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Chapter 10
Coenzyme Q, mtDNA and Mitochondrial 
Dysfunction During Aging

José L. Quiles, Alfonso Varela-López, María D. Navarro-Hortal, 
and Maurizio Battino

Abstract The main sources of reactive oxygen species (ROS) in cells are mito-
chondria, whose components would be primary targets of ROS.  Both facts are 
responsible for the key role of these organelles in aging according to the “mitochon-
drial theory of aging”. Oxidative damage to mitochondrial DNA (mtDNA) is espe-
cially important since it would have the longest-term consequences impairing 
mitochondrial function. This would lead to a decrease in ATP production, but also 
to an increased ROS generation. In turn, CoQ, which acts as an electron carrier in 
mitochondria, is an essential factor for cell bioenergetics and an equilibrated CoQ 
pool is expected to perform a better electron flow adaptation. Moreover, it is a lipid- 
soluble antioxidant and efficiently prevents oxidation of DNA along with other 
macromolecules. Other interesting attributed roles include interaction with cell sig-
naling cascades, anti-inflammatory activities and interference with programmed 
cell death. Due to this pleiotropic effect, most of interventions with CoQ have been 
focused on multiple processes related to mitochondria. In this sense, its effects have 
been investigated in mitochondrial diseases and pathological conditions related 
with aging whose patients have shown a higher frequency of mtDNA alterations. In 
addition, dietary CoQ also has been tested in combination with different diets rich 
in particular type of fatty acids due to the role of these in biological membranes and 
oxidative stress, as well as aging. This chapter aims to review the effect of CoQ on 
aging and mitochondrial dysfunction, with especial interest in their actions on 
mtDNA or the consequences of mtDNA alterations.
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10.1  Introduction

There is a growing body of evidences indicating that mitochondria have a key role 
in aging phenomenon particularly in organs or tissues with an important depen-
dence of aerobic metabolism. A major fact explaining this possible role is that mito-
chondria are the main source of reactive oxygen species (ROS) in most cells. An 
impairment of mitochondrial function led to lower production of ATP, but other 
important downstream consequences also should be considered. Among other, the 
increase in the generation of reactive oxygen species is usually considered as the 
most relevant.

In turn, oxidative stress also seems a major factor influencing mitochondria 
“health” since primary target of ROS would be mitochondrial components. 
Oxidative damage to mitochondrial DNA (mtDNA) would be especially important 
since it would have the longest-term consequences in mitochondrial function. For 
these reason, there are several theories of aging that have suggested a key role of 
mitochondria and in particular of mtDNA in this phenomenon.

This chapter aims to review the effect of coenzyme Q (CoQ) on aging and mito-
chondrial dysfunction, with especial interest in their actions on mtDNA or mtDNA 
mutations consequences. Additionally, to improve the understanding of implica-
tions in aging of oxidative damage to mtDNA, this chapter provides an approxima-
tion to mtDNA processes as well as an analysis of mechanisms that try to explaining 
their relationship with aging.

10.2  Mitochondrial DNA Features

Unlike the rest of organelles (except chloroplasts in vegetal cells), mitochondria had 
their own extrachromosomal DNA molecules. mtDNA presents structural and func-
tional features very different respect than nuclear DNA (nDNA). For this reason, a 
preliminary approach to these unique features is needed to properly understand the 
relationship of mtDNA with mitochondrial functionality and aging.

MtDNA is a circular double-stranded molecule located in the mitochondrial 
matrix whose size ranged from 16,000 to 18,000 base pairs (bp) in vertebrates. 
Namely, human mtDNA size is 16569 bp and its sequence was determined in 1981 
(Anderson et al. 1981). To differentiate the two mtDNA strands, it has been estab-
lished the terms “heavy strand” (H-strand) and the “light strand” (L-strand) accord-
ing to their GCT content. This is due to their behavior when strands are separated on 
denaturing cesium chloride gradients. MtDNA has no histones but rather packaged 
into nucleoids. These consist in stable protein-mtDNA macrocomplexes primarily 
associated to inner mitochondrial membrane (Wang and Bogenhagen 2006; Holt 
et al. 2007). Each nucleoid has an average diameter of 100 nm (Kukat et al. 2011) 
and they may be exchanged between mitochondria (Wang and Bogenhagen 2006; 
Holt et al. 2007).
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Mitochondrial genome encodes 13 polypetides, two rRNAs and 22 tRNAs 
(Anderson et al. 1981). Encoded polypetides are subunits of mitochondrial electron 
transport chain (mtETC) complexes whereas rRNAs and tRNAs are required for the 
intramitochondrial translation of the protein-coding units. In contrast to nuclear, 
mitochondrial genome does not contain introns within mtDNA coding region and 
almost no noncoding nucleotides exist between genes. In vertebrates, an exception 
is a noncoding region closely associated to origin of H-strand DNA replication (OH) 
that contains the transcription promotors (Clayton 1982, 1991). In most of cases 
(some species present two), each strand contain only a promoter. The transcription 
processes initiated from each of them yield two large polycistronic transcripts that 
are processed later to generate mature tRNAs, rRNAs, and mRNA by precise endo-
nucleolytic cleavages. In most cases, such cleavages occur, immediately before and 
after a tRNA sequence. Depending on which strand acts as the template for tran-
scription, promoters are designated as light-strand promoter (LSP) or heavy-strand 
promoter (HSP) (Ojala et al. 1981; Attardi and Schatz 1988; Clayton 1992). In addi-
tion to 13 mtDNA encoded subunits, there are other approximately 70 components 
of mitochondrial respiratory chain and other proteins that participate in mitochon-
drial metabolism and maintenance, which are encoded in the nuclear genome and 
require specialized import systems to be imported to mitochondria (Mokranjac and 
Neupert 2005).

Several molecules (usually from two to ten) of mtDNA coexist in a mitochon-
drion and there are mitochondria in every cell. Therefore, a cell possesses hundreds 
of copies of mtDNA, a condition termed as polyplasmy. When all mtDNA in a cell 
present the same sequence, the condition is known as homoplasmy. In contrast, 
heteroplasmy occurs when two or more different molecules of mtDNA can be also 
present in a cell or organism.

Because of zygote does not receive mitochondria from sperm in mammals or 
possible transmitted mitochondria are selected against during replication, all mito-
chondria are inherited from the mother. Then, mitochondria divide and proliferate 
during development, but also in adult life increasing mitochondrial mass. During 
this process known as mitochondrial biogenesis synthesis of new mitochondrial 
proteins, but also mtDNA, is required. It is known that biogenesis is under the con-
trol of nuclear factors, although the exact mechanism has not been fully unrav-
eled yet.

10.2.1  Replication of Mitochondrial DNA

It is assumed that mtDNA replication is not necessary linked to the cell cycle 
(Clayton 1982) and mtDNA is continuously turned over. Thus, mitochondrial and 
nuclear genomes would be independently replicated (Bogenhagen and Clayton 
1977). For this reason, mtDNA is also replicated in postmitotic cells, which has 
been also evidenced (Pohjoismäki et al. 2009). Notwithstanding, there is a increas-
ing number of publications reporting some relationship between mitochondrial 
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function and cell cycle (Arakaki et al. 2006; Owusu-Ansah et al. 2008; Mitra et al. 
2009), which suggests a possible connection between mtDNA replication and the 
cell cycle.

The exact mechanism of human mtDNA replication is not completely known 
yet. The two most important replication models proposed until now are: the strand- 
asynchronous method that is the most traditional and the leading-lagging strand 
model (Holt et al. 2000; Fish et al. 2004). In both, DNA replication is initiating at 
OH that is located downstream of the LSP in the D-loop region. In the first one, 
subsequent elongation of a nascent newly-synthesized H-strand leads to the parental 
H-strand displacement from the H-strand. Because of the origin of L-strand DNA 
replication (OL) is located approximately two thirds the genomic distance away 
from OH on the mtDNA molecule, L-strand synthesis, that proceeds in the opposite 
direction, will not be initiated until almost two-thirds of new H-strand have been 
synthesized and OL is exposed (Clayton 1992). Here, the adoption of a particular 
configuration by the H-strand allows a mitochondrial DNA primase initiate L-strand 
DNA synthesis (Wong and Clayton 1985a, b). In the second model, L-strand syn-
thesis starts in a coordinately way shortly after replication in form of short Okazaki 
fragments that will be joined then (Yasukawa et al. 2006).

In any of the models, after DNA strand synthesis, the two daughter molecules 
will be separated, RNA primers removed, and remaining DNA gaps will be filled 
and ligated. An additional step introducing superhelical turns into the closed mole-
cule also occurs (Shadel y Clayton 1997). The existence of a model does not neces-
sarily exclude the other and their occurrence may depend on cell type. It has been 
suggested that cells requiring rapid mtDNA synthesis present a strand-displacement 
mechanism whereas the leading-lagging strand one would be more prevalent in 
cells which are in a steady-state (Holt et al. 2000; Fish et al. 2004; Jacobs et al. 
2006; Tuppen et al. 2010).

Regardless of the model, various nuclear DNA (nDNA)-encoded proteins are 
needed to form the mitochondrial replisome and accomplish mtDNA replication. 
These include a 5′–3′ DNA helicase named Twinkle, some mitochondrial SSB pro-
teins (mt-SBB) and the polymerase γ (Polγ) that contains two subunits, one cata-
lytic with 5′-3′ exonuclease activity (PolγA) and other processivity (PolγB) 
(Korhonen et al. 2004).

10.2.2  Mutations and Mitochondrial DNA

Molecular defects in mtDNA have a significant role in human disease and aging and 
they have been found in each type of mitochondrial gene. MtDNA mutations range 
from single base changes in the genome (point mutations) up to large rearrange-
ments (deletions and duplications). In turn, these changes in mtDNA sequence can 
be maternally inherited or somatic (i.e. created in situ). In general, deletions and 
duplications are most often sporadic or somatic whereas maternally inherited altera-
tions are commonly point mutations (Leonard y Schapira 2000).
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Alterations in mtDNA sequence have been strongly associated with deleterious 
effects on organisms. There are at least two reasons explaining this relationship. On 
the one hand mtDNA and has no introns, so that a random mutation will usually 
strike a coding DNA sequence. On the other hand, estimations indicate a 10–20 fold 
higher mutation frequency in human mtDNA than in nDNA (Brown et al. 1979). 
This higher rate could be due to the combination of two factors. On the one hand, 
maybe the number of systems of DNA repair is insufficient for all the damage that 
occurs, although there are a growing number of reports indicating that in mitochon-
dria there are more enzyme activities for repair of damaged nucleotides of which it 
was believed at first. On the other hand, it seems that mtDNA has an increased 
susceptibility to mutation (Shadel and Clayton 1997). Several differential features 
are responsible for this susceptibility to mutation:

• Mitochondrial oxidative environment, mainly generated by free radicals gener-
ated at the electron transport chain, although there are other sources.

• The absence of protective histones, although mtDNA is packaged into protein- 
mtDNA aggregates termed nucleoids (Kukat et al. 2011) that are believed to pro-
tect mtDNA from chemical damage in some degree (Lagouge and Larsson 2013).

• Failure of proof-reading by mtDNA polymerases during mtDNA replication that 
usually also occurs although cell does not divide.

• Lack of recombination as consequence of maternal heritage that allows sequen-
tial accumulations of mutations through maternal lineages.

Mutations in mtDNA have received great interest because it is known that spe-
cific mtDNA mutations found in humans are likely causative in different diseases. 
Moreover, common neurodegenerative disorders and others disease often associated 
with aging also have been associated with mtDNA sequence alterations (Larsson 
and Clayton 1995). Because of cells present polyplasmy, normal and mutant mtDNA 
can coexist within the same cell. Actually, the existence of either completely normal 
or completely mutant mtDNA is rare. In this context, heteroplasmy is particularly 
important since it can allow an otherwise lethal mutation to persist. This is due to a 
certain minimal amount or threshold level is required to have deleterious effects in 
cell (Larsson 2010). In that sense, there are selection pressures at the molecular and 
cellular levels, as well as at the level of the organism itself. The proportion of mutant 
mitochondrial DNA required for the occurrence of a deleterious phenotype, known 
as the threshold effect, varies among persons, among organ systems, and within a 
given tissue.

After mtDNA sequence alterations are produced, several processes can modify 
their frequencies in the cell. In this sense, it has been suggested that changes in the 
frequencies of different mtDNA molecules follows principles of population genet-
ics but rather Mendelian laws. Both, de novo and inherited mutations in mtDNA, if 
there are present in heteroplasmy, are subject to mitotic segregation. Consequently, 
frequency of different mtDNA molecules can shift in daughter cells since they are 
randomly segregated during mitosis. Thus, mutated mtDNA can increase with pos-
sible deleterious effects or decrease to disappear, particularly in fast-dividing tissues 
(Tuppen et  al. 2010). Anyway, mechanisms for mitotic segregation need to be 
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studied further. On the other hand, a mtDNA molecule may be replicated many 
times or not at all as a cell divide. If mtDNA molecules are selectively replicated, 
proportions of mutant and normal molecules in mother cells would be modified. In 
addition, it is important to note that replication of mtDNA also occurs in the absence 
of cell division. Thus, mtDNA is replicated also in postmitotic cells, so it can 
undergo similar types of segregation (Larsson 2010). It has been suggested that it is 
caused by random genetic drift, in conditions of relaxed mtDNA replication (Elson 
et al. 2001). Actually, expansion in postmitotic tissues, a preferential amplification 
of mtDNA mutations might occur termed clonal (Larsson et  al. 1990; Weber 
et al. 1997).

In mammals, a rapid segregation in heteroplasmic mtDNA genotypes returning 
to homoplasmy in some descendants has been reported (Upholt and Dawid 1977; 
Olivo et al. 1983; Holt et al. 1989; Vilkki et al. 1990; Larsson et al. 1992; Blok et al. 
1997; Brown 1997). The existence of a mtDNA bottleneck during development has 
been proposed to explain these observations (Tuppen et al. 2010). Different mecha-
nisms by which this bottleneck is present have been hypothesized, but discussion 
about this topic remains. A relatively well-accepted hypothesis suggests that a 
marked reduction in mtDNA copy number would take place in the germ line leading 
to a genetic bottleneck during embryonic development (Jenuth et  al. 1996; Cree 
et al. 2008). In contrast, other authors have suggested that, during oogenesis, there 
is a preferential replication of a particular mtDNA or a subgroup of them, but nei-
ther reduction of mtDNA copy number is produced in germ line (Cao et al. 2007). 
Other recently proposed explanation suggests that mtDNA subpopulation is selec-
tively replicated during postnatal folliculogenesis, thus the mtDNA bottleneck 
would not occur during oogenesis. In single germ cells, mtDNA heteroplasmy and 
copy number vary throughout oogenesis (Wai et al. 2008), a finding that support that 
hypothesis. Anyway, more research is needed to clarify the mtDNA bottleneck 
exact nature (Tuppen et al. 2010).

10.2.3  Mitochondrial DNA Repair Systems

Although its importance is currently discussed (Richter et al. 1988; Hegler et al. 
1993), oxidative damage occurs normally and can be elevated in cells and tissues 
(LeDoux et al. 1992; Mecocci et al. 1993, 1994; Driggers et al. 1993; Shigenaga 
et  al. 1994). However, mitochondria have their own repair systems for damaged 
mtDNA that help to maintain mtDNA integrity, although their number seems to be 
more limited than in nucleus.

Base excision repair (BER) is one of the most studied mitochondrial mechanisms 
for mtDNA repair. In fact, intially it was though that short-patch BER was the 
unique pathway to repair mtDNA damage, especially oxidative damage (Stierum 
et al. 1999). This mechanism represents the main pathway for repairing oxidized 
modifications (Slupphaug et al. 2003), but it is also a primary pathway for alkylation 
and deamination-derived modifications repair (Dianov et al. 2001; Chan et al. 2006). 

J. L. Quiles et al.



197

First step in BER is the cleaving the N-glycosidic bond leading to an abasic site. 
This reaction is catalyzed by different DNA glycosylases that are responsible to 
recognize modified bases and also present AP lyase activity to cleavage DNA back-
bone (Robertson et al. 2009). Among other, these include the uracil DNA glycosyl-
ase (UNG), the endonuclease III homolog (NTH1), and the 8-oxoguanine DNA 
glycosylase-1 (OGG1). OGG1 is particularly interesting since it is required for the 
recognition and cleavage of 8-oxoguanine (8-oxoG) from double-stranded DNA 
(Kuznetsov et al. 2005). In this step also participates the AP endonuclease (APE1) 
that cleaves on the immediate 5´ side of the apurinic/apyrimidinic (AP) site, leaving 
a 3´ hydroxyl and 5´-deoxyribose-5-phosphate (5´-dRP) residue (Masuda et  al. 
1998). Then, the resultant gap is filled with the correct nucleotide by the mitochon-
drial DNA polymerase -i.e. Polγ- (Ropp and Copeland 1996).

Here, it is possible to distinguish two BER pathways according to the number of 
nucleotides incorporated to the gap. When a single nucleotide is incorporated, the 
mechanism termed short-patch BER is relatively simple. In contrast, long-patch 
BER, which involves the incorporation of multiple nucleotides (commonly ranged 
from 2 to 7) is more complex and additional enzymatic activities are required 
(Robertson et al. 2009). Such enzymatic activities would deal with the exposure of 
the original DNA strand as a single-stranded overhang or a flap structure that is the 
main difficulty generated by the incorporation of several nucleotides (Xu et  al. 
2008). Finally, the nick generated is sealed by the mitochondrial DNA ligase, ligase 
III (Lakshmipathy and Campbell 1999a).

Other known nuclear DNA repair mechanisms has been proposed to exist in a 
mitochondrial version. It seem that the most clear additional mechanism is homolo-
gous recombination (LeDoux et al. 1992; Ling et al. 1995; Sage et al. 2010) that is 
the primary pathway to repair double-strand breaks. That plays a critical role in 
facilitating the progression of replication when advancing polymerase complex 
progress is blocked by the presence of a DNA lesion. There are also evidences for 
existence of mismatch repair (Mason et al. 2003) and non-homologous end-joining 
activities (Lakshmipathy and Campbell 1999b) at mitochondria but more research 
is needed to confirm them. Other hypothesized mechanisms especially useful to 
repair 8-oxoG have been nucleotide excision repair (Stevnsner et  al. 2002) and 
translesion synthesis (Pinz et al. 1995; Graziewicz et al. 2004, 2007), although none 
enzyme activity related to them has been reported in mitochondria up to date.

10.3  Aging and Mitochondrial DNA

10.3.1  Aging and Mitochondrial DNA Mutations Relationship: 
A Conceptual Framework

Overall, different studies have indicated mutated mtDNA molecules accumulate 
with aging since elderly people has shown higher levels of somatic point mutations 
or deletions in mtDNA from different tissue types (Cortopassi and Arnheim 1990; 
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Simonetti et al. 1992; Laderman et al. 1996: Melov et al. 1999; Berneburg et al. 
2004; Bender et  al. 2006; Marín-García et  al. 2006; Krishnan et  al. 2008). This 
association between aging and mtDNA alterations also has been in found studies in 
rodents (Pikó et al. 1988; Quiles et al. 2006, 2010; Ochoa et al. 2011). However, 
discussion exists about what is the magnitude of such accumulation and its impor-
tance in aging. Still, rather low, the differences between young and old individuals 
in frequency of mtDNA mutations are statistically significant (Pikó et  al. 1988). 
Additionally, an accumulation of multiple mtDNA deletions has also been reported 
in individuals with neurodegenerative diseases, such as Alzheimer and Parkinson’s 
disease (Cortopassi et al. 1992; Coskun et al. 2004; Bender et al. 2006; Kraytsberg 
et al. 2006 Krishnan et al. 2008). Similarly, overall mtDNA heteroplasmy seem to 
increase with aging indicating that additional somatic mutations are continuously 
appearing during adult life (Pliss et al. 2011; Sondheimer et al. 2011; Diot et al. 
2016). Most of these observations support the idea of mtDNA alterations and their 
subsequent accumulation during life are responsible or at least contribute to the 
senescent phenotype. Several proposed theories that related mitochondria and aging 
providing an explanation for this phenomenon.

As indicated above, mitochondrion is a major site of ROS production in the cell 
(especially at mtETC) which would makes mitochondria the prime targets for oxi-
dative damage (Harman and others 1955; Miquel et al. 1980). This fact was taken 
into account by Harman and other authors (Harman and others 1955; Miquel et al. 
1980) to considered mtDNA mutations to be the initiating, primary event in the 
aging process in their mitochondrial free radical theory of aging. According to that, 
a vicious cycle would be established whereby oxidative damage to mtDNA and 
other mitochondrial components leads to respiratory chain dysfunction, which in 
turn leads to increased generation of ROS, further facilitating respiratory chain 
components damage and thus creating a self-amplifying deterioration. The mito-
chondrial free radical theory of aging, thus, suggests the existence of a vicious cycle 
that results in an exponential increase in mtDNA mutations with time. Interestingly, 
Greaves et al. (2014), using next-generation sequencing, has reported that mtDNA 
mutation rate does not seem to increase with age (Greaves et al. 2014). This fact 
would be contradictory with the exponential increase in mtDNA mutations pro-
posed by the mitochondrial free radical theory of aging.

More recently, new evidences have emerged that give more subtle roles beyond 
those as damaging agent to ROS. Actually, despite lifespan and ROS production is 
correlated, it has been shown that ROS are not directly responsible for aging (Sanz 
et al. 2010). However, it has been progressively appreciated that ROS also can func-
tion as signaling molecules, facilitating adaptation to stress in a wide variety of 
physiological situations (Sena et al. 2008). In this context, Hekimi and colleagues 
(2011) proposed the gradual ROS response hypothesis that suggests that “ROS gen-
eration is not a cause of aging, but rather represents a stress signal in response to 
age-dependent damage”. Concerning mitochondria, when respiratory chain dys-
function coupled with moderate increases in ROS levels, these act as stress signal 
that activates protective quality control pathways improving mitochondria quality. 
These finding also have resulted in the mitohormesis hypothesis (Tapia 2006; 
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Ristow and Zarse 2010). Despite of the existence of protective quality control path-
ways, a continuous or strong dysfunction of the mitochondrial respiratory chain 
would lead to a substantial ROS accumulation. Consequently, protective and defense 
mechanisms against oxidative stress would be overwhelmed (Tapia 2006; Zelenka 
et al. 2015). Indeed, evidences suggest that mtDNA controls longevity (Sanz et al. 
2010) which is consistent with this theory.

Lastly, possible link between mitochondria (and mtDNA) and other important 
event in aging process have been also proposed. In this sense, Ahmed et al. (2008) 
have suggested that telomerase protects mitochondria  from mild oxidative stress. 
Other possible causes would include the repression of PGC-1 promoter by p53 acti-
vated as consequence of telomere dysfunction or TERT activity effect on mtDNA 
repair (Monickaraj et al 2012; Tyrka et al. 2015).

10.3.2  Generation and Accumulation of Mitochondrial 
DNA Mutations

Different mechanisms have been proposed to explain the accumulation of mtDNA 
mutations with aging. Oxidative damage to mtDNA is often assumed as main 
responsible for age-associated somatic mtDNA mutations generation, although 
there are other agents able to produce DNA lesions that also could accumulate 
that might be important under some conditions. If the amount of mtDNA (oxida-
tive) damage overwhelm the mtDNA repair mechanism, a progressively accumu-
lation of mtDNA alterations or mutations would occur with aging. The involvement 
of ROS in the creation of mtDNA mutations is central to the mitochondrial free 
radical theory of aging and it is supported by correlative data showing higher 
levels of somatic mtDNA mutations in older than in younger mammals including 
humans (Larsson 2010). It is known that DNA bases can suffer until 24 oxidative 
lesions different (Evans et al. 2004). There are also 13 additional major products 
of oxidative damage to the sugar moiety (Evans et al. 2004). In spite of this num-
ber, most of investigations has been focused on the guanine adduct 7,8-dihydro-
8-oxo-deoxyguanosine (8-oxodG) (Evans et al. 2004) that is considered one of 
the most abundant oxidative lesions that accumulate in mtDNA over time. One 
consequence of 8-oxodG presence in DNA is the transversion with adenine dur-
ing replication due to the mispairing of 8-oxoG, but the biological significance for 
the majority of the lesions remains unknow (Larsson 2010). It has been reported 
that accumulation of 8-oxoG in mtDNA occurs with age (Szczesny et al. 2003). 
Initially, it was thought that in vivo levels of 8-oxodG were very high (Richter 
et al. 1988), although then this finding was attributed to overestimation by meth-
odological problems (Hamilton et al. 2001). More recently a sequencing study in 
mouse showed that mtDNA transversion mutations not increased with age, so 
oxidative damage may not be a major source of formation of mtDNA mutations 
(Ameur et al. 2011).
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Although the exact steady state level of oxidative damage in mtDNA is variable 
among tissues and the importance is discussed in the literature (Richter et al. 1988; 
Hegler et al. 1993; Shadel and Clayton 1997), such damage occurs normally and 
can be elevated in cells and tissues under certain conditions. These include exposure 
to certain chemical agents (Driggers et  al. 1993) and antiviral drugs (Lewis and 
Dalakas 1995), UV radiations (Berneburg et al. 2004; Krishnan et al. 2008; Birket 
y Birch-Machin 2007) or pathologies (Mecocci et al. 1994). In this context, dietary 
conditions could results especially interesting for mtDNA mutation implications in 
aging since certain nutritional conditions may be maintained over life. Recent 
experimental studies indicate that reduction in the degree of unsaturation of fatty 
acids in the diet induces less oxidative damage and alterations in mitochondrial 
DNA (mtDNA) in different tissues including liver (Quiles et al. 2006), brain (Ochoa 
et al. 2011) and heart (Quiles et al. 2010).

An alternative source of mtDNA mutations is pol γ that would produce somatic 
mtDNA mutations by slipped mispairing during mtDNA replication. Namely, these 
replication errors have suggested being an important mechanism for formation of 
mtDNA deletions (Madsen et al. 1993). In human mtDNA deletions that mainly 
occur between OH and OL, are typically flanked by short direct repeated sequences 
(Mita et al. 1990; Samuels et al. 2004; Bua et al. 2006), which supports this hypoth-
esis. Moreover, an in vitro analysis of the mutations generated by wild-type Pol γ 
showed a good concordance with those observed in vivo in human, including a 
paucity of G:C to T:A transversions (Zheng et al. 2006). This hypothesis is also sup-
ported by mathematical modeling (Cortopassi and Arnheim 1990). Still, the fact of 
true turnover rate of mtDNA in mammalian tissues is largely unknown complicates 
studies in this area (Larsson 2010).

However, most important evidences in favor of this mechanism come from stud-
ies using a well-established knock-in murine model (Trifunovic et al. 2004; Kujoth 
et al. 2005). This has homozygous genotype for a mutated version of PolγA with 
increased proofreading activity, so it provides a critical test of the replication error 
hypothesis. Expression of the proof-reading deficient PolγA leads to a rapid accu-
mulation of mtDNA point mutations and deletion during embryogenesis, which are 
clearly present in midgestation (Trifunovic et  al. 2004). Moreover, in adult life, 
accumulation of mtDNA mutations goes on in a linear manner leading to the pro-
gressive and random accumulation of mtDNA point mutations during mitochon-
drial biogenesis (Trifunovic et  al. 2004). Because of this amount of mtDNA 
mutations, it has been generally named as Polγ mutator mouse. Most of the muta-
tions generated in mtDNA mutator mice are transitions (Trifunovic et al. 2004) and 
their pattern after germ line transmission resembles the mutation spectra found in 
natural populations of mice and humans ( Stewart et al. 2008a, b). Because of mito-
chondrial free radical theory of aging predicts an exponential increase in the muta-
tion burden throughout life; findings from these models are in contradiction with it. 
Interestingly, accumulation of mtDNA mutations has no major increase in oxidative 
damage in many different tissues in adults (Trifunovic et al. 2005).

Most researchers consider replication to be the most likely mechanism of dele-
tion formation (Lloret et al. 2009; Lagouge and Larsson 2013), but Krishnan et al. 
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(2008) proposed that “mtDNA deletions arise during the repair of damaged 
mtDNA”. Although they remain unclear, some mechanisms have been proposed to 
explain the impairment or restriction of repair machinery efficiency with aging. A 
possibility would be the age-associated decline in import capacity of the mitochon-
dria. Accumulation into the mitochondrial intermembrane space and importation 
failure inside the mitochondrial matrix of an unprocessed form of DNA glycosylase 
OGG1 that is involved in BER of 8-oxoG has been proposed to occur with aging 
(Szczesny et al. 2003). This would explain why 8-oxoG is so abundant among oxi-
dative lesions that accumulate in mtDNA. In fact, mice lacking this enzyme have 
increased levels of 8-oxodG in mtDNA (de Souza-Pinto et  al. 2001). In turn, 
mispairing of 8-oxoG during replications would extend the mutation

Several processes cooperate to maintain mitochondrial quality, among which 
highlights mitophagy that is the only mechanism known to turn over whole mito-
chondrial genomes (Kim et al. 2012; Diot et al. 2016). As it is expected, to keep the 
pool of mitochondria healthy, replacement by biogenesis is needed that must be 
adequately coordinated with mitophagy. Although mtDNA turnover in differenti-
ated tissues is not well defined, if this results affected by aging, accumulation of 
mutant mtDNA can occur. In this sense, it has been reported a decline of mitophagy 
with aging (Diot et al. 2015) thus disadvantages both the turnover of dysfunctional 
mitochondria and the production of fresh mitochondria. Interestingly, Greaves et al. 
(2014), using next-generation sequencing, have shown that mtDNA mutation rate 
could not increase with age, which enhances the importance of autophagy decline 
in mutations accumulation.

Along with the aforementioned mechanisms, changes in mitochondrial dynam-
ics also are very important, as well as affecting fusion and fission of membranes, 
modulate mitochondrial turnover. Fission disrupted mitochondria segregation 
(Katajisto et al. 2015) whereas fusion would mix content of different mitochondria 
including mtDNA molecules (Chan 2012; Tam et al. 2013). When the frequency of 
fusion/fission cycles is reduced, mtDNA mutations tend to accumulate and there is 
less mtDNA mixing (Diot et al. 2016). In support of these mechanisms importance, 
a mathematical model by Tam et al. (2014) suggests that a combination of rapid 
mitochondrial fission, fusion and mitophagy can extend lifespan because mitochon-
drial function maintenance would be achieved.

10.3.3  The Impact of Mitochondrial DNA Alterations 
on Mitochondrial Function and Aging

Independently of the actual cause of a given mutation, it is possible to suppose at 
least some of the consequences of changes in mitochondrial DNA sequence. Most 
mtDNA sequence alterations are neutral polymorphisms (Ingman et al. 2000), but 
when this not occurs, their magnitude could be different depending on gene 
affected. Point mutations can affect to protein, tRNA, or rRNA genes within 
mtDNA. Phenotypical consequence of mutations in a protein-coding gene would 
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be a functional alteration of a particular complex of mitochondrial respiratory chain 
to which the corresponding protein belongs (Tuppen et al. 2010). In turn, mutations 
in genes encoding for mt-tRNAs might impair overall translation of mtDNA by 
reducing functional mt-tRNAs availability (Tuppen et al. 2010). Regarding mtDNA 
rearrangements, it has been reported that most of them are large-scale deletions 
ranged from 1.3 to 8 kb that span several genes (Schon et al. 1989).

It is expected that accumulation of somatic mtDNA mutations would lead to 
mitochondria with respiratory chain deficiencies. Notwithstanding, an important 
feature of mtDNA further must be considered to understand the consequences of 
mtDNA alterations in cell and/or tissue. As mentioned, cells are polyplasmic for 
mtDNA, which implies that de novo somatic mutations in mtDNA would be in 
heteroplasmy, at least at beginning. Moreover, mutated mtDNA frequencies can 
vary dramatically between tissues (Shoffner et al. 1990; Goto et al. 1990). Actually, 
even in mitochondrial disorder patients, there is considerable clinical heterogene-
ity with mostly mtDNA mutations in heteroplasmy that are also considered highly 
recessive (Tuppen et al. 2010). This is particularly important for mutations caus-
ing lethal impairments that would be viable only in heteroplasmy. When hetero-
plasmy is present, there is a minimum critical frequency of mutated mtDNAs 
necessary to biochemical defects and tissue dysfunction become apparent. In 
humans, it has been reported that pathogenic mtDNA mutations only cause respi-
ratory chain dysfunction when they are present above a certain threshold level, 
which is 60% for single large mtDNA deletions (Hayashi et al. 1991) and 90% for 
certain point mutations in tRNA genes (Chomyn et al. 1992). Therefore, threshold 
value varies for each mutation but it also differs amongst tissues according to the 
dependence on the oxidative metabolism presented by the tissue. It would be 
higher in tissues that need to obtain most energy from oxidative phosphorylation 
than in those that can rely on anaerobic glycolysis (Schultz and Harrington 2003). 
However, it is important to note that mutations in nuclear genes and in mitochon-
drial genes other than those in the respiratory chain also can lead to mitochondrial 
dysfunction. These are mainly nuclear genes encoding for respiratory chain sub-
units, as well as those controlling mtDNA structure and function (Leonard y 
Schapira 2000).

Overall, a moderate decline of respiratory chain function with age has been 
widely reported (Trounce et al. 1989). However, in many cases, respiratory chain 
deficient cells by accumulation of mtDNA alterations would represent only a part 
of the cells present in a tissue or organ. In addition, age-associated somatic mtDNA 
mutations tend to undergo clonal expansion and thereby cause focal respiratory 
chain deficiency. Focal respiratory chain deficiency is a ubiquitous phenomenon in 
human aging tissues (Müller-Höcker 1989, 1990; Trifunovic and Larsson 2008) 
supporting that mitochondrial dysfunction is important in human aging. Mosaic 
respiratory chain deficiency has been also found in many different types of aged 
tissues in humans including heart (Müller-Höcker 1989), skeletal muscle (Fayet 
et al. 2002; Bua et al. 2006; Park et al. 2009), hippocampal neurons (Cottrell et al. 
2001), choroid plexus (Cottrell et  al. 2001), midbrain dopaminergic neurons 
(Bender et al. 2006), and colon (Taylor et al. 2003). However, the responsibility of 
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age- associated accumulation mtDNA alterations for oxidative phosphorylation 
impairment has been discussed since low levels of mutated mtDNA has been found 
in aged humans. Still, there are evidences in favor of mtDNA effects on mitochon-
dria function. Initially, clonal accumulation of deleted mtDNA was associated with 
focal respiratory chain deficiency in skeletal muscle fiber segments (Fayet et al. 
2002). Similarly, it has been found that mtDNA deletions are common (Bender 
et al. 2006) in respiratory chain-deficient dopaminergic neurons (Reeve et al. 2009). 
Studies in rats, rhesus monkeys, and humans have shown that accumulation of 
deleted mtDNA colocalizes with respiratory chain deficiency (Wanagat et al. 2001; 
Bua et  al. 2006). A severe respiratory chain dysfunction has been also found in 
cardiomyocytes from Tfam homozygous knockout mice that present an associated 
mtDNA depletion (Wang et al. 2001).

In humans, most published cases until now show that clonally expanded muta-
tions are single large mtDNA deletions. The deletions differ in various respiratory 
chain-deficient cells of the same tissue, which is in agreement with their somatic 
nature (Larsson 2010). Along with deletions, clonally expanded point mutations 
also have been found in other tissues from aging subjects. For instance, in colonic 
crypts from elderly humans which show focal respiratory chain deficiency in more 
than 15% of all colonic crypts (Taylor et al. 2003). It has been suggested that they 
would be originated in the crypts stem cells and they clonally expand with division. 
It has been suggested that accumulated mutation type by a particular tissues depend 
on its mitotic activity.

Various experimental models have improved the understanding of the functional 
consequences of mtDNA mutations and their molecular mechanisms. Biochemical 
effects of mtDNA mutations have been well described in all experimental systems 
and are invariably characterized by lower mitochondrial respiration, compromised 
mtETC complex activity, and reduced ATP synthesis. However, mitochondria also 
play important roles in different cellular pathways beyond ATP production. These 
include apoptosis and nucleotide synthesis, calcium regulation (Smeitink et  al. 
2006; Diot et al. 2016). Therefore alterations in mitochondrial function might affect 
to different processes that can modulate aging at distinct levels. Oxidative stress has 
been studied in various animal models that accumulate mtDNA mutations with 
associated mitochondrial dysfunction. In Tfam homozygous knockout mice there 
are an initial increased ROS production as consequence of mtDNA depletion and 
respiratory chain dysfunction (Wang et al. 2001). In contrast, mouse strains knock-
out for complex I Ndufs4 protein (Kruse et al. 2008) and apoptosis inducer factor 
(AIF) (Pospisilik et al. 2007) do not have substantially increased ROS production or 
oxidative damage. Evidence of oxidative stress was almost also absent in Polγ 
“mutator” (Kujoth et al. 2005; Trifunovic et al. 2005; Niu et al. 2007), although 
there are rare exceptions (Geromel et  al. 2001). In contrast, Tfam heterozygous 
knockout mice, which also undergo mild mtDNA depletion exhibit increased oxida-
tive mtDNA damage susceptibility (Woo et al. 2012). In addition, apoptotic cell loss 
can be a common feature in respiratory chain deficiency (Trifunovic and Larsson 
2008). These mutator mice displayed a massive increase in apoptosis (Kujoth et al. 
2005; Trifunovic et al. 2005; Niu et al. 2007) that has been also observed in mice 
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conditionally knockout for Tfam that led to abolished mtDNA expression (Wang 
et al. 2001).

The accumulation of deficient mitochondria in a cell can lead to compensatory 
increase in mitochondria number. This would be mediated by the increase in mito-
chondrial biogenesis, which in turn leads to an increased number of mtDNA copy 
number in the cell. In skeletal muscle, it has been reported that ragged-red fibers, 
which are featured by an extraordinary accumulation of mitochondria, have very 
high proportions of mutated mtDNA in comparison with adjacent normal-appearing 
fibers (Moraes et al. 1992). It has been suggested that so massive amount of mito-
chondria is due to the activated mitochondrial biogenesis indeed, which is a futile 
response in this case. This is expected since new mtDNA molecules also harbor the 
same mutations, thus, many additional mitochondria remain dysfunctional. 
Moreover, this compensatory increase in copy number could lead to mutated 
mtDNA accumulation (Elson et al. 2001). Still, it has been reported that a higher 
number of mitochondria compensates for a decrease of oxidative phosphorylation 
capacity in associated to a mitochondrial myopathy in mouse skeletal muscle 
(Wredenberg et al. 2002; Wenz et al. 2008).

More recently, some investigations have been directed particularly to stem cells. 
Neural stem cells from mtDNA mutator mouse showed decreased renewal in vitro 
and quiescent pools of neural stem cells were decreased, whereas the haematopoi-
etic stem cells showed a skewed lineage differentiation leading to anaemia and lym-
phopenia (Ahlqvist et al. 2012). In contrast, other model known as mtDNA “deletor” 
mice (Tyynismaa et al. 2005) that accumulate large-scale mtDNA deletions in post-
mitotic tissues and exhibited a similar late-onset respiratory chain deficiency not 
present any signs of premature aging as the mtDNA mutator mouse. This last prob-
ably is correlated with the fact that they have no similar somatic stem cell pheno-
types (Ahlqvist et al. 2012). Therefore, consequences of mtDNA mutations in stem 
cells may explain at least in part the aging phenotypes.

Consequences of impaired mitochondrial respiratory chain function derived 
from accumulation of mtDNA mutations, combined or separately, would contribute 
to age-associated organ dysfunction and disease onset. Studies have suggested an 
association of deleted mtDNA with areas of fiber atrophy and splitting, thus, that 
mitochondrial dysfunction have a role in age-associated sarcopenia (Pak et  al. 
2003). Similarly, frequency of mtDNA mutation is higher in patients with 
parkinson´s disease that in age-matched controls (Bender et al. 2006). Concerning 
cancer, colon (Polyak et al. 1998) and prostate (Chinnery et al. 2002) cancer cases 
has been also associated to mtDNA mutations. Curiously, different evidences sug-
gest that the most important factors in determining clinical symptoms are not the 
size and location of the deletions but tissue distribution (Zeviani et al. 1988; Moraes 
et al. 1995; Vielhaber et al. 2000).

The Polγ mutator mouse also results useful in this aspect since certainly shows 
that high levels of mtDNA mutations cause a phenotype that included shortened 
life-span, weight loss, osteoporosis, kyphosis, reduced subcutaneous fat, alopecia, 
reduced fertility, and cardiac hypertrophy (Trifunovic et al. 2004). This suggests a 
link between mtDNA mutations and aging phenotypes in mammals. However, the 
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existence of a premature aging syndrome does not necessarily implies that mtDNA 
mutation levels found in normal aging are high enough to cause aging-related 
pathology. Additional experiments to test whether a decrease in somatic mtDNA 
mutations extends lifespan need to be done to confirm that. In contrast, the mtDNA 
mutator mice show no signs of premature aging (Tyynismaa et al. 2005) in spite of 
similarities in mutations accumulations and mitochondrial dysfunctions. Because of 
between featured stem cells mentioned above (Ahlqvist et al. 2012), it has been sug-
gested that somatic stem cell dysfunction has a crucial role of in generating the 
progeroid phenotype seen in mtDNA mutator mice.

In some occasions, the consequences in mitochondria and cell physiology of 
mtDNA mutation accumulation led enhanced aging alterations or age-associated 
diseases progression. Actually, abnormalities of mtDNA have been described in 
several diseases and high levels of deletions and point mutations cause human mito-
chondrial disease or syndromes. It has been characterised up to 250 pathogenic 
mtDNA mutations (point mutations and rearrangements) (Schaefer et  al. 2008) 
causing a wide variety of diseases with a heterogeneity of phenotypes and a variable 
age of onset (McFarland et al. 2007). Although many mutations are heteroplasmic, 
there are also an increasing number of pathogenic homoplasmic mutations, often 
affecting just a single tissue and characterized by incomplete penetrance (McFarland 
et al. 2002, 2004, 2007; Temperley et al. 2003; Taylor et al. 2003; Yang et al. 2009). 
In concordance with previous observation, mitochondrial disorders share common 
cellular consequences including a decreased ATP production, an increased reliance 
on alternative anaerobic energy sources, and an increased production of reactive 
oxygen species. Regardless alteration responsible for these, studies in patients with 
mitochondrial disease were thus able to establish a clear cause and-effect relation-
ship between mtDNA mutations and respiratory chain dysfunction. In addition, an 
increased ROS production has been described in different models with mutations 
associated to any of these diseases (Wong et  al. 2002; Baracca et  al. 2007; Li 
et al. 2008).

10.4  Therapies Based on Coenzyme Q Against Diseases 
Associated with mtDNA Alterations

Despite the role of the alterations in mtDNA in aging have not clarified yet, different 
treatments have been tested to retard aging or to attenuate aging consequences, 
which, among other possible effects, can prevent mtDNA alterations. CoQ, usually 
CoQ10, has been used with this aim in humans and in different experimental models 
with this aim. Traditionally, the interest in this molecule usually comes from two 
main roles or activities. On the one hand, CoQ is an essential factor for cell bioen-
ergetics as consequence of its activity as electron carrier in mitochondria. Actually, 
it has been proposed that an equilibrated CoQ pool may perform a better electron 
flow adaptation than a higher or lower CoQ pool by keeping a better mitochondrial 
homeostasis control (López-Lluch et al. 2010). In addition, it also seems to affect 
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protein complex activity and structure (López-Lluch et al. 2010). On the other hand, 
CoQ also is considered as an endogenously synthetized lipid-soluble antioxidant in 
biological membranes and it has been shown to efficiently prevent oxidation of 
DNA along with other macromolecules (Ernster and Forsmark-Andrée 1993). 
However, other roles that also result interesting for aging have been reported. These 
include interaction with cell signaling cascades, certain anti-inflammatory activities 
and even the prevention of events leading to programmed cell death. As conse-
quence of the possible pleiotropic effect of CoQ on cell, many interventions did not 
aimed specifically to attenuate accumulation of mtDNA mutations. Instead, most of 
studies have focused on different processes related to mitochondria that have been 
associated with the generalized role of this organelle in aging. However, the present 
section of the chapter will be mainly devoted to those studies that evaluated the 
effect of CoQ on mtDNA.

The simplest approach has been the administration of CoQ to subjects with 
mitochondrial diseases or syndromes due to one or more specific mtDNA mutations 
(both, point mutations and deletions). The objective of this treatment was to stop 
the progression or to reduce some of the symptoms of these diseases. There are two 
features that make CoQ10 particularly popular in the management of patients with 
these disorders: its already mentioned rol as component of mtETC and its action as 
antioxidant, together with its well-documented safety, even at very high doses. 
Different trials have been carried out in this sense (Bresolin et al. 1990; Chan et al. 
1998; Abe et al. 1999; Glover et al. 2010). In most of cases syndromes considered 
were mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like epi-
sodes (MELAS), but also other rare myopathies and/or encephalopathies. In gen-
eral, main parameters tested in related to mitochondrial function has been 
post-exercise serum (Bresolin et al. 1990; Abe et al. 1999; Glover et al. 2010) or 
platelets (Bresolin et al. 1990) lactate levels, which were reduced by CoQ10 supple-
mentation (Bresolin et al. 1990; Abe et al. 1999; Glover et al. 2010), although not 
in all studies (Bresolin et al. 1990). Similarly, a study showed a reduction in lactate/
pyruvate ratio that also proved to be the clinically most useful parameter in the 
evaluation and monitoring of mitochondrial function (Chan et al. 1998). Differences 
in CoQ dosage and treatment duration explain contradictory results in most cases, 
but in a study (Bresolin et al. 1990) observed also inter-individual differences for 
the same treatment that need to be clarified. It has been reported that responsiveness 
to treatment was apparently not related to CoQ10 levels in serum and platelets or to 
the presence or absence of mtDNA deletions (Bresolin et al. 1990). Furthermore, 
when they have been evaluated, it did not affect other clinically relevant variables 
such as strength or resting lactate (Glover et al. 2010). Therefore, these trials sug-
gest that CoQ10 supplementation in relative high amount offers some improve of 
mitochondrial function, but the relevance for overall health is not confirmed. 
Likewise, most studies had a very small sample size and a rigorous placebo- 
controlled trial is still lacking. In addition to the above mentioned studies, there are 
also a set of studies using CoQ10 usually as a component of a “cocktail” that also 
includes L-carnitine, vitamin B complex, vitamin C and vitamin K1 (Marriage 
et al. 2004).
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To understand possible mechanisms under the effect of CoQ treatment on mito-
chondrial function more research is still needed. Nevertheless, an in vitro assay 
suggested that reduction of oxidative stress and inhibition of apoptosis signaling 
cascades could be implicated. With more detail, it has been reported that preincuba-
tion with CoQ10 reduced both, ROS production and activation of caspase 3, after 
induction by ultraviolet light in cybrids carrying mtDNA with a large-scale dele-
tions associated to chronic progressive external ophthalmoplegia (i.e., 4366-bp and 
4977-bp large-scale deletions) (Lee et al. 2005). A particular studied mitochondrial 
disorder is maternally inherited diabetes mellitus and deafness (MIDD) that is fea-
tured by progressive insulin secretory defect and neurosensory deafness. In a 
randomized- controlled trial, daily oral administration of 150  mg of CoQ10 for 
3 years led to higher insulin secretory response than in the control group. Likewise, 
it improved lactate levels and prevented progressive hearing loss, although other 
diabetic complications and clinical symptoms remained unchanged (Suzuki 
et al. 1998).

In addition, dietary CoQ has shown to enhance electron transfer and ATP synthe-
sis in some pathological situations related with aging such as cardiac failure 
(Rosenfeldt et  al. 2005; Molyneux et  al. 2009), Parkinson’s disease (Beal 1999; 
Shults 2003; Young et  al. 2007; Thomas and Beal 2010), Alzheimer’s disease 
(Dumont et al. 2010; Yang et al. 2010; Dumont and Beal 2011) and Friedreich’s 
ataxia (Hart et al. 2005). Although they are not specifically mitochondrial disorders, 
patients affected with most of these pathologies have shown a higher frequency of 
mtDNA alterations. In relation to these diseases, it has been reported that presence 
of CoQ10 restored the activity of impaired respiratory chain complexes I and IV in 
cultured fibroblasts from Parkinson´s patients. Some beneficial CoQ effects have 
been also observed in patients affected by HIV. This pathology is associated with 
alterations in the amount of mtDNA, as well as with presence of lipodystrophy and 
peripheral neuropathy with mitochondrial toxicity induced by reverse-transcriptase 
inhibitors. The administration of 100 mg of CoQ twice a day for 3 months improved 
the general condition and well-being in asymptomatic HIV-infected patients. 
However, the treatment aggravated pain in patients with peripheral neuropathy and 
it did not change mtDNA levels in fat and peripheral blood mononuclear cells 
(Rabing Christensen et al. 2004).

10.5  Coenzyme Q, Dietary Fat and Aging in Relation 
to mtDNA Alterations

Another approach to the study of CoQ in relation to mtDNA alterations has been the 
life-long dietary administration of low dosages of the molecule to rodents, in order 
to investigate some aspects of the interaction between nutrition and aging, mainly in 
relation to dietary fat. Dietary fat has been shown to be particularly interesting 
because of the importance of phospholipid acyl chain of mitochondrial membrane 
in their susceptibility to oxidative damage as well as in membrane function and 
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structure. This is due to the fatty acids that form them present different chemical 
reactivity (Pamplona 2008). Unsaturated fatty acids are more susceptible to damage 
from ROS molecules owing to the high presence of unstable electrons near their 
double bonds, and also because its sensitivity to lipid peroxidation is greater as 
molecules have more double bond (Bielski et al. 1983; Holman 1954). Further, they 
also can participate in free radical chain reactions and lipid peroxidation product 
would produce covalent modifications of other macromolecules as proteins and 
DNA. Thus, a low degree of unsaturation in the fatty acids of biological membranes 
would decrease their sensitivity to lipid peroxidation, which, in turn, can protect 
damage other lipooxidation-derivative molecules (Mataix et al. 1998). In fact, some 
studies in mammals have shown that fatty acids unsaturation degree in biological 
membranes of various tissues is negatively correlated with longevity (Pamplona 
2008; Pamplona et al. 2000).

There are enough evidences indicating that fatty acids present in the diet modify 
the lipid profile of biological membranes, including mitochondrial membranes 
(Huertas et al. 1991, 1999; Ochoa et al. 2001; Quiles et al. 1999). Thus, dietary fat 
affects the structure and mitochondrial function, as well as its susceptibility to oxi-
dative stress. In this sense, if we could build "customized" biological membranes 
depending on the type of dietary fat, maybe we could positively change the way in 
which the organs age. This working hypothesis represented a new approach to the 
study of aging from the point of view of nutrition, and had important implications 
for aging phenomenon study (González-Alonso et al. 2015a). This was the basis for 
the work of our research group in a series of experiments performed on a rat model 
of aging for the last 20 years. In these studies, male Wistar rats were life-long main-
tained on different diets with different fat sources (virgin olive oil, sunflower oil or 
fish oil) which notably varying in their unsaturated fatty acids profiles to evaluate 
how this component of the diet affected to aging of different tissues and organs. 
Because of mitochondria role in aging and oxidative stress, evaluations were 
focused on mitochondrial aspects as ultrastructural alterations, mtDNA and/or 
respiratory chain functionality, as well as oxidative stress (including oxidative dam-
age and antioxidant defense components) (González-Alonso et al. 2015a). As con-
sequence of CoQ importance in mitochondria and oxidative stress, most of the 
experiments were carried out by using these dietary fats without or with a supple-
ment of CoQ10.

In early interventions, rats were fed diets based on AIN-93 (Reeves 1997; Reeves 
et  al. 1993) criteria but with different dietary fat source virgin olive oil (rich in 
MUFA) or sunflower oil (rich in n-6 PUFA). Animals were sacrificed at different 
ages to study how dietary fat and CoQ modulated aging in different tissues (Quiles 
et al. 2002, 2004a, b, 2005, 2006; Ochoa et al. 2003, 2011). In this context, mito-
chondria isolated from three different tissues, liver, heart and skeletal muscle, were 
compared at 6, 12, 18, and 24 months of age. Lipid peroxidation markers used (i.e. 
hydroperoxides levels) indicated that, in general, postmitotic tissues (i.e. heart as 
skeletal muscle) were more prone to suffer oxidation, but n-6 PUFA-rich diets led 
to a higher degree of membrane polyunsaturation and peroxidation. In addition, the 
degree of polyunsaturation in mitochondria was found to correlate with those in 
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diet, confirming a very good degree of membrane adaption to diet (Ochoa et  al. 
2003). Similar experiments also showed a worsening of aging effects by n-6 PUFA 
on different tissue and/or markers. These included total antioxidant capacity and 
DNA double-strand breaks which, respectively, decreased and increased in all ani-
mals as they age. In spite of all this effects of n-6 PUFA can affect to onset of some 
diseases, particularly those associated to aging, no changes in mean or maximal 
lifespan were observed (Quiles et al. 2004b).

In liver, ROS-mediated damage products (Hydroperoxides and TBARS) relative 
amounts were higher in 24 months old animals than in those aged 6 months but only 
in those receiving n-6 PUFA-rich diets, whereas rats fed virgin olive oil showed the 
lowest values at both ages. In most of case these levels correlates with activities of 
antioxidant enzymes (SOD, catalase and GPX) and concentrations of lipophilic 
antioxidant (α-tocopherol and CoQ). This suggests that this tissue as it ages triggers 
protection mechanism against oxidative stress probably as response to higher levels 
ROS or ROS-mediated damage products (Quiles et  al. 2006). Interestingly, this 
study were even more focused on mitochondria an effects of diet and aging on mito-
chondrial ultrastructure and mtDNA were also evaluated. Namely, possible effects 
on mtDNA were evaluated using a particular deletion in the region encoded for 
mtETC complex I components (Nd4 gene) since it has been suggested that is one of 
the complexes most affected by aging (Sanz et al. 2006). An age-related increase in 
mtDNA deletion frequency was observed in all animals but this was higher in rats 
fed sunflower oil. Likewise, old animals fed on n-6 PUFA rich diet displayed a 
lower crests number and higher circularity, factors that have been linked to a reduced 
functionality of mitochondria (Quiles et al. 2006). These findings, thus, revealed a 
relationship among ROS production and alterations of ultrastructure and mtDNA 
with aging at liver mitochondria in rats. But the most interesting was to see how 
these aspects (including accumulation of mtDNA deletion), which could be defining 
the appearance of aging phenotype, could be modulated through diet by choosing 
more or less unsaturated fat source and, which gives rise to the possibility modular 
aging through diet.

Based on negative consequences of n-6 PUFA intake found in above mentioned 
investigations, other studies were carried out where two experimental groups 
received similar sunflower oil-based diets, but with or without a supplementation on 
CoQ10 to reach a daily dosage of 0.7 g/kg (Ochoa et al. 2005; Quiles et al. 2004a, 
2005). In heart, long-term supplementation with CoQ10, led to lower hydroperoxide 
levels, higher content of lipophilic antioxidants (α-tocopherol and coenzyme Q), 
and a higher catalase activity. Also, a slightly lower decrease in certain key activities 
for mitochondrial function when animals with age of 6, 12, or 24 months were com-
pared (Ochoa et  al. 2005). At the systemic level, an age-associated increase in 
nDNA strand breaks in peripheral blood lymphocytes was observed. This increase 
associated to age was lower in animals supplemented on CoQ10. If it is assumed that 
main cause of such breaks is oxidative damage, this suggests that CoQ10 by means 
of both, reactive species scavenging and antioxidant recycling, protects DNA 
against oxidative damage. It could be possible that also can occur in mitochondria 
at least under certain conditions. However, this finding could also result indirectly 
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from of CoQ10 effects on mitochondria or other organelles that would reduce ROS 
levels and consequent attacks to nDNA (Quiles et al. 2005). In liver, similar effects 
on DNA double-strand breaks, CoQ levels at mitochondrial membrane have been 
reported. Lastly, it has also been noted that CoQ10-supplemented animals reached a 
significantly higher mean life span and a significantly higher maximum life span 
(Quiles et  al. 2004a). This emphasized the importance of oxidative stress, DNA 
damage and mitochondria in aging since CoQ has shown effect on all them (Ochoa 
et al. 2005; Quiles et al. 2005).

According to previous finding, it seems that life-long supplementation with 
CoQ10 of n-6 PUFA-rich diet resulted interesting to attenuate aging consequences, 
but it was necessary to check if CoQ10 led even to better results than virgin olive oil. 
For this reason, additional experiments similar to the previous one but including 
also a group fed on a virgin olive oil-based diet were carried out (Ochoa et al. 2011; 
Quiles et  al. 2010). Thus, three diets rich in MUFA, n-6 PUFA and CoQ10- 
supplemented n-6 PUFA were compared. Because of previous results and their 
importance in ROS generation and aging, mitochondria received a greater attention 
and mtDNA and ultrastructure were also analyzed in most of cases along with ROS 
and antioxidants levels. Again, the frequency of a specific deletion in mtDNA cor-
responding to the mETC complex I of the was used as marker of mtDNA altera-
tions, This experimental design was used to evaluate diet and aging interaction in 
two tissues, both postmitotic, brain and heart.

In heart, animals fed virgin olive oil showed a lower increase in the frequency 
of studied mtDNA deletion than those fed sunflower oil. However, the addition of 
CoQ10 to the n-6 PUFA-rich fat source (i.e. sunflower oil) reduced the difference 
between young and old animals although the lowest values were present by 
MUFA- fed animals (Quiles et al. 2010). Concerning mitochondrial ultrastructure, 
dietary fat used had similar effects (Quiles et al. 2010) to those achieved in liver 
tissue in absence of CoQ10 (Quiles et al. 2006), whereas CoQ10 treatment led to 
lower mitochondrial perimeter in this case (Quiles et al. 2010). CoQ10 also pre-
vented the decrease in cytochrome C oxidase activity and mtETC complex I levels 
suggested for old subjects fed on the same dietary fat. Therefore, it would prevent 
mitochondrial respiratory chain dysfunction in some degree. Aged animals receiv-
ing CoQ also showed lower hydroperoxide levels than those fed on sunflower or 
virgin olive oil not supplemented (Quiles et  al. 2010). This would suggest that 
CoQ contributes to decrease oxidative stress, although there are several possible 
mechanisms. In any case, the effect found for dietary CoQ10 on either ultrastruc-
ture, mtDNA and some respiratory chain components would alleviate ROS pro-
duction associated to age.

Very similar aspects were also evaluated in brain, but in this case in the experi-
ment performed an additional group consisted in a virgin olive oil-based diet sup-
plemented with CoQ10. In this, mtDNA deletion was higher in old groups fed on n-6 
PUFA-rich diets but no age-associated differences were found for animals fed vir-
gin olive oil. However, in this case CoQ10 did not show effects on mtDNA deletions 
in animals fed on sunflower oil-based diet at 24 months. In relation to oxidative 
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stress markers, CoQ led to lower values of lipid peroxidation (hydroperoxides) at 
24 months, although the lowest values were found in the two virgin olive oil fed 
groups (Ochoa et al. 2011).

These organs (heart and brain) are clear affected by aging and their alteration 
lead to overall health impairment reducing longevity. Moreover mitochondrial alter-
ations and oxidative stress are key aspects in aging of these organs as it has been 
previously reported. Altogether, these findings revealed that CoQ, at least under 
certain conditions, can modulate aging effects on different tissues affecting to 
mtDNA, but also to mitochondrial ultrastructure and ROS production. Again, a key 
finding is the possibility of modulating mtDNA mutations associated to age 
through diet.

In more recent experiments, a third diet type has started to be compared with 
diets similar to previously described studies. So, as a new fat source namely fish 
oil, very rich in n-3 PUFA, was used. In addition, fat content was the half of the 
amount used in previous experiments (4% versus 8% w/w) according to more 
recent actualization of AIN93 criteria (Reeves 1997) until that moment. As previ-
ously, some additional experiments were carried out to test the effects of these diets 
under CoQ10 supplementation. Moreover, new organ/tissues, not previously stud-
ied, like pancreas and periodontum, were included in the experiments. In pancreas, 
it has been reported that dietary fat affected to endocrine and exocrine pancreas in 
a different way (Roche et al. 2014). In 24-months-old animals, n-6 PUFA rich-diets 
consumption was associated with a greater number of β-cells that correlated with 
an increase in insulin content and hyperleptinemia (Roche et al. 2014), signs that 
have been described in obesity, glucose intolerance, insulin resistance, disruption 
of adipoinsular axis or prediabetes (Sattar et al. 2008). Concerning exocrine com-
partment, old rats fed with n-3 PUFA-rich diets (Roche et al. 2014) led to histologi-
cal features resembling those observed in pancreatic fibrosis in elderly people 
(Klöppel et  al. 2004). In other experiments, it was observed that dietary CoQ10 
improved endocrine pancreas structure and in particular β-cell mass from rat fed on 
n-6 PUFA resembling positive effects of virgin olive oil (González-Alonso et al. 
2015b). Because of importance of mitochondria in this organ, CoQ10 effect could 
be mediated by effect on mtDNA previously reported (Quiles et al. 2010). However, 
oxidative damage or alterations of mtDNA sequence have not been directly ana-
lyzed yet. In a study focused on the pancreas of 24 months old rat fed on these diet, 
the profile of serum fatty acids confirmed, that animals an adaptation to the diet at 
6 months of age since they resembled lipid profile of the diets. The percentages of 
circulating MUFA were significantly higher in rats fed virgin olive oil; the highest 
levels of n-6 PUFA were achieved in rats fed with sunflower oil, and the highest 
levels of n-3 PUFA were found in those rats fed fish oil (Roche et  al. 2014; 
González-Alonso et al. 2015b). Moreover, the effect of this fat sources and CoQ on 
some bone metabolism markers at serum and age-associated alveolar bone have 
been also studied (Bullon et al. 2013). Alveolar bone loss is a major clinical out-
come of periodontitis (Page and Kornman 1997), a disease with high prevalence in 
elderly people that in the last years has been associated with systemic diseases 
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such as atherosclerosis and metabolic syndrome that would have oxidative stress as 
potential link (Bullon et al. 2009, 2011). Again, feeding on an n-6 PUFA-rich diet 
led to worse consequences in health since it was associated to the highest age-
associated alveolar bone loss (Bullon et al. 2013). Although mtDNA alterations 
were not directly measured, expression of genes LC3 and ATG5 that are implicated 
in autophagy and the biogenesis markers Tfam and PGC-1α suggests that both 
processes increase with aging in gingival tissue, but not in animals fed n-6 
PUFA. The combination of both processes would reduce or prevent accumulation 
of damage in mtDNA and its possible consequences. Moreover, this effect also was 
associated affecting to some mtETC components and antioxidant enzymes expres-
sion. In other study, CoQ supplementation eliminated differences in age-associated 
alveolar bone loss among dietary groups (Varela-Lopez et al. 2015). CoQ10 had no 
effect on age-associated changes in expression of genes of autophagy markers in 
rats fed on n-6 PUFA-rich diet (Varela-Lopez et  al. 2015). An increase in the 
expression of the biogenesis marker Tfam was observed in n-6 PUFA fed animals 
indicating that there was an increase in mitochondria and probably in mtDNA cop-
ies. Although this mechanism possibly does not reduce the accumulation of altered 
or mutated mtDNA molecules, it seems that it can compensate, at least in part, the 
associated loss of function, as it has been reported for skeletal muscle. Sumarizing 
all these experiments on aged rats, it could be concluded that the basis for a puta-
tive beneficial effect of CoQ on mtDNA disturbances could be the enhancement of 
the cellular antioxidant protection systems in cell membranes where CoQ prevent-
ing lipid peroxidation and consequently reduced oxidative stress and mtDNA dam-
age by ROS.

Finally, in healthy humans, comparisons between CoQ10 supplementation to diet 
have been also established following a cross-over design, although only for a short 
period of time (4 weeks). In this regard, elderly subjects following a Mediterranean 
diet (rich in MUFA) supplemented and not with CoQ10 or a Western diet rich in SFA 
were studied (Yubero-Serrano et  al. 2010, 2012; Gutierrez-Mariscal et  al. 2011, 
2014; González-Guardia et  al. 2015). Some postprandial oxidative stress marker 
levels were reduced by CoQ10 addition to the MUFA-rich diet (Yubero-Serrano 
et al. 2010, 2012). Interestingly, dietary CoQ also improved DNA repair systems 
(Gutierrez-Mariscal et al. 2011; Yubero-Serrano et al. 2012). These results suggest 
that CoQ may also protect mtDNA against the accumulation of mutations by this 
mechanism in addition to the prevention of ROS-mediated damage discussed for the 
rat models.
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