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Abstract. This paper investigates the offline path planning problem
of unmanned aerial vehicles (UAVSs) for surveillance mission in complex
urban environments. A new idea by coupling the differential evolution
(DE) with A* algorithm is suggested to address the problem in large
urban areas with narrow street and infrastructure of built environment.
The proposed method consists of two phase: the first phase adopts DE
to divide the straight line between source and destination into several
smaller regions, while the second one utilizes A* for each region to find a
collision-free and shortest path in parallel. In order to assess the efficiency
of the suggested algorithm, a real-world scenario is examined. Evalua-
tions exhibited promising results with proper accuracy and minimum
computational time.

Keywords: UAV - Offline path planning - Differential evolution - A*
algorithm

1 Introduction

The development of autonomous UAVs is of high interest to many military and
civilian applications for various missions. In recent years, more studies focus
on one of the essential aspect of UAV autonomy which is the capability for
automatic path planning [7]. This process consists of finding an optimal or near-
optimal collision-free path between the start and target positions; under specific
constraints conditions. As a matter of fact, a suitable path planning strategy
should be design not only to improve the effectiveness of the system (e.g., mem-
ory consumption and computational time) but also to communicate with other
elements in order to comply with the mission requirements. Hence, implementing
an effective algorithm entails a deep analysis of various contributing techniques
[18].

Previous studies have presented a series of techniques to tackle the afore-
mentioned problem based on different necessities such as performances optimiza-
tion, collision avoidance, real-time planning, and safety maximization. They took
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hints from different research fields; like mathematics for graph-based and prob-
abilistic approaches [2,15], physics for potential field algorithm [6], or computer
science for artificial intelligence methods [5,17,22]. Generally, we can catego-
rize the existing works into classical techniques (i.e., graph-based search meth-
ods, sampling-based approaches, potential field), computational intelligence (CI)
methods, and hybrid approaches.

Graph-based searches (e.g., A* and Dijkstra) were developed to find the
shortest path between two nodes of connected graphs with a greedy logic. One
of the positive characteristic of these methods is their simplicity, which implies
reduced computational time. They have deterministic nature and guarantee to
find the optimal collision-free path, if it exists. However, the performance of
these algorithms depends on the environment’s total area due to the fact that
they save all explored nodes in memory. Sampling-based methods, such as Prob-
abilistic Roadmaps (PRM) [13] and Rapidly-exploring Random (RRT) [14] have
proven to be an effective framework suitable for high-dimensional spaces to pro-
duce feasible solutions; nevertheless, they do not guarantee the optimality of
the solution [9]. In recent years, CI methods including fuzzy system, neural net-
work, and evolutionary algorithms (EAs) have received most of the research
effort for solving UAV path planning problem [10,21]. They attract the atten-
tion of researchers because of: (a) their flexibility to solve large-scale complex
problems, (b) their ability to apply different learning strategies to perform an
effective search towards the global optimum, and (c) employing for both sin-
gle and multiple UAVs. However, in practice, when the available computation
resources and/or time are limited, they are not always the best choice.

These issues motivated us to present a novel hybrid approach inspired from
incremental heuristic search which not only scales well with problem size but also
speeds up the search process for a high quality path in a reasonable execution
time. To do so, A* as an informed heuristic search strategy and DE algorithm as
one of the most popular EAs are integrated in order to find the shortest collision-
free path in high dimension spaces with minimum computational time. In this
method, the search space is limited around the straight line between the start
and target locations. This is motivated by the fact that taking into account the
whole configuration space can raise the computational cost. Here, the start and
the target points are connected to each other via a straight line (as the shortest
path) regardless of the obstacles. Then, we apply DE algorithm to divide the
straight line into several suitable segments/regions. Thereafter, A* is used as a
local path planner to find the shortest path for each region in a parallel manner.
Altogether, the suggested method reduce the dimensionality of the search space
which enables the presented algorithm to find better topologically distinct paths
more rapidly. The performance of the proposed method is compared with A* and
standard DE algorithm for a realistic urban environment. Evaluations exhibited
desirable run-time performance in finding feasible and safe paths.

The rest of this paper is organized as follows. Section 2 starts with problem
definition in Subsect. 2.1. Next, in Subsects. 2.2 and 2.3 basic concepts of A*
and DE algorithm are explained, respectively. The description of the proposed
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method including environment modeling, constraints, solution representation,
objective function, and the suggested algorithm are provided in Sect.3. The
simulation results and discussion are presented in Sect.4. Finally, the paper is
concluded in Sect. 5.

2 Background Information

2.1 Problem Definition

Generally, path planning belongs to a class of non-deterministic polynomial-time
(NP) hard problems [4] which is much more intensively investigated in robotics
(referred as motion planning). Formally, path planning for UAVs defined as an
optimization problem aimed at finding the shortest and safest path to reach a
goal position, while flying into a high-threat area. Here, some important factors
should be taken into consideration such as modeling the environment, the path
representation, safety, cost of the path, and computational time. These factors
are either integrated directly into the objective functions that require to be
minimized /maximized, or in the form of constraints that a path must comply
with. The later subsections elaborates these factors with more details.

2.2 A* Search Algorithm

The history of finding the shortest path can be followed as early as 1968, when
A* as the most effective direct search method is developed for robot navigation
[8,12]. The algorithm acts on the basis of Dijkstra, but can avoid blind search
to improve search efficiency. It seeks towards the most promising states using a
heuristic function in order to save the computational time resource. A detailed
explanation of A* can be found in [12].

2.3 Differential Evolution

DE algorithm has been successfully employed in various research and application
areas. It has been also utilized in path planning tasks for both single UAV and
multiple UAVs [3,19,20]. DE is an iterative procedure which aims at evolving a
population (NP) of D-dimensional parameter vectors towards the global opti-
mum. It includes a population of path candidate solutions or individuals which
are produced by integrating a parent and other individuals of the same popula-
tion. Each candidate solution has a set of variables which subjected to mutation
and crossover search operators in order to produce new solutions subject to some
constraints. The algorithm only accepts the candidate solutions that are better
than their parents and accordingly transfers them to the next generation of the
algorithm. The algorithmic description is summarized in Fig. 1. In this figure,
the five most frequently utilized mutation strategies are listed.

The indices rq,72,73,74, 75 are mutually exclusive integers randomly gener-
ated within the range [1, NP], which also differ from the index i. These indices
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The DE Algorithm Pseudo Code

Generate the initial population
Evaluate the fitness for each individual
While the stopping criterion is not satisfied do
For i =1 to NP do
Select three mutually different individuals r; # 1, # 13
*1
Jrana = int (rand [1,D])

For j=1to D do Different type of strategy applied in DE algorithm
Ifrand [0,1] < CRorj = jrqna then DE/rand/1
u{ ¢ Apply the predetermined strategy Ui = X6 +F (26 — Xr3g)
Else DE/best/1
u{;G = xi’:G Ui = Xpeste +F (16 — Xr26)
End if DE/rand-to-best/1
End for < Ui = xig +F (Xbesz,c — Xig )
+ +F (16 = *r26)
End for DE/best/2
For i =1 to NP do Uic = Xpesec +F (Xr16 — %26 )
+ +F (36 = Xrag)
Evaluate the offspring DE/rand/2
If the fitness function value of u; ¢ is no worse than Uig = 16 +F (26 — Xr36)
xi then replace x;; with u; ¢ + +F (Xpag — Xrs6)
End if
End for
End while

Fig. 1. The pseudo code of DE algorithm

are randomly generated once for each mutant vector. The scaling factor F' is a
positive control parameter for scaling the difference vector. The crossover rate
CR is a user-specified fixed within the range [0, 1), which controls the fraction of
parameter values copied from the mutant vector. Xpest ¢ is the best individual
vector with the best fitness value in the population at generation G. jrqnq is a
randomly chosen integer in the range [1, D].

3 The Proposed Approach

First, a clear description of environment modeling, constraints, solution represen-
tation, and objective function is presented. Thereafter, the introduced algorithm
is described in details.

3.1 Environment Modeling and Constraint

In this work, we considered a grid-based map to represent the environment.
The grid map is composed of equal size cells, where each cell is represented
by a unique number. An urban environment in a 2-dimensional (2D) form is
pre-processed to generate the grid map. In this step, an occupancy matrix is
utilized for grid map representation where each cell has two possible values: “0”
for a free and “1” for an occupied cell. The buildings with different polygon
shapes are considered as obstacles; which are static and known in advance. In
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order to understand how these polygon shapes occupy the grid cells, polygon
triangulation method is used to decompose a polygon area into a set of triangles
with pairwise non intersecting interiors. Accordingly, we check whether a grid cell
lies inside a triangle or not (see Fig.2). The occupancy matrix is pre-processed
only once and the back-tracking process for making paths does not consume
significant computational resources.

The constraint is path safety which means that a path always should satisfy
a predefined safety margin (distance) with respect to the obstacles. In this work,
the safety margin is the confidence radius of UAV around obstacles which is
considered as 1 unit.
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Fig. 2. The obstacle modeling in a grid map representation (The first three figures,
on the left side, show how an arbitrary polygon shape occupies grid cells using the
triangulation method. The occupancy map is represented in the right side figure.)

3.2 Solution Representation

The solution representation is an essential element for solving an optimization
problem. In this study, each solution/path consists of a sequence of design vari-
ables. These variables are adopted based on grid cells that are located in the
straight line between the start and target positions; with their unique numbers.
In this way, the algorithm focuses on the most promising parts of the search space
which can enhance the convergence performance. If a variable did not satisfy the
constraint, the perpendicular line that passes through the selected variable is
considered and another arbitrary point upon this line which is collision-free and
near to the straight line will be chosen. An example of modeling the configuration
space and solution representation is displayed in Fig. 3.

3.3 Objective Function

The objective function has to satisfy the constraints while optimizing the flight
path and avoiding obstacles. Here, owing to employing grid map representation
a feasible flight path can be defined from the start to the destination cell by
traversing a certain number of free cells [1]. Hence, the cost of a feasible path is
the sum of all costs of the movements along the associated path in all regions.
The UAV is assumed to move horizontally or vertically or diagonally from a
free cell to another one with fixed flight altitude. Accordingly, there are eight
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Fig. 3. The solution representation

possible moves from each cell to another one. It is worth mentioning that the
main contribution of this work is to apply A* heuristic objective function to find
the shortest path length in a desirable run-time.

3.4 ADE Algorithm

As mentioned before, adopting a fast and efficient path planning method is
critical for autonomous UAVs which usually operate in large scale urban envi-
ronments. There are various intelligent optimization methods which have been
successfully applied in solving UAV path planning problem [11,21]. In the same
direction and without loss of generality, this paper presents a new approach by
integrating A* and DE algorithm in order to generate the shortest path with
minimum computational time over very long distances.

The introduced hybrid algorithm, named as ADE, contains two main steps.
The first step is accomplished with DE which is responsible for intersecting
the whole area into conjunct regions. In fact, it determines several intermediate
cells for exploring better the configuration space. These cells are DE’s design
variables which are located on the straight line between the start and target
positions. In this way, the algorithm focuses on the most promising parts of the
search space which can enhance its convergence performance. As explained in
previous subsection, if a variable did not satisfy the constraint, a straight line
perpendicular to the selected variable is considered, and another arbitrary point
upon this line will be chosen by DE. This point should have two conditions:
(a) be in an admissible space, (b) have a minimum distance from the straight
line. In such a way, a proper balance between the exploration and exploitation
capabilities of DE algorithm is achieved. In the second step, A* algorithm is
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employed to find the shortest path in each region in parallel. Thus, all the paths
obtained from regions are connected to form the global best path. Hence, the
algorithm is widely favorable for reducing computational time. An example of
modeling the configuration space and the proposed algorithm is displayed in
Fig. 4. Moreover, the flowchart of the proposed algorithm is shown in Fig. 5.
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(¢) Occupancy grid map in a coordinate system (d) Solution structure, individual of DE algorithm
Fig. 4. An example of the proposed path planning algorithm: (a) configuration space,
(b) occupancy grid map, (c¢) an obtained path in a coordinate system, (d) solution
representation

4 Experimental Evaluation

This section aims to investigate the efficiency of the presented algorithm through a
series of experiments on a realistic urban environment. The selected test case pro-
vided the chance to conduct a comprehensive study on the performance of algo-
rithm in terms of path length and computational time. For this purpose, Subsect.
4.1 begins with a description of the test case characteristics. Then, in Subsect. 4.2,
the setting parameters are introduced. In order to automatically configure the algo-
rithm’s parameters, irace package is utilized. Finally, the compared algorithms and
statistical results obtained via experiments on urban map are presented and dis-
cussed in Subsects. 4.3 and 4.4, respectively. All simulations and evaluations were
implemented and conducted within Python library!, on a computer with Intel Core
i5-7440HQ CPU, 2.80 GHz, 8GB RAM, running on Ubuntu OS.

! (Atsushi Sakai et al. https://github.com/AtsushiSakai/PythonRobotics).
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Fig. 5. The flowchart of the proposed algorithm

4.1 Test Case

The experiments have been extended with realistic urban environment. The
selected environment for evaluating the performance of the algorithm is a partial
part of Mulhouse city in France. The map file is extracted from OpenStreetMap,
defined by geographical coordinates in terms of latitude and longitude. In this file
the buildings tags are filtered. These building are taken into account as obstacles
and their modeling is explained in Subsect. 3.1. The characteristics of this map
are summarized in Table 1. In addition, Fig.6 shows the total map and part of
its modeling. As can be seen from part of modeling, this map has narrow streets

with compressed obstacles.

Table 1. The test

case characteristics

Map

Latitudes

Longitudes

No. obstacles

Mulhouse

Minlat = 47.7250

Minlon = 7.3001

4099

Maxlat = 47.7538

Maxlon = 7.3466
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Fig. 6. Illustration of the selected map and employed polygon triangulation method

4.2 Experimental Setup

The configuration parameters of the algorithm can be divided into two categories:
environment and algorithm parameters. Environment parameters include: grid
size, start point, target point, number of obstacles and their coordination, and
the boundary of the search space which are the minimum and maximum of lat-
itudes and longitudes. The algorithm parameters are population size, crossover
probability (CR), scaling factor (F'), type of DE strategies, number of design
variables, and number of iterations. The number of variables, which is assumed
as dimension of the problem or regions, is an integer within the range [1, 9]. If the
algorithm adopts 1, it means A* algorithm is applied for the total configuration
space. Also, the maximum number of iterations and runs for this work are 100
and 20, respectively.

Table 2 describes the configurable settings of the proposed algorithm. As
mentioned above, some parameter settings including population size, CR, F,
and type of DE strategy are significant for a certain value and have a great
impact on the performance of algorithm. Hence, instead of using a trial-and-
error approach to identify good values for these parameters, we utilized irace
software [16] as an automated algorithm configuration tool for obtaining very
high-performing algorithmic variants. A maximum budget of 200 experiments is
applied for each run of irace and it is repeated 20 times to assess the variability
of the automatic configuration process. According to the obtained results, the
best configuration uses [80,1,0.2, 1] values for population size, F, CR, and the
type of strategy parameters, respectively. The related DE mutation strategy,
labelled by the number 1 during the parameter setting, is DE/rand/1.
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Table 2. The setting parameter of the algorithm

Parameter Value

Grid space 461 * 286

Start [x = 84, y = 40]
Goal [x = 387,y = 251]
Grid size 1

Population size | [1, 100]

CR [0.1, 1]

F 0.1, 2]

No. strategy [1, 5]

Max iteration | 100
Max run 20

4.3 The Effect of Different Number of Regions

As was mentioned before, the presented approach divides the distance between
the start and target locations into several regions. The number of these regions
which are taken into account as the number of dimension are very important to
be determined. Thus, to investigate whether this number has a positive effect on
the performance of the algorithm in terms of precision of path length and com-
putational time, a comparison using different number of regions is performed.
Parameter configurations for this experiment are similar to the settings explained
in the previous subsection. Figure 7 exhibits the average and standard deviation
of path length and computational time for different number of regions over 20
independent runs. As can be seen, by increasing the number of dimension the
computational time significantly decreased; while as expected the precision of
path length is approximately reduced. Furthermore, standard deviation of the
results shows the stability of the presented method. As a matter of fact, it clearly
confirms that the difference between regions can considerably affect the compu-
tational time which is very important factor especially in large scale environ-
ment. Another interesting observation that can be concluded from these results
is that this approach makes the problem as a low dimensional problem using less
number of decision variables for dividing the regions.

4.4 Results and Discussion

The presented algorithm was executed over 20 independent runs. The results
are presented by the best, mean, and standard deviation (S.D.) of cost values
obtained in all runs. To provide a meaningful comparison of A*, DE, and ADE,
the mean and S.D. of the path length and computational time are compared
with each other. All experimental results are reported in Table 3.

As it was expected, the results of ADE shows the impact of adopting differ-
ent number of regions in accuracy of path length and computational time. ADE
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Fig. 7. The effect of different values for number of regions

with two regions has a smaller path length than the other dimension. However,
its computational time is greater. The other dimensions have a close competi-
tion in accuracy of path length where by increasing the number of regions, the
computational time surprisingly reduced. Also, the result of original DE shows
that this algorithm was not able to find the shortest path in a reasonable time.
One of the reason for such bad performance is the small number of iterations
that makes it hard for DE to find the best set of grid cells. Finally, the results of
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Fig. 8. The obtained feasible path in a predetermined time slot for both A* and ADE

algorithm
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Table 3. Results obtained for 20 independent runs of algorithms for offline path plan-
ning

Algorithm Path length | Path length Computational time (s)
Best Mean £ S.D. Mean £+ S.D.
ADE (D =1)| 308 309.12 £ 0.76e4-00 | 38.60e+4-00 £ 2.43e+00
ADE (D =2)| 309 310.05 £ 0.76e+00 | 32.10e+-00 £ 1.25e+4-00
ADE (D = 3)| 310 313.40 £ 1.95e+00 | 16.00e+00 £ 1.40e+00
ADE (D =4)| 312 316.00 £ 2.67e4-00 | 12.00e4-00 £ 0.72e+00
ADE (D =5)| 315 326.05 £ 7.56e+00 | 9.14e+400 £ 0.80e+00
ADE (D =6)| 317 322.40 + 5.80e+00 | 7.70e4+00 £ 0.65e+00
ADE (D=7)| 324 327.40 £ 6.51e4-00| 3.98e+4-00 % 0.73e+00
ADE (D =8)| 331 329.40 + 4.42e¢+00 | 3.46e+00 £ 0.52e+00
ADE (D =9)| 339 342.40 + 2.60e+00 | 3.03e+00 £ 0.08e+00
DE 2170 1180.00 % 4.09e+-03 | 66.65e+00 + 3.81e+4-00
A* 307 307.00 = 0.00e+00 | 13.80e+00 £ 0.16e+00

A* algorithm is reported in the last row of this table. A* could find the short-
est path with high accuracy but with more computational time when compared
to the presented ADE algorithm. There is a close competition between A* and
ADE with dimension 4.

Also, Fig. 8 shows that the proposed method can give more accurate solutions
in the early iterations, while A* finds the best possible flyable path using more
computational resource. Indeed, this is the main properties of ADE which allows
us to make a trade-off between these two conflicting objectives; as previously
explained in Sect. 4.3.

5 Conclusion

This study concerns the development of a new path planning algorithm for UAVs
so as to avoid obstacles in realistic urban environment for surveillance mission.
The problem is modeled in a static 2D space with constraint single objective func-
tion. The suggested ADE approach integrated a heuristic search function with
DE for large-scale environments. For this purpose, DE is employed to divide the
configuration space into several conjunct regions. Then, each region is explored
by A* algorithm as a local path planner in a parallel manner. The presented
algorithm tries to search around the straight line between the start and desti-
nation which results in increasing the convergence performance and decreasing
the computational time. The performance of the algorithm is evaluated through
a series of experiments. The irace software package is also utilized in order to
find the best configurations for the algorithm. The obtained results illustrated
the efficiency of ADE in finding optimal solutions with proper accuracy and
minimum computational time.
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