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Chapter 1
Carbon Materials From Various Sources 
for Composite Materials

Zhipeng Wang, Karen Wong Min Jin, and Gan Jet Hong Melvin

1.1  Introduction

Carbon material can be considered as a versatile material which is widely utilized in 
research development and industrial/commercial applications. Carbon materials can 
be in various forms; carbon nanotube (CNT), graphene, carbon black, activated 
carbon, graphite whisker, fullerene, and many more. Most of the carbon materials 
mentioned, possess significant mechanical, electrical, thermal, and chemical prop-
erties, which allow them to be utilized in diverse fields such as composite materials, 
energy storage/conversion, electronic, optical, sensor, and so on.

For decades the studies of macrocomposites such as reinforced polymers have 
been conducted intensively, where the length scale of polymer fillers is in microm-
eters. The reinforcement length scale is in micrometers, and the interface of fillers 
is close to the bulk polymer matrix (Koo 2006). Conversely, composites that are 
reinforced with nanometer scale fillers are considered as nanocomposites (Koo 
2006; Young and Lovell 2011). Nanocomposites are composite materials in which 
the matrix material is reinforced by one or more separate nanomaterials in order to 
improve performance properties (Hu et al. 2010a). The nanocomposites have ultra 
large interfacial area per volume, and the distances between the polymer and filler 
components are extremely short. As a result, molecular interaction between the 
polymer and the nanoparticles (NPs) will give polymer nanocomposites outstanding 
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material properties that conventional polymers do not possess (Koo 2006). 
Commonly, the matrix materials used for composites are polymers such as polyure-
thane, epoxy resin, synthetic/natural rubber, polyvinyl alcohol, polyvinyl chloride, 
paraffin wax, and so on.

Satisfactory range of mechanical, optical, electrical, and surface properties can 
be obtained from polymers alone (Ober and Müllen 2012). Over the last century, 
polymers have dynamically transformed technology more than any other materials. 
Their combination of light weight, low cost, molecular specificity, corrosion resis-
tance, and the properties associated with their large molecular size have made them 
attractive replacements for metals and ceramics in their role as structural and func-
tional materials (Ober and Müllen 2012). In recent years, the discovery of the elec-
trical, electronic, and optical properties of polymers over the last decade has opened 
up a vast variety of new applications in enhancing and demanding technologies.

Nevertheless, there are often circumstances where even more specific or better 
performance is demanded from the polymers. Since the development of polymers, 
composite have been used to enhance properties or improve them. The formation of 
the composite involves incorporating filler, commonly an inorganic filler, to modify 
polymer performance. In recent years, very small scale fillers, some having dimen-
sions of just a few nanometers, have been modulated to fabricate nanocomposites.

The development of composites has been driven by the need for materials with 
specific combinations of properties beyond those obtainable from a single material 
(Young and Lovell 2011). The incorporation of inorganic nanoparticles as the fillers 
into polymer systems has resulted in polymer nanocomposites showing multifunc-
tional, high performance polymer characteristics further than those traditional filled 
polymeric materials possess (Koo 2006; Hu et al. 2010a; Schaefer and Justice 2007; 
Thostenson et al. 2005). Through control or alteration of the fillers at the nanoscale 
level, we will be able to maximize property enhancement of selected polymer sys-
tems to meet or exceed the requirements of current military, aerospace, commercial 
applications, and so on (Koo 2006). The technical approach involves the incorpora-
tion of nanoparticles into selected polymer systems whereby nanoparticles may be 
surface-treated to provide good dispersion and enhanced inclusion into poly-
mer matrix.

1.2  Carbon-Based Composite Materials

1.2.1  Carbon Nanotube-Based Composite Materials

Huge numbers of research and development of CNTs, from history, synthesis, 
remarkable performances, and fabrication of CNT-based nanocomposites, are avail-
able. The enhancement and great attention to CNTs can be highlighted when Kroto 
et al. (1985) discovered fullerene (C60, buckyball); Oberlin et al. (1976) synthesized 
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among the first CNTs; multi- (Iijima 1991) and single-walled (Iijima and Ichihashi 
1993) CNTs were observed; which keep on developing up to today.

In general, CNTs can be categorized into single-walled CNT (SWCNT) and 
multi-walled CNT (MWCNT). A SWCNT can be considered as a rolled-up sheet of 
a graphene, which is a single layer of an allotrope of carbon called graphite, and the 
edges of the sheet are joined together to form a seamless tube (Young and Lovell 
2011; Hierold et al. 2008). Few tubes of different diameters can be fitted into each 
other, which normally classified as MWCNT. Arc discharge, laser ablation, and 
chemical vapor deposition (CVD) are three major methods to produce CNTs. Each 
of these methods had its advantages and disadvantages and shortly explained below.

Arc discharge and laser ablation method depends on the evaporation of a graph-
ite target to create gas phase carbon fragments that recombine to form CNTs. During 
the process, the temperature reached at 2000–3000 °C range, which allows the car-
bon atoms to rearrange into the tube structure. Normally, in order to promote the 
yield of CNTs, several different metals in concentrations about 1% are incorporated 
into the target materials that is evaporated (Hierold et al. 2008). In the case where 
large quantity of CNTs is necessary for composite materials, these methods would 
make the cost of CNTs unreasonable (Thostenson et al. 2001). Moreover, purifica-
tion steps are also essential before the utilization of them, due to a large amount of 
non-tubular graphitic and amorphous carbon is also yielded during the process 
(Hierold et al. 2008; Thostenson et al. 2001).

One of the most broadly utilized methods to produce CNTs is CVD. Commonly, 
the CVD process includes catalyst-assisted decomposition of hydrocarbons, such as 
ethylene or acetylene, in a tube reactor within 400–1100 °C temperature range and 
the growth of CNTs over the catalyst upon cooling the system (Hierold et al. 2008; 
Hu et  al. 2010b; Popov 2004). The growth temperature depends on the type of 
CNTs to be grown and the catalyst composition (Hierold et al. 2008). The advan-
tages of this method are the ability to fabricate aligned arrays of CNTs with con-
trolled diameter and length, and under the right condition only nanotubes can be 
yielded and no undesired graphitic material (Hierold et  al. 2008; Thostenson 
et al. 2001).

CNTs also can be synthesized from various sources. For example, waste plastic 
such as polyethylene, polypropylene, and polyethylene terephthalate can be utilized 
as carbonaceous feed of CNT production (Bazargan A and McKay 2012; Mishra 
et al. 2012). Moreover, CNTs also can be obtained from coconut shell derived char-
coal by using plasma enhanced CVD (Araga and Sharma 2017), and bamboo char-
coal by CVD in the presence of ethanol vapor (Zhu et al. 2012). Many renewable 
carbon-based resources, especially biomasses, have high potential in CNTs produc-
tion. Few examples are such as solid camphor, camphor oil, palm oil, chicken fat 
oil, honey, butter, and many more (Kumar et al. 2016; Titirici et al. 2015). The uti-
lization of waste materials, renewable carbon resources, and low cost abundant 
materials will lead to the environmental friendly synthesis methods and the advance-
ment of sustainable technologies.

Usually, CNTs are incorporated into polymer matrix to fabricate composite 
materials for various applications. In other cases, CNTs are combined with other 
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materials to synthesize hybrid nanocomposites. Several CNT-based materials are 
depicted in Fig. 1.1. Ajayan et al. (1994) conducted one of the first fabrications of 
polymer nanocomposites using CNTs as fillers. Since then, the development of 
CNT-based composite materials is growing rapidly, for instance in electromagnetic 
(EM) wave absorber, electroactive actuator, energy storage devices, advanced mate-
rials, and many more applications.

CNTs are favorable candidate to be considered for EM wave absorber composite 
materials due to their the high electrical conductivity which enables strong polariza-
tion to occur, Ohmic losses, dissipation of electrostatic charges, or multiple scatter-
ing caused by the large specific area, which lead to enhanced complex permittivity 
(Melvin et  al. 2019a). For example, Nwigboji et  al. (2015) fabricated MWCNT- 
epoxy composites and evaluated their EM wave absorption performance. Significant 
EM wave absorption can be obtained for 8–10 wt.% samples within the frequency 
range of 1–26.5 GHz. In order to produce high performance EM wave absorber 
materials, combination of two/more materials or hybrid materials are desirable, 
where single material system unable to meet the demand. In this particular case, 
hybrid materials are referred as CNTs combined with magnetic, dielectric, or con-
ductive particles for EM wave absorber applications. Qiu and Qiu (2015) fabricated 
magnetite nanoparticle – CNT – hollow carbon fiber composites and evaluated their 

Fig. 1.1 (a) TEM image of MWCNT, (b) FE-SEM image of CNTs incorporated into polymer 
matrix, TEM images of (c) BaTiO3/CNT, (d) Ag/CNT
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EM wave absorption capability. The minimum reflection loss achieved is −50.9 dB 
at 14.03 GHz for 2.5 mm thick sample layer. CNTs are also combined with dielec-
tric ceramic such as barium titanate (BTO) nanoparticles through solvothermal 
method (Bi et al. 2011; Huang et al. 2013) and sol-gel method (Melvin et al. 2014a, 
2017a), to enhance the absorption performance. It is worth noticing that the EM 
wave absorption performance can be improved not only by utilizing hybrid materi-
als, but also by modulating the design, such as double-layer BTO/CNT composites 
(Ni et  al. 2015). The double-layer BTO/CNT composites with total thickness of 
1.3 mm, consist of BTO/CNT 30 wt.% (absorption layer) and BTO 30 wt.% (match-
ing layer) exhibited minimum reflection loss of −63.7 dB (> 99.9999% absorption) 
at 13.7 GHz. Furthermore, CNTs are also integrated with conductive particles such 
as silver (Ag) nanoparticles, for single (Melvin et al. 2014b) or double-layer Ag/
CNT (Melvin et al. 2015) EM wave absorber composite materials. The double-layer 
composites constructed from CNT 30 wt.% and Ag/CNT 30 wt.% with total thick-
ness of 3.3 mm exhibited minimum reflection of −52.9 dB (> 99.999% absorption) 
at 6.3 GHz.

CNTs also can be incorporated into polymer matrix such as polyurethane (PU) 
to fabricate electroactive nanocomposite actuator. An electric field stimulated 
polymer- based materials are referred to as electroactive actuators (shape memory 
polymers) and have the advantages, such as light weight, flexible, tolerance against 
fracture, easy to fabricate, and they can convert electrical energy to mechanical 
energy and thus impart a force and produce large strain (Ali and Hirai 2011; Melvin 
et al. 2016). Moreover, through the inclusion of CNTs, mechanical and electrical 
properties can be improved significantly, which further make them suitable to be 
developed for actuator materials, sensors, artificial muscles, smart devices, and 
micro-switches (Sahoo et al. 2007; Melvin et al. 2014c, d, 2016). For instance, PU/
CNT electroactive nanocomposite actuator film bents toward the cathode when an 
electric field was applied, and it reverted to its original position when the electric 
field was removed. Stable and similar bending displacement also observed upon 
voltage cycling (Melvin et  al. 2014d). Furthermore, CNT/water-borne epoxy 
showed triple-shape memory effect when thermally actuated, where normally com-
mon epoxy or CNT/epoxy nanocomposites only possess dual-shape memory effect 
(Dong et al. 2015).

Not limited to those mentioned above, CNT-based composite materials are also 
widely used as the electrode materials in supercapacitor applications, due to their 
remarkable physiochemical properties such as high conductivity, high surface area, 
and electrochemical activity (Wang and Melvin 2019). For instance, CNTs con-
structed nitrogen-doped porous carbon monoliths for supercapacitor application 
(Wang et al. 2019c). Furthermore, CNTs are also incorporated into matrix material 
to fabricate functionally graded materials (FGM) and their fracture characteristics 
were evaluated (Kurd et al. 2017), protective coating (Zhang et al. 2011), CNT/rub-
ber composites (Jiang et al. 2012), and many more. The inclusion of CNTs assisted 
in enhancement of mechanical, electrical, and thermal properties.

1 Carbon Materials From Various Sources for Composite Materials
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1.2.2  Graphene-Based Composite Materials

The attention towards graphene started since the isolation of graphene from bulk 
graphite (Novoselov et  al. 2004), which then was recognized for Nobel Prize in 
Physics in 2010, accordingly. In that research, graphene sheets were obtained by 
using adhesive tape (Scotch tape) to remove flakes of graphite from a slab of highly 
ordered pyrolytic graphite into increasingly thinner pieces until individual atomic 
planes (monolayer of graphite) were gained (Randviir et al. 2014). Graphene is a 
one-atom-thick planar sheet of two-dimensional (2D) sheet sp2 bonded carbon 
atoms that are densely packed in a honeycomb crystal lattice with remarkable prop-
erties such as high aspect ratio, large surface area, excellent electrical, thermal, 
mechanical properties, and so on (Dai et  al. 2012; Pumera 2010; Randviir et  al. 
2014; Nasir et al. 2018). As the mother and components of all graphitic forms, gra-
phene is a building block for carbon materials of all other dimensionalities, for 
instance 0D buckyballs, 1D nanotubes, and 3D graphite.

The preparation of graphene can be grouped into top-down and bottom-up meth-
ods. Few points such as such as cost effectiveness, scaled-up production, high elec-
trochemical activity, conductivity, are to be considered in graphene preparation (Lv 
et al. 2016).

Top-down approach usually applies mechanical force or chemical intercalation 
to overcome the van der Waals forces between the graphene layers to achieve sepa-
ration of graphene from bulk graphite, such as micromechanical cleavage (mechani-
cal exfoliation), oxidation-exfoliation-reduction, intercalation exfoliation, solid 
exfoliation, and so on (Lv et al. 2016; Dong et al. 2017). In the case of mechanical 
exfoliation by Scotch tape, the process is less appropriate because of the low yield 
and lengthy process, even though the graphene produced possesses high quality 
(Randviir et al. 2014; Papageorgiou et al. 2015). The solvent-phase exfoliation pro-
cess utilizes solvent, which can yield good quality graphene, but in quite small 
amount (Papageorgiou et al. 2015; Potts et al. 2011). Nevertheless, the graphene 
obtained through solvent-phase exfoliation is appropriate to be utilized for solution 
blending process in composite materials fabrication. For composite materials which 
needed high quantity of graphene as the filler materials, thermal exfoliation which 
utilizes thermal shock to obtain exfoliated graphene is considerable (Papageorgiou 
et al. 2015).

Bottom-up approach commonly uses a small molecule precursor to grow into 
graphene by CVD or chemical synthesis. For graphene prepared by CVD, they 
exhibit some excellent properties, due to their large crystal domains, monolayer 
structure and less defects in the graphene sheets, which are beneficial for boosting 
carrier mobility in electronic applications, and apparently in nanocomposites 
(Papageorgiou et al. 2015; Ke and Wang 2016). Furthermore, the layers and defects 
of graphene can be controlled by adjusting growth parameters such as temperature, 
time, catalyst, and so on.

Z. Wang et al.
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Through the utilization of suitable physical or chemical method, production of 
porous graphene and doped graphene sheets can be accomplished, and high perfor-
mance/functionality graphene can be further fabricated with the introduction of 
organic/inorganic materials. Furthermore, the production of graphene with low cost, 
high yield, and high quality is also a vital point. Usually, the chemical exfoliation of 
graphite into graphene oxides (GOs), followed by controllable reduction of GOs 
(with reduction agent such as hydrazine hydrate) into graphene can be considered as 
an efficient and low-cost method (Dong et al. 2017). Model of graphene and few-
layer GO are shown in Fig. 1.2.

Similar with CNTs production, various low cost renewable carbon-based 
resources also can be utilized for graphene production. For instance, the growth of 
graphene on the surface of Cu foils under a H2/Ar flowing atmosphere by using 
food, insects, and waste was reported (Ruan et al. 2011). Other materials such as 
paper cups, glucose, hemp, rice husk, cockroach legs, cookies, and grass also have 
been utilized for graphene production (Raghavan et al. 2017). Furthermore, uniform 
monolayer graphene film was also produced by using chicken fat oil through low 
pressure CVD process (Rosmi et al. 2016), and few layer graphene was also obtained 
from dead camphor leaves (Shams et al. 2015). Moreover, waste plastics which are 
rich in polyethylene and polystyrene also can be turned into high quality single 
crystal graphene by using ambient pressure CVD process (Sharma et al. 2014).

Graphene, derivative of graphene, and graphene hybrid materials are widely uti-
lized in composite materials for numerous applications. For example, composite 
electrode with the combination of activated carbon and reduced graphene oxide 
(rGO) (Guardia et al. 2019), and rGO-Co3O4 composites (Zhang et al. 2019) exhib-
ited enhanced supercapacitor performance. Not limited to energy storage applica-
tions, due to their excellent electrical properties, they are also used for high 
performance electromagnetic shielding application by using the composites consist 
of graphene and CNTs (Zhu et al. 2019). Graphene oxide-based composites also 
showed significant shape memory effect when thermally stimulated, which further 
reveal their potential to be utilized for actuator, biomedical device, sensor, or 
switches (Yan et al. 2019; Wang et al. 2019a).

Fig. 1.2 (a) Graphene model, (b) few-layer GO on glass slide

1 Carbon Materials From Various Sources for Composite Materials
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1.3  Various Carbon Materials

1.3.1  Heat Treatment

Heat treatment is highly associated with pyrolysis, which is a process involves ther-
mal decomposition of materials at certain temperature and in inert environment. 
Specifically, carbonization process can be further defined as a process where organic 
precursors are turned into carbon residues and volatile compounds during heating 
process in inert environment (Lin et al. 2018). Low crystalline carbon materials are 
usually obtained through carbonization process. At further higher temperature 
(>1200 °C), high crystalline carbon materials can be obtained through graphitiza-
tion process (Lin et al. 2018).

Carbon materials are successfully derived from straw, corncob, and fallen leaves 
through carbonization at 800 °C for 0.5 h in nitrogen environment (Wu et al. 2016a). 
Furthermore, rice husks (RHs) are lignocellulosic materials, which is feasible to 
turn them into carbon materials (Wang et al. 2010). Generally, RHs are manipulated 
as low value energy resource, discarded, or simply burnt at the field, which will 
influence the air quality and threaten the environment. Through carbonization pro-
cess, RHs and saw dusts can be derived into carbon materials, at 500–800 °C for 
1-2 h under the presence of Argon gas (Melvin et al. 2017b; Melvin et al. 2019b). 
Additionally, the carbon materials produced from agro-based wastes are further uti-
lized as activated carbon (AC) for adsorbents, electrochemical electrode composite 
materials, and many more. ACs can be majorly produced through chemical and 
physical activation, which enhanced their porosity and specific surface area. Usually, 
chemical activation involves mixing carbon precursor with chemical agents (KOH, 
H3PO4, H2SO4, K2CO3 etc) and the activation/carbonization takes place simultane-
ously when heat treated; meanwhile physical activation involves the introduction of 
oxidizing atmosphere (CO2, steam, etc.) to carbonized materials (Wei and Yushin 
2012). Few examples of AC utilized as adsorbents are; AC from RHs for nitrate 
removal from water (Satayeva et al. 2018), AC from date pits for lead ions removal 
(Krishnamoorthy et al. 2019), AC from pistachio wood for Pb(II) removal (Sajjadi 
et al. 2019). Moreover, high performance composite materials for supercapacitor 
electrodes are manipulated from AC derived from corn straws (Lu et al. 2017), oil 
palm shells (Abioye et  al. 2017), etc. Interestingly, activated carbon fibers are 
obtained from sawdust (Huang et al. 2017), and large area activated few-layer gra-
phene are obtained from peanut shell (Purkait et  al. 2017), also for high perfor-
mance supercapacitor applications.

Alternatively, ACs are also produced through microwave heating. Microwave 
heating, not limited to activation process, has been utilized in diverse fields due to 
its short time treatment and comparatively low energy consumption (Alslaibi et al. 
2013). For example, carbonized saw dusts were activated through microwave heat-
ing by using K2CO3 (Foo and Hameed 2012). On the other hand, ACs obtained from 
microwave-assisted activation of petroleum coke by using KOH were used to fabri-
cate electric double layer composite capacitors (He et  al. 2010). Furthermore, 
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diverse types of carbon materials were also synthesized through microwave heating. 
Hollow carbon nanofibers were obtained from pine nut shell and palm kernel shell 
during microwave pyrolysis (Zhang et al. 2018; Omoriyekomwan et al. 2017). ACs 
which function as microwave receptor, were mixed with the biomasses during the 
microwave pyrolysis.

Furthermore, high crystallinity carbon materials can be obtained through heat 
treatment at high temperature. For instance, wrinkled few- and multi-layer graphene 
can be obtained from rice husks (RHs) treated at 2500 °C (Melvin et al. 2017b). 
Comparatively, they showed clean surface, clear edges, and relatively high crystal-
linity than RHs carbonized at low temperature. Composite materials consist of RHs 
treated at 2500 °C also exhibited significant electromagnetic wave absorption per-
formance, over 98% absorption with thickness of 1.6 mm (Melvin et al. 2017c). 
Interestingly, RHs treated at 1500 °C produced a heterogeneous materials - mixture 
of carbon materials, silicon carbide (SiC) whiskers and SiC particles (Melvin et al. 
2019c). Composite materials consist of RHs treated at 1500  °C showed over 
99.9997% electromagnetic wave absorption. Furthermore, nanoparticles also can be 
attached onto their surface to fabricate nanocomposites (Melvin et al. 2017d). On 
the other hand, graphite whiskers also can be obtained when fullerene waste soot 
(Wang et  al. 2015a), wood charcoal (Saito and Arima 2007), grounded graphite 
(Dong et al. 2001), and coffee grounds (Melvin et al. 2019d) are treated at various 
high temperatures. These graphite whiskers exhibited strong G’ when investigated 
using Raman spectroscopy, which might be induced by the disclination of graphi-
tized carbon layers. Vapor carbon that produced by the precursor can be assumed as 
the carbon source, when they are heat treated at high temperature. The high crystal-
linity of carbon materials obtained at high temperature might be attributed to 
realignment or restructure of vapor carbon. Few types of carbon materials obtained 
from agro-based waste materials heat treated at high temperature are shown in 
Fig. 1.3.

1.3.2  Plasma Enhanced Chemical Vapor Deposition (PECVD)

As mentioned above, CVD method was extensively employed for the synthesis of 
carbon materials including diamond, CNT, and graphene. For the sake of low- 
temperature synthesis of these carbon materials, plasma is involved in the CVD 
process, and it is regarded as plasma enhanced CVD (PECVD). In PECVD process, 
plasma which consists of electrons, ionized gas species (ions), and neutral species 
in both ground and excited states. The plasma is usually created and sustained by 
applying a high frequency voltage (e.g. radio frequency (rf), microwave) or direct 
current discharge between two electrodes to a low pressure gas. For the growth of 
carbon-based materials, plasma was initially utilized to fabricate diamond-like car-
bon (DLC) films. In 1983, Japanese researchers firstly obtained the crystalline dia-
mond particles on silicon wafers using a gaseous mixture of H2 and CH4 under 
microwave glow discharge conditions (Kamo et  al. 1983). Consequently, the 
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microwave PECVD techniques with various designs have been extensively 
employed for diamond growth, and the resulting products with or without post treat-
ment could be applied in the wide fields of electronic and optical devices, and elec-
trochemical electrodes due to their excellent physical and chemical properties 
(Schwander and Partes 2011).

With the development of carbon materials, CNTs were firstly observed by Iijima 
(1991), and quickly attracted great attention in their fundamental research and 
applications at the beginning. The synthesis approaches of CNTs focus mainly on 
arc discharge, laser ablation, and CVD. In 1998, Ren et al. (1998) fabricated the 
CNTs on glass substrate with the decomposition of NH3 and C2H2 by plasma- 
enhanced hot filament CVD. Compared to thermal CVD grown CNTs, the plasma- 
assisted CNTs not only grew at low temperatures (less than 666  °C) but also 
possessed vertical orientation to the substrate, thus, have a better performance in 
field emission emitters. The PECVD technique is most promising method, in which 
the decomposition and carbonization of the carbonaceous precursor have been done 
at low temperatures by the generation of plasma to synthesize multi- and single- 
walled CNTs (MWCNTs and SWCNTs). The CNT forest can be achieved even at 
250–300 °C over large substrate areas under plasma condition (Kleinsorge et  al. 
2004; Boskovic et  al. 2005), thus, they are more acceptable and applicable than 

Fig. 1.3 TEM images of (a) corrugated few-layer graphene from RH treated at 2500 °C (Melvin 
et  al. 2017b), (b) barium titanate nanoparticles immobilized onto the surface of RH treated at 
2500 °C (Melvin et al. 2017d), FE-SEM image of (c) graphite whisker from waste coffee grounds 
treated at 2500 °C

Z. Wang et al.
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those obtained by conventional CVD. Until now, plasma grown CNTs can be used 
for lots of applications like energy storage and conversion, sensors, membranes, and 
field emission displays (Lone et  al. 2017). For the application of field emission, 
plasma-assisted CNTs show some advantages, e.g., high electrical conductivity and 
low threshold field. However, there is a stable problem that the tallest CNT in the 
forest experiences the highest field and emits the entire current, which leads to burn 
it out (Zanin et al. 2013). Thus, some attempts have been employed to overcome it, 
e.g. combining CNTs with other materials to form composites. For example, the 
CNTs decorated with Er NPs (Shrestha et al. 2010), ZnO NPs (Ho et al. 2008), and 
nanodiamond (Guglielmotti et al. 2009) demonstrated the improved emission prop-
erties. Zanin et al. (2013) reported the vertically-aligned CNT (VACNT) and DLC 
composite (Fig. 1.4), in which they were synthesized in the system of N2-H2-CH4 
and C6H14-Ar using different PECVD techniques, respectively, like a honeycomb 
structure with significant enhancement in emission current, lifetime, stability, and 
flickering features. Due to higher conductivity and faster diffusion, the VACNTs on 
the metal substrates were more suitable as the electrodes of electrochemical devices, 

Fig. 1.4 SEM images of the VACNT films (a) without and (b) with the DLC coating, (c) Field- 
emission characteristics of the VACNT film, the DLC/VACNT film, and the wetted VACNT film. 
Inset: The corresponding Fowler-Nordheim plots from the three types of samples. (d) Field emis-
sion current-density stability test from the VACNT films with and without the DLC coating (Zanin 
et al. 2013)

1 Carbon Materials From Various Sources for Composite Materials
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e.g. supercapacitors and lithium ion batteries (LIBs), in comparison with the free- 
standing CNTs. The VACNTs composites can further improve the properties of 
LIBs and supercapacitors (Amade et al. 2011; Saghafi et al. 2014; Malik et al. 2017; 
Jiang et al. 2019).

Similar to CNTs, graphene-based materials can be also synthesized by various 
PECVD techniques since the first isolation of graphene using adhesive tape method 
(Nandamuri et al. 2010; Kim et al. 2011a; Kim et al. 2011b; Bo et al. 2013). In these 
plasma reactors, the carbonaceous gas was usually decomposed into carbon radicals 
to eventually form graphene materials on the substrate with the help of H2 and/or Ar 
(other gases) as etching reagent. Among those graphene-based materials synthe-
sized by PECVD, vertical graphene (VG), which grew perpendicularly to the sub-
strate (Wang et al. 2011a), has demonstrated some unique characteristics (Fig. 1.5), 
e.g., nonagglomerated porous internetworked morphology, an abundant of open and 
sharp edges, and controllable structures. Thus, it makes VG possess more interest-
ing properties, e.g., high electrical conductivity, high surface area, and high electro-
chemical activity, and many promising applications, e.g., field emission emitters, 
biosensors, catalysts or catalysts supports, and electrodes of electrochemical devices 
(Wang et al. 2011b, 2012a, 2012b). In addition, the VG films can be more easily 
formed on the different substrates including metals, semiconductors, and insulators 
with any shapes or sizes. It makes VG growth look like substrate-independent pro-
cess that it attributes to the requirement of no catalyst and easy formation of nucle-
ation sites under plasma conditions. Chen group utilized an atmospheric pressure 
PECVD to decompose CH4 on the surface of the CNTs to form hybrid graphene-
CNT composites, which have potential electronic and optoelectronic applications 
(Yu et al. 2011). More interestingly, the VG structures can be achieved from not 
only the carbonaceous gases but also liquid or solid precursors, including Melaleuca 
alternifolia, milk, honey, butter, sugar, cheese, solid carbon, and polymer (Seo et al. 
2013a, 2013b, Wang et al. 2014a, 2014b, Jacob et al. 2015) under various plasma 
conditions though the resulting VG films exhibited different morphology and micro-
structure, as partially shown in Fig. 1.5.

The waste plant biomass, which was usually utilized as a source for activated 
carbon, has extensively been employed to synthesize other novel carbon structures 
including CNTs, graphene, and their derivatives (Wang et  al. 2015b, 2015c), as 

Fig. 1.5 Morphological structures of the VG films from different precursors: (a) CH4 (Wang et al. 
2011a), (b) Kapton polyimide (Wang et al. 2014a), (c) solid carbon (Wang et al. 2014b). Inset: the 
corresponding cross-sectional images
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depicted in Fig. 1.6. Microwave plasma irradiation technique was utilized to treat 
RHs, which located in the home-made Ni box, and found the graphene-CNT hybrid 
structures, in which graphene sheets grew on the walls of CNTs (named as graphen-
ated CNTs, g-CNTs), on the Ni surface. The g-CNTs exhibited more excellent elec-
trochemical properties than individual CNTs and graphene in the application of 
supercapacitors. In 2015, graphene-sheet fiber (GSF) were firstly synthesized when 
the coffee ground powders replaced the RHs. Differ from the g-CNTs, GSF consists 
of only graphene sheets without the CNT structure inside. The resulting GSFs have 
relatively excellent electrical conductivity and fantastic specific capacitance.

1.3.3  Hydrothermal Treatment

An aqueous solution of organic substances such as saccharides (glucose, sucrose or 
starch) or compounds (e.g., furfural) which was heat-treated at a range of tempera-
tures of 150–350 °C for a certain time, the products including water-soluble organic 
substances and insoluble carbon-rich solids will be formed (Sevilla and Fuertes 
2009a). The process, termed as hydrothermal carbonization (HTC), has attracted 
great interest in recent years. As was known, the HTC is not a new process, and has 
been utilized to treat various saccharides to investigate the mechanism information 
of natural coalification during the first decades of last century (Sevilla and Fuertes 
2009a). Subsequently, the HTC of the cellulose was studied to obtain liquid chemi-
cals or other solid products, which have the same composition of those obtained 
from the HTC of the glucose, suggesting that the hydrolysis products for both sub-
stances are similar (Van Krevelen 1950).

Wang et al. (2001) first reported the hydrothermal treatment of sucrose to pro-
duce carbon microspheres. Subsequently, Sun and Li (2004a) obtained similar 

Fig. 1.6 Morphologies and microstructures of the g-CNTs and the GSF synthesized from RHs 
and coffee grounds, respectively, by microwave plasma irradiation technique: (a) SEM, and (b-d) 
TEM images of the g-CNTs, (e) SEM, and (f-h) TEM images of the GSF. (Wang et al. 2015b, 2015c)
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carbon spheres (CSs) by the HTC of the glucose, in which their sizes were adjust-
able through the experimental parameters and they can be loaded with metal NPs to 
form the hybrid carbon/metal materials (e.g., C/Ag, C/Cu, C/Au, C/Pd, C/Te). 
Studies have shown that the HTC-assisted CSs can be employed as sacrificial tem-
plates for fabricating hollow spherical structures of inorganic compounds (e.g., 
Ga2O3, GaN, WO3, SnO2) (Sun and Li 2004b; Li et al. 2004; Wang et al. 2007). The 
CSs synthesized from the HTC of different saccharides (glucose, sucrose or starch) 
can be used as precursors for the production of graphitic carbon nanocoils 
(Fig. 1.7(c)-(d)) with the help of Ni under nitrogen up to 900 °C for 3 h, and the 
products supported PtRu NPs for metal electrooxidation (Sevilla et  al. 2007). 
Significantly, the glucose-derived CSs (Fig. 1.7(a)-(b)) were graphitized at extremely 
high temperatures in the range of 1200-2900 °C to achieve discrete fragments of 
curved graphitic planes (Wang et al. 2017), which are similar to heat-treated glassy 
carbon. But, they were different from the tetrahydrofuran-derived pyrolytic spheres 
(Zhang et al. 2006) and the hydrocarbon-derived carbon spheres by CVD technique 
(Wang et al. 2005) at extremely high temperatures, which demonstrated concentri-
cally polyhedral graphitic shells. It implied that the microstructures of the resulting 
CSs after high temperature treatment were strongly dependent of the precursors.

Besides the saccharides (glucose, sucrose or starch), the cellulose can be con-
verted into carbon microspheres (2–5 μm) by the HTC process at the temperatures 
in the range of 220–250 °C (Sevilla and Fuertes 2009b). The results confirmed that 
the formation of CSs involved into the path of a dehydration process, similar to the 
previous observation for the hydrothermal transformation of saccharides. Biomass 
is a biological matter that incorporates all living mater on earth, and mainly consists 
of cellulose, hemicellulose, and lignin. Thus, biomass is suitable substance for the 
formation hydrochar under HTC, which strongly depend on the process parameters 
including temperature, feed type, residence time, pressure, and catalyst (Nizamuddin 
et al. 2017).

In addition, hollow CSs with controllable size and morphology have been devel-
oped by the HTC of α-cyclodextrin in the presence of Pluronic F127 as a soft tem-
plate (Yang et  al. 2013), as illustrated in Fig.  1.7(e) and (f). Uniform carbon 
nanofibers (about 50 nm in diameter and some micrometers in length) with high 
aspect ratio could be produced using the HTC of the glucose in the present of Te 
nanowires (Qian et al. 2006), as shown in Fig. 1.7(g) and (h). The pure carbon nano-
fibers can be obtained by removal of the core of the product by treatment of with a 
mix aqueous solution of HCl and H2O2 at RT for 12 h.

HTC of biomass such as glucose and cellulose typically produces CSs with the 
diameter in micrometer size, which are insulating. When adding a certain amount of 
graphene oxide (GO) to glucose, the HTC products exhibit significant change in 
their morphologies and improve the conductivity of carbon materials with high 
degree of carbonization. At low mass loading of GO, HTC treatment can lead to 
dispersed carbon platelets with tens of nanometers in thickness, while at high mass 
loading, free-standing carbon monoliths can be obtained (Krishnan et  al. 2014). 
GO, a two-dimensional single atomic sheet, is the chemical exfoliation product of 
graphite powders, and has rich oxygen-containing functional groups, e.g., epoxy 
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Fig. 1.7 SEM and TEM images of (a-b) glucose-derived carbon spheres (Wang et al. 2017), (c-d) 
saccharide-derived graphitic carbon nanocoils (Sevilla et al. 2007), (e-f) α-cyclodextrin-derived 
hollow carbon spheres (Yang et al. 2013), (g-h) glucose-derived carbon nanofibers under HTC 
conditions (Qian et al. 2006)

1 Carbon Materials From Various Sources for Composite Materials



18

and hydroxyl groups, decorating the segregated nanographitic domains on their 
basal planes so that it is easily dispersed in water and many polar solvents. Compared 
with original GO sheets, reduced GO (rGO) sheets demonstrate the more outstand-
ing physiochemical properties and promising applications. Thus, various attempts, 
e.g., chemical, thermal, solvothermal, and hydrothermal reductions (Zhou et  al. 
2009; Zhao et  al. 2012; Huang et  al. 2018), have been employed to reduce GO 
sheets into rGO sheets. Among them, hydrothermal reduction of GO is a simple, 
fast, and environmentally friendly route which involves water only without adding 
any toxic reducing agents. The graphene aerogel can be obtained from rGO using 
hydrothermal process, and demonstrated excellent elastic modulus, good electrical 
conductivity, high specific capacity, and thermal stability. The results confirmed that 
the properties of graphene aerogels strongly depend on GO concentration and 
hydrothermal reaction time (Xu et al. 2010). In order to achieve wider applications, 
graphene-containing composite materials have been extensively investigated. 
Researchers utilized one-step hydrothermal method to synthesize graphene-based 
composites, such as TiO2-rGO, Co3O4-rGO, and doped rGO (Shen et al. 2011; Liu 
et al. 2013; Zhang et al. 2017), in which exhibited the improved properties and per-
formances in supercapacitors and batteries.

During the HTC process, the GO as a template and catalyst can promote the 
polymerization of the fragments decomposed from egg proteins to form egg protein- 
derived carbon/rGO composite for supercapacitor electrode with high specific 
capacitance, good rate capability and excellent cycling stability (Ma et al. 2017). 
Hydrothermal approach was also employed to cut the thermally rGO sheets into 
surface-functionalized graphene quantum dots (GQDs) with 9.6 nm average diam-
eter (Pan et al. 2010). The resulting GQDs exhibited bright blue photoluminescence 
due to their large edge effect.

1.3.4  Electro-Deposition Using Molten Salts

Over the course of years, the rapid growth of industrial sectors, the increase in 
human population, and open agricultural burning give rise to carbon dioxide gas 
emission into the atmosphere. The atmospheric concentration of carbon dioxide gas 
had reached an alarming level. According to National Oceanic and Atmospheric 
Administration (NOAA) and the American Meteorological Society report released 
in August 2018 entitled State of the Climate in 2017, the global atmospheric carbon 
dioxide concentration for the year 2017 was at 405.0 ± 0.1 ppm. The effort in reduc-
ing the level of carbon dioxide gas in the atmosphere had been one of the great 
concerns in this modern world. The awareness of the climate change gives way to 
researchers in utilizing carbon dioxide as the source of conversion to value-added 
product, therefore carbon capture and utilization (CCU) technologies (Alper and 
Yuksel Orhan 2017; Stuardi et al. 2019; Styring et al. 2011; Yan and Zhang 2019) 
was extensively studied either in industry or academically (Yuan et al. 2016). The 
conversion of carbon dioxide gas introduce the end products which contains the 
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carbon from the gas as a result of physical and chemical processes (Song 2002). 
Electrochemical conversion of carbon dioxide gas in molten salt electrolyte as one 
of the utilization method had progress rapidly due to the molten salt exceptional 
properties, for instance low vapor pressure, high electronic conductivity and low 
cost (Ge et al. 2016).

Electrolytic generated carbon in electrolysis of molten salts was accidentally 
discovered in the early 1900’s where Haber and Bruner (1904) attained significant 
carbon deposition from barium chloride and barium carbonate mixture at 
580 °C. While in the 1940’s, Andrieux and Weiss (1944) unintentionally found car-
bon by utilizing carbonates and halides mixtures to synthesis inorganic carbides at 
750  °C via electrochemical route. In 1960’s, inspired by the previous accidental 
findings; Ingram et al. (1966) studied the occurrence of carbon deposition in elec-
trolysis of molten carbonates with argon and carbon dioxide atmosphere, its charac-
teristics and the properties of the deposited carbon, however limited interest was 
shown in this study throughout the years. Recently, researchers show interest in the 
electro-deposition of solid carbon using molten salts electrolyte with continuous 
supply of carbon dioxide gas. It is due to the discoveries of wide variation of inter-
esting carbon microstructure and the utilization of carbon dioxide gas as carbonate 
source in the molten salt electrolysis process (Deng et  al. 2018; Dimitrov et  al. 
2002; Gakim et al. 2015; Ge et al. 2016; Ijije et al. 2014a; Ingram et al. 1966; Karen 
et  al. 2018; Le Van et  al. 2009; Novoselova et  al. 2008; Tang et  al. 2013; Yin 
et al. 2013).

Wide variety of carbonaceous materials were discovered from electrolysis of 
molten salt electrolytes. The carbonaceous materials sizes ranging from micro- to 
nano- and was found to exhibit diverse microstructures depending on the electroly-
sis process parameters, i.e. electrolytes, substrates, temperatures, current densities 
and deposition potentials (Hughes et al. 2015; Kawamura and Ito 2000). There were 
various reasons and factors on the parameter selection, however some of the studies 
targeted selective electrolyte and electrode type due to the desired end product i.e. 
in the synthesis of carbon nanotubes or nanomaterials by using molten chloride salt. 
Molten chloride salt (LiCl, NaCl, KCl, and more) was utilized alongside graphite 
electrodes with carbon nanotubes as main product (Chen et  al. 1998; Hsu et  al. 
1996). While Kamali et al. (2011) study the use of different type of graphite elec-
trode to the carbon nanomaterial obtained by using LiCl electrolyte, further study 
by Kamali and Fray (2013) look into the corrosion of the electrode in mixture of 
LiCl salt with graphite powder. However, the selection of electrolyte should be con-
sidered carefully which could produce carbon materials as the end product. The 
molten salt electrolyte should be able to dissolve the O2−ion which the ion is a prod-
uct of carbon deposition and able to absorb CO2 gas and convert it to CO3

2−  ions 
(Ijije et al. 2014b). Another important factor for successful carbon deposition is the 
presence of Li+ ions in the electrolyte (Ingram et al. 1966; Delimarskii et al. 1968; 
Kawamura and Ito 2000; Massot et al. 2002; Ijije et al. 2014b). Based on the study 
on the role and effect of the alkali metal ions in electrolysis process, notable Na+, K+ 
and Li+ ions, Ijije and Chen (2016) found that electrolyte containing Li+ ion (Li2CO3) 
produced carbon material while electrolyte containing Na+ (Na2CO3) and K+ 
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(K2CO3) produced alkali metal as the main cathodic reaction. Over the years, the 
selection of electrodes in the electrolysis process was not carefully explain by 
researchers, nonetheless, the use of silver, nickel, gold, tungsten, platinum or copper 
as electrodes have been reported (Ingram et al. 1966; Lantelme et al. 1999; Le Van 
et al. 2009; Tang et al. 2013; Yin et al. 2013; Ge et al. 2016; Deng et al. 2018). 
Likewise, the temperature, current densities and deposition potentials selection for 
the process were not vastly studied and limited information was available. Though, 
the process temperature often chosen while considering the melting temperature of 
the selected electrolyte.

Interesting microstructures was observed in the carbon materials obtained either 
in single-salt electrolyte of mixture of two or more salt. The electrolysis of single 
Li2CO3 yields micro-sized irregular shaped flakes under process temperature of 
740 °C and voltage supply of 4 V by using stainless steel electrodes (Ijije and Chen 
2016). Whereas nano-sized carbon nanofibers was produced under 730  °C with 
coiled galvanized steel wire cathode and Ni anode (Ren et al. 2015), and carbon 
nanotubes was observed in Wu et al. (2016b) study under the temperature of 770 °C 
and Ni as cathode with addition of ZnO additive (1 wt%). Figure 1.8 shows the find-
ings of the studies respectively.

Diverse microstructures were observed in mixture of two or more salt electro-
lyte. Dimitrov (2009) observed nano-balls and flower-like sheets in electrolysis of 
binary LiCl-Li2CO3 using graphite electrodes at 700 °C, whereas Ge et al. (2015) 
found quasi-spherical microstructures with inert platinum anode and tungsten cath-
ode at 700 °C of electrolysis temperature. On the other hand, Deng et al. (2018) 
obtained wide variety of carbon microstructures with the addition of salt additive 
(CaCO3) into the binary LiCl-KCl. Crater-like, nanofibers, coral, quasi-spherical, 
spherical, carbon sheets, shell-like structure, flakes and aggregated nanoparticles 
was found in the study. While Kawamura and Ito (2000) and Song et  al. (2012) 
observed aggregated quasi-spherical structure in electrolysis of ternary LiCl-KCl- 
K2CO3, at 450 °C with rectangular sheet of aluminum as cathode and glassy carbon 

Fig. 1.8 The findings of carbon microstructures deposited in single Li2CO3 electrolyte, (a) TEM 
image of carbon deposited under 740 °C with 4 V in CO2 atmosphere (Ijije and Chen 2016), (b) 
SEM image of nano-sized carbon nanofibers produced under 730 °C with coiled galvanized steel 
wire cathode and Ni anode (Ren et al. 2015), and (c) SEM image of carbon nanotubes obtained 
under the temperature of 770 °C and Ni as cathode with addition of 1 wt% ZnO additive (Wu 
et al. 2016b)
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rod anode, and at 500 °C with graphite electrodes, respectively. Ternary mixture of 
Li2CO3-Na2CO3-K2CO3 was widely use as electrolyte since Ingram et  al. (1966) 
successfully obtained carbon deposition. Groult et al. (2006) found nano-sized car-
bon particles in electrolysis of the ternary electrolyte at 450  °C with gold-sheet 
anode and Ni-sheet cathode, whereas Le Van et  al. (2009) discover nano-sized 
quasi-spherical carbon with graphite anode and Ni cathode. While Yin et al. (2013) 
observed aggregated nano-sized carbon particles and flakes with SnO2 rod anode 
and Ni-sheet cathode at 500 °C, Tang et al. (2013) obtained micro- and nano-sized 
flakes, nanowires, particles and thin sheets by using SnO2 rod anode and U-shape Ni 
sheet cathode at process temperature of 450, 550, and 650 °C. Gakim et al. (2015) 
found micro-sized aggregated grape-like structure in electrolysis of CaCO3-CaCl2- 
KCl-LiCl quaternary mixture at temperature range between 575 and 585 °C. Study 
by Karen et al. (2018) in electrolysis of newly formulated ternary CaCO3-Li2CO3- 
LiCl salt mixture at 550–650 °C and 4 – 6 V cell voltage using stainless steel as 
electrodes with CO2 atmosphere showed five dominant microstructures: grape-like, 
tubes, thread-like, spheres, and flakes under the SEM analysis, as shown in 
Fig. 1.9(a) - (e) respectively.

Electrolysis involves the splitting of a particular substance when electrical energy 
was introduced into the system, and it is frequently applied to decompose a com-
pound to its elements. The electrolyte in the electrolysis process could be the pure 
compound, for example H2O or a molten salt, or a mixture of two or more molten 
salts (Silberberg 2006). The utilization of carbon dioxide gas as carbon source in the 
electrolysis of molten salt electrolyte produces carbonaceous materials.

Electro-deposition of solid carbon via electrolysis of molten salt in CO2 atmo-
sphere can be carried out in an electrolytic cell. The cell requires an electrolyte 

Fig. 1.9 The example of SEM images for (a) grape-like, (b) tubes, (c) thread-like, (d) sphere, and 
(e) flakes, as dominant microstructures found in the deposited solid carbon prepared at 550 and 
650  °C with voltage supply of 4 – 6 V using ternary CaCO3-Li2CO3-LiCl salt mixture (Karen 
et al., 2018)
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which contains ions (cations and anions) and able to conduct electric when it is in 
liquid form. Electric current can be supplied to the electrolyte by the positive and 
negative electrodes which immersed in the electrolyte. CO2 gas can be flowed into 
the system to replenish the carbonate ions (CO3

2−  as carbon source) in the electro-
lyte for continuous carbon deposition on the cathode surface. Fig. 1.10 displayed 
the example of experimental setup for electrolysis process and the deposition of 
solid carbon the cathode surface based on Karen et al. (2018) study.

The deposition of carbon occurred on the surface of cathode electrode as a result 
of the conversion reaction happened at the interface of cathode and the electrolyte 
(Ingram et al. 1966), as soon as the voltage was supplied to the system. The carbon 
source, carbonate ions (CO3

2− ), will be reduced to carbon in the electrolysis process 
in two steps of reaction as stated below (Ingram et  al. 1966; Kawamura and Ito 
2000; Kaplan et al. 2002; Massot et al. 2002; Le Van et al. 2009; Ijije et al. 2014c; 
Gakim et al. 2015).

Step 1: CO3
2− + 4e− → C (s) + 3O2− (1)

CO3
2− + 2e− → CO2

2− + O2− then CO2
2− + 2e− → C 

(s) + 2O2−
(2 & 3)

Step 2: O2− + CO2 (g) ⇌ CO3
2− (4)

The CO3
2−  ions first reduced to carbon either by the single-step process based on 

reaction (1) (Ingram et al. 1966; Kaplan et al. 2002; Massot et al. 2002), or the two- 
step process based on reaction (2) and (3) (Delimarskii et al. 1968; Ito et al. 1992). 
Later, the molten salt electrolyte absorbs the CO2 gas through reaction (4), and 
regenerates CO3

2−  ions in the electrolyte. The reactions cycle enables the continu-
ous production of carbon on the cathode surface.

The application of carbon produced by electrolysis of molten salt electrolyte is 
not vastly studied. However, it has the potential to be utilized in various spectrum as 
the carbon obtained from the process exhibits a diverse microstructures and particle 

Fig. 1.10 The schematic 
diagram (not according to 
scale) of (a) experimental 
set-up for the electro- 
deposition of solid carbon 
via electrolysis process and 
(b) solid deposition on 
cathode surface for 
electrolysis in CO2 gas 
environment (Karen 
et al. 2018)
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sizes ranging from micro to nano sizes. For instance, composite materials for energy 
storage electrode (Ijije et al. 2014c). Moreover, the carbon could be further treated 
for attachment of desirable functional groups, i.e. carboxyl and hydroxyl groups, on 
the carbon surface which improved its dispersion ability, and later can be utilized as 
carbon filler in fabrication of composites or attachment of other particles onto their 
surface in fabrication of hybrid composites. Carbon fillers, i.e. carbon nanotubes 
(Anagappan et al. 2013), carbon nanofibers and carbon black, can be used as com-
posites filler, and when mixing the carbon fillers with polymers, it could improve 
the overall mechanical, electrical and thermal stability.

1.4  Conclusions

In this chapter, carbon materials from various sources for composite materials are 
mainly described. Obviously, by using different material sources and methods, a 
great variety of carbon materials can be produced, such as carbon nanotube, gra-
phene, carbon sphere, carbon flake, graphite whisker, and many more. Furthermore, 
the carbon materials also can be integrated with other materials, in order to achieve 
higher performance or specifically targeted properties. The carbon materials can be 
utilized for composite materials in vast fields and applications, such as energy stor-
age devices, actuator, shape memory material, electromagnetic wave absorber, 
functionally graded material, and many more. Carbon-based composite materials is 
a prominent candidate to tackle our current or future demands to satisfy various 
necessities.
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