\ID(l/\) = ‘Pr[EXpABE,A(l)\) =1[b=0] — PY[EXPABE,A(Y\) =1[b= 1” .

The ABE scheme ABE is said to satisfy Ada-IND security (or simply adaptive
security) if for any stateful PPT adversary A, there exists a negligible function
negl(-) such that Advﬁ‘éaE_’l,L\'D(lk) # negl(\).

We can consider the following stronger version of the security where we
require the ciphertext to be pseudorandom.

Definition 2.3 (Ada-INDr security for ABE). We define Ada-INDr security
game stmilarly to Ada-IND security game except that the adversary A chooses
single message p instead of (o, p1) at the challenge phase and the challenger
returns ct <— Enc(mpk, X*, ) if b = 0 and a random ciphertext ct — CT from
a ciphertext space CT if b = 1. We define the advantage Advﬁ‘éaEil,L\‘Dr(l)‘) of the
adversary A accordingly and say that the scheme satisfies Ada-INDr security if
the quantity is negligible.

We also consider (weaker) selective versions of the above notions, where A
specifies its target X™* at the beginning of the game.

Definition 2.4 (Sel-IND security for ABE). We define Sel-IND security game
as Ada-IND security game with the exception that the adversary A has to choose the
challenge ciphertext attribute X* before the setup phase but key queries Y1,Ys, ...
and choice of (po, 1) can still be adaptive. We define the advantage Advi%g"\'AD(l)‘)
of the adversary A accordingly and say that the scheme satisfies Sel-INDr security

(or simply selective security) if the quantity is negligible.

Definition 2.5 (Sel-INDr security for ABE). We define Sel-INDr security
game as Ada-INDr security game with the exception that the adversary A has
to choose the challenge ciphertext attribute X* before the setup phase but key
queries Y1,Ys, ... and choice of p can still be adaptive. We define the advantage
Advf\%g"\/&m(l)‘) of the adversary A accordingly and say that the scheme satisfies
Sel-INDr security if the quantity is negligible.
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In the following, we recall definitions of various ABEs by specifying the rela-
tion. We start with the standard notions of ciphertext-policy attribute-based
encryption (CP-ABE) and key-policy attribute-based encryption (KP-ABE).

CP-ABE for circuits. We define CP-ABE for circuit class {C)}» by specifying
the relation. Here, Cy, is a set of circuits with input length £(\) and binary output.
We define AS” = Cy and B$P = {0, 1}*. Furthermore, we define the relation R$”
as R$P(C,x) = -C(x).?

KP-ABE for circuits. To define KP-ABE for circuits, we simply swap key
and ciphertext attributes in CP-ABE for circuits. More formally, to define KP-
ABE for circuits, we define AKP = {0,1}¢ and BKP = C\. We also define RKP :
AKP S BEP 101} as REP(x, C) = —~C(x).

We can also capture identity-based broadcast encryption (IBBE) and broadcast
encryption (BE) as special cases of ABE by specifying the relations.

IBBE. To define IBBE, we define A'EBE = TD(\)<! and B'BBE = ID()), where

ID()) is the identity space and ZD()\)<! denotes all subsets of ZD(\) with size

at most t. We also define RIPBE : ABBE x BIBBE . (0 1} as RIBBE(S,id) =
L ?f !d €5 . For IBBE, we typically require that the ciphertext size should be
0 ifidgsS

o(t) - poly()), since otherwise we have a trivial construction from IBE.

BE. To define BE, we define ASE = 2N and BSE = [N()\)], where N(\) =
poly(A) is the number of users in the system and 2N denotes all subsets of
[N]. We also define RSE : ABE x BBE — {0,1} as RBE(S,i) = 1 when i € S
and R?E(S’,i) = 0 otherwise. For BE, we typically require that the ciphertext
size should be o(N) - poly(A), since otherwise we have a trivial construction from
plain public key encryption.

We also define dual versions of BE and IBBE where the ciphertext and secret
key attributes are swapped.

Dual IBBE (DIBBE). To define DIBBE, we define AD'BBE = TD()) and
BYBBE — TD(X\)<!, where ZD()) is the identity space. We define RP1BEE . ADIBBE
BYBBE — {0,1} as RIPBE(id, S) = 1ifid € S and R'PBE(id, S) = 0 otherwise.
Dual BE (DBE). To define DBE, we define APBE = [N(\)] and BYBE = 2[V(V]
where N(A) = poly(A) is the number of users in the system. We also define
RDBE ; ADBE 5 BPBE  {0,1} as RPBE(4,S) = 1 when i € S and RPBE(4,S) =0
otherwise.

2.2 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of
our construction. Throughout this section, n, m, and ¢ are integers such that

3 Here, we follow the standard convention in lattice-based cryptography where the
decryption succeeds when C(x) = 0 rather than C'(x) = 1.
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n = poly(A) and m > n[logq]. In the following, let SampZ(+) be a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter
~ > 0 whose support is restricted to z € Z such that |z| < /n7y.

Learning with Errors. We the introduce then learning with errors (LWE)
problem.

Definition 2.6 (The LWE Assumption). Let n = n(\), m = m(}\), and
q = q(A) > 2 be integers and x = x(A\) be a distribution over Z,. We say that
the LWE(n, m, q,x) hardness assumption holds if for any PPT adversary A we
have

|Pr[A(A,s" A +x") — 1] - PriA(A,v") — 1]| < negl(\)

where the probability is taken over the choice of the random coins by the adver-
sary A and A — Zy*M, s «— Zi, x «— X™, and v «— Z7'. We also say
that LWE(n,m, q, x) problem is subexponentially hard if the above probability is
bounded by 2=™" - negl(\) for some constant 0 < € < 1 for all PPT A.

As shown by previous works [19,43], if we set x = SampZ(~), the LWE(n, m, ¢, x)
problem is as hard as solving worst case lattice problems such as gapSVP and
SIVP with approximation factor poly(n) - (¢/7) for some poly(n). Since the
best known algorithms for 2F_approximation of gapSVP and SIVP run in time
20(n/k) it follows that the above LWE(n,m, q,x) with noise-to-modulus ratio
27" is likely to be (subexponentially) hard for some constant e.

Trapdoors. Let us consider a matrix A € Zg*™. For all V € ngml,

we let A;l(V) be an output distribution of SampZ(y)™*™ conditioned on
A-AJ'Y(V) = V. A y-trapdoor for A is a trapdoor that enables one to sam-
ple from the distribution A;l(V) in time poly(n,m,m’ logq) for any V. We
slightly overload notation and denote a 7-trapdoor for A by AZ L. We also
define the special gadget matrix G € Zy*™ as the matrix obtained by padding
I,.®(1,2,4,8,... , 2o ‘ﬂ) with zero-columns. The following properties had been
established in a long sequence of works [3,4,19,22,32,41].

Lemma 2.7 (Properties of Trapdoors). Lattice trapdoors exhibit the follow-
ing properties.

1. Given A7', one can obtain AZ' for any 7' > 7.

T 2

2. Given A7, one can obtain [A||B]-! and [B||A]; L for any B.

3. There exists an efficient procedure TrapGen(1™ 1™, q) that outputs (A, A;Ol)
where A € Zy*™ for some m = O(nlogq) and is 27" -close to uniform, where

70 = w(v/nlogglogm).

Lattice Evaluation. The following is an abstraction of the evaluation procedure
in previous LWE based FHE and ABE schemes. We follow the presentation by
Tsabary [47], but with different parameters.
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Lemma 2.8 (Fully Homomorphic Computation [35]). There exists a pair
of deterministic algorithms (EvalF, EvalFX) with the following properties.

- EvalF(B,F) — Hp. Here, B € Z2*™ and F : {0,1}* — {0,1} is a circuit.

- EvalFX(F,x,B) — I/-\IF’x. Here, x € {0,1}* with x; = 1* and F : {0,1}¢ —
{0,1} 4s a circuit with depth d. We have [B —x ® G]ITIRx =BHyp — F(x)G
mod ¢, where we denote (1G] - ||z G] by x ® G. Furthermore, we have
HHFHOC Sm'QO(d)a ||ﬁF,X||oo Sm'QO(d)-

~ The running time of (EvalF, EvalFX) is bounded by poly(n,m,log q,2%).

The above algorithms are taken from [35], which is a variant of similar algorithms
proposed by Boneh et al. [12]. The algorithms in [12] work for any polynomial-
sized circuit F', but ||Hp|| and |[Hrx||co become super-polynomial even if the
depth of the circuit is shallow (i.e., logarithmic depth). On the other hand, the
above algorithms run in polynomial time only when F' is of logarithmic depth,
but |Hp| e and |Hp x|l can be polynomially bounded. The latter property is
crucial for our purpose.

2.3 KP-ABE Scheme by Boneh et al. [12]

We will use a variant of the KP-ABE scheme proposed by Boneh et al. [12]
as a building block of our construction of CP-ABE. We call the scheme BGG™
and provide the description of the scheme in the following. We focus on the
case where the policies associated with secret keys are limited to circuits with
logarithmic depth rather than arbitrary polynomially bounded depth, so that we
can use the evaluation algorithm due to Gorbunov and Vinayagamurthy [35] (see
Lemma 2.8). This allows us to bound the noise growth during the decryption by
a polynomial factor, which is crucial for our application.

The scheme supports the circuit class Cy(x),a(n), Which is a set of all circuits
with input length ¢(\) and depth at most d(A) with arbitrary £(\) = poly ()
and d(\) = O(log A).

Setup(1?): On input 1%, the setup algorithm defines the parameters n = n(\),
m = m(\), noise distribution x over Z, 7o, 7, and B = B(\) as specified later.
It then proceeds as follows.
1. Sample (A, A; ') < TrapGen(1™,1™, ¢) such that A € Z>™.
2. Sample random matrix B = (By,...,By) « (ngm)z and a random
vector u «— Z7.
3. Output the master public key mpk = (A, B, u) and the master secret key
msk = AL
KeyGen(mpk, msk, F'): The key generation algorithm takes as input the master
public key mpk, the master secret key msk, and a circuit F' € Fy and proceeds
as follows.
1. Compute Hp = EvalF(B, F') and Br = BHp.

4 This condition may be necessary for the lemma to hold for arbitrary F.
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2. Compute [A|Bp];! from A and sample r € Z*™ asr — [A|Bg|; ! (u).
3. Output the secret key skp :=r.

Enc(mpk, x, 1t): The encryption algorithm takes as input the master public key
mpk, an attribute x € {0,1}¢ with #; = 1,> and a message p € {0,1} and
proceeds as follows.

1. Sample s « Z7, e1 < X, € « X, and S; 3 « {—1,1}™*™ for i € [{]
and b € {0,1}. Then, set e;; := S;':beg for i € [¢] and b € {0,1}.
2. Compute

Y1 :=s u+e; +1[q/2] € Zg, 1/1; = sTA—i-e;— €Ly,
Uiy =5 (B—2;G)+e, €Z forallie[l]andbe {0,1}.

3. Output the ciphertext ctx := (1,2, {¢i .z, }ic[q), Where x; is the i-th bit
of x.

Dec(mpk, sky, X, F, ctp): The decryption algorithm takes as input the master pub-
lic key mpk, a secret key skp for a circuit F', and a ciphertext ctyx for an
attribute x and proceeds as follows.

1. Parse cty — (Y1 € Zg, 0o € Z", {thin; € L)' }icln)), and skp € Z*™. If
any of the component is not in the corresponding domain or F(x) = 1,
output L.

2. Concatenate {; .z, }icrg to form o5 = (] ..., 9/ ,,).

3. Compute ¢’ := 11 — [1q |5 1.

4. Output 0if ¢’ € [-B,B] and 1 if [-B + [¢/2], B + [q/2]].

Remark 2.9. We note that the encryption algorithm above computes redundant
components {t; -z, }icjg in the second step, which are discarded in the third
step. However, due to this redundancy, the scheme has the following special
structure that will be useful for us. Namely, the first and the second steps of
the encryption algorithm can be executed without knowing x. Only the third
step of the encryption algorithm needs the information of x, where it chooses
{%ie, Yicrg from {¥;p}iciopefo,1} depending on each bit of x and then output
the former terms along with v¢; and 5. Looking ahead, our construction of CP-
ABE in Sect. 3 crucially relies on this special structure. There, the encryption
algorithm, who takes as input a circuit C' that specifies the policy and does
not know the corresponding input x, executes the first two steps of the above
encryption algorithm. This is possible since these two steps do not need the
knowledge of x.

Parameters and Security. We choose the parameters for the scheme as follows:
m =n'"loggq, q=20, X = SampZ(3+/n),
To = nlogqlogm, r=m3.20@ B = n?m?r . 200,

5 This restriction is required to apply Lemma 2.8. We can remove the condition by
increasing the dimension of x by 1 and considering function F' that ignores the first
bit.
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The parameter n will be chosen depending on whether we need Sel-INDr security
or Ada-INDr security for the scheme. If it suffices to have Sel-INDr security, we
set n = A° for some constant ¢ > 1. If we need Ada-INDr security, we have to
enlarge the parameter to be n = (¢A)¢ in order to compensate for the security
loss caused by the complexity leveraging.

We remark that if we were to use the above ABE scheme stand-alone, we
would have been able to set ¢ polynomially bounded as in [35]. The reason why
we set g exponentially large is that we combine the scheme with bilinear maps
of order ¢ to lift the ciphertext components to the exponent so that they are
“hidden” in some sense (See Sect. 4). In order to use the security of the bilinear
map, we set the group order ¢ to be exponentially large.

The following theorem summarizes the security and efficiency properties of
the construction. There are two parameter settings depending on whether we
assume subexponential hardness of LWE or not.

Theorem 2.10 (Adapted from [12,35]). Assuming hardness of LWE(n,m,
q,x) with x = SampZ(3y/n) and q¢ = 0(2”1/€) for some constant € > 1, the
above scheme satisfies Sel-INDr security. Assuming subexponential hardness of
LWE(n, m, q, x) with the same parameters, the above scheme satisfies Ada-INDr

security with respect to the ciphertext space CT := Z?MH)H

2.4 Bilinear Map Preliminaries

Here, we introduce our notation for bilinear maps and the bilinear generic group
model following Baltico et al. [9], who specializes the framework by Barthe [10]
for defining generic k-linear groups to the bilinear group settings. The defini-
tion closely follows that of Maurer [40], which is equivalent to the alternative
formulation by Shoup [46].

Notation on Bilinear Maps. A bilinear group generator takes as input 1* and
outputs a group description G = (¢, G1, Ga,Gr, e, g1, 92), where ¢ is a prime of
O(A) bits, G, G2, and G are cyclic groups of order ¢, e : Gy xG2 — Gy is a non-
degenerate bilinear map, and g; and g are generators of G; and Gs, respectively.
We require that the group operations in Gy, Gz, and G as well as the bilinear
map e can be efficiently computed. We employ the implicit representation of
group elements: for a matrix A over Z,, we define [A]; := g, [A]y = g2,
[A]r := g#, where exponentiation is carried out component-wise.

We also use the following less standard notations. For vectors w =
(wi,...,we)" € Zg and v = (wy,...,wy)' € Zé of the same length, w ® v
denotes the vector that is obtained by component-wise multiplications. Namely,
vOw = (vwy,...,vwe)". When w € (Z})’, v © w denotes the vector
vow = (vi/wi,...,ve/we) . Tt is easy to verify that for vectors c,d € Zf;
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and w € (Z})", we have (cOw) ® (d@w) = c®d. For group elements [v]; € Gf
and [w]; € GY, [v]1 ® [w]s denotes ([vywi]r, ..., [vewe]7r) ", which is efficiently
computable from [v]; and [w]y using the bilinear map e.

Generic Bilinear Group Model. Let G = (¢,G1, G2, Gr, €, 91, 92) be a bilin-
ear group setting, L1, Lo, and L7 be lists of group elements in G, Go, and Gp
respectively, and let D be a distribution over L1, Lo, and L. The generic group
model for a bilinear group setting G and a distribution D is described in Fig. 1.
In this model, the challenger first initializes the lists L1, Lo, and Ly by sampling
the group elements according to D, and the adversary receives handles for the
elements in the lists. For s € {1,2,T}, L,[h] denotes the h-th element in the list
L. The handle to this element is simply the pair (s, h). An adversary running in
the generic bilinear group model can apply group operations and bilinear maps
to the elements in the lists. To do this, the adversary has to call the appropriate
oracle specifying handles for the input elements. The challenger computes the
result of a query, stores it in the corresponding list, and returns to the adversary
its (newly created) handle. Handles are not unique (i.e., the same group element
may appear more than once in a list under different handles).

We remark that we slightly simplify the definition of the generic group model
by Baltico et al. [9]. Whereas they allow the adversary to access the equality test
oracle, which is given two handles (s,h1) and (s, hs) and returns 1 if Lg[hq] =
L[ho] and 0 otherwise for all s € {1,2,T}, we replace this oracle with the
zero-test oracle, which is given a handle (s, h) and returns 1 if Ls[h] = 0 and 0
otherwise only for the case of s = T. We claim that even with this modification,
the model is equivalent to the original one. This is because we can perform the
equality test for (s,hi) and (s, hs) using our restricted oracles as follows. Let
us first consider the case of s = T'. In this case, we can get the handle (T, k')
corresponding to Lp[h1] — Lp[hs] by calling negr and addy. We then make a
zero-test query for (T, h'). Clearly, we get 1 if Ly[h1] = Ls[ha] and 0 otherwise.
We next consider the case of s € {1,2}. This case can be reduced to the case
of s =T by lifting the group elements corresponding to h; and hy to the group
elements in Gr by taking bilinear maps with an arbitrary non-unit group element
in Gs_s, which is possible by calling map,.

Symbolic Group Model. The symbolic group model for a bilinear group
setting G and a distribution Dp gives to the adversary the same interface
as the corresponding generic group model, except that internally the chal-
lenger stores lists of element in the field Z,(X4,...,X,) instead of lists
of group elements. The oracles adds, neg,, map, and zt computes addition,
negation, multiplication, and equality in the field. In our work, we will use
the subring Z,[X1,...,X,,1/X1,...,1/X,] of the entire field Z,(X1,...,X,).
Note that any element f in Z,[Xi,...,X,,1/X3,...,1/X,] can be repre-
sented as f(Xq,...,X,) = Z(Cl)m’cn)ezn Qey,oon X114+ X5 using {ac, . ., €
Zp}(ey,...,cn)ezn, Where we have ac, = 0 for all but finite (¢1,...,¢,) € Z™.
Note that this expression is unique.

sCn
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State: Lists L1, Lo, L1 over G1, G2, Gr respectively.
Initializations: Lists Li, Lo, L7 sampled according to distribution D.
Oracles: The oracles provide black-box access to the group operations, the bilinear
map, and equalities.
e For all s € {1,2,T}: adds(hi,h2) appends Ls[hi] + Ls[h2] to Ls and
returns its handle (s, |Ls]).
e For all s € {1,2,T}: neg,(hi, he) appends —Ls[h1] to Ls and returns its
handle (s, |Ls|).
e map,(hi,hs) appends e(Li[h1], L2[hz]) to Ly and returns its handle
(T’ |Lr]).
e ztp(h) returns 1 if Ly[h] = 0 and 0 otherwise.
All oracles return | when given invalid indices.

Fig. 1. Generic group model for bilinear group setting G = (¢, G1, G2, Gr, ¢, g1, g2) and
distribution D.

3 Our Construction of CP-ABE

Here, we describe our new construction of CP-ABE scheme. Our construction
can deal with any circuit class 7 = {Fx}x that is subclass of {Cy(x),acn) }a With
arbitrary £(\) < poly(A) and d(\) = O(log \), where Cy(»),q¢x) is a set of circuits
with input length ¢(\) and depth at most d()). As we will see in Sect. 5, we can
obtain new constructions of BE, IBBE, CP-ABE by setting the circuit class F
appropriately. In order to get the scheme, we use the KP-ABE scheme BGG™ for
the circuit class F = {Fa}a that is described in Sect. 2.3 as an ingredient. Our
construction below can be seen as a conversion from an ABE scheme to another
ABE scheme with dual predicate.

Setup(1*): On input 1%, the setup algorithm defines the parameters n = n(\),
m = m(\), noise distribution x over Z, 79, 7, and B = B(\) as specified in
Sect. 2.3. It samples a group description G = (¢, G1, Go, Gr, e, [1]1,[1]2). It
then sets L := (20 4+ 1)m + 2 and proceeds as follows.

1. Sample w « (Z})* and compute [w];.
2. Output mpk = ([1]1, [1]2, [w]1) and msk = w.

KeyGen(mpk, msk,x): The key generation algorithm takes as input the master
public key mpk, the master secret key msk, and an attribute x € {0,1}¢ with
r1 = 1 and proceeds as follows.

L Let1:=(1,...,1)T € Z" and 0:= (0,...,0)" € Z". Set

¢0:1€Zq7 gbl:lGZq, ¢QZ:1€Z;n,

1e7™ ifb=x
b= a ' forie[f]and be {0,1}. 3.1
bis {OEZ? g, CTi€@andbe{oll (31

2. Vectorize (¢o, ¢1, P2, {¢ib}ip) to form a vector d € ZqL by concatenating
each entry of the vectors in a predetermined order.
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3. Sample § < Zj.
4. Compute [0d @ w]y € GE from msk = w in msk.
5. Output skyx = [0d @ W]s.

Enc(mpk, F, 1): The encryption algorithm takes as input the master public key

mpk, the circuit F', and a message p € {0,1} and proceeds as follows.

1. Sample fresh BGG" scheme:

(a) Sample (A, A ') — TrapGen(1",1™, ) such that A € Z*™.

(b) Sample random matrix B = (By,...,By) < (Z*™)" and a random
vector u « Zg.

2. Compute BGG™ function key for circuit F:
(a) Compute Hp = EvalF(B, F') and B = BHp.
(b) Compute [A|Bp];' from A! and sample r € Z®™ as r «
[AIBF|7 (u).

3. Compute BGG™ ciphertext for all possible inputs:

(a) Sample s < Zy, e1 « X, €2 « x™, and S; « {—1,1}"*"™ for i € [{]
and b € {0,1}. Then, set e;; := S;,rbez for i € [¢] and b € {0,1}.

(b) Compute
Yo i=1€Zy, P1:=s u+te +pulq/2] €7,
¥, =s A+e; €L,
w;ljb = ST(BZ‘ —-bG) + e;':b €Zy forie [¢] and b € {0,1}. (3.2)

4. Encode BGG™ ciphertexts in exponent of bilinear group:

(a) Vectorize (1o, 11,2, {tib}ip) to form a vector ¢ € ZqL by concate-
nating each entry of the vectors in a predetermined order (that aligns
with the one used in the key generation algorithm).

(b) Sample v « Z.

(c) Compute [yc ® w]; € GE from v, ¢, and [w]; in mpk.

5. Output ctp = (ctog = (A, B),ct; = [yce ® w]y,cta =1).
Dec(mpk, sky, X, F, ctr): The decryption algorithm takes as input the master pub-
lic key mpk, the secret key sky for an attribute x, and the ciphertext ctp for
a circuit F' and proceeds as follows.
1. Parse ctp — (cto = (A € ZI*™ B € Zp*™),cty € Gf,cty € Z*™) and
skx € GL. If any of the component is not in the corresponding domain or
F(x) =1, output L.

2. Unmask BGG" ciphertexts corresponding to x by using secret key:
Compute [v]r := ct; © skx and de-vectorize [v]r to obtain

[’U()]T e Gr, [Ul]T € G, [VQ}T S GELL, [Vi,b}T S G?L, for 1 € [ﬂ,b [S {0, 1}.

3. Evaluate circuit F on BGG" ciphertexts in the exponent:
Compute ITIRx = EvalF(F,x,B).
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4. Perform BGG™ decryption in the exponent:
Form [vi]r = [v{,,,..., v/, ]r and ct; = (r] € Z]",r; € Z]"). Then
compute

0] = [v1 — (V3 r1 + Vi Hpxro)]r
fI‘OIIl [Ul]Ta [VQ]T7 [Vx]Ta ry, rag, and ﬁF,x-

5. Recover exponent via brute force if F'(x) = 0:
Find n € [-B,B]U[-B + [q/2], B + [q/2]] such that [vo]} = [']7
by brute-force search. If there is no such 7, output L. To speed up the
operation, one can employ the baby-step giant-step algorithm.

6. Output 0 if n € [-B, B] and 1 if [-B + [¢q/2], B + [q/2]].

Correctness. To see correctness of the scheme, we first observe that we have
ct; @ skx = [y - ¢ ® d]r and thus

v =70, vi=78(su+er+ulq/2]), v =70(sTA+ey),
T v (s"(Bi—z;G)+e,) ifb=uz;

Vi, = e .
“ 7 o ifh=1—u;

From the above, we have v =s"(B—x® G)+e, fore] :=(ef, , - ,eZIZ).
We then have

VQTrl + VII/-\IExrg =~0 (sTA + e;) ry + 0 (ST(B -x®G)+ eI) ITIerg
=0 (ST(AI‘l + BFI'Q) + e;rl'l + eII/:IF,xr2)
=0 (sTu + e;rl + eIPAIerQ)

where the second equation follows from (B — x ® G)ﬁ rx = Bp and the third
equation follows form [A||Bp]r = u. This implies

v =6 (u[q/ﬂ +el—ejr] — eIITIF,xm) :

Recall that we set x = SampZ(3y/n). By the definition of SampZ, we have

llei]lo < 3n and |lez]jee < 3n. Furthermore, we have ||€;p|lcc = ||S;-':be2||Oo <
3mn for i € [{] and b € {0,1}, |Ir||oc < /n7, and ||I/-\IRX||oo < m - 294 where

the last inequality follows from Lemma 2.8. Thus, we have
ler — eg 11 — e Hpyrallso < O(n'Pm?r-2010) < B

by our choice of B. The correctness therefore follows. Note that since B =
poly(n, £) - 20(@ = poly(\), the decryption algorithm runs in polynomial time.
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Efficiency of the Scheme. Here, we evaluate the efficiency of the above scheme.
In particular, we measure the sizes of the parameters. The master public key of
the scheme consists of L+ 2 group elements. Since L = O(mf), we have that the
master public key can be represented by a binary string of length £-poly (). Next,
we observe that a secret key in the scheme consists of L group elements, which
can be represented by a binary string of length £ - poly(A). Finally, a ciphertext
in the scheme consists of O(nm) elements of Z, and L group elements. The
former elements are represented by a binary string of length poly()) if we only
need Sel-INDr security for the underlying KP-ABE scheme. If we need Ada-INDr
security, the length of the binary string is poly (¢, A). Therefore, the length of the
whole ciphertext is £-poly(\) if we only need Sel-INDr security for the underlying
KP-ABE scheme and poly(¢, A) if we need Ada-INDr security. In any case, the
sizes of all parameters in the system are independent of the size of the circuits
being supported by the scheme, which is a notable feature of the scheme.

4 Security Proof for Our CP-ABE

This section is devoted to prove the following theorem that asserts the security
of our CP-ABE scheme in Sect. 3.

Theorem 4.1. Our CP-ABE scheme for function class F satisfies Ada-IND
security in the generic group model assuming that the KP-ABE BGG™ for func-
tion class F satisfies Ada-INDr security.

Overview of the Proof. Before going to the formal proof, we give its overview. The
proof is done by considering a sequence of games and consists of two parts. In the
first part of the proof, which is captured by a series of game hops from Game
through Game; defined below, we prove that it is pointless for the adversary
to take pairing products between unmatching positions of the ciphertext and
secret key components and then take linear combinations among them. There-
fore, the only possible strategy for the adversary is to take linear combination
among “partial decryption results” obtained by taking pairing products between
matching positions of the ciphertext and secret key components and infer infor-
mation of the message being encrypted. In the second step of the proof, which
is captured by the game hop from Games; to Gameg, we show that this type of
attack does not work either. To do so, we further consider a sequence of subgames
from Games o through Games g. We first prove that taking linear combinations
among partial decryption results from different secret keys is useless. This is the
key step that excludes the collusion attack and is captured by the game hop
from Games 3 to Games 4. At this point, the only strategy for the adversary
is to take linear combination among partial decryption result obtained by single
secret key. Finally, in the step from Games; 7 to Games g, we use the security
of the BGG™ ABE to conclude that this strategy does not work either. To invoke
the security of BGG™ ABE, we use the fact that the partial decryption result
obtained by secret key for x forms randomized version of BGGT ABE ciphertext
for attribute z in the exponent.
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Proof. To prove the theorem, we fix a PPT adversary A that makes at most
Qkq(A) key queries and Q,:(\) zero-test queries during the game. Furthermore,
we assume that A always chooses (uo, 1) = (0,1) as its target message at
the challenge phase. This can be assumed without loss of generality since our
scheme is a single-bit scheme. In order to prove the security, we consider following
sequence of games. Let us denote the event that A outputs correct guess for b at
the end of Game, as E,.

Gamey: This is the real game in the generic group model. To fix the notation and
for the sake of concreteness, we briefly describe the game here. Without loss
of generality, we assume that the challenger simulates the generic group oracle
for A. At the beginning of the game, the challenger picks w « (Z;)L and sets
the master public key mpk = ([1]1, [1]2, [w]1) and the master secret key msk =
w. Then, it gives handles to the group elements in mpk to A. To respond to the
j-th key query x\¥) made by A, the challenger samples 0 < Zy, sets d0) e Zg‘
as specified in the key generation algorithm, and sets sk = [5jd(j) @ w]a.
It then gives the handles corresponding to the group elements in sk to A.
To answer the challenge query for a circuit F, the challenger first picks the
message b < {0,1} to be encrypted, chooses v « Zy, computes A, B, r, c as
specified in the encryption algorithm (where b is encrypted), and forms the
challenge ciphertext as ctp = (ctg = (A, B),ct; = [yc®w]j,cte =r). It then
returns cty = (A, B), handles to ct; = [yc ® w]y, and cty to A. By definition,
the advantage of A against the scheme is |Pr[Eq] — 3| .

Game;: This game is the same as the previous game except that the challenger
samples w = (wy,...,wg) ", d1,... ,0Qi> A, B, u, 7, b,and ¢ = (cq, . ... cer) !
at the beginning of the game. Note that c is sampled from the distribution
that is only dependent on the bit b being encrypted, and is independent of
the circuit F' that is specified by A later in the game. Therefore, this game is
well-defined. As we prove in Lemma 4.2, we have Pr[Eq] = Pr[E;].

Games: In this game, we (partially) switch to the symbolic group model and
replace {w;}ic(z), 195} je(Qu)> 7> and {ci}ic(r) in Zg with the formal variables
{Witicin), {45} jel@u) I and {Ci}ig(r) respectively. As a result, all handles
given to A refer to elements in the ring

T:: Zq[Wh...,WL,1/W1,...,1/WL,A1,...,Aqu,F,Cl,...,CLL

where {1/W;}; are needed to represent the components in the secret keys.
However, when the challenger answers the zero-test queries, it substitutes the
formal variables with corresponding elements in Z,. Namely, in this game,
the challenger picks {w;}:, {0;};, 7, and {c¢;}; at the beginning of the game
as specified in the previous game and when A makes a zero-test query for a
handle corresponding to f(Wi,..., W, Ay, ..., Ag,, I,C1,...,CL) €T, the
challenger returns 1 if

flwy,...,wr, 01, ..,0Q, Y5 €1y - -,cL) =0

holds over Z, and 0 otherwise. As we prove in Lemma 4.3, we have Pr[E;] =
PI‘[EQ}.



32 S. Agrawal and S. Yamada

Here, we list all the components in T for which corresponding handles are
given to A in Game; as either handles to the group elements in mpk, the chal-
lenge ciphertext, or secret keys:

Sti= {1 Wi, {CTWikiew},  So 1= {1 {d 45/ Wikicquy jeiqul |

where d;j) € {0,1} is the i-th entry of d). Note that S; and S, correspond to
handles for elements in G; and Gs, respectively. We then define St as Sp :=
{X Y :XeS8,Y e S, X Y #0} If we explicitly write down Sp, we have
St = St U St where

L
WG,C%FMG, briE[LL
AVR for j € [Qul;
ST1= 9 AW, for i € [L], ] € [Qxq) such that d¥) = 1,
AWy /W5, for 4,3’ € [L],j € [Qxq) such that i # ¢’ and dgj) =1
Cy I’ A;Wy /W for i,1" € [L],j € [Qkq] such that i # ¢’ and dgj) =1

and Sto = {C;I'A;j for i € [L],j € [Qkq) such that df;j) =1}. Here, St con-
sists of terms that are obtained by taking product between matching positions of
the ciphertext and secret keys, whereas St; consists of terms that are obtained
by taking product between unmatching positions of the ciphertext and secret
keys or between master public key and the ciphertext or secret keys. Note that
any handle submitted to the zero-test oracle by A during the game refers to an
element f in T that can be represented as

fWi, o Wi, Ay, Ag TG ..., CL) = Z azZ (4.1)
ZeST

where the coefficients {az € Z;}zes, can be efficiently computed. Furthermore,
az € zesy satisfyin e above equation is unique since all monomials in
Zq}zcs, satisfying the ab quation i ique si 1l ials i
St are distinct.

Games: In this game, we change the game so that {Wi}icir), {4} ei00)
are treated as formal variables rather than elements in 7Z, even
when answering zero-test queries. Namely, the challenger no longer
samples {w;}icir), {0j}je[@q, and 7 at the beginning of the game
and when A makes a zero-test query for a handle corresponding to
JWy, oo, W, Ay, A, I, Ch, ..., Cp) € T, the challenger returns 1 if

f(Wla'"aWLaAla"'aAquaF7clv"'aCL) =0 (42)

holds over T and 0 otherwise, where {c;};c|z] are sampled at the beginning
of the game as specified in the previous game. As we prove in Lemma 4.4, we
have |Pr[Es] — Pr[Es]| < Q. (L + 3)2/q.
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Game,: This game is the same as the previous game except that the challenger
aborts the game and enforces the adversary to output a random bit when there
exists i € [L] such that ¢; = 0, where ¢ = (c1,...,cr)" is sampled as in the
previous game. As we prove in Lemma 4.5, we have |Pr[Es] — Pr[E4]| < L/q.

Games: In this game, we further change the way zero-test queries are answered.
In particular, when A makes a zero-test query for a handle corresponding to
f € T that can be represented as

FWi, W, Ay, A TV C, L CL) = Y azZ+ Y azZ,
ZeSr ZeST,2
(4.3)
the challenger returns 0 if there exists Z € St 1 such that az # 0. Otherwise,
the challenger answers the query as in the previous game. As we prove in
Lemma 4.6, we have Pr[E4] = Pr[Es].

Gameg: In this game, we change the game so that zero-test queries are per-
formed over the ring T. Namely, when A makes a zero-test query for a handle
corresponding to f € T the challenger returns 0 if f # 0 over T. Equivalently,
the challenger returns 0 if there exists Z € St such that az = 0 when A makes
a zero-test query for a handle corresponding to f € T that is represented as
Eq. (4.1). Note that (c1,...,cr) is not used in this game and the challenger
does not have to sample it any more. As we prove in Lemma 4.7, there exists a
PPT adversary B such that | Pr[E5]—Pr[Eg]| < QuqQa (AdvaeciNa"(11)+1/q).

We can see that the adversary cannot obtain any information about the
encrypted message b in Gameg since the challenge ciphertext is replaced by
formal variables (C1, ..., Cr) that does not contain any information of b and the
answers to the zero test queries do not depend on b neither. Therefore, we have
Pr[Eg] = 1/2. Thus, there exists a PPT adversary B against Ada-INDr security
of BGG™ such that

n ta(L + 3)2 + L
—q .

1 _INDr 1
PrlEo] - | < Quan - (AMGENT () + 1)
In particular, assuming BGG™ satisfies Ada-INDr security, the above quantity is
negligible as desired.

To finish the proof of Theorem 4.1, it remains to prove Lemmas 4.2, 4.3, 4.4,
4.5, 4.6, and 4.7 in the following.

Lemma 4.2 (Gameg = Game;). We have Pr[Eg] = Pr[E,].
Proof. Since this is only a conceptual change, the lemma immediately follows.
Lemma 4.3 (Game; = Games). We have Pr[E;] = Pr[Es].

Proof. Since zero-test queries in Game, are answered by using {w;},, {J;};, 7,
and {¢;}; that are sampled from exactly the same distribution as that in Gamey,
the view of A in Games, is not altered from that in Game;. The lemma therefore
follows.
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Lemma 4.4 (Game; ~;, Games). We have | Pr[Ez] — Pr[Es]| < Q. (L +3)%/q.

Proof. Let us observe that Game; and Games differ only when A sub-
mits a handle corresponding to a polynomial f(Wy,..., W, Ay,...,Aq, 1,
Cy,...,Cp) € T satisfying f(wi,...,wr,01,...,0Q4,7,¢1,---,cL) = 0 and
JWi, ..., W, Ay, .., AQs Iher, ... ,en) # 0 to the zero-test oracle. Let F
denote the event. It suffices to bound the probability of F occurring in Games. To
doso, let us fix an element fin T and ¢y, ..., cf, in Z,. We then define a polynomial
g(Wl,...,WL,Al,...,Aqu,F) S Zq[Wl,...,WL,Al,...,Aqu,F} as

g(Wh...,WL,Al,...,Aqu,F)

= HWl -f(Wl,...,WL,Al,...,Aqu,F,Cl,...,CL).

i€[L]

Note that in the above, the term (J], W;) is introduced in order to clear the
denominators that possibly appear in f and to make sure that g is in the ring
ZgWh,...,Wp, Ay, ..., Aq,,, I'| rather than in T. We observe that F occurs if and
only if g(wy, ..., wr,01,...,0Q,,7) = 0and g(Wy,..., Wr, Ay,..., Aq,,I") #
0 since we have w; # 0 for all ¢ € [L]. We can bound this probabil-
ity by (L + 3)?/q using Schwartz-Zippel lemma since g is a polynomial in
ZgWi,...,Wr, Ay, ..., Aq,,I'] with degree at most L + 3. (Recall that f can
be represented as a linear combination of the terms in S7.) Since A makes at most
Qg zero-test queries, the lemma follows by the union bound.

Lemma 4.5 (Games ~; Gamey). We have | Pr[Es] — Pr[E4]| < L/q.

Proof. We observe that each entry of ¢ = (cy,...,cr) is either fixed to be 1 or
distributed uniformly at random over Z,. Therefore, by the union bound, the
probability that there is ¢ € [L] such that ¢; = 0 can be bounded by L/q. The
lemma therefore follows.

Lemma 4.6 (Gamey = Games). We have Pr[E4] = Pr[Es].

Proof. We observe that Game, and Games differ only when A makes a zero-
test query for a handle corresponding to f € T that satisfies Eq. (4.2) and there
exists Z € Sp1 such that az # 0 when we express f as Eq. (4.3). We claim
that such f does not exist and two games are actually equivalent. For the sake
of contradiction, assume that such f exists. Then Eq. (4.2) implies

Z aZZ(ch...,cL)—i— Z (J,Zz(cl,...,CL):O,

ZeSt1 ZeSr,2

where Z(ci,...,cr) denotes Z(Wy,...,Wp, Ay,...,Aq,I,c1,...,cL) € T in
the above. We can see that >, g azZ(ci,...,cr) = 0 holds since we have

{ Z a'ZZ(cl,...,cL):a/ZGZq}ﬂ{ Z a/Z/Z(cl,...,cL):a/Z/GZq}—{0},

ZeSt Z€eSr o
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which follows from the fact that monomials in Sy ; and Sr o are distinct even if
we substitute {C;}; in Sr.1 and St 2 with {¢;}; and ignore the difference between
the coefficients of the monomials. Furthermore, >, ¢ azZ(c1,...,c) = 0

implies az = 0 for all Z € St 1, which follows from c € (ZZ)L and from the fact
that all monomials in St ; are distinct even if we substitute {C;}; with {c¢;}; and
ignore the difference between the coefficients of the monomials. However, this
contradicts the assumption that there exists Z € Sr; such that az # 0. This
completes the proof of the lemma.

Lemma 4.7 (Games =, Gameg). There exists a PPT adversary B such that
| Pr{Es] — Pr{Eq]] < QuaQur - (AdVEEEND (1) +1/4).

Proof. We first observe that Games; and Gameg differ only when A makes a
zero-test query for a handle corresponding to f € T that can be represented as

f(Wl,...,WL,Al,...,Aqu,F,Cl,...,CL) = Z aZZ (44)
ZeST,2

and satisfies f # 0 over T and Eq. (4.2). We call such a query bad. In the
following, we prove that the probability that A makes a bad query in Games
is negligible. To do so, we consider following sequence of games. We define Fy
as the event that A makes a bad query in Games x and the challenger does not
abort.

Games o: This game is the same as Games. By definition, the probability that
A makes a bad query in Games is Pr[Fg].

Games ;: In this game, we change the previous game so that the challenger picks
a random guess k* for the first bad query as k* < [@Q,] at the beginning of the
game. Furthermore, we change the game so that the challenger aborts if the
k*-th zero-test query is not the first bad query. Since k* is chosen uniformly
at random and independent from the view of A, the guess is correct with
probability 1/Q,: conditioned on Fy. Therefore, we have Pr[F;] = Pr[Fo]/Qy:.

Games; o: This game is the same as the previous game except that the challenger
aborts the game immediately after A makes the k*-th zero-test query. Since
whether F; occurs or not is irrelevant to how the game proceeds after the
k*-th zero-test query is made by A, we clearly have Pr[F3] = Pr[F4].

Games 3: In this game, we change the game so that the challenger answers the
first k* — 1 zero-test queries by performing zero tests over T. Furthermore,
we change the game so that the sampling of ¢ is deferred until the £*-th
zero-test query is made by A. We first observe that the game is well-defined
since c is used only for the k*-th zero-test query. Furthermore, since the first
k* — 1 zero-test queries that refer to f € T such that f # 0 are answered by
0 whenever Fo happens, we have Pr[F3] > Pr[F2].
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Games4: To define the game, we first define the set Sro; =

{CzFA]}ze[L] st. dD—q- By definition, we have ST72 e UjE[qu]ST,Q,j' Using
this notation, any f € T referred by a bad query can be represented as

FWi, W, Ay, A T, C, L Cr) = > > agZ. (45)

J€[Quq] ZEST 2,5

In this game, we change the game so that the challenger aborts the game if
the bad query made by A refers to f such that there does not exist j € [Qkq]
satisfying

Z azZ #0  and Z azZ(c1,...,cn) =0, (4.6)

Z€eST,2,; ZeST,2,;

where Z(ci,...,cr) denotes Z(Wy,..., Wr, Ay, ..., Aq,I\c1,...,cr) € T
above. We claim that this actually cannot happen. To see this, we first observe
that since we have f # 0 for a bad query, there exists j € [Qiq] satisfying
> zesr,, zZ # 0. Furthermore, we have

Z aZZ(cl,...,cL):—Z Z azZ(c1y-..,cL)

Z€EST,2,; J'#3 ZESy 5 40

from Eq. (4.2). However, the above is impossible unless the left hand side
equals to 0 since any monomial in St ; never appears in St ;o for j/ # j
even if we replace {C;}; with {¢;}; and ignore the difference between the
coefficients of the monomials. Therefore, the change made in this game is
only conceptual and we have Pr[F4] = Pr[F3].

Games 5: In this game, we change the previous game so that the challenger picks

J* « [Qg) uniformly at random at the beginning of the game. Furthermore,
we add the abort condition that the challenger aborts if Eq. (4.6) does not
hold with respect to j = j* for f that is referred by the k*-th zero-test query.
Since there exists j' € [Qxq] that satisfies Eq. (4.6) as long as F4 occurs and
j* is chosen uniformly at random and independent from the view of A, we

have Pr[F5] > Pr[F4]/Qxq-

Games g: In this game, we further change the game so that the challenger aborts

the game if the j*-th key query has not been made yet at the point when the
k*-th zero-test query is made. We claim that conditioned on F5 happens, the
challenger never aborts. To see this, we observe that if the j*-th key query has
not been made then terms that contain A;- has not been given to A and there
is no way to make a zero-test query for f such that ZZGST,g_j* azZ # 0, since

all terms in St ;- are multiples of A;-. We therefore have Pr[Fs] = Pr[Fs].

Games 7: In this game, we further change the game so that the challenger sam-

ples ¢; only for ¢ € [L] such that dl(-j ) = 1, where j* is chosen at the begin-
ning of the game as in Games ;. The game is still well-defined since the
only place in the game where we need the information of ¢ is when checking

Eq. (4.6) and we only need {Ci}ie[L] ot qut—, there. (Recall that we have
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St = {CiFAJ}ie[L] ot g0—;-) Clearly, this does not change the view of
A. We therefore have Pr[F7] = Pr[Fg].

From Eqgs. (3.1) and (3.2), we can see that {c;},_ consists of the

ie[L] s.b. d¥ =1
following components:

Yo =1, = STu—|—€1 +N[Q/2L %T = STA—'—e;v
Y G = T(B; — a:l(-j*)G) + e;'—m<j*) for i € [4],

1,%;

where 17 is the i-th entry of xU").
Games; g: In this game, we further change the game so that the challenger
samples
Yo:=1€2Zq, 1 Lyg, 2Ly, ip Ly forie[l]andbe {0,1}
and sets {ci}ie[L] 5.t 491 from the above components.® As we prove in
Lemma 4.8, there exists a PPT adversary B such that Advé‘éac_u\fgr(l)‘) >
| Pr[F7] — Pr[Fs]|.

As we will prove in Lemma 4.9, we have Pr[Fg] < 1/¢. This allows us to bound
Pr([Fo] as Pr[Fo] < QuqQu - (Advééaéﬂ\fg'(l’\) +1/q), where B is a PPT adversary.
This completes the proof of Lemma 4.7.

It remains to prove Lemmas 4.8 and 4.9 in the following.

Lemma 4.8 (Games 7y =, Games.g). There exists a PPT adversary B such
that Advage g (1) > | Pr[F7] — Pr(Fs]|.

Proof. We show that if A can distinguish Games 7 from Games g, we can build
another adversary B against Ada-INDr security of BGG'. The adversary B acts
as the challenger and simulates the game for A. Looking ahead, setup phase and
key queries are trivial to handle since they do not need any parameter of BGG™.
The only steps we need care are the simulation of the challenge phase and the
k*-th zero-test query, where B needs to interact with its challenger in order to
handle them. We describe how B proceeds in the following.

Setup phase. At the beginning of the game, B is given 1* and the master public
key of BGG' (A, B, u). It then gives the handles to 1, W7,. .., W, corresponding
to G1 and the handle to 1 corresponding to Go to A. These handles correspond
to the master public key. B also samples j* < [Qiq), k* < [Qz], and b« {0,1}
and keeps them secret.

Key Queries. Given the j-th secret key query for x) made by A, B proceeds as
follows. B first forms dU) € Zg as specified in the key generation algorithm and

returns the handles corresponding to (dgj)Aj/Wl, e 7d(Lj)Aj/I/VL) in G, to A.

6 Note that until this step, we have not changed the distribution of {ci}ier) except
that we stop sampling c¢; for ¢ such that dgj*) =1 in Games .
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Challenge Query. When A makes the challenge query for a circuit F, B
makes a secret key query for F' to its challenger and is given r sampled as
r «— [A|Br]7!(u). B then sets cty = (A, B), cty := r, and ct; as the handles
corresponding to the formal variables (Ci,...,CL) and gives ct = (cto, cty, Cta)
to A as the challenge ciphertext.

Generic Group Queries. B honestly handles the queries for the generic group
oracle corresponding to addition, negation, and multiplication (bilinear map)
made by A by keeping track of the underlying encodings in T associated with the
handles. For the k-th zero-test query that refers to an element f in T, B returns
1if f =0 over T and 0 otherwise if k£ < k*. If k = k*, B first checks whether
the j*-th key query has already been made and aborts otherwise, as specified in
Games g. It then makes the challenge query for the attribute xU"), where x(")
is the attribute for which A has made the j*-th key query, and the message b to
its challenger. Then B obtains its challenge ciphertext (11,3, {¢i7m5j*)}i€[g}). It

then sets 19 = 1 and forms {ci}ie[L] st dU—1
ately. Finally, it checks whether Eq. (4.6) holds or not using {c;}, clL

by vectorizing the terms appropri-

] s.t. a7 =1
as specified in Games 7 and outputs 1 if it holds and 0 otherwise.

Analysis. It is easy to see that B simulates Games 7 if the challenge ciphertext
for B is the real one and Games g if it is chosen uniformly at random from
the ciphertext space. Therefore, it can be seen that B outputs 1 with proba-
bility Pr[F7] if the challenge bit for B is 0 and Pr[Fg] otherwise. Therefore, B’s
advantage against BGG™ is | Pr[F;] — Pr[Fg]|. This completes the proof of the
lemma.

Lemma 4.9. We have Pr[Fs] =1/q.

Proof. We observe that Fg occurs only when A makes a zero-test query that
refers to a handle f # 0 that can be represented as Eq. (4.4) and satisfies Eq. (4.6)
with respect to j* where {Ci}ie[L] 5.t dU oy Are chosen as Games gz. However,
Eq. (4.6) can happen only with probability at most 1/q since f is represented
as a linear combination of {C;I"A,}, ; and all entries of {Ci}z‘e[L] s.t. a7 =y e
chosen uniformly at random except for the entry that is fixed to be 1.

5 Implications to CP-ABE, BE, and IBBE

In this section, we show that by setting the circuit class supported by our CP-
ABE scheme in Sect. 3 appropriately, we can obtain various new schemes with
different security and efficiency tradeoffs. In particular, we obtain new CP-ABE,
BE, and IBBE schemes from the LWE assumption in the bilinear generic group
model. Our CP-ABE scheme achieves the notable efficiency property that the
sizes of all the parameters in the system do not depend on the size of the cir-
cuits supported by the scheme. Similarly, our BE (resp., IBBE) schemes achieve
optimal parameter size, in the sense that the sizes of all parameters in the sys-
tem are bounded by a fixed polynomial that is independent from the number of
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users (resp., upper bound on the number of recipients). These efficiency proper-
ties have never been achieved without using indistinguishability obfuscation or
multilinear maps.

5.1 New CP-ABE Scheme

By setting Fcp := {Cy(r),a(x) }» in the construction in Sect. 3, we obtain a CP-
ABE scheme that can deal with the set of circuits whose input length and depth
are £(\) and d()), respectively. In order to prove Ada-IND security for the result-
ing scheme, we need to be able to prove Ada-INDr security for the KP-ABE
scheme BGG™ for the same circuit class as stated in Theorem 4.1. This is pos-
sible by assuming subexponential hardness of LWE as we see in Theorem 2.10.
The notable feature of the resulting scheme is that the sizes of the master public
key, ciphertexts, and secret keys are independent from the size of the circuits
supported by the scheme. The sizes of these parameters are only dependant on
the input length and the depth of the circuits.
Summarizing the above discussion, we get the following theorem.

Theorem 5.1. Assuming the subexponential hardness of LWE, we have a CP-
ABE scheme for circuit class Coq for arbitrary ¢ = poly(X) and d = O(log \)
that satisfies Ada-IND security in the bilinear generic group model. The sizes of
the master public key, ciphertexts, and secret keys are bounded by poly(\, ¢, d).

We note that in all previous CP-ABE scheme (e.g., [11,44,48]) for NCy, either
the ciphertext or secret key size depends on the circuit size supported by the
scheme.

5.2 New BE Scheme with Optimal Parameter Size

Here, we show that we can obtain a BE scheme with optimal parameter size
by setting the circuit class F supported by the CP-ABE scheme in Sect. 3
appropriately.

Obtaining DBE from KP-ABE. In order to get the BE scheme, we first
observe that we can implement a DBE scheme by a KP-ABE scheme for the
following circuit class Fge defined as Fge = {Fs : {0,1}M°s N1 — {0, 1}}SC[N]

1 ifies
where Fg(i) = 1 Z <

0 ifigs
in S with binary strings in {0,1}M°¢NT by a natural bijection map between

{0,1}M°e NT and [2M°e NT] D [N]. Since the depth of Fy affects the efficiency of
the DBE scheme, we want Fg to be as shallow as possible. For this purpose, we

. Here, we identify a user index ¢ € [N] and elements

compute Fg by first computing b; = (¢ Z j) for all j € S in parallel and then
computing V,cgb;. The first step can be implemented with depth O(loglog N)
and the second step with O(log N). This allows us to implement Fs with depth
O(log|S]) < O(log N). By the definition of Fg, one can see that this KP-ABE
scheme implements the functionality of DBE.
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Plugging the DBE into Our Construction in Sect. 3. We then instantiate
the KP-ABE for the circuit class Fgg with BGG™ and plug this scheme into
our CP-ABE construction in Sect. 3. Since the ciphertext and key attributes
of the CP-ABE scheme are swapped from the underlying KP-ABE scheme, we
obtain a BE scheme as a result. This instantiation is possible since the depth
of the circuits is bounded by O(log N) < O(log A) and we can take the upper
bound on the depth d()\) to be larger than this. The sizes of the master public
key, ciphertexts, and secret keys in the resulting BE scheme are bounded by
poly(log N, \) = poly()\), which is independent of the number of users, since the
depth and input length of the circuits in Fgg is bounded by O(log N). Note that
we crucially rely on the efficiency property of our CP-ABE scheme that the sizes
of all parameters in the system are independent of the size of the circuits being
supported, where the latter can be as large as O(N) for Fge.

Security of the Resulting BE Scheme. In order for the resulting BE scheme
to have Ada-IND security, we need the underlying KP-ABE scheme BGG" to
have Ada-INDr security as stated in Theorem 4.1. In the general case where
the input length for the circuits is of poly()\), we need to assume subexponential
hardness of LWE to prove Ada-INDr security for BGG™ as we see in Theorem 2.10.
However, since we restrict the circuit class for BGGT to be Fgg here, we can
avoid assuming subexponential hardness of LWE and base the security of our
scheme on polynomial hardness of LWE. To see this, we first recall that for
proving Sel-INDr security for BGG", polynomial hardness of LWE is enough
(Theorem 2.10). We then observe that in the special case of DBE, Sel-INDr
and Ada-INDr are actually equivalent, since one can guess the target attribute
i* € [N] chosen by the adversary in the security game with only polynomial
security loss.
Summarizing the above discussion, we get the following theorem.

Theorem 5.2. Assuming the LWE assumption, we have a BE scheme that sat-
isfies Ada-IND security in the bilinear generic group model. The sizes of the
master public key, ciphertexts, and secret keys are bounded by a fized polynomial
poly(X) that is independent of N.

In the full version of our paper [5], we show that we can obtain an IBBE
scheme with optimal parameter size by setting the circuit class F supported by
the CP-ABE scheme in Sect. 3 appropriately.
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Abstract. We present the first protocols for private information
retrieval that allow fast (sublinear-time) database lookups without
increasing the server-side storage requirements. To achieve these effi-
ciency goals, our protocols work in an offline/online model. In an offline
phase, which takes place before the client has decided which database
bit it wants to read, the client fetches a short string from the servers. In
a subsequent online phase, the client can privately retrieve its desired
bit of the database by making a second query to the servers. By pushing
the bulk of the server-side computation into the offline phase (which is
independent of the client’s query), our protocols allow the online phase
to complete very quickly—in time sublinear in the size of the database.
Our protocols can provide statistical security in the two-server setting
and computational security in the single-server setting. Finally, we prove
that, in this model, our protocols are optimal in terms of the trade-off
they achieve between communication and running time.

1 Introduction

A private information retrieval protocol [CGKS95, CGKS98] takes place between
a client, holding an index ¢ € [n], and a database server, holding a string
xr = xx2 -z, € {0,1}". The protocol allows the client to fetch its
desired bit z; € {0,1} from the database while hiding the client’s index
i from the server, and using total communication that is sublinear in the
database size n. A beautiful line of work, starting with that of Chor, Goldre-
ich, Kushilevitz, and Sudan [CGKS95], constructs private information retrieval
(PIR) protocols with extremely small communication complexity, either when
the client can access multiple non-colluding servers holding replicas of the
database [Amb97,CG97,BI01, BIKR02, Yek08,Efr12,DG16]| or under computa-
tional assumptions [KO97, CMS99, K000, GR05,0S07].
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Fig. 1. A comparison of traditional two-server PIR (left) and offline/online PIR with
sublinear online time (right). The servers store replicas of a database z € {0,1}".

PIR is a fundamental privacy-preserving primitive: it has applications to
private messaging [SCMO05, AS16, ACLS18], certificate transparency [LG15], pri-
vate media browsing [GCM+16], online anonymity [MOT+11, KLDF16], privacy-
preserving ad targeting [Jue01], and more. In spite of the promise of PIR and
the great advances in PIR protocols, there have been essentially no large-scale
deployments of PIR technology to date. A primary reason is that while modern
PIR protocols have very small communication requirements—as small as poly-
logarithmic in the database size—the computational burden they put on the
server is still prohibitively expensive.

In particular, in all existing PIR schemes, the work at the servers grows
linearly with the database size. That is, the servers essentially take a linear scan
over the entire database to respond to each query. Beimel et al. [BIM04] proved
that this limitation is in fact inherent: even in the multi-server setting, every
secure PIR scheme on an n-bit database must incur £2(n) total server-side work.
(If the servers probe fewer than n database bits on average in responding to a
client’s query, then it is likely that the client is reading one of the probed bits.)

This £2(n) server-side cost is the major bottleneck for PIR schemes in theory,
since all other costs in today’s PIR protocols (communication, client time, etc.)
are sublinear, or even polylogarithmic, in the database size. This £2(n) server-
side cost is also the major bottleneck for PIR schemes in practice, as evidenced
by the many heroic efforts to reduce the server-side computational cost in built
PIR systems [LG15,AS16, GCM+16,TDG16, ACLS18].

In Sect.1.4, we survey the known approaches to reducing the server-side
computation in PIR-like schemes. All of these methods increase the storage
requirements at the servers and the methods based on standard assumptions
(i-e., not requiring obfuscation) increase the required server storage by potentially
large polynomial factors. These increased storage costs present new barriers to
deployment.
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1.1 A New Approach: Offline/Online PIR with Sublinear Online
Time

In this paper, we propose a new approach for reducing the server-side computa-
tional burden of PIR. Our idea is to push the (necessary) linear-time server-side
computation into a query-independent offline phase, which allows a subsequent
online phase to complete in sublinear time (Fig. 1). More precisely, we construct
PIR schemes in which the client and servers interact in two phases:

— In an offline phase, which takes place before the client has decided which bit
of the database it wants to retrieve, the client fetches a one-time-use “hint”
from the database servers.

— In a subsequent online phase, which takes place after the client has decided
which bit of the database it wants to retrieve, the client sends a query to the
database servers. Given the servers’ answers to this query, along with the hint
prefetched earlier, the client can recover its database bit of interest.

Prior work has developed PIR offline/online schemes [DIO01,BIM04,BLW17,
PPY18]. In this paper, we construct the first offline/online PIR schemes that
simultaneously:

1. run in online time sublinear in the database size, and
2. do not increase the storage requirements at the servers.

(See Sect.1.4 and Tablel for a comparison to prior work.) Furthermore, our
schemes are based on very simple assumptions—one-way functions in the
two-server setting and linearly homomorphic encryption in the single-server
setting—and are concretely efficient. The remaining performance bottleneck of
our schemes is that one of the servers must perform an amount of offline com-
putation in that is linear in the database size.

Our schemes advance the state of the art in PIR by enabling two new usage
models:

1. Do the heavy computation in advance. Our schemes shift the heavy
server-side computation out of the critical path of the client’s request. For
example, we envision deployments of our PIR schemes in which the client
and server execute the offline phase overnight, while the user is asleep and
when computation is relatively inexpensive. In the morning, when the user
wakes up and wants to, say, privately fetch an article from Wikipedia, she
can run the online phase to get her article in sublinear time.

The idea of moving expensive cryptographic work into an input-independent
offline phase has seen tremendous success in the setting of multiparty compu-
tation [BDOZ11,DPSZ12]. Our schemes achieve the same goal for PIR.

2. Process a series of queries in sublinear amortized total time. Often,
a user wants to make a series of adaptive queries to the same database (e.g.,
as one does when jumping from one Wikipedia article to the next). In this
setting, our two-server PIR scheme allows the client to reuse a single hint,
fetched in the offline phase, to make arbitrarily many adaptive online queries
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to the database. By reusing the hint, the amortized total server-side cost
of each query—including both the costs of the offline and online phases—
falls to sublinear in the database size. As far as we know, ours is the first
PIR scheme that achieves sublinear amortized total time for adaptive queries
without dramatically increasing the client or servers’ storage requirements.

1.2 Our Results

We give the following results for offline/online private information retrieval with
sublinear online time:

Two-server PIR. We give a two server offline/online scheme with sublinear
online time. Specifically, for a database consisting of n bits, the offline phase
requires the client to interact with one server, which performs O(n) offline com-
putation. (The notation O(-) hides arbitrary polylogarithmic factors. In this
section, we also elide fixed polynomials in the security parameter.) In the online
phase, the client interacts with the second server, which answers the client’s
query in time O(y/n). We give a scheme with statistical security that has total
communication 6(\/5) Assuming that one-way functions exist, the online com-
munication cost falls to O(logn).

Two-server PIR with sublinear amortized total time. We extend our
two-server scheme to allow the client to reuse a single offline-phase interaction
to make a series of polynomially many adaptive online-phase queries. With this
scheme, the online cost of each query is still O(y/n), but after ¢ online queries,
the average total computational cost—including the offline-phase computation—
falls to O(n/q + v/n), or sublinear in the database size.

Single-server PIR. We show how to combine a linearly homomorphic encryp-
tion scheme and a standard single-server PIR scheme to obtain a single-server
offline /online PIR scheme with sublinear online time. The resulting scheme uses
O(n?/3) total communication and the server runs in online time O(n2/3). Fur-
thermore, neither the client nor the server performs any public-key cryptographic
operations in the online phase. Under the stronger assumption that fully homo-
morphic encryption exists, we obtain a single-server scheme with communication
and online time O(y/n). One drawback is that, unlike its two-server counterpart,
our single-server scheme supports only a single online query after each offline
interaction, and thus we do not achieve sublinear amortized total time. The
main benefit of shifting the heavy server-side computation to the offline phase
remains.

A lower bound. Finally, we prove a lower bound for offline/online PIR schemes
in which the servers store the database in unencoded form and keep no additional
state. Specifically, we show that any scheme of this form, that uses C bits of
communication in the offline phase, and that probes T' bits of the database in
the online phase, must satisfy C'-T' > 2(n). This shows that in this model, as far
as communication and online server time are concerned, our two-server scheme
and the FHE-based single-server scheme are optimal, up to logarithmic factors.
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1.3 Limitations

The primary drawback of our new PIR protocols is that they use more total
communication than standard PIR schemes do. Today’s PIR schemes (with lin-
ear online server-side time) can achieve polylogarithmic communication in the
computational setting [CMS99, GR05,1P07, BGI16, DGI+19] and subpolynomial

communication (n@(Veglogn/logn)y in the two-server information-theoretic set-
ting [DG16|. In contrast, our schemes with sublinear online time have commu-
nication f)A(\/ﬁ) While we show that it is possible to reduce the online-phase
communication in the computational setting, our lower bound (Theorem 23)
implies that any offline/online PIR scheme with online time O(y/n)—such as
ours—must have §2(,/n) total communication. This limitation is therefore inher-
ent to PIR schemes that have sublinear online server time and in which the
servers store the database in unmodified form.

In many settings, we expect that the y/n communication cost will be
acceptable. Indeed, a number of built systems using PIR [GDL+14,GCM+16,
AMBFK16,ACLS18] already suffice with y/n communication complexity, since
server-side computational cost is the limiting factor. If \/n communication is
still too high, we show in Corollary 18 that it is possible to amortize the \/n
offline communication cost of our two-server scheme over polynomially many
online reads, each of which requires only logarithmic communication. So, our
results are still relevant to communication-sensitive settings, when having low
amortized complexity is sufficient.

1.4 Related Work

Beimel, Ishai, and Malkin [BIM04] proved that the servers in any secure PIR
scheme must collectively probe all n bits of the database (on average) to respond
to a client’s query. We survey the existing strategies for eliminating this key
performance bottleneck.

Store the database in encoded form. One ingenious way to circumvent the
£2(n)-server-time lower bound is to have the servers store the database in encoded
form. Beimel et al. [BIM04] introduced the notion of PIR with preprocessing, in
which the servers perform a one-time preprocessing of the database = € {0,1}"
and store the database in encoded form E(z) € {0,1}", where E is a public
encoding function and N > n. In the two-server setting, their PIR schemes with
preprocessing achieve n'/2¢ total communication and n'/2t¢ server-side time,
for any € > 0. The downside of this approach is that the server-side encoding can
be quite large. For example, to achieve n%% server-side time and communication
using their two-server scheme requires the server to store an encoded database
of size N = n32. Even for modest database sizes (e.g., n ~ 22°), the encoded
database would be much too large to materialize in practice (many petabytes).
While it would be fascinating to construct improved schemes for two-server PIR
with preprocessing—perhaps with encoding size N = 10n and online time and
communication n'/3—this goal appears far out of reach.
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Table 1. A comparison of PIR schemes when cast into the offline/online model, on
database size n, in which each client makes ¢ adaptive online queries, and in which m
clients execute the offline phase before the first client executes the online phase.

— The offline and online costs are per-query costs. Thus, if a scheme has a offline phase
of server cost n, which can be reused over ¢ online queries, we write its per-query
offline cost as n/q.

— If a scheme has a one-time offline phase that can be reused for an unbounded
number of clients and queries (as in [BIM04,BIPW17]), we view the scheme as
having zero offline cost.

— The extra storage cost is the number of bits, in addition to the database, that client
and server must hold between the offline and online phases.

All columns omit poly(\) factors, for security parameter X, and also low-order polylog(n)
factors. Here, € > 0 is an arbitrarily small constant and c refers to some constant in N.

Offline Online Extra storage
Time Comm. Time Comm.
Assumption Client Server Client Server Client Server

Two-server
[DG16] None 0 0 0 ne® n ne@® 0 0
|[BGI16] OWF 0 0 0 log n n log n 0 0
|[BLW17]* LWE logn n logn logn n logn logn 0
|[BIMO4] None 0 0 0 n0-9 n09 n0-9 0 e

706 n0-6 n0-6 n32

p0-55 | p0.55  0.55 377
[PR93] None n n n logn n n 0 0
[DIOOI]T OWF 0 n 0 logn | logn logn 0 mn
Thm. 11 None nt/? n n'/? nt/? nt/? nt/? nt/? 0
Thm. 14 OWF nt/? n nt/? nt/? nt/2 logn nt/? 0
Thm. 17 OWF %/2 n/q ”lq/2 nt/2 [ ptf2 | pl/2 pl/2 0
Single-server
[KO97] Lin. hom. enc. 0 0 0 n* n n¢ 0 0
|[CMS99] ¢-hiding 0 0 0 log®n n log®n 0 0
[Lip05] DCR 0 0 0 log®n n log? n 0 0
[Lip09]i Lin. hom. enc. 0 n 0 logn n logn 0 n
[PPY18]F Any PIR n/q n/q n/q n n logén n'/2 0
|[BIPW17| OLDC n/q n/q n/q n n n c mn
|[CHR17] OLDC n/q n/q n/q n¢ n¢ n c mn
[BIPW17]® OLDC+VBB Obf. 0 0 0 n¢ n¢ n¢ 0 n
Thm. 20 Lin. hom. enc. n?/3 n n?/3 n?/3 n?/3 n'/3 n?/3 0
Thm. 22 FHE nt/? n nt/? nt/? nt/? nt/? nt/? 0
Lower bound (For any 1 < 8 < n.)
[BIMO4] - n/B - - - - - K]
Thm. 23 = - n/B = B = = of

* Based on constrained PRFs, which initially required multilinear maps, but later constructed from
standard assumptions [BKM17,CC17, BTVW17].

T A scheme combining ideas from [DIO01, BIM04, BGI16] can acheive these parameters [Ish19)].

¥ Requires only a sublinear number of public-key operations.

§ Requires that a trustworthy party encodes the database using secret randomness.

9 Our lower bound holds only for PIR schemes that store the database in its native form.

The schemes of Beimel et al. apply only to the multi-server setting. Two recent
works [BIPW17,CHR17] study doubly efficient PIR, which are in some sense
single-server PIR-with-preprocessing schemes. In the designated-client model of
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doubly efficient PIR, the client encodes the database using a long-term secret key
(hidden from the server) and stores the encoded database on the server. Under a
new cryptographic assumption, the client can subsequently privately query this
encoded database many times, and the server can answer the query in time sub-
linear in the database size. In the public-key analogue of doubly efficient PIR, a
server that stores a single database encoding enables multiple mutually distrust-
ing clients to query the database using a short public key. Boyle et al. [BIPW17]
construct a public-key doubly efficient PIR scheme with sublinear query time,
under a new cryptographic assumption and in a model with virtual black-box
obfuscation.

Hamlin et al. [HOWW18] introduce a notion of private anonymous data
access (“PANDA”) schemes, in which many clients can access an encoded
database such that (1) as in standard PIR schemes, the server does not learn
which bits of the database a client is reading and (2) the server can respond to
a client’s request in time sublinear—even polylogarithmic—in the database size.
Unlike in doubly efficient PIR schemes, the server in PANDA may store muta-
ble state. Hamlin et al. give an instantiation of a PANDA scheme from fully
homomorphic encryption [Gen09]. A limitation of the existing PANDA schemes
is that they require the server storage and time to grow with the number of mali-
cious clients interacting with the system. In our setting, in which the number
of malicious clients could be unbounded, the storage and online server time of a
PANDA scheme would also be unbounded.

The general framework of PIR with preprocessing is extremely promising,
since preprocessing schemes can plausibly allow both polylogarithmic total com-
munication and total work—which is impossible in the offline/online setting.
That said, these preprocessing schemes necessarily increase the storage costs at
the servers, by large polynomial factors in many cases. The single-server prepro-
cessing schemes additionally rely on relatively heavy cryptographic assumptions.
In contrast, in our schemes, the servers store the database x in unencoded form
and keep no additional state. The trade-off is that, in our schemes, the client
and servers must run the linear-server-time offline phase once per client (Sect.4)
or once per query (Sects.3 and 5).

Use linear additional storage per query. Beimel, Ishai, and Malkin [BIMO04,
Section7.2], building on earlier work of Di Crescenzo, Ishai, and Ostro-
vsky [DIO98,DIO01], give an alternative way to reduce the server-side online
time in PIR. In their model, the client submits a request to the servers in an
offline phase. The servers use this request to generate a one-time-use n-bit encod-
ing of the n-bit database, which the servers store. In a subsequent online phase,
the client can privately query the servers for a database bit and the servers
use their precomputed encoding to respond in sublinear online time. The total
communication and online server-side work in these schemes can be as low as
polylog(n) [Ish19]. However, the server-side storage costs can be large: for each
client, the servers must store n additional bits until that client makes its online
query. If m clients concurrently access the database, the storage requirements at



Private Information Retrieval with Sublinear Online Time 51

the servers increase to mn bits. (In contrast, the schemes in our work require no
extra server-side storage.)

Use linear online time. Another line of work reduces the server-side com-
putational burden of PIR protocols by working in the offline/online model we
consider. To our knowledge, all prior protocols in the offline/online model require
linear online time at the servers.

Boneh, Lewi, and Wu [BLW17] show that “privately constrained PRFs” imply
a two-server online/offline scheme in which only one of the servers needs to
be active in the online phase. The scheme has polylogarithmic communication
complexity, yet the online server’s work is linear in the database size. Subse-
quent work [BKM17,CC17,BTVW17] constructs such PRFs from standard lat-
tice assumptions.

Towards reducing the server’s computation time in PIR protocols, Patel,
Persiano, and Yeo [PPY18]| introduce the notion of private stateful information
retrieval. They give single-server schemes in which, after an offline phase, the
client can privately retrieve a bit from the database while requiring the server to
only perform a number of online public-key operations sublinear in the database
size, along with a linear number of symmetric-key operations. The offline phase of
their protocol requires the client to download a linear number of bits in the offline
phase and the server must perform a linear number of total operations in the
online phase. Their schemes do allow amortizing the linear-communication offline
phase over multiple subsequent queries, although the online time is always linear.
In contrast, our protocols have total communication and online time sublinear
in the database size, even for a single query.

Demmler, Herzberg, and Schneider [DHS14] give a scheme which reduces the
computational burden of each server by means of sharding the database. The
combined work of all servers in their scheme is still linear.

Marginally sublinear online time. The original PIR paper [CGKS95] points
out that a three-party communication protocol of Pudlak and Rédl [PR93, The-
orem 3.5 yields a two-server PIR protocol. (See also the subsequent journal
version [PRS97|.) In particular, on an n-bit database, that protocol has total
communication a(n) = O( lofgo g’i"), or just slightly sublinear. Closer inspection
of this protocol reveals that one of the two servers can additionally be made
to run in sublinear time a(n), and thus this early scheme can be cast as an
offline/online PIR scheme with just slightly sublinear offline communication. As
far as we know, no prior work has drawn attention to this fact.

Lipmaa [Lip09] constructs a computational single-server PIR protocol with
preprocessing. In its offline phase, the server encodes the database as a branching
program with (n + o(n))/logn nodes, and stores the branching program, using
n + n/ polylog(n) bits. In the online phase, the server homomorphically evalu-
ates the branching program, using a protocol of Ishai and Paskin [IP07], which
requires O(n/logn) public key operations, or slightly sublinear in the database
size. (The homomorphic ciphertexts must be no shorter than the security param-
eter A = w(logn), and so, strictly speaking, the number of bit operations in the
online phase is still linear. However, the running time is dominated by the public
key operations.)
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The complexity of these two protocols is much larger than ours but we still
find it interesting to see such radically different ways to construct two-server
PIR with sublinear online time.

Amortize work. It is also possible to improve the computational efficiency of
PIR by having each PIR server jointly process a batch of queries. If a server
can process a batch of @ queries to an n-bit database at o(@n) cost, processing
queries in a batch yields sublinear amortized time per query at the server. This
general strategy is fruitful both when the batched queries originate from the
same client [[KOS04,Hen16, ACLS18] and from different clients [BIM04,IKOS06,
LG15].

Our multi-query scheme of Sect. 4 similarly allows the client to amortize the
server’s linear-time offline computation over many queries—as in batch PIR. The
difference is that our multi-query scheme allows the client to make its queries
adaptively (one at a time), while batch-PIR schemes require the client to make
all queries in a batch non-adaptively (all at once).

Relax the security property. One final approach to reducing the online server
time in PIR is to aim for a weaker security property than standard crypto-
graphic PIR schemes do. Toledo, Danezis, and Goldberg give PIR schemes with
a differential-privacy-style notion of security and show that when some leakage
of the client’s query to the server is allowed, the servers can run in sublinear
online time [TDG16].

1.5 Technical Overview

To illustrate our techniques, we start by presenting a simplified version of our
two-server offline/online PIR scheme with statistical security. The online phase
of this protocol runs in time o(n), and the protocol’s total communication is

o(n).
A toy protocol. Two servers hold a replica of the database z € {0,1}". The
two phases of the protocol proceed as follows:

Offline phase. This phase takes place before the client has decided which bit it
wants to read from the database.

— The client divides the database indices {1,...,n} at random into y/n disjoint
sets (S1,...,9 7), each of size \/n, and sends these sets to the first server.
(Sending these sets explicitly would take £2(nlogn) communication, which is
too much. We explain later how to reduce the communication in this step.)

— The first server receives the sets (Si,...,S ) from the client. For each such
set Sj, it computes the parity of the database bits indexed by the set. That
is, for j € {1,...,+/n}, the server computes the parity h; «— Ziesj x; mod 2.
The server sends these parity bits (hi,...,h /) to the client.

— The client stores the sets (S1, ..., 5) and the parity bits (hy,...,h z).

Online phase. This phase begins once the client has decided on the index i € [n]
of the bit it wants to read from the database.
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— The client finds the set S; that contains its desired index i. The client then
removes a single item ¢* from the set S;, which it chooses as follows:
e With probability 1 — (y/n — 1)/n the client chooses i* « i.
e With the remaining probability, the client chooses i* randomly from the
set of all other elements in 5.
The client then sends the set S’ < S;~{i*} to the second server.

— Upon receiving the set S’ from the client, the second server computes and
sends back to the client the parity of the database bits indexed by the set:
a — Y ,cq i mod 2. Computing the answer requires the second server to
probe at most |S’| = O(y/n) bits of the database, which allows the server to
run in only O(y/n) time.

— Finally, when the client receives the answer from the second server, it recovers
the value of the database bit ;= by computing x;- < h; —a mod 2. Crucially,
since the client has chosen i* with a bias towards i, it recovers the value x;
of its bit of interest with high probability 1 — O(1/4/n). (By iterating the
scheme A times in parallel, the client can drive the failure probability down
to at most 27*.)

With a bit of work, it is possible to show that the set S’ that the client sends to
the second server is a uniformly random subset of [n] of size v/n — 1. Thus, the
values that both servers see are distributed independently of the index ¢ that the
client is trying to read.

The resulting scheme already achieves the main goal of interest: in the online
phase, the server can respond to the client’s query in time O(y/n). However, the
toy scheme also has two major shortcomings:

1. The communication in the offline phase is super-linear: sending the sets
(S1,---,5 7) to the first server requires £2(nlogn) bits.

2. The scheme requires @(nlogn) bits of client storage between the offline phase
and the online phase.

We can address both of these challenges at once by partially derandomizing
the client. In the revised scheme, in the offline phase, the client chooses a single
set S C [n] of size \/n. The client also sends to the server y/n random “shifts”
A ={61,02,...,0 7} € [n]. The client and server then use S and A to construct
a collection of /n sets (S1,...,5 ) by setting, for every j € {1,...,/n}, Sj «
{i+0; | © € S}. The client and the server then run the rest of the toy protocol
using this collection of sets. This modification increases the failure probability,
since there is now some chance that the client’s desired index ¢ will not be in any
of the sets (51, ..., Sﬁ). Even so, the client and servers can repeat the protocol
O(logn) times in parallel to drive down the failure probability.

This modifications reduces both the communication complexity of the offline
phase and the amount of client storage and time to O(y/n). With some work, we
can also argue that this modification preserves security.

Improvements to the toy scheme. While the above patched two-server
scheme achieves all of our efficiency goals, it leaves a few things to be desired:
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Reducing online communication with puncturable pseudorandom sets. In the
protocol sketched above, the communication in the online phase is ©(y/n).
Under the assumptions that one-way functions exist, we can reduce the online-
phase communication to poly(A,logn), for security parameter A.

To do so, we introduce a new tool, which we call a puncturable pseudorandom
set (Sect. 2). Essentially, a puncturable pseudorandom set allows the client in
the toy scheme above to send the server a compressed representation of the
random set S, in the form of a short key k. Furthermore, the set key is “punc-
turable,” in that for any i* € S, the client can produce a punctured set key
ki« that is a compressed representation of S~ {i*}. Crucially, the punctured
key k;« also hides the identity of the removed element *.

We construct a puncturable pseudorandom set from puncturable
PRFs [BW13,KPTZ13,BGI14,SW14]| (Theorem 3), which have simple con-
structions from pseudorandom generators. The keys in our construction have
size O(Alogn) for sets of size O(y/n) over a universe of size n and security
parameter \. Plugging this puncturable pseudorandom set construction into
the toy scheme above reduces the communication complexity of the online
phase to the length of a single punctured set key, plus the single bit answer,
for O(Alogn) bits total.

Refreshing the client’s state. The client in the toy scheme can only use the
results of the (computationally expensive) offline phase to read a single bit
from the database. The following modification to the toy scheme allows the
client to “refresh” the bits it downloads in the offline phase, so that it can
reuse these bits for many online queries (Sect. 4).

After the client makes a query for index ¢ € [n] using set S;, the client
discards that set from its state. Now the client must somehow “refresh” its
local state. Our observation is that the set S; is a random size-y/n subset of
[n], conditioned on i € S;. The client refreshes its state by asking the first
server for the parity of a random size-(y/n — 1) subset S’ of [n]. Since the
client already knows the value of z;, it can compute and store the parity of
the database bits in the set S’ U {i}. (Ensuring that this refreshing process
maintains security requires handling some technicalities.)

Although this construction requires the client to use independent random sets
(S1,---,5 /7), using puncturable pseudorandom sets the client can send to the

offline server all of them using only O(y/n) bits of communication.

From two servers to one. Converting the two-server offline/online PIR scheme
to a single-server one is conceptually simple. Say that in the offline phase of
the two-server scheme, the client sends a query ¢ to the first server and receives
an answer a. To convert it into a single-server scheme, we have the client send
an encryption E(q) of its offline query to the server, and we have the server
homomorphically compute and send back the encrypted answer E(a). Since
the server learns nothing about the offline query ¢, the online phase can pro-
ceed exactly as in the two-server scheme.

With fully homomorphic encryption [Gen09|, this transformation is straight-
forward and maintains the communication complexity of the original two-
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server scheme. We show in Theorem 20 that it is possible to execute these
steps using the much lighter-weight tools of linearly homomorphic encryp-
tion and single-server PIR, with slightly worse communication efficiency and
online time: O(n?/?) - poly()), for security parameter \.

— Proving optimality. Finally, we prove a lower bound on the offline communica-
tion and online time using a classic lower bound of Yao [Yao90]. In particular,
we show (the full version of this work) that any offline/online PIR scheme
with small offline communication and online time, and in which the servers
store the database in unmodified form, implies a good solution to “Yao’s Box
Problem.” We then apply a preexisting time/space lower bound against algo-
rithms for Yao’s Box Problem to complete the lower bound (Theorem 23).

1.6 Notation

We use N to denote the set of positive integers. For an integer n € N, [n] denotes
the set {1,2,...,n} and 1" denotes the all-ones binary string of length n. For
n € N and s € [n], an s-subset of [n] is a subset of size exactly s, and ([Z])
denotes the set of all s-subsets of [n]. Logarithms are taken to the base 2. We
ignore integrality concerns and treat expressions like v/n, logn, and m/n as
integers.

The expression poly(+) refers to a fixed (unspecified) polynomial in its param-
eter. The notation 5() hides arbitrary polylogarithmic factors, i.e., f(n) =
O(g(n)) if f(n) = O(g(n)) - poly(logn). The notation Oy(-) hides arbitrary
polynomial factors in (the security parameter) A, ie., f(n,A) = Ox(g(n)) if
f(n,A) = O(g(n)) - poly(A).

For a finite set S, the notation = <& S refers to choosing = independently
and uniformly at random from the set S. For a distribution D over a set S,
the notation z <+ D refers to choosing x € S according to distribution D. For
p € [0, 1], the notation b <~ Bernoulli(p) refers to choosing the bit b to be ‘1’ with
probability p and ‘0’ with probability 1 — p.

We use the RAM model of computation with the size of the word logarithmic
in the input length and linear in the security parameter. To avoid dependence
on the specifics of the computational model, we usually specify running times
up to polylogarithmic factors. Throughout this text, an efficient algorithm is a
probabilistic polynomial time algorithm. Furthermore, we allow all adversaries
to be non-uniform. (Though this is not fundamental, and, with appropriate mod-
ifications in the security games, the results hold also in the uniform setting.)

We say that a pseudorandom generator (PRG) or pseudorandom permutation
(PRP) is e-secure if no efficient adversary can distinguish the PRG or PRP from
random with advantage better than €(\), on security parameter \.

2 Puncturable Pseudorandom Sets

In this section, we introduce a new cryptographic primitive called puncturable
pseudorandom sets and give few natural constructions. Puncturable pseudoran-
dom sets are a key component of our PIR schemes.
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A puncturable pseudorandom set is very closely related to a puncturable
pseudorandom function (“puncturable PRF”) [BW13,KPTZ13,BGI14,SW14,
HKW15]. To explain the difference by analogy: a PRF key is a compressed
representation of a function f : [n] — [n], and a PRF key punctured at point
x* € [n] allows its holder to evaluate f at every point in [n] except at the punc-
tured point z*. The punctured key should reveal nothing about the value of
f(x*) to its holder. (The formal standard definition appears in the full version
of this work.)

Analogously, the key for a puncturable pseudorandom set is a compressed
representation of a pseudorandom set S C [n]. The set key punctured at element
z* € S allows its holder to recover all elements of S ezcept the punctured element
z*. The punctured set key reveals nothing about z* to its holder, apart from
that fact that x* is not one of the remaining elements in S.

2.1 Definitions

Let s : N — N be a function such that s(n) < n. A puncturable pseudorandom
set with set size s consists of a key space K, a punctured-key space K, and a
triple of algorithms:

— Gen(1*,n) — sk, a randomized algorithm that takes as input the security
parameter A € N, expressed in unary, and a universe size n € N, expressed in
binary, and outputs a set key sk € IC,

— Punc(sk, i) — skp, a deterministic algorithm that takes in a key sk € K and
an element 7 € [n], and outputs a punctured set key sk, € K,,, and

— Eval(sk) — 5, a deterministic algorithm that takes in a key sk € K U IC, and
outputs a description of a set S C [n], written as |S| strings of logn bits in
length each.

A puncturable pseudorandom set must satisfy the following notions of efficiency,
correctness and security.

Efficiency. For every security parameter A € N and universe size n € N, the
routines Gen, Punc, and Eval run in time s(n) - poly(A,logn), where s(n) is the
set size.

Correctness. For every \,n € N, if one samples sk «+— Gen(1*,n) and computes
S« Eval(sk), it holds, with probability 1 over the randomness of Gen, that

1. Se (s[{g)), where (s[&})) denotes the set of all size-s(n) subsets of [n], and
2. for all i € S, Eval(Punc(sk,i)) = S~{i}.

Security. Let ¥ be a puncturable pseudorandom set with set size s: N — N.
Let W, be the event that adversary A wins in Game 1 with respect to ¥, with
security parameter A and universe size n. Then we define A’s guessing advantage
as: )

PSAdv[A,¥](A,n) :=Pr[Wy ] — m

(1)
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A puncturable pseudorandom set ¥ is computationally secure if for every A €
N, every polynomially bounded n = n(\), and every non-uniform polynomial-
time adversary A, we have that PSAdv[A, ¥](A,n) < negl(A). The puncturable
pseudorandom set is e-secure if that advantage is smaller than e(A,n). We say
that ¥ is perfectly secure if for every A\,n € N and for every (computationally
unbounded) adversary A, we have that PSAdv[A, ¥](\,n) = 0.

Game 1 (Puncturable pseudorandom set security). For A\,n € N, and a
puncturable pseudorandom set ¥ = (Gen, Punc, Eval), we define the following game,
played between a challenger and an adversary:
— The challenger executes the following steps:
o sk «— Gen(1*,n)
e S — Eval(sk)
e z* &S
e sk, «— Punc(sk,z™)
and sends 1* and sk, to the adversary.
— The adversary outputs an integer =’ € [n].

We say that the adversary “wins” if z* = z’.

In the full version of this work, we show that this security propert?/

implies
that the output of Eval on a random key is a pseudorandom set in (S[& )).

Throughout this work, we often refer to puncturable pseudorandom sets as
puncturable pseudorandom sets for brevity.

2.2 Constructions

Fact 2 (Perfectly secure puncturable pseudorandom set with linear-
sized keys). For any function s : N — N with s(n) < n, there is a perfectly
secure puncturable pseudorandom set with set size s. Moreover, for universe size
n, the set keys and punctured keys are both of length (s(n) + O(1))logn bits.

Proof. The set key is the description of aset S < ( [Z])—written as s numbers, each
of log n bits in length, along with a description of the universe size n. A punctured
key is just this set of elements with the punctured element removed. a

Theorem 3 (puncturable pseudorandom set with short keys from
puncturable PRFs). Suppose there exists an ex-secure puncturable PRF (we
give the formal definition in the full version of this work) that, on security param-
eter A and input-space size n, has keys of length (A, n) bits and punctured keys
of length kp(A,n) bits. Then, there exists an e-secure puncturable pseudorandom
set with set size O(y/n) that, on security parameter A and universe size n, has
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— set keys of length k(\,n) + O(logn) bits and
- punctured keys of length k,(A,n) + O(logn) bits, and
- 6()\,71) = pOIY()‘vn) ’ (67: + 27)\)'

A puncturable pseudorandom set that proves the theorem appears in Con-
struction 4. We prove security and correctness of the construction in the full
version of this work.

Remark 4. The Gen routine in Construction 4 fails with negligible probability,
and therefore, as presented, the construction has imperfect correctness. We can
achieve perfect correctness by having the Eval and Punc routines treat sk = L
as some fixed set (e.g., the set [s]). Our security analysis accounts for this.

Construction 4 (Puncturable pseudorandom set from puncturable PRF).
Given a puncturable PRF F = (PRFGen, PRFPunc, PRFEval), we construct a puncturable
pseudorandom set ¥ = (Gen, Punc, Eval) with set size s(n) := \/n/2.

Ur.Gen(1*,n) — sk

— Repeat at most A times:
e Sample k «+— PRFGen(1*,n).
e Compute S «— {PRFEval(k,1), PRFEval(k,2), ... , PRFEval(k, s(n))}.
e If |S| = s(n), halt and output sk « (n, k). output L.

— After running X iterations of the loop unsuccessfully, output L.

W .Punc(sk, i) — skp

— Parse the secret key as a pair (n, k).
— Find the least integer £ such that PRFEval(k, ¢) = i.
If no such ¢ exists, output L.
— Compute kp < PRFPunc(k, £) and output sk, < (n, kp).

Ur.Eval(sk) — S

— Parse the secret key as a pair (n, k).
— Output the set S < {PRFEval(k, 1), PRFEval(k,2), ... , PRFEval(k,s(n))}.
— (If k is punctured at some value, skip this value when computing S.)

Instantiating Theorem 3 with the puncturable PRF [BW13,KPTZ13,BGI14]
based on the tree-based PRF of Goldreich, Goldwasser, and Micali [GGMS86]
leads to a very efficient puncturable pseudorandom set construction from pseu-
dorandom generators. In the full version of this work, we prove the following:

Corollary 6. Assuming that pseudorandom generators (PRGs) exist, there
exists a secure puncturable pseudorandom set with set size ©(y/n).
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In particular, for every eg-secure length-doubling PRG G, there exists an e-
secure puncturable pseudorandom set U with set size \/n/2, that has, for every
security parameter A € N and universe size n,

— set keys of A+ O(logn) bits in length,
— punctured keys of O(Alogn) bits in length, and
— e(\,n) < poly(\,n) - (eg(\) +277).

A puncturable pseudorandom set with fast membership testing from
PRPs. We say that a puncturable pseudorandom set ¥ on universe size n has
a fast membership test if there exists an algorithm InSet that takes as input
a set key sk and an element ¢ € [n], runs in time poly(A,logn), and outputs
“1” if ¢ € W.Eval(sk) and “0” otherwise. Crucially, the running time of the fast
membership test must grow only with logn, rather than linearly with the set
size s(n). The following is a construction of such a puncturable pseudorandom
set. The proof appears in the full version of this work.

Theorem 7. Suppose there exists an € p-secure pseudorandom permutation that,
on security parameter A and input-space size n, has keys of length k(\,n) bits.
Then, there exists an e-secure puncturable pseudorandom set for any set size
s: N — N that, on security parameter A and universe size n, has

— set keys of length k(\,n) bits,

punctured keys of length s - O(logn) bits,
- e < poly(\,n)-ep, and

a fast membership test.

2.3 Shifting Puncturable Pseudorandom Sets

When using puncturable pseudorandom sets in this paper, we will want to equip
them with two additional functionalities.

1. GenWith(1*,n,i) — sk is an algorithm that takes in n € N and i € [n],
and outputs a uniformly random puncturable pseudorandom set key sk for a
s(n)-subset of [n], subject to the constraint that ¢ € Eval(sk).

2. Shift(sk, &) — sk’ is an algorithm that takes in a set key sk € K and an integer
§ € [n], and outputs a set key sk’ such that Eval(sk’) = {i +J | i € Eval(sk)}.
(The addition ¢ + § is done modulo n, and we identify 0 € Z,, with n € [n].)

In the full version of this work, we show how to extend any puncturable
pseudorandom set to efficiently support both these functionalities by including
a shift A € [n] with every key and interpreting every element ¢ in the base set
as (i + A) mod n in the encompassing set. This transformation only increases
the size of the puncturable set keys by an additive O(logn) term. Therefore, we
subsequently assume without a loss of generality that every puncturable set is
equipped with GenWith and Shift.
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3 Two-Server PIR with Sublinear Online Time

We now formally define two-server offline/online PIR and construct such schemes
that achieve sublinear online time and provide either statistical or computational
security.

3.1 Definition

Informally, a two-server offline/online PIR scheme is a protocol between a client,
an offline server, and an online server. Both servers have access to a database
x € {0,1}™. The PIR protocol proceeds in five steps:

1. First, the client uses the Setup algorithm to generate its own client key ck,
along with a hint request ¢;,. The client sends the hint request g, to the offline
server. Crucially, the client can run the Setup algorithm before it has decided
which bit of the database it wants to read.

2. The offline server feeds the hint request ¢, and the database = € {0,1}" into
the Hint algorithm, which generates a hint h that the offline server returns to
the client.

3. Once the client has decided on the index i € [n] of the bit it wants to read
from the database, it feeds its key ck and index i into the Query algorithm,
which produces a query g. The client sends this query to the online server.

4. The online server feeds the client’s query ¢ into the Answer algorithm that is
further given access to the database. (The focus is on schemes in which the
Answer algorithm probes o(n) bits of the database and run in time o(n).) The
online server then returns the answer a to the client.

5. The client feeds the hint h and the answer a into algorithm Reconstruct, which
outputs the i-th bit of the database.

A secure offline/online PIR scheme should guarantee that neither server inde-
pendently learns anything (in either a statistical or computational sense) about
the client’s private index 1.

Definition 8 (Offline/online PIR). An offline/online PIR scheme is a tuple
IT = (Setup, Hint, Query, Answer, Reconstruct) of five efficient algorithms:

— Setup(1*,n) — (ck, g,), a randomized algorithm that takes in security param-
eter \ and database length n and outputs a client key ck and a hint request gy,.
— Hint(xz, gn) — h, a deterministic algorithm that takes in a database z € {0,1}"
and a hint request ¢, and outputs a hint h,
— Query(ck, i) — ¢, a randomized algorithm that takes in the client’s key ck and
an index ¢ € [n], and outputs a query ¢,
— Answer”(q) — a, a deterministic algorithm that takes as input a query ¢ and
gets access to an oracle that:
e takes as input an index j € [n], and
o returns the j-th bit of the database z; € {0,1},



Private Information Retrieval with Sublinear Online Time 61

outputs an answer string a, and
— Reconstruct(h,a) — x;, a deterministic algorithm that takes as a hint h and
an answer a, and outputs a bit x;.

Furthermore, the scheme IT must satisfy the following properties:

Correctness. For every \,n € N, z € {0,1}", and i € [n], we require that

(Ck7 qh) = Setup(l/\7 ’fl)
h — Hint(z, gn)
q < Query(ck, )
a < Answer®(q)

(2)

Pr |Reconstruct(h,a) = x; :

where the probability is taken over any randomness used by the algorithms.

Security. For \,n € N, and i, j € [n], define the distribution

[, (ckan) < Setup(1*,n)
Dk,n,l = {q : q «— Query(CK Z) ’ (3)

and for an adversary A, define the adversary’s advantage as

PIRadv[A, IT](A,n) := max {Pr [A(IA,D,\%,») = 1} —Pr [A(l)‘,D,\,mj) = 1} }

i,j€[n]

Scheme IT is computationally secure if for every polynomially bounded function
n(A) and every efficient adversary A, the quantity PIRadv[A, IT](A,n(})) is a
negligible function of A. In particular, we say it is e-secure if this advantage is
at most €(A\,n). The scheme is statistically secure if the same holds true even for
computationally unbounded adversaries.

Remark 9 (Online running time). In Definition 8, the online server’s answer
algorithm Answer gets oracle access to the bits of the database . We do so to
emphasize that, for all of the PIR schemes described in this paper, the online
server runs in time sublinear in the database size n, and can thus reply to the
client’s query after probing only o(n) bits of the database. In practice, the online
server could implement each oracle call using a lookup to the database in 6(1)
time, in a reasonable model of computation (e.g., the RAM model).

Remark 10 (Information-theoretic PIR as offline/online PIR). It turns out that
any two-server PIR scheme with perfect information-theoretic security can be
cast as an offline/online PIR scheme. To see why: in a two-server perfectly secure
PIR, the distribution over query strings that the client sends to each server is
independent of the database bit that the client wants to read. (If not, the scheme
cannot possibly be perfectly secure.) Thus, the client can query one of the two
servers server before it knows which database bit it wants to read.
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However, in all existing two-server perfectly secure PIR schemes, both servers
run in time {2(n) on databases of size n. Therefore, viewing any standard two-
server PIR scheme as an offline/online scheme yields a two-server offline/online
PIR scheme in which the online running time is £2(n). In contrast, we construct
offline/online PIR schemes in which the online server runs in time o(n).

3.2 New Constructions

The following theorem, which we prove at the end of this subsection, captures
our main result on two-server offline/online PIR. It shows that it is possible to
simultaneously achieve sublinear total communication and sublinear online time:

Theorem 11 (Two-server statistically secure offline/online PIR). There
exists a statistically secure two-server offline/online PIR scheme, such that on
every n-bit database and every security parameter A € N:

~ the offline phase uses O(\y/nlog®n) bits of communication,
~ the offline server runs in time Oy (n),

— the online phase uses O(Ay/nlogn) bits of communication,
~ the online server runs in time Ox(y/n), and

the client uses time and memory Ox(y/n).

Moreover, the security advantage of any adversary is at most poly(\,n) - 27
Remark 12 (Concrete efficiency). For simplicity, we give the running times of
the routines in our schemes up to poly(\,logn)-factors. It is possible to make
these hidden factors as small as O(Alogn).

Remark 13 (Trading communication for online time). By adjusting the param-
eters of the construction, it is possible to generalize Theorem 11 to give a two-
server offline/online PIR scheme in which, for any function C: N — N with
C(n) < n/2, the offline phases uses C(n) bits of communication, and the online
server runs in time O(n/C(n)). This adjustment requires the client and prepro-
cessing server to have access to a sequence of common random bits, or, in the
computational setting, assuming the existence of pseudorandom generators.

In the full version of this work we discuss additional issues such as support
of databases with longer rows, further reducing the client’s online time via a
connection to the 3-SUM problem, and implications of Theorem 11 for random
self-reductions.

The following theorem, which we prove at the end of this subsection, shows
that, if we settle for only computational—rather than statistical—security, we
can decrease the online communication cost of the PIR scheme of Theorem 11
from Oy (y/nlogn) to Ox(logn) without degrading any other efficiency metrics.
It also allows us to slightly decrease the offline communication cost.
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Theorem 14 (Two-server computational offline/online PIR). Assum-
ing the existence of pseudorandom generators, there exists a two-server
offline/online PIR scheme ¥ that satisfies the efficiency criteria of Theorem 11,
except that

— the communication cost of the offline phase decreases to O(Ay/nlogn),

— the communication cost of the online phase decreases to O(A?logn), and

— if the underlying PRG is eg-secure, the PIR scheme is e-secure for e(A,n) =
poly(\,n) - (eg(A,n) +277).

The main building block we use to construct two-server PIR schemes with
low communication complexity and low online server time is puncturable pseu-
dorandom sets with small keys. We give the construction in the next subsection,
and prove the following lemma about the construction in the full version of this
work.

Lemma 15. Let s: N — N be any function such that s(n) < n/2. Let ¥ be an
ey -secure puncturable pseudorandom set with set size s, key size k, and punctured
key size kp. Then there exists a two-server e-secure offline/online PIR scheme
Iy, such that on security parameter \ and every n-bit database, in the offline
phase:

~ the client sends Ak + (An/s(n))log® n bits to the server,
— the offline server runs in time n - poly(A,logn),
— the offline server’s answer is O((An/s(n))logn) bits in length.

In the online phase:

— the client sends Ay bits to the server,
— the online server runs in time s(n) - poly(X,logn), and
— the online server’s answer consists of A bits.

Furthermore,

— the client runs in time (s(n) + n/s(n)) - poly(A,logn) and stores O(Ak +
(An/s(n))log®n) bits between the offline and online phases, and
— the advantage e(A,n) < poly(\,n) - (ew(X\,n) +277).

Theorem 11 follows by instantiating Lemma 15 with the information-
theoretic puncturable pseudorandom set construction of Fact 2, which has keys
and puncturable keys of length at most (s + O(1))logn, and by setting s = \/n.

Theorem 14 follows by instantiating Lemma 15 with the puncturable pseu-
dorandom set of Corollary 6, which has keys of length O(\) and punctured keys
of length O(Alogn), and setting s = y/n. Additionally we reduce the offline com-
munication from O(\y/nlog®n) to O(A\y/nlogn) by replacing the random shifts
used in Construction 16 with pseudorandom ones, generated from one seed of
length A.
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Construction 16 (Two-server PIR with sublinear online time). The con-
struction is parametrized by set size s: N — N and uses a puncturable pseudo-
random set ¥ = (Gen, Punc, Eval) with key space K, punctured-key space K, and
set size s, extended by routines (Shift, GenWith). The final scheme is obtained by
running X instances of this scheme in parallel. Throughout, let m := (n/s(n)) logn.

Offline phase

Setup(1*,n) — ck, g Hint(gn,z € {0,1}") — h € {0,1}™
sk — Gen(1*,n) parse gp as sk € K and 0 € [n]™
sample 81, ..., 0m <& [n] forj=1,...,m do:

ck — (sk, 81, ..., 0m) S; « Eval(Shift(sk, 6;))

output ck and ¢qp <« sk hj — Ziesj z; mod 2

output h «— (h1,...,hm)

Online phase

Query(ck,i € [n]) — ¢€Kp Answer”(q € K,) — a € {0,1}

parse ck as sk € IC and ¢ € [n]™ S« Eval(q)

sample a bit b < Bernoulli(=1) return a «— .o &; mod 2

find a j € [m] s.t. i — §; € Eval(sk)

if such a j € [m] exists: Reconstruct(h € {0,1}",a € {0,1}) — z;
skq < Shift(sk, d;) let j and b be as in Query’

otherwise: if j = 1L or b =0 then output L
je— 1 output z; « h; —a mod 2

i’ <& Eval(sk)

skq « Shift(sk, i — ")
i£h=0: dpunc — i
else: ipunc L Eval(skll)\{i}
output g < Punc(skg, Zpunc)

t For simplicity, we avoid passing j and b explicitly from Query to Reconstruct.

3.3 Construction of PIR from Puncturable Pseudorandom Sets

We first present an overview of the construction. The formal specification appears
in the full version of this work, and the full analysis appears there as well.

The PIR scheme makes use of a puncturable pseudorandom set ¥ =
(Gen, Punc, Eval) with set size s(n) extended by routines (Shift, GenWith). We
denote s := s(n) and assume without loss of generality that s > logn, as other-
wise, a scheme in which the offline server sends the entire database to the client
trivially satisfies the lemma. We also define m := (n/s)logn. The PIR scheme
operates in two phases, in each of which the client interacts with one of the two
servers:

Offline phase

1. The client samples a random set key sk «— Gen(1*,n) for universe size n and
set of size s. It also samples m random shifts d1,...,d,, € [n]. The client
sends the set key and the shifts to the offline server.
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2. Upon receiving the set key sk and the random shifts 41, . . ., §,, from the client,
the offline server expands the set key to get the set S « Eval(sk) C [n]. Each
shift §; € [n] defines a “shifted” set S; «— {z + §; modn | z € S} (when
adding elements in [n], we identify it with Z,,).

For each shift §;, the offline server computes the parity of the bits pointed by
the shifted set Sj, i.e., sets h; := 3 ;g @ mod 2. These bits constitute the

hint h = (hy,...,hm) € {0,1}™, which the server sends to the client.

Online phase. The client takes as input an index iy, € [n] of the database it
wants to query. The client has its set key sk and the shifts vector § from the
offline phase and the hint A € {0,1}™ from the offline server.

1. The client expands the set key sk into the set S < Eval(sk). It then searches
for a value j € [m] such that iy, +d; € S. (The client can execute this search

in O(m + n) time using a hash table.)
— If such a shift §; exists, the client computes the corresponding shifted set
key sk, < Shift(sk, d;), so that iy falls into the set Eval(sk,).
— If such an index does not exist, the client samples an element i < .S and
computes the shifted set sk, < Shift(sk, ipir — 7).
Either way, we refer to the chosen set key as sk, and it holds iy, € Eval(sky).

2. The client samples a bit b <+ Bernoulli((s —1)/n) and then chooses an element

Ipunc at which to puncture its set key sk,.
— If b =0, the client punctures the key sk, at the point: ipunc < %pir-
— If b = 1, the client punctures the key sk, at a random point: ipync <+
Eval(skq) ~ {pir }-
The client sends the punctured key g <~ Punc(sky, ipunc) to the online server.
(In the proof, we show that this punctured key computationally hides the
index g, of the bit that the client wants to fetch from the database.)

3. The online server computes the punctured set S* < Eval(g) C [n] and views
this set as s — 1 pointers to bits in the database z € {0,1}". The online server
computes the parity of these s — 1 bits: a «— >, . 2; mod 2. The online
server then returns this parity to the client. Notice that the online server only
needs to probe s — 1 bits of the database and can run in time s-poly (X, logn).

4. If, in Step 2, the client’s random bit b = 0, the client can recover the bit at
position ¢pir in the database from the hint h and the answer a by computing

(h—a)mod2 =737 q@i— D g Ti =D ;cq®i— ZS\ipir Ti = T«

Note that the scheme fails if either ipync # ipir OF Tpir & Ujeim S;. The proba-
bility of the former is (s—1)/n and, by setting m = nlogn/s, we can drive down
the probability of the latter to be approximately 1/n. By running O()\) instances
of the scheme in parallel, using independent randomness for each instance, we
can drive the overall failure probability to be negligible in A.

It is now possible to transform the PIR scheme into one with perfect correct-
ness, at the expense of a negligible security loss. To do so, if the client detects
an error (which happens with only a negligible probability), it simply reads its
desired bit from the database using a non-private lookup. (Achieving perfect
correctness and security is also possible, at the cost of having an offline phase
that runs in expected polynomial time.)
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4 Two-Server PIR with Sublinear Amortized Time

One shortcoming of the PIR scheme of the previous section is that every exe-
cution of its offline phase supports only one subsequent query. To perform each
additional query, the client and the server must rerun the offline phase. There-
fore, although the online query-processing time is sublinear, the overall cost of
each query, including that of the offline phase, remains linear.

We now extend the scheme of the previous section such that a single execu-
tion of the offline phase enables the client to subsequently query the database
polynomially many times, without ever having to rerun the offline phase. The
extended scheme is nearly as efficient as the basic, single-query scheme. The
only loss in efficiency is the online communication, which increases to O(n'/?).
We stress that the client can choose the retrieved indices adaptively, and so our
scheme does not rely on jointly processing a batch of queries.

Our security definition, given in the full version of this work, accounts for
an active (fully malicious) adversary that controls either of the two servers, and
can adaptively choose the database indices that the client queries. Here, we give
our main result:

Theorem 17 (Two-server multi-query offline/online PIR). Assuming
the existence of pseudorandom permutations, there exists a two-server multi-
query offline/online PIR scheme, such that on every n-bit database and every
security parameter A € N, in the offline phase:

~ the offline server runs in time Oy (n),
— the total communication is O(A\/nlogn) bits,

and in the online phase:

~ the online server runs in time Ox(y/n),
— the total communication is O(A/nlogn) bits, and
— if the underlying PRP is ep-secure, the PIR scheme is e-secure for e(A,n) <

p01Y()‘7 77,) ’ (GP(Aa ’fl) + 2_)\)'
Furthermore, the client uses offline time, storage, and online time 6A(n1/2).

In the full version of this work, we give the construction that fully specifies
the scheme that proves Theorem 17. The full analysis appears in the full version
of this work, where we also prove the following corollary:

Corollary 18 (Reducing communication). Assuming the existence of pseu-
dorandom generators, there exists a scheme as in Theorem 17, albeit

~ the client offline time increases to Oy (n), B
~ the client storage and online time increases to Ox(n®/%), and
~ the total online communication decreases to O(A?logn).

Remark 19. As in Sect. 3, it is possible to achieve statistical security, by replac-
ing the computationally secure puncturable pseudorandom set in the proof of
Theorem 17, with a perfectly secure one and applying a standard “balancing”
technique [CGKS95, Section4.3] to get a scheme with online work and commu-

nication Oy (n2/3).
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4.1 Sketch of the Construction

We sketch the construction here, but refer to In the full version of this work for
the details.

Our starting point is the single-query scheme of Sect. 3. There, the hint con-
sists of a list of m = y/nlogn random sets Sy, ..., S, C [n], each of size roughly
\/n, represented by m puncturable pseudorandom set keys, along with the parity
of the database bits in each set. In the online phase, to read the ith database
bit, the client finds a set S; € {S1,...,Sn} such that i € S; and with good
probability sends to the right server the set S’ = S;~\ {i}. Once the client has
used the set S; to make a query, the client cannot use S; again. If the client used
S; to query for another index i’, the right server would, with good probability,
see S;~{i} and S;~{i'}. Taking the difference of these sets would reveal the
secret indices {i,4'} to the right server, breaking security.

The key to supporting multiple queries with only one execution of the offline
phase is to have the client “refresh” its hint every time it queries the database.
We refer to the two servers as “left” and “right”. The left server provides the hint
to the client in the offline phase, and later helps the client to refresh that hint
after each subsequent read operation. The right server answers the queries that
allow the client to reconstruct the database bits it is attempting to read (as in
our constructions of Sect. 3).

The online-phase interaction with the right server proceeds exactly as in
the single-query scheme: the client sends a punctured set to the right server and
recovers the bit z;. However, the client in the multi-query scheme must somehow
replace the set S; (and the corresponding parity bit) with a fresh random set
Shew- To make this work, we must answer two questions: (i) How does the client
sample the set Spew? and (ii) How does the client fetch the corresponding parity
bit » ;e x; mod 27

First, for correctness and privacy to hold for future queries, the client must
sample the replacement set S,ey in a way that preserves the joint distribution of
the sets S1,...,S,. Notice that sampling a fresh random set Sy, of the proper
size will not work, since it distorts the joint distribution of the sets. In particular,
replacing a set S; that contains ¢ with a fresh random set causes the expected
number of sets in Si,..., S, containing i to decrease. What does work is to
have the client sample a fresh random set Spen subject to the constraint that it
contains the index i that the client just read. This is possible since, as described
in Sect. 2.3, punctured sets support biased sampling.

Second, the client needs to construct the correct parity bit hpew =
Zie S, Ti mod 2 for the new set Spew. The client obtains the new parity bit
by (1) puncturing the set Shew at element i and (2) querying the left server on
the punctured set. The left server then replies with the parity of the bits in the
punctured set Spew~\{i}. At this point the client can recover the parity of the
new set Spew by adding the reply from the left server and the value x;, which it
reconstructs, as in the single-query case, using the reply from the right server.

The final complication is that, as in Sect. 5, in order for the punctured set to
look random, the client occasionally needs to send to the servers a set punctured
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at the retrieved index i. In this case, the read operation fails. When this happens,
the client sends a punctured version of the new set Sy, to both servers, the client
leaves its hint state unchanged, and the read operations fails.

As in Sect. 5, by running A instances of the scheme in parallel we can drive
the overall failure probability to be negligible in A. We can then trade the failure
probability for a negligible security loss and get a perfectly correct scheme.

5 Single-Server PIR with Sublinear Online Time

In this section, we introduce single-server offline/online PIR. The syntax and cor-
rectness properties of a single-server offline/online PIR scheme, formally defined
in the full version of this work, are exactly as in Definition 8. The key difference
is that, in the single-server setting, the client interacts with the same server in
both the offline phase and the online phase. Still the server should learn nothing
about the database index the client wants to retrieve.

Unlike in the two-server setting, where we can achieve statistical security, in
the single-server setting, we must rely on computational assumptions [CGKS95].
Since non-trivial single-server PIR implies oblivious transfer [DMOO00], our
assumptions must imply public-key cryptography.

Our single-server schemes shift all of the expensive work of responding to the
client’s PIR query—the linear-time scan over the database and the public-key
operations—into the offline phase. The server can then respond to the client’s
query in the online phase much more quickly, with

— mno public-key cryptographic operations and
— server time sublinear in the size of the database.

Our main construction (Theorem 20) achieves Oy (n2/3) communication and
online time and Oy (n) server computational time in the offline phase, using lin-
early homomorphic encryption and standard single-server PIR. We also sketch
an asymptotically superior construction (Theorem 22) that achieves Oy (n'/?)
communication and online time, at the cost of using fully homomorphic encryp-
tion [Gen09]. Our lower bound of Sect.6 proves the optimality of this latter
scheme, up to log factors, with respect to the trade-off between offline commu-
nication and online time, given the restriction that the server must store the
database in unencoded from and use no extra storage.

A drawback of our single-server PIR schemes is that they have polynomial
communication £2(n'/2), which is higher than the polylog(n) communication of
state-of-the-art standard single-server PIR schemes [CMS99]. That said, in some
applications, the benefits of sublinear online time and no public-key cryptography
in the online phase may outweigh the costs.

The main result of this section is:

Theorem 20 (Single-server offline/online PIR). Suppose there exist:

— a linearly homomorphic encryption scheme (as defined in the full version of
this work) with ciphertext space G and
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- single-server PIR with communication cost poly(\,logn) and server compu-
tation time Ox(n) (for every database size n and security parameter A € N).

Then, there exists a single-server offline/online PIR scheme, that makes black-
box use of the group G, such that for every security parameter A € N and n-bit
database, it uses

— in the offline phase: Ox(n*/3) bits of communication and Ox(n) operations
in G, and _ _

~ in the online phase: Ox(n/3) bits of communication, Ox(n*/3) time, and no
operations in G.

Moreover, the client uses time and memory 5)\(712/3).

We prove Theorem 20 in the full version of this work.

Remark 21 (A much simpler scheme). In the full version of this work, we give a
very simple—and likely easy-to-implement—single-server offline/online scheme
that requires only linearly homomorphic encryption and has O(y/n) total com-
munication, online time, and client storage. The scheme uses no public-key
cryptographic operations in the online phase, and its simplicity makes it poten-
tially attractive for practical applications. The downside is that its online phase
requires a linear number of bit operations (but no public-key operations).

Patel, Persiano, and Yeo [PPY18] give an offline/online scheme with linear
communication and linear online server time (but a sublinear number of online
public-key operations) while this simple scheme has sublinear communication
and no public-key operations in the online phase. In contrast, the client in their
scheme can use a single offline phase for many online operations, while our single-
server scheme requires an offline phase before each online query.

Improving efficiency with higher-order homomorphisms

If we use a homomorphic encryption scheme that supports degree-two [BGNO5]
or higher-degree homomorphic computation, we can build offline/online PIR
schemes that provide even better communication efficiency. For example, given
a fully homomorphic encryption scheme [Gen09] (FHE), we can use the idea of
Theorem 20 with the two-server PIR scheme of Construction 16 to obtain:

Theorem 22 (Informal). Assume fully homomorphic encryption exists. Then,
for all security parameters X € N, there is a single-server offline/online PIR
scheme on n-bit databases that uses Ox(y/n) bits of communication and Ox (/)
server-side time in the online phase.

The observation is that, in the two-server setting (Construction 16), the client
only sends the server a PRG seed. By using FHE, the client in the single-server
setting could send the server an encryption of that seed, and the server could
homomorphically evaluate the offline server’s algorithm on the encrypted seed.
The online phase remains the same. In the full version of this work, we dis-
cuss possible routes towards obtaining a similarly efficient scheme under weaker
assumptions.
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6 Lower Bound for PIR with Sublinear Online Time

In this section, we prove that the offline/online PIR schemes we construct in
Sect. 3 achieve the optimal trade-off, up to log factors, between

— the number of bits C' that the client downloads in the offline phase and
— the running time 7T of the server in the online phase.

Specifically, we show that any offline/online PIR scheme, in which the servers
store the database in its unmodified form and use no additional storage, and
that succeeds with constant probability on a database of size n, must have (C +
NW(T +1) = 02(n).

The fact that we are able to obtain a polynomial lower bound on the commu-
nication complexity of offline/online PIR schemes may be somewhat surprising,
as it has been notoriously difficult to obtain communication lower bounds for
standard two-server PIR, in which the servers’ running time is unbounded. In
particular, in the information-theoretic setting, the best communication lower
bound for two-server PIR stands at C' > (5 — o(1)) - log, n bits. In contrast, for
two-server PIR schemes in which one of the servers is restricted to run in time
T < y/n, we obtain a polynomial communication lower bound of C > 2(\/n).

Our lower bound holds even against offline/online PIR schemes that provide
only computational security, as well as against single-server offline/online PIR
schemes. Our PIR schemes of Section3 achieve this bound, up to logarithmic
factors, as does the single-server scheme of Theorem 22.

Theorem 23. Consider a computationally secure offline/online PIR scheme
such that, on security parameter A € N and database size n € N,

— the client downloads C' bits in the offline phase,

— the online server stores the database in its original form and probes T bits of
the database in the course of processing the client’s query, and

— the client recovers its desired bit with probability at least €, over the choice of
its randomness.

Then, for polynomially bounded n = n()\), it holds that

c<1/2+0 (T/n +/O(T + 1)/n> + negl(\),

and in particular for e > 1/2 4+ (1) and large enough X it holds that
(C+1)- (T +1) > 2n).

We prove Theorem 23 by showing that an offline/online PIR scheme implies a
solution for a computational task called “Yao’s Box Problem.” Using a preexisting
lower bound for the Box Problem immediately gives a communication-time lower
bound on offline/online PIR schemes. The details appear in the full version of
this work.
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Remark 24. The lower bound of Theorem 23 does not preclude schemes that
achieve better communication and lower bound by virtue of having the servers
store some form of encoding of the database. We discuss schemes of this
form [DIOO01,BIMO04] in Sect.1.4. In particular, constructing PIR schemes with
preprocessing [BIM04] that beat the above lower bound (in terms of their com-
munication and online time) seems like an interesting open problem.

7 Open Questions

This work leaves open a number of questions:

— Is it possible to construct offline/online PIR schemes in which the client runs
in total time o(n), stores o(n) bits, and has online running time polylog(n)?

— Does Theorem 22 follow from an assumption weaker than FHE?

— Can we construct a multi-query scheme (Sect.4) with only one server?

— In the full version of this work, we show how to view our PIR construction
via a new abstraction that we call sparse distributed point functions (“sparse
DPFs”), inspired by the standard notion of DPFs [GI14]. Are there even sim-
pler constructions of sparse DPFs than the ones implied by our PIR schemes?
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Abstract. We propose a new approach to construct general-purpose
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form: (i) A secret decryption step uses the secret key and produces a hint
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and (ii) a public decryption step that only requires the ciphertext and the
previously generated hint (and not the entire secret key), and recovers the
encrypted message. In terms of security, the hints for a set of ciphertexts
should not allow one to violate semantic security for any other ciphertexts.
Next, we show a generic candidate construction of split FHE based on
three building blocks: (i) A standard FHE scheme with linear decrypt-
and-multiply (which can be instantiated with essentially all LWE-based
constructions), (ii) a linearly homomorphic encryption scheme with short
decryption hints (such as the Damgard-Jurik encryption scheme, based
on the DCR problem), and (iii) a cryptographic hash function (which
can be based on a variety of standard assumptions). Our approach is
heuristic in the sense that our construction is not provably secure and
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We view our construction as a big departure from the state-of-the-art
constructions, and it is in fact quite simple.

1 Introduction

The goal of program obfuscation is to transform an arbitrary circuit C into an
unintelligible but functionally equivalent circuit C. The notion of program obfus-
cation was first studied by Hada [39] and Barak et al. [10]. However, these works
showed that natural notions of obfuscation are impossible to realize for general
functionalities. Specifically, Barak et al. [10] defined a very natural notion of
security for program obfuscation called virtual black-box (VBB) security, which
requires that an obfuscated program does not revel anything beyond what could
be learned from just the input-output behavior of the original program. In the
same work, they showed that this notion of program obfuscation is impossible
to achieve for arbitrary circuits.

In light of this impossibility result, much of the work on obfuscation focused
on realizing obfuscation for special functionalities. However, this changed with
the work of Garg et al. [28] that proposed the first candidate indistinguishability
obfuscation (iO) construction based on multilinear maps [26]. Furthermore, Garg
et al. [28] showed powerful applications of iO to tasks such as functional encryp-
tion. Loosely speaking, iO requires that the obfuscations of two circuits Cy and C
that have identical input output behavior are computationally indistinguishable.
Subsequently, significant work on using program obfuscation (e.g., [16,27,55]) has
shown that most cryptographic applications of interest can be realized using iO
(and one-way functions), or that iO is virtually crypto-complete.

Given its importance, significant effort has been poured into realizing secure
obfuscation candidates. The first approach to obfuscation relied on using new
candidate constructions of multilinear maps [22,26,33], an algebraic object that
significantly expands the structure available for cryptographic construction.
Unfortunately, all multilinear map construction so far have relied on ad-hoc and
new computational intractability assumptions. Furthermore, attacks [21,40] on
the multilinear map candidates and attacks [20,51] on several of the multilinear
map based 10 constructions [9,18,28] were later found. In light of these attacks,
follow up works (e.g., [31]) offered constructions that defended against these
attacks by giving constructions in the so-called weak multilinear map model [51].
Several of these weak multilinear map model based iO constructions are still con-
jectured to be secure, however, the break-and-repair cycle of their development
has left cryptographers wary, and rightly so.

Around the time when attacks on multilinear map candidates were at an
all time high, cryptographers started exploring new approaches to iO without
using multilinear maps (or reducing their usage). Toward this goal, Bitansky and
Vaikunthanathan [15] and Ananth and Jain [4] showed that iO could be realized
assuming just functional encryption. In another approach, instead of trying to
remove multilinear maps completely, Lin [42] and Lin and Vaikuntanathan [47]
attempted to reduce their usage, i.e., they proposed iO constructions using only
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constant degree multilinear maps. With the goal of ultimately basing iO con-
structions on standard assumptions on bilinear maps, cryptographers started
developing new ideas for realizing iO candidates from smaller constant degree
multilinear maps [5,43]. Recently, Lin and Tessaro [45] described a candidate
iO construction from degree-L multilinear maps for any L > 2 and additionally
assuming PRGs with certain special locality properties. Unfortunately, it was
shown the needed PRGs for the case of L = 2 are insecure (in fact it was proved
that they cannot exist) [8,48]. Thus, still leaving a gap between bilinear maps and
iO constructions which could now be based on trilinear maps [46]. Very recent
works [1,3,41] (and cryptanalysis [12]), develop new ideas to resolve these prob-
lems and realize constructions based on bilinear maps. However, these bilinear
map based constructions, which are still conjectured to be secure, additionally
rely on certain pseudorandom objects with novel security properties. Finally, we
note that all the other (perhaps less popular) approaches to iO (e.g., [35]) also
start from new computational hardness assumptions.

Given the prior work, it is plausible that new sources of hardness are nec-
essary for realizing iO candidates. Thus, this break-and-repair cycle would be
necessary as we understand the underlying new assumptions better. In fact, there
is some evidence that iO constructions based on simpler primitives [29,30] are
hard to realize. Making progress on this dilemma is the focus of this work.

1.1 Owur Results

We propose a new approach to construct general-purpose indistinguishability
obfuscation. Our approach is heuristic but without using any new sources of
computational hardness. In other words, our constructions use well-studied cryp-
tographic primitives in a generic way to realize obfuscation, while still being
heuristic in the sense that our constructions are not provably secure and make
implicit assumptions about the interplay of the underlying primitives. The prim-
itives we use can themselves be securely realized based on standard assumptions,
namely the hardness of the learning with errors (LWE) and the decisional com-
posite residues (DCR) problem. At a high level, our heuristics are similar in
flavor to (i) the random oracle heuristic that is often used in cryptographic con-
structions [13] and (ii) the circular security heuristic that has been widely used
in the construction of fully-homomorphic encryption schemes (FHE) [32].

Split-FHE. The starting point of our work is the fact that iO can provably be
based on split FHE, a new primitive that we introduce in this work. A split
FHE is an FHE scheme that allows for certain special properties of the decryp-
tion algorithm. Specifically, we consider FHE schemes for which the decryption
algorithm can be split into two subroutines:

— p < PDec(sk,c¢): A private procedure that takes the FHE secret key and a
ciphertext as input and produces a decryption hint p, of size much smaller
than the message encrypted in c.

— m «— Rec(p, ¢): A public procedure that takes as input the decryption hint p
(generated by PDec) and the ciphertext ¢ and recovers the full plaintext.
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The security for a split FHE scheme requires that, for all pairs of messages
(mg,my) and all circuits C' such that C(mg) = C(m1), the encryption of mg
is computationally indistinguishable from the encryption of mi, even given the
decryption hint for the ciphertext evaluated on C.

We show that split FHE alone suffices to construct exponentially-efficient
iO [44], which in turn allows us to build fully-fledged iO. Concretely, we prove
the following theorem.

Theorem 1 (Informal). Assuming sub-exponentially hard LWE and the exis-
tence of sub-exponentially secure split FHE, then there exists indistinguishability
obfuscation for all circuits.

A Generic Candidate. Next, we show a generic candidate construction of split
FHE based on three building blocks: (i) a standard FHE scheme with linear
decrypt-and-multiply (which can be instantiated with essentially all LWE-based
constructions), (ii) a linearly homomorphic encryption scheme with short decryp-
tion hints (such as the Damgard-Jurik encryption scheme [23], based on the DCR
problem), and (iii) a cryptographic hash functions. The security of the scheme
can be based on a new conjecture on the interplay of these primitives, which we
view as a natural strengthening of circular security. In this sense, it is aligned
with Gentry’s heuristic step in the FHE bootstrapping theorem [32]. Addition-
ally, our use of the cryptographic hash function has similarities to the other
heuristic uses of hash functions, e.g., in the Fiat-Shamir transformation [25].

We expect that there will exist instantiations of the underlying primitives
(though contrived) for which this construction is insecure. For example, if the
underlying schemes are not circular secure to begin with, then the resulting
split FHE would also be insecure. However, for natural instantiations of these
primitives, security can be conjectured.

Evidence of Security. In order to build confidence in our construction, we show
evidence that the above-mentioned conjecture on the interplay between the secu-
rity holds in an appropriate oracle model, inspired by the random oracle model.
Thus, pushing all the heuristic aspects of the construction to an oracle. In fact,
we show that security can be proved in this oracle model.

An alternate way to think of this result is that we construct split FHE based
on a obfuscation for a specific program (representing the oracle), for which we
can offer a relatively simple and natural heuristic implementation.

Conceptual Simplicity. Another positive feature of our construction is its con-
ceptual simplicity, which makes it much easier to analyze and thus have con-
fidence in. Finally, we remark that our construction is a big departure from
the previously-mentioned multilinear maps based and local PRG based iO con-
structions and will be accessible to readers without first understanding prior iO
constructions.
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1.2 Technical Overview

In the following we give an informal overview of the techniques we develop in
this work and we refer the reader to the technical sections for more precise
statements.

Chimeric FHE. Our starting point is the hybrid FHE scheme recently intro-
duced by Brakerski et al. [17], which we recall in the following. The objective
of their work is to build an FHE scheme with best possible rate (in an asymp-
totic sense) by leveraging the fact that most LWE-based FHE scheme admit an
efficient linear noisy decryption. Specifically, given an FHE ciphertext ¢ and an
LWE secret key (s, ..., s,) one can rewrite the decryption operation as a linear
function L.(-) such that

L(s1,...,8,) = ECC(m) + e

where e is a B-bounded noise term and ECC is some encoding of the plaintext (in
their scheme m is packed in the high-order bits so that it does not interfere with
the noise term). The idea then is to encrypt the secret key (si,...,$,) under a
(high-rate) linearly homomorphic encryption (LHE) scheme, which allows one
to compress evaluated FHE ciphertext by computing L.(-) homomorphically.

One interesting property of this approach is that it is completely paramet-
ric in the choice of the schemes, as long as they satisfy some simple structural
requirements: More concretely, one can use any LHE scheme as long as its plain-
text domain matches the LWE modulus of the FHE scheme. As an example, one
can set the LHE to be the Damgard-Jurik encryption scheme [23,52], which we
briefly recall in the following. The public key of the scheme consists of a large
composite N = pq and an integer ¢, and the encryption algorithm a message m
computes

c=7rN°. (1+N)™ mod N¢*!

for some uniform r <sZpy. Note that the corresponding plaintext space is Z ¢
and therefore the rate of the scheme approaches 1 as  grows. Furthermore, we
observe that the scheme has one additional property that we refer to as split
decryption. A scheme has split decryption if the decryption algorithm can be
divided into a private and a public subroutine:

— The private procedure takes as input a ciphertext ¢ and the secret key ¢(N)
and computes a decryption hint

p:cNfg mod N

using the extended Euclidean algorithm. It is crucial to observe that p € Zy
is potentially much smaller than the plaintext m.

— The public procedure takes as input a ciphertext ¢ and the decryption hint p
and recovers the plaintext by computing

(I+N)™ :c/pNC mod N¢+!

and decoding m in polynomial time using the binomial theorem.



84 7. Brakerski et al.

In a nutshell, the subgroup homomorphism allows one to compute a compressed
version of the randomness, which can be then publicly stretched and used to
unmask the plaintext. This means that m can be fully recovered by communi-
cating a small hint of size fixed and, in particular, independent of |m|. As we
are going to discuss later, this property is going to be our main leverage to build
general-purpose obfuscation.

Temporarily glossing over the security implications, we point out that the
hybrid scheme of Brakerski et al. [17] already suffices to construct an FHE scheme
with split decryption (in short, split FHE): Simply instantiate the LHE scheme
with Damgard-Jurik and convert evaluated FHE ciphertexts before decryption
using the algorithm described above.

Security for Split FHE. We now delve into the desired security property
for a split FHE scheme. On a high level, we would like to ensure that the
decryption hint does not reveal any additional information, beyond the plain-
text of the corresponding ciphertext. It is instructive to observe that if we do
not insist on this property, then every FHE scheme has a trivial split decryp-
tion procedure which simply outputs the secret key. We formalize this intuition
as an indistinguishability definition that, roughly speaking, demands that for
all plaintext pairs (mg,m1) and every set of circuits (C1,...,Cg) such that
Ci(mg) = C;(my), then the encryption of mgy and m; are computationally indis-
tinguishable, even given the decryption hints p; of the evaluated ciphertexts.
The condition C;(mg) = C;(m1) rules out trivial attacks where the distinguisher
just checks the output of the evaluation. Here § = () is an arbitrary (but a
priori bounded) polynomial in the security parameter.

Unfortunately, our candidate as described above falls short in satisfying this
security notion: The central problem is that our split decryption procedure
reveals the complete plaintext encoded in the Damgard-Jurik ciphertext. This
means that the distinguisher learns arbitrarily many relations of the form

Lci(sl, ceey Sn) = ECC(C’Z(mb)) +e;

where ¢; is the evaluated ciphertext and L., is a publicly known linear function.
Collecting a large enough sample allows the distinguisher to recompute the FHE
secret key (s1,...,8,) via, e.g., Gaussian elimination. A standard approach to
obviate this problem is to smudge the noise e; with some mask r; uniformly
sampled from an exponentially larger domain. Thus, a natural solution would
be to compute a randomizing ciphertext d; = DJ.Enc(pkp;,7;) and output the
decryption hint for

¢i - di = DJ.Enc(pkp;, ECC(Ci(mp)) + e; + ;) = DJ.Enc(pkp,, ECC(C;(my)) + 1)

where 7; is sampled from a domain exponentially larger than the noise bound B but
small enough to allow one to decode ECC(C;(my,)). While it is possible to show that
this approach indeed satisfies the security notion outlined above, it introduces an
overhead in the size of the hint, which now consists of the pair (p;, d;). Note that we
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cannot allow the distinguisher to recompute d; locally as it is crucial that r; remains
hidden, so we have no other choice but append it to the decryption hint. However
the decryption hint is now of size O(]¢;|), which does not satisfy our compactness
requirement and makes our efforts purposeless (one can just set the decryption hint
to be C;(myp) and achieve better efficiency).

Although we appear to have encountered a roadblock, a closer look reveals that
we still gained something from this approach: The ciphertext d; encodes a (some-
what small) random value and in particular is completely independent from ¢;. Fur-
thermore, the decryption hint of ¢; - d; can be computed using the secret key alone.
Assume for the moment that we had access to an oracle O that outputs uniform
Damgard-Jurik encryption of bounded random values, then our idea is to delegate
the sampling of d; to O. This allows us to bypass the main obstacle: We do not
need to include d; in the decryption hint as it can be recomputed by querying O.
One can think of this approach as a more structured version of the Fiat-Shamir
transform [25], which allows us to state the following theorem.

Theorem 2 (Informal). Assuming the hardness of LWE and DCR, then there
exists a split FHE scheme in the O-hybrid model.

Looking ahead to our end goal, another interpretation of this theorem is as a
universality result: Assuming the hardness of LWE and DCR, we can bootstrap
an obfuscator for a specific circuit (i.e., the one that samples a uniform Damgard-
Jurik encryption of a bounded random value) to an obfuscator for all circuits.

Instantiating the Oracle. The most compelling question which arises from our
main theorem is whether there exist plausible instantiations for the oracle O. A
first (flawed) attempt is to devise an oblivious sampling procedure for Damgard-
Jurik ciphertext using a random oracle: Note that Damgard-Jurik ciphertexts
live in a dense domain Zp¢; and indeed sampling a random integer ¢; «—s Zp¢+1
maps to a well-formed ciphertext with all but negligible probability. However,
since ¢; is uniform in the ciphertext domain, then so is the underlying plaintext
r; € Zpy¢. This makes ¢; unusable for our purposes since we require r; to be
bounded by some value ¢, which is exponentially smaller than N¢. If we were to
sample r; this way, then it would completely mask the term ECC(C;(mp)), thus
making the plaintext impossible to decode.

Ideally, we would like to restrict the oblivious sampling to ciphertexts encrypt-
ing g-bounded messages. Unfortunately, we are not aware of the existence of any
such algorithm. Instead, our idea is to still sample ¢; uniformly over the complete
ciphertext domain and remove the high-order bits of r; homomorphically: This can
be done by including an FHE encryption of the Damgard-Jurik secret key, then
homomorphically evaluating the circuit that decrypts ¢; and computes —|r; /] - §.
The evaluated ciphertext is then converted again to the Damgard-Jurik domain
using the linear noisy decryption of the FHE scheme. At this point, one can obtain
a well-formed encryption of a g-bounded value by computing
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DJ.Enc(pkpy, —|7i/q] - ¢+ ¢€) - ¢; = DJ.Enc(pkp,, —|7:/G] - G+ €+ ;)
= DJ.Enc(pkp, (r; mod q) + €)

where the term (r; mod §) + e is g-bounded with all but negligible probability
by setting ¢ > B. While this approach brings us tantalizingly close to a provably
secure scheme, a careful analysis highlights two lingering conjectures.

(1) Circular Security: Adding and FHE encryption of the Damgard-Jurik secret
key introduces a circular dependency in the security of the two schemes
(recall that our construction already encodes a Damgard-Jurik encryption
of the FHE secret key). While circular security falls outside of the realm of
provable statements, it is widely accepted as a mild assumption and it is
known to be achieved by most natural encryption schemes [11]. We stress
that circular security is also inherent in the the bootstrapping theorem of
Gentry [32], the only known method to construct fully (as opposed to lev-
elled) homomorphic encryption from LWE.

(2) Correlations: While the homomorphically evaluated circuit essentially
ignores the low-order bits of r;, the corresponding decryption noise e might
still depend on (r; mod §) in some intricate way. This might introduce some
correlation and bias the distribution of the term (r; mod §)+e with respect
to a uniform u <sZg. However, the noise function is typically highly non-
linear and therefore appears to be difficult to exploit. We also point out
that the distinguisher has no control over the choice of e, which exclusively
depends on an honest execution of the homomorphic evaluation algorithm.
We therefore conjecture that the distribution of (r; mod §) + e is compu-
tationally indistinguishable from u.

In light of the above insights, we put forward the conjecture that the proposed
algorithm already gives us a secure implementation of the oracle O. We view this
as a natural strengthening of Gentry’s heuristic for the bootstrapping theorem,
which is justified by our more ambitious objective. As the conjecture pertains
to standard cryptographic material (FHE and Damgard-Jurik encryption) we
believe that any further insight on its veracity would substantially improve our
understanding on these important and well-studied building blocks.

Finally, we mention that many heuristics can be used to weaken the corre-
lation between the decryption noise e and the low-order bits (r; mod §), such
as repeated applications of FHE bootstrapping [24]. We also propose a different
heuristic approach to remove correlations based on binary extractors and we
refer the reader to the technical sections for further details.

From Split FHE to iO. What is left to be shown is that split FHE does indeed
suffice to construct program obfuscation. With this goal in mind, we recall a
surprising result by Lin et al. [44] which states that, under the assumption that
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the LWE problem is sub-exponentially hard, iO for all circuits is implied by an
obfuscator for circuits with logarithmic-size inputs with non-trivial efficiency.
Here non-trivial efficiency means that the size of the obfuscated circuit C' with
input domain {0,1}" is at most poly (X, |C|) - 27(1=¢) for some constant ¢ > 0.
This means that it suffices to show that split FHE implies the existence of
an obfuscator (for circuits with polynomial-size input domain) with non-trivial
efficiency.

The transformation is deceptively simple (and similar to [14]): The obfusca-
tor computes a split FHE encryption of the circuit C' and partitions the input
domains in 27/2 disjoint sets (Py,..., Pyn2) of equal size. Then, for each par-
tition P;, the algorithm homomorphically evaluates the universal circuit that
evaluates C' on all inputs in P; and returns the concatenation of all outputs.
Finally it returns the decryption hint p; corresponding to the evaluated cipher-
text. The obfuscated circuit consists of the public-key of the split FHE scheme,
the encryption of C, and all of the decryption hints (p1,..., pan/2). Note that
the obfuscated circuit can be evaluated efficiently: On input z, let P, be the
partition that contains x, then the evaluator recomputes the homomorphic eval-
uation (which is a deterministic operation) of C' on P, and recovers the output
using the decryption hint p,. As for non-trivial efficiency, since the size of each
decryption hint is that of a fixed polynomial mp, the total size of the obfuscated
circuit is bounded by poly (), |C|) - 27/2, as desired.

Other Applications. To demonstrate that the scope of our split FHE scheme
goes beyond program obfuscation, we outline two additional applications. In
both cases we only rely on the hardness of the LWE and DCR problem, i.e., we
do not need to introduce any new conjecture.

Two-Party Computation with Pre-Processing. We obtain a (semi-honest) two-
party computation scheme for any circuit C : {0,1}* — {0,1}* with an input-
and circuit-independent pre-processing where the communication complexity of
the pre-processing phase is poly (A, k), whereas the communication complexity
of the online phase is poly (A) + ¢. This improves over garbled circuit-based
approaches that require a pre-processing at least linear in |C|. The protocol
works as follows: In the pre-processing phase Alice and Bob exchange their
(independently sampled) public-keys for a split FHE scheme and Alice com-
putes a randomizing ciphertext (in the scheme defined above this corresponds
to a Damgard-Jurik encryption of a bounded random value), which is sent to
Bob. In the online phase, Alice and Bob exchange their inputs encrypted under
their own public keys (to achieve best-possible rate this can be done using hybrid
encryption) and homomorphically compute the multi-key evaluation of f over
both inputs. Note that multi-key evaluation is generically possible for the case
of two parties by nesting the two split FHE evaluations. Then Alice consumes
the randomizing ciphertext computed in the pre-processing and sends a partial
decryption of the evaluated ciphertext in the form of a decryption hint. Bob can
then locally complete the partial decryption using its own secret key and recover
the output.
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Rate-1 Reusable Garbled Circuits. The work of Goldwasser et al. [37] showed,
assuming the hardness of the LWE problem, how to construct reusable gar-
bled circuits where the size of the input encodings is poly (A, d,¢- k), where
C :{0,1}* — {0,1}* and d is the depth of C. Additionally assuming the hard-
ness of the DCR problem, we can bring down the complexity to poly (A, d, £)+ k.
This is done by using their scheme to garble the circuit that computes C' homo-
morphically over the input encrypted under a split FHE scheme an returns the
decryption hint of the evaluated ciphertext. This effectively removes the depen-
dency of the underlying reusable garbled circuit on the output size k. However,
we also need to include in the input encoding a randomizing Damgard-Jurik
ciphertext, which reintroduces an additive overhead in k.

1.3 Related Work

In the following we discuss more in depth the relation of our approach when
compared with recent candidate constructions of iO from lattices and bilinear
maps [1,3,41]. Very informally, this line of works leverages weak pseudorandom
generators (PRG) to mask the noise of the LWE decryption. However, the output
domain of such a PRG is only polynomially large: This is because of the usage
of bilinear groups, where the plaintext space is polynomially bounded (decryp-
tion requires one to solve a discrete logarithm). This is especially problematic
because statistical /computational indistinguishability cannot hold in this regime
of parameters. To circumvent this problem, all papers in this line of work assume
a strict bound on the distinguisher’s success probability (e.g., 0.99) and then rely
on amplification techniques. This however requires one to construct a weak PRG
where the advantage of any PPT distinguisher is non-negligible but at the same
time bounded by < 0.99.

On the other hand, we rely on the Damgard-Jurik encryption scheme, where
the message domain is exponential. This allows us to sample the smudging factor
from a distribution that is exponentially larger than the noise bound, which is
necessary in order to argue about statistical indistinguishability. Thus in our
settings, conjecturing that the advantage of the distinguisher is negligible is, at
least in principle, plausible.

2 Preliminaries

We denote by A € N the security parameter. We say that a function negl(-) is
negligible if it vanishes faster than any polynomial. Given a set S, we denote
by s+«s.S the uniform sampling from S. We say that an algorithm is PPT if
it can be implemented by a probabilistic machine running in time poly (\). We
abbreviate the set {1,...,n} as [n]. We recall the smudging lemma [6,7].

Lemma 1 (Smudging). Let By = Bi()\) and By = By(\) be positive integers
and let ey € [B1] be a fized integer. Let eo «s [Ba] chosen uniformly at random.

Then the distribution of es is statistically indistinguishable from that of es + e
as long as B1/Ba = negl(\).
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2.1 Indistinguishability Obfuscation
We recall the notion of indistinguishability obfuscation (iO) from [28].

Definition 1 (Indistinguishability Obfuscation). A PPT machine iO is an
indistinguishability obfuscator for a circuit class {Cx}xen if the following condi-
tions are satisfied:

(Functionality) For all A € N, all circuit C € Cy, all inputs x it holds that

Pr [é(x) - C’(x)‘é’ - iO(C)] ~1.

(Indistinguishability) For all polynomial-size distinguishers D there exists a neg-
ligible function negl(+) such that for all A € N, all pairs of circuit (Cy,Cy) € Cy
such that |Co| = |C4] and Co(z) = Ci(x) on all inputs z, it holds that

[Pr[1 = D(I0(Ch))] — Pr[1 = D(O(C1))]| = negl(A).

2.2 Learning with Errors

We recall the (decisional) learning with errors (LWE) problem as introduced by
Regev [54].

Definition 2 (Learning with Errors). The LWE problem is parametrized
by a modulus q, positive integers n,m and an error distribution x. The LWE
problem is hard if for all polynomial-size distinguishers D there exists a negligible
function negl(-) such that for all A € N it holds that

[Pr(1=D(A,s"-A+e)] —Pr[l=D(A,u)]| =negl(\).

where A is chosen uniformly from Zy*™, s is chosen uniformly from Zy, w is
chosen uniformly from Zy' and e is chosen from x™.

As shown in [53,54], for any sufficiently large modulus ¢ the LWE problem where
X is a discrete Gaussian distribution with parameter ¢ = ag > 2/n (i.e. the
distribution over Z where the probability of z is proportional to e~ ™(l/ ")2),
is at least as hard as approximating the shortest independent vector problem
(SIVP) to within a factor of v = O(n/a) in worst case dimension n lattices. We
refer to & = 0/q as the modulus-to-noise ratio, and by the above this quantity
controls the hardness of the LWE instantiation. Hereby, LWE with polynomial
a is (presumably) harder than LWE with super-polynomial or sub-exponential
a. We can truncate the discrete Gaussian distribution x to o - w(y/log(\)) while
only introducing a negligible error. Consequently, we omit the actual distribution
X but only use the fact that it can be bounded by a (small) value B.
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3 Homomorphic Encryption

We recall the definition of homomorphic encryption in the following.

Definition 3 (Homomorphic Encryption). A homomorphic encryption
scheme consists of the following efficient algorithms.

KeyGen(1*): On input the security parameter 1, the key generation algorithm
returns a key pair (sk, pk).

Enc(pk,m): On input a public key pk and a message m, the encryption algorithm
returns a ciphertext c.

Eval(pk, C, (c1,...,¢)): On input the public key pk, an C-inputs circuit C, and
a vector of ciphertexts (c1,...,ce), the evaluation algorithm returns an eval-
uated ciphertext c.

Dec(sk, ¢): On input the secret key sk and a ciphertext ¢, the decryption algorithm
returns a message m.

We say that a scheme is fully-homomorphic (FHE) if it is homomorphic for all
(unbounded) polynomial-size circuits. If the maximum size of the circuit that can
be evaluated is bounded in the public parameters, then we call such a scheme a
levelled FHE. We also consider a restricted class of homomorphism that supports
linear functions and we refer to such a scheme as linearly-homomorphic encryp-
tion (LHE). We characterize correctness of a single evaluation, which suffices
for our purposes. This can be extended to the more general notion of multi-hop
correctness [34] if the condition specified below is required to hold for arbitrary
compositions of circuits.

Definition 4 (Correctness). A homomorphic encryption scheme (KeyGen,
Enc, Eval, Dec) is correct if for all A € N, all l-inputs circuits C, all inputs
(m1,...,myg), all (sk,pk) in the support of KeyGen(1*), and all ¢; in the support
of Enc(pk,m;) it holds that

Pr [Dec(sk, Eval(pk, C, (¢1,...,¢0))) = C(mq,...,mg)] = 1.

We require a scheme to be compact in the sense that the size of the ciphertext
should not grow with the size of the evaluated circuit.

Definition 5 (Compactness). A homomorphic encryption scheme (KeyGen,
Enc, Eval, Dec) is compact if there exists a polynomial poly(-) such that for all
A €N, dll L-inputs circuits C in the supported family, all inputs (mq,...,mye),
all (sk, pk) in the support of KeyGen(1*), and all ¢; in the support of Enc(pk, m;)
it holds that

|[Eval(pk, C, (¢1,...,ce))| = poly(A) - |C(ma, ... ,mye)l|

We define a weak notion of security (implied by the standard semantic secu-
rity [38]) which is going to be more convenient to work with.



Candidate iO from Homomorphic Encryption Schemes 91

Definition 6 (Semantic Security). A homomorphic encryption scheme
(KeyGen, Enc, Eval, Dec) is semantically secure if for all polynomial-size distin-
guishers D there exists a negligible function negl(-) such that for all X\ € N, all
pairs of message (mg, m1), it holds that

|Pr[1 = D(pk, Enc(pk, mg))] — Pr[1 = D(pk, Enc(pk,m1))]| = negl ()

where (sk, pk) «— KeyGen(1%).

3.1 Linear Decrypt-and-Multiply

We consider schemes with a fine-grained correctness property. Specifically, we
require that the decryption consists of the application of a linear function in
the secret key, followed by some publicly computable function. Furthermore, we
require that such a procedure allows us to specify an arbitrary constant w that is
multiplied to the resulting plaintext. We refer to such schemes as linear decrypt-
and-multiply schemes. This property was introduced in an oral presentation by
Micciancio [50] and recently formalized by Brakerski et al. [17]. We stress that
all major candidate FHE constructions satisfy (or can be adapted to) such a
constraint, e.g., [2,19,36]. We recall the definition in the following.

Definition 7 (Decrypt-and-Multiply). We call a homomorphic encryption
scheme (KeyGen, Enc, Eval,Dec) a decrypt-and-multiply scheme, if there exists
bounds B = B(X\) and @ = Q(X\) and an algorithm Dec&Mult such that the fol-
lowing holds. For every q > Q, all (sk, pk) in the support of KeyGen(1*,q), every
L-inputs circuit C, all inputs (m1,...,myg), all ¢; in the support of Enc(pk,m;)
and every w € Z4 that

Dec&Mult(sk, Eval(pk, C, (¢1,...,¢0)),w) =w - C(mq,...,my) + e mod g

where Dec&Mult is a linear function in sk over Zy; and |e| < B with all but
negligible probability.

In our construction, we will need some additional structure for the modulus g.
Fortunately, most LWE-based FHE schemes can be instantiated with an arbi-
trary g that does not depend on any secret input but only on the security param-
eter. Moreover, LWE-based FHE schemes can be instantiated with any (suffi-
ciently large) modulus ¢ without affecting the worst-case hardness of the under-
lying LWE problem [53]. In an abuse of notation, we often write KeyGen(1*;q)
to fix the modulus ¢ in the key generation algorithm. In favor of a simpler anal-
ysis, we assume that e is always non-negative. Note that this is without loss of
generality as it can be always guaranteed by adding B to the result of Dec&Mult
and setting a slightly looser bound B = 2B.

3.2 Split Decryption

We define the notion of homomorphic encryption with split decryption, which is
going to be central in our work. Loosely speaking, a scheme has split decryption
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if the decryption algorithm consists of two subroutines: A private algorithm
(that depends on the secret key) that on input a ciphertext ¢ computes a small
hint p, and a publicly computable algorithm that takes as input p and ¢ and
returns the corresponding plaintext. We henceforth refer to such schemes as
split homomorphic encryption. We introduce the syntax in the following.

Definition 8 (Split Decryption). A homomorphic encryption scheme
(KeyGen, Enc, Eval, Dec) has split decryption if the decryption algorithm Dec con-
sist of the following two subroutines.

PDec(sk, ¢): On input the secret key sk and a ciphertext ¢, the partial decryption
algorithm returns a decryption hint p.

Rec(p, ¢): On input the hint p and a ciphertext ¢, the recovery algorithm returns
a message m.

The notion of correctness is extended canonically.

Definition 9 (Split Correctness). A homomorphic encryption scheme with
split decryption (KeyGen, Enc, Eval, PDec, Rec) is correct if for all A € N, all ¢-
inputs circuits C in the supported family, all inputs (my,...,myg), all (sk,pk) in
the support of KeyGen(1*), and all ¢; in the support of Enc(pk,m;) it holds that

Pr [Rec(PDec(sk, ¢),c) = C(mq,...,mg)] =1
where ¢ = Eval(pk, C, (¢1,...,¢cp)).

Beyond the standard compactness for homomorphic encryption, a scheme with
split decryption must satisfy the additional property that the size of the decryp-
tion hint p is independent (or, more generally, sublinear) of the size of the mes-
sage. Furthermore, the size of the public key and of a fresh encryption of a
message m should depend polynomially in the security parameter and otherwise
be linear in the size of the output. These are the properties that make split
decryption non-trivial and that are going to be our main leverage to bootstrap
this primitive into more powerful machinery. We formally characterize these
requirements below.

Definition 10 (Split Compactness). A homomorphic encryption scheme
with split decryption (KeyGen, Enc, Eval, PDec, Rec) is compact if there exists a
polynomial poly (-) and such that for all A € N, all l-inputs circuits C in the sup-
ported family, all inputs (m1,...,my), all (sk,pk) in the support of KeyGen(1*),
and all ¢; in the support of Enc(pk,m;) it holds that

- |pk| S p0|y()\) ' |C(m17"'amf)|;
— le;] < poly (A, |m;]) - |C(ma, ... ,me)|, and
~ |pl < poly(X)

where p = PDec(sk, Eval(pk, C, (c1,...,¢0))).
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Finally the notion of semantic security for split schemes requires that the decryp-
tion hint p for a certain ciphertext does not reveal any information beyond the
corresponding plaintext. Note that we define a very weak notion where the above
must hold only for a bounded number of ciphertexts, and the inputs are fixed
prior to the public parameters of the scheme.

Definition 11 (Split Security). A homomorphic encryption scheme with split
decryption (KeyGen, Enc, Eval, PDec, Rec) is secure if for all polynomial-size dis-
tinguishers D there exists a negligible function negl(-) such that for all A € N,
all polynomials B = B(N), all pairs of messages (mo, my), all vectors of circuits
(C1,...,Cp) such that, for alli € [B], C;(mg) = C;(mq) it holds that

| Pr [1 = D(pka €05 P(1,0) - - - 7p(l3,0))} —Pr [1 = D(pkv C1, P(1,1)5 - - - »P(ﬂ,l))] |
= negl(\)

where (sk, pk) « KeyGen(1%), for all b € {0,1} define c, «— Enc(pk,my) and, for
all i € [] and all b € {0,1}, define p(;p) < PDec(sk, Eval(pk, Cj, cp)).

3.3 Damgard-Jurik Encryption

In the following we recall a variant of the Damgard-Jurik encryption linearly
homomorphic encryption scheme [23]. We present a variant of the scheme that
satisfies the notion of split correctness, which is going to be instrumental for
our purposes. The scheme is parametrized by a non-negative integer ¢ that we
assume is given as input to all algorithms.

DJ.KeyGen(1*): On input the security parameter 1*, sample a uniform Blum
integer N = pq, where p and ¢ are A-bits primes. Set pk = (N, () and sk =
@(N).

DJ.Enc(pk,m): On input a message m € Zyc¢, sample a random r «sZy and
compute

c=rN°. (I1+N)™ mod NCFL

DJ.Eval(pk, f,(c1,...,¢¢)): On input a vector of ciphertexts (ci,...,¢/) and a
linear function f = (aq,...,qp) € Zf\,(, compute

¢
c= l_Icf‘1 mod N¢T1.
i=1

DJ.PDec(sk, c): On input a ciphertext c, set s = ¢ mod N. Then compute N ¢
such that N¢- N=¢ =1 mod ¢(N) using the extended Euclidean algorithm.
Return

p=s" " mod N.

DJ.Rec(p, ¢): On input a hint p and a ciphertext ¢, compute
(1+N)"=¢/pM mod N¢H!

and recover m using the polynomial-time algorithm described in [23].
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Tt is well known that the scheme satisfies (standard) semantic security assuming
the intractability of the decisional composite residuosity (DCR) problem, as
defined in [52]. To prove correctness, we are going to use the fact that

2N mod N¢H = (x mod N) mod N¢H! (1)

for all non-negative integers (a: ¢). We refer the reader to [49] for a proof of this
equality. Recall that ¢ = r™¥" - (1 + N)™ and that

p=(c mod N)N7C mod N

N—C
- (rNC -1+ N)™ mod N) mod N
N—C
= (’I"NC mod N) mod N.
Therefore we have that

N—¢ N¢
,ONC mod N¢H! = <(r mod N) mod N) mod N¢+!

N—S¢.N¢
(TNC mod N) mod N¢*!
=r"" mod N¢H!
by an application of Eq. (1). Taking the inverse on both sides of the equation

above we obtain
c/,oNC mod N¢H = c/TNC mod N¢H!
=N (14 N)™/rY mod NH
=(1+N)™ mod N¢H!

as desired for correctness. Although such a scheme does not immediately give
us a secure split LHE, we highlight a few salient properties that we are going to
leverage in our main constructions.

Small Hints: The scheme satisfies a weakened notion of split compactness where
the decryption hint is much smaller than the message space. The hint p € Zy
consists of [log(N)] bits and in particular is independent of the size of the
message space Zyc¢, as the integer ¢ can be set to be arbitrarily large (within
the range of polynomials in \).

Simulatable Hints: Given a ciphertext ¢ and a plaintext value m, one can effi-
ciently compute a ciphertext ¢ such that the homomorphic sum of ¢ and ¢ results
in a uniform encryption of m and the corresponding decryption hint can be com-
puted given only the random coins used to generate ¢. Concretely, let

PN (14 N)m
C

mod N¢t1

¢ =

for some 1 «—sZy, then p = 7.
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Dense Clipherterts: Sampling a random integer in Zyc+1 gives a well-formed
ciphertext with all but negligible probability. This is because the group order

©(N) - N¢ is close to N¢*1 e, % = %N) =1—negl(\).

4 Split Fully-Homomorphic Encryption

In the following we present our instantiation of FHE with split decryption. We
first present a scheme from standard assumptions which assumes the existence of
(a structured version of) a random oracle, then we propose plausible candidates
for such an oracle.

4.1 Construction in the Presence of an Oracle

Before we delve into the details of our construction we give a definition of the
oracle function that we consider. The oracle is parametrized by a pair of public
keys for an FHE and an LHE scheme (pkgyg, pkiye) and two integers (g, 7). On
input a bitstring « € {0,1}*, the oracle returns a uniform LHE encryption of
a random value in Z, and an FHE encryption of the same value rounded to
the closest divisor of ¢. The oracle is deterministic and it is accessible by all
parties, thus on input the same x, the oracle will always output the same pair
of ciphertexts. The interface is formally defined in the following.

O (pkene-pkepe.a.d) (T): On input a string # € {0,1}* return two uniformly dis-
tributed ciphertexts

LHE.Enc(pk, yg,m) and FHE.Enc (pkeyg, — /4] - §)
where m «sZ,.

It is useful to observe that the oracle output, along with an LHE encryption of
the FHE secret key, gives us a uniformly distributed LHE encryption of a uni-
form value in Zg. This is because we can leverage the decrypt-and-multiply algo-
rithm Dec&Mult of the FHE scheme (matching the FHE domain with the LHE
paintext space appropriately) to compute LHE.Enc (pk g, — [m/q] - ¢ + noise),
where noise is the decryption noise of the FHE scheme. Homomorphically sum-
ming up this term with the first output of the oracle we obtain

LHE.Enc (pk_ g, m — |m/§] - ¢ + noise) = LHE.Enc (pk pyg, (m mod §) + noise)
~¢ LHE.Enc (pk g, (m mod §))

for an appropriate choice of ¢, i.e., we obtain an ciphertext which is statistically
indistinguishable from an LHE encryption of a uniform element of Z;.
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Description. We are now in the position of giving formal description of our
scheme. We assume the existence of the following primitives:

— A fully-homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc,
FHE.Eval, FHE.Dec) with linear decrypt-and-multiply and with noise
bound B.

— A linearly homomorphic encryption LHE = (LHE.KeyGen, LHE.Enc, LHE.Eval,
LHE.PDec, LHE.Rec) with small and simulatable decryption hints (e.g., the
Damgard-Jurik encryption scheme as described in Sect. 3.3).

If the underlying FHE scheme is levelled then so is going to be the resulting split
FHE. Conversely, if the FHE scheme supports the evaluation of unbounded cir-
cuits, then so does the resulting split FHE construction. The scheme is formally
described in the following.

KeyGen(1*): On input the security parameter 1%, sample a key pair
(skime, Pk ) < LHE.KeyGen(1*). Let Z, be the plaintext space defined
by LHE, then sample (skpng, pkppg) < FHE.KeyGen(1%;¢q). Let skppg =
(81, 8n) € Z7, then return

sk = skupe and pk = (pkepg, PKLHE, C(LHE 1) - - - C(LHE,n) )

where, for all i € [n], we define ¢ pE ;) < LHE.Enc(pk g, 5:).
Enc(pk,m): On input a message m return

C < FHEEnC(kaHE, m).

Eval(pk, f, (c1,...,¢¢)): On input a circuit C with £ bits of input and k bits
of output and a vector of ciphertexts (ci,...,ce), let, for all j € [k], C;
be the circuit that returns the j-th bit of the output of C, then compute

d7 — FHEEVal(kaHE, Cj, (Cl7 - ,C[)).
Define the following linear function over Z,:
k: ~
g1, ..., xn) = Z Dec&Mult ((xl, ce ), dj, 2“°g(‘I+(k+1)BﬂH> .
j=1

Compute d <« LHE.Eval(pk yg, g, (c(LHE 1) - - - » C(LHE,n))), then query
(a,@) < O(pkeye ,phipe.a.d) (@) and define the following linear function over
ZLy:

g(T1, . Tpy Tna1, Tnao) = Dec&Mult ((z1, ..., 2),a,1) + Tpa1 + Tpao.
Return

C LHE.EvaI(pkLHE, 97 (C(LHE,1)7 . 7C(LHE,n)7 d, a))
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PDec(sk, ¢): On input an evaluated ciphertext ¢ return
p < LHE.PDec(skLpg, ¢).
Rec(p, ¢): On input an evaluated ciphertext ¢, compute
m «— LHE.Rec(p, ¢)

and return the binary representation of m without its [log(¢+ (k+1)B)]
least significant bits.

Analysis. We formally analyze our scheme in the following. During the analysis,
we set the parameters on demand and we show afterwards that our choices lead to
a satisfiable set of constraints for which the underlying computational problems
are still conjectured to be hard. The following theorem establishes correctness.

Theorem 3 (Split Correctness). Let ¢ > 2F 4 2M108(@+(+DB)1 - Lot FHE be
a correct fully-homomorphic encryption scheme with linear decrypt-and-multiply
and let LHE be a split correct linearly-homomorphic encryption scheme. Then
the scheme as described above satisfies split correctness.

Proof. Let us rewrite
m = LHE.Rec(p, ¢) = LHE.Rec(LHE.PDec(sk_nE, ¢), ¢)

where ¢ = LHE.Eval(pk xg, 9, (¢(LHE 1), - - - » C(LHE,n), d, @)). We first expand the d
term as

d = LHE.Eval(pk, yg, 9,
= LHE.Eval(pk 4g, 9,

C(LHE,1)5 - - - ,C(LHE,n)))

(
(LHE.EnC(pkLHE, 51)7 ey LHEEnC(pkLHE, Sn)))

k
= LHE.Enc [ pkyyg, Y Dec&Mult ((sl, ) sa)d;, 2“°g<<?+<k+1>3ﬂ+j)
j=1
by the correctness of the LHE scheme, where
d; = FHE.Eval(pkeye, Cj, (c1, ..., ¢r))

and ¢; = FHE.Enc(pkgyg, m;). Thus by the decrypt-and-multiply correctness of
the FHE scheme we can rewrite
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k
d = LHE.Enc | pkyye, Y 2/8@H VBT 0 (my, . my) + ¢
j=1

k k
= LHE.Enc | pk_pe, Z 9llog(d+(k+1)B)1+3 Cj (ma,...,mg) + Z €;
=1

Jj=1

7~

e

For the a variable we have that a = LHE.Enc(pk, g, ), for some uniform r «—s Zg,
by definition of the oracle O, . .ok e.0,4)- Recall that

9(X1, .oy Ty Tnp1, Tpz) = Dec&Mult (21, ..., 20),a, 1) + Tpt1 + Tnyo.

where @ = FHE.Enc(pkgye, —[7/G] - ¢)- Thus ¢ = LHE.Enc (pk g, ™) where

k
m = Dec&Mult ((s1,...,8n),a,1) + ZQ“Og(‘H(k“)BﬂH ~Ci(ma,...,my)+é+r

Jj=1

k
=—|r/q) - Gre+ ) 2MBTHEEURIN Cimy L my) e+

Jj=1

k

_ ZQ(log(cH(kJrl)B)]H -Cj(ma,...,mi) +é+e+(r mod §)
Jj=1 7

by the correctness of the FHE scheme. Note that the sum € + e is bounded from

above by (k + 1) - B, whereas the term 7 is trivially bounded from above by g.

This implies that the output of the circuit is encoded in the higher order bits of

m with probability 1, for a large enough gq.

We then argue about the split security of the scheme. We remark that we analyze
security in the presence of an oracle and we refer the reader to Sect.4.2 for
concrete instantiations.

Theorem 4 (Split Security). Let § > 2*-(k+1)-B and let ¢ > 2*-G. Let FHE
be a semantically secure fully-homomorphic encryption scheme and let LHE be
a semantically secure linearly homomorphic encryption scheme with simulatable
decryption hints. Then the scheme as described above satisfies split security in
the O (pkpye pkine.a.d) “Pybrid model.

Proof. Let (mg, m1,Ch,...,Cg) be the inputs specified by the adversary at the
beginning of the experiments. Consider the following series of hybrids.

Hybrid Hy: Is defined as the original experiment. Denote the distribution induced
by the random coins of the challenger by

(pk, ¢ = FHE.Enc(pkeyg, mb)s P15 - - -5 p3)
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where

pk = (pPkene; PKLue, LHE.Enc(pk e, $1)5 - - - s LHE.Enc(pk ug, $1))

and p; is computed as PDec(sk, Eval(pk, C;, ¢)).

Hybrids Hy ... Hp: Let d® be the variable d defined during the execution of
Eval(pk, C;, ¢). The i-th hybrid H; is defined to be identical to H;_1, except that
the oracle O, ..ok ue.q,4) O input d® is programmed to output some a (along
with a well-formed a) such that the resulting c is of the form

¢ = LHE.Enc (pk g, ECC(Ci(mp)) + €+ e+r— |7r/q] - §)

where ECC is the high-order bits encoding defined in the evaluation algorithm,
€ + e is the sum of the decryption noises of the ciphertexts (d(l), oo d®), a), as
defined in the evaluation algorithm, and r «—sZ,. Then p; is defined to be the
decryption hint of ¢ computed using the random coins of a.

First observe that ¢ + e is efficiently computable given the secret key of
the FHE scheme and therefore p; is also computable in polynomial time. It is
important to observe that the distribution of ¢ is identical to the previous hybrid
and the difference lies only in the way p; is computed. Since the LHE scheme
has simulatable hints, it follows that the distribution of H; is identical to that
of H;_1 and the change described here is only syntactical. That is,

(pk7 FHE'EnC(kaHE7 mb)aﬁl? e aﬁi—laph Pit1y--- 7pﬁ)
= (pka FHE'EnC(kaHE7mb)7 ﬁla s 7ﬁi717ﬁi7pi+17 BRRE) pﬁ) :

Hybrids Hg41 ... Hag: The (6 +i)-th hybrid differs from the previous one in the
sense that a is programmed such that

¢ = LHE.Enc (pk g, ECC(Ci(me)) + e+ e+ [r/q) - g+ 7 = |r/q] - q)
= LHE.Enc (pk_yg, ECC(C;(mp)) + €+ e +7)

where 7 «sZ;. Note that the distributions induced by the two hybrids differ
only in case where r € R, where R = {¢ — (¢ mod §),...,q}. Since G/q < 27
we have that the two distributions are statistically close.

Hybrids Hagt1 - .. Hsg: The (6 + 4)-th hybrid is defined to be identical to the
previous ones except that a is programmed such that

¢ = LHE.Enc (pk_yg, ECC(C;(mp)) + 7).

Le., the noise term ¢ is omitted from the computation. Thus the only difference
with respect to the previous hybrid is whether the noise term é + e is included
in the ciphertext or not. Since € + e is bounded from above by (k + 1) - B and
g > 2»-(k+1)- B, by Lemmal the distribution induced by this hybrid is
statistically indistinguishable from that of the previous one.
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Hybrids Hag+1 - - - Hag+n: The (38 + i)-th hybrid is defined as the previous one,
except that the ciphertext ¢ ng ) in the public parameters is computed as the
encryption of 0. Note that the secret key of the LHE scheme is no longer used in
the computation of (g1, ..., pg) and therefore indistinguishability follows from an
invocation of the semantic security of the LHE scheme. Specifically, the following
distributions are computationally indistinguishable

LHE.Enc(pk, yg,0), . .., LHE.Enc(pk g, 0), LHE.Enc(pk e, Si),
LHE'EnC(pkLHE7 Si+1)) ey LHE.EnC(pkLHE, Sn)

_( LHE.Enc(pk_yg, 0), ..., LHE.Enc(pk g, 0), LHE.Enc(pk g, 0),
e LHE.EnC(pkLHE,Si+1)7...,LHE.EnC(pkLHBSn) )

Hybrid H:(;;a)+n: We define the hybrid H§l2+n as Hsg+n with the challenger bit

fixed to b. Note that the distribution induced by these hybrids is

(pk, ¢ = FHE.Enc(pkgpgs M), f1, - - -5 f8)
where
pk = (Pkpne, PkLpe; LHE.Enc(pk g, 0), . .., LHE.Enc(pk g, 0)) -

Observe that the secret key of the FHE scheme is no longer encoded in the
public parameters and is not needed to compute (p1,...,pH) either. It follows

that any advantage that the adversary has in distinguishing Hé%) 4 [rom 'Hélﬁ) n
cannot be greater than the advantage in distinguishing FHE.Enc(pkgyg, mo) from
FHE.Enc(pkgyg, m1). Thus, computational indistinguishability follows from an
invocation of the semantic security of the FHE scheme. This concludes our proof.

Parameters. When instantiating the LHE scheme with the Damgard-Jurik
encryption scheme (as described in Sect.3.3) and the FHE scheme with any
LWE-based scheme with linear decrypt-and-multiply (e.g., the scheme proposed
in [36]) we obtain a split FHE which satisfies the notion of split compactness:
The hint p is of size N = poly(\) and in particular is arbitrarily smaller than the
size of the plaintext space ¢ = N¢. For essentially any choice of the LWE-based
FHE scheme with modulus ¢, the size of the public key and fresh ciphertexts
depends polynomially in A and linearly in log(q) = log(N¢), which gives us the
desired bound. The analysis above sets the following additional constraints:

— ¢ > 2F 4 oMoeg(@+(k+1)B)]
~q¢>2"-q,and
~-G>2"-(k+1)-B

which are always satisfied for ¢ = N¢, by setting the integer ¢ to be large enough.
Note that this choice of parameters fixes the modulus of the FHE with linear
decrypt-and-multiply to Z ¢, which is super-polynomially larger than the noise
bound B. Finally, the LWE parameter n is free and can be set to any value
for which the corresponding problem (with super-polynomial modulus-to-noise
ratio) is conjectured to be hard.
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4.2 Instantiating the Oracle

To complete the description of our scheme, we discuss a few candidate instan-
tiations for the oracle O(pi.,e,pk,e.a.3)- Ve Tequire the underlying LHE scheme
to have a dense ciphertext domain (which is the case for the Damgard-Jurik
encryption scheme). Both of our proposal introduce new circularity assumptions
between the FHE and the LHE schemes.

An alternate way to think of the oracle in Theorem 4 is to see it as an obfus-
cation for a special program, which is sufficient for realizing split FHE. The
candidate constructions that we provide below can be seen as a very natural
and simple obfuscation of this special program.

A Simple Candidate. Let € be the ciphertext domain of LHE. Our first
instantiation hardwires an FHE encryption of the LHE secret key cpyg «—
FHE.Enc(pkgpg, skine). We fix the random coins of the algorithm (whenever
needed) by drawing them from the evaluation of a cryptographic hash func-
tion Hash over the input. The intuition for our candidate is very simple: The
LHE ciphertext is obliviously sampled without the knowledge of the underly-
ing plaintext (which is the reason why we need dense ciphertexts) whereas the
FHE term is computed by evaluating the decryption circuit homomorphically
and rounding the resulting message to the closest multiple of §.

O (pkere-pkiye.a.d) (T): On input a string x € {0,1}* sample y «s &, using Hash(x)
as the random coins, then compute

y « FHE.Eval (pkgyg, — [LHE.Dec(-, y)/q] - G, crrE)
and return (y, 9).

Observe that y is an element in the ciphertext domain of LHE and it is of the
form y = LHE.Enc(pk, g, m), for some m € Z, since LHE has a dense ciphertext
domain. Furthermore, by the correctness of the FHE and the LHE scheme, we
have that

§ = FHE.Eval (pkgyg, — [LHE.Dec(+, y)/q] - 4, crrE)
= FHE.Eval (pkgyg, — |LHE.Dec(-,vy)/q] - G, FHE.Enc(pkeyg, skine))
= FHE.Enc (pkgyg, — |LHE.Dec(skine, v)/4] - ¢)

= FHE.Enc (pkepe, — |m/q] - 4) -

It follows that the pair (y,§) is syntactically well formed. However, a closer look
to the oracle instantiation reveals two lingering assumptions.

(1) Clircular Security: The addition of ceng = FHE.Enc(pkpyg, skLne) introduces
a circular dependency in the security of the LHE and FHE schemes (recall
that our split FHE construction includes in the public key an encryption
of skpye under pk; ye). Circular security is however widely considered to be
a very mild assumption and currently is the only known approach to con-
struct plain (as opposed to levelled) FHE from LWE via the bootstrapping
theorem [32].
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(2) Correlations: Although ¢ is an FHE encryption of the correct value, it is
not necessarily uniformly distributed, conditioned on y. In particular the
randomness of § may depend in some intricate way on the low-order bits of
m. For the specific case of LWE-based schemes, the noise term might carry
some information about m mod ¢, which could introduce some harmful
correlation. However, the noise function is typically highly non-linear and
therefore appears to be difficult to exploit. We also stress that we only
consider honest executions of the FHE.Eval algorithm.

While (1) can be regarded as a standard assumption, we view (2) as a nat-
ural conjecture which we believe holds true for any natural/known candidate
instantiation of the FHE and LHE schemes. In light of these considerations, we
conjecture that the implementation as describe above already leads to a secure
split FHE scheme.

Towards Removing Correlations. A natural approach towards removing
the correlation of the LHE and FHE ciphertexts is that of ciphertext sanitiza-
tion [24]: One could expect that repeatedly bootstrapping the FHE ciphertext
would decorrelate the noise from the companion LHE ciphertext. Unfortunately
our settings are different than those typically considered in the literature, in the
sense that the santiziation procedure must be carried out by the distinguisher
and therefore cannot use private random coins. Although it appears hard to
formally analyze the effectiveness of these methods in our settings, we expect
that these techniques might (at least heuristically) help to obliterate harmful
correlations. In this work we take a different route and we suggest a simple
heuristic method to prevent correlations. In a nutshell, the idea is to sample
a set of random plaintexts and define the random string as the sum of a uni-
formly sampled subset S of these plaintext. The key observation is that subset
sum is a linear operation and therefore can be performed directly in the LHE
scheme, which implies that the leakage of the FHE scheme cannot depend on
S. As for the previous construction, our instantiation contains and a ciphertext
cene = FHE.Enc(pkgyg, sking). The scheme is parametrized by some o € poly (M),
which defines the size of the set S. In the following description we present the
algorithm as randomized, although this simplification can be easily bypassed
with standard techniques (e.g., computing the random coins using a crypto-
graphic hash Hash(z)).

O pkeye phine.a.d) (T): On input a string 2z € {0,1}* sample a random set
S —s{0,1}°.
Then, for all i € [o], do the following:
— If §; = 1, sample a uniform y; «s €.
— If S; = 0, sample a uniform encryption y; «<sLHE.Enc(pk g, m;), for a
random known m;.
Then compute

i < FHE.Eval (kaHE, — Y |LHE.Dec(-,4:)/d] - G, cFHE> .
i=1



Candidate iO from Homomorphic Encryption Schemes 103

Let f be the following linear function

flan.ms) =D i+ Y |mi/q|-q

i€s i¢s

then compute y < LHE.Eval (pkyyg, f. {¥i};c5) and return (y, 7).

€S

To see why the implementation is syntactically correct, observe that

§ = FHE.Eval <kaHE, — > |LHE.Dec(-,4:)/d] - 4, CFHE)

=1

= FHE.Enc (kaHE, - Z |LHE.Dec(skine, vi)/q| ~Q’>

i=1

= FHE.Enc <kaHE, - lmi/d] ~(I>

i=1

by the evaluation correctness of the FHE scheme. Invoking to the correctness of
the LHE scheme we have that

y = LHE.Eval (pky e, f, {i}ics)
= LHE.Eval (pk_yg, f, {LHE.Enc(pkypg, m:) }ic )

= LHE.Enc <pkLHE,Zmi + ZLmz/(ﬂ @)

i€S igS

= LHE.Enc | pkpe, Y (m; mod )+ |mi/d] - q
= =1

m

which is exactly what we want, except that m is slightly larger than ¢, by a factor
of at most ¢. This can still be used in our main construction by adjusting the
error correcting code accordingly. The intuition why we believe that this variant
is secure is that the leakage in the FHE randomness cannot depend on the set
S, since the distributions of all y; are statistically close (recall that LHE has
dense ciphertexts). Thus, S (which is chosen uniformly) resembles the behavior
of a binary extractor on (m; mod §). Nevertheless, proving a formal statement
remains an interesting open question.

5 Split Fully-Homomorphic Encryption =— Obfuscation

In order to construct fully-fledged iO from split FHE, we rely on a theorem from
Lin et al. [44], which we recall in the following. Roughly speaking, the theorem
states that, under the assumption that the LWE problem is sub-exponentially
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hard, it suffices to consider circuits with a polynomial-size input domain and
obfuscators that output obfuscated circuits of size slightly sublinear in size of
the truth table of the circuit.

Theorem 5 ([44]). Assuming sub-exponentially hard LWE, if there exists a sub-
exponentially secure indistinguishability obfuscator for P'°& /poly with non-trivial
efficiency, then there exists an indistinguishability obfuscator for P/poly with
sub-exponential security.

Here P'°% /poly denotes the class of polynomial-size circuits with inputs of length
n = O(log(X)) and by non-trivial efficiency we mean that the size of the obfus-
cated circuit is bounded by poly (X, |C]) - 27(1=¢) | for some constant € > 0. Note
that the above theorem poses no restriction on the runtime of the obfuscator,
which can be as large as poly (A, |C]) - 2".

In the following we show how to construct an obfuscator for P'°% /poly with
non-trivial efficiency. We assume only the existence of a (levelled) split FHE
scheme sFHE = (KeyGen, Enc, Eval, PDec, Rec).

iO(C): On input the description of a circuit C, sample a fresh key pair (sk, pk) «—
KeyGen(1*) and compute ¢ « Enc(pk,C). For all i € [27/?] define the uni-
versal circuit i; as

£4,(0) :c((iq).z"ﬂ) ||...||C(i~2’7/271).

Then compute ¢; < Eval(pk,il;,¢) and p; «— PDec(sk,¢;). The obfuscated
circuit is defined to be (pk, ¢, p1,. .., Pan/2).

First we discuss how to evaluate an obfuscated circuit: On input some x €
{0,1}", parse it as an integer and round it to the nearest multiple of 27/2 (let
such integer be Z) such that z < x. Then compute ¢z < Eval(pk,ilz,c) and
m «— Rec(pz, cz). Read the output as the (x — Z)-th bit of m.

Analysis. Note that the runtime of the obfuscator is dominated by 27/2 eval-
uations of the split FHE ciphertext, where each subroutine homomorphically
evaluates the circuit C' 27/2-many times. Thus the total runtime of the obfusca-
tor is in the order of poly (A, |C])-27. We now argue that our obfuscator has non
trivial efficiency in terms of output size. We analyze the size of each component
of the obfuscated circuit:

— By the compactness of the split FHE scheme, the public key pk grows linearly
with the size of the output domain, i.e., 27/2, and polynomially in the security
parameter.

— The ciphertext ¢ grows linearly with the size of the encrypted message
and therefore, by the compactness of the split FHE scheme, bounded by
poly (A, [C]) - 2/2.

— Each decryption hint p; is of size poly (), since the underlying split FHE is
compact. As an obfuscated circuit consists of 27/2-many decryption hints, the
size of the vector (p1,.. ., pans2) is poly (X) - 27/2,
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It follows that the total size of the obfuscated circuit is bounded from above by
poly (A, |C|) - 27/2. What is left to be shown is that our obfuscator satisfies the
notion of indistinguishability obfuscation.

Theorem 6 (Indistinguishability Obfuscation). Let sFHE be a sub-
exponentially secure levelled split FHE scheme. Then the scheme as described above
18 a sub-exponentially secure indistinguishability obfuscator.

Proof. By the perfect correctness of the split FHE scheme it follows that the
obfuscated circuit is functionally equivalent to the plain circuit. Indistinguisha-
bility follows immediately from the split security of sFHE: If the split FHE is
secure against a distinguisher running in sub-exponential time, then so is iO.
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Abstract. Candidates of Indistinguishability Obfuscation (i0) can be
categorized as “direct” or “bootstrapping based”. Direct constructions
rely on high degree multilinear maps [28,29] and provide heuristic guar-
antees, while bootstrapping based constructions [2,7,33,36,38,39] rely,
in the best case, on bilinear maps as well as new variants of the Learn-
ing With Errors (LWE) assumption and pseudorandom generators. Recent
times have seen exciting progress in the construction of indistinguishabil-
ity obfuscation (iO) from bilinear maps (along with other assumptions)
[2,7,33,38].

As a notable exception, a recent work by Agrawal [2] provided a con-
struction for iO without using any maps. This work identified a new prim-
itive, called Noisy Linear Functional Encryption (NLinFE) that provably
suffices for iO and gave a direct construction of NLinFE from new assump-
tions on lattices. While a preliminary cryptanalysis for the new assump-
tions was provided in the original work, the author admitted the neces-
sity of performing significantly more cryptanalysis before faith could be
placed in the security of the scheme. Moreover, the author did not sug-
gest concrete parameters for the construction.

In this work, we fill this gap by undertaking the task of thorough crypt-
analytic study of NLinFE. We design two attacks that let the adversary
completely break the security of the scheme. Our attacks are completely
new and unrelated to attacks that were hitherto used to break other can-
didates of iO. To achieve this, we develop new cryptanalytic techniques
which (we hope) will inform future designs of the primitive of NLinFE.

From the knowledge gained by our cryptanalytic study, we suggest
modifications to the scheme. We provide a new scheme which overcomes
the vulnerabilities identified before. We also provide a thorough anal-
ysis of all the security aspects of this scheme and argue why plausible
attacks do not work. We additionally provide concrete parameters with
which the scheme may be instantiated. We believe the security of NLinFE
stands on significantly firmer footing as a result of this work.
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1 Introduction

Indistinguishability Obfuscation (i0) is one of the most sought-after primitives in
modern cryptography. While introduced in a work by Barak et al. in 2001 [11],
the first candidate construction for this primitive was only provided in 2013
[29]. In this breakthrough work, the authors not only gave the first candidate
for iO but also demonstrated its power by using it to construct the first full
fledged functional encryption (FE) scheme. This work led to a deluge of ever
more powerful applications of iO, ranging from classic to fantastic [13,15,18,19,
34,35,37,45]. Few years later, iO is widely acknowledged to be (almost) “crypto
complete”. We refer the reader to [36] for a detailed discussion.

However, constructions of iO have been far from perfect. The so called “first
generation” constructions relied on the existence of multilinear maps of poly-
nomial degree [9,29,30,47], “second generation” relied on multilinear maps of
constant degree [36,38,39], and in a sequence of exciting recent works, “third
generation” candidates rely only on multilinear maps of degree 2 (i.e. bilinear
maps) along with assumptions on the complexity of certain special types of
pseudorandom generators and new variants of the Learning With Errors (LWE)
assumption [2,7,33]. It is well known that degree 2 maps can be instantiated
on elliptic curve groups, so this brings us closer to realizing iO from believable
assumptions than ever before.

10 Without maps: All the above constructions rely on multilinear maps of degree
>2. While there exist candidates for multilinear maps of degree >3, they have
been subject to many attacks [8,20,22-27,27,32,43,44] and their security is
poorly understood. On the other hand, bilinear maps are well understood and
considered safe to use (at least in the pre-quantum world). Recent works [2,7,33]
have come tantalizingly close to basing iO on bilinear maps while minimizing the
additional assumptions required. There is hope that these efforts will converge
to a candidate whose security we may trust.

While realizing iO from degree 2 maps (along with other plausible assump-
tions) is a very worthy goal, it is nevertheless only one approach to take. Any
cryptographic primitive, especially one of such central importance, deserves to be
studied from different perspectives and based on diverse mathematical assump-
tions. Two works (that we are aware of) attempt to construct iO without using
any maps — one by Gentry, Jutla and Keane [31] and another by Agrawal [2].
The work by Gentry et al. [31] constructs obfuscation schemes for matrix prod-
uct branching programs that are purely algebraic and employ matrix groups
and tensor algebra over a finite field. They prove security of their construction
against a restricted class of attacks. On the other hand, the work of Agrawal for-
malizes a “minimal” (as per current knowledge) primitive called “Noisy Linear
Functional Encryption” (NLinFE) which is showed to imply iO and provides a
direct construction for this using new assumptions on NTRU lattices, which are
quite different from assumptions used so far for building multilinear maps or iO.

Comparison with other approaches. The instantiation of iO via Agrawal’s direct
construction of NLinFE (henceforth referred to simply as NLinFE) has both
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advantages and disadvantages compared to other cutting-edge constructions.
For instance, [31] has the advantage that it constructs full fledged iO directly,
while NLinFE has the advantage that untested assumptions are used to con-
struct a much simpler primitive. Next, consider constructions that use bilinear
maps [2,7,33]. On the positive side, NLinFE has potential to be quantum secure,
which evidently is not a property that bilinear map based constructions can hope
to achieve. Additionally, the NLinFE supports outputs of super-polynomial size,
while bilinear map based constructions can support only polynomially sized out-
puts. In particular, this leads to the latter constructions relying on a complicated
and inefficient (albeit cool) “security amplification” step in order to be useful for
iO. Moreover, there is a qualitative advantage to Agrawal’s direct construction:
while bilinear map based constructions use clever methods to compute a PRG
output ezxactly, the direct construction of NLinFE relaxes correctness and settles
for computing the PRG output only approzimately — this allows for the usage of
encodings that are not powerful enough for exact computation.

On the other hand, Agrawal’s encodings are new, while assumptions over
bilinear maps have stood the test of time (in the pre-quantum world). While
bilinear map based constructions must also make new, non-standard assump-
tions, these constructions come with a clean proof from the non-standard
assumptions. Meanwhile, Agrawal’s NLinFE came with a proof in a very weak
security game that only permits the adversary to request a single ciphertext,
and that too from a non-standard assumption. Moreover, the author did not
suggest concrete parameters for the construction, and admitted the necessity
of substantially more cryptanalysis before faith could be placed in these new
assumptions.

Our results. In this work, we undertake the task of thorough cryptanalytic study
of Agrawal’s NLinFE scheme. We design two attacks that let the adversary com-
pletely break the security of the scheme. To achieve this, we develop new crypt-
analytic techniques which (we hope) will inform future designs of the primitive
of NLinFE.

As mentioned above, Agrawal proved the security of her NLinFE in a weak
security game where the attacker is only permitted to request a single ciphertext.
Our first attack shows that this is not a co-incidence: an attacker given access
to many ciphertexts can manipulate them to recover a (nonlinear) equation
in secret terms, which, with some effort, can be solved to recover the secret
elements. We emphasize that this attack is very different in nature from the
annihilation attacks [43] studied in the context of breaking other constructions
of i0. We refer to this attack as the multiple ciphertext attack. To demonstrate
our attack, we formalize an assumption implicitly made by [2], and design an
attack that breaks this assumption — this in turn implies an attack on the scheme.
We implement this attack and provide the code as supplementary material with
this work.

Our second attack, which we call the rank attack exploits a seemingly harm-
less property of the output of decryption in NLinFE. Recall that the primitive of
NLinFE enables an encryptor to compute a ciphertext CT(z), a key generator to
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compute a secret key SK(v) and the decryptor, given CT(z) and SK(v) to recover
(z, v) + Nse, where Nse must satisfy some weak pseudorandomness properties.

A detail that is important here is that for NLinFE to be useful for iO, the
term Nse above must be a linear combination of noise terms, each multiplied
with a different (public) modulus. In more detail, the noise term Nse output by
NLinFE has the structure ), p;u; where p; for i € [0, D — 2| are a sequence of
increasing moduli and p; are unstructured noise terms. Moreover, for decryption
to succeed, these moduli must be public.

The NLIinFE construction takes great care to ensure that the noise terms
computed via NLinFE are high degree polynomials in values that are spread out
over the entire ring, and argues (convincingly, in our opinion) that these may
not be exploited easily. However, while some of the u; in the above equation are
indeed “strong” and difficult to exploit, we observe that some of them are not.
Moreover, since the moduli p; are public, the p; can be “separated” into different
“levels” according to the factor p;. Hence, it is necessary that the noise at each
“level” be “strong”, but NLinFE fails to enforce this. Therefore, while there exist
strong terms in some levels, the existence of a weak noise term in even one other
level enables us to isolate them and use them to construct a matrix, whose rank
reveals whether the message bit is 0 or 1.

From the knowledge gained by our cryptanalytic study, we suggest fixes to
the scheme. The first attack can be overcome by disabling meaningful manip-
ulation between different encodings. We achieve this by making the encodings
non-commutative. The second attack can be overcome by ensuring that the noise
terms for all levels are equally strong. We then provide a new scheme which over-
comes the vulnerabilities described above. We also provide a thorough analysis
of all the security aspects of this scheme and argue why plausible attacks do not
work. We additionally provide concrete parameters with which the scheme may
be instantiated.

Comparison with other attacks on i0. While Agrawal’s NLinFE construction is
quite different from previous iO constructions needing fresh cryptanalysis, there
are still some high-level similarities between the rank attack we propose and
previous attacks on candidate obfuscators [20,21,23,26]. In more detail, these
attacks also combine public elements in a clever way to obtain a matrix, and
computing the eigenvalues or the rank of this matrix then enables an attacker
to break the scheme. We note however that while the main idea of the attack is
the same (we compute a matrix and its rank leaks some secret information), the
way we obtain the matrix is completely different from [20,21,26].

1.1 Our Techniques

We proceed to describe our techniques. We begin by defining the primitive of
noisy linear functional encryption.

Noisy linear functional encryption. Noisy linear functional encryption (NLinFE)
is a generalization of linear functional encryption (LinFE) [1,3]. Recall that in
linear FE, the encryptor provides a CT, which encodes vector z € R", the key
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generator provides a secret key SK,, which encodes vector v € R™ and the decryp-
tor combines them to recover (z,v). NLinFE is similar to linear FE, except that
the function value is recovered only up to some bounded additive noise term,
and indistinguishability holds even if the challenge messages evaluated on any
function key are only “approximately” and not exactly equal. The functional-
ity of NLinFE is as follows: given a ciphertext CT, and a secret key SK,, the
decryptor recovers (z, v) + noise, v where noise, v is specific to the message and
function being evaluated.

It is well known that functional encryption (FE) for the function class NCy
which achieves sublinear' ciphertext is sufficient to imply iO [6,16]. Agrawal [2]
additionally showed the following “bootstrapping” theorem.

Theorem 1.1 ([2]) (Informal). There exists an FE scheme for the circuit class
NC; with sublinear ciphertext size and satisfying indistinguishability based secu-
rity, assuming:

— A noisy linear FE scheme NLIinFE with sublinear ciphertext size satisfying
indistinguishability based security and supporting superpolynomially large out-
puts.

— The Learning with Errors (LIWE) Assumption.

- A pseudorandom generator (PRG) computable in NCy.

Since the last two assumptions are widely believed, it suffices to construct
an NLinFE scheme to construct the all-powerful iO.

The NLinFE Construction. Agrawal provided a direct construction of NLinFE
which supports superpolynomially large outputs, based on new assumptions that
are based on the Ring Learning With Errors (RLWE) and NTRU assumptions
(we refer the reader to Sect. 2 for a refresher on RLWE and NTRU).

The starting point of Agrawal’s NLinFE scheme is the LinFE scheme of [3],
which is based on LWE (or RLWE). NLinFE inherits the encodings and secret
key structure of LinFE verbatim to compute inner products, and develops new
techniques to compute the desired noise. Since the noise must be computed
using a high degree polynomial for security [10,40], the work of [2] designs new
encodings that are amenable to multiplication as follows.

Let R = Z[z]/{z™ + 1) and R,, = R/(p1 - R), Rp, = R/(p2 - R) for some

primes p; < pa. Then, fori € {1,...,w}, sample fi;, fo; and g1, g> from a discrete
Gaussian over ring R. Set
ho=18 hy =L e R, vijel

g1 _972

Thus, [2] assumes that the samples {h1;, ho;} for ¢, j € [w] are indistinguishable

from random, even though multiple samples share the same denominator.
Additionally, [2] assumes that RLWE with small secrets remains secure if the

noise terms live in some secret ideal. The motivation for choosing such structured

! Here “sublinear” refers to the property that the ciphertext size is sublinear in the
number of keys requested by the FE adversary.
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secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, ha;} above, to cancel the denominator and obtain a small element which
can be absorbed in noise. R R

In more detail, for i € [w], let D(A2), D(A1) be discrete Gaussian distributions
over lattices Ay and A; respectively. Then, sample

e1; — 13(/12), where Ay £ g5 - R. Let ey; = go - &1; € small,
€9; — 13(/11), where A1 £ g1 - R. Let e9; = g1 - &3 € small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for ¢, j € [w], it holds that:

hii - ez = f1i - €25, hoj-e1i = fo; - &1 € small
Now, sample small secrets t1,ts and for ¢ € [w], compute

dy; = hyi-t1+p1-ey € Rp,
do; = hoj - ta +p1 - e2; € Ry,

Then, note that the products di; - d2; do not suffer from large cross terms for
any ,j € [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original
labels. In more detail,

di; - daj = (hai - haj ) - (t2 t2) + p1 - noise
where noise = py - (f1; - &2 - t1 + foj - &1i-t2 +p1- g1 - g2 - 1i - E2;) € small

The encoding d;;-d2; can be seen an RLWE encoding under a public label — this
enables the noise term p; - noise above to be added to the inner product computed
by LinFE, yielding the desired NLinFE. The actual construction [2] does several
more tricks to ensure that the noise term is high entropy and spread across the
ring — we refer the reader to Sect. 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we call
the RLWE problem with correlated noise. The distribution of the elements in
this problem are similar to the one obtained by the encryption procedure of
the NLinFE described above. We then show that this problem can be solved
in polynomial time by an attacker, which in turn translates to an attack on
Agrawal’s NLinFE construction.
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The key vulnerability exploited by the attack is that the noise terms across
multiple ciphertexts are correlated. In more detail, we saw above that di; =
h1;-t1+p1-e1; where eq; lives in the ideal go - R. Now, consider the corresponding
element in another ciphertext: dj; = hy; -t} +p1 - €; where e/, is also in the ideal
g2 - R. The key observation we make is that the noise e;; does not only annihilate
the requisite large terms in the encodings of its own ciphertext namely {ds;} — it
also annihilates large terms in the encodings of other ciphertexts, namely {d5,}.

This allows us to perform mix and match attacks, despite the fact that each
encoding is randomized with fresh randomness. Consider the large terms in the
following two products:

dyidy; = (hshag) - (t1th) + py - small
dgjdlli = (hgjhli) . (tzt’l) +p1 - small

We see above that the labels hi;ho; can be computed in two different ways (but
the secrets are different). In a symmetric manner, if we consider other indices i’
and j' for the ciphertext elements above, we can obtain

dlide = (hlihgj) . (tth) +p1 - small
dgj/dh—/ = (h2j’h1i’) . (tztl) +p1 -small.

Now, the secret is the same but the labels are changing. By playing on these
symmetries, we can combine the products above (and the symmetric ones) so
that all large terms are canceled and we are left with only small terms.

Intrinsically, what happens here is that in an element dy; = hy; - t1 + p1 - €14,
we can change the hy; and ¢; elements independently (the secret ¢; changes
with the ciphertext and the label hy; changes with the index of the element in
the ciphertext). By varying these two elements independently, one can obtain
2 x 2 encodings (for 2 different choices of hy; and 2 different choices of ¢1), and
consider the 2 x 2 matrix associated. More formally, let us write

di; = hyg -t +p1 - ey, dvir = hyy - t1 +p1 - ew

!/ ! ! / ! !
1 = hii -t +p1 ey, 10 = hr -0+ p1eqy

these encodings. We consider the matrix

dy; dli/) <t1> (611 €1i/>
= - (h1; hiir) +p1 - .
( 1 A t) ( e ) h €li €1

This matrix is the sum of a matrix of rank 1 with large coefficients plus a full rank
matrix with small coefficients that are multiples of go. These properties ensure
that its determinant will be of the form go/g; - small. By doing the same thing
with the encodings da;, we can also create an element of the form g1 /gs - small.
By multiplying these two elements, we finally obtain a linear combination of the
encodings which is small. We can then distinguish whether the encodings are
random or are RLWE with correlated noise elements. For more details, please
see Sect. 4.
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Unravelling the structure of the Noise. Our second attack, the so called “rank
attack” exploits the fact that for the NLinFE noise to be useful for bootstrapping,
it needs to be linear combination of noise terms, each of which is multiple of a
fixed and public modulus p;, for ¢ € [0, D — 2]. As discussed above, the noise
terms that are multiples of distinct p; may be separated from each other and
attacked individually. In these piece-wise noise terms, we first isolate the noise
term that encodes the message, which is 0 or m (say). Thus, our isolated noise
term is of the form Nse or Nse + m depending on the challenge. Here, Nse is a
complicated high degree multivariate polynomial, but we will find a way to learn
the challenge bit without solving high degree polynomial equations.

To do so, we examine the noise term more carefully. As mentioned above, this
term is a high degree, multivariate polynomial which looks difficult to analyze.
However, we observe that each variable in this polynomial may be categorized
into one of three “colours” — blue if it is fixed across all ciphertexts and secret
keys, red if it is dependent only on the secret key and black if it is dependent
only on the ciphertext. Next, we observe that if the challenge is 0, then the
above polynomial may be expressed as a sum of scalar products, where in every
scalar product one vector depends only on the secret key and the other one
depends only on the cipher text. Concatenating all these vectors, one obtains a
term (a, b), where a depends only on the secret key and b depends only on the
ciphertext (and they are both secret). The dimension of a and b is the sum of
the dimension of all the vectors involved in the sum above, let us denote this
dimension by N.

Assume that we can make N + 1 requests for secret keys and ciphertexts.
Now, in NLinFE, the message m itself depends on both the secret key and the
ciphertext? — we denote by m;; the message corresponding to the i-th secret key
and the j-th ciphertext, and note that m;; is known to the NLinFE adversary.
We write ¢; ; = (a;,b;) + (0 or m,;) the noise term obtained when computing
decryption with the i-th secret key and the j-th ciphertext. Define C and M the
N x N matrices (¢; ;)i,; and (my;); j respectively. Similarly, let A be the matrix
whose rows are the a; and B be the matrix whose columns are the b.

Then, depending on the challenge, we claim that C or C — M is of rank at
most N. To see this, note that we have C = A - B + (0 or M), where A has
dimension (N + 1) x N and B has dimension N x (N + 1), so that A - B has
rank at most N. On the other hand, the other matrix is of the form A -B + 1/,
which has full rank with good probability. We finish the attack by arguing that
the adversary is indeed allowed to make N + 1 requests for secret keys and
ciphertexts. Thus, by computing the rank of C and C — M, we can learn the
challenge bit. For details, please see Sect. 5.

Fizing the construction. In light of the attacks described above, we propose a
variant of Agrawal’s NLinFE construction [2], designed to resist these attacks.

2 This is created by the bootstrapping step. Intuitively my; is itself a noise term, which
depends on both SK and CT, and we seek to “flood” this term using NLinFE. Please
see [2] for more details.
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Recall that for the multi-ciphertexts attack, we used the commutativity of
the elements to ensure that, when multiplying elements in a certain way, the
labels and secrets were the same. Hence, we prevent this attack by replacing
the product of scalars hy; - t1 in the encodings by an inner product (hy;, t1),
where the elements hy; and t; have been replaced by vectors of dimension & (the
security parameter). This fix does not completely prevent the multi-ciphertexts
attack, but the generalization of this attack to this non commutative setting
requires a very large modulus, and is therefore not applicable to the range of
parameters required for correctness.

To fix the rank attack, we first observe that we do not need to construct
directly an NLinFE scheme with structured noise. Indeed, assume first that we
have an NLinFE scheme with arbitrary noise, and we would like to have a noise
term which is a multiple of pg. Then, when we want to encode a vector z, we
simply encode z/py with our NLinFE with arbitrary noise. By decrypting the
message, one would then recover 1/pg - (z, v) + noise, and by multiplying this by
Po, we obtain (z,v) + pg - noise, with the desired noise shape. More generally, if
we want a noise term which is a sum of multiples of p;’s, we could use an additive
secret sharing of z, i.e., compute random vectors z; such that ), z; = z, and
then encode z;/p; with the NLinFE scheme with arbitrary noise. By decrypting
every ciphertexts, one could then recover 1/p; - (z;, v) + noise for all i’s, and by
scaling and summing them, one will have a noise term of the desired shape.

Once we have made this observation that an NLinFE scheme with arbitrary
noise is sufficient for our purpose, we can prevent the rank attack by removing
the moduli p; from Agrawal’s construction. This means that the noise term we
obtain at the end cannot be split anymore into smaller noise terms by looking at
the “levels” created by the moduli. We now only have one big noise term, which
contains noise terms of high degree and so seems hard to exploit. For technical
reasons, we in fact have to keep one modulus, but the general intuition is the
same as the one given here. For more details, please see Sect. 6.

2 Preliminaries

2.1 Noisy Linear Functional Encryption (NLinFE)

Let R be a ring, instantiated either as the ring of integers Z or the ring of
polynomials Z[z]/f(x) where f(z) = 2™ + 1 for n a power of 2. We let R,, =
R/p;R for some prime p;, i € [0,d] for some constant d. Let By, By € RT be
bounding values, where g—f = superpoly(x). Let N > 0 be an integer (N will be
the maximal number of key queries that an attacker is allowed to make). We
define the symmetric key variant below.

Definition 2.1. A (Bj, B, N)-noisy linear functional encryption scheme FE
is a tuple FE = (FE.Setup, FE.Keygen, FE.Enc, FE.Dec) of four probabilistic

polynomial-time algorithms with the following specifications:

— FE.Setup(1”, Rf’d—l) takes as input the security parameter k and the space of

0

message and function vectors R,,, |

secret key pair (PK, MSK).

and outputs the public key and the master
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— FE.Keygen(MSK,v) takes as input the master secret key MSK and a vector
v E R]l;d—l and outputs the secret key SKy.

— FE.Enc(MSK, z) takes as input the public key PK and a message z € Rf)dfl
and outputs the ciphertext CT,.

— FE.Dec(SKy, CT,) takes as input the secret key of a user SKy and the cipher-

text CT,, and outputs y € Ry, , U{L}.

Definition 2.2 (Approximate Correctness). A noisy linear functional
encryption scheme FE is correct if for all v,z € Rf,d_l,

(PK, MSK) « FE.Setup(1*);
Pr {FE.Dec(FE.Keygen(MSK, v), FE.Enc(MSK,z)) = (v,z) + noisena | 1= negl(x)
where noiseqq € R with ||noiseqq|| < Ba and the probability is taken over the coins
of FE.Setup, FE.Keygen, and FE.Enc.

Security. Next, we define the notion of Noisy-IND security and admissible adver-
sary.

Definition 2.3 (Noisy-IND Security Game). We define the security game
between the challenger and adversary as follows:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Queries: Adv may adaptively request keys for any functions
v; € Rf)d_l. In response, Adv is given the corresponding keys SK(v;).

3. Challenge Ciphertexts: Adv outputs the challenge message pairs (zi,zi) €
Rf,d_l X Rﬁd_l fori € [Q], where Q is some polynomial, to the challenger. The
challenger chooses a random bit b, and returns the ciphertexts {CT(z})}ic(q-

4. Post-Challenge Queries: Adv may request additional keys for functions of
its choice and is given the corresponding keys. Adv may also output additional
challenge message pairs which are handled as above.

5. Guess. Adv outputs a bit b, and succeeds if b’ =b.

The advantage of Adv is the absolute value of the difference between the adver-
sary’s success probability and 1/2.

Definition 2.4 (Admissible Adversary). We say an adversary is admissible
if it makes at most N key requests and if for any pair of challenge messages
Zg,Z1 € Rﬁk and any queried key v; € R’ it holds that |(v;,z0 —21)| < By.

1 Pd—1"’

Structure of Noise. The bootstrapping step in [2] requires that

d—2
[(Vi, 20 — 21)| = Zpi - NOISech,|
i=0
for some noise terms noisecy ;. Hence the flooding noise noiseng that is added by
the NLinFE must also be structured as 25;02 D; - NOISeqq .
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Definition 2.5 (Noisy-IND security). A (By, B2, N) noisy linear FE scheme
NLinFE is Noisy-IND secure if for all admissible probabilistic polynomial-time
adversaries Adv, the advantage of Adv in the Noisy-IND security game is negli-
gible in the security parameter k.

The works of [2,6,14,16] show that as long as the size of the ciphertext
is sublinear in N, a (Bj, B2, N) — NLinFE scheme implies indistinguishability
obfuscation.

2.2 Sampling and Trapdoors

Ajtai [4] showed how to sample a random lattice along with a trapdoor that per-
mits sampling short vectors from that lattice. Recent years have seen significant
progress in refining and extending this result [5,42,46].

Let R = Z[z]/(f) where f = 2™ 4+ 1 and n is a power of 2. Let R, = R/qR
where ¢ is a large prime satisfying ¢ = 1 mod 2n. For r € R, we use ||| to refer
to the Euclidean norm of r’s coefficient vector.

We will make use of the following algorithms from [42]:

1. TrapGen(n,m,q): The TrapGen algorithm takes as input the dimension of the
ring n, a sufficiently large integer m = O(nlogq) and the modulus size ¢ and
outputs a vector w € R’ such that the distribution of w is negligibly far
from uniform along with a “trapdoor” Ty, € R™*™ for the lattice A;- (w) =
{x {w, x) =0 modq}

2. SampIePre(w Ty, a,0): The SamplePre algorithm takes as input a vector w €
Ry along with a trapdoor Ty and a syndrome a € R, and a sufficiently large
o = O(+v/nlog q) and outputs a vector e from a distribution within negligible
distance to DACQL(W)J_W(\/@) where Ag(w {x :(w, X) =a mod q}

2.3 Random Matrices over Z,

Lemma 2.6. Let q¢ be a prime integer and A be sampled uniformly in
(Z/(qZ))™=™. Then

P (det(A) € (Z/(42))%) = [[ (1 - 1.) > 4

i q q

Proof. The first equality is obtained by counting the number of invertible m x
m matrices in Z/(qZ). For the lower bound, we observe that 1 — 1/¢* > 1/2
for all 1 < ¢ < m. By concavity of the logarithm function, this implies that
log(1—1/¢%) > —2/¢" for all i > 1 (recall that the logarithm is taken in base 2).
We then have

m m
1 -4

wfl(-5)-Em(- 1)o7

Taking the exponential we obtain that P (det(A) € (Z/(¢Z))*) > 2=44 > 1 —
41n(2)
q

as desired. O
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Lemma 2.7 (Corollary 2.2 of [17]). Let g be a prime integer and A be sam-
pled uniformly in (Z/(qZ))™*™. For any x € (Z/(qZ))™, we have

P (deh(A) = | deb(d) € (Z/(42)") = ez = 7T

In other words, det(A) is uniform in (Z/(qZ))* when conditioned on being
invertible.

Corollary 2.2 of [17] even gives explicit values for the probability P(det(A) = x)
for any x. Here, we only use the fact that these values are the same whenever
the ged of z and ¢ is constant (in our case, the ged is always 1 because x is
invertible). Observe also that Corollary 2.2 of [17] is stated for a prime power g,
and can be extended to any modulus ¢ by Chinese reminder theorem (but we
only use it here in the case of a prime modulus ¢).

3 Agrawal’s Construction of Noisy Linear FE

We begin by recapping the construction of NLinFE by Agrawal [2]. The construc-
tion uses two prime moduli p; and ps with p; < ps. The message and function
vectors will be chosen from R,, while the public key and ciphertext are from
R,,. The construction will make use of the fact that elements in R, as well as
elements sampled from a discrete Gaussian distribution denoted by D, are small
in Rp,.

NLinFE.Setup(1%,1*): On input a security parameter k, a parameter w denoting
the length of the function and message vectors, do the following:

1. Sample prime moduli py < p; < p2 and standard deviation o for discrete
Gaussian distributions D, D and D’ according to the parameter specification
of [2].

2. Sample w «— R} with a trapdoor Ty, using the algorithm TrapGen as defined
in Sect. 2.2.

3. Sample E € D™*" and set a=E'w € R}).

4. For i € {1,...,7}, £ € {1,...,k}, sample f{;, fs; < D and g{,g5 « D. If
g%, g5 are not invertible over R,,,, resample. Set

14 4
Y Y
i — ¢ 2t — ¢

1 92

€ sz

5. Sample a PRF seed, denoted as seed.

Output

MSK = ( w, Tyw,a, E, {fllm fgi}ie[r],ée[k]’ {gfagg}le[k]}a seed )
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NLinFE.Enc(MSK, z): On input public key MSK, a message vector z € R? , do:

P1?

1. Construct Message Encodings. Sample v < D™ 1 «— D" and ty,ts « D.
Set s = t1 - to. Compute:

c=w-s+pVER), b=a-s+p-n+zecR

2. Sample Structured Noise. To compute encodings of noise, do the following:
(a) Define lattices:
A 2gl R AS2g0-R

(b) Sample noise terms from the above lattices as:
el = D(A), &, — D'(43), e, — D(A]),&; — D'(A]) Vi€l e K]

Here D(AY),D'(A%) are discrete Gaussian distributions on A% and
D(AL), D' (AL) are discrete Gaussian distributions on A5.
3. Compute Encodings of Noise.
(a) Let
di; =hi;-t1+p1- &, +po-ei; € Ry, Vie[r],le[k].

Here, p; - &{, behaves as noise and py - €4, behaves as the message. Let
dli = (dlii)

(b) Similarly, let

dy; = h; ta+p1- &5 +po-eh; € Ry, Vie€|[r], L€ k]

Here, p; - &5, behaves as noise and py - €5, behaves as the message. Let
dg = (dgz)
4. Output Ciphertext. Output message encodings (c, b) and noise encodings
(df,db) for ¢ € [k].

NLinFE.KeyGen(MSK, v, v*): On input the master secret key MSK, a NLinFE
function vector v € R}’ and its corresponding noise polynomial (represented
here as a quadratic polynomial) v* € R]fl, where L = |1 <j <i<rl|, do the
following.

1. Sampling Basis Preimage vectors.
(a) Sample short e;; € R™ using SamplePre (please see Sect.2.2) with ran-
domness PRF(seed, ij) such that

(w, e;;) = hij, where h;; = Z hfihgj +po - Aij +p1- Ay
Le k]

AboveAij,Aij<—D€Rf0r1§j§i§r.

Let EX = (eij) S RmXL, h* = (h”) S RL

D2

where L =11<j<i<r|.
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2. Combining Basis Preimages to Functional Preimage. Define
k,=E-v+E*.v* e€R™ (3.1)
3. Output (ky, V).

NLinFE.Dec(CT,, SKy): On input a ciphertext CT, = ( c, b, {dﬁ,dg}ge[k] ) and
a secret key k, for function v, do the following

1. Compute encoding of noise term on the fly as:

d* 2 () died) e Rl
Le k]

2. Compute functional ciphertext as:
by =v'b+ (v*)'d* € R,

3. Compute by — ki,c mod p; and output it.

Remark on the parameters. In the above scheme, one should think of B; as being
poly(k), Bs = superpoly(x) - B; and N = (krlog(p2))'* for some ¢ > 0.

4 Multi-ciphertext Attack on Agrawal’s NLinFE

Agrawal [2] provided a proof of security for her construction (under a non-
standard assumption) in a weak security game where the adversary may only
request a single ciphertext. In this section, we show that her construction is in
fact insecure if the adversary has access to multiple ciphertexts.

The problem appearing in Agrawal’s NLinFE construction is a variant of the
RLWE problem, where the random elements in RLWE samples are chosen from
some NTRU-like distribution, are kept secret, and the noise terms are correlated
to these elements. In this section, we first formally define a variant of the RLWE
problem, which we call the RLWE problem with correlated noise. The distribution
of the elements in this problem are similar to the one obtained by the encryption
procedure of the NLinFE described above. We then show that this problem can
be solved in polynomial time by an attacker, hence resulting in an attack on
Agrawal’s NLinFE construction.

Definition 4.1 (RLWE with correlated noise). Let R be some ring isomorphic
to Z™ (for instance R = Z[X]/(X™ + 1) for n a power of two, and the isomor-
phism is the coefficient embedding). We define the RLWE problem with correlated
noise as follows. Let m,k,q, 0,0’ be some parameters (q will be the modulus, m
the number of samples and o and ¢’ are small compared to q). We let D, be
the discrete Gaussian distribution over R with parameter o and U(Ry) be the
uniform distribution over R,. Sample
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- g1,92 <_IZ)U

= fris Jai Do forall 1 <i <k

— t1[j], t2[j] <« Do for all1 < j<m

—e1ilj],e2li] — Do foralll <i<kand1<j<m

= u1;j], uej] — U(Ry) foralll <i<kand1l<j<m.

The RLWE problem with correlated noise is to distinguish between

(‘leim[j] + e1i]j] - g2 mod ¢, %tg[j] + ei[4] - g1 mod q)

4,J
and
(wsld], waild])i -
Remark 4.2. This RLWE problem with correlated noise differs from the classical
RLWE problem in 4 different ways:

— Instead of being uniform, the elements a are of the form f; mod g with f;
and g small modulo ¢,

— There are multiple secrets ¢;[j] and t2[j],

— The elements % are secret,

— The noise is correlated with the elements % (instead of following a small
Gaussian distribution). ‘

We observe that if we obtain m ciphertexts from the NLinFE construction
described above, and if we only keep in each ciphertext the part corresponding to
¢ =1, then the elements obtained follow the RLWE distribution with correlated
noise. The notation [j] refers to the j-th ciphertext, and we dropped the index
{ since we are only considering ¢ = 1.

The next lemma explains how we can solve the RLWE problem with corre-
lated noise in polynomial time, using 4 pairs of elements (obtained by varying i
and j).

Lemma 4.3. Assume k,m > 2 and that the modulus q is a prime integer con-
gruent to 1 modulo 2n. Let (bi;[j],b2:[j])1<ij<2 be obtained from either the

RLWE distribution with correlated noise or the uniform distribution over R,.
Let us define

b:=(b11[1] - ba1[1] - b1,2[2] - b2,2[2] + b1,1[2] - b2,1[2] - b1.2[1] - b2 2[]]
- bl,l[Q] . bg’l[l] . b1,2[1} . b2,2[2] — bl,l[” . b2,1[2] . b1’2[2] . bgyz[”) mod q.

If the bgilj] come from the uniform distribution, then ||blloc > ¢/4 with high
probability (over the random choice of the (b1;[j], b2i[j])1<i,j<2). Otherwise, ||b||so
18 small compared to q.

Proof. Let us first consider the case where the bg;[j] are uniform modulo ¢ and
independent. Observe that b can be written as the determinant of a product of

two matrices
_ (b1a[1] b11[2] _ (b2,1[1] b2,1[2]
My = (bl,gm bmm) and M = (b;m 622[2]> :

)
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These two matrices are uniform over R,. Because ¢ = 1 mod 2n, we have that
2" +1=[[,(x —a;) mod ¢ and so Ry ~ Zy[z]/(x — 1) x - -+ X Lg[z]/(x — 1) ~
(Z,)™. By Chinese reminder theorem, all the matrices My mod (z — ;) are
uniform and independent matrices in Z,. Now, by Chinese reminder theorem
and Lemma 2.6, we have that

P(det(M;) & R)) = P(3i, det(M; mod (z — o)) € Z) < O (Z) .
Because n < ¢, this implies that M; and M, are invertible with high probability.
Recall from Lemma 2.7 that, when conditioned on being invertible, the determi-
nant of M; and M are uniformly distributed over the invertible elements of R,.
Hence, we conclude that with high probability, the product det(M;) - det(Ms)
is uniform in R} and so is likely to have infinity norm larger than q/4.

Let us now assume that the bg;[j] come from the RLWE distribution with
correlated noise. Then, we have

1 2,
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where the computations are performed modulo g. Observe that in the products
and sums above, all the elements are small. The only things that can be large
are the division modulo ¢ by g; and g5. We are going to show that if we develop
the products above, then all the terms containing divisions by g¢; or g» are
annihilated. So b will be a polynomial of degree 4 of small elements (with no
denominator) and hence it will be small compared to g.

Let us consider the first line of the equation above

(f;;l t1[1] +e1,1[1] - 92)'(%752[1] +e2,1[1] - 91) : (%tlm +e1,2[2] - 92)‘(%752[2] +e2,2[2] 'g1> .

When we develop this product, we are going to produce terms with denomi-
nators of degree 0, 1, 2, 3 and 4 in the gg. Observe that the third line is the same
as the first line, where we have exchanged ¢;[1] and ¢;[2] and the corresponding
noises. So every term of the first line containing - St fl—ftl[2] will be the
same as the analogue term in the third line, and so will be annihilated. Simi-
larly, the fourth line is the same as the first line, where we have exchanged ¢5[1]
and t3[2] and the corresponding noises. So every term of the first line containing
%tz[l] . %tz [2] will be the same as the analogue term in the fourth line, and
so will be annihilated. Using this remark, we argue below that all the terms with
denominators in the first line are annihilated.
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— The term of degree 4 contains f;il t1[1] - f;—ftl [2] and so is annihilated by the
third line.

— The terms of degree 3 have to contain 3 denominators out of the 4. So they
contain either %tl[l] . fgl—ftlp] or %tg[l] . f;—jtg [2]. In both cases, they are
annihilated.

— The terms of degree 2 containing either f;il t1[1]- %tl [2] or %tg[l] : %tg [2]
are annihilated. It remains the terms of degree 2 whose denominator is g1 gs.
But these terms are multiplied by a noise which is a multiple of g; and another
noise which is a multiple of go. Hence the denominator is annihilated and these
terms are just polynomials in the small elements.

— The terms of degree 1 have denominator g; or go. But they are multiplied by
noises that are multiples of g; and g». Hence the denominator is annihilated
and these terms are polynomials in the small elements.

To conclude, all the terms are either eliminated thanks to the symmetries, or
the denominators are removed by multiplication by ¢g; and gs. Similarly, we can
show that this holds for all the four lines. The sage code for the above attack
is provided as supplementary material with the paper. So b is a polynomial of
constant degree in the gg, fai, tg[j] and eg;[j], which are all much smaller than
q. Hence, b is also much smaller than q.

Concluding the attack. To conclude the attack on Agrawal’s NLinFE scheme, let
us now explain how the distinguishing attack described above can be used to
recover the secret elements of the RLWE with correlated noise instance. We have
seen in Lemma, 4.3 that, from four instances of RLWE with correlated noise, one
can compute a quantity b which is significantly smaller than the modulus g. This
means that one can recover b over the ring R, without reduction modulo ¢. Let
us consider such an element b, obtained from the four RLWE with correlated
noise instances (b;[j], b2i[5]), (brir[j], b2ir[1]), (b1i[5'], b2:[5']), (brir [57], bair [5']) (for
simplicity, the lemma above is stated with 7,5 = 1 and 4/, = 2, but it can
be generalized to any choice of (4, 7,4, 5’), with ¢ # i’ and j # j'). Computing
b as in Lemma 4.3, we obtain a polynomial over R of degree 8 in 16 variables
(the gg, the t[j]’s, the fg,; and the eg;[j]). More generally, if we consider all
the equations one can create by computing b as above for 4, 7,7, 5’ varying in
{1,--- £}, with i # i’ and j # j’, then one can obtain £*(¢ — 1)? equations of
degree 8 in 2 4+ 3¢ + 2¢? variables. Choosing ¢ = 3 provides 36 equations in 29
variables, hence one may hope that this system has a unique solution, and that
solving it would reveal the values of the secret parameters.

Recall that solving a system of polynomial equations is hard in general, but
the hardness increases with the number of variables. Hence, if the number of
variable is constant (here equal to 29), solving a polynomial system of equations
should be easy. One way to solve such a system is by computing a Grobner
basis of the ideal generated by the multivariate polynomials. This can be done
in the worst case in time doubly exponential in the number of variables (see for
instance [12,41]), which is constant in our case, as we have a constant number
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of variables.?> Once we have a Grobner basis corresponding to our system of
equations, we can solve it by computing the roots of a constant number of
univariate polynomials over K. Since we know that the solution of our system
is in R?%, it is sufficient to compute the roots of the polynomials over K with
precision 1/2, and then round them to the nearest integer element. Solving these
univariate polynomial equations can hence be done in polynomial time (in the
size of the output).

Alternatively, to avoid numerical issues, we could choose a large prime num-
ber p, which we know is larger than all the noise terms arising in the equations,
and then solve the system in R/(pR). Hopefully, the system is still overdeter-
mined modulo p, and so has a unique solution which corresponds to the solution
over R. Thanks to the fact that p is larger than the noise terms, recovering them
modulo p reveals them exactly, so we can recover the solution over R from the
one over R/(pR). This approach can also be done in time doubly exponential in
the number of variables, and polynomial in the degree of K and in log(p).

To conclude, the elements b enables us to recover equations of degree 8 in a
constant number of variables, which can then be solved efficiently. This means
that we can recover the secret elements gg, t[j], f3,; and eg ;[j] of the RLWE with
correlated noise instances in polynomial time (given sufficiently many instances).

5 Rank Attack on Agrawal’s NLinFE

In this section, we present a novel “rank attack” against the NLinFE scheme. The
attack exploits the property that the NLinFE scheme must compute a noise term
with special structure: in detail, the noise term must be expressible as a linear
combination of noise terms which are multiples of moduli p; for ¢ € [0, D — 2].
The moduli p; in this case are public — this enables the attacker to recover noise
terms at different “levels” , namely, corresponding to different moduli. The attack
exploits the fact that while the noise terms corresponding to some moduli are
highly non-linear and difficult to exploit, those corresponding to some others are
in fact linear and may be exploited by carefully arranging them into a matrix
and computing its rank. We provide details below.

5.1 Exploiting the Noise Obtained After Decrypting a Message

Let us first explicit the noise obtained after decryption. When computing b, —kJ,c
for a valid ciphertext and secret key, one obtain something much smaller than ps,
which can hence be recovered exactly. This noise is the following

3 In all this discussion, we are interested in the theoretical complexity. In practice,
solving an arbitrary overdetermined system with 29 variables could take a lot of
time, but this time would not increase with the security parameter x, hence, it is
constant for our purposes.
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T
by —k,c
= viz4+pivig —po(v)TA . s — pl(vx)TZ -5 — pl(VTE + (vVHTE Y
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+ Z Vij [;Dl : (Pl (92 - &1 91 ‘fzj) +po- (928191 '§2j +92-81i° 9 '521)
i

+(ff7 -t ég] +f§j s l2 gi)) + po - (po . (gﬁ Ei 'gf '52_7’) + (ff7 “t1 "Egj + fzfl - l2 511/7))]’

where A and A are vectors of dimension L whose elements are respectively the
A;; and A;;. This noise term is quite complicated, but since it involves multiples
of p; and py, one can distinguish the noise terms that are multiples of pg, pg, p1, p?
and pop;. Here, we assume that the noise terms that are multiplied to the p;’s are
small enough so that the different multiples do not overlap. While this should be
true for correctness that p; is much larger than the multiples of pg appearing in
the term above, this might not be true for instance when splitting the multiple
of pp from the multiple of p? (one could for instance think of py = 4). As we
should see below however, this will not be a problem for our attack. To see this,
let us write pg - smally —|—pg -smally + py - smallz the noise term above. As we have
said, for correctness, it should hold that, when reducing this term modulo pq,
we obtain pg - small; + pZ - smally over R. Now, dividing by po and reducing the
obtained term modulo pg, we recover small; mod pg. In the rank attack below,
we exploit the noise term small;, which we might know only modulo py (and not
over R). However, all we do on this noise terms is linear algebra, and does not
depend on the ring in which we are considering the elements. Hence, we could
as well perform the attack in R, if we recovered only small; mod py.

Recall also that in the distinguishing game, the adversary chooses two mes-
sages zo and z; with the constraint that v7zg = vIz; + pg - p for any vector v
for which she has a secret key (with a small p). She then gets back the encryp-
tion of one of the two messages and wants to know which one was encoded. In
other words, if z is the encrypted message, the adversary knows that vz = x or
2+ po - p for some known values of x and p (with pg - 4 smaller than some bound
By), and wants to distinguish between these two cases. We can then assume that
the adversary removes x from the noise term, and is left with either 0 or pg - p.
The adversary can then obtain the following noise terms

14

S v - &Lgss | gt (5.1)
4,7

S v -eighs | ghot (5.2)

¢\ i,j
Do D vl G, +Eigs) | ghat (5.3)
¢\ i,j
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Zv,ﬁ- . (ffl -t ~§§j + fzéj -t - ffl) + (VX)TA -5+ (0 or ) (5.4)

5,4

Sk (Hiot- @+ gyt 8) + (V)TA s+ v+ (VE S (V) B
7,7,

(5.5)

In the noise terms above, the blue elements are secret and are fixed for all
ciphertexts and secret keys, the red elements are known and depend only on the
secret key, the black elements are secret and depend only on the ciphertexts and
the brown element is the challenge. The value i of the challenge can be chosen
by the adversary, and the adversary has to decide, given the above noise terms,
whether (5.4) contains 0 or u. Recall also that the vector v can be chosen by
the adversary whereas the vector v* is chosen by the challenger as the polyno-
mial that computes a PRG. The blue and red elements above can be modified
independently, by considering another secret key or another ciphertext.

5.2 Rank Attack to Distinguish Bit

The rank attack focuses on the noise term (5.4). As this noise term contains the
challenge, it suffices to distinguish between a noise term with 0 or a noise term
with p to break the NLinFE construction. Let us rewrite the equation in a more
convenient way.

Sowk(flti €+ fhta &) + (VOTA s+ (0o p)

- (Z(Z%fﬁ)fgjtl) + ;(Z(Zblxjfi) fj~t1)

14 J % J %

+ (v)TA)-s+ (0 or ).

Recall that in the equations above, the blue terms are fixed, the red terms depend
only on the secret key and the black terms depend only on the ciphertext. Hence,
one can observe that if the challenge is 0, then the equation above is a sum of
products, where in every product one term depends only on the secret key and
the other one depends only on the ciphertext. Concatenating all these elements
into two vectors, one obtains (5.4) = (a, b), where a depends only on the secret
key and b depends only on the ciphertext (and they are both secret).

The dimension of a and b is the number of terms in the sum above. In our
case, this dimension is 2rk+ 1. To see this, note that £ € [k] and j € [r], and that
we are summing over £ and j so we obtain a sum of kr scalars. Hence, this term
may be expressed as one big inner product of two vectors of dimension 2rk + 1.

Assume that we can make N := 2rk + 2 requests for secret keys and cipher-
texts, and let us write ¢; ; = (a;,b;) + (0 or 1;;) the noise term obtained when
evaluating the NLinFE scheme with the i-th secret key and the j-th ciphertext.
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Recall that the values p;; are chosen by the adversary. Define C and M the
N x N matrices (¢; ;)i,; and (f5) ; respectively.

Then, depending on the challenge, we claim that C or C — M is of rank at
most N — 1. To see this, note that we have C = A -B + (0 or M), where A has
dimension N x N — 1 and B has dimension NV — 1 x N, so that A - B has rank
at most N — 1. On the other hand, the other matrix is of the form A - B + M,
which has full rank with good probability (even if M has only rank 1, the sum
of a matrix of rank N — 1 and a matrix of rank 1 is likely to have rank N if the
two matrices are independent, which is the case here).* Hence, computing the
determinant of the matrix C allows to determine what was the challenge, and
to break the security of the NLinFE scheme.

The case of degree >2. In the general case, if the degree of the NLinFE scheme
is d instead of 2, then the same reasoning applies. The only difference is that
the vectors a and b will have dimension d - k- r 4+ 1, so one needs to be able to
make N :=d-k-r+ 2 key and ciphertext queries for the attack. More precisely,
in degree d, the term (5.4) becomes

d &
(5.4)222 Z lelw(Hfﬁ” .tj)§§7i6 + (VX)TA.3+(()<)1‘ )

6=10=11<iy, - ,ig<r j#6
d k
Y Y T ,
=3 Y (I TI6)eh + At 00 )
6=10=11<iy, - ,ig<r A8 £

>y Wﬁ‘..._,-,{,(Hff,ij Htj)gf,ié + v)TA-s+(0o0r p)

11<iy, - ig<r J#6 J#6
k T
¢ ¢ T , \
= ZZ ( Z Vo iy 'Hfi-h' &5,is -Htj) + (v)TA s+ (00 p).
5=1=1is=1 1<i;<r,j#s J#5 J#8

For the first term, we are now summing dkr elements, and each one corresponds
to the product of two scalars. Hence, the left term can be written as one inner
product of two vectors of dimension d - k - r, with one vector depending only on
the secret key and one depending only on the ciphertext. The analysis of the
term (v*)T A - s is the same as before. To conclude, taking N = d -k - r + 2
and performing the same attack as above enables us to distinguish whether the
challenge is 0 or p.

4 Observe that even if the j;; are somehow chosen by the adversary, they cannot be
chosen arbitrarily. Indeed, p;; is the scalar product between the vector corresponding
to the i-th secret key, with the difference of the two messages of the j-th pair of
challenge messages. Hence, the matrix M has rank at most w, where w is the size
of these vectors. However, as said above, it is sufficient to have M of rank at least
1 for the attack to go through, and this can be ensured by the attacker (it simply
needs to take M # 0).
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We thus obtain the bound N :=d -k -7 + 2 on the number of key requests
that can be performed by the attacker. Since k,r = poly(k), the adversary can
obtain this number of keys to conduct the above attack.

6 Modifying Construction to Fix Attacks

In this section, we describe an approach to fix the above two attacks (which
we will refer to as “the multiple ciphertext attack” and as the “rank attack”
respectively).

Intuitively, the reason for the multiple ciphertext attack to work is commuta-
tivity: we mix and match the LWE labels and secrets across multiple ciphertexts
to compute the large term in two different ways. An over-simplification is that if
two ciphertexts CT; and CTy have LWE secrets s and t respectively, and a and
b are labels, then CT; contains encodings with large terms as and bs and CT,
contains encodings with large terms at and bt. But now, (as) - (bt) = (bs) - (at),
which implies that we can multiply encodings from different ciphertexts in two
different ways to get the same large term, which may then be removed by sub-
traction. While the attack developed in Sect. 4 is more elaborate, the intuition
remains the same as in the simplification discussed here.

The reason the the rank attack on the other hand is the presence of the
moduli py and p;, which allow to separate the noise terms, and obtain one noise
term which is only linear in the freshly chosen error elements.

Fizing the multiple ciphertext attack. As shown by the above discussion, the chief
vulnerability exploited by the attack is commutativity of polynomials. However,
if we replace scalar product by inner product, we get that the first ciphertext
contains the terms (a,s) and (b, s) and the second ciphertext contains the terms
(a,t) and (b, t). Attempting to launch the above attack shows that:

<aa S> ’ <bat> 7& <ba S> : <aat>

This prevents the mix and match attacks of the kind discussed in Sect. 4
since each large term now uniquely corresponds to a single product of encodings
and may not be generated in two different ways. As explained in the full version,
the multiple ciphertext attack can still be generalized to this setting, but the
modulus ¢ will need to be exponential in the dimension of the vectors for the
attack to work, and so we can prevent the attack by choosing the dimension to
be larger than log q.

Fizing the rank attack. In order to fix the rank attack, we propose to remove
the modulus py from the encodings, i.e., consider encodings of the form df, =
(hf,, t1) +p1 - ef; + &,. This way, it will be harder to split the noise term at
the end (we will only have three “levels” 1, p; and p? instead of 5 before), and
we will show that the noise terms obtained this way seem hard to exploit now.
One may want to also remove the modulus p; from the construction, and only
consider one noise term, but as we should see in the construction, the modulus
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p1 is needed for correctness (not only for the shape of the output noise), and so
cannot be removed easily.

Recall that the modulus pg were present because we wanted to flood a noise
term of the form noiseg - pg (the modulus p; is used because the messages are
living in Ry, ). In more generality, in the bootstrapping procedure used in [2] to
construct i0, we will want to flood a noise term of the form noiseg - pg + -+ - +
noisep_s - pp—o for some integer D related to the degree of the FE scheme we
want to construct. We will also want the message space of the NLinFE scheme to
be R,,_, and the ciphertext space to be R, ,,, with py < p1 < --- < pp for prime
numbers p;. We also want for the bootsrapping procedure that the noise output
by the NLinFE scheme be of the form noise(, - pg + - - - + noise),_5 - pp_2, so that
when we add this noise to the original noise, we still have a linear combination
of the p;’s, with i < D — 2.

From arbitrary flooding noise to structured flooding noise. When we remove the
moduli from Agrawal’s construction as discussed above, we obtain an NLinFE
scheme where the flooding noise term is arbitrary in R, and so not of the desired
shape noise, - p + - - - + noise’, _5 - pp_2. We can however use this NLinFE scheme
to construct a new NLinFE’ scheme, with a flooding noise term of the desired
shape. Intuitively, the idea is to use an additive secret sharing of the messages
Z =1%o+ -+ Zp_2, and then encode zy/py, - ,Zp_2/pp—2 using the NLinFE
scheme without moduli. To recover the scalar product (v,z), one then compute
po-(v,z0/po)+ - +pp—2-(V,Z2p_2/pp—2), and so the noise term will have the
desired shape.
More precisely, the NLinFE’ scheme proceeds as follows

NLinFE’.Setup(1%,1*): Run NLinFE.Setup(1%,1%) D — 1 times to obtain D — 1
master secret keys MSK; and output (MSKg, -, MSKp_5).

NLinFE".Enc((MSKo, - ,MSKp_3),2): where z € RY .
1. Sample (zg, - ,zp—3) uniformly at random in R,, , and define zp_,
such that 213262 Z; = Z.
2. For ¢ in {0,--- ,D — 2}, compute CT; = NLinFE.Enc(MSK;, z;/p;). Here,
the division by p; is performed modulo pp_1, and is possible because p;
is coprime with pp_q for all i < D — 2.
Output CT, = (CTy,--+,CTp_2).
NLinFE".KeyGen(MSK, v, v*): output

SKy = (NLinFE.KeyGen(MSKq, v,v*),---  NLinFE.KeyGen(MSKp_2, v, v*)).

NLinFE'.Dec(CT,,SKy): where z € RY .
1. Parse CT, as CT, = (CTy,---,CTp_2) and SK, as SK, = (SKy, -,
SKp_2).
2. Compute y; = NLinFE.Dec(CT;,SK;) € R,,, , for 0 <i <D — 2.
Output 7% piy; mod pp_1.

For correctness, observe that in the NLinFE’ decryption algorithm, we have
yi = (2i/psi, V) + noise; by correctness of NLinFE (if the ciphertexts and secret
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keys are valid). So the output is indeed of the form (z,v) + >, noise; - p;: we
have (z,v) plus a noise term of the desired shape.

We conclude that, for the bootstrapping procedure of [2], it is sufficient to
construct an NLinFE scheme, with message space R,,_,, ciphertext space I,
and arbitrary flooding noise. The new NLinFE construction we propose below
satisfies these conditions.

6.1 The New NLIinFE Construction

Below, we present a modified variant of the NLinFE construction of [2], designed
to avoid the multiple ciphertext attack and the rank attack, as discussed above.

NLinFE.Setup(1%,1%*): On input a security parameter k, a parameter w denoting
the length of the function and message vectors, do the following;:

1. Sample W « R~ ~* with a trapdoor T using the algorithm TrapGen.

2. Sample E € D"*" and set A = E'W € R}* o (recall that D is a discrete
Gaussian distribution over R of parameter o).
3. Fori € {1,...,r}, £ € {1,...,k}, sample f/,, f5, « D" and g{,g% « D. If
g%, g5 are not invertible over R, , resample.
Set
it

0 _ L _
hy, = A hy, =
91

£,
= e R}
gé PD
4. Sample a PRF seed, denoted as seed.

Output

MSK = ( W, T, A B, {884} ) repegr {91 98 et} seed )

NLinFE.Enc(MSK, z): On input public key MSK, a message vector z € R},
do:

1. Sample t1,to « D*. Set s =t; Rty € R*.
2. Construct Message Encodings. Sample v «— D™ 1 «— D" and compute:

c=Ws+pp 1-veER), b=As+pp 1 -n+z€R)

PD’
where z € Ry is seen as a vector of R with coefficients in (—25=, P5-]
and then reduced modulo pp.
3. Sample Structured Noise. To compute encodings of noise, do the follow-
ing:
(a) Define lattices:
A 2gl R AS2g0-R
(b) Sample noise terms from the above lattices as:
el — D(A3), &l — D(A3), €5, — D(A]), &, — D(AT) Vi€ [r], £ € [K].

Here ﬁ(/l‘i)) is a discrete Gaussian distribution on A{ and 73(/15) is a
discrete Gaussian distributions on A%, both of parameter o.
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4. Compute Encodings of Noise.
(a) Let

di; = (hi;, t1) +pp_1-el; + & € Ry, Vi€ [r], L€ [k]

Let df = (dt,).
(b) Similarly, let

dy; = (h%;, ta) +pp_1 - ey + &5 € Ry, Vi€ [r], L€ [k]
Let df = (d5,).
5. Output Ciphertext. Output message encodings (c, b) and noise encodings
(df,db) for £ € [k].

NLinFE.KeyGen(MSK, v, v*): On input the master secret key MSK, NLinFE func-

tion vectors v € Ry and v* € R with coefficients small compared to

pp—_1, do the following.

1. Sampling Basis Preimage vectors.
(a) Sample short e;; € R™ using SamplePre with randomness PRF(seed, ij)
such that

WTeij = hij7 where hij £ Z h?z X hgj +pD_1A7',j + AL]
Le k]

Above Ai]‘, Aij — Dﬁz € ]’%K2 for 1 < j < 7 <r.
Let EX = (eij) S RmXL

where L=[1<j<i<r|
2. Combining Basis Preimages to Functional Preimage. Define

ky=E-v+E*.v* ¢R™ (5.6)
3. Output (ky,v,v>).

NLinFE.Dec(CT, SKy): On input a ciphertext CT, = ( ¢, b,{d{,d}}sc(x) ) and
a secret key k, for function v, do the following

1. Compute encoding of noise term on the fly as:

2 () died)eR),
Le k]

2. Compute functional ciphertext as:
by =v'b+ (v*)'d* € R,,

3. Compute (by — ki c mod pp) mod pp_1 and output it.
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Correctness. In this section, we establish that the above scheme is correct. To
simplify the analysis, we let smallp_; denote any term which is small compared
to pp—1 and smallp be any term which is small compared to pp. We also assume
that summing polynomially many small; terms or multiplying a constant number
of them results in an element which is still a small; (for i = D — 1 or D). We
also assume that the parameters are set so that o is small compared to pp_1
and that pp_1 is small compared to pp.

Let us do the analysis by walking through the steps performed by the decrypt
algorithm:

1. We compute an encoding of a correlated noise term on the fly as described in
Fig. 1.

Computing Encoding of Correlated Noise Term for the new construction

We compute df; -déj. Recall that
di; = (b, t1) + pp_1-€i; + &1 € Rpp

dgj = <h§j, t2) +pp—1 -5 + &5, € Ry,

Recall also that ef;, &%, are sampled from lattice A% and e5;,&5; are sampled from
lattice Af.

Let i, =g5-&n, &= g5 &,
and egi = gf '55::7 egz = 91 521‘
Now, we may compute:
¢ ¢ ¢ ¢ ¢ ¢ v
dy; - daj = (<h1i7 t1) +pp_1-ey; + elj) : (<h2]’7 to) +pp-1-es; + ezj)

= (hi; ®h;, (t1®@t2)) +pp_1- (pD—l (g5 - €1 - g1 - €55)

s smallp
+ (gé gﬁ 'gf 'fgj + gé fﬁ 'gf ggj) +(<f1£'i,7 t1) 'fgj + <f2[j, t2) d:))
smallp_ 1 smallp_ 1
+ (95 &gt - 85) + (8T, #2) - 855 + (855, £2) - €1)))
smallp 1

(recall that small; is a term that is small compared to p; for i = D — 1 or D).

Thus, Zdﬁ . dgj = Z hi; ® h2] ), 8) +pp—1-smallp + smallp_1. (6.2)

Le(k]

Fig.1. Computing encoding of noise term as polynomial of encodings in the new
construction of Sect. 6.
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2. The decryption equation is:
by —kyc= (v'b+ (v*)'d*) —kyc
3. Recall that b=A-s+pp_1-n+z€ R, . Hence,
vib=v'A -s+pp_i-smallp +v'z
4. Let H; = (eez[k]h{i ®hj; ) be the (i, )™ row of H* € Rﬁ;“2. Since
d* =H*s +pp_;1 -smallp + smallp_;

and v* € R is small compared to pp_1, we have
(v))'d* = (v*)"H*s + pp_1 - smallp +smallp_4
Hence we have
vb+ (v¥)'d* = (VA + (v)"H")s + pp_1 - smallp + smallp_; + v'z

5. Next, note that

KIW = v'A + (v)"H" 4 pp_1 -smallp_1 +smallp_1 £ a, € RLX*
6. Recall that c = W s+ pp_1 - v hence,

kiyc=a,s+pp_1- (v, ky)

=(V'A+ (v*)'H*)s+smallp_1 + pp_1 - smallp

7. Hence, by — k{,c = v'z + smallp_; + pp_1 - smallp. The right hand side
of this equation is smaller than pp by assumption (if the parameters are
carefully chosen), hence, by computing b, — kj,c in R,,, we recover v'z +
smallp_14+pp_1-smallp over R. Now, reducing this term modulo pp_; leads
to v'z + smallp_1 mod p;, where smallp_1 is small compared to pp_1.

On the degree of the noise term. As was already observed in Agrawal’s original
construction [2], the construction above is described with a noise term of degree
d = 2, but it could easily be generalized to any constant degree d. In the case
of a general degree d, we would have d-tuples of encodings (dgi, e 7dﬁli), where
the noise in dﬁi is a multiple of [], “a gf. Then, when computing d*, one would

consider all possible products df; - - dfl’id and obtain a noise term of degree d.
Please see the full version for details. For simplicity, we described above the variant

with d = 2, but we show in the full version that for security we need d > 3.
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7 Setting the Parameters

We provide in the full version a discussion on the security of the new NLinFE
scheme described above. In particular, we generalize the attacks presented in
Sects. 4 and 5 and argue that our new scheme is not vulnerable to them. Below,
we provide an instantiation of the parameters of the scheme which we believe is
secure, even against a quantum computer (see the full version for more details).
Recall that the parameter N is the maximal number of key requests that an
attacker is allowed to performed and that this parameter should be superlin-
early larger than the ciphertext size for the NLinFE scheme to imply iO. In our
construction, the ciphertext size is (rk+m+w)log(pp). One can check that the
choices of parameters proposed below ensure that this size is bounded by N1—¢
for some € > 0, hence the construction implies iO.

— k is the security parameter and B; = poly(k) is given as input
-d=3
~k=r*andr==x

- o=2". Bl
~pp_1=02" and pp=o0
-~ m=nrlogpp

— w is arbitrary up to k%!
- N = Rd+2.5.
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Abstract. Functional encryption (FE) combiners allow one to combine
many candidates for a functional encryption scheme, possibly based on
different computational assumptions, into another functional encryption
candidate with the guarantee that the resulting candidate is secure as
long as at least one of the original candidates is secure. The fundamental
question in this area is whether FE combiners exist. There have been a
series of works Ananth et al. (CRYPTO ’16), Ananth-Jain-Sahai (EURO-
CRYPT ’17), Ananth et al. (TCC ’19) on constructing FE combiners
from various assumptions.

We give the first unconditional construction of combiners for func-
tional encryption, resolving this question completely. Our construction
immediately implies an unconditional universal functional encryption
scheme, an FE scheme that is secure if such an FE scheme exists. Pre-
viously such results either relied on algebraic assumptions or required
subexponential security assumptions.

1 Introduction

In cryptography, many interesting cryptographic primitives rely on computa-
tional assumptions. Over the years, many assumptions have been proposed
such as factoring, quadratic residuosity, decisional Diffie-Hellman, learning with
errors, and many more. However, despite years of research, the security of these
assumptions is still not firmly established. Indeed, we do not even know how
to prove P # NP; our understanding of algebraic hardness is even more specu-
lative. Moreover, we also do not have a strong understanding of how different
cryptographic assumptions compare against each other. For instance, it is not
known whether decisional Diffie-Hellman is a weaker or a stronger assumption
than learning with errors. This inability to adequately compare different cryp-
tographic assumptions induces the following problematic situation: suppose we
have a cryptographic primitive (say, public key encryption) with many candi-
date constructions based on a variety of assumptions, and we want to pick the
most secure candidate to use. Unfortunately, due to our limited knowledge of
how these assumptions compare against each other, we cannot determine which
candidate is the most secure one.
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Unconditional Cryptographic Combiners. Cryptographic combiners were intro-
duced to handle the above issue. Given many candidates of a cryptographic
primitive, possibly based on different assumptions, a cryptographic combiner
takes these candidates and produces another candidate for the same primitive
with the guarantee that this new candidate is secure as long as at least one of the
original candidates is secure. For example, a combiner for public key encryption
can be used to transform two candidates, one based on decisional Diffie-Hellman
and the other on learning with errors, into a new public-key encryption candidate
that is secure provided either decisional Diffie-Hellman or learning with errors
is secure. Thus, this new public-key encryption candidate relies on a strictly
weaker assumption than the original two candidate constructions and allows us
to hedge our bets on the security of the two original assumptions.

Furthermore, even if an underlying primitive, such as public-key encryp-
tion, requires an unproven hardness assumption, the security of a combiner for
that primitive can be unconditional. Therefore, cryptographic combiners stand
out in the world of cryptography in the sense that they are one of the few
useful cryptographic objects that do not inherently require reliance on hard-
ness assumptions. And indeed, combiners for fundamental primitives like one-
way functions, public-key encryption, and oblivious transfer are known to exist
unconditionally [28,38,39,42].

Obtaining unconditional combiners is particularly important because the
entire purpose of constructing combiners is to make cryptographic constructions
future-proof in case assumptions break down. In this work, we study combin-
ers for functional encryption, an area where studying combiners is particularly
important and where, prior to our work, only conditional constructions were
known [2,5,6] (and in fact, these previous results required either algebraic or
sub-exponentially strong assumptions). We obtain the first unconditional com-
biner for functional encryption. Furthermore, we do so by providing a general
compiler, significantly simplifying previous work in this area. Along the way,
we define and provide constructions of input-local MPC protocols, input-local
garbling schemes, and combiner-friendly homomorphic secret sharing schemes,
primitives that may be of independent interest.

Combiners for Functional Encryption. Functional encryption (FE), introduced
by [52] and first formalized by [19,51], is one of the core primitives in the area
of computing on encrypted data. This notion allows an authority to generate
and distribute constrained keys associated with functions fi,..., fg, called func-
tional keys, which can be used to learn the values fi(z),..., fg(z) given an
encryption of z. Intuitively, the security notion states that the functional keys
associated with fq,..., f; and an encryption of x reveal nothing beyond the
values fi(x),..., fq(x).

Function encryption has opened the floodgates to important cryptographic
applications that have long remained elusive. These applications include, but are
not limited to, multi-party non-interactive key exchange [34], universal samplers
[34], reusable garbled circuits [36], verifiable random functions [10,13,37], and
adaptive garbling [40]. FE has also helped improve our understanding of impor-
tant theoretical questions, such as the hardness of Nash equilibrium [33,34].
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One of the most important applications of FE is its implication to indistin-
guishability obfuscation (iO for short), which is considered the holy grail of
cryptography [8,15]. In fact, if we are willing to tolerate subexponential security
loss, then even secret-key FE is enough to imply 10 [14,43,44].

Over the past few years, many constructions of functional encryption have
been proposed [1,4,7,9,29,30,45-49] and studying what assumptions suffice for
constructing general-purpose FE remains a very important and active area of
investigation. Recent cryptanalytic attacks [11,12,23-26,41,49] on FE schemes
further highlight the importance of careful study. Given these results, we should
hope to minimize the trust we place on any individual FE candidate.

The notion of a functional encryption combiner achieves this purpose. Infor-
mally speaking, a functional encryption combiner allows for combining many
functional encryption candidates in such a way that the resulting FE candidate
is secure as long as at least one of the initial FE candidates is secure. In other
words, a functional encryption combiner says that it suffices to place trust col-
lectively on multiple FE candidates, instead of placing trust on any specific FE
candidate. Furthermore, FE combiners are an important area of study for the
following reasons:

— Most importantly, it gives a mechanism to hedge our bets and distribute our
trust over multiple constructions. This has been highlighted above.

— Often, constructions of FE combiners give rise to constructions of robust FE
combiners generically [2,6]. Any robust FE combiner gives us a universal
construction of FE, which is an explicit FE scheme that is secure as long as
there exists a secure functional encryption scheme.

— Studying FE combiners helps improve our understanding of the nature of
assumptions we need to build FE.

— They give rise to theoretically important results in other branches of cryp-
tography, such as round-optimal low-communication MPC [2].

— Constructions of robust FE combiners have encouraged research on under-
standing correctness amplification for FE, iO [6,16], and other fundamental
cryptographic primitives [17].

— Finally, due to connections to security amplification, techniques used to build
FE combiners are useful to give better constructions of FE. In particular,
the work of [7] used techniques developed from the study of FE combiners to
provide a generic security amplification of FE, which proved pivotal in giving
the first construction of FE that does not rely on multilinear maps and makes
use of simply stated, instance-independent assumptions.

There have been a series of works in this area. The starting point was the
work of two concurrent papers [5,27], both appearing at CRYPTO, that studied
the related question of obfuscation combiners. This was followed up by the work
of [6], which gave a construction of FE combiners (and universal FE) assuming
the existence of a subexponentially secure FE algorithm. They also gave a con-
struction of a robust FE combiner assuming LWE. Then [2] gave construction
of a robust FE combiner (and universal obfuscation) relying on the algebraic
assumption of the existence of constant degree randomizing polynomials (which
are known to exist assuming number-theoretic assumptions such as LWE, DDH,
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and quadratic residuosity). However, until now, the ultimate question in this
area, of whether FE combiners exist without making any additional assump-
tions, has remained open.

1.1 Our Contributions
In this paper, we consider the following questions.

W hat is the minimal assumption necessary to construct F'E combiners and
universal FE?

In particular,
Isit possible to construct F'E combiners and universal F'E unconditionally?
We resolve the above question in the affirmative and prove the following.

Theorem 1 (Informal). There exists an unconditionally secure FE combiner
for P/poly.

It turns out that our construction of an FE combiner also gives rise to a
robust FE combiner using the results of [2,6].

Corollary 1 (Informal). There exists an unconditionally secure robust FE
combiner for P/poly.

As any robust FE combiner gives a universal FE scheme [5,6], we obtain the
following additional result.

Corollary 2 (Informal). There exists an unconditional construction of a uni-
versal FE scheme for P/poly.

We note that, as was the case in previous constructions, our construction of a
universal FE scheme is parameterized by the maximum run-time of any of the
algorithms of the secure FE scheme.

1.2 Technical Overview

Our starting point is the observation that FE combiners are related to the notion
of secure multi-party computation and function secret sharing (also known as
homomorphic secret sharing [18,20-22,50]). Suppose for a function f, it was
possible to give out function shares f,..., f, such that for any input z, we
can n-out-of-n secret share x into shares z1,...,x, and recover f(x) given
fi(xz1), ..., fa(zy). Then, we would be able to build an FE combiner in the fol-
lowing manner. Given an input x, the encryptor would n-out-of-n secret share
z and encrypt the ith share z; under the ith FE candidate FE; (depicted in
Fig.1). To generate a function key for a function f, FE, would generate a func-
tion key for function share f;. Using these ciphertexts and function keys, it would
be possible to recover f;(x;), from which it would be possible to recover f(z).
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Security would follow from the fact that since at least one FE candidate is
secure, one of the input shares remains hidden, hiding the input. This overall
approach was used in [2,6] to construct FE combiners from LWE. In this work,
we would like to minimize the assumptions needed to construct an FE combiner,
and, unfortunately, we do not know how to construct such a function sharing
scheme for polynomial-sized circuits from one-way functions. Note that since FE
implies one-way functions, any FE combiner can assume the existence of one-
way functions since the individual one-way function candidates arising from each
FE candidate can be trivially combined by independent concatenation (direct
product) of the candidate one-way functions.

/Share(x)\
FE, FE, FE,

Fig. 1. A pictorial overview of splitting x amongst n FE candidates.

Our first step towards constructing an FE combiner unconditionally is that
we observe that it is easy to build an FE combiner for a constant number of
FE candidates by simply nesting the candidates. For example, if we had 2 FE
candidates, FE; and FE5, we could combine these two candidates by simply hav-
ing encryption encrypt first under FE; and then encrypt the resulting ciphertext
under FE;. To generate a secret key for a function f, we would generate a func-
tion key SKy 1 for f under FE; and then generate a function key SKy o for the
function that runs FE;.Dec(SKy 1,-) under FE;. The function key SK; o would
then be the function key for f under the combined FE scheme. Using nest-
ings of candidates, we can replace our original FE candidates with these new
nested candidates. For example, if we use 2-nestings, we can consider all possible
2-nestings FE; ; for 4, j € [n] as our new set of FE candidates. Observe now that
we have replaced our original n FE candidates with n? “new” FE candidates.
At first glance, this appears to not have helped much. However, note that previ-
ously, we needed to consider function sharing schemes that were secure against
up to n—1 corruptions. When using nested candidates, it follows that if FE;« was
originally secure, then FE; ; with at least one of ¢, j = ¢* is also secure. We show
how to leverage this new corruption pattern of the candidates in the following
manner (Fig. 2).

Suppose we had a “special” MPC protocol @ where every bit in the transcript
of an execution of @ can be computed by a function on the inputs (and random
coins) of a constant number of parties (say 2). Furthermore, the output of ¢ can
be determined solely from the transcript and @ is secure against a semi-honest
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/Share(w)\
FE, FE, FEs
FE; | FE, FE; | FE; FEs | FEs

Fig. 2. A pictorial overview of 3-nested FE candidates (the required level of nesting in
our construction). If FEs is secure, then FE; 57 and FEs 6,5 are secure.

adversary that corrupts up to n—1 parties. If @ has the above properties, then the
transcript of an execution of @ can be determined via an alternate computation.
Instead of running @ normally to obtain the transcript, we can instead compute
jointly on all pairs of parties’ inputs (and randomness) to obtain the transcript.
That is, if a bit 7, in the transcript 7 can be computed given only the inputs (and
randomness) of parties P; and P; (we say it “depends” on parties P; and P;),
then we can determine the value of 7, in an execution of @ by computing this
function on (z;,7;) and (x;,r;) (the inputs and randomness of these two parties)
rather than executing the protocol in the normal fashion. Proceeding in the same
manner for every bit in the transcript, we can obtain the same exact transcript
that we would have by executing the protocol normally, but we are able to do
so by only evaluating functions on two parties’ inputs (and randomness).

This observation leads us to the following approach for constructing an
FE combiner. To encrypt an input z, additively secret share x into n shares
(1,...,2,) and encrypt each pair of shares (z;,x;) under FE; ;. To generate
a function key for a function f, consider the MPC protocol that computes
flx1 ® ... ®x,). Then, for every bit 7, in the transcript of such a protocol,
if 7, “depends” on parties P;, P;, we would generate a function key under FE; ;
for the circuit C, that computes 7, given x;,x;.

This approach immediately runs into the following problem. The MPC proto-
col is randomized, whereas the function keys in an FE scheme are for determin-
istic functions. Moreover, an FE ciphertext needs to be compatible with many
function keys. Fortunately, these problems can easily be solved by having the
encryptor also generate a PRF key K; for each party P;. The encryptor now
encrypts (z;,z;, K;, K;) under FE candidate FE; ; and uses K, and some fixed
tag tag; embedded in the function key for f to generate the randomness of P;
in the evaluation of the MPC protocol. Now, by using the function keys for the
Cr,’s, it is possible for the decryptor to recover all the bits in the transcript of
an execution of the protocol and, therefore, recover f(z). Security would follow
from the fact that if candidate FE;« is secure, then z;+ and K;+ remain hid-
den, and we can use the security of the MPC protocol to simulate the view of
party Pj«.

If such an MPC protocol as described above could be found, the above would
suffice for constructing an FE combiner. However, the goal of this work is to
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construct an FE combiner unconditionally and so we would like to only assume
the existence of one-way functions. However, semi-honest MPC secure against
up to n — 1 corruptions requires oblivious transfer (OT), which we do not want
to assume. To deal with this, we adapt our MPC idea to settings with correlated
randomness, such as the OT-hybrid model.

A first attempt at adapting this idea to protocols in the OT-hybrid model
is the following. Suppose that we have a “special” MPC protocol ¢ where every
bit in the transcript of an execution of ¢ can be computed by a function on
the inputs (and random coins/correlated randomness) of a constant number of
parties (say 2). Furthermore, the output of ¢ can be determined solely from the
transcript and @ is secure against a semi-honest adversary that corrupts up to
n — 1 parties in the OT-hybrid model.

The first challenge is to instantiate the OT oracle. This can be done by having
shared PRF keys K ; between all pairs of parties P; and P;. Then Kj; ; will be
used to generate correlated randomness between P; and P;. We can generate all
the correlated randomness prior to the protocol execution and include it as part
of the input to a party P;. This allows us to generate correlated randomness,
but we still run into a second issue. Since a party P; has correlated randomness
between itself and all other parties, its input now depends on all other parties!
So, it appears that constant nestings of FE candidates will no longer suffice.

Fortunately, this second issue can be mitigated by a more refined condition on
the “special” MPC protocol @. Let (r; ;,7;.;) denote the correlated randomness
pair between parties P; and P;, where r; ; and r;; are given to F; and P;,
respectively. Instead of having the functions that compute bits of the transcript
of @ take as input the entire correlated randomness string {; j};.ic[n held by
a party F;, we instead allow it to take single components r; ; as input. If the
function takes as input 7;;, then both parties P; and P; are counted in the
number of parties that the function depends on. More formally, the condition
on the “special” MPC protocol ¢ becomes the following. Let (x;,r;) denote the
input and randomness of a party P; and let r; ; denote the correlated randomness
between parties P; and P; held by P;. Every bit 7, in the transcript 7 of an
execution of @ can be computed by some deterministic function f, on input

(zi)ieSa, (Ti)icSas (ri,j)i,jESa)a

where |S,,| <t for some constant t. We call such an MPC protocol a t-input-local
MPC protocol and define this formally in Sect. 4.

To summarize, if we had a t-input-local MPC protocol for some constant t,
then we would be able to construct an FE combiner unconditionally using the
ideas detailed above. However, it is unclear how to construct such an MPC pro-
tocol, and, unfortunately, no protocol in the literature for all polynomial-sized
circuits in the OT-hybrid model satisfies all our required properties. However,
the 2-round semi-honest MPC protocol of Garg-Srinivasan [35] transformed to
operate in the OT-hybrid model [31] comes close. At a high level, this is because
they compile an MPC protocol into a series of garbled circuits, where each gar-
bled circuit is computed by a single party. However, there are several bottlenecks
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that make their protocol initially incompatible with our schema. One observa-
tion is that the protocol of [31,35] contains a pre-processing phase that causes
the initial state (effectively input) of each party to be dependent on all other
parties. This might seem like a major issue since messages dependent only on a
single parties’ state can now depend on all parties. Yet, a careful analysis shows
that while individual messages sent by a party might “depend” on all parties in
the protocol, each bit sent by a party still depends on only a constant number
of parties.

The real issue is that in the protocol of [31,35], parties send garbled circuits
of circuits whose descriptions depend on all parties. Thus, the resulting garbled
circuit may depend on all parties. However, we observe that the way these circuits
depend on all parties is very specific. The circuits garbled are keyed circuits of
the form C[v], where v is some hardcoded value. C itself is public and does
not depend on any party. And while v depends on all parties, each bit of v
only depends on a constant number of parties! To obtain an input-local MPC
protocol, we construct a garbling scheme that has the property that garbling
circuits of the form C[v] described above results in a garbled circuit where each
bit of the garbled circuit only depends on a constant number of parties. We
call such a garbling scheme an input-local garbling scheme. By instantiating the
protocol of [31,35] with this input-local garbling scheme, we are able to arrive
at an input-local MPC protocol.

Combiner-Friendly Homomorphic Secret Sharing (CFHSS). In the sketch of our
plan for constructing an FE combiner provided above, we wanted to generate
function keys for various circuits with respect to nested FE candidates. As an
intermediate tool, we introduce the notion of a combiner-friendly homomorphic
secret sharing (CFHSS) scheme. Such an abstraction almost immediately gives
rise to an FE combiner, but will be useful in simplifying the presentation of the
construction.

Informally, a CFHSS scheme consists of input encoding and function encoding
algorithms. The input encoding algorithm runs on an input = and outputs input
shares s; j i for i, j,k € [n] (we define CFHSS schemes for triples of indices, since
we will require 3-nestings of FE candidates in our construction). The function
encoding algorithm runs on a circuit C' and outputs function shares Cj j; for
i,j,k € [n]. Then, the decoding algorithm takes as input the evaluation of all
shares C; j k(si,j.x) and recovers C(z). Informally, the security notion of a CFHSS
scheme says that if the shares corresponding to some index ¢* remain hidden,
then the input is hidden to a computationally bounded adversary and only the
evaluation C(z) is revealed.

In order to build an FE combiner from a CFHSS scheme, we will encrypt
the share s; ; ; using the nested FE candidate corresponding to indices i, j, k. To
provide a function key for a circuit C', we will issue function keys for the circuit
C; ;. with respect to the nested candidate corresponding to indices i, j, k. This
allows the decryptor to compute C; ; x(s; ;) for all i,j,k € [n], which by the
properties of our CFHSS scheme, is sufficient to determine C(x). Note that in
order to argue security, we will have to rely on the Trojan method [3].
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Organization. We begin by defining functional encryption, secure multi-party
computation, and garbling schemes in Sect.2. Then, in Sect. 3, we define the
notion of a functional encryption combiner. In Sect.4, we define the notion of
an input-local MPC protocol and then show how to construct such a proto-
col. This is done by constructing a specific garbling scheme that, when used
to instantiate the garbling scheme used in the protocol of [31,35], results in an
input-local MPC protocol. In Sect. 5, we introduce and define the notion of a
combiner-friendly homomorphic secret sharing (CFHSS) scheme and construct
such a scheme using an input-local MPC protocol. In Sect. 6, we construct an
FE combiner from a CFHSS scheme. Finally, in Sect.7, we observe that our
unconditional FE combiner implies a universal FE scheme.

2 Preliminaries

We denote the security parameter by A. For an integer n € N, we use [n] to
denote the set {1,2,...,n}. We use Dy =, D; to denote that two distributions
Dy, Dy are computationally indistinguishable. We use negl(\) to denote a func-
tion that is negligible in A. We use y «— A to denote that y is the output of
a randomized algorithm A, where the randomness of A is sampled from the
uniform distribution. We write A(x;r) to denote the output of A when ran on
input x with randomness . We use PPT as an abbreviation for probabilistic
polynomial time.

2.1 Functional Encryption

We define the notion of a (secret key) functional encryption candidate and a
(secret key) functional encryption scheme. A functional encryption candidate is
associated with the correctness requirement, while a secure functional encryption
scheme is associated with both correctness and security.

Syntazx of a Functional Encryption Candidate/Scheme. A functional encryption
(FE) candidate/scheme FE for a class of circuits C = {Cx}ren consists of four
polynomial time algorithms (Setup, Enc, KeyGen, Dec) defined as follows. Let X
be the input space of the circuit class Cy and let )\ be the output space of Cy.
We refer to Xy and Y as the input and output space of the candidate/scheme,
respectively.

~ Setup, MSK « FE.Setup(1*): It takes as input the security parameter A and
outputs the master secret key MSK.

— Encryption, CT « FE.Enc(MSK, m): It takes as input the master secret key
MSK and a message m € X and outputs CT, an encryption of m.

— Key Generation, SK¢o «— FE.KeyGen (MSK, C): It takes as input the master
secret key MSK and a circuit C' € Cy and outputs a function key SKc¢.

— Decryption, y < FE.Dec (SK¢, CT): It takes as input a function secret key
SK¢, a ciphertext CT and outputs a value y € Y.
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Throughout this work, we will only be concerned with uniform algorithms.
That is, (Setup, Enc, KeyGen, Dec) can be represented as Turing machines (or
equivalently uniform circuits).

We describe the properties associated with the above candidate.

Correctness

Definition 1 (Correctness). A functional encryption candidate FE =
(Setup, KeyGen, Enc, Dec) is said to be correct if it satisfies the following property:
for every C : X\ — Y € Cx,m € X, it holds that:

MSK « FE.Setup(1*)
CT < FE.Enc(MSK, m)
SK¢ « FE.KeyGen(MSK, C)
C(m) < FE.Dec(SK¢, CT)

Pr > 1 — negl(\),

where the probability is taken over the coins of the algorithms.

IND-Security. We recall indistinguishability-based selective security for FE. This
security notion is modeled as a game between a challenger Chal and an adversary
A where the adversary can request functional keys and ciphertexts from Chal.
Specifically, A can submit function queries C' and Chal responds with the corre-
sponding functional keys. A can also submit message queries of the form (zg, z1)
and receives an encryption of messages x;, for some bit b € {0,1}. The adversary
A wins the game if she can guess b with probability significantly more than 1/2
and if for all function queries C' and message queries (zg,x1), C(xo) = C(x1).
That is to say, any function evaluation that is computable by A gives the same
value regardless of b. It is required that the adversary must declare the challenge
messages at the beginning of the game.

Definition 2 (IND-secure FE). A secret-key FE scheme FE for a class of
circuits C = {Cx}ren) and message space X = {X\}ae is selectively secure if
for any PPT adversary A, there exists a negligible function u(-) such that for all
sufficiently large A € N, the advantage of A is

Adv'E = |Pr[Expt’s(1*,0) = 1] — PriExpt’f (1%, 1) = 1]| < u(N),

where for each b € {0,1} and A € N, the experiment ExptZE(l)‘,b) is defined
below:

1. Challenge message queries: A submits message queries,

{@h.at)}

with zb, 28 € X\ to the challenger Chal.
2. Chal computes MSK « FE.Setup(1*) and then computes CT; « FE.Enc(MSK,
xi) for all i. The challenger Chal then sends {CT;} to the adversary A.
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3. Function queries: The following is repeated an at most polynomial number
of times: A submits a function query C € Cx to Chal. The challenger Chal
computes SKo «— FE.KeyGen(MSK, C) and sends it to A.

4. If there exists a function query C and challenge message queries (z§, %) such
that C(x}) # C(xl), then the output of the experiment is set to 1. Otherwise,
the output of the experiment is set to b, where b’ is the output of A.

Adaptive Security. The above security notion is referred to as selective security
in the literature. One can consider a stronger notion of security, called adaptive
security, where the adversary can interleave the challenge messages and the
function queries in any arbitrary order. Analogous to Definition 2, we can define
an adaptively secure FE scheme. In this paper, we only deal with selectively
secure FE schemes. However, the security of these schemes can be upgraded to
adaptive with no additional cost [3].

Collusions. We can parameterize the FE candidate by the number of function
secret key queries that the adversary can make in the security experiment. If the
adversary can only submit an a priori upper bounded ¢ secret key queries, we say
that the scheme is g-key secure. We say that the functional encryption scheme
is unbounded-key secure if the adversary can make an unbounded (polynomial)
number of function secret key queries. In this work, we will allow the adversary
to make an arbitrary polynomial number of function secret key queries.

FE Candidates vs. FE Schemes. As defined above, an FE scheme must satisfy
both correctness and security, while an FE candidate is simply the set of algo-
rithms. Unless otherwise specified, we will be dealing with FE candidates that
satisfy correctness. We will only refer to FE constructions as FE schemes if it is
known that the construction satisfies both correctness and security.

2.2 Secure Multi-party Computation

The syntax and security definitions for secure multi-party computation can be
found in the full version. In this work, we will deal with protocols that follow
a certain structure, introduced in [31,35], called conforming protocols. The full
syntactic definition of conforming protocols can be found in the full version.

2.3 Garbling Schemes

The definition of garbling schemes can be found in the full version.

2.4 Correlated Randomness Model

In the correlated randomness model, two parties P; and P; are given correlated
strings r; ; and 7;;, respectively. If we set r; j = (ko, k1) for two strings ko, k1
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and r;,; = (b,ky) for a random bit b and the string ks, then these two parties
can now perform a 2-round information-theoretically secure OT, where P; is the
sender and P; is the receiver. In the first round, the receiver sends v = b @ c,
where ¢ is the receiver’s choice bit. Then, the sender responds with (yo,y1) =
(mo ®ky, m1 ®k1gy). The receiver can then determine m, by computing y. @ kp.

In this work, we will often say that parties generate correlated randomness
necessary to perform a certain number of OTs. By this, we simply mean that
the parties repeat the above procedure once for each necessary OT (with the
appropriate party as sender/receiver) and use the above 2-round information-
theoretically secure OT protocol for each necessary OT.

3 FE Combiners: Definition

In this section, we give a formal definition of an FE combiner. Intuitively, an
FE combiner FEComb takes n FE candidates, FE1,...,FE, and compiles them
into a new FE candidate with the property that FEComb is a secure FE scheme
provided that at least one of the n FE candidates is a secure FE scheme.

Syntaz of a Functional Encryption Combiner. A functional encryption combiner
FEComb for a class of circuits C = {Cy}ren consists of four polynomial time algo-
rithms (Setup, Enc, KeyGen, Dec) defined as follows. Let Xy be the input space
of the circuit class Cy and let )\ be the output space of C). We refer to X and
Y, as the input and output space of the combiner, respectively. Furthermore, let
FE,...,FE, denote the descriptions of n FE candidates.

— Setup, FEComb.Setup(1*, {FE; };c[n)): It takes as input the security param-
eter A and the descriptions of n FE candidates {FE;};c[,) and outputs the
master secret key MSK.

— Encryption, FEComb.Enc(MSK, {FE; };c[n], m): It takes as input the master
secret key MSK, the descriptions of n FE candidates {FEi}iE[n], and a message
m € Xy and outputs CT, an encryption of m.

— Key Generation, FEComb.Keygen (MSK,{FEi}iE[n],C’): It takes as input
the master secret key MSK, the descriptions of n FE candidates {FE;}ic[n,
and a circuit C' € Cy and outputs a function key SK¢.

— Decryption, FEComb.Dec ({FEi}ie[n],SKc, CT): It is a deterministic algo-
rithm that takes as input the descriptions of n FE candidates {FE;}ic[n, a
function secret key SK¢, and a ciphertext CT and outputs a value y € Y.

Remark 1. In the formal definition above, we have included {FE;};c[n), the
descriptions of the FE candidates, as input to all the algorithms of FEComb.
For notational simplicity, we will often forgo these inputs and assume that they
are implicit.

We now define the properties associated with an FE combiner. The three
properties are correctness, polynomial slowdown, and security. Correctness is
analogous to that of an FE candidate, provided that the n input FE candidates
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are all valid FE candidates. Polynomial slowdown says that the running times
of all the algorithms of FEComb are polynomial in A and n. Finally, security
intuitively says that if at least one of the FE candidates is also secure, then
FEComb is a secure FE scheme. We provide the formal definitions below.

Correctness

Definition 3 (Correctness). Suppose {FE;};cn are correct FE candidates.
We say that an FE combiner is correct if for every circuit C : Xy — Y € Cy,
and message m € X it holds that:

MSK « FEComb.Setup(1*, {FE;};c(n))
CT « FEComb.Enc(MSK, {FE;};c[n], ™)
SK¢ « FEComb.Keygen(MSK, {FE;}icn), C)
C(m) < FEComb.Dec({FE;};c[n), SKc, CT)

Pr > 1 —negl()),

where the probability is taken over the coins of the algorithms and negl(X\) is a
negligible function in .

Polynomial Slowdown

Definition 4 (Polynomial Slowdown) An FE combiner FEComb satisfies
polynomial slowdown if on all inputs, the running times of FEComb.Setup,
FEComb.Enc, FEComb.Keygen, and FEComb.Dec are at most poly(A,n), where
n is the number of FE candidates that are being combined.

IND-Security

Definition 5 (IND-Secure FE Combiner). An FE combiner FEComb is
selectively secure if for any set {FE;}icm) of correct FE candidates, it satis-
fies Definition 2, where the descriptions of {FE;}ic[n) are public and implicit in
all invocations of the algorithms of FEComb, if at least one of the FE candidates
FE.,...,FE, also satisfies Definition 2.

Note that Definition 2 is the IND-security definition for FE.

Robust FE Combiners and Universal FE

Remark 2. We also define the notion of a robust FE combiner. An FE combiner
FEComb is robust if it is an FE combiner that satisfies the three properties (cor-
rectness, polynomial slowdown, and security) associated with an FE combiner
when given any set of FE candidates {FE;};c[n], provided that one is a correct
and secure FE candidate. No restriction is placed on the other FE candidates.
In particular, they need not satisfy correctness at all.

Robust FE combiners can be used to build a universal functional encryption
scheme defined below.
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Definition 6 (7-Universal Functional Encryption). We say that an
explicit Turing machine Iy = (I yniv-Setup, Hyniv-Enc, IT,ni-KeyGen, I1,,,;,.Dec)
18 a universal functional encryption scheme parametrized by T if I1,ny 1S a correct
and secure FE scheme assuming the existence a correct and secure FE scheme
with runtime < T.

4 Input-Local MPC Protocols

As discussed in Sect. 1.2, if we had a “special” MPC protocol, where every bit of
the transcript is computable by a deterministic function on a constant number of
parties’ inputs and randomness, and the output of the protocol can be computed
solely from the transcript, we could use such a protocol to construct an FE
combiner. Here, we formally define such a protocol and call it an input-local
MPC protocol. Since our goal is to construct FE combiners unconditionally, we
do not want to assume the existence of OT, so we will define our input-local
MPC protocol in the correlated-randomness model.

4.1 Input-Local Protocol Specification

Let @ be an MPC protocol for n parties Py, ..., P, with inputs z1,...,z, in the
correlated randomness model. We can view @ as a deterministic MPC protocol,
where the input of a party P; is (z;, 7, (74 ;) j:), where r; is the randomness used
by P; and (r; j,r;j,) for i # j is the correlated randomness tuple used between
parties P; and P;. @ is called t-input-local if the following holds:

— Input-Local Transcript: Let 7 be a transcript of an execution of @. Every
bit 7, of 7 can be written as a deterministic function of the inputs, random-
ness, and correlated randomness dependent on at most ¢ parties. That is,
there exists a deterministic function f, such that

Ta = fo (Ti)iesa, (Ti)iesa, (Tij)ijes.) s

where |S,| < t. If i € S,, then 7, depends on party P;.

— Publicly Recoverable Output: Given a transcript 7 of an execution of @,
there exists a function Eval such that the output of the protocol @ for all
parties is given by

y = Eval(7).

— Security: @ is simulation secure against n—1 semi-honest corruptions, assum-

ing the existence of one-way functions.

No MPC protocol in the literature for all polynomial-sized circuits in the
correlated randomness model satisfies the specification of a t-input-local MPC
protocol for a constant ¢. However, the protocols of [31,35] come “close”, and
we show that with a simple transformation, the protocol of [31,35] can be made
t-input-local.

[31,35] show the following.
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Theorem 2 ([31,32,35]). Assuming one-way functions, for any circuit C, there
ezists a 2-round MPC protocol in the correlated randomness model that is secure
against semi-honest adversaries that can corrupt up to n — 1 parties.

The MPC protocol satisfying Theorem 2 is the MPC protocol of [35] mod-
ified to operate in the correlated randomness model. In [31], they additionally
modify the protocol of [35] in other ways, since the focus of [31] is on achieving
information-theoretic security for smaller circuit classes and better efficiency.
However, one can simply modify the protocol of [35] to operate in the correlated
randomness model without making the additional modifications present in [31],
a fact which we confirmed with the authors [32].

The MPC protocol of Theorem 2 is not input-local, but can be made input-
local via a simple modification. At a high level, the reason that the above protocol
is not input-local is because parties P;, as part of the protocol, send garbled
circuits of circuits C[v] that have values v hardcoded in them that depend on
(7ri,5)ji, the correlated randomness between P; and all other parties. As a result,
these garbled circuits depend on all parties, and thus, the protocol is not input-
local for a constant ¢. Fortunately, this issue is easily fixable by instantiating
the garbling scheme used by the protocol in a specific manner. We consider the
garbling scheme for keyed circuits that garbles Clv] by applying Yao’s garbling
scheme to the universal circuit U, where U(C,v,z) = C[v](z). The garbled
circuit of this new scheme consists of U, the Yao garbling of U, along with input
labels corresponding to C' and v. The input labels of this new scheme are the
input labels corresponding to z. Observe now that U and the input labels for C
are clearly input-local, since they only depend on the party P; that is garbling.
Furthermore, since every bit of v only depends on a constant number of parties,
each input label for each bit of v also depends on a constant number of parties,
giving us an input-local protocol.

Formally, consider the following garbling scheme.

Definition 7 (Input-Local Garbling Scheme). Let GC = (GrbC, EvalGC)
denote the standard Yao garbling scheme [53] for poly-sized circuits. Let C be a
class of keyed circuits with keyspace V. Let the description length of any C € C
be 01 and of any v € V be ly. Let the input length of any circuit C € C be ls.
Let £ = 01 + £y + £3. Let C;, v; denote the ith bit of the description of C, v,
respectively. Let GC' = (GrbC',EvalGC") be a garbling scheme for the class of
keyed circuits C defined as follows:

- Garbled Circuit Generation, GrbC'(1*,C[v]): Let U be the universal cir-
cuit that, on input (C,v,x) with |C| = {1, |v| = la, and |z| = {3, computes

C[v)(z). Compute (U, (ki,...,k¢)) «+ GrbC(1*,U). Output
o C v v
((U> klcla ceey kglel ) kgll_t,_la ceey k[fj-éz)v (kZ1+52+1a ceey kf))

- Evaluation, EvaIGC’(C/'[;], (k1. .., k;ﬁ)): Parse C/'-[;] as (U, (ky, ks, ...,
kzl+€2))' Run

EvalGC(U, k1, ke e KT Kgl®))

and output the result.
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Correctness of the above garbling scheme follows immediately from the cor-
rectness of Yao’s garbling scheme and the definition of U. In particular, for every
keyed circuit C[v], for any 2 € {0,1}%, EvalGC’ runs EvalGC on U with input
labels corresponding to (C, v, ), giving U(C, v, z) = C[v](x) as desired.

Theorem 3. The garbling scheme of Definition 7 is secure.

Proof. Let SimGC be the simulator for Yao’s garbling scheme. The simulator
SimGC’ operates as follows. Run

(U, (k1, ..., k¢)) — SimGC(1*, ¢(U), C[v](x))

and output R
((U7 ki,..., k41+52)’ (k51+32+1’ SRR kf))

Suppose there exists an adversary A that can distinguish the output of SimGC’
from the real execution. Then, consider the adversary A’ that breaks the secu-
rity of Yao’s garbling scheme by simply querying its challenger on the pair
(U, (C,v,x)), rearranging the components of its received challenge to match the
output of SimGC’, and running A. A’ outputs the result of A. A’ simulates
the role of A’s challenger exactly and, therefore, must win with nonnegligible
advantage, a contradiction. a

Armed with the above garbling scheme, we are able to obtain an input-local
MPC protocol. By taking the MPC protocol of Theorem 2 and instantiating
the underlying garbling scheme with the one from Definition 7, we arrive at the
following result.

Theorem 4. Assuming one-way functions, there exists a 3-input-local MPC
protocol for any poly-sized circuit C.

Proof. The proof is included in the full version.

5 Combiner-Friendly Homomorphic Secret Sharing
Schemes

As an intermediate step in our construction of an FE combiner, we define and
construct what we call a combiner-friendly homomorphic secret sharing scheme
(CFHSS). Informally, a CFHSS scheme consists of input encoding and function
encoding algorithms. The input encoding algorithm runs on an input x and
outputs input shares s; ; for i,j,k € [n]. The function encoding algorithm
runs on a circuit C' and outputs function shares C; ;x for i,7,k € [n]. Then,
the decoding algorithm takes as input the evaluation of all shares C; ; x(S: k)
and recovers C(z). Looking ahead, our CFHSS scheme has several properties
that will be useful in constructing an FE combiner. Recall that the high-level
idea of our construction was to view each FE candidate as a party P; in an
MPC protocol. In our construction of a CFHSS scheme, each input and function
share depends on only the state of a constant number of parties. In particular,
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share s; ;. will depend only on the state of parties F;, P;, and Pj. Informally,
the security notion of a CFHSS scheme says that if the shares corresponding
to some index ¢* remain hidden, then the input is hidden to a computationally
bounded adversary and only the evaluation C(x) is revealed.

5.1 Definition

Definition 8. A combiner-friendly homomorphic secret sharing scheme,
CFHSS = (InpEncode, FuncEncode, Decode), for a class of circuits C = {Cx}ren
with input space Xy and output space Yy supporting n € N candidates consists
of the following polynomial time algorithms:

~ Input Encoding, InpEncode(1*, 1", z): It takes as input the security param-
eter X\, the number of candidates n, and an input x € X\ and outputs a set
of input shares {8; jk}ijken]-

- Function Encoding, FuncEncode(1*,17,C): It is an algorithm that takes
as input the security parameter A, the number of candidates n, and a circuit
C € C and outputs a set of function shares {C; jk}i j ke

— Decoding, Decode({C; ;x(5ijk)}ijkem)): It takes as input a set of evalua-
tions of function shares on their respective input shares and outputs a value
yeMU{L}

A combiner-friendly homomorphic secret sharing scheme, CFHSS, is required
to satisfy the following properties:

— Correctness: For every A € N, circuit C' € Cy, and input x € X\, it holds
that:

{sijk}ijrem — InpEncode(1*, 17, z)
Pr | {Cijk}ijkem) — FuncEncode(1*,1",C) | > 1 — negl(}),
C(x) < Decode({Ci;k(sijk)}ijken])

where the probability is taken over the coins of the algorithms and negl(\) is
a negligible function in .

— Security:

Definition 9 (IND-secure CFHSS). A combiner-friendly homomorphic secret
sharing scheme CFHSS for a class of circuits C = {Cx}rey) and input space
X = {X\}aepy is selectively secure if for any PPT adversary A, there exists a
negligible function u(-) such that for all sufficiently large A € N, the advantage
of A is

AdvGTH® = |Pr[ExptG ™2 (14, 17,0) = 1] — Pr[ExptS 2 (12,17, 1) = 1]| < u(N),

where for each b € {0,1} and A € N and n € N, the experiment
ExptS‘FHSS(l)‘, 1™.b) is defined below:

1. Secure share: A submits an index i* € [n] that it will not learn the input
shares for.
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2. Challenge input queries: A submits input queries,

(xé, xf)ée[L]

with x§, 2§ € X\ to the challenger Chal, where L = poly()\) is chosen by A.

3. For all €, Chal computes {s} ; .} j.kein) — InpEncode(1*, 17, 24). For all £, the
challenger Chal then sends {Sf,j,k}i,j7ke[n]\{i*}, the input shares that do not
correspond to i*, to the adversary A.

4. Function queries: The following is repeated an at most polynomial number
of times: A submits a function query C € Cx to Chal. The challenger Chal
computes function shares {C; j x}ijke[n) < FuncEncode(1*,1%,C) and sends
them to A along with all evaluations {Oi,j,k(Sf,j}k)}i,]}ke[n] for all £ € [L].

5. If there exists a function query C and challenge message queries (x5, %) such
that C(zf) # C(z%), then the output of the experiment is set to 1. Otherwise,
the output of the experiment is set to b, where b/ is the output of A.

5.2 Construction

Using 3-input-local MPC protocols {®¢} for a circuit class C and a PRF, we will

construct a combiner-friendly homomorphic secret sharing scheme for C. For a

circuit C' € C and number of parties n, we say that @¢ is an MPC protocol for

C on n parties if it computes the function C(x; @...® x,) on inputs x1, ..., T,.
Formally, we show the following.

Theorem 5. Given 3-input-local MPC protocols {®c} for a circuit class C
and assuming one-way functions, there exists a combiner-friendly homomorphic
secret sharing scheme for C for n = poly(\) candidates.

Using Theorem 4 to instantiate the 3-input-local MPC protocols, we imme-
diately arrive at the following.

Theorem 6. Assuming one-way functions, there exists a combiner-friendly
homomorphic secret sharing scheme for P/poly for n = poly(\) candidates.

Notation:

— Let PRF be a pseudorandom function with A-bit keys that takes A-bit inputs
and outputs in {0, 1}*. PRF will be used to generate the randomness needed
for various randomized algorithms. As the length of randomness needed varies
by use case (but is always polynomial in length), we don’t specify the output
length of PRF here and the output length needed will be clear from context.
It is easy to build our required pseudorandom function from one with a fixed
length output. Let PRF’ be a pseudorandom function that maps {0,1}?*-
bit inputs to a single output bit in {0,1}. Then, to evaluate PRF(K, z) to
an appropriate output length ¢, we would simply compute the output bit
by bit by evaluating PRF'(K, z||1), PRF'(K, z|2), ..., PRF'(K, z||¢). When we
write (r1,72,73) := PRF(K,z), we mean that we generate the randomness
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needed for three different algorithms using this PRF, where the length of
each r; depends on the amount of randomness needed by the algorithm. This
can be done in the same manner, by computing r; bit by bit by evaluating
PRF'(K, z||i||1), PRF (K, z|]i||2),.. . etc.

— For a 3-input-local protocol @ for a circuit C' € C, we use the same syntax as
in Sect. 4 to refer to the various components and algorithms associated with
this protocol. We implicitly assume that the description of the 3-input-local
protocol @ for C' is included in the descriptions of the function shares for C.

— Let Corr(1*,1%,4,5) — (r;;,7;.) be the function that on input the security
parameter A, a length parameter ¢, and indices ¢ # j € [n] outputs correlated
random strings r; ; and 7;; each in {0, 1}5. We will assume that ¢ < 5 and
if not, we implicitly assume that the indices are swapped when evaluating
the algorithm. Looking ahead, ¢ is set as the the length of the correlated
randomness required between two parties in the execution of the 3-input-
local protocol. For simplicity, we will omit the parameter ¢ in the description
below when it is clear from the context. We note that Corr can be implemented
by generating random OT-correlations.

— In the construction, for simplicity, we will denote input and function shares
for the tuple of indices (i,7,%) by s; and C;, respectively. Similarly, we will
denote the input and function shares for the tuple of indices (i, j, i) with i # j
by s;; and C; j, respectively. We will denote input and function shares for
the tuple of indices (7,7, k) with ¢ # j # k by s; ;5 and C; ; , respectively.
All other input and function shares are set to L.

Overview: We provided a sketch of our construction in Sect.1.2. Here, we
provide more details to assist in the understanding of our construction. The
input encoding algorithm will take an input z, n-out-of-n secret share it into
shares z1,...,2,, sample PRF keys K; for i € [n] and shared PRF keys
K;; for i < j € [n]. Shares of the form s; will be (z;, K;), shares of the
form s; ; will be (z;,2;, K;, K;, K;;), and shares of the form s;;; will be
(@i, 25, vr, K, Kj, Ki, Kij, Kir, Kji). These will serve as the inputs to the func-
tion shares {C .k }i jkem)- Intuitively, a share s; ;5 (or s;; or s;) contains all
the input shares and PRF keys that correspond to the indices i, j, k (or 4, j or 7).

The description of function shares of the form Cj, C; ;, and C; ;1 is given
in Fig. 3, Fig. 4, and Fig. 5, respectively. The purpose of C;, C; ;, and C; j 1 is to
simply output input-local bits in the transcript of @~ dependent on either only
P;, the two parties P; and P;, or the three parties P;, P;, Py, respectively.

Given evaluations of all the function shares, decoding operates by using the
evaluations to obtain a transcript 7 of an execution of @ and then running the
evaluation procedure of @¢.

Construction: We now provide the formal construction.

— Input Encoding, InpEncode(1*,1", z):
e XOR secret share z uniformly at random across n shares such that x; ®
.. Dx, =



160 A. Jain et al.

e For i < j € [n], sample distinct PRF keys K;;. For i > j € [n], set
K’L'j = K]z Set Ki = K”

e For i € [n], set s; = (24, K;).

e Fori,j € [n] with i < j, set s; ; = (z;, 2, K;, K, K;j).

e For i,j,k € [n] with i < j < k, set s; ;1 = (x4, 25,28, K;, Kj, Ky,
KiijikaKj )

e Set all other shares to L.

e Output all shares {s; j r}ijken]-

— Function Encoding, FuncEncode(1*,1", C): Let & denote the 3-input-local
MPC protocol for C' on n parties. For every bit 7, in 7, a transcript of @,
let S, denote the set of parties that 7, depends on and f, be the function
that computes 7, with respect to these parties’ inputs and randomness (see
Sect. 4).

e Sample tag
tag,,ng from {0,1}*, uniformly at random.

e For i € [n], function share C; is given by circuit C; in Fig. 3.

e For ¢,j € [n] with ¢ < j, function share C;; is given by circuit C, ; in
Fig. 4.

e For i,j,k € [n] with ¢ < j < k, function share C; ;1 is given by circuit
Ci,j,k in Flg 5.

e Set all other function shares to L and output {Cj j x}4 j kefn]-

— Decoding, Decode({C} j(Si,jk)}i,jkem)): It does the following:

e Rearrange all input-local bits 7, output by the function shares to obtain
T, the transcript of an execution of @.
e Run Eval(7) to obtain the output y.

Correctness: Correctness follows from the correctness of the underlying set of
3-input-local MPC protocols {¢¢c}. In particular, for any circuit C' € Cy and
input « € X, we note that the Decode algorithm obtains 7, the transcript of an
execution of ¢¢. Therefore, by running Eval on 7, Decode obtains

y:C(x1®...@$n):C(x)

as desired.

C;

Input: Input z; and PRF key K;.
Hardwired: Index i, tag tag,,,q in {0, 1}*.
e Compute r; := PRF(K;,tag,. q4)-
e For every input-local bit 7, in a transcript 7 of @ with S, = {i}, compute
Ta = fal(mi,rs).

i Output (Ta)-,-a input-local with Sq={i}"

Fig. 3. Description of function share Cj.
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Cij

Input: Inputs z;, ; and PRF keys K;, K;, K;;.
Hardwired: Indices 4, j, tag tag,,,q in {0, 1}*.
e For u € {i,j}, compute r, := PRF(K,,tag,,nq)-
e Compute r" := PRF(K;, tag,nq4)-
e Compute (r;;,7;,) = Corr(l’\,i,j;r%"").
e For every bit input-local bit 7, in a transcript 7 of ¢ with S, = {i,;j},
compute

Ta = fa((l‘u)uESav (Tu)uesav (TU,U)UWGS@)'

OUtput (Ta)‘r(, input-local with Sq={%,5}"

Fig. 4. Description of function share C} ;.

Security: The security proof can be found in the full version.

6 Construction of an FE Combiner from a CFHSS
Scheme

In this section, we show how to use a CFHSS scheme and one-way functions to
construct an FE combiner. Instantiating the CFHSS scheme with the construc-
tion in Sect. 5 and the one-way function with the concatenation of the one-way
function candidates implied by our FE candidates (as described in Sect. 1.2), we
arrive at the following result.

Theorem 7. There exists an unconditionally secure unbounded-key FE com-
biner for n = poly(\) FE candidates for P/poly.

In the rest of this section, we show Theorem 7.

6.1 d-Nested FE

A tool used in our construction is d-nested FE (for d = 3). d-nested FE is a
new FE candidate that can be created easily from d FE candidates by simply
encrypting in sequence using the d FE candidates. Intuitively, this new FE candi-
date will be secure as long as one of the d candidates is secure since an adversary
should be unable to break the encryption of the secure candidate. d-nested FE
can be viewed as an FE combiner that can only handle a constant number of
FE candidates since the runtime of its algorithms may depend exponentially on
d. The construction and proof of d-nested FE can be found in the full version.
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Cijk

Input: Inputs z;, z;, ) and PRF keys K;, K, Ky, K;;, K;p,, Kjy,
Hardwired: Indices i, j, k, tag tag,,,q in {0, 1}*.
e For u € {i,j, k}, compute r, := PRF(Ky,tag..nqg)-
e Compute rc°” := PRF(Kj,tagng), " := PRF(Kik, tag,ang), and rc°" =
PRF( Jk7tagrand)
e Compute (5 ;,75;) = Corr(1 ,z,j,rff"), (g, Thi) = Corr(1*,4, k;rSe),
and (rjk, k,;) = Corr(1%, 4, k,rﬁ’").
e For every bit input-local bit 7, in a transcript 7 of @ with S, = {4, j, k},
compute
Ta = fa((xu)uesay ('ru)uESn,a (ru,v)u,ves(y)-

® Output (Ta)r(, input-local with Sq={%,5,k}"

Fig. 5. Description of circuit Cj ;.

6.2 Construction

We now formally describe the construction. First, we provide some notation that
will be used throughout the construction.

Notation:

— Let FEq,...,FE, denote n FE candidates. In the following construction, we
assume that the descriptions {FE;};c},) are implicit in all the algorithms of
FEComb.

— Let FE;;; denote the 3-nested FE candidate derived by nesting FE;, FE;, and
FE.

— Let CFHSS = (InpEncode, FuncEncode, Decode) be a combiner-friendly homo-
morphic secret sharing scheme. Let foutput denote the length of the outputs
obtained from the evaluation of function shares on input shares.

— Let E be any A-bit CPA-secure secret-key encryption scheme with message
space {0, 1}foutput,

— Let £, = £, ()\) denote the length of the messages and let ¢g = ¢g(\) denote
the length of the encryption key for the scheme E.

Construction:

— FEComb.Setup(1*): On input the security parameter, it runs FE;;x.Setup(1*)
for i,5,k € [n] and ESK « E.Setup(1*). It outputs MSK =
({MSK;k }i.j,keln)» E-SK).

— FEComb.Enc(MSK, z € {0,1}%): It executes the following steps.
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e First, encode z into n® shares by running CFHSS.InpEncode(1*, 17, z) to
compute {s; jx}i ke Then, for all 4,5,k € [n], compute

CTijk = FEl-j.Enc (MSKZ]k, (si,j,ka OéE,O)) .

° Output CT = {CTijk}iJ,ke[n]-
— FEComb.KeyGen(MSK, C): It executes the following steps.

e Foralli,j, k € [n], it computes ¢; jr < E.Enc(E.SK, 0foutput) where Loutput
is the length of evaluations of function shares on input shares of CFHSS.

e It computes {C j .k }ijkem] < CFHSS.FuncEncode(1*, 17, C).

e For all 4, j, k € [n], it computes SKg, ,, « FE;;r.KeyGen (MSK 1., H; j ),
where circuit H; ;. is described in Fig. 6.

e It outputs SKc = ({SKn, ;. }ij keln])-

H; jk
Input: Input share s; j j, a string ¢ € {0, 1}, and a bit b
Hardwired: Ciphertext c¢; j i, circuit Cj j

« If b # 0, output E.Dec(t, ¢; j k).

* Otherwise, output C; ; (i j.k)-

Fig. 6. Description of the evaluation circuit.

— FEComb.Dec(SK¢, CT): Parse SKc as ({SKw,,, }ijkem) and CT as
{CTijk}i,j,kE[n]- For all i,j,k’ S [n], compute Yigk = FEijk~Dec(SKHi,j,k7
CTijk)-

Run CFHSS.Decode({yi j.k }4,j,ke[n)) and output the result.

Correctness: Correctness follows from the correctness of CFHSS and the fact that
all correct encryptions are encryptions of messages of the form (Si7j,k,OeE7O).
In particular, for all 4,j,k € [n], H;;x(sijk 0%,0) = Ci,;x(sijr) and then
CFHSS.Decode({C;i j k(5i,j,k) }i,jkein)) = C(z) by the correctness of CFHSS.

Polynomial Slowdown: The fact that all the algorithms of FEComb run in time
poly(\, n) is immediate from the efficiency of the FE candidates, CFHSS, and E
and the fact that there are n® = poly(n) different tuples (i, 5, k) for i, j, k € [n].

6.3 Security Proof

The security proof can be found in the full version.
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7 Robust FE Combiners and Universal FE

We can consider a stronger notion of an FE combiner called a robust FE com-
biner. A robust FE combiner is an FE combiner that satisfies correctness and
security provided that at least one FE candidate, FE;, satisfies both correctness
and security. No restrictions are placed on the other FE candidates. In particular,
they may satisfy neither correctness nor security. We note that the FE combiner
constructed in Sect. 6 is not robust. However, [2] showed how to unconditionally
transform an FE combiner into a robust FE combiner.

Theorem 8 ([2]). If there exists an FE combiner, then there exists a robust
FE combiner.

Combining Theorem 8 with Theorem 7, we obtain the following corollary.

Corollary 3. There exists an unconditionally secure unbounded-key robust FE
combiner for n = poly(\) FE candidates for P/poly.

Universal Functional Encryption: Robust FE combiners are closely related to
the notion of universal functional encryption. Universal functional encryption is
a construction of functional encryption satisfying the following simple guarantee.
If there exists a Turing Machine with running time bounded by some T'(n) =
poly(n) that implements a correct and secure FE scheme, then the universal
functional encryption construction is itself a correct and secure FE scheme. Using
the existence of a robust FE combiner (Corollary 3) and the results of [2,5], we
obtain the following corollary.

Corollary 4. There exists a universal unbounded-key functional encryption
scheme for P/poly.
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Abstract. Functional Encryption denotes a form of encryption where a
master secret key-holder can control which functions a user can evaluate
on encrypted data. Learning With Errors (LWE) (Regev, STOC’05) is
known to be a useful cryptographic hardness assumption which implies
strong primitives such as, for example, fully homomorphic encryption
(Brakerski-Vaikuntanathan, FOCS’11) and lockable obfuscation (Goyal
et al., Wichs et al., FOCS’17). Despite its stre ngth, however, there is
just a limited number of functional encryption schemes which can be
based on LWE. In fact, there are functional encryption schemes which
can be achieved by using pairings but for which no secure instantiations
from lattice-based assumptions are known: function-hiding inner prod-
uct encryption (Lin, Baltico et al., CRYPTO’17) and compact quadratic
functional encryption (Abdalla et al., CRYPTO’18). This raises the ques-
tion whether there are some mathematical barriers which hinder us from
realizing function-hiding and compact functional encryption schemes
from lattice-based assumptions as LWE.

To study this problem, we prove an impossibility result for function-
hiding functional encryption schemes which meet some algebraic restric-
tions at ciphertext encryption and decryption. Those restrictions are
met by a lot of attribute-based, identity-based and functional encryption
schemes whose security stems from LWE. Therefore, we see our results as
important indications why it is hard to construct new functional encryp-
tion schemes from LWE and which mathematical restrictions have to be
overcome to construct secure lattice-based functional encryption schemes
for new functionalities.

Keywords: Functional encryption + Function-hiding - Impossibility -
LWE - Lattice-based - Online/offline

1 Introduction

Functional Encryption (FE) schemes are special encryption schemes in which
the holder of a master secret key can issue secret keys for specific functions to
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users. By knowing a secret key for a function f and a ciphertext for a message x,
an adversary shall learn nothing more of x than f(z). FE schemes have proven
to be extremely versatile. Not only does their notion generalize other forms
of encryption like Attribute-Based (ABE) or Identity-Based Encryption (IBE),
but also do we know that compact single-key FE and linearly compact FE for
cubic polynomials together with plausible assumptions imply indistinguishability
obfuscation [10,14,29].

Function-Hiding Functional Encryption (FHFE) schemes are an even
stronger subclass of FE where we demand that an adversary — given a secret
key for a function f and a ciphertext for a message x — learns nothing about
f and x except of f(z); i.e., the secret keys now hide the functions they are
supposed to evaluate.

We know that FE schemes with a bounded number of secret keys, an adver-
sary may learn, are already achievable from minimal assumptions [11]. However,
if we try to achieve security for an unbounded number of secret keys, then
we are left with (function-hiding) inner-product encryption, linearly compact
quadratic FE and FE schemes for constant-degree polynomials which are yielded
by relinearizing. Of course, there are special cases of FE like attribute-based and
identity-based encryption schemes. In those schemes, a ciphertext is accompa-
nied with a non-hidden attribute or identity and decryption is successful iff the
attribute/identity matches the policy of the secret key. However, the main focus
in this work are FE schemes, since we are interested in schemes which perform
various computations on hidden inputs. We stress here that for linearly compact
quadratic FE and function-hiding inner-product FE there are just pairing-based
constructions known so far [3,12,13,21,28].

Learning With Errors (LWE) [30] is a well-established hardness assumption.
It states that it is hard to solve a system of linear equations over a modulus g,
if the solution has sufficient entropy, the coefficients of the equations are chosen
uniformly random from Z, and one column of the presented system has been
perturbed by a small noise-vector whose entries are sampled from a suitable
error-distribution. Because of its strong homomorphic properties, there are fully
homomorphic encryption schemes and lockable obfuscation schemes whose secu-
rity can be proven solely under LWE [17,24,32]. Up to now, it is not possible to
construct those schemes from other standard assumptions. Intuitively, one would
assume that its homomorphic properties imply a lot of different FE schemes. But
as we have stressed, the most complex already existing FE schemes cannot be
replicated by lattice-based constructions. In fact, inner product encryption is
the only FE scheme whose security can be based on LWE (again, putting ABE
and IBE aside). Because of the aforementioned amply homomorphic properties
of LWE;, this is very surprising and leads us to the following question:

What hinders us from constructing function-hiding inner-product encryption schemes
whose security can be proven solely from the learning with errors assumption?

We show that there are two properties, both very common under LWE-based FE
schemes, which make it impossible for a function-hiding inner-product encryp-
tion scheme to be secure. The first property lies in the decryption algorithms
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of LWE-based encryption schemes: If we take a close look at the pairing-based
schemes, we see that decryption is always complex, for it involves computing
discrete logarithms of the target group of the pairing. On the other hand,
a lot of LWE-based IBE and FE schemes have simple decryption algorithms
[2,4,6,7,16,19]. In most cases, for moduli ¢ > p > 1, a secret key sk in such a
scheme usually determines a multivariate polynomial ge(Y7,...,Ys) of constant
total degree, while the ciphertext is a vector ct € Z7. At decryption, the polyno-
mial is evaluated at the ciphertext which yields a value gs(ct) € Zg; this value
will be rounded to the nearest number of Zy, i.e., it will be divided by |¢/p| and
then rounded to the nearest integer in {0,...,p — 1}. In full detail, this means

Dec(sk, ct) = {g[‘;ﬁ;?J :

We believe that this property already suffices to render a FHFE scheme insecure.
Therefore, we state here the following conjecture:

Conjecture 1. Let FE = (Setup, KeyGen, Enc, Dec) be a correct private-key func-
tional encryption scheme for computing inner-products of vectors in Zy. If there
is a constant d’ € N and a polynomial s in the security parameter, s.t.

— each ciphertext ct sampled by Enc is a vector in Zg,

— each secret key sk sampled by KeyGen is a multivariate polynomial in
Z4[Y1, ..., Y] of total degree < d’

— and the decryption algorithm works by

o - [13]

then FE cannot be function-hiding secure for an unbounded number of secret
keys.

We leave it as an open question to prove or refute Conjecturel. Instead, we
prove in this work a weaker version of the above statement. If we are to
take a closer look at the aforementioned IBE and FE schemes and some ABE
schemes [15,23], we can distinguish an additional property which seems to
be common for some LWE-based schemes. They tend to have very algebraic
encryption algorithms. Take, for example, a closer look at ciphertext encryp-
tion in the LWE-based inner-product encryption schemes of Agrawal et al. [7].
For an input vector z € {0,...,p — 1} and two publicly known matrices
A e U € ZiIX”, ciphertexts are generated by sampling a uniformly
random vector s « Zg, two gaussian noise vectors €9 <= Dzm aq,€1 < Dz o4
and outputting ct = (As+ep,Us+e; +b-x) where b is either |¢/K]| or
pF~1. Note that we can distinguish two parts in this encryption algorithm:
a very complex offline part, where m + [ multivariate degree-1 polynomials
91(X), ..., gm(X), h1(X),..., h(X) are sampled by only knowing the public key
(A,U,p,q, K) and without looking at the input a:

gi(X1, ..., Xq) = (a; | s) +eos,
hi(Xla"' aXl) = <ui | S> +el,i + \_Q/KJ X’L



172 A. Unal

And, a simple online part which just consists of inserting x in the polynomials
sampled before and outputting the ciphertext ct = (¢1(x),...,gm(z),
hi(x),...,hi(z)). This distinction in a complex offline and a simple online part
can be seen in the other aforementioned schemes, too. Therefore, we extract it
as an additional characteristic of some LWE-based schemes and make it more
precise in the following:

We say Enc is an encryption algorithm of depth d over Zg, if there is a ppt
algorithm Encomine, s.t. we have for each master secret key msk and input x € Zg:

Enc(msk, z) ={

(r1,...,7s) < EncCoiine(msk) (1)
return (r1(z),...,rs(x)) (2)
}
where we demand that each r; is a multivariate polynomial in Zy[X4,. .., X,] of

total degree < d. We will call line (1) the offfine part and line (2) the online part
of Enc. Indeed, with this additional property we can prove an FHFE scheme to
be insecure.

1.1 Contribution

For moduli ¢ = ¢(\) > p = p(A) such that ¢ is prime, % is polynomially bounded
and p is not bounded by a constant, we prove the following:

Theorem 1 (Informal Main Theorem). Assume that the prerequisites of
Conjecture 1 hold and that additionally Enc is of depth d over Z, for some
constant d € N.

Then, FE cannot be function-hiding secure for an unbounded number of secret
keys.

To be more precise, we give a bound of the maximum number of secret keys which
can be issued to an adversary before he can break FE (Corollary4). On a very
high level, our proof idea is to use the algebraic structure of the composition
Deco Enc. By doing so, we show that the decryption noises are generated in
a very algebraic way, are small and contain information about the encrypted
ciphertexts. Therefore, we can prove Theorem 1 by analysing them.

As an additional result, we show that private-key encryption schemes where
the encryption algorithms are of constant depth and the ciphertext vectors are
short enough cannot be secure (Theorem 5 and Corollary 3). This result does not
depend on the decryption algorithms of the private-key encryption schemes.

Generality of Our Results. We note here that there are a lot of LWE-based
ABE schemes whose decryption algorithms are too complex to be subsumed by
the equation Dec(sk,ct) = [sk(ct)/[g/p]]. This is because they allow policy-
predicates which cannot be computed by constant-depth circuits. Since the
policy-predicate needs to be computed at decryption, their decryption algorithms
must be at least as complicated as the most complex policy-predicate they allow.
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However, the aforementioned ABE schemes in [15, 23] have decryption algorithms
that become simple enough to fit the equation Dec(sk,ct) = [gs(ct)/|g/p] ], if
we restrict the policy-circuits in those schemes to be of constant depth and if
attributes and policy match at decryption.

Two-Input Quadratic Functional Encryption. We can derive from
Theorem 1 an impossibility result for 2-input quadratic FE schemes. A 2-input
quadratic FE scheme evaluates functions with two distinguished inputs and has
a left and a right encryption algorithm. To decrypt a value f(z,y), one needs a
secret key for f, a left ciphertext for  and a right ciphertext for y. Since such
a scheme contains a secret key for the quadratic function f(z,y) = (x | y), it
can emulate a function-hiding inner-product encryption scheme, even if it is only
single-key secure.

Corollary 1. Let 2 FE = (Setup, KeyGen, EncR7 Enct, Dec) be a correct private-
key 2-input functional encryption scheme for quadratic functions f : Zy x Zy —
Z,. If there are s € poly(A) and a constant d’ € N, s.t.

~ Encl is of constant depth d over Zg,

— each ciphertext ct” sampled by Enct is a vector in Ly,

— each pair of a secret key sk and a right ciphertext ct’ determines a multivari-
ate polynomial gey cor € Zg| X1, ..., X,] of total degree < d' s.t. the decryption
algorithm works by

Dec(sk, ct*, ct") = [gkw J

la/p]

then 2 FE cannot be single-key secure.

1.2 Interpretation and Open Problems

To prove Theorem 1, we assume that the exterior modulus ¢ of the FHFE scheme
FE is prime. Furthermore, we need that the fraction ¢/p is bounded by a poly-
nomial in the security parameter A and that the interior modulus p is for almost
all \ greater than some constant which depends on the depth of FE. Note that
q/p is usually a bound for the error noise used in LWE-based schemes. Since
LWE is assumed to be hard, even if its modulus ¢ is a prime and the deviation
of its error noise is bounded by a polynomial in A, we do not think that those
requirements are big restrictions for our results.

We see the results in this paper as a useful argument in understanding
the difficulties in constructing LWE-based function-hiding functional encryption
schemes. An even more useful argument would be to close the gap and prove
Conjecture 1. Because of Theorem 1, to prove our conjecture, it now suffices to
transform a function-hiding inner-product encryption scheme which is correct
and secure and fulfils the requirements of the conjecture to one that fulfils the
requirements of Theorem 1. In other words, it suffices to take an FHFE scheme
which already decrypts in an LWE-like manner and simplify its encryption algo-
rithm to one of constant depth which stays secure and correct.
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Another way to extend the results here is to prove Theorem 1 for encryption
algorithms where, in the online part, one first computes a bit-decomposition
G~1(z) of an input vector x and then applies the polynomials sampled in the
offline part to G=!(z). A lot of the techniques here would not be suitable for
this task; indeed, one would need to develop more advanced techniques to show
this.

1.3 Related Work

The idea of decomposing encryption algorithms into simple online and complex
offline parts has already been studied with the purpose of finding FE schemes
with practical usages (we cite [8,26] as examples). However, to the best of our
knowledge, this is the first work where the online/offline structure of encryption
has been used to prove an impossibility result.

Ananth and Vaikuntanathan showed that FE for P/poly with a bounded
number of secret keys can already be achieved from minimal assumptions, i.e.
public-key encryption in the asymmetric setting and one-way functions in the
symmetric setting [11]. The ciphertexts in their schemes are growing linearly with
the number of secret keys which can be handed out to an adversary. It is pre-
sumably hard to improve their result, since we know that a bounded FE scheme
with sufficiently compact ciphertexts would already imply indistinguishability
obfuscation [10,14].

As mentioned, it is hard to construct FE schemes for stronger functionali-
ties. In recent years, researchers circumvented this problem and looked at novel
FE schemes with additional properties: Abdalla, Chotard and other researchers
constructed multi-input and decentralized multi-client inner-product encryption
schemes [1,3,5,20]. Those are inner-product encryption schemes where a func-
tion has multiple inputs and to decrypt one needs a secret key and multiple
suitable ciphertexts. In the decentralized schemes, one gets rid of the master
secret key holder. Jain et al. introduced the notion of 3-restricted FE [9,27],
which can be understood as cubic FE where a ciphertext just hides two out of
three factors.

1.4 Technical Overview

To prove Theorem1l, we need to show the existence of a selective adver-
sary who wins the function-hiding IND-CPA game against the function-hiding
inner-product encryption scheme FE. In this game, the adversary submits an
unbounded number of inputs 2 and functions fj(-J for world 0 and an unbounded
number of inputs z} and functions fj1 for world 1. Then, the challenger draws a
random bit b — {0,1} and sends the corresponding ciphertexts and secret keys
of world b to the adversary. The adversary wins, if he guesses b correctly and if
the submitted inputs and functions would not tell him trivially in which world
he lives, i.e., if we have for all 7 and j

£ @) = fj (@)
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We do not directly construct an adversary to break FE. Instead, we show how
an adversary can reduce the problem of breaking FE to the problem of breaking
other encryption schemes with additional properties. To do so, we apply multiple
transformations to FE. Eventually, we end with a private-key encryption scheme
whose ciphertexts are short integer vectors and whose encryption algorithm is
of constant depth. Then, we construct a simple adversary who can break such
encryption schemes.

To make our argument go through, we need the transformations to preserve the
security and correctness of the transformed schemes. It is easy to see that security
is preserved, since we ensure that all changes to FE can be computed by an adver-
sary while he plays the above security game against FE. On the other hand, we can
not always guarantee that our transformations preserve correctness. In fact, one
transformation step applied to FE changes it in such a way that decryption suc-
ceeds only in a non-negligible number of cases. Furthermore, it is important that
at each time we have an encryption algorithm of constant depth. This means, each
transformation step either changes the encryption algorithm without changing its
depth or at most changes its depth to another constant value.

Our proof consists of three major steps:

(1) We first change FE s.t. all ciphertexts have short entries relative to the
modulus ¢. To do this, the adversary queries a lot of secret keys for the
zero-function and learns, by doing so, the structure of the space of secret
keys. Then, he can exchange a ciphertext with a vector of decryption noises.
Those noises have to be short, because otherwise they would make a correct
decryption impossible. On the other hand, however, we show that those
noises contain enough information about the original ciphertext to make
decryption possible in a non-negligible number of cases. Therefore, we can
assume FE to have short ciphertexts.

Then, we use a straightforward transformation to convert FE to a private-
key encryption scheme SKE, whose ciphertexts are short relative to ¢ and
whose encryption algorithm is of constant depth over Z,.

(2) Since the encryption algorithm of SKE, is of constant depth, SKE, encrypts
a number x by sampling some polynomials, evaluating those polynomials at
x and reducing the result modulo ¢. To analyse the ciphertexts of SKE,, we
need to get rid of the arithmetic overflows in the online part of its encryption
algorithm. We observe that, if (X)) is a polynomial with small coefficients,
then, for some small x values, r(z) does not change when we reduce it
modulo g. Furthermore, we know the ciphertexts of SKE, to be short relative
to g. By using this fact, we can apply simple changes to the encryption
algorithm of SKE, to ensure that the polynomials sampled by its offline
algorithm have very small coeflicients. By doing so, we can change SKE, to
a private-key encryption scheme SKE of constant depth whose ciphertext
vectors are sufficiently short and where no arithmetic overflows do occur in
the online part of its encryption algorithm.

(3) In SKE, a message x gets encrypted by sampling random integer polynomials
r1,...,"m of constant degree and computing (ri(x),...,rm(z)) as cipher-
text without any arithmetic overflows. Intuitively, such a scheme should not
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be secure and, indeed, we show that such a scheme can only be secure,
if its ciphertexts do not contain any information about the encrypted mes-
sages. But this makes decryption impossible. Since we showed that a correct
and secure FHFE scheme FE can be transformed into a secure private-key
encryption scheme whose ciphertexts contain a non-negligible amount of
information, it follows that FE could not be secure and correct in the first
place.

We now take a closer look at the techniques used in each step.

Replacing Ciphertexts with Decryption Noise. We describe here how to
make the ciphertexts of FE short. For simplicity, let us assume that we have
already relinearized ciphertexts and secret keys, i.e. decryption works by

Dec(sk, ct) = [WJ .

Query a lot of secret keys vy,...,v, < KeyGen(msk,0) for the zero-function
and draw a ciphertext ct, for an arbitrary input x € Z;. Each v; must decrypt
ct, to zero, since this is the value of the zero-function applied to z. Because of
decryption correctness of FE, we can therefore assume that we have for each v;

(0 | ct)] < H .

p

Otherwise, (v; | cty)/|g/p] would not round to zero. We can now exchange ct,
with the following new ciphertext for x:

cth = ((v1 ] cte)y. oy (m | cta)).

This ciphertext just consists of noise values which are generated when decrypting
ct,, with secret keys for the zero-function. Therefore, each entry of ct, is bounded
by |¢/p]. The question remains, how much information about z is left in ct/, and
if it is even possible to recover f(z) from ct/ and sky. We show that in a non-
negligible number of cases a successful decryption is still possible. That is because
of the function-hiding property of FE which vaguely implies that a secret key for
[ has to lie in span;,_{v1,...,vm} with non-negligible probability.

Getting Rid of Arithmetic Overflows. The key observation in step (2)
is that, if we evaluate a polynomial of degree d with small coefficients at a
small input, reducing the result modulo ¢ will not change its value. However,
the polynomials r1(X),...,r,(X) sampled in the offline part of the encryption
algorithm of SKE, do not necessarily have small coefficients. We only know them
to have small output values. We prove that there is a constant ¢, s.t. each ¢ - r;
has sufficiently small coefficients modulo g. The existence of ¢ can be shown by
using a quasi-inverse! of the Vandermonde matrix V for the tuple (0,1,...,d),
that is an integer matrix whose product with V' equals a scaled identity matrix.

! Calling such matrices quasi-inverses is ambiguous. However, we will stick to this
notion, since we lack better names.
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By simply multiplying ciphertexts of SKE, with ¢, we can make them behave
like they were outputted from an encryption algorithm of constant depth where
no arithmetic overflows do occur in its online part. Therefore, we can transform
SKE, into SKE.

Quasi-inverses of Vandermonde have been recently used by Esgin et al. to
extract witnesses out of many polynomial relations [22]. However, in this work,
we use a different quasi-inverse than them, which yields better bounds for our
results.

Statistically Distinguishing Random Polynomials. We describe here, how
our adversary breaks SKE in step (3). It suffices to look at the j-th coordinate of
a ciphertext of SKE. At input x, the j-th coordinate is computed by sampling a
random polynomial r;(X) of constant degree d in the offline part and evaluating
it at x. Our adversary works by guessing one z # 0 and comparing E[r;(z)?]
and E[r;(0)?]. We show, if for each x the means E[r;(x)?] and E[r;(0)?] do not
differ by a non-negligible amount, then r;(X) is of degree at most d — 1 with
overwhelming probability. By inductively using hybrids, one can see that r;(X)
must be of degree 0, i.e. constant, with overwhelming probability. But, if r;(X)
is constant, the value r;(z) does not carry any information about z. Therefore,
if the ciphertexts of SKE contain a non-negligible amount of information about
the encrypted messages, it follows that there must be some j and = # 0 s.t. our
adversary can successfully distinguish E[r;(z)?] and E[r;(0)?] and, therefore,
successfully distinguish ciphertexts for 0 from ciphertexts for x.

1.5 Organization of This Work

We first introduce some preliminaries in Sect. 2 and some important definitions
and concepts in Sect. 3. Then, in Sect. 4, we give an adversary who breaks private-
key encryption schemes of constant depth which do not make use of arithmetic
overflows. In Sect. 5, we then derive an impossibility result for private-key encryp-
tion schemes of constant depth with short ciphertexts over Z, by transforming
them to schemes we broke in the preceding section. Finally, in Sect. 6, we show
the impossibility of LWE-like FHFE schemes with simple online/offline encryp-
tion by transforming them to schemes of the preceding section.

Due to lack of space, we have ot omit the proofs of some lemmas. The reader
can find those proofs in the full version of this paper [31].

2 Preliminaries

For n e N=1{1,2,3,...}, set [n] :={1,...,n}. We define two sets of functions:

poly(A) :={p:N—=N|3e,d e NVAeN: X +d>p(A) >1},
negl(A) :=={e: N =R |Ve e N: limy_ A% (\) =0}.

For functions f,g : N — R, we write f(\) > g(\) — negl(}), if there is an
€ € negl(A) s.t. we have f(A) > g(A) —e()) for all \.
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For z € R, we define the following roundings: |z| := max{z € Z | z < z},
[2] :=min{z€Z | z>z}and [z] :=max{z€Z | 2|z — 2z <1}.

For two discrete distributions Dy, Dy over a set X we define the statistical
distance of (Dy,Ds) by A(Dy,D2) == 2>« |D1(z) — Da(2)].

2.1 Statistical Preliminaries

Theorem 2 (Hoeffding’s Inequality). Let n € N and B,t > 0. For n inde-
pendent random variables X1, ..., X, with |X;| < B, we have

Xi+...+ X, Xi+...+Xn
Pr[ 1+t _E{w +

” > 2Bt ] < 9¢2nt,
n n

Corollary 2. Let D be a memoryless source that outputs real numbers which
are bounded by B > 0. Let r € N and set n = 2r3. Let u be the mean of D and
let E,, be the random variable which is sampled by n-fold querying D, summing
its outputs and dividing this sum by n. Then, we have

B .
Pr {|En—u| < } >1—2e".
r

2.2 Algebraic Preliminaries
Theorem 3. Let f(X) = Z?:o a; X" be a polynomial of degree d over R. Then

d

tas= 30+ (§) 100

k=0

This theorem can be proven by using discrete derivatives. For example, a proof
can be deduced by trick 2 of [25], Section 5.3. Alternatively, the reader can find
a full proof in [31].

Now, let ¢ € N be a modulus.

Definition 1. For a € Z, we define the absolute value modulo q by

. q
dql o))
|a mod ¢| iré;%m—i—z\ 5

Lemma 1.(a) For a € Z, we have |a mod ¢| =0 < a € ¢Z.
(b) For ay,...,a, € Z, we have |y ., a; mod ¢| < Y | |a; mod g|.
(c) For a,z € Z, we have |z -amod ¢| < |z| - |a mod q|.



Impossibility Results for Lattice-Based FE Schemes 179

2.3 Learning Theory-Preliminaries

In this subsection, we study the problem of learning vector subspaces. Let F be
an arbitrary field.

Lemma 2. Let s € Ny = {0,1,2,...} and let D be a discrete distribution over
F¢. For m € N, we have

S
P .. 4 >1-—.
1)1,...,1)£,x—D [Um < SPany {Ul, » Um 1}] - m
Proof. Let m > s and fix v1,...,v, € supp(D). Denote by S™ the group
of permutations of the set [m] and by T C S™ the subgroup of order m
which is generated by the cyclic rotation (123...m). For 7 € T set V, :=
spang {07(1)7 N ,vr(m_l)}. Since each v; is an s-dimensional vector, we have

m—s <#{j € [m] |vj€spanF{vi\ie[m]\{j}}}:#{TeT\vf(m)EVT}.

Therefore, for each fixed choice vy, ..., v, € supp(D) we have
m—s
Pr [orm) € V2] 2 —

Since the vectors vy,...,v,, are identically and independently distributed, we
furthermore have

UI’WE};HD [Vm € spang {v1, ..., Vm_1}] = vl,..‘,fl)anD [UT(m) € VT] :

7T
Combining both things, we get
711,”-}'3”}‘11‘*’1) [Um € spang {v1,. .., 0m_1}] = vl,.».ganD [Vr(m) € V7]
7T
= Z TlirT [Vr(m) € V7] ~whm’f;rm%D Vi: w; = v

V1y.eey U €Esupp(D)

Z m-s Pr [Vi:wi:vi]:m_s.

W1 yeeey Wi <D m O

Y]

V1,yeeey U Esupp(D)

Theorem 4. Let s € Ny and let D be a discrete distribution over F°. Then,
there exists an algorithm which makes s queries to D and O(s3)-fold use of the
four basic arithmetic operations in F to compute a number k < s, a matriz
B € F*** which consists of k samples of D and a second matriz BT € FF*s s.¢.
with V := B - F*

(a) we have BT - B = lgxy,
(b) B- B is the identity on V, i.e., for allv € V, we have B - BT -v = v,
(¢) a certain proportion of the samples of D lies in V, i.e. Pryep[v € V] > 1.
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3 Definitions

In this section, we give basic definitions and state elementary lemmas for this
work.

3.1 Functional Encryption

Throughout this work, let A denote the security parameter. Let (F))x be a
family of function descriptions with a family of domains (X)) and codomains
(Yy)r. We tacitly assume in the following that the size of each f € Fy,z € X
and y € Y) is bounded by a polynomial in A, that we can efficiently sample
uniformly random elements of those families and that there is a deterministic
polytime evaluation algorithm which on input (f,x) € F) x X, outputs the
correct value y € Y. We denote the output of this algorithm by f(z).

Definition 2. A functional encryption scheme FE = (Setup, KeyGen,
Enc, Dec) for the family (Fy)x is a quadruple of four ppt algorithms where

Setup(l)‘) on input 1* generates a master secret key msk,
KeyGen(msk, f) on input msk and a function f € Fy generates a secret key sky,
Enc(msk, x) on input msk and an input value x € X generates a ciphertext
Cty,
Dec(sky, cty) on input a secret key sky and a ciphertext ct, outputs a value
(AS Y.

We call FE correct, if we have for each samplable? (fy)x € (Fx)a ane € negl(\),
s.t. it holds for all (xx)x € (Xx)a

msk «— Setup(1*),
Pr | Dec(sky, cty) = fr(xa) | sky «— KeyGen(msk, fr),| > 1 —¢e(N).

cty «— Enc(msk, )

We call FE better than guessing (by %), if there exists a polynomialr € poly(X)
s.t. we have for each (xx)x € (Xa)r and each samplable (fx)x € (Fx)x

msk — Setup(1*)
Pr | Dec(sky, cty) = fa(xy) | sky «— KeyGen(msk, fr),| >

cty «— Enc(msk, )

1 1
= + W negl(\).

We call FE useless, if we have for each polynomial r € poly()\)

1
m5k<—SP;£up(1*) Ve,y € Xy : A(Enc(msk,x), Enc(msk,y)) < =) > 1 — negl(\).

2 By being samplable, we mean here that there is a uniform deterministic poly-time
algorithm which on input 1* outputs fx.
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While being correct is a common requirement for encryption schemes, being use-
less implies that a successful decryption is almost impossible, since the cipher-
texts contain nearly no information. Being better than guessing, however, implies
that in some cases the ciphertexts and secret keys contain enough information
for a successful decryption. Now, one would assume that a scheme cannot be
useless and better than guessing at the same time and, indeed, we have the
following lemma:

Lemma 3. Let #Y)\ > 2 for all A and let (F)\)x contain a samplable (fy)x s.t.
each fy is surjective. Then, we have:

(a) If FE is correct, it is better than guessing.
(b) If FE is useless, it is not better than guessing.
3.2 Encryption Algorithms

Now, let R be a ring with an associated valuation |-|, : R — Np. In this work,
we always assume R = Z or R = Z, for a prime ¢ = ¢()). In the first case

||z = [-] is the archimedean absolute value. In the latter case |-|, = |- mod ¢| is
the absolute value modulo ¢ we defined in Definition 1.
Furthermore, let X, = {0,..., N}" now consist of n-dimensional vectors for

a polynomial n = n(X) € poly(A) and some N = N(A).

Definition 3. We say the scheme FE or rather its encryption algorithm Enc is
of length s over R, if the output of Enc is always an element of R®. Furthermore,
we say in this case that Enc is of

(a) width B, if the infinity-norm of almost all ciphertezts is bounded by B. Le.,
there is an € € negl()\), s.t. we have for each (x))x € (X))
P Jiels|:|c|, > B E k <e(A
e Br 3 (sl > B | o — Encmsk.a)] < £(3).
(b) depth d, if Enc consists of two parts: an offline part — a ppt algorithm
Encomiine which on input msk generates s polynomials over R[Xy,..., X,]
of total degree < d — and an online part which generates a ciphertert by

evaluating the polynomials sampled by Encemine at the input x. Le., Enc
works as follows

Enc(msk, z) :

(p1,---,ps) — Encomiie (msk)
cty := (p1(x),...,ps(x))
return cty

where we demand that each p; is a polynomial of total degree < d over R.
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3.3 Security Notions

In this work, we study the notion of selective and function-hiding IND-CPA
security where the adversary is allowed to submit a priori multiple challenge
inputs (z9,z}!) and a bounded number of challenge functions ( j(-), fjl). To be
feasible, the adversary must ensure that the output values fjl? (xf) do not already
tell him, if he lives in world 0 or world 1, i.e. he must ensure f}(z?) = f}(x}).
The challenger will send the adversary the ciphertexts and secret keys for one

random bit b < {0,1}. To win, the adversary has to guess the bit b.

Definition 4. Let FE = (Setup, KeyGen, Enc, Dec) be a functional encryption
scheme for the family (Fy)x and let m € poly(\). We say that FE is selectively
m-bounded function-hiding IND-CPA secure (m-fh-IND-CPA secure),
if each ppt adversary A has a negligible advantage in winning the following game:

Step 1: The adversary A submits two lists® of possible inputs ()7, (z})™,

and two lists of possible functions (fJQ)T:l, (j"jl)}”:1 to the challenger C.
Step 2: The challenger C generates a master secret key msk « Setup(1*) and

draws a secret bit b — {0,1}. Then, C computes ct,e := Enc(msk, xt) for each
i=1,...,n, skfg = KeyGen(msk, fJb) for each j = 1,...,m and sends the
lists (ctye)i_y and (sk'f]g;);?lzl to A.

Step 3: The adversary A guesses b.

The adversary wins the above game, if he guesses b correctly, and, if we have
fjo(x?) = fjl(x}) foralli=1,...,n and j =1,...,m. The advantage of A is
defined by

Adv(A) := 2Pr[A wins] — 1 = Pr[A wins | b = 0] + Pr[A wins | b=1] — 1.

We call FE selectively unbounded function-hiding IND-CPA secure
(fh-IND-CPA secure), if FE is m-fh-IND-CPA secure for each polynomial
m € poly(\), and we call FE selectively IND-CPA secure

(IND-CPA secure), if FE is 0-fh-IND-CPA secure.

3.4 Private-Key Encryption

We define private-key encryption schemes as a special case of functional encryp-
tion schemes:

Definition 5. A private-key encryption scheme is a functional encryption
scheme SKE = (Setup, KeyGen, Enc, Dec) for a function family (F)\)x where each
F\ only contains the identity function Id : X — X,.

3 The size n is determined by the descryiption of A and bounded by A’s running time.
n may be zero, which means that A is always sending two empty lists of inputs.
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When discussing private-key encryption schemes we sometimes omit KeyGen from
the header of the scheme and write Dec(msk, -) instead of Dec(KeyGen(msk, Id), -).
Note that we call SKE IND-CPA secure, if it is selectively 0-bounded function-
hiding IND-CPA secure in the sense of Definition 4. This differs from the usual
security notion in literature, where the adversary is usually allowed to submit only
one pair of challenge messages and can inquire ciphertexts adaptively. However, by
using a hybrid argument, one can show that the security loss which occurs by allow-
ing multiple challenge messages is polynomially bounded. If we consider message
spaces of superpoly size, then we can construct private-key encryption schemes
which are selectively, but not adaptively, secure. Therefore, the security notion for
SKE we use here is weaker than the usual one in literature.

3.5 Transformations

Definition 6. Let FE = (Setup, KeyGen, Enc, Dec), FE = (Setup', KeyGen',
Enc', Dec) be two functional encryption schemes for the same functionality. We
say that FE is virtually FE , if Setup = Setup’, KeyGen = KeyGen', Dec = Dec
and there is an & € negl(X\), s.t. for all sequences (x\)x € (Xa)a the statistical
distance between the following two distributions is bounded from above by €:

{(msk, ct,) | msk «— Setup(1*), ct, «— Enc(msk,zx)},
{(msk, ct.,) | msk — Setup(1*), ct,, — Enc' (msk,x))} .

Now, let FE be a functional encryption scheme for functions (Fy) with inputs
(X)) and let FE be one for functions (FY) with inputs (X}). We say there
is an adversarial transformation from FE to FE, if there are ppt algo-
rithms Tet, Tok, Tr, Tx s.t. we have the following equalities of distributions for
all ' € X5, f' € F}, msk € supp(Setup):

Setup' (1) = Setup(1*),
Enc (msk, x") = T(Enc(msk, Tx (2'))),
KeyGen'(msk, ') = Tu(KeyGen(msk, Tr(f'))).

If (F\) = (FY}), then we always assume Tp =Idp, and Tx = Idx,.

Let k € N be constant and let (FEi)Z 1 be a sequence of functional encryption
schemes. We say there is a virtual adversarial transformation from FE' to
FE*, if, for each i =1,...,k—1, FE' is virtually FE'™" or there is an adversarial
tmnsformatwn from FE to FEZH.

We can now observe the following facts:

Lemma 4.(a) If FE is virtually FE', then FE is m-fh-IND-CPA secure, correct,
better than guessing resp. useless iff FE is so.

(b) If FE is m-fh-IND-CPA secure and there is an adversarial transformation
from FE to FE, then FE is m-fh-IND-CPA secure.
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At some points, we want to ensure that an encryption algorithm Enc of width
B never outputs a ciphertext whose largest entry is not bounded by B. We can
ensure such a behaviour by replacing each ciphertext of Enc which is too big
with the zero vector. It is clear that this change just has a statistically negligible
impact on a scheme. One can even ensure that by doing so we do not harm the
depth of Enc:

Lemma 5. For n = 1, let FE be of length s, width B and depth d over R.
If d is constant and B is polynomial, then FE is virtually a scheme FE =
(Setup’, KeyGen', Enc', Dec') of length s and depth d over R where we have
End (msK ,x) € {=B,...,B}* for all \, z € X and msk € supp(Setup’(1*)).

4 Online/Offline Encryption Without Overflows

In this section, we show that private-key encryption schemes of polynomial width
that are better than guessing cannot be IND-CPA secure, if their encryption
algorithms have a very simple online part in which no arithmetical overflows do
occur.

Theorem 5. Let d € N be constant, N > 2d and let SKE be a private-key
encryption scheme of depth d and width B € poly(\) with message space Xy =
{0,...,N} over Z.

If SKE is selectively IND-CPA secure, then SKE is useless.

Proof (Theorem5 Part 1). Let SKE be an IND-CPA secure scheme of length s,
depth d and width B over Z for messages Xy = {0,..., N}. If we define SKE' =
(Setup’, Enc’, Dec’) like in Lemma5, then SKE is virtually SKE'. In particular,
SKE' is of the same length and depth and is secure and useless iff SKE is so.
Furthermore, SKE’ is now strictly of width B, i.e., it never outputs a ciphertext
outside of {—B, ..., B}*. It now suffices to prove that SKE’ is useless. W

To prove Theorem 5, we define an adversary which we will show to have a non-
negligible advantage against SKE', if SKE is not useless.

Definition 7. Let r € poly(\), N > 2d and s > 1. Set m = 2r>.
We define the following selective adversary A which plays the IND-CPA
security-game in Definition J with the scheme SKE :

Step 1: The adversary A draws y «— [2d] and then, for b = 0,1, submits the
following two lists of 3m messages each:

0, fie{l,...,m},
;=< by, ifie{m+1,...,2m},
Y, ifie{2m+1,...,3m}.

He submits two empty lists of possible functions.
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Step 2: The adversary A receives a list of ciphertexts (ct,, )3, . Let cty denote
the j-th entry of ct ,. For k=0,1,2 andj=1,...,s he computes the arith-

metical means
(k+1)m

1
Chj 7= Y (cty,)

i=1+km

Step 3: If there is a j s.t. |caj — c1,5] > 2%, the adversary outputs 0. Otherwise,
if there is a j s.t. |co ; — c1,5] > 2%, he outputs 1. If none of the above require-
ments should be met, then the adversary outputs a random bit b’ «— {0,1}.

The following lemma shows in which cases A has a non-negligible advantage.

Lemma 6. Letr € poly()) s.t. 7 > X. For a fized msk , set CT, = Enc'(msk , y).
The adversary in Definition 7 has a non-negligible advantage in the selective
IND-CPA game against SKE , if the following probability is non-negligible

B
P 35 ¢ ,*eZd:‘ [CT; ]—E[CT.QH>4f,
msk/<—Seir.“up’(1*) J [5} y [ ] ( y* J) ( 0,]) r
Proof. Fix for this proof a master secret key msk’ € supp(Setup’(1*)) and denote
by CT;2 the distribution of drawing ct; « Enc’(msk’,y) and squaring all its
entries. In step 2, A approximates the means of CT62,CT;,,y2 and CT;Q. B

Bounded we denote the event that for each £k = 0, 1,2 the distance between cy,
and its mean is at most B/r, i.e. the event Bounded holds iff

sfen]

Since Enc’ always outputs values bounded by B, we have, according to Corollary 2,
that the probability that event Bounded will occur is at least (1 — 2e™")3¢ > 1 —
6se~". Therefore, for each fixed msk’, it follows

o sfery]| ) <2

r

co—E [Cngmm,

max (

B 1
Pr[A fails| b= 0] < Pr {Hco — 1| > 2] +3

r

1 _ 1
< Pr[-Bounded] + 3 < 6se” "+ 3

Similarly, for each fixed msk’ € supp(Setup’(1?)), we get Pr[A fails |b=1] <
6se™" + %
Now, assume additionally for msk’ that the following event Seperated does hold

Seperated : Jy* € [2d] : HIE {CT'ﬂ —E [CT;}} HOC > 45.
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Let y denote the value drawn by A in step 1. If Seperated holds for msk’, then
Pr[A wins | b= 0,y = y*]

B
>Pr [||C261||OO > 2Tb—0,y—y*}

B
> Pr[Bounded] - Pr |:|C2 — 1|l > 27 Bounded, b =0,y = y*
>(1—6se™")-1=1—6se".

Similarly, we get Pr[A wins |b =1,y = y*] > 1 — 6se~". Therefore, for msk’ —
Setup’(1*), we get now

Pr A wins | Seperated|

2d —
=57 (Pr [A wins | Seperated, y = y*] + —d Pr [A wins | Seperated, y # y*])
1 2d — 1 1
>_—(1—6se " — — - T
_2d(1 6se™") + 54 (2 6se™ )_4d+ 6se™

Now, if we set € := Pr [Seperated], we have

Pr[A wins] = ¢ - Pr [A wins | Seperated] + (1 — ) - Pr [A wins | =Seperated)]

11 . 1 11 .
(4d+—6$e >+(1—€)<2—686 ) €4d+ +6se”".

Since our lemma requires € to be non-negligible and r > ), it follows that A has
a non-negligible advantage. O

To conclude the proof of Theorem5, we need to show that the prerequisites
of Lemma 6 do occur, if SKE" is not useless. In fact, we show a purely math-
ematical statement in the following which implies the uselessness of SKE’, if
the prerequisites of Lemma6 are not met. Our statement says that for a dis-
tribution of polynomials the means of the squared outputs of the polynomials
for x = 0,...,2d need to be widespread, because, otherwise, it is very unlikely
for the sampled polynomials to be non-constant. If the polynomials sampled by
Enc, im0 (msk’) are with overwhelming probability constant, then, of course, the
sampled ciphertexts do not carry any information about the encrypted input x.

Lemma 7. Let D be a distribution over integer polynomials of degree d > 0. If
there is a function e = e(\) s.t. for all x € {1,...,2d} we have

E_[p(z)> = p(0)*]| <e,

p<—D
then it follows

Pr [degp <d—1] >1—2e.
p(—D
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Proof. For p «+ D, we set f(X) := p(X)? — p(0)2. Then, f is a random inte-
ger polynomial of degree 2d. If we have p(X) = Z?:o a;X?, then the leading
coefficient of f is a%. Now, by Theorem 3, it follows

(2d)! - a2 = i(—l)”‘i (2,d>f(i).

7

=0
Hence
2d
2 2d—1 d
By [08] = G | -1 (%), B,
1 & r2d , 1 & r2d 92d
Sm';() 0] §<2>!2_0<z’>'5_<2d>!€—2€

If we draw p(X) = Y% a; X" — D, it follows

Prldegp=d] = Z Prag =1] < Z > Prlag=1i= E [a7] <2. O
i€Z\{0} i€Z\{0}

Lemma7 already implies that the offline algorithm of an IND-CPA secure
encryption scheme of depth d and polynomial width will — with overwhelm-
ing probability — sample polynomials of degree d — 1. In the following theorem,
we generalize this observation for arbitrary degrees d — k.

Theorem 6. Let D be a distribution over integer polynomials of degree d. If
there are functions € = €(\) and B = B(X) s.t. for all z € {1,...,2d} and
p € supp(D) we have

1

|p(z)* — p(0)?| < B? and E_[p(x)* —p(0)°]| < 3

g,
p«—D

then we have for all k =10,...,d

Pr [degp<d—k]>1-(2+ 2B?)"e.

p(f

Theorem 6 is proven by using induction over k£ where the base case and the
induction step both follow by Lemma7. Since its proof is very technical, we
omit it here. We can now finish the proof of Theorem 5.

Proof (Theorem 5 Part 2). Let A be the adversary in Definition 7. For A to have
negligible advantage against SKE', according to Lemma 6, it is necessary to have
for all r = 4/ B € poly(})

Pr|vielsyed: [E[(CT,,)"] -E[(CT,)"]|< :,] > 1 — negl(\)
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where we take the probability over msk’ < Setup’(1*). But now, by Theorem 6,
we have for each r € (2 + 2B2)? - poly()\)

1

Pr |Vj € [s] : Pr [degp; = 0] > 1 — (2+2B%)%=| > 1 — negl()\).
(p1,--,ps)—Enc oo o r

Therefore, the uselessness of SKE' and, in particular, the uselessness of SKE

follow. O

5 Online/Offline Encryption with Short Ciphertexts

In Sect. 4, we showed that encryption schemes of constant depth and polynomial
width without arithmetic overflows cannot be secure. In this section, we show
the same result for encryption schemes of constant depth and polynomial width
which may make use of arithmetic overflows but have short ciphertexts. We do
so by transforming such schemes to encryption schemes without arithmetic over-
flows. L.e., if the ciphertexts are of short width, we can transform their encryption
algorithm to one of constant depth over Z by using a simple multiplication trick.
As before, throughout this section, let A denote the security parameter and let
B = B(\),d = d(\) and N = N(A) be arbitrary variables depending on A. Let
s € poly(\). Additionally, introduce a modulus variable ¢ = g(\). We prove in
this section the following theorem:

Theorem 7. Let g be a prime, N > d+1 and let SKE, be a private-key encryp-
tion scheme of depth d and width B over Z, for messages X, = {0,...,N}
s.t.

2(d+1)%-(d)?-d? N*. B <q—1.

If SKE, is selectively IND-CPA secure, then there exists a virtual adversarial
transformation to an encryption scheme SKE of depth d and width (d')?B over
Z for messages Xy = {0, ..., N} which preserves selective IND-CPA security and
—in both directions — correctness, being better than guessing and uselessness.

Theorems 7 and 5 imply together the following impossibility result:

Corollary 3. Let g be a prime and let SKE, be a private-key encryption scheme
of depth d and width B for messages x = 0,...,N over Zq s.t. N > 2d and

2(d+1)2-(d)?-d* - N*.B<q—1.

If SKE, is selectively IND-CPA secure, B € poly(\) and d € N constant, then
SKE, is useless.

Proof. Because of Theorem 7, there is an IND-CPA secure private-key encryption
scheme SKE over Z of polynomial width (d!)?B and constant depth d € N for
messages Xy = {0,..., N} which is useless iff SKE, is useless. Since N > 2d,
SKE is useless according to Theorem 5. O



Impossibility Results for Lattice-Based FE Schemes 189

To prove Theorem 7, let ¢ > 2 be a prime and define a map ¢ : Z; —

{—‘S—l,...,o,...,qgl}CZby setting for all a € Z,

t(amod q) :==a+zq for z€Zst. |a+ zq| =|amodgq|.
Then, ¢ preserves absolute values and we have
t(a mod ¢) mod ¢ = a mod gq.

One first idea for proving Theorem 7 could be to just apply ¢ component-wise
to each ciphertext, i.e. treat each ciphertext modulo ¢ as it would be an integer
vector. Technically, we would replace Enc by ¢ o Enc. While ¢ o Enc would be
indeed of length s and width B over Z, it is not clear, if it would be of depth
d over Z. To make this precise, for p € Z,[X], we denote by I(p mod ¢) the
coeflicient-wise application of ¢, i.e.

d d
I (Z a; X" mod q> = Z t(a; mod ¢q) X".
i=0 i=0

Then, we have the equation I(p mod ¢) mod ¢ = p mod ¢ again. Now, for o Enc
to be of depth d over Z, we would need a suitable offline algorithm. We could,

for example, take I o Encomine as candidate. If p is a polynomial over Z, sampled
by Encoffine, we would then need the following kind of equality for all x € X

t(p(x) mod q) = I(p mod q)(z). (3)

While Eq. (3) holds for polynomials p with small coefficients, it does not hold in
general. Therefore, we need to apply minor changes to the polynomials sampled
by Encomine as we will see later. To this end, consider the Vandermonde matrix
for the tuple (0,1,...,d)

10
111...1
. i d
Vo= ((i—1) 1)i,j:1,...,d+1: 124 ...2 € 7@+ x(d+1)

1dd?...d°

We can deduce the coefficients of a polynomial by applying V! to its output
values. However, V! has very large entries modulo g, therefore we use the
following integer quasi-inverse W with bounded entries.

Lemma 8. There exists an integer matriz W € Z(AHD*A+) yhose entries are
bounded by (d')3d?, s.t. V-W =W -V = (d!)?- Id(ay1)x(d+1)-

Lemma 9. Let g > 2 be a prime, set c = (d!)? and let p € Z4[X] be a polynomial
of degree d. Furthermore, let N > d + 1. If we have for all z =0,...,d

q—1
<
|p($) mod q| = 2(d+ 1)2 . (dl)B .dd. N4’
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then we have for allz =0,..., N
I(c-pmod q)(z) = t(c- p(z) mod q).
Proof. Tt is clear that we have for any integer polynomial p and any = € 7Z
I(c-pmod g)(x) mod g = ¢- p(x) mod g = ¢(c¢- p(x) mod ¢) mod q.

Therefore, in our case, it suffices to show that the absolute value of
I(c-pmod q)(x) is bounded by %1, since ¢(c - p(xz) mod q) is a value of
{—q%l, e %} which differs from I(c-p mod ¢)(z) only by a value in ¢Z.

Let p(X) = Z?:o a; X" € Zq[X] and set a = (ao, . ..,aq) € ZI to be the
column vector of p’s coefficients. Then, we have

100...0 ag p(0)
1171...1 a1 p(1)

V-amodqg= 124 .27 | a mod g = p(2) mod g.
1dd?...de aq p(d)

Let W = (w; j);; € Z@H1)X(4+1) he the quasi-inverse of V' from Lemma 8. Since
WVa = ca mod g, we have for each a;

d
c-a; mod g = Zw”p mod gq.
=0
In particular, we have now
d
|c-a; mod ¢| = j) mod ¢ <Z|w”| p(j) mod ¢l .
=0
Set
B:= max|()m0d| g1
T atoa P N=3@ 12 (@) dd- Na

Since each |w; ;| is bounded by (d!)d? and each |p(j) mod g| is bounded by B,
we get

d d

|c-a; mod ¢| < Z |w; ;| - [p(j) mod ¢| < Z 13d’B = (d +1)(d)*d’B.
=0 =0
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Therefore, we have for all x =0,..., N
[I(c-pmod g)(z)]
d d
:Z (¢-a; mod q) x Z (¢c-a; mod q) x |
i=0
d ' d ,
< Z |t (¢ a; mod q)| - |2'| < Z(d + 1)(d)3d?B - |z’
i=0 i=0
-1
<(d+ 1)( (Z N2> (d+1)(d)3*d*B - (d+ 1)N? < L=
2
Ergo, the claim follows. O

Proof (Theorem 7). Because of Lemma 5, we can — by using the same argument
we used in the first part of the proof of Theorem 5 — w.l.o.g. assume that the
encryption algorithm of SKE, = (Setup,, Enc,, Dec,) never outputs a ciphertext
whose entries modulo ¢ are not bounded by B. Set

ci=(d)?€Z h:=c'modqez,
and define a scheme SKE = (Setup, Enc, Dec) over Z by applying the following
adversarial transformation to SKE,:
Setup(1*) ::Setupq(l’\),
Enc(msk, z) := (¢ - Encg(msk, ) mod g),
Dec(msk, ct) := Dec,(msk, (h - ct mod q)).
It is clear that SKE, is correct, better than guessing (resp. useless) iff SKE is
correct, better than guessing (resp. useless), since we have
(h- (t(c-ctmod ¢)) mod q) = (h - (c-ct) mod ¢) = ct mod q.

Since SKE, is IND-CPA secure and the above transformations are adversarial,
SKE is IND-CPA secure.

It remains to show that Enc is an encryption algorithm of depth d and width
¢B over Z. Now, for each (ctq,...,cts) < Ency(msk, x), we have

t(c-ctymod q)| = |c-ct; mod ¢g| < c¢-ct; mod ¢q| < ¢B,
J J J

therefore Enc is of width ¢B over Z. To show that Enc is of depth d we have to
give a feasible offline algorithm Encogmine for Enc = ¢(c - Ency). This is done by
setting

Encomiine (Msk) := I(c - Encotiine,q(Msk) mod g).
Let = € {0,...,N}. If we fix the randomness r of Enc(msk,z,r) and set
(P15 - -+, Ps) = EnCoffiine, o (msk, 7) and (pj, ..., p}) = Encomine(msk, ), then

Enc(msk, z, ) = ¢(c- Ency(msk, z,7) mod q)
= (¢(c- p1(z) mod q), ..., t(c- ps(x) mod q))

Y (I(c - py mod ¢)(z), ..., I(c- ps mod q)(z)) = (1,(2),..,P.(x)),

—~
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where eq. () follows from Lemma9. Therefore, Enc(msk, ) is of depth d. O

6 Lattice-Based Function-Hiding Functional Encryption

In this section, let n(A) > 1 be a polynomial in A and let ¢(A\) > p(A\) > N(\) > 1.
Further, let X, = {0,...,p}", YA ={0,...,p} and let (F)\) be a function family
which contains (besides other functions) the zero-function 0 € F — which maps
each x € X, to zero — and the projection m; € F) — which maps each z € X to
its first coordinate.

Let FE = (Setup, KeyGen, Enc, Dec) be a functional encryption scheme for
(Fx)x of depth di and length s over Z, and let d2 € N be a constant s.t. each
secret key sk € supp(KeyGen) is a polynomial in Z4[X7, ..., X of total degree
S dz with

Dec(sk, ct) = [sk(ct),/|q/p]] -
s+da

Finally, set m = (*¢*). We prove in this section the following theorem:

Theorem 8. If q is a prime and FE is selectively (m + 1)-bounded function-
hiding IND-CPA secure and correct, then there exists an adversarial transfor-
mation from FE to a private-key encryption scheme of depth d := dj - do, width
lg/p] and length m over Z, for messages x = 0,..., N which is selectively IND-
CPA secure and better than guessing.

Corollary 4 (Impossibility Result). Assume that q is a prime, dy is con-
stant and % is bounded by a polynomial in X and that for almost all A € N we
have

p(\) > (d+1)%- 29+ (a3 - d>4,

Then, FE cannot be both selectively (m + 1)-bounded function-hiding IND-CPA
secure and correct.

Proof. Assume that FE is both and set N = 2d. Because of Theorem 8, we can
transform FE to a private-key encryption scheme over Z, with depth d and width
B := |q/p] for messages X§ = {0,...,2d} which is IND-CPA secure and better
than guessing. Then, we have

B:{ngq_lg -1 .
p P T 2d+ )2 (dl)3-dd - (2d)

Now, according to Corollary 3, this encryption scheme must be useless and there-
fore cannot be better than guessing. In particular, FE cannot be correct. a

We prove Theorem 8 by applying adversially three transformations to FE. First,
we relinearize the ciphertexts and secret keys s.t. decryption becomes evaluating
a scalar product, dividing by | ¢/p| and rounding down. Second, we draw m secret
keys vy, ..., v, «— KeyGen'(msk, 0) for the zero-function and replace a ciphertext
ct’ with a vector of decryption noises (ct’ | v;). Because of decryption correctness,
each noise value must be small; therefore, we get a new ciphertext of small width.
By using sufficiently many secret keys, we can ensure that the new ciphertext
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contains enough information s.t. the probability of a correct decryption becomes
high enough. We will not always be able to decrypt correctly, but we show that
we are still better than guessing by % In fact, this is implied by Lemma 10 which
states that a secret key of a non-zero function must sufficiently resemble a secret
key of the zero-function. As a last step, we convert the current FE scheme into a
private-key encryption scheme for messages « € {0, ..., N} which is better than
guessing and of small width over Z,. Since all transformations can be applied by
an adversary, the scheme stays IND-CPA secure (however, we lose some security
in the second transformation step, since we have to ask for m secret keys). If we
started with a FE scheme of constant depth, then the final scheme will also be
of constant depth.

Proof (Theorem 8 Step 1). As a first step, we relinearize the ciphertexts and
secret keys of FE. Note that each polynomial sk € Z,[X1,...,X;] of total
degree < dy can be written as a vector of its coefficients. This yields a linear
transformation

s+do
D {sk € Zy[X1,...,X;] | degsk <dy} HZS 2 )

On the other hand, there is a polynomial map &+ : Ly — L of degree da which
maps each vector to a vector of different products of its entries s.t. we have for
all sk € Z4[ X1, ..., X;] of total degree < dy and all ct € z;

sk(ct) = (@ (sk) | DT (ct)). (4)
Now, we define a new scheme FE' = (Setup’, KeyGen’, Enc’, Dec’) by setting
Setup/(1*) := Setup(1?), KeyGen'(msk', f) := & (KeyGen(msk', f)) ,
Enc’(msk’,z) := " (Enc(msk’, z)) , Dec’(sk’, ct’) := [(sk” | <t')/[a/p]]-
Applying @ and &+ together forms an adversarial transformation, therefore FE’

is (m 4 1)-fh-IND-CPA secure. Because of Eq. (4), FE' is correct. Further, Enc’

is of depth d := d; - d2 and its outputs are vectors of length m = (5252). |

Lemma 10. For each sampleable (fx)x € (F)\)x there is an € € negl(\) s.t.

msk' — Setup' (1)
Pr Sk/f € spang, {v1,. s Um}| v1,...,0m < KeyGen'(msk,0) > 1
m
sk — KeyGen'(msK , fx)

— ().

Proof. Lemma 2 states

msk’ < Setup’ (1) .
Py :=Pr |sk; € spaan{vl, ce Um )| V1, .,1177 — KeyGen:(msk:,O) >1-— 1
skg «— KeyGen'(msk’, 0)

Consider an adversary A who plays the IND-CPA game from Definition 4 against
FE' and works as follows:
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Step 1: For b=0,1and i =1,...,m + 1, the adversary sets

sy )0 ifi<morb=0,
9= fr, ifi=m+1andb=1.

and submits two empty lists of possible inputs and two lists of possible

functions (¢0)7%", (g1)75 "

Step 2: After receiving (sk/gib);z{l, A computes V := spang, {sk;%, e ,sk'g% }
Step 3: The adversary outputs 0, if sk;b - € V, and 1 otherwise.

If we set

msk’ — Setup’ (1),
Py :=Pr sk/f € Spanzq{vl7 ce s Um b V1, Ume1 — KeyGen'(msk’,0), |,
sk’ — KeyGen'(msk’, f)

then we can compute the advantage of A by
e:=Pr[Awins | b=0]+Pr[Awins | b=1]-1=P+(1—-P)—1=P, — P>.

¢ is negligible, since FE" is (m + 1)-fh-IND-CPA secure. Therefore

1
= — > .
Py=P —e(\) > 1 e(A)

O
Proof (Theorem 8 Step 2). Let FE' = (Setup’, KeyGen’, Enc’, Dec’) be a correct
and (m + 1)-fh-IND-CPA secure functional encryption scheme where Enc’ is of
depth d and length m over Z,. Let furthermore Dec’ be computed by

Dec'(sk’,ct’) = [(sk’ | ct’)/la/p]].

We now adversarially transform FE' to a functional encryption scheme FE” for

the same functionality which is 1-fh-IND-CPA secure, better than guessing and

whose encryption algorithm has depth d, width |g/p] and length m over Z,.
In the IND-CPA game against FE', our adversary first queries m secret keys

V1, ..., U — KeyGen'(msk’,0) for the zero function and then makes use of the
algorithm B described in Theorem 4 to compute V, A, A" «— B(v1,...,v,) s.t.
V =spang {v1,..., 0} and A € 27k At e ZE*™ are matrices with

V:A-Z’; and A-ATv=vforalveV.

After our adversary queried m secret keys, FE' remains 1-fh-IND-CPA secure.
However, by doing so, the adversary gained the additional data V, A, AT with
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which he can transform FE' to FE” = (Setup”, KeyGen”,Enc”, Dec”’) by setting:

Setup”(1*) := Setup’(1*) Enc”’(msk”, z) := AT - Enc’(msk”, z)

K?yGen"(msk"; f) -~ Dec”(sk”, ct”) :

sk «— KeyGen'(msk’, f) ok = L

ifsk'fEV y«—{0,...,p}
sk == AT - sk, else

else y « Dec’(sk”, ct”)
sk = 1 return y

"
return skf

FE” has the following properties:

Security: The above changes can be applied by an adversary while he plays the
IND-CPA game from Definition 4. Therefore, FE” is 1-fh-IND-CPA secure, since
our adversary has to query m secret keys for the zero function which does not
leak any information about encrypted messages.

Depth and Length: Since the transformation of the encryption algorithm is
done by multiplication with the matrix AT € Z’;X"‘, the depth of the encryption
algorithm does not change. Furthermore, Enc” is of length? k < m over Z,.

Width: We have to show that Enc” is of width [g/p]. To this end, let (z))x €
(X))a, draw msk” « Setup”(1%), ct” « Enc”(msk”,z)) and fix a component
ct} of ct” = (ct/,...,ct]) € Zi. Note that the columns of the matrix A =

(vj,|...|vj,) are some of the vectors vy, ..., v, — KeyGen'(msk’, 0) according to
Theorem 4. Since ct” = AT ct’ for some ct’ + Enc’(msk’, x)), there is, because
of the correctness of FE', an ¢ € negl()\) s.t. for all (xx)y € (Xa)x

pefect = [2]] = pe vt < 2] = me] [ 2| ]

i msk’ < Setup’(1%)
=Pr [Dec(vj,,ct’) = 0| v, «— KeyGen'(msk’,0),| >1—¢())

ct’ « Enc’(msk’, )

where in the first three terms we take the randomness over the computation of
msk” and ct”. Therefore, Enc” is of width |q/p].

Better than Guessing: It remains to show that FE” is better than guessing.
Fix (z))x € (X)) and a samplable (fy)x € (Fy)x and draw msk” « Setup” (1}),

4 Note that k is not fixed but rather a random variable. However, this is not a problem,
since we can always pad the output of Enc”’ to be of length m over Z,.
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sk’f — KeyGen" (msk”, fx), ct/ < Enc”(msk”, z). Then, we have
/()]

flx) ‘ sk}' = J_] -Pr [sk" = J_]

)| sk # L] - Pr[sk] # L]

:ﬁljr [skf = L] +Pr [Dec”(sk;ﬁ,ctg):f(z)‘ sks # L] - Pr sk} # 1].

Pr [Dec”(sk’;, ct/))
=Pr [Dec”(sk’, ctl)
+ Pr [Dec” (sk’f, ct?))

Now, we have sk}' # 1 iff sk} € V. Because of Lemma 10, the probability for
this is at least #H —¢1 for some €7 € negl(\). If sk/f €V, we have

(sk7 | cty) | [ (ATsK} | AT ctl)
la/p) | La/p]

Dec”(sk’s, ctl}) = Dec’(sk’7, cty) = {

a4t sk | ctl)
B La/p]

The last term equals fy(x)) with probability at least 1—e5 for some e5 € negl()).
Now, let A be big enough s.t. 1 —eq(A\) > W, then

J = Dec/(sk}, ctl).

Pr [Dec”(sk7,cty) = f(z)]
= % - Pr sk} = L] 4+ Pr[Dec”(sk,cty) = f(x)| sk} # L] - Pr[sk} # L]

P+
> L P [a £ 1]) 4+ (1) P o) # 1]
_1+Pr[s”7éJ_]<1521>

pt1 ! p+1
>1—&—(1 5)(1 € 1)
“p+1 \mt1 S optl

1

+ b —negl(}). (5)

>
Tp+l (m+1)(p+1)
Therefore, FE” is better than guessing by m. |

Since (F))x contains the projection onto the first coordinate, there is a straight-
forward way to adversially transform FE” to a private encryption scheme over
Z4 with width |g/p] and depth d which is better than guessing and selectively

IND-CPA secure. For this purpose set Xy = {0,..., N(A)}.

Proof (Theorem 8 Step 3). Let FE” = (Setup”, KeyGen”  Enc”, Dec”) be the func-
tional encryption scheme of the preceding step. Then, FE” is 1-fh-IND-CPA
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secure, better than guessing and of depth d and width B := |¢/p]| over Z,.
Additionally, FE” has the special property that for all samplable (fy)x there is
an € € negl(\), s.t. we have for all (z)x

sk’ — KeyGen” (msk”, f)
e Dec”(sk’s, ctly) = fa(za) | cti — Enc”(msk”, z») >1—e(N).
ms «——>Setu
P sk £ L

We adversarially transform FE” to a private-key encryption scheme SKE”' =
(Setup”, Enc””’, KeyGen"’, Dec”) of depth d and width B over Z, for the message

space X which is IND-CPA secure and better than guessing. For this end set:

Setup”"(1%) := Setup” (1) Dec (5K i)
Enc” (msk”, ) := Enc”(msk”’, (z,0...,0)) if sk =1
KeyGen" (msk”,Idg ) := KeyGen" (msk”, 1) y <« {0,...,N}
else
y « Dec”(sk”’, ct")
return y

Note that this adversarial transformation is the only one in this work, where we
have two functional encryption schemes for different functionalities. Now, SKE"’
is IND-CPA secure, because FE” is 1-fh-IND-CPA secure (in fact, FE” being
0-fh-IND-CPA secure would already suffice). Enc” is of depth d and width B
over Zg, since Enc” is so. The computations marked by the number (5) in the
preceding transformation step show — mutatis mutandis — that SKE” is better
than guessing by m i
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Abstract. In an early version of CRYPTO’17, Mennink and Neves pro-
posed EWCDMD, a dual of EWCDM, and showed n-bit security, where
n is the block size of the underlying block cipher. In CRYPTO’19, Chen
et al. proposed permutation based design SOKAC21 and showed 2n/3-
bit security, where n is the input size of the underlying permutation. In
this paper we show birthday bound attacks on EWCDMD and SoKAC21,
invalidating their security claims. Both attacks exploit an inherent com-
position nature present in the constructions. Motivated by the above
two attacks exploiting the composition nature, we consider some generic
relevant composition based constructions of ideal primitives (possibly in
the ideal permutation and random oracle model) and present birthday
bound distinguishers for them. In particular, we demonstrate a birthday
bound distinguisher against (1) a secret random permutation followed
by a public random function and (2) composition of two secret random
functions. Our distinguishers for SOKAC21 and EWCDMD are direct con-
sequences of (1) and (2) respectively.

Keywords: PRF - Birthday bound - SoOKAC21 - EWCDMD

1 Introduction

Motivated from DES block cipher design, Luby and Rackoff [LR88] formally
analyzed a paradigm of constructing a pseudorandom permutation (PRP) from
a pseudorandom function (PRF). However, the opposite trend is more popular
due to wide availability of block ciphers (modeled to be pseudorandom permu-
tations). So pseudorandom functions are traditionally built upon block ciphers.
A straightforward application of the classical PRP-PRF switch [Sho04] gives
security up to the birthday bound. However, in view of lightweight block ciphers
[BPP+17,BKL+07] this bound may not be suitable. For example, a birthday
bound secure PRF construction based on DES (64-bit block cipher) may be bro-
ken in approximately 232 bits of data. In fact, Bhargavan and Leurent [BL16]
performed practical attacks on TLS and OpenVPN when a 64-bit block cipher
is used. To resist such attacks, several beyond birthday bound secure construc-
tions have been proposed. This includes popular constructions such as sum of
permutations (or SoP in short) [HWKS98, Pat08, DHT17,BN18b], truncation of
© International Association for Cryptologic Research 2020
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permutation [HWKS98,BN18a], EDM type constructions [CS16,CS18], Sum-
ECBC [Yasl0], Pmac_Plus [Yasll], 3Kf9 [ZWSW12], DbHtS [DDNP18] and
1kPmac_Plus [DDN+17a].

Apart from block cipher, the recent trend of using ideal (unkeyed) permuta-
tion has also motivated several pseudorandom functions from ideal permutation.
Sponge-based PRF [BDPVA11b,CDH+12,BDPVA1lla,ADMVA15] and Farfalle
[BDH+17] are two such examples of PRF from ideal permutations. Recently,
Chen et al. in Crypto 2019 [CLM19] considered permutation versions of SoP and
EDM-dual. Depending on the choice of the keys and the permutation, some of
the constructions provide birthday bound security, while some achieve beyond
the birthday bound. They have also claimed tight security by showing some
matching attacks.

1.1 Some Beyond Birthday Bound Constructions

Most of the constructions mentioned above are sequential in nature. Some of
these constructions can be viewed as composition of two simpler constructions.
For a permutation 7, we denote m(x) @ z as 7®(x) (this is known as Davies-
Meyer function which has been used to define hash functions in case of public
permutation). Let 7; and ms be two independent keyed random permutations
over {0,1}".

EDM and Its Dual. For a message m € {0,1}", we define
EDM(m) = my(n}’ (m)) (1)

In other words, EDM (encrypted Davies-Meyer) is a composition function o OﬁB .
Here m; and my are two independently keyed block ciphers (or random permuta-
tions). Dual version of EDM (denoted as EDMD) is defined as the composition
in the other direction:

EDMD(m) = 7 (m2(m)).

In [CS16,CS18] it has been proved that EDM is PRF secure up to 227/3
queries (i.e. 2n/3-bit secure). Later in Crypto 2017 [DHT17], security of EDM
is shown to be at least 3n/4-bit using x?-method. Independently, Mennink and
Neves in [MN17] proved that EDM and EDMD have n-bit PRF security using
the generalized version of Patarin’s mirror theory [Pat08]. However, the proofs
of mirror theory are extremely sketchy and contain several unverified gaps.

EWCDM and Its Dual. The previous constructions can only process n-bit mes-
sage. With the help of universal hash #, one can extend the message space,
using the Wegman Carter paradigm [WC81]. We now recall the construction
EWCDM [CS16] and its dual version EWCDMD [MN17] (see Fig. 1). For a nonce
(which should be fresh for every execution of MAC) v € {0,1}" and a message
m € M, we define

EWCDM(v, m) = ma(n (v) © # (m)) (2)
EWCDMD(v,m) = 75 (71 (v) @ % (m)) (3)
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Fig. 1. EWCDMD: Wegman-Carter followed by Davies-Meyer.

In [CS16], Cogliati and Seurin proved 2n/3-bit PRF (pseudorandom function)
and MAC (message authentication) security for EWCDM in a nonce respecting
model.

SoKAC21. So far we have considered constructions based on secret keyed prim-
itives. Very recently, Chen et al. in CRYPTO 2019 [CLM19] proposed a pseu-
dorandom function, called SOKAC21 (see Fig. 2), based on ideal public permuta-
tions. It is designed for small message space and claimed to be achieving beyond
birthday bound security. For an n-bit message m, and two ideal permutations

b _pub .
i, 8" and an n-bit secret key K, we define

SoKAC21(K,m) = M3 (mt**(m e K) e K) e m™me K)o K (4)

O e— X

K
U (&) T | — H — ¢
u v ‘ T Y T

Fig. 2. SoKAC21 - Sum of Key Alternating Cipher with a single key.

This construction can be viewed as a composition of Even Mansour followed
by Davies-Meyer. We note that an equivalent view (due to which it is named sum
of key alternating cipher) of the above construction is (v K) @1 (MmO K) B K
where v = m(m @ K).

1.2 Composition Constructions and Our Contribution

All the constructions mentioned in the previous subsection can be viewed as
composition of ideal primitives or some functions derived from ideal primitives.

PUBLIC AND SECRET IDEAL PRIMITIVES. Let v < Func(n) and 7 «s Perm(n)
denote n-bit random function and random permutation respectively. A random
function or permutation is called public if adversary has direct access to these
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primitives or their inverses whenever exist, in addition with concerned construc-
tions based on these primitives. In this case we call the adversarial model ideal
function or ideal permutation model. We denote the public random function and
permutation as YPU? and 7PUP respectively.

When the ideal primitives are secret (i.e. cannot accessed directly by an
adversary), we denote them as y**¢ and 7°¢“. Note that secret primitives appears
when a keyed function (e.g. a keyed compression function) or a keyed permuta-
tion (e.g., a block cipher) is replaced by the ideal counterpart through hybrid
argument.

We use subscript notation to denote independent copies of the primitives.
For example, 71, T2 are two independent random permutations (either secret or
public which would be understood from the superscript notation).

Our Contribution. In this paper, we first analyze the PRF or PRP construc-
tions g o f where

f, ge {,ypub’,ysecﬂrsec}.

Due to a trivial reason' we exclude 7. Moreover, we must assume that at
least one of the functions is secret. In this paper, we show birthday bound PRF
attack on (1) 5% o 45*¢ and (2) PP o 7%, The idea behind the attacks for
these constructions are simple. For 75 o 73*¢ we expect more collisions than
perfect random function. In other words, we have higher probability of realizing
collision on 5% 0 75* than that of **. For the second construction, we observe
the outputs of public function 7P“* and outputs of yP“? o 7% (or 4°*¢ in case of
ideal oracle). We show that the probability of collision between these two lists
is higher in case of the real world than the ideal world. In the real construction,
collision can happen in two ways — (1) an output of 7°*¢ collides with an input
of public function call 4P'®, (2) accidental collision (which happens in the final
outputs without having collision among inputs).

1

BIRTHDAY ATTACK ON EWCDMD. We exploit the attack idea of v5%¢ o 77*¢ to
describe a PRF attack against EWCDMD in query complexity 2%/2. In an early
version of CRYPTO 20172, Mennink and Neves [MN17] showed almost n-bit
PRF security for EWCDMD. So our result invalidates the initial claim of the
construction.

The main idea of the attack is simple. EWCDMD can be viewed as a compo-
sition of two keyed non-injective functions (and so it follows birthday paradox),
namely 7§’ and a function f mapping (v,m) to 71 (v) ® # (m). Thus, we expect
that the collision probability of the composition 7r§9 o f is almost double of the
collision probability for the random function. So, by observing a collision we can

! Note that if the outer function g is 7™ or the inner function f is 7P"® then the
composition is essentially reduced to a single primitive. An adversary can always
uncover 7™° by making calls to 7™* and (7P*®)~1.

2 The early version can be accessed on ePrint 2017/473 posted on 28-May-2017. This
paper was initially accepted in CRYPTO 2017. Later, after finding the flaw in the
analysis, authors removed this analysis from the final proceeding.
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distinguish EWCDMD from a random function. Note that EWCDM is a composi-
tion of a permutation and a non-injective keyed function. Hence our observation
is not applicable to it.

BIRTHDAY ATTACK ON SoKAC21. Similarly, we exploit the attack idea of yPU? o
7°¢¢ to have birthday bound PRF attack on SoKAC21. In this construction we
have 7 instead of public random function. However, with a careful analysis (and
using the recent result on sum of permutation) we can have birthday attack on
SoKAC21. This again violates the beyond birthday security claimed in [CLM19].

2 Preliminaries

Notation. For n € N, [n] denotes the set {1,2,...,n}. For n,k € N, such that
n > k, we define the falling factorial (n); :=n!/(n—k)! =n(n—1)--- (n—k+1).
For a € N, an a-tuple (z1,xa,...,x,) and also a multi-set {z1,..., x4} is simply
denoted as z® (this should be clear from the context). For any set 2, (2)a
denotes the set of all 2% so that zq,...,x, are distinct. We call all those z®
element-wise distinct. Note, [(Z)q] = (|Z])q-

The set of all functions from 2 to % is denoted as Func(Z,%) and the
set of all permutations over & is denoted as Perm(Z’). We use shorthand nota-
tions Perm(n) (or Func(n)) to denote the set of all permutations (or functions
respectively) from {0,1}™ to itself.

For a finite set X, X «+— 2 denotes the uniform and random sampling of X
from . We write Xq,...,X, <52 when X;’s are chosen uniformly and inde-
pendently from the set 9. In other words, Xi,...,X, is a random with replace-
ment sample. We write Xy, ..., X, «wor P when X;’s are chosen randomly from
92 in without replacement manner. More precisely, for all element-wise distinct
% € (D)q,

PriXis =21,...,Xa =24) =

(12)a

2.1 Statistical Distance

Let X,Y be two random variables over a sample space &. Then the statistical
distance between X and Y is defined as

D(X,Y) := % D IPr(X =a) — Pr(Y = a)].
acs

An equivalent definition of statistical distance is the following:

D(X.Y) = max|Pr(X € ) — Pr(Y € E)|.

To see why it is an equivalent definition, we first note that the maximization
holds for By = {a € & : Pr(X = a) > Pr(Y = a)}. From the definition of Ej,
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we can write the sum ) ¢ [Pr(X = a) —Pr(Y = a)| (after splitting over F; and
E¥) as

> (Pr(X=a)— + ) Pr(Y —Pr(X =a)

a€Ey a€Ef
=Pr(X € E1) —Pr(Y € Eq) + Pr(Y € Ef) — Pr(X € EY)
= 2(Pr(X € Ey) — Pr(Y € Ey)).

Thus we have established the equivalence.

Lemma 1 (replacement lemma). Let X, Y be two random variables over a
sample space 8§ and Z be independent with X and Y sampled from I . Let E C
S X T then

|Pr((X, 2) € E) = Pr((Y, 2) € E)] < D(X, Y). ()

Proof. For every z, let E, = {s € & : (s,2) € E}. Then by independence, we
have

1. pr:=Pr((X,Z) e E) =) _Pr(Z==z)-Pr(X € E.) and similarly,
2. p2:=Pr((Y,Z) e E) =) _Pr(Z=2)-Pr(Y € E.).
Hence,
lp1 — pz\—IZPr -Pr(Xe E.) ZPr )-Pr(Y € E.)|

< Z Pr(Z=z)-|Pr(X € E,) — Pr(Y € E,)|

2.2 Sum of Without Replacement Samples

Let 9 be a set of size N. In [DHT17] it has been proved that sum of two indepen-
dent without replacement sample almost behaves like one with replacement sam-
ple. More precisely, let Xi,...,Xq «worD, Yi,....Yq «worD, Z1,..., 245D
and X%, Y are independent. Define W; = X; @ VY; for all i € [a]. Then, in
[DHT17] it is shown® that A
a a a

D(z,W*) < . (6)
Due to Lemma 1, we can simply replace sum of random without replacement
sample involved in an event by the random sample at the cost of probability
4a/N. We use this idea of replacement while we analyze SoKAC21 construction.

3 The original bound is 1‘]\5,“ + 2Y2 which is less than the bound we consider here for

all @ > 3. For a = 2, one can easily establish the bound.
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2.3 Security Definitions

RANDOM FUNCTION AND RANDOM PERMUTATION. 7 «—s Func(Z', %) is said to
be the random function from the set 2 to %. Similarly, 7w «sPerm(%) is said
to be the random permutation over the set %. In this paper we mostly use the
set & =% ={0,1}".

KEYED FUNCTION AND PERMUTATION. A keyed function with key space %,
domain & and range % is a function F : & x & — % and we denote F(K, X)
by Fx(X). Similarly, a keyed permutation with key space # and domain & is
a mapping E : & x & — X such that for all key K € &, X — E(K,X) is a
permutation over 2 and we denote Ex (X) for E(K, X).

PRF. Given an oracle algorithm A with oracle access to a function from 2 to
%, making at most ¢ queries, running time at most ¢ and outputting a single
bit, we define the prf-advantage of A against the family of keyed functions F as

AdvERF(A) := |Pr(K s F : AFx = 1) — Pr(y s Func(Z, %) : AY = 1)|.

PRP. Given an oracle algorithm A with oracle access to a permutation of X,
making at most ¢ queries, running time at most ¢t and outputting a single bit,
we define the prp-advantage of A against the family of keyed permutations E as

Adve™(A) = |Pr(K «s H : AF< = 1) — Pr(m «—sPerm(Z) : A" = 1)].

PRF aAnD PRP 1N IDEAL MODEL. Some keyed constructions uses ideal public
primitive such as a random function and a random permutation. Let Py,..., P,
be such all primitives used for a keyed construction Fgx := F?"“’PT. Let P*
denotes both P; and its inverse P, '. We define PRF and PRP-advantage in the
public primitive model as follows.

AdVERF(A) i= |Pr(AFKPT PP 1) - pr(AV PP 2 ).

In the above two probabilities, K,~, Pi,..., P. are all independently drawn.
Similarly, we define PRP-advantage in public model as

AAVERT(A) 1= [Pr(AFe PP = 1) _ pr(AT PSP ).

ArMosT XOR UNIVERSAL HASH FUNCTION. A keyed hash function #x : & —
R is called e-AXU (almost xor universal) if Pr(%#x(m) & #x(m') = 0) < € for
all m # m’ and for all §. Here the probability is computed under randomness of
the key chosen uniformly from the key space.
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3 Collision Probability

Let 9 be a set of size N. We quickly recall collision probability for a uniform
random sample Xi,..., X, «<s. For any positive integers a < N, we write
dpy(a) := (%z‘l and cpy(a) :=1—dpy(a). When N is understood from the con-
text, we skip the notation N. If a is very small compared to N (i.e. a/N =~ 0), a
precise estimation of dpy (a) is e~*(@=1)/2N _ This follows from the approximation
1 — € =~ e~ for very small positive €. In fact the error term |e=¢ — (1 — ¢€)| is in
the order O(€?).

Given a list & of elements z1,...,2,, we write Dist(Z) if x;’s are distinct.
Otherwise, we write Coll(Z).

Lemma 2 (collision probability). Let @ be a set of size N. Let
X100y, Xo 3D and let & denote the list containing X;’s, 1 <1 < a. Then,

1. Pr(Dist(Z)) = dpy(a).
2. Pr(Coll(£)) = cpy(a) < a?/2N.

We skip the proof as it is straightforward conclusion from the definition. The
second statement follows from the union bound.

Now we compute probability for having a collision between two lists. We say
that there is a collision between two lists, denoted as LColl(Z1, %) if the lists
are not disjoint.

Lemma 3 (list-collision probability for without replacement sample).
Let Xq,...,Xp <worD and Yi,..., Yy <worD such that X¥ and Y? are indepen-
dent. Then,
(N —p)
Pr(LColl( XP,Y?)) =1 — ~———1
(N)q
Proof. We compute the complement event, i.e., XP and Y? are disjoint. The
conditional probability of the complement event conditioning on XP = zP is
%. This can be easily seen as the number of choices of Y is exactly (N —p),.
As the conditional probability is independent of choice of zP, the unconditional

N=p)a  This completes the proof. O

probability is also same as ™.

U)OT’(

We denote the probability 1 — % as lepy”" (p, q) (or simply lcp™“"(p, q)

whenever N is understood from the context).

When & := XP and & =YY, where Xq,...,X;,,Y1,..., Y, <D, we denote
the list-collision probability Pr(LColl(%;, %)) as Icp?v(p, q) (or simply Icp$(p7 q)
whenever N is understood from the context). Here 9 is a set of size N.

Lemma 4 (list-collision probability for random samples). For all positive
integers p,q, we have

leph (P, @) = 1+ (1= )| < 2cp (p)- (7)

(When p is small compared to v N, the collision probability cpy(p) is almost
zero and in that case, the above result says that 1 — (1 — %)q is a very good

approximation of Icp?v (p,q).)
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Proof. Let Xq,...,Xp,Y1,...,Yg«s2 and E denote the event Dist(X?). So
Pr(E) = dpy(p). Fix any distinct z?. Then, the list collision LColl(z?, Y?) holds
with probability 1 — (1 — £)?. Now,
Pr(LColl(X?, Y?)) = Pr(LColl(X?, Y?) A E) + Pr(LColl(X,Y?) A E)
- Z Pr(LColl(z?,Y?) A XP = 2P) + Pr(LColl(X?, Y?) A E°)
zPE(D)p
1—(1=3))x > Pr(X ) + Pr(LColl(X?, Y9) A E°)
P E(D)p

—(1-(1- %)q) x Pr(E) + Pr(LColl(X?,Y9) A E°)

=(1-(1- %)Q) x (1 — Pr(E®)) + Pr(LColl(X?, Y?) A E°)

Note that in our notation, Pr(LColl(X?,Y?)) = Icp% (p, ¢). Hence,
JlepR (P @) = 1+ (1= )71 = (1 = (1 = 1)) x Pr(E*) + Pr(LColl(X", Y*) A E¥)|
< 2-Pr(E°).

The lemma follows from the definition that Pr(E€) = cpy(p). O

4 Birthday Attack on Composition of Ideal Primitives

In this section, we analyze compositions of ideal primitives. We recall that
v «=s Func(n) and 7 «s Perm(n) denote n-bit random function and random per-
mutation respectively. We follow the notations described in Sect.1.2. Here = is
used to mean two systems equivalent (i.e. the probabilistic behavior of interac-
tion for any adversary would be same for both).

sec — e = C sec —

1. It is easy to verify that 7% o %€ = 3¢ = 7 and 7% o 73§ w. In
[MS15] 7% o 7% (iterated random permutat1on) has been analyzed and it
almost behaves as 7°¢¢ with a maximum distinguishing advantage O(q/2™)
where ¢ is the number of queries. Authors of [MS15,Nan15] have actually
analyzed a more general construction 7% o - -+ o 7% (applied r times).

2. In [BDD+17], v°¢€ o 4% (iterated random function) has also been analyzed.
This is equivalent to 7**¢ with a maximum distinguishing advantage O(q?/ 2”)
Authors of [BDD+17] actually analyzed more general construction v*€o
~*¢¢ (applied r times). The main idea behind the distinguishing attack is that
the collision probability of an iterated random function is more probable than
that of a random function.

Using a similar argument, we can show that 5° o v3*¢ can be distinguished

from ~%¢ by making 2"/2 queries. Let 1, . . . ,Zq be g queries and let y1,...,y,

be the responses. In case of the real world, y; = 75%°(2;) where z; = 3 (x;).
Let u := cpgyn(q). Now,

Pr(Coll(y?)) = Pr(Coll(2?)) + Pr(Coll(y?) | Dist(z?)) x Pr(Dist(z7))
= p+p(l —p)

e
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Let & return 1 if it observes a collision among outputs. Thus, the distin-
guishing advantage of the adversary is at least u(1 — p). When ¢ = 27/2,

cp(g) = 1— ﬁ and hence advantage is ﬁ x (1— ﬁ) which is at least 0.2.

One can also choose ¢ (which should be again O(2"/2)) such that pu ~ 1/2
and hence the advantage would be about 0.25.

Same attack can be applied to 7% o 4PU® and yPUP o 4% as if the adversary
does not take an advantage of accessing the public random function yPU?.

3. Let us consider the construction 7% o~P'®. An adversary & first finds a colli-
sion pair (m,m’) of 4P“* by making 2™/2 queries to it. Then, 75 0 yP*(m) =
7% 0 4PUP(1m/). Clearly, in the ideal world, v(m) = «(m’) holds with prob-
ability 27". So o is a PRF-distinguisher against 7% o 4P“® making about
27/2 queries to the public random function. The same attack is also applied
to ~sec

4. Although ~°¢€ o %% is equivalent to a random function, we have the following
birthday bound complexity PRF-attack on 7P o 7% (replacing the outer
layer of secret random function by public random function). Here we exploit
the public access of yP“° (since otherwise it is equivalent to a random function)
(Fig. 3).

sec

o ,ypub.

PRF Distinguisher oo™

Ti,...,Tp <wor {0, 1}"

queries z1,...,z, to "

yi = 4™ (2),i € [p] be the responses
for i € [g],i is queried to O

if 30, 5,4 = ¢;
return 1

1:
2
3
4
5: let ¢; =0(i),i € [g] be the responses
6
7
8: else

9

return 0

Fig. 3. Distinguisher for composition construction v**® o 7.

Let ¥ denote the event that there are i, j such that y; = c;.
IDEAL WORLD: In the ideal world we have c1,...,¢q,91,...,yp <s{0,1}™. So

Pr(E) = Icp®(p,q) = 1 (say).

REAL WORLD: In the real world, let z; = 7%°(i). So ¢; = v*?(2;). Thus,
Z1,...,2q <wor{0,1}" independent of z”. Now, we write the event E as the
disjoint union (denoted as L)

LColl(z%,2”) U (—LColl(z9,z") A LColl(c?, y*)).
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Given that z? is distinct from zP, we have c¢1,...,¢q,y1,---,Yp <s{0,1}".
Now, Pr(LColl(z9,zP)) = Icp"*" (p, q) := p1 (say). Then,

Pr(E) = p1 + (1 = pn)p.

So, the distinguishing advantage of our adversary is u1(1 — ). By Lemma 3
and Lemma4, the distinguishing advantage is at least

(2" —p) p
(1- T)q) X ((1 - 27)(] - 2CP2n<Q))- (8)
q
Further, we have
-1
(zn - p)q _ E p
2, g(l 2n — z)
< (-5

2

pq bq
<1- on + 92n+1

The last inequality follows from the following fact:

1-2)07<1- (?)x—l—(g)xz, 0<z<1.

We also have (1 — £)? > 1 — &L, By substituting the above inequalities in

Eq. 8, the distinguishing advantage is at least

2
pq q bq q
(I=on =o)X g X = 5o5g)-

Now if we choose p = ¢ = /2" /3 then the advantage is at least §(1— W)
This value is almost 1/9 for a reasonably large n.

5 Birthday Attack on SoKAC21

In the previous section we have shown the basic attacks on composition of ideal
primitives. A similar idea can be used for composition of constructions which
are not ideal. However, a more dedicated analysis of advantage computation
is required. In this section we show a birthday attack on a recent proposal
SoKAC21. In the following section we show birthday attack of Dual EWCDM.

We first recall the definition of SOKAC21 (see Fig. 2 and Eq. 4 for details). It

. . . b b ) .
uses two public n-bit random permutations 77> and 75". Given an n-bit key

K, an n-bit input m, we define SOKAC21 output as

Fi(m) := n5"®(2) ® z, where z = 7™°(m & K) & K.
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Our attack does not exploit public queries to 7™ and hence 70*°(m & K) &
K behaves identically to a secret random permutation 7%¢¢(m). Let DM(z) :=
WSUb((E) @z (Davies-Meyer construction based on a public random permutation).
So SoKAC21 is actually the composition DM o 7%¢¢. However, DM is not perfect
random function. But if we choose the inputs of DM in a without replacement
manner, the output of DM can be viewed as the sum of two WOR, samples
and hence it is very close to uniform distribution. We use this principle along
with the attack strategy as described in the previous section for the composition
construction yPUP o 7%%¢. We simply write 7P instead of wS“b and 7% instead of

the Even-Mansour construction on 7™ (Fig. 4).

PRF Distinguisher o/

Z1,...,Tp <wor{0,1}"
queries z1,...,z, to ™"

x; = 7™ (x;),i € [p] be the responses
let y;, = xi D x;

for i € [q],7 is queried to O

let ¢; = 6(i),i € [q] be the responses

if 3i,5,yi =c¢; return 1

® N O oA W N =

else return 0

Fig. 4. Distinguisher for SOKAC21 which can be viewed as the composition construction
DM o ﬂ_sec.

We define the event E := LColl(c?, yP) (i.e. there exists ¢, j such that y; = ¢;).

IDEAL WORLD: In the ideal world ¢, ..., cq <= {0,1}". Moreover, y; is defined
as sum of two without replacement sample. By Eq.6, y;’s are close to a with
replacement sample y;, ..., y, with the statistical distance at most 4p/2". More-
over y;’s are independent of ¢?. Let u := Pr(LColl(c?, (y')?)) = lcp® (p, q). So by
using Lemma 1,

Pr(E) = Pr(LColl(c¢?,y?)) < Icp®(p, q) + 4p/2".

REAL WORLD: In the real world, let z; = 7°°¢(i). So ¢; = 7P“®(z;) @ z; for all
and z1, ..., 24 <wor {0, 1}" independent of zP. Now, the event E can be written
as a disjoint union F LI Fs where

1. By is LColl(2%,2P) and
2. Ejy is =LColl(2%,2P) A LColl(c?, yP).

Let Pr(E1) = lep™ (p, q) = pu (say).
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Now, we compute the probability of the event E, which is same as E{ A
LColl(c?, y?). Given that 27 is distinct from 2P (i.e. Ef holds) we have

n
Zlyee-32qy L1y 3Tp <—wor{0,1} .

As ¢; = DM(z;) and y; = DM(x;), ¢;’s and y;’s are almost uniformly distributed.
More precisely, for ci,...,co, 1, .-y, {0, 1},

D((c?,y"); (), (1)) < Alp +q)/2".

So by Lemma 1, Pr(E3) > (1 — p1) x (1 — 4(p + q)/2"™) where p = |cp$(p, q)-
Now

7

Pr(E) = Pr(Ey) + Pr(E>)

4(p+q)).

2+ (1= m)p - =0

So, subtracting the probability Pr(E) of the real world from that of the ideal
world, the distinguishing advantage is at least

8p + 4q

(1= p) - L

We have already shown that i (1— ) is at least §— 272%/2 when p = ¢ = 4/27/3
(see the last paragraph of our analysis on yP'® o 75¢¢). Hence the advantage is at

1 1
least 9~ gm/e=1-

6 Birthday Attack on Dual-EWCDM

In this section we provide details of a nonce respecting distinguishing attack
on EWCDMD. For better understanding we consider a specific hash function
#(m) = K -m where K is a nonzero random key chosen uniformly from
{0,1}" \ {0} and m € & := {0,1}". Here K - m means the field multiplica-
tion with respect to a fixed primitive polynomial. Clearly, # is qu AXU hash.
Moreover it is injective hash. In other words, for distinct messages my,...,mq,
Z(ma), ..., % (my) are distinct.

Distinguishing Attack. & choses (v1,m1),..., (vy,mq) € {0,1}" X M where
all v;’s are distinct and all m;’s are distinct. Suppose 17, . .., T; are all responses.
& returns 1 if there is a collision among T; values, otherwise returns zero.

When & is interacting with a random function, Prje/ — 1] < g(q — 1)/2"+!
(by using the union bound). Now we provide lower bound of Pr[¢/ — 1] while &
is interacting with EWCDMD in which 7y, o are two independent random per-
mutations and # is the above hash function whose key is chosen independently.
To obtain a lower bound we first prove the following lemma. Let N = 2",
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Lemma 5. Let z1,...,x, € {0,1}" be g distinct values. Let m be a random
permutation. Then, for all distinct v1,...,v,, let C' denote the event that there
is a collision among values of w(v;) ® x;, 1 < i < q. Then,

a(l-=p) < PriC] <«

where o = 2((]‘3, 11) and B = (""4?\,7(;)1). In particular, for distinct x;’s, there is a

collision among 7T(:Z?z) @ x; values has probability at least a(1 — ).

Proof. Let E; ; denote the event that 7 (v;) & 7(v;) = x; & x;. So for all i # j,
PrlE; ;] = 1/(N —1). Let C = U;%;E; ; denote the collision event. By using
union bound we can easily upper bound

_ 4(¢=1)
PriC] < a:= AN 1)

Now, we show the lower bound. For this, we apply Boole’s inequality and we
obtain lower bound of collision probability as

PriC] > a — Z PrlE; ; N Eg ]

where the sum is taken over all possible choices of {{, j}, {k,{}}, and the number
of such choices is at most (Q(q_Ql)/Z) = q(q—1)(¢ +1)(¢ — 2)/8. Note that for
each such choice 1, j, k, [,

Pr[E;; N Eg] < m
Hence,
Pric) = o~ M R o)
=ol(l- W) —a(l-5). 10)
This completes the proof. )

Advantage Computation. Using the above Lemma we now show that the
probability that & returns 1 while interacting with EWCDMD is significant when
q=0(2"?).

Let C'; denote the event that there is a collision among the values z; :=
m1(vi) @ ' (m;). We can apply our lemma as # (m;)’s are distinct due to our
choice of the hash function. Thus, Pr[C}] > a(1—/3). Moreover, Pr[-C1] > (1—a).
Given =Cq, T values are outputs of Davies-Meyer based on random permutation
mo for distinct inputs. So by using previous lemma,

Pr(collision in T values | =Cy) > a1 — 3).
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Hence,

Pr(of — 1) r(Cy) + Pr(collisionin T values | =C;) x Pr[-Cy]

>P
> a(l—0)+ (1 —a) x Pr(collisionin T values | =Cy)
za(l=p)+a(l—a)(1-0)

= (2a — a?)(1 - B) > 2a — 203 — o®.

Thus, the advantage of the adversary is at least o — 203 — o?. It is easy to see
that when 2¢®> > N, we have 1 — 28 — a < 1/2 and hence the advantage is at
least a/2 = q(q¢ — 1)/4(N —1).

Remark 1. We would like to note that the distinguishing advantages of both
constructions can be made closer to one if we repeat the whole process indepen-
dently O(n) times.

6.1 Issues in the Previous Proofs

Now we briefly describe what were the issues in the proofs of [CLM19, MN17].
Both proofs used H-technique and hence it is broadly divided into two parts:
bounding probability of bad events and finding good lower bound for realizing
any fixed good transcript in the real world. The flaws in their proof lie on the
good transcript analysis.

Suppose 7 and 7y are two random permutations. In the both proofs, good
transcript analysis deals to compute the probability distribution of sum of the
two random permutations. More precisely, for fixed A1, x1,y1,...2q,Yq, Ag €
{0,1}", we want to provide a lower bound of the event 7 (x;) ® ma(y;) = A\
for all 4. This is also known as mirror theory and have been studied in several
papers [Pat10,Pat13,DDN+17a,DDNY19,DDNY18]. A desired lower bounds
are known if the equality patterns of z; and y;’s satisfy certain conditions. In
the proofs of [CLM19,MN17], equality pattern of y;’s depend on the values of
m1(x;) for all i. So, clearly, we cannot use the mirror theory based lower bound.
This is the main flaw of the proofs.

7 Concluding Discussion

We have demonstrated a distinguishing attack on EWCDMD. We would like to
note that this attack does not work for EDM, EWCDM and EDMD as we can not
write them as a composition of two non-injective functions. We also demonstrate
a birthday attack on SoKAC21. Our attack also does not work if we mask the
final output by a key (which is another variant of sum of key alternating ciphers).
However, at the same time, we do not know how to prove its beyond birthday
security.



218 M. Nandi

7.1 Some Open Problems

Followings are some of open problems on which cryptography community could
have interest.

1. We would like to note that our attack against EWCDMD is a PRF attack and
it is not easy to extend to a forging attack in a nonce respecting situation.
Thus, proving MAC security would be an interesting research problem.

2. One can consider the following dual variant:

ma(m(v) © Z (m)) & m1 (v). (11)

This is very close to the sum of permutations. However, the presence of # (m)
makes it very difficult to prove (without using Patarin’s claim or conjecture
on the interpolation probability of sum of random permutations). Moreover,
it can not be expressed as a composition function with n-bit outputs. Hence
it is a potential dual candidate of EWCDM.

3. Another possibility is to use three independent random permutations. As
mentioned in [CS16], we can consider

7T3(7T1(V) @71’2(1/) @%’(m))

This will give 2" security in nonce respecting model assuming that the sum
of permutations would give n-bit PRF security. However, we don’t know the
trade-off between the number of allowed repetition of nonce and the security
bound.

4. Proving beyond birthday security (or demonstrating birthday attacks) of
some other variants of SOKAC21 would be an interesting open problem.

Acknowledgment. This work is supported by the project “Study and Analysis of
IoT Security” under Government of India at R. C. Bose Centre for Cryptology and
Security, Indian Statistical Institute, Kolkata.
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Abstract. Linear cryptanalysis is one of the most important tools in
use for the security evaluation of symmetric primitives. Many improve-
ments and refinements have been published since its introduction, and
many applications on different ciphers have been found. Among these
upgrades, Collard et al. proposed in 2007 an acceleration of the key-
recovery part of Algorithm 2 for last-round attacks based on the FFT.

In this paper we present a generalized, matrix-based version of the
previous algorithm which easily allows us to take into consideration an
arbitrary number of key-recovery rounds. We also provide efficient vari-
ants that exploit the key-schedule relations and that can be combined
with multiple linear attacks.

Using our algorithms we provide some new cryptanalysis on
PRESENT, including, to the best of our knowledge, the first attack on
28 rounds.

Keywords: Linear cryptanalysis + FFT - Walsh Transform -
Algorithm 2 - Key-recovery algorithm - PRESENT

1 Introduction

The foundation of the trust we have on symmetric primitives is based on the
amount of cryptanalysis these primitives have received. The distance between
the highest number of rounds that can be attacked and the full version is what
determines the security margin of a cipher. For this quantity to have a mean-
ing, the best reduced-round attacks within each known family of attacks should
be accurately determined. In order to facilitate the application of known crypt-
analysis families to new ciphers, generalizing the corresponding algorithms is
an important task as it allows to: (1) accurately and semi-automatically deter-
mine the security margin, (2) find errors or suboptimal parts from previous
attacks and (3) find new improvement ideas thanks to the clearer understand-
ing of the attack. Several such examples exist, including impossible differential
attacks [13,14], invariant attacks [5], and meet-in-the-middle attacks [15], to cite
a few.

Linear cryptanalysis was introduced by Matsui in 1993 [31], and is one of the
main symmetric cryptanalysis families. These statistical attacks, which in their
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most basic version exploit linear correlations between some bits of the plaintext,
key and ciphertext, have benefited from many improvements and refinements
over the years. For example, the introduction of linear hulls in [36] deepened the
understanding of the underlying principles of linear attacks. There has also been
a progressive development of techniques which exploit several linear approxima-
tions at the same time. In particular, multiple linear attacks were proposed in [7],
and multidimensional attacks in [25,26]. Also important is the construction of
statistical models which effectively predict the parameters of these attacks - in
this respect, we highlight works such as [9,12,21,38].

In [31] Matsui proposed the partial key-recovery attack known as Algorithm 2
in the form of a last round-attack. The time complexity of this algorithm was
greatly improved by the results from Collard et al. [18] using the FFT (Fast
Fourier Transform). Despite the focus of many publications on improved ways of
searching for linear distinguishers and estimating their capacity, little has been
done regarding improvements of the key-recovery part, and the result from [18]
and its application to some last-round multidimensional attacks in [35] are, to
the best of our knowledge, the main known contributions in this direction.

Matsui introduced linear cryptanalysis for an attack on DES [34]. Linear
cryptanalysis is a powerful tool that provides the best known attacks (like [12]
or [24]) on several popular ciphers, such as PRESENT [11], NOEKEON [20],
some variants of Simon [4] and most recently TRIFLE-BC [22].

In particular, the lightweight block cipher PRESENT [11], proposed in 2007
and made an ISO standard in 2012, is a popular cipher that has been the target
of around 30 reduced-round cryptanalysis efforts, and some of the most success-
ful are linear attacks. Out of its 31 total rounds, Ohkuma found a weak-key
linear attack on 24 in [37]. Collard et al. found a statistical saturation attack on
up to 26 rounds in 2009 [17]. Nakahara et al. proposed another 26-round linear
attack in [33], and Cho described a multidimensional attack with a larger suc-
cess probability in 2010 [16]. It wasn’t until 2015 that 27 rounds were reached
by Zheng et al. in [41]. A different 27-round attack was given by Bogdanov et al.
n [12], but no attack on 28 rounds has been proposed.

Motivation of our work. The contrast between the amount of results devoted
to the construction of effective linear distinguishers and the results regarding
the key-recovery algorithms seemed quite surprising to us. In particular, the
nice algorithm provided in [18] considers the simplified version in which only
the final round is inverted and the only key to guess is directly xored to the
ciphertext (though an application for a first and last round key-recovery attack
is also sketched). In [35] a variant for multidimensional attacks with a fixed
input mask is proposed. Many linear attacks and analysis don’t consider this
final round acceleration, for example in [8], or [33]. In [16], the author says
“The computational complezity may be further reduced by applying Fast Fourier
Transform at the cost of the increased memory complexity” without developing
any further. In [27], the authors state “It is not clear if the trick proposed by
Collard, et al. [18] can be used in multiple dimensions”. Of the ones that do, some
only apply it as a black box in the simplified last-round case, like in [3], in [19],
or in [2] where the authors state that “..we note that when the key addition
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layer is composed of XOR, we can optimize the parity evaluations by applying
the algorithm of [18]”. Others assume that the same formulas directly apply
in the multiple-round case [6,23,29,30], and a few mention technical extended
versions of the algorithm in dedicated cryptanalysis, for example [12,41], but a
generalized algorithm for an arbitrary number of rounds in the key-recovery part
has never been described in full.

It seems clear from the existing literature that the correct use of the key-
recovery speed-up is not the norm, and its application is far from trivial. Fur-
thermore, the treatment of the key-schedule relations has not been discussed
either. A generalized FFT-based key-recovery algorithm would allow to build
more efficient linear attacks easily. Taking into account the key-schedule rela-
tions and the scenario of multiple linear cryptanalysis in this algorithm also seem
to be important tasks that should be considered.

Our main results. We have been able to provide an efficient generalized key-
recovery algorithm with an associated time complexity formula. The algorithm
is given in a matricial form (as opposed to the vectorial form of previous descrip-
tions) as we believe it to be easier to understand and facilitate optimization in
some cases, such as multiple linear attacks. When considering a linear attack
with M approximations on a key-alternating cipher using N plaintext-ciphertext
pairs with key-recovery on l.,; bits of the first and last subkey and l;, bits of
the rest, the time complexity with our algorithm is

O (N) + O (Mlggy2testHlin) .

In addition, we propose two methods which efficiently exploit the dependence
relationships between the keybits that need to be guessed. The first reduces the
second term to O (MZZWHW), if some of the bits of the external keys can be
deduced from the internal keys. The second allows to reduce the time complexity
of this part to O (M2lf°t) (where U4 is the strict amount of information bits
about the key which are necessary to deduce all the key-recovery bits) in some
multiple linear attacks.

In our results on PRESENT we consider new multiple linear attacks which
are only possible thanks to our algorithms, the best of which reach 28 rounds
of the cipher for the first time. The expected time complexity was evaluated
using the statistical model from [9]. In order to validate these predictions, we
have implemented reduced-round versions of the attacks and found that the
experimental results closely resemble the theoretical model.

Organization of the paper. Section2 presents the preliminaries and notations
that will be used throughout the paper, as well as the essential ideas of lin-
ear cryptanalysis, the 2007 FFT algorithm and PRESENT. In Sect. 3 we intro-
duce our new generalized and efficient key-recovery algorithm and its variants.
Section 4 describes the application to PRESENT and our new attacks, including
discussions of the design of our linear distinguishers and key-recovery algorithms,
as well as a comparison with previous attacks and the results of our experimental
simulations. The conclusions of this paper are extracted in Sect. 5.
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2 Preliminaries

We now cover some preliminaries and notations needed for the other sections
of the paper. We briefly describe Matsui’s Algorithm 2, which is the basis of
linear key-recovery attacks. We also provide a short description of the ideas
behind linear hulls and multiple linear cryptanalysis, as they are essential to
our attacks on PRESENT. The statistical model that was used to compute the
parameters of these attacks is also summarised. Next, we present the FFT-based
algorithm which allows the speed-up of the key-recovery phase and was proposed
n [18]. Finally we outline the specification of the PRESENT block cipher.

In the following, we will consider a block cipher F of length n and key length
k. Given a plaintext x and a key K, we denote the associated ciphertext by
y = FEx(z) = E(x,K), so that E7'(y, K) = Ex'(y) = x. In particular we
will consider key-alternating ciphers consisting of r rounds, each one being the
composition of a round permutation F' and the bitwise addition of a round
subkey K; which is derived from the master key K with a key schedule. We also
consider that the first round is preceded by the addition of a whitening key K.

2.1 Matsui’s Algorithm 2

Matsui’s last round attack in [31] separates the last round of the cipher, Fx (z) =
(F o Et)(x) ® K, as represented in Fig. 1, and supposes the attacker knows a
correlated linear approximation a -z @ 3 - § @ y(K) of Ef (where - denotes the
dot product). The vectors « and 8 are the input and output masks, while
determines the key mask. The correlation of the approximation is

c(a,B,7) = Prog(a-z@B-F Y Eg(z) @ K,) @v(K) =0) )

—Prog(a-2@pB-F Y (Ex(z)® K,) ®v(K) =1).
Matsui also proved that (under statistical independence assumptions) the
correlation of the addition of several approximations is the product of their

correlations (piling-up lemma). This allows to construct approximations of a
cipher by chaining approximations of each individual round.

K ﬂ Key-Schedule

Koy Koy | Ky

Fig. 1. Attack on last round of a cipher.
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Algorithm 1: Naive Matsui’s Algorithm 2
Input: A set D = {(z,y = Ex(x))} of N plaintext-ciphertext pairs.
Output: A probable guess for k.
T « 0;
forall (z,y) € D do // Compute Ty = #{(z,y) :a-z @ f(y|lx ® k) =0}
for k — 0 to 2/*l — 1 do
| if o 2 ® f(ylx ® k) =0 then T), — T) + 1;
end

end
return argmaz, (|Tx — N/2|); // Find the T} most different to N/2

We suppose that computing 3 - F~!(y @ K,) from y only requires guessing
|k| < |K,| =n bits of K, which are selected by the mask x (so that k = K,|,).
Here x|, will denote the vector of length HW/(x) whose components are the
coordinates of z corresponding to non-zero entries of y, and |z| just denotes
the length of the vector . We can substitute the term associated to the partial
decryption of the last round for a map f : IE"QM — Fy:

fylyoK.l)=8-F ' y®K,) forally € F}, K, € F} (2)

Given a collection D of N plaintext-ciphertext pairs, the partial subkey k
can be retrieved with Matsui’s Algorithm 2, which relies on the assumption that
for any wrong guess of the last round subkey, the linear approximation will have
value 0 with probability 1/2. Matsui proved that the probability of success is
reasonable when N = O (l/c(a, 3, 7)2) pairs are available.

The complexity of the algorithm is N2/*I one-round decryptions and 2!*!
memory registers of up to logN bits to compute the counters T}, with an addi-
tional 27~ ¥l full encryptions if the rest of the key is searched for exhaustively.

In [32], Matsui noted that since the only information required about each
(x,y) pair are the values of -z and yly, it is possible to first count the number
of occurrences of each (o -z, yl|y) in the data (distillation phase) and then
compute the T}, using these counters (analysis phase). With this technique the
attack takes N parity evaluations and 22/*/ one-round decryptions, which reduces
the complexity to O (N) + O (22*) when 2/*| < N, which is often the case.

Algorithm 2 can also be used with an approximation over even less rounds
of the cipher by skipping several rounds at the beginning and/or the end. The
limitation is that the number |k| of involved subkey bits and the time complexity
increase with the number of key-recovery rounds.

2.2 Linear Hulls

The original version of linear cryptanalysis by Matsui assumes that, given an
input mask « and an output mask 3, then there exists at most one key mask
which leads to a biased approximation (in modern language, there is a dominant
linear trail). This is often not the case, and there can exist many different sets
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of round subkey masks (7o, . ..,7;) or linear trails which contribute to the linear
approximation. Furthermore, when this happens, then the probability of success
of Matsui’s Algorithm 2 is dependant on the key K. Nyberg introduced the idea
of the linear hull of an approximation in [36], as well as its linear potential:

ELP(a, ) = Expc(c(a, 0)*) = D e, B, (30, -,7))° 3)

Y0 seees Y

An Algorithm 2 attack using the approximation given by the masks «,
roughly requires N = O (1/ELP(«,3)) plaintext-ciphertext pairs to succeed,
although the specific success probability depends on the key K.

There are several algorithms which permit the estimation of the ELP of a
linear approximation. In our attacks on PRESENT we used the sparse correlation
matrix method in a similar manner to [1].

2.3 Multiple and Multidimensional Linear Attacks

Linear cryptanalysis can also be extended by using more than one linear approx-
imation. The first approach to allow the use of any set of linear approximations
was introduced by Biryukov et al. in [7], and is commonly referred to as multiple
linear cryptanalysis.

We will now describe a multiple version of Matsui’s Algorithm 2. Let v; be M
linear approximations of E' with masks «a;, 3;. We suppose that ;- F~!(y® K.
can be replaced by f;(y|y, @ k) for each approximation. For each guess of k, the
attacker computes the empirical correlations

q, = #{(z.,y) €D ;- x® fi(yly k) =0}
—#{(z,y) ED: ;- zd fi(yly ® k) =1}

which are then aggregated into the multiple linear cryptanalysis statistic

(4)

1 & 2
Qr= 52 (4) (5)
i=1

The guess with the largest associated value of Q)i is probably correct. Under
the assumption that all the linear approximations are statistically independent,
the data complexity is inversely proportional to the capacity C of the set of
approximations. If ¢;(K) is the correlation of the i-th approximation for the key
K, then the capacity for the key K and the overall capacity are defined as

M M
CK) =Y (@(K))?, C=Expy (CK) =Y ELP(aiB)  (6)

Hermelin et al. proposed multidimensional linear cryptanalysis in [25] and
[26]. It uses linear approximations whose input and output masks constitute
linear subspaces of F3, so that the estimation of the probability of success takes
into account the joint distribution of all these approximations and doesn’t require
the assumption of statistical independence.
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2.4 Statistical Models for the Probability of Success

An issue that has also been studied is the probabilistic behaviour of linear
approximations and how it can be used to better estimate the data complex-
ity of a linear attack. In an attack based on Matsui’s Algorithm 2, it is possible
to keep more than one key candidate, which increases the probability of suc-
cess. Selguk introduced the notion of advantage [38] in order to measure the
effectiveness of this type of attack. An attack that ranks the partial key guesses
k according to a statistic Xj achieves an advantage of a bits if the right key
ranks among the best 2/¥1=¢ key candidates. Given a desired advantage a, the
probability of success is the probability that the actual advantage surpasses a.
Supposing that the key-ranking statistic X has the cumulative distribution
function Fr for the right key guess and Fyy for any wrong guess, then the success
probability of the associated statistical attack for a given desired advantage a is

Ps=1—Fg (F'(1-27) (7)

For multiple and multidimensional linear cryptanalysis, Blondeau et al. have
provided estimations of the distributions of the test statistics in [9]. These esti-
mations can also be found in the Appendix C.

Another approach to estimating the probability of success was recently intro-
duced by Bogdanov et al. in [12] with the name multivariate profiling. Its main
advantage is the fact that it allows to use any set of linear approximations
without supposing the statistical independence of the variables. In this case the
estimate for the joint distribution of the correlation of the approximations is
obtained by drawing a large enough sample of random keys, and computing the
individual correlation contribution of each trail (in a large enough set of highly
biased trails) for each of the random keys.

2.5 Last-Round Key-Recovery with FFT/FWT

We now describe the FFT-accelerated version of Algorithm 2 presented in [18],
which applies to the construction from Fig.1 and will be the starting point of
our work in Sect. 3.

There are 2/¥l possibilities for the partial subkey guess, and we recall that x
is the mask which extracts these relevant bits, so k = K, |,. Let f(y|, ® k) =
B-F~1(y® K,) denote the term of the approximation associated to the partial
last round decryption. The attacker wants to compute the vector q € Z2" of
experimental correlations whose entries are

w=#{(z,y) €eD:a- @ f(yly ® k) =0}
—#{(z,y)eD:a-z® f(yly®k) =1}

with the aim of extracting the key candidate(s) with the largest |qx| (as qx =
2T}, — N). Each experimental correlation can be rewritten as a sum

(8)

2lkl_1
a = Z (71)04%@]“(1/‘)(@]@) _ Z (71)1‘(]‘@1@) Z (71)a-$ (9)
(z,y)€D Jj=0 (z,y)eD

Ylx=J
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where j represents the relevant |k| bits of the ciphertext. This suggests that the
attack should begin by computing the integer vector a € 72" with coordinates

aj= Y (—1)*" (10)
(z,y)€D
y‘x:j

This constitutes the distillation phase of the algorithm of [18]. We can also define
the matrix C' € 22" *2"! with entries

ejr, = (=1)7UeW (11)
The vector g = (qo, - - -, goix/_1) can thus be calculated as the product
ql =a’cC (12)

However, the time complexity of constructing C' and computing the matrix-
vector product is still O (22|k|). The product can be computed in a much more
efficient manner by making use of the following result:

Proposition 1. Let f : F§* — Fy be a boolean function. We consider a matriz
of 1s and —1s C € Z*"*2" whose entries are of the form

cij = (=)0 0 <ij<am -1 (13)
This matriz diagonalizes as
2™MC = Hom AHom (14)

where Hom is the Hadamard-Sylvester matrixz of size 2™ whose entries are h;j; =
(=1)"7, and A = diag()), X € Z*" is a diagonal matriz. The eigenvalue vector
A is the matriz-vector product Hom C.1, where C.1 denotes the first column of C.

The matrix-vector product a’C can then be further decomposed into:
2lklqT = a” Hyywidiag(Hoyin) C.1) Hojrl (15)

The decomposition of C justifies Algorithm 2, which reduces computing q to
three products of the form Hy /v, which can in turn be evaluated efficiently with
the Fast Walsh Transform (sometimes called Fast Walsh-Hadamard Transform
or simply FWT or FWHT) with |k|2!/¥l additions/substractions (see the appendix
for more details). We denote by pp the cost of checking a plaintext-ciphertext
pair in the distillation phase, by ps the cost of evaluating f(j), by pa, pm, pc
the cost of adding, multiplying and comparing two n-bit integers, by pg the cost
of one encryption and by a the advantage of the attack.

Proposition 2. The previous algorithm has time complexity

po N +3palk2* + (pp + par + pe)2 + pp2e (16)
distillation analysis phase search
phase phase

The memory requirement is 2 - 21 - (n + |k|) bits.
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Algorithm 2: The algorithm of [18] (without the final phase)

Input: A collection D = {(z,y = Ex(z))} of N plaintext-ciphertext pairs
(possibly on-the-fly).
Output: The experimental correlations gr (multiplied by 2"“‘).
// DISTILLATION PHASE
a«— 0;
forall (z,y) € D do
‘ if -2 =0 then Ay, < Ay, + 1 else Ay, < Ayl — 1;

end

// ANALYSIS PHASE

for j <+ 0 to 2¥l —1 do X — f(7); // First column of C
A —FWT(A); // Eigenvalues of C
a«— FWT(a); // Apply the FWT to a
for j — 0 to 2kl _ 1 do aj < aj - Aj; // Multiply a by A
q < FWT(a); // Apply the FWT to a
return g;

2.6 The Lightweight Block Cipher PRESENT

PRESENT is a key-alternating block cipher which takes a 64-bit plaintext z =
Zg3 ... 2o and an 80-bit (or 128-bit) key K = krg ... ko (or K = K1a7...Kg) and
returns a 64-bit ciphertext ¥y = yg3 - . . yo- The encryption is performed by itera-
tively applying a round transformation to the state b = bgz ... by = wys]| - . . [Jwo,
where each of the w; represents a 4-bit nibble, w; = b4;+3b4i42045+1b4;.

Both variants of PRESENT consist of 31 rounds, plus the addition of a
whitening key at the output. Each round is the composition of three transfor-
mations:

— addRoundKey: Given the round key K; = rj5 ...k}, 0 <i < 31 and the
state b, the round key is XORed bitwise to the state.

— sBoxLayer: A fixed 4-bit S-box S : F3 — [F3 is applied to each nibble w; of
the state. The S-box S is given as a lookup table (in hexadecimal notation):

£ (01234567 89 ABCDEF
S(x) C'5 6 B9 0ADS3EF 8 47 1|2

— pLayer: A fixed bitwise permutation P is applied to the state b.

P:{0,...63} — {0,...,63}
j#63 — 16j mod 63 (17)
63 +— 63

Key-schedule. Tt is the only difference between the 80 and the 128-bit variants,
both algorithms can be found in Appendix A.
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K { Key-Schedule

-/

Fig. 2. The general description of the cipher.

3 Efficient Key-Recovery for Algorithm 2

In this section we will present our generalized efficient key-recovery algorithm
inspired from the one in [18], described in Sect. 2.5.

We were surprised to see that after the publication of [18], many new linear
attack publications did not use the algorithm to speed up the key-recovery part
(see for instance [8,16,33]), or they just used it without getting into the details
as a black box (see [2,3]). A few publications implicitly used extensions of the
technique, such as [12,41], always in the context of a dedicated attack.

Here we propose a generalized version of the algorithm for an arbitrary num-
ber of rounds which encompasses these contributions and permits a finer analysis
of the time complexity. We also propose two variants of the algorithm which effi-
ciently exploit the key-schedule relations between keybits as well as the multiple
approximation setting, which are interesting scenarios requiring consideration.

We believe that the new algorithm and its variants will simplify the evaluation
of the time complexity of an attack given a suitable linear distinguisher, which
would in turn help designers assess the security margin of a block cipher.

3.1 The Extended Algorithm

Consider a block cipher E of block size n and key size k which can be decomposed
as in Fig. 2. The ciphers F7 and Fs represent the first and last few rounds. They
take some inner keys K7 and K. The first and last round will be the outer keys
Ky and K3. We suppose that the inner cipher Fj; has a linear approximation

v: a-2dp-4.

As before, we assume that the values of a - Ey(x @ Ko, K1) (resp. 8- Egl(y@
K3, K>)) can be obtained from a part of x (resp. y) by guessing some bits of the
keys Ko and K (resp. K3 and K3). We will denote the necessary part of the
plaintext by ¢ (resp. ciphertext, j), while the guessed parts of the subkeys will
be denoted by ko, k1 (resp. ks, k2). We can consider masks xo, X1, X2, X3, S0 that

i = 2|y, ko= Kolye, k1= Kilxy, k2 = Kaly,, = ylys, k3 = Ksly; (18)
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Let f1 : F2™' < F2™' — Fy and fo : F2"™*' x F2""*' — F, be maps for which
f1 (x‘XO@KMXo?Kl‘Xl) ZO[~E1 (.’,U@K(),Kl) for all Z‘,KQ,Kl (19)
f2 (y‘XS @K3|X37K2‘X2) :6E2_1 (Q@K&KQ) for all yaK37K2 (20)

The attacker has a set D of N pairs (z,y = E(z, K)) for some fixed key K.

They need to compute, for each possible guess of the subkeys:
q(ko, k1, k2, k3) = #{(z,y) €D : f1(i @ ko, k1) © f2(j © k3, k2) = 0}
—#{(z,y) €D f1(i ® ko, k1) D fo(j © k3, k2) = 1}

The attack begins with the distillation phase, in which a matrix A €
72lkol xalkal

(21)

is constructed from the data. Its entries are

aij = #{(z,y) €Dzl =1, Ylys =4} (22)
We can rewrite the experimental correlation for any key guess as the sum

olkol _q1 olkal _1
(ko,kl,k‘z,k?, Z Z fl(ZGBko,kl)( )f2(j@k37k2) (23)

Let us now consider that the values of k1 and ko are fixed. The associated
. . . ki k olkol yolk3l . .
experimental correlations form a matrix Q%2 € Z with entries

qllz; ’/]Z = Q(k(), kla k27 kS) (24)

We can see that QF*2 = BF ACF2 where B* € z2'rolx2™ol anq oke €

72" XQUCS‘, and the elements of these matrices are defined as

bk

koZ

— (_1)f1(i69k07k1)’ C‘];?k‘g — (_1)f2(j69k3,k2) (25)

The matrices B*', C*> adhere to the structure described in Proposition 1, and
the Fast Walsh Transform can be used to multiply vector by them.

olkol Bkv — 1. diag (,\ )Hz\ko\, where A¥ = H,ju, B (26)
2lkslcks = H,\, diag ()\ )sz, where M52 = Hyju, CF2 (27)

The matrices Q*'*2 can therefore be calculated as
olkol+ ksl ks — Hojio diag (A’fl) Hoyro AHo iy diag ()\SQ) Hyrg) (28)

As a result, the attack can be performed efficiently using Algorithm 3 as follows:

1. Distillation phase: Construct the matrix A by looking at each plaintext-
ciphertext pair (z,y), finding the associated values of i = z|,, and j = y|y,
and incrementing the corresponding a;; by one.
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Algorithm 3: General FFT algorithm (without the final phase)
Input: A collection D = {(z,y = Ex(x))} of N plaintext-ciphertext pairs.
Output: The experimental correlations Ql,:él,:i
// DISTILLATION PHASE
A—0;
forall (z,y) € D do Qg ylxg < Qalygrvlxg T 15
// ANALYSIS PHASE

for i — 0 to 2% — 1 do A; «— FWT(A;.); // FWT on rows
for j — 0 to 23 —1do A; — FWT(A,); // FWT on columns
for ki — 0 to 2/¥11 — 1; 4 — 0 to 2/%l — 1 do (A1), — f1(i, k1); // BR
for ky — 0 to 2/%2l —1; j — 0 to 23l —1 do (AF2); — fa(j, ko); /] Ck2
for ki — 0 to 2/¥1/ — 1 do A¥* — FWT(AF1); // Compute AM
for k2 < 0 to 221 — 1 do A5> — FWT(AS2); // Compute A5
for k1 « 0 to 2kl — 1; k2 < 0 to 2lk2l _ 1 do // Compute Q’;ézz

for ko — 0 to 2/F0l —1; kg «— 0 to 2/*3l — 1 do
QRN = Argra - (T ko - (Ao
for ko 0 to 201 1 do Q)1 — FWT(Q[1*?);
for k3 — 0 to 2%/ — 1 do QL2 — FWT(Q"L");
end
return {le’l@}kl’kz;

2. Analysis phase: Compute all the experimental correlations q(ko, k1, k2, k3):
(a) Apply the FWT on all rows and columns of A to obtain a matrix A.
(b) Construct the eigenvalue vectors /\’f1 and A§2 for all k1, ko by calculating
the first column of B** or C*2 and then applying the FWT.
(c) Compute Q*-*2 for all the values of ki and ko:
i. Copy A and multiply each column by )\’fl and each row by A
mentwise.
ii. Apply the FWT on all the rows and columns to obtain Q*1-*2.
(d) Select the subkey guesses with the largest values of |q(ko, k1, k2, k3)|.
3. Search phase.

ko
5° ele-

The time complexity of the distillation phase is pp IV binary operations, where
pp is the cost of checking one pair. The distilled data occupies 2/%0l*1%s| memory
registers of up to n bits. The cost of applying the initial FWTs of step 2(a) is
pa ([ko| + |ks|) 2%l 1ksl (4 /pas is the cost of addition/multiplication) with no
additional memory. The eigenvalue vectors can be precomputed with cost

pr 2ol o ollel bl (gl il [fglaballial)  (29)

where py, and py, are the costs of evaluating f1 and fo. These vectors are stored
in 2kl 1kl 4 olkalt+lks| yegisters of max{|ko|, |ks|} bits. The cost of step 2(c) is

2ppr2FoltklHk R |y (|ko| + |k3)) olkol+|k1|+ka|+[ks] (30)
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This computation requires 2/%0/+%s| working registers of up to n4-|ko| + |ks| bits.
If the experimental correlations need to be stored in full (for example if the FFT
algorithm is used as a part of a multiple linear attack), then 2Fol+lkul+[k2+[ks|
memory registers of n bits are required (we can divide by 2|k0|+|’“3|).

It’s interesting to compare the computational costs pp, pyr,, ps., pa and pas
with the cost of a block cipher encryption pg. In general, pp, p¢, and p¢, should
be negligible, as they are much simpler operations. For most cases p4 and pys
should be comparable to or smaller to the cost of an encryption, though this
depends on the implementations of the cipher and the operations.

The adaptability of this algorithm to multiple and multidimensional linear
attacks should also be considered. The distillation phase only needs to be per-
formed once, which means our approach generalises the results of [35]. If there
is no structure to the set of approximations, then the time cost of the analysis
phase is multiplied by the number of approximations M. Additionally, the cost
of computing the statistic (), from the correlations of each approximation is

M(par + pA)2|k0\+|k1\+|kzl+|k3| (31)

If there are several approximations which share the same input mask « but differ
in their output masks (or the other way around), then it is possible to reuse some
partial results such as B’“A\, which only need to be computed once. This can
lead to a further reduction in time complexity.

3.2 Exploiting the Key Schedule of the Cipher

So far, we have assumed that the attacker must guess kg, k1, k2 and k3 indepen-
dently. However, the key schedule of a cipher often induces dependence relation-
ships between these four subkeys. These relationships can be easily exploited in
the implementation of Matsui’s Algorithm 2 without FFT, but it is not obvious
how they can be used in accelerated attacks. We will now consider two strategies.

Walsh Transform Pruning

The first approach consists of applying the FWT algorithm but only comput-
ing the outputs which correspond to possible values of the subkeys, as suggested
in [41]. To this end, we have studied pruned Walsh Transform algorithms, which
efficiently compute a subset of outputs of the classical “full” transform. We have
found a particularly useful pruned algorithm, which is detailed in Appendix B:

Proposition 3. The components of the Walsh Transform of a vector of length
2™ which have n fized bits in their position can be computed with complexity

2™ 4+ (m—n—1)2m"" (32)

We have designed a modified analysis phase which considers the bits of kg
which can be deduced from (ki,ks) and the bits of k3 which can be deduced
from (ko, k1, k2). The roles of ko and ks can be easily exchanged if necessary.
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1. Compute Hyry AHoks as normal.

2. Only compute the products diag(A¥)Hyr, AHyr, diag(A52) for the values of
(K1, k2) which are possible according to the key schedule.

3. For each pair (k1,k2), consider only the possible values of kg and prune the
associated (column) Walsh Transforms accordingly.

4. For each of the rows of the resulting matrix, consider the possible values of
ks and prune the associated Walsh Transform to these positions.

If (k1,k2) can only take olkil+lk2[=l2 Jifferent values, Iy bits of ko can be
deduced from (k1, ko) and I3 bits of k3 can be deduced from (kg, k1, ko) then the
complexity of the “pruned” analysis phase is

pa(lko| + |]€3|)2V€0|+\k3\ + 2pM2|k0\+|k1\+|k2\+|k3\*l12
4 pa2lkrl+kel ks |~z (2%0\ + (Kol — lo — 1)2\’90\*10) (33)
+ pAQ\ko\—lo+\k1|+\k2|—llz (Q\kal + (k3| — I — 1)2|k3|—13)

As lp and [3 increase with respect to |kg| and |ks|, the complexity approaches

pa(lko| + |ks])2FolH ksl o (pry + p o) 2F0lH Rl F IRz |+ ks =z (34)

This variant of the attack algorithm requires 2/%0/+1ksl memory registers to hold
the counters from the distillation phase, 2/Fol+lk1l 4 olk2l+lks| registers for the
eigenvalue vectors and 2lkol+lkil+1ka|+ks|=li2—lo—ls regigters to hold the experi-
mental correlations, if they need to be stored in full.

Since applying Walsh Transform on all the rows and columns of a matrix is
equivalent to performing the Walsh Transform on a vectorization of the matrix,
it should be possible to prune this unique transform to the possible values of
(ko, k3) associated to the current (ki,ks). In particular, it would be interesting
to consider more complex relationships between these bits.

Multiple Linear Cryptanalysis

The previous approach has limited results if 2/¥ol+1%sl is already too large. In
the case of multiple linear cryptanalysis, it is possible to reduce the complexity
further by performing the algorithm separately for each linear approximation
and then combining the information to obtain @y, as done in [41] and [12].

Let v; :a;- 2@ 6 -9, i =1,...,M be a linear approximations of the inner
cipher Ej;. Multiple linear cryptanalysis requires the attacker to compute

M
1 _
Q(ko, k1, k2, k3) = N ; (¢*(ko, k1, ko, k3))2 (35)

In order to calculate one particular q' some subkey bits might be unneces-
sary: some part of the subkey might be necessary for one approximation but
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not for a different one. Let us suppose that q'(ko, k1, ko, k3) can be calculated
as q'(ky, ki, k3, k) (where k§ = koly; is a part of ko, and so on), and that
(ko, k1, ko, k3) can be deduced from a part kr of the master key K. We will also
suppose that the sets of masks (x&,x4) and (x&, x%, x4, x%) take M; and Mo
different values over the set of M approximations, respectively. In this situation,

the attacker can perform the following modified attack:

1. In the distillation phase, construct M; tables: for each plaintext-ciphertext
mask pair (Xo, X3), the table A x, x,) of size 2HW(x0) x 9HW (x3)

2. For each approximation v;, compute a table of length 2/kol+IFil+kal+lksl con-
taining all the possible values of ¢*(kj, k%, k%, k%) by using the FFT algorithm
on the appropriate table from the distillation phase, A(Xé )

3. Merge the M tables from the previous step into My “condensed” tables
by adding the square correlations of approximations corresponding to the
same choice of subkey bits, that is, one table for each possible value of
(Xo, X1, X2, X3). The associated condensed table contains the coefficients:

S (kR KY) forall (kj ki K5 R5) (36)
(X6 X3 X5:X3)
=(X0,X1,X2,X3)
4. For each possible guess of the partial master key kr, use the key schedule
to compute the associated values of ki, k%, ki, ki. Use the tables from the
previous step to compute Q(ko, k1, ka2, k3).

Note that the individual calls to the FFT linear cryptanalysis algorithm can
also be pruned in order to combine both key schedule exploitation approaches,
and that steps 2 and 3 can be mixed in order to reduce the memory requirement.

The cost of the distillation phase is now MippN. If pxs denotes the cost of
computing (ko, k1, k2, k3) from kr, then the cost of the analysis phase is

3 (gpMQ\%H\k;mk;\+\k;\ + pa(lki] + ki) (2\k6\+\ki\+lké\+lké\ + 2|ks\+|k;\))
i=1

+3 (pMQ|ka|+|k1|+|k;|+|k;| n pA2|k5\+lki\+lk;\+lké\> + (Mapa + pres)2r!

i=1
(37)
The algorithm requires Z(Xo,Xg) QHW(Xo)+HW(X3) memory positions for

the distillation counters and 3 v, v, v, x) QHW (Xo)+HW (X1)+HW (X5)+HW (Xs5)

positions for the My condensed correlation tables.

This algorithm can produce large gains in the case of multiple linear crypt-
analysis (especially when the |k?| are significantly smaller than the |k.|), but its
success is more limited in multidimensional attacks, as there is always a linear
approximation for which the |k?| are maximal.
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Example implementation. We have implemented our key-recovery algorithm on
a toy version of PRESENT with the aim of illustrating how all these different
techniques can be used. The C code can be found at:

https://project.inria.fr/quasymodo/results/codes/.

4 Application to PRESENT

In order to showcase the potential of our key-recovery techniques, in this section
we describe some new attacks on reduced-round variants of the block cipher
PRESENT, which surpass the best previously known attacks (that were also
linear), specifically [12,16,41]. Our results include new attacks on 26 and 27-
round PRESENT which improve the parameters of the aforementioned attacks,
as well as (to the best of our knowledge) the first attacks on 28-round PRESENT.

4.1 Linear Distinguishers for PRESENT

Previous linear attacks on PRESENT [12,16,33,37,41] have used the fact that
the S-box has eight linear approximations with correlation 273 and whose input
and output masks have Hamming weight 1. These approximations lead to many
linear trails with one active S-box in each round, which form linear hulls with
high potential and masks of weight 1. Our attacks make use of three different
sets of approximations with masks of weight 1 or 2, which were found as follows.

We begin by computing the correlation of all approximations of one round of
PRESENT which: (1) only have up to two active S-boxes and (2) only require
up to two active S-boxes in the previous and the next rounds. There are 2800
input and output masks which verify these bounds on the number of active
S-boxes, so a 2800 x 2800 correlation matrix was constructed. Then, the element-
wise square of this matrix can be elevated to the number of rounds r to obtain
an approximation of the ELP of all the linear approximations whose input and
output masks are in this family. A similar approach is detailed in [1].

The analysis of the resulting matrices showed that the linear approxima-
tions of PRESENT with the largest ELP only have one active S-box in the first
and the last rounds. Table 1 contains a classification (according to the ELP) of
approximations with one active S-box in the first and the last round, and masks
of Hamming weight 1 or 2. From these approximations, we have selected three
different sets as linear distinguishers, considering both their linear capacity as
well as the number of keybits involved in a two-round key-recovery.

Set I, with 128 approximations, has the lowest capacity, but only uses masks
of Hamming weight 1 and has a cheaper key-recovery than the others. Set III has
448 approximations and the largest capacity but requires guessing a lot of bits in
the key-recovery, as it has approximations with both masks of Hamming weight
2. Set IT is an intermediate where masks of Hamming weight 2 are only used in
the input. The capacity for these three sets can be found in Table2. We have
also estimated the advantage that is obtained by these sets of approximations
using the statistical model that can be found in [9] and Appendix C.
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Table 1. An empirical classification of linear approximations of PRESENT with input
and output masks of Hamming weight 1 or 2 according to their ELP. Indicated are the
active S-box of the first and last rounds, as well as the input and output masks of said
S-boxes. Our three sets of approximations are indicated as I:*, IT:o and III:7.

Input Input Output Output ELP ELP ELP
Group Mask S-Box Mask S-Box Qty.r=22r=23r=24
A AL sleholiol 2lslsTof sl 7l sl 15l 64 27700 27T 97T
B ci 50,60,05,100 28,85, 3t 9t 51,70 180,150 64 27004 27630 9-656
C1 Al 55,60,91,100  2f, 8], 3" of 65,9,11,14% 64
Cc2 A 5,6,9,10 4,5 5,7,13,15 32 27606 9=63.2 9=65.8
c3 Al 7f,11% 138,145 2f 8%,3F of 5578 135,150 64
D *2f*af 3,5*50 *65,*0f * 108 *2f 8%, 3t of *5i * 71 - 13! * 15] 256 27008 9634 9-66.0
E1l ct 55,60,00 100 2i 8! 3t of 60,9,11,148 64
E2 C 5,6,9,10 4,5 5,7,13,15 32 2761 9=63.7 9—66.3
E3 cl 7h,11t 138,148 28 8%,3F of 55, 71,130, 150 64
F1 A 5,6,9,10 2,8,3,9 10 16
F2 A 5,6,9,10 4,5 6,9,11,14 32
F3 A 5,6,9,10 6,C 5,7,13,15 32 =613 9—63.9 9—66.5
F4 A, 7,11,130, 140 20,80,3,9 60,9,11, 140 64
F5 A 7,11,13,14 4,5 5,7,13,15 32
F6 A 15 2,8,3,9 5,7,13,15 16
Gl 2,,"40,3,550,"60,"90," 106 *25,%85,3,9  *60,9,11,*14, 256
G2 2,4,3,5 5,6,9,10 4,5 5,7,13,15 128 615 5641 5-66.7
G3 85,9 50,60,9,100  20,80,3,9  Bo,70,130,15, 64

G4 "2,,"40,3,5 T7,11,13,," 146 726, 80,3,9 "50," 75," 13,," 15, 256

Table 2. The capacities of our three sets of approximations.

# Approx. Capacity (r = 22) Capacity (r = 23) Capacity (r = 24)

I(*) 128 27> 95671 5—59.3T
II (o) 296 9—52.60 9—55.20 o—57.80
IIT (1) 448 9—51.78 9—54.38 9—56.98

These approximations are not statistically independent (as they are not even
linearly independent). One possible solution would be the application of mul-
tidimensional linear cryptanalysis. However, this would consider all the linear
combinations of the approximations, and the benefits of the masks of low Ham-
ming weight would be lost. Instead, we use the multiple linear cryptanalysis
statistic, and we have estimated the probability of success under the assump-
tion that the approximations are statistically independent. In order to justify
the validity of the resulting estimations, we provide experimental results which
conform to the theoretical predictions for a reduced number of rounds. Another
possible approach would be the multivariate profiling technique of [12].
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Fig. 3. Advantage obtained by each of our sets of approximations for 22, 23 and 24
rounds of PRESENT with 0.95 probability in a distinct known plaintext scenario.
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Fig. 4. Experimental advantage for attacks on 10 (resp. 12) rounds of PRESENT
(using the linear distinguishers over 6 (resp. 8) rounds, with key-recovery on the first
two and last two rounds). The statistic Qi of the right key was compared against a
random sample of 2'2 (resp. 2'°) keys. The position of the right-key statistic among
these provides an estimation of the advantage of up to 12 (resp. 10) bits. This was
repeated for 20 different random right keys and 20 different random data samples for
each value of N, providing a sample of 400 values of the advantage. The 5th percentile
was used as an estimation of the advantage that’s achieved with probability 0.95.

Figures 3 and 4 contain our advantage predictions for the 22, 23 and 24 round
distinguishers as well as experiments for 6 and 8 rounds.

4.2 Improved Key-Recovery Attacks on 26 and 27-Round
PRESENT

The first attack on PRESENT that we propose is based on set I of linear approxi-
mations. Since this set is only effective on up to 23 internal rounds and the attack
will perform a key-recovery on the first two and last two rounds, the attack is
effective on up to 27 rounds. In order to describe of these attacks more easily,
we make use of the following properties of the bit permutation:
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Fig. 5. The four groups of bits for the key-recovery on the first and last rounds.

Proposition 4 (Key-recovery on PRESENT). Let & be the state at the begin-
ning of the second round of PRESENT. Given two fized values of i,j between
0 and 3, the fOUT bits i’48+4i+j7i’32+4i+j7i'16+4i+j and j:4i+j can be obtained
from the 16 bits of the plaintext T16j+15 ... %165, as well as the 16 bits of the
first round subkey n?6j+15 . ..n?(jj and the 4 bits of the second round subkey
1 1 1 1

K16i+4j+316i+4j+2816i+45+1F16i+45

Let § be the state before the application of sBoxLayer in the (r — 1)-th round
of PRESENT. Given two fized values of i,j between 0 and 3, the four bits
UP(16j+12+i)s YP(16j+8+4)> YP(16j+4+i) and Yp(16j+i) can be oblained from the 16
bits of the ciphertext Yeo+i, Ys56+is - - - » Yatir Yi, aS well as the 16 bits of the last

round subkey Ko, /-156“, .. Hzﬂ, ki and the 4 bits of the previous round sub-
-1

key “48+4z+] ”32i4z+g ”16+4z+] "54z+]

With the help of the previous proposition, we can mount key-recovery attacks
on up to 27-round PRESENT-80 by extending approximation set I with two
rounds of key-recovery at both the top and bottom of the cipher using our
multiple linear cryptanalysis key-recovery algorithm. The parameters of the time
complexity formula can be computed using Proposition 4, and the details on the
key schedule for 26 and 27 rounds can be found in Figs.6 and 7. In particular

My =4, My =16, |ko| = |ks| =32, [k1| = [ko| = 12
|ki| = ki = 16, |ki| = |kb| = 4 for all i (38)
|kr| = 61 for 26 rounds, |kr| = 68 for 27 rounds

A simple lower bound on the cost of a PRESENT encryption pg is 2 - 64 -
r + 64 binary operations (since each round requires at the very least adding the
round subkey and writing each output bit for sBoxLayer). For 26 rounds, this
is 3392 binary operations. On the other hand, pa ~ 128, pa; ~ 3 - 641°82(3) ~
2143. This means that the time complexity of the analysis phase should be
lower than 295 full encryptions for 26 rounds and 272 full encryptions for 27
rounds. The search phase time complexity depends on the available data and can
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Fig. 6. Key-recovery on 26-round PRESENT-80 using approximation set I. The key-
schedule effect is also represented in the figure. In total there are 96 bits of the subkeys
which need to be guessed, which have been indicated by a cross. However, they can all
be deduced from the |kr| = 61 bits of key which have been highlighted in (dark) red.
From these bits of key, all the bits in (light) green can be extracted, which includes all
the necessary bits for the attack. (Color figure online)
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Fig. 7. Key-recovery on 27-round PRESENT-80 using approximation set I.

be estimated thanks to the graphs in Fig.3. The complexities of both attacks
are given in Table 3. These attacks can be easily extended to the 128-bit key
variant.

4.3 Key-Recovery Attacks on 28-Round PRESENT

Sets II and IIT can be extended by two rounds of key-recovery at both sides to
construct attacks on up to 28-round PRESENT. As set I1I has a larger capacity
but requires an expensive key-recovery, we found that set II is best suited to
attack PRESENT-80 and set III gives better results on PRESENT-128.

The parameters for an attack using approximation set II on PRESENT-80,
with the key-schedule analysis represented in Fig. 8 are:

M, =8, My =32, |ko| =48, |k1| =24, |ko| = 16, |ks| = 32
k| <32, |Ki| <8, |kb| =4, |ki| =16 for all i, |kr| =

This attack requires use of the Pruned Walsh Transform. There are 160
approximations for which the input and output masks have weight 1. For each of
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Fig. 9. Key-recovery on 28-round PRESENT-128 using approximation set III.

these approximations, computing the 24° experimental correlations has cost (16+
16) - 216+4+4416 — 945 gherations. For the remaining approximations, the cost
should be (32 + 16)2328+4+16 — 26558 However, all these approximations have
an input S-box mask A or C. A look at the key-recovery diagrams shows that
at least 5 bits of k) can be deduced from ki. By pruning the Walsh Transforms
corresponding to the matrices B*', the cost is reduced from 237 to 2329 each. It
also means that the memory requirement for each approximation is reduced by
a factor of 2°. After this first pruning, the transforms associated with the last
two rounds (or the matrices C*2) can be pruned by fixing the bits of k3 which
can be deduced from kg and k1, reducing the complexity of each transform to
216 This allows to keep the time complexity of the analysis phase below 277 full
PRESENT encryptions, and reduces the memory cost to 2°! registers.

For an attack using approximation set III on PRESENT-128, with the key-
recovery part represented in Fig. 9 we have:

My =16, My =96, |ko| =48, |k1| = 36, |ko| =36, |ks| =48

) ) ) ) 40
K< 32, Kl <8 K<, K <82 forall, kel =114

This means that the time complexity of the analysis phase of the attack should
be smaller than 2'2!. The memory is mainly devoted to the condensed corre-
lation tables corresponding to the largest value of |kj| + |ki| + |k&| + |k%|, that
is, for approximations which require 80 bits of subkey to be guessed. Since the
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correlation of these approximations can be condensed into 18 tables, we con-
clude that the memory cost is 18 - 289 ~ 2846 memory registers of 80 bits. The
complexities of these attacks can be found in Table 3.

For the table we have considered that the full codebook is available, but it is
possible to consider different trade-offs between the available data and the time
complexity of the exhaustive search. For instance, in the case of PRESENT-128,
if N = 2635 distinct plaintext-ciphertext pairs are available, the advantage is
2.8 bits. This translates into an attack with 21252 time complexity.

5 Conclusion

New general and efficient key-recovery algorithm. First and foremost, we have
provided an efficient generalized key-recovery algorithm which applies to any
number of rounds of a key-alternating cipher. We have also proposed two variants
of this algorithm which allow to take key-schedule dependencies into account.

The new algorithm is not only capable of accelerating existing attacks, it
is also sometimes possible to use more effective linear distinguishers than with
previous algorithms. In the case of PRESENT, we chose approximations fitted
to exploit the position of the key-recovery bits.

We expect that, in the future, this algorithm will not only represent a new
cryptanalysis tool, but will also allow to easily and accurately evaluate the secu-
rity margin of new primitives with respect to linear attacks.

Table 3. Comparison of linear attacks on PRESENT. DKP: Distinct known plaintexts.

® Oob@ & &60
S o 9 O é& o@ 2 o
PO S o F & & F $
o 2 .
X & X X SN & > <
80 2 2295 (MD) 2~ 5038 9810 Kp 270 2320 95 [16]
80 2 2295 (MD) 27°%-38 2638 Kp 9720 9320 51 [9,16] {
26 80 4 135 27P5AT 9830 Kp  968:6 9180 (.95 [12] *
80 4 128 27541l 96L1 Kp 9682 9440 (95 Set I
80 4 128 275411 9608 Kp 9718 440 (95 Set I
80 4 405 (MD) 275933 2040 Kp 9740 9670 g5 [41] §
27 80 4 135 2758.06 9638 DK 2773 2480 (.95 [12] *
80 4 128 27°6.TL 9634 DKP 2720 2410 (.95 Set I
28 80 4 296 275780 9640 DK 2774 2510 (.95 Set 1T
128 4 448 2756:98 9640 DKp 2122 2846 (95 Set 111

1: [9] reevaluated the success probability of [16] with a more recent statistical model.
1: [41] effectively uses one fourth of the data, as well as an older statistical model.

*: The capacities differ from those of [12] (27°%-°' and 275538 for 26 and 27 rounds)
due to the different methods for its estimation. Furthermore, here we consider just the
signal component, while [12] also includes noise (second term in Eq. 46).



Improving Key-Recovery in Linear Attacks 243

Best attacks on PRESENT. Thanks to our algorithms, we have been able to
provide the best known attacks on reduced round PRESENT, which in particular
reach 28 rounds, while the best previous ones only reached up to 27. We believe
it would be very hard to extend this attack further without any new ideas, and
PRESENT still seems secure with 3 (instead of 4) rounds of security margin.

Open problems

— It would be interesting to implement semi-automatic tools to find the key-
recovery complexity for a given set of approximations. Or, even further, one
which finds an optimal set of approximations in terms of linear capacity and
cost of key-recovery. The first seems feasible, but the second seems harder. It
would be very interesting to find some results in this direction.

— Better linear attacks on other primitives, like NOEKEON, TRIFLE-BC,
Simon,...

— Future applications to other cryptanalysis families: in [10] an equivalent to
the algorithm from [18] was applied to zero-correlation attacks, and in [39]
the same was done regarding integral attacks. It might be possible to extend
and generalize these algorithms as we did with linear key-recovery.

Acknowledgements. This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 714294 - acronym QUASYModo).

A Key-Schedule of PRESENT

Algorithm 4: Key-schedule of PRESENT-80

Input: A master key K of 80 bits, a number of rounds r.
Output: r 4+ 1 round subkeys K; of 64 bits.

Iigg . n8 —— K79 ...K16; // Extract first round subkey
for i — 1 to r do
K79 ...KQ «— K18 ... K19 // Rotate 19 bits to the right
Krokrskrrtine «— S(Krokrskrrh76); // S on leftmost nibble
Kigk18k17R16K15 «— K19k18k17K16K15 D 1; // Add round counter
Kbs ... Kb «— K79 ... K16; // Extract round subkey
end

return {K;}._;
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Algorithm 5: Key-schedule of PRESENT-128

Input: A master key K of 128 bits, a number of rounds r.
Output: r + 1 round subkeys K; of 64 bits.

K3 ... KQ «— K127 ... Kea; // Extract the first round subkey
for i — 1 to r do
K127 ... Ko <— K66 - - - K673 // Rotate 61 bits to the left
Ki27K126K125K124 «— S(K127K126K125K124);
Ki123k122K121K120 +— S(K123K122K121K120); // S on 2 nibbles
Ke6K65K64K63K62 «—— K66K65K64K63K62 D 1) // Add round counter
Kbs .. KY —— K127 ... Ked; // Extract i-th round subkey
end

return {K;}|_;

B The (Pruned) Fast Walsh Transform

This appendix discusses the Fast Walsh Transform and how its pruned version
can be computed efficiently in some cases. Other results on the Walsh-Hadamard
matrices are covered by [40], while our pruning approach to the Walsh Transform
is inspired by the treatment of the Fast Fourier Transform that was done in [28].

Definition 1. The recursively-defined matrices

11 m.om
H=), H= <1 —1) Mo = <(_1)”)o<ij<2m = Hy ® Hynr €277

(41)
(where - denotes the inner product of binary vectors) are called Hadamard-
Sylvester matrices. Given a vector & € 72", we define its Walsh or Walsh-
Hadamard Transform as the product W(x) = Hom x:

om _q

W(a); = Y (~1)"a; (42)

J=0

If the absolute values of the coordinates of  are bound by the constant M,
then the coordinates of its Walsh Transform are bound by 2™ M.
The Walsh Transform of a vector can be computed efficiently using the result:

Proposition 5. Given any w € S,,, the matriz Hom can be decomposed as:

Hom = H (Igm-n+1 @ Hy ® IQW(k)) (43)
k=1
Proof. This matrix equality is derived from the mixed product property:

m m

m
Hom = ®H2 = ® (I;niﬂ(k)+1HQI;(k)) = H (Igm-n+1 @ Hy ® Tgn(x))
k=1 k=1 k=1
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Fig. 10. Two different ways of computing the Pruned Walsh Transform of size 2* = 16
when the leftmost bit of the output coordinates is set to zero and the second rightmost
bit is set to one. The algorithm on the left requires 36 integer operations while the one
on the right only requires 20.

The product of a vector by the matrix HY, = Iym-ri1 ® Ho @ Iy can be
computed with 2™ operations. This is represented graphically by 2! “butter-
flies” (a denomination is borrowed from the literature on the FFT) which apply
the matrix Hy on pairs of coordinates.

The Walsh Transform of any vector is thus computable with m2™ addi-
tions/substractions. Since we can choose any permutation of the indices k, there
are m! different ways of doing this. There are two examples in Fig. 10.

A pruned Fast Walsh Transform is any algorithm which aims to efficiently
compute a subset of coordinates of W(x). Here we will consider the strict case
in which n binary digits of the output indices are fixed. An approach to pruning
the Fast Walsh Transform is working back from the desired outputs and only
performing the operations which are strictly necessary. Since the number of
required operations depends on the ordering of the matrices of the transform,
we want to know which is the optimal ordering.

Proposition 6. The Pruned Walsh Transform of a vector of length 2™ with n
fixed output index bits can be computed with the following number of operations:

2"+ (m—n-—1)2m"" (44)

Proof. The number of operations in each stage increases from the last stage of
the transform to the first. This suggests that the last stages should be those
which require the same number of inputs as they do outputs. There are m — n
such stages: those corresponding to the matrices H%,. where k is one of the
bits whose values are not fixed. This is true because the output y;or; must be
computed iff so must g;9x 4 or-1,4 ;. These stages have a cost (m —n)2m~".

The other n stages, which should be performed at the beginning, successively
double the number of operations from 2"~™ to 2™. This means that the total
cost of the optimized pruned FWT is

(m—n)2" "+ Y 27 = (m—n)2" 42" -2 = 2" (m—n—1)2" "

i=m—n-+1
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An analysis of the computational cost formula shows that, as n increases, the
second term decreases and the cost quickly approaches 2™ (instead of m2™).

C Estimates of the Distribution of the Multiple Linear
Cryptanalysis Statistic

In a multiple linear attack using M linear approximations and N available plain-
texts, the right-key statistic Q) approximately follows a normal distribution:

Qk ~ N(,UR,UR), where

1R = Expp k(Qr) = BM + NEzpk (C(K))
0% =Varp k(Qr) = 2B*M + 4BNEzpg (C(K)) + N*Varg (C(K))

B { 1 if repeated plaintexts are allowed

2;[_?[ for distinct known plaintexts

(45)
The moments of C(K) can be estimated using a set S of significant linear trails:

E-TpK Z Z aza 617 + M2™" (46)
i=1~vyeS
2
VaTK ~2 Z Z au Bi, ))2 +27" (47)
i=1 \vES

Meanwhile, if the key guess k # k is different from the right one, a multiple of
the wrong key statistic follows a x? distribution with M degrees of freedom:

1 w = Expp k(Q;) = BM + NM2™"

2 2
_— >~ O 4
Bt No—n @k~ X s {02”, = Varp k(Qf) = 2M(B + N27")? (48)

References

1. Abdelraheem, M.A.: Estimating the probabilities of low-weight differential and
linear approximations on PRESENT-like ciphers. In: Kwon, T., Lee, M.-K., Kwon,
D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 368-382. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37682-5_26

2. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 315-342.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5-13

3. Bay, A., Huang, J., Vaudenay, S.: Improved linear cryptanalysis of reduced-round
MIBS. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 204—
220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09843-2_16

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, 7-11 June 2015,
pp. 175:1-175:6. ACM (2015)


https://doi.org/10.1007/978-3-642-37682-5_26
https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1007/978-3-319-09843-2_16

10.

11.

12.

13.

14.

15.

16.

17.

18.

Improving Key-Recovery in Linear Attacks 247

Beyne, T.: Block cipher invariants as eigenvectors of correlation matrices. In:
Peyrin, T., Galbraith, S. (eds.) ASTACRYPT 2018, Part I. LNCS, vol. 11272, pp.
3-31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_1
Biham, E., Perle, S.: Conditional linear cryptanalysis - cryptanalysis of DES with
less than 242 complexity. IACR Trans. Symmetric Cryptol. 2018(3), 215-264
(2018). https://doi.org/10.13154 /tosc.v2018.i3.215-264

Biryukov, A., De Canniere, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1-22. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_1

Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
388-404. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
924

Blondeau, C., Nyberg, K.: Improved parameter estimates for correlation and capac-
ity deviates in linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(2),
162-191 (2016). https://doi.org/10.13154/t0sc.v2016.i2.162-191

Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation linear
cryptanalysis with FF'T and improved attacks on ISO standards Camellia and CLE-
FIA. In: Lange, T., Lauter, K., Lisonék, P. (eds.) SAC 2013. LNCS, vol. 8282, pp.
306-323. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-
7-16

Bogdanov, A.; et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

Bogdanov, A., Tischhauser, E., Vejre, P.S.: Multivariate profiling of hulls for linear
cryptanalysis. IACR Trans. Symmetric Cryptol. 2018(1), 101-125 (2018). https://
doi.org/10.13154/tosc.v2018.i1.101-125

Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossible
possible. J. Cryptol. 31(1), 101-133 (2018). https://doi.org/10.1007/s00145-016-
9251-7

Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and SiMON. In:
Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014, Part I. LNCS, vol. 8873, pp. 179—
199. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_10
Canteaut, A., Naya-Plasencia, M., Vayssiere, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222-240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4-13

Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302-317. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5_21

Collard, B., Standaert, F.: A statistical saturation attack against the block cipher
PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195-210.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_13
Collard, B., Standaert, F., Quisquater, J.: Improving the time complexity of Mat-
sui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol.
4817, pp. 77-88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
76788-6_7


https://doi.org/10.1007/978-3-030-03326-2_1
https://doi.org/10.13154/tosc.v2018.i3.215-264
https://doi.org/10.1007/978-3-540-28628-8_1
https://doi.org/10.1007/978-3-642-38348-9_24
https://doi.org/10.1007/978-3-642-38348-9_24
https://doi.org/10.13154/tosc.v2016.i2.162-191
https://doi.org/10.1007/978-3-662-43414-7_16
https://doi.org/10.1007/978-3-662-43414-7_16
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.13154/tosc.v2018.i1.101-125
https://doi.org/10.13154/tosc.v2018.i1.101-125
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/978-3-642-40041-4_13
https://doi.org/10.1007/978-3-642-40041-4_13
https://doi.org/10.1007/978-3-642-11925-5_21
https://doi.org/10.1007/978-3-642-11925-5_21
https://doi.org/10.1007/978-3-642-00862-7_13
https://doi.org/10.1007/978-3-540-76788-6_7
https://doi.org/10.1007/978-3-540-76788-6_7

248

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

A. Flérez-Gutiérrez and M. Naya-Plasencia

Collard, B., Standaert, F., Quisquater, J.: Experiments on the multiple linear
cryptanalysis of reduced round serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 382—397. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71039-4_24

Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: the block
cipher Noekeon. Nessie submission (2000). http://gro.noekeon.org/

Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptol. 1(3), 221-242 (2007). https://doi.org/10.1515/
JMC.2007.011

Datta, N., Ghoshal, A., Mukhopadhyay, D., Patranabis, S., Picek, S., Sadhukhan,
R.: TRIFLE. Candidates to the NIST Lightweight competition (2019). https://
csre.nist.gov/projects/lightweight-cryptography /round- 1-candidates

Etrog, J., Robshaw, M.J.B.: The cryptanalysis of reduced-round SMS4. In: Avanzi,
R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 51-65. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_4
Florez-Gutierrez, A.: Cryptanalysis of TRIFLE-BC. Official comment to the NIST-
LWC forum (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/round-1/official-comments/ TRIFLE-official-comment.
pdf

Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis of
reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 203-215. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0-15

Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s
algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209-227.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03317-9_13
Hermelin, M., Nyberg, K.: Linear cryptanalysis using multiple linear approxima-
tions. Cryptology ePrint Archive, Report 2011/093 (2011). https://eprint.iacr.org/
2011/093

Hu, Z., Wan, H.: A novel generic fast fourier transform pruning technique and
complexity analysis. IEEE Trans. Signal Process. 53(1), 274-282 (2005). https://
doi.org/10.1109/TSP.2004.838925

Kim, T.H., Kim, J., Hong, S., Sung, J.: Linear and differential cryptanalysis of
reduced SMS4 block cipher. IACR Cryptology ePrint Archive 2008, 281 (2008).
http://eprint.iacr.org/2008,/281

Liu, M., Chen, J.: Improved linear attacks on the Chinese block cipher standard. J.
Comput. Sci. Technol. 29(6), 1123-1133 (2014). https://doi.org/10.1007/s11390-
014-1495-9

Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7_33

Matsui, M.: The first experimental cryptanalysis of the data encryption standard.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1-11. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5_1

Nakahara, J.J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and algebraic
cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58-75. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10433-6_5

National Institute of Standards and Technology (ed.): “FIPS-46: DataEncryp-
tion Standard (DES)” revised as FIPS 46-1:1988, FIPS 46-2:1993, FIPS46-3:1999
(1979). http://csre.nist.gov/publications/fips/fips46-3 /fips46-3.pdf


https://doi.org/10.1007/978-3-540-71039-4_24
https://doi.org/10.1007/978-3-540-71039-4_24
http://gro.noekeon.org/
https://doi.org/10.1515/JMC.2007.011
https://doi.org/10.1515/JMC.2007.011
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://doi.org/10.1007/978-3-642-04159-4_4
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://doi.org/10.1007/978-3-540-70500-0_15
https://doi.org/10.1007/978-3-540-70500-0_15
https://doi.org/10.1007/978-3-642-03317-9_13
https://eprint.iacr.org/2011/093
https://eprint.iacr.org/2011/093
https://doi.org/10.1109/TSP.2004.838925
https://doi.org/10.1109/TSP.2004.838925
http://eprint.iacr.org/2008/281
https://doi.org/10.1007/s11390-014-1495-9
https://doi.org/10.1007/s11390-014-1495-9
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48658-5_1
https://doi.org/10.1007/978-3-642-10433-6_5
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

35.

36.

37.

38.

39.

40.

41.

Improving Key-Recovery in Linear Attacks 249

Nguyen, P.H., Wu, H., Wang, H.: Improving the Algorithm 2 in multidimensional
linear cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol.
6812, pp. 61-74. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22497-3.5

Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439—444. Springer, Heidelberg (1995). https://
doi.org/10.1007/BFb0053460

Ohkuma, K.: Weak keys of reduced-round PRESENT for linear cryptanalysis. In:
Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp.
249-265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-
7-16

Selguk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131-147 (2008). https://doi.org/10.1007/s00145-007-9013-7
Todo, Y., Aoki, K.: FFT key recovery for integral attack. In: Gritzalis, D., Kiayias,
A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 64-81. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12280-9_5

Yarlagadda, R.K., Hershey, J.E.: Hadamard Matrix Analysis and Synthesis - With
Applications to Communications and Signal/Image Processing. The Springer Inter-
national Series in Engineering and Computer Science, vol. 383. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-1-4615-6313-6

Zheng, L., Zhang, S.: FFT-based multidimensional linear attack on PRESENT
using the 2-bit-fixed characteristic. Secur. Commun. Netw. 8(18), 3535-3545
(2015). https://doi.org/10.1002/sec.1278


https://doi.org/10.1007/978-3-642-22497-3_5
https://doi.org/10.1007/978-3-642-22497-3_5
https://doi.org/10.1007/BFb0053460
https://doi.org/10.1007/BFb0053460
https://doi.org/10.1007/978-3-642-05445-7_16
https://doi.org/10.1007/978-3-642-05445-7_16
https://doi.org/10.1007/s00145-007-9013-7
https://doi.org/10.1007/978-3-319-12280-9_5
https://doi.org/10.1007/978-1-4615-6313-6
https://doi.org/10.1002/sec.1278

l‘)

Check for
updates

New Slide Attacks on Almost Self-similar
Ciphers

Orr Dunkelman'®) @, Nathan Keller? ™), Noam Lasry?, and Adi Shamir?

! Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il
2 Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel
nkeller@math.biu.ac.il, noam.lasry@gmail.com
3 Faculty of Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot, Israel
adi.shamir@weizmann.ac.il

Abstract. The slide attack is a powerful cryptanalytic tool which can
break iterated block ciphers with a complexity that does not depend on
their number of rounds. However, it requires complete self similarity in
the sense that all the rounds must be identical. While this can be the case
in Feistel structures, this rarely happens in SP networks since the last
round must end with an additional post-whitening subkey. In addition,
in many SP networks the final round has additional asymmetries — for
example, in AES the last round omits the MixColumns operation. Such
asymmetry in the last round can make it difficult to utilize most of the
advanced tools which were developed for slide attacks, such as deriving
from one slid pair additional slid pairs by repeatedly re-encrypting their
ciphertexts. Consequently, almost all the successful applications of slide
attacks against real cryptosystems (e.g., FF3, GOST, SHACAL-1) had
targeted Feistel structures rather than SP networks.

In this paper we overcome this “last round problem” by developing
four new types of slide attacks. We demonstrate their power by apply-
ing them to many types of AES-like structures (with and without linear
mixing in the last round, with known or secret S-boxes, with periodicity
of 1, 2 and 3 in their subkeys, etc). In most of these cases, the time com-
plexity of our attack is close to 2"/2 the smallest possible complexity for
most slide attacks. Our new slide attacks have several unique properties:
The first uses slid sets in which each plaintext from the first set forms a
slid pair with some plaintext from the second set, but without knowing
the exact correspondence. The second makes it possible to create from
several slid pairs an exponential number of new slid pairs which form a
hypercube spanned by the given pairs. The third has the unusual prop-
erty that it is always successful, and the fourth can use known messages
instead of chosen messages, with only slightly higher time complexity.

1 Introduction

Most modern block ciphers are constructed as a cascade of r keyed components,
called rounds. Each round by itself can be cryptographically weak, but as r

© International Association for Cryptologic Research 2020
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Fig. 1. A slid pair

increases, the scheme becomes resistant against almost all the standard crypt-
analytic attacks (e.g., differential cryptanalysis [8], linear cryptanalysis [28]).
However, there is one type of attack called a slide attack (introduced in 1999
by Biryukov and Wagner [9]') which can handle an arbitrarily large number of
rounds with the same complexity.

The original slide attack targets ciphers that are a cascade of r identical
rounds, i.e.,

Ey=fi=/feofeo-o fr

and tries to find a slid pair of plaintexts (P, Q) such that Q = fx(P), as demon-
strated in Fig.1. Due to the structure of Fj, the corresponding ciphertexts
C = Ex(P),D = Ep(Q) must satisfy D = fp(C). Hence, if a slid pair (P, Q) is
given, the adversary can use the simplicity of fi to solve the system of equations

to recover k:

The adversary can start from any collection of O(2"/2) plaintexts along with
their ciphertexts, and consider their O(2™) pairs. One of them is likely to be a
slid pair, but the adversary does not know which one it is. By trying to solve the
system of Equation (1) for all the pairs, she gets a simple slide attack whose data
complexity is O(2"/?) known plaintexts, memory complexity is O(2"/2) (which
is used to store the data), and time complexity is O(¢ - 2") (where ¢ is the time
required for solving the system (1)).

1.1 Applicability of Slide Attacks to Modern Ciphers

The original slide attack can be used only when fi is so simple that it can be
broken efficiently using only two known input/output pairs. Subsequent papers
(e.g., [4,10,14,16,18]) developed advanced variants of the slide attack that allow
attacking self-similar constructions in which fi is rather complex. A central
observation used in many of these variants is that if (P, Q) is a slid pair, then
(Ex(P), Ex(Q)) is also a slid pair, and thus the adversary can create from a
single slid pair arbitrarily many additional friend pairs by repeatedly encrypting
P and @ in an adaptively chosen message attack. These advanced variants made

! The slide attack is related to several previous techniques, e.g., the attack of Grossman
and Tucherman on Feistel ciphers [24] and Biham’s related-key attack [6]. Sometimes,
differential, linear, or subspace invariant attacks [27] may also succeed independently
of the number of rounds, when the underlying property is “strong” enough.
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it possible to attack various generic forms of Feistel constructions with a periodic
key schedule, such as constructions with 1-round [9], 2-round [9], 3-round [4]
and 4-round [10] self similarity. Furthermore, they allowed obtaining practical
attacks on several real life cryptosystems — most notably, breaking the block
cipher Keeloq [1] and the 128-bit key variant of the block cipher GOST [4], and
attacking several hash functions [20].

While the advanced slide attacks extended the applicability of the technique,
the basic requirement that all the round functions must be exactly the same has
remained. As a result, it seemed that slide attacks can be thwarted completely
by inserting into the encryption process round constants that break the full
symmetry between the rounds. This countermeasure has become standard and
is applied in most modern block ciphers.

However, it turned out that round constants are not an ultimate solution,
as in many cases improper choice of the constants or interrelation between the
round constants and other components of the cipher, can be used to mount a
slide attack despite the countermeasure.

A recent example is the format preserving encryption scheme FF3 [11]. This
scheme was selected as a US standard by NIST in 2016, but had to be revised
in 2017 due to a devastating slide attack by Durak and Vaudenay [17]. This
happened even though the slide attack is well known, leading the designers of
the cryptosystem to use the standard countermeasure of using different round
constants to avoid them. Yet another example is the block cipher SHACAL-1
that was broken by Biham et al. [7] using a slide attack, although it used round
constants. It thus turns out that while adding round constants may be a useful
countermeasure, it is far from being a universal countermeasure, and slide attacks
remain highly relevant in practice.

1.2 Slide Attacks on SP Networks

Most of the previously known slide attacks, including the attacks on FF3, GOST,
Lilliput-AE and SHACAL1 described above, apply to Feistel constructions. The
other major type of a block cipher, the Substitution-Permutation (SP) Network,
cannot be directly attacked by a slide attack since its last round is always dif-
ferent from the other rounds.

Consider, for example, an AES-like structure in which each round consists
of XORing a subkey (which we denote by K), applying a parallel layer of S-
boxes (denoted by S), and linearly mixing their outputs (denoted by A). Assume
in addition that two subkeys are used in the cyclic order (ki,ko,k1,ka,...).
Simply composing these round functions makes no sense since the last layers of
S-boxes and linear mapping are known and can thus be stripped off. Any sensible
design must thus add to the last round a final post-whitening subkey, such as k1,
before outputting the ciphertext. This makes the last round different from the
other rounds, and we cannot simply complete the construction into a self similar
structure by applying to it Ao.S o K o Ao .S since we do not know the subkey ks
used in K. A similar situation arises when the S-boxes are secret or when the last
round operation A (before the post-whitening key) differs from previous rounds.
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Any such asymmetry suffices in order to destroy the crucial property that if two
plaintexts (P, Q) are a slid pair then so are their ciphertexts (Ey(P), Ex(Q)),
upon which many advanced slide attacks rely. In fact, the only advanced slide
attack on SP networks published so far, by Bar-On et al. [4, Sect. 2.2, 2.3] on an
AES-like cipher with a 2-round or 3-round self-similarity, applies only under a
non-standard additional assumption on the structure of the cipher.?

1.3 Our Settings

In this paper we overcome the last round problem by developing new slide attacks
that can be applied to SP-networks with an arbitrarily large number of rounds
in which the last round is different from the previous rounds. To be concrete, we
consider ciphers that can be viewed as a cascade

KoAoSoKoAoSo...KoAoSoK,

where K denotes the XORing of a secret subkey, S is a non-linear operation (S-
box) applied in parallel to sub-blocks of size s of the state, and A is an affine oper-
ation. We call this structure KSA, and say that it has an ¢-round self-similarity
if the subkeys have the periodic structure ki, ko, ..., ke, k1,ko,..., ke, .... We
denote such a structure by £-KSA.

We note that extremely simple key schedules, and in particular periodic
key-schedules with a short period, are widely used in modern lightweight block
ciphers, for the sake of saving place on the hardware taken by the key sched-
ule mechanism. Examples include LED-64 [25], Zorro [19], PRINTcipher [26],
CGEN [29] and MIDORI128 [3] (which have identical subkeys), LED-128 [25],
CRAFT [5] and MIDORI64 [3] (which have period 2), and many others.

Of course, designers of most modern block ciphers protect the ciphers against
slide attacks by adding round constants in order to destroy the self-similarity.
However, as was mentioned above, this countermeasure is not always sufficient. In
addition, some lightweight cryptosystems have a large number of simple rounds,
and XOR’ing a different randomly generated constant to each round greatly
increases the amount of memory required to implement the scheme, which is
very undesirable in many IoT applications. Consequently, designers of such cryp-
tosystems may be tempted to use other forms of asymmetry into their designs,
such as using a different last round, but as we show in this paper, such a simple
countermeasure can be defeated by new variants of slide attacks.

We study two types of KSA constructions: The first is £-KSAf, composed of
a sequence of rounds of the form A o S o K with an /-periodic key, augmented
by a final key whitening — which is the structure of many modern SP networks.
The second type is £-KSAt, which differs from ¢-KSAf by omission of the affine
operation A in the last round. Such a change is performed in some block ciphers
for implementation reasons—most notably, in the AES.

2 The additional assumption (that was not mentioned in [4]) is that either the final
key whitening step is omitted, or the number of rounds is odd (for 2-round self
similarity) or of the form 3¢+ 2 (for 3-round self-similarity).
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We usually assume that the operations S, A are not key-dependent (like in
AES). However, interestingly, some of our new attacks apply with only a small
complexity overhead when S is key-dependent (like in the AES variant with a
secret S-box studied in [21,23,30,31]). We denote the block size by n and the
S-box size by s, and state our results in terms of the parameters n, s.

1.4 Our Contributions

We present four entirely new types of slide attacks, which solve the last round
problem in four different ways:

Slid sets. In this attack, we attach to each candidate slid pair (P,Q) a pair
of sets Tp = {P1,Ps,..., Py} and Tg = {Q1,Q2,...,Qq} such that for each ¢
there exists j for which (P;, ;) is a slid pair. That is, the set 7p is transformed
into the set 7, while we do not know what is the counterpart of each specific
value in 7p. Of course, this technique requires entirely different ways to solve
the equation system (1), and we provide such techniques as well.

Hypercube of slid pairs. This technique first uses differential properties of
the cipher to attach to each candidate slid pair (P, Q) a pair of d-tuples 7Tp =
(P1,Ps,...,Py) and Tg = (Q1,Q2,...,Qq) such that with some unexpectedly
high probability, each (P;, @;) is a slid pair. Then, it uses a ‘mixing’ construction
reminiscent of the recently proposed mizture attack [22] to leverage the d-tuples
into 2%-tuples of slid pairs. Roughly speaking, if the slid pairs are placed at d
vertices of a d-dimensional hypercube, the technique allows us to attach to them
2¢ — d additional slid pairs which are placed at all other vertices of the cube.

Suggestive plaintext structures. This attack uses two plaintext structures
Tp and 7, designed in such a way that the mere knowledge that some P € 7p
has a slid counterpart () € 7 reveals significant key information, which is used
in the solution of the equation system (1). An interesting feature of this attack
is that while its data complexity is 3 - 2*/2, which is only slightly more than the
27/2 complexity of standard slide attacks, it has 100% success probability. Note
that the success probability of standard slide attacks is about 63%; it can be
increased by using more data, but cannot get to 100% success unless the data
complexity is made extremely large.

Substitution slide. This attack is aimed at truncated ¢-KSA constructions, in
which in the equation system (1), the second equation is much more complex
than the first one. We use substitution into the (easier) first equation in order
to remove the key dependence from the (harder) second equation and trans-
form it into an even more complex equation which depends only on plaintexts
and ciphertexts and not on the key. This attack type applies even in the more
restrictive (and more realistic, of course) known plaintext model.

1.5 Our Results

Here are a few concrete results that can be obtained with our new slide attacks
(the full summary can be found in Table 1):
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Table 1. Summary of our new results

Cipher Technique l Complexity (general) [ AES-like l

[ Data/Memory Time IData/Memory Time]

l

Known S-Boxes |

1-KSAf  Slide [4] 2n/2 (KP) on/2 2064 (kp) 264
2-KSAf  Slide [4]* s-25T1/2 (AcPO) s . 28+n/2 269 269
3-KSAfil  Slide [4]** 2(m+n)/2 (AcpC) 2(m+n)/2 281 581
1-KSAt  Suggestive str. (Sect. 5) 3.2m/2 (CP) 4.2m/2 265.6 (cp) 266
1-KSAt  Sub. slide (Sect. 6) 2n/2 (KP) 23n/4 264 (xkp) 296
2-KSAf  Slid sets (Sect. 3) 2(n+s)/2+1 (cp) 2(nt+s)/2+1 269 (cp) 269
2.KSAf  Slide + Key Guessing (FV) (n/s)2n/2 (cP) on/2+s 268 (cp) 272
2-KSAf  Slide + Pt/Ct Coll. (FV)* See Full Version for full details 2821 (kp) 282
2-KSAtpil Slid sets (FV) 2(nt+m)/2+1 (op) max{2(ntm)/2+1 52my| 978 (cp) 278
3-KSAfiT  Slid sets (FV) 2(n+m)/24+1 (op) max{2(ntm)/2+1 52my| 281 (gp) 281
Secret S-Boxes
1-KSAf  Slid sets (Sect. 3) 1.17/52(n+5)/2 (cp) 1.17/s2(n+s)/2 270.3 (op) 270.3
1-KSAf  Hypercube (Sect. 4) ean/2+s(s+3)/4+1 (cp) /s2n/2+s(s+3)/4+1 288 (cp) 288

The exact definition of all variants is given in Sect. 2.1

KP — Known Plaintext; CP — Chosen Plaintext; ACPC — Adaptive Chosen Plaintext and Ciphertext
FV-—Full version of the paper

For AES-like n = 128,s = 8

t
*

*

*

— this version has incomplete diffusion layer, m denotes the “word” size of the linear operation.
the memory complexity of this attack is 247,

this attack works for an odd number of rounds.

— this attack works when the number of rounds is 1 mod 3.

Using the suggestive plaintext structures technique, we can break 1-KSAt
(e.g. a variant of AES with identical round subkeys and with no MixColumns
operation in the last round) with data and time complexity of 2%/ (264 in
the special case of AES). In [4], Bar-On et al. presented an attack with the
same complexity, but only on 1-KSAf, or equivalently, AES in which the
MixColumns operation in the last round is not omitted.

Using substitution slide, we can break 1-KSAt with complexity of 2(n+4s)/2
known plaintexts and time (2% in the special case of AES).

Using slid sets, we can break 2-KSAt (e.g., a variant of AES with 2-periodic
round subkeys and with no MixColumns operation in the last round) with
data and time complexity of 2("*3%)/2 (276 in the specific case of AES).

Organization of the Paper

In Sect.2 we present the setting and notations used throughout the paper, as
well as some preliminary steps that are routinely performed in all our attacks.
In addition, we present the previous attack by Bar-On et al. [4] on 1-KSA.
In Sect.3 we present the slid sets technique and use it for attacking several
constructions (e.g., 2-KSAf and 1-KSA with secret S-boxes). Section4 presents
the new hypercube of slid pairs technique and presents an attack on 1-KSA
with secret S-boxes. The suggestive plaintext structures technique is presented
in Sect.5. We introduce the substitution slide in Sect.6. Several of our attacks
are presented in the full version. Finally, Sect. 7 concludes the paper.



256 O. Dunkelman et al.

2 Preliminaries

In this section we present the setting and notations that are used throughout the
paper, and describe the slide attack of Bar-On et al. [4] on SPNs with a 1-round
self similarity, which provides a simple example of the attack frameworks that
we use in this paper.

2.1 Setting and Notations

While the attacks presented in the paper target many different constructions
and use different techniques, they are all presented using a uniform setting and
set of notations. All these notations are given and explained in this section.

The general structure of the ciphers we study. Throughout the paper, we con-
sider a block cipher E : {0,1}™ x {0,1}" — {0,1}", which transforms an n-bit
plaintext P into an n-bit ciphertext C, using a k-bit key k. For the sake of
simplicity, we assume that x = n, but the results can be easily adapted for
other values of k. We assume that the cipher is iterative, that is, consists of a
composition of r simpler functions, called rounds. All the attacks we present are
applicable with the same complexity to an arbitrarily large number of rounds.?

We assume that the first 7 — 1 rounds of the cipher have the standard general
structure of an SPN, that is,

(AoSoK)"'=A0SoKoAoSo...KoAoSoK,

where K denotes key addition, S denotes a non-linear operation (S-box) applied
in parallel to words of s bits into which the state is partitioned, and A denotes an
affine operation. As the cipher essentially consists of repetitions of the sequence
of operations A o .S o K, we name it KSA.

The structure of the last round. Regarding the last round, we study two types
of constructions:

— Full last round constructions, in which a single key addition operation is
appended at the end of the last round. That is,

Full 7-round KSA = (KoAoSoK)o(AoSoK) ' =Ko(AoSoK)".

This structure is exemplified in Fig. 2.

— Truncated last round constructions, in which a key addition is appended at
the end of the last round, and in addition, the last round affine transformation
A is omitted. That is,

Truncated r-round KSA = (KoSoK)o(AoSoK) L.

3 The attacks presented in the full version (Slide and Key Guessing, and Slide and
plaintext /ciphertext collision) depend on the residue of » modulo the period of the
subkey sequence, but not on the number of repetitions. All other attacks are inde-
pendent of the number of rounds.
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Fig. 2. The structure of 1-KSAf

The first type corresponds to a generic SPN construction, while the second type
corresponds to an AES-like construction, as removal of the last round affine
operation is adopted in the AES design.*

The structure of the operations K, S, A. In addition to the last round, the con-
structions we study differ in the assumptions on the operations K, S, A:

— Key addition: We shall always assume that the operation K in round i
denotes XOR with an n-bit round subkey k;, where the sequence of subkeys
ki1, k2, ks, ... is periodic. We study the variants 1-KSA, 2-KSA, and 3-KSA,
in which the length of the period is 1, 2, and 3, respectively. We assume that
all subkeys are derived from the n-bit secret key K using some “sufficiently
complex” function; hence, we never exploit relations between distinct sub-
keys, and at the same time, we aim for attacks of complexities lower than 2",
as otherwise, the attack is slower than exhaustive key search. (We note that
such an assumption on the key schedule algorithm is made in many papers
analyzing the security of generic constructions; see, e.g., [2]).

— The S-box layer S: We shall always assume that the operation S consists of
partition of the state into s-bit words and parallel application of the same
function S : {0,1}* — {0,1}® to the blocks. We study two types of construc-
tions: the standard type in which the S-box S' is publicly known (like in AES),
and the secret S-box type in which S is derived from the secret key using a
complex function, and thus, is unknown to the adversary (like in the variants
of AES studied in [21,23,30,31]). In both types of constructions, we do not
exploit the specific structure of the S-box.

— The affine layer A: We consider two variants of the operation A. In the com-
plete diffusion variant, A applies a publicly known affine transformation to
the entire state (i.e., the state is viewed as an n-bit vector v, and is trans-
formed into A’v 4+ w, where A’ is an n-by-n binary matrix, w € {0,1}", and
the operations are performed over Zs). In the incomplete diffusion variant,
the state is partitioned into several parts (e.g., 4 parts in the case of AES),
and the same affine transformation A is applied to each of them in parallel.

* We note that in AES, only part of the last round affine layer is omitted. Namely, the
MixColumns operation is omitted, while the ShiftRows operation is left unchanged.
While maintaining the ShiftRows operation affects the complexity of some attacks
that exploit the key schedule (just like the omission of MixColumns, see [15]), it has
no effect on our attacks. Hence, for the sake of this paper, the design of the last
round of AES is equivalent to removing the entire affine layer.
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In this variant, we introduce an additional parameter, m, to denote the size
of each part (e.g., 32 bits in AES).

Summary of types of constructions. To summarize, the constructions we consider
are defined by four parameters:

1. The length of the key period (1, 2, or 3);

2. Type of the last round — full (only a key addition appended) or truncated
(key addition appended and affine operation removed);

3. Type of the substitution layer S — public S-box or secret S-box derived from
the secret key;

4. Type of the affine layer — complete diffusion (i.e., A acts on the entire state)
or incomplete diffusion (i.e., A acts on several parts of the state in parallel).

Notation of types of constructions. The notation we use for the constructions
reflects all four parameters: the number at the beginning is the length of the key
period, then the letter ‘f” or ‘t’ says whether the last round is full or truncated,
then the letter ‘p’ or ‘s’ denotes whether the S-box is public or secret, and finally,
the letter ‘c’ or ‘i’ denotes whether the diffusion is complete or incomplete. If
some parameter is not included (e.g., neither ‘p’ nor ‘s’ appear), this means that
the attack applies to both types described by that parameter.

For example, 2-KSAfpi denotes KSA with a 2-round key period, full last
round, public S layer and incomplete diffusion. Similarly, 1-KSAtc denotes KSA
with a 1-round key period, truncated last round, and complete diffusion, where
the omission of ‘p’ and ‘s’ means that the corresponding attack works for both
public and secret S-boxes.

Notation of data sets and slid pairs. In all the attacks proposed in this paper,
the data consists of two sets of plaintexts/ciphertext pairs. All the plain-
text/ciphertext pairs (P;,C;) are split such that 7p contains the plaintexts
P;,i=1,2,...,d and 7¢ contains the ciphertexts C;,i =1,2,...,d. Similarly,
the plaintext/ciphertext pairs (Q;, D;) are split between 7o that contains®
Qj.j=1,2,...,d and Tp that contains D;,j =1,2,...,d.

If the considered variant is -KSA, then a pair (P;, Q);) of plaintexts is called
a slid pair if (Ao S o K)‘(P;) = Q. If the cipher was completely self-similar
like in standard slide attacks, this would guarantee that the corresponding pair
of ciphertexts (C;, D;) satisfies (Ao S o K)¥(C;) = D;. In our case, the relation
depends on whether the considered ¢-KSA construction is full or truncated. If
(P;,Qj) is a slid pair, we call Q; the slid counterpart of P;.

In some of our attacks, in order to save data complexity we use the same
plaintext set 7 both as 7p and as 7¢. In such cases, we use both notations 7p
and 7g for 7, and in each candidate slid pair, we denote the ‘left’ element by
P; € Tp and the ‘right’ element by @; € 7. In this context, it is worth noting
that the pairs (X,Y) and (Y, X) are distinct candidates for a slid pair, since the
equations (Ao So K)/(X)=Y and (Ao So K)/(Y)= X are not equivalent.

5 In most of the slide attacks d = d’. However, this is not a mandatory requirement
by the attack.
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Modification of the plaintexts and the ciphertexts. In all our attacks, we consider
a pair of plaintexts (P;, @;) for which we want to decide whether it is a slid pair
or not, and study the relation between F; and ;, and the relation between the
corresponding ciphertexts C; and D;. In order to simplify these relations, we
would like to “remove” unkeyed operations that can be computed in advance
for all plaintexts/ciphertexts in the data set. There are two types of operations
we can remove: the first is operations that can be precomputed directly, and the
second is operations that can be precomputed after interchanging the order of
the operations K and A.

Let us exemplify this modification process on a concrete example. In 1-KSAp,
for each slid pair (P;, Q;), we have

Q= AoSoK(P),

or equivalently, S™' o A7}(Q;) = K(P;). The left hand side S™! 0 A7}(Q;) can
be computed in advance for any plaintext ;. We thus replace each Q; € 7g by
Q= S~1o A71(Q;), and work with the simplified equation

Q) = K(P).
Furthermore, the corresponding ciphertexts, (C;, D;), satisfy
Dj =KoAo S(CZ),

(or equivalently, A=* o K~1(D;) = S(C;)). The right hand side S(C;) can be
computed in advance for any ciphertext C;. As for the left hand side, note that
by distributivity, for every invertible binary matrix A’ and binary vectors z, w, k
the following holds: (A'z +w) +k = A’(z + (A’)~'k) +w. Hence, we can always
interchange the order of the operations A, K, at the expense of replacing the
subkey k in the operation K with (A’)~1k, where A’ is the matrix used in the
operation A. Thus, we have A~! o K=1(D;) = (K')~! o A71(D;), where K’
denotes addition of the key A’k. The value D’ = A7Y(Dj) can be computed an
advance for any ciphertext D;. Thus, we replace each C; € 7¢ with C] = S(C;)
and each D; € Tp with D;- = A71(D;), and work with the simplified equation

D) = K'(CY).

Notations for modified plaintexts and ciphertexts. We perform such a change
routinely, whenever there is an unkeyed operation that can be performed in
advance (including cases where one has to interchange the order of the operations
K, A). We use the notation P;, C; to say that such a modification was performed
to P;, C; (respectively), and the notation Qj, Dj to say that such a modification
was performed to @), D; (respectively). Note that the exact modification differs
between different variants of KSA.

We denote the sets of modified values that correspond to 7p,7¢, 7o, and 7Tp
by 7p, Tc, TQ, and 7Tp, respectively. We abuse notation and call the pair (P;, Qj)
a slid pair whenever the corresponding pair (P;, Q;) is a real slid pair.
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Fig. 3. An AES round

2.2 AES Notations

As the best-known prototype of the constructions we consider is AES, we shall
present all our attacks in the special case of an AES-like construction with a
periodic key schedule, and then we will briefly explain how do these attacks
apply for generic -KSA constructions. Hence, for the sake of convenience, we
briefly recall the structure of AES.

The structure of AES. The Advanced Encryption Standard (AES) [13] is an
SPN that supports key sizes of 128, 192, and 256 bits. A 128-bit plaintext is
treated as a byte matrix of size 4 x 4, where each byte represents a value in
GF(28). An AES round, depicted in Fig. 3, applies four operations to the state
matrix:

— SubBytes (SB)—applying the same 8-bit to 8-bit invertible S-box 16 times in
parallel on each byte of the state,

— ShiftRows (SR)—cyclically shifting the ¢’th row by 4 bytes to the left,

MixColumns (MC)—multiplication of each column by a constant 4 x 4 matrix

over the field GF(2%), and

AddRoundKey (ARK)—XORing the state with a 128-bit subkey.

Before the first round, an additional AddRoundKey operation takes place.
Thus, we “redefine” an AES round as starting with an AddRoundKey operation,
with the last round AddRoundKey operation serving as a post-whitening key.
In the last round of AES, the MixColumns operation is omitted. The number of
rounds depends on the key size, ranging between 10 and 14.

Notations for the variants of AES we study. Since we use AES-like construc-
tions as a prototype of general KSA constructions, their types and notations
are similar to the types of KSA constructions discussed above. Namely, in all
variants we consider, the key schedule is replaced by a periodic key schedule,
with a period of 1, 2, or 3. Following [4], we denote by ¢K-AES a variant with
period /¢ in the key schedule. We call the variant truncated if in its last round,
the MixColumns operation is removed (like in original AES), and otherwise, we
call the variant full.® We say that the S-box is public if it is publicly known (like
in AES), and say that it is secret if it is key-dependent (like in the variants of

5 We note that in [4], the notation /K-AES was used for a variant with a MixColumns
operation in the last round (unlike AES), and the variant with no MixColumns in
the last round was not considered.
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AES studied in [21,23,30,31]). The diffusion of the affine layer in AES (namely,
MC o SR) is inherently incomplete, and so we use /K-AES as a prototype only
for KSA constructions with incomplete diffusion; constructions with complete
diffusion are treated separately.

Like for general KSA constructions, the notation we use for AES-like con-
structions reflects the three relevant parameters: the number at the beginning
is the length of the key period, then the letter ‘f” or ‘t’ says whether the last
round is full or truncated, and then the letter ‘p’ or ‘s’ denotes whether the
S-box is public or secret. If some parameter is not included (e.g., neither ‘p’ nor
‘s’ appear), this means that the attack applies to both types described by that
parameter. (Note that the letters ‘c’ or ‘i’ are irrelevant in the case of AES as
explained above, and so are always omitted). For example, 3K-AESts denotes a
variant of AES with a 3-round key period, no MixColumns operation in the last
round, and secret S-boxes.

Notations for intermediate values in AES. We denote the bytes of the state
matrix of AES by 0,1,2,...,15, in the order described in Fig.3, and denote
the value of the i’th byte of a state x by z;. When several bytes iq,...,%, are
considered simultaneously, they are denoted xy; . ;3. The columns are num-
bered 0,1, 2,3; the j'th column of the state x is denoted by xce(;), and if several
columns are considered simultaneously, we denote them by zco1(, ... j,)- Some-
times we are interested in ‘shifted’ columns, i.e., the result of the application of
ShiftRows to a set of columns. This is denoted by zgr(col(jy,...,j,))- Similarly, a
set of ‘inverse shifted’ columns (i.e., the result of the application of SR™! to a

set of columns) is denoted by Tgr-1(Col(js,...,j0))-

2.3 The Attack of [4] on 1-KSAf

Bar-On et al. [4] considered 1-KSAf, that is, E = K o (Ao S o K)" where all
operations K use the same key k. They showed that this variant can be broken
with probability of about 63%, given 2"/2 known plaintexts, and roughly the
same amount of time and memory.

The idea behind the attack is simple. Assume that (P;, Q;) is a slid pair, i.e.,
that Ao S o K(P;) = Q;. Denoting Q; = S~' 0 A~1(Q;), we have

P®Qj; =k (2)

On the other hand, by the structure of £, the corresponding ciphertexts (C;, D;)
must satisfy D; = K o Ao S(C;). Thus, denoting C; = A o S(C;), we have

D; & Ci = k. 3)
Combining (2) and (3), we get
Pi@éi:Qj@Dj. (4)

This relation allows one to mount the attack described in Algorithm 1. Note that
the data used in the attack consists of a single set 7 of 2/2 known plaintexts.
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Algorithm 1. A Slide Attack on 1-KSAf [4]

Initialize an empty hash table T'.
Ask for the encryption of a set 7 of 22 known plaintexts.
for each plaintext/ciphertext pair (P;, C;), where P; € 7 do
Compute the value C; = A o S(C;),
Compute the value P; @ C;,
Store in T the value (P; & Ci, Py).
for each plaintext/ciphertext pair (Q;, D;), where Q; € 7 do
Compute the value Q; = S~' 0 A71(Q;),
Compute the value ij @ Dj,
if Q; @ D; is the first coordinate of an entry (P; @ C;, P;) € T then
Test the key candidate k = P; & Q]- by trial encryption.

As was described above, this single set is treated both as 7p and as 7g, and when
we consider a candidate slid pair composed of two elements of 7, we denote it
by (P;,@;) and denote the corresponding ciphertexts by C;, D;.

As the data set contains 2"/2 . (27/2 — 1) ~ 2" pairs, the probability that
the data set contains a slid pair, i.e., a pair that satisfies Q; = Ao S o K(F)), is
about 1 —(1—27")2" ~ 1 —1/e ~ 0.63. Each slid pair leads to a collision in the
table which suggests the right key candidate. On the other hand, for a random
pair (P;,Q;), the probability that P; & C; = Q; ® D, is 2=, and thus, only
a single collision in the table is expected (though the actual number follows a
Poisson distribution with a mean of 1). Thus, the right key can be found easily
by going over all collisions in the table and checking the values of k they suggest.
The data complexity of the attack is 2/2 known plaintexts, its time and memory
complexities are about 2"/2 operations, and its success probability is about 63%.

In addition to the attack described above, Bar-On et al. presented a mem-
oryless variant of the attack, based on classical cycle detection algorithms. The
attack requires 2"/2 adaptively chosen plaintexts, 2"/2 time, and a negligible
amount of memory.

3 The Slid Sets Attack

In this section we present a new cryptanalytic technique, the slid sets attack,
and use it to attack 2-KSAfp with complexity O(2("*+%)/2) and 1-KSAs with
complexity O(y/s - 2("*$)/2). In particular, our attack allows us to break an
AES-like cipher with secret S-boxes and the same round keys with complexity
of 2793 — only slightly higher than 24, which is a natural lower bound for the
complexity of a slide attack on a 128-bit cipher.

The key idea behind the slide sets technique is to consider pairs of plain-
text sets U = {P;}i=1,.. g and V = {Q, };=1,.... 4, such that if for some (o, jo),
(Piy, Qj,) is a slid pair, then the entire set V' is the slid counterpart of the entire
set U, in the sense that for any P; € U, there exists 1 < j < d such that the
slid counterpart of P; is @;. Interestingly, we will not be able to know (until
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the very end of the attack) which @; is the counterpart of a specific P;. This
attack paradigm stands in contrast with all previously known slide attacks which
treated either single slid pairs or slid tuples (P, ..., Py), (Q1,...,Qq) in which
each Q); is the slid counterpart of P;.

We begin with presenting the attack in the special case of 2-KSAf, where
its application is the simplest one. Then we show the more complex attack on
1-KSAs. Even more complex attacks on 2-KSAtpi and on 3-KSAfpi are given in
full version.

3.1 Slid Sets Attack on 2-KSAf

The setting. For the sake of helping readability, we present the attack in the
special case of 2K-AES{p (i.e., an AES-like cipher with 2-round periodic subkeys,
publicly known S-boxes, and with a MixColumns operation in the last round).
We assume that the number of rounds is even; it will be apparent from the
attack that it applies to the ‘odd’ case without change (as the only difference it
the last round’s key). First, we would like to simplify the problem.

Assume that (P;, Q;) is a slid pair. This means that

Qj=MCoSRoSBoARKyoMCoSRoSBoARK,(F;),

where ARK, denotes key addition with the subkey ky. As was described in
Sect. 2.1, we can peel off unkeyed operations by denoting @Q; = SR 'oMC 1o
SB~'o SR~ o MC~(Q;), and obtain

Q; = ARK} 0 SB o ARK,(P,), (5)

where ARKY, denotes the addition of the subkey MC~! o SR™1(ky). By the
basic slide property, the relation between the corresponding ciphertexts (C;, D)
is similar to the relation between the plaintexts (but of course, is not the same,
due to the last round asymmetry). Namely, we have

D;=ARK;0MCoSRoSBoARK;oMC o SRoSB(C;).
Like with the plaintexts, this relation can be simplified to
Dj = ARK; o0 SB o ARK5(C;), (6)

where C; = MC o SR o SB(C;), D; = MC~' o SR™*(D;), and ARK denotes
the addition of the subkey MC~'oSR~1(k;) The important gain from obtaining
the simplified equations is that now the transformation from P; to Qj consists of
application of 16 independent functions on the bytes of the state, and the same
goes for the transition from C; to Dj. This plays a significant role in the attack.

Construction of candidate slid sets. The idea behind this step is as follows.
Let (P;,Q;), (P, Q;) be slid pairs, and let @;, @, be computed from Q;, Q;,
as defined above. The fact that the transformation from P; to @Q); consists of
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application of 16 independent functions on the bytes of the state, implies that if
P;: differs from P; only in a single byte, then Qj/ differs from Qj only in a single
byte as well.

We observe that this property can be generalized from pairs to sets, as follows.
Consider two sets U = {P;}, V = {Q,} which form A-sets (see [12]) with respect
to byte 0 of the state, i.e., each of them is a set of 256 values that are equal in all
S-boxes but S-box 0, and attains all possible values in S-box 0. (Of course, the
same can be performed with another byte instead of byte 0.) Let V = {Q;} be
the plaintext set obtained from V by setting Qj =MCoSRo SBoMC’oSR(Qj)
for each @j S \?} By the above property, if the slid counterpart of some P; € U
is @Q; € V, then any Py € U has a slid counterpart @ in V. We call two sets of
plaintexts U,V that satisfy this property (namely, that each element of U has a
slid counterpart in V' and vice versa) slid sets.

The same process can be performed in the converse direction: Each candidate
slid pair (P;, QQ;) suggests a pair of slid sets (U, V'), by defining U to be a A-set
that contains P;, defining V to be a A-set that contains Qj, and computing V
from V as described above. (Of course, we have to make sure that the permuted
byte in the A-set is the same byte.) Importantly, we do not know which element
in V is the slid counterpart of a given element of U; we only know that this
counterpart exists in V, if indeed the original pair (P;,Q;) is a slid pair.

The attack is based on collecting sufficiently many pairs of sets (U, V'), such
that with a high probability the data contains a pair of slid sets. Then, the
question is how to find the slid sets among them.

Identifying the slid sets. Let (U, V) be a candidate pair of slid sets. Let W =
{C;} Dbe the set of ciphertexts corresponding to the plaintexts of U, and let
X = {D;,} be the set of ciphertexts corresponding to the plaintexts of V. Define
the sets W and X by setting C; = MC o SR o SB(C;) for any C; € W and
Dj = MC~' o SR™Y(Dj) for any D; € X. If (U, V) are slid sets, then for each
C; € W, there exists D; € W such that Eq. (6) holds for the pair (C;, D;).
However, we have to check many combinations of U and V', and even if we know
that (U, V) are slid sets, we do not know which @); corresponds to which F;.

Luckily, the relation (6) consists of applying 16 independent functions on
the bytes of the state. This implies that in each byte separately, for each pair
C;,, Oy, € W, the equality C;, = C;, holds if and only if the equality D D
holds for some D; ,D;, € X (though we still do not know for which values')
Consequently, the statistic: “how many values are attained ¢ times in byte £” is
preserved between the sets W and X, for any byte ¢ and any multiplicity!

This can be used for obtaining a 51gn1ﬁcant amount of filtering, in the follow-
ing way. We pick sufficiently many A-sets U! (all with the same permuted byte),
and for each corresponding W', for each byte £, we compute the sequence of mul-
tiplicities (i.e., the sequence which records: how many values are not obtained,
how many are obtained once, etc.), defined formally by

af;:‘{ve{(),l, 1255} ¢ | {Cy e W -
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and store the sequence-of-sequences (ag)gzo,l,_“,m,q:o,l,__A in a hash table. Then,

we pick sufficiently many A-sets V!, and for each corresponding V', we look at
the ciphertext structure X! corresponding to V. For each corresponding X', we
compute the sequence {b.}¢—o1,....15,4=0,1,... defined by

bg,:‘{ve{o,1,...,255};|{DjeXl:(Dj)e=v}\ZQ}

)

and check for a match in the table. If (U?, V7) are slid sets, a match must occur.

We now analyze the probability that two unrelated sets match, i.e., we cal-
culate an upper bound on the probability that two non-slid sets have the same
sequences. For this analysis, we can safely assume that each of the sets induce a
sequence generated by picking 256 random values selected from {0,1,...,255}.
If the two vectors have for each multiplicity the same number of elements, then
the sequences collide, i.e., if the number of elements not appearing in both sets
is different, then the sequences do collide. We can thus define the multiplicity
vector for each set—how many elements appear zero times, once, twice, etc.

The actual distribution of the multiplicity vector is a multinomial one. As
we are interested in an upper bound on the collision probability of two such
multiplicity vectors, we offer a lower bound on the entropy of these vectors. To
do so, we consider the number of values that do not appear. While we expect
about 256/e such elements, the exact number of values not appearing follows a
binomial distribution for 256 experiments, each with success probability of 1/e.
The entropy of this binomial distribution is § log,(27-e-256-1 - (1— 1)) ~ 4.99
bits. The same is true also w.r.t. the number of entries which appear once.

Thus, each byte of the sequence carries at least 9.98 bits of information, or
in total for the entire state more than 159 bits of information. This is more than
enough to detect all correct pairs of slid sets (U?,V7) with an overwhelming
probability. We verified experimentally that this statistic contains at least 8 bits
of information in each byte (and thus, at least 128 bits of information in total),
assuming random and uniform distribution of the ciphertexts.

Retrieving the key from a pair of slid sets. Given a pair of slid sets (U, V7), and
the corresponding sets of values (W?, X 7) we can easily and efficiently find the
round keys ko and kf = MC~1(k1). The attack is based on Eq. (6), which consists
of 16 independent byte equations of the form (D;), = (ARK}|0SBoARK»(C;))s,
as was mentioned above. In each byte ¢, we know from W the multiplicity of
each value entering this byte (e.g., input value 0 appears once in W in this byte
position). Note that the statistic we use here is more refined than the statistic
we used above: we do not only ask how many values are obtained ¢ times, but
rather which are the values that are obtained ¢ times.

We now guess the value of byte ¢ of ks and of k{, and so, we can compute
the value (ARK} o SB o ARK,(C;)), for each C; € W. We compute this value
for every C; € W, and check whether the multiplicities of the obtained values
conform to their multiplicities in X3 If there is no match, we discard the guess

Of (k‘g)g(k’l)g
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This procedure offers a very strong filtering, and so with overwhelming prob-
ability, in each byte only a single candidate for ky and k{ remains.

We note that this attack algorithm does not rely on the actual order of keys
used in the last two rounds. Thus, even though we presented the attack for the
case of even number of rounds, it can be applied in exactly the same way to an
odd number of rounds (where Eq. (6) is replaced by D; = ARK},0SBoARK,(C;)
and we obtain a single candidate for k; and k%).

The attack algorithm. As shown in Algorithm 2, we consider two structures
Tp, T of 2°8 chosen plaintexts each. The structure 7p consists of 260 A-sets, all
with the first byte permuted and the rest fixed. Similarly, 7¢ is chosen such that
To contains 200 A-sets, all with the first byte permuted and the rest fixed. We
then compute for each A-set in 7p its af; statistics and for each A-set in 7g its bf;
statistics, and look for collisions between the statistics. Once such a collision is
found (i.e., a pair of slid sets is identified), we apply the key recovery algorithm.
The data complexity of the attack is 26° chosen plaintexts, the memory com-
plexity is 269 and the time complexity is 2%° as well. The success probability
is the probability that the data contains a pair of slid sets. As the probabil-
ity of each set pair of sets U’ € Tp and V7 € Tg to be slid is 27120 (since a
match in 15 bytes is needed), the probability of containing pair of slid sets is
1—(1—27120)2""" ~ 0,63, which is the success rate of the attack.

Attacking 2-KSAfp. The same attack applies to any variant of 2-KSAfp, either

with complete or incomplete diffusion. The data, memory and time complexities
are 2(n+9)/241 — O(2(n+9)/2),

3.2 Slid Sets Attack on 1-KSAs

In this section we show that a modification of the above attack can be used
to break 1-KSA in which the operation S is key-dependent — i.e., consists
of a parallel application of n/s key-dependent permutations on s-bit words.
The complexity of the attack is only slightly higher than the complexity of
the attack described above — namely, data, memory, and time complexity of
2¢/51og 22(n9)/2 = O(/52(7+5)/2) (i.e., a factor of \/slog2 with respect to the
attack of Sect.3.1).

The setting. For the sake of helping readability, we first present the attack in
the special case of 1K-AESf with a key-dependent S-box. A related variant (1-
KSAfs) was studied in a number of papers, e.g., [21,23,30,31]. First, we would
like to simplify the problem.

Assume that (P;,Q;) is a slid pair. This means that

Qj=MCoSRoSBoARK(P;),

where ARK denotes key addition with the subkey k. We can peel off the unkeyed
operations MC, SR by denoting Q; = SR™! o MC~1(Q,), and obtain

Q; = SBo ARK(P,). (7)
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Algorithm 2. A slide attack on 2K-AESfp using slid sets

Ask for the encryption of two structures 7Tp, 7g, each of size 2%, defined above.
Initialize an empty hash table T'.
for all A-sets U* € Tp do
Let the ciphertexts corresponding to the plaintexts U’ be W¢, and consider the
corresponding set Wi,
Compute the sequence-of-sequences (aé)g:o,ly,,,71574:071’,”, and store it in 7', along
with the index 1.
for all V7 € 75 do
Let the ciphertexts of corresponding to the plaintexts of V7 be X7.
Compute from X7 the corresponding X7.
Compute the sequence-of-sequences (bg)g:()’l““,15,,1:0,17“‘, and check for a match-
ing sequence in 7T'.
if a match exists then
Assume that (U?,V7) are slid sets, and consider the corresponding sets
(W, X3 )
for all bytes ¢ € {0,...,15} do
for all guesses of byte k2, and kj , do
Partially encrypt all (C;), € W and obtain a set of values
{tl,tz,”.t256}‘ ~ ~ ~
if the set {t1,t2,...t256 } matches the set {D;,: D; € X} then
Output “the subkey values in byte £ are kz,¢ and kj ,”.

By the slide property, the corresponding ciphertexts (C;, D;) satisty
Dj=ARK o MC o SRo SB(C;).

We can simplify this relation by interchanging the operations ARK and MC, at
the expense of replacing the subkey k with SR™* o MC~1(k), and then peeling
off MC and SR as well. We obtain

D; = ARK' o SB(C}). (8)

Detection of slid sets. Equations (7) and (8) show that the transformation from
P; to Qj consists of application of 16 independent functions on the bytes of the
state, and the same goes for the transition from C; to Dj. Hence, we can use the
same algorithm for detecting slid sets in as the previous attack (i.e., using the
sequences af; and bf; that count multiplicities of values).

Deducing slid pairs from slid sets. The remaining goal is to retrieve the subkey
k and the key-dependent S-box S given a few pairs of slid sets (U?, V7). (As
we shall see, a single pair of slid sets does not contain enough information for
determining the S-box uniquely). The simple algorithm for this step described
above cannot be applied here since the S-box S is unknown. Instead, we make
use of a refined statistic that allows us deducing the slid counterpart ; € V' of
each P; € U. Namely, while in Sect. 3.1 we used the multiplicities of values in
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Algorithm 3. Retrieving slid pairs from slid sets, for 1K-AESfs

Initialize a list L of candidate slid pairs.
for Each C; € W do

Compute the sequence (cfg)g:o,l,,,,,ls, and store in a hash table, along with P;.
for Each Dj € X do

Compute the sequence (di)gZO’l ,,,,, 15, and check for a match in the table,

for Each match in the hash table do

Add the corresponding pair (P;, Q;) to L.

each byte separately, here we use the sequence of multiplicities of a value in all
bytes simultaneously.

As in Sect. 3.1, we denote by W, X the sets of ciphertexts that correspond
to the plaintext sets U,V , respectively. Furthermore, we denote by X the set
obtained from X by setting D; = SR~ o MC~'(D;), for any D; € X.

For each C; € W, and for each byte 0 < £ < 15, we count the number of other
elements C;; € W such that (C;)e = (Cy/),. That is, we construct the 16-element
sequence {c\}¢—o1,. 15, where

cp=HCv € W (i' #9) A((Ci)e = (Ci)e)} .

Similarly, for each [)j € X, and for each byte 0 < ¢ < 15, we construct the
16-element sequence {d}}¢=o,1,...,15, where

&) =|{Dy € X : (' # 5) AN((Dyr)e = (Dy)o)}.

We observe that the statistic represented by the sequences {c)} and {d;} is
preserved by slid pairs. That is, if @; is the slid counterpart of F;, then the
corresponding sequences {c}}, {di} must be equal! Indeed, if for some i’ we have
(Ci)e = (Cir)e, then the equality (D;)e = (D), must hold for D;, where Q;: is
the slid counterpart of P;. Therefore, we can retrieve the right slid pairs (P;, @;)
by the simple procedure described in Algorithm 3.

We experimentally checked and found that the statistic (c}}) ¢=0,1,...,15 contains
about 27 bits of information, assuming random and uniform distribution of the
ciphertexts. This means that the probability of a random pair (P;, @;) to yield
a match in the table is 2727. As the plaintext sets (U, V') contain only 26 pairs
(P;,Qj), with a high probability only the right slid pairs match in the table.

Hence, the above algorithm, whose complexity is about 2'6 operations, finds
the slid counterpart @; € V of each P; € U.

Retrieving the secret material, given several pairs of slid sets. By Eq. (8) (applied in
each byte separately), each slid pair (P;, );) provides us with an input /output pair
for the function f(z) = k, ® SB(z), where k), denotes the £’s byte of ¥’ = SR~ o
MC~1(k). Hence, each pair of slid sets provides us with 256 input/output pairs
for each function f,. However, these input/output pairs are not distinct. A rea-
sonable assumption is that the values (C;), (where C; ranges over elements of W)
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are distributed uniformly at random in {0, 1,...,255}. Hence, by the coupon col-
lector’s problem, we need 256 - log 256 input/output pairs in order to recover f;
completely with a high probability. Therefore, about log 256 = 6 pairs of slid sets
are sufficient for recovering all functions f.

Once the function ARK’ o SB is recovered, the key k can be recovered
instantly, by picking some (already queried) ciphertext C' and partially decrypt-
ing it using the knowledge of the functions ARK' o SB,SR, MC. The entire
decryption process can be simulated, except for the initial ARK operation.
Hence, we obtain the value P @ k, where P is the plaintext that corresponds
to C. As P is known, k can be retrieved.

The complezity of the attack. The attack presented above contains two steps, in
addition to the steps of the attack described in Sect. 3.1. The first is a step that
recovers slid pairs from pairs of slid sets. As described above, the complexity
of this step is 2'¢, which is negligible with respect to other steps of the attack.
The second step is recovering the function ARK’ o SB. Its complexity is also
negligible, but it requires 6 pairs of slid sets, instead of a single pair in the attack
of Sect. 3.1. This increases the data complexity of the attack by a factor of v/6,
and increases the data and time complexity of the attack accordingly.

Therefore, the data, memory and time complexity of the attack on 1K-AES
with a secret S-box and a MixColumns operation in the last round, is about
2703 "and its success probability is about 63%.

Attacking 1-KSAs. The same attack applies to any variant of 1-KSAfs. The only
difference is that the number of required pairs of slid sets is slog2 = log(2%)
(instead of log 256 in 1K-AES). Hence, the data, memory, and time complexity
of the attack is 2¢/slog2 - 2(n+5)/2,

Furthermore, the attack applies with the same complexity also to any vari-
ant of 1-KSAts. Indeed, the difference between 1-KSAfs and 1-KSAts is in the
relation between C; and D;, which becomes

D;j=ARK oSRoSBoARK o MC o ARK(C;).
By replacing ARK with linear operations, we can simplify this equation into
Dj = ARK' 0 SBo ARK"(C;), (9)

where D; = SR™Y(D;), C; = MC(C;), ARK' denotes addition with SR~'(k)
and ARK" denotes addition with MC(k) & k. Equation (9) has exactly the
same structure as Eq. (8), and hence, the attack described above applies, with
the same complexity, to 1-KSAts.

4 Slide Attack Using a Hypercube of Slid Pairs

In this section we present a new technique which we call a hypercube of slid pairs,
and use it to attack 1-KSAts (with a secret S-box) with data, memory, and time
complexity of y/s2(n+s(s/2+1)+5/2)/2+1 (ip the special case of 1K-AESt: 2%%). For
sake of concreteness, we demonstrate the attack on 1K-AES.
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The idea behind the attack. The attack consists of two steps. First we detect a
slid pair, and then we use it to recover the key used in the ARK operation and
in the secret S-box. In order to detect a slid pair, we want to attach to each
candidate slid pair many “friend pairs”, such that if the candidate is indeed a
slid pair, then all the friend pairs are slid pairs as well.

To be specific, we consider 1K-AES with a secret S-box. Consider a slid pair
(P;,Q;). As was shown in Sect. 3.2, the relation between P; and @); can be sim-
plified into the equation Q; = SB o ARK(P;), where Q; = SR™' o MC~1(Q;).
Furthermore, it was shown that if (P;, Q;), (Py, Q,) areslid pairs, Qj7 er are com-
puted from Q;, @, and if Py differs from P; only in a single byte, then Qj/ differs
from Qj only in a single byte as well.

It follows that if we take a,a’ be two vectors that are non-zero only in byte 0
(where they assume arbitrary values), then with probability 278, (P, ®a, Qj ®a’)
also corresponds to a slid pair.

In the same way, we take values b,c,d, e which are non-zero only in byte
1,2, 3,4, respectively. Then we define V', ¢, d’, ¢’ similarly to the definition of a,
and obtain the pairs (P; @b, Qj aY),...,(Pde, Qj @e’'), such that each of them
is a slid pair with probability 278. Thus, we may attach to the pair (P;, Q;) five
friend pairs, such that if (P;,Q;) is a slid pair, then each of its friend pairs is a
slid pair with probability 278.

Constructing a hypercube of slid pairs. We are ready to present the construction
of the hypercube of slid pairs. Assume that all five pairs (P;®a, Qj ®a'),...,(P®
e, Qj @ €’) correspond to slid pairs. We observe that this implies that for any
quintet o = (a1, a2, a3, aq, a5) € {0,1}5, the pair

(P; @ a1a @ agb ® age ® ayd @ ase, Qj @ ara’ @ agh! ® azd ® agd ® ase’)

is a slid pair as well. Indeed, in each of the 16 functions applied in parallel, the
two values of the new slid pair are equal either to the values of (P;, QJ) or to the
values of one of its 5 “friends” which we assumed to be slid pairs as well. (For
example, in byte 0 the values are equal either to those of (P;, Q;) or to those of
(P ®a,Q; ®a').) We denote the new pair by (Pj.a, Qj.a)-

This allows us to leverage 5 friend pairs into 25 — 1 friend pairs (or more
generally, ¢ friend pairs into 2¢ — 1 friend pairs). As the friend pairs we con-
struct correspond to the vertices of the hypercube {0, 1}, we call this method
of constructing a hypercube of slid pairs. We note that this construction idea is
motivated by the mizture differential attack presented by Grassi [22]. Hence, so
far we have attached to the pair (P;, Q;) 31 friend pairs, such that if (P;,Q;) is
a slid pair, then with probability 274, all the friend pairs are slid pairs as well.

Using the hypercube of slid pairs in the attack. Consider the ciphertexts (C;, D;)
that correspond to a slid pair (P;, @;). As was shown in Sect. 3.2, the relation
between C; and D; can be simplified into the equation

Dj = ARK' 0 SB(C;).
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As both the transformation from P; to Qj and the transformation from C; to
bj consist of application of 16 independent functions on the bytes of the state,
it follows that if for some a, o/ € {0,1}° and for some byte ¢ € {0,1,...,15}, we
have (C; o)¢ = (C; o )¢, then we must have (Djo)e = (Dj,o )¢ as well. Note that
the same property was exploited in the attack of Sect. 3.2. In our attack, the size
of the structure is smaller, which restricts the amount of information that can
be collected. On the other hand, we know that the slid counterpart of each P; ,
is Qi,«, and this turns out to be sufficient for detecting the slid pairs.

Indeed, the expected number of such collisions is 278- (322) -16 = 31. We denote
each such collision by the triple (a, o/, ¢), and store the list of all collisions in
a lexicographic order. The exhaustive list of all locations of collisions contains
more than 256 bits of information, and thus, the probability that two lists of
triples that do not originate from a slid pair are equal, is negligible. Hence,
equality of two lists implies a slid pair (with overwhelming probability).

Recovering the secret S-boxz. Once a slid pair (P;,Q;), along with 31 friend
pairs, are detected, they provide us with 32 input/output values to the function
ARK o SB. As was shown in Sect. 3.2, about 256 log 256 ~ 1420 input/output
values are needed in order to recover the S-box, and thus, we have to take a
sufficiently large data set so that it will contain at least 45 slid pairs. Namely,
we take two structures 7p,7g of 287 plaintexts each. The structures contain
2174 pairs. As the probability that a pair and all its friend pairs are slid pairs is
27128.9740 — 97168 the expected number of slid hypercubes is 64, and so, with
a high probability the number of slid pairs is sufficient for recovering ARK o SB.
Once this operation is recovered, all the operations in the cipher except for
the final ARK operation are known, and thus, the key k can be immediately
retrieved. The resulting attack algorithm is given in Algorithm 4.

We note that the plaintext structures can be chosen in such a way that
constructing the friend pairs does not require increasing the data complexity.
Indeed, we can choose each of the structures Tp, 7 as a union of 27 sub-
structures of size 240, where in each sub-structure, all plaintexts attain some
equal value in bytes 5,6, ...,15 and all possible values in bytes 0,1,...,4. This
guarantees that for any a, b, ¢, d, e, « and for any P; € Tp, the value P; @ aya ®
b @ azc ® aud ® ase also belongs to 7p, and the same for ’Z:Q.

As was explained above, the algorithm requires 288 chosen plaintexts, mem-
ory and time, and succeeds with a high probability. The same attack applies
to any variant of 1-KSAts (possibly with a complete diffusion). First, in the
detection of a hypercube of slid pairs of dimension ¢ (given s-bit S-boxes in n-bit

cipher) we get from each candidate hypercube 27%- (2;) -n/s values in the list. As

each such value suggests about s bits of entropy (i.e., a total of 27 (2;) -n bits),
and as we have at most 227 sets of slid pairs, we require that 275 - Zt) -n & 2n.
In other words, one needs to set 22751 . n = 2n, ie., t = [s/2]. Now, if 7Tp
and 7g have D plaintexts each, we expect D? .27 .27 hypercubes of slid

pairs, each suggesting 2¢ slid pairs. As we need about log 2 -2% ~ 0.7 - s - 2¢ slid
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Algorithm 4. A Slide Attack on 1K-AES with a Secret S-box using Hypercube
of Slid Pairs

Ask for the encryption of two structures 7p, 7g, each of 257 chosen plaintexts, con-
structed as defined above..
Initialize an empty list L (intended to store the detected slid pairs).
for each plaintext/ciphertext pair (P;, C;) € 7p do
Compute the 31 friend pairs (P;,a, Cs,o) and the corresponding values l~)¢,a,
Find all collisions of the form (C; o), = (C’i,a/)l,
Store in a hash table the sequence of triples (c, ', 1) that represent all collisions,
arranged in lexicographic order, along with the value P; used to create them.

for Each plaintext/ciphertext pair (Q;, D;) do
Compute the 31 ‘friend values’ Q;,» and the corresponding pairs (Qj,a, Dj,a),
Find all collisions of the form (Dj.a)i = (Dj o’ )5
Compute the sequence of triples (o, a’,1) that represent all collisions and check
for a match in the hash table.
for Each collision in the table do
Add the corresponding pair (P;, @;) and its 31 friends to L.
for Each slid pair (P;,Q;) € L do
Use the relation between P; and Q; to detect an input/output pair of SBo ARK
for each byte, until the entire function is detected.
Once SBo ARK in all bytes is detected, find the final key whitening operation ARK
using a single trial encryption.

pairs, we need D = /52 +s(s/241)+5/2)/2 "1 g total of data, memory, and time
complexities of \/s2(nts(s/2+1)+s/2)/2+1

We note that the complexity of the ‘hypercube of slides’” attack on 1-KSAts
is inferior to the complexity of the ‘slid sets’ attack of Sect. 3.2. However, this
attack may be advantageous in specific instances of 1-KSAts, e.g., when the
operation S admits differential characteristics with a non-negligible probability.

5 Slide Attack Using Suggestive Plaintext Structures

In this section we present a new technique which we call suggestive plaintext
structures, and use it to attack 1-KSAt (and in particular, 1K-AES) with data,
memory of 3 -2%2 and time complexity of 4 - 2"/2. Interestingly, unlike most
other slide attacks, this attack’s success rate is guaranteed at 100%.

The idea behind the attack is using two tailor-made plaintext structures
Tp = {P;}i1, on2 and Tg = {Qj};—1,. ons2, such that the mere knowledge
that some P; has a slid counterpart in the structure {Q;} (even without the
knowledge of which @Q; exactly is the counterpart) yields some key information
that can be used in the attack.

To be specific, we consider 1K-AES. Let 7p = {P;} be a structure of 264
plaintexts that assume the constant value 0 in Col(2,3), and assume all 264
possible values in Col(0,1). We let 7o = {Q;} be a structure of 26 plaintexts
such that the plaintexts of the corresponding structure 7o = {Q;} (where for
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each j, Q; = SB~'oSR~'oMC~1(Q,)) assume the constant value 0 in Col(0, 1),
and assume all 26 possible values in Col(2, 3).

The main observations behind the attack. Observe that (P;, @Q,) is a slid pair if

and only if the corresponding pair (F;, QJ) satisfies P; @ Qj = k. We use two

conclusions of this observation:

1. Friend pairs for free. If (P;, QJ) is a slid pair, then for any a, (P; ® a, Qj Da)
is a slid pair as well.
This allows attaching to each candidate slid pair a friend pair, thus enhancing
the filtering condition on the ciphertext side. However, in our case, we have
Qj Da € 7:@ only if acel(o,1) = 0. In such a case, P, ® a € Tp, unless a = 0
(which means that the new pair is identical to the initial one).
To overcome this problem, we add to the data set another structure 7z = {R;}
of 264 plaintexts that assume the constant value 0 in Col(2) and the constant
value 1 in Col(3), and assume all 264 possible values in Col(0, 1). Then, we can
attach to each P; € 7p a friend R; = P; @ (0,0,0, 1) € 7g, such that for each
Q; € 1g, the pair (P, QJ) is a slid pair if and only if (R;, Qj @(0,0,0,1)) is a
slid pair as well. We denote the ciphertext that corresponds to the plaintext
R; by F;. Furthermore, we denote the element of 7g that corresponds to
Qj @(0,0,0,1) € 7:@ by @', and denote the corresponding ciphertext by D.

2. Key information for free. Since all Qj € g satisfies (Qj)Col(O,l) =0, it follows
that for any P; € 7p, we may have P; @Qj = k only if (P;)col(0,1) = kcol(0,1)-
Therefore, when we consider some P; € 7p as a candidate for being part of
a slid pair (with counterpart from 7q), we immediately obtain a candidate
value for the two initial columns of the key k.
Of course, the adversary does not know whether some P; € 7p has a slid
counterpart in 7g, and so does not obtain the key information directly. How-
ever, this key information can be used indirectly to check the validity of many
slid pair candidates simultaneously, as shown below.

We note that the latter observation also explains why the attack succeeds
deterministically. By the choice of the structure 7p, its elements assume all
possible values in Col(0, 1). In particular, for the right secret key k, there exists
P; € Tp such that (P;)col0,1) = Kcol(0,1)- For that plaintext P;, we have (P; ©

264 values whose first two

k)co(0,1) = 0. However, the structure 7 contains all
columns are equal to 0. Hence, Qj =P, dke ’Z:Q, and so, (P, Qj) is a slid pair.

Hence, the data set is guaranteed to contain a slid pair.

Exploiting the key information. Assume that (P;,@;) is a slid pair. Then, due
to the omission of MixColumns from the last round of AES, the corresponding
ciphertexts satisfy the relation

Dj=ARKoSRoSBoARK o MC o ARK(C;). (10)

Similarly, since (Ri,Qj @ (0,0,0,1)) is a slid pair (by property (1) above), the
corresponding ciphertexts Fj, D;-, satisfy

D’ = ARK o SRo SBo ARK o MC o ARK(F;). (11)
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Algorithm 5. A Slide Attack on 1K-AES

Ask for the encryption of three structures 7p,7qg,7r, each of 2% plaintexts, as
described in the text.
Initialize an empty hash table T'.
for each plaintext/ciphertext pair (Q;, D;) € 7o do

Compute the value Q; = SB™ 0 SR~ o MC™H(Q;),

Compute the value Q; = MC o SRo SB(Q; & (0,0,0,1)),

Denote the corresponding ciphertext by Dj.

Store in T' the pairs ((D; ® Dj)sr(col(0,1)), Qj)-
for each plaintext/ciphertext pair (P;, C;) € 7p do

Set kcoi(o,1) = (Pi)cor(0,1),

Compute shifted columns SR(Col(0,1)) of the value SR o SB o ARK o MC o
ARK(C;) ® SRoSBo ARK o MC o ARK(R;),

if the computed value is the first coordinate of an entry (((D; @
Dj)sr(col0,1)), @;) then

Test the key candidate k = P; & Qj by trial encryption.

Now, assume that some specific P; € 7p has a slid counterpart in 7g. By
property (2) above, this implies kcoi(0,1) = (P)col(0,1)- This allows us to compute
Col(0,1) of ARK o MC o ARK (C;) (since we know kcol(0,1)), and consequently,
also shifted columns SR(Col(0, 1)) of the state SRoSBoARKoMCoARK (C}).
In a similar way, we can compute the value of shifted columns SR(Col(0,1)) of
the state SRo SBo ARK o MC o ARK(F;). Hence, we can compute the value
of shifted columns SR(Col(0,1)) of

SRoSBoARK o MC o ARK(C;) ® SRoSBo ARK o MC o ARK(F;)
= ARK o SRoSBo ARK o MC o ARK(C;) ®
ARK o SRoSBo ARK o MC o ARK (F3).

By Egs. (10), (11), this value is equal to (D; & D})sr(col(0,1))- This gives us
a 64-bit filtering condition that can be checked for all j’s simultaneously, by
searching for a collision in a precomputed hash table. This results in the attack
algorithm given in Algorithm 5.

Since the match checked in the hash table is a 64-bit filtering condition, in
expectation a single value of j is suggested for each value of i. As each match
yields a suggestion for the entire key, any random match is almost surely dis-
carded using a single additional encryption operation. (The probability that
some wrong guess survives is as low as 27% and so, can be neglected.) On the
other hand, as explained above, the data set must contain a slid pair (P;, Q;),
and this slid pair suggests the correct value of the secret key.

Therefore, the attack requires data complexity of 3 - 264 chosen plaintexts,
memory complexity of 3-264, time complexity of 4-2%* encryptions, and succeeds
with probability 100%.

The attack applies, with exactly the same complexity, to any variant of 1-
KSAt with incomplete diffusion. Indeed, the only place where the exact structure
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of AES was used in the attack is the ability to compute 64 bits of the value ARK o
MC o ARK(C;), given kcol(0,1)- The adversary has this ability (or equivalent
ability with some other part of the state) as long as the operation A is applied
to blocks of size at most half of the state. This is indeed the case in any variant
of 1-KSAt with incomplete diffusion. Therefore, we obtain an attack with data
complexity of 3 - 2"/2 chosen plaintexts, memory complexity of 3 - 2/2, time
complexity of 4 - 27/2 encryptions, and success probability of 100%.

For 1-KSAt with complete diffusion, the above attack does not apply, and
we are not aware of any attack with complexity close to 2/2 on this variant.

6 Substitution Slide Attack

We now present a new technique which we call substitution slide, and use it to
attack 1-KSAt (and in particular, 1K-AES) using only 27/2 known plaintexts,
27/2 memory and about 23"/4 time. Unlike the attack presented in Sect. 5, this
attack applies also for 1-KSAt with complete diffusion.

The idea behind the attack. As before, we present the attack on 1K-AES for sake
of simplicity. Consider a structure Tp of 254 known plaintexts, and let T be the
structure obtained by’ setting P,=SB loSR 1o MC~Y(P,) for any P; € Tp.
As was explained in Sect. 5, if (P;, P;) is a slid pair, then we have:

Cj =ARK o SRoSBo ARK o MC o ARK(C;).

The basic observation we use in this attack is that the (simpler) first equation
can be substituted into the (complex) second equation, in order to get rid of key
dependence.

Specifically, the second equation can be rewritten as

SB™'o SR 0o ARK(C;) = ARK o MC o ARK(C;). (12)
The right hand side of this equation can be written as
ARK oMC o ARK(C;) =k® MC(C; @ k)= MC(k)® ke MC(C;),

Now, we can get rid of the key dependence by substituting the value of k from
the first equation above. We have

MC(k)@ ko M-C; = MC(P, @ P;) ® P; @ P; @ MC(C).
Hence, Eq. (12) can be rewritten as
SB~'oSR™' o ARK(C;j) ® MC(P;) ® P; = MC(P;) © P, ® MC(C;). (13)

" We alert the reader that in this section we use (P;, P;) to denote a slid pair (rather
than (P;, @;). This was done to emphasize that P; and P;, both, are part of a set of
known plaintexts.
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Algorithm 6. A Known Plaintext Slide Attack on 1K-AES

Ask for 25 known plaintexts/ciphertext pairs (P;, C;).
Initialize an empty hash table T'.
for each plaintext/ciphertext pair (P;, C;) do
Compute the value P; = MC(P;) & P; & MC(C;),
Store in T the triples ((’Pi)col(0>, (Pi)SR(Col(O))» (Pi)SR(C01(1,2,3)))7 indexed by the
first two coordinates.
for each guess of kgr(coi(o)) do
for each plaintext/ciphertext pair (P;,C;) do
Compute Column 0 of the value @ = SB™*o SR 0 ARK (C;)®MC(P;)® P;,
Check for entries in the hash table whose first two coordinates match the pair
((Q5)cor0), (P & k)sr(col(0)))-
for Each match found in the table do
Test the key candidate k = P; & }3]-.

Equation (13) is almost what we need. The right hand side depends only on
(P;, C;) and thus can be computed in advance for all values of ¢ and stored in
a hash table. The left hand side depends on (P;, C;); however, it depends also
on the secret key, and thus, we cannot just evaluate it for all j and check for a
match in the table.

In order to evaluate ¢ bytes of the left hand side, we have to guess ¢ bytes
of the key k. However, this does not really provide filtering, as the amount of
filtering we obtain is equal to the amount of key material we have to guess.
Instead, we appeal again to the first equation, and note that it also provides /¢
bytes of filtering, once ¢ bytes of k are guessed. Therefore, we obtain 2¢ bytes of
filtering, at the expense of guessing ¢ key bytes.

The attack algorithm. Choosing ¢ = 4, this allows mounting the attack described
in Algorithm 6.

Since the match checked in the hash table is a 64-bit filtering condition,
on expectation a single value of i is suggested for each value of j. As each
match yields a suggestion for the entire key, any random match is almost surely
discarded using a single additional encryption operation. (The probability that
at least one wrong candidate pair is not discarded is as low as 2732, and thus,
can be neglected). On the other hand, the data set contains a slid pair with
probability 1 — (1 — 27128)2"*% ~ 0,63, and for the correct guess of ks R(Col(0))
each slid pair suggests the correct value of the secret key.

Therefore, the attack requires data complexity of 26 known plaintexts, mem-
ory complexity of 264, and time complexity of 2?6 encryptions, and succeeds with
probability of about 63%.

The attack applies to any variant of 1-KSAt in which the transformations S, A
are publicly known, including variants with complete diffusion. Indeed, the exact
structure of AES (or more generally, the incomplete diffusion of the MixColumns
transformation) are not used in the attack at all. Therefore, we obtain an attack
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with data complexity of 2*/2 known plaintexts, memory complexity of 2*/2, time
complexity of 23"/4 encryptions, and succeeds probability of about 63%.

We note that the time complexity can be somewhat reduced by choosing
another value of £ and using two plaintext structures of different sizes. For exam-
ple, in the case of AES, the time complexity can be reduced to 2%%, by guessing
5 key bytes (instead of 4), taking two different structures of plaintexts — 7p of
size 284 and 7 of size 244, and searching for slid pairs of the form (P;, Q;) where
P; € Tp and Q; € 7. However, this leads to a significant increase in the data
and memory complexities (in the case of AES we described — to 284), and thus,
this tradeoff does not seem profitable.

7 Summary and Conclusions

In this paper we studied slide attacks on almost self similar constructions, in
which the symmetry is broken by the last round. As a study case, we concentrated
on SP networks, in which such a symmetry break is inherent due to the final key
whitening step, and especially, on AES-type constructions. We devised four new
techniques: slid sets, hypercube of slid pairs, suggestive plaintext structures and
substitution slides. We used the new techniques to attack various general SPN
schemes—of different key periods, with different structures of the last round,
with known or secret S-boxes, and with full or an incomplete diffusion.
Open problems left for further work include:

— Use the techniques proposed in the paper to attack other gemeral SPN
constructions.

— Find other types of slide attacks on almost self similar constructions.

— Find (lightweight) block ciphers, with periodic key schedule, susceptible to
these attacks.
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Abstract. Boomerang attacks are extensions of differential attacks,
that make it possible to combine two unrelated differential properties
of the first and second part of a cryptosystem with probabilities p and
q into a new differential-like property of the whole cryptosystem with
probability p?q? (since each one of the properties has to be satisfied
twice). In this paper we describe a new version of boomerang attacks
which uses the counterintuitive idea of throwing out most of the data in
order to force equalities between certain values on the ciphertext side.
In certain cases, this creates a correlation between the four probabilistic
events, which increases the probability of the combined property to p%q
and increases the signal to noise ratio of the resultant distinguisher. We
call this variant a retracing boomerang attack since we make sure that the
boomerang we throw follows the same path on its forward and backward
directions. To demonstrate the power of the new technique, we apply it
to the case of 5-round AES. This version of AES was repeatedly attacked
by a large variety of techniques, but for twenty years its complexity had
remained stuck at 232. At Crypto’l8 it was finally reduced to 22* (for
full key recovery), and with our new technique we can further reduce the
complexity of full key recovery to the surprisingly low value of 21 (i.e.,
only 90,000 encryption/decryption operations are required for a full key
recovery on half the rounds of AES).

In addition to improving previous attacks, our new technique unveils
a hidden relationship between boomerang attacks and two other crypt-
analytic techniques, the yoyo game and the recently introduced mixture
differentials.

1 Introduction

Differential attacks, which were introduced by Biham and Shamir [9] in 1990, use
the evolution of differences between pairs of encryptions in order to construct
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high probability distinguishers. They can concatenate two short differential prop-
erties with probabilities p and ¢ into a longer property with probability pg, but
only when the output difference of the first property is equal to the input differ-
ence of the second property. To overcome this restriction, Wagner [34] introduced
in 1999 the idea of the boomerang attack, which “throws” two plaintexts through
the encryption process, and then watches the two resultant ciphertexts (with
some modifications) return back through the decryption process. This made it
possible to concatenate two arbitrary differential properties whose probabilities
are p and ¢ into a longer property whose probability is p?¢?, since it requires that
four probabilistic events will simultaneously happen. This seems to be inferior to
plain vanilla differential attacks, but in many cases we can find two short unre-
lated differential properties with much higher probabilities p and ¢, which more
than compensates for their quadratic occurrence in p?q?. A typical example of
the successful application of a boomerang attack is the best known related-key
attack on the full versions of AES-192 and AES-256, presented by Biryukov and
Khovratovich [11]. Consequently, boomerang attacks have become an essential
part of the toolkit of any cryptanalyst, and many variants of this technique had
been developed over the last 20 years.

In this paper we develop a new variant of the boomerang attack. We call
it a retracing boomerang attack, since the boomerang we throw through the
encryption not only returns to the plaintext side, but also follows closely related
paths on its forward and backward journey. In certain cases, this makes it pos-
sible to increase the probability of the combined differential property to p2q,
since an event that happened once with probability ¢ will reoccur a second
time with probability 1. This idea had already been used by Biryukov and
Khovratovich [11] in 2009 to get an extra free round in the middle of the encryp-
tion, but we use it in a different way which yields better attacks on several AES
variants.

The main AES variant we consider in this paper is the 5-round version of
AES. This variant had been repeatedly attacked in many papers by a large
variety of techniques over the last 20 years, but all the published key recovery
attacks had a complexity of 232 or higher. It was only in 2018 that this record had
been broken, when [2] showed how to recover the full secret key! for this variant
with a complexity of 224. In this paper we use our new retracing boomerang
attack to break the record again, reducing the complexity to 216-% albeit in the
stronger attack model of adaptive chosen plaintext and ciphertext. This attack
was fully verified experimentally.

Another AES variant we successfully attack is the 5-round version of AES
in which the S-box and the linear mixing operations are secret key-dependent
components of the same general structure as in AES. The best currently known
key-recovery attack on this variant, presented by Tiessen et al. [32] in 2015, had
data and time complexity of 2%°. In this paper we show how to use our new
techniques in order to reduce this complexity to just 226. A comparison of our

! Besides the full key recovery attack, the authors of [2] present an attack with com-
plexity of 2215 that recovers 24 bits of the secret key. Since our attack recovers the
full secret key, we compare it with the full key recovery attack of [2].
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new attacks on 5-round AES and on 5-round AES with a secret S-box with
previous attacks? is presented in Table 1.

Apart of allowing us to obtain better results in cryptanalysis of specific AES
variants, our new technique unveils a hidden relation between the boomerang
attack and the yoyo tricks with AES, introduced recently by Rgnjom et al. [30].
While the ‘yoyo tricks’ differ significantly from classical boomerang attacks, we
show that they fit naturally into the retracing boomerang framework. In a sim-
ilar way, we show that mixture differentials, introduced recently by Grassi [22],
is closely related to a retracing type of the rectangle attack [6,26] (which is the
chosen plaintext version of the boomerang attack). In the case of mixture differ-
entials, the relation between the attacks is even more surprising, and may unveil
additional interesting features of the mixture differential technique.

This paper is organized as follows. In Sect. 2 we present the previous related
work and introduce our notations. We introduce the retracing boomerang attack
in Sect. 3. We apply our new attack to 5-round AES and to 5-round AES with
a secret S-box in Sects. 4 and 5, respectively. In Sect. 6 we present the retracing
rectangle attack and show a relation between the mixture differential technique
and the rectangle technique. We summarize the paper in Sect. 7.

2 Background and Previous Work

The retracing boomerang attack is related to a number of other variants of
the boomerang attack, as well as to several other previously known techniques.
In this section we briefly present the techniques that are most relevant to our
results, while the other techniques are presented in the full version of the paper.

2.1 The Boomerang Attack

As the boomerang attack builds upon differential cryptanalysis, a short intro-
duction to the latter is due.

Differential cryptanalysis. Introduced by Biham and Shamir [9] in 1990,
differential cryptanalysis is a statistical attack on block ciphers that studies
the development of differences between two encrypted plaintexts through the
encryption process. Assume that we are given an iterative block cipher E :
{0,1}™ x {0,1}* — {0,1}" that consists of m (similar) rounds, and denote
the intermediate value at the beginning of the ¢’th round in the encryption
processes of the plaintexts P and P’ by X; and X/, respectively. An r-round
differential characteristic with probability p of a cipher is a property of the form
Pr[X; 1, ® X/, = 20|X; ® X| = 27] = p, denoted in short 2; & 2o.

2 We note that [4,15,21,24,25,31] attacked an intermediate variant, in which only the
S-box is key-dependent, while MixColumns is the same one as in AES. The best
currently known attack on this variant, obtained by Bardeh and Rgnjom [4], has
complexity of 232, Obviously, our attack applies to this variant as well.
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Table 1. Attacks on 5-round AES (full key recovery)

Attack Data Memory Time
(Chosen plaintexts) (128-bit blocks)  (encryptions)
5-Round AES
Square [29] 21! small 215
Partial Sum [33] 28 small 210
Improved Square [20] 233 small 235
Imp. Diff. [7] 2335 238 235
Mixture Diff. [22] 232 232 234
Yoyo [30] 2113 ACC small 231
Mixture Diff. [2] 224 1 2215 224 1
Our Attack (Sect.4) 22 ACC 29 223
Our Attack (Sect.4) 215 ACC 29 2165
5-Round AES with Secret S-boxes

Integral [31] 2128 small 2128
Integral [25] 296 28 296
Imp. Diff. [24] 2102 28 2102
Imp. Diff. [21] 2764 28 2764
Mult.-of-n. [21] 2533 216 2533
Squaref [32] 240 236 240
Yoyo [4] 232 ACC small 231
Our Attacki (Sect.5) 2175 ACC 217 229
Our Attack? (Sect.5) 2258 ACC 217 2258

f—the data and time complexity for partial key recovery is 22'-°
f__the attack applies also when the linear transformation is key-dependent
ACC—Adaptive Chosen Plaintexts and Ciphertexts

Differential cryptanalysis shows that if there exists a differential characteristic
for most of the rounds of the cipher that holds with a non-negligible probability,
then the cipher can be broken faster than exhaustive search by an attack that
requires O(1/p) chosen plaintexts. Differential cryptanalysis was used to mount
the first attack faster than exhaustive search on the full DES [28], as well as on
many other block ciphers.

The boomerang attack. Introduced by Wagner [34], the boomerang attack
was one of the first techniques to show that non-existence of ‘long’ high-
probability differentials is not sufficient to guarantee security with respect to
differential-type attacks. Suppose that the cipher E can be decomposed as
E = E; o Ey, such that for Ey, there exists a differential characteristic @ 2 3,
and for Ei, there exists a differential characteristic v - &, depicted in Fig. 1,
where pg > 27"/2. Then one can distinguish F from a random permutation,
using Algorithm 1 presented below.
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Algorithm 1. The Boomerang Attack Algorithm

1: Initialize a counter ctr < 0.

2: Generate (pg) 2 unique plaintext pairs (Pi, P;) with input difference a.
3: for all pairs (Pi, P2) do

4: Ask for the encryption of (P1, P2) to (C1, C2).

5: Compute C3 =C1 ® 6 and Cy = Co P 0. > J-shift
6: Ask for the decryption of (C3,C4) to (Ps, Py).

7: if P3 D P4 = « then

8: Increment ctr

9: if ctr > 1 then
10: return: This is the cipher E.
11: else
12: return: This is a random permutation.

Ey { B!

" @V_J_’@

Fig. 1. The boomerang attack

The theoretical analysis of the algorithm is as follows. Denote the interme-
diate values after the partial encryption by Ej of the plaintext P; by X, for
1 < j < 4. Let (P, P,) by a plaintext pair such that P, & P, = «. By the
differential characteristic of Ey, we have

X180 Xe =5, (1)

with probability p. On the other side, as the ciphertexts satisfy C7 @ C3 =
Cy @ Cy = 0, by the differential characteristic of F7 we have

(X1® Xz =7) A (X2® Xy =7), (2)

with probability ¢?. (We recall that the differential characteristic L, § for By

is identical to the differential characteristic § < ~ for Ey', in the sense that
both count the same set of input/output pairs for E;.) If both Eq. (1) and (2)
hold, then we have

XzoXy=Xsp X)X Xo)d(XodXy)=v®psey=06 (3)
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Therefore, by the differential characteristic of Ej, we have P3 & Py = «, with
probability p. Hence, assuming (somewhat non-carefully, as discussed in [27])
that all these events are independent, we have

Pr[P; @ Py = a|P, @ P, = a] = p*¢*. (4)

As we take 1/(pq)? pairs (Pp, P2), then with a high probability (= 1 —e™! ~
63%),2 for at least one of them we obtain P3 @ Py = a, and hence, the algorithm
outputs ‘the cipher E’. On the other hand, for a random permutation we have
Pr[Ps ® Py = o] = 27", and hence, the expected number of pairs (Py, P3) for
which P;@® Py = a holds is 27" - (pg) ~2 < 1 (as we assumed pg > 27"/2). Thus,
with an overwhelming probability, the algorithm outputs ‘random permutation’.

Therefore, the above algorithm indeed allows distinguishing E from a random

permutation, using in total 4(pq) ~2 adaptively chosen plaintexts and ciphertexts
(in the sequel: ACPC).

2.2 The S-Box Switch

In [11], Biryukov and Khovratovich showed that in certain cases, the boomerang
attack can be improved significantly by ‘bypassing for free’ some operations in
the middle of the cipher. One of those cases, called S-box switch, is particularly
relevant to our results. Assume that £ = E; o Ey, where the last operation in Ey
is a layer S of S-boxes applied in parallel (which is the usual scenario in SP net-
works, like the AES). That is, S divides the state p into p = (p1, p2, ..., pt) and
transforms it to S(p) = (f1(p)||f2(p2)||--- || fe(pt)), for t independent (keyed)
functions f;. Suppose that the differential characteristics in Ey, F/; are such that
in both 8 and v, the difference in the part of the intermediate state X that
corresponds to the output of some f; is A. In other words, denoting this part of
the intermediate state X by X}, if both characteristics hold then we have

(X1); @ (X2); = (X1); @ (X3); = (X2); & (Xa); = A.

In such a case, we have (X1); = (X4); and (X2); = (X3);, and hence, if the
differential characteristic in the function (f;)~! holds for the pair (X7, X5) then
it must hold for the pair (X3, X4). Thus, the overall probability of the boomerang
distinguisher is increased by a factor of (¢')~!, where ¢’ is the probability of the
differential characteristic in f;.

This ‘switch’, along with other ‘switches in the middle’, was a key ingredient
in the attack of [11] on the full AES-192 and AES-256. Later on, some of these
switches were generalized in the Sandwich attack of [19] for the case of a prob-
abilistic transition in the middle layer and used to attack KASUMI, the cipher
of 3G cellular networks. Recently, a more complete and rigorous analysis of the
transition between Fy and F; was suggested, using the Boomerang Connectivity
Table [14] that covers these and related ideas. These developments are described
in more detail in the full version of the paper.

3 The success probability of the attack can be increased by slightly enlarging the data

c

complexity. If we start with c/(pq)? pairs, then the success probability is 1 — e °.
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2.3 The Yoyo Game and Mixture Differentials

In addition to the classical boomerang attack, two more techniques — the yoyo
game and mixture differentials — are closely related to our attacks. We describe
them very briefly below, but in more detail in the sequel. Our new type of
boomerang attacks allows us to unveil a close relation of these two techniques
to the boomerang and rectangle techniques, respectively.

The yoyo game. The yoyo technique was introduced by Biham et al. [5] in 1998.
Like the boomerang attack, the yoyo game is based on encrypting a pair of plain-
texts (Py, P»), modifying the corresponding ciphertexts (Cy,Cs) into (Cs, Cy),
and decrypting them. However, while the boomerang distinguisher just checks
whether the resulting plaintexts (Ps, Py) satisfy some property, in the yoyo game
the process continues: (Ps, Py) are modified into (Ps, Ps) which are encrypted
into (C5,Cg), those in turn are modified into (C7, Cg) which are decrypted into
(P7, Pg), etc. The process satisfies the property that all pairs of intermediate
values (Xop+1, Xovry2) at some specific point of the encryption process satisfy
some property (e.g., zero difference in some part of the state). Since for a ran-
dom permutation, the probability that such a property is satisfied by a sequence
of pairs (Xopt1, Xopt2) is extremely low, this property can theoretically be used
for distinguishing the cipher from a random permutation. Practically, exploiting
this property is not so easy, as the adversary does not see the intermediate values
(Xa041, Xo042). Nevertheless, Biham et al. showed that in some specific cases,
such a distinguishing is possible and even allows for key recovery [5].

Biham et al. [5] applied the yoyo technique to a 16-round variant of the block
cipher Skipjack. Biryukov et al. [12] applied it to attack generic 5-round Feistel
constructions, and Rgnjom et al. [30] used it to attack reduced-round AES with
at most 5 rounds. As the attack of Rgnjom et al. [30] is a central ingredient in
our attacks on 5-round AES, it is presented in detail in Sect. 4.

Mixture differentials. The mixture differential technique was presented by
Grassi [22]. The technique works in the following setting. Assume that the
cipher F can be decomposed as F = FE; o Ey, where Fy can be consid-
ered as a concatenation of several permutations, i.e., P = (p1,p2,...,p:) and
Eo(P) = filp)llf2(p2)l] ---|fe(pt)), for t independent functions f;. A well
known example of such Ej is 1.5 rounds of AES, that can be treated as four
parallel super S-boxes (see [16]).

Definition 1. Given a plaintext pair (P, P?), where P* = (p},...,p}) and
P? = (p2,...,p?) we say that (P3, P*), where P> = (p3,...,p}) and P* =
(p1,...,p¢) is a mizture counterpart of (P, P?) if for each 1 < j < t, the quartet
(p},p?, p?,p?) consists of two pairs of equal values or of four equal values. The
quartet (P, P2, P3 P%) is called a mizture.

The main observation behind the mixture differential technique is that if (P!, P?,
P3, P%) is a mixture then the XOR of the corresponding intermediate values
(X', X2, X?, X*) is zero. Indeed, for each j, as (pj, p3, p5, pj) consists of two pairs
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of equal values, then the same holds for (f;(p}), f;(p3), [i(p3), fi(p})) as well. In
particular, f;(p})@ f;(p3)®f;(p3)® f;(p])) = 0. As aresult, if we have X '@ X3 =
7, then X?®X* = ~ holds as well. Now, if there exists a differential characteristic
0% 4, § for Ey, then with probability ¢2, the corresponding ciphertexts satisfy
CleC?=C?’0C*=34.

Grassi [22,23] applied the technique to mount several attacks on AES with
up to 6 rounds. The 5-round attack of Grassi was recently improved in [2] into an
attack with overall complexity of 224 for full key-recovery (or 22*° for recovering
24 bits of the secret key), that is significantly faster than all other known attacks
on 5-round AES.

3 The Retracing Boomerang Attack

Our new retracing boomerang framework contains two attack types — a shifting
type and a mizing type. In this section we present these two types and discuss
their advantages over the standard boomerang attack and their relation to previ-
ous works. In the following sections and in the appendix we present applications
of the new techniques, along with a few variants and extensions.

3.1 The Shifting Retracing Attack

Assumptions. Suppose that the block cipher E can be decomposed as F =
E15 o Eq1 o Ey, where Fi5 consists of dividing the state into two parts (a left
part of b bits and a right part of n — b bits) and applying to them the functions
EL, EE | respectively. Furthermore, suppose that for Ey, there exists a differ-

ential characteristic o« & 3, for Ej;, there exists a differential characteristic
L
v L5 (up, pr), for EL,, there exists a differential characteristic jr, £, 61, and

R

for B, there exists a differential characteristic ug %, Sr (see Fig.2).t

In other words, we make the same assumptions as in the boomerang attack,
with the additional assumption that F; can be further decomposed into two
sub-ciphers, and that the second sub-cipher has a specific structure. While this
additional assumption may look very restrictive, it applies for a wide class of
block ciphers. For example, if E is a SASAS construction [13], then Ej2 can be
taken to be the last S layer; a specific such example is AES [29], where Ej2 can
be taken to be the last 1.5 rounds.

The attack procedure and its analysis. Assuming that pq;qi¢f > 2—n/2

the standard boomerang attack can be used to distinguish F from a random
permutation, with data complexity of 4(pq;qkql?)=2.

The basic idea of the retracing boomerang attack is to add an artificial (b—1)-
bit filtering in the middle of the attack procedure. Namely, after encrypting

4 A variant of the attack that is applicable when the top part of the cipher can be
further decomposed into two sub-ciphers, is presented in the full version of the paper.



288 O. Dunkelman et al.

Fig. 2. The retracing boomerang framework

(P, P2) into (Cy, Cy), we first check whether
CtacCEk=0o0rdg. (5)

Only if there is equality, we continue with the boomerang process. Otherwise,
we simply discard the pair (P;, Py). See Fig. 3 for the process.

Cy e Crays

@D D olepd adees (D @)
L R ? \\
Ery Byl .

H({_) N

Fig. 3. A shifted quartet (dashed line means equality)

This is a surprising move, as the discarded pair may actually be a right pair
with respect to the differential characteristic « — @ (i.e., a pair that satisfies

the characteristic). Hence, a natural question arises: What do we gain from this
filtering?
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Note that for any value of 0y, if Eq. (5) holds then the two unordered pairs
(CE CLEy and (CF,CF) are identical. Hence, if one of these pairs satisfies the
L

differential characteristic o, %, ur, then the other one must satisfy it as well.
As a result, the probability of the boomerang distinguisher among the examined
pairs is increased by a factor of (¢Z)~! from (pq1¢Z¢Z)? to (pq1¢d)%qk.

Advantages of the new technique. At first glance, our new variant of the
boomerang attack seems completely odd and useless. Note that as the block size
of EL, is b bits, then any possible differential characteristic of £f, has probability
of at least 27°*1 and so, the overall probability of the boomerang distinguisher
is increased by a factor of at most 2°~!. On the other hand, our filtering leaves
only 27°F1 of the pairs, so we either gain nothing (if ¢~ = 27+1) or even lose
(otherwise)!
It turns out that there are several advantages to this approach:

1. Improving the signal to noise ratio. Recall that the ordinary boomerang attack
applies if pg1 gk ¢ff > 27"/2 as otherwise, the probability that P3@® Py = o holds
for E is not larger than the respective probability for a random permutation. In
the retracing boomerang attack, the probability that Ps & P, = « holds among
the examined pairs is increased by a factor of (¢)~!, while the probability for
a random permutation remains unchanged. As a result, the attack can succeed
in cases where the ordinary boomerang attack fails due to insufficient filtering.

Furthermore, the adversary can use the increased gap between the probabil-
ities of the checked event for E and for a random permutation to replace the
differential characteristic 5 %> o used for the pair (X3, X,) in the backward

direction with a truncated differential characteristic. 3 2= o/ of a higher proba-
bility p’ in which o' specifies the difference in only some part of the bits, while
still having a larger probability of the event P; @ P, = o for E than for a ran-
dom permutation. An example of this advantage is demonstrated in the attack
on 5-round AES presented in the full version of the paper.

2. Reducing the data complexity. The new attack saves data complexity on the
decryption side. Indeed, as decryption is performed only to the pairs that satisfy
the filtering condition, the number of decryptions is reduced by a factor of 20=1.
While usually, the effect of this reduction is not significant as then the encryp-
tions dominate the overall complexity, there are cases in which more queries are
made on the decryption side, and in such cases, the data complexity may be
reduced significantly. This advantage (like the previous one) is demonstrated in
the attack on 5-round AES in the full version of the paper.

3. Reducing the time complexity. The smaller number of pairs on the decryp-
tion side may affect also the time complexity of the attack. This effect is not
significant when the attack complexity is dominated by encryption/decryption
of the data. However, in many cases (e.g., where a round is added before the
distinguisher and the adversary has to guess some key material in the added
round and check whether the condition P35 ¢ Py = a holds), the complexity of
the attack is dominated by analysis of the pairs (Ps, Py). In such cases, the time
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complexity may be reduced by a factor of (¢Z') =, as the number of pairs (P, P;)
is reduced by this ratio.

Relation to previous works. Our new technique uses several ideas that
already appeared in previous works in different contexts. Those include:

— Discarding part of the data before the analysis. The counter-intuitive idea of
neglecting part of the data appears in various previous works, e.g., in the
context of time-memory tradeoff attacks on stream ciphers [18], and in the
context of conditional linear attacks on DES [8].

— Increasing the probability of the boomerang attack by exploiting dependency
between differentials. As we mentioned above, several previous works on the
boomerang attack used dependency between differentials, and in particular,
situations in which the four inputs to some function in the encryption process
are composed of two pairs of equal values, to increase the probability of the
boomerang distinguisher (see, e.g., [10,11,14,19]). The closest to our attack
is the S-bozx switch of Biryukov and Khovratovich [11] described in Sect. 2. In
all these attacks, the gain is obtained in the transition between the two sub-
ciphers Ey, Eq. In contrast, the retracing boomerang exploits dependency
between the two differentials in the same sub-cipher (by forcing dependency
via the artificial filtering).

— Increasing the probability of the boomerang attack by exploiting representation
of a sub-cipher as two (or more) functions applied in parallel. Such a proba-
bility increase was obtained by Biryukov and Khovratovich [11] in the ladder
switch technique, which exploits a subdivision into multiple functions (e.g.,
a layer of S-boxes) along with dependency between differentials, to increase
the probability of the transition between the two sub-ciphers.

— Using quartets of the form (x,z,y,y) to force dependency. This idea was
recently used by Grassi in [22, Theorem 4], in the context of the mixture
differential attack described in Sect. 2.

3.2 The Mixing Retracing Attack

The attack setting. Recall that the shifting retracing boomerang attack
increases the probability of the boomerang distinguisher by forcing equality
between the unordered pairs (CF,C¥) and (CF,CF) that enter (FL)~!. Such
an equality can be forced in an alternative way, without inserting an artificial
filtering.

Instead of working with the same shift § for all ciphertexts, one may shift
each ciphertext pair (Cy,Cy) by (CF @ CL,0), thus obtaining the ciphertexts

C3 = (C3,C31) = (CF @ (CF © C3), G @ 0) = (Cy, CY),
and (similarly) Cy = (CF,CJ), see Fig.4. In such a case, the unordered pairs

(CE CLE) and (CE,CF) are equal, and hence, we gain a factor of (¢)~!, like in
the shifting retracing attack. Furthermore, in the right part we have Cf¥ = CIt
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and CF = CF, and thus, we gain also a factor of (¢f¥)=2 (as both charac-
teristics in B hold trivially with probability 1). This results in a total gain

of (¢5) " (g5") 2.

Fig. 4. A mixture quartet of ciphertexts (a dashed line means equality)

Relation to ‘yoyo tricks with AES’. Interestingly, in the special case of the
AES, the mixing described here is exactly the core step of the yoyo attack of
Ronjom et al. [30] (presented in detail in Sect.4). Hence, this type of retrac-
ing boomerang is not entirely novel, but rather generalizes and presents a new
viewpoint on the yoyo attack of Rgnjom et al.

Comparison between the two types of retracing boomerang. At first
glance, it seems that the mixing retracing attack is clearly better than the shifting
retracing attack presented above. Indeed, it obtains an even larger gain in the
probability of the distinguisher, while not discarding ciphertext pairs! However,
there are several advantages of the shifting variant that make it more beneficiary
in various scenarios:

— Using structures. A central technique for extending the basic boomerang
attack is adding a round at the top of the distinguisher, using structures.
This technique can be combined with the shifting retracing technique, as
follows. First, the adversary performs the ordinary boomerang attack with
structures (i.e., encrypts structures of plaintexts, shifts all ciphertexts by §
and decrypts the resulting ciphertexts), and then she checks the artificial
filtering together with the condition on Ps, Py, since both can be checked
simultaneously using a hash table. As a result, the data complexity remains
the same as in the ordinary boomerang attack (with structures!), while the
retracing boomerang leads to an improvement in the signal to noise ratio,
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which can be translated to a reduction in the data complexity, as described
above.

For mixing retracing, such a combination is impossible, since each ciphertext
pair (C1,Cs) has to be modified by its own shift (C¥ & C¥,0), and so, one
cannot shift entire structures as a single block. Therefore, the reduction of
data complexity by using structures cannot be obtained.

A similar advantage of the shifting variant is the ability to combine it with
extension of the boomerang attack by adding a round at the bottom, as we
demonstrate in our attack on 6-round AES in the full version of the paper.

— Combination with E7;. In the mixing variant, since the output difference for
(BEL)=1 (namely, (C;) @ (Co)T), is arbitrary and changes between differ-
ent pairs, in most cases there is no good combination between differential
characteristics of (Fl,)~! that can be used and differential characteristics of
(E11)~!. Indeed, in the yoyo attack of [30] on 5-round AES, this part of the
attack succeeds simply because F1; is empty. It seems that while the mixing
retracing technique can be applied also in cases where Fy; is non-linear (and,
in particular, non-empty), it will usually (or even almost always) be inferior
to the shifting retracing boomerang in such cases.

— Construction of ‘friend pairs’. An important ingredient in many boomerang
attacks is ‘friend pairs’, which are pairs that are attached to given pairs in
such a way that if some pair satisfies a desired property then all its ‘friend
pairs’ satisfy the same property as well (such pairs are used in most attacks
in this paper). While both types of the retracing boomerang attack allow
constructing several ‘friend pairs’ for each pair, the number of pairs in the
shifting variant is significantly larger, which makes it advantageous in some
cases.

The names of the attacks. The shifting type of the retracing boomerang is
named this way since it preserves the d-shift of the original boomerang attack,
and uses the filtering to enhance the probability of the original boomerang pro-
cess. The mixing type is named this way since it replaces the J-shift by a mixing
procedure, like the one used in mixture differentials [22].

4 Retracing Boomerang Attack on 5-Round AES

Our first application of the retracing boomerang framework is an improved
attack on 5-round AES, which allows recovering the full secret key with data
complexity of 2'°, time complexity of 2'6-°, and memory complexity of 2°. The
attack was fully implemented experimentally. Since our attack is based on cen-
tral components of the yoyo attack of Rgnjom et al. [30] on 5-round AES (which
can be seen as a mixing retracing boomerang attack, as was shown in Sect. 3.2),
we begin this section with describing the structure of the AES and presenting
the attack of [30]. Then we present our attack, its analysis, and its experimental
verification.
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Fig.5. An AES round

4.1 Brief Description of the AES and Notations

The Advanced Encryption Standard (AES) [29] is a substitution-permutation
(SP) network which has 128-bit plaintexts and 128, 192, or 256-bit keys. Since
the descriptions of all attacks we present in this paper are independent of the
key schedule, we do not differentiate between these variants.

The 128-bit internal state of AES is treated as a byte matrix of size 4 x 4,
where each byte represents a value in GF(2®). An AES round (described in
Fig.5) applies four operations to this state matrix:

— SubBytes (SB)—applying the same 8-bit to 8-bit invertible S-box 16 times in
parallel on each byte of the state,

— ShiftRows (SR)—cyclically shifting the i’th row by 4 bytes to the left,

— MixColumns (MC)—multiplication of each column by a constant 4 x 4 matrix
over the field GF(2%), and

— AddRoundKey (ARK)—XORing the state with a 128-bit subkey.

An additional AddRoundKey operation is applied before the first round, and in
the last round the MixColumns operation is omitted. The number of rounds is
between 10 and 14, depending on the key length. We omit the key schedule, as
it does not affect the description of our attacks.

The bytes of each state of AES are numbered 0,1, ..., 15, where for 0 <i,j <
3, the j’th byte in the #’th row is numbered i 4+ 4j (see the state after SB in
Fig.5). We always consider 5-round AES, where the MixColumns operation in
the last round in omitted. The rounds are numbered 0, 1,2, 3, 4. The subkeys are
numbered k_1, kg, ..., ks, where k_; is the secret key XORed to the plaintext
at the beginning of the encryption process. We denote by W,Z, and X the
intermediate states before the MixColumns operation of round 0, at the input
to round 1 and before the MixColumns operation of round 2, respectively. The
j’th byte of a state or a key X; is denoted by X; ; or by (X;);. When several
bytes ji,...,J¢ are considered simultaneously, they are denoted by X; (5. 4}
or by (Xi){j17~--,je}‘

The term ‘¢’th shifted column’ (resp. ‘C’th inverse shifted column’) refers to
the result of application of SR (resp., SR™!) to the £’th column. For example,
the 0’th shifted column consists of bytes 0, 7,10, 13, and the 0’th inverse shifted
columns consists of bytes 0,5, 10, 15. We also denote by SR(j) (resp., SR™1(j))
the byte position to which byte j is transformed by SR (resp., SR™1).

When considering differences between the encryption processes of a pair of
plaintexts, we say that a component (e.g., byte or column) at some stage of
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the encryption process is active if the difference in that component is non-zero.
Otherwise, we call the component passive. Finally, we say that some values
T1,T2, ..., Ty ‘Sum up to zero’ if z1 ®xo ® ... Bz, = 0.

4.2 The Yoyo Attack of Rgnjom et al. on 5-Round AES

The idea behind the attack. The attack decomposes 5-round AES as F =
FE150FE110FEy, where Ej consists of the first 2.5 rounds, F1; is the MC operation
of round 2, and F12 consists of rounds 3 and 4. For Ej in the forward direction,
the adversary uses a truncated differential characteristic whose input difference
is zero in three inverse shifted columns, and whose output difference is zero in
a single shifted column. The probability of the characteristic is 4 - 278 = 276,
since it holds if and only if the output difference of the active column in round 0
is zero in at least one byte. For Ei5 in the backward direction, recall that 1.5
rounds of AES can be represented as four 32-bit to 32-bit super S-boxes applied
in parallel (see [16]). For each ciphertext pair (C1,C3), the adversary modifies
it into one of its mixture counterparts (see Definition 1) with respect to the
division into super S-boxes, calls the new ciphertext pair (Cs,Cy4), and asks for
its decryption. Due to the mixture construction, the four outputs of each super S-
box are composed of two pairs of equal values, and hence, the four corresponding
inputs to the super S-boxes sum up to 0. As MC is a linear operation, this implies
that X1 @ Xo @ X3 @ X4 = 0. Therefore, with probability 276, the difference
X3® X4 equals zero in a shifted column. This, in turn, implies that the difference
Z3 @ Z4 equals zero in an inverse shifted column (i.e., one of the four quartets
of bytes: (0,5,10,15), (1,4, 11, 14),(2,5,8,15),(3,6,9,12)).

At this point, the adversary would like to attack bytes 0,5,10,15 of the
subkey k_1, using the fact that in one of the bytes of the first column, we have
Z3 @ Zy = 0. However, this information provides only an 8-bit filtering, while
32 subkey bits are involved. In order to improve the filtering, the authors of [30]
construct ‘friend pairs’ of the pair (Z3, Z4), such that if we have Z3 ® Z4 = 0 in
byte ¢, then the same holds for all friend pairs. The resulting attack algorithm
(of [30]) is given in Algorithm 2.

Analysis of the attack. The data complexity of the attack is about 27, since for
each of 26 pairs (Py, P»), the adversary decrypts four ciphertext pairs (C5,C9).
The time and memory complexities are dominated by the attack on k_; in Step 7.
In a naive application, this attack requires about 232 operations for each pair
(P1, Py) and each value of ¢ € {0,1,2,3}, and thus, the overall time complexity
of the attack is about 232 - 26 . 4 = 240, The authors of [30] managed to improve
the overall complexity to 23!, using a careful analysis of round 0, including
exploitation of the specific matrix used in MC. We do not present this part of
the attack, as it can be replaced by a simpler and stronger tool, as we describe
below. To summarize, the data complexity of the attack is 2° adaptively chosen
plaintexts and ciphertexts, the memory complexity is 2° and the time complexity
is 231 encryptions.
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Algorithm 2. Rgnjom et al.’s Yoyo Attack on 5-Round AES

1: Ask for the encryption of 25 pairs (P1, P2) of chosen plaintexts that have non-zero
difference only in bytes 0,5,10,15.

2: for all corresponding ciphertext pairs (C1,C2) do

3: Define four modified ciphertext pairs (C4,C4) (j = 1,2,3,4) to be mixture
counterparts of the pair (C1, Cs).

4: Ask for the decryption of the ciphertext pairs and consider the pairs of inter-
mediate values after round 0, (23, ZJ).

5: for all £ € {0,1,2,3} do

6: Assume that all four pairs (Z3, Z1) and the pair (Z1, Z2) have zero difference
in byte £.

7 Use the assumption to extract bytes 0,5,10,15 of k_;.

8: if a contradiction is reached then

9: Increment £

10: if £ > 3 then

11: Discard the pair

12: else

13: Use the fact that ZJ @ Z] = 0 in the entire £’th inverse shifted column to

attack the three remaining columns of round 0 (sequentially) and thus to deduce
the rest of k_1.

4.3 A Simple Improvement of the Yoyo Attack on 5-Round AES

A simple improvement of the attack of Rgnjom et al. is to use a meet-in-the-
middle (MITM) procedure to attack bytes 0,5,10,15 of k_; in Step 7.

Denote the intermediate value in byte m before the MC operation of round 0
in the encryption of a plaintext P by W,,. W.l.o.g. we consider the case £ = 0,
and recall that by the structure of AES, byte 0 in the input to round 1 satisfies

Zo =02, - Wo @03, - Wy @01, - Wy & 01, - Ws. (6)

In the MITM procedure, the adversary guesses bytes 0,5 of k_1, computes the
value , 4 , '
02, - (Wi)o @ 03, - (Wi)1 @ 02, - (Wy)o @ 035 - (Wi (7)

for j =1,2,3, and stores the concatenation of these values (i.e., a 24-bit value)
in a sorted table. Then she guesses bytes 10, 15 of k_1, computes the value

01, - (W)a ® 01, - (W)3 ® 01, - (W])a @01, - (W])s (8)

for j = 1,2,3, and checks for a match in the table (which is, of course, equivalent
to the condition (Z3)o = (Z])o for j = 1,2,3). As this condition is a 24-bit
filtering, about 232 - 2724 = 28 suggestions for bytes 0,5, 10,15 of k_; remain,
and those can be checked using the conditions (Z3)o = (Z4)o and (Z1)o = (Z2)o-

The data complexity of the attack remains 2°. The time complexity is reduced
to 26 .4 . 216 = 224 gperations, where each operation is roughly equivalent to a
computation of one AES round in a single column for 6 plaintexts, or a total of
less than 223 encryptions.
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It seems that the use of MITM increases the memory complexity of the attack
to about 2!¢. However, one can maintain the memory at 2° using the dissection
technique [17] (see, e.g., [2] for similar applications of dissection). Therefore, the
time complexity of the attack is reduced to 223 encryptions, while the data and
memory complexities remain unchanged at 2°.

4.4 An Attack on 5-Round AES with Overall Complexity of 2165

We now show how one can reduce the time complexity of the attack described
above to 216-% at the expense of increasing the data complexity to about 2'°.

The idea behind the attack is to enhance the MITM procedure, such that on
each of the two sides, the number of possible key values is reduced to 2 (instead
of 216). The reduction is obtained using two methods:

Constructing an extra equation by a specific choice of plaintexrts. In order to
reduce the number of possible values of k_; (0 5}, we choose plaintext pairs with
non-zero difference only in bytes 0, 5. For such pairs, the condition (Z1)o = (Z2)o
simplifies into

02, - (W1)o @03, - (W1)1 ® 02, - (Wa)o ® 03, - (Wa)1, 9)

as bytes 2,3 of W cancel out. This equation depends only on the plaintexts and
on bytes 0,5 of k_1, and since it is an 8-bit filtering, it leaves only 2% possible
values of k_j (9,51 In order to detect these 28 candidates efficiently, we make
our choice of plaintexts even more specific.

We choose only pairs of plaintexts (Py, P») that satisfy (Py)s @ (Pa)s = 01,.
In addition, as a precomputation phase we compute the row of the Difference
Distribution Table (DDT) of the AES S-box that corresponds to input difference
01, and store it in memory, where each output difference is stored along with
the value(s) that lead to it.%

As a result, for each pair (P, P;) and for each guess of k_1 0, we can use
Eq. (9) to compute the output difference of the SB operation in byte 5. As the
input difference is fixed to be 01,, we can use the precomputed row of the DDT
to find the inputs to that SB operation by a single table lookup, and hence, to
retrieve instantly the possible value(s) of k_1 5 that correspond to the guessed
value of k_ g.

This process allows us to compute the 28 possible values of k_1 10,5y in about
28 simple operations for each pair.

Eliminating a key byte from the equation by using multiple ‘friend pairs’. In order
to reduce the number of possible values of k_; (19,15}, We attach to each plaintext
pair (P, P») multiple ‘friend pairs’, such that if (Py, P) satisfies the differential
characteristic of Ey, then all friend pairs satisfy the same characteristic as well.

5 Constructing this row takes 2° simple operations, and storing it takes much less than
29 128-bit cells of memory.
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We perform the boomerang process for all friend pairs together with the original
pairs, obtaining many pairs (PJ, P]). We choose one such pair for which we have

(sz)lo@(PZ)w:O or (P§ )1569(13 )15—0 (10)

Assume w.l.o.g. that the equality holds in byte 10. We perform the MITM pro-
cedure presented above with the single pair (P, Pj). Note that the first step
provided us with 28 possible values for k_1,50,53- Hence, in the MITM attack
there are only 2% possible values for the expression (7). On the other hand, by
the choice of the pair, there is zero difference in byte 2 before the MC opera-
tion, and thus, the subkey byte k_q 19 cancels out from the expression (8). As a
result, this expression depends on a single key byte, and thus, has only 28 possi-
ble values, just like Eq. (7). Thus, the MITM procedure requires about 2° simple
operations and (as the data provides an 8-bit filtering) leaves 28 suggestions for
subkey bytes k_1 (0,5,15)- Finally, we can take any other couple of ‘friend pairs’
and recover the unique value of k_1 (95 10,15} by another MITM procedure in
which one side computes the contribution of bytes 0, 1,3 to Eq. (9) (applied for
the difference (Z3)o @ (Z4)o) and the other side computes the contribution of
byte 2, as on each side there are about 2% possible values.

Therefore, the complexity of the MITM attack on k_; 105 10,15} is reduced to
about 2% operations for each pair (P, P) and each value of £, or a total of about
216 operations. As for the data complexity, in order to have a friend pair that
satisfies Eq. (10) with a high probability, we have to take about 27 friend pairs
for each of the 2¢ pairs (P, P2). Hence, the total data complexity is increased
to about 2'°. A more precise analysis is given below.

Attack algorithm. The algorithm of our improved attack on 5-round AES is
as follows.

1. Precomputation: Compute the row of the DDT of the AES S-box that
corresponds to input difference 01,, along with the actual values.

2. Online phase: Take 64 pairs (P;, P) of plaintexts such that in each pair, we
have (P;)s = 00, and (P»)s5 = 01, in byte 0 the values (P;, P») are distinct,
and in all other bytes, the values (P, P») are equal. o

3. To each plaintext pair (Py, P»), attach 27 ‘friend pairs’ (P{, Py), such that
for cach j we have (P} & P§) = Py @ P, and (P ){0 5,10,15) = (P1){0,5,10,15}-

4. Do the following for each plaintext pair (Py, P»), and for each ¢ € {0, 1, 2, 3}:
[we present the operations for £ = 0, the other cases are similar.]

(a) For each guess of byte k_1 o, partially encrypt (P, P;) through the SB
operation in byte 0 of round 0 to find its output difference. Then, assuming
that the pair (Py, P2) satisfies the characteristic of Ey with ¢ = 0 (i.e.,
that (Z1)o = (Z2)0), use Eq. (9) to find the output difference of the SB
operation in byte 5 of round 0. Then use the precomputed DDT to deduce
the actual inputs to that SB operation, and deduce from them the value
of subkey byte k_1 5. Store in a table the 28 possible values k_1 10,5}

(b) Ask for the encryption of (Py, Py) and of its 27 ‘friend pairs’ (P}, P]).
For each ciphertext pair (Cy,Cy) or (C9,C3) we obtain, replace it by
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one of its mixture counterparts, which we denote by (Cs, Cy) or (C4,CY)
(respectively), and ask for its decryption. Denote the resulting plaintext
pairs by (Ps, Py) and (P7, P]).

(¢) Find a value j for which the pair (PJ, PJ) satisfies Eq. (10). [In the follow-
ing steps we assume w.l.o.g. that the condition yields equality in byte 10.
If the equality is in byte 15, the steps should be modified accordingly.]

(d) Perform a MITM attack on Column 0 of round 0, using the plaintext pair
(P4, P]). Specifically, use the 28 possible values for k_ 1,{0,5) computed in
Step 4(a) to obtain 2% possible values for (7) and store them in a table.
Then, for each guess of subkey byte k_1,15, compute (8) and check in the
table for a collision. Each collision provides us with a possible value of
k_1,0,5,15}-

(e) Perform a MITM attack on Column 0 of round 0, using two other plaintext
pairs (Pg/,Pj/). Specifically, use the 28 possible values for k_10,5,15)
computed in the previous step to obtain the contribution of bytes 0,1, 3
to Eq. (6) (applied for the difference (Z3)o @ (Z4)o, for both pairs) and
store it in a table. Then, for each guess of subkey byte k_; 19, compute
the contribution of byte 2 to Eq. (6) and check in the table for a collision.
(Each collision provides us with a possible value of k_; {0510,15}, along
with a filtering for wrong pairs.) If a contradiction is reached, move to
the next value of ¢; if contradiction is reached for all values of ¢, discard
the pair (P;, P») and move to the next pair.

5. Using a pair (Py, P;) for which no contradiction occurred in Step 4 and its
‘friend pairs’, perform MITM attacks on Columns 1,2, and 3 of round 0
(sequentially), exploiting the fact that Z3 @ Z4 equals zero in the £’th inverse
shifted column (e.g., for £ = 0 this column consists of bytes 0, 5,10, 15), to
recover the rest of the subkey k_1.

Attack analysis. The attack succeeds if the data contains a pair that satisfies
the truncated differential characteristic of Ey (i.e., leads to a zero difference in
at least one byte in the active column in round 0), and in addition, for one of
the ‘friend pairs’ of that pair, the corresponding plaintext pair (P, PJ) has zero
difference in either byte 10 or 15. With 64 plaintext pairs and 128 ‘friend pairs’
for each pair, each of these events occurs with probability of about 1—e~! ~ 0.63,
and hence, under standard randomness assumptions, the success probability of
the attack is about 0.63? ~ 0.4. This probability can be increased significantly
by increasing the number of pairs we start with and the number of their ‘friend
pairs’. For example, with 128 plaintext pairs and 128 friend pairs for each of
them, the expected success probability is (1 — e 2)(1 — e~ !) ~ 0.54.

We note that the success probability can be increased further by exploiting
other ways to cancel terms in Eq. (8). For example, if for some j, j/, the unordered
pairs {(PJ)10, (P])10} and {(Pg/)lo, (PZ,)lo} are equal, then we can use the
XOR of Eq. (8) for both pairs to cancel out the effect of subkey byte k_1 19 on
the equation. This allows us to apply the efficient MITM attack described above
also in cases where no ‘friend pair’ of (Py, P») satisfies Eq. (10), thus increasing
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the success probability of the attack. Our analysis shows that under standard
randomness assumptions, for the same amount of 64 initial pairs and 128 ‘friend
pairs’ for each pair considered above, this improvement increases the success
probability of the attack from 0.4 to about 0.5.

The data complexity of the attack, for the success probability 0.4 computed
above, is 2-26.27 = 21 chosen plaintexts and 2'* adaptively chosen ciphertexts.
We note that the amount of chosen plaintexts can be reduced by considering
two structures of 8 plaintexts each (where in the first structure we have (Py)s =
00, and (Pp)o assumes 8 different values, and in the second structure we have
(P2)s5 = 01, and (P»)o assumes 8 different values) and taking the 64 pairs (P, P3)
composed of one plaintext in each structure. (In such a case, the ‘friend pairs’ are
also taken in structures obtained by XORing the same value to all elements in the
two initial structures.) This reduces the data complexity to slightly more than
24 adaptively chosen plaintexts and ciphertexts (as the number of encrypted
plaintexts is negligible with respect to the number of decrypted ciphertexts).
On the other hand, this slightly reduces the success probability of the attack,
due to dependencies between the examined pairs (P, P»), as demonstrated in
the next subsection. To conclude, with data complexity of 2! adaptively chosen
plaintexts and ciphertexts we obtain success probability of more than 50%.

The memory complexity of the attack is no more than 29 128-bit memory
cells, like in the yoyo attack of Rgnjom et al. [30].

As for the time complexity, it is dominated by several steps that consist of
about 216 simple operations each. The comparison of these operations to AES
encryptions is problematic, and hence, we adopt a common strategy of counting
the number of S-box applications and dividing it by 80, which is the number of
S-boxes in 5-round AES. The number we obtain (divided by 21¢), in addition to
the 214 + 211 full encryptions of Step 4(b), is: negligible for Steps 1 and 4(c), 2
for Step 4(a), 6 for Step 4(d), 8 for Step 4(e), and 24 - 3 = 72 for Step 5. Hence,
the total complexity is less than 216-® full encryptions.

We conclude that our 5-round attack requires 2'® adaptively chosen plain-
texts and ciphertexts, 2° memory and 2'6® time, and recovers the full secret key
with success probability of more than 50%.

4.5 Experimental Verification

To verify the success probability of our attack computed above, we implemented
two variants of the 5-round attack. The first variant uses up to 128 independent
plaintext pairs. The second variant uses two structures, one of 8 plaintexts and
another of 16 plaintexts, to create a total of 128 plaintext pairs. For each pair
(Py, P2), we generated 128 friend pairs. We ran the attack on 500 different ran-
domly generated keys. For each success of the attack, we saved the number of
pairs we had to try before finding the key. Then we extracted from this data the
success probability of the attack, as a function of the amount of available data.
Figure 6 shows this success probability, as a function of the number of plaintext
pairs, up to a maximum of 128 pairs.
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Fig. 6. Attack success probability

It can be seen that the success probability is slightly lower than the probabil-
ity predicted by the above analysis. In particular, for 64 initial pairs, the success
probability is slightly higher than 0.3 (rather than the predicted 0.4). We conjec-
ture that the deviation from the theoretical estimate occurs due to dependency
issues, but leave this small discrepancy for further research. Anyway, for data
complexity of 2'°, the experimental success probability is well above 50%.

The source code used in the experiments, along with the raw data, is included
as a supplementary material, and will be made public together with the online
version of the paper.

5 Improved Attack on 5-Round AES with a Secret S-Box

In [32], Tiessen et al. initiated the study of AES with a secret S-box, namely a
variant of AES in which the SB operation is replaced by a key-dependent S-box.
They showed that 5 rounds of the new variant can be broken with complexity
of 24° and 6 rounds can be broken with complexity of 27, using variants of the
Square attack on AES [29]. In the last four years, six more papers analyzed 5-
round variants of AES with a secret S-box: in [15,25,31] using the Square attack,
in [24,25] using impossible differentials, in [21] using impossible differentials and
the multiple-of-n property, and in [4] using the yoyo technique. The best cur-
rently known result was obtained by Bardeh and Rgnjom [4] — data complexity
of 232 adaptively chosen plaintexts and ciphertexts and time complexity of 23!
operations (in addition to generating the data).

In this section we use the retracing boomerang technique to devise an attack
on 5-round AES with a secret S-box with a complexity of 225-® in the adaptively
chosen plaintext and ciphertext model. Like the attacks of [4,21,24,25,31], our
attack recovers the secret key, without fully recovering the secret S-box. (Actu-
ally, we recover the S-box up to an invertible affine transformation in (GF(2))%;
as our attack is of a differential nature, it cannot distinguish between secret
S-boxes that differ by such transformation.) On the other hand, it applies even
against a stronger variant in which MC is also replaced by a key-dependent MDS
transformation (see [16]) applied on each column. Among the previous attacks,
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only the Square attack of Tiessen et al. [32] applies to this variant and can break
it with complexity of 240,

Our attack uses the same retracing boomerang framework as our attack on 5-
round AES. Namely, we start with plaintext pairs (P;, P;) with difference only in
bytes 0, 5, 10, 15, and for each such pair, we modify the corresponding ciphertext
pair (C1,C9) into one of its mixture counterparts, which we denote by (Cs, Cy),
and ask for its decryption. We know that with probability 276, the corresponding
pair (Z3, Z,) of intermediate values at the input of round 1 has zero difference
in an inverse shifted column (e.g., in bytes 0, 5,10, 15). (Note that this part does
not use the specific structure of SB or of MC, and hence, can be applied also to
a variant of AES with key-dependent SB and MC operations). Our goal now is
to use this knowledge to attack round 0, as the attack we used for 5-round AES
heavily relies on the fact that the S-box is known to the adversary.

Partial recovery of the secret S-box. To attack round 0, we use the strategy
proposed in the structural attack of Biryukov and Shamir on SASAS [13], that
was already used against AES with a secret S-box in [32], albeit inside the frame-
work of the Square attack. Assume w.l.0.g. that the retracing boomerang predicts
zero difference in byte 0 of the state Z, i.e., yields the equation (Z3)o®(Z4)0 =
(In the actual attack, if the procedure with byte 0 leads to a contradiction, the
adversary has to perform it again with bytes 1,2, 3.) By Eq. (6), we can rewrite
this equation as

0=(Z3)0® (Za)o = 02, - (W3)o ® (Wa)o) ® 03, - (W3)1 & (Wa)1)
& 01, - ((Wg)z D (W4)2) @01, - ((Wg)g D (W4)3)

Note that each of the values (W3); has the form SB(P; @ k_; ;), where for
j=0,1,2,3, 7/ = SR™*(j) takes the value 0, 5,10, 15, respectively. Therefore, if
we define 4 - 256 = 1024 variables z,, ; = SB(m & k_1 ;) (for m =0,1,...,255
and j' = 0,1,2,3), then each plaintext pair (P, P;) for which the corresponding
intermediate values (Z3, Z4) satisfy

(11)

(Z3)0 ® (Z4)o =0, (12)

provides us with a linear equation in the variables {x, ;}.

In order to recover the variables {z,, ;} by solving a system of linear equa-
tions, we need many pairs (Z3,Z4) that satisfy Eq.(12) simultaneously. We
obtain these pairs by attaching about 2'° “friend pairs’ to each original pair
(P, P2), like we did in the attack on 5-round AES in Sect.4. Hence, we start
with 26 pairs (P, ), and for each pair and about 2!° friend pairs we perform
the mixing retracing boomerang process and use each of the pairs to obtain a lin-
ear equation in the variables {,, ;}. (This part of the attack has to be repeated
for £ = 0,1,2,3, as each value of ¢ leads to different equations. The equations
presented above correspond to £ = 0.) Then, we recover as many as we can of the
variables {z, ;} by solving a system of linear equations. We take a bit more than
210 friend pairs for each pair in order to obtain extra filtering, which allows us
to efficiently discard pairs (P;, P») that do not satisfy the boomerang property.
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As was shown in [32], the equations do not allow determining the variables
{zm,;} (and thus, the secret S-box) completely. Indeed, as our basic Eq. (11)
represents differences and not actual values, it is invariant under composition of
the secret S-box with an invertible linear transformation over (GF(2))®. Thus,
the best we can obtain at this stage is four functions Sy, S1, 52, 53, such that

Sj(x) = Lo(SB(z & k—_1,5)),

for some unknown invertible linear transformation L. In addition, by repeating
the attack for three other columns in round 0 (using the fact that for a pair
(P1, Py) that satisfies the boomerang property, an entire inverse shifted column
of Z3 & Z4 equals zero), we obtain the S-boxes S;(x) for all j € {0,1,...,15},
albeit with multiplication by a different matrix L; in all the S-boxes of (inverse
shifted) Column().

Recovering the secret key. While this information does not recover the S-
box completely, it does allow us to recover the secret key k_1, up to 256 possible
values. This is done in two steps.

First, for each j' € {1,2,3} we can easily recover kj; = k_1,0® k_1 j in time
28, as ks is the unique value of ¢ such that S;(z) = Sp(x@®c) for all z. In a similar
way, we can recover each inverse shifted column of k_; up to 256 possible values
(e.g., to find the values k_1 1 @ k_; s for s € {6,11,12} by attacking Column 3).
This already reduces the number of possible values of k_; to 232.

Second, we find the differences k_1 o @ k_1 ; for j = 1,2, 3 by taking several
quartets of values (x1, z2, 3, x4) such that So(z1)® So(z2)® So(z3) B So(rs) =0
and finding the unique value of ¢; such that

Si(c; ® 1) ® Sj(c; ®x) ® Sj(c; ®w3) ® Sj(c; ®ayg) =0.

(The quartets are used to eliminate the effect of the difference between the linear
transformations Ly and L; in the definitions of Sy and S;.) Thus, in about 212
operations we recover the entire secret key k_i, up to the value of a single
byte k_1 0. Assuming that the secret S-boxes are determined by the secret key,
the attack can be completed by exhaustive search over the 28 remaining key
possibilities. The resulting attack algorithm is given in Algorithm 3.

Attack analysis. The data complexity of the attack is 26 - 2 - 210 = 217 chosen
plaintexts and 2'7 adaptively chosen ciphertexts. Like in the attack on 5-round
AES presented in Sect. 4, we can reduce the required amount of chosen plaintexts
to about 2'* using structures, and so the overall data complexity is less than
2175 adaptively chosen plaintexts and ciphertexts.

The time complexity is dominated by solving a system of 1034 equations
in 1024 variables in Step 10, that has to be performed for each of the 26 pairs
(Py, P2) and for ¢ = 0,1,2,3. Using the Four Russians Algorithm ([1]; see [3]
for the motivation for choosing it), each solution of the system takes about
(210)3 /1og(219) ~ 227 simple operations, that are equivalent to about 227 /80 ~
221 encryptions. Hence, the time complexity of the attack is 22°. (Note that the
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Algorithm 3. Attack on 5-Round AES with Secret S-Box and MixColumns

1: Ask for the encryption of 25 pairs (P1, P2) of chosen plaintexts that have non-zero
difference only in bytes 0,5,10,15.

2: for all Plaintext pairs (Pi, P») do

3: Generate 2'° + 10 ‘friend pairs’ (PJ, PJ), such that for each j: (P} @ PJ) =
P1 @ P, and (P ){0,5,10,15) = (P1){0,5,10,15} -

4: Ask for the encryption of all ‘friend pairs’ (P}, PJ)

5: for all pairs (Pi, P2) and for each ¢ € {0,1,2,3} do > We present the case of
£ = 0, the other cases are similar.

6: for all m € {0,1,...,255} and j € {0,1,2,3} do

T Define zm ; = SB(m @ k_y sg-1(;))

8 Assume that Eq. (11) is satisfied for all Z3, Z3 of the ‘friend pairs’ (P}, P])
9: Obtain the corresponding linear system of equations in @, ;

10: Solve the system of 1034 linear equations in 1024 variables

11: if a contradiction is reached then

12: Increment /¢

13: if £ > 3 then

14: Discard the pair

15: else

16: The solution yields four functions Sj(z) = Lo(SB(z © k_; gr-1(;)), for

some unknown invertible linear transformation Lg.

17: Repeat the attack on the other three columns with (Pi, P2) to obtain S;(z) for
j=4,5,...,15.

18: Find the rest of the secret key by exhaustive key search (assuming the secret S-box
depends on the master 128-bit key k_1)

solution of a system of equations in Step 17 is much cheaper, as it has to be
performed only for a single pair (Py, P»).)

The memory complexity is dominated by the memory required for solving
the system of equations, which is less than 217 128-bit blocks. (There is no need
to store the plaintext/ciphertext pairs, as they can be analyzed ‘on the fly’.)

We conclude that the data complexity of the attack is 2'7-® adaptively cho-
sen plaintexts and ciphertexts, the time complexity is 229 encryptions, and the
memory complexity is 217 128-bit blocks.

Improving the overall complexity by applying a distinguisher before
the attack. Note that in the attack, we have to apply the equation-solving step
28 times, since we do not know which pair (P, P,) and which value of £ satisfies
the boomerang property. Hence, if we can obtain this information in some other
way, this will speedup the attack considerably.

A possible way to find a pair that satisfies the boomerang condition is to
apply the yoyo distinguishing attack on 5-round AES of Regnjom et al. [30],
which does not depend on knowledge of the S-box, and thus, can be applied in
the secret S-box setting. (Note however that this attack depends on the MDS
property of MC (see [16]). Hence, unlike the attack described above which applies
when MC is replaced by an arbitrary invertible linear transformation, this attack
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applies only if the transformation is assumed to satisfy the MDS property.)
The attack of [30] requires 225-® adaptively chosen plaintexts and ciphertexts,
and in addition to distinguishing 5-round AES from a random permutation, it
finds a pair (P;, P») with non-zero difference only in bytes 0,5, 10, 15, such that
the corresponding intermediate values (7, Z2) have non-zero difference in only
two bytes. This pair satisfies our boomerang property, and thus, can be used
(along with 1034 friend pairs) in the attack described above. This reduces the
complexity of each equation-solving step to 22!, and thus, the overall complexity
of the attack is dominated by the complexity of Rgnjom et al.’s attack. We
conclude that this variant of the attack has data and time complexities of 2258
and memory complexity of 2!7.

6 The Retracing Rectangle Attack — Connection to
Mixture Differentials

In this section we present the retracing rectangle attack, which is the retrac-
ing variant of the rectangle attack [6]. First we recall the amplified boomerang
(a.k.a. rectangle) attack, then we present and analyze the new retracing rect-
angle attack, and then we use our new framework to expose a relation of the
recently introduced mizture differential attack [22] to the rectangle attack.

6.1 The Amplified Boomerang (a.k.a. Rectangle) Attack

An apparent drawback of the boomerang attack is the need to use adaptively
chosen plaintexts and ciphertexts — a very strong ability for the attacker. In [26],
Kelsey et al. presented the amplified boomerang attack, which imitates the pro-
cedure of the boomerang attack using only chosen plaintexts. In the attack,
the adversary considers pairs of pairs of plaintexts ((Py, P2), (Ps, P4)) such that
P &P, = P3® Py = «, and for each of them, she checks whether the correspond-
ing quartet of ciphertexts ((C1,Ca), (C3,C4)) satisties C; @ C3 = Cy & Cy = 6.
For the analysis of the attack, we refer the reader to [26].

Kelsey et al. applied the amplified boomerang attack to the AES’ candidates
MARS and SERPENT. In a subsequent work, Biham et al. [6] presented several
enhancements of the attack, and gave it the name rectangle attack, which is the
currently more commonly-used name.

6.2 The Retracing Rectangle Attack

The transformation from the retracing boomerang attack to the retracing rectan-
gle attack is similar to the transformation from the (classical) boomerang attack
to the rectangle attack.
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The attack setting. We assume that E can be decomposed as E = Ej o Eys 0
Ey1, where Ey; consists of dividing the state into two parts (a left part of b bits
and a right part of n — b bits) and applying to them the functions EX, El.
Furthermore, we suppose that for Ef;, there exists a differential characteristic

L R
ar, LEWN pr, for EE | there exists a differential characteristic ag LESN ugR, for
Eys, there exists a differential characteristic p 22, 3, and for E1, there exists a
differential characteristic y - § (see Fig. 7).

Eo

Fig. 7. The retracing rectangle setting

Assuming that pfplpag > 277/2, the rectangle attack can be used to distin-
guish F from a random permutation, with data complexity of O((pfp¥paq)~! -
on/ 2) chosen plaintexts. Recall that in the standard rectangle attack, we con-
sider quartets of plaintexts ((Py, P»), (Ps, Py)) such that Py & P, = Ps® Py = «,
and check whether the corresponding quartets of ciphertexts ((C1, C2), (Cs, Cy))
satisfy C7 @ C3 = Cy & Cy = §. In the retracing rectangle attack, we consider
only quartets of plaintexts that satisfy

(PLoPy=a)A(P3s®Py=0a)A((P)F @ (P3)F =0or ab). (13)

As a result, the two unordered pairs (PF, PF) and (Pf, P}) are identical, and
hence, if one of them satisfies the differential characteristic of FL), then so does
the other. Thus, the probability of the rectangle distinguisher is improved by a
factor of (p¥)~1.

Advantages. Unlike the shifting retracing boomerang attack, here we obtain
an improvement in the probability of the distinguisher without a need to discard
some part of the data. (This holds since the adversary can choose the plaintexts
as she wishes, and in particular, can force the additional restriction (P @ PL =
0 or o) “for free’.) In addition, the signal to noise ratio is improved, like in the
retracing boomerang attack.
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It should however be noted that in most applications of the rectangle attack,
the adversary starts with structures S of pairs with input difference «, such that
each pair-of-pairs within the same structure satisfies the initial condition of the
rectangle distinguisher. Then, for each structure, the adversary uses a hash table
to check all these (lg |) quartets in time |S|. In the retracing rectangle attack,
one has to either give up the structures and work with each pair-of-pairs that
satisfies Eq. (13) separately, or else perform the ordinary rectangle attack and
then check the additional condition (P @ Pf = 0 or o) simultaneously with
the condition C; & C3 = Cy ® Cy = § (which can be done using a hash table). In
either case, the overall data complexity of the attack is not reduced, compared
to the rectangle attack with structures, and thus, improvement of the signal to
noise ratio is the main advantage of the retracing rectangle technique.

A mixing variant — relation to mixture differentials. Like in the mix-
ing retracing boomerang attack, the adversary can force equality between the
unordered pairs (P, PF), (P, PE) by choosing Py = (PF,Pf) and Py =
(PE, P), or in other words, by taking the pair (P3, Py) to be the mizture
counterpart of the pair (Py, Py). As this choice also forces equality between the
pairs (Pf, P) and (Pf, PF), the probability of the rectangle distinguisher is
increased by a factor of (pFpft)~1.

Interestingly, it turns out that the core step of the mizture differential attack
of Grassi [22] on 5-round AES fits into the mixture retracing rectangle attack
framework.

Specifically, the core of [22]’s result is a chosen plaintext distinguishing attack
on a 3.5-round variant of AES. In this attack, 3.5-round AES is decomposed as
Ey0FEys0 Egy1, where Eq; consists of the first 1.5 rounds, Fyo consists of a single
MC layer, and F; is composed of the last 1.5 rounds. The attack uses quartets
of plaintexts (Pi, Py, P3, Py) constructed by a mixing procedure, as described
in Definition 1, and considers the corresponding quartets (X7, Xo, X3, X4) and
(Y1,Y5,Y35,Y,) of intermediate values after Fp; and Epg, respectively. The repre-
sentation of 1.5-round AES as four Super-S-boxes applied in parallel [16] allows
deducing that X; & Xs ® X3® X4 = 0 holds with probability 1. As Eys is linear,
the same holds for Y7, Y5, Y3, Y,. Finally, the attack uses a truncated differen-
tial characteristic of F; with probability 1 that starts with difference 0 in an
inverse shifted column (e.g., bytes 0,5,10,15) and ends with difference 0 in a
shifted column (e.g., bytes 0, 7,10, 13). (This characteristic also follows from the
Super-S-boxes representation of 1.5-round AES.) If the pair (Y7, Y3) satisfies the
input difference of this characteristic — an event that occurs with probability of
2732 — then (Ya,Yy) satisfies the input difference as well, and then we know for
sure that both (Cy,C5) and (Cy,Cy) have zero difference in bytes 0,7, 10, 13.
This provides a 64-bit filtering, that is exploited in [22] to obtain a key recovery
attack on 5-round AES.

While this may not be apparent at a first glance, this attack is indeed a
variant of the mixing retracing rectangle attack described above. The choice of
plaintext quartets is exactly the same, and so is the treatment of F; (taking
note that the differential characteristics used in a boomerang/rectangle attack
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may be truncated, as mentioned above). The only seeming difference is Ey,
where instead of considering a specific differential characteristic we only make
sure that the four outputs sum up to zero. However, this is actually the same
as using all possible differential characteristics simultaneously, as is commonly
done in boomerang/rectangle attacks.

7 Summary and Open Problems

In this paper we introduced a new version of boomerang attacks called a retrac-
ing boomerang attack, and used it to significantly improve the best known key
recovery attacks on 5 rounds of AES (both in its standard form and when the
S-box and the linear transformation are secret key-dependent components). The
most interesting problems left open in this paper are:

— Find additional applications of the new technique.

— Find other types of correlations which can further increase the probability of
the combined differential property.

— Create a “grand unified theory” of boomerang-like attacks which will explore
their hidden relationships and treat them rigorously.
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Abstract. We revisit the well-studied problem of extracting nearly uni-
form randomness from an arbitrary source of sufficient min-entropy.
Strong seeded extractors solve this problem by relying on a public ran-
dom seed, which is unknown to the source. Here, we consider a setting
where the seed is reused over time and the source may depend on prior
calls to the extractor with the same seed. Can we still extract nearly uni-
form randomness?

In more detail, we assume the seed is chosen randomly, but the source

can make arbitrary oracle queries to the extractor with the given seed
before outputting a sample. We require that the sample has entropy and
differs from any of the previously queried values. The extracted output
should look uniform even to a distinguisher that gets the seed. We con-
sider two variants of the problem, depending on whether the source only
outputs the sample, or whether it can also output some correlated public
auziliary information that preserves the sample’s entropy. Our results are:
Without Auxiliary Information: We show that every pseudo-random
function (PRF) with a sufficiently high security level is a good extractor
in this setting, even if the distinguisher is computationally unbounded.
We further show that the source necessarily needs to be computationally
bounded and that such extractors imply one-way functions.
With Auxiliary Information: We construct secure extractors in this
setting, as long as both the source and the distinguisher are computa-
tionally bounded. We give several constructions based on different inter-
mediate primitives, yielding instantiations based on the DDH, DLIN,
LWE or DCR assumptions. On the negative side, we show that one can-
not prove security against computationally unbounded distinguishers in
this setting under any standard assumption via a black-box reduction.
Furthermore, even when restricting to computationally bounded distin-
guishers, we show that there exist PRF's that are insecure as extractors
in this setting and that a large class of constructions cannot be proven
secure via a black-box reduction from standard assumptions.

1 Introduction

EXTRACTING RANDOMNESS. Randomness is an important ingredient in many
algorithmic tasks, and is especially crucial in cryptography. Indeed, much of
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cryptography relies on the assumption that parties can sample uniformly ran-
dom bits. However, most natural sources of randomness are imperfect and not
uniformly random. This motivates the study of randomness extraction, whose
goal is to extract (nearly) uniform randomness from imperfect sources.

Ideally, we would have a deterministic function Ext that converts an imper-
fect source of randomness X into a (nearly) uniformly random output Ext(X).
Furthermore, such an extractor should work for all sources of randomness X
having a sufficiently large amount of (min-)entropy. Unfortunately, this is easily
seen to be impossible, even if we only want to output 1 bit [CG85]: for every
extractor function Ext, there is a source X that has almost full min-entropy yet
the output of Ext(X) is completely fixed.

There have been two broad lines of work to get around this. The first
line of work designs extractors for restricted types of sources X that satisfy
additional requirements beyond just having entropy (see e.g., [von51, CGH+85,
Blug&6,L1.S89,CG85,TV00,BST03,BIW04,CZ16]). While this is an important
research direction, we often know very little about natural sources of random-
ness and they may fail to satisfy the imposed requirements. The second line of
work considers (strong) seeded extractors [NZ93,NZ96|, where the extractor is
given a public uniformly random seed S, which is independent of the source
X, and we require that the extracted output Ext(X;.S) is close to uniform even
given the seed S.

EXTRACTOR-DEPENDENT SOURCES. In this work, we consider a seeded extrac-
tor and envision a scenario where a single uniformly random seed S is chosen
once and then is reused over time by many different users and/or applications
to extract randomness from various “natural” sources of entropy. For example,
the seed S could be a part of a system random number generator (RNG) that
extracts randomness from physical sources of entropy, such as the timing of
interrupts etc. If the sources are truly independent of the seed S, then stan-
dard (strong) seeded extractors suffice to guarantee that the extracted outputs
are nearly uniform. However, since the seed S is continuously reused, past out-
puts of the extractor will make their way back into “nature” and may affect
the sources in the future. For example, interrupts may depend on processes that
themselves rely on previous outputs of the extractor. Furthermore, since we can-
not assume that all users/applications use the extractor securely, we have to
allow for the possibility that some of the prior calls to the extractor were made
on arbitrary samples that may not have any entropy. Unfortunately, if the source
can depends on prior calls to the extractor with the same seed S, we violate the
condition that the source is independent of the seed and can no longer rely on
the security of standard seeded extractors. We emphasize that, although the seed
S is public, the sources are not fully adversarial and not arbitrarily dependent
on S. (A restriction of this sort is of course necessary to circumvent the obvious
impossibility result.) Instead, we assume that the sources can only depend on
prior calls to the extractor with the given seed S, but are otherwise indepen-
dent of S. We call such sources “extractor-dependent”. Can we design extractors
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for extractor-dependent sources (ED-Extractors) that manage to extract nearly
uniform randomness in this setting?

DEFINING THE PROBLEM. We now specify the problem in more detail. Our goal
is to design a seeded extractor EDExt that extracts randomness from extractor-
dependent sources. We consider a setting where a seed S is chosen uniformly at
random. A source SEPE(-5) gets oracle access to the extractor with the seed S
and outputs a sample X along with some public auxiliary information AUX. We
say that such a source S is a legal extractor-dependent source of entropy « if two
conditions hold: (1) the (conditional min-entropy) of X given S, AUX is at least
a, and (2) the source never queries the oracle on the value X that it outputs. An
a-ED-Extractor needs to ensure that for all legal extractor-dependent sources
of entropy «, the output EDExt(X,S) is indistinguishable from uniform, even
given the seed S and the auxiliary information AUX.

DiscussioN ON THE LEGALITY CONDITIONS. We motivate the reason behind
the two legality conditions imposed by the definition.

Firstly, just like for standard (seeded) extractors, we need to assume that X
has a sufficient level of entropy even conditioned on AUX in order to extract ran-
domness from it. In our case, the source also has access to the oracle EDExt(-, S)
with a random seed S, but we want the entropy to come from the internal ran-
domness of the source rather than from the seed S since the latter is public and
known to the distinguisher. Therefore, it is natural to also condition on S.

The second condition is clearly necessary: without it we could define a source
that queries the oracle on random values and outputs the first such value on
which the extracted output starts with a 0. Such a source would have almost full
entropy, yet the extracted output would be easily distinguishable from uniform.
Moreover, this condition is also reasonable when modeling our intended scenario
since the sample should have entropy even given all the prior extractor calls that
influenced nature, and therefore it should differ from all of them.

In particular, the two legality conditions include the following simpler sub-
class of sources, which already intuitively captures our intended scenario. Con-
sider sources S = (81, S2) that consists of two components. The first component
SlE PEAC-S) makes arbitrary oracle calls to the extractor and models the influ-
ence that these calls have on nature; it outputs some value state. The second
component Sp(state) then outputs X, AUX without making any further oracle
queries and captures the entropic process that produces the sample. The only
condition we impose is that, for every possible fixed value of state, the entropy
of X conditioned on AUX when they are sampled according to Sa(state) should
be at least a. If « is large enough then S satisfies both of the previous legality
conditions. In particular, §; could not have queried the oracle on X since the
entropy of X comes only from the random coins of Sy that are unknown to Sj.

D1scussION ON AUXILIARY INFO. Our default definition allows the source to
output some public auxiliary info AUX that can be correlated with the sample
X as long as it preserves its (average conditional min-)entropy. It is natural that
some such information may be public (e.g., the source X denotes the timing of



316 Y. Dodis et al.

interrupts, but the adversary can learn some auxiliary info AUX denoting the
high-order bits of such timings by interacting with the system). We also consider
a weaker setting without auziliary info, where we don’t have AUX. In the case
of standard seeded extractors, it turns out that there is not much difference
between a setting with auxiliary info and without [DORSO08]. However, as we
will see, there is a significant difference between the two settings when it comes
to ED-Extractors.

PrIOR WORK. The work of Coretti et al. [CDKT19] initiates the study of
extracting from extractor-dependent sources in the special case where the
extractor is a random oracle. While their definition is specifically tailored to
the random-oracle model, our definition can be seen as the natural extension
of it to the standard model. In particular, they consider the setting where
O(-) = EDExt(-,S) is a truly random function. They show that this is an a-
ED-Extractor for any super-logarithmic entropy «, as long as the source only
makes polynomially many queries, but even if the distinguisher is computation-
ally unbounded and can see the entire truth table of the oracle. This gives
us heuristic evidence that a “good” cryptographic hash function is an ED-
Extractor in the standard model even against computationally unbounded dis-
tinguishers (as long as the source is computationally bounded). The main open
question is therefore whether we can construct ED-Extractors under standard
computational assumptions.

1.1  Our Results

We give positive and negative results for ED-Extractors with and without
auxiliary info.

WITHOUT AUXILIARY INFO. On the positive side, we show that any pseudo-
random function (PRF) with a sufficiently high security level is a good
ED-Extractor without auxiliary info. In particular, assuming the existence of sub-
exponentially secure one-way functions, there exist a-ED-Extractors with any
output size m for entropy @« = m + w(log A), where \ is the security parame-
ter. Furthermore, such extractors achieve security even against computationally
unbounded distinguishers, as long as the source runs in polynomial time. If we only
want security against polynomial-time distinguishers, we can allow the output size
to grow to an arbitrary polynomial m while only requiring entropy o = A\?(1).

On the negative side, we show that ED-Extractors imply one-way functions
and therefore cannot be constructed unconditionally. This holds even without
auxiliary info, even if we require that the source has almost full entropy, and
even if the extractor outputs only 1 bit. Furthermore, we show that such ED-
Extractors cannot exist for computationally unbounded sources.

WITH AUXILIARY INFO. We construct ED-Extractors in the setting with auxil-
iary info under standard assumptions. In particular, we give three constructions.

— The first construction relies on (adaptively secure) constrained PRFs [BGI14,
KPTZ13,BW13] for NC1 constraints. These can be instantiated under the
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sub-exponential security of either the learning with errors (LWE) [BV15]
or the Decisional Diffie-Hellman Inversion (DDHI) assumption in arbitrary
prime-order groups (without requiring pairings) [AMN+18].!

— The second construction relies on shift-hiding shiftable functions [PS18],
which can be seen as a type of constraint-hiding constrained PRFs, and can
be instantiated under LWE without requiring sub-exponential security.

— The third construction relies on lossy functions and can be instantiated under
any of: decisional Diffie-Hellman (DDH), decisional-linear (DLIN), LWE, or
decisional composite residuosity (DCR) assumptions.

In all cases, we prove security against polynomial-time sources and distinguish-
ers. Our a-ED-Extractors can have arbitrarily large polynomial input size n and
output size m, and require entropy a = A1),

Note that, in the setting without auxiliary info, we achieved security even
against computationally unbounded distinguishers. Furthermore, the random-
oracle based result of [CDKT19] heuristically suggests that good cryptographic
hash functions achieve security against computationally unbounded distinguish-
ers even in the auxiliary info setting. However, our constructions in the auxiliary
info setting from standard assumptions only achieve security against polynomial-
time distinguishers. Unfortunately, we show that this is inherent. In particular,
we show that in the auxiliary info setting, one cannot prove the security of
any ED-Extractor against computationally unbounded distinguishers under any
standard assumption via a black-box reduction.

Furthermore, our instantiations in the auxiliary info setting rely on “crypto-
mania” assumptions (known to imply public-key encryption) rather than one-
way functions, and we ask whether this is necessary. While we do not resolve this
question, we give some evidence that the two settings necessitate substantially
different constructions. Firstly, one may be tempted to conjecture that every
PRF is also a good ED-Extractor even in the auxiliary info setting. We show
that this is not the case: there exist PRFs that are insecure as ED-Extractors
in the auxiliary info setting even for very high levels/rates of entropy «. More-
over, we show that a large class of natural PRFs (e.g., the Naor-Reingold PRF)
cannot be proven to be secure ED-Extractors in the setting of auxiliary info via
a black-box reduction from any standard assumption.

1.2 Our Techniques

ED-EXTRACTORS WITHOUT AUXILIARY INFO FROM PRFS. Our first result
shows that every PRF is already a good ED-Extractor in the setting without
auxiliary info. In particular, the seed of the extractor is the PRF key and the
extractor just evaluates the PRF on the sample X. The main difficulty in prov-
ing ED-Extractor security is that the distinguisher gets the seed of the ED-
Extractor, but PRF security only holds if the key is never revealed. Our insight

! The DDHI assumption in a cyclic group G of order ¢ with generator g states that,

given any polynomially many values of the form (g, g%, g“z7 . ,g“L) where a «— Zq,
the value g'/® is computationally indistinguishable from uniform.
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is to design a reduction that never calls the distinguisher — indeed, this allows
us to prove security even for computationally unbounded distinguishers.

Let’s start with the case where the PRF/Extractor only outputs 1 bit. If
the extracted output is statistically far from uniform given the seed, it means
that it is biased towards either 0 or 1, but the direction of the bias is unknown
and may be different for each seed. Consider running the source S twice with
independent randomness, while giving it oracle access to the PRF/Extractor
with the same random key/seed. Let Xp, X7 be the samples that the two runs
output respectively. Then the PRF /Extractor evaluations on those samples are
more likely to agree than disagree, since they are biased in the same direction.
But the legality conditions ensure that X, X7 were never queried during either
of the two runs and are different from each other (since each run cannot query
its own output and the output of the other run should have enough entropy to
be unpredictable). So, given oracle access to the PRF, we can use the source &
to find two values Xy, X; that we haven’t yet queried, but if we then proceed to
query the PRF on them, the outputs are noticeably more likely to agree than
disagree. This cannot be the case given oracle access to a random function, and
therefore allows us to distinguish the two and break PRF security. The analysis
extends to a larger output size m, but the advantage of the reduction shrinks by a
factor of 27™. Therefore, we need very secure PRF's that cannot be distinguished
from random functions with advantage better than negl(A\)2~™, which requires
sub-exponential security assumptions.

Note that the above argument completely breaks down in the setting with
auxiliary info. The problem is that now the direction of the bias can be different
for each choice of the key/seed and the auxiliary info. But the two independent
runs of the source S are unlikely to produce the same auxiliary info and hence
we cannot argue that the bias would go in the same direction. Indeed, we show
that there are PRFs that are completely insecure as ED-Extractors in the setting
with auxiliary info.

ED-EXTRACTORS IMPLY ONE-WAY FUNCTIONS. We show that ED-Extractors
cannot exist if the source is allowed to be computationally unbounded. This holds
even in the setting without auxiliary info, even if we only consider polynomial-
time distinguishers, even if we require that the source has almost full entropy,
and even if the extractor outputs only 1 bit. The high level idea is that a com-
putationally unbounded source S with oracle access to the function EDExt(:, S)
can learn the function sufficiently well to predict its output on a random value
with high probability. It can then sample a random X subject to predicting that
EDExt(X,S) = 0, without querying the extractor on X. This is a legal source
with almost full entropy, yet the extractor output is highly biased towards 0.
We extend the above argument to showing that such extractors imply one-way
functions.

ED-EXTRACTORS WITH AUXILIARY INFO FROM CONSTRAINED PRFs. We
construct ED-Extractors in the setting with auxiliary info, using constrained
pseudorandom functions (C-PRF). A C-PRF allows us to constrain a PRF key
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k on some constraint function C' to yield a constrained key, denoted k{C'}. The
constrained key allows us to evaluate the PRF on all points  such that C(z) = 0.
However, given the constrained key k{C'}, the PRF outputs at all points « for
which C(z) = 1 look random. We need to rely on adaptively secure constrained
PRFs, where the adversary can choose the constraint C' after seeing some PRF
outputs.

Our construction of ED-Extractors uses a constrained PRF and a standard
(seeded) randomness extractors Ext. The seed of the ED-Extractor is a con-
strained PRF key k{Cs ¢}, with the constraint Cg ¢ (X) that outputs 1 (i.e.,
prevents evaluation) on all points X such that Ext(X;S) = U, where S,U are
chosen randomly. We choose the output size of the extractor to be £ = w(log A)
and therefore the key is constrained on a negligible fraction of points. On input
X, the ED-Extractor checks if Cs7(X) = 1, in which case it outputs some fixed
dummy value, and otherwise it uses the seed k{Cs r} to evaluate the PRF on X.

To argue ED-Extractor security, we consider a source SEPP(F{Csv}) that
gets oracle access to the ED-Extractor with a random seed k{Cgsy} and out-
puts X, AUX. A distinguisher D then gets the seed k{Cs y} together with AUX
and the extracted output R = EDExt(X,k{Cgy}). We first argue that this
is statistically indistinguishable from giving the source S oracle access to the
unconstrained PRF and setting R to be the output of the PRF with the uncon-
strained key on X (since the probability that any of the queries of S or its
output lie in the constrained set is negligible). Now, instead of giving the distin-
guisher D the constrained key k{Cgs } where U is uniform, we give it the key
E{Cs gxt(x;s)} which is constrained on X. This is statistically indistinguishable
since X has entropy even conditioned on AUX and is sampled independently
of S; therefore Ext(X;S) is close to uniform even given AUX. But now we can
switch R from the output of the PRF on X to uniform, and this is computation-
ally indistinguishable even given the constrained PRF key k{Cg g« (x;s)} since
it is constrained on X (and we know that the source didn’t query the oracle on
X). This shows that the extracted output is indistinguishable form uniform even
given the ED-Extractor seed and the auxiliary info. (The above proof outline
conveys the intuition but is slightly oversimplified and ignores some subtleties;
see the full proof for details).

Since standard extractors can be evaluated in NC1, we only need constrained
PRFs for NC1 circuits. Fortunately, we have such constructions from the LWE
and DDHI assumptions [BV15, AMN-+18]. However, they only achieve selective
security, where the constrained circuit needs to be chosen ahead of time before
any PRF outputs are given out, while we need adaptive security. We can get
this via standard complexity leveraging at the cost of having to assume the
sub-exponential security of the LWE and DDHI assumptions.

ADDITIONAL CONSTRUCTIONS (IN THE FULL VERSION). We give two alter-
nate constructions of ED-Extractors in the setting with auxiliary info. The first
uses shift-hiding shiftable functions [PS18], which can be instantiated from stan-
dard LWE, without needing complexity leveraging. The construction and proof
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of security differ substantially from the one above. The second one uses lossy
functions, which are essentially equivalent to lossy trapdoor functions (LTDFs)
[PWO08] without requiring a trapdoor. The construction can be instantiated from
several different assumptions (DDH,DLIN,LWE,DCR). Both constructions are
omitted from this proceedings version due to lack of space; please see the full
version [DVW19].

Not ALL PRFs ARE ED-EXTRACTORS WITH AUX INFO. We construct PRF's,
which fail to be good extractors in the setting of auxiliary info. For example,
consider a PRF which first hashes the input « into a small digest using a collision-
resistant hash function and then applies another PRF on the output. Consider
a source that chooses a random x and sets the auxiliary info to be the hash of x.
Since the hash is small, this does not reduce the entropy of « by much. However,
if the distinguisher is given the PRF key (which is the ED-Extractor seed) and
the auxiliary info, it can compute the PRF on x and therefore easily distinguish
it from uniform. In this example, the auxiliary info reduces the entropy of x by
some small super-logarithmic amount. We give an even more dramatic example
of this type using fully-homomorphic encryption (FHE) where the auxiliary info
reduces the entropy of x by only 1 bit.

BLACK-BOX SEPARATION RESULTS. Lastly, we give two black-box separation
results showing that, in the auxiliary info setting, one cannot prove security (via
a black-box reduction under a standard assumption) against computationally
unbounded distinguishers or for certain natural classes of constructions. Our
results rely on the framework of [Wicl3] and rely on the fact that the ED-
Extractor definition is expressed as a two-stage game where the attacker consists
of two components (the source and the distinguisher) that cannot communicate.
This allows us to give black-box separations showing that, in certain cases, we
cannot prove security under any standard assumption which is in the form of a
single-stage game between a challenger and a single stateful adversary.

1.3 Additional Related Work

RNGs. Our scenario is partially motivated by the problem of extracting ran-
domness from physical sources as part of a system Random Number Generator
(RNG). We note that extracting randomness is only one component of a good
RNG,; see e.g., [BHO5,DPR+13,DSSW14, GT16,Hut16, CDKT19] for works that
formally deal with the broader problem of RNG design.

UNIVERSAL COMPUTATIONAL EXTRACTORS (UCE). The notion of universal
computational extractors (UCE) [BHK13,ST17] was originally proposed as a
way of capturing “random-oracle like” security properties of hash functions via
a standard-model definition. While the format of the UCE definition is also
given in terms of an extraction game with a source and a distinguisher, there are
major differences between the UCE definition and that of ED-Extractors, both
in terms of their syntactic structure, but also more conceptually in terms of what
they aim to capture. The key such difference is that the notion of legal source is
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defined in the “ideal model”, and permits sources which only have computational
unpredictability in the “real” model (say, conditioned on the auxiliary informa-
tion).? In contrast, this work only aimed to capture a smaller class of sources
that have entropy even in the “real model”, but could depend of the previous
extractor output.

Unfortunately, it is known that even the weakest form of UCE security can-
not be achieved under standard assumptions (via black-box reductions; this indi-
rectly follows from [Wicl3]), while our work shows that ED-Extractors can. It
remains an interesting open problem whether ED-Extractors can be used in place
of UCEs to get any broader cryptographic applications beyond the immediate
ones of extracting randomness.

Low-COMPLEXITY SAMPLERS. Introduced by Trevisan and Vadhan [TV00] and
later extended by [KRVZ11], these seedless extractors assume that the entropy
source producing input X is unable to run the extractor even once. In contrast,
our sampler can be much slower than the extractor, but we use a seed and
give the sampler oracle access to the extractor, before releasing the seed to the
distinguisher.

SEED-DEPENDENT CONDENSERS. This approach, formalized by Dodis, Risten-
part and Vadhan [DRV12], relaxes the security guarantees of the randomness
extractor to only ensure that the output of the condenser is almost full entropy,
but not necessarily close to uniform. In this sense it is weaker than ED-Extractors.
However, the sampler is given the actual seed, which is stronger than our setting.
Interestingly, the availability of auxiliary information also played a crucial role in
the constructions of seed-dependent condensers from standard assumptions.

2 Preliminaries

When X is a distribution, or a random variable following this distribution, we
let x « X denote the process of sampling z according to the distribution X. If
X is a set, we let x «— X denote sampling x uniformly at random from X.

Let X,Y be random variables with supports Sx, Sy, respectively. We define
their statistical difference as

SD(X,Y) = % > Pr[X =u] - Pr[Y =]

uESxUSy

The min-entropy of a random variable X is Ho(X) = —log(max, Pr[X =
z]). Following Dodis et al. [DORS08], we define the (average) conditional min-
entropy of X given Y as: Hoo(X|Y) = —log (Ey—y [2_H°°(X|Y:y)]) . Note that
Ho(X]Y) = k iff the optimal strategy for guessing X given Y succeeds with
probability 2%,

2 Somewhat confusingly, this is true even for so called “UCEs for statistically unpre-
dictable sources”.
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Lemma 1. For any random variables X, Y where Y is supported over a set
of size T we have Hoo (X|Y) < Hoo(X) —log T

Definition 1 ((Strong, Average-Case) Seeded Extractor [NZ96]). We
say that an efficient function Ext : {0,1}" x {0,1}¢ — {0,1}* is an (a,¢)-
extractor if for all random variables (X, Z) such that X is supported over {0,1}"
and Hyo (X|Z) > o we have SD((Z, S,Ext(X; S)), (Z,S,Uy)) < € where S,Uy are
uniformly random and independent bit-strings of length d, £ respectively.

Theorem 1 ([ILL89]). There exist (o, £)-extractors with input length n and out-
put length ¢ as long as o > £ + 2log(1/e).

Definition 2 ((Strong, Average-Case) Two-Source Extractor [CG88]).
We say that an efficient function 2Ext : {0,1}™ x {0,1}" — {0,1}™ is
an (e1, ez, d)-strong 2-source extractor if for all random variables (X1, Xa,Z)
such that X1, Xso are independent conditioned on Z and Hoo(X1|Z) > ey,
Hoo(X2|Z) > ea we have SD((Z, X2, 2Ext(X1; X2)), (Z, X2,Up,)) < § where Uy,
18 a uniformly string of length m.

Theorem 2 ([Raz05]). For any polynomial input length n = poly(\), any e; =
XM and any ey = (1/2 + 2(1))n, there exist (eq, e, d)-extractor with input
length n, output length m = \?W) and error § = 9= A

Definition 3. The collision probability of a random wvariable A is defined as
Col(A) =Prla=a : a«— Aja’ — A]. The conditional collision probability of
A given B is defined as Col(A|B) = Prla=d' : b« B,a — (A|B =b),d —
(AlB =1b)].

Claim 1 (Statistical Distance vs Collision Probability [IZ89]). Let A be
a random variable supported over {0,1}™ such that SD(A,U,,) > €, where U,
is uniform over {0,1}™. Then Col(A) > 7 (1 + 4g%).
Furthermore, let A, B be correlated random variables, where A is supported
over {0,1}™ and
SD((A, B), (U, B)) > €.

Then Col(A|B) > 55 (1 + 4€2).

Learning with Errors. The (n,m,q, x) LWE assumption states that (A, sA + ¢e)
is computationally indistinguishable from (A,u) where A « Z}*™, s « Z7,
e «— x™ and u « Z7'. Throughout this work, the LWE assumption (without
qualification), refers to assuming that there exists some n = poly(}), some g >
22" and some distribution x over Z which is poly(\) bounded such that the
(n,m, g, x) assumption holds for all m = poly(X). This is implied by the hardness
of worst-case lattice problems with sub-exponential approximation factors.

Definition 4 (Pseudorandom Function (PRF) [GGMS84]). A polynomial-
time function F : {0,1}¢ x {0,1}" — {0,1}™ with key length £ = {(\), input
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length n = n(X) and output length m = m(X) is a PRF if for any polynomial-time
attacker A there exists some negligible function pu(\) = negl(\) such that

| PrlAT®)(12) = 1] = PrlACD (1Y) = 1] | < p(N).

where we choose k < {0,1}* and O : {0,1}" — {0,1}™ is a uniformly random
function. We say that the PRF has security level o = o(X) if u(A) < 1/0(X).

Definition 5 (Constrained PRFs (CPRF) [BGI14,KPTZ13,BW13]). A
CPRF for a class of constraints C = {C\} consists of two polynomial-time algo-
rithms (F, Constrain) where:

-y = F(k,z) is a deterministic polynomial-time function that takes as input
a key k (either constrained or unconstrained) and a value x € {0,1}" and
outputs y € {0,1}™ for some polynomial length parameters n = n(\),m =
m(A) in the security parameter \.

- k{C} « Constrain(k,C) takes as input a key k € {0,1}* and a constraint
C : {0,1}" — {0,1} with C € Cx. It outputs a constrained key, denoted
k{C}.

We require that the scheme satisfies a correctness and a security property defined
below:

Correctness: We require that no adversary can find an input which is not con-
strained, yet the constrained key disagrees with the original key. More con-
cretely, consider the following game between a stateful adversary A and a
challenger:

~ The adversary A(1*) chooses C € Cy.

— The challenger chooses k € {0,1}* and k{C} « Constrain(k,C).

~ The adversary AF*:)(k{C}) gets the constrained key k{C} and oracle
access to F(k,-). It outputs a value x € {0,1}™.

We require that, in the context of the above experiment, we have Pr[C(x) =
0N F(k,z) # F(k{C}, z)] < negl()).

(Adaptive) Security: Consider the following distinguishing game between an
adversary A and a challenger:

~ Challenger chooses k « {0,1}* and a bit b — {0,1}.

— Adversary AT (1) gets oracle access to F(k,-) and outputs a con-
straint C € Cy and a values x such that C(x) = 1 and = was never
queries to the oracle.

— If b= 0, the challenger sets r = F(k,x) and else it chooses r — {0,1}™.
The challenger also computes k{C} «— Constrain(k, C).

— The adversary A is given k{C} and r. It outputs a bit V.

We require that for all polynomial-time adversaries A, we have |Pr[b =] —
3| = negl(\).

We also consider several variants of the definition. Firstly, we define the notion
of no-constrained-evaluation security, where we restrict the adversary to never
querying the oracle F(k,-) on a point x for which C(x) = 1. Secondly, we
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consider selective security where the adversary chooses C' € Cy at the begin-
ning of the game before getting oracle access to F(k,c)). Lastly, we consider
no-evaluation security where the adversary does not get oracle access to F(k,-)
at all.

Note that, via a simple guessing argument where we guess the adver-
sary’s choice of C, selective security with a sufficiently high security level
o(A) = |Cxlw(log \) implies adaptive security. Furthermore by the same argu-
ment, no-evaluation security (which is inherently selective) with a sufficiently
high security level o(A\) = |Cx|w(log \) implies no-constrained-evaluation secu-
rity. This is because, if we guess the adversary’s choice of C' ahead of time and
gets k{C}, we can answer queries on unconstrained points using k{C} rather
than calling the PRF oracle.

3 Defining ED-Extractors

In this section, we give a formal definition of extractors for extractor-dependent
sources (ED-Extractors) and provide some discussion on the various aspects of
the definition.

Definition 6 (Extractor-Dependent Extraction). An extractor for
a-entropy extractor-dependent sources (a-ED-FEuxtractor) consists of two poly-
nomial-time algorithms (SeedGen, EDExt) with the following syntax:

~ seed « SeedGen(1%) is a randomized algorithm that generates seed.

— EDExt(z,seed) is a deterministic algorithm that takes a sample x € {0,1}",
together with seed and outputs a value y € {0,1}™ for some polynomial length
parameters n = n(A),m = m(A).

Consider an adversarial source/distinguisher pair (S, D) and define the following
extraction experiment EDGame®"P (1%)

~ Sample a random bit b+ {0,1} and a random seed « SeedGen(1?).
— Run (1’,3UX) - SEDExt(.7seed)(1)\)'

— Ifb=0 set r = EDExt(z,seed) else if b =1 set r — {0,1}™.

~ Let b’ = D(17, seed, aux, r).

We say that S is an a-legal extractor-dependent source if the following conditions
hold:

1. The probability that S queries its oracle on the value x that it outputs is
negligible.

2. Ho(X|AUX,SEED) > a()), where X,SEED, AUX denotes the joint distribu-
tion of the values x,seed,aux in the above experiment.

An a-ED-Extractor is secure if for all a-legal polynomial-time sources S and all
polynomial-time distinguishers D, the above experiment satisfies

1
‘Pr[b =b] - 2’ = negl(\).
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We can also define a weaker notion without auxiliary info by restricting aux
to be empty. We can also strengthen security to computationally unbounded
sources or distinguishers by remowving the restriction that the source or the dis-
tinguisher runs in polynomial time.

Remark on the Legality Conditions. As we discussed in the introduction, the
legality conditions above may not seem entirely intuitive on first look. For exam-
ple, it may be unclear why we prohibit the source from querying the extractor on
the value it outputs. Another undesirable aspect of definition is that the legality
conditions are construction-dependent: in other words, a source may be legal for
some constructions of the ED-Extractor but illegal for others since the entropy
of the output may depend on the oracle queries. Ideally, the legality of the source
could be checked independently of the construction. For these reasons, we can
also consider an alternate, weaker, definition, which may be more intuitively
compelling and does not suffer from the above issue. We say that source S is
a-super-legal if:

— Tt can be written as § = (81, S2) where SEDEXt("Seed) (1*) gets oracle access to
the extractor and outputs some value state € {0, 1}?()) for some polynomial
p, and Sp(state) outputs x,aux without getting any further access to the
extractor.

— For all choices of state € {0,1}?") it holds that H.,(X|AUX) > a()), where
(X, AUX) are random variables for the output of Sy(state).

Note that “super-legality” is only a condition of Sy which does not have oracle
access to the extractor, and is therefore construction-independent.

We claim that for any a()\) = w(log)), every a-super-legal source S is
also a-legal. Firstly, if S only makes polynomially many queries and has a
non-negligible probability of querying the oracle on the value z that Sy out-
puts then there must be some value of state for which we can predict the
value x that Sp(state) outputs with non-negligible probability. But this con-
tradicts Hoo(X) > Hoo(X|AUX) > w(logA). Therefore S satisfies the first
legality condition. Secondly, let STATE be a random variable for the value
state «— SIEDEXt("seEd)(lk). Then SEED is independent of (X,AUX) if we con-
dition on STATE. Therefore, H.(X|AUX,SEED) > H.(X|AUX,STATE) >
Mingtate Hoo (Xstate| AUXstate) > (X)) where Xgiate, AUXqtate is the conditional dis-
tribution of X, AUX conditioned on STATE = state, which is just the distribution
of the outputs of Sy(state). Therefore S satisfies the second legality condition.

As discussed in the introduction, the super-legality condition can also be
interpreted very intuitively: we think of S; as capturing all of the influence that
prior extractor call can have on nature and Sy as modeling the entropic process
that’s responsible for generating x,aux. We chose to use “legality” rather than
“super-legality” in our default definition since it makes the definition stronger
and thus gives stronger positive results. We mention that (by simple inspection)
all of our negative results also hold for the weaker definition using super-legality.
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Remark about Conditioning on the Seed. Our legality condition in the formal
definition requires that the entropy Heo(X|AUX,SEED) > «()), where we con-
dition on SEED. Note that we could remove this conditioning and have an
alternate, stronger, definition where we only require Hoo (X|AUX) > a(\). We
observe that, assuming one-way functions, any a-ED-Extractor according to
our definition can be converted into an (o' = a + A®)-ED-Extractor accord-
ing to the stronger definition for any constant € > 0. The idea is that we can
modify the SeedGen algorithm to only use A® random bits by expanding them
out using a PRG to get as many pseudorandom bits as needed by the original
algorithm. By the security of the PRG, this change cannot harm ED-Extractor
security. But now SEED comes from a domain of size only 2*° and therefore
Hoo (X|]AUX,SEED) > Hoo(X|AUX) — A¢ > o/ — X°* > «. Hence the new con-
struction is an o/-ED-Extractor according to the stronger definition. The take-
away is that (as long as we’re only considering polynomial-time distinguishers)
it does not make much difference whether or not we condition on the seed in the
definition.

Remark on Output Size. Note that if we have an a-ED-Extractor with output
size m = A® for some constant € > 0 then, assuming one-way functions, we can
also construct an a-ED-Extractor for arbitrarily large output size m = A€ for any
constant ¢ just by using a pseudorandom generator (PRG) to expand the output.
This holds as long as we're only considering polynomial-time distinguishers.

4 Security Without Auxiliary Info

4.1 Construction from Any PRF

We first show that every pseudorandom function (PRF) with a sufficiently high
level of security is a good ED-Extractor in the setting without auxiliary info.

Theorem 3. Let F(-,-) : {0,1}¢ x {0,1}" — {0,1} be a pseudorandom
function (PRF) with key-length £ = £()\), input length n = n(\) and output length
m = m(\), having security level o(\) = 2"MNw(log ). Define (SeedGen, EDExt)
where SeedGen(1*) outputs seed « {0,1}*™) and EDExt(z,seed) = F(seed, ).
Then (SeedGen, EDExt) is an a-ED Extractor without auxiliary info for any o >
m + w(log A). Furthermore, it has security for unbounded distinguishers.

Proof. Assume that (S, D) is some «a-legal source and distinguisher pair with
advantage ¢ = £(A) in the ED-Extractor security game. Assume that S runs in
polynomial time, but D can be unbounded. We define a polynomial-time adver-
sary A that has (¢2 — negl(\))/2™ advantage in the PRF game. In particular,
ACC) is given access to an oracle © and runs S®() twice with independent ran-
domness to derive two values z,z’. Then A°() computes 7 = O(z), = O(z').
If r = ¢/, it outputs 1 else 0.

Firstly, consider the experiment where we sample k « {0, 1}, 2 « SFk)
r = F(k,z) and let K, R be the random variables for the values k, r respectively.
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Then the statistical distance SD(((K, R), (K, U,,)) > ¢ since D distinguishes the
two distributions with probability . Therefore, by Claim 1, we have Col(R|K) >
(1 4 4e?) where Col denotes the collision probability (Definition 3). It’s easy
to see that, by the definition of A, we have PrlA"(*) =1 : k « {0,1}¢] =
Col(R|K) > 5(1 +4£%).

Secondly, consider the experiment where we sample k « {0,1}* and then
sample z «— SF) o/ — §FE) by running S twice with independent ran-
domness and let K, X, X’ be the random variables for the value k,z,z’ in the
experiment. Since § is an a-legal source we know that:

— The probability that S queried the oracle on z during the first run or on z’
during the second run is negligible.

— Since Hoo(X|K) = Hoo(X'|K) > a > m + w(logA), the probability that
either (1) S queried the oracle on 2’ during the first run or (2) S queried the
oracle on z during the second run or (3) = 2’ is bounded by negl(\)/2™.

To summarize, in the above experiment, if we define the “bad event’ that x = 2’
or that the oracle is queried on one of z, z’ during the course of the experiment,
then the probability of the bad event is at most negl(A)/2™. Now, consider
the modified experiment where we sample z «— SU() 2/ «— SU() and U is a
truly random function. By o () security of the PRF, the probability of the bad
even occuring in the modified experiment is still be bounded by negl())/2™.
If the bad event does not occur, then r = U(z),r’ = U(a’) are random and
independent values and therefore Pr[r = 1] = ;5. This shows that Pr[.AY() =
1] < (1 + negl(A))2™.

This shows that the advantage of A in the PRF security game is (4e2(\) —
negl(A))/2™ which must be < 1/0(\) < negl(A)/2™, by the o(\) security of the
PRF. Therefore €(A) = negl(\), which concludes the proof of the ED-Extractor
security.

Corollary 1. Assuming the existence of sub-exponentially secure one-way func-
tions, for any polynomial input size n = n(X) the following holds:

— For any polynomial output size m = m(X), there exists an a-ED Extractor
in the setting without auziliary info and with security for unbounded distin-
guishers as long as o > m + w(log A).

— For any constant ¢ > 0 and any polynomial output size m = m(\), there
exists an a-ED FExtractor in the setting without auziliary info and security
for polynomial-time distinguishers as long as a > A°.

Proof. We note that sub-exponentially secure one-way functions imply the exis-
tence of PRFs with security level 2P()) for any polynomial p (by making the
key sufficiency large). Therefore the first part of the corollary follows directly
from the preceding Theorem. The second part follows by using a pseudorandom
generator (PRG) to expand the output-size of the ED-Extractor as discussed in
the Remark on Output Size in Sect. 3.
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4.2 Necessity of One-Way Functions

Theorem 4. For any input length n = n(X), the existence of an (o = n—1)-ED-
Ezxtractor, even without auxiliary info and even with output length m = 1, implies
the existence of one-way functions. Furthermore, such extractors cannot be secure
for computationally unbounded sources, even if we restrict to polynomial-time
distinguishers.

Proof. Let (SeedGen, EDExt) be an ED Extractor as in the theorem statement.
Assume SeedGen (1) uses at most ¢ = ¢(\) bits of randomness and let ¢ =
70+ X. Define the function f(r,z1,...,2¢) = (T1,...,%q, Y1, - -, Yq), Which takes
as input a uniformly random = € {0,1}* and z; € {0,1}" and computes seed =
SeedGen(1*;7) and y; = EDExt(seed, x;) for i € [g]. Then we claim that f is a
one-way function.

Assume by way of contradiction that a polynomial-size adversary A breaks
the one-wayness of f with non-negligible probability. We define a source
SEDBxt(seed,) a5 follows:

1. Choose z1,...,zq uniformly at random form {0,1}". Query the oracle to
learn y; = EDExt(seed, z;) for each i € [¢].
2. Run A(zg, ..., %4, ¥1,---,Yq) and get some value (r',z1,..., 7).

3. Test if f(r',2q,...,2) = (T1,..., %4, Y1,---,Yq). If not, output a uniformly
random zfj < {0,1}" and halt. Else continue.

4. Compute seed’ = SeedGen(1*;7’). Choose a random z; « {0,1}" and if
EDExt(seed’, 27) = 0 output 2} and halt. Else continue.

5. Choose a random x5 < {0,1}™ and output it.

We define a corresponding distinguisher D(seed, r), which outputs r. We claim
that the pair (S, D) breaks the (o = n — 1)-ED-Extractor security.

Firstly, we claim that S is an (a« = n — 1)-legal source. It is easy to see that
the probability of it outputting a value x that it previously queried is negligible
since it outputs one of z§, 7, x5 each of which is individually uniformly random
and independent of the prior queries. To analyze entropy, let us fix any choice
of the values of seed, z1,...,z, and randomness of A and let X be the random
variable for the output of S in the above experiment. We argue that, even for
any choice of the fixed values, it holds that H.(X) > n — 1, which proves the
claim. The fixed values determine whether the test in line 3 passes or fails. If it
fails, then X is uniformly random and so Hu(X) = n. If it passes, then let us
define the variable V' which is 0 if x is output in line 4 and 1 if it is output in
line 5. Let us define the value Py = [{x : EDExt(x,seed) = 0}|. Then we have

max Pr[X = z] = max (Pr[X = z|V =0]Pr[V = 0] + Pr[X = z|V = 1] Pr[V =1])

T

1 P 1 1

i T S I
= 2"+2"( Po)
SQ*(”*U

and therefore Hoo (X) > n — 1.
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Next, we analyze the success probability of the pair (S,D) in the ED-
Extractor security game. If the challenger chooses the challenge bit b = 1 then,
since r is uniformly random, we have Pr[t/ = 1] = % On the other hand, let’s
analyze the security game when the challenge chooses the bit b = 0. Assume
that the adversary A breaks the security of the one-way function f with some
non-negligible probability € = e(A). Then e(A) > 1/p(\) for some polynomial p
and for infinitely many values of A. We define several events in the context of
the ED-Extractor security game with the particular sampler defined above:

FAIR: Let’s call a seed biased if Pr,._(o1)»[EDExt(seed,z) = 0] < & — § where
we set § 1= ﬁ. Let’s define the event FAIR to occur if the seed is not biased.
Since we assumed that the ED-Extractor is secure, it must be the case that
probability that a random seed is biased is negligible (otherwise the sampler
that outputs a random x and the distinguisher that tests if the seed is biased
and if so outputs r else outputs random would break security). Therefore,
Pr[FAIR] = 1 — negl(\).

INV: Let this be the event that the test in line 3 of the execution of S succeeds,
meaning that A succeeded to invert correctly. By definition Pr[INV] = e.
CLOSE: Let this be the event that for the value seed’ computed in line 4, it holds

that

?Orl}n[EDExt(z,seed) = EDExt(z,seed’)] > .9

where, if the process terminates before line 4, we define seed’ = seed. If
CLOSE does not occur, it means that there exists some seed’ for which
Pr, (0,13 [EDExt(z, seed) = EDExt(z, seed’)] < .9 but for all i € [g] it holds
that EDExt(x;,seed) = EDExt(x;,seed’). The probability of this happening for
any fixed seed’ is .99 < .97+ < 27fnegl()\). By taking a union bound over
all 2¢ values of seed’ the probability that some such seed’ exists is negligible
and therefore Pr[CLOSE] > 1 — negl(A).

For simplicity, we also define the event IFC = INV A FAIR A CLOSE. When b =0
we therefore have:

Pr[t’ = 0] > Pr[t = 0 A INV] + Prb’ = 0 A <INV]
> Prft’ = 0 A INV A FAIR A CLOSE] + Pr[t’ = 0 A —INV A FAIR]
> Pr[b’ = 0/IFC](Pr[INV] — Pr[-FAIR] — Pr[-CLOSE])
+Pr[b’ = 0|~INV A FAIR](Pr[-INV] — Pr[-FAIR])
> Pr[b’ = 0/IFC](e — negl()\)) + Pr[b’ = 0|=INV A FAIR](1 — € — negl()\))

> Pr[b’ = 0|IFC](¢ — negl(\)) + (% - 5) (1 — e —mnegl(N))
To analyze Pr[b’ = 0|IFC] let us fix all randomness z of the experiment except for

the choice of z7, z3, such that this fixing makes the event IFC occurs. Let IFC, be
the event that the randomness takes on this value. For any such choice, let F; be
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the event that EDExt(x},seed) = 0, let E} be the event that EDExt(z},seed’) = 0,
let A be the even that EDExt(z},seed) = EDExt(x},seed’) and let E be the event
that EDExt(seed, z5) = 0, where the randomness is only over the choice of z7, z5.
Since we conditioned on CLOSE we have Pr[A] > .9. Since we conditioned on
FAIR we have Pr[Fi] > (1/2 — §),Pr[Es] > (1/2 — §). Therefore, for any such
choice of randomness z we have:

Pr[b = O|IFC.] = Pr[E1 A E}] + Pr[Ey A —E)]
= Pr[A A E}] + Pr[E,) (1 — Pr[E]])

> Pr[E}] — Pr[-A] + <; - 6) (1 —Pr[EY])

1 1
5 — 09— 145 PrlE]]

%

> % —0—1+ %(Pr[El] — Pr[-A4])
1 1,1
>——6—14=(z—-6—.
2 5 5 1+2(2 §—.1)
3
> 60— —
> .6 25

which also implies that Pr[b’ = 0|IFC] > .6 — 25. Combining, we have:

Prl = 0] > <.6 - 25) (e — negl(\)) + (; - 5) (1—¢—negl(\))

> 1 d+e(.1—6/2) —negl(X)

2
> % +¢/10 — (3/2)8 — negl(\)
1 1 3
5 iy oy "B
1
> 5 + 050) negl(A)

for infinitely many values of A. Therefore Pr[b’ = b] — 1 is non-negligible, which
leads to a contradiction and hence f must be one-way.

For the second part of the theorem, note that we showed how to convert an
inverter for f into a source S together with an efficient distinguisher D that
break ED-Extractor security. Since an inefficient inverter for f always exists, it
means that there exists an inefficient source S and an efficient distinguisher D
that break the security of the ED-Extractor.
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5 Security with Auxiliary Info

5.1 Construction via Constrained PRFs

We now show how to construct an ED-Extractor in the setting with auxil-
iary info, using constrained PRFs (Definition 5) and standard seeded extractors
(Definition 1).

Construction. Let Ext : {0,1}" x {0,1}¢ — {0,1}* be an (o, ¢)-seeded extrac-
tor for some lengths n = n(\),d = d(X),¢ = £()\) and some o = o/ (), e = (N).
Further let Ext also be a universal hash function. Let (F, Constrain) be a con-
strained PRF with input length n and output length m = m(\) for the class of
constraints C = {Csu}se{o,1}4,uc{o,13¢ Where C,(v) = 1 iff Ext(z;s) = u. We
construct an ED-Extractor (SeedGen, EDExt) as follows:

— SeedGen(1?): Choose a random k « {0,1}*. Choose a random s « {0,1}¢,
u « {0,1}* and let C;,, € C be the corresponding constraint. Let k{Cj .} «
Constrain(k, Cs ,,). Output seed = k{Cj ,}.

— EDExt(z, seed): Output F(k{Cs .}, x).

Note that F always outputs some value, even if = is in the constrained set. With-
out loss of generality, we can assume that the constrained key k{Cj,} reveals
s,u in the clear and that, F'(k{Cs},x) outputs 0™ whenever C; ,(z) = 1.

Theorem 5. Assuming the constrained PRF has no-constrained-evaluation
security, the construction above is an a-entropy secure ED-Extractor for a =
o' +m, as long as the parameters satisfy £(A) = w(log A), and e(\) = negl(A).

Proof. Our proof of security follows by a sequence of hybrid games:

Hybrid 0: This is the game EDGame®"? (1) with a source S and a distinguisher
D as in Definition 6. The game proceeds as follows:

— Sample a random bit b « {0,1} and a random seed «+ SeedGen(1%).
The latter consists of sampling k « {0,1}*,s « {0,1}4,u « {0,1}¥,
k{Cs .} < Constrain(k, Cs,,) and setting seed = k{Cj,, }.

— Run (x,aux) - SEDExt(-,seed)(lz\).

— If b= 0 set r = EDExt(z, seed) else if b =1 set r «— {0,1}"™.

— Let b’ = D(1*, seed, aux, ).

Hybrid 1: In this game, instead of giving the source SEPExt(seed) access to the
oracle EDExt(-,seed) = F(k{Cs.},-), we replace it with the oracle F'(k,-)
using the unconstrained key k. Furthermore, if b = 0, instead of setting
r = EDExt(z,seed) = F(k{Cs,},z), we now set r = F(k,z). In detail, the
hybrid is defined as follows:

1. Sample a random bit b +— {0,1} and a random k « {0, 1}*.

2. Run (z,aux) « STk (1),

3. If b = 0set r = F(k,z) else if b = 1 set r « {0,1}™. Choose s «
{0,1}4,u « {0,1}* and seed « Constrain(k, Cs_,)-

4. Let b’ = D(1*,seed, aux, 7).
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Hybrids 0 and 1 are indistinguishable. The only time Hybrid 0 differs from
Hybrid 1 is if in Hybrid 0 either: (A) some oracle query or the final output
x produced by S satisfy Ext(z;s) = u, or (B) some oracle query or the final
output x produced by S satisfy Cs ,(z) = 0A F(k,x) # F(k{Cs}, ). Since
w is uniformly random, the probability of (A) happening when S makes ¢
queries is at most (g + 1)/2° which is negligible. By the correctness of the
constrained PRF, the probability of (B) happening is also negligible.

Hybrid 2: This is the same as Hybrid 1, except that we give the source access
to an oracle EDExt(-;seed’) where seed’ = k{Cs .} « Constrain(k, Cy ) is
a constrained PRF key for random and independent values s’,u'. In detail,
the hybrid is defined as follows:

1. Sample a random bit b « {0,1} and a random k « {0,1}*. Choose
s —{0,1}4 4" « {0,1}¢ and seed’ — Constrain(k, C/ ).

2. Run (z,aux) « SEPExt(-seed’) (1A),

3.If b =0set r = F(k,z) else if b = 1 set r «— {0,1}™. Choose s «
{0,1}4,u « {0,1}* and seed « Constrain(k, Cs_,).

4. Let b’ = D(1*, seed, aux, ).

Hybrids 1 and 2 are statistically close. The only time Hybrid 1 differs from

Hybrid 2 is if in Hybrid 2 either: (A) some oracle query x; produced by S

satisfies Ext(z;;s’) = v/, or (B) some oracle query x; produced by S satisfy

Cyo () = 0N F(k,z) # F(k{Cs 4}, ). Since v’ is uniformly random, the

probability of (A) happening when S makes ¢ queries is at most ¢/2¢ which

is negligible. By the correctness of the constrained PRF, the probability of

(B) happening is also negligible.

Hybrid 3: This is the same as Hybrid 2, except that in step 3, instead of
choosing u « {0,1}¢ we now set u = Ext(x; s). In detail, the hybrid is defined
as follows:

1. Sample a random bit b « {0,1} and a random k « {0,1}*. Choose
s« {0,1}4, 4/ « {0,1}* and seed’ « Constrain(k, Cy/ ,/).
2. Run (z,aux) « SEPExt(-seed’) (1A),
3. If b=0set r = F(k, ) else if b= 1 set r « {0,1}™. Choose s « {0,1}%
u = Ext(z; s) and seed < Constrain(k, Cs ,,).
4. Let b' = D(1*,seed, aux, 7).
Hybrids 2 and 3 are statistically close if Ext is an (a, £)-extractor. To argue
this, let us use capital letters to denote random variables for the correspond-
ing values in the experiment. Firstly, note that the view of the source S in
hybrid 2 is identically distributed to that of hybrid 0.> Therefore, we can
rely on the legality to S (which is defined relative to the distribution of
hybrid 0) to argue that H.(X|AUX,SEED’) > a. By Lemma 1, we also have
Ho(X|AUX,SEED', R) > o — m > «'. Lastly since K is independent of X
when conditioned on SEED’, R, we also have H.,(X|AUX, K, R) > o'. There-
fore, by the security of the extractor, U = Ext(X;S) is statistically close
to a uniformly random and independent U even given AUX, K, R, S. Lastly,
since the view of D in hybrids 2 and 3 is a function of AUX, K, R, S,U where

3 This was the reason for introducing hybrid 2 rather than directly going from 1 to 3.
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U = Ext(X;9S) in hybrid 3 and U is uniform/independent in hybrid 2, the
two hybrids are statistically close.

Hybrid 4: This is the same as Hybrid 3, except that we switch back from giving
S oracle access to EDExt(-, seed’) to giving it access to the unconstrained PRF
F(k,-). In detail, the hybrid is defined as follows:

1. Sample a random bit b < {0,1} and a random k « {0, 1}*.
2. Run (z,aux) «— SFF)(11).
3. If b=0set r = F(k, ) else if b= 1 set r « {0,1}™. Choose s « {0,1}%
u = Ext(z; s) and seed < Constrain(k, Cs ,,).
4. Let b’ = D(1*, seed, aux, ).
Hybrids 3 and 4 are indistinguishable by the same argument as the indistin-
guishability of hybrid 1 and 2.

Advantage in Hybrid 4: We now claim that in Hybrid 4, the advantage

|Pr[b = '] — 1| is negligible by the no-constrained-evaluation security
of the constrained PRF. In particular, we define a reduction that runs
(z,aux) — SFF)(11) by making queries to its PRF oracle. The reduction
chooses s « {0,1}4, sets u = Ext(x; s) and gives the constraint Cj ,, together
with the value x to its challenger. Since S is a legal source, x was never queried
by the oracle and, by the definition of the constraint, we have Cs ,(x) = 1.
Secondly, since Ext(+;s) is a universal hash function, the probability that of
any of the previous queries x; made by S satisfy Ext(x;; s) = Ext(x; s) is also
negligible. Therefore, our reduction makes no constrained-evaluation queries
to the PRF.
So, the reduction is a legal attacker in the no-constrained-evaluation secu-
rity game of constrained PRF. The reduction receives a value r, which is
either F(k,z) or uniform, along with a constrained key k{C;,}. It sets
seed = k{C;,} and outputs the bit ' = D(1*,seed, aux, r). The advantage of
the reduction in the constrained PRF security game is exactly the same as
that of the adversary in hybrid 3, and therefore the latter is negligible.

Since the advantage in hybrid 3 is negligible and hybrid 3 is indistinguishable
from hybrid 0, the advantage in hybrid 0 must be negligible as well. This proves
the theorem.

Corollary 2. Under the sub-exponential security of either the LWE assump-
tion or the DDHI assumption in an arbitrary prime-order group, there exists an
ED-Extractor for a-entropy sources with auziliary info, for any a = A% and
with any polynomial input length n and output length m. Security holds against
polynomial-time sources and distinguishers.

Proof. The work of [BV15] construct selectively secure constrained PRFs for
all circuits from LWE. We can then use complexity leveraging to get adaptive
security by assuming sub-exponential LWE. The results of [AMN+18] constructs
no-evaluation secure PRFs for NC1 from the DDHI assumption in arbitrary
prime-order groups (the also construct selectively secure PRFs from the DDHI
assumption in specific groups). We then use complexity leveraging to get no-
constrained-evaluation security under sub-exponential DDHI, as discussed in
the remarks after Definition 5.
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We use an extractor with output length «/4 which is secure for entropy
o = a/2 with & = 27(2/8) = negl()\). We combine this with a constrained PRF
with output length m = «/2 which ensures a > o’ + m. This gives us an ED-
Extractor with output length /2 = A2 We can then use a PRG to then get
arbitrarily large polynomial output size as discussed in the Remark on Output
Size in Sect. 3.

5.2 Negative Results for ED Extractors with Auxiliary Info

Our constructions of ED-Extractors in the auxiliary info setting have several
disadvantages compared to our construction in the setting without auxiliary
info. Firstly, in the auxiliary info setting we needed complex constructions based
on “cryptomania”’ assumptions (LWE and DDHI), whereas in the setting with-
out auxiliary info, we showed that any sufficiently secure PRF is a good ED-
Extractor. Secondly, in the auxiliary info setting we only achieved security for
polynomial-time distinguishers while in the setting without auxiliary info we got
security even for computationally unbounded distinguishers. In this section, we
give some evidence that the two setting are substantially different and that we
indeed need to work harder and cannot hope for as much in the setting with
auxiliary info.

Not All PRFs Are ED-Extractors with Aux Info. Firstly, we show that
not every PRF is a good ED-Extractor in the setting with auxiliary info. We give
two variants of this result. The first is based on collision-resistant hash functions
(CRHF's) and gives a PRF that is not an a-ED-Extractor for entropy o = n—\°.
The second one is based on fully homomorphic encryption and gives a PRF that
is not an a-ED Extractor even for entropy o = n — 1. In both cases, the result
holds even if the PRF/ED-Extractor only outputs 1 bit.

CRHF-based Construction. Let F' : {0,1}* x {0,1}" — {0,1} be a PRF
with key-length ¢ = £()\), input length n’ = n/()\) and output length 1. Let
H : {0,1}¢ x {0,1}® — {0, 1}n’ be a collision-resistant hash function (CRHF)
with seed length d = d()), input length n = n(A) and output length n’ = n’(\).
We define a PRF F : {0,1}**¢ x {0,1}" — {0,1} as follows. Parse the key
k= (K,s) with &' € {0,1}¢, s € {0,1}?. Define F(k,z):

— If # < d output s[x], where we interpret = as an integer in the range [2"] and
s[z] denotes the z’th bit of s.
— Else output F(k', H(s,z)).

It is easy to see that F'is a PRF if F’ is a PRF and H is a CRHF. On the other
hand it is not an a = (n — n’)-ED-Extractor. In particular, consider the source
that queries the oracle on values 1,...,d to learn the CRHF seed s. It then
chooses a random z «— {0,1}" and outputs z,aux = H(s,z). It is clearly an «
legal source. Yet we can define a distinguisher D that gets k = (k/, s), aux, r and
outputs 1 iff r = F(k’, aux). Then D always outputs 1 if r is the outputs of the
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ED-Extractor on x but only outputs 1 with probability 1/2 if r is truly random,
giving it a non-negligible advantage of 1/2. For parameters, we note that the
existence of CRHFs implies the existence of a CRHF with arbitrary polynomial
input size n = n(\) and output size A\ for any constant € > 0. Therefore, we get
a PRF with arbitrary polynomial input size n = n(\) and output size m = 1,
which is not an a-ED-Extractor for a = n — A¢.

Theorem 6. Assuming the existence of collision-resistant hash functions, for
every polynomial n = n(A) and every constant € > 0 there exists a PRF with
n-bit input and 1-bit output which is not a secure a-ED-Extractor with auxiliary
mput for « =mn — A&,

FHE-based Construction. Let F' : {0,1}¢ x {0,1}" — {0,1} be a PRF
with key-length ¢ = £(\), input length n’ = n/(\) and output length 1. Let
(KeyGen, Enc, Dec, Eval) be an FHE scheme capable of evaluating the PRF F’.
Furthermore assume that the ciphertexts are pseudorandom and that the Eval
procedure is statistically circuit private. Assume that the key-generation algo-
rithm and the encryption algorithm each use at most d = d(\) bits of random-
ness, and that the encryption of an ¢-bit message produces an ¢'-bit ciphertext.
Define the PRF F: {0,1}¢724 x {0,1}" — {0,1} as follows. Parse the key
k= (K, s1,s2) with k' € {0,1}¢, 51, 52 € {0,1}9. Define F(k,x):

— Check if z < ¢/(where we interpret = as an integer in the range [2"]). If so
let (pk,sk) « KeyGen(1%;s;), ct « Enc(pk, k; s2). Output the z’th bit of ct
denoted by ct|x].

— Else output F(k,x).

It is easy to see that F' is a secure PRF: by the security of the FHE with
pseudorandom ciphertexts, we can replace ct by a uniformly random value inde-
pendent of k, and by the security of the PRF F’ the above is then a good PRF.
On the other hand it is not an & = (n — 1)-ED-Extractor. In particular, consider
the source that queries the oracle on values 1,...,#¢ to learn the the ciphertext
ct. It then chooses a random x <« {0,1}" and outputs z, aux = Eval(F’(-, z), ct)
so that aux is an FHE encryption of F’(k,x). Since Eval is circuit private aux
does not reveal anything about « beyond F'(k,z) and therefore is an a =n — 1
legal source. Yet we can define a distinguisher D that gets k = (K, s1, s2), aux, r
and outputs 1 iff Dec(sk, aux) = r where (pk, sk) +— KeyGen(1*;s;). Then D out-
puts 1 with probability 1) if r is the outputs of the ED-Extractor on z, but only
outputs 1 with probability 1/2 if r is truly random, giving it a non-negligible
advantage of 1/2 — negl(\). Therefore, we get a PRF with arbitrary polynomial
input size n = n(\) and output size m = 1, which is not an a-ED-Extractor for
a=n—1.

Theorem 7. Assuming the existence of Fully Homomorphic Encryption (FHE)
with statistical circuit privacy and pseudorandom ciphertexts, for every polyno-
mial n = n(X\) there exists a PRF with n-bit input and 1-bit output which is not
a secure a-ED-Extractor with auziliary input for o =n — 1.
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Black-Box Separations. We now show give two black-box separation results,
showing that certain types of ED-Extractors cannot be proven secure via a
black-box reduction from virtually any “standard” computational assumption
(e.g.,including general assumptions such as the existence of one-way functions
or public-key encryption, as well as specific assumptions such as DDH, LWE,
RSA, etc., even if we assume (sub-)exponential security). In particular, we show
two results of this type. Firstly, we show that one cannot prove the security of any
ED-Extractor in the auxiliary info setting against computationally unbounded
distinguishers (and polynomial-time sources) under such assumptions. This is
contrast to the setting without auxiliary info, where we were able to do so.
Secondly, we show that one cannot prove security in the auxiliary input set-
ting (even for polynomial-time sources and distinguisher) of any ED-Extractor
that has a certain type of seed-committing property: if you query the extractor
EDExt on some polynomial set of values x1,...,z, then the output uniquely
fixes a single possible seed that could have produced it. This is true for many
natural constructions, such as the Naor-Reingold PRF or most block-cipher and
hash-function based constructions. (But is crucially not true for our construc-
tions based on constrained PRFs.) We view this as partial evidence that more
complex constructions are necessary in the setting with auxiliary info.

Note that these results do not show that ED-Extractors with such proper-
ties cannot be constructed; in fact the work of Coretti et al. [CDKT19] in the
random-oracle model can be interpreted as showing that “good” hash functions
are heuristically likely to be good ED-Extractors in the auxiliary info setting
with security even against computationally unbounded distinguishers, and they
are also likely to be seed-committing. However, our results show that we cannot
prove security under standard assumptions.

Our results are of the same flavor as the work of Wichs [Wic13]. They define
the class of (single-stage) cryptographic game assumptions, which are modeled
via a game between a challenger and a stateful adversary. They require that any
polynomial-time (or sub-exponential time) attacker has at most a negligible (or
inverse sub-exponential) success probability in winning the game. This captures
essentially all standard assumptions used in cryptography. However, the secu-
rity definition of ED-Extractors is not a single-stage game since it involves two
separate entities (the source and the distinguisher) who cannot share state.

We use the “simulatable attacker” paradigm (also called a meta-reduction) to
prove our black box separations. This paradigm is formalized in [Wic13] and we
give a high-level overview. To prove a separation, we design a class of inefficient
attackers A;, indexed by some h that break the security property but otherwise
satisfy any structural/legality conditions (e.g., being multi-stage, entropy condi-
tions etc.). However we also design an efficient simulator .4’ that may not satisfy
such conditions, such that one cannot distinguish between black-box access to Ay,
for a random h versus A’. Therefore if some reduction can break an assumption
given black-box access to every Ay it would also be able to do so given access
to A’. If for any polynomial ¢ we can further show such a simulatable attack



Extracting Randomness from Extractor-Dependent Sources 337

which is 27¢®) indistinguishable, then we also rule out black-box reductions
under sub-exponential or even exponential assumptions.

Unbounded Distinguishers. We first give a black-box reduction for ED-Extractors
in the auxiliary info setting with security against unbounded distinguishers. Since
the distinguisher can be computationally unbounded, a black-box reduction can-
not call it. Therefore it suffices to construct a class of simulatable inefficient
sources Ay that satisfy the legality conditions and ensure that for the output
(z,aux) it holds that seed, aux, EDExt(z, seed), is statistically far from seed, aux, u
where u is uniform. Our a high level, the source A; that we construct makes
oracle queries and inefficiently learns the function EDExt(-, seed) sufficiently well
to predict EDExt(z,seed) for a random x with high accuracy without querying
it. It chooses such random z and sets aux to be a “statistically binding com-
mitment” of its prediction for EDExt(z, seed). This ensures that the distribution
of (seed,aux, EDExt(z,seed)) is statistically far from (seed,aux,uniform). The
commitment is generated using an exponentially large random function h and
can therefore be simultaneously statistically hiding and binding. Therefore this
attack is simulatable by an efficient simulator that chooses a random z and
outputs a commitment to a random value.

Theorem 8. For any candidate ED-Extractor (SeedGen, EDExt) with n(\)-bit
input and 1 bit output and for any polynomial ¢ = L(\) there exists a 2t
stmulatable attack against the o = (n—1)-ED-Extractor security of the candidate
in the setting with auzxiliary info and unbounded distinguishers.

In particular, if there is a black-box reduction showing this type of security
for the candidate based on the security of some cryptographic game G, then G is
not secure. If the reduction is based on the 2 -security of the game G then G
is not 2/ secure.

Proof. Assume that the length of seed < SeedGen(1%) is bounded by |seed| <
p(A) for some polynomial p. Let ¢ = g(A) = 3p(A) + A. Let Hy be the set of
all functions from {0,1}*™ to {0,1}. For any h € Hy, consider the inefficient
source Sy that chooses z1,...,z, uniformly at random and queries its oracle
on them, gets back y1,...,¥,, and finds the (lexicographically first) value seed’
such that EDExt(x;,seed’) = y; for all i € [g]. It chooses a random x, computes
2’ = EDExt(x,seed’) and sets aux = (r, h(r) @ z’) where r « {0, 1}*.

First we claim that for any h € Hy, the above source S j, breaks the security
of the ED-Extractor with auxiliary info and an unbounded distinguisher. It’s
easy to see that Sy is a legal source with entropy n — 1 since z is uniformly
random and aux can reveal at most 1-bit of information 2z’ about x. Secondly, we
claim that if Sy has oracle access to EDExt(-,seed), then with overwhelming
probability the value seed’ that it finds must agree with seed on at least 3/4
of all inputs. Otherwise there exists some seed’ that agrees with seed on < 3/4
inputs yet agrees with it on z,...,z, which occurs with probability at most
2P(3/4)9 = negl(\). This also implies that if we let 2’ = EDExt(x,seed’),z =
EDExt(x, seed) in the experiment, then 2z’ = 2z’ with probability 3/4—negl(\). But
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this shows that the distribution (seed,aux,u = EDExt(seed,x)) is statistically
far from (seed, aux,u <« {0,1}) since in the first case, if we let aux = (r,v) then
h(r) ®v = u with probability at least 3/4 —negl(\) while in the second case this
happens with probability at most 1/2.

Secondly, we claim that for a random h « Hj, the above source Sy} can
be simulated by an efficient S§ that runs in time poly(\). We define S§ which
chooses 1, . .., x4 uniformly at random and queries its oracle on them, gets back
Y1,---,Yqg, and outputs a uniformly random (r,v) « {0, 1}* x {0, 1}.

The only way that Sy for a random h can be distinguished from S using
black-box access is if two different executions of S use the same randomness r.
Given Q queries to S, this happens with probability at most poly(Q)2°.

Seed-Committing Extractors. We show that one cannot prove security in the
auxiliary input setting (even for polynomial-time sources and distinguisher) of
any ED-Extractor that has a certain type of seed-committing property.

Definition 7. An ED-Ezxtractor is seed-committing if there exist some poly-
nomial ¢ = q(\) and some inputs x1,...,x, € {0,13*N) such that for any
seed,seed’ for which EDExt(x;,seed) = EDExt(x;,seed’) for all i € [q] it must
hold that for all z* we have EDExt(z*, seed) = EDExt(z*, seed’).

For example, if we use the Naor-Reingold PRF [NR97] as an ED-Extractor
then it is seed-committing. Moreover, we believe that ED-Extractor construc-
tions using standard hash-functions and block-cipher will be seed-committing.

Theorem 9. For any candidate seed-committing ED-Extractor (SeedGen,
EDExt) with n(X)-bit input and m(\) bit output and for any polynomial £ = £(X\)
there exists a 27N _simulatable attack against the a = (n — 1)-ED-Extractor
security of the candidate in the setting with auziliary info.

In particular, if there is a black-box reduction showing this type of security
for the candidate based on the security of some cryptographic game G, then G is
not secure. If the reduction is based on the 2N -security of the game G then G
is not 2 secure.

Proof. Let Hy be the set of all pairs of functions hy : {0,1}¢ — {0, 1}2¢+1,
hy : {0,1}9FY — {0,1}¢. First we define (Enc, p,,Decp, n,) to be an
information-theoretic authenticated encryption scheme whose key is hy, hs. In
particular, Encp, n,(m) = (r,h1(r) & m, ha(r,hi(r) ® m)) where r « {0,1}*
is uniformly random and Decp, p,(r,c,0) = hi(r) @ ¢ if ha(r,c¢) = o and L
otherwise.

For any h = (hy,ha) € H), consider an inefficient source/distinguisher pair
Axn = (San,Dap) defined as follow. The source Ssee,n, chooses z1,..., %4
as given by the seed-committing definition and queries its oracle on them,
gets back yi,...,yq, and finds the (lexicographically first) seed’ such that
EDExt(x;,seed’) = y; for all i € [q]. It chooses a random z, computes 2’ to
be the first bit of EDExt(z,seed’) and sets aux « Ency(y1,...,9q,2'). The dis-
tinguisher Dy j, gets (seed, aux, u), it computes z to be the first bit of u. It sets
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Decy(aux) = (y1,...,Yq, 2'). If EDExt(seed, ;) = y; for all ¢ € [¢] and 2’ = z it
outputs 0 else 1.

It is easy to see that, for any h, the adversary Ay ; is an o = (n — 1)-legal
adversary and breaks ED-Extractor security with advantage 1/4: If the challenge
bit is b = 0, the distinguisher always outputs 0 and if the challenge bit is b =1
the distinguisher only outputs 1 with probability > 1/2.

Secondly, for a random h = (hq, he) the adversary A, j; can be efficiently
simulated by a stateful adversary A’ = (S’,D’) that acts as both the source and
the distinguisher but allows them to share state. On input yi,...,y, to &', it
chooses a random z, aux and remembers the tuple (aux,y1,...,¥s, ). On input
(seed, aux,u) to D’ it checks if it stores a tuple of the form (aux, y1,...,yq, z). If
it does store such a tuple and EDExt(seed, z;) = y; for all ¢ € [¢] and u is equal
to the first bit of EDExt(x,seed) it outputs 0 else 1.

To show that one cannot distinguish between black-box access to A vs A’
we define an intermediate A* which is inefficient but also stateful. In particular,
A* = (8*,D*) acts just like A, but instead of encrypting, the source S sets

aux to be uniformly random and stores the tuple (aux,y1, ..., ¥y, 2’) and instead
of decrypting D* retrieves the tuple indexed by aux to uses the corresponding
(yh < Yqs Z,)~

Firstly, we claim that A and A* are indistinguishable by any (comp.
unbounded) distinguisher that makes ) queries with probability better than
poly(Q) - 27¢. This essentially follows by the authenticated-encryption security
of the encryption scheme.

Secondly, we claim that A* and A’ are perfectly indistinguishable. The
only difference between them is that A* compares u against the first bit of
EDExt(seed’, z) while A’ compares it against EDExt(seed, z). But since seed, seed’
agree on I, ..., Zq, the seed-committing property ensures that EDExt(seed’, z) =
EDExt(seed, x).
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Abstract. For more than 30 years, cryptographers have been looking
for public sources of uniform randomness in order to use them as a set-
up to run appealing cryptographic protocols w