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Abstract. Much progress has been made recently on text classifica-
tion with methods based on neural networks. In particular, models using
attention mechanism such as BERT have shown to have the capabil-
ity of capturing the contextual information within a sentence or docu-
ment. However, their ability of capturing the global information about
the vocabulary of a language is more limited. This latter is the strength of
Graph Convolutional Networks (GCN). In this paper, we propose VGCN-
BERT model which combines the capability of BERT with a Vocabulary
Graph Convolutional Network (VGCN). Local information and global
information interact through different layers of BERT, allowing them
to influence mutually and to build together a final representation for
classification. In our experiments on several text classification datasets,
our approach outperforms BERT and GCN alone, and achieve higher
effectiveness than that reported in previous studies.

Keywords: Text classification · BERT · Graph Convolutional
Networks

1 Introduction

Text classification is a fundamental problem in natural language processing
(NLP) and has been extensively studied in many real applications. In recent
years, we witnessed the emergence of text classification models based on neural
networks such as convolutional neural networks (CNN) [15], recurrent neural
networks (RNN) [13], and various models based on attention [27]. BERT [8]
is one of the self-attention models that uses multi-task pre-training technique
based on large corpora. It often achieves excellent performance, compared to
CNN/RNN models and traditional models, in many tasks [8] such as Named-
entity Recognition (NER), text classification and reading comprehension.

The deep learning models excel by embedding both semantic and syntactic
information in a learned representation. However, most of them are known to
be limited in encoding long-range dependency information of the text [2]. The
utilization of self-attention helps alleviate this problem, but the problem still
remains. The problem stems from the fact that the representation is generated
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from a sentence or a document only, without taking into account explicitly the
knowledge about the language (vocabulary). For example, in the movie review
below:

“Although it’s a bit smug and repetitive, this documentary engages your brain
in a way few current films do.”

both negative and positive opinions appear in the sentence. Yet the positive atti-
tude “a way few current films do” expresses a very strong opinion of the innova-
tive nature of the movie in an implicit way. Without connecting this expression
more explicitly to the meaning of “innovation” in the context of movie review
comments, the classifier may underweight this strong opinion and the sentence
may be wrongly classified to be negative. On this example, self-attention that
connects the expression to other tokens in the sentence may not help.

In recent studies, approaches have also been developed to take into account
the global information between words and concepts. The most representa-
tive work is Graph Convolutional Networks (GCN) [16] and its variant Text
GCN [32], in which words in a language are connected in a graph. By perform-
ing convolution operations on neighbor nodes in the graph, the representation of
a word will incorporate those of the neighbors, allowing to integrate the global
context of a domain-specific language to some extent. For example, the mean-
ing of “new” can be related to that of “innovation” and “surprised” through
the connections between them. However, GCNs that only take into account the
global vocabulary information may fail to capture local information (such as
word order), which is very important in understanding the meaning of a sen-
tence. This is shown in the following examples, where the position of “work” in
the sentence will change the meaning depending on its context:

– “skip work to see it at the first opportunity.”
– “skip to see it, work at the first opportunity.”

In this paper, inspired by GCN [16,32] and self-attention mechanism in
BERT, we propose to combine the strengths of both mechanisms in the same
model. We first construct a graph convolutional network on the vocabulary graph
based on the word co-occurrence information, which aims at encoding the global
information of the language, then feed the graph embedding and word embed-
ding together to a self-attention encoder in BERT. The word embedding and
graph embedding then interact with each other through the self-attention mech-
anism while learning the classifier. This way, the classifier can not only make use
of both local information and global information, but also allow them to guide
each other via the attention mechanism so that the final representation built up
for classification will integrate gradually both local and global information. We
also expect that the connections between words in the initial vocabulary graph
can be spread to more complex expressions in the sentence through the layers
of self-attention.

We call the proposed model VGCN-BERT. Our source code is available
at https://github.com/Louis-udm/VGCN-BERT.

https://github.com/Louis-udm/VGCN-BERT
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We carry out experiments on 5 datasets of different text classification tasks
(sentiment analysis, grammaticality detection, and hate speech detection). On
all these datasets, our approach is shown to outperform BERT and GCN alone.

The contribution of this work is twofold:

– Combining global and local information: There has not been much work trying
to combine local information captured by BERT and global information of a
language. We demonstrate that their combination is beneficial.

– Interaction between local and global information through attention mecha-
nism: We propose a tight integration of local information and global infor-
mation, allowing them to interact through different layers of networks.

2 Related Work

2.1 Self-attention and BERT

As aforementioned, attention mechanisms [28,31] based on various deep neural
networks, in particular the self-attention mechanism proposed by Vaswan et
al. [27], have greatly improved the performance in text classification tasks. The
representation of a word acquired through self-attention can incorporate the
relationship between the word and all other words in a sentence by fusing the
representations of the latter.

BERT (Bidirectional Encoder Representations from Transformers) [8], which
leverages a multi-layer multi-head self-attention (called transformer) together
with a positional word embedding, is one of the most successful deep neural
network model for text classification in the past years. The attention mechanism
in each layer of the encoder enhances the new representation of the input data
with contextual information by paying multi-head attentions to different parts
of the text. A pre-trained BERT model based on 800M words from BooksCorpus
and 2,500M words from English Wikipedia is made available. It has also been
widely used in many NLP tasks, and has proven effective. However, as most
of other attention-based deep neural networks, BERT mainly focuses on local
consecutive word sequences, which provides local context information. That is, a
word is placed in its context, and this generates a contextualized representation.
However, it may be difficult for BERT to account for the global information of
a language.

2.2 Graph Convolutional Networks (GCN)

Global relations between words in a language can be represented as a graph,
in which words are nodes and edges are relations. Graph Neural Network
(GNN) [2,5] based on such a graph is good at capturing the general knowl-
edge about the words in a language. A number of variants of GNN have been
proposed and applied to text classification tasks [7,12,16,21,33], of which Kipf
et al. [16] creatively presented Graph Convolutional networks (GCN) based on
spectral graph theory. GCN first builds a symmetric adjacency matrix based on
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a given relationship graph (such as a paper citation relationship), and then the
representation of each node is fused according to the neighbors and correspond-
ing relationships in the graph during the convolution operation.

Text GCN is a special case of GCN for text classification proposed by Yao
et al. [32] recently. Different from general GCN, it is based on a heterogeneous
graph where both words and documents are nodes. The relationships among
nodes, however, are measured in three different ways, which are co-occurrence
relations among words, tf-idf measure between documents and words, and self
similarity among documents. In terms of convolution, Text GCN uses the same
algorithm as GCN. GCN and its variants are good at convolving the global
information in the graph into a sentence, but they do not take into account local
information such as the order between words. When word order and other local
information are important, GCN may be insufficient. Therefore, it is natural to
combine GCN with a model capturing local information such as BERT.

2.3 Existing Combinations of GCN and BERT

Some recent studies have combined GCN with BERT. Shang et al. [23] applied
a combination to the medication recommendation task, which predict a medi-
cal code given the electronic health records (EHR), i.e., a sequence of historical
medical codes, of a patient. They first embed the medical codes from a medi-
cal ontology using Graph Attention Networks (GAT), then feed the embedding
sequence of the medical code in an EHR into BERT for code prediction. Never-
theless, the order in the code sequence is discarded in the transformer since it
is not applicable in their scenario, making it incapable of capturing all the local
information as in our text classification tasks.

Jong et al. [14] proposed another combination to the citation recommendation
task using paper citation graphs. This model simply concatenates the output of
GCN and the output of BERT for downstream predictive tasks. We believe that
interactions between the local and global information are important and can
benefit the downstream prediction tasks. In fact, through layers of interactions,
one could allow the information captured in GCN be applied to the input text,
and the representation of the input text be spread over GCN. This will produce
the effect we illustrated in the earlier example of movie review (a way few current
films do vs. innovation). This is the approach we propose in this paper.

One may question about the necessity to explicitly use graph embedding to
cope with global dependency information, as some studies [18,25] have shown
that word embedding trained on a corpus, such as Word2Vec [19], GloVe [22],
FastText [10], can capture some global connections between words in a language.
We believe that a vocabulary graph can still provide additional information given
the fact that the connections between words observed in word embeddings are
limited within a small text window (usually 5 words). Long-range connections are
missing. In addition, by building a vocabulary graph on an application-specific
document collection, one can capture application-dependent dependencies, in
addition to the general dependencies in the pre-trained models.
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3 Proposed Method

The global language information can take multiple forms. In this paper, we
consider lexical relations in a language, i.e. a vocabulary graph. Any vocabu-
lary graph can be used to complement BERT (e.g. Wordnet). In this paper,
we consider a graph constructed using word co-occurrences with documents.
Local information from a text is captured by BERT. The interaction between
them is achieved by first selecting the relevant part of the global vocabulary
graph according to the input sentence and transforming it into an embedding
representation. We use multiple layers of attention mechanism on concatenated
representation of input text and the graph. These processes are illustrated in
Fig. 1. We will provide more details in the following subsections.
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Fig. 1. Illustration of VGCN-BERT. The embeddings of input sentence (Phase 1) are
combined with the vocabulary graph (Phase 2) to produce a graph embedding, which
is concatenated to the input sentence (Phase 3). Note that from the vocabulary graph,
only the part relevant to the input is extracted and embedded. In Phase 4, several layers
of self-attention are applied to the concatenated representation, allowing interactions
between word embeddings and graph embedding. The final embedding at the last layer
is fed in a fully connected layer (Phase 5) for classification.

3.1 Vocabulary Graph

Our vocabulary graph is constructed using normalized point-wise mutual infor-
mation (NPMI) [3], as shown in Eq. 1:

NPMI(i, j) = − 1
log p(i, j)

log
p(i, j)
p(i)p(j)

(1)

where i and j are words, p(i, j) = #W (i,j)
#W , p(i) = #W (i)

#W , #W (∗) is the number
of sliding windows containing a word or a pair of words, and #W is the total
number of sliding windows. To obtain long-range dependency, we set the window
to the whole sentence. The range of value of NPMI is [-1,1]. A positive NPMI
value implies a high semantic correlation between words, while a negative NPMI
value indicates little or no semantic correlation. In our approach, we create an
edge between two words if their NPMI is larger than a threshold. Our experi-
ments show that the performance is better when the threshold is between 0.0
and 0.3.
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3.2 Vocabulary GCN

A general GCN [16] is a multi-layer (usually 2 layers) neural network that con-
volves directly on a graph and induces embedding vectors of nodes based on
properties of their neighborhoods. Formally, consider a graph G = (P,E)1, where
P (with |P | = n) and E are sets of nodes and edges, respectively. For a single
convolutional layer of GCN, the new representation is calculated as follows:

H = ÃXW, (2)

where X ∈ R
n×m is the input matrix with n nodes and m dimensions of the

feature, W ∈ R
m×h is a weight matrix, Ã = D− 1

2AD− 1
2 is the normalized

symmetric adjacency matrix, where Dii =
∑

j Aij . The normalization operation
for A is to avoid numerical instabilities and exploding/vanishing gradients when
used in a deep neural network model [16].

The graph nodes of GCN are “task entities” such as documents that need to
be classified. It requires all entities, including those from training set, validation
set, and test set, to be presented in the graph, so that no node representation
is missing in downstream tasks. This limits the application of GCN in many
predictive tasks, where the test data is unseen during the training process.

In our case, we aim to convolve the related words instead of the documents
in the corpus for classification. Therefore, the graph of our proposed GCN is
constructed on the vocabulary instead of the documents. Thus, for a single doc-
ument, assuming the document is a row vector x consisting of words in the
vocabulary, a layer of convolution is defined in Eq. 3:

h = (ÃxT )TW = xÃW, (3)

where ÃT = Ã represent the vocabulary graph. xÃ extracts the part of vocabu-
lary graph relevant to the input sentence x. W holds the weights of the hidden
state vector for the single document, with dimension |V | × h. Then for m docu-
ments in a mini-batch, the one-layer graph convolution in Eq. 3 becomes:

H = XÃW, (4)

and the corresponding 2-layer Vocabulary GCN with ReLU function is as follows:

VGCN = ReLU(XmvÃvvWvh)Whc, (5)

where m is the mini-batch size, v is the vocabulary size, h is the hidden layer
size, c the class size or sentence embedding size. Every row of Xmv is a vec-
tor containing document features, which can be a bag-of-words vector, or word
embedding of BERT. The above equation aims to produce a layer of convolution
of the graph, which captures the part of the graph relevant to the input (through
XmvÃvv), then performs 2 layers of convolution, combining words from input
sentence with their related words in vocabulary graph.
1 In order to distinguish from notations (v, V, |V |) of vocabulary, this paper uses nota-

tions (p, P, |P |) to represent the point(vertex) of the graph.
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3.3 Integrating VGCN into BERT

When BERT is applied to text classification, a typical solution contains three
parts. The first part is the word embedding module with the position information
of the word; the second part is the transformer module using multi-layer multi-
head self-attention stacking; and the third part is the fully connected layer using
the output sentence embedding for classification.

Self-attention operates with a query Q against a key K and value V pair. The
attention score is calculated as follows:

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)

V, (6)

where the denominator is a scaling factor used to control the scale of the atten-
tion score, dk is the dimension of the query and key vectors. Using these atten-
tion scores, every word can get a weighted vector representation encoding the
contextual information.

Instead of using only word embeddings of the input sentence in BERT, we
feed both the vocabulary graph embedding obtained by Eq. 5 and the sequence
of word embeddings to BERT transformer. This way, not only the order of the
words in the sentence is retained, but also the background information obtained
by VGCN is utilized. The overall VGCN-BERT model is schematically illus-
trated in Fig. 1. Through the attention score calculated by Eq. 6, local embed-
ding and global embedding are fully integrated after layer-by-layer interaction
in 12-layer and 12-heads self-attention encoder. The corresponding VGCN can
then be formulated as:

Gembedding = ReLU(XmevÃvvWvh)Whg, (7)

where Whg, which was originally used for classification, becomes the output of
size g of graph embedding (hyperparameter) whose dimension is the same as
every word embedding; m is the size of the mini-batch; e is the dimension of
word embedding, and v is the vocabulary size.

4 Experiment

We evaluate VGCN-BERT and compare it with baseline models on 5 datasets
to verify whether our model can leverage both local and global information.

4.1 Baselines

In addition to the original BERT model, we also use several other neural network
models as baselines.

– MLP: Multilayer perceptron with 2 hidden layers (512 and 100 nodes), and
bag-of-words model with TF weighting.
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– Bi-LSTM [11]: The BERT’s pre-trained word embeddings are used as input
to the Bi-LSTM model.

– Text GCN: The original Text GCN model uses the same input feature as
MLP model, and we use the same training parameters as in [32].

– VGCN: This model only uses VGCN, corresponding to Eq. 7, but the output
dimension becomes the class size. BERT’s pre-trained word embeddings are
used as input. The output of VGCN is relayed to a fully connected layer with
Softmax function to produce the classification score. This model only uses
the global information from vocabulary graph.

– BERT: We use the small version (Bert-base-uncased) pre-trained BERT [8].
– Vanilla-VGCN-BERT: Vanilla combination of BERT and VGCN is simi-

lar to [14], which produces two separate representations through BERT and
GCN, and then concatenates them. ReLU and a fully connected layer are
applied to the combined representation for classification. The main difference
of this model with ours is that it does not allow interactions between the
input text and the graph.

4.2 Datasets

We ran our experiments on the following five datasets:

– SST-2. The Stanford Sentiment Treebank is a binary single-sentence classifi-
cation task consisting of sentences extracted from movie reviews with human
annotations of their sentiment [24]. We use the public version2 which contains
6,920 examples in training set, 872 in validation set and 1,821 in test set, for a
total of 4,963 positive reviews and 4,650 negative reviews. The average length
of reviews is 19.3 words.

– MR is also a movie review dataset for binary sentiment classification, in
which each review only contains one sentence [20]3. We used the public version
in [26]4. It contains 5,331 positive and 5,331 negative reviews. The average
length is 21.0 words.

– CoLA. The Corpus of Linguistic Acceptability is a binary single-sentence
classification task. CoLA is manually annotated for acceptability (grammati-
cality) [29]. We use the public version which contains 8,551 training data and
1,043 ation data5, for a total of 6,744 positive and 2,850 negative cases. The
average length is 7.7 words. Since we do not have the label for the test set, we
split 5% of the training set as validation set and use the original validation
set as the test set.

– ArangoHate [1] is a resampled dataset merging the datasets from [30] and
[6]. It contains 2,920 hateful documents and 4,086 normal documents. The
average length is 13.3 words. Since the dataset is not pre-divided into training,
validation and test sets, we randomly split it into three sets at the ratio of
85:5:10.

2 https://github.com/kodenii/BERT-SST2.
3 http://www.cs.cornell.edu/people/pabo/movie-review-data/.
4 https://github.com/mnqu/PTE/tree/master/data/mr.
5 https://github.com/nyu-mll/GLUE-baselines.

https://github.com/kodenii/BERT-SST2
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://github.com/mnqu/PTE/tree/master/data/mr
https://github.com/nyu-mll/GLUE-baselines
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– FountaHate is a large four-label dataset for hate speech and offensive lan-
guage detection [9]. It contains 99,9966 tweets with cross-validated labels and
is classified into 4 labels: normal (53,851), spam (14,030), hateful (27,150)
and abusive (4,965). The average length is 15.7 words. Since the dataset is
not pre-divided into training, validation and test sets, we split it into three
sets at the ratio of 85:5:10 after shuffle.

4.3 Preprocessing and Setting

We removed URL strings and @-mentions to retain the text content, then the
text was lower-cased and tokenized using NLTK’s TweetTokenizer7. We use
BERTTokenizer function to split text, so that the vocabulary for GCN is always
a subset of pre-trained BERT’s vocabulary. When computing NPMI on a dataset,
the whole sentence is used as the text window to build the vocabulary graph.
The threshold of NPMI is set as 0.2 for all datasets to filter out non-meaningful
relationships between words.

In the VGCN-BERT model, the graph embedding output size is set as 16,
and the hidden dimension of graph embedding as 128. We use the Bert-base-
uncased version of pre-trained BERT, and set the max sequence length as 200.
The model is then trained in 9 epochs with a dropout rate of 0.2. The following
are other parameter settings for different datasets.

– SST-2: mini-batch = 16, learning rate = 1e−5, L2 loss weight decay = 0.01.
– CoLA and MR: mini-batch = 16, learn. rate = 8e−6, L2 loss decay = 0.01.
– ArangoHate: mini-batch = 16, learn. rate = 1e−5, and L2 loss decay = 1e−3.
– FountaHate: mini-batch = 12, learn. rate = 4e−6, and L2 loss decay = 2e−4.

These parameters are set based on our preliminary tests. We also use the
default fine-tuning learning rate and L2 loss weight decay as in [8]. The baseline
methods are set with the same parameters as in the original papers.

4.4 Loss Function

We use the cross-entropy as the loss function for all models, except for Founta-
Hate dataset where we use the mean squared error as the loss function in order
to leverage the annotators’ voting information.

We use Adam as training optimizer for all models. For cases where the label
distributions are uneven (CoLA (2.4:1), ArangoHate (1.4:1) and FountaHate
(10.9:5.5:2.8:1)), comput class weight function8 from scikit-learn [4] is used as
the weighted loss function. The weight of each the classes (Wc) is calculated by

Wclasses =
#dataset

#classes · #every class
, (8)

6 The final version provided by the author is more than the one described in the paper.
7 http://www.nltk.org/api/nltk.tokenize.html.
8 https://scikit-learn.org/stable/modules/generated/sklearn.utils.class weight.

compute class weight.html.

http://www.nltk.org/api/nltk.tokenize.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
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where #dataset is the total size of dataset and #classes is the number of classes
and #every class is the count of every class.

4.5 Evaluation Metrics

We adopt the two most widely used metrics to evaluate the performance of the
classifiers - the weighted average F1-score, and the macro F1-score [17].

Weighted avg F1 =
C∑

i=1

F1ci ∗ Wci , Macro F1 =
1
C

C∑

i=1

F1ci (9)

4.6 Experimental Result

The main results on weighted average F1-Score and macro F1-Score on test
sets are presented in Table 1. The main observation is that VGCN-BERT out-
performs all the baseline models (except against Vanilla-VGCN-BERT on MR
dataset). In particular, it outperforms both VGCN and BERT alone, confirming
the advantage to combine them.

Among the models that only use local information, we see that BERT out-
performs MLP, Bi-LSTM. Between the models that exploit a vocabulary graph
- VGCN and Text-GCN, the performance is similar.

Vanilla-VGCN-BERT and VGCN-BERT are two models that combine local
and global information. In general, these models perform better than the other
baseline models. This result confirms the benefit of combining local information
and global information.

Comparing VGCN-BERT with Vanilla-VGCN-BERT, we see that the former
generally performs better. The difference is due to the interactions between local
and global information. The superior performance of VGCN-BERT clearly shows
the benefit of allowing interactions between the two types of information.

4.7 Visualization

To better understand the behaviors of BERT, and its combination with VGCN,
we visualize the attention distribution of the [CLS] token in the self-attention
module of BERT, VGCN-BERT and Vanilla-VGCN-BERT models. As the
vocabulary graph is embedded into vectors of 16 dimensions, it is not obvious
to show what meaning corresponds to each dimension. To facilitate our under-
standing, we show the top two words from the sub-graph related to the input
sentence, which are strongly connected to each of the 16 dimensions of graph
embedding. More specifically, w each word embedding of a document is input to
Eq. 7, we only need to broadcast the result of XA and element-multiply it by
W to obtain the representation value of the words involved. The equation for
obtain the involved words’ id is as follow:

Z = (xA)T � W, (10)
IDs involved = arg sort(Z[:, g]), (11)
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Table 1. Weighted average F1-Score and (Macro F1-score) on the test sets. We run 5
times under the same preprocessing and random seed. Macro F1-score and Weighted
F1-Score are the same on SST-2 and MR. Bold indicates the highest score and underline
indicates the second highest score.

Model SST-2 MR CoLA ArangoHate FountaHate

MLP 80.78 75.55 61.39 (53.20) 84.71 (84.42) 79.22 (65.33)

Text-GCN 80.45 75.67 56.18 (52.30) 84.77 (84.43) 78.74 (64.54)

Bi-LSTM 81.32 76.39 62.88 (55.25) 84.92 (84.58) 79.04 (65.13)

VGCN 81.64 76.42 63.59 (54.82) 85.97 (85.69) 79.00 (64.04)

BERT 91.49 86.24 81.22 (77.02) 87.99 (87.75) 80.59 (66.61)

Vanilla-VGCN-BERT 91.38 86.49 80.70 (76.30) 88.01 (87.79) 81.11 (67.86)

VGCN-BERT 91.93 86.35 83.68 (80.46) 88.43 (88.22) 81.26 (68.45)

Fig. 2. Visualization of the attention that the token [CLS] (used as sentence embed-
ding) pays to other tokens. The first part corresponds to word embeddings of the
sentence. The second part is the graph embedding. [word1, word2] indicates the approx-
imate meaning of a dimension in graph embedding.

where x is a document in row vector, g ∈ [1, G], G = 16 is the size of graph
embedding. For example, the first dimension of graph embedding shown in Fig. 2
corresponds roughly to the meaning of “[boundary, innovations]”.

In Fig. 2, we show the attention paid to each word (embedding) and each
dimension of graph embedding (second part). As BERT does not use graph
embedding, the attention paid to graph embedding is 0. In VGCN-BERT, we
see that graph embedding draws an important part of attention.

For the movie review “Although it’s a bit smug and repetitive, this docu-
mentary engages your brain in a way few current films do.”, the first half of
the sentence is explicitly negative, while the remaining part expresses a positive
attitude in an implicit way, which makes the sentence difficult to judge. For this



380 Z. Lu et al.

example, BERT pays a very high attention to “do”, and a quite high atten-
tion to “this”. These words do not bear much meaning in sentiments. The final
classification results by BERT is 0 (negative) while the true label is 1 (positive).

Vanilla-VGCN-BERT concatenates graph embedding with BERT without
interaction between them. We can see that still no attention is paid to graph
embedding, showing that such a simplistic combination cannot effectively lever-
age vocabulary information.

Finally, for VGCN-BERT, we see that a considerable part of attention is paid
to graph embedding. The graph embedding is produced by integrating gradually
the local information in the sentence with the global information in the graph.
At the end, several dimensions of the graph embedding imply the meaning of
“innovation”, to which quite high attentions are paid. This results in classifying
the sentence to the correct class (positive).

The meaning of “innovation” is not produced immediately, but after a certain
number of layers in BERT. In fact, through the layers of BERT, local informa-
tion in the input sentence is combined to generate a higher level representation.
In this example, at a certain layer, the expression “a way few current films do”
is grouped and represented as an embedding similar to the meaning of “innova-
tion”. From then, the meaning related to “innovation” in the graph embedding
is capture through self-attention, and reinforced later on through interactions
between the local and global information.

5 Conclusion and Future Work

In this study, we propose a new VGCN-BERT model to integrate a vocabu-
lary graph embedding module with BERT. The goal is to complement the local
information captured by BERT with the global information on the vocabulary,
and allow both types of information to interact through the layers of attention
mechanism. Our experiments on classification on 5 datasets show that the graph
embedding does bring useful global information to BERT and this improves the
performance. In comparison with BERT and VGCN alone, our model can clearly
lead to better results, showing that VGCN-BERT can indeed take advantage of
both mechanisms.

As future work, we will consider using other types of vocabulary graph such
as Wordnet, in addition to a graph created by co-occurrences. We believe that
Wordnet contains useful connections between words that NPMI cannot cover. It
is thus possible to combine several lexical resources into the vocabulary graph.
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