
Lhassane Idoumghar · Pierrick Legrand ·
Arnaud Liefooghe · Evelyne Lutton ·
Nicolas Monmarché · Marc Schoenauer (Eds.)

LN
CS

 1
20

52

14th International Conference, Évolution Artificielle, EA 2019
Mulhouse, France, October 29–30, 2019
Revised Selected Papers

Artificial Evolution

Lecture Notes in Computer Science 12052

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Lhassane Idoumghar • Pierrick Legrand •

Arnaud Liefooghe • Evelyne Lutton •

Nicolas Monmarché • Marc Schoenauer (Eds.)

Artificial Evolution
14th International Conference, Évolution Artificielle, EA 2019
Mulhouse, France, October 29–30, 2019
Revised Selected Papers

123

Editors
Lhassane Idoumghar
IRIMAS Institute
ENSISA
Mulhouse, France

Pierrick Legrand
Inria Bordeaux Sud-Ouest, IMB
University of Bordeaux
Talence, France

Arnaud Liefooghe
Research Center in Computer Science,
Signal and Automatic Control of Lille
University of Lille
Villeneuve d’Ascq, France

Evelyne Lutton
GMPA
INRA
Thiverval-Grignon, France

Nicolas Monmarché
Laboratoire d’Informatique
University of Tours
Tours, France

Marc Schoenauer
Inria Saclay
University of Paris-Sud
Orsay, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45714-3 ISBN 978-3-030-45715-0 (eBook)
https://doi.org/10.1007/978-3-030-45715-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-45715-0

Preface

This LNCS volume is made of the best papers presented at the 14th Biennial Inter-
national Conference on Artificial Evolution (EA1 2019), held in Mulhouse, France.
This conference proceeds a long series of previous issues, that took place in Paris
(2017), Lyon (2015), Bordeaux (2013), Angers (2011), Strasbourg (2009), Tours
(2007), Lille (2005), Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes
(1997), Brest (1995), and Toulouse (1994).

We sought original contributions relevant to Artificial Evolution, including, but not
limited to: evolutionary computation, evolutionary optimization, co-evolution, artificial
life, population dynamics, theory, algorithmic and modeling, implementations, appli-
cation of evolutionary paradigms to the real world (industry, biosciences, etc.), other
biologically-inspired paradigms (swarm, artificial ants, artificial immune systems,
cultural algorithms, etc.), memetic algorithms, multi-objective optimization, constraint
handling, parallel algorithms, dynamic optimization, machine learning, and
hybridization with other soft computing techniques.

Each submitted paper was reviewed by four members of the International Program
Committee. As was the case in previous editions, a selection of the best papers which
were presented at the conference and further revised for publication (see LNCS vol-
umes 1063, 1363, 1829, 2310, 2936, 3871, 4926, 5975, 7401, 8752, 9554, and 10764).
EA 2019 continued this tradition, selecting high-quality papers for the oral presenta-
tion, which amounted in 16 revised papers being included in this volume of the
Springer’s LNCS series.

As per usual, the EA 2019 success is indebted to dedicated team work, for which I
would like to express my gratitude to:

– Edward Keedwell, who accepted to be our keynote speaker
– The Program Committee members for their careful work: the high quality of the

selected papers is a proof of their strong commitment
– The Organizing Committee for their efficient work and kind availability, in par-

ticular the local team
– The members of the Steering Committee for their valuable assistance
– Aurélien Dumez and Pierrick Legrand for the administration of the conference

website
– Anne Jeannin-Girardon, Pierre Parrend, and Marc Schoenauer for their support and

management of the MyReview system
– Laetitia Jourdan and Patrick Siarry for publicity
– Pierrick Legrand and Arnaud Liefooghe for editing the proceedings

1 As for previous editions of the conference, the EA acronym is based on the original French name
“Évolution Artificielle”.

I take this opportunity to thank the different partners whose financial and material
support were invaluable

– IRIMAS (Institut de Recherche en Informatique, Mathématiques, Automatique et
Signal)

– Faculté des Sciences et Techniques, Université de Haute-Alsace
– Institut Universitaire de Technologies de Mulhouse, Université de Haute-Alsace
– Région Grand-Est
– École Polytechnique de l’Université de Tours
– Inria
– ROADEF
– Association EA

Finally, we are also deeply grateful to all authors who submitted their research work
to the conference, and to all attendees who make the conference so lively. The scientific
quality as well as the warm and friendly atmosphere of this series of conferences is the
result of a rare alchemy that is still maintained. Thank you for all these years of fidelity,
thank you for EA 2019.

February 2020 Lhassane Idoumghar

vi Preface

Organization

Chair

Lhassane Idoumghar University of Haute Alsace, France

Steering Committee

Pierre Collet University of Strasbourg, France
Pierrick Legrand University of Bordeaux, France
Evelyne Lutton INRA Versailles-Grignon, France
Nicolas Monmarché University of Tours, France
Marc Schoenauer Inria Saclay, France

Organizing Committee

Bruno Adam University of Haute Alsace, France
Mathieu Brévilliers University of Haute Alsace, France
Aurélien Dumez Inria Bordeaux, France
Germain Forestier University of Haute Alsace, France
Laetitia Jourdan University of Lille, France
Anne Jeannin-Girardon University of Strasbourg, France
Fabrice Lauri University of Haute Alsace, France
Pierrick Legrand University of Bordeaux, France
Julien Lepagnot University of Haute Alsace, France
Arnaud Liefooghe University of Lille, France
Yvan Maillot University of Haute Alsace, France
Laurent Moalic University of Haute Alsace, France
Mahmoud Melkemi University of Haute Alsace, France
Pierre Parrend University of Strasbourg, France
Dominique Schmitt University of Haute Alsace, France
Patrick Siarry University of Paris-Est Creteil, France
Jonathan Weber University of Haute Alsace, France

PhD Student Volunteers

Mounir Bendali-Braham
Mokhtar Essaid
Hassan Ismail Fawaz
Soheila Ghambari
Julien Kritter
Hojjat Rakhshani
Imene Zaidi

Program Committee

Hernán Aguirre Shinshu University, Japan
Christian Blum Artificial Intelligence Research Institute (IIIA-CSIC),

Spain
Stephane Bonnevay University of Lyon 1, France
Nadia Boukhelifa INRA, France
Boumaza, Amine University of Lorraine, France
Nicolas Bredeche Sorbonne University, France
Mathieu Brevilliers University of Haute Alsace, France
Nik Noordini Bt Nik Abd

Malik
Universiti Teknologi, Malaysia

Stefano Cagnoni University of Parma, Italy
Francisco Chicano University of Málaga, Spain
Maurice Clerc Independent Scholar, France
Manuel Clergue University of the French West Indies, France
Pierre Collet University of Strasbourg, France
Fatima Debbat University of Mascara, Algeria
Laurent Deroussi University of Clermont-Ferrand, France
Clarisse Dhaenens University of Lille, France
Carola Doerr Sorbonne University, France
Marco Dorigo Université Libre de Bruxelles, Belgium
Marc Ebner University of Greifswald, Germany
Mounir Elbaz University of Haute Alsace, France
Rachid Ellaia Mohamed V-Rabat University, Morocco
Andries Engelbrecht University of Pretoria, South Africa
Mostafa Ezziyyani Abdelmalek Essaâdi University, Morocco
Hongying Fei Shanghai University, China
Francisco Fernandez de la

Vega
University of Extremadura, Spain

Cyril Fonlupt University of the Littoral Opal Coast, France
Germain Forestier University of Haute Alsace, France
Edgar Galvan Trinity College of Dublin, UK
Mario Giacobini University of Turin, Italy
Adrien Goëffon University of Angers, France
Frédéric Guinand University of Le Havre, France
Jin-Kao Hao University of Angers, France
Lhassane Idoumghar University of Haute Alsace, France
Anne Jeannin-Girardon University of Strasbourg, France
Laetitia Jourdan University of Lille, France
Edward Keedwell University of Exeter, UK
Bill Langdon University College London, UK
Nurul Mu’azzah Abdul

Latiff
Universiti Teknologi, Malaysia

viii Organization

Fabrice Lauri University of Technology of Belfort-Montbéliard,
France

Pierrick Legrand University of Bordeaux, France
Julien Lepagnot University of Haute Alsace, France
Jing Liang Zhengzhou University, China
Arnaud Liefooghe University of Lille, France
Manuel López-Ibáñez The University of Manchester, UK
Jean Louchet Inria Saclay, France
Nuno Lourenço University of Coimbra, Portugal
Evelyne Lutton INRA, France
Katherine Malan University of South Africa, South Africa
Virginie Marion-Poty University of the Littoral Opal Coast, France
Nicolas Monmarché University of Tours, France
Una-May O’Reilly MIT Computer Science and Artificial Intelligence Lab,

USA
Gabriela Ochoa University of Stirling, UK
Damien Olivier University of Le Havre, France
Luís Paquete University of Coimbra, Portugal
Andrew Parkes University of Nottingham, UK
Pierre Parrend University of Strasbourg, France
Francisco Pereira University of Coimbra, Portugal
Alain Petrovsky Télécom Paris, France
Amin Rahati University of Sistan and Baluchestan, Iran
Frederic Saubion University of Angers, France
Marc Schoenauer Inria Saclay, France
Oliver Schütze CINVESTAV, Mexico
Patrick Siarry University of Paris-Est Creteil, France
Giovanni Squillero Politecnico di Torino, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
El-ghazali Talbi University of Lille, France
Eduardo Rodriguez Tello CINVESTAV, Mexico
Dirk Thierens Utrecht University, Nederlands
Alberto Tonda INRA, France
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Paulo Urbano University of Lisboa, Portugal
Sébastien Verel University of the Littoral Opal Coast, France
Jonathan Weber University of Haute Alsace, France
Darrell Whitley Colorado State University, USA
Annie S. Wu University of Central Florida, USA
Emigdio Z. Flores Instituto Tecnológico de Tijuana, Mexico
Nicolas Zufferey University of Geneva, Switzerland

Organization ix

New Directions in Search: Heuristics,
Metaheuristics and Hyperheuristics

for Real-World Optimisation Problems
(Abstract of Invited Talk)

Edward Keedwell

University of Exeter, UK

Abstract. The increasing use of search and optimisation algorithms in
real-world applications presents new challenges to researchers to develop
algorithms that are computationally efficient and are able to produce meaningful
solutions. In this talk, I will describe two approaches that are aiming to address
these challenges: interactive evolutionary metaheuristics and sequence-based
hyperheuristics. These methods are designed to make use of human intelligence
and machine learning to improve search and optimisation performance and to
generate feasible solutions for real-world problems in the water industry and
operations research problems. Specifically, I will demonstrate an interactive
evolutionary algorithm (EA) system that is able to learn human preferences and
embed them into the operation of an EA to improve objective and subjective
performance criteria. I will then describe recent work in the use of machine
learning to understand and create sequences of search operations within a
hyperheuristic framework to better understand the problem-algorithm interface
and improve search performance.

Contents

From Feature Selection to Continuous Optimization 1
Hojjat Rakhshani, Lhassane Idoumghar, Julien Lepagnot,
and Mathieu Brévilliers

Evolving a Weighted Combination of Text Similarities
for Authorship Attribution . 13

Youssef Keyrouz, Cyril Fonlupt, Dany Mezher, Denis Robilliard,
and Rafic Faddoul

Image Signal Processor Parameter Tuning with Surrogate-Assisted Particle
Swarm Optimization . 28

Geoffrey Portelli and Denis Pallez

Combinatorial Surrogate-Assisted Optimization for Bus Stops
Spacing Problem. 42

Florian Leprêtre, Cyril Fonlupt, Sébastien Verel, and Virginie Marion

Optimisation of a Checkers Player Using Neural
and Metaheuristic Approaches . 53

Ethan Bunce and Edward Keedwell

A Novel Outlook on Feature Selection as a Multi-objective Problem 68
Pietro Barbiero, Evelyne Lutton, Giovanni Squillero, and Alberto Tonda

Fast Evolutionary Algorithm for Solving Large-Scale
Multi-objective Problems . 82

Anna Ouskova Leonteva, Pierre Parrend, Anne Jeannin-Girardon,
and Pierre Collet

Looking for Energy Efficient Genetic Algorithms . 96
Francisco Fernández de Vega, Josefa Díaz, Juan Ángel García,
Francisco Chávez, and Jorge Alvarado

Evolving Fitness Landscapes with Complementary Fitness Functions. 110
Vincent Hénaux, Adrien Goëffon, and Frédéric Saubion

Bayesian Immigrant Diploid Genetic Algorithm
for Dynamic Environments. 121

Emrullah Gazioglu and A. Sima Etaner-Uyar

Ant Colony Optimization Algorithm for a Transportation Problem in Home
Health Care with the Consideration of Carbon Emissions 136

Hongyuan Luo, Mahjoub Dridi, and Olivier Grunder

Selective Vehicle Routing Problem: A Hybrid Genetic
Algorithm Approach . 148

Andrea Posada, Juan Carlos Rivera, and Juan D. Palacio

Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources. 162
Boukhalfa Zahout, Ameur Soukhal, and Patrick Martineau

A Study of Recombination Operators for the Cyclic Bandwidth Problem 177
Jintong Ren, Jin-Kao Hao, and Eduardo Rodriguez-Tello

Automatic Calibration of a Farm Irrigation Model: A Multi-Modal
Optimization Approach . 192

Amaury Dubois, Fabien Teytaud, Eric Ramat, and Sébastien Verel

A Hybrid Evolutionary Algorithm for Offline UAV Path Planning 205
Soheila Ghambari, Lhassane Idoumghar, Laetitia Jourdan,
and Julien Lepagnot

Author Index . 219

xiv Contents

From Feature Selection to Continuous
Optimization

Hojjat Rakhshani(B), Lhassane Idoumghar(B), Julien Lepagnot(B),
and Mathieu Brévilliers(B)

Université de Haute-Alsace, IRIMAS-UHA, 68093 Mulhouse, France
{hojjat.rakhshani,lhassane.idoumghar,

julien.lepagnot,mathieu.brevilliers}@uha.fr

Abstract. Metaheuristic algorithms (MAs) have seen unprecedented
growth thanks to their successful applications in fields including engi-
neering and health sciences. In this work, we investigate the use of a
deep learning (DL) model as an alternative tool to do so. The proposed
method, called MaNet, is motivated by the fact that most of the DL mod-
els often need to solve massive nasty optimization problems consisting of
millions of parameters. Feature selection is the main adopted concepts
in MaNet that helps the algorithm to skip irrelevant or partially rele-
vant parameters and use those design variables which contribute most
to the overall performance. The introduced model is applied on several
unimodal and multimodal continuous problems. The experiments indi-
cate that MaNet is able to yield competitive results compared to one of
the best hand-designed algorithms for the aforementioned problems, in
terms of the solution accuracy and scalability.

Keywords: Metaheuristics · Deep learning · Continuous optimization

1 Introduction

The need for optimization has received a lot of attention in different application
areas. Formally, optimization algorithms seek to find a parameter vector x∗ so as
to minimize a cost function f(x) : RD → R, i.e. f(x∗) ≤ f(x) for all x ∈ Ω, where
Ω = R

D is the search domain and D is the dimension of the problem. There are
no a prior hypothesis about f and optimization algorithms should treat them as
black-box functions. This motivated the development of MAs which do not take
advantages of problem structure.

MAs are one of the fastest growing fields aimed at solving different complex
and highly non-linear real-world problems by inspiration from the process of
natural evolution or physical processes [9,18]. In MAs, we often have a popu-
lation of candidate solutions that strive for survival and reproduction. In every
iteration, different search operators are applied to the candidate solutions and
then the population will be updated based on its success in achieving the goal.
Over the last decade, there has been an explosion in the development of a variety
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-45715-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_1

2 H. Rakhshani et al.

of extensions to further enhance the performance of MAs. However, there are no
clear guidelines on the strengths and weaknesses of alternative methods such as
the DL models for developing more enhanced optimization algorithms.

The DL approaches use a hierarchy of features in conjunction with several
layers to learn complex non-linear mappings between the input and output layer.
As opposite to traditional machine learning methods that use handmade fea-
tures, the important features are discovered automatically and are represented
hierarchically. This is known to be the strong point of DL against traditional
machine learning approaches. Accordingly, these models have been described
as universal learning approaches that are not task specific and can be used to
tackle different problems arise in different research domains [1]. In this work,
we propose a simple, yet effective approach for numerical optimization based on
the DL. The proposed MaNet adopts a Convolutional Neural Network (CNN);
which are regularized version of fully-connected neural networks inspired from
biological visual systems [12]. The “fully-connectedness” of CNNs enables them
to tackle the over-fitting problem and it is reasonable to postulate that they may
outperform classical neural networks for difficult optimization tasks.

The rest of the paper is organized as follows. Section 2 presents a review
on the related works and describes our motivations. In Sect. 3, we elaborate
technical details of the MaNet approach. In Sect. 4, a series of experiments are
conducted to show the performance of the introduced method. The last section
summarizes the paper and draws conclusions.

2 Related Works and Motivations

The idea of solving optimization problems using neural networks has an old his-
tory which has seen a number of advances in recent years [2,3,10,14,23]. In [23],
authors developed a Bayesian optimization method, called as DNGO, based on
deep neural networks for hyperparameter tuning of large scale problems with
expensive evaluation. The main idea is to combine large-scale parallelism with
an optimization method to provide an approximate model of the real cost func-
tion. They show that DNGO scales in a less dramatic fashion compared to the
Gaussian process, while maintains its desirable flexibility and characterization
of uncertainty. OptNet [2] is another method proposed for learning optimization
tasks by the virtues of DL, sensitivity analysis, bilevel optimization, and implicit
differentiation. The authors highlighted the potential power of OptNet networks
against existing networks to play mini-Sudoku. In [3], researchers investigated
automating the design of an optimization algorithm by Long short-term memory
deep networks on a number of tasks. Their results outperform hand-designed
competitors for simple convex problems, neural network training and styling
images with neural art. Similarly, Li and Malik [14] put forward a deep learning
method for automating algorithm design process. They formulate the problem
as a reinforcement learning task according to which any candidate algorithm
is represented by a policy and the goal is to find an optimal policy. To verify
this finding, the authors conducted a set of experiments using different convex

From Feature Selection to Continuous Optimization 3

and non-convex loss functions correspond to several machine learning models.
The obtained results clearly suggest that the automatically designed optimizer
converges faster compared to hand-engineered optimizer.

Some of the above mentioned works mainly aim at providing optimal solu-
tions within a very limited computational time [23], while others [3,14] primarily
focus on getting better heuristic solutions. These success stories of DL motivated
us to investigate the ability of a moderate model so as to make a balance between
the solution accuracy and computational time. Altogether, these are the same
desired properties in MAs and our work is a step towards investigating the use-
fulness and strong potential of this research direction.

3 The Proposed Method

This section presents a new optimization method, called MaNet, to explore the
possibility of adopting a lightweight deep learning architecture for continuous
optimization tasks. In the following, it is assumed that the reader is familiar
with the basic concepts of evolutionary computation and deep neural networks.

The MaNet is designed to have the common properties of the MAs: pro-
viding a sufficient good solution with incomplete or imperfect information. It
starts the optimization procedure with a set of randomly generated solutions
as genotype. During training the network, MaNet applies the network training
components directly on the genotype, while decodes a genotype into a phe-
notype (i.e., individuals in MAs) only in the last layer. It finds an optimized
solution by iteratively improving an initial solution with regard to its cost func-
tion. Among different DL models, CNNs trained with an extension of stochastic
gradient descent is used to build the MaNet. The CNNs have been central to the
largest advances in computer vision [12] and speech processing [8]. A CNN is a
DL method that uses convolutional layers to filter redundant or even irrelevant
input data to increase the performance of the network [7]. This consideration
also reduces the dimensionality of the input data and speeds up the learning
process in the CNNs. Besides, it allows CNNs to be deeper networks with fewer
parameters. Altogether, these properties could make CNNs a potential tool for
solving optimization problems; especially when we take into account the history
behind the application of feature selection [17] and problem scale reducing [21]
in the optimization domain.

The architecture of a CNN consists of an input and an output layer, as
well as one or more hidden layers. The hidden layers are typically composed
of convolutional layers, fully connected layers, normalization layers and pooling
layers. The number of hidden layers could be increased depending on the com-
plexities in the input data, but at the cost of more computational expensive
simulations. From the mathematical perspective, convolution layers provide a
way of mixing input data with a filter so as to form a transformed feature map.
Fully-Connected layers learn non-linear combinations of the high-level features
by connecting neurons in one layer to neurons in the previous layer, as seen in
multi-layer perceptrons neural networks (MLPs). Moreover, normalization layers

4 H. Rakhshani et al.

are adopted to normalize the data to a network and to speed up learning. This
includes batch normalization [20], weight normalization [19], and layer normal-
ization [13] techniques. Batch normalization is applied to the input data or to
the activation of a prior layer, weight normalization is applied to the weights
of the layer and layer normalization is applied across the features. The pooling
layers are usually inserted in-between successive convolutional layers to further
reduce the number of parameters in the network. A CNN network can have local
or global pooling layers that may compute a max or an average.

Inspired by the aforementioned components in CNNs, the MaNet is designed
to train a model so as to solve an optimization problem (Fig. 1). The existing
feature selection and dimensionality reduction policies in CNNs help MaNet to
find complex dependencies between the parameters. The MaNet start optimiza-
tion by generating a set of random n × m inputs for the model (i.e., the raw
pixel values of the image). So, each individual solution is represented by a matrix
rather than a vector. During training the network, convolutional layers trans-
form the initial population layer by layer to a final feasible solution. This large
part genotype representation enables the optimizer to keep genetic information
that was necessary in the past as a source of exploration, as well as a playground
for extracting new features that can be advantageous in the exploitation.

The MaNet multiplies the initial population with a two-dimensional array
of filters that are connected to every disjoint region. The output of multiplying
the filters with initial population forms a two-dimensional output array called as
“feature map”. They are obtained by convolution process upon the initial pop-
ulation with a linear filter, without applying a non-linear function or applying
feature normalization methods. Similar to other DL models, the filters/kernels in
MaNet are learned using the back-propagation algorithm for each specific opti-
mization task. This is the novel aspect of DL techniques that filter weights are
learned during the training of the network and are not hand designed. Accord-
ingly, CNNs are not limited to image data and could be used to extract a variety
types of features. Thank to this characteristic, MaNet will be forced to extract
the features that are the most important to minimize the loss function for the
problem at hand the network is being trained to solve. In each convolution layer,
we have some predefined hyperparameters that can be used to modify the behav-
ior of the model: the filter size and the number of filters. The first one simply
denotes the dimensions of the filter when applying the convolution process, while
the second one determines the number of different convolution filters.

In MaNet, multiple convolution layers are stacked which allows convolution
layers to be applied to the output of the previous layer, results in a hierarchically
set of more decomposed features. Finally, a Dense layer (or fully-connected) with
linear activation function will be used to form the final solution vector. As it
can be seen from Fig. 1, MaNet has a very simple structure and can benefit
from the advantage of having a fast network training process1. Indeed, it has
only 3,742 trainable parameters compared to state-of-the-art models [22] which

1 Netron Visualizer is used to illustrate the model. The tools is available online at:
https://github.com/lutzroeder/netron.

https://github.com/lutzroeder/netron

From Feature Selection to Continuous Optimization 5

Fig. 1. An overview of the proposed optimization architecture. The MaNet is composed
of three convolution layers and one Dense layer (or fully connected layer). In each layer,
the number of filters and the filter size are 6 and 3, respectively. The activation function
for all the layers is proportional to their inputs.

6 H. Rakhshani et al.

have millions or billions of parameters. This could facilitate the application of
MaNet for optimization tasks where a small amount of data (i.e., population) is
available.

As it can be seen, the MaNet is composed of two similar architectures which
are subjected to different optimization procedures. The first one uses a batch size
of one and the other uses 64 as its batch size. The batch size is a hyperparameter
of gradient descent that should be tuned for each optimization task. To do so,
MaNet integrates a reinforcement strategy inspired from SDCS [18]. Technically
speaking, SDCS is a simple metaheuristic algorithm which toggles continually
between two snap and drift modes to enhance reinforcement and stability. Based
on this idea, MaNet introduces a self-adaptive strategy to tune the batch size
hyperparameter. More precisely, it is looking to see if the best cost function
stops improving after some number of epochs, and if so then it restarts the
optimization process and continues the search by the architecture which obtained
a higher overall performance so far. Finally, it is worth mentioning to note that
the initial population will remain unchanged during training the network and
the algorithm will evolve a set of filters. The goal of MaNet then, is to transfer
the initial population on one end to evolved solutions on the other hand. This is
one of the main differences between MaNet and evolutionary algorithms.

4 Experimental

4.1 Experimental Setup

We use a set of 9 benchmark functions given in CEC 2017 [20] to evaluate the per-
formance of the proposed algorithm2. The considered problems are widely used in
the optimization community and are challenging for any optimization approach.
This work uses several problems that can be classified into unimodal (F1 and
F3) and multimodal (F4–10) minimization functions with different properties
including separable, non-separable, rotated, ill-condition and shifted3. The afore-
mentioned problems are adopted on the GPU so as to be linked with machine
learning libraries. We refer the reader to the detailed principle about the defini-
tion of CEC2017 benchmark functions as defined in [4]. To verify the algorithm
scalability, 30-dimensional and 50-dimensional problems are used. All functions
should be minimized and have a global minimum at f(x) = 0. The results are
reported according to their distance from the optimum. We trained MaNet on
each problem by using the parallel power of 9 NVIDIA Tesla K20m GPU cards.

It has been shown that various extensions of the differential evolution
(DE) [24] algorithm are always among the winners of the CEC competition. Hav-
ing this is mind, we used jSO [6] algorithm for the purpose of comparison which
is the second ranked algorithm in CEC2017 competitions for the single objective

2 The codes for CEC problems and the jSO algorithm are publicly available at: http://
www.ntu.edu.sg/home/EPNSugan/index files/CEC2017/CEC2017.htm.

3 F2 has been excluded by the organizers because it shows unstable behavior especially
for higher dimensions [4].

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm

From Feature Selection to Continuous Optimization 7

optimization track. The algorithm is shown to outperform LSHADE [26] (the
winner of the CEC2014) and its new extension for CEC2016 (iL-SHADE [5]).
All the results are taken from the original study. In order to make a fair com-
parison, all the experiment conditions are the same. The number of function
evaluations is 10, 000 × D, where D is the problem dimension [4]. To tackle the
negative effects of the random initial configurations, each algorithm were run 51
times [4]. The initial population is generated randomly within the search bounds
[−100, 100]. The parameters of the jSO are the same as reported in the original
study [6]. In MaNet, we have 3 convolution layers which are sequentially con-
nected to each other. In each layer, the number of filters and the filter size are
6 and 3, respectively. The MaNet is a CNN model and needs a lot of input data
to be well trained and so the population size is fixed to n = 5, 000. Moreover, m
is considered to be 64 for all the problems. The MaNet will be optimized using
the Adam algorithm [11].

4.2 Results and Discussion

Tables 1 and 2 present best, worst, mean and standard deviation (Std.) results of
the MaNet and jSO on 9 problems over 51 runs. Table 1 reports the results for 30
dimensional problems, while Table 2 shows the performance of the competitive
algorithms for 50 dimensional cases. In these tables, a statistical test is also
presented to assess the significance of performance between the results of the
jSO and MaNet.

Table 1. The obtained results by MaNet and jSO for 30 dimensional problems over
51 runs [4]. The results for jSO are directly taken from the original paper [6].

Function Algorithm Best Worst Mean Median Std. Sign

1 MaNet 3.71e+02 1.33e+03 7.94e+02 8.02e+02 2.03e+02 −
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

3 MaNet 3.69e+04 7.10e+04 5.85e+04 5.85e+04 6.46e+03 −
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

4 MaNet 1.46e−05 3.99e+00 5.88e−01 6.79e−04 1.41e+00 +

jSO 5.86e+01 6.41e+01 5.87e+01 5.86e+01 7.78e−01

5 MaNet 0.00e+00 1.99e+00 5.85e−01 1.34e−07 6.59e−01 +

jSO 3.98e+00 1.32e+01 8.56e+00 8.02e+00 2.10e+00

6 MaNet 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 =

jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

7 MaNet 3.26e+01 3.41e+01 3.33e+01 3.33e+01 3.91e−01 +

jSO 3.61e+01 4.31e+01 3.89e+01 3.91e+01 1.46e+00

8 MaNet 0.00e+00 4.97e+00 2.29e+00 1.99e+00 1.15e+00 +

jSO 4.97e+00 1.30e+01 9.09e+00 8.96e+00 1.84e+00

9 MaNet 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 =

jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

10 MaNet 1.09e+04 1.13e+04 1.11e+04 1.11e+04 1.19e+02 −
jSO 1.04e+03 2.04e+03 1.53e+03 1.49e+03 2.77e+02

8 H. Rakhshani et al.

Table 2. The obtained results by MaNet and jSO for 50 dimensional problems over
51 runs [4]. The results for jSO are directly taken from the original paper [6].

Function Algorithm Best Worst Mean Median Std. Sign

1 MaNet 3.67e+02 2.06e+03 1.39e+03 1.46e+03 3.71e+02 −
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

3 MaNet 9.80e+04 1.42e+05 1.23e+05 1.25e+05 8.88e+03 −
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

4 MaNet 3.10e−06 1.53e−03 8.22e−04 9.96e−04 4.46e−04 +

jSO 1.32e−04 1.42e+02 5.62e+01 2.85e+01 4.88e+01

5 MaNet 1.99e+00 1.09e+01 6.15e+00 5.97e+00 2.20e+00 +

jSO 8.96e+00 2.39e+01 1.64e+01 1.62e+01 3.46e+00

6 MaNet 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 =

jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

7 MaNet 5.49e+01 5.65e+01 5.58e+01 5.59e+01 3.62e−01 +

jSO 5.75e+01 7.42e+01 6.65e+01 6.66e+01 3.47e+00

8 MaNet 1.99e+00 8.95e+00 5.41e+00 5.97e+00 1.99e+00 +

jSO 9.95e+00 2.41e+01 1.70e+01 1.70e+01 3.14e+00

9 MaNet 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 =

jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

10 MaNet 1.86e+04 1.88e+04 1.87e+04 1.87e+04 6.25e+01 −
jSO 2.40e+03 3.79e+03 3.14e+03 3.23e+03 3.67e+02

The results of the Wilcoxon rank sum test are reported at the 95% confi-
dence level. In these tables, ‘+’ shows that MaNet significantly outperforms the
jSO with 95% certainty; ‘−’ indicates that the jSO is significantly better than
MaNet; and ‘=’ shows there is no statistical different between the two compared
algorithms. The significant results are given in bold. For further validation, con-
vergence graphs of jSO and MaNet for 30 dimensional functions F4 and F8 are
given in Fig. 2.

As can be seen from Tables 1 and 2, jSO gives more accurate solutions for the
unimodal benchmarks F1 and F3 for both 30-dimensional and 50-dimensional
cases. Moreover, with the exceptions of F10, MaNet has equal or significantly bet-
ter performance on all the multimodal benchmark functions. In fact, the results
indicate that MaNet significantly outperforms the jSO on 4 functions (F4–F8),
obtains an equal performance on 2 functions (F6 and F9), and has worst results
on 3 test cases (F1, F3 and F10). Furthermore, we can see that MaNet is a
robust algorithm according to the reported standard deviation results. In addi-
tion, these experimental results have confirmed that MaNet is not very sensitive
to the increment of dimension and is scalable. Considering Fig. 2, it can be seen
also that MaNet has a more rapid convergence rate than the jSO algorithm for
function F4 and F8. In MaNet, we assume that not selection, but rather the
combination of different filters is the main source of evolution and that is the
reason for having unstable convergence behavior on these functions.

Altogether, these promising results have confirmed that MaNet has a com-
petitive results in comparison with one of the best designed algorithm for the

From Feature Selection to Continuous Optimization 9

Fig. 2. Convergence graphs of the jSO and MaNet for 30 dimensional functions F4 and
F8 over 51 runs

10 H. Rakhshani et al.

CEC2017 problems. This is quite interesting because MaNet doesn’t borrow any
search strategy or components from the previously proposed methods for the
CEC problems; including CMAES [15], DE, jADE [27], SADE [16], SHADE [25],
L-SHADE [26], i-LSHADE [5] and jSO.

As a future work, we are intended to apply the proposed MaNet to all the
problems over all the dimensions. Besides, we have to find a way in order to
adjust the learning rate hyperparameter for each problem. From Fig. 2 one can
see that a high learning rate in Adam causes the network to generate large
numbers for F8 and the updates are going to be just as large. After that, we
would like to apply the proposed methodology to more complicated real-world
optimization problems.

5 Conclusion

This study proposed a new optimization algorithm based on the DL in order to
provide an improved search process. The proposed method verifies convergence
conditions by using a CNN model. The simple structure of the MaNet along with
feature selection and dimension reduction strategies result in an architecture at
a relatively low computational cost. The MaNet optimizer is evaluated using
unimodal and multimodal optimization benchmarks from CEC2017 test suite.
The obtained results are statistically analyzed and compared with state-of-the-
art jSO algorithm. Evaluations confirm that the introduced MaNet optimization
model has a competitive performance in terms of the final solution accuracy and
scalability compared to one of the best designed algorithms for the problem at
hand.

Acknowledgments. This research was supported through computational resources
provided by Mésocentre of Strasbourg: https://services-numeriques.unistra.fr/.

References

1. Alom, M.Z., et al.: The history began from alexnet: a comprehensive survey on
deep learning approaches. arXiv preprint arXiv:1803.01164 (2018)

2. Amos, B., Kolter, J.Z.: OptNet: differentiable optimization as a layer in neural net-
works. In: Proceedings of the 34th International Conference on Machine Learning,
vol. 70, pp. 136–145. JMLR. org (2017)

3. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
In: Advances in Neural Information Processing Systems, pp. 3981–3989 (2016)

4. Awad, N., Ali, M., Liang, J., Qu, B., Suganthan, P.: Problem definitions and evalu-
ation criteria for the CEC 2017 special session and competition on single objective
real-parameter numerical optimization. Technical report (2016)

5. Brest, J., Maučec, M.S., Bošković, B.: iL-SHADE: improved L-SHADE algorithm
for single objective real-parameter optimization. In: 2016 IEEE Congress on Evo-
lutionary Computation (CEC). pp. 1188–1195. IEEE (2016)

6. Brest, J., Maučec, M.S., Bošković, B.: Single objective real-parameter optimization:
algorithm JSO. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp.
1311–1318. IEEE (2017)

https://services-numeriques.unistra.fr/
http://arxiv.org/abs/1803.01164

From Feature Selection to Continuous Optimization 11

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion. Signal Process. Mag. 29, 82–97 (2012)

9. Kang, K., Bae, C., Yeung, H.W.F., Chung, Y.Y.: A hybrid gravitational search
algorithm with swarm intelligence and deep convolutional feature for object track-
ing optimization. Appl. Soft Comput. 66, 319–329 (2018)

10. Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming. IEEE
Trans. Circuits Syst. 35(5), 554–562 (1988)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

13. Lei Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

14. Li, K., Malik, J.: Learning to optimize. arXiv preprint arXiv:1606.01885 (2016)
15. Loshchilov, I.: CMA-ES with restarts for solving CEC 2013 benchmark problems.

In: 2013 IEEE Congress on Evolutionary Computation, pp. 369–376. IEEE (2013)
16. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for

numerical optimization. In: 2005 IEEE Congress on Evolutionary Computation,
vol. 2, pp. 1785–1791. IEEE (2005)

17. Rakhshani, H., Idoumghar, L., Lepagnot, J., Brévilliers, M.: MAC: many-objective
automatic algorithm configuration. In: Deb, K., et al. (eds.) EMO 2019. LNCS,
vol. 11411, pp. 241–253. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-12598-1 20

18. Rakhshani, H., Rahati, A.: Snap-drift cuckoo search: a novel cuckoo search opti-
mization algorithm. Appl. Soft Comput. 52, 771–794 (2017)

19. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to
accelerate training of deep neural networks. In: Advances in Neural Information
Processing Systems, pp. 901–909 (2016)

20. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization
help optimization? In: Advances in Neural Information Processing Systems, pp.
2483–2493 (2018)

21. Senjyu, T., Saber, A., Miyagi, T., Shimabukuro, K., Urasaki, N., Funabashi, T.:
Fast technique for unit commitment by genetic algorithm based on unit clustering.
IEE Proc.-Gener. Transm. Distrib. 152(5), 705–713 (2005)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

23. Snoek, J., et al.: Scalable Bayesian optimization using deep neural networks. In:
International Conference on Machine Learning, pp. 2171–2180 (2015)

24. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

25. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differ-
ential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78.
IEEE (2013)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1606.01885
https://doi.org/10.1007/978-3-030-12598-1_20
https://doi.org/10.1007/978-3-030-12598-1_20
http://arxiv.org/abs/1409.1556

12 H. Rakhshani et al.

26. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using
linear population size reduction. In: 2014 IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 1658–1665. IEEE (2014)

27. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

Evolving a Weighted Combination of Text
Similarities for Authorship Attribution

Youssef Keyrouz1,2(B) , Cyril Fonlupt1 , Dany Mezher2, Denis Robilliard1,
and Rafic Faddoul2

1 Université Du Littoral Côte D’opale, 1 Place de l’Yser BP 71022,
59375 Dunkerque Cedex 1, France

{youssef.keyrouz,cyril.fonlupt,denis.robilliard}@univ-littoral.fr
2 Université Saint-Joseph de Beyrouth, sise Rue de Damas, BP 17-5208,

Mar Mikhaël, Beyrouth 1104 2020, Lebanon
youssef.keyrouz@net.usj.edu.lb, {dany.mezher,rafic.faddoul}@usj.edu.lb

Abstract. Authorship Attribution (AA) also known as Authorship
Identification is the problem of identifying the author of an anonymous
text based on its characteristics or features. Among notable features
extraction methods used to this end, one can cite, the bag of words meth-
ods (BOW) and the semantic and syntactic methods (SSM). BOW meth-
ods consider the text as a sequence of tokens and disregard the semantics
of the language, whereas SSM rely on advanced natural language process-
ing (NLP) techniques. The features extracted from an anonymous text
are compared to features extracted from a corpus of texts written by
known authors using several similarity measures. In this paper, we com-
bine multiple results generated using conventional methods (chosen from
the literature) and we use a genetic algorithm (GA) to find the optimal
weighting distribution. The optimal combination obtained by the GA is
then applied, and the author attributed to the anonymous text is selected
among a set of known authors based on the highest similarity. The fitness
of our GA is the resulting accuracy of the authorship attribution task.
A numerical application on a corpus consisting of 3036 books written by
142 authors shows that the proposed method has higher accuracy than
conventional methods and achieved satisfying performance.

Keywords: Authorship attribution · Genetic algorithms · Feature
extraction · Text similarities

1 Introduction

Authorship attribution (AA) is defined as the problem of identifying the author
of an anonymous text, or text whose authorship is in doubt [11]. Stylome-
try is used to attribute authorship to anonymous or disputed documents. The
basics of stylometry were defined by Wincenty Lutos�lawski in ‘Principes de
stylométrie’ (1890) [13]. Early attempts to quantify the writing style of an author
go back to the 19th century, with the research of Mendenhall on the Shakespeare
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 13–27, 2020.
https://doi.org/10.1007/978-3-030-45715-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_2&domain=pdf
http://orcid.org/0000-0001-8349-4373
http://orcid.org/0000-0003-4729-4715
https://doi.org/10.1007/978-3-030-45715-0_2

14 Y. Keyrouz et al.

authorship question (1887) [26]. Mendenhall tried to identify the style of different
authors by using the frequency distribution of words of various lengths. The first
major advancement in authorship attribution happened in the first half of the
20th century, by Yule (1938; 1944) [27,28] and Zipf [29]. Over the last 60 years,
many studies have been conducted to try to solve the problem of authorship attri-
bution. The most influential among them is the work of Mosteller and Wallace
(1964) [16] on the “The Federalist Papers”, a series of political essays written by
Alexander Hamilton, James Madison and John Jay, 12 of which claimed by both
James Hamilton and Alexander Madison. They based their study on Bayesian
statistics of the frequencies of common words which lead to a discriminating
result between the candidate authors. Since then, research in authorship attri-
bution was dominated by attempts to define the best features to extract for the
detection of an author style. Nearly 1,000 different measures had been proposed
by the end of 1990 [20].

In modern days, the increase of computer processing power and speed as well
as the advancements of research in information retrieval, machine learning, and
natural language processing (NLP) had a significant impact on authorship attri-
bution. Techniques ranging from statistical approaches like principal component
analysis [2] to machine learning and neural networks [6,25] have been studied.
The main idea behind computer-based authorship attribution is that the text
document should be converted to vectors of numerical values before being pro-
cessed by statistical or machine learning algorithms. This is referred to as using
features extraction methods to generate a vector space model (VSM) [21]. In a
VSM, documents are represented as vectors in the space of features. The vector
values contain numerical representation of one or more textual features. Compar-
ative studies have been performed to compare many feature extraction methods
in terms of accuracy and performance [18,23]. Many methods were described and
executed with comparative results between the methods. Those feature extrac-
tion methods can be divided into 2 categories: (i) bag of words methods (BOW)
and (ii) the semantic and syntactic methods (SSM). BOW methods consider
the text as a sequence of tokens and disregard the semantics and the language,
whereas SSM considers the semantics and heavily rely on advanced NLP tech-
niques. The most common and basic BOW methods include the generation of
the N-Gram representation of a text [4,22]. Other more advanced BOW methods
were developed to use neural networks for the purpose of finding a distributed
representation of words and phrases based on their usage in a context, resulting
in predictive models e.g. ‘Word2Vec’ [15] or count based models e.g. ‘GloVe’ [17].

This paper is based on the premise that by generating a linear combination of
standard features extraction method results, and then using a genetic algorithm
(GA) [24] to find the best linear combination, better accuracy can be obtained.
The resulting combination would be more accurate than the individual method
results. This comes from the assumption that each method focuses on a different
aspect of the author’s style. Hence, combining the results and assigning the
proper weight for each of them would give a more accurate representation of the
overall writing style. The authorship identification can be achieved by applying

Combining Similarities for Authorship Attribution 15

similarity measures to compare the features of the anonymous texts with features
from a corpus of texts having known authors and selecting the best similarity
after combining the results.

Section 1 introduces authorship attribution and the related work. Section 2
describes the proposed method for AA and its performance calculation. Section 3
details the experiment on the corpus. Section 4 discusses the results and obser-
vations generated from the experiment. And finally, Sect. 5 concludes the study
and suggests possible improvements for future work.

2 Method

2.1 Preparing the Data

A textual features extraction method is a process to convert a raw text into
numerical features represented by a vector in the VSM. The resulting vector
is used for calculations or machine learning. Each method will take a text as
an input and provide a multi-dimensional vector as the output. The number of
dimensions depends on the method used. i.e. each method has its own repre-
sentation of vectors and dimensions depending on the feature it extracts. Some
methods require the text to be preprocessed before extracting the feature. Pre-
processing is performed by applying NLP techniques. In this paper, multiple
NLP techniques are implemented to prepare the text before running the features
extraction method. Table 1 contains the different ways a text can be represented
after preprocessing.

Table 1. Different text representations.

Representation Description

Raw text The text is taken as is, without any preprocessing
or manipulation

Stemmed text Each word in the text is stemmed, i.e. replaced by
its root form. e.g. words like “cats”, “cat”, and
“kittens” will be replaced by their root form “cat”

Part of Speech (PoS) tagging Each word in the text is replaced by its type (e.g.
pronoun, verb, adjective, adverb · · ·)

The methods are applied on a corpus of texts and writings, divided and
arranged by author. 25% of the corpus is set aside and considered of unknown
authors. They are used to validate the results and calculate the accuracy of
the study. To ensure proper results, all authors will have one or multiple books
considered unknown and chosen as part of the 25% testing subset. The other
75% are used as the training subset for the study.

16 Y. Keyrouz et al.

2.2 Generating the Profiles

A “Profile” is defined as a numerical vector representing the text of an author.
Two different profile approaches are studied. First approach is to have an
“Author Profile”. This produces one cumulative representation for all training
texts per author. In other words, all the books and writings for an author are
combined into one big text. Then a profile vector is generated for the entire text.
This approach will generate one profile per author and use it for comparison.
Second approach is to have an “Individual Profile”. Each book or writing is
used separately, and a profile vector is generated for each one. The comparison
will be performed against each individual profile. In this approach, an author
can have many different profiles, considering he or she has as many profiles as
books. Table 2 highlights some advantages and disadvantages for each profiling
approach.

Table 2. Different profiles and their advantages and disadvantages.

Representation Advantages Disadvantages

Author profile Faster to process due to a lower
number of profiles (one profile
per author)
Can handle the cases where
only short texts are available.
Their concatenation may
produce a more reliable profile

May have a lower accuracy due
to the use of multiple texts
having different genres or style
(e.g. an author who wrote
about politics but also a
fantasy novel)

Individual profile Higher accuracy. When
comparing against individual
books, we have higher chance
of matching with a similar
book from the same author

Slower to process due to the
high number of profiles.
Might be inaccurate when
dealing with a book having
completely different genre than
the author’s usual writings

2.3 Finding Similarities and Analyzing Performance

The goal is to calculate the similarities between the unknown texts and the
profiles from the corpus. A profile is generated for the unknown text and com-
pared with the known profiles, then the best matching profile is selected, and
the author of that profile is attributed as the author of the text. To evaluate
the performance and accuracy of the attribution method, a list of known pro-
files is generated from the training subset with known authors (P1, P2, P3, . . .),
and a list of unknown profiles is generated from the testing subset considered
of unknown authors (T1, T2, T3, . . .). After all the profiles are generated, a com-
parison is made between each unknown profile T and each known profile P by
calculating the similarities between T and P , then the best matching profile is
identified using nearest-neighbor algorithm [7]. We define the similarity value
Smn in Eq. (1).

Combining Similarities for Authorship Attribution 17

Smn = f(Pm, Tn) (1)

Where f is the similarity function, Pm the profile of the known author m (The
maximum value of m is the number of profiles in the training set), Tn the profile
of an unknown author (The maximum value of n is the number of profiles in the
testing set), and Smn the similarity between Pm and Tn.

For a given features extraction method, all the known profiles P and the
unknown profiles T are generated. A similarity table is calculated as shown in
Table 3. At this stage, each anonymous text (represented by its profile T) will
have a similarity value S with each of the known profiles P . The profiles are then
sorted from best match to worst match. Each unknown profile T will have a list
of possible known profiles P sorted based on the similarity value between them
(Best Matching P , 2nd Best Matching P , 3nd Best Matching P, . . .).

Table 3. Example of a similarity table for a chosen method and a chosen similarity
formula, using five profiles and three anonymous texts.

Profiles P1 P2 P3 P4 P5

T1 S11 S21 S31 S41 S51

T2 S12 S22 S32 S42 S52

T3 S13 S23 S33 S43 S53

An example of a result is shown in Table 4. The profile T1 has the best match
with profile P3, second best match with P2, then with P5, then with P1, and has
the worst match with P4. Same logic is applied for T2 having the best match
with P5, and T3 having the best match with P3.

Table 4. Example of a result after sorting the profiles from best matching to worst
matching.

T1 P3 P2 P5 P1 P4

T2 P5 P4 P1 P3 P2

T3 P3 P1 P5 P4 P2

Considering P1 the profile of a known author 1 (A1), P2 the profile of known
author 2 (A2), and so on. . . T1 the profile of a text for A1 but considered
unknown, T2 the profile of a text for A2 also considered unknown, and so on. The
accuracy measure is introduced to measure how well the method is attributing
the authors.

18 Y. Keyrouz et al.

Table 5. Example of an authorship attribution output.

Unknown
profile

Best matching
profile

Attributed
author

Real author Attributed
correctly

T1 P3 A3 A1 NO

T2 P5 A5 A2 NO

T3 P3 A3 A3 YES

To calculate the accuracy, the best match is chosen from the similarity table,
and the author of the corresponding profile is attributed as the author of the
unknown text. A counter will increment every time a correct attribution is made
to count the number of correct matches. The accuracy is the percentage of the
correct matches. Applying this on the example result from Table 4, the author-
ship attribution output is shown in Table 5. Only T3 was attributed correctly
which gives an accuracy of: Acc = (1/3) × 100 = 33.3%.

2.4 Combining the Results and Evolving the Weights Using
a Genetic Algorithm

The premise proposed in this section is that by combining the resulting similarity
tables obtained from different feature extraction methods, a new similarity table
can be generated leading to a higher accuracy of the authorship attribution task.
We start with multiple features extraction methods; each method will generate
a similarity table (as seen in Table 3). Those tables are combined into one before
the ranking is performed. Two approaches are used for the combination.

The first approach is to combine the methods output in a binary way. A
method is either used or not. Equation (2) is a binary combination of the simi-
larity tables.

M =
n∑

i=1

biMi = b1M1 + b2M2 + . . . (2)

Where M is the resulting similarity table after the combination, Mi is the simi-
larity table obtained by applying method i from the list of methods to consider,
n is the total number of methods, and bi is the binary multiplier of method i. bi
is equal to 1 if the method is used or 0 if the method is not used.

The second approach is to generate a linear combination. Similar to binary
combination but instead of using 1 and 0 as multipliers, a weight between 0 and
1 is assigned to each method and multiplies the similarity table. All methods will
contribute to the attribution process but with different weights. The assumption
here is that even bad performing methods can have a small impact on the accu-
racy as it focuses on a specific aspect of the author style. This is achieved by
assigning a weight w for each method and doing a linear combination as shown
in Eq. (3).

Combining Similarities for Authorship Attribution 19

M =
n∑

i=1

wiMi = w1M1 + w2M2 + . . . (3)

Where wi is the weight assigned to method i. It is a decimal value between 0
and 1. This approach is a fine tuning of the binary combination and gives more
precise results.

For both combination approaches, a genetic algorithm (GA) is implemented
to find the best binary values combination or weights combination. GA is an
adaptive heuristic search algorithm based on the evolutionary ideas of natural
selection and genetics. They are used to exploit random search for optimization
problems. Each individual in the GA population is a weight distribution for all
the methods. A generational Evolution Strategy will be built for the problem
requiring the individuals to be vectors of doubles.

To avoid overfitting and have proper accuracy measure, a K-Fold Cross Val-
idation [19] is used on the training data. In k-fold cross-validation, the data
is randomly divided into k equal sized subsamples. One of the subsamples is
retained as the validation data, and the remaining k − 1 subsamples are used
as the training data. This process is then repeated for each subsample (so a
total of k times) with each of the subsamples used exactly once as the validation
data. After applying the k-Fold Cross Validation, each subsample will have an
accuracy. A total of k accuracies are generated and the fitness for an individual
is obtained by averaging the accuracy. The fitness is between 0 (worst fitness)
and 1 (best fitness).

Putting it all together, each individual is a vector of weights. The weights
are assigned to the method outputs to generate their linear combination. This
produces a new combination to be used on the training data. After applying a
k-fold cross validation, the average accuracy is set as the fitness of the individual.
Then the population is evolved based on the Evolution Strategy chosen.

3 Experimentation

3.1 Corpus and Tools

This section will take the method proposed above and apply it on the Gutenberg
Dataset [9]. It is a collection of 3036 books and writings for 142 different authors,
subset of the Project Gutenberg [8]. All books have been manually cleaned to
remove metadata, license information, and transcribers’ notes. 25% of the cor-
pus (704 texts) are set aside and considered of unknown authors. The other
75% (2332 texts) are used as the training subset for the study. The method is
implemented using the JAVA Programming language. Stanford CoreNLP (Ver-
sion 3.9.2) [14] provides a set of human language technology tools that are used
to preprocess the text, apply stemming, or PoS tagging. ECJ (Version 26) [12],
a Java-based evolutionary computation research system, is used to implement
the GA and the parameters.

20 Y. Keyrouz et al.

We chose ten conventional features extraction methods from the literature
to be used in our experiment. Many comparative studies have been performed
on those methods [18,23] and they are used in many papers and studies. The
different methods used are listed below.

– Characters n-Gram frequency: The text is considered as a contiguous
sequence of n characters. This method requires a splitter to split the raw
text every n character, creating a collocation of n characters, where the order
is also considered. The frequency of each collocation is calculated, and the
vector is generated. The resulting numerical vector entries consist of each
possible n-gram sequence with the frequency of appearance of that sequence
in the text. This paper will include 3 variations of the n-Gram with n = 1, 2,
and 3 (Called respectively 1-Gram 2-Gram, and 3-Gram).

– Words length frequency: This method calculates the frequency of words
with different lengths (i.e. number of characters). The resulting numerical
vectors entries consist of each possible length (1 character, 2 characters, 3
characters etc.) and indicate the frequency of words having that length in
the text. A tokenizer is needed to extract words from the raw text and count
them.

– Words usage frequency: This method assumes that authors tend to use
special words in their text or rely on a specific word more than others. It
counts the frequency of each word in the vocabulary and a numerical vector is
generated. Each entry in the vector is a word from the vocabulary represented
by its frequency of appearance in the text. This method is applied on a
stemmed text and requires a tokenizer to extract the words. Stemming is
essential for this method to reduce the dimensionality as well as remove all
the noise coming from grammar and different representation of the word
(plural, verb conjugations, usage as adjective etc.).

– Sentence length frequency: The sentence length frequency counts the fre-
quency of sentences with different word lengths (i.e. number of words in the
sentence). A sentence splitter is needed to extract the sentences from the raw
text and then a tokenizer is used to count words in each sentence.

– Commas frequency in sentences: This method counts the number of
commas in the sentence. This relies on the assumption that authors tend
to use commas in a distinct way. A sentence splitter is used to extract the
sentences from the raw text. Then the commas are counted in each sentence
and a numerical vector is generated representing the frequencies of different
comma count in the text (e.g. how many sentences have no commas, 1 comma,
2 commas, 3 commas etc.).

– Verbs usage frequency: Similar to the “Words usage frequency” described
above, but only counting the usage of verbs. This assumes that the authors
prefer to use special verbs in their writing. PoS tagging as well as stemming
are needed for this method.

– Verbs frequency in sentences: This method counts the number of verbs
in the sentence. This assumes that some authors tend to use few verbs in a
sentence while others prefer to use many verbs in a sentence. PoS tagging
must be performed on the text to tag all the verbs before counting.

Combining Similarities for Authorship Attribution 21

– Verbs tenses frequency: This method counts the usage of verb tenses in
the text. This assumes that authors tend to prefer the usage of specific verb
tenses. Some examples of verb tenses are: Present perfect, future, simple past,
past perfect etc. PoS tagging is performed on the raw text and the verb tenses
frequencies are calculated.

This study applies two different similarity formulas for the comparison. The first
similarity measure used is the Euclidean Distance. The Euclidean distance is a
straight line between two points defined by Eq. (4).

Smn =

√√√√
l∑

i=1

(P i
m − T i

n)2 (4)

Where l the length of the vector generated by the method, P i
m the value at index

i of the known profile m,T i
n the value at index i of the unknown profile n.

The second similarity measure used is the Cosine Similarity. The cosine sim-
ilarity is the cosine of the angle formed by two vectors and is defined by Eq. (5).

Smn =
∑l

i=1(P
i
mT i

n)√∑l
i=1(P i

m)
√∑l

i=1(T i
n)

(5)

The logic to choose the best match depends on which similarity measure is used.
Table 6 shows the logic of choosing the best match for each similarity measure.
Optimizing the evolution strategy and the parameters of the GA is out of the
scope of this study but will be considered in future works. A commonly used
evolution strategy, the mu+lambda evolution strategy [1], is chosen with default
parameters to evolve a vector of doubles. The GA is configured with a mutation
probability of 0.2 using a gaussian convolution on the values with a standard
deviation of 0.3 and evolved over 1000 generations.

Table 6. Choosing the best match for each similarity measure.

Similarity measure Best match

Euclidean distance The best match is the value closest to 0. And since
all the values are positive, the best match
corresponds to the lowest value in the row

Cosine similarity The best match is the value closest to 1 indicating
the vectors are equal. And since all the values are
between −1 and 1, the best match corresponds to
the highest value in the row

22 Y. Keyrouz et al.

4 Results and Discussions

Figure 1 compares the accuracy of each method for both the individual profile
approach and the author profile approach using the Euclidean distance. Figure 2
shows the same comparison but using the Cosine similarity.

A clear difference in accuracy is visible between the methods. Using the
Euclidean distance for the individual profile approach, the highest two methods
are the “2-Gram” and “3-Gram” methods with an accuracy of 80% and 81%
respectively. Accuracy goes down to 64% for the “2-Gram” and 66% for the

Fig. 1. Methods accuracy using the Euclidean distance.

Fig. 2. Methods accuracy using the Cosine similarity.

Combining Similarities for Authorship Attribution 23

“3-Gram” methods when using the author profile approach. Some methods have
very low accuracy, e.g. the “Commas in Sentence” method yielding an accuracy
of 20% for the individual profile and 13% for the author profile using the same
Euclidean distance. Some interesting observations can be made from the results
shown in Figs. 1 and 2.

– The Euclidean distance and the Cosine similarity give almost similar accuracy
and pattern. This shows that the accuracy of the method is independent of
the similarity measure used.

– The individual profile approach has better accuracy than the author profile.
This proves the assumption that it is more likely to match a book with a
similar book from the same author, than matching a book with the entire
author bibliography due to the noise introduced by having books of different
styles.

Next step is evolving the genetic algorithm to improve the fitness of our indi-
viduals. Figure 3 shows how the fitness evolved over 1000 generations (Chosen
as the stopping criterion).

Fig. 3. Evolving the linear weights combination using the Euclidean Distance.

Table 7 contains the best weights chosen genetically. Observations on the
weights in Table 7:

– The binary combination approach resulted in the GA choosing the two best
methods in combination to improve the results. Adding any more methods
will cause a loss of accuracy due to the addition of noise.

– The linear combination approach resulted in a fine tuning of that choice.
We can clearly see that the two methods chosen in the binary combination
approach have the biggest weights assigned to them. Methods that are less
performing have lower weights assigned to them.

24 Y. Keyrouz et al.

Table 7. Best methods combination weights after genetic evolution.

Method Binary combination Linear combination weights

1-Gram 0 0.83

2-Gram 1 0.95

3-Gram 1 0.99

Commas in sentence 0 0.03

Sentences length 0 0.06

Verbs frequency 0 0.33

Verbs in sentence 0 0.5

Verb tenses frequency 0 0.032

Words frequency 0 0.53

Words length 0 0.05

Table 8. Accuracy before and after genetic evolution for the Euclidean distance.

Individual profile Author profile

Best single method accuracy (3-Gram) 81.38% 66.62%

Binary combination accuracy 84.60% 67.41%

Linear combination accuracy 86.80% 70.30%

Table 9. Accuracy before and after genetic evolution for the Cosine Similarity.

Individual profile Author profile

Best single method accuracy (3-Gram) 82.37% 67.33%

Binary combination accuracy 85.10% 67.95%

Linear combination accuracy 86.91% 70.20%

Tables 8 and 9 show the accuracy changes between a single method (the best one
was chosen for the comparison), combining the methods in a binary approach,
and combining the methods in a linear approach. This accuracy is calculated on
the test dataset of unknown authors.

Further evaluations are performed to study the effect of varying the number
of authors in the corpus on the performance of the attribution. Table 10 shows
the results of the accuracy improvement between a single method, a binary
combination, and a linear combination when changing the number of authors in
the corpus for the individual profile using the Euclidean distance. Subsets of 5,
20, and 50 authors are randomly selected from the corpus, and the attribution
accuracy calculated for each subset. To avoid bias in the results, the author
selection process is performed multiple times, randomizing the authors in the
subset on each trial. The results shown in Table 10 consist of the average accuracy
for all the trials.

Combining Similarities for Authorship Attribution 25

Table 10. Attribution accuracy of the individual profile and Euclidean distance for a
varying number of authors.

5 Authors 20 Authors 50 Authors 142 Authors

Best single method accuracy 90.7% 88.9% 84.7% 81.4%

Binary combination accuracy 91.0% 90.1% 86.9% 84.6%

Linear combination accuracy 95.8% 91.9% 87.7% 86.8%

Combining method results improved the accuracy of the attribution. Fine
tuning it by applying a linear combination improved the accuracy even more.
This shows that each method has a contribution to make but should have the
proper weight assigned to that contribution.

5 Conclusion

In this paper, we have presented an approach to combine multiple features selec-
tion method results and used Genetic Algorithm to find the optimal weighting
distribution for the methods. The method proposed can be considered as a simple
Hyper-Heuristic [3] approach. We also studied two different profiling approaches;
The individual profile approach and the author profile approach. A numerical
application on a corpus consisting of 3036 books written by 142 authors using two
different similarity functions has shown that the presented approach improves
the performance of the authorship attribution.

Future work on this subject could improve it even further by choosing a
more performing evolution strategy. An automatic algorithm configuration e.g.
“The irace package” [10] can be used to find the best parameter settings. More
advanced methods can be studied and used to extract better features and then
added to the method combination. More advanced Hyper-Heuristic approaches
can be considered for the combination. And genetic programming [5] can also
be used to generate a non-linear combination of the results.

References

1. Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/a:1015059928466

2. Binongo, J., Smith, M.: The application of principal component analysis to stylom-
etry. Literary Linguist. Comput. 14(4), 445–466 (1999). https://doi.org/10.1093/
llc/14.4.445

3. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.:
A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin,
J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 453–477. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91086-4 14

4. Clement, R.: Ngram and Bayesian classification of documents for topic and author-
ship. Literary Linguist. Comput. 18(4), 423–447 (2003). https://doi.org/10.1093/
llc/18.4.423

https://doi.org/10.1023/a:1015059928466
https://doi.org/10.1093/llc/14.4.445
https://doi.org/10.1093/llc/14.4.445
https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1093/llc/18.4.423
https://doi.org/10.1093/llc/18.4.423

26 Y. Keyrouz et al.

5. Day, P., Nandi, A.K.: Evolution of superFeatures through genetic programming.
Expert Syst. 28(2), 167–184 (2010). https://doi.org/10.1111/j.1468-0394.2010.
00547.x

6. Ge, Z., Sun, Y., Smith, M.J.T.: Authorship attribution using a neural network
language model. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI 2916, pp. 4212–4213. AAAI Press (2016). http://dl.acm.org/
citation.cfm?id=3016387.3016522

7. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: An kNN model-based approach and
its application in text categorization. In: Gelbukh, A. (ed.) CICLing 2004. LNCS,
vol. 2945, pp. 559–570. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24630-5 69

8. Gutenberg: Project gutenberg, March 2018 (n.d.). www.gutenberg.org
9. Lahiri, S.: Complexity of word collocation networks: a preliminary structural anal-

ysis. In: Proceedings of the Student Research Workshop at the 14th Conference of
the European Chapter of the Association for Computational Linguistics. Associa-
tion for Computational Linguistics (2014). https://doi.org/10.3115/v1/e14-3011

10. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

11. Love, H.: Attributing Authorship: An Introduction. Cambridge University Press,
Cambridge (2002). https://doi.org/10.1017/CBO9780511483165

12. Luke, S.: ECJ evolutionary computation library. Available for free (1998), http://
cs.gmu.edu/∼eclab/projects/ecj/

13. Lutoslawski, W.: Principes de stylométrie appliqués à la chronologie des œuvres
de platon. Revue des Études Grecques 11(41), 61–81 (1898). https://doi.org/10.
3406/reg.1898.5847

14. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky,
D.: The Stanford CoreNLP natural language processing toolkit. In: Association
for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014).
http://www.aclweb.org/anthology/P/P14/P14-5010

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: Proceedings of Workshop at ICLR 2013, January
2013

16. Mosteller, F., Wallace, D.L.: Inference in an authorship problem. J. Am. Stat.
Assoc. 58(302), 275 (1963). https://doi.org/10.2307/2283270

17. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word rep-
resentation. In: Empirical Methods in Natural Language Processing (EMNLP),
pp. 1532–1543 (2014). https://doi.org/10.3115/v1/D14-1162. http://www.aclweb.
org/anthology/D14-1162

18. Ramezani, R., Sheydaei, N., Kahani, M.: Evaluating the effects of textual features
on authorship attribution accuracy. In: ICCKE 2013. IEEE, October 2013. https://
doi.org/10.1109/iccke.2013.6682828

19. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems, pp. 532–538. Springer, Boston (2009). https://
doi.org/10.1007/978-0-387-39940-9 565

20. Rudman, J.: The state of authorship attribution studies: some problems and
solutions. Comput. Humanit. 31, 351–365 (1997). https://doi.org/10.1023/A:
1001018624850

21. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975). https://doi.org/10.1145/361219.361220

https://doi.org/10.1111/j.1468-0394.2010.00547.x
https://doi.org/10.1111/j.1468-0394.2010.00547.x
http://dl.acm.org/citation.cfm?id=3016387.3016522
http://dl.acm.org/citation.cfm?id=3016387.3016522
https://doi.org/10.1007/978-3-540-24630-5_69
https://doi.org/10.1007/978-3-540-24630-5_69
www.gutenberg.org
https://doi.org/10.3115/v1/e14-3011
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1017/CBO9780511483165
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/
https://doi.org/10.3406/reg.1898.5847
https://doi.org/10.3406/reg.1898.5847
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.2307/2283270
https://doi.org/10.3115/v1/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1109/iccke.2013.6682828
https://doi.org/10.1109/iccke.2013.6682828
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1023/A:1001018624850
https://doi.org/10.1023/A:1001018624850
https://doi.org/10.1145/361219.361220

Combining Similarities for Authorship Attribution 27

22. Selj, V., Peng, F., Cercone, N., Thomas, C.: N-gram-based author profiles for
authorship attribution. In: Proceedings of the Conference Pacific Association for
Computational Linguistics PACLING 2003, September 2003

23. Stamatatos, E.: A survey of modern authorship attribution methods. J. Am. Soc.
Inf. Sci. Technol. 60(3), 538–556 (2009). https://doi.org/10.1002/asi.21001

24. Tang, K., Man, K., Kwong, S., He, Q.: Genetic algorithms and their applica-
tions. IEEE Signal Process. Mag. 13(6), 22–37 (1996). https://doi.org/10.1109/
79.543973

25. Tweedie, F.J., Singh, S., Holmes, D.I.: Neural network applications in stylometry:
the federalist papers. Comput. Humanit. 30(1), 1–10 (1996). https://doi.org/10.
1007/bf00054024

26. Williams, C.B.: Mendenhall’s studies of word-length distribution in the works of
Shakespeare and Bacon. Biometrika 62(1), 207–212 (1975). https://doi.org/10.
1093/biomet/62.1.207

27. Yule, C.U.: The Statistical Study of Literary Vocabulary. Cambridge University
Press, Cambridge (2014)

28. Yule, G.U.: On sentence-length as a statistical characteristic of style in prose: with
application to two cases of disputed authorship. Biometrika 30(3/4), 363 (1939).
https://doi.org/10.2307/2332655

29. Zipf, G.K.: Selected Studies of the Principle of Relative Frequency in Language.
Harvard University Press, Cambridge (1932). https://doi.org/10.4159/harvard.
9780674434929

https://doi.org/10.1002/asi.21001
https://doi.org/10.1109/79.543973
https://doi.org/10.1109/79.543973
https://doi.org/10.1007/bf00054024
https://doi.org/10.1007/bf00054024
https://doi.org/10.1093/biomet/62.1.207
https://doi.org/10.1093/biomet/62.1.207
https://doi.org/10.2307/2332655
https://doi.org/10.4159/harvard.9780674434929
https://doi.org/10.4159/harvard.9780674434929

Image Signal Processor Parameter Tuning
with Surrogate-Assisted Particle

Swarm Optimization

Geoffrey Portelli and Denis Pallez(B)

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
geoffreyportelli@gmail.com, denis.pallez@univ-cotedazur.fr

Abstract. Evolutionary algorithms (EA) are developed and compared
based on well defined benchmark problems, but their application to real-
world problems is still challenging. In image processing, EA have been
used to tune a particular image filter or in the design of filters themselves.
But nowadays in digital cameras, the image sensor captures a raw image
that is then processed by an Image Signal Processor (ISP) where several
transformations or filters are sequentially applied in order to enhance
the final picture. Each of these steps have several parameters and their
tuning require lot of resources that are usually performed by human
experts based on metrics to assess the quality of the final image. This
can be considered as an expensive black-box optimization problem with
many parameters and many quality metrics. In this paper, we investigate
the use of EA in the context of ISP parameter tuning with the aim of
raw image enhancement.

Keywords: Image Signal Processor · Parameter tuning · Particle
Swarm Optimization

1 Introduction

Image processing has been largely investigated for many years. As the quality
of outputs is crucial for the whole computer vision chain, sophisticated mathe-
matical theories and statistical methods have been developed in recent years [7].
These are a source of complex optimization problems. Moreover, new constraints
for embedded, real-time computer vision systems necessitate the development of
robust and flexible as well as cost-effective algorithms.

Image-related optimization problems tend to be highly nonlinear and compu-
tationally expensive. The objectives and constraints are usually related to image
metrics that need to be calculated based on the images from the output of the
whole computer vision chain. Thus each evaluation of such objectives requires the
combination of applying the considered image processing techniques (denoising,
sharpening, white balance, etc...) with optimization-related techniques. More-
over the computational costs will increase with the size of the images. All these
factors lead to high computational costs [18].
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 28–41, 2020.
https://doi.org/10.1007/978-3-030-45715-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_3

ISP Tuning with Surrogate-Assisted PSO 29

Classical image processing methods tuned with EAs have been shown to
outperform manually tuned classical methods such as image filtering, denoising
or enhancement [17], and object detection [5], in terms of convergence speed
and ability to deal with highly degraded image source. However, because of its
complexity (non-linear process, number of parameters, etc...) and computing
resource needs, authors focused on the optimization of a unique task [3,12,18].
For instance, [3] investigated the application of the Artificial Bee Colony algo-
rithm (ABC) [10] where the artificial bees are moving to search for the optimal
parameters of a pixel luminance transformation function to enhance the image
contrast based on the fitness function.

But nowadays, embedded computer vision systems can be found in lots of
devices such as digital cameras and small devices as smartphones, tablets, etc.
Usually coupled with the digital sensor, an ISP can be found and applies sequen-
tially many processing and filtering to the raw images like noise reduction, sharp-
ening, white balance or color correction and thus aims at enhancing the image
quality of final pictures (Fig. 1). Depending on the application, ISPs can have
approximately 6 to 14 processing stages and each stage can have tens or even
hundreds of parameters.

Fig. 1. Classical design of a digital vision system.

All those processing are based on methods that are parameterized. When
enhancing only one raw image, many parameters have to be set and each of
them could be continuous or discrete. Because of its size and its complexity,
i.e. the amount of parameters to optimize (constrained and unconstrained) and
several time consuming criteria, the problem to be solved combines fundamental
issues like:

– large scale optimization: each stage embedded in the ISP can have few or
even hundreds of parameters,

– constrained optimization: processing stages might have parameters that must
fulfill specific inequality to be valid, for instance a specific relationship
between two (or more) parameters or parameter values that must be within
a given range,

30 G. Portelli and D. Pallez

– many objectives: several metrics can be used to asses the quality of the output
image,

– expensive optimization: computational costs increase with the image size and
ISP may need several minutes to process one raw image.

In addition, a gradient based search is not usable because the problem to
optimize is a set of methods or procedures that might not be differentiable.

Usually, the parameters of ISPs are painstakingly tuned by a human expert
based on image quality metrics. This painstaking work usually leads to one close-
to-optimal solution and must be done for each product and variant, severely
limiting the number of new configurations that can be evaluated.

Although EAs have been applied to image processing considering one unique
task as showed previously, to our knowledge EAs have never been used to opti-
mize a whole image processing chain made of several sequential processing stages
as ISPs. Thus here, we investigate the usage of such EA to automatically optimize
parameters of a typical ISP based on image quality metrics, for the enhancement
of raw images.

2 Real-World Problem: ISP

The optimization problem that is the tuning of the parameters of an ISP can
be formally defined as following. Given a set of image transformations T =
{t1, t2, ..., tk}, one ISP ϕ is one element of the power set of T (ϕ ∈ P(T)). |ϕ|
represents the number of transformations that will be applied on a raw image
IR by ϕ. P is the set of parameters used by all ti ∈ ϕ. As each transformation
ti is parameterized by a specific set of parameters pi ⊆ P(P), a function p is
defined and associates a transformation with its corresponding set of parameters,
i.e. p(ti) = pi. Thus, ϕ is defined by P

′ =
⋃

ti∈ϕ p(ti) and, the output image
I obtained by applying all transformations contained in ϕ is defined by I =
ϕ(IR,P′). Some image quality metrics mi are measured on resulting image I.

The goal is to identify the parameter values of P
′ that will optimize all

mi metrics. Without any loss of generality, this optimization problem can be
formalized by Eq. 1:

arg min
x∈R|P′|

M(x) = {m1(x), . . . , mn(x)}

subject to gi(x) ≤ 0, i = 0, . . . ,m m ≥ 0 (1)
hj(x) = 0, j = 0, . . . , p p ≥ 0

where gi and hi are respectively inequality and equality constraints on transfor-
mations parameters.

3 Objectives: Image Quality Metrics

In the domain of camera-equipped mobile devices, a standardized suite of objec-
tive and subjective image quality metrics is available [1]. This suite also provides

ISP Tuning with Surrogate-Assisted PSO 31

standardized image targets that allow the metrics to be comparable between
different camera devices. Here are considered the visual noise and the visual
acutance (as defined in [1]) to assess the noise and the acutance of the image,
respectively. Indeed, a human observer with little experience can visually per-
ceive if an image subjectively looks soft or sharp, also if it looks really noisy or
not. Thus, a visual validation of solutions given by an EA can be done contrary
to more “abstract” metrics such as Root Mean Square Error or Signal over Noise
Ratio that are informative but difficult to sense with human eyes, for instance.

The image noise can be view as the random variation of brightness or color
information in images, usually related to the electronic noise. It can be produced
by the digital sensor and circuitry in digital camera. The acutance of an image
describes a subjective perception of sharpness that is related to the edge contrast
of an image. It is linked to the amplitude of the derivative of brightness with
respect to space.

The output value of visual noise function will actually decrease as the noise
decrease in the measured image. Inversely, the output of the visual acutance
function will increase with the sharpness of the measured image: the more the
sharpness, the greater the visual acutance. One has to note that noise and acu-
tance counteract with each other.

From a human point of view, a high value of visual acutance does not neces-
sarily implies a subjectively good looking image. Preliminary tests with manual
tuning of the ISP used here (data not shown) show that values of visual acu-
tance ∼102.0 (and visual noise ∼0.01) gives best looking images. Thus not the
raw value of the visual acutance function but its transformation (x−102.0)2 will
be used as objective to be minimized. The visual noise as it is will be minimized.

4 Particle Swarm Optimization

The aim of the presented study is not to compare EAs nor to find the best EA
for the considered problem. Here the aim is to test whether or not this kind of
real-world problem can be tackled using EA. Among the numerous EA strategies
that have been investigated by the community, here in the considered real-world
application, we focus on Particle Swarm Optimization algorithms (PSO). How-
ever others EA strategies could be considered.

PSO is a bio-inspired meta-heuristic mimicking the social behavior of bird
flocking or fish schooling [11] which has become very popular to solve multi-
objective [15] and many-objective [6] optimization problems. Briefly, swarm par-
ticles will evolve in the solution space where their position will be updated at
each iteration given their own vector speed computed from global best and local
best encountered solutions.

PSO has many advantages, for instance, easy implementation, effective mem-
ory, efficient maintenance of the solution diversity [19]. Also, PSO makes few or
no assumptions about the problem being optimized and can search very large
spaces of candidate solutions. PSO does not use the gradient of the problem

32 G. Portelli and D. Pallez

being optimized, which means PSO does not require that the optimization prob-
lem be differentiable as is required by classic optimization methods such as gra-
dient descent. However, as many others metaheuristics, PSO do not guarantee
an optimal solution is ever found.

Among all the possible variants, we focus on SMPSO [14] to solve the opti-
mization of the ISP. Its main features are:

– use of a strategy to limit the velocity of the particles,
– external archive to store the non-dominated solutions (leaders) and a density

estimator (crowding distance),
– leader selection with a binary tournament from the leaders archive taking

into account the crowding distance,
– mutation operator (polynomial mutation) that add turbulence.

It has been shown to exhibit high performances in various benchmarks and
real-world problems [14], and suitable for large scale problems up-to 2048 vari-
ables [13]. Briefly as described in [14], the pseudo code of SMPSO is given in
Algorithm 1.

Algorithm 1: SMPSO pseudo-code (from [14])
initializeSwarm()
initializeLeadersArchive()
generation = 0
while generation < maxGenerations do

computeSpeedVector()
updateParticlesPosition()
mutation()
evaluation()
updateLeadersArchive()
updateLocalBest()
generation ++

end
returnLeadersArchive()

In the original publication, the performances of SMPSO were stated on
benchmark problems after 25000 function evaluations [14]. Such a number
of function evaluations seems to be not compatible with expensive problems.
Motivated by decreasing the computational costs in evolutionary optimization
of expensive problems, Surrogate-Assisted evolutionary computation has been
highly investigated (see for review [9]). Basically, surrogates are used together
with the real fitness function with the aim of estimating the fitness of new indi-
viduals of which can be then selected upon a given criteria for a real evaluation.
As the real-world problem presented here is expensive, we modified SMPSO
in order to add surrogates model (SASMPSO). The difference is that, dur-
ing the evolutionary algorithm, the swarm particles will search according to

ISP Tuning with Surrogate-Assisted PSO 33

their estimated evaluation thanks to surrogate, for a given amount of resources
(maxNfeSurrogate). Once those resources are depleted, all the current swarm
particles are evaluated using the real fitness function and then used in the evo-
lutionary algorithm. Here, there is no particular selection of best candidates for
real evaluations. The pseudo code of SASMPSO is given in Algorithm2.

Algorithm 2: SASMPSO pseudo-code
initializeSwarm()
initializeLeadersArchive()
generation = 0
computeSpeedVector()
updateParticlesPosition()
mutation()
evaluation()
updateLeadersArchive()
generation ++
while generation < maxGenerations do

selectSurrogates()
trainSurrogates()
nfeSurrogate = 0
while nfeSurrogate < maxNfeSurrogate do

computeSpeedVector()
updateParticulesPosition()
mutation()
estimationWithSurrrogate()
updateLocalBest()
nfeSurrogate ++

end
evaluation()
updateLocalBest()
updateLeadersArchive()
generation ++

end
returnLeadersArchive()

Upon the real evaluation of the initial swarm population, surrogates used
here are constructed and updated for each objectives, separately, following the
method described in [8]. Briefly, four models as Gaussian Process, Radial Basis
Function, and Multivariate polynomial regression of degree 1 and 2 have been
used here even if other surrogate models can be considered too. First, surrogates
are selected based on the minimum root mean-squared error while performing
a crossvalidation with 80% of samples for the training set and 20% of sam-
ples for the testing set (function selectSurrogates in Algorithm 2). Then, the
selected surrogate is trained considering all the samples (function trainSurro-
gates in Algorithm 2). The samples are from an external archive different from

34 G. Portelli and D. Pallez

the archive containing the leaders. This archive is updated with all the real-
evaluated individuals and will grow until the algorithm stops. Whenever this
archive is updated with new real-evaluated individuals, surrogates are re-selected
and re-trained with the aim of getting the most accurate estimation.

4.1 Encoding/Decoding Parameters

For simplicity, parameters are encoded as float valued parameters in the range
[0, 1]. In order to deal with the different ranges of the ISP parameters (see
Sect. 5.1), a function is used to convert float values in [0, 1] to proper parameters
values compatible with the experimental ISP. To do so, Eq. 2 was used. Regard-
ing the particular dependence between the parameters k and N of the denoising
filter, Eq. 3 was used to compute the values of each k and N parameters before
feeding the experimental ISP. One can note that N will not be tuned directly
but k and n will be, thanks to Eq. 3.

x = (xe ∗ (max(x) − min(x))) + min(x) , with

{
x ∈ [original range]
xe ∈ [0, 1]

(2)

N = 4 ∗ n+ k ,

with

{
k = 2 ∗ (round((ke ∗ (max(k) − min(k))) +min(k))) − 1 , ke ∈ [0, 1]

n = round((ne ∗ (max(n) − min(n))) +min(n)) , ne ∈ [0, 1] and n ∈ [2, 5]

(3)

4.2 Function Evaluation

Algorithm 3: Function evaluation
f (rawImage, parame);
Input: Raw image, encoded ISP parameters
Output: acutance, noise
param = decode(parame)
srbg = experimentalISP (rawImage, param)
acutance = (visualAcutance(srgb) − 102)2

noise = visualNoise(srgb)

The function evaluation is defined as in Algorithm3. It takes as input the raw
image (rawImage) and the ISP parameters. The encoded parameters (parame)
are decoded with the decode described function, into proper ranged values before
feeding the experimental ISP. The output of the ISP, i.e. the processed image
srgb is then used to compute the image quality metrics with the functions
visualAcutance and visualNoise. This gives the values of the two objectives
that will be minimized by the EAs. One can note that the computation time of
one function evaluation will be the sum of the ISP processing a raw image plus
the metrics measure, that is 400 s in average.

ISP Tuning with Surrogate-Assisted PSO 35

5 Experimental Methods

Because of its complexity and as a first step, we propose to simplify the prob-
lem of ISP tuning by using EAs to optimize the parameters of a two-filtering
stages ISP thanks to two image quality metrics. We designed a simplified two-
filtering stages ISP that can be tuned according to 8 parameters, with respect
to the minimization of 2 objectives. The parameters are related to the denoising
and sharpening filters that will be detailed here after. As previously described,
objectives that are minimized are the visual noise and the visual acutance. In
the following we detail the experimental ISP, the implemented image filters and
their parameters.

5.1 The Experimental ISP

As ISPs used in industry feature hundreds of parameters and are not open
source, a simpler prototype has been developed. Based on commonly used proce-
dures of raw image processing [16], we implemented a simple but fully functional
ISP. Here as a proof of concept, only denoising and sharpening stages will be
considered.

The denoise filter is based on the non-local means algorithm (NLM) proposed
by [2]. Briefly, NLM filtering takes a mean of all pixels in the image, weighted
by how similar these pixels are to the target pixel. This results in much greater
post-filtering clarity, and less loss of detail in the image. Here is considered
especially the implementation suggested in [4]. It depends on five parameters
{α, β, k,N, thr} which are the lower/upper values [α, β] for the noise profile of
the sensor itself that can vary in the 20% range, k and N the size of the patches
of the denoise filter, and thr a threshold.

The sharpening stage is based on the commonly used unsharp-mask tech-
nique [7] where the original image is combined to a mask obtained from the
negative image that is blurred, or “unsharp”. This combination creates an out-
put image that is less blurry than the original. This unsharp-mask depend on
three parameters {radius, amount, threshold} which are mainly related to the
parameters of the Gaussian function used to blur the original image. All the
eight parameters and their ranges are detailed in Table 1.

5.2 Raw Images

Nowadays, lots of imaging devices allow access to the raw output of the digital
sensor such as digital single-lens reflex camera and even some recent smart-
phones with high-end photographic capabilities. Thanks to the suite [1], pic-
tures of eCPIQeCPIQeCPIQtarget suitable for measuring the visual noise and
the visual actuance (standard deadleaves target) have been made in a controlled
environment. Especially, two raw images of this target, one in low-light condi-
tion (20 lux) and one in normal-light condition (100 lux) have been considered.

36 G. Portelli and D. Pallez

Table 1. Tunable parameters of the experimental ISP for denoising and sharpen filters.

Name Range Type

α α ± 20% Float

β β ± 20% Float

k [3, 5, 7, 9] Integer

N N = f(k), with N ≤ 37 Integer

thr [0, 2] Float

Radius [0, 3] Float

Amount [0, 2] Float

Threshold [0, 1] Float

(a) SMPSO 100 lux (b) SASMPSO 100 lux

(c) SMPSO 20 lux (d) SASMPSO 20 lux

Fig. 2. Pareto fronts for each independent runs (one color per run), and for each
algorithm and raw image combination, after 1000 nfe.

Typically, in low-light condition, the image is more noisy and should be more
difficult to process than the normal-light condition image. Thus, the EA will
optimize the parameters of the experimental ISP considering one of the two
images at a time and results will be compared.

ISP Tuning with Surrogate-Assisted PSO 37

5.3 Performance Evaluation

In this study, both SMPSO and the proposed SASMPSO are compared for the
optimization of the experimental ISP parameters considering two raw images
(100 lux and 20 lux).

Hyperparameters are the same for both algorithms and raw images. The
initial population size and the leaders archive size are set to 50. When surro-
gates are involved, the maximum number of evaluations using the surrogates
(maxNfeSurrogate) is set to 1000. The maximum number of real evaluations
allowed is set to 1000. Of course one could also vary those hyperparameters to
analyze the sensitivity of the algorithms. But this is not the aim of the presented
study. Six independent runs are performed. We agree that such a low number of
runs is not enough to get statistically significant conclusions, and will need to be
completed. But here are preliminary results that we think are already interesting
for the community.

As the considered problem is black-box, the true Pareto front is unknown.
Nevertheless, the performance between algorithms can be compared visually by
the cumulative Pareto front across the 6 independent runs obtained after 1000
real evaluations, i.e. the non-dominated solutions over the concatenated solutions
of the 6 runs. The idea beyond this is to have an overview of the exploration of
the solution space.

The hypervolume indicator is computed to assess the differences in diversity
and convergence. The hypervolume is the area between the non-dominated solu-
tions and a reference point. Especially due to the low number of independent
runs available, not the average but the median of the hypervolumes computed
for the 6 runs is considered and is displayed as a function of the number of real
function evaluations (nfe). The aim here is to provide a measure of central ten-
dency: what is the most representative behavior of the hypervolume across the
6 runs. With such a low number of runs, the average will be highly sensitive to
extreme values and variability unlike the median.

6 Results

Pareto fronts for each independent runs can be seen in Fig. 2. One can note the
variabilty between the runs of one algorithm given one raw image, especially for
SASMPSO 20 lux (Fig. 2d). Because of these discrepancies and the low number
of available runs, not the mean but the median of the hypervolume is used.

For each combination algorithm-raw image, the hypervolume is computed for
each run and the median is plotted as a function of the increasing number of nfe
(Fig. 3a). For all, the hypervolume is increasing with the nfe showing that there is
minimization of the two objectives. One can speculate that there is convergence
toward regions of the solution space containing better solutions. Also here, little
differences can be seen between the two algorithm while considering the 100 lux
raw image. SASMPSO seems to perform better than SMPSO while considering
the 20 lux raw image. But as a squared difference is used as the Acutance
fitness (see 3), objective values evolve within a huge range. As a consequence, the

38 G. Portelli and D. Pallez

(a)

(b)

Fig. 3. (a) Median of the hypervolumes for the 6 independent runs. (b) log of the
difference between the maximum of the median of hypervolumes and the median of
hypervolumes. SMPSO is in black, SASMPSO is in grey, and for the raw images, 100
lux is circle markers and 20 lux is triangle markers.

reference point use to compute the hypervolume is far from the final solutions
and thus the differences in hypervolumes that could be observed toward the
“convergence” are smothered. In order to reduce this bias, is represented the log
of the difference between the maximal median hypervolume and the considered
hypervolume (log(max(medians) − median)) in Fig. 3b. As a result, it can be
seen the decrease toward the highest hypervolume, i.e. the faster the decrease,
the better. Thus, it is highlighted that SASMPSO (grey) is converging faster
than SMPSO (black) toward this best encountered hypervolume. Also in both
algorithms, the decrease toward the highest hypervolume seems to be slower
while considering the 20 lux image compared to the 100 lux image (both circles
versus both triangles curves until 800 nfe, Fig. 3b). This supports the a priori
about the increased difficulty of the processing due to the inherent higher noise
level in the 20 lux image.

ISP Tuning with Surrogate-Assisted PSO 39

Fig. 4. Cumulative Pareto fronts across 6 independent runs after 1000 function evalua-
tions for each algorithms and raw images combination. SMPSO is in black, SASMPSO
is in grey. And for the raw images, 100 lux is circle markers and 20 lux is triangle
markers.

Figure 4 shows the cumulative Pareto fronts across the 6 independent runs,
after 1000 nfe for SMPSO (black), SASMPSO (grey), considering the 20 lux
raw image (triangles) or the 100 lux raw image (circles). The objectives are in
log scale. Both algorithms reach solutions in the range of expected values for
both objectives. The use of surrogates in SASMPSO seems to lead to a better
convergence for both raw images. Even if the differences are low for the 100 lux
raw image, SASMPSO seems to outperform SMPSO for the enhancement of the
20 lux raw image, although the processing of the 20 lux raw image was a priori
more difficult to optimize due to its inherent higher noise level compared to the
100 lux raw image. For illustration, crops of the raw image and the processed
image related to the kneepoint solution of the cumulative Pareto front of each
conditions are showed in Fig. 5.

7 Discussion and Conclusions

We presented in this study the use of an EA to optimize the parameters of a
set of filters for the image enhancement, i.e. for the optimization of an ISP.
Commonly in the literature, EAs were used in the context of image processing
for the optimization or the design of single filters for image enhancement [3,5,
12,18]. To our knowledge, this is the first time that EAs are used to optimize
a set of filters for image enhancement. Among the diversity of available EAs
we focused on PSO, especially SMPSO [14] and the proposed simple surrogate-
assisted SMPSO, SASMPSO, to optimize the parameters of an experimental ISP
for the enhancement of raw images in normal-light and low-light conditions.

Despite the fact that the presented results can be considered as prelimi-
nary, results show that both EA succeeded in converging toward solutions in the
expected range of values for the objectives, for both light conditions. Results
show also that the use of surrogates allows to “converge” quicker. One could

40 G. Portelli and D. Pallez

(a) Raw 100 lux (b) SMPSO 100 lux (c) SASMPSO 100 lux

(d) Raw 20 lux (e) SMPSO 20 lux (f) SASMPSO 20 lux

Fig. 5. Raw images and processed images related to the kneepoint solutions of the
Pareto fronts showed in Fig. 4

argue that only a simplified ISP have been used here and actual complete ISP are
far more complex and challenging. We agree that the presented results obtained
using the simplified ISP need to be confirmed with complementary experiments
using more complex ISP (more filters, more parameters, more image quality met-
rics). Indeed, besides the black-box and expensive aspects, complete ISPs can
have approximately tens processing stages, each of them parameterized with tens
or even hundreds of parameters. Moreover, one could consider that the sequence
of processing stages itself, can be optimized which highly increase the complexity
of the problem.

So, the final problem combines many of current challenges as black-box,
expensive, large scale, many objectives optimization which have been and are
currently investigated separately or partially combined, by the community. Going
toward the optimization of a complete ISP will require the development of new
surrogate-assisted EAs that can handle all those challenges at once.

References

1. IEEE CPIQ 1858–2016 - IEEE standard for camera phone image quality (2016).
https://standards.ieee.org/standard/1858-2016.html

2. Buades, A., Coll, B.: A non-local algorithm for image denoising. In: CVPR, pp.
60–65 (2005)

3. Chen, J., Yu, W., Tian, J., Chen, L., Zhou, Z.: Image contrast enhancement using
an artificial bee colony algorithm. Swarm Evol. Comput. 38, 287–294 (2018)

https://standards.ieee.org/standard/1858-2016.html

ISP Tuning with Surrogate-Assisted PSO 41

4. Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J.: Fast nonlocal filtering
applied to electron cryomicroscopy. In: 2008 5th IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, pp. 1331–1334. IEEE (2008)

5. Ebner, M.: Engineering of computer vision algorithms using evolutionary algo-
rithms. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS
2009. LNCS, vol. 5807, pp. 367–378. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04697-1 34

6. Figueiredo, E., Ludermir, T., Bastos-Filho, C.: Many objective particle swarm
optimization. Inf. Sci. 374, 115–134 (2016). https://doi.org/10.1016/j.ins.2016.09.
026, http://www.sciencedirect.com/science/article/pii/S0020025516308404

7. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. (2008)
8. Habib, A., Singh, H.K., Chugh, T., Ray, T., Miettinen, K.: A multiple surrogate

assisted decomposition based evolutionary algorithm for expensive multi/many-
objective optimization. IEEE Trans. Evol. Comput. 23, 1000–1014 (2019)

9. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

10. Karaboga, D.: An idea based on honey bee swarm for numerical optimization.
Technical report (2005)

11. Kennedy, J., Eberhart, R.: Particle swarm optimization (PSO). In: Proceedings of
IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–
1948 (1995)

12. Munteanu, C., Rosa, A.: Towards automatic image enhancement using genetic
algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation,
CEC 2000 (Cat. No. 00TH8512), vol. 2, pp. 1535–1542. IEEE (2000)

13. Nebro, A.J., et al.: Extending the speed-constrained multi-objective PSO (SMPSO)
with reference point based preference articulation. In: Auger, A., Fonseca, C.M.,
Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS,
vol. 11101, pp. 298–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99253-2 24

14. Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., Alba, E.:
SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In:
2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-
Making (MCDM), pp. 66–73. IEEE (2009)

15. Reyes-Sierra, M., Coello, C.C., et al.: Multi-objective particle swarm optimizers: a
survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

16. Rob, S.: Processing raw images in MATLAB (2014). http://rcsumner.net/raw
guide/RAWguide.pdf

17. Sahoo, M.: Classical and evolutionary image contrast enhancement techniques:
comparison by case studies. In: Behera, H.S., Mohapatra, D.P. (eds.) Computa-
tional Intelligence in Data Mining. AISC, vol. 556, pp. 37–44. Springer, Singapore
(2017). https://doi.org/10.1007/978-981-10-3874-7 4

18. Yang, X.S., Papa, J.P.: Bio-Inspired Computation and Applications in Image Pro-
cessing. Academic Press, Cambridge (2016)

19. Zhang, Y., Gong, D.W., Geng, N.: Multi-objective optimization problems using
cooperative evolvement particle swarm optimizer. J. Comput. Theor. Nanosci.
10(3), 655–663 (2013)

https://doi.org/10.1007/978-3-642-04697-1_34
https://doi.org/10.1007/978-3-642-04697-1_34
https://doi.org/10.1016/j.ins.2016.09.026
https://doi.org/10.1016/j.ins.2016.09.026
http://www.sciencedirect.com/science/article/pii/S0020025516308404
https://doi.org/10.1007/978-3-319-99253-2_24
https://doi.org/10.1007/978-3-319-99253-2_24
http://rcsumner.net/raw_guide/RAWguide.pdf
http://rcsumner.net/raw_guide/RAWguide.pdf
https://doi.org/10.1007/978-981-10-3874-7_4

Combinatorial Surrogate-Assisted
Optimization for Bus Stops Spacing

Problem

Florian Leprêtre(B), Cyril Fonlupt, Sébastien Verel, and Virginie Marion

Univ. Littoral Côte d’Opale, LISIC, 62100 Calais, France
florian.lepretre@univ-littoral.fr

Abstract. The distribution of transit stations constitutes an ubiquitous
task in large urban areas. In particular, bus stops spacing is a crucial fac-
tor that directly affects transit ridership travel time. Hence, planners often
rely on traffic surveys and virtual simulations of urban journeys to design
sustainable public transport routes. However, the combinatorial structure
of the search space in addition to the time-consuming and black-box traffic
simulations require computationally expensive efforts. This imposes seri-
ous constraints on the number of potential configurations to be explored.
Recently, powerful techniques from discrete optimization and machine
learning showed convincing to overcome these limitations. In this prelim-
inary work, we build combinatorial surrogate models to approximate the
costly traffic simulations. These so-trained surrogates are embedded in an
optimization framework. More specifically, this article is the first to make
use of a fresh surrogate-assisted optimization algorithmbased on themath-
ematical foundations of discrete Walsh functions in order to solve the real-
world bus stops spacing optimization problem. We conduct our experi-
ments with the sialac benchmark in the city of Calais, France. We com-
pare state-of-the-art approaches and we highlight the accuracy and the
optimization efficiency of the proposed methods.

Keywords: Bus stops spacing · Combinatorial optimization ·
Surrogate models

1 Motivations

The United Nations expect sixty percent of the world’s population to live in
urban areas by the next decade [2]. This relentlessly growing rate constantly
challenges urban planners to design sustainable cities so as to improve the mobil-
ity of their inhabitants and travellers. This objective can be achieved, in a way,
by an efficient planning and management of public transport systems, such as
trams, buses or even self-service bicycles. The correct design of these systems
is the key to offer potential users a competitive transit mode compared to the
private car. This is particularly advocated for mitigating environmental impacts
of transport and could also help to revitalize and renew interest in some districts

c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 42–52, 2020.
https://doi.org/10.1007/978-3-030-45715-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_4

Combinatorial SaO for Bus Stops Spacing Problem 43

of the city. For example, the location of a transit station in an area where none
currently exists may attract new customers to public transport who previously
lacked the service.

Substantial works exist in the litterature on the deployment of such effi-
cient transport systems. A recurring challenge is to ensure that transit stops
are properly spaced. Without loss of generality, the present article focuses on
the optimization of bus stops spacing. It is well known that their distribu-
tion represents an important factor directly affecting passengers travel times
[21,27]. Some research even investigates social costs, economic benefits or envi-
ronmental impacts of bus stations positionings [19,24]. Also, several methods
are introduced to find optimal spacings for minimal travel costs. On the one
hand, coverage models have been widely employed, such as the Thiesen poly-
gons [27] or the Voronoi diagrams [28]. These techniques allow additional data
to be assessed while searching for optimal stop positions (e.g., district density
around the stop). On the other hand, the discretization of the study areas has
also shown promising. Ibeas et al. proposed to split the transit route area in small
links of equal distance [11]. Each link represents a potential stop location, and
the so-discretized optimization problem is solved with a pattern-search iterative
algorithm [9]. Besides, Furth et al. considered each intersection of the studied
road network as a potential stop location [8]. Then, a dynamic programming
algorithm was used to determine the optimal bus stop positions.

Inspired by the aforementioned works, this article considers the bus stops
spacing problem as a pseudo-boolean problem, where the passenger travel time
is the fitness function to minimize. Then, a binary variable is associated with
each possible location for a bus stop: the variable equals one if the stop is acti-
vated or equals zero if not – this will be discussed further in Sect. 3. However,
such studies as well as many others in the literature mostly rely on numerical
simulations of urban traffic flows, which are usually blackbox models. As a con-
sequence, only the design variables and the resulting values of the simulation
are known. Moreover, it is often computationally time expensive (from minutes
to hours) to get the fitness value of one single simulation [3,6]. In addition with
the combinatorial explosion of the search space, optimization experts thus face a
serious limitation on the capacity to freely explore potential solutions. To tackle
such an optimization challenge, one classical solution in Surrogate-assisted Opti-
mization (SaO) is to learn a surrogate model to approximate the costly simulator
evaluations and then reduce the number of potential sampled solutions during
the search process. Although the field of combinatorial surrogate models has
long received little attention, it is now experiencing a sudden renewed interest,
bringing with it new algorithmic ideas to the community [4,5,22].

As part of this preparatory and applicative work for further studies, we
implement a variety of recent combinatorial surrogate modeling techniques to
approximate the time-expensive traffic simulations. Further, we embed the so-
learnt surrogates in the context of bus stops spacing optimization. In partic-
ular, this work is the first to make use of a newly published SaO algorithm
based on the mathematical foundations of discrete Walsh functions coupled with

44 F. Leprêtre et al.

powerful grey-box optimization techniques [14], in order to solve a class of real-
world problems. We aim to highlight the accuracy and the optimization perfor-
mances of these methods.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
state-of-the-art combinatorial surrogate modeling techniques and the founda-
tions of SaO. Sect. 3 is devoted to experiments specifications and their analyses.
In Sect. 4, we conclude the paper and discuss future works.

2 Combinatorial Surrogate-Assisted Optimization

Surrogate models formulate quick-to-evaluate mathematical models, so as to
approximate black-box and time-consuming computations. They are built from a
sample of evaluated solutions. Therefore, the main purpose of surrogate-assisted
optimization is to efficiently select the solutions to be sampled in order to quickly
improve the quality of the surrogate and thus the quality of the solutions found.

A surrogate-assisted method combines three components (see Algorithm 1).
The first component is the surrogate model itself which is a regression model of
the fitness function. The model must be expressive enough to catch the complex-
ity of the fitness function, but at the same time slightly sophisticated in order
to ease the learning when a small sample of solutions is available. The second
component is an acquisition function defined from the surrogate model. This
acquisition function can be directly the surrogate model or a trade-off between
the predicted quality of candidate solution and the estimation error of the sur-
rogate model. The goal is to guide the search and to ensure a balance between
exploration that increases the quality of the surrogate model and exploitation
that pushes towards high-quality solutions according to the surrogate model.
The last component is the algorithm to optimize the acquisition function. This
algorithm has to be efficient in time and in quality to converge quickly to the
promising solutions given by the acquisition function. Therefore, such promising
solution is selected, evaluated and added to the sample for the next iteration of
the search algorithm. An efficient surrogate-assisted optimizer for combinatorial
problems is a relevant combination of these three components.

To the best of our knowledge, four main methods have been proposed for
pseudo-boolean problems: Radial Basis Function model [16], Kriging approach
[26], Bayesian approach [4] and Walsh basis functions decomposition [22].

Algorithm 1: Surrogate-assisted optimization framework.
1 S ← Initial sample {(x, f(x)), . . .}
2 while computational budget is not spent do
3 M ← Build model S
4 x ← Optimize M w.r.t. an acquisition function
5 Evaluate x using f
6 S ← S ∪ {(x, f(x)}
7 end

Combinatorial SaO for Bus Stops Spacing Problem 45

Kriging Approach. Kriging approach is a direct extension of the numerical
surrogate approach and is based on Gaussian Process (GP) [25,26]. In the con-
text of combinatorial structures, Euclidean distance is replaced by the Hamming
distance for pseudo-boolean functions or more sophisticated discrete distance
for the search space of permutations. Then, Kriging is coupled with the Efficient
Global Optimizer framework (EGO) [12]. This framework takes advantage of the
uncertainty of the approximations given by the GP and uses a genetic algorithm
to select the promising solution that maximizes the Expected Improvement (EI),
i.e., the acquisition function. One should note that the computational complexity
of EI is high and can not be reduced by some classic techniques in combinato-
rial optimization such as incremental evaluation. Nevertheless, this surrogate-
assisted optimization has been shown to outperform the aforementioned Radial
Basis Function model [16] – thus the latter will not be detailed here.

Bayesian Approach. Another state-of-the-art surrogate-assisted approach is
the Bayesian Optimization of Combinatorial Structures (BOCS) algorithm [4].
The statistical model of BOCS is the standard multilinear polynomial of binary
variables. Therefore, Baptista et al. argue that the model takes into account the
interactions between the binary variables. Only a quadratic polynomial model
is studied in their article (i.e., one variable interacts with only other one):

∀x ∈ {0, 1}n, M2(x) = a0 +
∑

i∈N

aixi +
∑

i<j∈N

aij xixj , (1)

where N = {1, . . . , n}. The regression technique is the Sparse Bayesian Linear
Regression [15]. The optimizer is a basic simulated annealing that minimizes the
approximation of the fitness function provided by the surrogate model with a
regularization term.

Walsh Basis Functions. A new combinatorial surrogate model based on Walsh
functions has been proposed [22]. Walsh functions [23] describe a normal and
orthogonal basis of discontinuous functions that can be employed to decompose
any function of the Hilbert space. Therefore, Verel et al. assumed that the expen-
sive pseudo-boolean functions might be substituted by a polynomial of Walsh
decompositions of order k:

∀x ∈ {0, 1}n, Wk(x) =
∑

� s.t. o(�)�k

w� · (−1)
∑n

i=1 �ixi , (2)

where o is the order of the Walsh function, i.e., the number of binary digits
equals to 1 in the binary representation of �. In the following, we restrain to
quadratic interactions:

∀x ∈ {0, 1}n, W2(x) = w0 +
n∑

i=1

wi (−1)xi +
∑

i<j∈N

wij (−1)xi+xj . (3)

46 F. Leprêtre et al.

To face the quadratic number of polynomial terms, the regression technique is a
linear model trained with �1-norm as regularizer, aka the Lasso [20]. Recently, the
Walsh Surrogate-assisted Optimization (WSaO) algorithm has been introduced
[14]. The authors benefit from powerful grey-box optimization techniques and use
the so-called Efficient Hill-climber (EH) from Chicano et al. [7] as an optimizer
for the Walsh surrogates. WSaO has been shown to outperform both Kriging
and BOCS approaches, scaling up at least to dimension n = 100.

3 Experiments

3.1 Overview

We consider the bus stops spacing problem as a pseudo-boolean optimization
challenge. For the sake of simplicity in this preliminary work, the focus is on one
regular bus line in the city of Calais, France.

Bus Stops. All potential bus stops are implemented in advance on the given
road network. They are manually located on intersection nodes and are numbered
from 1 to n, where n is the total number of potential stops in the bus route,
following [8]. Then, a solution to the optimization problem, i.e., a possible design
of the bus stops, is denoted by a binary string x ∈ {0, 1}n. Therefore, open
bus stops are associated to bits in x equal to one, whereas closed stops are
associated to bits equal to zero. The first and last stops are constrained to
be open. Only open bus stops are taken into account during the forthcoming
simulations. Figure 1 illustrates a simplified bus stops design on the studied bus
route. The complete bus route considers n = 20 potential stop locations.

Urban Flows. The simulation system considered in this work is the Multi
Agent Transport Simulation (MATSim) [10]. MATSim requires as inputs a road
network model [18] and the initial mobility scenarios for a set of agents (i.e.,
a set of travelers’ schedules). These scenarios are generated according to the
SIALAC Benchmark [13]. The latter allows to synthesize mobility plans which
assess such information as living quarters, business districts or main entry and
exit points of the city. As an example, Fig. 2 illustrates a scenario where agents
are distributed into four living quarters. The present work studies six scenarios
involving 5000 travelers with different number of home and working area clusters.
The possible home cluster number is 1 cluster, 4 clusters or uniform when the
population is randomly distributed over the city area; they are denoted as 1h, 4h
or uh, respectively. The possible working area cluster number is 1 or 4 clusters;
they are denoted as 1a or 4a, respectively. Finally, a scenario defines a round
trip between a home location and an activity location, for each traveler. The
latter are distributed according to the configuration of the six studied scenarios:
1h-1a, 1h-4a, 4h-1a, 4h-4a, uh-1a, and uh-4a. The number of cluster impacts the
travel time for pedestrians and cars which allows to test the robustness of SaO
algorithms. One simulation with MATSim, i.e., one fitness function evaluation,
requires about a minute of computation as a single-thread program.

Combinatorial SaO for Bus Stops Spacing Problem 47

Fig. 1. Simplified example of open or closed bus stops (white or black dots) on the
regular bus route (red line), according to the solution x = 1101001101. (Color figure
online)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

10

20

30

40

50

60

70

Fig. 2. Four home clusters inside Calais road network. Colors indicate the number of
agents departing from a node. (Color figure online)

48 F. Leprêtre et al.

Experimental Setup. We aim to minimize the travelers mean travel time, i.e.,
the fitness function computed by MATSim, i.e., the black-box simulator. Then,
we use binary strings of dimension n = 20, corresponding to the 20 potential bus
stops locations. We follow the experimental setup exposed in [14], except that we
validate the accuracy of the models against a test-set of 250 solutions generated
uniformly at random and we restrain to quadratic interactions for BOCS and
WSaO methods. Algorithms and experiments are fully implemented in Python,
using standard machine learning and optimization packages [17].

3.2 Accuracy of Surrogate Models

We first benchmark the accuracy of three surrogate models based on gaussian
process (Kriging), multilinear polynomials used in BOCS, and Walsh polynomi-
als. No optimization algorithm is involved yet. Selected solutions to learn the
black-box simulator are sampled randomly from {0, 1}n. Figure 3 compares the
mean absolute error made by the models as a function of the random sam-
ple size dedicated to their learning. Although Kriging seems promising in the
very first iterations, the computational effort required for a slight improvement
in accuracy increases considerably as the learning process progesses. For both
Walsh, and multilinear based methods, the convergence of the model quality is
reached around a sample size of 400 solutions on 3 scenarios (1h-1a, 4h-1a and
uh-1a). For more difficult scenarios 1h-4a, 4h-4a and uh-4a, the precision qual-
ity increases beyond the largest sample size. Overall scenarios, Walsh surrogates
appear as the most accurate models. On all scenario, the precision gain of Walsh
vs. multilinear polynomial is approximatively 30% for the largest sample size
of 103.

3.3 Performances of Optimizers

We compare state-of-the-art SaO algorithms presented in Sect. 2. In addition,
we also compare the performances of multilinear polynomials embedded with
an Iterated Local Search based on the Efficient Hill-climber (EH) [7]. Unlike
the regression analysis of the previous section and according to Algorithm 1,
the solution added each iteration to the surrogate’s learning sample is now the
solution that minimizes the surrogate model. Figure 4 plots the minimization
of the fitness as a function of the learning sample, for one SIALAC scenario.
At a glance, EGO algorithm stalls as soon as the sample size gets bigger than
100. This unsuitable scaling-up was already identified in [14]. However, WSaO
seems promising with a small learning sample, while a multilinear polynomial
coupled with BOCS appears better when the sample size grows (see Table 1).
However, notice that the order of difference between the two approaches is only
in seconds of mean travel time. Both methods seems promising for that moderate
size scenario with one bus line, and 20 potential bus stop positions. These results
are still under active work and follow the first results performed on artificial
benchmarks [14].

Combinatorial SaO for Bus Stops Spacing Problem 49

Fig. 3. Mean absolute error with confidence interval as a function of random samples
for six SIALAC scenarios (h: home clusters, a: activity clusters). The lower the better.

50 F. Leprêtre et al.

Fig. 4. Minimization of mean travel times according to sample size for one SIALAC
scenario. The lower the better.

Table 1. Average mean travel times according to the learning sample size. The lower
the better. Values appear in bold when they are statistically significant with Mann-
Whitney tests at level 5%.

Sample size Kriging (EGO) Multilinear (EH) Walsh (WSaO) Multilinear (BOCS)

100 850.82± 4.00 843.55± 4.17 840.59±3.03 842.24± 2.58

400 844.49± 3.55 839.99± 3.56 836.57±1.70 836.81±1.78

1000 841.71± 3.27 838.41± 2.68 836.43± 1.62 835.64±1.13

4 Discussion

Combinatorial surrogate models succeed to learn the time-consuming and black-
box traffic simulator, with a reasonable error lower than three percent of the
average real simulator responses. The results show that polynomial-based models

Combinatorial SaO for Bus Stops Spacing Problem 51

coupled with grey-box optimization algorithms are competitive against standard
state-of-the-art methods in a surrogate-assisted optimization purpose. EGO app-
roach quickly stalls, while WSaO and BOCS approaches converge to satisfying
bus route designs. In particular, this article is the first to apply WSaO to solve
such a class of real-world optimization problem.

This preparatory work opens many directions for future applicative research.
First, we would like to scale up the bus stop spacing problem to a hundred
dimensions at least, in order to design more concise bus routes and to get more
challenging problems to face for state-of-the-art SaO methods. As it was pointed
out in [14], a higher dimension would allow to draw more clearly conclusions as to
the most appropriate polynomial decomposition. Further, these polynomial mod-
els are restrained here to quadratic interactions between variables. The cubic, or
higher interaction is envisaged in order to aspire to the conception of more accu-
rate models. Finally in a more applicative way, we are considering to redraw a
part of the bus routes, based on the results obtained from SaO algorithms. Such
routes could be implemented in the Zenbus [1] vizualisation platform, which
could represent a powerful tool for urban planners and decision-makers.

Acknowledgments. Experiments presented in this paper were carried out using the
CALCULCO computing platform, supported by SCOSI/ULCO (Service COmmun du
Système d’Information de l’Université du Littoral Côte d’Opale). We are grateful to
PMCO for its funding, and we thank Calais city (France) for the data and its support.

References

1. Zenbus. https://zenbus.net/sitac-calais. Accessed 31 May 2019
2. The world’s cities in 2016. United Nations, Department of Economic and Social

Affairs (2016)
3. Armas, R., Aguirre, H., Zapotecas-Mart́ınez, S., Tanaka, K.: Traffic signal opti-

mization: minimizing travel time and fuel consumption. In: Bonnevay, S., Legrand,
P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554,
pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6 3

4. Baptista, R., Poloczek, M.: Bayesian optimization of combinatorial structures. In:
International Conference on Machine Learning (ICML), pp. 462–471 (2018)

5. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and dis-
crete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

6. Branke, J.: Simulation optimization tutorial. In: Proceedings of the Genetic and
Evolutionary Computation Conference Compagnion. ACM (2018)

7. Chicano, F., Whitley, D., Sutton, A.M.: Efficient identification of improving moves
in a ball for pseudo-Boolean problems. In: Proceedings of the 2014 Annual Con-
ference on Genetic and Evolutionary Computation, GECCO 2014, pp. 437–444.
ACM, New York (2014)

8. Furth, P., Rahbee, A.B.: Optimal bus stop spacing through dynamic programming
and geographic modeling. Transp. Res. Rec. 1731, 15–22 (2000)

9. Hooke, R., Jeeves, T.A.: “Direct search” solution of numerical and statistical prob-
lems. J. ACM 8(2), 212–229 (1961)

10. Horni, A., Nagel, K., Axhausen, K. (eds.): Multi-Agent Transport Simulation
MATSim. Ubiquity Press, London, August 2016

https://zenbus.net/sitac-calais
https://doi.org/10.1007/978-3-319-31471-6_3

52 F. Leprêtre et al.

11. Ibeas, Á., dell’Olio, L., Alonso, B., Sainz, O.: Optimizing bus stop spacing in urban
areas. Transp. Res. Part E: Logistics Transp. Rev. 46(3), 446–458 (2010)

12. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

13. Leprêtre, F., Fonlupt, C., Verel, S., Marion, V.: SIALAC benchmark: on the design
of adaptive algorithms for traffic lights problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 288–289. ACM (2018)

14. Leprêtre, F., Fonlupt, C., Verel, S., Marion, V.: Walsh functions as surrogate model
for pseudo-Boolean optimization problems. In: Proceedings of the Genetic and
Evolutionary Computation Conference. ACM (2019)

15. Makalic, E., Schmidt, D.F.: A simple sampler for the horseshoe estimator. IEEE
Sign. Process. Lett. 23(1), 179–182 (2016)

16. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based opti-
misation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011.
LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20364-0 13

17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

18. Ramm, F., Karch, C., Topf, J.: Geofabrik. https://www.geofabrik.de. Accessed 24
Jan 2018

19. Saka, A.A.: Model for determining optimum bus-stop spacingin urban areas. J.
Transp. Eng. 127(3), 195–199 (2001)

20. Tibshirani, R., Wainwright, M., Hastie, T.: Statistical Learning with Sparsity: The
Lasso And Generalizations. Chapman and Hall/CRC, London (2015)

21. Vaughan, R., Cousins, E.: Optimum location of stops on a bus route. In: 1977
7th International Symposium on Transportation and Traffic Theory, Kyoto, Japan
(1977)

22. Verel, S., Derbel, B., Liefooghe, A., Aguirre, H., Tanaka, K.: A surrogate model
based on walsh decomposition for pseudo-boolean functions. In: Auger, A., Fonseca,
C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11102, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99259-4 15

23. Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45(1), 5–24
(1923)

24. Wirasinghe, S.C., Ghoneim, N.S.: Spacing of bus-stops for many to many travel
demand. Transp. Sci. 15(3), 210–221 (1981)

25. Zaefferer, M., Stork, J., Bartz-Beielstein, T.: Distance measures for permutations
in combinatorial efficient global optimization. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 373–383. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 37

26. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein,
T.: Efficient global optimization for combinatorial problems. In: GECCO (2014)

27. Zheng, C., Zheng, S., Ma, G.: The bus station spacing optimization based on game
theory. Adv. Mech. Eng. 7(2), 453979 (2015)

28. Zhu, Z., Guo, X., Chen, H., Zeng, J., Wu, J.: Optimization of urban mini-bus stop
spacing: a case study of Shanghai (China). Tehnicki Vjesnik 24, 949–955 (2017)

https://doi.org/10.1007/978-3-642-20364-0_13
https://doi.org/10.1007/978-3-642-20364-0_13
https://www.geofabrik.de
https://doi.org/10.1007/978-3-319-99259-4_15
https://doi.org/10.1007/978-3-319-99259-4_15
https://doi.org/10.1007/978-3-319-10762-2_37

Optimisation of a Checkers Player
Using Neural and Metaheuristic

Approaches

Ethan Bunce(B) and Edward Keedwell

College of Engineering, Mathematics and Physical Sciences,
University Exeter, Exeter EX4 4QF, UK

ethan.bunce@hotmail.com

Abstract. Within this paper we evaluate the components used to build
a checkers playing system with no embedded expert knowledge. We found
that Particle Swarm Optimisation (PSO) and Evolutionary Algorithms
(EA) are suitable training methods for Artificial Neural Networks (ANN)
acting as evaluation functions within minimax, when training on 2 and
4 plies. By playing the trained networks against one other the single
best network was found, which was produced by 3000 iterations of PSO
playing on 2 plies. We show that this network outperformed a piece
differential evaluation function, both on a fixed number of plies, and
when using iterative deepening search. We also show that the higher the
amount of plies the better a system will perform, however it is the relative
difference between the amount of plies that impacts the performance.
External validation of the system shows it winning all 44 games it played
against non-expert human players. It was also able to solve the hardest
tasks on a checkers problem website. The system was also able to draw
against Chinook, a checkers playing system with expert knowledge and
state-of-the-art in the field.

Keywords: Evolutionary Algorithm · Particle Swarm Optimisation ·
Artificial Neural Network · Game theory

1 Introduction

This paper investigates metaheuristic and neural networks methods behind
developing a game playing system with no expert knowledge, and apply them
to the board game checkers. A similar attempt was undertaken by Kumar
Chellapilla and David Fogel in their 1999 paper “Evolving neural networks to
play checkers without relying on expert knowledge” [6]. As with Chellapilla and
Fogel’s paper we used an Artificial Neural Network (ANN) as an evaluation
function within Minimax to play the game. Minimax enables a machine to play
turn-based games by assuming perfect play from the opponent and then through
tree search, proposing the move that minimises the possible loss in the worst case
scenario. The method has been shown to be effective, but is highly dependent on
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 53–67, 2020.
https://doi.org/10.1007/978-3-030-45715-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_5

54 E. Bunce and E. Keedwell

the utility function which evaluates the game state once move has been made. In
this paper we extend [6] by implementing different methods for training ANNs
as the utility function, as well as other elements of game theory to increase the
performance of the system.

The gameplaying method used here is to allow players to play games against
each other and to learn from the wins and losses that result, a method that
requires no expert knowledge of the rules to be used. For games we already
understand, it can enable us to learn new strategies and methods, which can be
far superior to existing human ones. A recent example of this is AlphaGo Zero,
a Go game playing system developed by Google’s Deep Mind, which in 40 days
was able to overtake all human players and reach an ELO rating of 5,185 [15],
far higher than the current human highest rating of 3,646 held by South Korean
player Shin Jinseo [2].

Within this paper we have investigated, and compared the performance of,
EA and PSO for training ANNs to be used as evaluation functions within
minimax for the board game checkers [4,7,12]. We have also investigated the
impact on system performance of the number of moves ahead (known as the
ply) searched by the algorithm.

2 Background

Checkers. The game used here is American checkers, also known as British
draughts, which is played on an eight by eight board. The rules can be viewed
in full at [3].

Previous Game Playing Systems. Deep Blue, a Chess game playing system,
developed by IBM which in 1997 became the first system to beat a world cham-
pion at chess. It used Alpha-Beta pruning search on a minimax tree, running the
search in parallel, with an evaluation function designed with expert knowledge
[5,8]. In addition to this it used an endgame database (EGDB). The EGDB
contains all possible board positions with less than a certain number of pieces
remaining, alongside whether it is a win loss or draw. This allows the system to
play perfectly, only selecting moves that will maintain its winning position.

Chinook is a checkers game play system, developed over 18 years at the
University of Alberta. The evaluation function uses expert knowledge such as
trapped kings and runaway checkers (a man who has an unimpeded path to
the opposing players kings row). In 1994 it won the World Championship of
Checkers, being the first computer to do so. After this the project retired from
playing humans to instead solve checkers. At the time of its retirement it was
rated at 2814 ELO. Since then Chinook and its authors have solved checkers [14],
proving that it is unbeatable with perfect play, and the best result an opposing
player can achieve is a draw. Chinook used many similar features to Deep Blue,
including an opening book, endgame database, an expertly crafted evaluation
function and Alpha-Beta pruning.

Optimisation of a Checkers Player 55

Training Methods. Due to the nature of the project it would not be possible
to use traditional training methods. For example it is common to use backprop-
agation to train a neural network, however this requires known input/output
pairs which are not available in the adversarial training method described above.
Instead we focused on two training methods, evolutionary algorithms (EA) and
particle swarm optimisation (PSO) [9,16] to train the weights of the ANN utility
function.

Game Theory. In order to further increase the performance of the system we
included other elements of game theory. From looking at previous game playing
systems it was clear that it was standard to use Alpha-Beta pruning [10], iterative
deepening search [11] and book moves. Alpha-Beta pruning decreases execution
time, without affecting the results of the search. Iterative deepening allows the
system to take full advantage of all the time it has per move, whilst ensuring
the current best move is returned within the time limit. Book moves allow for
perfect play at specific parts of the game.

3 Methodology

The system used a trained ANN as a utility function within minimax. The ANN
consisted of 91 input nodes, 2 hidden layers with a size of 40 and 10 nodes and
single output node. The input consisted of the piece differential of each subsquare
on the board, ranging in size from 3 × 3 up to the full board. The full board
piece differential was also passed as an input to the output node.

3.1 Minimax

The system used minimax to choose which moves to make. It can search to a
fixed depth, or as seen in some of the experiments use an iterative deepening
search, in order to make full use of its time per move. Using iterative deepening
also allows us to look at the impact on execution time, and thus performance,
from using a neural network as a utility function.

3.2 Artificial Neural Networks

Both training methods trained networks of a fixed topology. The network archi-
tecture is similar to Chellapilla and Fogel’s architecture [6]. From reading their
paper it was unclear if each subsection connected to one input node, or each
subsection of the same size connects to all the input nodes for that size (i.e. 36
nodes for 3 × 3, 25 nodes for 4 × 4 etc.). We initially tested with the former,
however found the bias had too much of an impact on the output, and changed to
using the latter. The network consists of the input nodes described (91), which
feed into 40 hidden nodes, followed by another 10 hidden nodes and finally a
single output node. When calculating the inputs a higher value can be placed

56 E. Bunce and E. Keedwell

on the king, as it is a more advantageous piece to possess. This value (known as
the king value) was modifiable by the training methods. The output node is also
supplied with the total piece differential of the entire board. Each node used tanh
as the activation function (bounded between −1 and 1). The value outputted
by this node is the value that is then used within minimax. The diagram can be
seen in Fig. 1.

Fig. 1. The network architecture used within the paper

Optimisation of a Checkers Player 57

3.3 Training Methods

Two training methods were implemented, particle swarm optimisation (PSO)
and evolutionary algorithms (EA). Both training methods awarded 1 point for
a win, −2 for a loss, and a value between 1 and −2 for a draw, depending on the
final piece differential, with a more favourable piece differential being awarded
a higher score.

The network was encoded as an object in the program, with an array of
neurons forming a layer, and an array of layers forming a full network. Each of
the neurons had an array of decimal values for weights, and a single decimal
value as a bias. The training methods accessed these instance variables in order
to produce new solutions.

EA. The evolutionary algorithm is similar to that used by Chellapilla and Fogel
in their paper [6]. The algorithm began with a randomly created population of
15 networks. The weights and biases for these networks were sampled uniformly
over [−0.2, 0.2], in order to provide a small amount of variance between them,
and the king value was set to 2. The self-adaptive parameter σ for each weight
and bias was initialized to 0.05. Each parent in the population produced new
networks by varying the weights, biases and king value. The new network n+

was created by:

σ+(j) = σ(j)exp(τNj(0, 1)), j = 1, ..., Nw (1)

w+(j) = w(j) + σ+(j)Nj(0, 1), j = 1, ..., Nw (2)

where Nw is the total number of weights and biases in the network, 6468,
τ = 1/

√
(2 × √

(Nw)) = 0.07885, and Nj(0, 1) is a standard Gaussian ran-
dom variable resampled for each j. The king value K+ is obtained by taking
the original king value K, and adding a number chosen randomly from −0.1, 0,
0.1. The king value was constrained to between 1 and 3. Each network in the
population would play 5 games against random opponents from the population,
playing as white. After this the 15 networks with the lowest scores were removed
from the population and new ones were bred.

PSO. The PSO began with a population of 10 randomly created networks. The
weights and biases were initialised in the same manner as the EA. The king value
was a random value between 1 and 3. The self adaptive parameters acted as the
velocity for each weight and bias, and was initialised to 0. At each time step the
position of each network was updated by

xi,j [t + 1] = xi,j [t] + vi,j [t] (3)

Where:
t = time, v = velocity, x = the position of i in the dimension j.

The velocity was also updated at each time-step:

vi,j [t+1] = vi,j [t] + (c1 × rand()× (pbestxi,j − xi,j)) + (c2 × rand()× (gbestxi,j − xi,j)) (4)

58 E. Bunce and E. Keedwell

Where:
c1 & c2 = constants, rand() = random number between 0 and 1,
pbest = the network’s best position, gbest = the population’s best position.
For our experimentation c1 and c2 were both set to 2 [13]. The velocities were

limited to between −0.1 and 0.1, to prevent the values from large oscillations.
Each network played every other network in the population to determine the first
global best. Each iteration, each solution’s position is updated, they then play
every other network in the population to determine the best network of that
iteration, which then plays the global best to see if a improvement had been
found. Each network then plays their own local best to see if an improvement
had been found.

4 Results

4.1 Training Methods

The Effect of the Amount of Plies Used in Training. To test the effect of
the amount of minimax plies used in training on the resulting networks quality,
we trained multiple networks, using 2 and 4 plies in their training games, for PSO
and EA against an opponent with a simple piece differential as a utility function
(subtracting one player’s pieces from the other to determine game state). The
training was set so that each network would have around 8 hours to train on our
machine, which was 500 generations for EA 4 plies, 5000 generations for EA 2
plies, 300 iterations for PSO 4 plies, and 3000 iterations for PSO 2 plies. After
this the 2 and 4 plies trained network of each method played against the other,
as seen below (Tables 1, 2, 3, 4, 5 and 6).

Table 1. Results from 200 sets of
games on 4 plies for the EA trained
networks

Result (for 2 plies)

Playing as Win Loss Draw

White 40.0% 32.0% 28.0%

Black 28.0% 47.0% 25.0%

Table 2. Results from 100 sets of
games on 6 plies for the EA trained
networks

Result (for 2 plies)

Playing as Win Loss Draw

White 28.0% 42.0% 30.0%

Black 31.0% 32.0% 37.0%

Table 3. Results from 50 sets of
games on 8 plies for the EA trained
networks

Result (for 2 plies)

Playing as Win Loss Draw

White 26.0% 18.0% 56.0%

Black 26.0% 34.0% 40.0%

Table 4. Results from 200 sets
of games on 4 plies for the PSO
trained networks

Result (for 2 plies)

Playing as Win Loss Draw

White 52.5% 19.5% 28.0%

Black 60.0% 17.5% 22.5%

Optimisation of a Checkers Player 59

Table 5. Results from 100 sets
of games on 6 plies for the PSO
trained networks

Result (for 2 plies)

Playing as Win Loss Draw

White 7.0% 72.0% 21.0%

Black 33.0% 3.0% 64.0%

Table 6. Results from 50 sets
of games on 8 plies for the PSO
trained networks

Result (for 2 plies)

Playing as Win Loss Draw

White 24.0% 30.0% 46.0%

Black 68.0% 16.0% 16.0%

As we can see for both training methods, training on both 2 plies and 4
plies produced capable networks. The EA trained networks (Tables 1, 2 and 3)
appear to be similar in ability, however the 4 plies trained network seems to
slightly outperform the 2 plies trained network, as it wins more games. For the
PSO trained networks (Tables 4, 5 and 6) the 2 plies trained network outperforms
the 4 plies trained network, and it is far less close than EA.

Whilst both are capable of training accurate networks, it appears that 2
plies is slightly better, as it is able to complete 10 times the generations 4 plies
can. This increase in generations allows more mutations or movements to occur,
allowing a larger amount of the search space to be explored. Due to the vast
amount of weights and biases within the network the search space is extremely
large, and this greater amount of exploration helps to find better solutions.

An interesting observation is for certain amount of plies the result seems to
be determined by the side the network is playing as. For example in Table 5 we
see how the 2 plies network loses the majority of games when playing as white,
however it wins the majority playing as black. Whilst this may seem erroneous,
it only occurs on trained networks, and by manually checking we were able to
observe the fact it is not due to them playing as black, but rather having the
second move. If the game started on blacks turn it would lose the majority of
the games. It is difficult to say why the network behaves this way, however we
do not believe it is important, as we later show that it is able to play well as
both black and white, against both EA trained networks and piece differential.

EA vs PSO. Knowing that the EA trained 4 plies and PSO trained 2 plies
were the best performing networks, we then played them against each other, with
each network searching to the same amount of plies, allowing us to compare the
suitability of each training method for this task (Tables 7, 8 and 9).

Table 7. Results from 200 sets of
games on 4 plies

Result (for PSO)

Playing as Win Loss Draw

White 23.5% 0.5% 76.0%

Black 29.0% 31.5% 39.5%

Table 8. Results from 100 sets of
games on 6 plies

Result (for PSO)

Playing as Win Loss Draw

White 19.0% 5.0% 76.0%

Black 100.0% 0.0% 0.0%

60 E. Bunce and E. Keedwell

Table 9. Results from 50 sets of games on 8 plies

Result (for PSO)

Playing as Win Loss Draw

White 54.0% 8.0% 38.0%

Black 42.0% 6.0% 52.0%

As we can see, the PSO trained network wins more games than the EA
trained network across a range of plies.

An explanation for this is the way in which each method explores the search
space. The search space is particularly large for this problem, as each weight and
bias represents another dimension, and there are 6484 weights and biases within
the current network architecture. As the EA used single parent reproduction
it has a higher risk of getting stuck in local minima. This is because during
training a dominant network will appear, and over time the population will
be filled the mutated ancestors of this network. This greatly limits the explored
space. Whilst PSO is still at risk of getting stuck in local minima, as all solutions
have to converge on the global best a greater amount of the search space will be
explored, meaning if the global best is in a local minima during convergence it
is likely a better solution will be found, however this still may not be the global
minima.

It is important to note that whilst the fully trained 2 plies PSO trained net-
work outperformed the 4 plies EA trained network it does not necessarily prove
that PSO is superior. Both of these training methods are susceptible to becoming
stuck in local minima [17], and as such the initial starting positions has a great
impact on the end result of the network. To counteract this, 3 networks were
trained for each parameter, using the best one within the testing, however we
still cannot be certain PSO outperforms EA. In order to be able to increase our
confidence in these results we could train more networks, as this would increase
the range of starting positions. This was not possible due to time restrictions. It
would also be beneficial to increase population size for both training methods,
as this would increase the state space explored, however this would also increase
the time taken training.

4.2 Neural Networks as Evaluation Functions

Neural Network Vs Piece Differential on Fixed Amount of Plies. In
order to test the accuracy of the 2 plies PSO network, and to see if it was more
accurate than a piece differential, it played a number of games against the piece
differential, as both white and black, on varying amounts of plies.

In this experiment we see the average score for the first time. A win for white
was awarded a score of 1, a win for black was awarded −1, and a draw was given a
score dependant on the remaining pieces. This score was the total piece differential
at the end of the game, with a king given a value of 2, which was divided by 12 and

Optimisation of a Checkers Player 61

limited to between 1 and−1. The closer to 1 the better the draw was for white, and
the closer to −1 the better for black. Using the results from each individual game
we can calculate the average score (Tables 10, 11 and 12).

Table 10. Results from 200 sets of
games on 4 plies

Result (for the network)

Playing as Win Loss Draw Avg score

White 63.5% 7.0% 29.5% 0.55

Black 53.0% 16.0% 31.0% −0.363333

Table 11. Results from 100 sets of
games on 6 plies

Result (for the network)

Playing as Win Loss Draw Avg score

White 72.0% 5.0% 23.0% 0.6775

Black 75.0% 7.0% 18.0% −0.675

Table 12. Results from 50 sets of games on 8 plies

Result (for the network)

Playing as Win Loss Draw Avg score

White 72.0% 4.0% 24.0% 0.686667

Black 72.0% 2.0% 26.0% −0.711667

As we can see the network is able to consistently win more games than
the piece differential across a range of plies. This shows that the training was
successful in producing networks that could more accurately score game states
within minimax than a piece differential.

An interesting note is the higher the amount of plies, the more successful the
network appears to be. A possible explanation for this is the networks ability
to process the spacial characteristics of the board, enabling it to recognise an
advantageous position where the piece differential will not. By recognising this
position earlier, due to the higher amount of plies, the system is able to attempt
to move the game towards this position earlier, thus increasing the chances of the
advantageous position being reached, and from it a better result being achieved.

Neural Network vs Piece Differential Using Iterative Deepening. As
the network took longer to evaluate states than the piece differential, we played
them against each other, using iterative deepening instead of a fixed ply. By
testing this we can ensure the network is superior, and see whether the longer
time taken to evaluate states is counteracted by the higher accuracy of the
network.

The games were only played 8 times, as the CPU used has 8 cores, and as such
playing more games simultaneously would decrease the depth reached within the
time limit. Each player would have to share the core, decreasing the CPU time
it would have, and thus the depth it would reach (Tables 13, 14 and 15).

62 E. Bunce and E. Keedwell

Table 13. Results from 1 s of iterative
deepening

Result (for the network)

Playing as Win Loss Draw

White 4 1 3

Black 5 0 3

Table 14. Results from 3 s of iterative
deepening

Result (for the network)

Playing as Win Loss Draw

White 2 1 5

Black 5 0 3

Table 15. Results from 5 s of iterative deepening

Result (for the network)

Playing as Win Loss Draw

White 4 1 3

Black 3 0 5

Whilst piece differential was able to consistently reach 2–4 higher plies, it
was not able to outperform the network, with the network winning the majority
of the games. We can see that the results were closer than the games played
whilst searching to a fixed depth, due to the increased amount of plies reached
by the piece differential. This shows that not only are neural networks suitable
as evaluation functions, they can significantly outperform simpler evaluation
functions, such as a piece differential. It is worth noting that this is a smaller
sample size, and as such is less accurate than some of the higher game tests,
however it is enough to show that the trained network is superior to the piece
differential.

4.3 Game Theory

The Effect of the Amount of Plies Searched to. In order to test the effect
of the amount of plies searched to on the performance of the system, two piece
differentials played against each other, set to search to a different amount of
plies.

As we can see from the results below, increasing the number of plies searched
to at any depth significantly increased the performance of the system, allowing
it to win the majority of the games (Tables 16, 17, 18, 19 and 20).

Table 16. Playing 200 games of 4 plies
against 2 plies

Result for 4 plies

Playing as Win Loss Draw Avg score

White 80.0 % 2.5% 17.5% 0.77625

Black 77.5% 3.0% 19.5% −0.753333

Table 17. Playing 100 games of 6 plies
against 2 plies

Result for 6 plies

Playing as Win Loss Draw Avg score

White 86.0% 1.0% 13.0% 0.848333

Black 89.0% 0.0% 11.0% −0.896667

Optimisation of a Checkers Player 63

Table 18. Playing 100 games of 6 plies
against 4 plies

Result for 6 plies

Playing as Win Loss Draw Avg score

White 56.0% 3.0% 41.0% 0.533333

Black 54.0% 6.0% 40.0% −0.490833

Table 19. Playing 50 games of 8 plies
against 4 plies

Result for 8 plies

Playing as Win Loss Draw Avg score

White 70.0% 4.0% 26.0% 0.66

Black 72.0% 2.0% 26.0% −0.676667

Table 20. Playing 50 games of 8 plies against 6 plies

Result for 8 plies

Playing as Win Loss Draw Avg score

White 40.0% 12.0% 48.0% 0.293333

Black 60.0% 6.0% 34.0% −0.523333

We can also see that the measure of success is not the absolute difference
between the number of plies, but the relative difference between them. For exam-
ple in Table 16 we see 4 plies playing against 2 plies. The results are far closer
to 8 plies against 4 plies (Table 19), than 8 plies against 6 plies (Table 20).
Another example is playing 6 plies against 2 plies (Table 17) scored significantly
higher than 8 plies against 4 plies, despite them having the same difference. An
explanation for this is the diminishing returns of higher amount of plies searches.
Increasing the plies allows the search to be more accurate, and closer to the opti-
mal move. Whilst a higher number of plies will always increase the accuracy of
the search, there becomes a point where this becomes negligible. For example
consider a minimax search that is capable of searching until terminal nodes,
removing the need for an evaluation function. If we had another search that
was capable of reaching 2 plies before the terminal nodes it is likely that these
searches would almost always return the same move to take, especially when
combined with an accurate evaluation function. This would cause the systems
to be extremely close in performance. The increase in accuracy searching 4 plies
instead of 2 plies offers is far more significant than 8 plies instead of 6 plies, and
it is this accuracy of the search which determines the performance.

4.4 Measuring the Performance of the System

The site used for evaluation by Chellapilla and Fogel is largely inactive, and it
seems to be broken or hacked, as players have ratings of well above the expected
value for human players. The current highest rating at the time of writing is
4603, and according to Chellapilla and Fogel’s paper [6] 2400+ is the equivalent
of a senior master, the highest ranking a checkers player can achieve. At the
time of its retirement Chinook had a rating of 2814. It is worth noting here that
the issue of the ELO system is that it relies on the skill level of the population,

64 E. Bunce and E. Keedwell

as it is the player’s skill vs the skill of others in the population. This means
that a professional player’s rating would not be same on a website, as the skill
level would not be the same on the website as it would in professional play. This
means that we cannot accurately translate ratings from one site to another, and
as such we cannot compare this system directly to Chellapilla and Fogel’s.

Each of the following tests used the previously found best settings for the
system, that is using the 2 plies PSO trained network, 120 s of iterative deepen-
ing (the maximum time for a move in most common rule variants), alpha-beta
pruning enabled, and an endgame database, unless otherwise specified.

Human Players. Whilst we were unable to directly play the system against
expert players we were able to have human players play the system in order to
show its performance. The person was asked to estimate how many games of
checkers they had played, and the rules were explained to them. Once the player
was informed of all the rules, they played a total of 4 games, 2 as white and 2
as black. In the results players are grouped by their experience with checkers,
and each game of the four they played is recorded as a separate result in the
Table 21.

Table 21. System playing against non-expert players

Result (for system)

Previous amount of games played Win Loss Draw

0–9 20 0 0

10–99 16 0 0

100+ 8 0 0

The system had 3 s of iterative deepening search, alpha-beta pruning enabled
and no EGDB access. The plan was to increase the search time and enable the
EGDB if the player beat this version of the system. The reasoning behind this
was not wanting to waste the participants’ time, as a game on 2 min per move
will easily take over an hour. However, none of the players were able to beat
this “easy” version of the system. This demonstrates the high performance of
the system, and shows that it surpassed the minimum aim of being competitive
with non-expert human players.

Checker Cruncher. The website Checker Cruncher [1] provides a number of
problems, which are from recorded games where the player who is moving has
the opportunity to win the game based upon the next move. It has over 14,000
problems, each with their own rating. These ratings are calculated through the
Glicko system, which is an improved ELO system. Whilst the scores are not
directly comparable, it still allows us to provide context to the performance

Optimisation of a Checkers Player 65

of the system. Alongside this the website has a list of members, each with a
rating attached, based upon the challenges they had attempted. This allows us
to compare the system to these users, however we cannot be certain of the actual
skill of these players, or if they also, like us, are using a game playing system.

In order to measure the system it was used to select the move for multiple
problems, based upon their rating, starting at lower rated problems, and moving
to harder ones. The system was set to use alpha-beta pruning, 5 s of iterative
deepening, and the EGDB. Ratings are correct as of time of writing. In order,
the system attempted problems (Glicko rating is to the right of them):

1. 1353 (650.4)
2. 5151 (1031.9)
3. 6922 (1218.1)
4. 505 (1471.5)
5. 12542 (1653.2)
6. 5835 (1740.0)
7. 11136 (1788.5)
8. 1454 (1833.5)
9. 5797 (1927.5)

10. 7488 (1996.4)
11. 8465 (2040.4)
12. 6249 (2075.7)
13. 14112 (2125.8)

The system was able to pick the correct move in all problems except problems
11136 and 14112. Within these it chose good moves, but the website said there
were better ones. Increasing the iterative deepening time to 2 min allowed the
system to select the correct move for both problems. It is a possibility that the
system will not perform as well when recreating these results, due to the random
selecting of moves with equal scores, however there is only one problem we know
this occurs on, which is 14112, where it can select either the correct move or the
good move mentioned previously.

14112 is currently the hardest rated problem on the site, and this goes to
show the power of the system. Whilst the accuracy of these ratings cannot be
guaranteed, it is still a good indicator of the performance of the system, and
that it is capable of playing checkers to a high level. It is worth noting only 3 of
these problems (5151, 505 and 7488) used the EGDB, so the other results come
from the network alone.

The problems were chosen before creating an account, and were hard coded
on the system. To get a rating on the site you have to attempt random problems,
meaning it was not possible to get a rating on the site. However by working out
the Glicko scores manually we get a new Glicko rating for the system of 1984.
This however is a conservative estimate, as it has won every game, and as such
the true rating may be much higher, and would rise further with repeated solves
of harder problems. This rating would place the system at rank 1 on the Checker
Cruncher leader board, out of 374 players. At the time of writing the current
leader has a Glicko rating of 1972.1.

66 E. Bunce and E. Keedwell

Chinook. Chinook is available to play online [18]. The online version of Chinook
appears to be slightly downgraded, only using a 6 piece EGDB, however being
able to draw with it would be a considerable achievement. It offers 3 difficulty
settings (novice, amateur or intermediate), each one increasing the amount of
CPU time Chinook uses to chose its move. In order to test the performance
of the system it was played it against Chinook, using the full EGDB, 2 min
of iterative deepening, and alpha-beta pruning enabled. In order to play them
against each other a game was started on our system with the network playing
as white, and another game on Chinook with us playing as black (white on our
board representation). We would then relay the move made by the system into
Chinook, and enter its reply into our system. Starting at novice and moving
through the difficulties the system was able to draw at every difficulty, whilst
playing as black (white on our system), and starting from the default position.
One thing to note is the online version does not seem to draw properly, with
games looping forever, however games were ended when a draw was registered
on our system.

Whilst we cannot know how inferior this online version is compared to the
full system (if at all), this is still a significant achievement, as it goes to show
the power of the system, as well as the suitability of the training methods, being
able to draw with such a system, with a far smaller development time.

5 Conclusion

Within this paper we have found that Particle Swarm Optimisation and Evo-
lutionary Algorithms are both capable training methods for neural networks
within a game playing system. We have found that 2 and 4 plies are both suitable
amount of plies to train on. We have found that Particle Swarm Optimisation
appears to be more suited to training ANNs with a large amount of weights and
biases, due to it being less susceptible to local minima than EA. Additionally we
have shown that this fully trained network can outperform a piece differential,
both on a fixed amount of plies and when using iterative deepening, showing
that although it is slower, the decrease in speed is counteracted by its higher
accuracy as an evaluation function.

We have shown that increasing the number of plies will significantly increase
the performance of the system, especially towards the lower number of plies.
However the measure of success is the relative difference in the amount of plies,
not the absolute difference.

Finally we have externally validated this system, against human players, on
a checkers problem website “Checker Cruncher”, and the well-known Chinook
AI. The system showed that it was extremely capable against humans, winning
every single game, was able to perform better than all humans on the checker
problem site, and was even able to force Chinook into a draw, the best result
obtainable against that system.

This type of learning has many real world applications, for example within the
domains of science, economics and the environment. Whilst within this project

Optimisation of a Checkers Player 67

we have applied it to playing a game, it can be translated to other problems,
where the rules are known, but we are unable to produce an optimal solution.
Alongside producing solutions that can be superior to solutions produced by
humans, this type of learning can even be applied to problems that aren’t yet
fully understood.

We have shown that Evolutionary Algorithms and Particle Swarm Optimi-
sation can be successfully applied to Artificial Neural Networks to enable high-
quality game-playing systems.

References

1. Checker Cruncher. https://www.checkercruncher.com/
2. Go Ratings. https://www.goratings.org/en/
3. ItsYourTurn.com - Help Page. https://www.itsyourturn.com/t helptopic2030.html
4. Boonzaaier, D.: Training neural networks for checkers. Ph.D. thesis (2017)
5. Campbell, M., Hoane, A.J., Hsu, F.H.: Deep Blue. Artif. Intell. 134(1–2), 57–83

(2002). https://doi.org/10.1016/S0004-3702(01)00129-1
6. Chellapilla, K., Fogel, D.B.: Evolving neural networks to play checkers without

relying on expert knowledge. IEEE Trans. Neural Netw. 10(6), 1382–1391 (1999).
https://doi.org/10.1109/72.809083

7. Franken, N., Engelbrecht, A.P.: Comparing PSO structures to learn the game of
checkers from zero knowledge. In: 2003 Congress on Evolutionary Computation,
CEC 2003 - Proceedings (2003). https://doi.org/10.1109/CEC.2003.1299580

8. Hsu, F.H., Campbell, M., Hoane, J.: Deep Blue system overview. In: Proceedings
of the 9th International Conference on Supercomputing, ICS 1995, pp. 240–244
(1995). https://doi.org/10.1145/224538.224567

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (Novem-
ber 1995). https://doi.org/10.1109/ICNN.1995.488968

10. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4),
293–326 (1975). https://doi.org/10.1016/0004-3702(75)90019-3

11. Korf, R.E.: Depth-first iterative-deepening. An optimal admissible tree search. Artif.
Intell. 27(1), 97–109 (1985). https://doi.org/10.1016/0004-3702(85)90084-0

12. Messerschmidt, L.: Using particle swarm optimization to evolve two-player game
agents (2005)

13. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1,
33–57 (2007). https://doi.org/10.1007/s11721-007-0002-0

14. Schaeffer, J., et al.: Checkers is solved. Science 317(5844), 1518–1522 (2007).
https://doi.org/10.1126/science.1144079

15. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
(2017). https://doi.org/10.1038/nature24270

16. Sousa-Ferreira, I., Sousa, D.: A review of velocity-type PSO variants. J. Algorithms
Comput. Technol. (2017). https://doi.org/10.1177/1748301816665021

17. Taherdangkoo, M., Paziresh, M., Yazdi, M., Bagheri, M.H.: An efficient algorithm
for function optimization: modified stem cells algorithm. Cent. Eur. J. Eng., pp.
36–50. (2013). https://doi.org/10.2478/s13531-012-0047-8

18. University of Alberta: Play Chinook. https://webdocs.cs.ualberta.ca/∼chinook/
play/

https://www.checkercruncher.com/
https://www.goratings.org/en/
https://www.itsyourturn.com/t_helptopic2030.html
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1109/72.809083
https://doi.org/10.1109/CEC.2003.1299580
https://doi.org/10.1145/224538.224567
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/0004-3702(75)90019-3
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.1126/science.1144079
https://doi.org/10.1038/nature24270
https://doi.org/10.1177/1748301816665021
https://doi.org/10.2478/s13531-012-0047-8
https://webdocs.cs.ualberta.ca/~chinook/play/
https://webdocs.cs.ualberta.ca/~chinook/play/

A Novel Outlook on Feature Selection
as a Multi-objective Problem

Pietro Barbiero1 , Evelyne Lutton2 , Giovanni Squillero1 ,
and AlbertoTonda2(B)

1 Politecnico di Torino, Torino, Italy
pietro.barbiero@studenti.polito.it, giovanni.squillero@polito.it

2 UMR 782, Université Paris-Saclay, INRA, AgroParisTech,
Thiverval-Grignon, France

{evelyne.lutton,alberto.tonda}@inra.fr

Abstract. Feature selection is the process of choosing, or removing, fea-
tures to obtain the most informative feature subset of minimal size. Such
subsets are used to improve performance of machine learning algorithms
and enable human understanding of the results. Approaches to feature
selection in literature exploit several optimization algorithms. Multi-
objective methods also have been proposed, minimizing at the same time
the number of features and the error. While most approaches assess error
resorting to the average of a stochastic K-fold cross-validation, compar-
ing averages might be misleading. In this paper, we show how feature
subsets with different average error might in fact be non-separable when
compared using a statistical test. Following this idea, clusters of non-
separable optimal feature subsets are identified. The performance in fea-
ture selection can thus be evaluated by verifying how many of these
optimal feature subsets an algorithm is able to identify. We thus pro-
pose a multi-objective optimization approach to feature selection, EvoFS,
with the objectives to i. minimize feature subset size, ii. minimize test
error on a 10-fold cross-validation using a specific classifier, iii. maximize
the analysis of variance value of the lowest-performing feature in the
set. Experiments on classification datasets whose feature subsets can be
exhaustively evaluated show that our approach is able to always find the
best feature subsets. Further experiments on a high-dimensional classi-
fication dataset, that cannot be exhaustively analyzed, show that our
approach is able to find more optimal feature subsets than state-of-the-
art feature selection algorithms.

Keywords: Feature selection · Machine learning · Multi-objective
optimization · Evolutionary algorithms · Multi-objective evolutionary
algorithms

1 Introduction

The field of machine learning (ML) deals with algorithms producing predictive
models, that are able to improve their performance over time, given an increas-
ing amount of data. Supervised ML, a category including the notable examples
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 68–81, 2020.
https://doi.org/10.1007/978-3-030-45715-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_6&domain=pdf
http://orcid.org/0000-0003-3155-2564
http://orcid.org/0000-0003-0889-4427
http://orcid.org/0000-0001-5784-6435
http://orcid.org/0000-0001-5895-4809
https://doi.org/10.1007/978-3-030-45715-0_6

A Novel Outlook on Feature Selection as a Multi-objective Problem 69

of classification and regression, defines a set of problems for which training data
is labeled. In ML terminology, data is organized in samples, each reporting mea-
surements over a set of features; in other terms, samples can be seen as the rows
in a dataset, while features can be seen as the columns. The aim of a supervised
ML algorithm is to find relationships between features that can reliably predict
the value of the target, a specific feature in the problem.

While ML algorithms can often be successful at a given task, they might
face issues when dealing with large number of features, as an increase in dimen-
sionality creates a corresponding increase in the search space of combinations of
features to be explored. As the search space grows, it becomes harder for the
ML algorithms to find good optima. Not only, but even when the results are sat-
isfying, very often the predictive models obtained are black boxes, that cannot
be interpreted by humans. Selecting the features involved in a problem can help
not only to reduce the search space for the ML algorithms to explore, but also
to make the models more human-readable.

Specialized literature on feature selection shows different approaches to scor-
ing feature subsets, ranging from mutual information to analysis of variance.
Evolutionary algorithms (EAs) have been successfully used for feature selection
[1,2], even with multi-objective approaches, attempting to both minimize the
number of features in a subset, and minimize error [3,4], with recent applica-
tions ranging from face recognition [5] to medicine [6].

Most of the proposed feature selection algorithms relying upon classifiers or
regressors to obtain an evaluation of a feature subset, exploit a K-fold cross-
validation to better assess average error. As this is a stochastic process that will
return K error values, a K-fold cross-validation can be assimilated to sampling
an unknown probability distribution K times; thus, comparing feature subsets on
just their average error might be misleading. A more formally correct approach
would be to assess the likelihood that the two sets of K error values have been
sampled from two different distributions, using a statistical test. This statistical
comparison can uncover to the existence of clusters of feature subsets whose
performance is non-separable, and can thus be considered equally optimal. To
the best of the author’s knowledge, this analysis is usually not considered in
feature selection literature.

In this work, we propose a novel approach to multi-objective feature selection,
that we call EvoFS. The objectives to be optimized are: i. minimize feature subset
size, ii. minimize test error on a 10-fold cross-validation using a specific classifier,
iii. maximize the analysis of variance value of the lowest-performing feature in
the set. The third objective improves human understanding of the results, as
it pushes for feature subsets where all relationships between single features and
the target are significant.

Taking into account the statistical considerations of non-separability of per-
formance for feature subsets, it is possible to better assess experimental results.
Experimental evaluations on simple datasets, that can be completely analyzed,
show that the proposed approach reliably uncovers more feature subsets inside
the clusters of the non-separable, optimal ones, when compared to state-of-
the-art feature selection algorithms. Further experiments on a high-dimensional
dataset confirm the previous results.

70 P. Barbiero et al.

2 Background

2.1 Machine Learning

Given a set of samples x̄, and a set of corresponding values for a target ȳ, gen-
erated by an unknown function f , a supervised ML algorithm has the objective
to learn an approximation f̂ , so that the values predicted by f̂ for x̄ have the
least possible error with respect to ȳ.

2.2 Feature Selection

In ML, feature selection is the process of choosing (or eliminating) features from
a dataset, reducing them to the minimal, most informative subset. Removing
information might, at first glance, seem detrimental for the performance of ML
algorithms: however, certain features might just add noise; or they might be
redundant, for example being heavily correlated with others; and finally, elim-
inating features reduces the search space that ML algorithms have to explore,
facilitating the task of finding effective models.

Besides improving the performance ofMLalgorithms (not only in terms of com-
putation time but also regarding precision of results [7]), feature selection can also
be used to reduce information and ultimately make it human-readable. For exam-
ple, while reviewing the contributions of 1,000 different variables in a problem is
impossible for human experts, a selection of 10 highly-informative features can
usually be analyzed, even if relevant parts of the information are removed. This is
particularly useful when dealing with genomic or other high-dimensional data [8].
More generally, feature selection is one facet of dimensionality reduction, which is
an important domain in the field of data visualization [9].

Feature selection can be performed using various approaches [10], simple
ones consist in filtering the features according to a criterion (often based on
statistical tests), or in using recursive procedures (forward or backwards) to
eliminate redundant features [11,12]. Subset selection methods are more complex
and rely on the definition of a quality measurement of the subset. The problem
is thus turned into an optimization one: selecting the best subset of features that
maximizes an objective function (usually a “goodness-of-fit” combined with a
regularization term, including a penalty for a large number of variables [10,13]).
Several single-objective EAs have been proposed, exploiting similar scores for
the fitness function [1,2]. Finally, feature construction and space dimensionality
is another way to reduce information. Subsets made of combinations of features
are built for a better representation of the dataset (dimensionality reduction
methods, principal component analysis for instance).

Given a candidate subset of features, evaluating its efficacy is not trivial.
Ideally, what would need to be measured is the content of information of the
feature subset, and several metrics have been proposed to assess it in literature:
for example mutual information [14] or analysis of variance [15]. In practice,
however, even the most popular metrics can only assess part of the information
content of a feature subset, as taking into account the contribution of non-linear
combinations of features is too computationally expensive.

A Novel Outlook on Feature Selection as a Multi-objective Problem 71

A different way to assess efficacy for a feature subset is using it as input of
a ML algorithm, and evaluate the difference in performance compared with the
same algorithm, using all features, or a different feature subset. To avoid issues
with overfitting, a K-fold cross-validation can be used, obtaining an average of
its performance (for example, classification accuracy) on the test folds. As the
cross-validation procedure is stochastic, comparing two feature subsets on just
their average performance on test folds is not enough, because the variance of
the results is not taken into account. A more robust approach is to consider the
K performance results on test folds of the two feature subsets as samples drawn
from two probability distributions, and exploit a statistical test to assess the
likelihood that the two sets of samples are drawn from different distributions. If
the two sets of samples are separable below an arbitrary confidence threshold,
for example p < 0.05, the feature subset with the best average performance can
be considered better than the other. The main issue of this methodology is that
it is sometimes impossible, with the available data, to separate the performance
of different feature subsets.

2.3 Multi-objective Evolutionary Algorithms and Feature Selection

Multi-objective optimization algorithms aim at finding the best compromises
between conflicting criteria, ultimately delivering a set of non-comparable, non-
dominated solutions to the users. Evolutionary Algorithms (EAs) currently rep-
resent the state-of-the-art in the field, with the Multi-Objective EA (MOEA),
Non-Sorting Genetic Algorithm II (NSGA-II) [16] being one of the most widely
adopted for real-world applications.

Given their effectiveness, it is not surprising that MOEAs have been already
applied to feature selection problems, where the conflicting objectives are usu-
ally: i. minimizing the number of features and ii. maximizing a quality metric
for a feature subset. In [3] the authors apply NSGA-II for feature selection. In
[4], differential evolution is used instead. MOEA approaches to feature selection
have been recently applied to facial recognition [5] and medical imaging [6].

3 Proposed Approach

We propose a novel approach to feature selection in ML, framing it as a multi-
objective problem with three aims: i. minimizing the number of features; ii. min-
imizing error on a cross-validation; iii. maximizing mutual information content
between each feature and the target. Feature selection can be seen as finding the
best compromises between the number of features considered and the final result
for a ML algorithm. However, assessing the effectiveness of the selected features
for the problem is far from trivial, and only indirect metrics are available.

72 P. Barbiero et al.

It must be noted that analyzing all feature subsets for a given dataset is often
impossible, as the total number of feature subsets of dimension d for a dataset
with F features is:

F∑

d=1

(
F

d

)
= 2F (1)

3.1 Individual Representation

Individuals represent feature subsets, and are internally stored as simple bit-
strings of size equal to the number of features in the original dataset. A ‘1’ in
the i-th position of an individual means that the corresponding i-th feature is
included in the subset; a ‘0’ indicates that the i-th feature is not included in the
subset.

3.2 Fitness Functions

The first objective in the proposed approach is to minimize the number of fea-
tures included in a subset:

O1 =
F∑

i=1

I(i) (2)

where I is an individual represented as a bit-string, I(i) indicates the bit in i-th
position, and F is the number of features in the problem, also corresponding to
the size of an individual.

The second objective assesses the effectiveness of a candidate feature subset
for a specific problem, through a K-fold cross-validation, a procedure where
training data is divided into K parts, termed folds, that are alternatively used
for training and test. This objective can be stated as:

O2 =
1
K

K∑

i=1

Lk(i) (3)

where K is the number of folds; k(i) is the i-th fold. Lk(i) is defined as:

Lk(i) = L(yk(i), ĝ−k(i)(xk(i))) (4)

where L is an error function, evaluating the differences between the values pre-
dicted by ĝ−k(i) and the known values yk(i); ĝ−k(i) is the function learned by
a ML algorithm, trained on all data, except fold k(i); in general, ĝ is always
considered to be an approximation of the real function g that generated the
known values of y; yk(i) and xk(i) are the known values of the target and the
corresponding features for samples in k(i), respectively. The error measured by
L is averaged over the K folds to obtain the final value of O2.

A Novel Outlook on Feature Selection as a Multi-objective Problem 73

Finally, the third objective is a proxy for human readability of the candi-
date feature subset. Using the one-way Analysis of Variance (ANOVA) F-value
procedure [17], that captures univariate relationships between a feature and the
target. Indeed, the F-value of the i-th feature φi can be interpreted as the pro-
portion of variance explained by the feature to the total variance in the data. If
we make a reasonable assumption that an higher amount of explained variance
may correspond to a higher discriminating capability, then we can rank features
according to their φ, where the best feature will have the highest value. Finally,
for each subset of features (i.e. the candidate solution), the third fitness objective
is function of the worst φ in the feature subset:

O3 =
1

min(φ0, φ1, ..., φf)
(5)

where f is the number of features in the subset. This objective will force the
evolutionary process to drop feature sets containing at least one variable whose
univariate contribution is negligible. In fact, ML classifiers as well as other auto-
matic FS algorithms (such as RFE) risk to retain a dramatic amount of features
which are not a true causative source of the observed phenomenon (a.k.a. false
positives). However, they are often selected as they might be slightly correlated
with the target, providing a minor contribution to the classification accuracy.

Taking into account Eqs. 2, 3 and 5, the multi-objective optimization problem
can be described as:

argmin(O1, O2, O3) (6)

4 Experimental Results

The experiments presented in this work deal with classification only, due to
the greater availability of high-dimensional classification datasets in the public
domain; but the proposed methodology can also be straightforwardly applied to
regression problems. The experimental evaluation of the proposed approach is
divided into two parts. Firstly, datasets that have a relatively low dimension-
ality (9–18 features) are analyzed: as all feature subsets for these datasets can
be explored exhaustively, we can assess whether there is actually a single best
feature subset, and whether different methodologies are able to find it. In a sec-
ond batch of experiments, the proposed methodology tackles an artificial dataset
with high dimensionality (500 features), that cannot be analyzed exhaustively,
but whose characteristics are completely known.

4.1 Experimental Setup

For the following experiments, the error function L (see Eq. 4) is classification
error, an established quality metric for classifiers, simply defined as the ratio
between incorrect predictions and total predictions. The closer classification error

74 P. Barbiero et al.

is to 0, the higher the quality of the predictive model. The classifier used to learn
f̂ in O2 is Logistic Regression [18], a popular algorithm of proved effectiveness.

The MOEA selected for the experiments is NSGA-II [16], that currently
represents the state of the art for multi-objective optimization with up to three
objectives. After preliminary evaluations, NSGA-II’s parameters are set to: μ =
100, λ = 100, probability of crossover pc = 0.9, probability of mutation pm =
1/l, where l is the length of an individual, and a stop condition based on the
maximum number of generations, set to 200.

The proposed approach, termed EvoFS in tables and figures, is compared
against three popular state-of-the-art feature selection methods: recursive fea-
ture elimination (RFE) [19], that uses a classifier to score a feature set, then
iteratively removes the lowest-performing feature and scores the subset again;
greedy forward selection, that greedily adds features to a subset, using either
their mutual information (MI) [14], or analysis of variance (ANOVA) [15] scores.
All these methods need the user to specify the number of features to be selected,
so in the experiments they have been called once for every possible size of feature
subset in the problem, to have a fair comparison.

As previously stated, comparing the effectiveness of two feature subsets for
classification using the error function L is not trivial, due to possible random
effects in the classifier’s training process, or in the way the training/test split of
the data is performed. Randomly dividing the data in K folds and performing
a K-fold cross-validation can help obtain a better average for L, but introduces
further stochasticity in the process. When comparing results in this work, we
consider the outcome of a K-fold cross-validation as K separate samples coming
from an unknown statistical distribution. We then compare the results of two
feature subsets as if assessing the likelihood that their accuracy scores have equal
means. As we cannot assume that the two distributions have the same standard
deviation, we use a Welch’s T-test [20] with an arbitrary but commonly accepted
threshold for the p-value (p < 0.05). Such a statistical test assumes that samples
are drawn from populations that are normal in shape. As pointed out in [21],
this assumption is quite easy to meet for a wide range of practical distributions
at a significance level α = 0.05 and a sample size of K ≥ 5. In the following,
K = 10. We will use this procedure to isolate clusters of feature subsets that are
non-separable for their classification error, and can thus be considered all equally
optimal with regards to this metric. For each considered dataset, running times
for all algorithms are reported in Table 2.

All the code in the experiments has been implemented in Python v3, using
the modules scikit-learn [22] for all ML and feature selection algorithms,
openml [23] for accessing the datasets in the OpenML repository, and inspyred
[24] for NSGA-II. The scripts are freely available in a Bitbucket repository1.
Experiments have been run on a consumer-end laptop2.

1 https://bitbucket.org/evomlteam/moea-feature-selection.
2 IntelR© CoreTM i7-8750H 2.20 GHz, 8GB RAM.

https://bitbucket.org/evomlteam/moea-feature-selection

A Novel Outlook on Feature Selection as a Multi-objective Problem 75

4.2 Simple Datasets

In a first set of experiments, simple datasets with a limited number of features are
examined. The advantage of dealing with such datasets is that all their feature
subsets can be enumerated and analyzed, a task that becomes impossible if
dealing with hundreds or thousands of features. The datasets are freely accessible
on the OpenML repository [25], and their characteristics are summarized in
Table 1.

Table 1. Characteristics of the datasets used in the experiments.

Dataset name Type Features Samples Classes Feature subsets

Diabetes [26] Medical 9 768 2 512

Australian [27] Credit scores 14 690 2 16,384

Vehicle [28] Vehicle recognition 18 846 4 262,144

Madelon [29] Artificial 500 4,400 2 10150

In Figs. 1, 2 and 3, we show how many non-separable feature subset that
have size lower or equal to the best performing one each algorithm was able to
find: ideally, these are the ones that human users should be interested in. Then,
for each algorithm, the position of each non-separable solution found is mapped
into the exhaustive exploration of all feature subsets.

Figure 1 reports the results for the diabetes dataset. While all approaches are
able to find feature subsets that are non-separable from the best ones, EvoFS
finds the largest number. The same holds for the australian dataset, in Fig. 2,
where notably RFE seems unable to find good solutions of small size. For vehicle,
that features the largest search space so far, results reported in Fig. 3 show that,
this time, RFE performs much better than the other two comparing methods,
equalling the performance of EvoFS. Nevertheless, EvoFS is able to find a few
non-separable solutions that are of smaller size than those uncovered by RFE.

An interesting general behavior that emerges from the plots, is that EvoFS is
able to find non-separable feature subsets of lower size than the other algorithms.
Notably, non-separable solutions of size larger than the best performing one are
not included in its Pareto fronts.

4.3 High-Dimensional Datasets

The second set of experiments deals with a high-dimensional dataset, for which
an exhaustive analysis of all feature sets is impossible. This datasets is artificial,
taken from a classification competition focused on feature selection [29]. The
datasets’ characteristics are summarized in Table 1.

The target dataset, named Madelon, is an artificial dataset that can be pro-
cedurally generated, with a few informative features, several features that are
linear combinations of the informative features, and a large number of deceiving

76 P. Barbiero et al.

Fig. 1. (top left) Number of non-separable optimal feature subsets, of size less or equal
to the one with the lowest error, found by each algorithm. (top right) All possible
feature subsets for the dataset, identified exhaustively. In red, for each size, the ones
that are non-separable. In green, the single feature subset with the lowest average
error. (middle-left to bottom-right) Features subsets uncovered by the different
approaches. (Color figure online)

features called probes [30]. For this work, we generated an instance of Madelon
with the same parameters as the one featured in the competition [29]: 5 infor-
mative features, 15 linear combination features, 480 deceiving features/probes.

Figure 4 illustrates a summary of the results on the Madelon dataset.
Remarkably, EvoFS is able to find a higher number of non-separable feature
subsets having size lower or equal to the overall best solution. Moreover, EvoFS
is also the only algorithm able to identify a non-separable solution of size 3, that
includes only informative features (in positions 2, 3, 18).

A Novel Outlook on Feature Selection as a Multi-objective Problem 77

While the greedy algorithms continue to be extremely fast on the high-
dimensional dataset, it is noticeable from the running times reported in Table 2,
how now RFE, with its iterative process, scales much worse than EvoFS.

Fig. 2. (top left) Number of non-separable optimal feature subsets, of size less or equal
to the one with the lowest error, found by each algorithm. (top right) All possible
feature subsets for the dataset, identified exhaustively. In red, for each size, the ones
that are non-separable. In green, the single feature subset with the lowest average
error. (middle-left to bottom-right) Features subsets uncovered by the different
approaches. (Color figure online)

78 P. Barbiero et al.

Fig. 3. (top left) Number of non-separable optimal feature subsets, of size less or equal
to the one with the lowest error, found by each algorithm. (top right) All possible
feature subsets for the dataset, identified exhaustively. In red, for each size, the ones
that are non-separable. In green, the single feature subset with the lowest average
error. (middle-left to bottom-right) Features subsets uncovered by the different
approaches. (Color figure online)

Fig. 4. Number of non-separable optimal feature subsets, of size less or equal to the
one with the lowest error, found by each algorithm, on the madelon dataset.

A Novel Outlook on Feature Selection as a Multi-objective Problem 79

Table 2. Running time (seconds) of the feature selection algorithms.

Dataset EvoFS Anova MI RFE

Diabetes 421.28 s 0.02 s 0.05 s 0.10 s

Australian 579.38 s 0.03 s 1.47 s 0.24 s

Vehicle 819.43 s 0.03 s 2.17 s 1.88 s

Madelon 3,549.57 s 0.05 s 12.97 s 18,925.29 s

5 Conclusions

Feature selection is an important task in ML, to obtain feature subsets of limited
size that provide excellent performance. However, measuring performance is not
trivial: commonly used metrics, such as the average error on a K-fold cross-
validation, have been shown to mislead when comparing feature subsets that are,
in fact, statistically non-separable. Using statistical tests, we uncover clusters
of non-separable feature subsets in simple datasets, that can be exhaustively
analyzed. Armed with this knowledge, we can then re-evaluate the performance
of a feature selection methodology by estimating the number of optimal, non-
separable feature subsets that the algorithm is able to discover.

The multi-objective feature selection algorithm we propose is shown able to
find large numbers of feature subsets in such optimal clusters, when compared
to other state-of-the-art algorithms in literature.

Future works will focus on further statistical comparisons with other evo-
lutionary approaches to feature selection, and eventually introducing a human-
interactive factor in the algorithm, in order to further promote human under-
standing of the results.

References

1. Cilia, N.D., De Stefano, C., Fontanella, F., Scotto di Freca, A.: Variable-length
representation for EC-based feature selection in high-dimensional data. In: Kauf-
mann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 325–
340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2 22

2. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2015)

3. Hamdani, T.M., Won, J.-M., Alimi, A.M., Karray, F.: Multi-objective feature selec-
tion with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B.
(eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240–247. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71618-1 27

4. Xue, B., Fu, W., Zhang, M.: Multi-objective feature selection in classification:
a differential evolution approach. In: Dick, G.G., et al. (eds.) SEAL 2014. LNCS,
vol. 8886, pp. 516–528. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13563-2 44

5. Vignolo, L.D., Milone, D.H., Scharcanski, J.: Feature selection for face recognition
based on multi-objective evolutionary wrappers. Expert Syst. Appl. 40(13), 5077–
5084 (2013)

https://doi.org/10.1007/978-3-030-16692-2_22
https://doi.org/10.1007/978-3-540-71618-1_27
https://doi.org/10.1007/978-3-319-13563-2_44
https://doi.org/10.1007/978-3-319-13563-2_44

80 P. Barbiero et al.

6. Zhou, Z., Li, S., Qin, G., Folkert, M., Jiang, S., Wang, J.: Multi-objective based
radiomic feature selection for lesion malignancy classification. IEEE J. Biomed.
Health Inform. 24, 194–204 (2019)

7. Fan, Y.J., Kamath, C.: On the selection of dimension reduction techniques for
scientific applications (2012). 10.2172/1036865. part of the Annals of Information
Systems book series (AOIS, volume 17)

8. Bermingham, M., et al.: Application of high-dimensional feature selection: evalua-
tion for genomic prediction in man. Sci. Rep. 5, 10312 (2015). https://doi.org/10.
1038/srep10312

9. Tsai, F.S.: Dimensionality reduction for computer facial animation. Expert Syst.
Appl. 39(5), 4965–4971 (2012). https://doi.org/10.1016/j.eswa.2011.10.018

10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

11. Lewis, P.: The characteristic selection problem in recognition systems. IRE Trans.
Inf. Theory 8(2), 171–178 (1962)

12. Chien, Y., Fu, K.S.: On the generalized Karhunen-Loève expansion (Corresp.).
IEEE Trans. Inf. Theory 13(3), 518–520 (1967)

13. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature
selection for SVMs. In: Advances in Neural Information Processing Systems 13, pp.
668–674. MIT Press (2000)

14. Kozachenko, L., Leonenko, N.N.: Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii 23(2), 9–16 (1987)

15. Fisher, R.A.: XV-the correlation between relatives on the supposition of mendelian
inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 52(2), 399–433 (1919)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

17. Heiman, G.W.: Understanding Research Methods and Statistics: An Integrated
Introduction for Psychology. Mifflin and Company, Houghton (2001)

18. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc. Ser. B
(Methodol.) 20(2), 215–232 (1958)

19. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

20. Welch, B.L.: The generalization of student’s problem when several different popu-
lation variances are involved. Biometrika 34(1/2), 28–35 (1947)

21. Krzywinski, M., Altman, N.: Points of significance: comparing samples-part I. Nat.
Methods 11(3), 215 (2014)

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

23. Casalicchio, G., et al.: OpenML: an R package to connect to the machine learning
platform OpenML. Comput. Statistics 34(3), 977–991 (2017). https://doi.org/10.
1007/s00180-017-0742-2

24. Garrett, A.: inspyred (version 1.0.1) inspired intelligence (2012). https://github.
com/aarongarrett/inspyred

25. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in
machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/
2641190.2641198

26. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

27. Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234
(1987)

http://doi.org/10.2172/1036865
https://doi.org/10.1038/srep10312
https://doi.org/10.1038/srep10312
https://doi.org/10.1016/j.eswa.2011.10.018
https://doi.org/10.1007/s00180-017-0742-2
https://doi.org/10.1007/s00180-017-0742-2
https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

A Novel Outlook on Feature Selection as a Multi-objective Problem 81

28. Siebert, J.P.: Vehicle recognition using rule based methods (1987)
29. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003

feature selection challenge. In: Advances in Neural Information Processing Systems,
pp. 545–552 (2005)

30. Guyon, I.: Design of experiments of the NIPS 2003 variable selection benchmark.
In: NIPS 2003 Workshop on Feature Extraction and Feature Selection (2003)

Fast Evolutionary Algorithm for Solving
Large-Scale Multi-objective Problems

Anna Ouskova Leonteva(B), Pierre Parrend, Anne Jeannin-Girardon,
and Pierre Collet

ICube CSTB, 67000 Strasbourg, France
anna.ouskova-leonteva@etu.unistra.fr,

{pierre.parrend,anne.jeannin,pierre.collet}@unistra.fr

Abstract. This paper proposes a fast evolutionary algorithm for large-
scale multi-objective optimization problems (MOPs), which widely exist
in real-world applications [3,6]. Many well-established multi-objective
evolutionary algorithms (MOEAs) can not ensure necessary Runtime
(RT) and values of performance metrics (Hypervolume (HV), Inverted
Generational Distance (IGD)) for such kind of MOPs. The proposed
archive-based algorithm provides better values of mentioned metrics
due to its low complexity, simplified architecture and efficiency of
genetic operators. Experimental results on three-objective and on two-
objective benchmark suites (DTLZ [15], COCO 2018 Blackbox Optimiza-
tion Benchmark (BBOB-biobj) [8]) demonstrate superiority of suggested
algorithm in terms of performance metrics values and of RT over refer-
enced MOEAs.

Keywords: Large-scale multi-objective optimization problems ·
Genetic operators · Adaptation · Performance · Runtime

1 Introduction

With growing interest in the high-fidelity computer simulations [17], the necessity
in algorithms to solve large-scale MOPs is increasing. In order to optimize MOPs
in high-dimensional continuous search spaces, a large population size needs to
be used. Despite of a huge variety of MOEAs, most of them cannot be directly
implemented to solve such problems because of their high computational com-
plexity. Moreover, a low efficiency of existing genetic operators does not allow to
achieve necessary values of performance metrics. A choice of parameter values
for genetic operators significantly influences on the efficiency of MOEAs [1] and
requires a comprehensive knowledge about algorithms and MOPs. Taking into
account that the situation changes per problem instance and during evolution,
to find one static parameter configuration for optimal performance is still a hard
issue. This paper proposes a fast MOEA, called FastEMO, which uses archive-
based approach of ASREA [7]. In order to improve performance metric values
of ASREA, the following contributions were made:
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 82–95, 2020.
https://doi.org/10.1007/978-3-030-45715-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_7

Fast Evolutionary Algorithm 83

– Update Archive Method (UAM) with selection of parent population, which
allows to simplify the architecture of algorithm and to improve performance
metrics;

– new adaptive crossover operator, which ensures continuously-increasing accu-
racy of HV during the process of evolution;

– implementation an additional function of mutation step size estimation,
depending on the input data range in self-adaptive Gaussian mutation oper-
ator, for ensuring a rapid convergence rate in short RT.

By these improvements, FastEMO provides a high performance on differ-
ent MOPs. According to experimental results on 3-objective DTLZ benchmarks
suite, FastEMO has advantages over ASREA and 4 well-established algorithms
(NSGA3, IBEA, MOEA/D, CDAS) in values of performance metrics and in
CPU RT for the maximum budget = 500000 × D function evaluations (where
search space dimension D = 10). Also FastEMO shows better RT in number of
evaluations in the initial and final stages of optimization versus the best 2016
portfolio of COCO on separable, moderate and ill-conditions BBOB-biobj tests
(55 functions) on D = 40.

FastEMO is integrated in the open-source platform EASEA (EAsy Specifi-
cation of Evolutionary Algorithms), which is publicly available and designed to
simplify utilization of genetic and evolutionary algorithms.

This paper is organized as follows: Sect. 2 details the proposed approach.
In Sect. 3, comparative experimental results on different benchmarks suites are
presented. Finally, the conclusions are drawn in Sect. 4.

2 Proposed Approach

2.1 Archive-Based Algorithm

The short description of the proposed algorithm is the following:

– as is usual in evolutionary algorithms, initial population (with size N) is
created, using random values;

– initial population is evaluated and copied to parent population, which size is
equal N at the first generation;

– two parents are selected from the archive, using a binary tournament selection
based on the Pareto domination rules. If both solutions are incomparable, the
parent with larger crowding distance value is selected. At the first generation,
parents are selected from initial population due to the archive is empty;

– parents are crossed by new adaptive crossover (NAC) operator (see Sect. 2.3);
– new offspring mutates by modified self-adaptive Gaussian operator (see

Sect. 2.4);
– offspring population is evaluated;
– update archive method (UAM) with selection of next parent population is

applied in order to create a new parent population (see Sect. 2.2).

84 A. O. Leonteva et al.

The pseudo-code of FastEMO is stated in Algorithm 1:

Result: result population
Generate and Evaluate init population
Copy init population to parent population
while stopping criterion is not met do

while offspring population is not full do
Select both parents from parent population by binary tournament
selection
Apply NAC on selected parents (see section 2.3)
Apply Self-Adaptive Gaussian Mutation on offspring (see section 2.4)
Evaluate offspring
Add offspring to offspring population

end
UAM archive population (see Algorithm 2)

end
Copy solutions from archive population to result population

Algorithm 1: FastEMO pseudo code

2.2 UAM with Selection of Next Parent Population

As ASREA, FastEMO has low computational complexity O(man) (where m is
the number of objectives, a is the size of archive, n is the population size) due
to computation of small Pareto Front, limited to the archive size. The optimal
archive size was determined experimentally. After many tests, it was found, that
with the size of archive is equal 15 × m, the best values of performance metrics
were achieved. Unlike ASREA, FastEMO does not use a procedure of stochastic
ranking for offspring population and of selection strategy for next parent pop-
ulation. Instead, in FastEMO, a much simpler architecture is proposed, which
ensures higher HV and IGD precision in the same CPU RT. This is done thanks
to the following algorithm:

– only non-dominated solutions are retained to archive;
– individual with the smallest value of crowding distance is deleted from archive

in case of the archive overflow;
– new parent population size is reduced to archive size, after the first generation;
– all individuals from archive population are copied to the new parent popula-

tion;
– the size of archive is increased to initial population size on last generation.

Fast Evolutionary Algorithm 85

The pseudo-code of UAM is shown in Algorithm 2.

Result: next parent population, update archive population
if last generation then

Resize archive population from A to maximum
end
while Index of Offspring < Offspring Population Size do

Take a New Offspring
Set Index of Current Archive Individual = 0
while Index of Archive Individual < Archive Size do

if New Offspring is dominated by a Current Archive Individual then
reject New Offspring and go to next one from offspring population

else
if Current Archive Individual is dominated by New Offspring then

remove dominated individual from archive
else

increment index of Current Archive Individual : go to next
individual in archive

end

end

end
Add the New Offspring into archive;
if Archive Size = Maximal Archive Size + 1 then

if last generation = true then
return

end
Find the worst individual in archive by crowding distance
Delete the worst individual from archive

end

end
if first generation then

Resize parent population from size init population to size of archive
end
Replacement parent population by individuals from archive population

Algorithm 2: Update Archive Method

The proposed method allows to improve performance metrics due to increas-
ing number of obtained non-dominated solutions and more efficient architecture.

2.3 New Adaptive Crossover Operator

In this section, we introduce a new adaptive crossover. Figure 1 illustrates its
structure scheme. The suggested operator works in 2 steps:

86 A. O. Leonteva et al.

– on the first step, an offspring localization range is determined according to
BLX-α crossover [16] rule, by which a possible offspring value depends on
the difference between parent solutions. Instead of the static parameter α,
NAC uses adaptive parameter of localization, which depends on the number
of current generation and is described in Eq. 1:

α = Pmin ×
(

Pmax

Pmin

)(geni
genmax

)
(1)

where Pmin and Pmax - minimal and maximal value of crossover probability
(we recommend to choose Pmin = 0.01 and Pmax = 0.99), geni - number of
current generation, genmax - total number of generations, This dependence of
α value from the number of current generation was obtained experimentally.
The changing curve of α from the number of current generation is shown
in Fig. 2(a). Minimum and maximum values of localization are determined
according to Eqs. 2 and 3:
if pi

1 < pi
2

min = pi
1 − |(pi

1 − pi
2)| × α, max = pi

2 + |(pi
1 − pi

2)| × (1 − α) (2)

otherwise,

min = pi
2 − |(pi

1 − pi
2)| × (1 − α), max = pi

1 + |(pi
1 − pi

2)| × α (3)

where pi
1 and pi

2 - a gene i in the parent 1 and parent 2, α - the adaptive
parameter, which is going from Eq. 1. At the end of the first step, a preliminary
offspring determination is carried out by random selection from the obtained
localization range.

– on the second step, a new offspring is obtained by the rule of Arithmetic
crossover. But instead a static crossover parameter, an adaptive parameter β
is used. It is described in Eq. 4.

β = Pmax ×
(

Pmin

Pmax

)(geni
genmax

)2

(4)

where Pmin, Pmax, geni and genmax are the same as in Eq. 1. This equation
was also obtained experimentally. The changing curve of β from the number
of current generation is shown in Fig. 2(b). The final offspring is determined
in Eq. 5 as a value between obtained offspring on the first step and parent
value, taking into account parameter β:

o′i
1 = oi

1 × (1 − β) + pi
1 × β (5)

where o′i
1 - a new offspring gene, oi

1 - a offspring gene from the first step, pi
1

and pi
2 are the same as in (2) and (3). Applying this two-step constructed

crossover with two adaptive parameters allows to obtain the continuously-
increasing accuracy of HV.

Fast Evolutionary Algorithm 87

Fig. 1. New adaptive crossover operator

a) Alpha curve during generation b) Beta curve during generations

Fig. 2. Adaptive coefficients

2.4 Modified Self-adaptive Gaussian Mutation

The Gaussian distribution was chosen as a basis of the mutation operator,
because it covers the whole solution space, it does not show drift and it can
scale the randomly drawn samples in the whole solution space. The Gaussian
mutation operator adds noise to each gene gi of solution vector as follow:

gt+1
i = gt

i + N(0, σ), (6)

88 A. O. Leonteva et al.

where N(0, σ) is the normal distribution with zero mean and the standard devia-
tion σ. To make our algorithm more efficient, the self-adaptive parameter modifi-
cation is applied, according to the following exponential one-step method, which
is standard in evolution strategy and described here [2]:

σt+1 = σt × eN(0,τ), (7)

According [2], the mutation parameter τ should be set as follows: τ = 1/2
√

D,
where D is a number of decision variables. In this work, instead of Eq. 7, we
propose to compute τ value as following:

τ = gi ∗ log(D)/D, (8)

where D is a number of decision variables, gi - value of current gene in an indi-
vidual vector. The multiplier gi allows to adjust the mutation step according to
individual values. The introduction of mutation step dependence on the current
value of the gene ensures a rapid convergence rate.

3 Experiments and Validation

In order to objectively evaluate the performance of FastEMO the following exper-
iments were carried out:

– comparison of NAC against BLX-α and Arithmetic operators on different
2-objective functions with a search space dimension D = 40, for proving a
positive influence of NAC on the HV accuracy of FastEMO;

– comparison of modified self-adaptive Gaussian mutation against simple Gaus-
sian mutation for checking its advantage in convergence rate;

– comparison of FastEMO against archive-based ASREA and against four
reliable-performing algorithms on 3-objective DTLZ test suite for confirm-
ing effectiveness of UAM, NAC and modified mutation operator on classical
MOPs in the 10D space;

– comparison of FastEMO against best BBOB-2016 results on 55 BBOB-biobj
functions (for D = 40) in order to check FastEMO advantage on large-scaled
MOPs.

3.1 Experimental Setup

In order to estimate FastEMO performance on 55 BBOB-biobj functions (on
5–10 instances) of COCO (Comparing Continuous Optimizer Platform) [8] the
following method is used: the central performance measure is the RT in terms
of the number of evaluations conducted on a given problem until a given target
value is hit (HV precision). The objectives of experiments are to achieve the first
HV precision (1e+0) and the highest HV precision (>= 1e−05) in the smallest
number of evaluations. The initial population is sampled uniformly at random
in [0, 1]D.

Fast Evolutionary Algorithm 89

Fig. 3. HV accuracy profiles obtained by FastEMO with different crossovers on f2, f28
bi-bbob test functions

For other benchmarks suites, a total CPU time execution for given number
of generations and a mean value of RT per one generation is used. The objective
is to achieve the highest value of HV and the lowest value of IGD in the shortest
CPU RT. Evaluation of the test results was also carried out by analysing graphs
of Pareto fronts.

90 A. O. Leonteva et al.

All the experiments have been run on an Intel(R) Pentium(R) CPU 4405U
@ 2.10 GHz 4 processors laptop on a single thread via the platform EASEA
version 2, using the code language (C++) and compiler (g++ 5.4.0). We use the
platform EASEA version 2 for all MOEAs without further parameter tuning.

3.2 Experimental Results

Efficiency of NAC in FastEMO. In order to investigate an influence of NAC
operator on the HV accuracy of algorithm, FastEMO was tested with three
crossovers (BLX-α, Arithmetic and NAC) on two bi-objective functions from
the platform COCO [9]:

– Sphere/Ellipsoid separable functions (f2),
– Rosenbrock original/Rosenbrock original functions (f28).

For fair experiments, all parameters of the compared operators were tuned for a
relatively good performance. To be precise, α values were set in 0.5 for BLX-α
and Arithmetic crossovers. Simple Gaussian mutation was used for all experi-
ments in this subsection. The total number of evaluations for each optimization
problem = 4000000 ×D (where D = 40). The results are shown shown in Fig. 3.

From the Fig. 3, it can be seen, that BLX-α and Arithmetic crossovers get
stuck at the HV accuracy between 1e−02 and 1e−03. At the same time, NAC
shows continuously-increasing accuracy during the evolution process due to two
adaptive parameters. NAC can widely explore the search space and helps to
avoid a local optimum (for example, f28 has a local optimum with an attraction
volume of about 25%). So, the efficiency of the proposed crossover operator is
confirmed.

In this article, we did not compare NAC to other adaptive operators, as well
as, NAC was not tested on single-objective problems. But we suppose that NAC
is not specific to multi-objective optimization.

Efficiency of the Modified Self-adaptive Gaussian Mutation Operator
in FastEMO. In order to show advantages of modified self-adaptive Gaussian
mutation over simple Gaussian mutation, FastEMO was tested with both opera-
tors on two bi-objective functions (f2, f28) from previous subsection and on one
highly multi-modal function (f50) [9]. The HV precision (ΔHV) and RT in terms
of number of function evaluations are shown in Table 1 (the best values are in
bold face) for total evaluations budget = 4000000× D functions. It can be seen
from Table 1, that FastEMO with modified self-adaptive mutation outperforms
the results obtained with simple Gaussian mutation on separable-separable and
moderate-moderate test functions in RT and HV precision. But both mutation
operators are not efficient in case of multi-modal function.

Fast Evolutionary Algorithm 91

Table 1. Comparison modified self-adaptive Gaussian mutations against simple Gaus-
sian mutation on f2, f28, f50 bi-bbob functions

Function Mutation RT ΔHV

f2 Simple 4000000 1e−03

Self-adaptive 1414000 1e−08

f28 Simple 4000000 1e−03

Self-adaptive 3739000 1e−08

f50 Simple 4000000 1e+0

Self-adaptive 4000000 1e+0

Comparison FastEMO Against ASREA, MOEA/D, NSGA3, CDAS
and IBEA. We now compare FastEMO to the basic method ASREA, as well
as with four well-established algorithms: MOEA/D [10], NSGA3 [11], CDAS [13],
IBEA [12] (with adaptive epsilon-indicator) on 3-objective DTLZ test functions
for total large budget of 500000× D (where D = 10) function evaluations. Each

DTLZ1
AERSAOMEtsaF

DTLZ3
AERSAOMEtsaF

Fig. 4. Pareto fronts of FasteEMO and ASREA on DTLZ1 and DTLZ3 benchmark

92 A. O. Leonteva et al.

algorithm was run 4 times. Experimental results are presented in Fig. 4 and
Table 2 (the best values are in bold face). Figure 4 shows Pareto fronts obtained
by ASREA and FastEMO on DTLZ1 and DTLZ3 functions and proves the
advantage of the new improvements.

Table 2. Results comparison on DTLZ tests

Problem Metrics FastEMO ASREA MOEA-D NSGA3 IBEA CDAS

DTLZ1 HV 0.823 0.735 0.806 0.803 0.810 0.807

IGD 7.9e−05 1.1e−03 2.0e−04 2.7e−04 2.2e−04 1.9e−04

CPU RT(s) 4.1 4.1 11.5 15.2 123.2 13.2

DTLZ3 HV 0.467 0.308 O.443 0.426 0 0.443

IGD 1.6e−04 3.2e−03 3.7e−04 6.2e−04 2.46 4.0e−04

CPU RT(s) 5.5 5.5 12.1 14.09 116.3 13.2

DTLZ5 HV 0.095 0.089 0.095 0.095 0.095 0.096

IGD 5.6e−06 5.3e−05 8.3e−06 8.1e−06 3.5e−05 2.0e−06

CPU RT(s) 3.8 3.8 11.2 18.4 126.1 17.8

DTLZ7 HV 0.333 0.321 0.294 0.318 0.324 0.325

IGD 3.0e−04 8.5e−04 1.9e−03 9.0e−04 2.3e−03 6.0e−04

CPU RT(s) 6.2 6.2 11.4 25.4 122.14 22.6

From Table 2 we can see, that as ASREA, FastEMO shows the best CPU
RT, but with significantly improved values of performance metrics. It achieved
the best values of HV and IGD on majority of the problems compared to the
other algorithms. Only on DTLZ5 FastEMO has second results after CDAS.

Performance Comparison FastEMO Against the Best BBOB-2016
Results. The 55 bi-objective functions of the bbob-biobj test suite from COCO
are structured in 15 function subgroups. Each function group contains three or
four functions. The detail information of the benchmark functions can be seen in
[9]. Table 3 shows the performance comparison between FastEMO and the best
results from the Blackbox Optimization Benchmarking Workshop 2016. Each
row in Table 3 corresponds to one group of functions and shows the number of
functions in the group, which outperform in RT the best BBOB-2016 results for
each target values (HV precision). Simbol “X” means that both results did not
achieve the target. The last column is the number of functions in the group,
which reached the last target value (Δ HV = 1e−06) versus the best results from
BBOB-2016. The results demonstrate, that for total large budget of 4000000 × D
(where D = 40) function evaluations, FastEMO is competitive with, and in many
cases significantly better than the best results from BBOB-2016 on bi-objective
functions.

It can be seen from Table 3, that FastEMO is faster (or shows the same
results) than the best results from BBOB-2016 in initial stage of the optimization
(ΔHV = 1e+0) on 83% of functions.

Fast Evolutionary Algorithm 93

Table 3. Summary of performance comparisons between FastEMO and the best results
from the Blackbox Optimization Benchmarking Workshop 2016

Group
(Total number of functions in group)

Δ HV Success

1e+0 1e−02 1e−03 1e−05

separable - separable (3) 2 2 3 2 2 vs 0

separable - moderate (4) 2 1 4 4 4 vs 0

separable - ill-conditioned (4) 4 2 4 3 3 vs 0

separable - multi-modal (4) 4 1 1 1 1 vs 0

separable - weakly-structured (4) 4 2 2 3 3 vs 0

moderate - moderate (3) 3 2 2 3 3 vs 1

moderate - ill-conditioned (4) 4 1 4 3 3 vs 0

moderate - multi-modal (4) 3 2 2 X 0 vs 0

moderate - weakly-structured (4) 4 3 3 4 4 vs 0

ill-conditioned - ill-conditioned (3) 3 2 3 2 2 vs 0

ill-conditioned - multi-modal (4) 4 3 X X 0 vs 0

ill-conditioned - weakly-structured (4) 4 1 1 2 2 vs 0

multi-modal - multi-modal (3) 2 0 X X 0 vs 0

multi-modal - weakly structured (4) 2 1 1 1 1 vs 0

weakly structured - weakly structured (3) 1 0 0 0 0 vs 1

In the middle stage (ΔHV = 1e−2) of the optimization, FastEMO is slightly
slower than the best BBOB-2016 results and it shows better performance only
on 46% of problems. Specially, FastEMO demonstrates worse results on multi-
modal and weakly structured functions. But the next precision ΔHV = 1e−3
FastEMO achieved faster than the referenced results on 54% of functions.

In the last stage, FastEMO solved with success (Δ HV = 1e−06) 56% of func-
tions (28 over 55 functions). Whereas the best BBOB-2016 results demonstrate
only 2 over 55 functions, that have been completed with the same accuracy.
This fact confirms, that FastEMO performs a high HV accuracy within a small
number of evaluations in the 40D space.

On multi-modal functions, both algorithms are dropped into local minimum
and have shown relatively close results. But on multi-modal - multi-modal group
functions the best BBOB-2016 results demonstrate a slightly better accuracy
ΔHV = 1e−02 than FastEMO ΔHV = 1e−01 due to a larger computational
budget.

Experiments have been done on 5 instances (from 5 to 10) [9] of BBOB-2018.
It was found out, that an impact of each instance on the results is not significant
for FastEMO.

94 A. O. Leonteva et al.

4 Conclusion

We introduced and evaluated a new variant of archive-based multi-objective
optimization algorithm, called FastEMO. As ASREA [7], it has low computa-
tional complexity (O(man)) due to the use of external archive. The proposed
approach differs from ASREA in that it applies the new update archive method
(UAM), the new adaptive crossover (NAC) and modified self-adaptive Gaussian
mutation, that helps to handle high-dimensional continuous problems with bet-
ter accuracy in short RT. The new algorithm was compared to ASREA, NSGA3,
MOEA/D, CDAS and IBEA on 3-objective DTLZ functions, in order to reveal
the benefits of new improvements. According to results in Table 2, FastEMO
appears to be robust to work with total large budget of 500000× D function
evaluations and demonstrates better values of performance metrics and CPU
RT. Then FastEMO was extensively compared with the best results from the
Blackbox Optimization Benchmarking Workshop 2016 on 55 bi-objective test
functions from COCO 2018 BBOB. From experimental results, shown in Table 3
on the 40D space, FastEMO caught up in performance and overtook the best
results from the Blackbox Optimization Benchmarking Workshop 2016 in many
cases on the separable, moderate and ill-conditions functions. In further work
an additional performance optimization for resolving multi-modal and weakly
structured MOPs might be done.

References

1. Lobo, F.J., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms, vol. 54. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-69432-8

2. Back, T.: Self-adaptation in genetic algorithms. In: Proceedings of the First Euro-
pean Conference on Artificial Life, pp. 263–271. MIT Press, Cambridge (1992)

3. Mei, F., Cao, Q., Jiang, H., Tian, L.: LSM-tree managed storage for large-scale
key-value store. IEEE Trans. Parallel Distrib. Syst. 30(2), 400–414 (2019)

4. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

5. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for
numerical optimization. In: 2005 IEEE Congress on Evolutionary Computation,
vol. 2, pp. 1785–1791. IEEE (2005)

6. Goh, S.K., Tan, K.C., Al-Mamun, A., Abbass, H.A.: Evolutionary big optimization
(BigOpt) of signals. In: 2015 IEEE Congress on Evolutionary Computation (CEC),
pp. 3332–3339. IEEE, May 2015

7. Sharma, D., Collet, P.: An archived-based stochastic ranking evolutionary algo-
rithm (ASREA) for multi-objective optimization. In: Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation, pp. 479–486. ACM
(2010)

8. COCO: Comparing Continuous Optimizers (2018). https://github.com/numbbo/
coco

9. Tusar, T., Brockhoff, D., Hansen, N., Auger, A.: COCO: the bi-objective black box
optimization benchmarking (bbob-biobj) test suite (2016)

https://doi.org/10.1007/978-3-540-69432-8
https://doi.org/10.1007/978-3-540-69432-8
https://github.com/numbbo/coco
https://github.com/numbbo/coco

Fast Evolutionary Algorithm 95

10. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

11. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

12. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

13. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and
its impact on the performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2 5

14. Hansen, N., Auger, A., Brockhoff, D., Tušar, D., Tušar, T.: COCO: performance
assessment. arXiv preprint arXiv:1605.03560 (2016)

15. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings of the 2002 Congress on Evolutionary Compu-
tation, CEC 2002 (Cat. No. 02TH8600), vol. 1, pp. 825–830. IEEE (2002)

16. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator
for real-coded genetic algorithms: an experimental study. Int. J. Intell. Syst. 18(3),
309–338 (2003)

17. Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.J.:
Approximation methods in multidisciplinary analysis and optimization: a panel
discussion. Struct. Multidiscip. Optim. 27(5), 302–313 (2004)

18. Furqan, M., Hartono, H., Ongko, E., Ikhsan, M.: Performance of arithmetic
crossover and heuristic crossover in genetic algorithm based on alpha parameter.
IOSR J. Comput. Eng. (IOSR-JCE) 19(1), 31–36 (2017)

https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-70928-2_5
http://arxiv.org/abs/1605.03560

Looking for Energy Efficient
Genetic Algorithms

Francisco Fernández de Vega1 , Josefa Dı́az1(B) , Juan Ángel Garćıa1 ,
Francisco Chávez2 , and Jorge Alvarado3

1 Computer Architecture Department, University of Extremadura,
C. Santa Teresa de Jornet 38, 06800 Mérida, Spain

{fcofdez,mjdiaz,jangelgm}@unex.es
2 Computer and Telematics Systems Department, University of Extremadura,

C. Santa Teresa de Jornet 38, 06800 Mérida, Spain
fchavez@unex.es

3 GEA Group, University of Extremadura,
C. Santa Teresa de Jornet 38, 06800 Mérida, Spain

jorgealvaradodiaz@gmail.com

Abstract. When Evolutionary Algorithms (EAs) are applied to opti-
mization problems, two main measures are taken into account to under-
stand their performance: fitness quality and computing time. These two
values are used to compare the performance of different versions of an
algorithm, different parameter settings of a single algorithm or even com-
pare a particular EA with other available heuristics. Nevertheless, a new
trend in computer science tries to contextualize these features under a
new perspective: power consumption. This paper presents a preliminary
analysis of the standard genetic algorithm, using two well known bench-
mark problems, considering their fitness quality, the computing time and
also the power consumption when battery-powered devices are used to
run them. Results show that some of the main parameters of the algo-
rithm have an impact on instantaneous energy consumption -that departs
from the expected behavior, and therefore affects the amount of energy
required to run the algorithm. Although we are still far from finding a
way to design energy-efficient EAs, we think the results open up a new
perspective that will enable us to achieve this goal in the future.

1 Introduction

When evolutionary algorithms are analyzed to understand their performance,
researchers firstly consider the quality of solutions obtained, and then, the time
required to get such a solution. Although parallel versions have been developed
to save computing time, and a plethora of structured models and hardware tech-
nologies are available [1], researchers usually take shelter in sequential versions,
and only resort to parallel models if the problem they are trying to solve requires
days or weeks to be solved.

c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 96–109, 2020.
https://doi.org/10.1007/978-3-030-45715-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_8&domain=pdf
http://orcid.org/0000-0002-1086-1483
http://orcid.org/0000-0003-2105-3905
http://orcid.org/0000-0002-1373-6848
http://orcid.org/0000-0002-0691-292X
http://orcid.org/0000-0002-7943-4455
https://doi.org/10.1007/978-3-030-45715-0_8

Looking for Energy Efficient Genetic Algorithms 97

We will thus focus on this most frequently used approach: the sequential
version of the Genetic Algorithm, although the discussion could also be tailored
to parallel and distributed versions of the algorithm.

Four decades have passed since GAs were proposed by Holland [2], and over
the years this evolutionary based search and optimization heuristic has been
run by researchers in any available hardware device that allows them to obtain
quality solutions as soon as possible. However, the algorithm power consumption
has never been considered as something of interest, although in other computer
science areas the subject has already entered the optimization arena [3–6]. Until
very recently, the only previous work linking EAs with the optimization of energy
consumption, although related to other areas, was presented in [7].

Some review papers have lately included power consumption as one of the
issues of interest to be studied when analyzing the behavior of EAs [8], partic-
ularly when small battery powered devices are used to run these kind of meta-
heuristics.

During the last couple of years, we have witnessed the first attempts to study
energy-related behaviors in evolutionary algorithms, and the first papers on the
subject have already been published [9], that includes some preliminary analysis
of power consumption associated to different hardware platforms [10]. This study
is particularly relevant when battery powered devices (such as hand-held ones
or laptop computers disconnected from the mains) are used, for obvious reasons.

Interest on the topic has emerged, and in [11], for instance, authors analyze
the energy consumption behavior when a sequential or parallel genetic algorithm
is run. They focus on crossover and mutation operators as well as the fitness
function. They point out the need for a deeper study.

Yet, to the best of our knowledge no specific study has been presented that
analyzes the impact of the main algorithm parameters, such as population size,
on the energy consumed to reach a solution.

This paper thus presents for the first time such an analysis for GAs. Although
results are still preliminary, we consider they pave the way to a better under-
standing of the algorithm under this new perspective, that will allow in the
future the design of more energy efficient EAs.

The rest of the paper is organized as follows: in Sect. 2 the motivation for this
analysis and a discussion on expected results are presented. Section 3 describes
the methodology for the analysis and the benchmark problems selected. Section 4
shows the results obtained, and finally Sect. 5 draws our conclusions and future
work.

2 Considering Power Consumption in GAs

As mentioned above, we are interested in analyzing energy footprint of evolution-
ary algorithms, with particular attention to battery-powered devices that can be
used to run them, such as laptop computers, tablets, ipads, mobile phones, all
of them with a crucial dependence on energy available in their batteries. We
address a first analyses of the relationship between execution time and energy

98 F. Fernández de Vega et al.

consumption when a classic version of a GA is running on a battery-powered
device. We focus on the main parameters of the GAs and their influence on the
energy consumption. But before that we must understand why this issue has not
been addressed before, and why we think the analysis is worth it.

Let’s first consider the standard version of the Genetic Algorithm, when
applied to the One-max benchmark problem. Among the main parameters for
the algorithm and the problem to be solved, we may describe the chromosome
size, number of individuals in the population and number of generations, to name
just a few.

Thus, the algorithm has to repeat for the number of generations established
a series of standard operations: fitness evaluation, selection, crossover and muta-
tion; the larger the population size the higher the number of repetitions of those
operations.

From now one, we will focus on the sequential version of the algorithm.
This actually means that a single CPU will be devoted to run the algorithm,
and the differences on execution time due to Operating System activities can
be discarded if data from a large number of runs are used to compute average
run times. Actually, the literature has very scarcely considered the influence of
Operating System activities on the evolutionary algorithm running time, and
probably only when considering parallel models running on a single CPU, given
that operating system must manage the scheduling of different processes running
simultaneously on a single processor [12].

Therefore, we employ this approach in the theoretical experiment that we
describe as our starting point and which in the future will include the operating
system in the whole picture of the energy consumption analysis.

2.1 Population Size and Power Consumption

The number of generations, population size and fitness functions are the key
components influencing the runtime of a standard Genetic Algorithm. Although
certainly different versions of the crossover and mutation operators may take
different computing time, we believe that the parameters described above have
a greater influence on the time required to run the GA.

If we thus decide to run the algorithm for N generations, the execution will
be shorter than when running N +1, and longer than N −1. We do not consider
here whether the solution is found before the maximum number of generations
is reached, which can be easily ensured by making the problem difficult enough
(for instance, by increasing chromosome size in the one-max problem). Similarly,
if we use I individuals in the population, the runtime will be shorter than when
using I + 1, and longer than I − 1, given that for every individual a fitness
evaluation must be computed. Finally, an experiment with a fitness function
that needs more time will give rise to a longer execution time.

We must also take into account that when real-life problems are addressed,
the perfect solution is typically not found, and the algorithm is configured to
stop when a maximum execution time is reached. We take this approach in what

Looking for Energy Efficient Genetic Algorithms 99

follows, fine-tuning the difficulty of the benchmark problems so that an optimal
solution is not found for the allotted time.

2.2 Power Consumption and Running Time

Let us consider that the CPU, when running the algorithm, devotes exactly
the same effort regardless the specific operation it is performing. If that were
the case, this would mean that the instantaneous consumption of energy is the
same throughout the experiment, and the total energy consumed could easily
be calculated by multiplying the instantaneous consumption of energy (at any
given moment throughout the experiment) by the total time required to execute
it. Thus, a linear relationship could be described when relating time to power
consumption.

This seems to be the case for EA’s, which implicitly assumes the importance
of computing time, and dispenses with the study of energy consumed, given its
direct relationship with computation time.

Assuming the previously described considerations, we could easily build a
graph showing the power consumption estimated for different parameter values
in the GA. For instance, if a population with size N consumes a given amount of
energy during a run, if we expand the population size in a series of experiments,
we expect to have power consumption values proportional to the expansion,
given that the algorithm will perform a number of additional operations (fitness
evaluations, mutations, crossover...) proportional to the new number of individ-
uals in the population. We show the kind of expected behavior in Fig. 1, where
every types of line in the graph corresponds to the different population size.
Result has been obtained by using values for a single experiment and projecting
them to the remaining ones, given that the same behaviour is expected when
population sizes are enlarged. We have also considered that the solution is not
found along the run. Otherwise, a given experiment would stop and the energy
consumed would be different.

The main idea used to build Fig. 1 is that processor’s instantaneous energy
consumption is constant regardless of the operation performed: the longer the
time for its evaluation, the higher the energy required to run it. As we see in the
figure, power consumption is proportional to the population size.

2.3 Problem Difficulty and Chromosome Size

A similar analysis could be done for problems where difficulty is related to chro-
mosome size. For instance, when the one-max problem is considered, the larger
the chromosome the higher the difficulty, and thus the longer the time to be
evaluated. Assuming once more that no differences on instantaneous energy con-
sumed by the CPU are present in any of the possible experiments we may launch,
the total energy consumed will only depend on time, and a similar graph as that
shown in Fig. 1 could be obtained with different chromosome sizes.

We hypothesize that this expected behavior is what has hindered researchers
from taking it into account when studying the behavior of the Genetic Algorithm:

100 F. Fernández de Vega et al.

Fig. 1. Expected behavior for the power consumption of GA with different population
sizes

if running time and power consumption are proportional values, there is no
reason to study both. Once running time is obtained, power consumption can
be easily computed.

Nevertheless, it has recently been described that energy is important to decide
the more efficient hardware platform to run an algorithm. When efficiency is the
key, power consumption is the correct point of view to evaluate the preferred
hardware platform [10].

In any case, should we still assume that energy and time are proportional
values of a single entity without experimental evidence? Do some of the GA
main parameters influence in any way the energy needed to run the algorithm?

We think such an analysis is useful to confirm or discard the assumed hypoth-
esis, and this is what we discuss in the following sections. We only focus on energy
consumption in this preliminary analysis, and do not consider quality of solutions
found.

3 Methodology

The idea is thus to study if some of the main GA parameters have any influence
on the total energy consumed when running the algorithm, or, instead, parameter
values have no influence on it.

3.1 Battery Powered Device

As described before, we are mainly interested in energy efficiency when using
battery powered devices where energy available is limited, although conclusions
could be easily extended to any hardware platform.

Looking for Energy Efficient Genetic Algorithms 101

In this first study we have chosen a Lenovo Tablet Tab2, A10 - 70F with a
Mediatek SoC MT8165, which is a fairly standard representative model among
the available options.

This tablet embodies a MediaTek MT8165, 64-bit ARM-based SoC for
Android devices, and was launched in 2014. The quad-core processor is man-
ufactured in 28 nm and based on the Cortex-A53 architecture. In addition to the
CPU core, it integrates an ARM Mali-760 MP2 GPU and a LPDDR3 memory
controller (32-bit, 800 MHz, 6.4 GB/s). It includes four 1.5 Ghz cores.

3.2 Measuring Power Consumption

Once the handheld device has been selected, we need an adequate way to measure
the energy consumption of the algorithm. We have chosen an android application
that allows us to analyze the actual battery consumption of any Android powered
device: PowerTutor [13].

The energy consumption of a given running application may be influenced
by the different hardware components that it uses. PowerTutor is a free software
tool that allows monitoring the energy consumption of the different hardware
components that make up a mobile device. The components that PowerTutor
measures are the following: CPU, OLED/LCD, GPS, WIFI, 3G, Audio.

The whole system used to measure energy consumption is composed of the
following elements: (i) a web service, and (ii) a plug-in for the PowerTutor app.
Next we describe each of the components of the system.

Web Service. The web service implemented incorporates a version of a GA to
test the plug-in. The algorithm is run as a web site, within the new implemented
plug-in for PowerTutor, so that we can easily obtain the energy it consumes.
The algorithm requires two files: a javascript file that contains the GA and an
html file that refers to this javascript file.

The GA has been implemented using two different approaches, with and
without external libraries. In the first approach, we have coded the GA from
scratch. In the second one, external libraries have been used for their coding.
We have used NodEO library [14] which includes the necessary functions to
create a simple GA in JavaScript using the CommonJS format1.

Plug-in for PowerTutor. Once the web service is implemented, the algorithm
can be run in any Android device and we can measure the energy consumption
by means of the PowerTutor plug-in developed.

We have created a plug-in that adds new functionality to PowerTutor. Our
plug-in is able to execute a computer task and measure the CPU power con-
sumption resulting from that execution. The plug-in is in charge of monitoring
the web environment where the GA is run. The GA must be encoded as a JS
file and is executed by the android Webview component.

1 http://requirejs.org/docs/commonjs.html.

http://requirejs.org/docs/commonjs.html

102 F. Fernández de Vega et al.

Table 1. Parameters & values tested for the one-max problem

Population sizes 32, 64, 128, 256,512, 1024 and 2048

Chromosome sizes 32, 64, 128, 256, 512, 1024, ... 32768

Table 2. Parameters & values tested for the trap problem, with chromosome size: 200

Population sizes 32, 64, 128, 256, 512 and 1024

3.3 Problems and Parameters Tested

Two well known GA benchmark problems were selected for this preliminary
study: the one-max and the trap function (Deceptive Trap) problems [15]. The
idea is to have different configurations, using some of the main GA parameters
when long runs of the experiments are performed, and then compute total energy
consumed when different parameters settings are applied. The generational ver-
sion of the algorithm is run, with a maximum time limit established for the run:
300 s; population size and problem difficulty (chromosome size) were checked for
the one-max problem, and then, the trap function tested to confirm some of the
conclusions drawn.

Tables 1 and 2 summarize the experiments performed. For each of the param-
eter values, 30 independent runs were launched so that we obtained the averaged
values shown below. Despite the difficulty established for the problems, some of
the runs using large populations were able to find the solution before reaching
300 s. In that cases, mean values were computed for the runs that reached that
time step.

4 Results

We began experimenting with the one-max problem and testing different chro-
mosome sizes. We must bear in mind that in this specific problem, the larger
the chromosome size, the longer the time to find a solution, given that difficulty
increases with size. We set the population size to 10, trying to avoid very short
running times, thus assuring that we can get energy consumption data for each
of the experiment along the 300 s established for the run. Although other possi-
bilities are available, we think this experiment provides relevant information for
the goal we pursue.

As we may notice in Fig. 2, being all the curves similar, some differences
are present when we tested large chromosome sizes. Moreover, some of the dif-
ferences seem to deviate from what we might expect when analysing possible
anomalies: when using 4096 bits, total energy consumed is larger than when using
16384 bits, although differences are narrow. On the other hand, in order to bet-
ter appreciate differences when smaller values for this parameter are employed,
we show a zoomed version of the lower part of the graph in Fig. 3. Again, some

Looking for Energy Efficient Genetic Algorithms 103

differences may be noticed, although quite narrow again. Yet, the pattern con-
cerning anomalies confirms what was seen previously: sometimes large values for
chromosome size consume smaller amount of energy when compared to smaller
chromosome sizes.

Therefore, we see that although the behavior considering chromosome size is
not very different from the expected one described in the previous section (all
of the curves on top of each other), some anomalies are present that deserve
further studies in the future.

We decided afterwards to run more experiments using different values for
population size (see Table 1), and establishing a large value for the chromosome
size (16384 bits) so that we assure the experiments can be run for 300 s.

Results obtained are shown in Fig. 4. We may notice that the figure is com-
pletely different from the expected one (as seen in Fig. 1): Instead of all the
lines on top of each other, the experiment shows that important differences exist
among population sizes regarding energy consumption of the algorithm. Par-
ticularly relevant are differences when large population sizes are employed: the
energy consumed is smaller when compared to small population sizes, which is
a surprising and intriguing result. Although similar anomalies where found for
chromosome sizes, differences are much larger when population size is considered.

We thus decided to focus on population sizes for the second problem, the
trap function, and launched a series of runs using population sizes shown in
Table 2. Averaged values over the 30 runs per population size are shown in
Fig. 5. A progression of lines are displayed again in Fig. 5, each of them with
different energy consumption behavior. An almost perfect gradation of behaviors
is displayed: the larger the population size, the greater the energy required to
run. Nevertheless, the curve corresponding to population size 512 does not follow
the trend, and describes a power consumption behavior quite different from the
other ones. Energy consumed with 512 as population size is a 7.9%, 41.23% and
55.53% lower than 64, 128 and 256, respectively. Consequently, population size
influences energy consumption, and given its influence on the time to solution,
a balance must be found if energy efficiency is looked for. We must report that
when large population sizes were used, some of the runs found the solution to
the problem before reaching 300 s, so the average values in the last few steps
of time includes a smaller number of runs. In any case, this should not affect
energy consumption behavior, that differs again from the expected one.

The above described results correspond to data obtained when the GA is
running. We have also measured what happens when the tablet is switched on
and the algorithm is not launched. Of course, the operating system will have
a role, and some devices may be consuming energy, but this is similar to the
situation when any program is running, so measuring energy in this situation
will help to contextualize previous results.

Therefore, for a proper comparison, what we have done is to remove from the
GA -the program running- all of the operations performed, when the program
is run but no instruction is performed for one hour. Once more, 30 independent

104 F. Fernández de Vega et al.

Fig. 2. One-max power consumption: analyzing different chromosome sizes. Population
size = 10

Fig. 3. One-max power consumption: analyzing different chromosome sizes (zoom).
Population size = 10

Looking for Energy Efficient Genetic Algorithms 105

Fig. 4. One-max power consumption: analyzing different population sizes (chromosome
size = 16384)

Fig. 5. Trap power consumption: analyzing different population sizes.

runs have been tested and values averaged: 30 reset operations on the tablet
followed by running the “empty” algorithm and power consumption measured.

Figure 6 shows results. If we focus on timestep 300, the maximum allotted
time for GA experiments described above, we see that the total power consump-
tion is less than 300, and this can be compared with results on Fig. 4, that shows
values over 500 mJ for one-max.

106 F. Fernández de Vega et al.

Fig. 6. Energy consumed by the tablet device when the GA is not running.

Table 3 presents data for the one-max problem for different chromosome sizes
tested with 10 individuals in the population. Each column contains power con-
sumption mean/standard deviation over the 30 runs at different time steps.
Empty values in some cells are on account of a short runtime (experiments end
before reaching some time step). As we may notice, when we employ a chro-
mosome size of 4096 (and 2048 when data available), energy consumed is larger
than when using values above that one after 30 s. We may check for instance
the value obtained after 300 s: 585.5 (standard deviation of 4.9), while for larger
chromosomes energy consumed is around 577. This confirms what we had already
noticed in the figures shown before: that significant differences exist in energy
consumption patterns affected by parameters configuration.

Table 3. One-max power consumption: analyzing different chromosome sizes. Popu-
lation size = 10

Time (s)
Chromosome size 5 10 20 30 60 120 300

512 7.600/0.44
1024 7.450/0.36 16.532/0.49 34.187/0.61
2048 7.326/0.53 17.256/0.62 37.528/1.04 57.931/1.51 118.477/1.60
4096 7.147/0.51 16.676/0.66 36.592/0.94 56.845/1.01 115.755/1.55 232.705/3.27 585.578/4.90
8192 7.456/0.28 16.791/0.63 36.315/0.92 56.435/1.87 113.782/2.02 229.485/2.39 577.026/4.06
16384 7.377/0.36 16.730/0.62 36.307/0.85 55.975/1.57 113.836/1.84 229.275/2.65 576.852/3.73
32768 7.344/0.33 16.678/0.48 35,897/0.78 55.975/1.44 113.472/1.76 228.783/2.66 574.544/7.13

Mean value/Standard deviation 7.386/0.425 16.777/0.623 36.354/1.195 56.632/1.652 115.041/2.562 230.040/3.128 578.256/6.504

On the other hand, Table 4 includes similar information for the one-max
problem when using different population sizes with a previously established chro-
mosome size: 16384 bits. As we may see for this series of experiments, when large
populations are used (512 and 1024), the standard deviation allows us to confi-
dently state that the power consumption is smaller, a behavior that was observed
in Fig. 4, and that requires more research in the future.

Looking for Energy Efficient Genetic Algorithms 107

Table 4. One-max power consumption: analyzing different population sizes. Chromo-
some size = 16384

Time (s)
Population size 5 10 20 30 60 120 300

32 7.334/0.36 16.487/0.63 36.056/0.80 55.761/1.06 113.828/1.81 229.618/2.50 576.326/4.79
64 7.295/0.44 16.755/0.78 35.767/1.00 55.994/1.66 113.972/2.19 230.513/3.27 580.024/4.57
128 7.353/0.46 16.791/0.86 36.383/1.41 56.016/1.83 113.738/2.76 229.958/4.29 577.435/8.27
256 7.401/0.42 16.902/0.62 36.089/0.99 55.552/0.90 114.025/1.70 229.713/2.75 576.974/4.56
512 7.415/0.29 16.528/0.57 34.473/0.98 53.178/1.25 108.981/1.69 217.755/2.71 546.043/4.48
1024 7.427/0.23 15.994/0.57 32.953/0.90 51.277/0.99 102.991/1.57 205.073/1.91 513.900/2.95

Mean value/
Standard deviation 7.371/0.37 16.576/0.73 35.287/1.58 54.630/2.22 111.256/4.57 223.772/9.95 561.784/24.96

Table 5 details similar information for the trap problem for different popu-
lation sizes combined with a chromosome size of 200 bits. Results allow again
to be confident with differences found. The last row in the three previous tables
presents mean values and standard deviation computed over the complete set of
tests for each time step established.

All in all, after this series of experiments we can confirm that for the first time
we have detected that some of the main parameter values has an effect on GAs
power consumption; particularly relevant is population size employed. This could
be related to memory usage patterns, that may affect cache access operations.
But more experiments are required to fully confirm and understand whether this
is a general behavior of EAs, and that a proper parameter configuration may
allow to design energy efficient GAs.

Table 5. Trap power consumption: analyzing different population sizes. Chromosome
size = 200

Time (s)
Population size 10 20 30 60 120 300

32 7.63/0.67 14.95/0.63 22.36/0.73 45.14/1.67 91.18/3.37 195.95/65.14
64 8.06/0.66 16.18/0.78 24.45/0.84 48.90/1.14 99.35/3.19 238.89/49.02
128 9.3/1.01 18.74/1.01 28.94/1.34 59.18/1.77 121.50/2.09 310.71/5.46
256 10.47/0.99 21.16/1.22 32.25/1.29 66.73/2.67 136.64/5.59 342.17/42.10
512 11.48/1.01 23.79/1.54 35.96/1.24 73.78/8.20 131.64/40.39 220.00/142.89

Mean value/Standard deviation 10.413/1.668 21.398/3.353 31.645/9.360 105.098/16.990 116.368/27.049 260.954/91.138

5 Conclusions

Although traditionally the quality of fitness and the time required to reach a
solution have been the main elements to analyze the behavior of the algorithms,
this work proposes and describes the reason to consider energy consumption as
a new measure to be applied when analysing GAs behavior.

Few studies have previously included energy consumption as a topic of inter-
est, probably because a linear relationship between computing time and power
consumption was assumed.

This paper presents a preliminary analysis on the influence of some of the
main GA parameters on its energy consumption patterns. To the best of our

108 F. Fernández de Vega et al.

knowledge, this analysis is the first to study the impact of GA configuration
parameters on the energy required to run the algorithm.

Two well known problems have been selected for the analysis: the one-max
problem and the trap function. Different values for population and chromosome
sizes have been tested, and the energy required to run the algorithm for 300 s
has been compared with the theoretically expected results -linear relationship
between time and energy. In both problems, different anomalies departing from
the expected behavior have been found: (i) time and energy behavior does not
linearly correlate; (ii) a connection exists among parameter values and power
consumption. In any case, anomalies have been found, such as smaller consump-
tion with larger population sizes, that deserves further research if our goal is to
find solutions and also reduce energy consumption.

Although experiments have been run in a specific battery-powered android
device, we hope to enlarge the study in the future to a larger set of devices,
including laptops, Raspberry Pi, etc, so that we can confirm this behavior regard-
less of the specific underlying hardware, and thus be able to design more energy-
efficient evolutionary algorithms in the future.

Acknowledgment. We acknowledge support from Spanish Ministry of Economy and
Competitiveness under project TIN2017-85727-C4-{2,4}-P, Regional Government of
Extremadura, Department of Commerce and Economy, the European Regional Devel-
opment Fund, a way to build Europe, under the project IB16035 and Junta de
Extremadura, project GR15068.

References

1. Vega, F.F., Pérez, J.I.H., Lanchares, J.: Parallel Architectures and Bioinspired
Algorithms, vol. 122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28789-3

2. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology. Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

3. Albers, S.: Energy-efficient algorithms. ACM Commun. 53(5), 86–96 (2010)
4. Ye, M., Li, C., Chen, G., Wu, J.: EECS: an energy efficient clustering scheme in

wireless sensor networks. In: PCCC 2005, 24th IEEE International Performance,
Computing, and Communications Conference 2005, pp. 535–540, April 2005

5. Camilo, T., Carreto, C., Silva, J.S., Boavida, F.: An energy-efficient ant-based
routing algorithm for wireless sensor networks. In: Dorigo, M., Gambardella, L.M.,
Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol.
4150, pp. 49–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11839088 5

6. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: Proceedings of the 33rd
Hawaii International Conference on System Sciences, HICSS 2000, vol. 8, p. 8020.
IEEE Computer Society (2000)

7. Gacto, M.J., Alcalá, R., Herrera, F.: A multi-objective evolutionary algorithm
for an effective tuning of fuzzy logic controllers in heating, ventilating and air
conditioning systems. Appl. Intell. 36(2), 330–347 (2012)

https://doi.org/10.1007/978-3-642-28789-3
https://doi.org/10.1007/978-3-642-28789-3
https://doi.org/10.1007/11839088_5

Looking for Energy Efficient Genetic Algorithms 109

8. Camacho, D., et al.: From ephemeral computing to deep bioinspired algorithms:
new trends and applications. Fut. Gener. Comput. Syst. 88, 735–746 (2018)

9. Álvarez, J.D., Lao, F.C., Castillo, P., Garćıa, J.A., Rodriguez, F., Vega, F.F.: A
fuzzy rule-based system to predict energy consumption of genetic programming
algorithms. Comput. Sci. Inf. Syst. 15, 26 (2018)

10. de Vega, F.F., Chávez, F., Dı́az, J., Garćıa, J.A., Castillo, P.A., Merelo, J.J., Cotta,
C.: A cross-platform assessment of energy consumption in evolutionary algorithms.
In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B.
(eds.) PPSN 2016. LNCS, vol. 9921, pp. 548–557. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45823-6 51

11. Abdelhafez, A., Alba, E., Luque, G.: A component-based study of energy con-
sumption for sequential and parallel genetic algorithms. J. Supercomput. 75(10),
6194–6219 (2019). https://doi.org/10.1007/s11227-019-02843-4

12. Fernández, F., Galeano, G., Gómez, J.A.: Comparing synchronous and asyn-
chronous parallel and distributed genetic programming models. In: Foster, J.A.,
Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol.
2278, pp. 326–335. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45984-7 32

13. Yang, Z.: Powertutor-a power monitor for android-based mobile platforms (2012)
14. Guervós, J.M., Castillo, P., Mora, A., Esparcia-Alcázar, A., Santos, V.R.: Nodeo,

a multi-paradigm distributed evolutionary algorithm platform in Javascript. In:
GECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary
Computation Conference (2014)

15. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Foundations of
Genetic Algorithms, volume 2 of Foundations of Genetic Algorithms, pp. 93–108.
Elsevier (1993)

https://doi.org/10.1007/978-3-319-45823-6_51
https://doi.org/10.1007/978-3-319-45823-6_51
https://doi.org/10.1007/s11227-019-02843-4
https://doi.org/10.1007/3-540-45984-7_32
https://doi.org/10.1007/3-540-45984-7_32

Evolving Fitness Landscapes
with Complementary Fitness Functions

Vincent Hénaux, Adrien Goëffon(B), and Frédéric Saubion

Université d’Angers (Laboratoire d’Étude et de Recherche en Informatique d’Angers,
LERIA, EA 2645, SFR MathSTIC), Angers, France

{vincent.henaux,adrien.goeffon,frederic.saubion}@univ-angers.fr

Abstract. Given an optimization problem, local search algorithms may
fail to reach optimal solutions when faced to difficult and unsuitable fit-
ness landscapes. Climbing based optimization is sensitive to unexpected
distribution of local optima. In this paper, we aim at modifying the ini-
tial fitness landscape of a problem in order to better fit climbing require-
ments. We propose thus a fitness landscape generation framework based
on an evolutionary process. Preliminary experiments are presented as a
proof of concept.

Keywords: Fitness landscapes · NK landscapes · Local search ·
Function evolution

1 Introduction

Metaheuristics and local search based algorithms are optimization procedures
that guide the search process based on information on the quality of the solu-
tions encountered during the search. In this sense, such techniques can be seen as
an intelligent sampling of the solution space. The quality of solutions is given by
a fitness function which usually corresponds to the objective function of the prob-
lem or is closely related to it. Problem solving difficulties appear when the one-
to-one correspondence between solutions and their objective values are difficult
to exploit. Indeed, objective functions leading to multimodal fitness landscapes
reveal what appears to be contradictory information, leading to misled guidance.
Practically speaking, when a search landscape is rugged and has numerous local
optima, the information induced by the objective function cannot be efficiently
exploited by a search algorithm.

The problem targeted here is indeed related to the seminal algorithm selec-
tion problem [12] in the context of optimization problems. Given an optimiza-
tion problem, how to select to best search algorithm according to performance
criteria? This problem has been tackled for many years [2,4,7], leading to effi-
cient algorithm optimization procedures [5,8]. Since many metaheuristics involve
parameters and variable components, various machine learning techniques can
be integrated to search algorithms for tackling difficult optimization problems.

c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 110–120, 2020.
https://doi.org/10.1007/978-3-030-45715-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_9

Evolving Fitness Landscapes with Complementary Fitness Functions 111

In order to better understand and explain why a given search algorithm may
or not efficiently solve a given problem instance, fitness landscape analysis [3]
provides relevant high-level information that can be efficiently used in the search
process (e.g., detecting specific topological properties of the problem [13,14]).

The design of an efficient local search algorithm usually focuses on the move
strategy, given a natural neighborhood relation and the objective function fobj
as fitness function. The move strategy thus aims at overcoming the difficulties
inherent in the properties of the landscape defined by the neighborhood relation
and the objective function. In this work, we choose to address an alternative
view of this algorithm optimization challenge: Given an instance of a problem
and a search algorithm, how to modify the fitness landscape such that the search
algorithm becomes more efficient? Some algorithms may modify the fitness land-
scape by changing the neighborhood relation [10]. Here, we focus on the fitness
function. We propose ways of constructing fitness functions allowing a simple
local search algorithm to solve easier a problem instance.

Some problems are said to be easy to solve by a local search process. In
this case, the objective function information is assumed to be especially rel-
evant for an iterative search process. The associated fitness landscape is less
rugged and contains less local optima. For such problems basic move strategies
like hill climbers may be used. However, whatever it be an original multimodal
fitness landscape and a climbing strategy, there exist better fitness functions
than fobj to reach more efficiently the global optimum, ie. fitness functions
whose associated fitness landscapes are easier to climb from random starting
solutions—for instance, an optimal one-max like fitness function fopt such that
fopt(x) = −d(x, xopt), where d(·, ·) is a distance and xopt the global optimum.
Of course, finding an optimal fitness function is equally difficult that finding the
global optimum, but we investigate in this paper to find fitness functions such
that derived hill climbers are better than a climber guided by means of fobj. We
propose here a search process (in the space of fitness functions) which consists to
improve fitness functions and thus hill climbers (operating in the original search
space). The aim is to determine an alternative climber using an alternative fit-
ness function falt that globally reaches better solutions (evaluated w.r.t. fobj)
than the natural climber based on fobj.

In this paper, we propose two alternative strategies for generating falt. In
a first approach, fobj is accessible during the climbing process and we search
for a complementary function fcomp such that falt = fobj + fcomp. The second
approach constitutes the main goal and consists to find a relevant falt while
fobj is considered as a black box function. In both cases, the alternative fitness
function is generated by an evolution based process and then compared to similar
search procedures based on the initial objective function. In order to experiment
our approaches, we focus here on pseudo-Boolean optimization problems based
on the NK fitness landscape model [6].

112 V. Hénaux et al.

2 Background

As a preliminary, let us recall some basic elements relative to optimization prob-
lems, fitness landscapes, NK model and local search.

Definition 1 (Optimization Problem). A (maximization) optimization
problem can be defined by a search space Ω and an objective function fobj :
Ω → IR. An element s ∈ Ω will be called a solution and an optimal solution
is a solution s∗ ∈ Ω such that ∀s ∈ Ω, fobj(s) ≤ fobj(s∗). A pseudo-Boolean
optimization problem is such that Ω = {0, 1}N .

The purpose of an optimization algorithm is then to compute optimal solu-
tions from Ω. We focus here on local search based techniques that explore Ω
using a neighborhood function N to move across Ω and a fitness function f
to evaluate the solutions (which could be different from fobj). The local search
dynamics mainly depend on the structural properties of the triplet (Ω,N , f)
denoted as fitness landscape (Definition 2) and more precisely the compatibility
between relations N and f .

Definition 2 (Fitness Landscape). A combinatorial fitness landscape is
defined by a graph induced by a discrete search space Ω structured with a neigh-
borhood function N : Ω → 2Ω, and a mapping of the graph vertices (solutions)
given by a fitness function f : Ω → R. A N -dimensional binary fitness land-
scape is such that Ω = {0, 1}N and ∀s ∈ Ω, N (s) = {s′ ∈ Ω |h(s, s′) = 1},
h(·, ·) referring to the Hamming distance. A solution s∗ ∈ Ω such that ∀s ∈
N (s∗), f(s) ≤ f(s∗) is a local optimum.

Of course, the adaptability of a local search algorithm to an optimization
problem also depends on the compatibility between f and fobj. We call search
landscape of an optimization problem the derived fitness landscape where f =
fobj.

The random neighbor NK landscape model [6] can be used express binary
fitness landscapes, whose properties are determined by means of two parameters
N and K. N is the landscape dimension, and K < N specifies the average
number of dependencies per variable and then the ruggedness of the landscape.

Definition 3 (NK Landscape). A NK function fNK : {0, 1}N → [0, 1) is
defined as fNK(s) =

∑N
i=1 Γi(si, sli1 , . . . , sliK), where lij ∈ [[1, N]] is the variable

index of the j-th variable linked with si, and each Γi : {0, 1}K+1 → [0, 1/N) is a
pseudo-boolean function. A binary fitness landscape can then be described using
the NK model with N K-uples (each representing a set of bit interdependencies)
and N · 2K+1 real or decimal values in [0,1/N). A NK landscape is a binary
fitness landscape defined by using a NK fitness function.

A NK problem instance is an optimization problem expressed with a NK
function. In experiments, we will use NK functions as optimization problem
instances of tunable search landscape properties. Local search trajectories in

Evolving Fitness Landscapes with Complementary Fitness Functions 113

Algorithm 1. Climber
Parameter: a fitness landscape (Ω, N , f)
Input: an initial solution s0 ∈ Ω
Output: a local optimum s∗ ∈ Ω

1: s∗ ← s0
2: repeat
3: I ← {s ∈ N (s∗) | f(s) > f(s∗)}
4: if I �= ∅ then
5: s∗ ← select(I, f) // select is a hill climbing selection heuristic
6: end if
7: until I = ∅

8: return s∗

fitness landscapes will be defined by a basic hill climbing algorithm (also denoted
as climber) as described in Algorithm 1.

Classically, we will also consider iterated local search algorithms (ILS) [9]
that consist of alternate a climbing and perturbation processes, which aims at
escaping the local optimum reached by the hill climber. Of course, the selection
heuristic has an impact on the efficiency of the climber [1] but here we use a
fixed simple neighbor strategy to better focus on fitness landscape adaptation.

3 Evolving Alternative Fitness Functions

Given a climber, the purpose of our fitness function evolution process is to
improve its adaptability by modifying the initial search landscape of a prob-
lem instance (Ω,N , fobj). The aim is thus to obtain a new fitness landscape
(Ω,N , f) that better fits both algorithm and problem instance. We focus on
a fixed strategy hill climber (first improvement selection heuristic) whose only
variable parameter will be the fitness function used to define a guidance crite-
rion within a very basic neighborhood search. Hence, we aim at generating an
appropriate alternative fitness function that modifies the initial objective func-
tion fobj, and consequently the fitness landscape. In this paper we experiment
and compare two approaches. First, we propose to complement the initial fitness
landscape for a basic hill climbing procedure, which lead to modify the set of
its local optima and may help a climber to reach, statistically, better solutions
(with regards to the initial objective function fobj). Secondly, we use the process
used for evolving complementary functions to determine alternative functions
from scratch, that is not expressed by means of fobj.

3.1 Complementary Fitness Functions

The complementary fitness function fcomp is obtained by evolving a fitness func-
tion model with regards to a climber performance criterion. This performance
criterion simply evaluates the expected quality (with respect to the objective
function fobj) of the local optima (in the sense of the evolved fitness function

114 V. Hénaux et al.

falt := fobj + fcomp) that can be reached by the local search process from dif-
ferent, randomly selected, starting points. The quality of a fitness function falt
is then given by the expected performance of a hill climbing guided by f , which
reflects its ability to solve the original problem.

Therefore, the first expected outcome of such a function learning process is
to escape from useless local sub-optima that prevent the algorithm from going
on further in its search process (a hill climber necessarily stops at the first
local optimum reached). A broader aim is to describe an original mechanism
of artificial evolution of local search algorithms by working on fitness functions
exclusively.

Algorithm 2 describes the fitness function generation process. Let fobj : Ω →
R be an objective function. Let us fix the search algorithm A(f) based on fitness
function f . As previously stated, A is here a first improvement hill climbing. We
consider that the quality of algorithm A(f) is the expected score (with respect
to the objective function fobj) of a local optimum returned by A(f).

We choose a complementary fitness function model, used as a syntax for
the complementary fitness function fcomp : Ω → R. For instance, if Ω = B

256,
fcomp may be expressed by means of a NK instance with N = 256 (required)
and K = 1 (tunable). The mutation operator is then defined with respect to
the model (genome type). For instance, considering NK functions, to randomly
replace coefficients and links (see Algorithm 3).

The evolution algorithm works as follows. First, a random fcomp is gener-
ated (in our example, a NK instance), and evaluated. The evaluation estimates
the quality of algorithm A(fobj + fcomp). It consists here to perform p = 100
climber runs using fitness function falt := fobj + fcomp and to compute the
objective values (w.r.t. fobj) of the 100 reached local optima. Then, fcomp is
mutated (f ′

comp) and the quality of the corresponding climber A(fobj + f ′
comp) is

statistically compared to A(fobj + fcomp) thanks to a Wilcoxon rank-sum test.
If A(fobj + f ′

comp) �fobj A(fobj + fcomp) then f ′
comp becomes the new current

complementary function. This mutation process is repeated until a classic stop
criterion is reached.

3.2 Alternative Fitness Functions

Instead of mixing the initial objective function and a complementary function
generated thanks to Algorithm 2, we propose to use a fitness function generated
from scratch by the same Algorithm 2. The algorithm is directly used considering
falt = fcomp in the generation process. Our purpose is to assess whether it is
preferable to evolve the initial fitness landscape by keeping information from fobj
or to build a different landscape from scratch. Note that our purpose appears
very different from surrogate model generation since the quality of the generated
landscape is evaluated with regards to the climber ability to perform interesting
runs, in an expected smoother landscape. Of course reached local optima are
expected to coincide with the better optima of fobj, but the resulting fitness
model is not expected to share other properties with the initial fitness landscape.

Evolving Fitness Landscapes with Complementary Fitness Functions 115

Algorithm 2. Fitness function evolution
Parameters: a fitness function model (M), a mutation parameter (ζ), a solu-
tion space (Ω), a neighborhood function (N), a statistical test (T), a statistical
significance threshold (zmin), the number of hill climbing runs for evaluate fitness
functions (p), the maximum number of consecutive non-improving mutations (max-
mut).
Input: an objective function fobj.
Output: an alternative fitness function falt.

1: fcomp ← initializeM()
2: repeat
3: for j ← 1 to p do
4: randomly select s ∈ Ω
5: Sj ← hill climbing(Ω,N ,fobj+fcomp)

(s) // S is a vector of local optima w.r.t.
falt := fobj + fcomp

6: Fj ← fobj(Sj) // F is a vector of scores
7: end for
8: nbmut ← 0
9: repeat

10: improve ← false
11: f ′

comp ← mutateM,ζ(fcomp)
12: for j ← 1 to p do
13: randomly select s ∈ Ω
14: S′

j ← hill climbing(Ω,N ,fobj+f ′
comp)

(s)

15: F ′
j ← fobj(S

′
j)

16: end for
17: if z scoreT (F ′, F) � zmin then // significant score of hypothesis

hill climbing(fobj + f ′
comp) �fobj hill climbing(fobj + fcomp)

18: fcomp ← f ′
comp

19: improve ← true
20: nbmut ← 0
21: else
22: nbmut ← nbmut + 1
23: end if
24: until improve or (nbmut = maxmut)
25: until not improve
26: return falt := fobj + fcomp

4 Experiments

We report in this section preliminary experiments of evolving hill climbers by
mutating fitness functions only. Recall that given an objective function fobj, our
purpose is to find an alternative fitness function falt such that a climber guided
by falt will attain, in average, better solutions that a climber guided by fobj.
This constitutes a way of determining an alternative fitness landscape, which is
more efficiently climbed that the original one.

The following results present experiments on random NK instances of var-
ious sizes (N ∈ {128, 256}) and ruggedness level (K ∈ {1, 2, 4, 6, 8, 10, 12}),

116 V. Hénaux et al.

which constitute the reference objective functions fobj. First, alternative fit-
ness functions will be generated by summing reference objective functions with
evolved complementary functions (see Sect. 3.1). Since the mutation settings
depend on the model used, and considering that we expect to favor simplest func-
tion models, we choose only NK N 1 as fitness function model for Algorithm 2
(i.e. NK 128 1 and NK 256 1 complementary functions for tackling NK 128 K
and NK 256 K instances respectively). Then we experiment the more general
model where the alternative functions are evolved NK N 1 fitness functions (see
Sect. 3.2).

This preliminary set of experiments does not focus on the parameters effects.
We choose to fix parameter maxmut to 1000, which appears to be a sufficient
value for an efficient fitness function evolution. Selection function for climbers
(hill climbing function in Algorithm 2) is a random first improvement selection
heuristic. Parameter p is the sampling size used to evaluate fitness function by
means of the statistic test (being the Wilcoxon rank-sum test) and is set to 100.

The initialization function generates a random NK function (from model
parameters N and K = 1). Algorithm 3 specifies how NK functions are mutated.
Mutation parameters M1 and M2 are respectively set to 0.05 and 5, which
are appropriate values to statistically improve alternative functions with a non-
negligible probability.

Algorithm 3. NK fitness function mutation
Input/Output: a NK fitness function f , described with N coefficient tables Γi

and N ordinal sets of bit interdependencies li (of size K).
Parameters: maximal mutation rate (M1 ∈ [0, 1]), maximal number of changed
links (M2 ∈ [[0, K]]).

1: Randomly generate m1 � M1 and m2 � M2 such that (m1, m2) �= (0, 0)
2: for m ← 1 to �m1 · N · (K + 1)� do
3: Randomly select i ∈ [[1, N]] and k ∈ [[1, 2K+1]]
4: Replace Γik by a random value in [0, 1]
5: end for
6: for m ← 1 to m2 do
7: Randomly select i ∈ [[1, N]] and j ∈ [[1, K]]
8: Replace lij by a random value in [[1, N]]
9: end for

For each instance, we ran 100 times Algorithm 2, leading to 100 alternative
fitness functions f1

alt, . . . , f
100
alt . Then we perform 100 executions of each climber

HC(f i
alt), to obtain 100 (not necessarily distinct) local optima si

1, . . . s
i
100 for

each function f i
alt. The average quality of the algorithms HC(f i

alt) is estimated
by averaging the objective value of all solutions, i.e.

∑100
i

∑100
j fobj(si

j)/10000.
These quality scores are reported in Table 1 (column HC(fobj + fcomp)). We

also report in the last column the results obtained when the alternative function
is directly mutated (i.e. without using the objective function for hill climbings

Evolving Fitness Landscapes with Complementary Fitness Functions 117

and therefore with no need of any complementary function), with even bet-
ter results on more rugged instances (K � 6). The main result here is that
the average quality of HC(falt) is always better than the average quality of
HC(fobj), which has been estimated by averaging 10,000 local optima returned
by the reference hill climber. HC(fobj + fcomp) improves further HC(fobj) on
smoother landscapes, but obtain unexpected poor performances on more rugged
instances where fcomp seems to penalize the search. This can be explained by
the use of inadequate mutation parameters as well as the difficulty to combine
two functions (fobj and fcomp) of very different ruggedness. However, these pre-
liminary experiments point out the relevance and the complementarity of both
approaches. Further parameter analysis and experiments will be dedicated to
improving the quality and the adaptability of the evolution strategy.

Table 1. Comparison of hill climbers based on original objective function (fobj) and
evolved alternative fitness functions

Instance HC(fobj) HC(fobj + fcomp) HC(falt)

nk-128-1 0.709 0.723 0.718

nk-128-2 0.716 0.745 0.726

nk-128-4 0.727 0.765 0.732

nk-128-6 0.717 0.715 0.728

nk-128-8 0.715 0.711 0.721

nk-128-10 0.708 0.706 0.714

nk-128-12 0.700 0.699 0.708

nk-256-1 0.691 0.705 0.703

nk-256-2 0.713 0.735 0.723

nk-256-4 0.719 0.729 0.731

nk-256-6 0.723 0.718 0.733

nk-256-8 0.717 0.710 0.722

nk-256-10 0.710 0.707 0.720

nk-256-12 0.707 0.702 0.712

In order to better investigate how an evolved climber explores the origi-
nal fitness landscape, we compare in Fig. 1 the average fobj-fitness evolution of
falt-guided climbers to fobj-guided ones. The black line represents the average
objective value evolution of 10, 000 climbers on a reference fitness landscape. The
grey line represents the average objective values obtained from climbers executed
on 100 alternative fitness landscapes (100 climbers per landscape). For a bet-
ter understanding, we also indicate, in dotted lines, the evolution of 4 random
hill climbings (2 on the reference landscape, 2 on alternative landscapes). Note
that a strict hill climbing on alternative landscape naturally provides in general
a non-monotonic walk according to an objective function fobj. This illustrates
that such climber may cross reference landscape local optima.

118 V. Hénaux et al.

Fig. 1. Performance comparison of alternative and reference fitness functions (hill
climbing based evaluation).

Fig. 2. Comparison of iterated local searches based on alternative and reference fitness
functions.

Evolving Fitness Landscapes with Complementary Fitness Functions 119

Figure 2 extends the comparison by iterating climbers within an Iterated
Local Search scheme. We observe that an iterated search only improves very
few the solutions provided by a climber running on an alternative landscape.
However, such a climber used alone is more powerful that an iterated local
search performed on the original fitness landscape.

5 Conclusion

In this paper, we have proposed a fitness landscape evolution framework whose
purpose is to generate better fitness landscapes with regards to a given hill climb-
ing solving technique. Our preliminary experiments show that such an approach
may be efficient to improve the ability of a climber to reach better local optima,
without involving random perturbations used in more sophisticated local search
strategies. Compared to related existing work, our approach is focused on the
solving process and does not aim at modifying nor approximating the reference
objective function. Moreover, the evolution fitness model may be disconnected
from the initial problem model.

This first attempt must of course be improved by considering more different
instances with various adjustable fitness properties. The mutation process used
in the fitness landscape evolution algorithm must also be finely studied and
analyzed.

Our approach can especially be relevant in the context of Black Box opti-
mization problems, where the objective function that must be optimized can
be evaluated but some of its properties cannot be effectively used to guide the
search. While weighted penalty functions have been successfully used for solv-
ing constraint satisfaction or Boolean satisfiability problems [11], they rely on a
known model where constraints, variables and their relationships are explicitly
defined. As possible application domain, we may point out problems for which
the computation of the objective function values is particularly time consuming
(e.g., when a simulation or a software is required).

Acknowledgements. This work is partially supported by the Région Pays de la Loire
through the Atlanstic 2020 programme.

References

1. Basseur, M., Goëffon, A.: Climbing combinatorial fitness landscapes. Appl. Soft
Comput. 30, 688–704 (2015)

2. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization
(2007)

3. Chicano, F., Whitley, D., Alba, E.: A methodology to find the elementary landscape
decomposition of combinatorial optimization problems. Evol. Comput. 19(4), 597–
637 (2011)

4. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. Trans. Evol. Comput. 3(2), 124–141 (1999)

120 V. Hénaux et al.

5. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on
local search. In: AAAI, pp. 1152–1157. AAAI Press (2007)

6. Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes and
its application to maturation of the immune response. J. Theoret. Biol. 141(2),
211–245 (1989)

7. Lobo, F.G., Lima, C.F., Michalewicz, Z.: Parameter Setting in Evolutionary Algo-
rithms, 1st edn. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
69432-8

8. López-ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package:
iterated racing for automatic algorithm configuration. Technical report (2011)

9. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in
Operations Research & Management Science, vol. 57, pp. 320–353. Springer,
Boston (2003). https://doi.org/10.1007/0-306-48056-5 11

10. Nenad, M., Pierre, H.: Variable neighborhood search. Comput. OR 24(11), 1097–
1100 (1997)

11. Morris, P.: The breakout method for escaping from local minima. In: Proceedings
of the Eleventh National Conference on Artificial Intelligence, AAAI 1993, pp.
40–45. AAAI Press (1993)

12. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
13. Vanneschi, L., Pirola, Y., Mauri, G., Tomassini, M., Collard, P., Verel, S.: A study

of the neutrality of Boolean function landscapes in genetic programming. Theor.
Comput. Sci. 425, 34–57 (2012)

14. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

https://doi.org/10.1007/978-3-540-69432-8
https://doi.org/10.1007/978-3-540-69432-8
https://doi.org/10.1007/0-306-48056-5_11

Bayesian Immigrant Diploid Genetic
Algorithm for Dynamic Environments

Emrullah Gazioglu(B) and A. Sima Etaner-Uyar

Istanbul Technical University, Sariyer, Istanbul, Turkey
{egazioglu,etaner}@itu.edu.tr

Abstract. In dynamic environments, the main aim of an optimization
algorithm is to track the changes and to adapt the search process. In this
paper, we propose an approach called the Bayesian Immigrant Diploid
Genetic Algorithm (BIDGA). BIDGA uses implicit memory in the form
of diploid chromosomes, combined with the Bayesian Optimization Algo-
rithm (BOA), which is a form of Estimation of Distribution Algorithms
(EDAs). Through the use of BOA, BIDGA is able to take into account
epistasis in the form of binary relationships between the variables. Exper-
iments show that the proposed approach is efficient and also indicates
that exploiting interactions between variables is important to adapt to
the newly formed environments.

Keywords: Evolutionary Algorithms · Estimation of Distribution
Algorithms · Bayesian Optimization Algorithm · Dynamic
environments

1 Introduction

In a dynamic environment, there are a few components in the system that can
change over time, i.e. the objectives, constraints and the problem instance itself.
Any or all of these components may change. A dynamic environment can be clas-
sified as described in [6] by the: (i) Frequency, (ii) Severity, (iii) Predictability
and (iv) Cycle length/accuracy of the change that occurs.

One of the main issues in dynamic environments is tracking down the moving
optima as closely as possible. Another issue is to catch the change quickly and
adapt to the newly formed environment as quickly as possible. There are some
strategies proposed for these types of problems [11]: (i) Generating diversity after
a change, (ii) Maintaining diversity throughout the run, (iii) Multipopulation
approaches [14] (iv) Memory-based approaches [12].

In order to generate or increase diversity after a change, hypermutation [7]
and variable local search [22] methods are proposed. These two are techniques
that increase the probability of mutation for a while when a change occurs. As an
example of an approach that maintains diversity throughout a run, Baykasoglu

Supported by organization x.

c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 121–135, 2020.
https://doi.org/10.1007/978-3-030-45715-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_10&domain=pdf
http://orcid.org/0000-0002-7615-305X
http://orcid.org/0000-0003-1440-3831
https://doi.org/10.1007/978-3-030-45715-0_10

122 E. Gazioglu and A. S. Etaner-Uyar

and Ozsoydan used the Triggered Random Immigrant (TRIM) mechanism which
introduces a portion of randomly generated new individuals into the population
when the diversity level of the population falls under the predefined threshold
in [3].

Also, in [1] both hypermutation and random immigrant mechanisms are
hybridized to deal with the loss of diversity for dynamic environments.

In spite of having a lot of optimization algorithms in literature for dynamic
environments, almost none of them investigates the interactions between vari-
ables (genes) in a chromosome. In order to achieve that, the power of both
Evolutionary Algorithms (EA) and the Estimation of Distribution Algorithms
(EDA) are combined in this study.

This paper continues as follows: The literature summary is mentioned in
Sect. 2, then in Sect. 3 the proposed approach BIDGA is explained, in Sect. 4
the experiments are detailed and finally in Sect. 5 results are discussed and the
paper is concluded.

2 Literature Summary

2.1 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) consider the optimization prob-
lems as a probability theory problem so it learns from the past and acts by using
the probability that it has learned. The common feature of all the EDAs is using
probabilistic information and generating new solution candidates according to
that probabilistic information at each generation of the algorithm.

In [16], the authors classified the EDAs based on the problem decomposi-
tion: (i): No dependencies, (ii): Pairwise dependencies, and finally (iii): Multi-
variate dependencies. We can give the Population-Based Incremental Learning
(PBIL) [2] algorithm as an example to the (i)th model. For the pairwise depen-
dencies, Mutual Information Maximizing Input Clustering (MIMIC) [9] might be
an example. There are number of EDA based approaches, which are proposed in
the literature in order to handle dynamism and uncertainty [19,20]. One of them
is a dual population PBIL, Uludag et al. [20] proposed a multi-phase hybrid
framework, referred to as Hyper-Heuristic based dual population Estimation
of Distribution Algorithm (HH-EDA2) that utilizes offline and online learning
methods at successive stages for solving dynamic optimization problems.

In this paper, we used the Bayesian Optimization Algorithm with Decision
Graphs (dBOA) [15] which falls in the (iii)th model mentioned above. In this
model, directed acyclic graphs or undirected graphs are used to show dependen-
cies.

Bayesian Optimization Algorithm
In BOA, at first, the algorithm randomly produces a population and then cal-
culates their fitness values to pick best n of them to create a Bayes Network to
exploit which variables are dependent on each other and which are not. Rest of
the algorithmic loop, each generation, it re-creates (not updating) the network

Bayesian Immigrant Diploid Genetic Algorithm for Dynamic Environments 123

by using the population from scratch. Since there is no prior knowledge about the
variables, it uses a greedy approach to create the network. The most important
parameter of BOA is k, which indicates the maximum number of incoming edges
to a node in the network. In other words, k determines the maximum number
of parents of a node when creating a network. Since it uses a greedy approach
at each iteration, it uses the Bayesian Dirichlet equivalence (BDe) metric to
measure how good the network is.

In our work, we used BOA for creating a Bayesian Network by using
the Diploid Genetic Algorithm’s (DGA) population and sampling a sample-
population in order to decide the phenotype value of an individual which will be
detailed in the proposed method section.

2.2 Memory Based Genetic Algorithms for DOPs

As mentioned before, simple GAs (sGA) quickly converge to a solution but
when a change occurs, it loses its genetic diversity. Using memory is one of the
solution methods among others for this problem. Memory can be implemented
in two ways: (i) Implicitly which uses redundant representation, or (ii) Explicitly
which uses extra memory to save useful information.

In this section, we investigated the GAs proposed for dynamic environments.
In the random immigrants GA (RIGA) proposed in [8], a small portion of the
individuals are replaced with the randomly generated new individuals to main-
tain the diversity at each selection step of the algorithm. However, it is observed
that RIGA is not a good choice if the severity of change is very low since the
individuals from the previous generation may still be useful in the new (current)
environment [25]. In order to prevent these kinds of problems, [25] proposed
elitism-based GA (EIGA). In EIGA, part of the population is replaced with
the mutated copies of the elite solution of the previous generation. Thus, the
mutated solutions will have higher chance to catch the new optimum, if the
environmental change occurs slightly. However this time, EIGA’s performance
drops when the severity of change rises [26]. Furthermore, its performance also
drops in periodically changing environments. As a solution to this problem, in
[27], Yang proposed hybrid GA (HIGA) which combines both RIGA and EIGA.
In HIGA, beside the random immigrants, also mutated copies of the elite solution
are introduced into the population at each generation.

Besides the above-mentioned kind of techniques, there are also memory-based
GAs have been proposed in recent years. In [25], Yang proposed memory/search
GA (MSGA) as a peer GA proposed by Branke in [4,5]. In MSGA there are two
populations: a search population and a memory population. First, the sizes of
the populations are equal. At each generation, their size is updated according
to their performance: Each generation, the better population gets more space
from the total population size. The memory population saves the solutions and
the search population is initialized again if a change is detected. Besides the
MSGA, Yang also proposed memory-enhanced GA (MEGA) in [26]. In MEGA,
if an environmental change is detected, both populations are merged and the
best n% individuals of the merged population go into the genetic operators to

124 E. Gazioglu and A. S. Etaner-Uyar

construct a new population and memory remains the same. In [26], another
hybrid GA, namely memory and random immigrant GA (MRIGA) is proposed.
The only difference of MRIGA from MEGA is that MRIGA replaces the worst
solutions with the random immigrants. Apart from them, in [24] memory and
elitism-based immigrants GA (MIGA) is proposed. MIGA uses the same memory
updating mechanism just like in the MSGA, MEGA, and MRIGA. Different from
the three of them, in MIGA, at each generation memory is reevaluated and the
best ones are retrieved to produce immigrants by using the bitwise mutation with
a certain probability. Next, these new individuals replace the worst solutions in
the population. In [18], Qian et al. proposed the Environment Reaction GA
(ERGA). ERGA is an explicit memory using algorithm like MIGA, but it has
two different features from MIGA: (1) While MIGA starts with a randomly
initialized memory, ERGA starts with an empty memory. The memory updating
method in ERGA works as follows. First, the elite individual in the current
generation is saved to the memory if there isn’t any other same solution as the
elite one in the memory. Secondly, if the memory’s size is due to the predefined
size (memSize), the elite one replaces the most similar solution in the memory.
However, in MIGA, the elite solution replaces any randomly initialized solution
in the memory if there still exists any. (2) In ERGA, both random immigrants
and mutated solutions in the memory are used to handle the new environment.
On the other hand in MIGA, this action is performed in every generation.

An example to the implicit memory methods, in [21], the proposed diploid
algorithm domGA uses a probability vector (probability of being 1) to decide the
value of a phenotype’s variable if its genotypes’ variables are different. Note that
this approach works without considering interactions (called epistasis) between
variables.

3 Proposed Approach

In order to efficiently solve the DOPs and adapt to the newly formed environment
as fast as possible, in this paper, we propose Bayesian Immigrant GA (BIDGA)
which is formed via injecting dBOA into DGA. In the algorithm, while all the
optimization process is carried out with the DGA, the dBOA is used for the
phenotype decision mechanism. In order to embed the dBOA in our work, the
source code of the dBOA is downloaded from the author’s web page1 and used
with a small interface implementation. Also, a small portion of the population
sampled via dBOA is used as an immigrant population. The general pseudo-code
of the BIDGA can be seen in Algorithm 1.

Besides BIDGA, to show the effect of the diploidy in the plots, we also
implemented the haploid version of BIDGA which is called Bayesian Immigrant
GA (BIGA). In BIGA, of course, there is no phenotype decision mechanism,
instead, at each generation, a portion of the randomly selected population is
replaced with the samples from the sample-population of dBOA. The rest of the

1 http://martinpelikan.net/software.html.

http://martinpelikan.net/software.html

Bayesian Immigrant Diploid Genetic Algorithm for Dynamic Environments 125

algorithm is the same as the simple GA in BIGA: tournament selection, uniform
crossover, bitwise mutation, and elitism-1.

3.1 Explanation of BIDGA

In the literature summary section, it can be seen that different types of GAs for
DOPs were investigated in [18,21,26]. However, none of them considers the inter-
actions between variables in a solution candidate (chromosome) except PBIL-
based approaches which are not GA. As we know, in the real world, things affect
each-other and almost nothing is independent of nature. For this reason, we
injected dBOA into the DGA to exploit the dependencies between the variables
and take action according to this outcome.

First of all, in BIDGA, a diploid representation is used, which means that
each individual in the population has two genotypes and one phenotype. The aim
of using diploidy is to have an implicit memory scheme to carry the knowledge
learned so far to the next generations. In order to make that happen, all the
genetic operators are only applied to the genotypes of the individuals. Phenotype
is used for only fitness calculations. Thus, the fitness values of the individuals
don’t affect the genotypes of the individuals directly.

At the beginning of the algorithm, the genotypes of the individuals in the
population are created randomly and phenotype values are determined randomly
if corresponding genotype values are different (if equal, use that value). After
that, fitness values are calculated and then a Bayes Network (BN) is constructed
using the best k% individuals of the population. Then, the BN is used for sam-
pling a sample-population with the same size of BIDGA’s population. Finally, a
probability vector is constructed by using this sample-population just like PBIL
does. This vector is used as the decision method for individuals’ phenotype values
if the corresponding genotype values are different.

In the selection step of the BIDGA, the typical tournament selection is used.
Besides that, a randomly selected portion of the sample-population is immigrated
to the main population to achieve immigration. Here, the immigrated samples
are copied to both genotypes of the individuals. Also, the best individual from
the previous generation is copied to the current population (elitism) without
re-calculating its fitness value.

For crossover operation, the uniform crossover method is used. In the
crossover function, a binary crossover mask vector is randomly created and then
at each iteration, two different individuals are randomly selected, say i1, i2. Then
with a probability of pc, for each variable (gene), j, the first one’s (i1) first geno-
type’s jth variable is copied to the second one’s (i2) second genotype’s jth vari-
able and second one’s second genotype’s jth variable is copied to the first one’s
first genotype’s jth variable if the randomly generated binary crossover mask
vector’s corresponding value is 1.

For mutation, the well-known bitwise mutation operator is used. In the bit-
wise mutation operation, the genotype values of each individual in the population
are flipped with a probability of pm.

126 E. Gazioglu and A. S. Etaner-Uyar

After the genetic operators, phenotype construction is applied. As shown in
Algorithm 1, if the genotype values are the same, that value is used for phenotype
also. Otherwise, dBOA’s probability vector is used to decide what it is going to
be; zero or one.

Algorithm 1: Pseudocode of BIDGA
population ← initialize(populationSize);
evaluate(population);
BN ← constructBayesNetwork(population);
samplePopulation ← sampleBayesNetwork(BN);
BOAprobV ector ← constructProbV ector(samplePopulation);
while termination condition not met do

tournamentSelection(population);
uniformCrossover(population);
bitwiseMutation(population);
genotype2phenotype(population){

if genotype1j = genotype2j then phenotypej ← genotype1j ;
else;

p ← rand();
phenotypej ← (p < BOAprobV ectorj)? : 1 : 0;

}
evaluate(population);
if modulo(generation, τ) = 0 then changeEnvironment() ;
constructBayesNetwork(population);
samplePopulation ← sampleBayesNetwork(BN);
BOAprobV ector ← constructProbV ector(samplePopulation);

4 Experimental Design

4.1 Creating Dynamic Environments

The XOR Generator proposed in [23] is a dynamic environment generator with
different difficulty degrees for any binary encoded stationary problem. Assume−→
X is a binary encoded solution candidate for a problem, then the fitness value
of that solution candidate is calculated for time t as shown in Eq. 1.

f(
−→
X, t) = f(

−→
X ⊕ −→

Mk) (1)

where ⊕ is the XOR operator and
−→
Mk is a masking vector for kth environment. At

the beginning, mask
−→
M is initialized with zero. After that, every τ generations,

it is updated as shown in Eq. 2.
−→
Mk =

−→
Mk−1 ⊕ −→

T k (2)

where
−→
T k is a binary template.

Bayesian Immigrant Diploid Genetic Algorithm for Dynamic Environments 127

Besides the above generator (random environment), there are also cyclic and
cyclic with noise environments which are proposed in [28]. In order to con-
struct a cyclic environment, we first construct K binary encoded templates2−→
T (0), ...,

−→
T (K − 1) randomly but exclusively: Assume that each template is a

row of a matrix, then the number of total ones in a column of the matrix must
be 1. Assume

−→
M(0) is composed of zeros, then the rest of the XORing masks

are constructed as shown in Eq. 3.

−→
M(i + 1) =

−→
M(i) ⊕ −→

T (i%K), i = 0,2K − 1. (3)

With the above formula, after K environmental change the
−→
M(K) will be all

ones and then the K base states will be reused to construct next K masks till
to return to the environment

−→
M(0) =

−→
0 .

By using the above cyclic environment generator, Yang and Yao also intro-
duced the cyclic environment with noise [28] via introducing noise to the next
mask by using bitwise flipping with a small probability, called pn.

4.2 Problems for Testing BIDGA

Decomposable Unitation-Based Functions
Decomposable Unitation-Based Functions (DUFs) [17] have been widely used in
DOPs since they have different difficulty levels and have different dependency
degrees. All of the functions are composed of 4-bit building blocks. Each block’s
fitness value, u(x), is calculated separately and at the end, all of the u(x) values
are added to each other to obtain the general fitness value of the individual as
follows: f(x) =

∑l/4
i=1 u(x), where l is the length of a chromosome.

DUF1 is the simple One-Max problem that aims to maximize the number
of 1s in a chromosome. In DUF2, also known as the Plateau function, the opti-
mum value is surrounded by the sub-optimum values. DUF3 (a.k.a. Deceptive
function) is a very hard problem because of having low-order building blocks.
DUF4 (a.k.a. Royal Road function) requires a full of ones in the building block
to return a fitness value different than zero [28].

In this study, dynamic DUFs (DDUF) are constructed by using four station-
ary DUFs (DUF1, DUF2, DUF3, DUF4). By using each DUF, three dynamic
DUFs are constructed as suggested in [28] which are cyclic, cyclic with noise,
and random.

Dynamic Knapsack Problem
Dynamic Knapsack Problem (DKP) [13] is the dynamic version of the well-known
0-1 Knapsack Problem which aims to collect a number of items to increase the
profit while the total weight of the collected items doesn’t exceed the given
capacity C. The formulation of 0-1 Knapsack Problem is given in Eq. 4:

2 Each template should contain ρ × l = l/K ones.

128 E. Gazioglu and A. S. Etaner-Uyar

max f(x) =
n∑

i=1

pi ∗ xi (4)

subject to

n∑

i=1

pixi ≤ C xi ∈ {0, 1},

where xi is the binary decision variable whether item i is taken or not, pi is the
profit of item i, wi is the weight of item i and finally, C is the total capacity.

As it is indicated in [13], because the difficulty of the DKP is affected by
the correlation between weights and profits, we generated highly correlated
datasets for our study via the following way: First, create a weight vector by
wi = rand(1, v), then a profit vector by pi = wi + r, and determine the capacity
with C = 0.5 × ∑n

i=1 wi, where, n is the number of items, rand(1, v) is a uni-
formly random value between 1 and v. The parameters v and r are set to 100
and 50 respectively as previously done in [18].

4.3 Dynamic Environments

In order to test the proposed method BIDGA, mainly two groups, but in total
seven different problems are implemented. Four of them are DUF problems from
1 to 4 and three of them are Dynamic Knapsack Problems (DKP) that are
proposed in [13] with 100, 250 and 500 items respectively.

For testing BIDGA on DDUFs, the very same test environment prepared
by Yang and Yao [26] is used. For testing and comparing the DKP results,
parameters are set to the same experimental design in [18]: The number of
generation, G = 200 × τ , item sizes are 100, 250 and 500, frequency (τ) is set to
20 and 40 respectively.

For each problem, the environment is changed at every τ generations where
τ is set to 10 and 25 for DDUFs and 20 and 40 for DKPs. The severity of the
change, ρ, is set to 0.1, 0.2, 0.5, 1.0 for all the problems. By using these severity
values in the previously mentioned equation, ρ × l = l/K, there will be four
different base states which are 2, 4, 10 and 20. For the cyclic environment with
noise, the noise probability pn is set to 0.05.

In total, 24 Dynamic DUF (DDUF) problems are constructed using 4 values
of ρ, 2 values of τ and 3 different environments for each DDUF and each DDUF
is solved by BIDGA, BIGA, domGA, and sGA separately.

For each test case, 50 independent runs were executed with the same set of
seeds. For each run, the best-of-generation is saved and overall performance [28]
is measured as shown in Eq. 5.

FBOG =
1
G

G∑

i=1

⎛

⎝ 1
N

N∑

j=1

FBOGij

⎞

⎠ (5)

where G is the number of generation for each run, N is the number of runs which
is 50, FBOGij

is the best of generation fitness value of generation i, of run j and
FBOG is the overall offline performance.

Bayesian Immigrant Diploid Genetic Algorithm for Dynamic Environments 129

Table 1. Parameter settings of BIDGA and BIGA

Parameter On DDUFs On DKPs

G 5000 τ × 200

Population size 100 100

Chromosome length 100 100, 250, 500

pc 1.0 1.0

pm 0.05, 0.08, 0.1, 0.15 0.05, 0.08, 0.1

β 0.1, 1.0 0.1

pn 0.05 0.05

Tournament size 4 4

Preliminary Tests for Parameter Tuning
In order to see the effect of the Bayesian immigrant mechanism of BIDGA, its
introducing rate β is set to 0.1 and 1.0 respectively. Finally, to see the effect of
the mutation, the pm is set to 0.05, 0.08, 0.1 and 0.15 for DDUFs and it is set to
0.05, 0.08 and 0.1 for DKPs respectively. All the parameter settings can be seen
in Table 1. Note that in the table, only the bold ones are shown in the plots in
this study because of the space limitation.

BIDGA is tuned under the different parameter settings (for β and pm) as
mentioned previously in the Dynamic Environment section. In [10], we compared
the dBOA’s β rate for 0.1 and 1.0. Results show that using a high rate of β causes
to stuck in local optima since the individuals in the sample-population of dBOA
are highly similar to each other. For this reason, β is set 0.1 for further processes.
Again, in [10], by fixing β is to 0.1, the mutation rate is investigated next. While
on DDUFs tuning mutation rate doesn’t show a significance, on DKPs it is
clearly seen that increasing the mutation rate increases the performance. In this
case, while the 0.05 mutation rate performs the worst, 0.08 is slightly better than
0.1. For this reason, pm is set to 0.08 for further processes.

5 Results and Conclusion

In this section, we are going to compare and contrast BIDGA, BIGA, domGA,
and sGA on DDUFs and compare BIDGA’s performance on DKP-100 dataset to
the results given3 in [18]. Due to the space limitation, only the results with τ = 10
will be given for DDUFs and τ = 20 will be given for DKP-100 on the plots. The
other results (different τ values, DKP-250, DKP-500) can be seen in [10].

There are several conclusions that can be obtained from the results of the
experiments on the DDUFs. Firstly, as seen in Fig. 1, the Bayesian immigrant
algorithms (BIDGA and BIGA) perform better than the rest on most of the
severity levels. This shows the importance of exploiting interactions between the
variables. Also, it can be observed from BIDGA and BIGA that, using diploidy
3 The exact results given in Table 2 in [18].

130 E. Gazioglu and A. S. Etaner-Uyar

(implicit memory) increases the performance of the algorithm. Except DDUF1
(simple One-Max), the rest of the problems have interactions between the vari-
ables as mentioned before. For this reason, in the results, it can be observed that
although all the algorithms show almost the same trend, on the other DDUFs,
BIDGA is better than the other algorithms and doesn’t show the same trend
with them.

In order to see the effect of the Bayesian decision mechanism, consider the
BIDGA and domGA in the results. Almost on each case, BIDGA adapts to the
newly formed environment better than the domGA. This is because while dBOA
exploits interactions between the variables, domGA’s probability vector doesn’t.
Also to see the effect of the diploidy mechanism, consider the BIDGA and BIGA.
Again, at each case, BIDGA performs better than the BIGA. This tells us the
effect of using implicit memory.

Viewing the results from left to right in Fig. 1, it can be seen that perfor-
mances of the algorithms relatively decreases since the noise effect reduces the
precision of cycles. Viewing the results from the top to bottom in Fig. 1, the
performance of DDUF1 vs. rest, it can be seen that differences of performances
are increase between algorithms because of the epistatic problem structure of
DDUF2, DDUF3, and DDUF4. As the interactions of the variables increase, the
performances of the algorithms except BIDGA are decreased.

The statistical results of the comparing BIDGA vs. others by two-tailed t-
test at a 0.05 level of significance are given in Table 2. In the table “s+” means
BIDGA is significantly better than the other algorithm, “+” means BIDGA is
better than the other, “s−” means BIDGA is significantly worse than the other
algorithm and finally “−” means BIDGA is worse than the other algorithm as
defined in [25].

Besides the above results, when the BIDGA results in Fig. 1 compared to
the MIGA results given in [25], except the cyclic environment, BIDGA performs
better than the MIGA. Also, in most cases, when the severity is 1.0, MIGA
performs better than the BIDGA. This is because MIGA uses an explicit memory
to save and reuse the good solutions of the already visited environments.

In Fig. 2, the experimental results on DKP of BIDGA and the results of
the other algorithms which are given in [18] can be seen. When we look at the
results, it is clearly seen that BIDGA performs better than any other algorithm.
In order to understand that, we calculated the averaged Infeasible individual
rate in the population just before the environmental change and just after the
environmental change and plotted the results on Fig. 3 for τ = 20 case.

From Fig. 3 it is seen that the diversity of the population is well enough to
handle the environmental changes. However, for the ρ = 1.0 we see that the
performance of BIDGA decreases on the Cyclic and Random environment. This
is because the nature of the knapsack problem, because dropping good items
and taking poor items is highly influential for a knapsack problem. On the other
hand, on the Cyclic with noise environment, differences of infeasible rate between
before and after are not too high since the noise effect prevents the population to
oscillate between two distinct environments and gives chance to diversification.

Bayesian Immigrant Diploid Genetic Algorithm for Dynamic Environments 131

Fig. 1. Offline performances of BIDGA, BIGA domGA and sGA with different options
on DDUF1, DDUF2, DDUF3 and DDUF4 under cyclic, cyclic with noise and random
dynamic environments with β = 0.1, pm = 0.08, τ = 10 at ρ = 0.1, 0.2, 0.5 and 1.0

132 E. Gazioglu and A. S. Etaner-Uyar

Table 2. The t-test results of the BIDGA vs. others at τ = 10

t-test results DDUF1 DDUF2 DDUF3 DDUF4

Random, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

BIDGA – BIGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

BIDGA – domGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

BIDGA – sGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

Cyclic, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

BIDGA – BIGA s+ s+ s− s− s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+ s+

BIDGA – domGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ + s+

BIDGA – sGA s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

Cyclic w/n, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

BIDGA – BIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

BIDGA – domGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

BIDGA – sGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

Fig. 2. Offline performances of BIDGA and the algorithms given in [18] with different
options on DKP-100

Bayesian Immigrant Diploid Genetic Algorithm for Dynamic Environments 133

Fig. 3. Infeasible rates of the BIDGA’s population at each change (before and after)
for τ = 20 on DKP-100

5.1 Conclusion and Future Work

In this study, a new EDA-included GA (BIDGA) is proposed to handle dynamic
environments in optimization problems. In the algorithm, the power of the prob-
ability theory and a nature-inspired algorithm (GA) is combined and the GA
part is implemented with diploid representation to have an implicit memory.
The use of a BN to calculate the phenotypes allows interactions between the
genes to be taken into account. This feature is seen to be useful especially in
the cases where there is epistasis. Experiments are conducted on three types of
change dynamics, namely cyclic, cyclic with noise and random and results are
compared with similar algorithms taken from literature. The results are very
promising to investigate this new type of algorithm further.

References

1. Akandwanaho, S.M., Viriri, S.: A spy search mechanism for memetic algorithm in
dynamic environments. Appl. Soft Comput. 75, 203–214 (2019)

2. Baluja, S.: Population-based incremental learning. A method for integrating
genetic search based function optimization and competitive learning. Technical
report, Carnegie-Mellon Univ. Pittsburgh, PA, Dept. of Computer Science (1994)

3. Baykasoğlu, A., Ozsoydan, F.B.: Dynamic optimization in binary search spaces
via weighted superposition attraction algorithm. Expert Syst. Appl. 96, 157–174
(2018)

4. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proceedings of the 1999 Congress on Evolutionary Computation-
CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1875–1882. IEEE (1999)

5. Branke, J.: Optimization in dynamic environments. In: Branke, J. (ed.) Evolution-
ary Optimization in Dynamic Environments, vol. 3, pp. 13–29. Springer, Boston
(2002). https://doi.org/10.1007/978-1-4615-0911-0 2

6. Branke, J.: Evolutionary Optimization in Dynamic Environments, vol. 3. Springer,
Boston (2002). https://doi.org/10.1007/978-1-4615-0911-0

7. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive oper-
ator in genetic algorithms having continuous, time-dependent nonstationary envi-
ronments. Technical report, Naval Research Lab Washington DC (1990)

https://doi.org/10.1007/978-1-4615-0911-0_2
https://doi.org/10.1007/978-1-4615-0911-0

134 E. Gazioglu and A. S. Etaner-Uyar

8. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environ-
ments. Technical report, Naval Research Lab Washington DC (1993)

9. De Bonet, J.S., Isbell Jr, C.L., Viola, P.A.: MIMIC: finding optima by estimating
probability densities. In: Advances in Neural Information Processing Systems, pp.
424–430 (1997)

10. Gazioglu, E.: Bidga results (2019). https://web.itu.edu.tr/egazioglu/bidga/
11. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.

IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)
12. Mavrovouniotis, M., Yang, S.: Direct memory schemes for population-based incre-

mental learning in cyclically changing environments. In: Squillero, G., Burelli, P.
(eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 233–247. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31153-1 16

13. Michalewicz, Z., Arabas, J.: Genetic algorithms for the 0/1 knapsack problem.
In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 134–143.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58495-1 14

14. Ozsoydan, F.B., Baykasoğlu, A.: Quantum firefly swarms for multimodal dynamic
optimization problems. Expert Syst. Appl. 115, 189–199 (2019)

15. Pelikan, M.: The Bayesian optimization algorithm (BOA) with decision graphs.
IlliGAL Report (2000025) (2000)

16. Pelikan, M., Hauschild, M.W., Lobo, F.G.: Estimation of distribution algorithms.
In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intel-
ligence, pp. 899–928. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-43505-2 45

17. Peng, X., Gao, X., Yang, S.: Environment identification-based memory scheme
for estimation of distribution algorithms in dynamic environments. Soft. Comput.
15(2), 311–326 (2011). https://doi.org/10.1007/s00500-010-0547-5

18. Qian, S., Liu, Y., Ye, Y., Xu, G.: An enhanced genetic algorithm for constrained
knapsack problems in dynamic environments. Natural Comput. 18(4), 913–932
(2019). https://doi.org/10.1007/s11047-018-09725-3

19. Uludağ, G., Kiraz, B., Etaner-Uyar, A.Ş., Özcan, E.: A framework to hybridize
PBIL and a hyper-heuristic for dynamic environments. In: Coello, C.A.C., Cutello,
V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol.
7492, pp. 358–367. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32964-7 36

20. Uludağ, G., Kiraz, B., Etaner-Uyar, A.Ş., Özcan, E.: A hybrid multi-population
framework for dynamic environments combining online and offline learning. Soft.
Comput. 17(12), 2327–2348 (2013). https://doi.org/10.1007/s00500-013-1094-7

21. Uyar, A.Ş., Harmanci, A.E.: A new population based adaptive domination change
mechanism for diploid genetic algorithms in dynamic environments. Soft. Comput.
9(11), 803–814 (2005). https://doi.org/10.1007/s00500-004-0421-4

22. Vavak, F.: Adaptive combustion balancing in multiple burner boiler using a genetic
algorithm with variable range of local search. In: 7th International Conference on
Genetic Algorithm. Morgan Kaufmann (1997)

23. Yang, S.: Constructing dynamic test environments for genetic algorithms based on
problem difficulty. In: 2004 Congress on Evolutionary Computation (CEC 2004),
vol. 2, pp. 1262–1269. IEEE (2004)

24. Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environ-
ments. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, pp. 1115–1122. ACM (2005)

https://web.itu.edu.tr/egazioglu/bidga/
https://doi.org/10.1007/978-3-319-31153-1_16
https://doi.org/10.1007/3-540-58495-1_14
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/s00500-010-0547-5
https://doi.org/10.1007/s11047-018-09725-3
https://doi.org/10.1007/978-3-642-32964-7_36
https://doi.org/10.1007/978-3-642-32964-7_36
https://doi.org/10.1007/s00500-013-1094-7
https://doi.org/10.1007/s00500-004-0421-4

Bayesian Immigrant Diploid Genetic Algorithm for Dynamic Environments 135

25. Yang, S.: Genetic algorithms with elitism-based immigrants for changing optimiza-
tion problems. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp.
627–636. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71805-
5 69

26. Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in
dynamic environments. Evol. Comput. 16(3), 385–416 (2008)

27. Yang, S., Tinós, R.: A hybrid immigrants scheme for genetic algorithms in dynamic
environments. Int. J. Autom. Comput. 4(3), 243–254 (2007). https://doi.org/10.
1007/s11633-007-0243-9

28. Yang, S., Yao, X.: Population-based incremental learning with associative memory
for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

https://doi.org/10.1007/978-3-540-71805-5_69
https://doi.org/10.1007/978-3-540-71805-5_69
https://doi.org/10.1007/s11633-007-0243-9
https://doi.org/10.1007/s11633-007-0243-9

Ant Colony Optimization Algorithm
for a Transportation Problem in Home
Health Care with the Consideration

of Carbon Emissions

Hongyuan Luo, Mahjoub Dridi, and Olivier Grunder(B)

Nanomedicine Lab, Univ. Bourgogne Franche-Comté, UTBM, 90010 Belfort, France
{hongyuan.luo,mahjoub.dridi,olivier.grunder}@utbm.fr

Abstract. Home health care (HHC) companies provide the care service
for the patients at their homes in order to help them recover from illness
or injury. Since transportation cost is one of the largest operating costs in
the daily activities of HHC company, it is crucial to optimize daily trav-
eling routes of the HHC vehicles in order to reduce the transportation
cost meanwhile improving the service quality to patients. However, trans-
portation has serious impacts on the environment. Therefore, it compels
managers of the HHC companies to pay more attention to CO2 emis-
sions when designing the daily logistics activities. This study addresses
a daily transportation problem of a HHC company with the constraints
of synchronized visits and carbon emissions. In order to solve the stud-
ied problem, we develop an ant colony optimization (ACO) algorithm.
The experimental results highlight the efficiency of the proposed ACO
algorithm compared with the Gurobi solver with a time limit of 3600 s.

Keywords: Ant colony optimization · Home health care ·
Synchronized visits · Carbon emissions

1 Introduction

Home health care (HHC) company provides the health care service for the
patients at their homes in order to help them recover from illness or injury.
According to a survey of the HHC companies, the HHC company conducts var-
ious logistic activities including delivering the caregivers, drugs, medical devices
from the HHC company (i.e. the depot) to the patients, and biological samples
(such as blood and urine) from the patients’ homes to the medical laboratory
for testing every day [1]. The daily scheduling of the caregivers has been demon-
strated to be a very difficult problem but a crucial decision activity for a HHC
company [2]. A large number of patients who need care service are usually dis-
tributed in a town, a village or a city. Each patient has a different service time
horizon (also called time window in the paper) and a different service require-
ment. Based on the requirement of the patient, the care service may be accom-
plished by more than one caregiver at the same time. In addition, we assume
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 136–147, 2020.
https://doi.org/10.1007/978-3-030-45715-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_11

Ant Colony Optimization Algorithm for a Transportation Problem 137

that some drugs have their own volume, thus the vehicle capacity is also taken
into consideration in this paper. Therefore, in this case, the HHC scheduling
problem is similar to a vehicle routing problem with time window (VRPTW)
and synchronized visits constraints [3].

As for a HHC company, transportation cost is one of the largest operating
costs in company daily activities, thus it is crucial to optimize daily traveling
routes of the HHC vehicles in order to reduce the transportation cost mean-
while improving the service quality to patients. However, transportation has
serious impacts on the environment, such as resource consumption, toxic effects
on ecosystems and humans, noise, and the effect induced by greenhouse gas
(GHG) emissions. Among these, GHG, especially carbon dioxide (CO2) emis-
sions, are the most concerning because CO2 emissions have direct influences on
people’s health [4]. If logistics is not scheduled well, it will cause congestion and
a large amount of CO2 emissions. Therefore, it compels managers of the HHC
companies to pay more attention to CO2 emissions when designing the daily
logistics activities.

Recently, some scholars have started studying the HHC problems with the
consideration of the carbon emissions. Fathollahi-Fard et al. [5] studied the prob-
lem of the delivery the required drugs and other HHC services to patients. They
firstly introduced the environmental pollution or green emissions into the HHC
problems, and developed a bi-objective optimization model. Four fast heuris-
tics are proposed to solve the problem. Xiao et al. [6] also considered the
carbon emissions in the HHC transportation problem. They used a capacity
VRP (CVRP) model to describe the HHC scheduling problem and proposed an
improved cuckoo search (ICS) algorithm for the problem.

This study addresses a daily routing and scheduling problem of a HHC com-
pany with the constraints of synchronized visits and carbon emissions. In order
to solve the large scale instances, an ant colony optimization (ACO) algorithm
is developed. The rest of this paper is organized as follows. Section 2 introduces
the scheduling problem and Sect. 3 builds the mathematical model. Section 4
develops an ACO algorithm in order to solve the problem. The computational
experiments are described in Sect. 5. Section 6 concludes the paper.

2 Problem Description

This paper addresses a daily routing and scheduling problem of a HHC company
with the constraints of synchronized visits and carbon emissions. The problem
can be defined as follows. Let G = (N,A) be a directed graph with a set of
nodes N = {0, 1, ..., n, n + 1} and a set of arcs A = {(i, j) |i, j ∈ N, i �= j}. Node
0 and node n + 1 represent the depot and the medical laboratory, respectively.
Nodes P = {1, 2, ..., n} represent the patients who need care service from the
HHC company.

Each patient i ∈ P has a drug and service demand qi, and each caregiver has
the same load and service capacity Q. Each patient i ∈ P is associated with a
service duration τi. Each patient i ∈ P has a service time window [ai, bi], where

138 H. Luo et al.

ai represents the earliest time and bi represents the latest time for visiting the
patients. Each caregiver is allowed to arrive before the earliest time ai, but the
caregiver must wait until that the time is available for the patient. The caregiver
is prohibited to arrive after the latest time bi. The depot and the laboratory have
the same time window, meaning the caregivers must leave from the depot and
return to the laboratory between the earliest time and latest time.

Some patients may need synchronized services, which means that two or
more caregivers must service these patients simultaneously. In this paper, we
only consider two caregivers visit a patient simultaneously. For each patient
i ∈ P with synchronized services, a fictive patient i′ who has the same locations,
demand, service duration and time window with patient i is generated. We refer
all fictive patients to Pf . Therefore, we can define N ′ ← N ∪ Pf , P ′ ← P ∪ Pf ,
A′ = {(i, j) |i, j ∈ N ′, i �= j}. We adopt (i, j) ∈ P sync to represent a couple of
patients i, j ∈ P ′ who need synchronized services. In other words, i and j are
associated to the same patient and must be serviced by two different caregivers
simultaneously.

The distance between patient i and j is denoted as dij . This paper considers
the constraints of the carbon emission. Speed has a great influence on carbon
emission. Therefore, the speed parameter is employed in the paper. The speed
of the vehicle k associated to the caregiver k is v. Based on the speed v, it is
very easy to calculate the travel time between i and j. The travel time between
i and j is dij/v.

The problem is developed to determine a set of routes in order to minimize
the carbon emissions under the constraints of time windows, capacity and syn-
chronized visits, and the following assumptions: (1) each caregiver has the same
service capacity and is associated to a vehicle; (2) each vehicle leaves from the
depot and returns to the laboratory, and visits each node at most once; (3) the
unused vehicles are assumed to start from the depot and end at the laboratory,
in order to prevent from adding the emission cost, we assume that the distance
from depot to laboratory is 0; (4) because there are many uncertain factors in
the city transportation, the speed of the vehicle is assumed to be a constant
average speed; (5) for the patient with synchronized visit services requirement,
a fictive patient who has the same locations, demand, service duration and time
windows is generated. We assume that the patient at most needs two caregivers
to service at the same time; (6) for the patient with synchronized visit services
requirement, if caregiver 1 arrives earlier than caregiver 2, caregiver 1 must wait
for caregiver 2 and then serving the patient together.

3 Mathematical Formulation

In this section, we will introduce the mathematical model. Firstly, we introduce
the theory of carbon emissions; then, a mixed-integer programming (MIP) model
is developed for this problem.

Ant Colony Optimization Algorithm for a Transportation Problem 139

3.1 Carbon Emissions

This paper adopts the emissions function developed by the United Kingdom
Transport Research Laboratory. The emissions function has been used by many
researchers, such as [7–9], and so on, which can demonstrate the effectiveness of
the emission function. The emissions function ε (v) is provided as follows:

ε (v) = L + av + bv2 + cv3 + dv−1 + ev−2 + fv−3 (1)

where v is the speed of the vehicle in kilometer(km)/hour(h), and the coeffi-
cients L, a, b, c, d, e and f will be different under the vehicles with different types
and sizes. The coefficients are adopted the settings in [9], and the values of
L, a, b, c, d, e and f are 765, −7.04, 0, 0.006320, 8334, 0, 0, respectively.

The vehicle will emit ε (v) gram(g)/km carbon dioxide (CO2) when the vehi-
cle is driven at the speed v. Therefore, the CO2 emission of a vehicle travels
from patient i to patient j can be expressed as:

Eij = ε (v) dij (2)

where the units of Eij and dij are g and km, respectively.
As is shown in Eq. (1), it is very clear that the CO2 emissions rate ε (v) will

vary with different speed. Therefore, an optimal speed can be found in order
to reduce the CO2 emissions. However, it is very difficult to control the speed
particularly during the peak hours in real life. Thus in this paper, the speed is
assumed to be a constant average speed, and ε (v) will also be a constant in the
paper.

3.2 MIP Model

In this section, we will describe the MIP model of the problem. Firstly, the model
notations of the parameters for the problem are summarized as follows:

V : set of all vehicles.
N : set of all nodes, including the patients, the depot and the laboratory.
N ′: set of all nodes, including the patients, the fictive patients, the depot and
the laboratory.
A′: set of arcs, A′ = {(i, j) |i, j ∈ N ′, i �= j}.
P : set of all patients.
P ′: set of all patients, including the fictive patients.
Q: capacity of each caregiver.
P sync: set of synchronized visits.
dij : the distance from node i to node j.
uij : the demand of patients up to node i, and transported in arc (i, j).
qi: the demand of patient i.
τi: the service duration for node i.
[ai, bi]: the availability time window of patient i.

140 H. Luo et al.

v: the speed of vehicle.
ε (v): the carbon emissions function.
M : a large positive value.

In order to model the problem clearly, we adopt the most widely used three-
index method to describe the MIP model. Firstly, the primary decision variable
is presented as follows:

xijk =
{

1, if caregiver k travels from i to j, in which i �= j;
0, otherwise.

The secondary decision variable is denoted as follows:
yi: the start working time of node i.

The MIP model can be denoted as follows:

Minimize
∑

(i,j)∈A

∑
k∈V

ε (v) dijxijk (3)

subject to,

∑
k∈V

∑
j∈N ′

xijk = 1, ∀i ∈ P ′ (4)

∑
j∈N ′

xjik −
∑
j∈N ′

xijk = 0, ∀i ∈ P ′, k ∈ V (5)

∑
j∈N ′

x0jk ≤ 1, ∀k ∈ V (6)

∑
i∈N ′

xi(n+1)k ≤ 1, ∀k ∈ V (7)

∑
i∈N ′

uji −
∑
i∈N ′

uij = qj , ∀j ∈ P ′ (8)

uij ≤ Q
∑
k∈V

xijk, ∀ (i, j) ∈ A′ (9)

yi − yj + τi + dij/v ≤ M (1 − xijk) , ∀i ∈ N ′, j ∈ P ′, k ∈ V, i �= j (10)
ai ≤ yi ≤ bi, ∀i ∈ N ′ (11)
yi = yj , ∀ (i, j) ∈ P sync (12)
xijk ∈ {0, 1}, ∀ (i, j) ∈ A′, k ∈ V (13)
uij ≥ 0, ∀ (i, j) ∈ A′ (14)
yi ≥ 0, ∀i ∈ P ′ (15)

The objective function (3) is the total carbon emission cost based on the speed
of the vehicle, the planed distance and the carbon emissions function. Constraint
(4) guarantee that each patient is visited only once. Constraint (5) ensures the
flow balance of the vehicles, i.e., the caregiver visits the patient and then will
leave the patient. Constraints (6) and (7) ensure that the vehicles start at the

Ant Colony Optimization Algorithm for a Transportation Problem 141

depot and end at the medical laboratory. Constraint (8) is the flow equation for
the demand of patients, and constraint (9) is the capacity constraints. Constraint
(10) denotes that the caregiver k can’t arrive at j before yi+τi+dij/v, the reason
is that the caregiver k needs the service duration τi and travel time from i to j.
Here, M is a large positive value. Constraint (11) ensures the time window of
the patient i. Constraint (12) guarantees the synchronized services. Constraint
(13) ensures that the decision variable xijk is binary. Constraints (14) and (15)
ensure the non-negative.

4 Ant Colony Optimization Algorithm

The ant colony optimization algorithm (ACO) algorithm, one of the famous
swarm intelligence algorithms [10], inspired from the foraging food behavior of
ant species, first proposed by Dorigo [11] for solving the traveling salesman prob-
lem (TSP), is a meta-heuristic algorithm.

4.1 Construction of Solution

In the ACO algorithm, an ant constructs a solution of the proposed problem.
Each solution consists of a set of routes and each route is serviced by one vehi-
cle. The main procedure of the ACO algorithm is presented in Algorithm1, in
which different ants obtain the information of their neighbor environment and
communicate with other ants by updating the concentration of pheromone [12].
Each ant uses a probabilistic rule to select the next patient to visit based on the
constraints. The probability of the ant k to visit patient j after visiting patient
i is calculated as follows:

P k
ij =

{
(τij)

α(ηij)
β

∑
l∈Ck

i
(τil)

α(ηil)
β , if j ∈ Ck

i

0, otherwise
(16)

where τij represents the trail of the pheromone between patient i and patient j.
Ck

i denotes the set of eligible candidates that the ant k can visit after patient i. α
and β are two important parameters which can determine the relative influence
between the visibility and the pheromone. ηij is the visibility value which is
defined as follows:

ηij = 1/dij (17)

where dij denotes the distance between patient i and patient j.
In the ACO algorithm, the process of constructing a feasible solution for

each ant is shown in Line 7 to Line 17 of Algorithm1. Firstly, each ant has a
list C (also named available candidates) which the patients haven’t been visited;
then, based on the constraints of the problem such as time windows, capacity,

142 H. Luo et al.

Algorithm 1. Ant Colony Optimization Algorithm
Input: an instance to be solved ;
Output: the global best solution Sbest and cost f (Sbest);
1: Initialize the parameters n, MaxIt, α, β, ρ, Q, MaxConst;
2: Initialize the pheromone matrix τ ;
3: Initialize the available candidates (C) for each ant;
4: Set f (Sbest) ← inf , it ← 1;
5: while it ≤ MaxIt do
6: for k ← 1, ..., n do
7: Choose a patient i randomly, and update C;
8: while C is not empty do
9: Calculate effective candidates C′ (

C′ ⊆ C
)

satisfied the constraints (capacity, time
window);

10: if C′ is empty then
11: Antk returned to Lab and prepared to start from the depot;
12: Update C and C′;
13: else
14: Select j ∈ C′ using the equation (16);
15: Update C and C′;
16: end if
17: end while
18: if f

(
SAntk

) − f (Sbest) < 0 then

19: Sbest ← SAntk
;

20: end if
21: k ← k + 1;
22: end for
23: Apply the pheromone update operator;
24: if MaxConst interations without improvement then
25: break while;
26: end if
27: it ← it + 1;
28: end while

etc., each ant can calculate the effective candidates C ′ (C ′ ⊆ C). It is clear that
initial candidates are all the patients. If there is no effective candidate for an
ant namely C ′ = ∅, the ant will return to the medical laboratory and prepare
to search the patients again. If there is no available candidate for an ant namely
C = ∅, the ant will stop searching, and a feasible solution will be constructed.

4.2 Pheromone Update and Stopping Criteria

The pheromone trails in the ACO algorithm are updated as follows:

τij ← (1 − ρ)τij , ∀ (i, j) (18)

where ρ ∈ [0, 1] is an adjustable parameter of pheromone. After evaporation, the
pheromones are updated as follows:

τij ← τij +
n∑

k=1

Δτij (19)

Ant Colony Optimization Algorithm for a Transportation Problem 143

where Δτij =

{
Q

LAntk
, if (i, j) ∈ the tour constructed by Antk

0, otherwise
, LAntk

is the

fitness value of the objective function of the solution constructed by Antk, n is
the numbers of all the ants, and Q is a constant.

After finishing the pheromone operator, the ACO algorithm will determine
whether to terminate the iteration. If the algorithm reaches the maximum num-
ber of iterations MaxIt or the algorithm doesn’t obtain a better solution for
MaxConst iterations, the ACO algorithm will be stopped.

5 Computational Experiments

To the best of our knowledge, there are no existing benchmark instances for
our HHC scheduling problem. Therefore, in order to obtain effective benchmark
instances, we generate the test instances based on the classical VRPTW bench-
mark instances designed by Solomon in 1983. We use the proposed ACO algo-
rithm to solve the studied problem. At the same time, the Gurobi solver is also
applied to solve the studied problem, which is as a benchmark to demonstrate
the effectiveness and efficiency of the proposed ACO algorithm for the studied
problem.

5.1 Test Instances and Parameters Settings

There are no similar problem in the existing researches, so we generate the test
instances based on the classical Solomon VRPTW benchmark instances. In the
Solomon VRPTW benchmark instances, the information includes the location
of the customers and depot, demand, time windows (ready time, due time), and
the service time.

In the Solomon VRPTW benchmark instances, the speed is standardized to 1.
It is very necessary to adjust the proportion of the data in the Solomon VRPTW
benchmark instances to suit the proposed problem. According to the survey, the
normal speed limit is 50 km/h in the city of France. However, the drivers often
need to slow down and accelerate during driving when driving to the intersection,
so it is difficult to keep an average speed at 50 km/h. In this paper, the HHC
scheduling activities happens at a city or a town. Therefore, an average speed
10 m/s (namely 36 km/h) is very suitable in the test instances of the proposed
problems. In the basis of the Solomon VRPTW benchmark instances, the rules
of generating the test instances of the proposed problems are as follows: we set
the coordinate of the medical laboratory as (30, 40); the speed is set as 36 km/h;
the distance is 100 times the original, the time window and service time are 10
times the original; other parameters will not be changed. The unit of the Xcoord
and Ycoord is meter(m), and the unit of the time windows and service time is
second(s).

The corresponding main parameters of the paper are listed in Table 1. All
the experiments are conducted on Intel Core i7-3770, 8 Duo 3.4 GHZ in order to
solve the proposed problem.

144 H. Luo et al.

Table 1. The parameters of ACO algorithm.

Algorithm Parameters Values

ACO n: the number of the ants 50

MaxIt: the maximum iterations 500

α: the number of pheromones contained in a direction 1

β: the weighting of unit quality value in a direction 2

ρ: the evaporation rate of pheromone 0.1

Q: a constant 1

MaxConst: the maximum iterations without improvement 80

5.2 Experimental Results

As mentioned before, we generate the test instances based on the classical
VRPTW benchmark instances. In the proposed MIP model, each caregiver has to
begin from the depot and end at the medical laboratory, which is quite different
from the classical VRPTW. The generated test instances have two important
parameters, which are speed and the patient in need of synchronized service.
As for the speed settings of the test instances, we set the speed as 40 km/h
in the paper. As for the patient in need of synchronized service, in order to
code conveniently, we use the following formulation to decide the number of
synchronized-service patients:

NSync =
⌈

NP

10

⌉
(20)

where �a� = min{n ∈ Z|a ≤ n} which means the smallest integer larger than
a, NSync is the number of synchronized-service patients, and NP is the num-
ber of the patients. And we set the third patient in every ten patients as the
synchronized-service patient.

In this paper, we use the proposed ACO algorithm and exact method (Gurobi
solver) to solve the proposed problem. Gurobi is a pretty good commercial opti-
mization solver, and has been used by many researchers for solving the lin-
ear programming (LP), quadratic programming (QP), quadratically constrained
programming (QCP) and mixed-integer programming (MIP).

The studied problem is NP-hard, so the Gurobi solver can only solve the small
scale instances within short calculating time. Therefore, we set the smallest scale
instances with 10 patients. In this paper, the Gurobi solver is used with a time
limit of 1 h (namely 3600 s) to perform a comparison of the performance of the
proposed ACO algorithm. If the Gurobi solver doesn’t give an exact solution
in 3600 s, we will give the best lower bound and upper bound calculated by
the Gurobi solver. We also runs the proposed ACO algorithm for 10 times, and
the experimental results are presented in the following Table 2. In the tables,
NP represents the number of the patients, NSync means the number of the
synchronized-service patients, and the Gap is calculated as follows:

Ant Colony Optimization Algorithm for a Transportation Problem 145

Gap =
ACO.Best − Gurobi.Cost

Gurobi.Cost
× 100% (21)

where ACO.Best is the best objective value calculated by the proposed ACO
algorithm, and Gurobi.Cost is the result obtained by the Gurobi solver. It should

Table 2. The experimental results of transportation problems

Instance Gurobi Solver ACO

Name NP NSync Cost(kg) CpuT(s) Best(kg) Gap(%) Avg. CpuT(s)

HHC C103 10 1 [9.53,12.5] 3,600.00 12.56 0.48 12.77 3.07

HHC C104 10 1 [8.11,12.13] 3,600.00 12.33 1.68 12.47 2.89

HHC C105 10 1 12.50 0.63 12.50 0.00 12.50 3.30

HHC C203 10 1 22.30 236.05 22.85 2.47 23.47 2.89

HHC C204 10 1 21.10 680.41 21.29 0.90 21.97 3.47

HHC C205 10 1 24.18 5.99 24.18 0.00 24.27 3.15

HHC R104 10 1 26.52 258.99 27.59 4.05 28.34 3.20

HHC R105 10 1 32.93 0.50 32.93 0.00 33.06 4.02

HHC R205 10 1 25.69 1.39 25.69 0.00 27.13 2.90

HHC RC103 10 1 24.07 1,291.29 25.11 4.31 25.81 3.11

HHC RC104 10 1 [21.21,23.53] 3,600.00 23.81 1.17 24.94 2.97

HHC RC105 10 1 26.77 423.20 26.83 0.23 27.19 4.36

HHC RC203 10 1 23.02 1,647.13 23.91 3.87 24.57 2.93

HHC RC205 10 1 24.16 593.23 24.78 2.55 25.54 2.91

HHC C103 25 3 [26.00,32.26] 3,600.00 33.01 2.33 34.33 17.58

HHC C104 25 3 [25.99,31.99] 3,600.00 33.58 4.97 34.93 19.46

HHC C105 25 3 32.52 23.14 32.56 0.12 34.88 20.57

HHC C204 25 3 [25.23,34.57] 3,600.00 36.28 4.95 45.70 19.94

HHC R104 25 3 [43.61,60.34] 3,600.00 64.51 6.91 68.80 18.23

HHC R105 25 3 68.99 37.08 70.27 1.86 73.59 37.43

HHC RC105 25 3 [44.61,58.87] 3,600.00 61.35 4.21 63.12 18.86

HHC RC204 25 3 [27.39,50.90] 3,600.00 53.02 4.16 56.68 16.43

HHC RC205 25 3 [39.27,53.89] 3,600.00 57.08 5.92 59.14 15.02

AVG 1791.26 2.48 9.94

HHC C101 100 10 – 3,600.00 144.05 – 153.13 238.29

HHC C102 100 10 – 3,600.00 159.25 – 165.96 214.78

HHC C103 100 10 – 3,600.00 161.24 – 175.95 156.79

HHC R101 100 10 – 3,600.00 236.63 – 242.15 318.72

HHC R102 100 10 – 3,600.00 205.34 – 214.32 295.35

HHC R103 100 10 – 3,600.00 187.62 – 192.25 205.96

HHC RC101 100 10 – 3,600.00 239.94 — 246.24 227.10

HHC RC102 100 10 – 3,600.00 224.23 – 228.18 237.37

HHC RC103 100 10 – 3,600.00 221.94 – 227.86 220.30

The set [a, b] represents that Gurobi doesn’t give an exact solution in 3600 s, a and b
are the best lower bound and upper bound, respectively.

146 H. Luo et al.

be noticed that if the Gurobi solver doesn’t give an exact solution in 3600 s, we
use the best upper bound as the result obtained by the Gurobi solver.

As for the small size instances with 10 and 25 patients, we can see that
the Gurobi solver can’t give an exact solution for most instances within the
time limit of 3600 s, meanwhile the proposed can solve the studied problem
within 9.94 s, which demonstrates the efficiency of the proposed ACO algorithm
for small scale problems. And compared to the Gurobi solver, the gap is very
small, which also highlights the effectiveness and efficiency of the proposed ACO
algorithm for small scale problems. As for the large scale problems, it is clear
that the Gurobi can’t solve all the problems within the time limit of 3600 s,
meanwhile the proposed ACO algorithm can solve the large size problems using
pretty good computing efficiency, which proves the superiority of the proposed
ACO algorithm for the large scale problems.

Overall, the experimental results highlight the effectiveness and efficiency of
the proposed ACO algorithm. The proposed ACO algorithm calculates great
results with synchronized visits and carbon emissions constraints comparing to
the Gurobi solver. In addition, the proposed ACO algorithm has been evaluated
on instances with 100 patients. Since almost 93% of the HHC companies can’t
support more than 100 patients [13], the proposed ACO algorithm can be use in
the most of HHC companies in France for the planning of the logistics activities
in this scale.

6 Conclusions

Transportation cost is one of the largest operating costs in HHC company daily
activities, thus it is crucial to optimize daily traveling routes of the HHC vehi-
cles in order to reduce the transportation cost meanwhile improving the service
quality to patients. However, transportation has serious impacts on the envi-
ronment. Therefore, it compels the managers to pay more attention to CO2

emissions when designing the daily logistics activities. This study addresses a
daily routing and scheduling problem of a HHC company with the constraints
of synchronized visits and carbon emissions. We formulated the problem as a
MIP model. Since the synchronized visits constraints make solving the proposed
problem is more complicated than solving standard VRP related problems. In
order to solve the studied problem, we developed an ant colony optimization
(ACO) algorithm. The experimental results highlight the efficiency of the pro-
posed ACO algorithm compared with the Gurobi solver with a time limit of
3600 s.

In this study, we assumed that the vehicle travels in a constant average
speed, and we didn’t consider traffic congestion issues. In the next work, we can
set speed as a variable for the problem. In addition, we can improve the proposed
ACO algorithm to solve the studied problem.

Ant Colony Optimization Algorithm for a Transportation Problem 147

References

1. Liu, R., Xie, X., Augusto, V., Rodriguez, C.: Heuristic algorithms for a vehicle
routing problem with simultaneous delivery and pickup and time windows in home
health care. Eur. J. Oper. Res. 230(3), 475–486 (2013)

2. Yuan, B., Liu, R., Jiang, Z.: Daily scheduling of caregivers with stochastic times.
Int. J. Prod. Res. 56(9), 3245–3261 (2018)

3. Liu, R., Tao, Y., Xie, X.: An adaptive large neighborhood search heuristic for
the vehicle routing problem with time windows and synchronized visits. Comput.
Oper. Res. 101, 250–262 (2019)

4. Bektaş, T., Laporte, G.: The pollution-routing problem. Trasport. Res. B-Meth.
45(8), 1232–1250 (2011)

5. Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R.: A bi-
objective green home health care routing problem. J. Clean. Prod. 200, 423–443
(2018)

6. Xiao, L., Dridi, M., Hajjam El Hassani, A., Fei, H., Lin, W.: An improved cuckoo
search for a patient transportation problem with consideration of reducing trans-
port emissions. Sustainability 10(3), 793 (2018)

7. Jabali, O., Van Woensel, T., De Kok, A.G.: Analysis of travel times and CO2

emissions in time-dependent vehicle routing. Prod. Oper. Manag. 21(6), 1060–
1074 (2012)

8. Demir, E., Bektaş, T., Laporte, G.: The bi-objective pollution-routing problem.
Eur. J. Oper. Res. 232(3), 464–478 (2014)

9. Teoh, B.E., Ponnambalam, S.G., Subramanian, N.: Data driven safe vehicle routing
analytics: a differential evolution algorithm to reduce CO2 emissions and hazardous
risks. Ann. Oper. Res. 270(1–2), 515–538 (2018)

10. Wang, D., Luo, H., Grunder, O., Lin, Y., Guo, H.: Multi-step ahead electricity price
forecasting using a hybrid model based on two-layer decomposition technique and
BP neural network optimized by firefly algorithm. Appl. Energy 190, 390–407
(2017)

11. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996)

12. Wang, X., Choi, T.M., Liu, H., Yue, X.: Novel ant colony optimization methods for
simplifying solution construction in vehicle routing problems. IEEE Trans. Intell.
Transp. Syst. 17(11), 3132–3141 (2016)

13. Decerle, J., Grunder, O., Hajjam El Hassani, A., Barakat, O.: A memetic algorithm
for a home health care routing and scheduling problem. Oper. Res. Health Care
16, 59–71 (2018)

Selective Vehicle Routing Problem:
A Hybrid Genetic Algorithm Approach

Andrea Posada, Juan Carlos Rivera(B) , and Juan D. Palacio

Mathematical Modeling Research Group, Universidad EAFIT, Medelĺın, Colombia
{aposad31,jrivera6,jpalac26}@eafit.edu.co

Abstract. In this paper we deal with a selective vehicle routing
problem (SVRP), which was proposed in Posada et al. [20]. In the
SVRP each node belongs to one or several clusters. Contrary to classical
vehicle routing problems, here it is not necessary to visit all nodes, but to
visit appropriate nodes in such a way that all clusters are visited exactly
once. A genetic algorithm (GA) based on random key representation is
proposed to solve this VRP variant. The proposed algorithm is a hybrid
metaheuristic which integrates randomized constructive solutions, a
variable neighborhood search procedure, an order-first cluster-second
operator, and a mixed-integer linear model to repair unfeasible
solutions. The metaheuristic is tested by using instances with up to 63
nodes adapted from the generalized vehicle routing problem (GVRP).
The GVRP is a special case of this SVRP where each node belongs
to exactly one cluster. The results allow to evaluate the impact of
different clusters configuration on the instance complexity, the impact
of each algorithm’s component on the metaheuristic performance, and
the efficiency of the method by a comparison with a mixed-integer linear
program.

Keywords: Selective vehicle routing problem · Hybrid genetic
algorithm · Combinatorial optimization · Metaheuristic algorithm

1 Introduction

The vehicle routing problem (VRP) is well-known as one of the most studied
problems in the operational research and combinatorial optimization field. Given
a geographically scattered set of nodes and a fleet of vehicles, the VRP aims to
find a route for each vehicle in such a way that each node is visited exactly once
while the total traveled distance is minimized. A large number of VRP variants
have been reported in the literature including different features on vehicles, nodes
and the problem network [24].

In this paper, we propose a hybrid metaheuristic algorithm for solving a
variant of the VRP called selective vehicle routing problem (SVRP), which is
described in Posada et al. [20]. As main characteristic of the SVRP, not all

Supported by Universidad EAFIT and Apolo Scientific Computing Center.

c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 148–161, 2020.
https://doi.org/10.1007/978-3-030-45715-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_12&domain=pdf
http://orcid.org/0000-0002-2160-3180
http://orcid.org/0000-0003-0081-8470
https://doi.org/10.1007/978-3-030-45715-0_12

Selective Vehicle Routing Problem: A Hybrid Genetic Algorithm Approach 149

Fig. 1. Illustration of the SVRP and examples of feasible solutions. Source: Posada
et al. [20].

nodes need to be visited. In contrast, in this version all of the nodes are grouped
by clusters, allowing each node to belong to one or several clusters. The visited
nodes must be chosen in such a way that all clusters are visited exactly once and
the total traveled distance is minimized. Each node has a known demand which
must be covered, by one of the available capacitated vehicles of a homogeneous
fleet, when a node in the same cluster is visited. Note that the generalized vehicle
routing problem (GVRP) is a special case of the SVRP, in which each node
belongs to only one cluster. Figure 1(a) depicts an example of the SVRP studied
here where 38 nodes are scattered on nine clusters represented by letters from
A to H. As it is shown, the depot belongs to a single-node cluster, and different
configurations can be found for required nodes: (a) single-nodes clusters, i.e.
clusters with only one node (see cluster G), (b) clusters which are subsets of
other larger clusters (see clusters C and D), (c) clusters without intersections
with other clusters (see cluster E), and (d) clusters with non-empty intersection
(see clusters A, H and I). Two examples of feasible solutions with one vehicle
are shown in Fig. 1(b) and (c). Note that, both solutions visit all nine clusters,
nevertheless the first one visits eight nodes while the second one visits only six.

Given the NP-hardness nature of the VRP [16], the selective variant is also an
NP-hard problem. Despite the fact that exact approaches are able to solve opti-
mally small instances of our problem [20], heuristic and metaheuristic algorithms
are a suitable strategy to find good quality solutions in a decent computational
time. In this paper, we deal with the SVRP via a genetic algorithm (GA). In
our GA, the solutions are encoded as random keys [5], a kind of representation
for chromosomes in GA, previously used in several combinatorial optimization
problems. To evaluate and improve solution quality, we use split [22] and variable
neighborhood descend (VND) algorithms. To deal with unfeasible solutions, a
mixed-integer linear program (MILP) is use to repair the solution. To the best of
our knowledge, there is no evidence in the literature of a similar solution strategy
for selective VRPs.

The rest of the paper is organized as follows: Sect. 2 summarizes the referred
literature about selective features on VRPs and metaheuristic approaches based
on genetic algorithms to tackle routing problems. The SVRP is formally defined

150 A. Posada et al.

in Sect. 3. Our metaheuristic approach is described in Sect. 4. Computational
experiments and their corresponding results are presented in Sect. 5. The paper
closes with some conclusions and future research directions in Sect. 6.

2 State of the Art

Since the SVRP is a generalization of the VRP and selective features can be
stated and adressed in different ways, the objective of this section is three-
fold: (a) to point out some of the SVRP applications, (b) to describe briefly
some of the SVRP variants reported in literature related to VRPs, i.e. GVRP,
close-enough VRP (CEVRP) and clustered VRP (CluVRP). Some orienteering
problems are also described: team orienteering problem (TOP), clustered orien-
teering problem (COP) and the set orienteering problem (SOP). Lastly, (c) to
outline some of the evolutionary metaheuristic algorithms available to deal with
VRPs emphasizing on genetic algorithms (GA) which is the base of the proposed
hybrid metaheuristic in this paper.

Selective features for VRPs can be found in several logistic contexts. For
instance, in response operations, relief aid can be delivered on close-enough nodes
with the aim to cover a wider region after a disaster occurs [1]. Other applications
may include: (a) the Traveling Circus Problem in which circus or exhibition
managers aim to design a tour at minimum cost covering a set of villages within
a maximum distance limit from each one of them, (b) material flow systems
design applications for block layout of production plants as generalized routing
problems, (c) urban transport routes design, (d) post-optimization procedures
and subproblems of other vehicle routing models when heuristic concentration
strategies, for instance, are used. For a more extensive description on selective
VRPs applications, we refer the reader to Laporte et al. [15], Palekar and Laporte
[18] and Baldacci et al. [4].

As mentioned in Sect. 1, one special case of the SVRP is the GVRP intro-
duced by Ghiani and Improta [8]. The GVRP aims to design minimum cost
routes starting from the depot, visiting once each one of the predefined clusters
and ending each route at the depot. In the GVRP, all the clusters are mutually
exclusive, that is, each node belongs only to one cluster. Despite the similarities
between our problem and GVRP, ours allows to have non-empty intersections
between clusters. Some of the work on the GVRP may be found in Kara and
Bektaş [14], Bektaş et al. [6] and Pop et al. [19]. Secondly, the CEVRP is a
variant of the SVRP in which it is not necessary to visit each node but it is
possible to get close-enough to them. A well-know application of the CEVRP
is the meter reading to record electricity, water and gas consumption. Utility
companies with radio frequency identification technology (RFID) available are
not subject to visit each one of the customers but to design close-enough routes
to them. Some strategies to deal with the CEVRP may be found in Gulczynski
et al. [11] and Carrabs et al. [7]. In the CluVRP, the available vehicles must visit
each one of the predefined clusters but all the nodes in a cluster must be served
before the vehicle leaves the cluster. We refer the reader to Sevaux and Sörensen
[23] and Vidal et al. [27] for detailed algorithms dealing with the CluVRP.

Selective Vehicle Routing Problem: A Hybrid Genetic Algorithm Approach 151

Regarding orienteering problems, the TOP aims to maximize the total
collected profit visiting a subset of nodes, subject to a limited route length
(or time). After the orienteering problems were introduced in Tsiligirides [25]
and Golden et al. [9], many scientific papers have been published. Particularly,
Angelelli et al. [2] present the COP in which the maximization of total collected
profit remains as objective function and a duration of the route must not exceed a
given threshold. Moreover, nodes are grouped on clusters and a profit associated
with each cluster is gained only if all customers in the cluster are visited.
The authors in [2], propose a MILP for the COP as well as several valid
inequalities. As solution strategies, they design a branch-and-cut and a tabu
search and solve randomly generated COP instances. Recently, Archetti et al. [3]
introduce the SOP, a generalization of the COP in which the profit of a cluster is
gained if at least one of the nodes in the cluster is served. The authors propose
a mathematical formulation for the problem and also a matheuristic algorithm.
This matheuristic is tested on instances with up to 1000 nodes. For more details
about orienting problems and related studies, we refer the reader to Gunawan
et al. [12] and Vansteenwegen et al. [26].

To deal with these VRPs, many solution strategies have been used. One
of them is evolutionary algorithms, particularly, GA. In basic GA, an initial
population generator creates a set of randomized solutions. A selection operator
selects solutions (parents) to be combined and generate new solutions (children)
using a crossover operator. To avoid a premature convergence, some children are
selected, usually with a small probability, to be mutated by a mutation operator.
Finally, the population is updated to keep the best solutions. Depending on the
tackled problem, it is possible to use different specific solution representations.
Nevertheless, there exists a robust representation approach called random keys
(RK). RK is a way to represent a solution with random numbers (or numbers
in (0, 1) interval) which helps to encode solutions for several combinatorial opti-
mization problems. Precisely, Bean [5] presents a first approach to RK for GA
in machine scheduling, resource allocation and quadratic assignment problems.
More recently, Gonçalves and Resende [10] present a variation of RK represen-
tation in GA: the biased random-key strategy. In the biased algorithm, each new
solution is generated selecting at least one parent at random from an elite subset of
individuals. The authors present some applications for several scheduling
problems (e.g., resource-constrained, multiproject, single machine).

With a more general structure, memetic algorithms (MA) are a class of
metaheuristics which combine ideas from population-based algorithms and local
search (LS) techniques [17]. Hart et al. [13] define MA as a population-based
metaheuristic composed of an evolutionary framework and a set of local search
algorithms which are activated within the generation cycle of the external frame-
work. Nevertheless, most of the implementations in combinatorial optimization
are hybrid metaheuristics combining GA with LS procedures. GA allows to
explore the search space due to the fact that they maintain a pool of solutions
simultaneously. On the other hand, LS procedures aim to intensify the search on
promising zones of the solution space. MA has been successfully used to solve

152 A. Posada et al.

vehicle routing problems and its variants. For instance, Prins [21] proposes an
MA with a split procedure to evaluate the fitness function of each individual
for the CVRP and three classical heuristic procedures to generate good starting
points. The algorithm is tested on instances up to 483 nodes with competitive
computational times.

Vidal et al. [28] combine a GA structure with LS and population-diversity
schemes with the aim to solve the multi-depot VRP, the periodic VRP and the
multi-depot periodic VRP. In that algorithm, diversity and objective function
values are included as criteria to preserve individuals. Authors also report new
best known solutions and improvements on computational time for instances
with up to 417 nodes. Vidal et al. [29] extend the work of Vidal et al. [28] by
describing a population management strategy within a GA (GA|PM). In this
case, the algorithm is able to deal with several VRP variants (e.g., multi-depot,
periodic and vehicle-site dependencies) when time windows are imposed. This
strategy is tested with instances up to 1000 nodes and 27 vehicles outperforming
state-of-the-art methods.

3 Mathematical Definition

Based on Posada et al. [20], the SVRP studied in this paper can be mathematically
defined as follows. Let G = (V, E) be a complete graph. The set V = {0, 1, ..., n}
contains the origin (depot), labeled as 0, and the set of n required nodes. The
set E is composed by all edges or arcs (i, j), i.e. E = {(i, j) | i, j ∈ V, i �= j}. Each
vertex i ∈ V has associated a certain amount of demand qi and a spatial coordinate
(xi, yi), and each arc (i, j) ∈ E a label dij , which is the euclidean distance between
nodes i and j. The set of vertices V is partitioned into m + 1 non-empty subsets,
called clusters, i.e. V0, V1,,Vm, such that

⋃
c∈C Vc = V being C = {0, 1, 2, ...,m}

the set of clusters. The cluster V0 = {0} is composed of the depot. For modeling
purposes, we define the parameter λic which indicates whether the node i ∈ V
belongs to cluster c ∈ C (λic = 1) or not (λic = 0). The total demand of each
cluster can be satisfied if any of its nodes is visited. A fleet K of identical vehicles
(homogeneous fleet) with individual capacity Q are based at the depot. It can be
assumed, without loss of generality, that |K| ≤ |C|.

A solution for the problem in G is a collection of |K| constrained routes, one
for each vehicle. Each vehicle k ∈ K must perform a route which starts at the
depot 0, spans a set Vk \{0} of selected nodes and ends at the depot 0, while
its total load cannot exceed to capacity Q. Each cluster has to be visited by one
vehicle. The objective is to minimize the total traveled distance. As nodes can
belong to several clusters (see Fig. 1) and each cluster must be visited, we define
the parameter wi = 1∑

c∈C λic
for each node i ∈ V, which avoids to over-count

the demand of nodes when computing the demand of clusters.
As vertices are grouped by clusters, there are some special cases to take into

account. A vertex can belong to several clusters, e.g. three in Fig. 1, so if it is
visited, all nodes in any of its clusters are covered. That is the reason why the
second solution visits less nodes. Nevertheless, the demand of nodes covered by

Selective Vehicle Routing Problem: A Hybrid Genetic Algorithm Approach 153

a single node can exceed vehicle capacity if the visited node belongs to many
clusters. On the other hand, a cluster can be a subset of another one (see cluster
D in Fig. 1). In this case, a node from the subset cluster has to be visited,
otherwise the solution is unfeasible.

Posada et al. [20] present mixed-integer linear programs (MILPs) for SVRP
including alternative constraints. In Sect. 5, we compare our results with the best
performed MILP in [20].

4 Metaheuristic Approach

Since VRP and GVRP are special cases of the SVRP dealt in this paper, SVRP
belongs to the NP-hard class of problems and metaheuristic methods must be
used to solve large instances of the selective variant. The solution strategy pro-
posed in this paper is mainly based on GA. Initially, the procedure generates a
set of feasible solutions to compose a population. In each generation, the chil-
dren are created by a combination of parents chosen from the population and
they are accepted in the new generation based on quality criteria. Solutions
can be included in the population if they are good enough. The algorithm also
uses an MILP as a repairing procedure if unfeasible solutions are obtained. The
algorithm can be described by Algorithm 1.

In this section we describe the main procedures and features of the proposed
metaheuristic.

Solution Representation: In our GA implementation, solutions are represented
by random keys (RK). Each node has associated a priority number between 0 and
1 which allows to select the visited nodes and their order. This representation
also facilitates crossover and mutation processes.

The procedure to transform a RK solution into a set of routes is the following:
let RKi be the random key number given to node i, and VS and VU the subsets of
V which represent the serviced or visited and the uncovered nodes respectively.
At the beginning, VS = ∅ and VU = V. While VU �= ∅, the node i ∈ VU with
the largest RK value is chosen to be visited. Then, for each cluster to which
node i belongs to, all nodes in those clusters are removed from VU and node i is
added to VS . Nodes in VS create a non-capacitated giant tour in the order they
are included in the set. Lastly, VS is translated into a set of routes by a split
algorithm.

As initial solutions are generated with a more involved procedure, they can
be easily converted to random keys. Take into account that each node in a route
has a greater RK value than all nodes visited after it. Similarly, all visited nodes
have greater RK values than all (not visited) nodes in the same cluster.

Generation of Feasible Solutions: This process is carried out by two
randomized constructive methods. A restricted candidate list (RCL) is gen-
erated under minimum distance criterion for the first method and minimum

154 A. Posada et al.

Algorithm 1 – GA
POP ← RandomizedConstruction(nPOP)
POP ← Split(POP)
POPRK ← RK(POP)
while stop criteria = false do

for i = 1 to nPOP do
ParentsRK ← Tournament(POPRK)
SonRK [i] ← Crossover(ParentsRK , α)
if rand() < β then

SonRK [i] ← Mutate(SonRK [i])
end if
Son[i] ← decodify(SonRK [i])
Son[i] ← Split(Son[i])
if infeasible(Son[i]) then

Son[i] ← makeFeasible(Son[i])
end if
if rand() < θ then

Son[i] ← VND(Son[i])
end if

end for
[POP, PORRK] ← Update(POP, Son, POPRK , SonRK)

end while

density criterion for the second one. We compute the density of node j when it
is visited after node i as:

density(i, j) =
dij

∑

c∈C

λjc

∀ i, j ∈ V

Density criterion gives higher priority to nodes which cover a larger number
of clusters and with a smaller distance to the last visited node.

Splitting Procedure: The implemented split is presented in [22]. Here, as not all
nodes need to be visited, the split algorithm is only applied on the visited ones
(VS). Let us remark that since few nodes can cover many others and a fixed size
fleet is assumed, maybe not all vehicles are used. And that the split algorithm
is able to provide the optimal set of routes subject to a given order (giant tour).

Selection Operator: This process is carried out by tournament. Each time, two
pairs of solutions are randomly chosen; all solutions have the same probability to
be selected. For each pair, the solution with less cost becomes one of the parents.

Crossover Operator: The crossover operator is based on the classical uniform
method, but parents do not have necessarily the same probability; i.e. for each
node, the random key is inherited from the first parent with a probability of α
and from the second parent with a probability 1 − α, where α ∈ (0, 0.5]. The
number of generated children is equal to the population size. Note that a child
solution can visit nodes that are not visited by its parents.

Selective Vehicle Routing Problem: A Hybrid Genetic Algorithm Approach 155

Improvement Operator: A variable neighborhood descend (VND) composed by
2-opt and 2-opt* moves is applied to the children with a probability θ.

Mutation Operator: The children can be also mutated with a probability β. This
function operates over the RK solution. It consists of the selection of three posi-
tions of the RK solution and change their value for three new random numbers.

Population Update: After all children are generated, nPOP solutions from the
current and children populations are saved as the successive population for the
next generation. Individuals with the best objective values over both populations
have priority to be selected. This priority is proportional to the objective function
value.

Repairing Procedure: The solutions obtained after the crossover and mutation
operators can be unfeasible. Depending on the visited nodes, some can become
unreachable or all nodes of a cluster can be covered without visiting the cluster.

Given that the number of unfeasible solutions is high, these solutions are
repaired by a mixed-integer linear program. The following formulation allows to
guarantee feasibility by changing previous selected nodes. The objective of this
model is to preserve as many nodes as possible from the original solution. To
model this MILP, let P be the set of nodes that cannot be visited. Si represents
the given solution where Si = 1 indicates that the node i is visited. The binary
decision variable xi takes the value of one if node i is visited in the repaired
solution, and of zero otherwise. Variable τi corresponds to the number of changes
with respect to the original (unfeasible) solution. The problem can be formulated
by the expressions (1)–(7).

min Z =
∑

i∈V
τi (1)

s.t. τi ≥ xi − Si, ∀ i ∈ V (2)
τi ≥ Si − xi, ∀ i ∈ V (3)

xi = 0, ∀ i ∈ P (4)
∑

i∈V
λic · xi = 1, ∀ c ∈ C (5)

xi ∈ {0, 1}, ∀ i ∈ V (6)
τi ≥ 0, ∀ i ∈ V (7)

Expression (1) minimizes the total number of changes to the original solution.
Constraints (2) and (3) define whether there is a change over the visited nodes or
not. Constraints (4) fix to zero variables corresponding to nodes that cannot be
visited. Equations (5) force to visit each cluster exactly once. Finally, expressions
(6) and (7) define variables domain.

Once obtained a feasible set of nodes to be visited, they are organized in
a solution preserving the order of the conserved nodes and inserting the new
selected ones, according to the available capacity, from highest to lowest demand.

156 A. Posada et al.

5 Computational Experiments

The proposed metaheuristic algorithm is coded in Python 3.7 running on an Intel
Xeon 2.10 GHz with 64 gigabytes of RAM running under Linux Rocks 6.2. To
evaluate the performance of the proposed algorithm, we use the 48 benchmark
instances solved in [20] (36 for the SVRP and 12 for the GVRP). Let us remark
that SVRP instances are generated by adding some random chosen nodes on
the predefined clusters of GVRP instances. SVRP instances have three levels of
complexity defined as the maximum number of clusters per node (MNCN) and
it may vary from two to four. Given the randomness when including nodes in
each cluster, it can be noted that expression

∑
i∈V

∑
c∈C λic may also vary for

each instance. Therefore, [20] propose the average cluster density (ACD) ratio
as a complexity measure of each instance computed as follows:

ACD =
|V|

∑

i∈V

∑

c∈C
λic

(8)

Three sets of experiments have been designed to setup and evaluate the algo-
rithm performance. Firstly, in Sect. 5.1, we define how we generate initial solu-
tions: selection criteria and RCL size for the randomized constructive method.
Next, in Sect. 5.2, we evaluate the performance of the split procedure. Finally,
Sect. 5.3 compares the results of the proposed GA and the MILP.

5.1 Initial Solutions

In this section we compare different selection criteria using deterministic construc-
tive methods for the SVRP. Table 1 presents the results for two selection criteria
based on minimum distance and minimum density.

In general, it can be observed that the distance criterion shows better results
in most of the items specified in Table 1. With this criterion, the best solution is
found for 19 of 36 instances of the SVRP (first row), and additionally, the same
solution as with the density criterion for 5 out of 36 instances of the SVRP.
Moreover, two solutions found are optimal, one of them also is met by density
criterion; and another solution is equal to the one found by the mathematical
model, which can not be guaranteed as optimal. The second and third row

Table 1. Comparison between selection criteria for SVRP instances

Comparison item Distance criterion Density criterion

Number of best solutions 19 12

Average lower bound gap 32.31% 32.83%

Average BKS gap 24.93% 25.25%

Average time (seconds) 1.95 × 10−2 1.67 × 10−2

Selective Vehicle Routing Problem: A Hybrid Genetic Algorithm Approach 157

Table 2. Comparison of RCL size for GVRP and SVRP instances

RCL GVRP SVRP

size gapavg No. gapavg gapmin No. gapmin Time (s) gapavg No. gapavg gapmin No. gapmin Time (s)

1 21.14% 10 21.14% 4 4.19 × 10−3 24.93% 15 24.93% 4 1.95 × 10−2

2 27.85% 2 17.12% 6 4.15 × 10−3 27.22% 8 17.55% 10 2.06 × 10−2

3 31.89% 0 21.24% 0 4.85 × 10−3 29.57% 4 17.10% 12 2.29 × 10−2

4 33.55% 0 22.77% 0 5.01 × 10−3 30.00% 3 17.46% 11 2.26 × 10−2

5 35.65% 0 23.70% 2 4.62 × 10−3 30.61% 3 19.69% 9 2.30 × 10−2

6 37.31% 0 26.80% 0 4.36 × 10−3 31.61% 0 19.54% 7 2.36 × 10−2

7 37.90% 0 27.36% 0 4.24 × 10−3 31.76% 0 19.42% 10 2.26 × 10−2

show the average gap with respect to the lower bound found with CPLEX (see
[20]) and with respect to the best solution found with BKS, respectively. BKS
includes the solutions of the mathematical model and those found using GA.
When comparing the criteria with the average gaps mentioned above (second
and third row), there are some similarities in the results; however, the distance
criterion is still better. For the GVRP instances, the average gap to best known
solution is 21.14% when distance criterion is applied. Let us comment that in
the GVRP, density and distance criteria are equivalent since

∑
c∈C λjc = 1,∀j ∈

V. Given those results, minimum distance criterion is chosen for the following
experiments.

Table 2 reports the results obtained on RCL size experiments for SVRP and
GVRP instances, respectively. Second and third columns (gapavg and No. gapavg)
show the average gap and the number of instances in which the minimum average
gap has been found over available instances. In a similar way, fourth and fifth
columns (gapmin and No. gapmin) report the average on the minimum gaps and
the number of instances in which the minimum gap has been obtained, respec-
tively. We also present the average computational time (in seconds) required to
perform these set of experiments. We present experiments with values from 1
to 7 for the RCL size. Note that if RCL size increases, the average gap with
respect to the best known solution also increases. Lower RCL size also gets
more times the minimum average gap for both type of problems. However, with
respect to the minimum gap found, the behavior is not the same. The minimum
gaps are found when the RCL size is between 3 and 4 for SVRP. For GVRP, an
RCL size equal to 2 has a better performance. There is not significant difference
between computing times for different RCL sizes. Nevertheless, the algorithm
is faster solving GVRP instances. In order to establish the initial population
with diverse solutions we use the seven RCL size values to build solutions. Each
iteration the size of the RCL is randomly chosen.

5.2 Performance of Split Procedure

As it has been noticed before, given an initial solution, the split procedure can
find a new solution with the same or better quality. For the SVRP, the split
improves quality on 68.82% of the solutions and therefore, finds the same quality

158 A. Posada et al.

for 31.18% of the population. The average gap improvement per instance is
2.85%. On the other hand, for the GVRP, the algorithm has a lower success: it
improves quality on 28.62% of the individuals and then, 71.38% of them, remains
the same. The average gap improvement per instance is 2.03%. Although, the
procedure is efficient and effective for both type of problems, but it is 35% faster
for SVRP than for GVRP. The average computing time is 3.18 × 10−4 s and
4.94 × 10−4 s for the SVRP and GVRP, respectively.

5.3 Genetic Algorithm Performance

In order to tune up the algorithm, four parameters have been evaluated with the
following values: population size ∈ {50, 100}, α ∈ {0.3, 0.5}, β ∈ {0.01, 0.05} and
θ ∈ {0, 0.05, 0.1}. Each of the 24 combinations have been run for all instances
with 10 min as stop criterion. Although there is not a large difference, the best
results have been obtained with 100 individuals, α = 0.5, β = 0.01 and θ = 0.1.
On SVRP instances the algorithm finds 21 out of 36 optimal solutions and the
average gap between the best solution found and the best lower bound gets
by CPLEX [20] is 11.73%. On GVRP instances the algorithm finds 4 out of
12 optimal solutions and the average gap is 22.66%. We also noticed that on
average the best solution found by GA is obtained in the first 9.8% (59.0 s) of
the running time for SVRP instances; and 39.7% (238.4 s) of the running time
for GVRP instances. In the following tables we use 10 min as stop criterion but
we reported average running time per iteration; that helps us to approximate
the instance complexity since more complex instance use more frequently the
repairing procedure and take more time for each iteration.

Tables 3 and 4 summarize the GA results. Table 3 classifies the instances with
different ACD values. The first row presents the number of instances on each
category. Second one shows the number and percentage of optimal solutions
found. Third and forth rows indicate the average gap with respect the best
known solution and the lower bound found by CPLEX, respectively. Finally,
fifth row displays the average running time per iteration in seconds. It can be
seen that there is a relationship between instance complexity and the average
cluster density (ACD). Instances with higher ACD value gets larger gaps (BKS
and LB) and running times, and less number of optimal solutions. For last two
columns there is no a significant difference on the number of optimal solutions.

Similarly, Table 4 summarizes the GA results where instances are classified
by MNCM (maximum number of cluster per node). Table 4 uses the same rows
than Table 3. In this case, there is not a clear relationship between complexity
or algorithm performance and the MNCN value.

The best performance is obtained for instances with MNCN = 2: GA reaches
a higher number of optimal solutions, the best average gaps between found solu-
tions and best known solutions and lower bounds of CPLEX, and the least
average running time per iteration. The second best results are found for
instances with MNCN = 4.

Finally, the results obtained by the proposed genetic algorithm are compared
with the ones from the MILP presented in [20]. Table 5 presents the results for

Selective Vehicle Routing Problem: A Hybrid Genetic Algorithm Approach 159

Table 3. Performance comparison of GA for different ACD ratio values

ACD < 0.5 0.5 ≤ ACD ≤ 0.65 ACD > 0.65

Number of instances 15 12 9

Optimal solutions 13 (86.7%) 5 (41.7%) 4 (44.4%)

Average gap BKS 1.17% 3.43% 3.74%

Average gap LB 2.96% 18.67% 21.05%

Average time per iteration (s) 0.46 0.89 1.04

Table 4. GA performance comparison for different MNCN values

MNCN= 1 MNCN= 2 MNCN = 3 MNCN= 4

Number of instances 12 12 12 12

Optimal solutions 4 (33.3%) 10 (83.3%) 5 (41.7%) 7 (58.3%)

Average gap BKS 4.75% 1.42% 4.22% 2.05%

Average gap LB 24.91% 3.67% 21.87% 12.62%

Average time per iteration (s) 3.55 0.51 0.97 0.77

each method using the MNCN classification. For each method and each instance
category, two results are shown: the average gap with respect to the best known
solution (Gapbks) and the average running time in seconds (Time). For GA, the
average running time is the stop criterion. It can be noticed that, on average,
GA finds closer solutions to the best known solutions, only overcame by MILP
on instances with MNCN = 2 when MILP gets all best known solutions. Running
time of GA is about 22% of the MILP running time, which represents the main
advantage of metaheuristic methods. Nevertheless, as it have been mentioned
before, stop criterion can be decreased since most of the experiments does not
report improvements after 2 min.

Table 5. Performance comparison of GA and MILP for different MNCN values

Method GVRP SVRP

MNCN= 1 MNCN= 2 MNCN= 3 MNCN= 4

Gapbks Time Gapbks Time Gapbks Time Gapbks Time

GA 0.14% 600 0.82% 600 0.19% 600 0.12% 600

MILP 0.65% 5 300 0.00% 817 1.27% 4 480 0.38% 301

6 Conclusions

The difficulty in the solution of the SVRP is proved by the need to use an
additional procedure to make the solutions feasible due to the high number of

160 A. Posada et al.

non-feasible solutions. This procedure is proposed as an MILP, which shows
satisfactory results.

Based on the experiments carried out, it is possible to conclude the existence
of a positive relation between the ACD value and the instance complexity. That
means that for lower ACD values, the required time to find a solution is also
lower and the obtained solution has a higher quality. In opposition, high ACD
values require more time and gets less quality on average. That is not the case
for MNCN classification where no relationship with complexity were found.

The proposed GA shows good results when compared with ones from the
exact methods, presented in [20]. These good results are reflected in a significant
reduction of the computational time and solutions very close to the best ones.

As future work we suggest the implementation of more involved procedures
that help to improve solution quality for the more complex instances. The presence
of clusters based on a geographical location or more scattered ones can have
different effects on the solution and on applicable methods. In addition, it is impor-
tant to work on real cases where clusters presents a similar structure.

References

1. Afsar, H.M., Prins, C., Santos, A.C.: Exact and heuristic algorithms for solving
the generalized vehicle routing problem with flexible fleet size. Int. Trans. Oper.
Res. 21(1), 153–175 (2014)

2. Angelelli, E., Archetti, C., Vindigni, M.: The clustered orienteering problem. Eur.
J. Oper. Res. 238(2), 404–414 (2014)

3. Archetti, C., Carrabs, F., Cerulli, R.: The set orienteering problem. Eur. J. Oper.
Res. 267(1), 264–272 (2018)

4. Baldacci, R., Bartolini, E., Laporte, G.: Some applications of the generalized vehicle
routing problem. J. Oper. Res. Soc. 61(7), 1072–1077 (2010). https://doi.org/10.
1057/jors.2009.51

5. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994)

6. Bektaş, T., Erdoağn, G., Røpke, S.: Formulations and branch-and-cut algorithms
for the generalized vehicle routing problem. Transp. Sci. 45(3), 299–316 (2011)

7. Carrabs, F., Cerrone, C., Cerulli, R., Gaudioso, M.: A novel discretization scheme
for the close enough traveling salesman problem. Comput. Oper. Res. 78, 163–171
(2017)

8. Ghiani, G., Improta, G.: An efficient transformation of the generalized vehicle
routing problem. Eur. J. Oper. Res. 122(1), 11–17 (2000)

9. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist.
34(3), 307–318 (1987)

10. Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for com-
binatorial optimization. J. Heuristics 17(5), 487–525 (2011). https://doi.org/10.
1007/s10732-010-9143-1

11. Gulczynski, D.J., Heath, J.W., Price, C.C.: The close enough traveling sales-
man problem: a discussion of several heuristics. In: Alt, F.B., Fu, M.C., Golden,
B.L. (eds.) Perspectives in Operations Research. Operations Research/Computer
Science Interfaces Series, vol. 36, pp. 271–283. Springer, Boston (2006). https://
doi.org/10.1007/978-0-387-39934-8 16

https://doi.org/10.1057/jors.2009.51
https://doi.org/10.1057/jors.2009.51
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/978-0-387-39934-8_16
https://doi.org/10.1007/978-0-387-39934-8_16

Selective Vehicle Routing Problem: A Hybrid Genetic Algorithm Approach 161

12. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of
recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2),
315–332 (2016)

13. Hart, W., Krasnogor, N., Smith, J.: Memetic evolutionary algorithms. In: Hart,
W.E., Smith, J., Krasnogor, N. (eds.) Recent Advances in Memetic Algorithms.
Studies in Fuzziness and Soft Computing, vol. 166, pp. 3–27. Springer, Heidelberg
(2005). https://doi.org/10.1007/3-540-32363-5 1

14. Kara, I., Bektaş, T.: Integer linear programming formulation of the generalized
vehicle routing problem. In: Proceedings of the 5th EURO/INFORMS Joint Inter-
national Meeting (2003)

15. Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the
generalized travelling salesman problem. J. Oper. Res. Soc. 47(12), 1461–1467
(1996). https://doi.org/10.1057/jors.1996.190

16. Lenstra, J.K., Kan, A.R.: Complexity of vehicle routing and scheduling problems.
Networks 11(2), 221–227 (1981)

17. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a
literature review. Swarm Evol. Comput. 2, 1–14 (2012)

18. Palekar, U., Laporte, G.: Some applications of the clustered travelling sales-
man problem. J. Oper. Res. Soc. 53(9), 972–976 (2002). https://doi.org/10.1057/
palgrave.jors.2601420

19. Pop, P.C., Kara, I., Marc, A.H.: New mathematical models of the generalized
vehicle routing problem and extensions. Appl. Math. Model. 36(1), 97–107 (2012)

20. Posada, A., Rivera, J.C., Palacio, J.D.: A mixed-integer linear programming model
for a selective vehicle routing problem. In: Figueroa-Garćıa, J.C., Villegas, J.G.,
Orozco-Arroyave, J.R., Maya Duque, P.A. (eds.) WEA 2018. CCIS, vol. 916, pp.
108–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00353-1 10

21. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Comput. Oper. Res. 31(12), 1985–2002 (2004)

22. Prins, C., Lacomme, P., Prodhon, C.: Order-first split-second methods for vehicle
routing problems: a review. Transp. Res. Part C: Emerg. Technol. 40, 179–200
(2014)

23. Sevaux, M., Sörensen, K., et al.: Hamiltonian paths in large clustered routing
problems. In: Proceedings of the EU/MEeting 2008 Workshop on Metaheuristics
for Logistics and Vehicle Routing, EU/ME, vol. 8, pp. 411–417 (2008)

24. Toth, P., Vigo, D.: An overview of vehicle routing problems. In: The Vehicle
Routing Problem, pp. 1–26. SIAM (2002)

25. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9),
797–809 (1984)

26. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

27. Vidal, T., Battarra, M., Subramanian, A., Erdogan, G.: Hybrid metaheuristics for
the clustered vehicle routing problem. Comput. Oper. Res. 58, 87–99 (2015)

28. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60(3),
611–624 (2012)

29. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Comput. Oper. Res. 40(1), 475–489 (2013)

https://doi.org/10.1007/3-540-32363-5_1
https://doi.org/10.1057/jors.1996.190
https://doi.org/10.1057/palgrave.jors.2601420
https://doi.org/10.1057/palgrave.jors.2601420
https://doi.org/10.1007/978-3-030-00353-1_10

Fixed Jobs Multi-agent Scheduling
Problem with Renewable Resources

Boukhalfa Zahout, Ameur Soukhal(B), and Patrick Martineau

LIFAT EA 6300, CNRS, ROOT ERL-CNRS 7002, Université de Tours, Tours, France
{boukhalfa.zahout,ameur.soukhal,patrick.martineau}@univ-tours.fr

Abstract. We consider multi-agent scheduling problem where the set
of jobs to schedule is divided into two disjoint subsets A and B. Each
subset of jobs is associated to one agent. The two agents compete to per-
form their independent jobs without preemption on common m identical
parallel machines. Each machine has limited renewable resource units
Rk, k = 1 . . . K necessary to perform each job. The start date, fixed fin-
ish date and required additional resources are given and fixed. A machine
can process more than one job at a time provided the resource consump-
tion does not exceed Rk. The objective is to determine a feasible schedule
that maximizes the number of scheduled jobs of agent A, while keeping
the number of scheduled jobs of agent B no less than a fixed value QB , or
equivalently the agents aims at minimizing the number of their rejected
jobs. This problem is called a Competing multi-agent scheduling. The
problem under study is NP-hard. To obtain best compromise solutions
for each agent, integer linear programming model and greedy heuris-
tics based on ε-constraint approach are proposed to compute exact and
approximate Pareto fronts. A Non-dominated Sorting Genetic Algorithm
(NSGA-II) is developed to generate Pareto front. Experimental results
are driven to analyse the performances of the proposed methods.

Keywords: Competing multi-agent scheduling · Fixed job
scheduling · Resource allocation · Parallel machines · Linear integer
program · Greedy heuristics · NSGA-II · Pareto fronts

1 Introduction

Scheduling problems are an important part of combinatorial optimization prob-
lems. They are encountered in any operating system when it comes to organize
activities or tasks over time and determine their best allocation(s) to consumable
or renewable resources. The successful management of large-scale job processing
systems is a difficult problem, especially in the presence of multiple users.

In real situations, the jobs share common resources to be scheduled where
different objective functions should be optimized. We face therefore multi-
criteria scheduling problems. Classical multi-criteria scheduling problem have
been widely studied in the literature (see [18] and [11]) where it is assumed that
the quality of solution is measured by one or more objective functions applied
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 162–176, 2020.
https://doi.org/10.1007/978-3-030-45715-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_13

Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources 163

to all jobs without distinction. In some real situations, this assumption may
not hold or it may not be appropriate to the more general resource allocation
problem. Instead of using one or more criteria for all jobs, we may need to con-
sider that each objective function depends on a subset of jobs. For instance, it is
possible to consider a workshop where some jobs may have a soft due date with
allowed tardiness (to be minimized); whereas some other jobs may have hard due
dates (that must be respected) and other jobs may have no due date (minimize
the dwell) [19]. The dwell is commonly expressed in the scheduling literature
by the total completion times. This is a multi-criteria scheduling problem where
a new type of compromise must be achieved. These scheduling problems are
referred to in the literature as “multi-agent scheduling” [7,13] or “scheduling
with competing agents” [3] or “interfering job scheduling problems” [11,19].

A scheduling problem involving several actors, where each has its own
decision-making autonomy, in charge of executing its subset of jobs on the same
resources (the jobs are competing for the use of the same machines), can be
assimilated to a multi-agent scheduling problem, where a new type of compro-
mise must be achieved. We define the term “agent” as an entity associated with
a subset of jobs. This entity may be associated with another decision-maker who
intervenes in the choice of the final solution. Each agent aims at minimizing a cri-
terion of his own because it depends only on his own jobs. These agents compete
since they share the same resources [1,2]. We are therefore looking for well com-
promised solutions. These problems are close to the combinatorial optimization
area and cooperative game theory [4].

In this paper, we are mainly interested in competing multi-agent scheduling
problem. The rest of this paper is organized as follows. Section 2 introduces the
problem definition and notations. A literature survey on related problems is
presented in Sect. 3. In Sect. 4 we propose exact method based on time-indexed
variables to compute an exact Pareto front. Section 5 introduces two greedy
heuristics where ε-constraint approach is used to compute approximate Pareto
front. A non-dominated sorting genetic algorithm (NSGA-II) is developed in
Sect. 6. A discussion on the performance of the proposed methods is provided in
Sect. 7. Section 8 concludes and provides some future research directions.

2 Problem Definitions

To illustrate our approaches, we focus on the case of two agents A and B. All
the results developed in this paper can be generalized to L agents. Agent A
(resp. B) is associated with the set of nA (resp. nB) jobs, denoted by N A =
{J1, J2, ..., JnA

} (resp. N B = {JnA+1, JnA+2, ..., Jn}), where n = nA + nB .
The n independent jobs should be scheduled without preemption on m iden-

tical parallel machines. Additional renewable resources are however necessary to
process each job. Several types of such resources, denoted Rk, k = 1 . . . K, are
needed. Hence, at execution time of job j, rjk units of resource Rk are required.
For each job j, the start date sj and its finished date fj (j = 1, . . . , n) are fixed
where its processing time pj = fj − sj . Dealing with each type of resources k,

164 B. Zahout et al.

the machine can process more than one job at a time provided the resource con-
sumption does not exceed a given value Rk (k = 1 . . . K). We assume that the
machines are continuously available during the time interval [0,∞). All data are
assumed positive integers. The processing times of jobs are formatted in slot-
ted windows. The total time period [Tmin, Tmax] is partitioned into equal length
slots (l0) with Tmin = minj,j=1,...,n(sj) and Tmax = maxj,j=1,...,n(fj). We sup-
pose that: sj < fj and rjk ≤ Rk for all j = 1, . . . , n and k = 1, . . . ,K. The
objective of each agent is to maximize the number of jobs that can be scheduled
(or equivalently the minimize the number of rejected jobs). Let xij be the binary
decision variable where xij = 1 if machine i processes job Jj ; 0 otherwise. We
denote the maximum number of jobs of Agent A and of agent B that can be

scheduled by ZA =
m∑

i=1

nA∑

j=1

xij and ZB =
m∑

i=1

n∑

j=nA+1

xij , respectively. In this

study, ε-constraint approach is used to determine one Pareto optimal solution
and also to compute the Pareto front.

According to the three-field notation of multiagent scheduling problems intro-
duced in [1], the problems we address are denoted by:

– Pm|CO, sj , fj , rjk, QB |ε(ZA/ZB): maximize ZA such that ZB ≥ QB

– Pm|CO, sj , fj , rjk|P(ZA, ZB): compute the Pareto front.

These problems are NP-hard even if only one agent is considered (mono-criterion
case) [21].

The studied problem in this paper can be met in a Data center for example,
where the goal is to optimize the objective function of each user (agent). Jobs
(containers) submitted by the users should be executed on the different clusters
by a virtualization software (Docker, for example). The clusters owns certain
limited types of renewable resources CPU, MEMORY and STORAGE, with
capacities Qu1 of CPU, a certain quantity of memory Qu2 and a certain storage
capacity Qu3. In this case, to execute Containerj , a number of virtual CPUs rj1,
virtual memory rj2 and hard drives rj3 are needed. Let us consider an example
with n = 8 jobs of 2 agents A and B. The jobs have to be scheduled on 2
machines. Agent A’s (resp. Agent B’s) jobs are N A = {J1, J2, ..., J4} (resp. N B =
{J5, J6, ..., J8}). 3 types of resources, RCPU = RMEMORY = RSTORAGE = 1000
are needed. For each job j, the starting date, the finishing date and the quantities
of each requirement resource rjk; k = 1, 2, 3 are given in Table 1. Figure 1 shows
an example with a strict Pareto solution.

3 Related Work

To the best of our knowledge, Peha was the first author who provided polynomial
time algorithms for particular multi-agent scheduling problems dealing with n
jobs and m identical parallel machines [15]. He considered an integrated-services
packet-switched networks such as ATM (Asynchronous Transfer Mode). The
information carried by the network are first split into smaller messages called
packets. The data comes from different types, such as voice, video, image and

Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources 165

Table 1. Instance with 8 jobs and 3 types of resources.

Jobs sj fj CPU MEM STORAGE

1 0 4 500 300 400

2 0 6 125 500 250

3 1 4 125 600 300

4 1 5 250 800 600

5 3 6 500 700 250

6 3 8 500 300 700

7 4 8 125 250 200

8 5 9 250 500 300

Fig. 1. Example with 4 jobs for each agent: a feasible solution.

so on. Each packet is wrapped with the essential information needed to get
it from its source to the correct destination. In the case of audio and video
data the author shows that minimizing the number of late delivered packets is
more relevant whereas for the other types of data, minimizing the dwell is more
suitable.

Since 2000, the study of multi-agent scheduling problems has grown signifi-
cantly due to their practical and theoretical benefits, highlighted in [1]. In 2000
Agnetis et al. [2] were the first to introduce definitions and concepts of multi-
agent scheduling problems. In their study the ε-constraint approach is considered
to minimize regular criteria. New complexity results and dynamic programming
algorithms have been developed.

In [1], a large and complete state of the art is established. The authors give an
introduction to multi-agent scheduling, introducing general definitions and nota-
tions. Dealing with several agents the authors identified four different scenarios,
in particular the Competing scenario denoted “CO”. However, few results are

166 B. Zahout et al.

dedicated to the case of m parallel machines. Note that problems Pm|CO|fA, fB

are NP -hard, whatever the considered classical regular objective functions.
Balasubramanian et al. [6] have studied the case of identical parallel machines

with two agents, denoted Pm|CO|ε(∑
CA

j /CB
max). The problem is binary NP -

hard. The authors developed efficient heuristics to enumerate the Pareto front.
As it is the CB

max criterion, on each machine the jobs of agent B are grouped
into one block, thus separating agent A’s jobs into two blocks. The jobs of agent
A (resp. agent B) are scheduled according to the SPT (resp. LPT) order. An
evolutionary algorithm has been developed to compute an approximate Pareto
front of the problem. The authors also propose a ILP to generate all the strictly
non-dominated solutions in an iterative way. In their study, the ε-constraint app-
roach is considered. Similarly, an optimal solution for the Pm||ε(∑ wjC

A
j /CB

max)
can be obtained in pseudo-polynomial running time where a dynamic program
is proposed to calculate a Pareto solution.

In [10], the authors considered the problem Qm|CO, pj = p|P(fA
max, fB

max)
where the two functions are regular, that is, they are nondecreasing in each
argument. For the enumeration of all strict Pareto solutions, the authors pro-
posed a polynomial time algorithm in O(n2

A + n2
B + nAnBlog(nB)) (nA and nB

correspond to the number of jobs of each agent). The authors also studied the
classical cases fk

max ∈ {Lk
max, Ck

max}.
Dealing with parallel machines multi-agent scheduling problems, few poly-

nomial cases have been identified. The problem P2|CO, pmtn|ε(∑ CA
j /fB

max) is
shown polynomial. However, the case of 3 machines remains open [20]. In [17]
authors showed that when preemption is considered and objective function of
each agent is the same and is of type min-max, the parallel machines multi-agent
scheduling problems are polynomial. In [16], authors gave complexity analyses
for multi-agent scheduling problems with a global agent and equal length jobs.

Dealing with Data center to minimize the number of rejected jobs has been
addressed in [5] where the authors have considered only one additional resource
(memory) and develop methods to determine if a feasible schedule exist for all
jobs. In this study, all jobs belong to a single user (only one agent is considered).

In the context of scheduling problems in grid computing, in [8] the authors
considered organizations that share clusters to distribute peak workloads among
all the participants. Each cluster is associated with one agent where the global
objective function is introduced to minimize the makespan. The authors propose
a 2-approximation algorithm for finding collaborative solutions.

4 Integer Programming Formulation

We present in this section the following time indexed integer linear programming
(ILP). Let xij be a binary variable equal to 1 if machine i processes job Jj ; 0
otherwise. And let yijt be a binary variable equal to 1 if machine i processes job
Jj at time t; 0 otherwise.

Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources 167

The general formulation of the time-indexed ILP, is the following.

Maximize:

m∑

i=1

nA∑

j=1

xij

subject to:

fj−1∑

t=sj

yijt = (fj − sj) ∗ xij i = 1, . . . , m; j = 1, . . . , n (1)

nA∑

j=1

yijt ∗ rjk ≤ Rk i = 1, . . . , m; k = 1, . . . , K; ∀t ∈ [Tmin, Tmax] (2)

m∑

i=1

xij ≤ 1 j = 1, . . . , n (3)

m∑

i=1

nB∑

j=1

xij ≤ QB (4)

xij ∈ {0, 1}, yijt ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n, ∀t ∈ [Tmin, Tmax]

The constraints (1) ensure that if job Jj is not rejected then it is scheduled
during its time interval. The constraints (2) ensure that no more than Rk quan-
tities of the required resources are consumed at time t. The constraints (3) allow
job j to be assigned to at most one machine. The constraint (4) express the
ε-approach bounds.

In Table 2, we specify the criterion to be optimized and all of the variables
and constraints taken into account.

Table 2. ILP model.

Problem Z # bin. var. # constraints

Pm|CO, sj , fj , rjk, QB |ε(ZA/ZB)
m∑
i=1

nA∑
j=1

xij mn(1 + T) mn + mKT + n + 1

T = Tmax − Tmin

4.1 ε-constraint Approach

To solve the ε-constraint version of the studied problem, we propose to use the
previous ILP, in which the objective function of agent B is bounded. To generate
the set of strict Pareto solutions, we solve Pm|CO, sj , fj , rjk, ZB ≤ QB |ZA with
different values of QB ∈ {0, . . . , nB}. In first step, QB is fixed to 0 that is the
lower bound of ZB. The obtained solution is denoted (ẐA, ẐB). We then solve
the inverse problem Pm|CO, sj , fj , rjk, ZA ≤ ẐA|ZB . The obtained solution is
then optimal Pareto solution, denoted by (ẐA, ˆZB ′), and added to the set of
strict solutions S. We then set QB = ˆZB ′ + 1 and iterate. If no feasible solution
is obtained then stop. S is then the exact Pareto front.

168 B. Zahout et al.

4.2 Number of Pareto Solutions

In this section, we indicate the number of strict Pareto solutions for the studied
problem Pm|CO, sj , fj , rjk|P(ZA, ZB). It is clear that this problem admits a
polynomial number of Pareto solutions bounded by min(nA, nB) + 1. Without
loss of generality since the problem is symmetrical, let us suppose that nB =
min(nA, nB). It means that in the worst case scenario, all of Agent B’s jobs are
rejected, which allows for the maximum scheduling of Agent A’s jobs. As well,
starting from QB = 0 and iteratively, the procedure stops when QB = nB .

5 Greedy Heuristics

The scheduling problems under study are oftentimes applied in settings where
the number of jobs to be processed can be extremely large. Thus the need for
low computational running time. In other words, the algorithms must have a
low complexity (not just polynomial). In this section, we present low-complexity
(O(n log n)) greedy algorithms. Roughly, this algorithm works as follows. ε-
constraint approach is used, jobs of each agent are sorted according to a given
priority rule. At first, we try to schedule jobs of agent B with respect of its
objective (i.e. ZB ≥ QB). Jobs are taken according to their priority order. Job
is rejected if it can not be scheduled. Then, within the obtained solution, we try
to schedule jobs of agent A to maximize ZA. After testing several known priority
rules, we short-listed those that offer the best performance to solve the studied
problem, described as follows.

1. Shortest Processing Time First (SPT): The jobs are sorted in non-
decreasing order of (fj −sj), in case of ties, the job with the smallest finishing
time comes first, otherwise a lexicographical order is considered. This SPT
rule allows resources to be released as soon as possible.

2. Capacity-Makespan (CM): The jobs are sorted in a non-decreasing order
of their occupied space given by the following formula: (

∑
k∈R rjk ∗ (fj −

sj)), in case of ties, the job with the smallest finishing date comes first,
otherwise a lexicographical order is considered. The idea of using CM rule
is to minimize the space occupied by jobs defined by processing time per
quantities of consumed resources.

According to the order obtained by the priority rules, we assign each job to the
first available machine (FAM).

6 NSGA-II Algorithm

We propose a non-dominated sorting genetic algorithm called NSGA-II [9]. This
method is the commonly-used evolutionary algorithm for solving multiobjective
optimization problems. Based on a genetic algorithm, NSGA-II uses a ranking
selection method to emphasize current non-dominated solutions and a niching
method to maintain diversity in the population. We refer to [12] for a tutorial
on multiple-objective optimization methods using genetic algorithms.

Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources 169

6.1 Encoding Mechanisms

Given the assignments of jobs, we can compute the objective function values
of a non-dominated solution for the Pm|CO, sj , fj , rjk|P(ZA, ZB) scheduling
problem. Therefore, the proposed encoding is based on a machine-assignment
scheme. An individual is a n-vector where each element j stores the number of
the machine that performs job Jj . If job j is rejected, element j stores number
0. Recall previous example with m = 2 machines, n = 8 jobs and nB = 4. We
remember that the first four jobs belong to N A. Figure 2 shows the encoding
and decoding of a solution.

Fig. 2. Encoding and decoding mechanism.

6.2 Generation of the Initial Population

There are several ways to generate an initial population for an evolutionary
algorithm: random generation, local search methods, metaheuristics, etc. We
often choose a method that guarantees the diversity of the initial population.
Here, the initial population is constructed using random generation and using
the two heuristics presented in the Sect. 5. Let NP0 be the size of population P0.
This size is set at NP0 = n + n/2 which gives the best compromise between the
quality of solutions and the computation time.

Dealing with criteria space Fig. 3 shows some examples of populations gen-
erated using the techniques discussed previously.

6.3 Non-dominated Sorting and Ranking

In this step, the population of individuals is classified into successive non dom-
inated ranks or fronts, called rank 1, rank 2, and so on. This means that the
solutions belonging to rank q are non-dominated among themselves and are dom-
inated by the solutions of rank k −1. We use ranking procedure proposed in [14]
which is based on binary search.

170 B. Zahout et al.

Fig. 3. Instance with nA = 20, nB = 20 and 2 machines: initial population.

The ranks are also used in the definition of a probability associated with an
individual. The best individuals have a rank equal to 1, and we would like to
attribute to them the highest possible probability. The idea is to promote the
best individuals for the improvement of the next populations. Let Raλ be the
rank of individual λ and Ramax the maximum rank. The expression of probability
Prλ, of λ ∈ P is the following: Prλ = Ramax−Raλ

NPRamax−∑
p∈P Rap

We note that
∑

λ∈P Prλ = 1.

6.4 Selection, Crossover and Mutation

Let NCq be the size of the set of individuals Cq generated by the crossover
operator, let NMq be the size of the set of individuals Mq generated by the
mutation operator and let Npq be the size of population Pq. To obtain a child
solution c1, eight individuals are selected randomly from the current population
Pq−1, two parents λ1, λ2 are chosen by tournament selection. A value σ is
randomly generated between 0 and 1. If σ ≤ σcross, λ1, λ2 are crossed and the
two offsprings are added to population Cq. A value ρ is randomly generated
between 0 and 1. If ρ ≤ ρmutation, child c1 mutates and the obtained child c

′
1 is

added to population Mq.
We explain now the proposed crossover operator dealing with two selected

individuals as illustrated in Fig. 4. The first (resp. second) child c1 (resp. c2)
resulting from the crossing of both parents λ1 and λ2 is obtained as follows:

Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources 171

let r be the number of genes that c1 (resp. c2) will inherit from λ2 (resp. λ1),
where r is randomly generated in [1, 4n−4

n]; c1 (resp. c2) therefore inherits the
genes of his first (resp. second) parent with the exception of r genes that they
are randomly selected from the second (resp. first) parent.

Fig. 4. Example of crossover operator with 8 jobs.

An individual c mutates if a randomly chosen probability is less than or
equal to the parameter ρmut. Two genes (jobs) are randomly selected and their
characteristics are swapped (see Fig. 5).

The stopping criterion is a number of iterations.

Fig. 5. Example of mutation operator with 8 jobs.

7 Computational Experiments

We implemente our algorithms in Java language and experiments have been
driven on a workstation with a 2.2 Ghz Intel Core i7 processor and 16 GB of
memory. We use IBM ILOG CPLEX Optimization Studio version 12.6.3 to solve
the ILP model.

Data Generation: We assess the performance of the algorithms on 120
instances, with m ∈ {2, 4, 6} and n ∈ {20, 40, 60, 100}. 50% of n are jobs of
agent A (10 instances are generated per n), for a total of 3 × 4 × 10 = 120

172 B. Zahout et al.

instances. By choosing 50% of jobs for each agent, we are therefore interesting
in solving the most difficult problems.

Job-starting dates have been randomly generated according to a discrete
uniform distribution between 1 mn and 1439 mn. Similarly, job-finishing dates
have been randomly generated between (sj + 1)mn and 1440 mn. Three types
of additional resources are considered. Without lost of generality, we normalize
the units of each renewable resource to 1000. Hence, Rk = 1000, k = 1, 2, 3. rjk

is then randomly generated in [1, 1000], j = 1, . . . , n and k = 1, 2, 3.

Performance Measures: Different measures are used in this work. Given the
set of optimal Pareto solutions S∗ = {a1, . . . , a|S∗|} and the set of approximate
solutions S = {b1, . . . , b|S|}, we categorize these measures in three classes:

Cardinality measures: we calculate the size of the exact Pareto front |S∗|,
and the approximated Pareto front |S|. We combine these metrics to obtain the
percentage of strict non-dominated solutions generated by NSGA-II and greedy
heuristics: %Sol = |S∩S∗|

|S∗| × 100. We also combine these metrics to obtain the
percentage of weak non-dominated solutions generated by proposed methods,
denoted %wSol.

Average distance: we use the average minimum Euclidian distance: GD =
1

|S| (
∑|S|

i=1 di), di is the minimum Euclidian distance between the element bi ∈ S

and the nearest element in S∗.
Hyper-volume: even when the convex hull of the Pareto front S is near to the

convex hull of the Pareto-front S∗, the average distance may be a poor indicator
of the quality of the front S. Therefore we introduce the metric HyperV for
hyper-volume; it calculates the area dominated by some front. In the following,
we indicate the area between the two fronts S∗ and S.

In addition to the previous performance measures, we also give the average
computation time (in second) to compute the Pareto front; it is denoted by
CPU .

Fixing the Parameters: To fixe the parameters of NSGA-II a subset of twelve
instances has been used ({20, 40, 60, 100} × {2, 4, 6}). The tests show that the
best results are obtained when: NP0 = n+ n

2 ; The probability of crossover σcross

is set to 0.8; 4 is the number of candidates where one of them will be chosen
by tournament selection and will then be one of the two future parents; The
probability of mutation ρmut is set to 0.8; The number of iterations depends on
the number of jobs and it is given by 35n.

Numerical Results: The results are presented in the following table and
figures. For each instance, we compare the exact front S∗ (computed by the
ILP) and the Pareto front S (computed by NSGA-II algorithm and heuristics).
Figure 6 indicates the number of Pareto solutions obtained by the exact method,
NSGA-II and heuristics with respect number of jobs and number of machines.
Hence when the number of jobs and machines increases, the number of Pareto
solutions also increases.

Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources 173

Fig. 6. Average of the number of Pareto solutions obtained by each method.

Note that for some instances the number of non-dominated solutions given
by applying heuristics is greater than those given by applying exact method or
NSGA-II algorithm. However, some of these points are strictly dominated by the
exact solutions (see Fig. 7). On average, the cardinality of the Pareto front is less
than 15 solutions. With small size instances (20 jobs), we remark that NSGA-II
returns exact Pareto front (see Fig. 7(A)). This performance deteriorates with the
increase in the number of jobs. Nevertheless NSGA-II allows to obtain weakly
Pareto solutions for each instance (Fig. 7(B) shows this trend). These weakly
solutions are very close to the optimal solutions.

From Table 3 we remark that the ILP model needs more than one hour to
solve instances with n = 80 and m = 6. Nevertheless, it remains quite efficient for
small instances (less than 1 min for instances with 40 jobs). Dealing with average
distance measure (GD), it can be concluded that the distance from the optimal
solution set is quit small. For example, the average distance between exact front
and approximate front obtained by NSGA-II is less than 2 for instances of 100
jobs and 6 machines. For instances with 40 jobs and 6 machines NSGA-II does
not find strict Pareto solutions but all most of returned solutions are weakly
Pareto solution (between 96% and 100%). These conclusions are confirmed by
the Hyper-volume metric. We can conclude that the approximate Pareto fronts
obtained by NSGA-II are close to the exact Pareto fronts. This is not the case
when we use greedy heuristics. Note that these types of greedy heuristics are
mainly used to decide on the execution of jobs in a highly competitive environ-
ment such as a data center or grid computing context.

174 B. Zahout et al.

Fig. 7. Example of Pareto front with: (A) n = 20 and m = 4; (B) n = 100 and m = 4.

Table 3. Computational results with nA = 50%n

m n ILP NSGA− II CM SPT
CPUs |S∗| CPUs |S| GD HyperV %S %wS CPUs |S| GD HyperV %S %wS CPUs |S| GD HyperV %S %wS

2

20 2,29 3,50 1,50 3,50 0,00 0,00 100,00 0,00 0,04 3,90 1,91 17,50 13,33 66,83 0,01 3,90 1,91 17,50 13,33 66,83
40 8,22 6,30 5,31 6,20 0,00 1,40 98,57 1,43 0,09 4,30 2,91 63,50 2,50 94,64 0,02 4,30 2,91 63,50 2,50 94,64
60 15,08 7,67 10,91 7,33 0,30 16,00 71,30 25,00 0,10 5,33 5,36 173,00 0,00 93,33 0,03 5,33 5,36 173,00 0,00 93,33
100 56,36 13,50 24,97 11,00 0,33 106,50 59,62 40,38 0,20 8,50 7,01 394,00 0,00 100,00 0,06 8,50 7,01 394,00 0,00 100,00

4

20 4,74 3,60 2,37 3,60 0,00 0,00 100,00 0,00 0,06 3,80 1,21 6,60 28,33 64,67 0,01 3,80 1,21 6,60 28,33 64,67
40 21,38 7,40 8,99 6,00 0,35 5,20 55,26 43,08 0,15 6,30 3,81 87,30 1,25 84,69 0,05 6,30 3,81 87,30 1,25 84,69
60 52,15 10,00 19,48 7,50 0,43 24,50 55,00 45,00 0,19 7,00 5,95 214,00 0,00 92,86 0,06 7,00 5,95 214,00 0,00 92,86
100 205,23 14,00 140,04 10,00 1,53 31,00 0,00 100,00 0,33 11,00 8,50 544,50 0,00 72,73 0,16 11,00 8,50 544,50 0,00 72,73

6

20 5,35 2,20 2,80 2,20 0,00 0,00 100,00 0,00 0,06 2,50 0,99 1,50 45,00 42,50 0,01 2,50 0,99 1,50 45,00 42,50
40 35,55 7,50 11,41 5,50 0,46 4,20 40,00 58,33 0,20 8,00 3,99 83,10 6,51 72,30 0,07 8,00 3,99 83,10 6,51 72,30
60 95,83 11,00 65,99 8,50 1,12 17,50 4,55 95,45 0,25 9,00 7,14 201,50 0,00 88,89 0,09 9,00 7,14 201,50 0,00 88,89
100 4510,21 14,50 213,03 7,00 1,98 66,00 0,00 100,00 0,37 11,50 9,57 614,50 0,00 83,46 0,26 11,50 9,57 614,50 0,00 83,46

Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources 175

8 Conclusions

In this paper, we tackled the scheduling problems where two interfering agents
compete to perform their jobs on common identical parallel machines. Each agent
is associated with a disjoint subset of jobs. Each agent needs to maximize the
number of his scheduled jobs. Each objective function depends only on the jobs of
the concerned agent. Even when the agents aim at maximizing the same criterion,
the problem remains difficult. In our work, we seek to generate the set of Pareto
solutions where ε-constraint approach is used for ILP and greedy heuristics.
The studied problem admits a polynomial number of Pareto solutions. We then
proposed NSGA-II with an adequate encoding scheme and crossover operator.
All proposed approaches are compared with time-indexed ILP formulation. The
NSGA-II and ILP methods can be generalized to the case of more than two
agents and by considering other regular criteria.

One of the applications of our work concerns data centers where the num-
ber of jobs can be very large. The NSGA-II offers the best compromise between
solution quality and computation time when the data are being controlled. Nev-
ertheless, it will be interesting to develop other methods providing high-quality
solution with a low computational running time to solve the online case.

References

1. Agnetis, A., Billaut, J.C., Gawiejnowicz, S., Pacciarelli, D., Soukhal, A.: Multiagent
Scheduling: Models and Algorithms. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-41880-8

2. Agnetis, A., Mirchandani, P., Pacciarelli, D., Pacifici, A.: Nondominated schedules
for a job-shop with two competing users. Comput. Math. Organ. Theory 6(2),
191–217 (2000). https://doi.org/10.1023/A:1009637419820

3. Agnetis, A., Pacciarelli, D., de Pascale, G.: A Lagrangian approach to single-
machine scheduling problems with two competing agents. J. Sched. 12, 401–415
(2009). https://doi.org/10.1007/s10951-008-0098-0

4. Agnetis, A., de Pascale, G., Pranzo, M.: Computing the Nash solution for schedul-
ing bargaining problems. Int. J. Oper. Res. 1, 54–69 (2009)

5. Angelelli, E., Bianchessi, N., Filippi, C.: Optimal interval scheduling with a
resource constraint. Comput. Oper. Res. 51, 268–281 (2014)

6. Balasubramanian, H., Fowler, J., Keha, A., Pfund, M.: Scheduling interfering job
sets on parallel machines. Eur. J. Oper. Res. 199, 55–67 (2009)

7. Cheng, T.C.E., Ng, C., Yuan, J.J.: Multi-agent scheduling on a single machine to
minimize total weighted number of tardy jobs. Theoret. Comput. Sci. 362, 273–281
(2006)

8. Cordeiro, D., Dutot, P.F., Mounié, G., Trystram, D.: Tight analysis of relaxed
multi-organization scheduling algorithms. In: Proceedings of the 25th IEEE Inter-
national Parallel & Distributed Processing Symposium (IPDPS), Anchorage, AL,
USA, pp. 1177–1186. IEEE Computer Society (2011)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

https://doi.org/10.1007/978-3-642-41880-8
https://doi.org/10.1007/978-3-642-41880-8
https://doi.org/10.1023/A:1009637419820
https://doi.org/10.1007/s10951-008-0098-0

176 B. Zahout et al.

10. Elvikis, D., Hamacher, H., T’Kindt, V.: Scheduling two agents on uniform parallel
machines with makespan and cost functions. J. Sched. 14, 471–481 (2011). https://
doi.org/10.1007/s10951-010-0201-1

11. Hoogeveen, H.: Multicriteria scheduling. Eur. J. Oper. Res. 167, 592–623 (2005)
12. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic

algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)
13. Kovalyov, M., Oulamara, A., Soukhal, A.: Two-agent scheduling on an unbounded

serial batching machine. J. Sched. (2012)
14. Kung, H., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.

J. Assoc. Comput. Mach. 22(4), 469–476 (1975)
15. Peha, J.: Heterogeneous-criteria scheduling: minimizing weighted number of tardy

jobs and weighted completion time. Comput. Oper. Res. 22(10), 1089–1100 (1995)
16. Sadi, F., Soukhal, A.: Complexity analyses for multi-agent scheduling problems

with a global agent and equal length jobs. Discrete Optim. 23, 93–104 (2017)
17. Sadi, F., Soukhal, A., Billaut, J.C.: Solving multi-agent scheduling problems on

parallel machines with a global objective function. RAIRO - Oper. Res. 48(2),
255–269 (2014)

18. T’Kindt, V., Billaut, J.C.: Multicriteria Scheduling. Theory, Models and Algo-
rithms, 2nd edn. Springer, Heidelberg (2006). https://doi.org/10.1007/b106275

19. Tuong, N.H., Soukhal, A., Billaut, J.C.: Single-machine multi-agent scheduling
problems with a global objective function. J. Sched. 15, 311–321 (2012). https://
doi.org/10.1007/s10951-011-0252-y

20. Wan, G., Leung, J.Y., Pinedo, M.: Scheduling two agents with controllable pro-
cessing times. Eur. J. Oper. Res. 205, 528–539 (2010)

21. Zahout, B., Soukhal, A., Martineau, P.: Fixed jobs scheduling on a single machine
with renewable resources. In: MISTA 2017, Kuala Lumpur, Malaysia, pp. 1–9
(2017)

https://doi.org/10.1007/s10951-010-0201-1
https://doi.org/10.1007/s10951-010-0201-1
https://doi.org/10.1007/b106275
https://doi.org/10.1007/s10951-011-0252-y
https://doi.org/10.1007/s10951-011-0252-y

A Study of Recombination Operators
for the Cyclic Bandwidth Problem

Jintong Ren1, Jin-Kao Hao1,2(B), and Eduardo Rodriguez-Tello3

1 LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49095 Angers, France
jin-kao.hao@univ-angers.fr

2 Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France
3 Cinvestav - Tamaulipas, Km. 5.5 Carretera Victoria - Soto La Marina,

87130 Victoria Tamps., Mexico

Abstract. This work is dedicated to a study of the NP-hard Cyclic
Bandwidth Problem with the paradigm of memetic algorithms. To find
out how to choose or design a suitable recombination operator for the
problem, we study five classical permutation crossovers within a basic
memetic algorithm integrating a simple descent local search procedure.
We investigate the correlation between algorithmic performances and
population diversity measured by the average population distance and
entropy. This work invites more research to improve the two key com-
ponents of the memetic algorithm: reinforcement of the local search and
design of a meaningful recombination operator suitable for the problem.

Keywords: Recombination operators · Memetic algorithms · Cyclic
bandwidth · Population diversity

1 Introduction

The Cyclic Bandwidth Problem (CBP) is a typical graph labeling problem, which
was introduced in [14] in the context of designing a ring interconnection network.
CBP involves finding a disposition of computers on a cycle to make sure that the
intercommunication information reaches its destination within at most k steps.
The decision version of the problem is known to be a NP-complete problem [15].
In addition to network design, CBP has other relevant applications in very-large-
scale integration design [3] and data structure representation [25].

CBP can be stated formally as follows: let G(V,E) be a finite undirected
graph and Cn a cycle graph, where V (|V | = n) is the set of vertices (or nodes)
and E ⊂ V ×V is the set of edges. Given a bijection (or arrangement) ϕ : V → V
which represents an embedding of G in Cn, the cyclic bandwidth (the cost) of ϕ
for G is defined as,

BC(G,ϕ) = max
(u,v)∈E

{|ϕ(u) − ϕ(v)|n}, (1)

c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 177–191, 2020.
https://doi.org/10.1007/978-3-030-45715-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_14

178 J. Ren et al.

where |x|n = min{|x|, n − |x|} (1 ≤ |x| ≤ n − 1) is called the cyclic distance,
and ϕ(u) denotes the label associated to vertex u. The goal of CBP is to find an
arrangement ϕ∗ with minimal BC(G,ϕ∗).

As a well-known meta-heuristic framework [12,17], memetic algorithms
(MAs) have been widely used to solve a large number of NP-hard problems
[5,11,13,28,29]. For permutation problems, MAs have also reported good perfor-
mances for the Traveling Salesman Problem (TSP) [8,16], the Quadratic Assign-
ment Problem [2], and other bandwidth problems [1,20].

Despite the theoretical and practical relevance of CBP, few studies can be
found in the literature for solving the problem. A branch and bound algorithm
was presented [24] to handle small graphs (n < 40). A tabu search algorithm was
proposed [23] to deal with standard and random graphs with 8 to 8192 vertices.
Very recently, an iterated three-phase search approach [19] was introduced and
improved a number of previous best results reported in [23]. To our knowledge,
the memetic approach has never been experimented to solve CBP in the liter-
ature, though MAs have been applied to other labeling problems such as the
cyclic bandwidth sum problem [22] and the antibandwidth problem [20]. This
work fills the gap by investigating the memetic approach for CBP. In particular,
we focus on the role of the recombination or crossover (used interchangeably in
this paper) component and study the contributions of five permutation recom-
bination operators which are conveniently applicable to CBP. To highlight the
impacts of the studied recombination operators, we base our study on a canon-
ical memetic algorithm which combines a recombination operator for solution
generation and a simple descent local search for solution improvement.

2 Memetic Algorithm for CBP

2.1 Search Space, Representation, Fitness Function

Given a graph G = (V,E) of order |V | = n and a cycle graph Cn, the search space
Ω for the CBP is composed of all possible embeddings (labellings, solutions or
arrangements) of G in Cn, ϕ : V → V . Considering the symmetry characteristic
of solutions, there exist (n − 1)!/2 possible embeddings for G [23].

Figure 1 shows a graph with 6 vertices named from ‘a’ to ‘f’ (Fig. 1(a)).
According to Eq. (1), the objective value of Fig. 1(b) is 3 (decided by the longest
edge ‘dc’ in the example). An embedding arranged in a cycle graph (Fig. 1(b))
where the numbers in red are the labels assigned to the vertices, and two embed-
dings where the vertices are rearranged in the cycle graph in clockwise direction
(Fig. 1(c)) and in anticlockwise direction (Fig. 1(d)). Notice that the relative
position of each pair of nodes in Fig. 1(b)–(d) is not changed. So according to
Eq. (1), these three embeddings have the same objective value, and in fact they
correspond to the same solution.

In practice, we represent an embedding ϕ by permutations l = {1, 2, . . . , n}
such that the i-th element l[i] denotes the label assigned to vertex i of V . Another
representation of an embedding is proposed in [21], which maps a permutation
ϕ to an array γ indexed by the labels. The i-th value of γ[i] indicates the vertex

Recombination Operators for Cyclic Bandwidth 179

(a) Original graph G (b) An embedding on
cycle graph

(c) Clockwise rotation (d) Anticlockwise
rotation

Fig. 1. Illustration of a graph (a) with an embedding (b) and two equivalent symmetric
embeddings (c) and (d)

whose label is i. We illustrate these representations with an example. For the
embedding of Fig. 1(b), we have ϕ = (1 2 3 6 4 5) for the vertices from ‘a’ to ‘f’,
and the corresponding γ representation is γ = (a b c e f d). In our algorithm,
the ϕ representation is used in the local search procedure, because it eases the
implementation of the swap operation, while the γ representation is adopted
for the recombination operators, as well as the distance calculation presented in
Sect. 5. The fitness of a candidate embedding ϕ in the search space is evaluated
by Eq. (1).

2.2 General Procedure

The studied MA follows the general MA framework in discrete optimization [10].
Staring with an initial population (Sect. 2.3), it alternates between a local search
procedure (Sect. 2.4) and a recombination procedure (Sect. 2.5). The pseudo-
code of the proposed MA is presented in Algorithm 1. The algorithm first fills
the population P with |P | local optimal solutions provided by the local search
procedure and then performs a series of generations. At each generation, two
parent solutions ϕF and ϕM are selected at random from the population and
are recombined to generate an offspring solution ϕC . Then, the local search is
used to improve the offspring solution to attain a new local optimal solution.
Finally, the improved solution is used to update the population (Sect. 2.6). This
process is repeated until a fixed number of generations (MaxGene) is reached.

180 J. Ren et al.

Algorithm 1. Pseudo-code of general procedure
1: Input: Finite undirected graph G(V, E), fitness function BC , fixed size of population

|P | and maximum generations MaxGene
2: Output: The best solution found ϕ∗

3: P = {ϕ1, ϕ2, ...ϕ|P |} ← Init Population()
4: ϕ∗ ← Best(P)
5: for i = 1 to |P | do
6: ϕi ← Local Search(ϕi)
7: if BC(G, ϕi) < BC(G, ϕ∗) then
8: ϕ∗ ← ϕi

9: end if
10: end for
11: for j = 1 to MaxGene do
12: ϕF , ϕM ← Parent Selection(P)
13: ϕC ← Recombination Sol(ϕF , ϕM)
14: ϕC ← Local Search(ϕC)
15: if BC(G, ϕC) < BC(G, ϕ∗) then
16: ϕ∗ ← ϕC

17: end if
18: P ← Update Pop(ϕC , P)
19: j ← j + 1
20: end for
21: return ϕ∗

2.3 Initialization

In the initialization procedure (Ini Population), |P | embeddings are generated
randomly and independently at first. And then each embedding is improved
by the local search procedure of Sect. 2.4 to attain a local optimum (lines 5–10,
Algorithm 1). The best solution ϕ∗ in P is also recorded, which is updated during
the subsequent search, each time an improved best solution is encountered.

2.4 Local Search

Local search (LS) is an important component of the memetic algorithm, which
aims to improve the input solution by searching a given neighborhood. In this
work, we apply a simple Descent Local Search (DLS) in order to highlight the
contributions of the recombination component.

DLS adopts the swap-based neighborhood of [23], where a neighboring solu-
tion of a given solution ϕ is obtained by simply swapping the labels of two
vertices of ϕ. To specify the neighborhood, we first define, for a vertex u, its
cyclic bandwidth BC(u, ϕ) with respect to the embedding ϕ as follows:

BC(u, ϕ) = max
v∈A(u)

{|l(u) − l(v)|n}, (2)

Recombination Operators for Cyclic Bandwidth 181

where A(u) denotes the set of vertices adjacent to u of cardinality deg(u). Then
the set of critical vertices is given by:

C(ϕ) = {u ∈ V : BC(u, ϕ) = BC(G,ϕ)}. (3)

The neighborhood is defined as follows:

N(ϕ) = {ϕ′ = ϕ ⊕ swap(u, v) : u ∈ C(ϕ), v ∈ V }. (4)

DLS starts with an input embedding, then it iteratively visits a series of
neighboring solutions of increasing quality according to the given neighborhood.
At each iteration, only solutions with a better objective value are considered and
the best one is used to replace the incumbent solution. If there exist multiple
best solutions, the first one encountered is adopted. We repeat this process until
no better solution exists in the neighborhood. In this case, DLS attains a local
optimum and the procedure of recombination is triggered to escape from the
local optimum.

2.5 Recombination

Recombination is another important part of the MA, which aims to generate new
diversified and potentially improving solutions. In our case, only one offspring
solution is generated at each generation by each recombination application. In
Sect. 3, we present five permutation recombination operators applied to CBP.

2.6 Updating Population

Each new offspring solution improved by the local search procedure is used to
update the population. In the proposed MA, we apply a simple strategy: we
insert the new offspring into P , and remove the “worst” solution in terms of the
objective value.

3 Recombination Operators

There are several recombination operators that are already applied to permu-
tation problems [6,8,9,18,26]. We consider five crossover operators introduced
below. It is worth noting that all the recombination operations work with the γ
representation mentioned in Sect. 2.1.

3.1 Order Crossover

The Order Crossover operator (OX) [6] generates an offspring solution with a
substring of one parent solution and conserves the relative order of the numbers
of the other parent solution. Let’s consider an example with two parent solutions
ϕF = (1 2 3 4 5 6 7 8) and ϕM = (2 4 6 8 7 5 3 1) (each number here denotes the
index of a node). Given two random cut points (in this case, the first cut point

182 J. Ren et al.

is between second and third positions and the second cut point is between fifth
and sixth positions, i.e., ϕF = (1 2 | 3 4 5 | 6 7 8) and ϕM = (2 4 | 6 8 7 | 5 3
1), two offspring solutions first inherit the substring between the two cut points:
ϕC1 = (+ + | 3 4 5 | + + +) and ϕC2 = (+ + | 6 8 7 | + + +). Then, we copy
the permutation starting from the second cut point of ϕM to the end, as well as
from the beginning to the second cut point: (5 3 1 2 4 6 8 7). At last, the new
obtained permutation is used to insert into ϕC1 from the second cut point. The
repeated numbers are skipped and we get ϕC1 = (8 7 | 3 4 5 | 1 2 6). The same
operations are performed on ϕC2 with ϕF to get ϕC2 = (4 5 | 6 8 7 | 1 2 3).

3.2 Order-Based Crossover

The Order-based Crossover operator (OX2) [26] is a modified version of OX.
Instead of choosing two cut points, OX2 chooses several random positions of one
parent solution, and then the order of the selected positions is imposed on the
other parent solution. For instance, we have two parent solutions ϕF = (1 2 3 4
5 6 7 8) and ϕM = (2 4 6 8 7 5 3 1), and the second, third and sixth positions
are picked for ϕM . So the order of “4 6 5” is kept. For solution ϕF , we remove
the corresponding numbers of these positions to get (1 2 3 + + + 7 8). Then we
insert the numbers in the order “4 6 5” into ϕF and we get the offspring solution
ϕC1 = (1 2 3 4 6 5 7 8). The same operation can be performed for ϕM to obtain
the other offspring solution ϕC2 = (2 4 3 8 7 5 6 1).

3.3 Cycle Crossover

The Cycle Crossover operator (CX) [18] seeks a way to preserve the common
information in both parent solutions. Two new offspring solutions ϕC1 and ϕC2

are created from two parents ϕF and ϕM where the number of each position
in ϕC1 and ϕC2 is decided by the number of the corresponding position of one
parent. For example, we consider two parent solutions ϕF = (1 2 3 4 5 6 7 8)
and ϕM = (2 4 6 8 7 5 3 1). Firstly, the number of the first position of ϕC1

could be 1 or 2, Supposing that we pick 1 here (1 + + + + + + +). Then, the
number of the eighth position could not be 1 because it is already assigned to
the first position, hence we allocate it with a number from ϕF to get (1 + + +
+ + + 8). After that, we find the position of ϕM whose number is 8 and assign
the number of ϕF to the corresponding position of ϕC1. We repeat the same
operation and find that the forth and the second number of ϕC1 come from ϕF ,
which leads to (1 2 + 4 + + + 8). For the rest of the positions, we fill them with
the numbers from ϕM to obtain a complete offspring solution ϕC1 = (1 2 6 4 7 5
3 8). Similarly, we could get the other offspring solution ϕC2 = (2 4 3 8 5 6 7 1).

3.4 Partially Mapped Crossover

The Partially Mapped Crossover operator (PMX) [9] passes the absolute position
information from the parent solutions to the offspring solutions. An offspring

Recombination Operators for Cyclic Bandwidth 183

solution gets a substring from one parent and its remaining positions take the
values of the other parent. For example, we consider again ϕF = (1 2 3 4 5 6 7 8)
and ϕM = (2 4 6 8 7 5 3 1). At the beginning, two random cut points are chosen
for both parent solutions: ϕF = (1 2 3 | 4 5 6 | 7 8) and ϕM = (2 4 6 | 8 7 5 |
3 1). Then we pass the information between the two cut points to the offspring
solutions: ϕC1 = (+ + + | 4 5 6 | + +) and ϕC2 = (+ + + | 8 7 5 | + +). Also,
we get the mapping for the substrings between the two cut points: 4↔8, 5↔7,
6↔5. After that, the other positions of the offspring solutions are filled with the
other parent solution, hence we get ϕC1 = (2 4 6 | 4 5 6 | 3 1) and ϕC2 = (1 2
3 | 8 7 5 | 7 8). For the duplicate labels in the solution, we use the mapping of
substrings to replace the repeated numbers. In this case, 5↔7 and 6↔5 result
in 6↔7. Therefore, the offspring solutions are ϕC1 = (2 8 7 | 4 5 6 | 3 1) and
ϕC2 = (1 2 3 | 8 7 5 | 6 4).

3.5 Distance Preserved Crossover

The Distance Preserved Crossover operator (DPX) [8], designed for solving the
Traveling Salesman Problem (TSP), aims to produce an offspring solution which
has the same distance to each of its parents. It is noteworthy that the distance
here is the distance based on the common connections between two solutions,
instead of the Hamming distance. We come back to this issue in Sect. 5. For
DPX, we firstly delete the uncommon connections of two neighboring numbers
for both parent solutions. Then, the parent solutions are separated into different
substrings. Finally, we reconnect all the substrings without using any of the
connections which are contained in only one of the parent solutions. For more
detailed explanations and examples, please refer to [8].

4 Experimental Results

4.1 Instances and Settings

In this section, we report experimental results of the MA using the 5 differ-
ent recombination operators introduced in Sect. 3. The study was based on
20 representative graphs with 59 to 2048 vertices, selected from a test-suite
of 113 benchmark instances (https://www.tamps.cinvestav.mx/∼ertello/cbmp.
php). 14 of the chosen graphs are standard graphs covering 7 dissimilar cate-
gories (path, cycle, complete tree, 2-dimension mesh, 3-dimension mesh, cater-
pillar and hypercube) and the other 6 graphs (called Harwell-Boeing graphs)
come from real-world scientific and engineering applications and are part of the
Harwell-Boeing Sparse Matrix Collection. Considering the stochastic nature of
the algorithm, each instance was independently solved 50 times under the envi-
ronment of Linux using an Intel Xeon E5-2695 2.1 GHz CPU and 2 GB RAM.
Each execution was limited to 20000 generations (MaxGene = 20000) and the
population size |P | was set to 20.

https://www.tamps.cinvestav.mx/~ertello/cbmp.php
https://www.tamps.cinvestav.mx/~ertello/cbmp.php

184 J. Ren et al.

4.2 Computional Results

Table 1 outlines the computational results of our MA variants with the 5 differ-
ent recombination operators. The columns “Best” and “Avg” list the best and
average objective values found. According to the definition introduced in Sect. 1,
a smaller objective value indicates a better result. Table 1 shows that the algo-
rithm with OX2 obtains the best results not only in terms of “Best” but also
in terms of “Avg” over the 20 test instances. From the average values listed in
the last row, we find that OX2 is a much more suitable operator than the other
operators for CBP. Also, the non-parametric Friedman test on the 5 groups of
best results leads to a p-value = 6.71e-14 < 0.05, confirming that there exists a
statistically significant difference among the compared results.

Table 1. Experimental results of MA using 5 different recombination operators.

CX DPX OX OX2 PMX

Graph Best Avg Best Avg Best Avg Best Avg Best Avg

nos6 327 331.28 327 329.74 266 287.98 216 227.84 327 331.98

path1000 461 475.42 462 474.02 254 301.04 226 247.54 468 482.68

nos4 44 46.12 43 45.24 32 39.32 28 34.48 42 45.78

tree10x2 39 42.72 35 40.72 28 32.50 28 29.26 36 41.56

cycle1000 457 476.66 466 473.38 252 296.98 226 246.94 459 480.86

mesh2D8x25 88 93.04 89 91.82 59 75.18 57 62.94 87 93.28

caterpillar29 203 211.48 203 208.70 138 162.98 100 127.32 198 210.14

mesh3D6 102 103.88 101 102.96 86 93.08 73 78.26 102 104.28

hypercube11 1022 1022.76 1022 1022.14 1019 1021.26 952 1010.48 1022 1022.54

cycle475 200 215.16 206 213.36 105 128.36 99 110.76 192 217.30

mesh2D28x30 409 413.40 410 412.06 336 371.76 270 287.46 406 414.06

mesh3D11 660 662.04 660 661.28 625 650.30 507 522.82 660 662.40

can 715 354 355.80 355 355.14 347 353.92 293 316.70 354 355.74

impcol b 28 28.46 27 27.96 25 27.22 20 26.72 28 28.00

path475 202 214.50 206 212.86 112 132.24 102 112.94 189 217.56

494 bus 220 230.76 222 228.72 135 165.74 128 138.62 216 233.38

tree21x2 199 212.08 203 208.96 139 171.34 124 140.84 200 210.68

caterpillar44 481 493.28 479 491.24 340 400.78 281 321.70 480 495.60

impcol d 207 209.60 207 208.80 190 202.98 159 169.74 208 209.80

tree2x9 475 489.08 478 485.86 296 330.14 257 276.60 472 491.84

Average

p-value

308.90

6.71e-14

316.38 310.50 315.75 239.20 262.26 207.30 224.50 307.30 317.47

Table 2 reports the comparative results between the best MA with OX2
(called MAOX2) and TSCB , which is the state-of-art algorithm for CBP pre-
sented in [23]. Table 2 shows the same information as in Table 1, except for the
column “CC” which represents the difference between the best values found by
TSCB and MAOX2. A negative “CC” indicates a worse result of MAOX2 com-
pared to TSCB . It is clear that for the 20 test graphs, MAOX2 does not com-
pete well with TSCB . Indeed, TSCB is a powerful iterated tabu search algorithm
which uses three dedicated neighborhoods to effectively explore the search space.
Also, the Wilcoxon signed-rank test with the two groups of best values leads to
a p-value = 1.31e-4 < 0.05, confirming the statistical significance between the

Recombination Operators for Cyclic Bandwidth 185

compared results. This comparison tends to indicate that in practice, it is not
enough for the MA to apply a recombination operator and a simple local search.
In addition to a suitable recombination operator, the MA needs a powerful local
optimization procedure to ensure an effective exploitation.

Table 2. Comparison between MAOX2 and TSCB [23].

MAOX2 TSCB

Graph Best Avg Best Avg CC

nos6 216 227.84 22 23.50 −194

path1000 226 247.54 8 8.90 −218

nos4 28 34.48 10 10.00 −18

tree10x2 28 29.26 28 28.00 0

cycle1000 226 246.94 8 8.50 −218

mesh2D8x25 57 62.94 8 8.20 −49

caterpillar29 100 127.32 24 25.80 −76

mesh3D6 73 78.26 31 31.00 −42

hypercube11 952 1010.48 570 582.20 −382

cycle475 99 110.76 5 5.80 −94

mesh2D28x30 270 287.46 30 174.00 −240

mesh3D11 507 522.82 336 336.80 −171

can 715 293 316.70 60 65.80 −233

impcol b 20 26.72 17 17.00 −3

path475 102 112.94 5 5.60 −97

494 bus 128 138.62 46 56.10 −82

tree21x2 124 140.84 116 116.00 −8

caterpillar44 281 321.70 39 54.00 −242

impcol d 159 169.74 38 43.10 −121

tree2x9 257 276.60 63 64.20 −194

Average
p-value

207.30
1.31e-4

224.50 73.20 83.23

5 Understanding the Performance Differences
of the Compared Crossovers

In Sect. 4, we observe that OX2 excels compared to the other crossover operators.
In this section, we investigate the reasons why OX2 has a better performance
than the other crossovers. For this, we follow [27] and study the evolution of the
population diversity. To this end, we consider two diversity indicators: average
solution distance Davg(P) and population entropy Ep(P).

186 J. Ren et al.

5.1 Distance and Population Entropy

We first introduce the average solution distance Davg(P) of the population.

Davg(P) =
2

|P |(|P | − 1)

|P |∑

i=1

|P |∑

j=i+1

dij (5)

where dij is the distance between two solutions γi and γj of P , which is defined
as the number of the adjacent connections that are contained in γi but not in γj .
For example, given two solutions γ1 = {h a b d e f c g} and γ2 = {b a c h g d f e}.
The set of adjacent connections is {ha, ab, bd, de, ef, fc, cg, gh} for γ1 and {ba,
ac, ch, hg, gd, df, fe, eb} for γ2. The common adjacent connections are {ab, ef,
gh} (ba and ab are the same connections). The distance d12 equals thus 8–3 = 5.
This distance is used in [8] to deal with TSP whose solutions have the symmetry
feature. As shown in Fig. 1, CBP solutions have the feature of symmetry, so the
use of this distance measure is very important for CBP.

Another indicator to describe the population diversity is the population
entropy Ep(P) [7].

Ep(P) =
−∑n

i=1

∑n
j=1

(
nij

|P |
)

log
(

nij

|P |
)

n log n
(6)

where nij represents the number of times that variable i is set to value j in all
solutions in P . One notices that Ep(P) varies in the interval [0,1]. When Ep(P)
equals 0, all the solutions of P are identical. A large Ep(P) value indicates a
more diverse population.

The instance ‘nos6’ is a representative large graph with 675 nodes from prac-
tical application and rather difficult, so we use it as a working example. Figure 2
shows the average distance, average entropy and average best objective value
found in 50 independent executions over the graph ‘nos6’. Under 5000 gener-
ations, the population of the MA with OX2 has a high average distance and
entropy, leading to much better solutions. From generations 5000 to 20000, the
entropy is identical to that of OX, and the best average objective found stops
decreasing. These observations remain valid for all test graphs except the graph
‘impcol b’ (even if the MA with OX2 does not have a large population dis-
tance and entropy, it gets good results comparing to others). Therefore, for the
operators CX, OX, OX2 and PMX, a higher entropy and average distance of
population leads to a good quality solution. However, what is surprising is that
the average distance and entropy with DPX always stay at a high level for all
test graphs, yet the quality of solutions found is not as good as that of the other
operators. To shed light on this behavior, we show a deeper analysis of the inter-
action between the crossover mechanism and the characteristics of problem in
the next section.

Recombination Operators for Cyclic Bandwidth 187

(a) Average distance of the population in 20000 generations

(b) Entropy of the population in 20000 generations

(c) Best objective value found in 20000 generations

Fig. 2. Distance and population entropy applied to the instance nos6.

188 J. Ren et al.

Fig. 3. Average objective value of the child solution over 50 independent executions.

5.2 Interaction Between Crossover and Problem Characteristics

In Sect. 5.1, we find that the recombination operator with a higher entropy and
average distance of the population generally helps to find solutions of good qual-
ity. However, the DPX operator fails to reach good solutions even if the entropy
and average distance of population under the MA with DPX always stay at a
high level. From Fig. 3, which presents the average objective value of the offspring
solutions of instance nos6 using the average data of 50 independent executions,
we find that DPX does not generate high quality offspring solutions during the
search.

To understand why DPX does not help the MA to find good quality solutions,
we first recall that DPX is designed for TSP, which is a quite different problem
compared to CBP considered in this work. In [4], it is observed that for TSP,
the average distance between local optima is similar to the average distance
between a local optimum and the global optimum and common substrings in the
local optima also appear in the global optimum. DPX explores this particular
feature of TSP and is thus suitable to TSP. However, CBP has a totally different
objective function and does not share the above characteristic.

Indeed, to calculate the objective value of a solution of TSP, we only need
to consider, for each vertex, its two linked edges and sum up the edge distances
of the tour. In this case, solution sub-tours (substrings) are clearly a key com-
ponent which characterizes the solutions. Yet in a solution of CBP, we need to
consider for each vertex all the edges linked to the vertex in the graph, such that
the objective value (see Eq. (1)) relies on the largest cyclic bandwidth. In the
case of CBP, the key point is the relative position for the pairs of nodes which

Recombination Operators for Cyclic Bandwidth 189

are linked by an edge. Therefore given that TSP and CBP have very different
characteristics, a good crossover operator designed for TSP (in our case, DPX)
may fail when it is applied to CBP.

This inspires us that the choice and design of recombination operators are
not only relied on the entropy and average distance of population, but also on
the characteristics of the considered problem.

6 Conclusion

In this paper, we have investigated the memetic framework for solving the NP-
hard Cyclic Bandwidth problem. We have compared five permutation recombina-
tion operators (CX, OX, OX2, PMX and DPX) within a basic memetic algorithm
which uses a simple descent procedure for local optimization. The experimental
results indicate that OX2 achieves the best performance for the test instances.
We have studied the population diversity measured by the average distance and
entropy of the MA variants using different recombination operators. We have
also explored the correlation between the population diversity and the perfor-
mance of the studies MA variants. This study indicates that the basic memetic
algorithm combining an existing recombination operator and a simple descent
local search procedure is not competitive compared to the state-of-the-art CBP
algorithms. Additional (preliminary) experiments with MAs using an enforced
local optimization procedure (such as the powerful local search algorithms pre-
sented in [19,23]) have not led to more convincing results. Meanwhile, given the
excellent performances achieved by MAs on many difficult optimization prob-
lems, this work invites more research effort on seeking meaningful recombina-
tion operators suitable for CBP. It is then expected that a MA integrating such
a recombination operator and a powerful local optimization procedure would
achieve state-of-the-art performances.

Acknowledgments. We are grateful to the referees for their valuable suggestions and
comments which helped us to improve the paper. Support from the China Scholarship
Council (CSC, Grant 201608070103) for the first author and support from the Mexican
Secretariat of Public Education through SEP-Cinvestav (2019–2020, Grant 00114) for
the third author are also acknowledged.

References

1. Bansal, R., Srivastava, K.: A memetic algorithm for the cyclic antibandwidth max-
imization problem. Soft Comput. 15(2), 397–412 (2011)

2. Benlic, U., Hao, J.K.: Memetic search for the quadratic assignment problem.
Expert Syst. Appl. 42(1), 584–595 (2015)

3. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems.
J. Comput. Syst. Sci. 28(2), 300–343 (1984)

4. Boese, K.D.: Cost versus distance in the traveling salesman problem. UCLA Com-
puter Science Department Los Angeles (1995)

190 J. Ren et al.

5. Chen, Y., Hao, J.K.: Memetic search for the generalized quadratic multiple knap-
sack problem. IEEE Trans. Evol. Comput. 20(6), 908–923 (2016)

6. Davis, L.: Applying adaptive algorithms to epistatic domains. In: International
Joint Conference on Artificial Intelligence, vol. 85, pp. 162–164 (1985)

7. Fleurent, C., Ferland, J.: Object-oriented implementation of heuristic search meth-
ods for graph coloring. Cliques, Coloring, and Satisfiability. DIMACS Ser. Discrete
Math. Theor. Comput. Sci. 6, 619–652 (1996)

8. Freisleben, B., Merz, P.: A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems. In: Proceedings of IEEE International
Conference on Evolutionary Computation, pp. 616–621. IEEE (1996)

9. Goldberg, D.E., Lingle, R., et al.: Alleles, loci, and the traveling salesman prob-
lem. In: Proceedings of International Conference on Genetic Algorithms and Their
Applications, vol. 154, pp. 154–159. Lawrence Erlbaum, Hillsdale (1985)

10. Hao, J.K.: Memetic algorithms in discrete optimization. In: Neri, F., Cotta, C.,
Moscato, P. (eds.) Handbook of Memetic Algorithms. Studies in Computational
Intelligence, vol. 379, pp. 73–94. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-23247-3 6

11. Jin, Y., Hao, J.K., Hamiez, J.P.: A memetic algorithm for the minimum sum
coloring problem. Comput. Oper. Res. 43, 318–327 (2014)

12. Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model,
taxonomy, and design issues. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)

13. Lai, X., Hao, J.K.: A tabu search based memetic algorithm for the max-mean
dispersion problem. Comput. Oper. Res. 72, 118–127 (2016)

14. Leung, J.Y., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth
minimization problem. SIAM J. Comput. 13(3), 650–667 (1984)

15. Lin, Y.: The cyclic bandwidth problem. In: Chinese Science Abstracts Series A,
vol. 14(2 Part A), p. 14 (1995)

16. Merz, P., Freisleben, B.: Memetic algorithms for the traveling salesman problem.
Complex Syst. 13, 297–345 (1997)

17. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover,
F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series
in Operations Research & Management Science, vol. 57, pp. 105–144. Springer,
Boston (2003). https://doi.org/10.1007/0-306-48056-5 5

18. Oliver, I., Smith, D., Holland, J.: A study of permutation crossover operators
on the travelling salesman problem. In: Proceedings of the Second International
Conference on Genetic Algorithms and their Application, pp. 224–230 (1987)

19. Ren, J., Hao, J.K., Rodriguez-Tello, E.: An iterated three-phase search approach
for solving the cyclic bandwidth problem. IEEE Access 7, 98436–98452 (2019)

20. Rodriguez-Tello, E., Betancourt, L.C.: An improved memetic algorithm for the
antibandwidth problem. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N.,
Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 121–132. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35533-2 11

21. Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An improved simulated anneal-
ing algorithm for bandwidth minimization. Eur. J. Oper. Res. 185(3), 1319–1335
(2008)

22. Rodriguez-Tello, E., Narvaez-Teran, V., Lardeux, F.: Comparative study of differ-
ent memetic algorithm configurations for the cyclic bandwidth sum problem. In:
Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D.
(eds.) PPSN 2018, Part I. LNCS, vol. 11101, pp. 82–94. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99253-2 7

https://doi.org/10.1007/978-3-642-23247-3_6
https://doi.org/10.1007/978-3-642-23247-3_6
https://doi.org/10.1007/0-306-48056-5_5
https://doi.org/10.1007/978-3-642-35533-2_11
https://doi.org/10.1007/978-3-319-99253-2_7

Recombination Operators for Cyclic Bandwidth 191

23. Rodriguez-Tello, E., Romero-Monsivais, H., Ramirez-Torres, G., Lardeux, F.: Tabu
search for the cyclic bandwidth problem. Comput. Oper. Res. 57, 17–32 (2015)

24. Romero-Monsivais, H., Rodriguez-Tello, E., Ramı́rez, G.: A new branch and bound
algorithm for the cyclic bandwidth problem. In: Batyrshin, I., Mendoza, M.G.
(eds.) MICAI 2012, Part II. LNCS (LNAI), vol. 7630, pp. 139–150. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37798-3 13

25. Rosenberg, A.L., Snyder, L.: Bounds on the costs of data encodings. Math. Syst.
Theory 12(1), 9–39 (1978)

26. Syswerda, G.: Scheduling optimization using genetic algorithms. In: Handbook of
Genetic Algorithms, pp. 322–349 (1991)

27. Wang, Y., Lü, Z., Hao, J.-K.: A study of multi-parent crossover operators in a
memetic algorithm. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN 2010, Part I. LNCS, vol. 6238, pp. 556–565. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 56

28. Wu, Q., Hao, J.K.: Memetic search for the max-bisection problem. Comput. Oper.
Res. 40(1), 166–179 (2013)

29. Zhou, Y., Hao, J., Glover, F.: Memetic search for identifying critical nodes in sparse
graphs. IEEE Trans. Cybern. 49(10), 3699–3712 (2019)

https://doi.org/10.1007/978-3-642-37798-3_13
https://doi.org/10.1007/978-3-642-15844-5_56

Automatic Calibration of a Farm
Irrigation Model: A Multi-Modal

Optimization Approach

Amaury Dubois1,2(B), Fabien Teytaud1(B), Eric Ramat1,
and Sébastien Verel1(B)

1 LISIC, Université du Littoral Côte d’Opale,
50 rue Ferdinand Buisson, 62228 Calais, France

dubois.amaury62@gmail.com, fabien.teytaud@gmail.com,

verel@univ-littoral.fr
2 Weenat Technocampus Alimentation,

2 impasse Therese Bertrand-Fontaine, 44320 Nantes, France
http://www-lisic.univ-littoral.fr/,

https://www.weenat.com/

Abstract. In agriculture, plant cultivation requires to take numerous
decisions. One of the major problems is irrigation: an adequate irriga-
tion decision must be made accordingly to the hydric status of the plant
and soil, and the weather forecasts. In precision agronomy, this leads to
the use of hydric sensors combined with a numerical growth plant model.
Such models can not often be tuned by experts. We proposed an auto-
matic parameter calibration of the potato growth model based on data
collected in several open fields. As these parameter calibration problems
are ill-posed, the associated black-box optimization problem is supposed
to be multi-modal. We then compare the performances of two state-of-
the-art Evolution Strategies which use different restart mechanisms to
automatically tune the set of parameters on different crops and shows
that multi-modal optimization methods may be recommended for such
class of optimization problems.

Keywords: Multi-Modal Optimization · Real world application ·
Data driven calibration

1 Introduction

As others domains (industry, urban, etc.), precision agronomy benefits new sen-
sors which are enhanced by numerical models and simulations. Therefore, the
decision-making process can be supported by the knowledge bringing by this new
numerical environment. For plant cultivation, one major decision is irrigation.
The farmer has to decide to irrigate a field according to the hydric state of plant

Supported by WEENAT.

c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 192–204, 2020.
https://doi.org/10.1007/978-3-030-45715-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_15

Multi-Modal Optimization for Crop Growth Model 193

and soil, the weather prediction, and the cost of irrigation. In that case, new
decision-making method uses hydric sensors to measure the quantity of humid-
ity of the soil, and, a growth plant model to able to estimate the hydric state
of the plant, and the available quantity of water for the plant which depends
on the root size, and the characteristics of the soil. Although such numerical
approach can lead to an accurate prediction of the crop state, and beyond the
sensor precision, one drawback is the setting of the numerous parameters of
the plant growth model. Indeed, models combine different sub-models based on
differential equations, finite state transitions, etc. that require the settings of
many numerical biological, or geological parameters. Even if experts can mea-
sure, estimate, or give bounds of some parameter values1, most of times precise
value of parameters are not known for a field-scale crop as they depend on spe-
cific soil, and plant species/varieties. In this work, we show that it is possible
to set precisely the model parameters of potato plant growth based on the data
acquisition of hydric sensors, and a relevant optimization algorithm that mini-
mizes the distance between predicted values computed by the model, and real
data.

In evolutionary computation, this black-box problem is known as a calibra-
tion problem [1,2]. The parameter settings of the potato plant growth model
show specific difficulties. As the parameters depends on local specificity such as
soil, potato variety, weather exposition, etc. the data are difficult to collect, and
rare: a campaign of data acquisition with hydric sensors for a potato field lasts
4 months, and can be done on the same field every 3 years due to crop rotation.
On the other hand, the number of model parameters is high: several dozens for
representative models such as STICS [3], AquaCrop [4], or Weedric [5]. As a con-
sequence, the calibration problem of potato growth model is ill-posed. Several
parameters settings lead to the same input-output behavior, and the simulations
are consistent with the measurements in the field. Thus, the optimization prob-
lem related to model calibration is not only a problem with many local optima
but a multi-modal problem for which the quality of several local optima is very
close to those of the global optima.

In this work, we formulate the calibration optimization problem from the
farming irrigation model Weedric (defined in Sect. 2.1), and available hydric
data. More precisely, we have a model with many continuous parameters for
which we have no a priori knowledge about their implications in equations, sim-
ulations or the interactions between the different model parts. Experts can only
define the bounds of each parameter values. So, we consider it as a continuous
black-box function from the search space of dimension d > 1: [0, 1]d. As stated
above, we assume that this problem is highly multi-modal, with one global opti-
mum but has many local optima close to the global one. It is, therefore, necessary
to check the maximum number of optima in order to determine the global one.

This kind of problems is known as Multi-Modal Optimization (MMO).
Numerous algorithms have been proposed, many of them use the derivative
of the gradient but in black box context, these algorithms are not directly

1 Some parameters can also have no meaning from a biological point of view.

194 A. Dubois et al.

applicable. Gradient free methods are generally based on Evolution Strategy
(ES) which have shown their robustness and their efficiency [6–8]. ES consists in
generating better solutions iteratively from a starting point. In MMO context,
ES are generally combined with either a niching technique [9,10] or a restart
strategy [11–13], in order to find all the optima. In this paper, we propose to
compare different state-of-the-art restart strategy algorithms: QRDS [14,15] and
CMAES-IPOP [12] to automatically tune the parameters model.

The rest of this paper is organized as follows: Sect. 2.1 describes the Weedric
simulator. Then, we present the Quasi-Random Restart Strategy (QRDS) and
Covariance Matrix Adaptation Evolution Strategy with Increasing POPulation
(CMAES-IPOP) in Sect. 3. Next, we compare their performances in Sect. 4.
Finally we conclude in Sect. 5.

2 Calibration Problem of an Irrigation Model

2.1 Farming Irrigation Model

Many models have been proposed to deal with this plant growth. For example,
STICS [3] is a deterministic generic model for the simulation of crops and their
water andnitrogen balance developed at INRA institute (France) since 1996. It cal-
culates both agricultural variables (yield, input consumption) and environmental
variables (water and nitrogen losses). AquaCrop [4] is also a deterministic generic
model. It provides an estimation of crop productivity in relation to water supply
and agronomic management in a framework based on current plant physiologi-
cal and soil water budgeting concepts. Unfortunately, these models require a large
number of parameters such as they are generic, several types of plants can be mod-
eled, and involve other biological mechanisms in addition to the irrigation issue.

Weedric is an agricultural irrigation model for the culture of potatoes devel-
oped by the Weenat company2. This model has emerged from a collaborative
project between computer, and agriculture researchers [5]. It is intended to farm-
ers in order to help them with decision support.

The Weedric model consists of the combination of several deterministic exist-
ing biological models [16–19] to provide a specific model for this kind of culture.
Initially, these models are independent, and the interest of the Weedric model
(see Fig. 1) is to be able to connect them in order to propose two high-level
models:

– Soil model: this model considers the soil as a succession of horizontal layers
and each layer has a quantity of water varying over time according to the
different exchanges between the layers (percolation, upwelling), the weather
(temperature, rain, wind,...) and the interactions with the Plant model.

– Plant model: it simulates the development and the behavior of a potato plant
from planting to harvesting, based on current water quantity and weather
forecasts.

2 https://www.weenat.com/.

https://www.weenat.com/

Multi-Modal Optimization for Crop Growth Model 195

Fig. 1. Simplified diagram of how the multi-model Weedric growth crop model works.
This one is divided into several sub-models in which the d = 38 variables are assigned.
The green arrows indicate the entry points of the model by which the different inputs
(pressure, temperature, wind, rainfall, . . .) can be filled in. The black arrows indicate
the interaction and information sharing of the models between them. SWC is the Soil
Water Content under interest in this work. (Color figure online)

Using the planting date and the weather forecasts, the multi-model Weedric
can predict the water stress of the potato plant, and the Soil Water Content
(SWC). The SWC is the available quantity of water that the potato plant can
use, and extract from the soil. Unfortunately, to be fully effective, the d = 38
real parameter values must be tune for a particular potato variety and soil type.

2.2 Black-Box Calibration Problem

The goal is to calibrate the Weedric model using the Soil Water Content (SWC),
and the hydric sensors. Sensors are put in the field, and they regularly send data.
This makes it possible to obtain an approximation of the pressure of the water in
the ground which can be converted into a quantity of water using the well know
Van Gernuchen equation [20]. The black curve “sensors” of the Fig. 2 shows the
SWC over a season of n = 73 days.

Following the expert knowledge, a set of default parameters value is defined.
The green curve “default” on the Fig. 2 shows the predicted SWC by the Weedric
using those default values. From the first day to approximately the 30th day,
the predicted value follows the measured values by sensors. During this period,
the SWC increasing is mainly due to the increasing of the roots. During a dry
period after the 30th day, the model with default parameter values seems to
over-estimate the dryness of the soil which could be due to misleading values of
the soil model, or plant model, or a combination of the two. The interaction of
different components of the model are not linear.

The fitness function of the calibration problem is defined as the root mean
square error over the crop period of the SWC value predicted by the model.
More formally, for every settings x ∈ [0, 1]d, with d = 38, of the Weedric model,
the fitness function f is defined by:

196 A. Dubois et al.

f(x) =

√
√
√
√

1
n

n∑

t=1

(SWCt − ̂SWCt)2 (1)

where n is the number of days of culture period, SWCt is the SWC at the day
t measured by the sensors, and ̂SWCt is the predicted SWC by the model with
the parameters settings x. The fitness function is to be minimized in order to
reduce the distance between predicted, and real SWC values.

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60

Day

S
W
C
(m

m
)

SWC simulation over times

Optimized
Default
Sensors

Fig. 2. Evolution of the Soil Water Quantity (SWC) over time (n = 73 days). The
black curve represents the sensor values, the green represents the prediction of the
model with the basic values and the red curve, the prediction of the model with the
optimized values. The closer the curves are to the black curve, the better the prediction.
At the beginning of the simulation, the two parameter sets are quite similar but over
time, the model with the default parameters is no longer accurate. (Color figure online)

3 Multi-Modal Optimization Algorithms

In this section, we present the Quasi-Random restarts with Decreasing Step-size
algorithm (QRDS) and the Covariance Matrix Adaptation Evolution Strategy
with Increasing POPulation (CMA-ES IPOP), one of its variants for multi-modal
problems.

Multi-Modal Optimization for Crop Growth Model 197

3.1 Quasi-Random Restarts with Decreasing Step-Size

Random restarts with Decreasing Step-size and its improvement (Quasi-Random
restarts with Decreasing Step-size [15]) are an Evolution-Strategy-based Multi-
Modal Optimization algorithms which use the restarting technique.

It is composed by a simple local search algorithm combined with a restart
strategy following a random (or quasi-random) sequence. Local search is a simple
(1+1)-ES using the 1/5 adaptation rule (see Algorithm 1).

At the beginning, a point is selected. Then, Iteratively, the algorithm gen-
erates a candidate by mutating the current best point according to a normal
distribution with a standard deviation (step-size) σ. The best of both points are
kept. The update of the step-size σ is really simple: if the candidate solution,
i.e. the newly generated point is better, the step-size σ is increased, otherwise,
σ is decreased as we may need to focus on smaller neighborhood.

We use this step-size value as the stopping criterion of the local search. If
it is too small, we consider that the local search has converged to an optimum
(global or local). The solution is saved and the local search is restarted until the
evaluation budget is reached.

A feature of QRDS is its “murder operator”. In order to avoid converging
to an already known solution, the algorithm checks at each evaluation, if the
current solution is greater than a distance δthreshold of all the optima already
discovered. If it is true, the search is aborted without saving the solution (we
don’t want to spend time for an already found optimum).

For the restart strategy (see Algorithm 2), each time the algorithm is
restarted, the initial position is sampled according to a quasi-random sequence.

3.2 CMA-ES IPOP

The Covariance Matrix Adaptation Evolution-Strategy is an Evolution Strategy
that adapts the full covariance matrix of a normal search distribution [21]. This
algorithm is presented in Algorithm 3. An important property of this algorithm
is its invariance against linear transformations of the research space. CMA-ES
is effective in minimizing unimodal function and is superior when the problem
is ill-conditioned and non-separable. In multi-modal context, [22] shows that
increasing the size of the population can improve performances of the CMA-
ES. [12] proposes a version of CMA-ES using a restart strategy: at each restart
(whenever the stopping criterion is met), the size of the population is doubled see
Algorithm 4. By increasing the population size, the local search becomes more
global after each restart. The results given in [12] show that this improvement
provides good performances on multi-modal black-box context.

198 A. Dubois et al.

4 Experimental Analysis

We compare the multi-modal algorithms, on the Weedric model calibration prob-
lem defined in the previous Sect. 2. The data from 5 different crops are used with
different soil types and potato varieties. The two algorithms are also compared
with default parameters values given by the experts. For each crop, the number
of independent runs of each algorithm is 100. The maximum number of eval-
uations for each algorithm is 105. Notice that the simulation time of Weedric
model is enough short for such number of evaluation within minutes.

Multi-Modal Optimization for Crop Growth Model 199

200 A. Dubois et al.

All the results are reported in Table 1, and correspond to the best value
found over the 100 runs, mean with confidence interval, and the median value.
Both algorithms substantially improved the default settings of the experts. These
results show the relevance of using data-oriented calibration with an ES algo-
rithm on this kind of real-world application since it is able to find a set of
parameters that allows the model to correctly predict sensor values. Moreover,
according to the Mann-Whitney test at confidence level 0.01, the QRDS outper-
form the CMAES-IPOP on all crops. Figure 3 shows the dispersion of the values
found overall runs (smaller is better). The restart strategy of QRDS seems to be
more effective on such multi-model problem. Indeed, the exploration behavior of
the QRDS allows finding more interesting search space area. As an example of
the result, the Fig. 2 shows the predicted SWC by the best parameter settings of
the Weedric model. In particular, the parameters setting improves the prediction
for the dry period after the 30 days.

The second experiment consists in testing the robustness of an optimized
parameter set. To do this, we select the parameter set that has obtained the
best (smallest) fitness (one solution of the crop 4), then we use this set (from
crop4) on the other crops. Table 2 presents the results of the corresponding
fitness with the fitness of the best optimized solutions and default parameters.
We can see that, indeed, results are not as good as a specific optimization,

Table 1. Best, median and mean fitness (with the confidence interval at 95%) found
by each algorithm over 100 runs with a budget of 105 evaluations (smaller is better).
The bolded median values are significantly better according to the Mann-Whitney at
confidence level of 0.01.

Crop Algorithm Best Mean Median

Crop 1 Default 80.83 / /

QRDS 15.8 16.3 ± 0.03 16.3

CMA-ES IPOP 16.4 18.5 ± 0.12 18.3

Crop 2 Default 57.81 / /

QRDS 16 16.7 ± 0.03 16.7

CMA-ES IPOP 17 19 ± 0.08 19

Crop 3 Default 63.65 / /

QRDS 17.5 18 ± 0.03 17.9

CMA-ES IPOP 19 21.5 ± 0.12 21.6

Crop 4 Default 47.85 / /

QRDS 14.2 15.8 ± 0.06 16

CMA-ES IPOP 16.7 20 ± 0.25 19.4

Crop 5 Default 50.74 / /

QRDS 15.1 15.3 ± 0.02 15.3

CMA-ES IPOP 15.3 16.6 ± 0.07 16.5

Multi-Modal Optimization for Crop Growth Model 201

Fig. 3. Spread out of the best solutions found by QRDS and CMA-ES IPOP over 100
runs (smaller is better) on the 5 crops.

Table 2. Evaluation of the robustness of the best set of parameters found on crop 4
on the other crops compared to the fitness of their best optimized solution as well as
the basic one (smaller is better). The best set of parameters ever found is not as good
as the specific optimization of the problem but greatly improves fitness compared to
the basic values.

Parameters Crop1 Crop2 Crop3 Crop5

Default 80.83 57.81 47.85 50.74

Best Optim 15.8 16 17.5 15.1

Crop 4 38.27 25.78 31.8 17.71

but the solution is robust enough as it is by far better than the specific expert
parameters. Figure 4 presents the results of the corresponding fitness with the
fitness of the best optimized solutions and basic parameters. Without a priori
knowledge, statistically, QRDS always finds better solutions than CMAES-IPOP.

202 A. Dubois et al.

Fig. 4. Spread out of the mean fitness for QRDS (left) and CMA-ES IPOP (right) on
the various crops. The average fitness of QRDS is statistically better (smaller) than
that of CMA-ES IPOP.

5 Conclusion

In this paper, we propose to describe a farming decision-making model for irri-
gation into a black box optimization problem and we experiment on two state-
of-the-art algorithms QRDS and CMA-ES IPOP. Results show that for this kind
of problem using an ES algorithms is very efficient since independently of the
crops, the set parameters calibrated by the algorithms are always significantly
better than those by default (which have been designed by experts or available
in the literature). Moreover, multi-modal QRDS seems to be very effective in
such problems.

The proposed method is “offline” which means that the optimization of the
parameter sets can only be done once the growing season is completed. Moreover,
in agriculture, it is impossible to replant the same plant before 3 to 5 years on
the same crop (and obviously the weather changes from year to year). This is for
these reasons, that it is interesting to be able to find a robust solution, which may
still be good for the next year. In order to have a solution as robust as possible,
a possible future work could be to optimize different crops at the same time.
Finally, we could also develop an “online” method able to predict the outputs
of the model according to the already collected data and parameter sets.

Acknowledgements. The authors would like to thank the WEENAT company in
particular for the financing of the CIFRE thesis and for their material support. Exper-
iments presented in this paper were carried out using the CALCULCO computing
platform, supported by SCOSI/ULCO (Service COmmun du Système d’Information
de l’Université du Littoral Côte d’Opale).

Multi-Modal Optimization for Crop Growth Model 203

References

1. Tang, Y., Reed, P., Wagener, T.: How effective and efficient are multiobjective
evolutionary algorithms at hydrologic model calibration? Hydrol. Earth Syst. Sci.
Discuss. 2(6), 2465–2520 (2005)

2. Gupta, H.V., Beven, K.J., Wagener, T.: Model calibration and uncertainty esti-
mation. In: Encyclopedia of Hydrological Sciences (2006)

3. Whisler, F.D., et al.: Crop simulation models in agronomic systems. In: Advances
in Agronomy, vol. 40, pp. 141–208. Elsevier (1986)

4. Raes, D., Steduto, P., Hsiao, T.C., Fereres, E.: Aquacrop–the FAO crop model
to simulate yield response to water: II. Main algorithms and software description.
Agron. J. 101(3), 438–447 (2009)

5. Ramat, E., Vandoorne, B.: Plant growth model for decision making support. Tech-
nical report, Université du Littoral Côte d’Opale, and ISA Lille (2002)

6. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, New York (2001).
https://doi.org/10.1007/978-3-662-04378-3

7. Rapin, J., Teytaud, O.: Nevergrad-a gradient-free optimization platform (2018).
https://GitHub.com/FacebookResearch/Nevergrad

8. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Number 15 in Problemata. Frommann-
Holzboog (1973)

9. Li, X.: Multimodal optimization using niching methods, pp. 1–8. American Cancer
Society (2016)

10. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. NCS.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-07407-8 7

11. Ahrari, A., Deb, K., Preuss, M.: Multimodal optimization by covariance matrix
self-adaptation evolution strategy with repelling subpopulations. Evol. Comput.
25(3), 439–471 (2017)

12. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing pop-
ulation size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp.
1769–1776. IEEE (2005)

13. Kadioglu, S., Sellmann, M., Wagner, M.: Learning a reactive restart strategy to
improve stochastic search. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.)
LION 2017. LNCS, vol. 10556, pp. 109–123. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69404-7 8

14. Teytaud, F., Teytaud, O.: Qr mutations improve many evolution strategies: a lot
on highly multimodal problems. In: Proceedings of the 2016 GECCO Conference,
pp. 35–36 (2016)

15. Schoenauer, M., Teytaud, F., Teytaud, O.: A rigorous runtime analysis for quasi-
random restarts and decreasing stepsize. In: Hao, J.-K., Legrand, P., Collet, P.,
Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp.
37–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35533-2 4

16. Beaujouan, V.: Modélisation des transferts d’eau et d’azote dans les sols et les
Nappes. Développement d’un modèle conceptuel distribué. Application à de petits
bassins versants. Ph.D., thesis, Ecole Nationale Supérieure Agronomique de Rennes
(2001)

17. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., et al.: Crop Evapotranspiration-
Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage
paper 56. FAO, Rome, vol. 300, no. 9 (1998). D05109

https://doi.org/10.1007/978-3-662-04378-3
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1007/978-3-319-07407-8_7
https://doi.org/10.1007/978-3-319-69404-7_8
https://doi.org/10.1007/978-3-319-69404-7_8
https://doi.org/10.1007/978-3-642-35533-2_4

204 A. Dubois et al.

18. Teng, P.S., Johnson, K.B., Johnson, S.B.: Development of a simple potato growth
model for use in crop-pest management. Agric. Syst. 19(3), 189–209 (1986)

19. Beaujouan, V., Durand, P., Ruiz, L.: Modelling the effect of the spatial distribu-
tion of agricultural practices on nitrogen fluxes in rural catchments. Ecol. Model.
137(1), 93–105 (2001)

20. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic con-
ductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

21. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003)

22. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test
functions. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 29

https://doi.org/10.1007/978-3-540-30217-9_29

A Hybrid Evolutionary Algorithm
for Offline UAV Path Planning

Soheila Ghambari1(B), Lhassane Idoumghar1(B), Laetitia Jourdan2(B),
and Julien Lepagnot1(B)

1 University of Haute-Alsace, IRIMAS Institute, Mulhouse, France
{soheila.ghambari,lhassane.idoumghar,julien.lepagnot}@uha.fr

2 University of Lille, CRIStAL, UMR 9189, CNRS, Centrale Lille, Lille, France
laetitia.jourdan@univ-lille.fr

Abstract. This paper investigates the offline path planning problem
of unmanned aerial vehicles (UAVs) for surveillance mission in complex
urban environments. A new idea by coupling the differential evolution
(DE) with A* algorithm is suggested to address the problem in large
urban areas with narrow street and infrastructure of built environment.
The proposed method consists of two phase: the first phase adopts DE
to divide the straight line between source and destination into several
smaller regions, while the second one utilizes A* for each region to find a
collision-free and shortest path in parallel. In order to assess the efficiency
of the suggested algorithm, a real-world scenario is examined. Evalua-
tions exhibited promising results with proper accuracy and minimum
computational time.

Keywords: UAV · Offline path planning · Differential evolution · A*
algorithm

1 Introduction

The development of autonomous UAVs is of high interest to many military and
civilian applications for various missions. In recent years, more studies focus
on one of the essential aspect of UAV autonomy which is the capability for
automatic path planning [7]. This process consists of finding an optimal or near-
optimal collision-free path between the start and target positions; under specific
constraints conditions. As a matter of fact, a suitable path planning strategy
should be design not only to improve the effectiveness of the system (e.g., mem-
ory consumption and computational time) but also to communicate with other
elements in order to comply with the mission requirements. Hence, implementing
an effective algorithm entails a deep analysis of various contributing techniques
[18].

Previous studies have presented a series of techniques to tackle the afore-
mentioned problem based on different necessities such as performances optimiza-
tion, collision avoidance, real-time planning, and safety maximization. They took
c© Springer Nature Switzerland AG 2020
L. Idoumghar et al. (Eds.): EA 2019, LNCS 12052, pp. 205–218, 2020.
https://doi.org/10.1007/978-3-030-45715-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45715-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-45715-0_16

206 S. Ghambari et al.

hints from different research fields; like mathematics for graph-based and prob-
abilistic approaches [2,15], physics for potential field algorithm [6], or computer
science for artificial intelligence methods [5,17,22]. Generally, we can catego-
rize the existing works into classical techniques (i.e., graph-based search meth-
ods, sampling-based approaches, potential field), computational intelligence (CI)
methods, and hybrid approaches.

Graph-based searches (e.g., A* and Dijkstra) were developed to find the
shortest path between two nodes of connected graphs with a greedy logic. One
of the positive characteristic of these methods is their simplicity, which implies
reduced computational time. They have deterministic nature and guarantee to
find the optimal collision-free path, if it exists. However, the performance of
these algorithms depends on the environment’s total area due to the fact that
they save all explored nodes in memory. Sampling-based methods, such as Prob-
abilistic Roadmaps (PRM) [13] and Rapidly-exploring Random (RRT) [14] have
proven to be an effective framework suitable for high-dimensional spaces to pro-
duce feasible solutions; nevertheless, they do not guarantee the optimality of
the solution [9]. In recent years, CI methods including fuzzy system, neural net-
work, and evolutionary algorithms (EAs) have received most of the research
effort for solving UAV path planning problem [10,21]. They attract the atten-
tion of researchers because of: (a) their flexibility to solve large-scale complex
problems, (b) their ability to apply different learning strategies to perform an
effective search towards the global optimum, and (c) employing for both sin-
gle and multiple UAVs. However, in practice, when the available computation
resources and/or time are limited, they are not always the best choice.

These issues motivated us to present a novel hybrid approach inspired from
incremental heuristic search which not only scales well with problem size but also
speeds up the search process for a high quality path in a reasonable execution
time. To do so, A* as an informed heuristic search strategy and DE algorithm as
one of the most popular EAs are integrated in order to find the shortest collision-
free path in high dimension spaces with minimum computational time. In this
method, the search space is limited around the straight line between the start
and target locations. This is motivated by the fact that taking into account the
whole configuration space can raise the computational cost. Here, the start and
the target points are connected to each other via a straight line (as the shortest
path) regardless of the obstacles. Then, we apply DE algorithm to divide the
straight line into several suitable segments/regions. Thereafter, A* is used as a
local path planner to find the shortest path for each region in a parallel manner.
Altogether, the suggested method reduce the dimensionality of the search space
which enables the presented algorithm to find better topologically distinct paths
more rapidly. The performance of the proposed method is compared with A* and
standard DE algorithm for a realistic urban environment. Evaluations exhibited
desirable run-time performance in finding feasible and safe paths.

The rest of this paper is organized as follows. Section 2 starts with problem
definition in Subsect. 2.1. Next, in Subsects. 2.2 and 2.3 basic concepts of A*
and DE algorithm are explained, respectively. The description of the proposed

A Hybrid Evolutionary Algorithm for Offline UAV Path Planning 207

method including environment modeling, constraints, solution representation,
objective function, and the suggested algorithm are provided in Sect. 3. The
simulation results and discussion are presented in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Background Information

2.1 Problem Definition

Generally, path planning belongs to a class of non-deterministic polynomial-time
(NP) hard problems [4] which is much more intensively investigated in robotics
(referred as motion planning). Formally, path planning for UAVs defined as an
optimization problem aimed at finding the shortest and safest path to reach a
goal position, while flying into a high-threat area. Here, some important factors
should be taken into consideration such as modeling the environment, the path
representation, safety, cost of the path, and computational time. These factors
are either integrated directly into the objective functions that require to be
minimized/maximized, or in the form of constraints that a path must comply
with. The later subsections elaborates these factors with more details.

2.2 A* Search Algorithm

The history of finding the shortest path can be followed as early as 1968, when
A* as the most effective direct search method is developed for robot navigation
[8,12]. The algorithm acts on the basis of Dijkstra, but can avoid blind search
to improve search efficiency. It seeks towards the most promising states using a
heuristic function in order to save the computational time resource. A detailed
explanation of A* can be found in [12].

2.3 Differential Evolution

DE algorithm has been successfully employed in various research and application
areas. It has been also utilized in path planning tasks for both single UAV and
multiple UAVs [3,19,20]. DE is an iterative procedure which aims at evolving a
population (NP) of D-dimensional parameter vectors towards the global opti-
mum. It includes a population of path candidate solutions or individuals which
are produced by integrating a parent and other individuals of the same popula-
tion. Each candidate solution has a set of variables which subjected to mutation
and crossover search operators in order to produce new solutions subject to some
constraints. The algorithm only accepts the candidate solutions that are better
than their parents and accordingly transfers them to the next generation of the
algorithm. The algorithmic description is summarized in Fig. 1. In this figure,
the five most frequently utilized mutation strategies are listed.

The indices r1, r2, r3, r4, r5 are mutually exclusive integers randomly gener-
ated within the range [1, NP], which also differ from the index i. These indices

208 S. Ghambari et al.

Fig. 1. The pseudo code of DE algorithm

are randomly generated once for each mutant vector. The scaling factor F is a
positive control parameter for scaling the difference vector. The crossover rate
CR is a user-specified fixed within the range [0, 1), which controls the fraction of
parameter values copied from the mutant vector. Xbest,G is the best individual
vector with the best fitness value in the population at generation G. jrand is a
randomly chosen integer in the range [1,D].

3 The Proposed Approach

First, a clear description of environment modeling, constraints, solution represen-
tation, and objective function is presented. Thereafter, the introduced algorithm
is described in details.

3.1 Environment Modeling and Constraint

In this work, we considered a grid-based map to represent the environment.
The grid map is composed of equal size cells, where each cell is represented
by a unique number. An urban environment in a 2-dimensional (2D) form is
pre-processed to generate the grid map. In this step, an occupancy matrix is
utilized for grid map representation where each cell has two possible values: “0”
for a free and “1” for an occupied cell. The buildings with different polygon
shapes are considered as obstacles; which are static and known in advance. In

A Hybrid Evolutionary Algorithm for Offline UAV Path Planning 209

order to understand how these polygon shapes occupy the grid cells, polygon
triangulation method is used to decompose a polygon area into a set of triangles
with pairwise non intersecting interiors. Accordingly, we check whether a grid cell
lies inside a triangle or not (see Fig. 2). The occupancy matrix is pre-processed
only once and the back-tracking process for making paths does not consume
significant computational resources.

The constraint is path safety which means that a path always should satisfy
a predefined safety margin (distance) with respect to the obstacles. In this work,
the safety margin is the confidence radius of UAV around obstacles which is
considered as 1 unit.

Fig. 2. The obstacle modeling in a grid map representation (The first three figures,
on the left side, show how an arbitrary polygon shape occupies grid cells using the
triangulation method. The occupancy map is represented in the right side figure.)

3.2 Solution Representation

The solution representation is an essential element for solving an optimization
problem. In this study, each solution/path consists of a sequence of design vari-
ables. These variables are adopted based on grid cells that are located in the
straight line between the start and target positions; with their unique numbers.
In this way, the algorithm focuses on the most promising parts of the search space
which can enhance the convergence performance. If a variable did not satisfy the
constraint, the perpendicular line that passes through the selected variable is
considered and another arbitrary point upon this line which is collision-free and
near to the straight line will be chosen. An example of modeling the configuration
space and solution representation is displayed in Fig. 3.

3.3 Objective Function

The objective function has to satisfy the constraints while optimizing the flight
path and avoiding obstacles. Here, owing to employing grid map representation
a feasible flight path can be defined from the start to the destination cell by
traversing a certain number of free cells [1]. Hence, the cost of a feasible path is
the sum of all costs of the movements along the associated path in all regions.
The UAV is assumed to move horizontally or vertically or diagonally from a
free cell to another one with fixed flight altitude. Accordingly, there are eight

210 S. Ghambari et al.

Fig. 3. The solution representation

possible moves from each cell to another one. It is worth mentioning that the
main contribution of this work is to apply A* heuristic objective function to find
the shortest path length in a desirable run-time.

3.4 ADE Algorithm

As mentioned before, adopting a fast and efficient path planning method is
critical for autonomous UAVs which usually operate in large scale urban envi-
ronments. There are various intelligent optimization methods which have been
successfully applied in solving UAV path planning problem [11,21]. In the same
direction and without loss of generality, this paper presents a new approach by
integrating A* and DE algorithm in order to generate the shortest path with
minimum computational time over very long distances.

The introduced hybrid algorithm, named as ADE, contains two main steps.
The first step is accomplished with DE which is responsible for intersecting
the whole area into conjunct regions. In fact, it determines several intermediate
cells for exploring better the configuration space. These cells are DE’s design
variables which are located on the straight line between the start and target
positions. In this way, the algorithm focuses on the most promising parts of the
search space which can enhance its convergence performance. As explained in
previous subsection, if a variable did not satisfy the constraint, a straight line
perpendicular to the selected variable is considered, and another arbitrary point
upon this line will be chosen by DE. This point should have two conditions:
(a) be in an admissible space, (b) have a minimum distance from the straight
line. In such a way, a proper balance between the exploration and exploitation
capabilities of DE algorithm is achieved. In the second step, A* algorithm is

A Hybrid Evolutionary Algorithm for Offline UAV Path Planning 211

employed to find the shortest path in each region in parallel. Thus, all the paths
obtained from regions are connected to form the global best path. Hence, the
algorithm is widely favorable for reducing computational time. An example of
modeling the configuration space and the proposed algorithm is displayed in
Fig. 4. Moreover, the flowchart of the proposed algorithm is shown in Fig. 5.

Fig. 4. An example of the proposed path planning algorithm: (a) configuration space,
(b) occupancy grid map, (c) an obtained path in a coordinate system, (d) solution
representation

4 Experimental Evaluation

This section aims to investigate the efficiency of the presented algorithm through a
series of experiments on a realistic urban environment. The selected test case pro-
vided the chance to conduct a comprehensive study on the performance of algo-
rithm in terms of path length and computational time. For this purpose, Subsect.
4.1 begins with a description of the test case characteristics. Then, in Subsect. 4.2,
the setting parameters are introduced. In order to automatically configure the algo-
rithm’s parameters, irace package is utilized. Finally, the compared algorithms and
statistical results obtained via experiments on urban map are presented and dis-
cussed in Subsects. 4.3 and 4.4, respectively. All simulations and evaluations were
implemented and conductedwithinPython library1, on a computerwith IntelCore
i5-7440HQ CPU, 2.80 GHz, 8GB RAM, running on Ubuntu OS.
1 (Atsushi Sakai et al. https://github.com/AtsushiSakai/PythonRobotics).

https://github.com/AtsushiSakai/PythonRobotics

212 S. Ghambari et al.

Fig. 5. The flowchart of the proposed algorithm

4.1 Test Case

The experiments have been extended with realistic urban environment. The
selected environment for evaluating the performance of the algorithm is a partial
part of Mulhouse city in France. The map file is extracted from OpenStreetMap,
defined by geographical coordinates in terms of latitude and longitude. In this file
the buildings tags are filtered. These building are taken into account as obstacles
and their modeling is explained in Subsect. 3.1. The characteristics of this map
are summarized in Table 1. In addition, Fig. 6 shows the total map and part of
its modeling. As can be seen from part of modeling, this map has narrow streets
with compressed obstacles.

Table 1. The test case characteristics

Map Latitudes Longitudes No. obstacles

Mulhouse Minlat = 47.7250 Minlon = 7.3001 4099

Maxlat = 47.7538 Maxlon = 7.3466

A Hybrid Evolutionary Algorithm for Offline UAV Path Planning 213

Fig. 6. Illustration of the selected map and employed polygon triangulation method

4.2 Experimental Setup

The configuration parameters of the algorithm can be divided into two categories:
environment and algorithm parameters. Environment parameters include: grid
size, start point, target point, number of obstacles and their coordination, and
the boundary of the search space which are the minimum and maximum of lat-
itudes and longitudes. The algorithm parameters are population size, crossover
probability (CR), scaling factor (F), type of DE strategies, number of design
variables, and number of iterations. The number of variables, which is assumed
as dimension of the problem or regions, is an integer within the range [1, 9]. If the
algorithm adopts 1, it means A* algorithm is applied for the total configuration
space. Also, the maximum number of iterations and runs for this work are 100
and 20, respectively.

Table 2 describes the configurable settings of the proposed algorithm. As
mentioned above, some parameter settings including population size, CR, F ,
and type of DE strategy are significant for a certain value and have a great
impact on the performance of algorithm. Hence, instead of using a trial-and-
error approach to identify good values for these parameters, we utilized irace
software [16] as an automated algorithm configuration tool for obtaining very
high-performing algorithmic variants. A maximum budget of 200 experiments is
applied for each run of irace and it is repeated 20 times to assess the variability
of the automatic configuration process. According to the obtained results, the
best configuration uses [80, 1, 0.2, 1] values for population size, F , CR, and the
type of strategy parameters, respectively. The related DE mutation strategy,
labelled by the number 1 during the parameter setting, is DE/rand/1.

214 S. Ghambari et al.

Table 2. The setting parameter of the algorithm

Parameter Value

Grid space 461 * 286

Start [x = 84, y = 40]

Goal [x = 387, y = 251]

Grid size 1

Population size [1, 100]

CR [0.1, 1]

F [0.1, 2]

No. strategy [1, 5]

Max iteration 100

Max run 20

4.3 The Effect of Different Number of Regions

As was mentioned before, the presented approach divides the distance between
the start and target locations into several regions. The number of these regions
which are taken into account as the number of dimension are very important to
be determined. Thus, to investigate whether this number has a positive effect on
the performance of the algorithm in terms of precision of path length and com-
putational time, a comparison using different number of regions is performed.
Parameter configurations for this experiment are similar to the settings explained
in the previous subsection. Figure 7 exhibits the average and standard deviation
of path length and computational time for different number of regions over 20
independent runs. As can be seen, by increasing the number of dimension the
computational time significantly decreased; while as expected the precision of
path length is approximately reduced. Furthermore, standard deviation of the
results shows the stability of the presented method. As a matter of fact, it clearly
confirms that the difference between regions can considerably affect the compu-
tational time which is very important factor especially in large scale environ-
ment. Another interesting observation that can be concluded from these results
is that this approach makes the problem as a low dimensional problem using less
number of decision variables for dividing the regions.

4.4 Results and Discussion

The presented algorithm was executed over 20 independent runs. The results
are presented by the best, mean, and standard deviation (S.D.) of cost values
obtained in all runs. To provide a meaningful comparison of A*, DE, and ADE,
the mean and S.D. of the path length and computational time are compared
with each other. All experimental results are reported in Table 3.

As it was expected, the results of ADE shows the impact of adopting differ-
ent number of regions in accuracy of path length and computational time. ADE

A Hybrid Evolutionary Algorithm for Offline UAV Path Planning 215

Fig. 7. The effect of different values for number of regions

with two regions has a smaller path length than the other dimension. However,
its computational time is greater. The other dimensions have a close competi-
tion in accuracy of path length where by increasing the number of regions, the
computational time surprisingly reduced. Also, the result of original DE shows
that this algorithm was not able to find the shortest path in a reasonable time.
One of the reason for such bad performance is the small number of iterations
that makes it hard for DE to find the best set of grid cells. Finally, the results of

0 5 10 15 20 25
Time

320

340

360

380

Sc
or

e

ADE
A*

 A*found the best path in 25 seconds

ADE fcould find a feasible path in each time slot

Fig. 8. The obtained feasible path in a predetermined time slot for both A* and ADE
algorithm

216 S. Ghambari et al.

Table 3. Results obtained for 20 independent runs of algorithms for offline path plan-
ning

Algorithm Path length Path length Computational time (s)

Best Mean ± S.D. Mean ± S.D.

ADE (D = 1) 308 309.12 ± 0.76e+00 38.60e+00 ± 2.43e+00

ADE (D = 2) 309 310.05 ± 0.76e+00 32.10e+00 ± 1.25e+00

ADE (D = 3) 310 313.40 ± 1.95e+00 16.00e+00 ± 1.40e+00

ADE (D = 4) 312 316.00 ± 2.67e+00 12.00e+00 ± 0.72e+00

ADE (D = 5) 315 326.05 ± 7.56e+00 9.14e+00 ± 0.80e+00

ADE (D = 6) 317 322.40 ± 5.80e+00 7.70e+00 ± 0.65e+00

ADE (D = 7) 324 327.40 ± 6.51e+00 3.98e+00 ± 0.73e+00

ADE (D = 8) 331 329.40 ± 4.42e+00 3.46e+00 ± 0.52e+00

ADE (D = 9) 339 342.40 ± 2.60e+00 3.03e+00 ± 0.08e+00

DE 2170 1180.00 ± 4.09e+03 66.65e+00 ± 3.81e+00

A* 307 307.00 ± 0.00e+00 13.80e+00 ± 0.16e+00

A* algorithm is reported in the last row of this table. A* could find the short-
est path with high accuracy but with more computational time when compared
to the presented ADE algorithm. There is a close competition between A* and
ADE with dimension 4.

Also, Fig. 8 shows that the proposed method can give more accurate solutions
in the early iterations, while A* finds the best possible flyable path using more
computational resource. Indeed, this is the main properties of ADE which allows
us to make a trade-off between these two conflicting objectives; as previously
explained in Sect. 4.3.

5 Conclusion

This study concerns the development of a new path planning algorithm for UAVs
so as to avoid obstacles in realistic urban environment for surveillance mission.
The problem is modeled in a static 2D space with constraint single objective func-
tion. The suggested ADE approach integrated a heuristic search function with
DE for large-scale environments. For this purpose, DE is employed to divide the
configuration space into several conjunct regions. Then, each region is explored
by A* algorithm as a local path planner in a parallel manner. The presented
algorithm tries to search around the straight line between the start and desti-
nation which results in increasing the convergence performance and decreasing
the computational time. The performance of the algorithm is evaluated through
a series of experiments. The irace software package is also utilized in order to
find the best configurations for the algorithm. The obtained results illustrated
the efficiency of ADE in finding optimal solutions with proper accuracy and
minimum computational time.

A Hybrid Evolutionary Algorithm for Offline UAV Path Planning 217

Acknowledgment. This work is part of a project funded by the French Agence
Nationale de la Recherche under grant number ANR-16-SEBM-0004.

References

1. Alajlan, M., Koubâa, A., Châari, I., Bennaceur, H., Ammar, A.: Global path plan-
ning for mobile robots in large-scale grid environments using genetic algorithms. In:
2013 International Conference on Individual and Collective Behaviors in Robotics
(ICBR), pp. 1–8. IEEE (2013)

2. Bauso, D., Giarré, L., Pesenti, R.: Multiple UAV cooperative path planning via
neuro-dynamic programming. In: 2004 43rd IEEE Conference on Decision and
Control (CDC) (IEEE Cat. No. 04CH37601), vol. 1, pp. 1087–1092. IEEE (2004)

3. Brintaki, A.N., Nikolos, I.K.: Coordinated UAV path planning using differential
evolution. Oper. Res. 5(3), 487–502 (2005)

4. Canny, J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge
(1988)

5. Cekmez, U., Ozsiginan, M., Sahingoz, O.K.: A UAV path planning with par-
allel ACO algorithm on CUDA platform. In: 2014 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 347–354. IEEE (2014)

6. Chen, Y., Luo, G., Mei, Y., Yu, J., Su, X.: UAV path planning using artificial
potential field method updated by optimal control theory. In. J. Syst. Sci. 47(6),
1407–1420 (2016)

7. Choi, Y., Choi, Y., Briceno, S., Mavris, D.N.: Energy-constrained multi-UAV cover-
age path planning for an aerial imagery mission using column generation. J. Intell.
Robot. Syst. 97(1), 125–139 (2019). https://doi.org/10.1007/s10846-019-01010-4

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269–271 (1959)

9. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed RRT*: optimal sampling-
based path planning focused via direct sampling of an admissible ellipsoidal heuris-
tic. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 2997–3004. IEEE (2014)

10. Ghambari, S., Lepagnot, J., Jourdan, L., Idoumghar, L.: A comparative study of
meta-heuristic algorithms for solving UAV path planning. In: 2018 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), pp. 174–181, November 2018.
https://doi.org/10.1109/SSCI.2018.8628807

11. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from
the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1–4), 65
(2010)

12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

13. Kavraki, L., Svestka, P., Overmars, M.H.: Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580
(1994)

14. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Robot.
Res. 20(5), 378–400 (2001)

15. Li, J., Sun, X.: A route planning’s method for unmanned aerial vehicles based on
improved a-star algorithm. Acta Armamentarii 7, 788–792 (2008)

16. López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical report,
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles (2011)

https://doi.org/10.1007/s10846-019-01010-4
https://doi.org/10.1109/SSCI.2018.8628807

218 S. Ghambari et al.

17. Ji, X.-T., Xie, H.-B., Zhou, L., Jia, S.-D.: Flight path planning based on an
improved genetic algorithm. In: 2013 Third International Conference on Intelli-
gent System Design and Engineering Applications, pp. 775–778. IEEE (2013)

18. Yang, P., Tang, K., Lozano, J.A., Cao, X.: Path planning for single unmanned aerial
vehicle by separately evolving waypoints. IEEE Trans. Robot. 31(5), 1130–1146
(2015)

19. Zhang, X., Duan, H.: An improved constrained differential evolution algorithm for
unmanned aerial vehicle global route planning. Appl. Soft Comput. 26, 270–284
(2015)

20. Zhang, X., Chen, J., Xin, B., Fang, H.: Online path planning for UAV using an
improved differential evolution algorithm. IFAC Proc. Volumes 44(1), 6349–6354
(2011)

21. Zhao, Y., Zheng, Z., Liu, Y.: Survey on computational-intelligence-based UAV path
planning. Knowl.-Based Syst. 158, 54–64 (2018)

22. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep rein-
forcement learning. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3357–3364. IEEE (2017)

Author Index

Alvarado, Jorge 96

Barbiero, Pietro 68
Brévilliers, Mathieu 1
Bunce, Ethan 53

Chávez, Francisco 96
Collet, Pierre 82

Díaz, Josefa 96
Dridi, Mahjoub 136
Dubois, Amaury 192

Etaner-Uyar, A. Sima 121

Faddoul, Rafic 13
Fernández de Vega, Francisco 96
Fonlupt, Cyril 13, 42

García, Juan Ángel 96
Gazioglu, Emrullah 121
Ghambari, Soheila 205
Goëffon, Adrien 110
Grunder, Olivier 136

Hao, Jin-Kao 177
Hénaux, Vincent 110

Idoumghar, Lhassane 1, 205

Jeannin-Girardon, Anne 82
Jourdan, Laetitia 205

Keedwell, Edward 53
Keyrouz, Youssef 13

Leonteva, Anna Ouskova 82
Lepagnot, Julien 1, 205
Leprêtre, Florian 42
Luo, Hongyuan 136
Lutton, Evelyne 68

Marion, Virginie 42
Martineau, Patrick 162
Mezher, Dany 13

Palacio, Juan D. 148
Pallez, Denis 28
Parrend, Pierre 82
Portelli, Geoffrey 28
Posada, Andrea 148

Rakhshani, Hojjat 1
Ramat, Eric 192
Ren, Jintong 177
Rivera, Juan Carlos 148
Robilliard, Denis 13
Rodriguez-Tello, Eduardo 177

Saubion, Frédéric 110
Soukhal, Ameur 162
Squillero, Giovanni 68

Teytaud, Fabien 192
Tonda, Alberto 68

Verel, Sébastien 42, 192

Zahout, Boukhalfa 162

	Preface
	Organization
	New Directions in Search: Heuristics, Metaheuristics and Hyperheuristics for Real-World Optimisation Problems (Abstract of Invited Talk)
	Contents
	From Feature Selection to Continuous Optimization
	1 Introduction
	2 Related Works and Motivations
	3 The Proposed Method
	4 Experimental
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusion
	References

	Evolving a Weighted Combination of Text Similarities for Authorship Attribution
	1 Introduction
	2 Method
	2.1 Preparing the Data
	2.2 Generating the Profiles
	2.3 Finding Similarities and Analyzing Performance
	2.4 Combining the Results and Evolving the Weights Using a Genetic Algorithm

	3 Experimentation
	3.1 Corpus and Tools

	4 Results and Discussions
	5 Conclusion
	References

	Image Signal Processor Parameter Tuning with Surrogate-Assisted Particle Swarm Optimization
	1 Introduction
	2 Real-World Problem: ISP
	3 Objectives: Image Quality Metrics
	4 Particle Swarm Optimization
	4.1 Encoding/Decoding Parameters
	4.2 Function Evaluation

	5 Experimental Methods
	5.1 The Experimental ISP
	5.2 Raw Images
	5.3 Performance Evaluation

	6 Results
	7 Discussion and Conclusions
	References

	Combinatorial Surrogate-Assisted Optimization for Bus Stops Spacing Problem
	1 Motivations
	2 Combinatorial Surrogate-Assisted Optimization
	3 Experiments
	3.1 Overview
	3.2 Accuracy of Surrogate Models
	3.3 Performances of Optimizers

	4 Discussion
	References

	Optimisation of a Checkers Player Using Neural and Metaheuristic Approaches
	1 Introduction
	2 Background
	3 Methodology
	3.1 Minimax
	3.2 Artificial Neural Networks
	3.3 Training Methods

	4 Results
	4.1 Training Methods
	4.2 Neural Networks as Evaluation Functions
	4.3 Game Theory
	4.4 Measuring the Performance of the System

	5 Conclusion
	References

	A Novel Outlook on Feature Selection as a Multi-objective Problem
	1 Introduction
	2 Background
	2.1 Machine Learning
	2.2 Feature Selection
	2.3 Multi-objective Evolutionary Algorithms and Feature Selection

	3 Proposed Approach
	3.1 Individual Representation
	3.2 Fitness Functions

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Simple Datasets
	4.3 High-Dimensional Datasets

	5 Conclusions
	References

	Fast Evolutionary Algorithm for Solving Large-Scale Multi-objective Problems
	1 Introduction
	2 Proposed Approach
	2.1 Archive-Based Algorithm
	2.2 UAM with Selection of Next Parent Population
	2.3 New Adaptive Crossover Operator
	2.4 Modified Self-adaptive Gaussian Mutation

	3 Experiments and Validation
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Conclusion
	References

	Looking for Energy Efficient Genetic Algorithms
	1 Introduction
	2 Considering Power Consumption in GAs
	2.1 Population Size and Power Consumption
	2.2 Power Consumption and Running Time
	2.3 Problem Difficulty and Chromosome Size

	3 Methodology
	3.1 Battery Powered Device
	3.2 Measuring Power Consumption
	3.3 Problems and Parameters Tested

	4 Results
	5 Conclusions
	References

	Evolving Fitness Landscapes with Complementary Fitness Functions
	1 Introduction
	2 Background
	3 Evolving Alternative Fitness Functions
	3.1 Complementary Fitness Functions
	3.2 Alternative Fitness Functions

	4 Experiments
	5 Conclusion
	References

	Bayesian Immigrant Diploid Genetic Algorithm for Dynamic Environments
	1 Introduction
	2 Literature Summary
	2.1 Estimation of Distribution Algorithms
	2.2 Memory Based Genetic Algorithms for DOPs

	3 Proposed Approach
	3.1 Explanation of BIDGA

	4 Experimental Design
	4.1 Creating Dynamic Environments
	4.2 Problems for Testing BIDGA
	4.3 Dynamic Environments

	5 Results and Conclusion
	5.1 Conclusion and Future Work

	References

	Ant Colony Optimization Algorithm for a Transportation Problem in Home Health Care with the Consideration of Carbon Emissions
	1 Introduction
	2 Problem Description
	3 Mathematical Formulation
	3.1 Carbon Emissions
	3.2 MIP Model

	4 Ant Colony Optimization Algorithm
	4.1 Construction of Solution
	4.2 Pheromone Update and Stopping Criteria

	5 Computational Experiments
	5.1 Test Instances and Parameters Settings
	5.2 Experimental Results

	6 Conclusions
	References

	Selective Vehicle Routing Problem: A Hybrid Genetic Algorithm Approach
	1 Introduction
	2 State of the Art
	3 Mathematical Definition
	4 Metaheuristic Approach
	5 Computational Experiments
	5.1 Initial Solutions
	5.2 Performance of Split Procedure
	5.3 Genetic Algorithm Performance

	6 Conclusions
	References

	Fixed Jobs Multi-agent Scheduling Problem with Renewable Resources
	1 Introduction
	2 Problem Definitions
	3 Related Work
	4 Integer Programming Formulation
	4.1 -constraint Approach
	4.2 Number of Pareto Solutions

	5 Greedy Heuristics
	6 NSGA-II Algorithm
	6.1 Encoding Mechanisms
	6.2 Generation of the Initial Population
	6.3 Non-dominated Sorting and Ranking
	6.4 Selection, Crossover and Mutation

	7 Computational Experiments
	8 Conclusions
	References

	A Study of Recombination Operators for the Cyclic Bandwidth Problem
	1 Introduction
	2 Memetic Algorithm for CBP
	2.1 Search Space, Representation, Fitness Function
	2.2 General Procedure
	2.3 Initialization
	2.4 Local Search
	2.5 Recombination
	2.6 Updating Population

	3 Recombination Operators
	3.1 Order Crossover
	3.2 Order-Based Crossover
	3.3 Cycle Crossover
	3.4 Partially Mapped Crossover
	3.5 Distance Preserved Crossover

	4 Experimental Results
	4.1 Instances and Settings
	4.2 Computional Results

	5 Understanding the Performance Differences of the Compared Crossovers
	5.1 Distance and Population Entropy
	5.2 Interaction Between Crossover and Problem Characteristics

	6 Conclusion
	References

	Automatic Calibration of a Farm Irrigation Model: A Multi-Modal Optimization Approach
	1 Introduction
	2 Calibration Problem of an Irrigation Model
	2.1 Farming Irrigation Model
	2.2 Black-Box Calibration Problem

	3 Multi-Modal Optimization Algorithms
	3.1 Quasi-Random Restarts with Decreasing Step-Size
	3.2 CMA-ES IPOP

	4 Experimental Analysis
	5 Conclusion
	References

	A Hybrid Evolutionary Algorithm for Offline UAV Path Planning
	1 Introduction
	2 Background Information
	2.1 Problem Definition
	2.2 A* Search Algorithm
	2.3 Differential Evolution

	3 The Proposed Approach
	3.1 Environment Modeling and Constraint
	3.2 Solution Representation
	3.3 Objective Function
	3.4 ADE Algorithm

	4 Experimental Evaluation
	4.1 Test Case
	4.2 Experimental Setup
	4.3 The Effect of Different Number of Regions
	4.4 Results and Discussion

	5 Conclusion
	References

	Author Index

