
Aggelos Kiayias
Markulf Kohlweiss
Petros Wallden
Vassilis Zikas (Eds.)

LN
CS

 1
21

11

23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography
Edinburgh, UK, May 4–7, 2020
Proceedings, Part II

Public-Key Cryptography –
PKC 2020

Lecture Notes in Computer Science 12111

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Aggelos Kiayias • Markulf Kohlweiss •

Petros Wallden • Vassilis Zikas (Eds.)

Public-Key Cryptography –

PKC 2020
23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography
Edinburgh, UK, May 4–7, 2020
Proceedings, Part II

123

Editors
Aggelos Kiayias
University of Edinburgh
Edinburgh, UK

Markulf Kohlweiss
University of Edinburgh
Edinburgh, UK

Petros Wallden
University of Edinburgh
Edinburgh, UK

Vassilis Zikas
University of Edinburgh
Edinburgh, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45387-9 ISBN 978-3-030-45388-6 (eBook)
https://doi.org/10.1007/978-3-030-45388-6

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-45388-6

Preface

The 23rd IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2020) was held during May 4–7, 2020, in Edinburgh, Scotland,
UK. This conference series is organized annually by the International Association of
Cryptologic Research (IACR). It is the main annual conference with an explicit focus
on public-key cryptography sponsored by IACR. The proceedings are comprised of
two volumes and include the 44 papers that were selected by the Program Committee.

A total of 180 submissions were received for consideration for this year’s program.
Three submissions were table rejected due to significant deviations from the instruc-
tions of the call for papers. Submissions were assigned to at least three reviewers, while
submissions by Program Committee members received at least four reviews.

The review period was divided in three stages, the first one reserved for individual
reviewing that lasted five weeks. It was followed by the second stage, where the
authors were given the opportunity to respond to the reviews. Finally in the third stage,
which lasted about 5 weeks, the Program Committee members engaged in discussion
taking into account the rebuttal comments submitted by the authors. In addition to the
rebuttal, in a number of occasions, the authors of the papers were engaged with
additional questions and clarifications. Seven of the papers were conditionally accepted
and received a final additional round of reviewing. The reviewing and paper selection
process was a difficult task and I am deeply grateful to the members of the Program
Committee for their hard and thorough work. Additionally, my deep gratitude is
extended to the 252 external reviewers who assisted the Program Committee. The
submissions included two papers with which the program chair had a soft conflict of
interest (they included in their author list researchers based at the University of
Edinburgh). For these two papers, the chair abstained from the management of the
discussion and delegated this task to a Program Committee member. I am grateful to
Helger Lipmaa for his help in managing these two papers. I would like to also thank
Shai Halevi for his web submission and review software which we used for managing
the whole process very successfully.

The invited talk at PKC 2020, entitled “How low can we go?” was delivered by
Yuval Ishai. I would like to thank Yuval for accepting the invitation and contributing to
the program this year as well as all the authors who submitted their work. I would like
to also thank my good colleagues and co-editors of these two volumes, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas who served as general co-chairs this
year. A special thanks is also due to Dimitris Karakostas who helped with the website
of the conference, Gareth Beedham who assisted in various administrative tasks, and all

This proceedings volume was prepared before the conference took place and it reflects its original
planning, irrespective of the disruption caused by the COVID-19 pandemic.

PhD students at the School of Informatics who helped with the conference organiza-
tion. Finally, I am deeply grateful to our industry sponsors, listed in the conference’s
website, who provided generous financial support.

May 2020 Aggelos Kiayias

vi Preface

Organization

The 23rd IACR International Conference on Practice and Theory in Public-Key
Cryptography (PKC 2020) was organized by the International Association for
Cryptologic Research and sponsored by the Scottish Informatics and Computer
Science Alliance.

General Chairs

Markulf Kohlweiss University of Edinburgh, UK
Petros Wallden University of Edinburgh, UK
Vassilis Zikas University of Edinburgh, UK

Program Chair

Aggelos Kiayias University of Edinburgh, UK

Program Committee

Gorjan Alagic UMD, USA
Gilad Asharov Bar-Ilan University, Israel
Nuttapong Attrapadung AIST, Japan
Joppe Bos NXP, Germany
Chris Bruszka TU Hamburg, Germany
Liqun Chen University of Surrey, UK
Kai-Min Chung Academia Sinica, Taiwan
Dana Dachman-Soled UMD, USA
Sebastian Faust TU Darmstadt, Germany
Dario Fiore IMDEA Software Institute, Spain
Marc Fischlin TU Darmstadt, Germany
Georg Fuchsbauer ENS Paris, France
Steven Galbraith Auckland University, New Zealand
Junqing Gong CNRS and ENS, France
Kyoohyung Han Coinplug, South Korea
Aggelos Kiayias University of Edinburgh, UK
Stephan Krenn AIT, Austria
Benoît Libert CNRS and ENS de Lyon, France
Helger Lipmaa Simula UiB, Norway
Ryo Nishimaki NTT Secure Platform Lab, Japan
Miyako Okhubo NICT, Japan
Emmanuela Orsini KUL, Belgium
Omkant Pandey Stonybrook University, USA

Charalampos Papamanthou UMD, USA
Christophe Petit University of Birmingham, UK
Thomas Prest PQ Shield Ltd., USA
Carla Ràfols University of Bristol, UK
Arnab Roy Universitat Pompeu Fabra, Spain
Simona Samardjiska Radboud University, The Netherlands
Yongsoo Song Microsoft Research, USA
Rainer Steinwandt Florida Atlantic University, USA
Berk Sunar Worcester Polytechnic Institute, USA
Atsushi Takayasu University of Tokyo, Japan
Serge Vaudenay EPFL, Switzerland
Daniele Venturi Sapienza Università di Roma, Italy
Frederik Vercauteren KUL, Belgium
Chaoping Xing Nanyang Technological University, Singapore
Thomas Zacharias University of Edinburgh, UK
Hong Sheng Zhou VCU, USA

External Reviewers

Aydin Abadi
Behzad Abdolmaleki
Masayuki Abe
Kamalesh Acharya
Shashank Agrawal
Younes Talibi Alaoui
Erdem Alkim
Miguel Ambrona
Myrto Arapinis
Thomas Attema
Shi Bai
Foteini Baldimtsi
Fatih Balli
Subhadeep Banik
Khashayar Barooti
Andrea Basso
Balthazar Bauer
Carsten Baum
Ward Beullens
Rishiraj Bhattacharyya
Nina Bindel
Olivier Blazy
Carl Bootland
Colin Boyd
Andrea Caforio
Sergiu Carpov

Ignacio Cascudo
Wouter Castryck
Andrea Cerulli
Rohit Chatterjee
Hao Chen
Long Chen
Rongmao Chen
Jung Hee Cheon
Ilaria Chillotti
Gwangbae Choi
Heewon Chung
Michele Ciampi
Aloni Cohen
Ran Cohen
Alexandru Cojocaru
Simone Colombo
Anamaria Costache
Craig Costello
Wei Dai
Dipayan Das
Poulami Das
Thomas Debris-Alazard
Thomas Decru
Ioannis Demertzis
Amit Deo
Yarkin Doroz

viii Organization

Yfke Dulek
F. Betül Durak
Stefan Dziembowski
Fabian Eidens
Thomas Eisenbarth
Naomi Ephraim
Andreas Erwig
Leo Fan
Xiong Fan
Antonio Faonio
Pooya Farshim
Prastudy Fauzi
Tamara Finogina
Danilo Francati
Cody Freitag
Eiichiro Fujisaki
Jun Furukawa
Ameet Gadekar
Chaya Ganesh
Wei Gao
Pierrick Gaudry
Romain Gay
Huijing Gong
Alonso Gonzalez
Alonso González
Cyprien de Saint Guilhem
Mohammad Hajiabadi
Shuai Han
Abida Haque
Patrick Harasser
Carmit Hazay
Javier Herranz
Kristina Hostakova
Dongping Hu
Loïs Huguenin-Dumittan
Shih-Han Hung
Ilia Iliashenko
Mitsugu Iwamoto
Kiera Jade
Aayush Jain
Christian Janson
David Jao
Jinhyuck Jeong
Dingding Jia
Yanxue Jia
Charanjit Jutla

Dimitris Karakostas
Nada El Kassem
Shuichi Katsumata
Marcel Keller
Thomas Kerber
Nguyen Ta Toan Khoa
Ryo Kikuchi
Allen Kim
Dongwoo Kim
Duhyeong Kim
Jiseung Kim
Miran Kim
Taechan Kim
Mehmet Kiraz
Elena Kirshanova
Fuyuki Kitagawa
Susumu Kiyoshima
Karen Klein
Dimitris Kolonelos
Ilan Komargodski
Venkata Koppula
Toomas Krips
Mukul Kulkarni
Péter Kutas
Norman Lahr
Nikolaos Lamprou
Fei Li
Jiangtao Li
Zengpeng Li
Zhe Li
Xiao Liang
Wei-Kai Lin
Yeo Sze Ling
Orfeas Thyfronitis Litos
Julian Loss
Zhenliang Lu
Vadim Lyubashevsky
Fermi Ma
Yi-Hsin Ma
Bernardo Magri
Christian Majenz
Nathan Manohar
William J. Martin
Chloe Martindale
Ramiro Martínez
Daniel Masny

Organization ix

Simon Masson
Takahiro Matsuda
Sogol Mazaheri
Simon-Philipp Merz
Peihan Miao
Takaaki Mizuki
Fabrice Mouhartem
Yi Mu
Pratyay Mukherjee
Koksal Mus
Michael Naehrig
Khoa Nguyen
Ariel Nof
Luca Notarnicola
Adam O’Neill
Erdinc Ozturk
Tapas Pal
Alain Passelègue
Alice Pellet–Mary
Ray Perlner
Thomas Peters
Zaira Pindado
Rafael del Pino
Federico Pintore
Antoine Plouviez
Yuriy Polyakov
Chen Qian
Luowen Qian
Yuan Quan
Sebastian Ramacher
Joost Renes
Thomas Ricosset
Felix Rohrbach
Mélissa Rossi
Dragos Rotaru
Sujoy Sinha Roy
Cyprien Delpech de Saint-Guilhem
Yusuke Sakai
Katerina Samari
Kai Samelin
Olivier Sanders
Benjamin Schlosser
Jacob Schuldt
Peter Schwabe
Jae Hong Seo
Ido Shahaf

Yu-Ching Shen
Kazumasa Shinagawa
Janno Siim
Javier Silva
Luisa Siniscalchi
Daniel Slamanig
Azam Soleimanian
Yongha Son
Claudio Soriente
Pierre-Jean Spaenlehauer
Florian Speelman
Akshayaram Srinivasan
Shravan Srinivasan
Martijn Stam
Igors Stephanovs
Noah Stephens-Davidowitz
Christoph Striecks
Shifeng Sun
Koutarou Suzuki
Alan Szepieniec
Katsuyuki Takashima
Rajdeep Talapatra
Qiang Tang
Titouan Tanguy
Phuc Thai
Radu Titiu
Junichi Tomida
Nikos Triandopoulos
Yiannis Tselekounis
Jorge L. Villar
Christine van Vredendaal
Sameer Wagh
Michael Walter
Yuntao Wang
Yuyu Wang
Yohei Watanabe
Gaven Watson
Florian Weber
Charlotte Weitkämper
Weiqiang Wen
Benjamin Wesolowski
Jeroen van Wier
Jan Winkelmann
Fredrik Winzer
Keita Xagawa
Chaoping Xing

x Organization

Shota Yamada
Takashi Yamakawa
Avishay Yanai
Rupeng Yang
Eylon Yogev
Kazuki Yoneyama
Chen Yuan
Alexandros Zacharakis

Michal Zajac
Bingsheng Zhang
Yupeng Zhang
Zhenfei Zhang
Yi Zhao
Haibin Zheng
Arne Tobias Ødegaard
Morten Øygarden

This proceedings volume was prepared before the conference took place and it reflects its original
planning, irrespective of the disruption caused by the COVID-19 pandemic.

Organization xi

Contents – Part II

Lattice-Based Cryptography

The Randomized Slicer for CVPP: Sharper, Faster, Smaller, Batchier 3
Léo Ducas, Thijs Laarhoven, and Wessel P. J. van Woerden

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices:
KEMs and Signatures of Smaller Sizes . 37

Jiang Zhang, Yu Yu, Shuqin Fan, Zhenfeng Zhang, and Kang Yang

MPSign: A Signature from Small-Secret Middle-Product Learning
with Errors . 66

Shi Bai, Dipayan Das, Ryo Hiromasa, Miruna Rosca, Amin Sakzad,
Damien Stehlé, Ron Steinfeld, and Zhenfei Zhang

Proofs and Arguments II

Witness Indistinguishability for Any Single-Round Argument
with Applications to Access Control . 97

Zvika Brakerski and Yael Kalai

Boosting Verifiable Computation on Encrypted Data 124
Dario Fiore, Anca Nitulescu, and David Pointcheval

Isogeny-Based Cryptography

Lossy CSI-FiSh: Efficient Signature Scheme with Tight Reduction
to Decisional CSIDH-512. 157

Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore

Threshold Schemes from Isogeny Assumptions . 187
Luca De Feo and Michael Meyer

Multiparty Protocols

Topology-Hiding Computation for Networks with Unknown Delays 215
Rio LaVigne, Chen-Da Liu-Zhang, Ueli Maurer, Tal Moran,
Marta Mularczyk, and Daniel Tschudi

Sublinear-Round Byzantine Agreement Under Corrupt Majority 246
T.-H. Hubert Chan, Rafael Pass, and Elaine Shi

Bandwidth-Efficient Threshold EC-DSA . 266
Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie,
Federico Savasta, and Ida Tucker

Secure Computation and Related Primitives

Blazing Fast OT for Three-Round UC OT Extension. 299
Ran Canetti, Pratik Sarkar, and Xiao Wang

Going Beyond Dual Execution: MPC for Functions
with Efficient Verification . 328

Carmit Hazay, Abhi Shelat,
and Muthuramakrishnan Venkitasubramaniam

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 357
Dario Catalano, Mario Di Raimondo, Dario Fiore,
and Irene Giacomelli

Post-Quantum Primitives

Generic Authenticated Key Exchange in the Quantum Random
Oracle Model . 389

Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh

Threshold Ring Signatures: New Definitions and Post-quantum Security 423
Abida Haque and Alessandra Scafuro

Tight and Optimal Reductions for Signatures Based on Average
Trapdoor Preimage Sampleable Functions and Applications
to Code-Based Signatures. 453

André Chailloux and Thomas Debris-Alazard

Cryptanalysis and Concrete Security

Faster Cofactorization with ECM Using Mixed Representations 483
Cyril Bouvier and Laurent Imbert

Improved Classical Cryptanalysis of SIKE in Practice 505
Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes,
and Fernando Virdia

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS
at the 128-Bit Security Level . 535

Aurore Guillevic

xiv Contents – Part II

Privacy-Preserving Schemes

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 567
Sven Schäge, Jörg Schwenk, and Sebastian Lauer

Linearly-Homomorphic Signatures and Scalable Mix-Nets 597
Chloé Hébant, Duong Hieu Phan, and David Pointcheval

Efficient Redactable Signature and Application to Anonymous Credentials . . . 628
Olivier Sanders

Author Index . 657

Contents – Part II xv

Contents – Part I

Functional Encryption

Fast, Compact, and Expressive Attribute-Based Encryption 3
Junichi Tomida, Yuto Kawahara, and Ryo Nishimaki

Adaptive Simulation Security for Inner Product Functional Encryption 34
Shweta Agrawal, Benoît Libert, Monosij Maitra, and Radu Titiu

Verifiable Inner Product Encryption Scheme. 65
Najmeh Soroush, Vincenzo Iovino, Alfredo Rial, Peter B. Roenne,
and Peter Y. A. Ryan

A New Paradigm for Public-Key Functional Encryption
for Degree-2 Polynomials. 95

Romain Gay

Identity-Based Encryption

Master-Key KDM-Secure IBE from Pairings . 123
Sanjam Garg, Romain Gay, and Mohammad Hajiabadi

Hierarchical Identity-Based Encryption with Tight
Multi-challenge Security . 153

Roman Langrehr and Jiaxin Pan

Obfuscation and Applications

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 187
Thomas Agrikola, Geoffroy Couteau, and Dennis Hofheinz

Witness Maps and Applications . 220
Suvradip Chakraborty, Manoj Prabhakaran, and Daniel Wichs

Encryption Schemes

Memory-Tight Reductions for Practical Key Encapsulation Mechanisms 249
Rishiraj Bhattacharyya

Toward RSA-OAEP Without Random Oracles . 279
Nairen Cao, Adam O’Neill, and Mohammad Zaheri

Public-Key Puncturable Encryption: Modular and Compact Constructions . . . 309
Shi-Feng Sun, Amin Sakzad, Ron Steinfeld, Joseph K. Liu, and Dawu Gu

Secure Channels

Flexible Authenticated and Confidential Channel Establishment (fACCE):
Analyzing the Noise Protocol Framework . 341

Benjamin Dowling, Paul Rösler, and Jörg Schwenk

Limits on the Efficiency of (Ring) LWE Based Non-interactive
Key Exchange . 374

Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki

PAKEs: New Framework, New Techniques and More Efficient
Lattice-Based Constructions in the Standard Model 396

Shaoquan Jiang, Guang Gong, Jingnan He, Khoa Nguyen,
and Huaxiong Wang

Basic Primitives with Special Properties

Constraining and Watermarking PRFs from Milder Assumptions. 431
Chris Peikert and Sina Shiehian

Bringing Order to Chaos: The Case of Collision-Resistant
Chameleon-Hashes . 462

David Derler, Kai Samelin, and Daniel Slamanig

Proofs and Arguments I

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits
and Their Application to Lattice-Based Cryptography 495

Carsten Baum and Ariel Nof

Updateable Inner Product Argument with Logarithmic
Verifier and Applications . 527

Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis

On Black-Box Extensions of Non-interactive Zero-Knowledge Arguments,
and Signatures Directly from Simulation Soundness 558

Masayuki Abe, Miguel Ambrona, and Miyako Ohkubo

On QA-NIZK in the BPK Model . 590
Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michał Zając

xviii Contents – Part I

Lattice-Based Cryptography

Improved Discrete Gaussian and Subgaussian Analysis
for Lattice Cryptography . 623

Nicholas Genise, Daniele Micciancio, Chris Peikert, and Michael Walter

Almost Tight Security in Lattices with Polynomial Moduli – PRF, IBE,
All-but-many LTF, and More . 652

Qiqi Lai, Feng-Hao Liu, and Zhedong Wang

Author Index . 683

Contents – Part I xix

Lattice-Based Cryptography

The Randomized Slicer for CVPP:
Sharper, Faster, Smaller, Batchier

Léo Ducas1, Thijs Laarhoven2, and Wessel P. J. van Woerden1(B)

1 CWI, Amsterdam, The Netherlands
wvw@cwi.nl

2 TU/e, Eindhoven, The Netherlands

Abstract. Following the recent line of work on solving the closest vector
problem with preprocessing (CVPP) using approximate Voronoi cells, we
improve upon previous results in the following ways:

– We derive sharp asymptotic bounds on the success probability of the
randomized slicer, by modelling the behaviour of the algorithm as
a random walk on the coset of the lattice of the target vector. We
thereby solve the open question left by Doulgerakis–Laarhoven–De
Weger [PQCrypto 2019] and Laarhoven [MathCrypt 2019].

– We obtain better trade-offs for CVPP and its generalisations
(strictly, in certain regimes), both with and without nearest neigh-
bour searching, as a direct result of the above sharp bounds on the
success probabilities.

– We show how to reduce the memory requirement of the slicer, and
in particular the corresponding nearest neighbour data structures,
using ideas similar to those proposed by Becker–Gama–Joux [Cryp-
tology ePrint Archive, 2015]. Using 20.185d+o(d) memory, we can solve
a single CVPP instance in 20.264d+o(d) time.

– We further improve on the per-instance time complexities in cer-
tain memory regimes, when we are given a sufficiently large batch
of CVPP problem instances for the same lattice. Using 20.208d+o(d)

memory, we can heuristically solve CVPP instances in 20.234d+o(d)

amortized time, for batches of size at least 20.058d+o(d).
Our random walk model for analysing arbitrary-step transition proba-
bilities in complex step-wise algorithms may be of independent interest,
both for deriving analytic bounds through convexity arguments, and for
computing optimal paths numerically with a shortest path algorithm.
As a side result we apply the same random walk model to graph-based
nearest neighbour searching, where we improve upon results of Laarhoven
[SOCG 2018] by deriving sharp bounds on the success probability of the
corresponding greedy search procedure.

Keywords: Lattices · Closest vector problem with preprocessing ·
Approximate Voronoi cells · Iterative slicer · Graph-based nearest
neighbours

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 3–36, 2020.
https://doi.org/10.1007/978-3-030-45388-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_1

4 L. Ducas et al.

1 Introduction

Lattice Problems. Following Shor’s breakthrough work on efficient quantum algo-
rithms for problems previously deemed sufficiently hard to base cryptography
on [26], researchers have began looking for alternatives to “classical” cryptosys-
tems such as RSA [25] and Diffie–Hellman [10]. Out of these candidates for
“post-quantum” cryptography [8], lattice-based cryptography has emerged as
a leading candidate, due to its efficiency, versatility, and the conjecture that
the underlying lattice problems may be hard to solve quantumly as well [23].
The security of most lattice-based cryptographic schemes can be traced back to
either the shortest vector problem (SVP) or variants of the closest vector prob-
lem (CVP), which ask to either return the shortest non-zero vector in a lattice, or
the closest lattice vector to a given target vector. These variants include approx-
CVP, where we need to return a somewhat close lattice vector, and bounded
distance decoding (BDD), where we are guaranteed that the target lies close to
the lattice. As parameters for cryptographic schemes are commonly based on
the estimated complexities of state-of-the-art methods for these problems, it is
important to obtain a good understanding of the true hardness of these and other
lattice problems. The current fastest approaches for solving these problems are
based on lattice sieving [1,2,6] and lattice enumeration [3,4,14,15,17], where the
former offers a better asymptotic scaling of the time complexity in terms of the
lattice dimension, at the cost of an exponentially large memory consumption.

The Closest Vector Problem with Preprocessing (CVPP). The closest vector
problem with preprocessing (CVPP) is a variant of CVP, where the solver is
allowed to perform some preprocessing on the lattice at no additional cost, before
being given the target vector. Closely related to this is batch-CVP, where many
CVP instances on the same lattice are to be solved; if an efficient global pre-
processing procedure can be performed using only the lattice as input, and that
would help reduce the costs of single CVP instances, then this preprocessing cost
can be amortized over many problem instances to obtain a faster algorithm for
batch-CVP. This problem of batch-CVP most notably appears in the context
of lattice enumeration for solving SVP or CVP, as a fast batch-CVP algorithm
would potentially imply faster SVP and CVP algorithms based on a hybrid of
enumeration and such a CVPP oracle [13,15].

Voronoi Cells and the Iterative Slicer. One method for solving CVPP is the iter-
ative slicer by Sommer–Feder–Shalvi [27]. Preprocessing consists of computing
a large list of lattice vectors, and a query is processed by “reducing” the target
vector t with this list, i.e. repeatedly translating the target by some lattice vec-
tor until the shortest representative t′ in the coset of the target vector is found.
The closest lattice vector to t is then given by t− t′, which lies at distance ‖t′‖
from t. For this method to provably succeed, the preprocessed list needs to con-
tain all O(2d) so-called Voronoi relevant vectors of the lattice, which together
define the boundaries of the Voronoi cell of the lattice. This leads to a 4d+o(d)

algorithm by bounding the number of reduction steps by 2d+o(d) [21], which was

The Randomized Slicer for CVPP 5

later improved to an expected time of 2d+o(d) by randomizing the algorithm such
that the number of expected steps is polynomially bounded [9].

Approximate Voronoi Cells and the Randomized Slicer. The large number of
Voronoi relevant vectors of a lattice, needed for the iterative slicer to be provably
successful, makes the straightforward application of this method impractical and
does not result in an improvement over the best (heuristic) CVP complexities
without preprocessing. Therefore we fall back on heuristics to analyse lattice-
based algorithms, as they often better represent the practical complexities of
the algorithms than the proven worst-case bounds. For solving CVPP more effi-
ciently than CVP, Laarhoven [18] proposed to use a smaller preprocessed list of
size 2d/2+o(d) containing all lattice vectors up to some radius, while heuristically
retaining a constant success probability of finding the closest vector with the
iterative slicer. Doulgerakis–Laarhoven–De Weger [12] formalized this method
in terms of approximate Voronoi cells, and proposed an improvement based on
rerandomizations; rather than hoping to find the shortest representative in the
coset of the target in one run of the iterative slicer, which would require a pre-
processed list of size at least 2d/2+o(d), the algorithm uses a smaller list and
runs the same reduction procedure many times starting with randomly sam-
pled members from the coset of the target vector. The success probability of
this randomized slicing procedure, which depends on the size of the list, deter-
mines how often it has to be restarted, and thus plays an important role in the
eventual time complexity of the algorithm. Doulgerakis–Laarhoven–De Weger
(DLW) only obtained a heuristic lower bound on the success probability of this
randomized slicer, and although Laarhoven [20] later improved upon this lower
bound in the low-memory regime, the question remained open what is the actual
asymptotic success probability of this randomized slicing procedure, and there-
fore what is the actual asymptotic time complexity of the current state-of-the-art
heuristic method for solving CVPP.

1.1 Contributions

Success Probability Asymptotics via Random Walks. Our main con-
tribution is solving the central open problem resulting from the approximate
Voronoi cells line of work – finding sharp asymptotics on the success probability
of the randomized slicer. To find these sharp bounds, in Sect. 3 we show how to
model the flow of the algorithm as a random walk on the coset of the lattice
corresponding to the target vector, and we heuristically characterise transition
probabilities between different states in this infinite graph when using a list of
the αd+o(d) shortest lattice vectors. The aforementioned problem of finding the
success probability of the slicer then translates to: what is the probability in
this graph of starting from a given initial state and ending at any target state
of norm at most γ? From DLW [12] we know that we almost always reach a
state of norm at most some β = f(α) ≥ γ – reaching this state occurs with
probability at least 1/poly(d). However, reaching a state β′ < β occurs only
with exponentially small probability 2−Θ(d). Now, whereas the analysis of DLW

6 L. Ducas et al.

0

t

List L:

α
t′

γ

β

Fig. 1. The iterative slicer as a random walk over the coset t+L using the list of lattice
vectors L = L ∩ B(0, α).

can be interpreted as lower-bounding the success probability by attempting to
reach the target norm in a single step after reaching radius β, we are interested
in the arbitrary-step transition probabilities from β to at most γ, so as to obtain
sharp bounds (Fig. 1).

As every path in our graph from β to γ has an exponentially small prob-
ability in d, the total success probability is dominated by that of the highest
probable path for large d; which after an appropriate log-transform boils down
to a shortest path in a graph. Therefore obtaining the success probability of
the randomized slicer is reduced to determining a shortest path in this infinite
graph. We show in Sect. 4 how we can approximately compute this shortest path
numerically, using a suitably dense discretization of the search space or using
convex optimization. In Sect. 5 we go a step further by proving an exact ana-
lytic expression of the shortest path, which results in sharp asymptotics on the
success probability of the randomized slicer for the general case of approx-CVP.

Heuristic claim 1 (Success probability of the randomized slicer). Given
a list L of the αd+o(d) shortest lattice vectors as input, the success probability of
one iteration of the randomized slicer for γ-CVPP equals:

Pα2,γ2 =
n∏

i=1

(
α2 − (α2 + xi−1 − xi)2

2xi−1

)d/2+o(d)

(1)

with n defined by Eq. (39) and xi as in Definition 7 depending only on α and γ.

Running the randomized slicer for O(P−1
α2,γ2) iterations, we expect to solve γ-

CVPP with constant probability. Together with a (naive) linear search over the

The Randomized Slicer for CVPP 7

Laa'16

DLW'19

Laa'19

CVPP complexities
without nearest neighbor search

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20

20.2

20.4

20.6

20.8

21.0

21.2

Space complexity (= List size)

Ti
m
e
co
m
pl
ex
ity

Fig. 2. Query complexities for solving CVPP without nearest neighbour techniques.
The blue curve refers to [20], the red curve to [12], the green curve to [18], and the
black curve is the result of our refined analysis. The red point indicates the point where
red and black curves merge into one. (Color figure online)

preprocessed list, this directly leads to explicit time and space complexities for
a plain version of the randomized slicer for solving CVPP, described in Fig. 2.
When using a large list of size at least 20.1437d+o(d) from the preprocessing phase
of CVPP, we derive that one step is optimal, thus obtaining the same asymptotic
complexity as DLW. When using less than 20.1437d+o(d) memory we gradually
see an increase in the optimal number of steps in the shortest path, resulting in
ever-increasing improvements in the resulting asymptotic complexities for CVPP
as compared to DLW.

Using a similar methodology the asymptotic scaling of our exact analysis
when using poly(d) memory matches the 2

1
2d log2 d+o(d log d) time complexity lower

bound of Laarhoven [20]. We do stress that to make this rigorous one should do
a more extensive analysis of the lower order terms.

In Sect. 7 we further show how to adapt the graph slightly to analyse the
success probability of the iterative slicer for the BDD-variant of CVP, where the
target lies unusually close to the lattice.

Improved Complexities with Nearest Neighbour Searching. The main
subroutine of the iterative slicer is to find lattice vectors close to a target in
a large list, also known as the nearest-neighbour search problem (NNS). By
preprocessing the list and storing more data we could find a close vector much

8 L. Ducas et al.

Laa'16

DLW'19

Laa'19

CVPP complexities
with nearest neighbor search

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

Space complexity (≥ List size)

Ti
m
e
co
m
pl
ex
ity

Fig. 3. Query complexities for solving CVPP with nearest neighbour techniques, but
without the improved memory management described in Sect. 6. Similar to Fig. 2 the
curves meet at a memory complexity of approximately 20.1436d.

faster than the naive way of trying them all. Here we obtain a trade-off between
the size of the NNS data structure and the eventual query complexity.

Heuristic claim 2 (Improved complexities for γ-CVPP). Given a list L
of the αd+o(d) shortest lattice vectors as input and a nearest neighbour parameter
u ∈ (

√
(α2 − 1)/α2,

√
α2/(α2 − 1)), we can solve CVPP in space and time S and

T, where:

S =
(

α

α − (α2 − 1)(αu2 − 2u
√

α2 − 1 + α)

)d/2+o(d)

, (2)

T =
1

Pα2,γ2
·
(

α + u
√

α2 − 1
−α3 + α2u

√
α2 − 1 + 2α

)d/2+o(d)

. (3)

Figure 3 shows the resulting exact trade-offs for exact CVPP, as well as the
previous lower bounds of [12,20].

Improved Memory Usage for the NNS Data Structure. When the num-
ber of NNS queries matches the list size there is a way to do the NNS preprocess-
ing on the fly; obtaining significantly lower query times while using negligible
extra memory [6,7]. Normally this observation is only helpful for batch-CVPP
and not for a single CVPP instance, however the randomized slicer naturally
reduces to batch-CVPP by considering all target rerandomizations as a batch

The Randomized Slicer for CVPP 9

of targets. In Sect. 6 we exploit this to obtain better CVPP complexities when
using NNS; improving significantly on the state-of-the-art as shown in Fig. 4.

Heuristic claim 3 (Improved memory usage for CVPP with NNS).
Given a list L of the αd+o(d) ≤ 20.185d shortest lattice vectors as input we can
solve a single CVPP instance with the following complexities:

S = αd+o(d), T =
1

Pα2,1
·
(

α ·
√

1 − 2 · (1 − 1/α2)
1 +

√
1 − 1/α2

)−d+o(d)

. (4)

Heuristic claim 4 (Improved memory usage for batch-CVPP). Given
a list L of the αd+o(d) shortest lattice vectors and a batch of at least B CVPP
instances, with

B = max(1, αd · Pα2,1). (5)

Then we can solve this entire batch of CVPP instances with the following amor-
tized complexities per CVPP instance:

S = αd+o(d), T =
1

Pα2,1
·
(

α ·
√

1 − 2 · (1 − 1/α2)
1 +

√
1 − 1/α2

)−d+o(d)

. (6)

In particular, one can heuristically solve a batch of 20.058d+o(d) CVP instances
in time 20.292d+o(d) and space 20.208d+o(d).

Note that this is a stronger result than DLW, which claimed it is possible to solve
2Θ(d) CVP instances in time and space 20.292d+o(d). In contrast, the best complex-
ities for a single instance of CVP are time 20.292d+o(d) and space 20.208d+o(d), thus
the algorithm proposed by DLW significantly increases the memory requirement
for the batch of CVP instances. We show that we can also solve an exponential-
sized batch of CVP instances without significantly increasing either the time or
the memory.

Application to Graph-Based Nearest Neighbour Searching. Besides
deriving sharp asymptotics for the randomized slicer, the random walk model
may well be of independent interest in the context of analysing asymptotics of
other complex step-wise algorithms, and we illustrate this by applying the same
model to solve a problem appearing in the analysis of graph-based nearest neigh-
bour searching in [19]: what is the success probability of performing a greedy
walk on the k-nearest neighbour graph, attempting to converge to the actual
nearest neighbour of a random query point? We formalize the transition prob-
abilities in this context, and show how this leads to improved complexities for
lattice sieving with graph-based nearest neighbour searching for solving SVP.

10 L. Ducas et al.

Normal NNS

Memoryless
NNS

Batch CVPP

Single CVPP

Minimum batch size

CVPP complexities
with memoryless NNS

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

Space complexity (≥ List size)

Ti
m
e
co
m
pl
ex
ity

Fig. 4. Query complexities for solving CVPP and batch-CVPP with nearest neigh-
bour techniques, and with the improved memory management outlined in Sect. 6,
making the memory-wise overhead of the nearest neighbour data structure negligible,
either for a single target (below space 20.185d) or for batch-CVPP for sufficiently large
batches (between space 20.185d and 20.5d). The black curve equals the black curve from
Fig. 3, the orange curve shows optimized complexities for CVPP using memoryless NNS
whenever possible, and the red curve shows the optimized per-instance complexities
for batch-CVPP for sufficiently large batch sizes; if the batch size exceeds the quantity
indicated by the dashed red curve, then the amortized complexity is given by the solid
red curve. (Color figure online)

1.2 Working Heuristics

While some of our intermediate results are entirely formal, the eventual conclu-
sion on the behaviour of the iterative slicer also relies on heuristics. We restrict
the use of “Theorem”, “Lemma”, and “Corollary” to the formal claims, and refer
to “Heuristic claims” for the rest.

The first heuristic which we use is the commonly used Gaussian heuristic,
which predicts the number of lattice vectors and their density within certain
regions based on the lattice volume. Its use for analysing sieve-type algorithms
is well established [6,7,18,22] and seems consistent with various experiments
conducted in the past.

The second heuristic assumption we use is also central in previous work on the
randomized iterative slicer [12,20], and consists of assuming that the input target
can be randomized, yielding essentially independent experiments each time we
randomize the input over the coset of the target vector. Practical experiments
from DLW [12] seem to support this assumption.

The Randomized Slicer for CVPP 11

The third heuristic is specific to this work, and consists of assuming that in
our graph, the density over all successful paths taken by the slicing procedure
is asymptotically equal to the density given by the most probable successful
path. We suspect that this heuristic assumption can be formalized and justified
following an analysis similar to the concentration bound result of Herold and
Kirshanova [16]. We leave this question open for future work. Note that this
heuristic is only needed to justify the sharpness of our analysis; even without it
our results give lower bounds on the success probability of the iterative slicer.

2 Preliminaries

2.1 Notation

Let us first describe some basic notation. Throughout we will write ‖·‖ for
Euclidean norms, and 〈·, ·〉 for the standard dot product. Dimensions of vec-
tor spaces are commonly denoted by d. Vectors are written in boldface notation
(e.g. x). We denote d-dimensional volumes by Vol(·).

2.2 Spherical Geometry

We write B = Bd ⊂ R
d for the unit ball, consisting of all vectors with Euclidean

norm at most 1, and we write S = Sd−1 ⊂ R
d for the unit sphere, i.e. the bound-

ary of Bd. More generally we denote by B(x, α) the ball of radius α around x.
Within the unit ball, we denote spherical caps by Cx,α = {v ∈ B : 〈x,v〉 ≥ α} for
x ∈ S and α ∈ (0, 1), and we denote spherical wedges by Wx,α,y ,β = Cx,α ∩ Cy ,β

where x,y ∈ S and α, β ∈ (0, 1). Note that due to spherical symmetry, the
volume of Cx,α is independent of the choice of x, and the volume of Wx,α,y ,β

only depends on the angle between x and y. To obtain the relevant probabil-
ity distributions for the treated algorithms we need the following asymptotic
volumes.

Lemma 1 (Volume spherical cap). Let α ∈ (0, 1) and let x ∈ S. Then the
volume of a spherical cap Cx,α relative to the unit ball B is

C(α) := (1 − α2)d/2+o(d). (7)

Lemma 2 (Volume spherical wedge). Let α, β ∈ (0, 1), let x,y ∈ S, and let
γ = 〈x,y〉. Then the volume of the spherical wedge Wx,α,y ,β relative to B is

W(α, β, γ) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
1−α2−β2−γ2+2αβγ

1−γ2

)d/2+o(d)

, if 0 < γ < min
(

α
β , β

α

)
;

(1 − α2)d/2+o(d), if β
α ≤ γ < 1;

(1 − β2)d/2+o(d), if α
β ≤ γ < 1.

(8)

12 L. Ducas et al.

2.3 Lattices

Given a set of linearly independent vectors B = {b1, . . . ,bd} ⊂ R
d, we define

the lattice generated by the basis B as L = L(B) := {∑d
i=1 λibi : λi ∈ Z}. We

denote the volume det(B) of the parallelepiped B · [0, 1]d by det(L); this volume
is independent of the choice of basis for a lattice. Given a basis of a lattice, the
shortest vector problem (SVP) asks to find a lattice vector of minimum (non-
zero) Euclidean norm in this lattice: if we let λ1(L) = minx∈L\{0} ‖x‖, then
solving SVP corresponds to finding a vector x ∈ L of norm λ1(L).

The analysis of lattice algorithms heavily depends on the Gaussian heuristic,
as it better represents the practical complexity of the algorithms than their
provable counterparts.

Heuristic 1 (The Gaussian heuristic (GH)). Let K ⊂ R
d be a measurable

body, then the number |K ∩ L| of lattice points in K is approximately equal to
Vol(K)/det(L).

Assuming this heuristic with K a Euclidean d-ball we obtain that λ1(L) has
expected value

√
d/(2πe) · det(L)1/d. For random lattices, which are the main

target in the context of cryptanalysis, the Gaussian heuristic is widely verified
and the following statement can be observed in practice.

Heuristic 2 (Lattice points in a ball, consequence of GH). Let t ∈ R
d

be random. Under the Gaussian heuristic the ball of radius α · λ1(L) contains
αd+o(d) lattice points that we treat as being uniformly distributed over the ball.

As a direct result a random target t ∈ R
d is expected to lie at distance ≈ λ1(L)

from the lattice. This gives the following alternative statements for the common
variants of the closest vector problem (CVP).

Definition 1 (Closest Vector Problem (CVP)). Given a basis B of a lattice
L and a target vector t ∈ R

d, find a vector v ∈ L such that ‖t − v‖ ≤ λ1(L).

The hardness of most lattice-based cryptographic schemes actually depends on
one of the following two easier variants.

Definition 2 (Approximate Closest Vector Problem (γ-CVP)). Given a
basis B of a lattice L, a target vector t ∈ R

d and an approximation factor γ ≥ 1,
find a vector v ∈ L such that ‖t − v‖ ≤ γ · λ1(L).

Definition 3 (Bounded Distance Decoding (δ-BDD)). Given a basis B of
a lattice L, a target vector t ∈ R

d and a distance guarantee δ ∈ (0, 1) such that
minv∈L ‖t − v‖ ≤ δ · λ1(L), find a vector v ∈ L such that ‖t − v‖ ≤ δ · λ1(L).

The preprocessing variants CVPP, γ-CVPP and δ-BDDP additionally allow to
do any kind of preprocessing given only a description of the lattice L (and not
the target t). The size of the final preprocessing advice is counted in the eventual
space complexity of the CVPP algorithm or variants thereof. In the remainder
we assume without loss of generality that λ1(L) = 1.

The Randomized Slicer for CVPP 13

Algorithm 1. The iterative slicer of [27]

Input: A target vector t ∈ R
d, a list L ⊂ L.

Output: A close vector v ∈ L to t.
1 Function IterativeSlicer(L, t):
2 t0 ← t;
3 for i ← 0, 1, 2, . . . do
4 ti+1 ← min

v∈L∪{0}
{ti − v};

5 if ti+1 = ti then return t0 − ti ;

2.4 Solving CVPP with the Randomized Slicer

The (Randomized) Iterative Slicer. The iterative slicer (Algorithm 1) is a simple
but effective algorithm that aims to solve the closest vector problem or variants
thereof. The preprocessing consists of finding and storing a list L ⊂ L of lattice
vectors. Then given a target point t ∈ R

d the iterative slicer tries to reduce the
target t by the list L to some smaller representative t′ ∈ t+L in the same coset
of the lattice. This is repeated until the reduction fails or until the algorithm
succeeds, i.e. when ‖t′‖ ≤ γ. We then obtain the lattice point t − t′ that lies at
distance at most γ to t. Observe that t′ is the shortest vector in t + L if and
only if v = t − t′ ∈ L is the closest lattice vector to t.

To provably guarantee that the closest vector is found we need the prepro-
cessed list L to contain all the Voronoi-relevant vectors; the vectors that define
the Voronoi cell of the lattice. However most lattices have O(2d) relevant vec-
tors, which is too much to be practically viable. Under the Gaussian heuristic,
Laarhoven [18] showed that 2d/2+o(d) short vectors commonly suffice for the
iterative slicer to succeed with high probability, but this number of vectors is
still too large for any practical algorithm. The randomized slicer (Algorithm2)
of Doulgerakis–Laarhoven–De Weger [12] attempts to overcome this large list
requirement by using a smaller preprocessed list together with rerandomizations
to obtain a reasonable probability of finding a close vector – the success probabil-
ity of one run of the iterative slicer might be small, but repeating the algorithm
many times using randomized inputs from t + L, the algorithm then succeeds
with high probability, without requiring a larger preprocessed list.

Because we can only use a list of limited size, one can ask the question which
lattice vectors to include in this list L. Later in the analysis it will become clear
that short vectors are more useful to reduce a random target, so it is natural to
let L consist of all short vectors up to some radius. Let α > 1 be this radius and
denote its square by a := α2. The preprocessed list then becomes

La := {x ∈ L : ‖x‖2 ≤ a}. (9)

Recall that we normalized to λ1(L) = 1 and thus under the Gaussian heuristic
this list consists of |La| = αd+o(d) lattice points, which determines (ignoring
nearest neighbour data structures) the space complexity of the algorithm and

14 L. Ducas et al.

Algorithm 2. The randomized iterative slicer of [12]

Input: A target vector t ∈ R
d, a list L ⊂ L, a target distance γ ∈ R.

Output: A close vector v ∈ L, s.t. ‖t − v‖ ≤ γ.
1 Function RandomizedSlicer(L, t, γ):
2 repeat
3 t′ ← Sample(t + L);
4 v ← IterativeSlicer(L, t′);
5 until ‖t′ − v‖ ≤ γ;
6 return v + (t − t′);

also determines the time complexity of each iteration. Until Sect. 7 we restrict
our attention to the approximate case γ-CVPP where we have γ ≥ 1, with γ = 1
corresponding to (average-case) exact CVPP. Throughout we will write c := γ2.

Success Probability. The iterative slicer is not guaranteed to succeed as the list
does not contain all relevant vectors. However, suppose that the iterative slicer
has a success probability of Pa,c given a random target. It is clear that having
a larger preprocessed list increases the success probability, but in general it is
hard to concretely analyse the success probability for a certain list. Under the
Gaussian heuristic we can actually derive bounds on Pa,c, as was first done by
DLW [12]. They obtained the following two regimes for the success probability
as d → ∞:

– For a ≥ 2c − 2
√

c2 − c we have Pa,c → 1.
– For a < 2c − 2

√
c2 − c we have Pa,c = exp(−C · d + o(d)) for C > 0.

The second case above illustrates that for a small list size the algorithm needs
to be repeated a large number of times with fresh targets to guarantee a high
success probability. This gives us the randomized slicer algorithm. To obtain
a fresh target the idea is to sample randomly a not too large element from the
coset t+L, and assume that the reduction of this new target is independent from
the initial one. Experiments from DLW suggest that this is a valid assumption
to make, and given a success probability Pa,c � 1 it is enough to repeat the
algorithm O(1/Pa,c) times to find the closest lattice point. However this success
probability in the case a < 2c − 2

√
c2 − c is not yet fully understood. Two

heuristic lower bounds [12,20] are known and are shown in Fig. 5. None of these
lower bounds fully dominates the other, which implies that neither of the bounds
is sharp. In the remainder of this work we consider this case where we have a
small success probability.

3 The Random Walk Model

To interpret the iterative slicer algorithm as a random walk we first look at
the probability that a target t is reduced by a random lattice point from the

The Randomized Slicer for CVPP 15

preprocessed list La. By the Gaussian heuristic this lattice point is distributed
uniformly over the ball of radius α. To reduce ‖t‖2 from x to y ∈ [(

√
x − α)2, x]

by some v with ‖v‖2 = a, their inner product must satisfy:

〈t,v〉 < −(a + x − y)/2.

Using the formulas for the volume of a spherical cap we then deduce the following
probability:

Pv∈α·Bd

(
‖t + v‖2 ≤ y

∣∣∣ ‖t‖2 = x
)

=
(

1 − (a + x − y)2

4ax

)d/2+o(d)

. (10)

Clearly any reduction to y < (
√

x − α)2 is unreachable by a vector in α · Bd.
The probability that the target norm is successfully reduced to some y ≤ ‖t‖2
decreases in α and thus we prefer to have short vectors in our list. As the list
La does not contain just one, but ad/2 lattice vectors we obtain the following
reduction probability for a single iteration of the iterative slicer:

P

(
∃v ∈ La : ‖t + v‖2 ≤ y

∣∣∣ ‖t‖2 = x
)2/d

→ min
{

1, a ·
(

1 − (a + x − y)2

4ax

)}

as d → ∞. Note that the reduction probability takes the form exp(−Cd + o(d))
for some constant C ≥ 0 that only depends on a, x and y. As we are interested
in the limit behaviour as d → ∞ we focus our attention to this base exp(−C),
which we call the base-probability of this reduction and denote it by pa(x, y).
Although these transition probabilities represent a reduction to any square norm
≤ y, they should asymptotically be interpreted as a reduction to ≈ y, as for any
fixed ε > 0 we have that pa(x, y − ε)d/pa(x, y)d = 2−Θ(d) → 0 as d → ∞. If
‖t‖2 = x is large enough we can almost certainly find a lattice point in La that
reduces this norm successfully. In fact a simple computation shows that this is
the case for any x > b := a2/(4a − 4) as d → ∞. So in our analysis we can
assume that our target is already reduced to square norm b, and the interesting
part is how probable the remaining reduction from b to c is.

‖t‖2

0 1 ≤ c y x b

pa(x, y)

Definition 4 (Transition probability). The transition base-probability
pa(x, y) to reduce ‖t‖2 from x ∈ [c, b] to y ∈ [c, x] is given by

pa(x, y) : Sa → (0, 1], (11)

(x, y) �→
(

a − (a + x − y)2

4x

)1/2

, (12)

16 L. Ducas et al.

with Sa = {(x, y) ∈ [c, b]2 : b ≥ x ≥ y and
√

x−√
y < α} the allowed transitions.

Using the above reduction probabilities we model the iterative slicer as a ran-
dom walk over an infinite graph where each node xi ∈ [c, b] is associated with
the squared norm ‖ti‖2 of the partly reduced target. Note that each possible
successful random walk b = x0 → x1 → · · · → xn = c has a certain success prob-
ability. Assuming the different steps are independent this success probability is
just the product of the individual reduction probabilities. For an n-step path we
could split our list La in n parts, one for each step, to obtain this independence
without changing the asymptotic size of these lists. Again this success probabil-
ity is of the form exp(−Cd + o(d)) for some constant C ≥ 0 that only depends
on x0, . . . , xn and a.

Definition 5 (Path). All decreasing n-step paths x0 → x1 → · · · → xn with
positive probability from b to c are given by the set:

Sa[b n→ c] := {(b = x0, x1, . . . , xn = c) ∈ R
n+1 : ∀i (xi−1, xi) ∈ Sa}. (13)

The transition base-probability of such a path is given by

Pa[b n→ c] : Sa[b n→ c] → (0, 1], (14)

x �→
n∏

i=1

pa(xi−1, xi). (15)

The success probability of reaching c from b is determined by the total probability
of all successful paths. Note that all these paths have some probability of the
form exp(−Cd + o(d)) and thus the probability for the path with the smallest
C ≥ 0 will dominate all other paths for large d. As a result, almost all successful
walks will go via the highest probable path, i.e. the one with the highest base-
probability. After applying a log-transform this becomes equivalent to finding
the shortest path in a weighted graph.

Definition 6 (Transition graph). Let V = [c, b] and E = [c, b]2 be an infinite
graph G = (V,E) with weight function w : E → R≥0 ∪ {∞} given by:

w(x, y) =

{
− log pa(x, y), if (x, y) ∈ Sa;
∞, otherwise.

(16)

One can associate n-step paths in this graph from b to c with the space Sa[b n→ c].
The length of a path x ∈ Sa[b n→ c] is denoted by
a[b n→ c](x) and the shortest
path length by

a,opt[b → c] = inf
n∈Z≥1

inf
x∈Sa[b

n→c]

a[b n→ c](x). (17)

Obtaining the success probability in this model therefore becomes equivalent to
obtaining the length of the shortest path
a,opt[b → c] as we have Pa[b n→ c](x) =
exp(−
a[b n→ c](x)).

The Randomized Slicer for CVPP 17

Algorithm 3. A discretized shortest path algorithm [11]
Input: Parameters a, b, c describing the graph, a discretization value k.
Output: A shortest path on the discretized graph from b to c.

1 Function DiscretizedDijkstra(a, b, c, k):

2 Compute Vd = {c + i·(b−c)
k

: i = 0, . . . , k};
3 Compute Ed = {(x, y) ∈ V 2

d ∩ Sa} and the weights wa(x, y);
4 Compute shortest path on Gd = (Vd, Ed) from b to c.

4 Numerical Approximations

We reduced the problem of obtaining the success probability of the iterative slicer
to the search of a shortest path in a specially constructed weighted infinite graph.
We might not always be able to find an exact solution in the input variables to
the length of the shortest path. However for fixed parameters we can always
try to numerically approximate the success probability, by approximating the
shortest path in our infinite graph. We present two fairly standard methods for
doing so. The first method first discretizes the infinite graph and then determines
the shortest path using standard algorithms such as Dijkstra’s algorithm [11].
The second method uses the fact that the weight function wa : Sa → R≥0 is
convex.

4.1 Discretization

A natural way to approximate the shortest path in an infinite graph is to first
discretize to a finite subgraph. Then one can determine the shortest path in this
subgraph using standard methods to obtain a short path in the infinite graph.
The details of this approach are shown in Algorithm 3.

Using any optimized Dijkstra implementation the time and space complexity
of Algorithm 3 is O(|Ed| + |Vd| log |Vd|) = O(k2). In general this method gives a
lower bound on the success probability for any fixed a and c. Because the weight
function wa : Sa → R≥0 is continuous Algorithm 3 converges to the optimal
path length as k → ∞. The C++ implementation of this method used for the
experiments is attached in the complementary material of this work.

For this method to converge to the shortest path in the full graph we only
need a continuous weight function. Furthermore the number of steps does not
have to be specified a priori. The high memory usage of O(k2) could limit the
fineness of our discretization. To circumvent this we can generate the edges (and
their weight) on the fly when needed, which reduces the memory consumption
to O(k).

4.2 Convex Optimization

Where the first method only needed wa : Sa → R≥0 to be continuous, the second
method makes use of the convexity of this function.

18 L. Ducas et al.

Lemma 3 (Convexity of Sa and wa). The set of allowed transitions Sa is
convex and the weight function wa is strictly convex on Sa.

Proof. The convexity of Sa = {(x, y) ∈ [c, b]2 : b ≥ x ≥ y and
√

x − √
y < α}

follows immediately from the fact that x �→ √
x is concave on [0,∞). Remember

that for (x, y) ∈ Sa

wa(x, y) = − log pa(x, y) = −1
2

log
(

a − (a + x − y)2

4x

)
, (18)

and thus we have

d2

dx2
wa(x, y) =

8xpa(x, y)2 + (4a − 2(a + x − y))2 − 16pa(x, y)4

32x2pa(x, y)4
, (19)

d

dy

d

dx
wa(x, y) =

−8xpa(x, y)2 + (4a − 2(a + x − y)) · 2(a + x − y)
32x2pa(x, y)4

, (20)

d2

dy2
wa(x, y) =

8xpa(x, y)2 + 4(a + x − y)2

32x2pa(x, y)4
. (21)

As pa(x, y) > 0 and a + x − y ≥ a > 0 for (x, y) ∈ Sa we have d2

dy2 wa(x, y) > 0.
We consider the Hessian H of wa. Computing the determinant gives:

det(H) =
2(a + x − y)4 · (4ax − (a + x − y)2)

1024x6pa(x, y)8
(22)

and we can conclude that det(H) > 0 from the fact that 4ax − (a + x − y)2 > 0
and (a + x − y)4 > 0 for (x, y) ∈ Sa. So H is positive definite, which makes wa

strictly convex on Sa. ��
Corollary 1 (Convexity of Sa[b n→ c] and
a[b n→ c]). The space of n-step
paths Sa[b n→ c] is convex and the length function
a[b n→ c] is strictly convex on
Sa[b n→ c] for any n ≥ 1.

Proof. The convexity of Sa[b n→ c] follows immediately from that of Sa. Note
that
a[b n→ c](x) =

∑n
i=1 wa(xi−1, xi) and thus it is convex as a sum of convex

functions. Furthermore for each variable at least one of these functions is strictly
convex and thus the sum is strictly convex. ��
So for any fixed n ≥ 1 we can use convex optimization to numerically determine
the optimal path of n steps. In fact, because of the strict convexity, we know
that this optimal path of n steps (if it exists) is unique. However the question
remains what the optimal number of steps is, i.e. for which n we should run the
convex optimization algorithm. We might miss the optimal path if we do not
guess the optimal number of steps correctly. Luckily because wa(b, b) = 0 by
definition, we can increase n without being afraid to skip some optimal path.

The Randomized Slicer for CVPP 19

Lemma 4 (Longer paths are not worse). If
a[b n→ c] and
a[b n+k→ c] for
n, k ≥ 0 both attain a minimum, then

min
x∈Sa[b

n→c]

a[b n→ c](x) ≥ min
x∈Sa[b

n+k→ c]

a[b n+k→ c](x). (23)

Proof. Suppose
a[b n→ c] attains its minimum at y = (b = y0, y1, . . . , yn = c) ∈
Sa[b n→ c]. Using that wa(b, b) = 0 we get that:

min
x∈Sa[b

n+k→ c]

a[b n+k→ c](x) ≤
a[b n+k→ c](b, . . . , b = y0, . . . , yn = c) (24)

= k · wa(b, b) +
a[b n→ c](y) (25)

=
a[b n→ c](y). (26)

This completes the proof. ��
So increasing n can only improve the optimal result. When running a numerical
convex optimization algorithm one could start with a somewhat small n and
increase it (e.g. double it) until the result does not improve any more.

4.3 Numerical Results

We ran both numerical algorithms and got similar results. Running the convex
optimization algorithm gave better results for small a = 1 + ε as the fineness
of the discretization is not enough to represent the almost shortest paths in
this regime. This is easily explained as b ≈ 1

4ε and thus for fixed c the distance
between b and c, i.e. the interval to be covered by the discretization quickly
grows as ε → 0.

The new lower bound that we obtained numerically for exact CVPP (c = 1)
is shown in Fig. 5. For α ≤ 1.1047 we observe that the new lower bound is strictly
better than the two previous lower bounds. For α > 1.1047 the new lower bound
is identical to the lower bound from [12]. Taking a closer look at the short paths
we obtained numerically we see that α ≈ 1.1047 is exactly the moment where
this path switches from a single step to at least 2 steps. This makes sense as in
our model the lower bound from [12] can be interpreted as a ‘single step’ analysis.
This also explains the asymptote for this lower bound as for α ≤ 1.0340 it is not
possible to walk from b to c = 1 in a single step.

When inspecting these short paths b = x0 → x1 → · · · → xn = c further we
observed an almost perfect fit with a quadratic formula xi = u · i2 + v · i + b for
some constants u, v. In the next section we show how we use this to obtain an
exact analytic solution for the shortest path.

5 An Exact Solution for the Randomized Slicer

In order to determine an exact solution of the shortest path, and thus an exact
solution of the success probability of the iterative slicer we use some observations

20 L. Ducas et al.

Prop. 1

Laa'16

DLW'19

Laa'19

Success probability bounds

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d

20d

2- 0.2d

2- 0.4d

2- 0.6d

2- 0.8d

2- 1.0d

2- 1.2d

List size

Su
cc
es
s
pr
ob
ab
ilit
y

Fig. 5. Lower bounds on success probability of the iterative slicer for CVPP (c = 1)
computed with a discretization parameter of k = 5000.

from the numerical results. Due to Corollary 1 we know that for any fixed n ≥ 1
our minimization problem is strictly convex. As a result there can be at most
one local minimum which, if it exists, is immediately also the unique global
minimum.

In order to find an exact solution we explicitly construct the shortest n-step
path using observations from the numerical section. Then showing that this path
is a local minimum is enough to prove that it is optimal. We recall from Sect. 4.3
that the optimal path x0 → · · · → xn seems to take the shape xi = u · i2+v · i+b
with xn = c. So for our construction we assume this shape, which reduces the
problem to determining the constants u, v. Furthermore, as we are trying to
construct a local minimum, we assume that all partial derivatives in the non-
constant variables are equal to 0. This gives enough restrictions to obtain an
explicit solution.

Definition 7 (Explicit construction). Let n ≥ 1 and let

xi = ua[b n→ c] · i2 + va[b n→ c] · i + b, (27)

with ua[b 1→ c] := 0, va[b 1→ c] := c − b and for n ≥ 2:

ua[b n→ c] :=
(b + c − a)n − √

(an2 − (b + c))2 + 4bc(n2 − 1)
n3 − n

, (28)

va[b n→ c] :=
(a − 2b)n2 + (b − c) +

√
(an2 − (b + c))2 + 4bc(n2 − 1)n
n3 − n

. (29)

The Randomized Slicer for CVPP 21

10 steps

24 steps
(optimal)

30 steps

Optimal paths for
1 CVPP (a=1.02)

0 5 10 15 20 25 30
0
c

5

10

b

15

Steps

Sq
ua
re
d
no
rm

Fig. 6. Some examples of the constructed paths in Definition 7 for a = 1.02, c = 1.

Lemma 5. By construction we have xn = c and

∂

∂xi

n∑

j=1

− log pa(xj−1, xj) = 0 (30)

for all i ∈ {1, . . . , n − 1}.
Proof. Note that the partial derivative constraints can be reduced to the sin-
gle constraint ∂

∂xi
(− log pa(xi−1, xi) − log pa(xi, xi+1)) = 0 for a symbolic i.

Together with the constraint xn = c one can solve for u, v in xi = u · i2 +v · i+ b.
For a symbolic verification see the Sage script in AppendixA. ��

What remains is to show that the explicit construction indeed gives a valid
path, i.e. one that is in the domain Sa[b n→ c]. An example of how these con-
structed paths look are given in Fig. 6. We observe that if n becomes too large
these constructed paths are invalid as they walk outside the interval [c, b]. This
is an artefact of our simplification that wa(x, y) = − log pa(x, y) which does not
hold for (x, y) �∈ Sa. We can still ask the question for which n this construction
is actually valid.

Lemma 6 (Valid constructions). Let b−c
a ≤ n < 1

2 +
√

(4b−a)2−8(2b−a)c

2 a and

xi = ua[b n→ c] · i2 + va[b n→ c] · i + b. (31)

Then x = (x0, . . . , xn) ∈ Sa[b n→ c] and x is the unique minimum of
a[b n→ c].

22 L. Ducas et al.

Proof. We have to check that x satisfies the two conditions

xi−1 ≥ xi and
√

xi−1 − √
xi < α, (32)

for all i ∈ {1, . . . , n}. Note that for n = 0 we must have b = c and the statement
becomes trivial. For n = 1 we have x = (b, c) and the conditions follows from
0 ≤ b − c ≤ na ≤ a. So we can assume that n ≥ 2. First we rewrite ua[b n→ c] to:

ua[b n→ c] =
(b + c − a)n − √

((b + c − a)n)2 + (a2n2 − (b − c)2)(n2 − 1)
n3 − n

, (33)

which makes it clear that ua[b n→ c] ≤ 0 when an ≥ b − c. As a result the
differences

xi−1 − xi = (1 − 2i) · ua[b n→ c] − va[b n→ c], (34)

are increasing in i ∈ {1, . . . , n}. Therefore for the first condition it is enough to
check that

x0 − x1 =
(b − c) + (2b − a)n − √

(an2 − (b + c))2 + 4bc(n2 − 1)
n2 + n

≥ 0. (35)

In fact a solution with x0 = x1 = b is not so interesting, so solving for x0−x1 > 0
gives for n ≥ 2 the sufficient condition

n <
1
2

+

√
(4b − a)2 − 8(2b − a)c

2 a
. (36)

For the second condition we first show the stronger property that xi−1 −xi ≤ a,
and again by the increasing differences it is enough to show that xn−1 −xn ≤ a;
rewriting gives the following sufficient statement for n ≥ 2:

−an + b − c ≤ 0. (37)

Now we prove that √
xi−1 − √

xi < α. If xi−1 = xi the condition holds trivially,
else xi−1 > xi and we get

(
√

xi−1 − √
xi)2 < (

√
xi−1 − √

xi)(
√

xi−1 +
√

xi) = xi−1 − xi ≤ a. (38)

We conclude that x ∈ Sa[b n→ c]. As
a[b n→ c](x) =
∑n

i=1 − log pa(xi−1, xi) on
Sa[b n→ c], the claim that this is a global minimum follows from Definition 7 and
Lemma 1. ��

So by Lemma 7 there exists some s ∈ N such that for all (b−c)/a ≤ n ≤ s we
have an explicit construction for the optimal n-step path. By Lemma 4 we know
that of these paths the one with n = s steps must be the shortest. However for
n > s our construction did not work and thus we do not know if any shorter
path exists. Inspired by Lemma 4 and numerical results we obtain the following
alternative exact solution for n > s.

The Randomized Slicer for CVPP 23

Theorem 1 (Optimal arbitrary-step paths). Let n satisfy

n =
⌈
−1

2
+

1
2a

√
(4b − a)2 − 8(2b − a)c

⌉
. (39)

For k ≥ n the unique global minimum of
a[b k→ c] is given by

x = (b, . . . , b, b = y0, . . . , yn = c) ∈ Sa[b k→ c] (40)

with yi = ua[b n→ c] · i2 + va[b n→ c] · i + b and the length is equal to
a[b n→ c](y).

Proof. By Corollary 1 it is enough to show that x is a local minimum, therefore
we check the partial derivatives. For i > k − n we have ∂

∂xi

a[b k→ c](x) =

∂
∂xi

a[b n→ c](y) = 0 by construction. For i < k−n we have xi−1 = xi = xi+1 = b,

which results in ∂
∂xi

a[b k→ c](x) = −a−1
2b < 0. For the most interesting case

i = k − n we need that n ≥ −1
2 +

√
(4b−a)2−8(2b−a)c

2 a . Because as a result we get
y0 − y1 ≤ a2

2b−a , which together with y0 − y1 ≤ b − c ≤ b − 1 is precisely enough

to show that ∂
∂xk−n

a[b k→ c](x) ≤ 0.

To conclude let z �= x ∈ Sa[b n→ c], then by Corollary 1 and using that
zi − xi = zi − b ≤ 0 for all 0 ≤ i ≤ k − n we have:

a[b k→ c](z) >
a[b k→ c](x) + 〈y − x,∇
a[b k→ c](x)〉 (41)

=
a[b k→ c](x) +
∑

i≤k−n

(zi − xi) · ∂

∂xi

a[b k→ c](x) ≥
a[b k→ c](x).

(42)

and thus x is the unique global minimum of
a[b k→ c]. ��
Corollary 2 (Optimal minimum-step paths). The optimal path from b to
c consists of n steps, with n defined by Eq. (39). The optimal path is of the form
b = x0 → x1 → · · · → xn = c with xi = ua[b n→ c] · i2 + va[b n→ c] · i + b.

Heuristic claim 5. Given the optimal path b = x0 → · · · → xn = c from
Corollary 2, the success probability of the iterative slice algorithm for γ-CVPP
is given by

exp

(
n∑

i=1

wa(xi−1, xi)d + o(d)

)
. (43)

As we have an exact formula for the optimal number of steps, and the lower
bound from DLW [12] uses a ‘single-step’ analysis we know exactly in which
regime Corollary 2 improves on theirs. Namely for those a > 1 and c ≥ 1
such that for n defined by Eq. (39) we have n > 1. For exact CVPP we obtain

24 L. Ducas et al.

CVPP 1 CVPP2 CVPP5 CVPP

Optimal number of steps
for (approximate) CVPP

20d 20.1d 20.1436d 20.2d 20.3d
1

2

4

8

16

32

List size

N
um
be
ro
fs
te
ps

Fig. 7. Optimal number of steps n against the list size |L| = αd+o(d) = ad/2+o(d). We
improve upon DLW whenever n > 1. For large list sizes the optimal number of steps of
cost exp(−Cd + o(d)) drops to 0, as then the success probability of the iterative slicer
equals 2−o(d).

improvements for a < 1.22033. This improvement can also be visualized through
Fig. 7, which plots the optimal number of steps against the size of the prepro-
cessed list. Whenever the optimal strategy involves taking more than one step,
we improve upon DLW. For the crossover points where the number of optimal
steps changes we have a more succinct formula for the shortest path and the
success probability.

Lemma 7 (Success probability for integral n). If n defined similar to
Eq. (39), but without rounding up, is integral, then the optimal path from b to c
has probability

((
a

2 − a

)n

·
(

1 − 2n(a − 1)
2 − a

))d/2+o(d)

. (44)

Proof. For such n we obtain the expression xi = b − (i + 1) · i · a2−a
2−a . The result

follows from simplifying the remaining expression. ��
Using this special case we can easily analyse the success probability in the low-
memory regime.

Corollary 3 (Low-memory asymptotics). For a fixed ε > 0 and a = 1 + ε,
the success probability of the optimal path from b to c equals (2eε+o(ε))d/2+o(d).

The Randomized Slicer for CVPP 25

The above improves upon the lower bound of (4ε + o(ε))d/2+o(d) of Laarhoven
[20]. Using a similar methodology to [20], to obtain a polynomial space complex-
ity ad/2+o(d) = dΘ(1) we set ε = Θ(1d log d), resulting in a success probability of
e− 1

2d ln d+o(d ln d).
We nevertheless stress that drawing conclusions on the iterative slicer effi-

ciency for ε = o(1) is far from rigorous: first the analysis assumes a space com-
plexity of ad/2+o(d) for a constant a > 1; second, the optimal path now requires
an non-constant number of steps, and the o(d) terms in the exponent may accu-
mulate to linear or super-linear terms. To make this more rigorous one would
require do a more extensive analysis of the lower order terms.

6 Memoryless Nearest Neighbour Searching

Nearest Neighbour Searching Techniques. The main subroutine of the iterative
slicer is to find lattice vectors close to a target t in a large list L, also known
as the nearest neighbour search problem (NNS). By preprocessing the list and
storing them in certain query-friendly data structures, we can find a close vector
much faster than through the naive way of going through all vectors in the list.
Generally we obtain a trade-off between the size of the NNS data structure (and
the time to generate and populate this data structure) and the eventual query
complexity of finding a nearest neighbour given a target vector.

A well known technique for finding near neighbours is locality-sensitive hash-
ing (LSH). The idea is that a hash function partitions the space into buckets,
such that two vectors that are near neighbours are more likely to fall in the same
bucket than a general pair of vectors. Preprocessing then consists of indexing
the list L in these buckets, for each of several hash functions. Using a hash table
we then perform a quick lookup of all list vectors that lie in the same bucket as
our query vector, to find candidate near neighbours. A query t is then answered
by searching for a close vector in these buckets, one for each hash function, that
corresponds to t. Given the correct parameters this leads to a query time of
|L|ρ+o(1) for some ρ < 1. More hash functions giving finer partitions can reduce
the query time at the cost of extra storage for the required number of hash
tables.

Locality-sensitive filters (LSF) were later proposed as a generalization of
LSH, where the space is not necessarily partitioned into buckets, but where
regions can overlap – some vectors may end up in multiple buckets for one hash
function, and some may end up in none of them. Currently the best nearest
neighbour complexities for large lists are achieved by using spherical locality-
sensitive filters [6].

Nearest Neighbour Search in Batches. The drawback of NNS data structures is
that it can increase the memory usage significantly. As for the iterative slicer
this memory could also be used for a larger list L, and thus giving a higher
success probability, the current optimal time-memory trade-offs only spend a
small amount of memory on the NNS data structure.

26 L. Ducas et al.

However as already introduced in [7] and later applied in [12,18] and [6], we
can reduce the query time significantly without any extra memory in case we
process multiple queries at the same time. Suppose we have |L| targets, then
to process all these queries we need as many hash computations as one would
need for the precomputation of the list. As a result we could just process each
hash function one by one on our list L and our list of targets. We immediately
process the list and target vectors that fall in the same bucket. In the end this
is equivalent to first preprocessing the list L and then running all queries one by
one, however without using more than Õ(|L|) memory. So we can achieve low
amortized query times for large batches, without using any extra memory.

Lemma 8 (Batch NNS [6]). Given a list of size |L| = αd+o(d) uniformly
distributed over Sd−1 and a batch of targets of size |B| ≥ |L|, we can solve the
nearest-neighbour problem with an amortized cost per target of

T =

(
a − 2 · (a − 1)

1 +
√

1 − 1/a

)−d/2

(45)

using only αd+o(d) space.

Batches from Rerandomization. Note that for the randomized slicer we naturally
obtain a batch of rerandomized targets of size |B| = O(1/Pa,c). In the case that
the number of rerandomized targets is larger than the list size |L| we could gen-
erate and process these targets in batches of |L| at a time, therefore making use
of optimal NNS parameters without any extra memory. This idea significantly
improves the time-memory trade-off compared to the current state-of-the-art as
shown in Fig. 4. Also note that in the higher memory regimes where we do not
have enough rerandomized targets to do this, we still lower the necessary batch
sizes for this technique to work by a factor one over the success probability.

Heuristic claim 6 (Improved memory usage for batch-CVPP with
NNS). Suppose we have a list of size |L| = αd+o(d), and suppose we are given
a batch of at least B γ-CVPP instances, with

B = max(1, αd+o(d) · Pa,c) (46)

Then we can heuristically solve this entire batch of γ-CVPP instances with the
following amortized complexities per CVPP instance:

S = αd+o(d), T =
1

Pa,c
·
(

a − 2 · (a − 1)
1 +

√
1 − 1/a

)−d/2+o(d)

. (47)

7 Bounded Distance Decoding with Preprocessing

We consider the success probability of the iterative slicer for bounded distance
decoding. Instead of assuming that our target lies at distance λ1(L) of the lattice

The Randomized Slicer for CVPP 27

we get the guarantee that our target lies at distance δ · λ1(L) of the lattice. To
incorporate this into our model we start with the same graph G = (V,E) with
V = [1, b] and weight function wa from Definition 6. However we add a single
extra node V ′ = V ∪{δ2} to the graph that represents our goal, i.e. the reduced
target t′ with norm δ.

We have to determine the base-probability of transitioning from a target t of
squared norm x to our goal t′ of norm at most δ using a lattice vector v ∈ La.
Because the reduction vector v = t− t′ can assumed to be uniformly distributed
over B(t, δ) we obtain the following base-probability of the reduction:

Pv∈B(t,δ)(v ∈ La)2/d →

⎧
⎪⎨

⎪⎩

1, if x ≤ a − δ2,
−x2+2x(δ2+a)−(a−δ2)2

4xδ2 , if a − δ2 < x < (α + δ)2,
0, otherwise.

as d → ∞.
Given the base-probability that we can transition from a target t to our goal

t′ we extend the weight function on the edges (x, δ2) in the natural way. As
before we can now run the numerical approximation algorithm from Sect. 4.1 to
obtain a lower bound on the success probability. The results are shown in Fig. 8
and improve on those from [12] in the low-memory regime. We do not see any
restrictions for doing an exact analysis for BDDP similar to that of Sect. 5, but
it is out of the scope of this paper. Also we expect these numerical results to be
sharp, just as shown in the approximate CVPP case.

In Fig. 9 we show the resulting δ-BDDP time-memory trade-off with memory-
intensive NNS, similar to Fig. 3. The memoryless NNS technique from Sect. 6
could also directly be applied for (batch-)BDDP, to obtain even better amortized
complexities. We also note from Fig. 9 that, our bound for the time complexity
δ-BDDP is always smaller than δ′-BDDP for δ < δ′, as one would naturally
expect. This resolves another mystery left by the analysis of [12], for which this
wasn’t the case.

We observe that the BDD guarantee does not improve the success proba-
bilities that much, certainly not in the low-memory regime. The iterative slicer
algorithm does not seem to fully exploit the BDD guarantee. An explanation for
this in the low-memory regime is that only the ‘last’ step can improve by the
BDD guarantee. For all other steps, of which there are many in the low-memory
regime, the BDD guarantee does not improve the transition probabilities. There-
fore we cannot expect that the algorithm performs significantly better in the
low-memory regime with that BDD guarantee than without. An open problem
would be to adapt the iterative slicer to make better use of this guarantee.

8 Application to Graph-Based NNS

Besides nearest-neighbour search data structures based on locality-sensitive
hashing or filters, as seen in Sect. 6, there also exists a graph based variant.
Although graph based nearest-neighbour data structures have proven to be very

28 L. Ducas et al.

0 BDDP

1 BDDP CVPP

Success probabilities
for {0, 15 ,

2
5 ,
3
5 ,
4
5 ,1} BDDP

20d 20.1d 20.2d 20.3d 20.4d 20.5d

20d

2- 0.1d

2- 0.2d

2- 0.3d

2- 0.4d

2- 0.5d

List size

Su
cc
es
s
pr
ob
ab
ilit
y

Fig. 8. Success probability of the iterative slicer for δ-BDDP with δ ∈ {0, 0.2, 0.4,
0.6, 0.8, 1}, computed with a discretization parameter of k = 5000.

1 BDDP CVPP

0- BDDP (old)

0 BDDP (new)

BDDP complexities
with nearest neighbor search

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

Space complexity (≥ List size)

Ti
m
e
co
m
pl
ex
ity

Fig. 9. Time complexities for δ-BDDP with memory-intensive nearest neighbour
searching.

The Randomized Slicer for CVPP 29

efficient in practice [5], the theoretical analysis has only been considered very
recently [19,24]. Preprocessing consists out of constructing a nearest-neighbour
graph of the list L and the query phase consists out of a greedy walk on this
graph that hopefully ends at the closest vector to the given target.

Definition 8 (α-near neighbour graph). Let L ⊂ Sd−1 and α ∈ (0, 1), we
define the α-near neighbour graph G = (V,E) with V = L and (x,y) ∈ E if and
only if 〈x, y〉 ≥ α.

Given a target t, the query phase starts at some random node x ∈ L of the
α-near neighbour graph. Then it tries to find a neighbour y of x in the graph
that lies closer to t. This is repeated until such a closer neighbour does not exist
any more or if a close enough neighbour is found. Note that for α ≈ 0 this is
equivalent to a brute-force algorithm with time O(N), however for larger α the
number of neighbours can be much lower than N , possibly resulting in lower
query times.

Just as for the iterative slicer there is no guarantee that the nearest neighbour
of t is found. This success probability decreases as the graph becomes sparser,
and just as for the iterative slicer we achieve a good probability of answering the
query successfully by repeating the algorithm. The rerandomization in this case
is achieved by starting the greedy walk at a different node of the graph.

In the context of lattice problems we are mainly interested in NNS in the
setting that |L| = (4/3)d/2, and thus we will focus on that, but our model is
certainly not limited by this. In this setting the points in our list are uniformly
distributed over the sphere. Laarhoven [19] was the first to formalize the success
probability and this resulted in a lower bound using similar techniques as those
used for DLW [12]. We show that this lower bound on the success probability is
not sharp for all parameters α and our analysis gives the real asymptotic success
probability, again using the random walk model.

In this case the distance measure is taken as the cosine of the angle 〈v, t〉
between the vector and the target. Note that in this setting the goal is to find
a v ∈ L such that 〈v, t〉 ≥ 1

2 by greedily walking over the graph, decreasing this
angle in each step if possible. Again given α we have some β ≤ 1

2 such that with
high probability we end up at the some v ∈ L with 〈v, t〉 ≈ β. So just as in Sect. 3
the success probability is determined by the highest probable path from β to 1

2 .
The transition probability from x to y is equal to (4/3)d/2 · W(α, y, x) [19].

Heuristic claim 7 (Success probability of graph-NNS). Let L ⊂ Sd−1

be a uniformly distributed list of size (4/3)d+o(d). Let α ∈ (0, 1
2) and β =

max
(

1
2 ,

√
(1 − 4α2)/(5 − 8α)

)
. Let G = (V,E) be an infinite graph with V =

[β, 1
2] and weight function

wα,nns(x, y) = min
(

0,−1
2

log
(

4
3

− 4
3

· α2 + y2 − 2αxy

1 − x2

))
. (48)

30 L. Ducas et al.

HashSieve
SphereSieve

LDSieve

GraphSieve (old)

GraphSieve (new) Tim
e
Spa

ce

20.20d 20.25d 20.30d 20.35d 20.40d
20.25d

20.30d

20.35d

20.40d

20.45d

Space complexity

Ti
m
e
co
m
pl
ex
ity

Fig. 10. Asymptotic exponents for heuristic lattice sieving methods for solving SVP
in dimension d, using near neighbour techniques.

Let x0 → · · · → xn be the shortest path in G from β to 1
2 , then success probability

of a single greedy walk in the α-near neighbour graph of L is given by

exp

(
−

n∑

i=1

wα,nns(xi−1, xi)d + o(d)

)
. (49)

We do not see major problems in finding an exact solution for the shortest
path, but this is out of the scope of this paper. The results from a numerical
approximation using the techniques from Sect. 4 are shown in Fig. 10.

Acknowledgements. Leo Ducas was supported by the European Union H2020
Research and Innovation Program Grant 780701 (PROMETHEUS) and the Veni
Innovational Research Grant from NWO under project number 639.021.645. Thijs
Laarhoven was supported by a Veni Innovational Research Grant from NWO under
project number 016.Veni.192.005. Wessel van Woerden was supported by the ERC
Advanced Grant 740972 (ALGSTRONGCRYPTO).

Appendix A: Sage Code for Symbolic Verification

Sage code for the symbolic verification of the statements in this paper.

The Randomized Slicer for CVPP 31

A.1 Lemma (Strict Convexity)

We check that the given partial derivatives in the Lemma are correct.

A.2 Definition (Explicit Constructions)

We check that the explicit construction indeed satisfies the mentioned properties.

A.3 Lemma (Valid Construction)

We check that the explicit construction is valid for

b − c

a
≤ n <

1
2

+

√
(4b − a)2 − 8(2b − a)c

2 a

We first need to verify that x0 −x1 > 0. We do this by rewriting the problem to
that of showing that a degree 3 polynomial in n with positive leading coefficient
is negative. Our n is between the second and third root and thus we can conclude.

32 L. Ducas et al.

Next we check that xn − 1 − xn <= a for n >= max(2, (b − c)/a), again by
rewriting the equations.

The Randomized Slicer for CVPP 33

A.4 Theorem (Optimal Arbitrary-Length Paths)

The case i < k − n is easily verified

For the case i = k − n we first show that y0 − y1 <= a2/(2b − a).

Now we show that d := y0 − y1 ≤ min(a2/(2b − a), b − 1) is sufficient to show
that the partial derivative at i = n − k is non-positive.

34 L. Ducas et al.

A.5 Proposition (Low-Memory Asymptotics)

The Randomized Slicer for CVPP 35

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: STOC, pp. 601–610 (2001)

2. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

3. Aono, Y., Nguyen, P.Q.: Random sampling revisited: lattice enumeration with
discrete pruning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 65–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 3

4. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking
discrete pruning. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11272, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03326-2 14

5. Aumüller, M., Bernhardsson, E., Faithfull, A.: ANN-benchmarks: a benchmarking
tool for approximate nearest neighbor algorithms. Inf. Syst. 87, 1–13 (2020)

6. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: SODA, pp. 10–24 (2016)

7. Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. IACR Cryptology ePrint
Archive 2015, p. 522 (2015)

8. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7

9. Dadush, D., Bonifas, N.: Short paths on the Voronoi graph and closest vector
problem with preprocessing. In: Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 295–314. Society for Industrial and
Applied Mathematics (2015)

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

11. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

12. Doulgerakis, E., Laarhoven, T., de Weger, B.: Finding closest lattice vectors using
approximate Voronoi cells. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-25510-7 1

13. Doulgerakis, E., Laarhoven, T., de Weger, B.: A lattice enumeration-sieving hybrid
for SVP based on batch-CVP. Draft (2019)

14. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice. Math. Comput. 44(170), 463–471 (1985)

15. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

16. Herold, G., Kirshanova, E.: Improved algorithms for the approximate k -list prob-
lem in Euclidean norm. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 16–40.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 2

17. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: STOC, pp. 193–206 (1983)

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-662-54365-8_2

36 L. Ducas et al.

18. Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523–542. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69453-5 28

19. Laarhoven, T.: Graph-based time-space trade-offs for approximate near neighbors.
In: SOCG (2018)

20. Laarhoven, T.: Approximate Voronoi cells for lattices, revisited. In: MathCrypt
(2019)

21. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm
for most lattice problems based on Voronoi cell computations. SIAM J. Comput.
42(3), 1364–1391 (2013)

22. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Cryptol. 2(2), 181–207 (2008)

23. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10, 283–424 (2016)

24. Prokhorenkova, L.: Graph-based nearest neighbor search: from practice to theory
(2019). arXiv:1907.00845 [cs.DS]

25. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

26. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS, pp. 124–134 (1994)

27. Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by iterative
slicing. SIAM J. Discret. Math. 23(2), 715–731 (2009)

https://doi.org/10.1007/978-3-319-69453-5_28
http://arxiv.org/abs/1907.00845

Tweaking the Asymmetry
of Asymmetric-Key Cryptography
on Lattices: KEMs and Signatures

of Smaller Sizes

Jiang Zhang1(B), Yu Yu2(B), Shuqin Fan1(B), Zhenfeng Zhang3(B),
and Kang Yang1(B)

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
jiangzhang09@gmail.com, shuqinfan78@163.com, yangk@sklc.org

2 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

yuyu@yuyu.hk
3 Trusted Computing and Information Assurance Laboratory,

Institute of Software, Chinese Academy of Sciences, Beijing, China
zfzhang@tca.iscas.ac.cn

Abstract. Currently, lattice-based cryptosystems are less efficient than
their number-theoretic counterparts (based on RSA, discrete logarithm,
etc.) in terms of key and ciphertext (signature) sizes. For adequate secu-
rity the former typically needs thousands of bytes while in contrast the
latter only requires at most hundreds of bytes. This significant difference
has become one of the main concerns in replacing currently deployed
public-key cryptosystems with lattice-based ones. Observing the inherent
asymmetries in existing lattice-based cryptosystems, we propose asym-
metric variants of the (module-)LWE and (module-)SIS assumptions,
which yield further size-optimized KEM and signature schemes than
those from standard counterparts.

Following the framework of Lindner and Peikert (CT-RSA 2011) and
the Crystals-Kyber proposal (EuroS&P 2018), we propose an IND-CCA
secure KEM scheme from the hardness of the asymmetric module-LWE
(AMLWE), whose asymmetry is fully exploited to obtain shorter public
keys and ciphertexts. To target at a 128-bit quantum security, the public
key (resp., ciphertext) of our KEM only has 896 bytes (resp., 992 bytes).

Our signature scheme bears most resemblance to and improves upon
the Crystals-Dilithium scheme (ToCHES 2018). By making full use of the
underlying asymmetric module-LWE and module-SIS assumptions and
carefully selecting the parameters, we construct an SUF-CMA secure
signature scheme with shorter public keys and signatures. For a 128-
bit quantum security, the public key (resp., signature) of our signature
scheme only has 1312 bytes (resp., 2445 bytes).

We adapt the best known attacks and their variants to our AMLWE
and AMSIS problems and conduct a comprehensive and thorough anal-
ysis of several parameter choices (aiming at different security strengths)
and their impacts on the sizes, security and error probability of

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 37–65, 2020.
https://doi.org/10.1007/978-3-030-45388-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_2

38 J. Zhang et al.

lattice-based cryptosystems. Our analysis demonstrates that AMLWE
and AMSIS problems admit more flexible and size-efficient choices of
parameters than the respective standard versions.

1 Introduction

Despite the tremendous success of traditional public-key cryptography (also
known as asymmetric-key cryptography), the typical public-key cryptosystems in
widespread deployment on the Internet are based on number-theoretic hardness
assumptions such as factoring and discrete logarithms, and thus are susceptible
to quantum attacks [31] if large-scale quantum computers become a reality. With
the advancement of quantum computing technology in recent years [19], devel-
oping post-quantum cryptography (PQC) with resistance to both classical and
quantum computers has become a primary problem as well as a priority issue for
the crypto community. Actually, several government agencies and standardiza-
tion organizations have announced plans to solicit and standardize PQC algo-
rithms. In 2015, the NSA [28] has announced its schedule for migration to PQC.
In 2016, the NIST initiated its standardization process for post-quantum public-
key encryption (PKE), key-establishment (KE) and digital signatures. Among
the 69 PQC submissions received worldwide, 17 candidate PKE and KE algo-
rithms (e.g., Kyber [6]), and 9 candidate signature schemes (e.g., Dilithium [12])
have been selected to the 2nd round of the NIST PQC standardization, where
12 out of the total 26 2nd-round candidates are lattice-based algorithms.

Most lattice-based cryptosystems base their security on the conjectured quan-
tum hardness of the Short Integer Solution (SIS) problem [1,27] and the Learn-
ing With Errors (LWE) problem [30]. Informally speaking, the two problems are
both related to solving systems of linear congruences (and are in some sense dual
to each other). Let n, m, q be integers and α, β be reals, and let χα be some
distribution (e.g., a Gaussian distribution) with parameter α defined over Z. The
SIS problem SIS∞

n,m,q,β in the infinity norm asks to find out a non-zero vector

x ∈ Z
m, given a random matrix A $←− Z

n×m
q , such that Ax = 0 mod q and

‖x‖∞ ≤ β. Correspondingly, the search LWE problem LWEn,m,q,α searches for

s ∈ Z
n
q from samples (A,b = As + e) ∈ Z

m×n
q ×Z

m
q , where A $←− Z

m×n
q , s $←− Z

n
q

and e $←− χm
α . Decisional LWE problem asks to distinguish (A,b = As + e) from

uniform distribution over Z
m×n
q × Z

m
q . For certain parameters the two (search

and decisional) LWE problems are polynomially equivalent [25,30].
It has been shown that the two average-case problems SIS and LWE are at

least as hard as some worst-case lattice problems (e.g., Gap-SIVP) for certain
parameter choices [27,30]. Moreover, quantum algorithms are not known to have
substantial advantages (beyond polynomial speedup) over classical ones in solv-
ing these problems, which makes SIS and LWE ideal candidates for post-quantum
cryptography. We mention a useful variant of LWE, called the (Hermite) nor-
mal form of LWE, where the secret s is sampled from noise distribution χn

α

(instead of uniform). The standard LWE and its normal form were known to be
equivalent up to a polynomial number of samples [4]. Furthermore, the use of a

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 39

“small” secret in LWE comes in handy in certain application scenarios, e.g., for
better managing the growth of the noise in fully homomorphic encryption [7,10].

SIS is usually used in constructing signature schemes, and LWE is better
suited for PKE schemes. However, the standard LWE and SIS problems seem to
suffer some constraints in choosing parameters for some practical cryptographic
schemes. For example, the LWE parameter for achieving a 128-bit (quantum)
security typically cannot provide a matching decryption failure probability ν
(say ν = 2−128) for the resulting LWE-based PKE scheme. Note that a larger ν
(i.e., ν > 2−128) may sacrifice the security, and a smaller ν (i.e., ν < 2−128) may
compromise the performance. To this end, we introduce special variants of SIS
and LWE, referred to as asymmetric SIS (ASIS) and asymmetric LWE (ALWE).

Informally, the ASIS problem ASIS∞
n,m1,m2,q,β1,β2

refers to the problem that,

given a random A $←− Z
n×(m1+m2)
q , find out a non-zero x = (xT

1 ,xT
2)T ∈ Z

m1+m2

satisfying Ax = 0 mod q, ‖x1‖∞ ≤ β1 and ‖x2‖∞ ≤ β2. It is easy to see that
ASIS∞

n,m1,m2,q,β1,β2
is at least as hard as SIS∞

n,m1+m2,q,max(β1,β2). Thus, we have

SIS∞
n,m1+m2,q,max(β1,β2) � ASIS∞

n,m1,m2,q,β1,β2
� SIS∞

n,m1+m2,q,min(β1,β2).

This lays the theoretical foundation for constructing secure signatures based on
the ASIS problem. In addition, we investigate a class of algorithms for solving
the ASIS problem, and provide a method for selecting appropriate parameters
for different security levels with reasonable security margin.

Correspondingly, the ALWE problem ALWEn,m,q,α1,α2 asks to find out s ∈
Z

n
q from samples (A,b = As + e) ∈ Z

m×n
q × Z

m
q , where A $←− Z

m×n
q , s $←−

χn
α1

, e $←− χm
α2

. The hardness of ALWE may depend on the actual distribution
from which s (or e) is sampled, and thus we cannot simply compare the hardness
of LWE and ALWE like we did for SIS and ASIS. However, the relation below
remains valid for our parameter choices in respect to all known solving algorithms
despite the lack of a proof in general:1

LWEn,m,q,min(α1,α2) � ALWEn,m,q,α1,α2 � LWEn,m,q,max(α1,α2).

More importantly, the literature [9,16,26] suggests that ALWE can reach com-
parable hardness to standard LWE as long as the secret is sampled from a
distribution (i.e., χn

α1
) with sufficiently large entropy (e.g., uniform distribu-

tion over {0, 1}n) and appropriate values are chosen for other parameters. This
shows the possibility of constructing secure cryptographic schemes based on the
ALWE problem. We also note that Cheon et al. [11] introduced a variant of
LWE that is quite related to ALWE, where s and e are sampled from different
distributions (notice that s and e in the ALWE problem are sampled from the
same distribution χ, albeit with different parameters α1 and α2). By compre-
hensively comparing, analyzing and optimizing the state-of-the-art LWE solving
algorithms, we establish approximate relations between parameters of ALWE
and LWE, and suggest practical parameter choices for several levels of security
strength intended for ALWE.
1 In the full version, we show that the relations actually hold for discrete Gaussian

distributions and binomial distributions under certain choices of parameters.

40 J. Zhang et al.

The definitions of the aforementioned variants can be naturally generalized
to the corresponding ring and module versions, i.e., ring-LWE/SIS and module-
LWE/SIS. As exhibited in [6,12], module-LWE/SIS allows for better trade-off
between security and performance. We will use the asymmetric module-LWE
problem (AMLWE) and the asymmetric module-SIS problem (AMSIS) to build
a key encapsulation mechanism (KEM) and a signature scheme of smaller sizes.

Technically, our KEM scheme is mainly based on the PKE schemes in [6,22],
except that we make several modifications to utilize the inherent asymmetry of
the (M)LWE secret and noise in contributing to the decryption failure probabili-
ties, which allow us to obtain smaller public keys and ciphertexts. In Sect. 3.1, we
will further discuss this asymmetry in the design of existing schemes, and illus-
trate our design rationale in more details. For a targeted 128-bit security, the
public key (resp., ciphertext) of our KEM only has 896 bytes (resp., 992 bytes).

Our signature scheme bears most resemblance to Dilithium in [12]. The main
difference is that we make several modifications to utilize the asymmetric param-
eterization of the (M)LWE and (M)SIS to reach better trade-offs among com-
putational costs, storage overhead and security, which yields smaller public keys
and signatures without sacrificing the security or computational efficiency. In
Sect. 4.1, we will further discuss the asymmetries in existing constructions, and
illustrate our design rationale in more details. For a targeted 128-bit quantum
security, the public key (resp., signature) of our signature scheme only has 1312
bytes (resp., 2445 bytes).

We make a comprehensive and in-depth study on the concrete hardness of
AMLWE and AMSIS by adapting the best known attacks (that were originally
intended for MLWE and MSIS respectively) and their variants (that were mod-
ified to solve AMLWE and AMSIS respectively), and provide several choices
of parameters for our KEM and signature schemes aiming at different security
strengths. The implementation of our schemes (and its comparison with the
counterparts) confirms that our schemes are practical and competitive. We com-
pare our KEM with NIST round2 lattice-based PKEs/KEMs in Sect. 1.1, and
compare our signature with NIST round2 lattice-based signatures in Sect. 1.2.

1.1 Comparison with NIST Round2 Lattice-Based PKEs/KEMs

As our KEM is built upon Kyber [6], we would like to first give a slightly detailed
comparison between our KEM and Kyber-round2 [6] in Table 1. Our software
is implemented in C language with optimized number theory transform (NTT)
and vector multiplication using AVX2 instructions. The running times of KeyGen,
Encap and Decap algorithms are measured in averaged CPU cycles of 10000 times
running on a 64-bit Ubuntu 14.4 LTS ThinkCenter desktop (equipped with Intel
Core-i7 4790 3.6 GHz CPU and 4 GB memory). The sizes of public key |pk|, secret
key |sk|, ciphertext |C| are measured in terms of bytes. The column |ss| gives the
size of the session key that is encapsulated by each ciphertext. The column “Dec.
Failure” lists the probabilities of decryption failure. The last column “Quant.
Sec.” gives the estimated quantum security level expressed in bits.

Note that for X ∈ {512, 768, 1024} aiming at NIST Category I, III and V,
the estimated quantum security of our KEM ΠKEM-X is slightly lower than that

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 41

Table 1. Comparison between Our KEM ΠKEM and Kyber-round2

Schemes |pk|
(Bytes)

|sk|
(Bytes)

|C|
(Bytes)

|ss|
(Bytes)

KeyGen
(AVX2)

Encap
(AVX2)

Decap Dec.
failure

Quant.
Sec.

Kyber-512 800 1632 736 32 37 792 54 465 41 614 2−178 100

ΠKEM-512 672 1568 672 32 66 089 70 546 56 385 2−82 102

ΠKEM-512† 800 1632 640 32 - - - 2−82 99

Kyber-768 1184 2400 1088 32 66 760 86 608 69 449 2−164 164

ΠKEM-768 896 2208 992 32 84 504 93 069 76 568 2−128 147

ΠKEM-768† 1184 2400 960 32 - - - 2−130 157

Kyber-1024 1568 3168 1568 32 88 503 116 610 96 100 2−174 230

ΠKEM-1024 1472 3392 1536 64 115 268 106 740 92 447 2−211 213

ΠKEM-1024† 1728 3648 1472 64 - - - 2−198 206

of Kyber-X, but we emphasize that our parameter choices have left out suffi-
cient security margin reserved for further development of attacks. For example,
our ΠKEM-768 reaches an estimated quantum security of 147 bits and a 2−128

decryption failure probability, which we believe is sufficient to claim the same
targeted 128-bit quantum security (i.e., NIST Category III) as Kyber-768. We
also note that the parameter choice of ΠKEM-1024 is set to encapsulate a 64-byte
session key, which is twice the size of that achieved by Kyber-1024. This deci-
sion is based on the fact that a 32-byte session key may not be able to provide
a matching security strength, say, more than 210-bit quantum security (even if
the Grover algorithm [17] cannot provide a real quadratic speedup over classical
algorithms in practice).

We note that the Kyber team [6] removed the public-key compression to
purely base their Kyber-round2 scheme on the standard MLWE problem and
obtained (slightly) better computational efficiency (for saving several operations
such as NTT). On the first hand, as commented by the Kyber team that “we
strongly believe that this didn’t lower actual security”, we prefer to use the
public-key compression to obtain smaller public key sizes (with the cost of a
slightly worse computational performance). On the other hand, one can remove
the public-key compression and still obtain a scheme with shorter ciphertext
size (see ΠKEM-X† in Table 1), e.g., a reduction of 128 bytes in the ciphertext
size over Kyber-768 at the targeted 128-bit quantum security by using a new
parameter set (n, k, q, η1, η2, du, dv) = (256, 3, 3329, 1, 2, 9, 3) (see ΠKEM-X† in
Table 5).

We also give a comparison between our KEM and NIST round2 lattice-based
PKEs/KEMs in Table 2. For simplicity, we only compare those schemes under the
parameter choices targeted at IND-CCA security and 128-bit quantum security
in terms of space and time (measured in averaged CPU cycles of running 10000
times) on the same computer. We failed to run the softwares of the schemes
marked with ‘∗’ on our experiment computer (but a public evaluation on the
Round1 submissions suggests that Three-Bears may have better computational
efficiency than Kyber and ours). As shown in Table 2, our ΠKEM has a very
competitive performance in terms of both sizes and computational efficiency.

42 J. Zhang et al.

Table 2. Comparison between ΠKEM and NIST Round2 lattice-based PKEs/KEMs

Schemes |pk|
(Bytes)

|sk|
(Bytes)

|C|
(Bytes)

KeyGen
(AVX2)

Encap
(AVX2)

Decap
(AVX2)

Problems

Frodo∗ 15 632 31 296 15 744 - - - LWE

Kyber 1184 2400 1088 66 760 86 608 69 449 MLWE

LAC 1056 2080 1188 108 724 166 458 208 814 RLWE

Newhope 1824 3680 2208 146 909 233 308 237 619 RLWE

NTRU-Prime∗ 1158 1763 1039 - - - NTRU variant

NTRU 1138 1450 1138 378 728 109 929 75 905 NTRU

Round5∗ 983 1031 1119 - - - GLWR

Saber 992 2304 1088 117 504 139 044 133 875 MLWER

Three-Bears∗ 1194 40 1307 - - - MLWE variant

ΠKEM-768 896 2208 992 84 504 93 069 76 568 AMLWE

1.2 Comparison with NIST Round2 Lattice-Based Signatures

We first give a slightly detailed comparison between our signature ΠSIG with
Dilithium-round2 [12] in Table 3. Similarly, the running times of the KeyGen,
Sign and Verify algorithms are measured in the average number of CPU cycles
(over 10000 times) on the same machine configuration as before. The sizes of
public key |pk|, secret key |sk|, signature |σ| are counted in bytes. As shown in
Table 3, the estimated quantum security of ΠSIG-1024 is slightly lower than that
of Dilithium-1024, but those at ΠSIG-1280 and ΠSIG-1536 are slightly higher.
In all, our scheme has smaller public key and signatures while still providing
comparable efficiency to (or even slightly faster than) Dilithium-round2.

Table 3. Comparison between Our Signature ΠSIG and Dilithium-round2

Schemes |pk|
(Bytes)

|sk|
(Bytes)

|σ|
(Bytes)

KeyGen

(AVX2)

Sign

(AVX2)

Verify

(AVX2)

Quantum

Sec.

Dilithium-1024 1184 2800 2044 140 181 476 598 129 256 91

ΠSIG-1024 1056 2448 1852 126 719 407 981 113 885 90

Dilithium-1280 1472 3504 2701 198 333 657 838 187 222 125

ΠSIG-1280 1312 3376 2445 198 876 634 128 170 283 128

Dilithium-1536 1760 3856 3366 269 430 639 966 260 503 158

ΠSIG-1536 1568 3888 3046 296 000 800 831 259 855 163

We also compare our signature with NIST round2 lattice-based signatures:
Falcon, qTESLA and Dilithium, where the first one is an instantiation of full-
domain hash and trapdoor sampling [15] on NTRU lattices (briefly denoted as
FDH-like methodology), and the last two follows the more efficient Fiat-Shamir
heuristic with rejection sampling (briefly denoted as FS-like methodology) [24].

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 43

As we failed to run the softwares of Falcon and qTESLA on our experiment
computer (but a public evaluation on the round1 submissions suggests that Fal-
con and qTESLA are probably much slower than Dilithium), we only compare
the sizes of those schemes at all parameter choices in Table 4. Note that the
qTESLA team had dropped all the parameter sets of qTESLA-round2, the fig-
ures in Table 4 corresponds to their new choices of parameter sets.

Table 4. Comparison between ΠSIG and NIST Round2 lattice-based signatures

NIST
category

Schemes |pk|
(Bytes)

|sk|
(Bytes)

|σ|
(Bytes)

Problems Methodology

I Falcon-512 897 4097 690 NTRU FDH-like

qTESLA-1024 14 880 5 184 2 592 RLWE FS-like

Dilithium-1024 1184 2800 2044 MLWE, MSIS

ΠSIG-1024 1056 2448 1852 AMLWE, AMSIS

II Dilithium-1280 1472 3504 2701 MLWE, MSIS FS-like

ΠSIG-1280 1312 3376 2445 AMLWE, AMSIS

III Falcon-1024 1793 8193 1330 NTRU FDH-like

qTESLA-2048 38 432 12 352 5 664 RLWE FS-like

Dilithium-1536 1760 3856 3366 MLWE, MSIS

ΠSIG-1536 1568 3888 3046 AMLWE, AMSIS

1.3 Organizations

Section 2 gives the preliminaries and background information. Section 3 describes
the KEM scheme from AMLWE. Section 4 presents the digital signature scheme
from AMLWE and AMSIS. Section 5 analyzes the concrete hardness of AMLWE
and AMSIS by adapting the best known attacks.

2 Preliminaries

2.1 Notation

We use κ to denote the security parameter. For a real number x ∈ R, �x� denotes
the closest integer to x (with ties being rounded down, i.e., �0.5� = 0). We denote
by R the ring R = Z[X]/(Xn + 1) and by Rq the ring Rq = Zq[X]/(Xn + 1),
where n is a power of 2 so that Xn + 1 is a cyclotomic polynomial. For any
positive integer η, Sη denotes the set of ring elements of R that each coefficient
is taken from {−η,−η + 1 . . . , η}. The regular font letters (e.g., a, b) represent
elements in R or Rq (including elements in Z or Zq), and bold lower-case letters
(e.g., a, b) denote vectors with coefficients in R or Rq. By default, all vectors

44 J. Zhang et al.

will be column vectors. Bold upper-case letters (e.g., A, B) represent matrices.
We denote by aT and AT the transposes of vector a and matrix A respectively.

We denote by x
$←− D sampling x according to a distribution D and by x

$←− S
denote sampling x from a set S uniformly at random. For two bit-strings s and
t, s‖t denotes the concatenation of s and t. We use logb to denote the logarithm
function in base b (e.g., 2 or natural constant e) and log to represent loge. We
say that a function f : N → [0, 1] is negligible, if for every positive c and all
sufficiently large κ it holds that f(κ) < 1/κc. We denote by negl : N → [0, 1]
an (unspecified) negligible function. We say that f is overwhelming if 1 − f is
negligible.

2.2 Definitions

Modular Reductions. For an even positive integer α, we define r′ = r mod± α
as the unique element in the range (−α

2 , α
2] such that r′ = r mod α. For an odd

positive integer α, we define r′ = r mod± α as the unique element in the range
[−α − 1

2 , α − 1
2] such that r′ = r mod α. For any positive integer α, we define

r′ = r mod+ α as the unique element in the range [0, α) such that r′ = r mod α.
When the exact representation is not important, we simply write r mod α.

Sizes of Elements. For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|.
The
∞ and
2 norms of a ring element w = w0 + w1X + · · · + wn−1X

n−1 ∈ R
are defined as follows:

‖w‖∞ = max
i

‖wi‖∞, ‖w‖ =
√

‖w0‖2∞ + . . . + ‖wn−1‖2∞.

Similarly, for w = (w1, . . . , wk) ∈ Rk, we define

‖w‖∞ = max
i

‖wi‖∞, ‖w‖ =
√

‖w1‖2 + . . . + ‖wk‖2.

Modulus Switching. For any positive integers p, q, we define the modulus
switching function �·�q→p as:

�x�q→p = �(p/q) · x� mod+ p.

It is easy to show that for any x ∈ Zq and p < q ∈ N, x′ = ��x�q→p�p→q is an
element close to x, i.e,

|x′ − x mod± q| ≤
⌈

q

2p

⌋
.

When �·�q→p is used to a ring element x ∈ Rq or a vector x ∈ Rk
q , the procedure

is applied to each coefficient individually.

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 45

Binomial Distribution. The centered binomial distribution Bη with some pos-
itive integer η is defined as follows:

Bη =

{
η∑

i=1

(ai − bi) : (a1, . . . , aη, b1, . . . , bη) $←− {0, 1}2η

}

When we write that sampling a polynomial g
$←− Bη or a vector of such polyno-

mials g $←− Bη, we mean that sampling each coefficient from Bη individually.

2.3 High/Low Order Bits and Hints

Our signature scheme will adopt several simple algorithms proposed in [12] to
extract the “higher-order” bits and “lower-order” bits from elements in Zq. The
goal is that given an arbitrary element r ∈ Zq and another small element z ∈
Zq, we would like to recover the higher order bits of r + z without needing
to store z. Ducas et al. [12] define algorithms that take r, z and generate a
1-bit hint h that allows one to compute the higher order bits of r + z just
using r and h. They consider two different ways which break up elements in Zq

into their “higher-order” bits and “lower-order” bits. The related algorithms are
described in Algorithms 1–6. We refer the reader to [12] for the illustration of
the algorithms.

The following lemmas claim some crucial properties of the above supporting
algorithms, which are necessary for the correctness and security of our signature
scheme. We refer to [12] for their proofs.

Lemma 1. Let q and α be positive integers such that q > 2α, q mod α = 1 and
α is even. Suppose that r, z are vectors of elements in Rq, where ‖z‖∞ ≤ α/2.
Let h,h′be vectors of bits. Then, algorithms HighBitsq, MakeHintq and UseHintq
satisfy the following properties:

– UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).
– Let v1 = UseHintq(h, r, α). Then ‖r − v1 · α‖∞ ≤ α + 1. Furthermore, if the

number of 1’s in h is at most ω, then all except for at most ω coefficients of
r−v1 ·α will have magnitude at most α/2 after centered reduction modulo q.

– For any h,h′, if UseHintq(h, r, α) = UseHintq(h′, r, α), then h = h′.

Lemma 2. If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2 − β, then we have:

HighBitsq(r, α) = HighBitsq(r + s, α).

3 An Improved KEM from AMLWE

Our scheme is based on the key encapsulation mechanism in [6,22]. The main
difference is that our scheme uses a (slightly) different hardness problem, which
gives us a flexible way to set the parameters for both performance and security.

46 J. Zhang et al.

Algorithm 1: Power2Roundq(r, d)

1 r := r mod+ q;

2 r0 := r mod± 2d;

3 r1 := (r − r0)/2d;
4 return (r1, r0);

Algorithm 2: Decomposeq(r, α)

1 r := r mod+ q;
2 r0 := r mod± α;
3 if r − r0 = q − 1 then
4 r1 := 0;
5 r0 := r0 − 1;

6 else
7 r1 := (r − r0)/α;
8 end
9 return (r1, r0);

Algorithm 3: HighBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α);

2 return r1;

Algorithm 4: LowBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α);

2 return r0;

Algorithm 5: MakeHintq(z, r, α)

1 r1 := HighBitsq(r, α);

2 v1 := HighBitsq(r + z, α);

3 if r1 �= v1 then
4 h := 1;
5 else
6 h := 0;
7 end
8 return h;

3.1 Design Rationale

For simplicity and clarity, we explain the core idea using the (A)LWE-based
public-key encryption (PKE) scheme as an example. Note that most LWE-based

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 47

Algorithm 6: UseHintq(h, r, α)

1 k := (q − 1)/α;
2 (r1, r0) := Decomposeq(r, α);

3 if h = 1 and r0 > 0 then
4 r1 := (r1 + 1) mod+ k;
5 end
6 if h = 1 and r0 ≤ 0 then
7 r1 := (r1 − 1) mod+ k;
8 end
9 return r1;

PKE schemes mainly follow the framework in [22] up to the choices of parameters
and noise distributions. Let n, q ∈ Z be positive integers, and let χα ⊂ Z be a
discrete Gaussian distribution with standard variance α ∈ R. The LWE-based
PKE works as follows:

– Key generation: randomly choose A $←− Z
n×n
q , s, e $←− χn

α and compute
b = As + e. Return the public key pk = (A,b) and secret key sk = s.

– Encryption: given the public key pk = (A,b) and a plaintext μ ∈ {0, 1},

randomly choose r,x1
$←− χn

α, x2
$←− χα and compute c1 = AT r + x1, c2 =

bT r + x2 + μ · � q
2�. Finally, return the ciphertext C = (c1, c2).

– Decryption: given the secret key sk = s and a ciphertext C = (c1, c2),
compute z = c2 − sT c1 and output �z · 2

q � mod 2 as the decryption result.

For a honestly generated ciphertext C = (c1, c2) that encrypts plaintext
μ ∈ {0, 1}, we have:

z = c2 − sT c1 = μ ·
⌈q

2

⌋
+ eT r − sTx1 + x2︸ ︷︷ ︸

noise e′

. (1)

Thus, the decryption algorithm is correct as long as |e′| < q
4 . Since |x2| �

|eT r − sTx1|, the magnitude of |e′| mainly depends on |eT r − sTx1|. That is,
the LWE secret (s, r) and the noise (e,x1) contribute almost equally to the
magnitude of |e′|. Moreover, for a fixed n the expected magnitude of |eT r − sTx1|
is a monotonically increasing function of α:

larger α ⇒ larger |eT r − sTx1| ⇒ larger |e′|.
Let ν be the probability that the decryption algorithm fails, and let λ be the
complexity of solving the underlying LWE problem. Ideally, for a targeted secu-
rity strength κ, we hope that ν = 2−κ and λ = 2κ, since a large ν (i.e., ν > 2−κ)
will sacrifice the overall security, and a large λ (i.e., λ > 2κ) may compromise
the overall performance. Since both ν and λ are strongly related to the ratio α/q
of the Gaussian parameter α and the modulus q, it is hard to come up with an
appropriate choice of (α, q) to simultaneously achieve the best of the two worlds.

48 J. Zhang et al.

To obtain smaller public keys and ciphertexts (and thus improve the commu-
nication efficiency), many schemes use the modulus switching technique [8,10]
to compress public keys and ciphertexts. We refer to the following scheme that
adopts modulus switching technique to compress public keys and ciphertexts,
where p1, p2, p3 ∈ Z are parameters for compression (p1 for the public key and
p2, p3 for ciphertexts).

– Key generation: pick A $←− Z
n×n
q and s, e $←− χn

α and compute b = As + e.
Then, return the public key pk = (A, b̄ = �b�q→p1

) and the secret key sk = s.
– Encryption: given the public key pk = (A, b̄) and a plaintext μ ∈ {0, 1},

randomly choose r,x1
$←− χn

α, x2
$←− χα, and compute c1 = AT r + x1 and

c2 = �b̄�T
p1→qr+x2 +μ · � q

2�. Return the ciphertext C = (c̄1 = �c1�q→p2
, c̄2 =

�c2�q→p3
).

– Decryption: given the secret key sk = s and a ciphertext C = (c̄1, c̄2),
compute z = �c̄2�p3→q − sT �c̄1�p2→q and output �z�q→2 = �z · 2

q � mod 2 as
the decryption result.

Let

ē = ��b�q→p1
�p1→q − b, x̄1 = ��c1�q→p2

�p2→q − c1, x̄2 = ��c2�q→p3
�p3→q − c2.

It is easy to verify ‖ē‖∞ ≤ q
2p1

, ‖x̄1‖∞ ≤ q
2p2

, and |x̄2| ≤ q
2p3

. For any valid
ciphertext C = (c̄1, c̄2) that encrypts μ ∈ {0, 1} we have

z = �c̄2�p3→q − sT �c̄1�p2→q

= μ · � q
2� + (e + ē)T r − sT (x1 + x̄1) + (x2 + x̄2)︸ ︷︷ ︸

noise e′

(2)

Apparently, the smaller values for p1, p2, p3 the better compression rate is
achieved for public keys and ciphertexts. At the same time, however, by the def-
initions of ē, x̄1, x̄2 we know that smaller p1, p2, p3 also result in a larger noise e′.
Notice that when p1, p2, p3 are much smaller than q, we will have ‖ē‖∞ ‖e‖∞,
‖x̄1‖∞ ‖x1‖∞ and |x̄2| |x2|, which further leads to asymmetric roles of
(e,x1, x2) and (s, r) in contributing to the resulting size of |e′|, i.e., for spe-
cific (p1, p2, p3) decreasing (resp., increasing) ‖s‖∞ or ‖r‖∞ would significantly
reducing (resp., enlarging) the noise |e′|, and in contrast, changing the size of
‖e‖∞, ‖x1‖∞ and |x2| would not result in substantial change to |e′|.

The asymmetry observed above motivates the design of our ALWE-based
PKE, which uses different noise distributions χα1 and χα2 (i.e., same distribution
with different parameters α1 and α2) for the secrets (i.e., s and r) and the errors
(i.e., e,x1, x2), respectively.

– Key generation: pick A $←− Z
n×n
q , s $←− χn

α1
and e $←− χn

α2
, compute b =

As + e. Then, return the public key pk = (A, b̄ = �b�q→p1
) and the secret

key sk = s.

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 49

– Encryption: given the public key pk = (A, b̄) and a plaintext μ ∈ {0, 1},

randomly choose r $←− χn
α1

,x1
$←− χn

α2
, x2

$←− χα2 , compute c1 = AT r+x1 and
c2 = �b�T

p1→qr + x2 + μ · � q
2�, and return the ciphertext C = (c̄1 = �c1�q→p2

and c̄2 = �c2�q→p3
).

– Decryption: Given the secret key sk = s and the ciphertext C = (c̄1, c̄2),
compute z = �c̄2�p3→q − sT �c̄1�p2→q and output �z�q→2 = �z · 2

q � mod 2 as
the decryption result.

Similarly, for ciphertext C = (c̄1, c̄2) we have the same z and e′ as defined in (2),
where the difference is that now ‖s‖∞ and ‖r‖∞ are determined by α1, and that
‖e‖∞, ‖x1‖∞ and |x2| are determined by α2. Intuitively, we wish to use small
α1 in order to keep |e′| small, and at the same time choose relatively large α2 to
remedy the potential security loss due to the choice of a small α1.

While the intuition seems reasonable, it does not shed light on the choices of
parameters, in particular, how parameters α1 and α2 (jointly) affect security. To
this end, we consider the best known attacks and their variants against (A)LWE
problems, and obtain the following conclusions: Let χα1 and χα2 be subgaus-
sians with standard variances α1, α2 ∈ R respectively, then we have the following
approximate relation between the hardness of ALWE and LWE: the hardness of
ALWE with subgaussian standard variances α1, α2 ∈ R is polynomially equiva-
lent to the hardness of LWE with subgaussian standard variance

√
α1α2. Clearly,

the equivalence is trivial for α1 = α2. This confirms the feasibility of our idea:
use a small α1 to keep the probability ν of decryption failures small while pick
a relatively larger α2 remain the security of the resulting PKE scheme.

The above idea can be naturally generalized to the schemes based on the
ring and module versions of LWE. Actually, we will use AMLWE for achieving
a better trade-off between computational and communication costs.

3.2 The Construction

We now formally describe a CCA-secure KEM from AMLWE (and AMLWE-R).
For ease of implementation, we will use centered binomial distributions instead of
Gaussian distributions as in [3,6]. We first give an intermediate IND-CPA secure
PKE, which is then transformed into an IND-CCA secure KEM by applying a
tweaked Fujisaki-Okamoto (FO) transformation [14,18].

An IND-CPA Secure PKE. Let n, q, k, η1, η2, dt, du, dv be positive integers.
Let H : {0, 1}n → Rk×k

q be a hash function, which is modeled as a random
oracle. The PKE scheme ΠPKE consists of three algorithms (KeyGen,Enc,Dec):

– ΠPKE.KeyGen(κ): randomly choose ρ
$←− {0, 1}n, s $←− Bk

η1
, e $←− Bk

η2
, compute

A = H(ρ) ∈ Rk×k
q , t = As + e ∈ Rk

q and t̄ = �t�q→2dt . Then, return the
public key pk = (ρ, t̄) and the secret key sk = s.

50 J. Zhang et al.

– ΠPKE.Enc(pk, μ): given the public key pk = (ρ, t̄) and a plaintext μ ∈ R2,

randomly choose r $←− Bk
η1

, e1
$←− Bk

η2
, e2

$←− Bη2 , compute A = H(ρ), u =
AT r + e1, v = �t̄�T

2dt→qr + e2, and return the ciphertext

C = (ū = �u�q→2du , v̄ = �v + μ · �q

2
��q→2dv).

– ΠPKE.Dec(sk, C): given the secret key sk = s and a ciphertext C = (ū, v̄),
compute z = �v̄�2dv→q − sT �ū�2du→q, output �z�q→2 = �z · 2

q � mod 2.

Let ct ∈ Rk satisfy that

�t̄�2dt→q = ��As + e�q→2dt �2dt→q = As + e − ct.

Let cu ∈ Rk satisfy that

�ū�2du→q = ��AT r + e1�q→2du �2du→q = AT r + e1 − cu.

Let cv ∈ R satisfy that

�v̄�2dv→q = ���t̄�T
2dt→qr + e2 + �q/2 · μ�q→2dv �2dv→q

= �t̄�T
2dt→qr + e2 + �q/2� · μ − cv

= (As + e − ct)T r + e2 + �q/2� · μ − cv

= (As + e)T r + e2 + �q/2� · μ − cv − cT
t r.

Using the above equations, we have

z = �v̄�2dv→q − sT �ū�2du→q

= eT r + e2 − cv − cT
t r − sTe1 + sT cu︸ ︷︷ ︸

= w

+�q/2� · μ

= w + �q/2� · μ.

It is easy to check that for any odd number q, we have that μ = �z�q→2 holds
as long as ‖w‖∞ < �q/4�. In Sect. 3.4, we will choose the parameters such that
the decryption algorithm succeeds with overwhelming probability.

IND-CCA Secure KEM. Let G : {0, 1}∗ → {0, 1}n, and H : {0, 1}∗ →
{0, 1}n×{0, 1}n be two hash functions, which are modeled as random oracles. By
applying a slightly tweaked Fujisaki-Okamoto (FO) transformation [14,18], we
can transform the above IND-CPA secure PKE ΠPKE into an IND-CCA secure
KEM (with implicit rejection) ΠKEM = (KeyGen,Encap,Decap) as follows.

– ΠKEM.KeyGen(κ): choose z
$←− {0, 1}n, compute (pk′, sk′) = ΠPKE.

KeyGen(κ). Then, return the public key pk = pk′ and the secret key
sk = (pk′, sk′, z).

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 51

– ΠKEM.Encap(pk): given the public key pk, randomly choose μ
$←− {0, 1}n,

compute μ′ = H(μ), (K̄, r) = G(μ′‖H(pk)) C = ΠPKE.Enc(pk, μ′; r) and
K = H(K̄‖H(C)), where the notation ΠPKE.Enc(pk, μ′; r) denotes running
the algorithm ΠPKE.Enc(pk, μ′) with fixed randomness r. Finally, return the
ciphertext C and the encapsulated key K.

– ΠKEM.Decap(sk, C): given the secret key sk = (pk′, sk′, z) and a cipher-
text C, compute μ′ = ΠKEM.Dec(sk′, C) and (K̄ ′, r′) = G(μ′‖H(pk′)), C ′ =
ΠKEM.Enc(pk, μ′; r′). If C = C ′, return K = H(K̄ ′‖H(C)), else return
H(z‖H(C)).

3.3 Provable Security

In the full version [32], we will show that under the hardness of the AMLWE
problem and its rounding variant AMLWE-R (which is needed for compressing
the public key, see Appendix A), our scheme ΠPKE is provably IND-CPA secure.
Formally, we have the following theorem.

Theorem 1. Let H : {0, 1}n → Rk×k
q be a random oracle. If both problems

AMLWEn,q,k,k,η1,η2 and AMLWE-Rn,q,2dt ,k,k,η1,η2
are hard, then the scheme

ΠPKE is IND-CPA secure.

Since ΠKEM is obtained by applying a slightly tweaked Fujisaki-Okamoto
(FO) transformation [14,18] to the PKE scheme ΠPKE, given the results in
[6,18] and Theorem 1, we have the following theorem.

Theorem 2. Under the AMLWE assumption and the AMLWE-R assumption,
ΠKEM is IND-CCA secure in the random oracle model.

Notice that the algorithm Decap will always return a random “session key”
even if the check fails (i.e., implicit rejection). Furthermore, the paper [20] showed
that if the underlying PKE is IND-CPA secure, then the resulting KEM with
implicit rejection obtained by using the FO transformation is also IND-CCA
secure in the quantum random oracle model (QROM). Given the results in [20]
and Theorem 1, we have the following theorem.

Theorem 3. Under the AMLWE assumption and the AMLWE-R assumption,
ΠKEM is IND-CCA secure in the QROM.

3.4 Choices of Parameters

In Table 5, we give three sets of parameters (namely, ΠKEM-512, ΠKEM-768 and
ΠKEM-1024) for ΠKEM, aiming at providing quantum security of at least 80,
128 and 192 bits, respectively. These parameters are carefully chosen such that
the decryption failure probabilities (i.e., 2−82, 2−128 and 2−211, respectively) are
commensurate with the respective targeted security strengths. A concrete esti-
mation of the security strength provided by the parameter sets will be given

52 J. Zhang et al.

Table 5. Parameters sets for ΠKEM

Parameters (n, k, q) (η1, η2) (dt, du, dv) |pk| |sk| |C| |ss| Dec. Fail. Quant. Sec.

ΠKEM-512 (256, 2, 7681) (2, 12) (10, 9, 3) 672 1568 672 32 2−82 100

ΠKEM-512† (256, 2, 3329) (1, 4) (−, 8, 4) 800 1632 640 32 2−82 99

ΠKEM-768 (256, 3, 7681) (1, 4) (9, 9, 4) 896 2208 992 32 2−128 147

ΠKEM-768† (256, 3, 3329) (1, 2) (−, 9, 3) 1184 2400 960 32 2−130 157

ΠKEM-1024 (512, 2, 12289) (2, 8) (11, 10, 4) 1472 3392 1536 64 2−211 213

ΠKEM-1024† (512, 2, 7681) (1, 4) (−, 9, 5) 1728 3648 1472 64 2−198 206

in Sect. 5. Among them, ΠKEM-768 is the recommended parameter set. By the
quantum searching algorithm [17], 2κ-bit randomness/session key can only pro-
vide at most κ security. Even if the Grover algorithm cannot provide a quadratic
speedup over classical algorithms in practice, we still set ΠKEM-1024 to support
an encryption of 64-bytes (512-bit) randomness/session key, aiming at providing
a matching security strength, say, more than 210-bit estimated quantum secu-
rity. Note that ΠKEM-512 and ΠKEM-768 only support an encryption of 32-byte
(256-bit) session key.

We implemented our ΠKEM on a 64-bit Ubuntu 14.4 LTS ThinkCenter desk-
top (equipped with Intel Core-i7 4790 3.6 GHz CPU and 4 GB memory). Partic-
ularly, the codes are mainly written using the C language, with partially opti-
mized codes using AVX2 instructions to speedup some basic operations such as
NTT operation and vector multiplications. The average number of CPU cycles
(averaged over 10000 times) for running each algorithm is given in Table 1.

4 An Improved Signature from AMLWE and AMSIS

Our signature scheme is based on the “Fiat-Shamir with Aborts” technique [23],
and bears most resemblance to Dilithium in [12]. The main difference is that
our scheme uses the asymmetric MLWE and MSIS problems, which provides a
flexible way to make a better trade-off between performance and security.

4.1 Design Rationale

Several lattice-based signature schemes were obtained by applying the Fiat-
Shamir heuristic [13] to three-move identification schemes. For any positive
integer n and q, let R = Z[x]/(xn + 1) (resp., Rq = Zq[x]/(xn + 1)). Let
H : {0, 1}∗ → R2 be a hash function. Let k,
, η be positive integers, and γ, β > 0
be reals. We first consider an identification protocol between two users A and
B based on the MSIS∞

n,q,k,�,β problem. Formally, user A owns a pair of public
key pk = (A, t = Ax) ∈ Rk×�

q × Rk
q and secret key sk = x ∈ R�

q. In order to
convince another user B (who knows the public key pk) of his ownership of sk,
A and B can execute the following protocol: (1) A first chooses a vector y ∈ R�

from some distribution, and sends w = Ay to user B; (2) B randomly chooses

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 53

a bit c ∈ Rq, and sends it as a challenge to A; (3) A computes z := y + cx and
sends it back to B; B will accept the response z by check if Az = w + ct.

For the soundness (i.e., user A cannot cheat user B), B also has to make
sure that β2 = ‖z‖∞ is sufficiently small (to ensure that the MSIS∞

n,q,k,�,β prob-
lem is hard), otherwise anyone can easily complete the proof by solving a lin-
ear equation. Moreover, we require that β1 = ‖x‖∞ is sufficiently small and
‖y‖∞ ‖x‖∞ (and thus β2 β1) holds to prevent user B from recovering
the secret x from the public key pk or the response z. Typically, we should
require β2/β1 > 2ω(log κ), where κ is the security parameter. This means that
the identification protocol as well as its derived signature from the Fiat-Shamir
heuristic will have a very large parameter size. To solve this problem, Lyuba-
shevsky [23,24] introduce the rejection sampling, which allows A to abort and
restart the protocol (by choosing another y) if he thinks z might leak the infor-
mation of x. This technique could greatly reduce the size of z (since it allows
to set β2/β1 = poly(κ)), but the cost is painful for an interactive identification
protocol. Fortunately, this technique will only increase the computation time of
the signer when we transform the identification protocol into a signature scheme.

For any positive integer η, Sη denotes the set of elements of R that each
coefficient is taken from {−η,−η + 1 . . . , η}. By the Fiat-Shamir heuristic, one
can construct a signature scheme from the MSIS problem as follows:

– Key generation: randomly choose A $←− Rk×�
q ,x $←− S�

η, and compute t =
Ax. Return the public key pk = (A, t) and secret key sk = (x, pk).

– Signing: given the secret key sk = (x, pk) and a message μ ∈ {0, 1}∗,

1. randomly choose y $←− S�
γ−1;

2. compute w = Ay and c = H(w‖μ);
3. compute z = y + cx;
4. If ‖z‖∞ ≥ γ − β, restart the computation from step 1), where β is a

bound such that ‖cx‖∞ ≤ β for all possible c and x. Otherwise, return
the signature σ = (z, c).

– Verification: given the public key pk = (A, t), a message μ ∈ {0, 1}∗ and a
signature σ = (z, c), return 1 if ‖z‖∞ < γ − β and c = H(Az − ct‖μ), and 0
otherwise.

Informally, we require the MSIS∞
n,q,k,�,η problem to be hard for the security of

the secret key (i.e., it is computationally infeasible to compute sk from pk). More-
over, we also require the MSIS∞

n,q,k,�,2γ problem to be hard for the unforgeability
of signatures (i.e., it is computationally infeasible to forge a valid signature).
Since ‖cx‖∞ ≤ β, for any (c,x) and z output by the signing algorithm there
always exists a y ∈ S�

γ such that z = y+cx, which guarantees that the signature
will not leak the information of the secret key. In terms of efficiency, the signing

algorithm will repeat about
(

2(γ − β)− 1
2γ − 1

)−n·�
times to output a signature, and

the signature size is about n
�log2(2(γ − β) − 1)� + n. Clearly, we wish to use a
small
 for better efficiency, but the hardness of the underlying MSIS problems
require a relatively large
.

54 J. Zhang et al.

To mediate the above conflict, one can use the MLWE problem, which can
be seen as a special MSIS problem, to reduce the size of the key and signature.
Formally, we can obtain the following improved signature scheme:

– Key generation: randomly choose A $←− Rk×�
q , and s1

$←− S�
η, s2

$←− Sk
η ,

compute t = As1 + s2. Return the public key pk = (A, t) and secret key
sk = (s1, s2, pk).

– Signing: given the secret key sk = (s1, s2, pk) and a message μ ∈ {0, 1}∗,

1. randomly choose y $←− S�+k
γ−1;

2. compute w = (A‖Ik)y and c = H(w‖μ);

3. compute z = y + c

(
s1
s2

)
;

4. If ‖z‖∞ ≥ γ − β, restart the computation from step (1), where β is a

bound such that
∥∥
∥∥c

(
s1
s2

)∥∥
∥∥

∞
≤ β holds for all possible c, s1, s2. Otherwise,

output the signature σ = (z, c).
– Verification: given the public key pk = (A, t), a message μ ∈ {0, 1}∗ and a

signature σ = (z, c), return 1 if ‖z‖∞ < γ − β and c = H((A‖Ik)z − ct‖μ),
otherwise return 0.

Furthermore, since w = (A‖Ik)y = Ay1+y2 where y = (yT
1 ,yT

2) and γ � q,
we have that the higher bits of (each coefficient of) w is almost determined by
high order bits of (the corresponding coefficient of) Ay1. This fact has been uti-
lized by [5,12] to compress the signature size. Formally, denote HighBits(z, 2γ2)
and LowBits(z, 2γ2) be polynomial vector defined by the high order bits and low
order bits of a polynomial vector z ∈ Rk

q related to a parameter γ2. We can
obtain the following signature scheme:

– Key generation: randomly choose A $←− Rk×�
q , and s1

$←− S�
η, s2

$←− Sk
η ,

compute t = As1 + s2. Return the public key pk = (A, t) and secret key
sk = (s1, s2, pk).

– Signing: given the secret key sk = (s1, s2, pk) and a message μ ∈ {0, 1}∗,

1. randomly choose y $←− S�
γ1−1;

2. compute w = Ay and
c = H(HighBits(w, 2γ2)‖μ);

3. compute z = y + cs1;
4. If ‖z‖∞ ≥ γ1 − β or LowBits(Ay − cs2, 2γ2) ≥ γ2 − β, restart the com-

putation from step 1), where β is a bound such that ‖cs1‖∞, ‖cs2‖∞ ≤ β
hold for all possible c, s1, s2. Otherwise, output the signature σ = (z, c).

– Verification: given the public key pk = (A, t), a message μ ∈ {0, 1}∗ and
a signature σ = (z, c), return 1 if ‖z‖∞ < γ1 − β and c = H(HighBits(Az −
ct, 2γ2)‖μ), otherwise return 0.

Essentially, the checks in step (4) are used to ensure that (1) the signature
(z, c) will not leak the information of s1 and s2; and (2) HighBits(Az − ct, 2γ2) =
HighBits(Ay − cs2, 2γ2) = HighBits(w, 2γ2) (note that w = Ay = Ay − cs2 +

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 55

cs2, LowBits(Ay − cs2, 2γ2) < γ2 − β and ‖cs2‖∞ ≤ β). By setting γ1 = 2γ2, we
require the MLWEn,k,�,q,η problem and the (variant of) MSIS∞

n,k,(�+k+1),q,2γ1+2

problem to be hard to ensure the security of the secret key and the unforgeability
of the signature, respectively.

By a careful examination on the above scheme, one can find that the compu-
tational efficiency of the signing algorithm is determined by the expected number
of repetitions in step (4):

(
2(γ1 − β) − 1

2γ1 − 1

)−n·�

︸ ︷︷ ︸
=N1

·
(

2(γ2 − β) − 1
2γ2 − 1

)−n·k

︸ ︷︷ ︸
=N2

,

where N1 and N2 are determined by the first and second checks in step (4),
respectively. Clearly, it is possible to modify N1 and N2 while keeping the total
number of repetitions N = N1 ·N2 unchanged. Note that the size of the signature
is related to γ1 and is irrelevant to γ2, which means that a shorter signature can
be obtained by using a smaller γ1. However, simply using a smaller γ1 will also
give a bigger N1, and thus a worse computational efficiency. In order to obtain a
short signature size without (significantly) affecting the computational efficiency:

– We use the AMLWE problem for the security of the secret key, which allows us
to use a smaller γ1 by reducing ‖s1‖∞ (and thus β = ‖cs1‖∞ in the expression
of N1);

– We use the AMSIS problem for the unforgeability of the signatures, which
further allows us to use a smaller γ1 by increasing γ2 to keep N = N1 · N2

unchanged.

Note that reducing ‖s1‖∞ (by choosing a smaller η1) may weaken the hardness
of the underlying AMLWE problem (if we do not change other parameters).
We choose to increase η2 (and thus ‖s2‖∞) to remain the hardness. Similarly,
increasing γ2 will weaken the hardness of the underlying AMSIS problem, and
we choose to reduce γ1 to remain the hardness. Both strategies crucially rely on
the asymmetries of the underlying problems.

4.2 The Construction

Let n, k,
, q, η1, η2, β1, β2, γ1, γ2, ω ∈ Z be positive integers. Let R = Z[x]/(xn +
1) and Rq = Zq[x]/(xn + 1). Denote B60 as the set of elements of R that have
60 coefficients are either −1 or 1 and the rest are 0, and |B60| = 260 · (n

60

)
. When

n = 256, |B60| > 2256. Let H1 : {0, 1}256 → Rk×�
q ,H2 : {0, 1}∗ → {0, 1}384,

H3 : {0, 1}∗ → S�
γ1−1 and H4 : {0, 1}∗ → B60 be four hash functions. We now

present the description of our scheme ΠSIG = (KeyGen, Sign,Verify):

– ΠSIG.KeyGen(κ): first randomly choose ρ,K
$←− {0, 1}256, s1

$←− S�
η1

, s2
$←−

Sk
η2

. Then, compute A = H1(ρ) ∈ Rk×�
q , t = As1 + s2 ∈ Rk

q , (t1, t0) =
Power2Roundq(t, d) and tr = H2(ρ‖t1) ∈ {0, 1}384. Finally, return the public
key pk = (ρ, t1) and secret key sk = (ρ,K, tr , s1, s2, t0).

56 J. Zhang et al.

– ΠSIG.Sign(sk,M): given sk = (ρ,K, tr , s1, s2, t0) and a message M ∈ {0, 1}∗,
first compute A = H1(ρ) ∈ Rk×�

q , μ = H2(tr‖M) ∈ {0, 1}384, and set ctr = 0.
Then, perform the following computations:
1. y = H3(K‖μ‖ctr) ∈ S�

γ1−1 and w = Ay;
2. w1 = HighBitsq(w, 2γ2) and c = H4(μ‖w1) ∈ B60;
3. z = y + cs1 and u = w − cs2;
4. (r1, r0) = Decomposeq(u, 2γ2);
5. if ‖z‖∞ ≥ γ1 − β1 or ‖r0‖∞ ≥ γ2 − β2 or r1 �= w1, then set ctr = ctr + 1

and restart the computation from step (1);
6. compute v = ct0 and h = MakeHintq(−v,u + v, 2γ2);
7. if ‖v‖∞ ≥ γ2 or the number of 1’s in h is greater than ω, then set

ctr = ctr + 1 and restart the computation from step 1);
8. return the signature σ = (z,h, c).

– ΠSIG.Verify(pk,M, σ): given the public key pk = (ρ, t1), a message M ∈
{0, 1}∗ and a signature σ = (z,h, c), first compute A = H1(ρ) ∈ Rk×�

q , μ =
H2(H2(pk)‖M) ∈ {0, 1}384. Let u = Az − ct1 · 2d,w′

1 = UseHintsq(h,u, 2γ2)
and c′ = H4(μ‖w′

1). Finally, return 1 if ‖z‖∞ < γ1−β1, c = c′ and the number
of 1’s in h is ≤ ω, otherwise return 0.

We note that the hash function H3 is basically used to make the signing
algorithm Sign deterministic, which is needed for a (slightly) tighter security
proof in the quantum random oracle model. One can remove H3 by directly
choosing y $←− S�

γ1−1 at random, and obtain a probabilistic signing algorithm.
We also note that the hash function H4 can be constructed by using an extendable
output function such as SHAKE-256 [29] and a so-called “inside-out” version of
Fisher-Yates shuffle algorithm [21]. The detailed constructions of hash functions
H3 and H4 can be found in [12].

Correctness. Note that if ‖ct0‖∞ < γ2, by Lemma 1 we have UseHintq(h,w−
cs2 + ct0, 2γ2) = HighBitsq(w − cs2, 2γ2). Since w = Ay and t = As1 + s2, we
have that

w − cs2 = Ay − cs2 = A(z − cs1) − cs2 = Az − ct,
w − cs2 + ct0 = Az − ct1 · 2d,

where t = t1 · 2d + t0. Therefore, the verification algorithm computes

UseHintq(h,Az − ct1 · 2d, 2γ2) = HighBitsq(w − cs2, 2γ2).

As the signing algorithm checks that r1 = w1, this is equivalent to

HighBitsq(w − cs2, 2γ2) = HighBitsq(w, 2γ2).

Hence, the w1 computed by the verification algorithm is the same as that of the
signing algorithm, and thus the verification algorithm will always return 1.

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 57

Number of Repetitions. Since our signature scheme uses the rejection sam-
pling [23,24] to generate (z,h), the efficiency of the signing algorithm is deter-
mined by the number of repetitions that will be caused by steps (5) and (7) of
the signing algorithm. We first estimate the probability that ‖z‖∞ < γ1 − β1

holds in step (5). Assuming that ‖cs1‖∞ ≤ β1 holds, then we always have
‖z‖∞ ≤ γ1 − β1 − 1 whenever ‖y‖∞ ≤ γ1 − 2β1 − 1. The size of this range
is 2(γ1 −β1)−1. Note that each coefficient of y is chosen randomly from 2γ1 −1
possible values. That is, for a fixed cs1, each coefficient of vector z = y+ cs1 has
2γ1 − 1 possibilities. Therefore, the probability that ‖z‖∞ ≤ γ1 − β1 − 1 is

(
2(γ1 − β1) − 1

2γ1 − 1

)n·�
=

(
1 − β1

γ1 − 1/2

)n·�
≈ e−n�β1/γ1 .

Now, we estimate the probability that

‖r0‖∞ = ‖LowBitsq(w − cs2, 2γ2)‖∞ < γ2 − β2

holds in step (5). If we (heuristically) assume that each coefficient of r0 is uni-
formly distributed modulo 2γ2, the probability that ‖r0‖∞ < γ2 − β2 is

(
2(γ2 − β2) − 1

2γ2

)n·k
≈ e−nkβ2/γ2 .

By Lemma 2, if ‖cs2‖∞ ≤ β2, then ‖r0‖∞ < γ2 − β2 implies that r1 = w1.
This means that the overall probability that step (5) will not cause a repetition
is

≈ e−n(�β1/γ1+kβ2/γ2).

Finally, under our choice of parameters, the probability that step (7) of the
signing algorithm will cause a repetition is less than 1%. Thus, the expected
number of repetitions is roughly en(�β1/γ1+kβ2/γ2).

4.3 Provable Security

In the full version [32], we show that under the hardness of the AMLWE problem
and a rounding variant AMSIS-R of AMSIS (which is needed for compressing
the public key, see Appendix A), our scheme ΠSIG is provably SUF-CMA secure
in the ROM. Formally, we have the following theorem.

Theorem 4. If H1 : {0, 1}256 → Rk×�
q and H4 : {0, 1}∗ → B60 are ran-

dom oracles, the outputs of H3 : {0, 1}∗ → S�
γ1−1 are pseudo-random, and

H2 : {0, 1}∗ → {0, 1}384 is a collision-resistant hash function, then ΠSIG is
SUF-CMA secure under the AMLWEn,q,k,�,η1,η2 and AMSIS-R∞

n,q,d,k,�,4γ2+2,2γ1

assumptions.

Furthermore, under an interactive variant SelfTargetAMSIS of the AMSIS
problem (which is an asymmetric analogue of the SelfTargetMSIS problem intro-
duced by Ducas et al. [12]), we can also prove that our scheme ΠSIG is provably
SUF-CMA secure. Formally, we have that following theorem.

58 J. Zhang et al.

Theorem 5. In the quantum random oracle model (QROM), signature scheme
ΠSIG is SUF-CMA secure under the following assumptions: AMLWEn,q,k,�,η1,η2 ,
AMSIS∞

n,q,d,k,�,4γ2+2,2(γ1−β1) and SelfTargetAMSIS∞
H4,n,q,k,�1,�2,4γ2,(γ1−β1).

4.4 Choices of Parameters

In Table 6, we provide three sets of parameters (i.e., ΠSIG-1024, ΠSIG-1280 and
ΠSIG-1536) for our signature scheme ΠSIG, which provide 80-bit, 128-bit and
160-bit quantum security, respectively (corresponding to 98-bit, 141-bit and 178-
bit classical security, respectively). A concrete estimation of the security provided
by the parameter sets will be given in Sect. 5. Among them, ΠSIG-1280 is the
recommended parameter set.

Table 6. Parameters for ΠSIG (The column “Reps.” indicates the excepted number of
repetitions that the signing algorithm takes to output a valid signature)

Parameters (k, �, q, d, ω) (η1, η2) (β1, β2) (γ1, γ2) Reps. Quant. Sec.

ΠSIG-1024 (4, 3, 2021377, 13, 80) (2, 3) (120, 175) (131072, 168448) 5.86 90

ΠSIG-1280 (5, 4, 3870721, 14, 96) (2, 5) (120, 275) (131072, 322560) 7.61 128

ΠSIG-1536 (6, 5, 3870721, 14, 120) (1, 5) (60, 275) (131072, 322560) 6.67 163

Our scheme ΠSIG under the same machine configuration as in Sect. 3.4 is
implemented using standard C, where some partial optimization techniques (e.g.,
AVX2 instructions) are adopted to speedup basic operations such as NTT oper-
ation. The average CPU cycles (averaged over 10000 times) needed for running
the algorithms are given in Table 3.

5 Known Attacks Against AMLWE and AMSIS

Solvers for LWE mainly include primal attacks, dual attacks (against the under-
lying lattice problems) and direct solving algorithms such as BKW and Arora-Ge
[2]. BKW and Arora-Ge attacks need sub-exponentially (or even exponentially)
many samples, and thus they are not relevant to the public-key cryptography
scenario where only a restricted amount of samples is available. Therefore, for
analyzing and evaluating practical lattice-based cryptosystems, we typically con-
sider only primal attacks and dual attacks. Further, these two attacks, which are
the currently most relevant and effective, seem not to have additional advantages
in solving RLWE/MLWE over standard LWE. Thus, when analyzing RLWE or
MLWE based cryptosystems, one often translates RLWE/MLWE instances to
the corresponding LWE counterparts [6,12] and then applies the attacks. In
particular, one first transforms AMLWEn,q,k,�,α1,α2 into ALWEnk,q,k�,α1,α2 , and
then applies, generalizes and optimizes the LWE solving algorithms to ALWE.
Since any bounded centrally symmetric distribution can be regarded as sub-
gaussian for a certain parameter, for simplicity and without loss of generality,

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 59

we consider the case that secret vector and error vector in ALWEn,q,m,α1,α2 are
sampled from subgaussians with parameters α1 and α2 respectively. Formally,
the problem is to recover s from samples

(A,b = As + e) ∈ Z
m×n
q × Z

m
q ,

where A $←− Z
m×n
q , s ← χn

α1
and e ← χm

α2
.

In the full version [32], we will not only consider the traditional primal attack
and dual attack against ALWE, but also consider two variants of primal attack
and three variants of dual attack, which are more efficient to solve the ALWE
problem by taking into account the asymmetry of ALWE.

As for the best known attacks against (A)SIS, the BKZ lattice basis
reduction algorithm and its variants are more useful for solving the
2-norm
(A)SIS problem than the
∞-norm counterpart. Note that a solution x =
(xT

1 ,xT
2)T ∈ Z

m1+m2 to the infinity-norm ASIS instance A ∈ Z
n×(m1+m2−n)
q ,

where (In‖A)x = 0 mod q and ‖x‖∞ ≤ max(β1, β2) < q, may have ‖x‖ > q,
whose
2-norm is even larger than that of a trivial solution u = (q, 0, . . . , 0)T .
We will follow [12] to solve the
∞-norm SIS problem. Further, we can always
apply an
2-norm SIS solve to the
∞-norm SIS problem due to the relation
‖x‖∞ ≤ ‖x‖. Hereafter we refer to the above two algorithms as
∞-norm and

2-norm attacks respectively, and use them to estimate the concrete complexity
of solving ASIS∞

n,q,m1,m2,β1,β2
. As before, when analyzing RSIS or MSIS based

cryptosystems, one often translates RSIS/MSIS instances to the corresponding
SIS counterparts [12] and then applies the attacks.

In the full version [32], we will not only consider the traditional
2 norm
attack and
∞ norm attack against ASIS, but also consider one variant of
2
norm attack and two variants of
∞ norm attack, which are more efficient to
solve the ASIS problem by taking into consideration the asymmetry of ASIS.

In the following two subsections, we will summarize those attacks against our
ΠKEM and ΠSIG schemes.

5.1 Concrete Security of ΠKEM

The complexity varies for the type of attacks, the number m of samples used
and choice of b ∈ Z to run the BKZ-b algorithm. Therefore, in order to obtain an
overall security estimation sec of the ΠKEM under the three proposed parameter
settings, we enumerate all possible values of m (the number of ALWE samples)
and b to reach a conservative estimation about the computational complexity
of primal attacks and dual attacks, by using a python script (which is planned
to be uploaded together with the implementation of our schemes to a public
repository later). Tables 7 and 8 estimate the complexities of the three parameter
sets against primal attacks and dual attacks by taking the minimum of sec over
all possible values of (m, b). Taking into account the above, Table 9 shows the
overall security of ΠKEM.

60 J. Zhang et al.

Table 7. The security of ΠKEM against primal attacks

Parameters Attack
model

Traditional
(m, b, sec)

Variant 1
(m, b, sec)

Variant 2
(m, b, sec)

ΠKEM-512 Classical (761, 390, 114) (531, 405, 118) (476,385,112)

Quantum (761, 390, 103) (531, 405, 107) (476,385,102)

ΠKEM-768 Classical (1021, 640, 187) (646, 575, 168) (556,560,163)

Quantum (1021, 640, 169) (646, 575, 152) (556,560,148)

ΠKEM-1024 Classical (1526, 825, 241) (886, 835, 244) (786,815,238)

Quantum (1531, 825, 218) (886, 835, 221) (786,815,216)

Table 8. The security of ΠKEM against dual attacks

Parameters Attack

model

Traditional

(m, b, sec)

Variation 1

(m, b, sec)

Variation 2

(m, b, sec)

Variation 3

(m, b, sec)

ΠKEM-512 Classical (766, 385, 112) (736, 395, 115) (595, 380, 111) (711,380,111)

Quantum (766, 385, 102) (736, 395, 104) (596,380,100) (711,380,100)

ΠKEM-768 Classical (1021, 620, 181) (881, 570, 166) (586,555,162) (776,555,162)

Quantum (1021, 620, 164) (881, 570, 151) (586,555,147) (776,555,147)

ΠKEM-1024 Classical (1531, 810, 237) (981, 810, 239) (906, 805, 236) (1171,805,235)

Quantum (1531, 810, 215) (981, 810, 217) (906, 805, 214) (1171,805,213)

Table 9. The overall security of ΠKEM

Parameters Classical security Quantum security

ΠKEM-512 111 100

ΠKEM-768 162 147

ΠKEM-1024 235 213

Table 10. Comparison between AMLWE and MLWE under “comparable” parameters

Parameters (n, k, q, η1, η2) Classical security Quantum security η1 · η2

ΠKEM-512 (256, 2, 7681, 2, 12) 111 100 24

MLWE I (256, 2, 7681, 5, 5) 112 102 25

ΠKEM-768 (256, 3, 7681, 1, 4) 162 147 4

MLWE II (256, 3, 7681, 2, 2) 163 148 4

ΠKEM-1024 (512, 2, 12289, 2, 8) 235 213 16

MLWE III (512, 2, 12289, 4, 4) 236 214 16

Further, in order to study the complexity relations of asymmetric (M)LWE
and standard (M)LWE, we give a comparison in Table 10 between the AMLWE
and the corresponding MLWE, in terms of the parameter choices used by ΠKEM,
which shows that the hardness of AMLWE with Gaussian standard variances

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 61

α1, α2 is “comparable” to that of MLWE with Gaussian standard variance√
α1α2. We note that the comparison only focuses on security, and the cor-

responding MLWE, for the parameters given in Table 10, if ever used to build a
KEM, cannot achieve the same efficiency and correctness as our ΠKEM does.

5.2 Concrete Security of ΠSIG

As before, in order to obtain an overall security estimation of the ΠSIG under the
three proposed parameter settings against key recovery attacks, we enumerate
all possible values of m and b to reach a conservative estimation sec about the
computational complexities of primal attacks and dual attacks by using a python
script. Tables 11 and 12 estimate the complexities of the three parameter sets
of the underlying ALWE problem against primal attacks and dual attacks by
taking the minimum of sec over all possible values of (m, b).

Likewise, we enumerate all possible values of m and b to reach a conservative
estimation sec about the computational complexities of
2-norm and
∞-norm
attacks. Tables 13 and 14 estimate the complexities of the three parameter sets
of the underlying ASIS problem against
2-normal and
∞-normal attacks by
taking the minimum of sec over all possible values of (m, b).

In Table 15, we give the overall security of ΠSIG under the three parameter
settings against key recovery and forgery attacks, which takes account of both
AMLWE and AMSIS attacks.

Table 11. The security of ΠSIG against AMLWE primal attacks (The last row of the
third column has no figures, because the complexity (i.e., sec) of the traditional attack
for ΠSIG-1536 is too large, and our python script fails to compute it)

Parameters Attack

model

Traditional

(m, b, sec)

Variant 1

(m, b, sec)

Variant 2

(m, b, sec)

ΠSIG-1024 Classical (1021, 555, 162) (671, 345, 100) (741,340,99)

Quantum (1021, 555, 147) (671, 345, 91) (741,340,90)

ΠSIG-1280 Classical (1276, 1060, 310) (996, 500, 146) (896,490,143)

Quantum (1276, 1060, 281) (996, 500, 132) (896,490,129)

ΠSIG-1536 Classical - (1101, 660, 193) (1106,615,179)

Quantum - (1101, 660, 175) (1106,615,163)

Table 12. The security of ΠSIG against AMLWE dual attacks

Parameters Attack

model

Traditional

(m, b, sec)

Variant 1

(m, b, sec)

Variant 2

(m, b, sec)

Variant 3

(m, b, sec)

ΠSIG-1024 Classical (1021, 550, 160) (786,340,99) (706,340,99) (706,340,99)

Quantum (1021, 550, 145) (786,340,90) (706,340,90) (706,340,90)

ΠSIG-1280 Classical (1276, 1050, 307) (1121, 495, 144) (966,485,141) (966,485,141)

Quantum (1276, 1050, 278) (1121, 495, 131) (966,485,128) (966,485,128)

ΠSIG-1536 Classical (1535, 1535, 464) (1381, 650, 190) (1031,615,179) (1036,615,179)

Quantum (1235, 1535, 422) (1381, 650, 172) (1031,615,163) (1036,615,163)

62 J. Zhang et al.

Table 13. The security of ΠSIG against two-norm attack (for ASIS problem)

Parameters Attack
model

Traditional
(m, b, sec)

Variation 1
(m, b, sec)

ΠSIG-1024 Classical (2031, 750, 219) (2031,665,194)

Quantum (2031, 750, 198) (2031,665,176)

ΠSIG-1280 Classical (2537, 1100, 321) (2537,900,263)

Quantum (2537, 1100, 291) (2537,900,238)

ΠSIG-1536 Classical (3043, 1395, 408) (3043,1140,333)

Quantum (3043, 1395, 370) (3043,1140,302)

Table 14. The security of ΠSIG against infinity-norm attack (for ASIS problem)

Parameters Attack
model

Traditional
(m, b, sec)

Variant 1
(m, b, sec)

Variant 2
(m, b, sec)

ΠSIG-1024 Classical (1831, 385, 112) (1781, 385, 112) (1731,360,105)

Quantum (1831, 385, 102) (1781, 385, 102) (1731,360,95)

ΠSIG-1280 Classical (2387, 495, 144) (2387, 545, 159) (2187,485,141)

Quantum (2387, 495, 131) (2387, 545, 144) (2187,485,128)

ΠSIG-1536 Classical (2743, 630, 184) (2793, 690, 201) (2543,615,179)

Quantum (2743, 630, 167) (2793, 690, 183) (2543,615,163)

Table 15. The overall security of ΠSIG

Parameters Classical security Quantum security

ΠSIG-1024 99 90

ΠSIG-1280 141 128

ΠSIG-1536 179 163

Acknowledgments. We thank the anonymous reviewers for their helpful sugges-
tions. Jiang Zhang is supported by the National Natural Science Foundation of China
(Grant Nos. 61602046, 61932019), the National Key Research and Development Pro-
gram of China (Grant Nos. 2017YFB0802005, 2018YFB0804105), the Young Elite Sci-
entists Sponsorship Program by CAST (2016QNRC001), and the Opening Project
of Guangdong Provincial Key Laboratory of Data Security and Privacy Protection
(2017B030301004). Yu Yu is supported by the National Natural Science Foundation of
China (Grant No. 61872236), the National Cryptography Development Fund (Grant
No. MMJJ20170209). Shuqin Fan and Zhenfeng Zhang are supported by the National
Key Research and Development Program of China (Grant No. 2017YFB0802005).

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 63

A Definitions of Hard Problems

The AMLWE Problem (with Binomial Distributions). The decisional
AMLWE problem AMLWEn,q,k,�,η1,η2 asks to distinguish (A,b = As + e) and

uniform over Rk×�
q × Rk

q , where A $←− Rk×�
q , s $←− B�

η1
, e $←− Bk

η2
. Obviously, when

η1 = η2, the AMLWE problem is the standard MLWE problem.

The AMLWE-R Problem. The AMLWE-R problem AMLWE-Rn,q,p,k,�,η1,η2

asks to distinguish

(A, t̄ = �t�q→p,A
T s + e, �t̄�T

p→qs + e)

from (A′, �t′�q→p,u, v) ∈ R�×k
q × R�

p × Rk
q × Rq, where A,A′ $←− R�×k

q , s $←−
B�

η1
, e $←− Bk

η2
, e

$←− Bη2 , t, t
′ $←− R�

q,u
$←− Rk

q , v
$←− Rq.

The AMSIS Problem. Given a uniform matrix A ∈ R
k×(�1+�2−k)
q , the (Her-

mite Normal Form) AMSIS problem AMSIS∞
n,q,k,�1,�2,β1,β2

over ring Rq asks
to find a non-zero vector x ∈ R�1+�2

q \{0} such that (Ik‖A)x = 0 mod q,

‖x1‖∞ ≤ β1 and ‖x2‖∞ ≤ β2, where x =
(
x1

x2

)
∈ R�1+�2

q ,x1 ∈ R�1
q ,x2 ∈ R�2

q .

The AMSIS-R Problem. Given a uniformly random matrix A ∈ R
k×(�1+�2−k)
q

and a uniformly random vector t ∈ Rk
q , the (Hermite Normal Form) AMSIS-R

problem AMSIS-R∞
n,q,d,k,�1,�2,β1,β2

over ring Rq asks to find a non-zero vector
x ∈ R�1+�2+1

q \{0} such that
(
Ik‖A‖t1 · 2d

)
x = 0 mod q, ‖x1‖∞ ≤ β1, ‖x2‖∞ ≤

β2 and ‖x3‖∞ ≤ 2, where x =

⎛

⎝
x1

x2

x3

⎞

⎠ ∈ R�1+�2+1
q ,x1 ∈ R�1

q ,x2 ∈ R�2
q , x3 ∈ Rq

and (t1, t0) = Power2Roundq(t, d).

The SelfTargetAMSIS Problem. Let H : {0, 1}∗ → B60 is a (quantum) ran-
dom oracle. Given a uniformly random matrix A ∈ R

k×(�1+�2−k)
q and a uniform

vector t ∈ Rk
q , the SelfTargetAMSIS problem SelfTargetAMSIS∞

n,q,k,�1,�2,β1,β2

over ring Rq asks to find a vector y =

⎛

⎝
y1

y2

c

⎞

⎠ and μ ∈ {0, 1}∗, such that

‖y1‖∞ ≤ β1, ‖y2‖∞ ≤ β2, ‖c‖∞ ≤ 1 and H (μ, (Ik‖A‖t)y) = c holds.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting, STOC 1996, pp. 99–108. ACM, New York, NY, USA (1996)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9, 169–203 (2015)

64 J. Zhang et al.

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a
new hope. In: USENIX Security Symposium 2016 (2016)

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

5. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

6. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE European Symposium on Security and Privacy (EuroS P), pp. 353–367,
April 2018

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science, ITCS,
pp. 309–325 (2012)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 97–106, October 2011

9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing, STOC 2013, pp. 575–584. ACM, New York, NY, USA
(2013)

10. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

11. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! A practical
post-quantum public-key encryption from LWE and LWR. In: Catalano, D., De
Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 160–177. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 9

12. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York, NY, USA
(2008)

16. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learn-
ing with errors assumption. In: Proceedings of the Innovations in Computer Science
2010. Tsinghua University Press (2010)

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC
1996, pp. 212–219. ACM (1996)

18. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-319-98113-0_9
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12

Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices 65

19. IBM: IBM unveils world’s first integrated quantum computing system for com-
mercial use (2019). https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-
First-Integrated-Quantum-Computing-System-for-Commercial-Use

20. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 4

21. Knuth, D.: The Art of Computer Programming, vol. 2, 3rd edn. Addison-Wesley,
Boston (1997)

22. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

23. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

24. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

26. Micciancio, D.: On the hardness of learning with errors with binary secrets. Theory
Comput. 14(13), 1–17 (2018)

27. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. In: Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science 2004, pp. 372–381 (2004)

28. NSA National Security Agency. Cryptography today, August 2015. https://www.
nsa.gov/ia/programs/suiteb cryptography/

29. National Institute of Standards and Technology. SHA-3 standard: permutation-
based hash and extendable-output functions. FIPS PUB 202 (2015). http://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2005, pp. 84–93. ACM, New York, NY, USA (2005)

31. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

32. Zhang, J., Yu, Y., Fan, S., Zhang, Z., Yang, K.: Tweaking the asymmetry of
asymmetric-key cryptography on lattices: KEMs and signatures of smaller sizes.
Cryptology ePrint Archive, Report 2019/510 (2019)

https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-13190-5_1
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

MPSign: A Signature from Small-Secret
Middle-Product Learning with Errors

Shi Bai1, Dipayan Das2, Ryo Hiromasa3, Miruna Rosca4,5, Amin Sakzad6,
Damien Stehlé4,7(B), Ron Steinfeld6, and Zhenfei Zhang8

1 Department of Mathematical Sciences, Florida Atlantic University,
Boca Raton, USA

2 Department of Mathematics, National Institute of Technology, Durgapur,
Durgapur, India

3 Mitsubishi Electric, Kamakura, Japan
4 Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, 69342 Lyon Cedex 07, France

5 Bitdefender, Bucharest, Romania
6 Faculty of Information Technology, Monash University, Melbourne, Australia

7 Institut Universitaire de France, Paris, France
damien.stehle@gmail.com
8 Algorand, Boston, USA

Abstract. We describe a digital signature scheme MPSign, whose secu-
rity relies on the conjectured hardness of the Polynomial Learning With
Errors problem (PLWE) for at least one defining polynomial within an
exponential-size family (as a function of the security parameter). The
proposed signature scheme follows the Fiat-Shamir framework and can be
viewed as the Learning With Errors counterpart of the signature scheme
described by Lyubashevsky at Asiacrypt 2016, whose security relies on
the conjectured hardness of the Polynomial Short Integer Solution (PSIS)
problem for at least one defining polynomial within an exponential-size
family. As opposed to the latter, MPSign enjoys a security proof from
PLWE that is tight in the quantum-access random oracle model.

The main ingredient is a reduction from PLWE for an arbitrary defin-
ing polynomial among exponentially many, to a variant of the Middle-
Product Learning with Errors problem (MPLWE) that allows for secrets
that are small compared to the working modulus. We present concrete
parameters for MPSign using such small secrets, and show that they lead
to significant savings in signature length over Lyubashevsky’s Asiacrypt
2016 scheme (which uses larger secrets) at typical security levels. As an
additional small contribution, and in contrast to MPSign (or MPLWE), we
present an efficient key-recovery attack against Lyubashevsky’s scheme
(or the inhomogeneous PSIS problem), when it is used with sufficiently
small secrets, showing the necessity of a lower bound on secret size for
the security of that scheme.

1 Introduction

The Polynomial Short Integer Solution (PSIS) and Polynomial Learning With
Errors (PLWE) were introduced as variants of the SIS and LWE problems
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 66–93, 2020.
https://doi.org/10.1007/978-3-030-45388-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_3

MPSign: A Signature from Small-Secret Middle-Product Learning 67

leading to more efficient cryptographic constructions [LM06,PR06,SSTX09].
Let n,m, q ≥ 2 and f ∈ Z[x] monic of degree n. A PSIS(f)q,m instance con-
sists in m uniformly chosen elements a1, . . . , am ∈ Zq[x]/f , and the goal is to
find z1, . . . , zm ∈ Z[x]/f not all zero and with entries of small magnitudes such
that z1a1 + · · · + zmam = 0 mod q. A PLWE(f)

q instance consists of oracle access
to the uniform distribution over Zq[x]/f × Zq[x]/f ; or to oracle access to the
distribution of (ai, ai · s + ei), where ai is uniform in Zq[x]/f , ei ∈ Z[x]/f has
random coefficients of small magnitudes, and the so-called secret s ∈ Zq[x]/f is
uniformly sampled but identical across all oracle calls. The goal is to distinguish
between the two types of oracles.

For any fixed f , the hardness of PSIS(f) and PLWE(f) has been less inves-
tigated than that of SIS and LWE. In particular, it could be that PSIS(f) and
PLWE(f) are easy, or easier, to solve for some defining polynomials f than for
others. To mitigate such a risk, Lyubashevsky [Lyu16] introduced a variant of
PSIS that is not parametrized by a specific polynomial f but only a degree n, and
is at least as hard as PSIS(f) for exponentially many polynomials f of degree n.
We will let it be denoted by PSIS∅. Further, Lyubashevsky designed a signature
scheme whose security relies on the hardness of this new problem, and hence
on the hardness of PSIS(f) for at least one f among exponentially many. This
signature scheme enjoys asymptotic efficiency, similar (up to a constant factor)
to those based on PSIS(f) for a fixed f . Later on, Rosca et al. [RSSS17] intro-
duced an LWE counterpart of PSIS∅: the Middle-Product Learning with Errors
problem (MPLWE). Similarly to PSIS∅, MPLWE is not parametrized by a spe-
cific polynomial f but only a degree n, and is at least as hard as PLWE(f) for
exponentially many polynomials f of degree n. To illustrate the cryptographic
usefulness of MPLWE, Rosca et al. built a public-key encryption scheme whose
IND-CPA security relies on the MPLWE hardness assumption. A more efficient
encryption scheme and a key encapsulation mechanism [SSZ17,SSZ19] were later
proposed as a submission to the NIST standardization process for post-quantum
cryptography [NIS].

In [RSSS17], it was observed that several LWE/PLWE(f) techniques leading
to more cryptographic functionalities do not easily extend to MPLWE, possibly
limiting its cryptographic expressiveness. These include a polynomial leftover
hash lemma, the construction of trapdoors for MPLWE that allow to recover
the secret s, and the “HNF-ization” technique of [ACPS09] which would allow
to prove hardness of MPLWE with small-magnitude secrets. The leftover hash
lemma and trapdoor sampling questions were recently studied in [LVV19], with
an application to identity-based encryption, though only for security against
an adversary whose distinguishing advantage is non-negligible (as opposed to
exponentially small). On the HNF-ization front, the main result of [RSSS17]
was mis-interpreted in [Hir18] (see Theorem 1 within this reference), in that
the latter work assumed that the hardness result of [RSSS17] was for secrets
whose coefficients were distributed as those of noise terms (and hence of small
magnitudes). The main result from [Hir18] was a signature scheme with security
relying on MPLWE.

68 S. Bai et al.

1.1 Contributions

In this work, we give a reduction from PLWE(f) to a variant of MPLWE in which
the secret has small-magnitude coefficients. The reduction works for a family of
defining polynomials f that grows with the security parameter.

We then build an identification scheme which follows Schnorr’s general frame-
work [Sch89] and which can be upgraded to a signature scheme that is tightly
secure in the quantum-access random oracle model (QROM), using [KLS18].
We show that MPSign is unforgeable against chosen message attacks (UF-CMA),
which means that no adversary may forge a signature on a message for which
it has not seen a signature before. We did not manage to prove that there is
no adversary who may forge a new signature on a previously signed message,
i.e., that the scheme is strongly unforgeable against chosen message attacks
(UF-sCMA). Nevertheless, any UF-CMA secure signature can be upgraded to a
UF-sCMA secure signature using a one-time UF-sCMA secure signature [Kat10].
Such a one-time signature can be achieved easily by a universal one-way hash
function (by Lamport’s one-time signature) [Kat10] or key collision resistant
pseudo-random function (by Winternitz one-time signature) [BDE+11].

We provide concrete parameters for MPSign corresponding to level 1 security
of the NIST post-quantum standardization process (via the SVP core hardness
methodology from [ADPS16]), which take into account our tight QROM security
proof with respect to small secret MPLWE (rather than just taking in account
the classical ROM security proof as, e.g., in the Dilithium scheme parameter
selection [DKL+18]). We also provide parameters that achieve similar security
to those from [Lyu16], to allow for a reasonably fair comparison. The MPSign
verification key is larger but its signature size is twice smaller.

Our MPSign signature length savings over the scheme of [Lyu16] arise mainly
due to our use of much smaller secret key coordinates. Therefore, one could won-
der the reducing the size of the secret key coordinates in the scheme of [Lyu16]
would also give a secure signature scheme. As an additional small contribution,
we show that the answer is negative by presenting a simple efficient key recov-
ery attack on Lyubashevsky’s scheme with sufficiently small secret coordinates.
Our attack works (heuristically) when the underlying inhomogeneous variant
of PSIS∅ has a unique solution, and shows that a lower bound similar to that
shown sufficient in the security proof of [Lyu16] is also necessary for the security
of Lyubashevsky’s scheme (and the underlying inhomogeneous PSIS∅ problem)
with small secret coordinates.

Finally, we provide a proof-of-concept implementation in Sage, publicly avail-
able at https://github.com/pqc-ntrust/middle-product-LWE-signature.

1.2 Comparison with Prior Works

Our signature construction is similar to the one in [Hir18]. However, the proof
of the latter is incorrect: in its proof of high min-entropy of commitments
(see [Hir18, Lemma 7]), it is assumed that the middle n coefficients of the prod-
uct between a uniform a ∈ Zq[x] of degree < n and a fixed polynomial y of

https://github.com/pqc-ntrust/middle-product-LWE-signature

MPSign: A Signature from Small-Secret Middle-Product Learning 69

degree ≤ 2n, are uniform. In fact, this distribution depends on the rank of a
Hankel matrix associated to y and encoding the linear function from a to the
considered coefficients of the product. This Hankel matrix can be of low rank
and, when it is the case, the resulting distribution is uniform on a very small
subset of the range. Interestingly, the distribution of these Hankel matrices (for
a uniform y) was recently studied in [BBD+19], in the context of proving hard-
ness of an MPLWE variant with deterministic noise. We do not know how to
fix the error from [Hir18]. As a result, we use a different identification scheme
to be able to make our proofs go through. Concretely, the identification scheme
from [Hir18] used the Bai-Galbraith [BG14] compression technique to decrease
the signature size. We circumvent the difficulty by not using the Bai-Galbraith
compression technique.

Lyubashevsky’s signature from [Lyu16] can also be viewed as secure under the
assumption that PLWE(f) is hard for at least one f among exponentially many
defining polynomials f , like ours. Indeed, it was proved secure under the assump-
tion that PSIS∅ is hard, it was proved that PSIS(f) reduces to PSIS∅ for exponen-
tially many defining polynomials f , and PLWE(f) (directly) reduces to PSIS(f).
Furthermore, MPLWE (both with small-magnitude secrets and uniform secrets)
reduces to PSIS∅, whereas the converse is unknown. Hence it seems that in terms
of assumptions, Lyubashevsky’s signature outperforms ours. However, the secu-
rity proof from [Lyu16] only holds in the random oracle model, as opposed to
ours which is tight in the quantum-access random oracle model (QROM). Recent
techniques on Fiat-Shamir in the QROM [LZ19,DFMS19] might be applicable
to [Lyu16], but they are not tight.

We now compare MPSign with LWE-based signature schemes and efficient
lattice-based signature schemes such as those at Round 2 of the NIST post-
quantum standardization process [NIS]: Dilithium [DKL+18], Falcon [PFH+19]
and Tesla [BAA+19]. Compared to LWE-based signatures, our proposal results
in much smaller values for the sum of sizes of a signature and a public key, with
much stronger security guarantees than the efficient schemes based on polyno-
mial rings. For example, scaling Dilithium with NIST security level 1 param-
eters to LWE requires multiplying the public key size by the challenge dimen-
sion n = 256, since for an LWE adaptation of Dilithium, the public key would
be a matrix with n columns instead of 1. For NIST security level 1, the public
key and signature sizes sum would be above 300 KB for an LWE adaptation of
Dilithium, whereas the same quantity is 47 KB for MPSign (see Table 2). Now,
compared to the Dilithium, Falcon and Tesla NIST candidates, security guar-
antees are different. The security of Dilithium and Tesla relies on the module
variants of PLWE and PSIS for a fixed polynomial [LS15]. In the case of Dilithium,
the known security proof in the QROM is quite loose [LZ19], unless one relies
on an ad hoc assumption like SelfTargetMSIS [KLS18]. Moreover, in the case
of Dilithium, the SIS instance is in an extreme regime: the maximum infinity
norm of the vectors to be found are below q/2, but their Euclidean norms may
be above q. Currently, no reduction backs the assumption that SIS is intractable
in that parameter regime. In Falcon, the public key is assumed pseudo-random,

70 S. Bai et al.

which is an adhoc version of the NTRU hardness assumption [HPS98]. Oppo-
sitely, the security of MPSign relies on the assumed PLWE hardness for at least
one polynomial among exponentially many. Overall, MPSign is an intermediate
risk-performance tradeoff between fixed-ring and LWE-based schemes.

2 Preliminaries

The notations in this paper are almost verbatim from [RSSS17] to maintain
consistency and facilitate comparison.

Let q > 1 be an integer. We let Zq denote the ring of integers modulo q and
by Z≤q the set {−q, . . . , q} of integers of absolute value less or equal to q. We
will write Rq to denote the group R/qZ.

Let n > 0. For a ring R, we will use the notation R<n[x] to denote the set of
all polynomials in R[x] with degree less than n. This notation may be extended
to any unstructured set S.

For any vector a = (a0, a1, . . . , an−1)T ∈ Z
n, we let a denote the reversed

vector (an−1, an−2, . . . , a0)T ∈ Z
n and we write ‖a‖∞ := maxi |ai|. When there

is no ambiguity, we identify a polynomial with its vector of coefficients.
For any matrix M ∈ R

m×n, we let σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) denote
its singular values. We use the notation ‖M‖ to denote its largest singular
value σ1(M) and we denote by Im the m × m identity matrix.

For a distribution D on a set X, we denote by x
$← D the choice of an

element x according to D. For simplicity, when D is the uniform distribution
on X, we use the notation a

$← X.
All logarithms used in this paper are in base 2.

2.1 Polynomials and Matrices

For a polynomial f ∈ Z[x] of degree m ≥ 1 and a polynomial a ∈ Z
<k[x], we

make use of the following matrices:

• Rotdf (a): the d × m matrix whose i-th row is given by the coefficients of the
polynomial xi−1 · a mod f ;

• Mf : the m × m matrix whose (i, j)-th element is the constant coefficient of
the polynomial xi+j−2 mod f ;

• Md
f : the d × m matrix obtained by keeping only the first d rows of Mf ;

• Toepd,k(a): the d×(k + d − 1) matrix whose i-th row is given by the coefficients
of the polynomial xi−1 · a.

Note that Rotdf (a) = Toepd,k(a) · Rotk+d−1
f (1). Also, for any a′ ∈ Z[x] such that

a′ = a mod f , we have that Rotdf (a) = Rotdf (a′).
The expansion factor of a polynomial f ∈ Z[x] of degree m is defined as:

EF(f) = max
(‖g mod f‖∞

‖g‖∞
: g ∈ Z

<2m−1[x] \ {0}
)

.

MPSign: A Signature from Small-Secret Middle-Product Learning 71

The following lemma provides bounds on the norms of the matrices Mf and
Rotdf (1), in terms of EF(f). A bound on ‖Mf‖ was first proved in [RSSS17,
Le. 2.8] and improved later in [LVV19, Le. 9]. The bound on ‖Rotkf (1)‖ can be
obtained by noticing that Rotkf (1) contains Ideg(f) as a submatrix and all its
other entries are bounded by EF(f).

Lemma 1. Let f ∈ Z[x] and k ≥ deg(f) ≥ d. Then

1. ‖Md
f ‖ ≤ √

d · EF(f)
2. ‖Rotkf (1)‖2 ≤ deg(f) + (k − deg(f)) · deg(f) · EF(f)2.

We now recall the middle-product of two polynomials and some of its elemen-
tary properties. Let us consider a pair of polynomials (a, b) ∈ Z

<da [x]×Z
<db [x].

Multiplying the two polynomials, we get a polynomial in Z
<da+db−1[x]. If

da + db − 1 = d + 2k for some integers d and k, then the middle-product of
size d of a and b is obtained by multiplying a and b, then deleting the coeffi-
cients of xi for i ≤ k − 1 and i ≥ k + d and dividing the remaining by xk. Note
that the middle-product is an additive homomorphism when either of its inputs
is fixed.

Definition 1 (Middle-Product). Let da, db, d, k be integers such that da +
db − 1 = d + 2k. The middle-product �d is the map from Z

<da [x] × Z
<db [x] to

Z
<d[x] defined as: (a, b) → a �d b =
a·b mod xk+d

xk �.
Lemma 2 ([RSSS17, Le. 3.2]). Let d, k > 0. For all r ∈ Z

<k+1[x], a ∈ Z
<k+d

[x] and b = r �d a, we have b = Toepd,k+1(r) · a.

Lemma 3 ([RSSS17, Le. 3.3]). Let d, k, n > 0. For all r ∈ Z
<k+1[x], a ∈ Z

<n

[x] and s ∈ Z
<n+d+k−1[x], we have r �d (a �d+k s) = (r · a) �d s.

2.2 Gaussian Distributions

A symmetric matrix Σ ∈ R
n×n is positive definite if xtΣx > 0 for every non-zero

vector x ∈ R
n. For any non-singular matrix B ∈ R

n×n, the matrix Σ = BBt is
positive definite and we say that B =

√
Σ. Every positive definite matrix Σ has

a square root B = QD, where Σ = QD2Qt is the spectral decomposition of Σ.
Note that the square root of a positive definite matrix is not unique (B′ = BH
is also a square root of Σ for every orthogonal matrix H ∈ R

n×n). If Σ ∈ R
n×n

is a positive definite matrix, its inverse is also positive definite and, moreover,
the set of positive definite matrices is closed under addition.

For a positive definite matrix Σ ∈ R
n×n, we define the Gaussian function on

R
n of covariance matrix Σ as ρΣ(x) = exp(−πxtΣ−1x) for every x ∈ R

n. The
probability distribution whose density is proportional to ρΣ is called the Gaus-
sian distribution and is denoted DΣ . When Σ = s2 · In, we use the notations ρs

and Ds instead of ρΣ and DΣ , respectively.
Given a (full-rank) lattice Λ ⊂ R

n we define ρΣ(Λ) :=
∑

x∈Λ ρΣ(x). Using
this, we can now define the discrete Gaussian distribution over Λ of covariance

72 S. Bai et al.

parameter Σ as DΛ,Σ(x) = ρΣ(x)/ρΣ(Λ) for every x ∈ Λ. The dual of a lattice
Λ ⊂ R

n is Λ∗ := {y ∈ R
n : 〈y, x〉 ∈ Z for every x ∈ Λ}. For ε > 0, we define the

smoothing parameter ηε(Λ) as the smallest r > 0 such that ρ1/r(Λ∗ \ {0}) ≤ ε.
If Λ1 ⊆ Λ2 are two lattices, we have that ηε(Λ2) ≤ ηε(Λ1). We will use the
following standard results.

Lemma 4 ([MR04, Le. 3.3]). For any full-rank lattice Λ ⊂ R
n and ε > 0, we

have ηε(Λ) ≤ λn(Λ) · √ln(2n(1 + 1/ε))/π.

Lemma 5 ([LPSS14, Le. 5]). Let Σ1, Σ2 ∈ R
n×n two covariance matrices and

Λ1, Λ2 full-rank lattices in R
n such that 1 ≥ ηε((Σ−1

1 + Σ−1
2)1/2 · (Λ1 ∩ Λ2)) for

some ε ∈ (0, 1/2). If x1
$← DΛ1,Σ1 and x2

$← DΛ2,Σ2 , then the statistical distance
between the distribution of x1 + x2 and DΛ1+Λ2,Σ1+Σ2 is less than 4ε.

Lemma 6 ([Ban95, Le. 2.10]). For any full-rank lattice Λ ⊂ R
n and σ > 0,

we have Prx←DΛ,σ
(‖x‖∞ > σ · t) ≤ 2n · exp(−π · t2).

2.3 Polynomial and Middle-Product Learning with Errors

In this section we recall the formal definitions of PLWE and MPLWE and of the
distributions they make use of.

Definition 2 (PLWE distribution). Let f be a polynomial of degree m and
q ≥ 2. Let χ be a distribution over Z[x]/(f) and s a fixed element in Zq[x]/(f).
We define Pq,χ(s) as the distribution obtained by sampling a

$← Zq[x]/(f), e $← χ,
and returning (a, b = a · s + e) ∈ Zq[x]/(f) × Zq[x]/(f).

Definition 3 (PLWE). Let f be a polynomial of degree m and q ≥ 2. Let χ1

and χ2 be distributions over Zq[x]/(f). The decision PLWE(f)
q,χ1,χ2

problem con-
sists in distinguishing between arbitrarily many samples from Pq,χ1(s) and the
same number of uniform samples in Zq[x]/(f) × Zq[x]/(f), with non-negligible
probability over the choice of s

$← χ2.

The hardness of PLWE was investigated in [SSTX09,LPR13,PRS17,RSW18],
among others. Of particular importance to the present work, it was observed
in [LPR13] that the reduction from uniform secret to small secret described
in [ACPS09] in the context of LWE also applies to PLWE.

Lemma 7. Let f be a polynomial of degree m and q ≥ m such that the factors
of f modulo q are distinct. Let χ1 and χ2 be distributions over Zq[x]/(f). Then
there is a ppt reduction from PLWE(f)

q,χ1,χ2
to PLWE(f)

q,χ1,χ1
.

The condition on q ensures that a uniform element in Zq/(f) is invertible
with non-negligible probability.

Definition 4 (MPLWE distribution). Let n, d > 0. Let χ be a distribution over
Z

<d[x] and s ∈ Z
n+d−1
q [x]. We define MPq,n,d,χ(s) as the distribution obtained

by sampling a
$← Z

<n
q [x], e $← χ, and returning (a, b = a �d s + e) ∈ Z

<n
q [x] ×

Z
<d
q [x].

MPSign: A Signature from Small-Secret Middle-Product Learning 73

Definition 5 (MPLWE). Let n, d > 0. Let χ1 and χ2 be distributions over
Z

<d
q [x] and Z

n+d−1
q [x], respectively. The decision MPLWEq,n,d,χ1,χ2 problem con-

sists in distinguishing between arbitrarily many samples from MPq,n,d,χ1(s) and
the same number of uniform samples in Z

<n
q [x] × Z

<d
q [x], with non-negligible

probability over the choice of s
$← χ2.

The PLWE (resp. MPLWE) assumption states that the advantage of any poly-
nomial time algorithm trying to solve the PLWE (resp. MPLWE) problem is neg-
ligible. The main result in [RSSS17] is a reduction from a variant of PLWE(f)

(for exponentially many f ’s with respect to parameter n) for which the noise
is drawn from a continuous distribution and the secret is uniformly distributed,
to a variant of the MPLWE problem for which the noise distribution is also
continuous and the secret is also uniformly distributed. In this work, we will
be interested in discrete noise distributions and secret distributions taking small
values compared to the modulus q. Compared to [RSSS17], discretizing the noise
distribution can be achieved via routine techniques and is more convenient both
for our proofs and application. Oppositely, having the secret distribution take
small values compared to q requires a new idea.

2.4 Cryptographic Definitions

Pseudorandom Functions. We will use a pseudorandom function to trans-
form an identification scheme to a deterministic signature scheme.

Definition 6. A pseudorandom function PRF is an efficiently computable map
PRF : K × {0, 1}n → {0, 1} where K is a finite key space and n, k are integers.
For any quantum adversary A trying to distinguish the output of the PRF from
a uniform output, we associate the advantage function

AdvPR
PRF(A) := |Pr(APRF(K,·) = 1|K ← K) − Pr(ARF(·) = 1)|

where RF : {0, 1}n → {0, 1} is a uniformly sampled function and A has only
classical access to the oracles PRF(K, ·) and RF(·).

Identification Schemes. We recall some basic security properties of particular
identification schemes. We closely follow the notations used in [KLS18].

A canonical identification scheme is a protocol between two parties: a
prover P and a verifier V. The prover sends a commitment W and the veri-
fier selects a uniform challenge c and sends it to P. Upon receiving c, the prover
sends back a response Z to the verifier. After it receives Z, the verifier makes a
deterministic decision.

Definition 7 (Canonical identification scheme). A canonical identification
scheme is a tuple of classical ppt algorithms ID := (IGen,P,V).

• The key generation algorithm IGen takes as input a security parameter λ (in
unary) and returns the public and secret keys (pk, sk). The public key defines
the set of challenges ChSet, the set of commitments WSet, and the set of
responses ZSet.

74 S. Bai et al.

• The prover algorithm P consists of two sub-algorithms: P1 takes as input the
secret key sk and returns a commitment W ∈ WSet and a state St; P2 takes
as inputs the secret key sk, a commitment W , a challenge c, and a state St
and returns a response Z ∈ ZSet ∪ {⊥}, where ⊥/∈ ZSet is a special symbol
indicating failure.

• The verifier algorithm V takes as inputs the public key pk and the conversation
transcript (W, c, Z) and outputs 1 (acceptance) or 0 (rejection).

If Z =⊥, then we set (W, c, Z) = (⊥,⊥,⊥). The triple (W, c, Z) ∈ WSet ×
ChSet × ZSet ∪ {(⊥,⊥,⊥)} generated in this way is called a transcript. Given
the public key pk, the transcript is valid if V (pk,W, c, Z) = 1.

We say that ID has correctness error δ if for all public and secret keys gen-
erated by IGen, all possible transcripts in WSet × ChSet × ZSet with Z �=⊥ are
valid and the probability that a honestly generated transcript is (⊥,⊥,⊥) is less
than δ.

We say that the canonical identification scheme ID has α bits of min-entropy
if

Pr
(pk,sk)←IGen(λ)

(H∞(W |(W,St) ← P1(sk)) ≥ α) ≥ 1 − 2−α.

We are interested in the following security properties.

Definition 8 (No-abort honest-verifier zero-knowledge). A canonical
identification scheme ID is εzk-perfect no-abort honest-verifier zero-knowledge
(εzk-perfect na-HVZK) if there exists a ppt algorithm Sim which given only
the public key pk outputs (W, c, Z) such that the statistical distance between
(W, c, Z) ← Sim(pk) and (W, c, Z) ← Trans(pk) is at most εzk and the element c
from (W, c, Z) ← Sim(pk) follows a uniform distribution conditioned on c �=⊥.

Definition 9 (Lossiness). A canonical identification scheme is lossy (and we
call it LID) if there exists a lossy key generation algorithm LossyIGen that takes
as input λ and returns a public key pkls and no secret key such that the public
keys generated by IGen and LossyIGen are indistinguishable. In other words, for
any quantum adversary A, the following quantity is negligible:

Advloss
ID (A) := |Pr(A(pkls) = 1|pkls ← LossyIGen(λ))

− Pr(A(pk) = 1|(pk, sk) ← IGen(λ))|.

Definition 10 (Lossy soundness). A canonical identification scheme is εls-
lossy-sound if, for every quantum adversary A, the following probability that A
could impersonate the prover is less than εls:

Pr

⎡
⎣V(pkls,W

∗, c∗, Z∗) = 1

∣∣∣∣∣∣
pkls ← LossyIGen(λ);
(W ∗, St) ← A(pkls);
c∗ ← ChSet;Z∗ ← A(St, c∗)

⎤
⎦ .

MPSign: A Signature from Small-Secret Middle-Product Learning 75

Digital Signatures. We recall the definition of a digital signature.

Definition 11 (Digital signature). A digital signature scheme SIG with cor-
rectness error δ ≥ 0 consists of a triple of ppt classical algorithms (G,S,V) such
that for every pair of outputs (sk, vk) of G(1λ) and any message M ,

Pr[V(vk,M,S(sk,M)) = 0] ≤ δ

where the probability is taken over the randomness of algorithms S and V.
The algorithm G is called the key-generation algorithm, S is called the signing

algorithm, V is called is the verification algorithm. The elements sk and vk are
the signing and verification keys.

Definition 12 (Unforgeability). A signature scheme SIG := (G,S,V) is said
to be unforgeable against one-per-message chosen message attack (UF-CMA1) in
the quantum random oracle model if for every ppt quantum forger F having
quantum access to the random oracle and classical access to the signing oracle,
the probability that after seeing the public key and

{(M1,S(sk,M1)), . . . , (MQ,S(sk,MQ))}
for any Q (Q = poly(n)) adaptively chosen distinct messages Mi of its choice,
forger F can produce M∗ /∈ {Mi} and σ∗ such that V(vk,M∗, σ∗) = 1, is negli-
gibly small. The probability is taken over the randomness of G,S,V and F , and
is denoted by AdvUF-CMA1

SIG (F).

One can extend this definition to the scenario where the attacker may have
access to more than one signature for any of poly(n) adaptively chosen mes-
sages {Mi}. In that case, if no quantum adversary F can produce a valid signa-
ture for a message M∗ /∈ {Mi}, we say that the signature scheme is unforgeable
against chosen message attack (UF-CMA).

In the strong corresponding UF-CMA/UF-CMA1 experiments, the adversary
may return a forgery for a message which has already been queried to the signing
oracle, but with a different signature.

As showed in [BPS16], a UF-CMA1 signature scheme can be combined with
a pseudo-random function to obtain a signature scheme that is UF-CMA, and
the conversion is tight (further, the upgrade preserves strongness). As observed
in [KLS18], this transformation still applies when the attacker is quantum and
is given quantum access to the random oracle.

From Identification Schemes to Digital Signatures: Fiat-Shamir. The
Fiat-Shamir heuristic is a technique to convert an identification scheme ID :=
(IGen,P,V) to a digital signature scheme SIG := (G = IGen,S,V) in the random
oracle model (ROM).

The main result in [KLS18] is a security statement of the signature scheme
obtained via the Fiat-Shamir transformation in the setup where the adversary
has quantum access to the random oracle, but classical access to the signing
oracle.

76 S. Bai et al.

Fig. 1. The signature SIG obtained via Fiat-Shamir transform

Theorem 1 ([KLS18, Th. 3.1]). Consider an identification scheme ID which
is lossy, εzk-perfect na-HVZK, has α bits of entropy and is εls-lossy sound and
the signature scheme SIG obtained by applying the Fiat-Shamir transform to the
identification scheme ID, as in Fig. 1.

For any quantum adversary A against UF-CMA1 security that issues at most
QH quantum queries to the random oracle and QS classical signing queries, there
exists a quantum adversary B against ID such that

AdvUF-CMA1
SIG (A) ≤ Advloss

ID (B) + 8(QH + 1)2 · εls + kmQS · εzk + 2−α+1.

and Time(B)=Time(A) + kmQH .
Moreover, if we de-randomize the signature scheme in Fig. 1 by using

a pseudo-random function PRF, then for any quantum adversary A against
UF-CMA security that issues at most QH quantum queries to the random oracle
and QS classical signing queries, there exists a quantum adversary B against ID
and a quantum adversary C against the PRF such that

AdvUF-CMA
DSIG (A) ≤ Advloss

ID (B) + 8(QH + 1)2 · εls + kmQS · εzk + 2−α+1 + AdvPR
PRF(C).

The de-randomized version of the signature scheme DSIG := (IGen,DS,V)
obtained from Fiat-Shamir transformation is given in Fig. 2. Here, the PRF key K
is also a part of the secret key in the signature scheme.

3 Hardness of Middle-Product LWE with Small Secrets

As mentioned earlier, a main obstacle towards building a signature scheme
directly from MPLWE with the Fiat-Shamir with aborts methodology is the
need of smaller secrets. In this section, we show that MPLWE remains at least
as hard as PLWE for numerous parametrizing polynomials f , when the secret s

MPSign: A Signature from Small-Secret Middle-Product Learning 77

Fig. 2. The de-randomized signature DSIG obtained via Fiat-Shamir transform

is sampled from a specific distribution χs that produces small secrets with over-
whelming probability.

Let q ≥ 2, n ≥ d > 0, T > 0 and k := n + d − 1. By Ji ∈ Z
i×i we denote

the matrix with 1’s on the anti-diagonal and 0’s everywhere else. Let E(T, d, n)
denote the set of all monic polynomials g(x) ∈ Z[x] with constant coefficient
coprime to q, degree m ∈ [d, n], and σm(Mf) ≥ T .

Theorem 2. For any polynomial f ∈ E(T, d, n) and 1 ≥ α ≥ 2
√

n
qT , there is

a ppt reduction from PLWE
(f)
q,DZm,αq,DZm,αq

to MPLWEq,n,d,D
Zd,α′′q

,D
Zk,α′q

, where

α′ = αn
√

2n · EF(f)2 and α′′ = α
√

2d · EF(f).

Proof. We first reduce PLWE(f) to a variant of MPLWE where the dependence
on f lies both in the secret and error distributions. Using the same idea as in
[RSSS17, Le. 3.7] except for the fact that now we do not rerandomize the secret
to make it uniform, we know that there is a ppt reduction from PLWE(f)

q,χe,χs
to

MPLWEq,n,d,χ′
e,χ′

s
where χ′

e = Jd · Md
f · χe and χ′

s = Jn+d−1 · Rotd+n−1
f (1) · Mf ·

χs. We now make the following notations: Bs := Jk · Rotkf (1) · Mf · αqIm and
Be := Jd · Md

f · αqIm, and Σs := Bs · Bt
s ∈ R

k×k and Σe := Be · Bt
e ∈ R

d×d,

respectively. This means that there is a ppt reduction from PLWE
(f)
q,DZm,αq,DZm,αq

to MPLWEq,n,d,D
Zd,Σe

,D
Zk,Σs

. We now have, using Lemma 1, that

‖Σs‖ ≤ (αq)2 · ‖Rotd+n−1
f (1)‖2 · ‖Mf‖2

≤ (αq)2 · (
m + (d + n − 1 − m) · m · EF(f)2

)
m · EF(f)2

≤ (αq)2 · (n + (n − 1) · n · EF(f)2)n · EF(f)2

≤ (αq)2 · n3 · EF(f)4 < (α′q)2

78 S. Bai et al.

and

‖Σe‖ ≤ (αq)2 · ‖Md
f ‖2 ≤ d · (αq · EF(f))2 < (α′′q)2.

Since ‖Σs‖ < (α′q)2 and ‖Σe‖ < (α′′q)2, there exist two symmetric positive
definite matrices Σ′

s and Σ′
e such that Σs + Σ′

s = (α′q)2Ik and Σe + Σ′
e =

(α′′q)2Id. We now replace the rerandomization to uniform of the reduction
of [RSSS17, Le. 3.7] by a rerandomization to a Gaussian distribution. We first
sample t

$← DZk,Σ′
s
. For any MPLWEq,n,d,D

Zd,Σe
,D

Zk,Σs
sample (ai, bi), we sample

e′ $← DZd,Σ′
e

and output (a′
i, b

′
i) = (ai, bi + ai �d t + e′

i). If (ai, bi) is uniform, so
is (a′

i, b
′
i). If bi = ai �d s + ei, then

b′
i = ai �d s + ei + ai �d t + e′

i = ai �d (s + t) + (ei + e′
i).

The matrices Σs, Σ′
s, Σe and Σ′

e are all symmetric, so they are in particu-
lar orthogonally diagonalizable. Moreover, since Σs and Σ′

s (resp. Σe and Σ′
e)

commute, it means that Σs and Σ′
s (resp. Σe and Σ′

e) are simultaneously diag-
onalizable. We can hence write Σs = UDsU

t and Σ′
s = UD′

sU
t for two diagonal

matrices Ds and D′
s such that (α′q)2Ik = Ds + D′

s and an orthogonal matrix
U ∈ R

k×k. Similarly, we can write Σe = V DeV
t and Σ′

e = V D′
eV

t, where De

and D′
e are diagonal, De + D′

e = (α′′q)2Id and V ∈ R
d×d is orthogonal. Since

the smoothing parameter is invariant to rotations, we can write

η2−k(
√

Σ−1
s + Σ′−1

s · Zk) = η2−k(
√

U(D−1
s + D′−1

s)U t · Zk)

= η2−k(U
√

D−1
s + D′−1

s · Zk)

= η2−k(
√

D−1
s + D′−1

s · Zk).

Using Lemma 4, we have that

η2−k(
√

D−1
s + D′−1

s · Zk) ≤ max
i

√
1/σi(Σs) + 1/((α′q)2 − σi(Σs)) · √

k + 1.

We showed that σ1(Σs) ≤ (αq)2σ1(Mf)2σ1(Rotd+n−1
f (1))2 ≤ (α′q)2/2, which

means that (α′q)2 − σi(Σs) ≥ σi(Σs) for any i ≤ k and thus 1/σi(Σs) +
1/(α′q)2 − σi(Σs) ≤ 2/σi(Σs) ≤ 2/σk(Σs) for any i ≤ k.

Using the bound on the smallest singular value of Mf , we now get that
σk(Σs) ≥ (αq)2σm(Mf)2σm(Rotn+d−1

f (1))2 ≥ (αq)2 · T 2, which guarantees that

η2−k(
√

D−1
s + D′−1

s · Zk) ≤
√

2
(αq)2 · T 2

· √
k + 1 ≤ 1

for α ≥ 2
√

n
q·T . As a consequence, using Lemma 5, the statistical distance between

the distribution of s + t and DZk,α′q is < 4 · 2−d = 4ε as k > d.
Similarly, we have η2−d(

√
Σ−1

e + Σ′−1
e · Zd) ≤ 1 and the statistical distance

between the distribution of ei + e′
i and DZd,α′′q is also ≤ 4ε. This completes the

proof. �

MPSign: A Signature from Small-Secret Middle-Product Learning 79

We notice that in contrast with the reduction from [RSSS17], the above
reduction requires a lower bound on the noise parameter α which is used in order
to approximate the distribution of the sum of two random discrete variables as
in Lemma 5. The following result provides a concrete exponentially large family
of polynomials f for which we manage to bound from below the smallest singular
value of the matrix Mf .

Lemma 8. Let f = xm + P (x) ∈ Z[x] with m ≥ 2 and deg(P) ≤ m/2. Then
σm(Mf) ≥ 1

2+
√

m·EF(f)
.

Proof. By reordering the rows of Mf , the singular values stay the same and we
can view Mf as a block of four matrices D1 ∈ Z

�m/2�×�m/2�, D2 ∈ Z
m/2�×m/2�,

0 ∈ Z
m/2�×�m/2� and T ∈ Z

�m/2�×m/2� in the following way:

Mf =
[

D1 T
0 D2

]
.

The matrices D1 and D2 are diagonal, 0 is the all-0 matrix and T is an upper
triangular matrix. We now use the definition σm(Mf) = min(‖Mf · y‖2 : y ∈
R

m, ‖y‖2 = 1). Let y ∈ R
m such that σm(Mf) = ‖Mf · y‖2 and ‖y‖2 = 1. The

vector y can be written as y = (yt
0|yt

1)
t, with y0 ∈ R

�m/2� and y1 ∈ R
m/2�. On

the one hand, we have:

‖Mf · y‖2 ≥ ‖D1 · y0 + T · y1‖2 ≥ ‖D1 · y0‖2 − ‖T · y1‖2
≥ ‖y0‖2 − ‖T‖ · ‖y1‖2
≥ ‖y‖2 − ‖y1‖2 − ‖Mf‖ · ‖y1‖2
≥ 1 − (1 +

√
m · EF(f)) · ‖y1‖2,

where the last inequality is by Lemma 1. On the other hand, we also have

‖Mf · y‖2 ≥ ‖D2 · y1‖2 ≥ ‖y1‖2.
This provides the bound

σm(Mf) ≥ max
(
1 − (1 +

√
m · EF(f)) · ‖y1‖2, ‖y1‖2

) ≥ 1
2 +

√
m · EF(f)

.

��
An elementary computation shows that for any polynomial as in the above

Lemma 8, we have EF(f) ≤ 3
4m2‖P‖2∞ (see also [LM06, Se. 3.1] for a similar

but more general statement). This implies the following corollary of Theorem 2.

Corollary 1. Fix S > 0. For any degree m ≥ 2 polynomial f = xm + P (x) ∈
Z[x] with constant coefficient coprime with q such that deg(P) ≤ m/2 and
‖P‖2∞ ≤ 4S/3 and any 1 ≥ α ≥ 2

√
n · (2+

√
nS)/q there is a ppt reduction from

PLWE
(f)
q,DZm,αq,DZm,αq

to MPLWEq,n,d,D
Zd,α′′q

,D
Zk,α′q

, where α′ = αn
√

2n · S2 and

α′′ = α
√

2d · S.

80 S. Bai et al.

4 An Attack on Inhomogeneous PSIS∅ with Small Secrets

In contrast to our hardness result for MPLWE with small secret coordinates
shown in the previous section, here we show a simple efficient attack on the Inho-
mogeneous PSIS∅ problem from [Lyu16] with sufficiently small secret coordinates
(such that it has a unique solution). Our algorithm gives a key recovery attack
against a small secret variant of the signature scheme of [Lyu16], and shows that
a lower bound on the size of the secret key coordinates similar to that in the
security proof of [Lyu16] is necessary for the security of that signature scheme.
MPSign achieves lower signature size than [Lyu16], by using small secret coordi-
nates. The attack presented below shows that a similar improvement in signature
size cannot be securely achieved in [Lyu16], stressing an MPSign advantage over
the approach of [Lyu16].

We recall the definition of the Inhomogeneous PSIS∅ problem (which we
denote by I-PSIS∅) from [Lyu16]. The hardness of that problem underlies the
security of the key generation algorithm in the signature scheme of [Lyu16]. We
note that our definition below is the ‘exact’ case of the ‘approximate’ definition
in [Lyu16] (with the parameters of [Lyu16, Def. 3.3] set as c = 1, s = β and
d1 = d2 = d). This restriction makes our attack even stronger since a solution
to the exact problem is also a solution to the ‘approximate’ problem.

Definition 13 (I-PSIS∅). Let n, d > 0. An instance of the I-PSIS∅
q,n,d,k,β

problem consists of (a1, . . . , ak, t), where ai
$← Z

<n
q [x] for i = 1, . . . , k and

t =
∑k

i=1 ai · si ∈ Z
<n+d−1
q [x], where si

$← [−β, β]<d[x] for i = 1, . . . , k. A
solution to the problem is k elements (s′

1, . . . , s
′
k) with s′

i ∈ [−β, β]<d[x] for
i = 1, . . . , k such that

k∑
i=1

ai · s′
i = t.

Note that the public key of the signature scheme of [Lyu16] consists of an
instance of I-PSIS∅, and a solution is a valid secret key.

Our attack on I-PSIS∅ works in the case where s1, . . . , sk is the unique solu-
tion, and consists of a simple greedy algorithm that exploits the zero triangles in
the Toeplitz matrices associated with the polynomials ai, to reduce the problem
to a sequence of k-dimensional knapsack subproblems: for each r < d, we recover
the k-tuple of coefficients of xr in the polynomials si(x) for i = 1, . . . , k. When
k is small (as is the case for efficient parameter sets), the attack is efficient.

In more detail, let t(x) =
∑k

i=1 ai(x) · si(x) ∈ Z
<n+d−1
q [x] be the target

polynomial in an instance of I-PSIS∅. We denote by tr, ai,r and si,r the coefficient
of xr in the polynomials t(x), ai(x), si(x), respectively. We observe that for any
r = 0, . . . , d−1, the coefficient tr depends only on the coefficients of xj for j ≤ r
of the si’s, namely we have

tr =
k∑

i=1

r∑
j=0

ai,j · si,r−j =
k∑

i=1

ai,0 · si,r +
k∑

i=1

r∑
j=1

ai,j · si,r−j . (1)

MPSign: A Signature from Small-Secret Middle-Product Learning 81

Given an instance (a1, . . . , ak, t) of the I-PSIS∅
q,n,d,k,β problem, our algorithm

works as follows:

1. For r = 0, . . . , d − 1:
(a) Find some vector s′

∗,r := (s′
1,r, . . . , s

′
k,r) ∈ [−β, β]k such that

tr =
k∑

i=1

ai,0 · s′
i,r +

k∑
i=1

r∑
j=1

ai,j · s′
i,r−j . (2)

(b) If no such vector s′
∗,r exists, return ⊥.

2. Return (s′
1, . . . s

′
k), where s′

i =
∑d−1

j=0 s′
i,jx

j for i = 1, . . . , k.

Lemma 9. Suppose q is prime. With probability ≥ 1 − (4β + 1)k/q over the
choice of a1, . . . , ak, the solution (s′

1, . . . , s
′
k) = (s1, . . . , sk) to the I-PSIS∅

q,n,d,k,β

problem is unique, and the above algorithm returns this solution in time (2β +
1)k · poly(n, d, log q).

Proof. It follows from (1) that the solution (s′
1, . . . , s

′
k) = (s1, . . . , sk) satisfies (2)

for each r and hence can be output by the algorithm. Now suppose, towards a
contradiction, that the algorithm outputs ⊥ or a different solution (s′

1, . . . , s
′
k) �=

(s1, . . . , sk). Then let r∗ ≥ 0 denote the least iteration r of the algorithm where
the solution s′

∗,r∗ := (s′
1,r∗ , . . . , s′

k,r∗) to (2) for r = r∗ is not equal to s∗,r∗ :=
(s1,r∗ , . . . , sk,r). From (2), we have

tr∗ =
k∑

i=1

ai,0 · s′
i,r∗ +

k∑
i=1

r∑
j=1

ai,j · si,r∗−j =
k∑

i=1

ai,0 · si,r∗ +
k∑

i=1

r∑
j=1

ai,j · si,r∗−j ,

and hence

k∑
i=1

ai,0 · (si,r∗ − s′
i,r∗) = 0.

As a consequence, the vector v∗ := (s1,r∗ − s′
1,r∗ , . . . , sk,r∗ − s′

k,r∗) �= 0 sat-
isfies

∑k
i=1 ai,0v

∗
i = 0, and v∗ ∈ [−2β, 2β]k. We claim that such a non-zero

vector v∗ exists with probability at most (4β + 1)k/q over the uniform choice
of the ai,0’s. Indeed, since q is prime, the probability that a fixed non-zero vec-
tor v ∈ [−2β, 2β]k satisfies

∑k
i=1 ai,0vi = 0 is 1/q. A union bound over all

≤ (4β + 1)k non-zero vectors in [−2β, 2β]k provides the claim. Therefore, the
algorithm outputs the unique solution (s′

1, . . . , s
′
k) = (s1, . . . , sk) with probabil-

ity at least 1−(4β+1)k/q. The run-time follows since Step 1(a) in the algorithm
can be implemented by an exhaustive search through all (2β+1)k possible values
for s′

∗,r. ��

We observe that the run-time can be reduced to 2O(k) · poly(n, d, log q) using a
lattice closest vector algorithm to solve the k-dimensional knapsack problems.

82 S. Bai et al.

By Lemma 9, our algorithm for I-PSIS∅
q,n,d,k,β succeeds with high probability

when β is at least slightly smaller than q1/k/4, and runs in polynomial time
when k = O(1), even for very high degrees n and d. In comparison, the hardness
reduction for I-PSIS∅

q,n,d,k,β in [Lyu16, Le. 3.4] requires the lower bound β >

2λ/(kd)−1 · q1/k·(1+n/d) (where λ denotes the security parameter and is such that
the success probability of the I-PSIS∅ attacker handled by the reduction is >2−λ).
Our attack gives an efficient key recovery attack against the signature scheme
of [Lyu16] with small secrets β. For instance, the recommended parameters of
the latter scheme have k = 6 and q ≈ 230 and β ≈ 211.5, but β < 23 will suffice
for our attack to succeed. Moreover, heuristically, we expect that our algorithm
will succeed with even larger β corresponding to a unique solution. The run-
time is likely in practice to be in the order of minutes on a typical laptop1, using
LLL lattice reduction for solving the 6-dimensional knapsack instances; even a
brute-force search of each knapsack instance would take in the order of only
(2β)k < 230 arithmetic operations. For the above parameters, our LLL-based
implementation solved 7 out of 10 (resp. 2 out of 10) instances with β = 7 (resp.
β = 8), taking about 3 min on a 3.1 GHz Intel Core i5 CPU.

5 A Signature Scheme Based on Small Secrets MPLWE

In this section, we build an identification scheme based on the middle-product
learning with errors with small secrets assumption. Then, we show that Theo-
rem 1 is applicable to our construction by checking all the theorem assumptions,
as in [KLS18]. As a consequence, by the Fiat-Shamir transformation, we obtain
a digital signature scheme that is secure under the middle-product learning with
errors with small secrets assumption in the quantum random oracle model.

5.1 The Identification Scheme

We first present in Fig. 3 an identification scheme which makes use of the middle-
product of polynomials.

We use an extendable output function Sam, i.e., a function on bit strings
in which the output can be extended to any required length. If we want the
deterministic output y of Sam on input x to be uniformly distributed on the
set S, we write y

$← S := Sam(x).
The key generation starts by choosing a random string ρ and expanding it

into a uniform polynomial a ∈ Z
<n
q [x] using the function Sam. The public key

consists of a sample (a, b) drawn from the MPq,n,d+k,χ(s) distribution, where
both the secret s and the error e follow a Gaussian distribution of parameter
α′q, respectively α′′q.

In the first step of the protocol, the prover chooses two polynomials y1 and
y2 whose coefficients are bounded in absolute value by a′, respectively a′′, and
sends to the verifier the polynomial w = a �d y1 + y2. The verifier chooses a
random challenge from the challenge space
1 https://github.com/pqc-ntrust/middle-product-LWE-signature.

https://github.com/pqc-ntrust/middle-product-LWE-signature

MPSign: A Signature from Small-Secret Middle-Product Learning 83

DH := {c ∈ {0, 1,−1}<k+1[x] with ‖c‖1 = κ}

and sends it back to the prover. The challenge space consists of polynomials
of small norms and the parameter κ is chosen such that the cardinality of the
challenge space is large. The prover now applies rejection in order to make sure
that his answer doesn’t leak information about the secret key. Concretely, the
prover computes z1 = c �n+d−1 s + y1 and z2 = c �d e + y1 and checks if
‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′. If so, it accepts to send his answer (z1, z2) to the
verifier. Otherwise, it aborts. We provide concrete parameters with which our
scheme can be instantiated in practice in the next section.

Fig. 3. The identification scheme (IGen,V,P = (P1,P2))

Lemma 10. If A′ + ‖c �n+d−1 s‖∞ ≤ a′ and A′′ + ‖c �d e‖∞ ≤ a′′, then
the identification scheme is perfectly na-HVZK, i.e., its transcripts are publicly
simulatable and εzk = 0.

Proof. Figure 4 (left) shows how to generate a real transcript using the secret
key sk, and Fig. 4 (right) shows how to simulate a transcript using only the
public key pk. The identification scheme is perfectly na-HVZK if every pair of
polynomials (z1, z2) ∈ Z

<n+d−1
≤A′ [x] × Z

<d
≤A′′ [x] has the same probability to be

generated in the Trans algorithm as in the Sim algorithm. This is indeed the

84 S. Bai et al.

case: our choice of parameters guarantees that z1 − c �n+d−1 s ∈ Z
<n+d−1
≤a′ [x]

and z2 − c �d e ∈ Z
<d
≤a′′ [x] and moreover, for any secret key (s, e) and any pair

(z1, z2), we have that

Pr(z1 = c �n+d−1 s + y1|y1 $← Z
<n+d−1
≤a′ [x])

= Pr(y1 = z1 − c �n+d−1 s|y1 $← Z
<n+d−1
≤a′ [x])

and

Pr(z2 = c �d e + y2|y2 $← Z
<d
≤a′′ [x]) = Pr(y2 = z2 − c �d s|y2 $← Z

<d
≤a′′ [x]).

As a consequence, the probability of producing z1 and z2 in Trans such that
‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′ and not returning ⊥ is (2A′ +1

2a′ +1)n+d−1(2A′′ +1
2a′′ +1)d,

which means that the outputs of Trans and Sim have the same distribution. ��

Fig. 4. The transcript Trans and the simulation Sim algorithms

Lemma 11. The scheme has correctness error δ = 1−(2A′ +1
2a′ +1)n+d−1(2A′′ +1

2a′′ +1)d.

Proof. First, we show that the verification procedure always accepts a honest
transcript if (z1, z2) �=⊥. Assume that (z1, z2) �=⊥. It means that ‖z1‖∞ ≤ A′

and ‖z2‖∞ ≤ A′′. Now we prove that

a �d z1 + z2 − c �d b = a �d y1 + y2.

Because of Lemma 3, we have that

a �d z1 = a �d (c �n+d−1 s + y1)
= a �d (c �n+d−1 s) + a �d y1

= (a · c) �d s + a �d y1

MPSign: A Signature from Small-Secret Middle-Product Learning 85

and

c �d b = c �d (a �d+k s + e)
= c �d (a �d+k s) + c �d e

= (c · a) �d s + c �d e.

Overall, we obtain:

a �d z1 + z2 − c �d b

= ((a · c) �d s + a �d y1) + (c �d e + y2) − ((c · a) �d s + c �d e)
= a �d y1 + y2.

Since Sim outputs ⊥ with the same probability as Trans, we know that the
probability to have (z1, z2) =⊥ is exactly δ. ��
Lemma 12. The identification scheme ID is lossy.

Proof. In the lossy key generation algorithm LossyIGen (Fig. 5), we generate the
public key (a, b) uniformly. The public keys generated by IGen and LossyIGen are
indistinguishable by the MPLWE assumption. Indeed, for any quantum adver-
sary A against ID, there exists an adversary B trying to distinguish MPLWE
samples from uniform ones such that the loss advantage Advloss

ID (A) is equal to
the advantage of B. ��
Lemma 13. The identification scheme ID has d · log(2a′′ + 1) bits of min-
entropy.

Proof. Indeed, for every commitment ω, we have that:

Pr
a,y1,y2

(a �d y1 + y2 = ω) ≤ max
a,y1

Pr
y2

(y2 = ω − a �d y1) ≤ 1
(2a′′ + 1)d

,

where the first probability is taken over the uniform choice of a ∈ Z
<n
q [x], y1 ∈

Z
<n+d−1
≤a′ [x] and y2 ∈ Z

<d
≤a′′ [x]. In the second one, the probability is taken over

the uniform choice of y2 ∈ Z
<d
≤a′′ [x] and the maximum is taken over all a ∈ Z

<n
q [x]

and y1 ∈ Z
<n+d−1
≤a′ [x]. ��

Lemma 14. The identification scheme ID is εls-lossy-sound, where

εls ≤ 1
|DH | + (4A′ + 1)n+d−1 · (4A′′ + 1)d · |DH |2 · q−d.

Proof. We show that relatively to a lossy key pkls generated by the LossyIGen
algorithm in Fig. 5, not even an unbounded quantum adversary can impersonate
the prover. This reduces to the computation of the following probability taken
over the uniform choice of a ∈ Z

<n
q [x], b ∈ Z

<d+k
q [x] and c ∈ DH :

P := Pr(∃ z1 ∈ Z
<n+d−1
≤A′ [x], z2 ∈ Z

<d
≤A′′ [x] : a �d z1 + z2 − c �d b = w).

86 S. Bai et al.

Fig. 5. The LossyIGen algorithm

Let S denote the set of pairs (a, b) such that there exists at most one c for
which there exist small z1, z2 such that a �d z1 + z2 − c �d b = w. We can write
P ≤ P1 + P2, where

P1 = Pr((a, b) ∈ S) · 1
|DH | ≤ 1

|DH |
and

P2 ≤ Pr((a, b) /∈ S) · 1
≤ Pr(∃ c �= c′, z1, z2, z′

1, z
′
2 : a �d (z1 − z′

1) + z2 − z′
2 − (c − c′) �d b = 0)

= Pr(∃ ec ∈ DH − DH \ {0}, e1 ∈ Z
<n+d−1
≤2A′ , e2 ∈ Z

<d
≤2A′′ :

a �d e1 + e2 − ec �d b = 0),

where a and b are uniformly sampled in Z
<n
q [x], respectively Z

<d+k
q [x], c, c′ ∈

DH , z1, z1 ∈ Z
<n+d−1
≤A′ [x], and z2, z

′
2 ∈ Z

<d
≤A′′ [x] and DH − DH denotes the set

{d − d′ | d, d′ ∈ DH}.
Let us fix (ec �= 0, e1, e2). The rank of Toep(ec) is maximum for ec �= 0, which

means that the function b �→ ec �d b maps an element b from the uniform dis-
tribution on Z

<d+k
q [x] to an element b′ from the uniform distribution on Z

<d
q [x].

We can now write:

Pr(a �d e1 + e2 − ec �d b = 0) = Pr(b′ = a �d e1 + e2) = q−d,

where the first probability is taken over the uniform choice of a ∈ Z
<n
q [x] and

b ∈ Z
<d+k
q [x] and the second one is taken over the choice of a ∈ Z

<n
q [x] and

b′ ∈ Z
<d
q [x]. We conclude that P2 ≤ (4A′ + 1)n+d−1 · (4A′′ + 1)d · |DH |2 · q−d. ��

5.2 The Signature Scheme

In Fig. 6, we present our digital signature scheme which is obtained by the de-
randomized Fiat-Shamir transform of the identification scheme ID. The correct-
ness of the signature scheme follows (see [KLS18, p. 11]) from the correctness of
the underlying identification scheme (Lemma 11). The scheme is UF-CMA secure
in the quantum random oracle model, as discussed in Subsect. 2.4.

MPSign: A Signature from Small-Secret Middle-Product Learning 87

The signature scheme relies on a hash function H : {0, 1}∗ → DH , which
outputs elements with small norms and will be modelled by a random oracle in
the security proof. We refer to [DDLL13] for an efficient method to construct
such a hash function.

Fig. 6. The signature scheme

The key generation algorithm samples a
$← Z

<n
q [x] using the extendable

function Sam seeded with a 256-bit seed ρ, and then two small secret polynomials
s

$← DZn+d+k−1,α′q and e
$← DZd+k,α′′q. It outputs (b = a �d+k s + e, ρ) as the

verification key vk and (s, e,K, ρ) as the signing key sk, K being a random key
for the pseudorandom function Sam(K‖·) used in the signature algorithm.

To sign a message M , we first recompute a
$← Z

<n
q [x] := Sam(ρ), generate

deterministic masking parameters y1
$← Z

<n+d−1
<a′ [x] := Sam(K‖M‖i‖0) and

y2
$← Z

<d
<a′′ [x] := Sam(K‖M‖i‖1), where i is the repetition index and compute

w = a �d y1 + y2. Then we compute c := H(w‖M), z1 = c �n+d−1 s + y1
and z2 = c �d e + y2. A potential signature is now (z1, z2, c). In order to make
the signature pair (z1, z2) independent of the signing key, we perform rejection

88 S. Bai et al.

sampling on potential signatures before outputting the right one. A potential
signature (z1, z2, c) is output if both ‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′.

To check if (z1, z2, c) is a valid signature for a message M , we first recompute
a

$← Z
<n
q [x] := Sam(ρ) and w = a �d z1 + z2 − c �d b and we accept if

‖z1‖∞ ≤ A′, ‖z2‖∞ ≤ A′′ and c := H(w‖M).

6 Concrete Parameters

In this section we give sample parameters with which our digital signature scheme
can be instantiated. The choice of parameters takes into account the correctness
error probability, the security and the efficiency of our scheme.

The signing acceptance probability is set to p = 1/3 as in [Lyu16] for a fair
comparison.

The security proof of the scheme from [Lyu16] uses the random oracle model,
while the security of our scheme, which is based on Theorem 1, holds in the more
powerful quantum random oracle model.

In terms of efficiency, we focus on minimizing the size of a signature. Our
signature size is (n + d − 1) �log(A′)� + d �log(A′′)� + κ(�log(k + 1)� + 1) bits.
The optimal value of d/n for minimizing the signature length is close to 0.5.
As d/n reduces below 0.5, the signature dimension drops. Due to the lossiness
condition, d/n and log q are inversely proportional, so we have to increase n to
maintain security, which means that overall the signature length will increase.
If d/n increases towards 1, log q reduces but the signature dimension increases
and we cannot reduce the signature length.

The size of our public key (a, b) is 256 + (d + k)�log(q)�. Since for our lossi-
ness property in the security proof we need a much larger q than the one used
in [Lyu16], our public key becomes larger than the public key used in [Lyu16].
On the other hand, our scheme has significantly shorter signatures. Our savings
in MPSign signature length over the scheme in [Lyu16] arise largely from the
smaller secret key coordinates in MPSign. As our attack of Sect. 4 shows, such
savings are not possible in the scheme of [Lyu16] due to the insecurity of PSIS∅

with sufficiently small secret coordinates.
In order to set concrete parameters for our scheme achieving λ bits of secu-

rity, we need to bound from above the advantage of any adversary trying to
attack the UF-CMA security of MPSign in the quantum random oracle model
by 2−λ. By Theorem 1 and Lemma 12, it is enough to bound Adv, AdvPR

PRF(C)
and 2−d log(2a′+1)+1 by 2−λ/5 and 8(QH + 1)2 · εls by 2−λ+1/5, where the nota-
tions are those from Sect. 5 and Adv stands for the advantage of an adversary
trying to solve the MPLWEq,n,d+k,χ1,χ2 problem, where both χ1 and χ2 are dis-
crete Gaussians of parameters α′′q, respectively α′q. As it is standard in lattice-
based cryptography, we further neglect the noise amplification in Theorem 2
and assume that the MPLWE problem with very small secret (with ‖s‖∞ ≈ 1)
is concretely as hard as the PLWE(f) problem with very small secret. Indeed,
there are no known attacks on the MPLWE with small secrets problem that

MPSign: A Signature from Small-Secret Middle-Product Learning 89

exploit the very small secret when generic algebraic attacks on LWE are pro-
tected against (see, e.g., [AG11,ACF+15a,ACF+15b]). Since the discrete Gaus-
sian distributions of the error and secret have small standard deviation, we
assume that we can safely replace them by a corresponding centered binomial
distribution, as has been done in many practical lattice-based encryption schemes
(see [ADPS16,SSZ19,BDK+19], among others).

We use [APS15] in order to estimate both the classical and quantum bit
complexities of the primal attack against the PLWE(f) problem associated to a
polynomial f of maximum degree n from the family. The cost models we choose
are bkz.sieve for classical security, respectively bkz.qsieve for quantum security.

We present in Table 1 a comparison between the efficiency of MPSign and the
scheme described in [Lyu16]. For the same Hermite factor δ0 = 1.005 (driving
the security level), by choosing n = 2500, d = 1300, k = 512 for our scheme, we
manage to shorten the size of a signature by a factor of 2.1 and the size of the
secret key by a factor of 11 at the cost of doubling the size of the public key.

Table 1. Efficiency of MPSign

MPSign [Lyu16]

public key size 19 KB 9.6 KB

secret key size 0.7 KB 8.8 KB

signature size 13 KB 27 KB

q ≈ 287 ≈ 230

In the first column of Table 2, we provide concrete parameters for MPSign
that satisfy both classical and quantum level 1 NIST requirements. Concretely,
they achieve λ ≥ 143 for classical adversaries and λ ≥ 130 for quantum adver-
saries. The second column contains parameters for λ = 89 bits of quantum
security, corresponding to a Hermite factor δ = 1.005.

7 Implementation

We implemented MPSign in Sage (Python) as a proof-of-concept and the source
code is publicly available.2 For the experiments, we used a MacBook Pro with
Intel i7-8559U CPU at 2.7 GHz. Turbo-boost and hyperthreading were both
disabled. For a fair comparison, we also implemented the scheme from [Lyu16]. It
is expected that both implementations are slower than if they were implemented
with a system language (such as C) with an aim for optimization. Nonetheless,
since both implementations use the same Gaussian sampler, the same hash to
challenge function, and the same polynomial multiplication algorithm, we believe
that the comparison is relatively fair.

2 https://github.com/pqc-ntrust/middle-product-LWE-signature.

https://github.com/pqc-ntrust/middle-product-LWE-signature

90 S. Bai et al.

Table 2. Sample parameters for MPSign

λ = 143 λ = 89

n 3800 2500

d 1910 1300

k 512 512

q ≈ 290.9 ≈ 287.3

κ 53 53

|DH | ≈ 2294 ≈ 2294

log A′ ≈ 21.0 ≈ 20.4

log A′′ ≈ 19.4 ≈ 18.9

δ 1.004 1.005

α′q 2
√

π 2
√

π

α′′q 2
√

π 2
√

π

public key size 26.9 KB 19.5 KB

secret key size 1.06 KB 0.74 KB

signature size 20.1 KB 12.8 KB

We instantiate MPSign and the scheme from [Lyu16] with corresponding
parameters achieving δ = 1.005. (for MPSign these parameters may be found in
Table 2). In both benchmarks we iterated 1000 times, each time with a differ-
ent seed and a different message to sign. The results of our comparison may be
found in Table 3. The data are for the average cost in milliseconds. Our scheme
is almost twice faster than the one from [Lyu16] in key generation and verifica-
tion, and four times faster in signing. This is mainly due to the fact that the
scheme from [Lyu16] requires scalar multiplications over vectors of polynomi-
als, while our scheme involves a single middle-product (over a somewhat longer
polynomial).

Table 3. Performance comparison, in ms

[Lyu16] MPSign
min ave max min ave max

key generation 22.3 25.9 46.7 14.6 16.3 27.1

signing 111 418 5771 28.3 99.6 713

verification 15.0 30.8 53.0 16.3 18.8 28.6

Acknowledgments. The work of Shi Bai has been supported in part through NIST
awards 60NANB18D216 and 60NANB18D217 and through NATO SPS Project G5448.
The work of Damien Stehlé has been supported by BPI-France in the context of
the national project RISQ (P141580) and by the European Union in the context of
the PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant
780701). Part of this work was done while Damien Stehlé was visiting the Simons Insti-
tute for the Theory of Computing. The work of Ron Steinfeld was supported in part
by ARC Discovery Project grant DP180102199.

MPSign: A Signature from Small-Secret Middle-Product Learning 91

References

[ACF+15a] Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Alge-
braic algorithms for LWE problems. ACM Commun. Comput. Algebra
49(2), 62 (2015)

[ACF+15b] Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On
the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2),
325–354 (2013). https://doi.org/10.1007/s10623-013-9864-x

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 35

[ADPS16] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange - a new hope. In: USENIX, pp. 327–343 (2016)

[AG11] Arora, S., Ge, R.: New algorithms for learning in presence of errors. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755,
pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22006-7 34

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of LWE.
J. Math. Cryptol. 9(3), 169–203 (2015)

[BAA+19] Bindel, N., et al.: qTESLA: algorithm specifications and supporting doc-
umentation. NIST PQC round 2 submission document (2019)

[Ban95] Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lat-
tices in Rn . Discret. Comput. Geom. 13(2), 217–231 (1995). https://doi.
org/10.1007/BF02574039

[BBD+19] Bai, S., Boudgoust, K., Das, D., Roux-Langlois, A., Wen, W., Zhang, Z.:
Middle-product learning with rounding problem and its applications. In:
Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921,
pp. 55–81. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 3

[BDE+11] Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On
the security of the Winternitz one-time signature scheme. In: Nitaj,
A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
363–378. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21969-6 23

[BDK+19] Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based
KEM. In: Euro S P, pp. 353–367 (2019)

[BG14] Bai, S., Galbraith, S.D.: An improved compression technique for signatures
based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS,
vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-04852-9 2

[BPS16] Bellare, M., Poettering, B., Stebila, D.: From identification to signatures,
tightly: a framework and generic transforms. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 435–464. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6 15

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40041-4 3

https://doi.org/10.1007/s10623-013-9864-x
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/BF02574039
https://doi.org/10.1007/BF02574039
https://doi.org/10.1007/978-3-030-34578-5_3
https://doi.org/10.1007/978-3-030-34578-5_3
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3

92 S. Bai et al.

[DFMS19] Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir
transformation in the quantum random-oracle model. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 13

[DKL+18] Ducas, L., et al.: CRYSTALS - Dilithium: digital signatures from module
lattices. In: CHES, pp. 238–268 (2018)

[Hir18] Hiromasa, R.: Digital signatures from the middle-product LWE. In: Baek,
J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 239–257.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9 14

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

[Kat10] Katz, J.: Digital Signatures. Springer, Boston (2010). https://doi.org/10.
1007/978-0-387-27712-7

[KLS18] Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-
Shamir signatures in the quantum random-oracle model. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 18

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are col-
lision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 13

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. J. ACM 60(6), 43:1–43:35 (2013)

[LPSS14] Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k -LWE
and applications in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 315–334. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 18

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for mod-
ule lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.
1007/s10623-014-9938-4

[LVV19] Lombardi, A., Vaikuntanathan, V., Vuong, T.D.: Lattice trapdoors and
IBE from middle-product LWE. In: Hofheinz, D., Rosen, A. (eds.) TCC
2019. LNCS, vol. 11891, pp. 24–54. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-36030-6 2

[Lyu16] Lyubashevsky, V.: Digital signatures based on the hardness of ideal lattice
problems in all rings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10032, pp. 196–214. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 7

[LZ19] Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693,
pp. 326–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 12

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. In: FOCS, pp. 372–381. IEEE (2004)

[NIS] NIST: Post-quantum cryptography - round 1 submissions. https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

[PFH+19] Prest, T., et al.: Falcon: algorithm specifications and supporting documen-
tation. NIST PQC round 2 submission document (2019)

https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-01446-9_14
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-0-387-27712-7
https://doi.org/10.1007/978-0-387-27712-7
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-030-36030-6_2
https://doi.org/10.1007/978-3-030-36030-6_2
https://doi.org/10.1007/978-3-662-53890-6_7
https://doi.org/10.1007/978-3-662-53890-6_7
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-030-26951-7_12
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

MPSign: A Signature from Small-Secret Middle-Product Learning 93

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 8

[PRS17] Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of
ring-LWE for any ring and modulus. In: STOC, pp. 461–473. ACM (2017)

[RSSS17] Roşca, M., Sakzad, A., Stehlé, D., Steinfeld, R.: Middle-product learning
with errors. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 283–297. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63697-9 10

[RSW18] Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE
problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 6

[Sch89] Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 22

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 36

[SSZ17] Steinfeld, R., Sakzad, A., Zhao, R.K.: Titanium: proposal for a NIST post-
quantum public-key encryption and KEM standard (2017)

[SSZ19] Steinfeld, R., Sakzad, A., Zhao, R.K.: Practical MP-LWE-based encryp-
tion balancing security-risk versus efficiency. Des. Codes Crypt. 87(12),
2847–2884 (2019)

https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/978-3-319-63697-9_10
https://doi.org/10.1007/978-3-319-63697-9_10
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Proofs and Arguments II

Witness Indistinguishability for Any
Single-Round Argument

with Applications to Access Control

Zvika Brakerski1(B) and Yael Kalai2

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 Microsoft Research and MIT, Cambridge, USA

Abstract. Consider an access policy for some resource which only allows
access to users of the system who own a certain set of attributes. Specif-
ically, we consider the case where such an access structure is defined by
some monotone function f : {0, 1}N → {0, 1}, belonging to some class
of function F (e.g. conjunctions, space bounded computation), where N
is the number of possible attributes.

In this work we show that any succinct single-round delegation scheme
for the function class F can be converted into a succinct single-round pri-
vate access control protocol. That is, a verifier can be convinced that an
approved user (i.e. one which holds an approved set of attributes) is
accessing the system, without learning any additional information about
the user or the set of attributes.

As a main tool of independent interest, we show that assuming a
quasi-polynomially secure two-message oblivious transfer scheme with
statistical sender privacy (which can be based on quasi-polynomial hard-
ness of the DDH, QR, DCR or LWE assumptions), we can convert any
single-round protocol into a witness indistinguishable one, with similar
communication complexity.

1 Introduction

The main goal in the study of delegation of computation is to construct a single-
round succinct argument system for a wide class of functions, in which the
communication complexity and verification computational complexity are inde-
pendent (or at least sublinear) in the computational complexity of deciding the
statement, and where the prover (given a witness if needed) can compute a
proof efficiently (i.e. with comparable complexity to that of deciding the state-
ment). Delegation schemes for polynomially computable functions under stan-
dard assumptions were presented by [GKR08,KRR13,KRR14,KP15,RRR16,

Z. Brakerski—Supported by the Binational Science Foundation (Grant No. 2016726),
and by the European Union Horizon 2020 Research and Innovation Program via ERC
Project REACT (Grant 756482) and via Project PROMETHEUS (Grant 780701).

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 97–123, 2020.
https://doi.org/10.1007/978-3-030-45388-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_4

98 Z. Brakerski and Y. Kalai

BHK17,KPY18]. In this work, we consider delegation for NP. Constructing del-
egation for all of NP under standard assumptions is an important open prob-
lem, and such schemes are only known in the random oracle model [Mic94],
and under knowledge assumptions [DFH12,BCCT13,BCC+14]. However, for
restricted classes of NP languages, there are delegation schemes from standard
assumptions [BHK17,BKK+17].

When delegating an NP statement, the prover needs to hold a witness that
allows to decide the statement. In such a case a natural question is whether
the privacy of the witness is preserved by the delegation scheme. In this work
we show a general transformation that translates any delegation scheme into a
witness indistinguishable one, without blowing up the communication by much.
We then apply this transformation to known delegation schemes based on stan-
dard assumptions, and construct an object that we call “succinct access control
scheme”. These objects allow a master authority to distribute credentials of
attributes to parties, in a way that will allow them to provide a succinct proof
that the credentials that they hold satisfy a predicate, without revealing the
credentials or their identity.

1.1 Our Witness Indistinguishability Transformation

We show a generic transformation that converts any single-round (2-message)
delegation scheme into one that is also witness indistinguishable (WI), with-
out blowing up the communication complexity. This transformation relies on the
existence of a quasi-poly secure OT scheme, which can be based on the quasi-
polynomial hardness of the DDH, QR, Paillier’s decisional composite residu-
osity assumption (DCR) and recently also the Learning with Errors assump-
tion (LWE). The communication complexity and verifier complexity remain
unchanged up to poly(λ) factors. This transformation relies on a recent 2-
message strong WI protocol in the delayed input setting, proposed by [JKKR17].
(In this work we achieve computational WI, but we believe it may be possible to
achieve statistical witness indistinguishability using the results and techniques
of [KKS18].) See details in Sects. 1.3 and 2.

It should be noted that the high level approach of executing a delegation
scheme homomorphically in order to achieve privacy for the witness can be
traced back to prior works, e.g. [BBK+16]. However, our result statement and
analysis are different from what is done in prior works.

1.2 Application: Succinct Single-Round Access Control

By applying our WI transformation to a class of succinct single-round argument
systems in the literature, that we call “batch NP families”, we get a succinct
single-round witness indistinguishable argument system that allows a user to
prove that they contain a set of attributes that satisfies a given monotone access
structure. We call this “a succinct access control scheme”. We start by explaining
what delegation for batch NP family is, and proceed with our construction.

WI Arguments with Applications to Access Control 99

Delegation for Batch NP Families. The work of [BHK17] considered a spe-
cial setting of delegation for NP languages. They considered a conjunction (AND
function) of a number of “small” NP statements, and showed a delegation pro-
tocol whose communication complexity scaled with the witness length of a small
statement, rather than a concatenation of the witnesses. We can consider an
extension of this paradigm, replacing the conjunction with other classes of func-
tions. Note that this only makes sense for monotone functions, since a prover
can always claim not to have a witness for a specific small instance.

Formally, our batch NP families will be characterized by a family of mono-
tone functions F . The statements to be proven will be characterized by a col-
lection of instances x1, . . . , xN respective to a language L, and a monotone
function (i.e. without negation gates) f : {0, 1}N → {0, 1} in F . The state-
ment ((x1, . . . , xN), f) holds if f(1x1∈L, . . . ,1xN ∈L) = 1, where 1xi∈L = 1
if and only if xi ∈ L. For example, we can consider statements of the form
(((x1 ∈ L) ∧ (x2 ∈ L)) ∨ (x3 ∈ L)) ∧ (x4 ∈ L), and much more. In order
to produce an accepting proof, an honest prover needs a set of witnesses for
a subset S ⊆ [N] of the xi’s that makes f accept. Namely a set of witnesses
{wi}i∈S so that wi is a witness for xi and the set S is sufficient for f to
accept; i.e., f(11∈S , . . . ,1N∈S) = 1. Since f is monotone, this indeed implies
that f(1x1∈L, . . . ,1xN ∈L) = 1 (since S is a subset of the xi’s that are in L).

A delegation scheme for such a family is said to be succinct if the communica-
tion complexity is independent of N (most desirably (m+polylog(n,N))·poly(λ))
and the verifier computational complexity only depends on N to the extent that
it is required to read the input and a description of the function f . In particular,
if f has a succinct representation, e.g. it can be generated by a Turing machine,
then the verification complexity can be lower. Indeed, our results are interesting
for families F that consist of functions f that have a succinct description. We also
require a proof-of-knowledge property, meaning that one can efficiently extract
a valid witness {wi}i∈S from any (possibly cheating) prover that convinces the
verifier to accept with non-negligible probability.

As mentioned above, if the class F is the class of conjunctions, [BHK17]
provide a delegation scheme with the aforementioned properties. We also notice
that the work of Badrinarayanan et al. [BKK+17] implies such a delegation
scheme for space-bounded non-deterministic computations.

Access Control Schemes. Consider a setting where there are N public keys
pk1, . . . , pkN (for a very large N), and each user receives for some subset S ⊂ [N]
(corresponding to his credentials) a set of secret keys {ski}i∈S , where each ski

corresponds to pki. Now suppose a user wishes to prove anonymously and suc-
cinctly that his credentials satisfy some monotone formula f : {0, 1}N → {0, 1}.
Namely, he wishes to prove that his set S satisfies f(11∈S , . . . ,1n∈S) = 1. Com-
bining our two main results (monotone NP delegation and our WI transforma-
tion) we obtain a single-round succinct and anonymous scheme, where a user
can succinctly prove that his set of secret keys satisfies some monotone access
structure (formulated as a monotone formula), where the anonymity property
is WI and the length of a proof is |ski| · poly(log N,λ), where |ski| is the length

100 Z. Brakerski and Y. Kalai

of a single secret key, and λ is the security parameter. We call such a scheme a
succinct single-round access control scheme.

Moreover, we can make our scheme collusion resilient. Namely, we can ensure
that if two users have credentials corresponding to two sets S1, S2 ⊆ [N], then
together they cannot get credentials corresponding to S1 ∪ S2, and moreover
together they cannot prove more than what each user could have proven indi-
vidually. This is done by introducing a signature scheme and setting each secret
key to be a signature on the attribute concatenated with a random tag that is
unique for the user. The random tags will prevent mixing an matching between
different users’ attributes. We refer to Sect. 3 for the formal definition and the
construction.

We note that our notion of access control systems is similar to the notion of
anonymous credentials [Cha85]. We identify two main differences between the
two notions. One is that anonymous credentials require anonymity even against
the issuer of the credentials, whereas in our model the issuer is a trusted party.
The second is that anonymous credentials are not required to be succinct, in
the sense that the proof could depend on the number of attributes, whereas
succinctness is a cornerstone in the definition of access control systems. We
believe that our techniques may be useful towards the construction of succinct
anonymous credential schemes under standard assumptions by replacing the
signature scheme from our construction in Sect. 3 with blind signatures [Cha82].

1.3 Technical Overview of Our WI Transformation

We show how to convert any single-round (2-message) argument system (and in
particular, our single-round delegation protocol) with super-polynomial security
into a witness indistinguishable one, with minimal (asymptotic) blowup to the
communication complexity, albeit witness indistinguishability holds only against
polynomial time distinguishers. We note that we can get super-polynomial secu-
rity by properly strengthening the assumption, namely for any function T (λ) ≥ λ
(where λ is the security parameter), if the original scheme was secure against
any poly(T)-size adversary then we get witness indistinguishability against all
T o(1)-size adversaries. Furthermore, if the original protocol is extractable then
the transformation would allow to apply the extractor as well.

The basic idea is for the verifier to simply send the first message of the
protocol, and for the prover to compute its response according to the protocol,
but rather than sending it to the verifier “in the clear”, it will send a statistically
binding commitment to the response. The idea is then for the prover to provide
a WI proof (in parallel) that he indeed sent a commitment to an accepting
response to the verifier’s first message.

This idea runs into several obstacles, let us present the most severe ones.
First, the original protocol may not be publicly verifiable (and indeed we would
like to apply it to our aforementioned privately verifiable protocol), in which case
the prover cannot prove that he is committing to a message that corresponds
to an accepting response, since he does not know the verifier’s verdict function.
Second, we require that the prover commits to the accepting response using a

WI Arguments with Applications to Access Control 101

statistically binding commitment, but this means that there is only one accepting
witness and WI becomes meaningless. We next explain how to address these
obstacles.

To address the first obstacle, we consider the secret state that the verifier
keeps and is used to render the verdict of acceptance on the prover’s response.
In our new protocol, the verifier will send, along with its delegation query, its
random tape in an encoded form. This encoded form should allow to apply the
functionality of the prover under the encoding and send the encoded result back
to the verifier, and at the same time hide the state so that soundness is main-
tained. To this end, we present an abstraction that we call private remote evalu-
ation scheme, which can be thought of as a one-time non compact homomorphic
encryption scheme with malicious circuit privacy. We show that this primitive
can be constructed using garbled circuits and using an oblivious transfer protocol
with security against malicious receivers (the same assumption is required for the
WI proof system that we need to use). Given the verifier’s random tape encoded
in this way, the prover can “homomorphicly” check that indeed applying the ver-
ifier’s query generation on the encoded random tape results in the query string
sent by the verifier, and that the prover’s response to this query string will result
in the verifier accepting. The prover will perform this operation on the encoded
random tape (note that the expected output should always be an encoding of
1) and prove in WI that the resulting encoding was indeed generated using the
aforementioned operation. Since our encoding scheme is circuit-private, the ver-
ifier will not learn anything from the encoding itself (since it is just an encoding
of 1), but the WI proof will guarantee that indeed the prover committed to a
message that would have made the verifier of the original protocol accept.

The communication complexity of the generic remote evaluation scheme that
we present is proportional to the running time of the verifier in the underlying
argument system. This aspect could be improved by using a succinct remote
evaluation scheme (i.e., a circuit private fully homomorphic encryption scheme),
where the communication complexity does not grow with the running time. Such
an evaluation scheme requires fully homomorphic encryption and can therefore
is currently only known based on the learning with errors assumption (LWE),
whereas our generic solution can be based on a variety of assumptions. We
chose not to specify the succinct version in this work since we anyway inherit a
communication blowup from the WI protocol that we use (see below), which in
general can anyway grow with the running time of the verifier. Thus, we chose
to avoid introducing a new assumption for this purpose.

Let us now specify the properties of the two message WI protocol that is
required for this approach to go through. First of all, we notice that we need
a protocol with adaptive soundness, i.e. soundness holds even against a prover
that chooses the statement to be proven after seeing the verifier’s first message.
We emphasize that even though we use as a building block a WI protocol with
adaptive soundness, our resulting (succinct) WI protocol is not adaptively sound
(i.e., soundness holds only against provers that choose the statement to be proven
before seeing the verifier’s message).

102 Z. Brakerski and Y. Kalai

Second, we need to address the aforementioned vacuousness of the standard
notion of WI when proving with respect to a committed value. This is resolved
by resorting to the notion of strong WI, which considers two distributions over
instance-witness pairs, and requires that if the instance components of the two
distributions are computationally indistinguishable, then the verifier cannot dis-
tinguish which instance-witness pair was used to generate the proof. Indeed, the
recently proposed protocol of Jain et al. [JKKR17] has the required properties
(in the delayed input setting), under the assumption that a quasi-poly secure OT
scheme exists (we refer to Sect. 2 for details, and in particular to Theorem 2.5).

Lastly, we require extractability, namely being able to extract the committed
response to the delegation protocol in case the WI protocol accepted. However,
since the prover only sends a single message, we cannot get extractability under
standard assumptions. We therefore rely on complexity leveraging, and extract
the prover answer by brute-force breaking the hiding of the commitment scheme.
This means that in order for soundness to hold, we need all components other
than the commitment scheme to be secure even in the presence of this brute-
force extractor, i.e. to have super-polynomial security. This way, we can scale
down the hardness of the commitment scheme and allow it to be broken while
leaving the other building blocks secure.

2 Witness Indistinguishability for Any Argument System

In this section we present our general transformation for converting any 2-
message argument system into a 2-message witness indistinguishable one with
only modest increase in communication complexity.

2.1 Preliminaries

Our transformation makes use of several cryptographic building blocks, which
we present below.

Garbled Circuits. We rely on a decomposable randomized encoding scheme.
For the sake of concreteness we consider garbled circuits.

Definition 2.1 (Garbled Circuits). A garbling scheme consists of a tuple of
three algorithms (Garble,GCEval,GCSim) where:

1. Garble(1λ, C) is a PPT algorithm that takes as input the security parameter λ
(ommitted when clear from the context) and a circuit C : {0, 1}n → {0, 1}m,
and outputs a garbled circuit ̂C along with input labels (labi,b)i∈[n],b∈{0,1}
where each label labi,b ∈ {0, 1}λ.

2. GCEval(1λ, ̂C, ̂lab) is a deterministic algorithm that takes as input a garbled
circuit ̂C along with a set of n labels ̂lab = (labi)i∈[n], and outputs a string
y ∈ {0, 1}m.

3. GCSim(1λ, 1|C|, 1n, y) is a ppt algorithm that takes as input the security
parameter, the description length of C, an input length n and a string
y ∈ {0, 1}m, and outputs a simulated garbled circuit ˜C and labels ˜lab.

WI Arguments with Applications to Access Control 103

We often omit the first input to these algorithms (namely, 1λ) when it is clear
from the context. We require that the garbling scheme satisfies two properties:

1. Correctness: For all circuits C, inputs x, and all (̂C, (labi,b)i,b) ← Garble(C)
and ̂lab = (labi,xi

)i∈[n], we have that GCEval(̂C, ̂lab) = C(x).
2. Simulation Security: For all circuits C : {0, 1}n → {0, 1}m and all inputs x ∈

{0, 1}n, the following two distributions are computationally indistinguishable:
{

(̂C, ̂lab) : (̂C, (labi,b)i,b) ← Garble(C), ̂lab = (labi,xi
)i∈[n]

}

c≈ {

(˜C, ˜lab) : (˜C, ˜lab) ← GCSim(1λ, 1|C|, 1n, C(x))
}

.

Oblivious Transfer Secure Against Malicious Receivers. We use a notion
of oblivious transfer that has computational security against senders (i.e. receiver
privacy) but also (statistical) security against malicious receivers (sender pri-
vacy). That is, regardless of the receiver’s first message, the sender’s response
never reveals more than one of its inputs, even to an unbounded adversary.

Definition 2.2 (Two-Message Oblivious Transfer with Statistical
Sender Security). A two-message oblivious transfer is a protocol between two
parties, a sender S with messages (m0,m1) and receiver R = (R1, R2) with a
choice bit b, such that R obtains output mb at the end of the protocol. Specifi-
cally, R1(b) = R1(1λ, b) outputs (σ, e), where e is the message sent to the receiver
and σ is a local state that is kept private. The sender responds with an answer
v = S(1λ, (m0,m1), e). Finally R2(1λ, σ, v) outputs a message m. We omit the
security parameter input to these procedures when it is clear from the context.

We consider OT that satisfies the following properties:

– Computational Receiver Security. The distributions R1(0) and R1(1) are
computationally indistinguishable. We sometimes require super-polynomial
security, specifically, we say that the OT scheme is T -receiver secure if
T · poly(λ)-size distinguishers have advantage less than negl(λ)

T .
– Statistical Sender Security. For all λ and for all e∗ ∈ {0, 1}∗ there exists a

bit b∗ such that the distributions S(1λ, (m0,m1), e∗) and S(1λ, (mb∗ ,mb∗), e∗)
are statistically indistinguishable. It would sometimes be convenient to think
about b∗ as produced by a computationally unbounded procedure Ext so that
b∗ = Ext(1λ, e∗) (we sometimes omit 1λ when it is clear from the context).

Oblivious transfer protocols satisfying these definitions have been introduced
based on assumptions such as DDH, QR, DCR and LWE [NP01,Kal05,HK07,
BD18].

Delayed-Input Interactive Protocols and Strong Witness Indistin-
guishability. A �-message delayed-input interactive protocol (P, V) for deciding
an NP language L with associated relation RL proceeds in the following manner:

– At the beginning of the protocol, P and V receive the size of the instance
and the security parameter, denoted by n and λ, respectively, and execute
the first � − 1 messages.

104 Z. Brakerski and Y. Kalai

– Before sending the last message, P receives as input a pair (x,w) ∈ RL, where
|x| = n, and V receives x. Upon receiving the last message from P , V outputs
1 or 0.

An execution of (P, V) with instance x and witness w is denoted as 〈P, V 〉(x,w).
Whenever clear from context, we also use the same notation to denote the output
of V .

A �-message delayed-input interactive argument for a language L must sat-
isfy the standard notion of completeness (in the delayed-input setting) as well as
adaptive soundness, where the soundness requirement holds even against mali-
cious PPT provers who choose the statement adaptively, depending upon the
first � − 1 messages of the protocol.

Definition 2.3 (Delayed-Input Interactive Arguments). A �-message
delayed-input interactive protocol (P, V) for deciding a language L is an inter-
active argument for L if it satisfies the following properties:

– Adaptive Completeness: For every (x,w) ∈ RL chosen adaptively after
� − 1 rounds of interaction,

Pr
[〈P, V 〉(x,w) = 1

]

= 1,

where the probability is over the random coins of P and V .
– Adaptive Soundness: For every (non-uniform) PPT prover P ∗ that

chooses n = poly(λ) and chooses x ∈ {0, 1}n \ L adaptively, depending upon
the first � − 1 messages,

Pr
[〈P ∗, V 〉(x) = 1

]

= negl(λ),

where the probability is over the random coins of V .

Definition 2.4 ((Strong) Witness Indistinguishability). Let n = n(λ) ≤
poly(λ). An interactive argument (P, V) for a language L is strong witness
indistinguishable (which we denote sWI) if for every pair of distributions over
pairs {(X1,n(λ),W1,n(λ))}λ∈N and {(X2,n(λ),W2,n(λ))}λ∈N supported over RL, for
which the distributions {X1,n(λ)}λ∈N and {X2,n(λ)}λ∈N are computationally indis-
tinguishable, for every PPT verifier V ∗, and for every (non-uniform) PPT dis-
tinguisher D,

∣

∣

∣

∣

∣

Pr
(x,w)←(X1,n(λ),W1,n(λ))

[D(x,ViewV ∗ [〈P, V ∗〉(x,w)] = 1
]

− Pr
(x,w)←(X2,n(λ),W2,n(λ))

[D(x,ViewV ∗ [〈P, V ∗〉(x,w)] = 1
]

∣

∣

∣

∣

∣

≤ negl(λ).

Standard (as opposed to strong) witness indistinguishability (which we denote
simply by WI) only requires that the above holds for singleton distributions, which
is equivalent (due to the indistinguishability condition) to defining a deterministic
sequence of input and witness pairs

{(xn(λ), w1,n(λ), w2,n(λ))}λ∈N.

WI Arguments with Applications to Access Control 105

In delayed input strong witness indistinguishability, the above is only required
to hold with respect to PPT verifiers V ∗ who obtain the instance together with the
last prover message in the protocol (i.e., who generate their messages obliviously
of x). Note that this notion is vacuous for standard (non-strong) WI.

Theorem 2.5 ([JKKR17]). For any T = λω(1), assume the existence of a non-
interactive statistically binding commitment scheme, that is hiding against poly-
size adversaries, but where the hiding property can be broken by poly(T) adver-
saries, and assume the existence of a poly(T)-secure OT scheme as in Defi-
nition 2.2. Then there exists a 2-message delayed-input strong WI protocol for
every language in NP such that soundness holds against poly(T)-size adver-
saries, but (strong) WI property holds only against poly-size cheating verifiers.

Remark 2.6. The strong WI property can be strengthened to hold against
poly(T ∗)-size cheating verifiers, for any T ∗ = T o(1). However, this requires
assuming that the underlying commitment scheme that can be broken in time
poly(T), is secure against poly(T ∗) size adversaries.

2.2 Private Remote Evaluation

Our transformation makes use of a primitive that we call a private remote eval-
uation scheme. Loosely speaking, this can be thought of as a one-time non-
succinct fully homomoprhic encryption scheme with strong malicious circuit pri-
vacy [GHV10,OPP14].

Rather than formally defining this primitive, we construct it following the
outline of Yao’s 2-party 2-round secure function evaluation protocol [Yao82]
(using a garbling scheme satisfying Definition 2.1 and using an oblivious transfer
protocol satisfying Definition 2.2), and state its properties.

Let (R = (R1, R2), S) be an OT scheme that satisfies Definition 2.2 and
let (Garble,GCEval,GCSim) be a garbling scheme. Our private remote evaluation
scheme consists of a tuple of four algorithms (Enc,Eval,Dec,Sim), defined as
follows.

– The encoding algorithm Enc takes an input a security parameter 1λ and a
string x ∈ {0, 1}n, and outputs an encoded output ψ and a secret state σ.
Specifically, for every bit of x, Enc runs R1(1λ, xi) to compute the first OT
receiver message ψ(i) and the state σ(i). It outputs ψ = {ψ(i)}i∈[n], σ =
{σ(i)}i∈[n]. We sometimes denote by Enc1 the algorithm that computes Enc
and only outputs the ψ component, and we often omit the security parameter
from the notation.

– The evaluation algorithm Eval takes as input a circuit C : {0, 1}n → {0, 1}m

and an encoded input ψ = {ψ(i)}i∈[n]. It runs GarbleC to generate a gar-
bled circuit ̂C for C with labels labi,b, and computes the sender response
for each OT execution ψ′(i) = S((labi,0, labi,1), ψ(i)). It finally outputs
ψ′ = ({ψ′(i)}i∈[n], ̂C).

106 Z. Brakerski and Y. Kalai

– The decoding procedure Dec takes as input ψ′ = ({ψ′(i)}i∈[n], ̂C) and σ =
{σ(i)}i∈[n], and applies the OT receiver protocol to obtain labi = R2(σ(i), ψ′(i)).
It finally runs GCEval(̂C, {labi}i∈[n]) and outputs the resulting y ∈ {0, 1}m.

– For all 1n, 1m, 1c representing input, output and circuit size (these inputs are
often omitted when they are clear from the context), there exists a simulator

Sim = (Sim1,Sim2),

such that the following holds. Let Ext be the OT extractor from Definition 2.2.
The simulator Sim1 takes as input a (possibly adversarially chosen) sequence
ψ = {ψ(i)}i∈[n], and runs Ext on each ψ(i) to obtain a bit xi. Let x ∈ {0, 1}n

denote the collection of the extracted bits.
The simulator Sim2, takes as input (ψ, x) together with a string y ∈ {0, 1}m,
it runs in probabilistic polynomial time, and does the following:
1. It runs the PPT garbled circuit simulator GCSim, on input y (and input

1λ, 1|C|, 1n), to generate simulated circuit ˜C and labels ˜lab.
2. It generates simulated sender messages { ˜ψ(i)} ← S((˜labi, ˜labi), xi).
3. It outputs ˜ψ = ({ ˜ψ(i)}, ˜C).

Claim 2.7. For any ψ = {ψ(i)}i∈[n] and any circuit C : {0, 1}n → {0, 1}m, it
holds that

Eval(C,ψ)
c≈ Sim2(ψ, x,C(x)),

where x ← Sim1(ψ).

Proof. By definition,

Eval(C,ψ) =
(

{

S((labi,0, labi,1), ψ(i))
}

i∈[n]
, ̂C

)

.

Since ψ is fixed, then the value x ← Sim1(ψ) is also fixed. It follows from Defi-
nition 2.2 that

Eval(C,ψ)
s≈

(

{

S((labi,xi
, labi,xi

), ψ(i))
}

i∈[n]
, ̂C

)

.

Now we use the garbled circuit security to argue that

Eval(C,ψ)
c≈

(

{

S((˜labi, ˜labi), ψ(i))
}

i∈[n]
, ˜C

)

= Sim2(ψ, x,C(x)),

where ˜lab, ˜C are produced by the garbled circuit simulator given y = C(x).

The following claims are immediate from the OT correctness and receiver
security.

Claim 2.8 (Correctness). For every n = n(λ) (not necessarily polynomially
bounded), every x ∈ {0, 1}n, every C : {0, 1}n → {0, 1}, letting (ψ, σ) ←
Enc(1λ, x), ψ′ ← Eval(C,ψ), y = Dec(σ, ψ′), it holds that y = C(x) with proba-
bility 1.

Claim 2.9 (Receiver Privacy). For every n = n(λ) ≤ poly(λ) and every
sequences of inputs x, x′ ∈ {0, 1}n it holds that Enc1(1λ, x)

c≈ Enc1(1λ, x′).

WI Arguments with Applications to Access Control 107

2.3 Making Single-Round Protocols Witness Indistinguishable

We show how to convert any single-round (2-message) protocol (P, V) with
super-polynomial security and perfect completeness into a single-round (2-
message) witness indistinguishable (WI) protocol, such that if the communica-
tion complexity of the original protocol (P, V) is cc(n, λ) then the communication
complexity of the resulting WI protocol (PWI, VWI) is cc(n, λ) + poly(v(n, λ)),
where v(n, λ) is the total runtime of the original verifier V , both in generating
the query string to be sent to the prover and in verifying the response received
by the prover. We use the term verdict function to refer to the second step on
V , namely the function that takes as input the communication transcript and
an internal secret state of the verifier, and outputs whether the verifier accepts
or rejects. Our transformation requires that the original protocol (P, V) is sound
against super-polynomial time adversaries (as we intend to use complexity lever-
aging). Our theorem statement follows.

Theorem 2.10. For any super-polynomial function T : N → N, there is a
generic transformation that transforms any (privately or publicly verifiable)
single-round argument (P, V) for an NP language L with perfect completeness
and with soundness against poly(T)-size cheating provers, into a privately veri-
fiable witness indistinguishable single-round argument (PWI, VWI) for L with the
following properties:

– Succinctness. If the communication complexity of (P, V) is cc(n, λ), and
V has total time complexity v(n, λ), then the communication complexity of
(PWI, VWI) is1

ccWI(n, λ) � cc(n, λ) + poly(λ, v(n, λ)).

– Completeness. For every x ∈ L and any witness w for x, it holds that
(PWI(x.w), VWI(x)) accepts with probability 1.

– Soundness. (PWI, VWI) is sound against (non-uniform) cheating provers of
size poly(T).2

– Witness Indistinguishability. (PWI, VWI) is witness indistinguishable
against (non-uniform) PPT cheating verifiers (but not against poly(T)-size
cheating verifiers, see also Remark 2.12 below).

This transformation requires the following building blocks:

– A statistically binding non-interactive commitment scheme Com that can be
broken in time poly(T) for all sufficiently large value of λ.

1 This guarantee is of interest only if v(n, λ) is significantly smaller than the witness
size, which is the case for example the argument systems constructed in [BHK17,
BKK+17].

2 We emphasize that the soundness property (both for the underlying argument (P, V)
and the resulting one (PWI, VWI)) is non-adaptive soundness, where soundness is
required to hold only against cheating provers that choose the statement to be proven
before seeing the verifier’s message.

108 Z. Brakerski and Y. Kalai

– The private remote evaluation scheme (Enc,Dec,Eval,Sim), as described in
Sect. 2.2, where the underlying OT scheme has receiver privacy against
poly(T)-size adversaries (i.e, Claim 2.9 is satisfied against poly(T)-size
adversaries).

– A delayed-input single-round (2-message) strong WI (sWI) argument system
(PsWI, VsWI) for NP, that is sound against poly(T) size cheating provers.

In fact, we will show that our transformation enjoys an even stronger sound-
ness guarantee as described next. There exist black-box non-rewinding, instance
preserving (where applicable) poly(T)-time reductions M1,M2,M3, such that for
every (possibly inefficient) cheating prover P ∗

WI it holds that M
P ∗

WI
1 is a cheat-

ing prover against the sWI proof system, M
P ∗

WI
2 is a distinguisher for the remote

evaluation scheme, and M
P ∗

WI
3 is a cheating prover against the original argument

system, and it holds that the sum of advantages of these adversaries in their
related game is at least the advantage of P ∗

WI in the compiled protocol (up to
negligible terms).

We note that the resulting WI protocol is only privately verifiable, even if
the underlying protocol was publicly verifiable.

Remark 2.11. We note that if we rely on a succinct remote evaluation scheme
(e.g., a circuit-private fully homomorphic encryption scheme), then the commu-
nication complexity would be poly(λ) · cc(n, λ) + cc(sWI), where cc(sWI) is the
communication complexity of the underlying strong WI protocol, which in gen-
eral can be as large as v(n, λ), but can be smaller if the underlying strong WI
protocol is succinct.

Remark 2.12. One can strengthen the above theorem so that WI holds against
any poly(T ∗)-size adversaries, for any T ∗ = T o(1), by relying on a quantified
version of Theorem 2.5 (see Remark 2.6), with WI against poly(T ∗)-size adver-
saries. This requires assuming that the underlying commitment scheme Com,
which can be broken in time poly(T), is secure against poly(T ∗)-adversaries.

Proof. Consider a language L, time complexity bound T , a protocol (P, V), a
private remote evaluation scheme (Enc,Dec,Eval,Sim) and a delayed input strong
WI argument system (PsWI, VsWI), all as described in the theorem statement.
We denote by (Q,A) the first and second message respectively exchanged in the
protocol (P, V).

Let Com be a statistically binding non-interactive commitment scheme that
can be broken in time poly(T), as described in the theorem statement. Such
commitment schemes can be constructed from injective one-way functions. We
note that for our purposes it is possible to use Naor’s two-message commitment
scheme from any one-way function [Nao89] since we can allow a message from
the receiver to the sender prior to the commitment message, but for the sake of
simplicity we will assume that Com is non-interactive. We further assume w.l.o.g
that the length of the commitment string is equal to the length of the committed
message plus an additive poly(λ) term. This can be achieved generically using

WI Arguments with Applications to Access Control 109

“key encapsulation” (committing to a PRG seed and using the PRG output to
mask the message).

We show how to convert (P, V) into a 2-message witness indistinguishable
argument, denoted by (PWI, VWI), which preserves the succinctness property
of (P, V), as stated in the theorem statement. Since (P, V) is not necessarily
publicly verifiable, in order to verify a transcript (Q,A) the verifier may need
a private state, which we denote by st. We will assume w.l.o.g that st is simply
the random tape of the verifier V . This will allow to check, given some possible
query string Q whether Q is the string generated when V starts with random
tape st. If this condition holds, we say that st is consistent with Q, we denote this
by st |= Q. The resulting protocol (PWI, VWI) makes use of an underlying (not
necessarily succinct) delayed-input strong WI 2-message argument (PsWI, VsWI)
for the NP language L′, defined as follows:

L′ ={(1λ, x,Q, c, st) : ∃(A, r) s.t.
(

st �|= Q
) ∨ (

c = Com(A, r) ∧ V (1λ, x,Q,A, st) = 1
)}. (1)

Note that every instance where Q is inconsistent with st is trivially in the lan-
guage. Intuitively, this is to force witness indistinguishability also against verifiers
who produce inconsistent transcripts. This condition will never be relevant for
honest verifiers.

In the protocol (PWI, VWI), the prover will send a commitment to his
answer A (as opposed to sending it in the clear, which may reveal information),
followed by a proof that the committed value is an accepting answer. However,
to generate such a proof he needs to know the verdict function, and thus, needs
the verifier’s secret state. However, he cannot receive this secret state “in the
clear”, since that may breech soundness. Instead, the verifier will send the prover
an encoding of his secret state st using the private remote evaluation scheme.

We are now ready to define the protocol (PWI, VWI):

1. On input 1λ and x ∈ {0, 1}n the verifier does the following:
(a) Compute (Q, st) ← V (1λ, x), where Q is the message to be sent to the

prover P , and st is the corresponding secret state of V .
(b) Compute (ψ, σ) ← Enc(st).
(c) Compute (sWI1, stsWI) ← VsWI(1λ).

Note that the first message sWI1 is independent of the instance since
(PsWI, VsWI) is a delayed-input 2-message argument (see Definition 2.3).

Send (Q, sWI1, ψ) to the prover, and store (σ, st, stsWI) as the secret state for
verification.

2. The prover, on input (1λ, x, w), and given the message (Q, sWI1, ψ), does the
following:
(a) Compute A ← P (1λ, x, w,Q)
(b) Choose a random string r ← {0, 1}poly(λ) and compute c = Com(A, r).
(c) Define (implicitly since st is not known) x′ = (1λ, x,Q, c, st), and w′ =

(A, r) as its corresponding witness with respect to RL′ , i.e. (x′, w′) ∈ RL′ .
(d) Given ψ, compute ψ′ = Eval(f, ψ) where f = f1λ,x,Q,c,w′,sWI1 , is the

function that on input st outputs sWI2 ← PsWI(1λ, x′, w′, sWI1).

110 Z. Brakerski and Y. Kalai

Send (c, ψ′) to the verifier.
3. Upon receiving a message (c, ψ′) from the prover, and given a secret state

(σ, st, stsWI) the verifier does the following:
(a) Decrypt the ciphertext ψ′, by computing sWI2 ← Dec(σ, ψ′).
(b) Accept if and only if VsWI(1λ, x′, sWI1, sWI2, stsWI) = 1, where x′ =

(1λ, x,Q, c, st).

Succinctness. We first argue that (PWI, VWI) satisfies the succinctness property
as in the theorem statement. To do this, we argue that

cc(PWI, VWI) = cc(P, V) + poly(λ) + poly(λ, v(n, λ)),

which would immediately imply the required succinctness.
The first additive poly(λ) term is due to the overhead of sending a commit-

ment to the answer A rather than sending A itself (as explained above, we can
assume additive overhead w.l.o.g). The second poly(λ, v(n, λ)) term is an upper
bound on the length of ψ′. The value ψ′ is the output of applying Eval on a func-
tion f of size v(n, λ)+poly(λ) ≤ poly(λ, v(n, λ)) (an upper bound on the prover
complexity of PsWI when proving (x′, w′) ∈ RL′). Verifying that (x′, w′) ∈ RL′

can be done in time proportional to the total complexity of V since checking
whether st |= Q is proportional to running the first phase of V , and checking the
value of the verdict function is proportional to the second phase. Add to that
checking the commitment which is polynomial in (λ, |A|). Since Eval introduces
a fixed polynomial overhead, its output length is at most poly(λ, v(n, λ)).

It remains to prove that (PWI, VWI) satisfies the standard completeness and
soundness guarantees, and in addition that it is witness indistinguishable.

Completeness. The completeness of (PWI, VWI) follows immediately from the
completeness of (P, V), the delayed-input completeness of (PsWI, VsWI), and the
correctness of the underlying private remote evaluation scheme.

Soundness. Consider a cheating prover P ∗
WI that for any security parameter 1λ

generates x ∈ {0, 1}n \ L, where n ≤ poly(λ), such that for some non-negligible
function α = α(λ)

Pr[OutputVWI
(P ∗

WI, VWI)(1λ, x) = 1] ≥ α. (2)

Recall that P ∗
WI, upon receiving a message (Q, sWI1, ψ), where ψ ← Enc1(st),

from the verifier, generates a response (c, ψ′). Since Com is a statistically binding
commitment scheme that can be broken in poly(T) time, there exists a poly(T)-
time algorithm that given c outputs (A′, r′) such that c = Com(A′, r′).

Define

α1 = α1(λ) � Pr[
(

OutputVWI
(P ∗

WI, VWI)(1λ, x) = 1
) ∧ (

V (1λ, x,Q,A′, st) = 0
)

].
(3)

We consider a cheating prover P ∗
sWI = M

P ∗
WI

1 (where M1 is a non-rewinding
reduction) that succeeds in breaking the delayed input soundness of (PsWI, VsWI)
with probability α1. The reduction M1, takes as input a message sWI1 from the
verifier VsWI, and does the following:

WI Arguments with Applications to Access Control 111

1. Generate x ← P ∗
WI(1

λ) using the P ∗
WI oracle.

2. Compute (Q, st) ← V (1λ, x).
3. Compute (ψ, σ) ← Enc(st).
4. Send (Q, sWI1, ψ) to the P ∗

WI oracle to obtain (c, ψ′) = P ∗
WI(Q, sWI1, ψ).

Recall that for an honest PWI, it holds that ψ′ decrypts to sWI2.
5. Let x′ = (1λ, x,Q, c, st).
6. Compute sWI2 ← Dec(σ, ψ′).
7. Send (x′, sWI2) to the verifier.

Note that it suffices to argue that

Pr[VsWI(1λ, sWI1, (x′, sWI2), stsWI) = 1 ∧ (x′ /∈ L′)] ≥ α1.

This follows immediately from Eq. (3), together with the fact that x′ /∈ L′ if and
only if V (1λ, x,Q,A′, st) = 0, where A′ is the value that c commits to, and the
fact that

VWI(1λ, x, (Q, sWI1, ψ), (c, ψ′), st) = 1

only if

VsWI(1λ, sWI1, (x′, sWI2), stsWI) = 1.

Note that by Eqs. (2) and (3),

Pr[
(

OutputVWI
(P ∗

WI, VWI)(1λ, x) = 1
) ∧ (

V (1λ, x,Q,A′, st) = 1
)

] ≥ α − α1. (4)

We now present poly(T)-time straight line reductions M2,M3 converting P ∗
WI

into an adversary A that breaks the indistinguishability property of the encoding
scheme (i.e., breaks Claim 2.9 with respect to a poly(T)-size adversary), and into
cheating prover P ∗ for the underlying 2-message argument (P, V), respectively,
so that the sum of the advantages of the resulting adversaries, denoted α2, α3

respectively is α2 + α3 ≥ α − α1. Furthermore, M3 is also input preserving.

The distinguisher A = M
P ∗

WI
2 runs as follows.

1. Generate x ← P ∗
WI(1

λ).
2. Run the verifier V (1λ, x) to generate (Q, st).
3. Send (st, 0|st|) as the two messages for the distinguishing advantage, and

receive a challenge encoding ψ from the encoding scheme challenger.
4. Generate (sWI1, stsWI) ← VsWI(1λ).
5. Send (Q, sWI1, ψ) to the P ∗

WI oracle to obtain (c, ψ′) = P ∗
WI(Q, sWI1, ψ).

6. Run in time poly(T) to find (A′, r′) such that c = Com(A′, r′).
7. Return V (1λ, x,Q,A′, st).

The cheating prover P ∗ = M
P ∗

WI
3 is as follows.

1. Upon receiving a security parameter 1λ, generate x ← P ∗
WI(1

λ).
2. Upon receiving a message Q from the verifier V (1λ, x), do the following:

112 Z. Brakerski and Y. Kalai

(a) compute (sWI1, stsWI) ← VsWI(1λ).
(b) Generate ψ ← Enc1(0|st|) (while st itself is unknown, its length is specified

by the protocol, we recall that Enc1 is the algorithm that executes Enc
but only outputs the ψ component, see Sect. 2.2).

(c) Send (Q, sWI1, ψ) to the P ∗
WI oracle to obtain (c, ψ′) = P ∗

WI(Q, sWI1, ψ).
3. Run in time poly(T) to find (A′, r′) such that c = Com(A′, r′).
4. Send A′ to the verifier.

Note that σ is not used at all by our P ∗ (and of course also not by V which
is the distinguisher for the original protocol). Consider an experiment with a
prover P̃ ∗ which is identical to P ∗ except it uses ψ = Enc1(st), where st is the
actual secret state corresponding to Q. Then by Eq. (4),

Pr[(P̃ ∗, V)(x) = 1] ≥ α − α1.

However, by definition of P̃ ∗, it is identical to P ∗ except for the use of ψ that
encodes st instead of 0|st|. If the two behave differently this translates to advan-
tage for the distinguisher A. In other words, the success probability of A is
exactly

α2 = Pr[(P ∗, V)(x) = 1] − Pr[(P̃ ∗, V)(x) = 1].

We conclude that α1 + α2 + α3 ≥ α as required.

Witness Indistinguishability. It remains to argue that (PWI, VWI) satisfies
the WI criterion. Fix a function n = n(λ) ≤ poly(λ), and fix any ensemble
{(xn, w1,n, w2,n)}λ∈N, such that (xn, w1,n) ∈ RL and (xn, w2,n) ∈ RL. Suppose
for the sake of contradiction that there exists a (non-uniform) poly-size cheating
verifier V ∗

WI, such that

ViewV ∗
WI

(PWI(1λ, xn, w1,n), V ∗
WI(1

λ, xn)) �≈ ViewV ∗
WI

(P (1λ, xn, w2,n), V ∗
WI(1

λ, xn)).

Assume w.l.o.g that V ∗
WI is deterministic and denote V ∗

WI = (V ∗
WI,1, V

∗
WI,2) s.t.

(Q, sWI1, ψ) = V ∗
WI,1(1

λ, xn) generates the first message of V ∗
WI, and V ∗

WI,2(c, ψ
′)

is the distinguisher that takes the message from PWI and outputs a bit. Note that
λ determines n and thus also x and (Q, sWI1, ψ). Let st = Sim1(ψ), where Sim1(·)
is the possibly inefficient first part of the simulator for the remote evaluation
scheme (see Sect. 2.2). Note that st is uniquely well defined per λ.

We design a cheating non-uniform adversary V ∗
sWI for the strongly witness

indistinguishable scheme. Note that since the adversary is allowed to be non-
uniform, we can hard-code the values (xn, w1,n, w2,n, Q, sWI1, ψ, st) into V ∗

sWI.
We start by defining the two distributions

{X ′
1,n(λ),W ′

1,n(λ)}λ∈N and {X ′
2,n(λ),W ′

2,n(λ)}λ∈N,

as required by the definition of sWI. The samplers for these distributions can
also depend on (xn, w1,n, w2,n, Q, sWI1, ψ, st). Formally, for b ∈ {1, 2}, the dis-
tribution (X ′

b,n(λ),W ′
b,n(λ)) generates pairs (x′

b,n, w′
b,n) ∈ RL′ as follows:

WI Arguments with Applications to Access Control 113

1. Emulate the prover PWI(1λ, xn, wb,n, Q, sWI1, ψ), as follows.
(a) Compute A ← P (1λ, xn, wb,n, Q).
(b) Compute c = Com(A, r) with uniformly chosen r ← {0, 1}poly(λ).

2. Set x′
b,n = (1λ, xn, Q, c, st) and w′

b,n = (A, r).

The computational hiding property of the commitment scheme implies that
indeed

{X ′
1,n(λ)}λ∈N

c≈ {X ′
2,n(λ)}λ∈N.

We still need to prove that (x′
b,n, w′

b,n) ∈ RL′ for b ∈ {1, 2}. If st |= Q then
this follows from the perfect completeness of (P, V). If st �|= Q this follows by
definition (see Eq. (1)).

For this pair of distributions, the cheating verifier V ∗
sWI runs as follows.

1. Send the fixed value sWI1 as the first message.
2. Receive x′ = (1λ, xn, Q, c, st) and message sWI2 = PsWI(x′, w′, sWI1).
3. Generate simulated ψ′ = Sim2(ψ, st, sWI2), where Sim2 is the simulator for

the remote evaluation scheme (see Sect. 2.2), and output V ∗
WI,2(c, ψ

′, sWI2).

To prove that V ∗
sWI indeed distinguishes between the distributions

{X ′
b,n(λ),W ′

b,n(λ)}λ∈N, we consider a hybrid where ψ′ is generated as
Eval(f1λ,x,Q,c,w′

b,n,sWI1 , ψ). This hybrid is computationally indistinguishable from
the original experiment by Claim 2.7. However, in this hybrid the distribution
given to V ∗

WI,2 is identical to the one produced by PWI, and since we assume that
V ∗
WI is a successful adversary against WI, it follows that our V ∗

sWI successfully
distinguishes between the distributions {X ′

b,n(λ),W ′
b,n(λ)}λ∈N in contradiction to

the strong witness indistinguishability property.

3 Succinct Single-Round Access Control Scheme

In this section we formalize the notion of succinct single-round access control
presented in Sect. 1.2. The motivation is to allow authorities to provide users
with certificates of owning certain attributes (coming from a very large attribute
universe). An authority is specified by a pair of master secret and public keys.
After being issued a certificate, the user can succinctly prove in a witness indis-
tinguishable manner that its attributes (issued by a specific authority) satisfy a
predicate from a given class of predicates. Note that similarly to the setting of
secret sharing, only monotone predicates make sense in this setting, since users
can always behave as if they do not have a certain attribute, even if they do. We
can now formally define the notion of succinct access control schemes.

Definition 3.1. A succinct access control scheme with respect to a
class of monotone functions F consists of a tuple of PPT algorithms
(Setup,KeyGen,Query,Proof,Verdict), with the following syntax:

– Setup takes as input the security parameter 1λ and outputs a pair (mpk,msk)
of master public and secret keys.

114 Z. Brakerski and Y. Kalai

– KeyGen takes as input a tuple (1λ,msk, N, S, id), where λ is the security
parameter, msk is a master secret key (supposedly generated by Setup(1λ)),
N ∈ N is a parameter such that N < 2λ, S ⊆ [N], and id ∈ {0, 1}λ. It outputs
a secret key sk.

– Query takes as input the security parameter 1λ and outputs a pair
(query, state).

– Proof takes as input a tuple (1λ, f, query, sk), where f : {0, 1}N → {0, 1}
is a predicate from the class F , query is supposedly generated by running
Query(1λ), and sk is supposedly generated by running KeyGen. It outputs a
succinct proof, denoted by pf, of length ≤ poly(λ).

– Verdict takes as input a tuple (1λ, f, query, state,mpk, pf) where f : {0, 1}N →
{0, 1} is a predicate from the class F , (query, state) is supposedly generated
by Query(1λ), mpk is supposedly generated by Setup(1λ), and outputs 1 if and
only if pf is accepting with respect to (1λ, f, query, state,mpk).
Moreover, the running time of Verdict should be sublinear in the complexity
of f , and only depend polynomially (or preferably quasi-linearly) on the input
length and the description length of f .

In addition, an access control scheme must satisfy the following conditions:

– Completeness. For any λ ∈ N any N < 2λ, any poly-size f : {0, 1}N →
{0, 1}, any identity id ∈ {0, 1}λ, and any set S ⊆ [N] such that
f(11∈S , . . . ,1N∈S) = 1,

Pr[Verdict(1λ, f, query, state,mpk, pf) = 1] = 1,

where the probability is over the random coin tosses of Verdict, over
(query, state) ← Query(1λ), over pf ← Proof(1λ, f, query, sk), where sk ←
KeyGen(1λ,msk, N, S, id) and (mpk,msk) ← Setup(1λ).

– Soundness. For any λ ∈ N, any polynomially-bounded N = N(λ), any poly-
size f : {0, 1}N → {0, 1}, we consider an oracle O = Omsk, that on input
(id, S), outputs sk ← KeyGen(1λ,msk, N, S, id) if and only if id ∈ {0, 1}λ, S ⊆
[N], and f(11∈S , . . . ,1N∈S) = 0 (recall that f is monotone); and otherwise
output ⊥.
The soundness requirement is that for any PPT adversary A = (A1,A2) it
holds that

Pr[Verdict(1λ, f, query, state,mpk, pf∗) = 1] = negl(λ),

where pf∗ ← A2(1λ, query,AOmsk
1 (1λ,mpk)), and in addition (query, state) ←

Query(1λ) and (mpk,msk) ← Setup(1λ).
Note that A2 does not take any oracle access, i.e. the adversary is first allowed
to interact with the oracle, and only then sees the protocol query. We can hope
for a stronger variant where oracle access is allowed after seeing the queries
as well, but we cannot currently achieve this stronger notion.

– Witness Indistinguishability (WI). For any λ ∈ N, any polynomially-
bounded N = N(λ), any poly-size f : {0, 1}N → {0, 1} in F , any id0, id1 ∈

WI Arguments with Applications to Access Control 115

{0, 1}λ, and any sets S0, S1 ⊆ [N] such that f(11∈Sb
, . . . ,1N∈Sb

) = 1 for both
b = 0 and b = 1, the following holds: For any PPT adversary A that generates
(query∗, state∗) = A(1λ,msk,mpk),

(query∗, state∗,msk,mpk, pf0) ≈ (query∗, state∗,msk,mpk, pf1),

where
pfb(λ) ← Proof(1λ, f, query∗, skb),

where skb ← KeyGen(1λ,msk, N, Sb, idb).

Remark 3.2. We note that Definition 3.1 above guarantees that the identity of
the prover remains hidden, even if the prover issues many proofs. This is the
case since we require the WI property to hold even given msk.

We next define delegation for batch NP families, which will be a building
block for our construction. The construction and proof will then follow.

3.1 Delegation for Batch-NP Families

In this section we define the notion of a (succinct, single-round) delegation
scheme for a subclass of languages in NP. While achieving the above for
all of NP is still out of reach under falsifiable assumptions, many mean-
ingful subclasses of NP admit such proof systems with short proof length
[BHK17,BKK+17]. We start with a definition, and then proceed to derive corol-
laries based on known schemes in the literature.

Definition 3.3 (NP-Batching of a Function Family). Let F ⊆ {{0, 1}∗ →
{0, 1}} be a class of functions. Let R be an NP relation corresponding to an NP-
language L, with witness length m = m(n) for length n instances. For x ∈ {0, 1}n

we let Rx : {0, 1}m → {0, 1} denote the function where Rx(w) = 1 if and only
if (x,w) ∈ R. Let N be a polynomial.

We define the RN -batching of F , denoted F (R,N) as follows. For all n (recall-
ing that m,N are a function of n), let Fn = F ∩ ({{0, 1}N → {0, 1}}). For all
f ∈ Fn define gf : ({0, 1}n)N × ({0, 1}m)N → {0, 1} as

gf ((x1, . . . , xN), (w1, . . . , wN)) = f(Rx1(w1), . . . , RxN
(wN)). (5)

We frequently denote x = (x1, . . . , xN), w = (w1, . . . , wN).
Finally, F (R,N) is the class of all such functions gf , formally:

F (R,N)
n = {gf : f ∈ Fn} (6)

F (R,N) = ∪n∈NF (R,N)
n . (7)

We omit the superscript where R, N are clear from the context.

We can now define the notion of a succinct delegation scheme for a batch
family.

116 Z. Brakerski and Y. Kalai

Definition 3.4 (Delegation for Batch Families). Let R, N, F be as in Def-
inition 3.3 and let F (R,N) be the N -batching of R with respect to F .

A succinct and doubly efficient delegation scheme (or simply “a delegation
scheme” for the purpose of this work) for F (R,N) with communication overhead
cov and verification overhead vov (both fixed polynomial functions), is a single-
round proof system (P, V) running on inputs (1λ,x,M), where M is a Turing
machine s.t. M(1n) runs in time T(n) and outputs a circuit that computes a
function gn ∈ F (R,N)

n .
with the following guarantees.

– Efficiency. The protocol (P, V), on input (1λ,x,M), has the following effi-
ciency guarantees, for x = (x1, . . . , xN) where each |xi| = n, and assuming λ
is such that T(n) ∈ [λ, 2λ]:
1. The communication complexity is cov(m,λ) (ideally m ·poly(λ)), where m

is the length of a witness corresponding to an instance of length n in RL.
2. The runtime of V is vov(nN, |M |,m, λ), where |M | denotes the size of

the non-uniform advice of M .
3. The runtime of P , given a witness w such that gn(x,w) = 1, is

poly(T(n)).
– Perfect Completeness. For every security parameter λ and any inputs

x ∈ ({0, 1}n)N and M such that T(n) ∈ [λ, 2λ], and every satisfying assign-
ment w ∈ ({0, 1}m)N such that gn(x,w) = 1:

Pr
[

(P (w), V)(1λ,x) = 1
]

= 1,

where the probability is over the random coin tosses of V .
– Soundness. For every machine M , for any function n(λ) s.t. T(n(λ)) =

poly(λ) and for every constant c ∈ N, there exists a PPT oracle machine Ec

such that if there exists a non-uniform PPT cheating prover P ∗, that on input
1λ generates x = x ∈ ({0, 1}n)N , such that for infinitely many λ ∈ N,

Pr
[

(P ∗, V)(1λ,x,M) = 1
] ≥ 1

λc
,

then for these values of λ,

Pr[EP ∗
c (1λ) = (x,w) s.t. gn(x,w) = 1] = 1 − negl(λ).

3.2 Known Batch Delegation Schemes

Starting from the work of [BHK17], delegation schemes are known for a number
of function classes F . (Recall a batch delegation scheme for the set of all functions
from a standard assumption may be too much to hope for, unless major progress
in delegation is made and succinct arguments for all of NP are constructed.)

Theorem 3.5 ([BHK17]). There exists a succinct delegation scheme when the
class F is the class of all conjunctions, with quasi-linear verification overhead,
under the assumption that computational private-information retrieval (PIR)
exists. Furthermore, the delegation scheme is sound even against time T adver-
saries if the PIR scheme is secure against poly(T) time adversaries.

WI Arguments with Applications to Access Control 117

A different result can be achieved based on the construction of [BKK+17].

Corollary 3.6 ([BKK+17]). For any constant c, there exists a succinct dele-
gation scheme for F = DSPACE(nc), with fixed polynomial verification over-
head, under the assumption that private-information retrieval (PIR) with sub-
exponential security exists. Furthermore, the delegation scheme can be made
sound even against sub-exponential time adversaries.

3.3 Our Scheme

We now formally state the result that is hinted in Sect. 1.2.

Theorem 3.7. Let F be a class of monotone functions. There exists a succinct
single-round access control scheme for F if the following exist for some super-
polynomial function T : N → N.

– A batch delegation scheme for the class F as per Definition 3.4 that is sound
against poly(T)-size cheating provers.

– A poly(T)-secure 2-message oblivious transfer with statistical sender privacy
(as in Definition 2.2 where Claim 2.9 is satisfied w.r.t. poly(T)-size adver-
saries).

– A poly(T)-secure signature scheme.
– A statistically-binding commitment scheme that can be broken in time

poly(T).

The required building blocks can be instantiated from various assumptions.
For the delegation scheme, we can rely on the schemes in Theorem 3.5 and Corol-
lary 3.6. Given the new maliciously statistical sender private oblivious transfer
and private information retrieval schemes from the DDH, QR, LWE and Deci-
sional Composite Residuosity (DCR, a.k.a Paillier) assumptions [DGI+19], the
following corollary follows.

Corollary 3.8. There exists a succinct single-round access control schemes as
follows:

– For conjunctions, assuming the quasi-poly hardness of either DDH, QR,
LWE, DCR, and assuming the existence of a sub-exponentially secure one-way
function.

– For monotone space-bounded computation, assuming the sub-exponential
hardness of either DDH,QR,LWE,DCR, and assuming the existence of a
sub-exponentially secure one-way function.

The access control scheme uses the following components:

– A batch delegation scheme for the class F as per Definition 3.4 that is sound
against poly(T)-size cheating provers The schemes in Theorem 3.5 and Corol-
lary 3.6 are examples for such schemes in the literature. We denote this del-
egation scheme by (P, V).

118 Z. Brakerski and Y. Kalai

– WI compiler w.r.t the super polynomial function T = T (n) (as in Theo-
rem 2.10). This can be constructed assuming the existence of a poly(T)-
secure 2-message oblivious transfer with statistical sender privacy (as in Def-
inition 2.2 where Claim 2.9 is satisfied w.r.t. poly(T)-size adversaries), and
assuming the existence of a statistically binding commitment scheme Com
that can be broken in time poly(T).

– A poly(T)-secure signature scheme SIG (i.e., one that is existentially unforge-
able against chosen message attacks by a poly(T)-size adversary), which can
be based on any poly(T)-hard to invert one-way function, and does not require
additional assumptions.

In what follows, we first present an access control scheme without the WI guar-
antee. We denote the algorithms in this (non WI) scheme by

AccessControl′ = (Setup,KeyGen,Query′,Proof ′,Verdict′)

We then use our WI compiler from Sect. 2 to compile (Query′,Proof ′,Verdict′)
into a witness indistinguishable protocol (Query,Proof,Verdict), thus obtaining
our final access control scheme

AccessControl = (Setup,KeyGen,Query,Proof,Verdict).

– Setup(1λ) generates a pair of keys (mpk,msk) by running the key generation
algorithm of the signature scheme SIG (with security parameter λ).

– KeyGen(1λ,msk, N, S, id) samples a random tag tag ∈ {0, 1}λ, it computes a
signature σtag,i = Signmsk(tag‖i) for every attribute i ∈ S and in addition
σtag,0 = Signmsk(tag‖0). It outputs (tag, {σtag,i}i∈S∪{0}).

– Query′(1λ) generates a pair (Q, st) ← V (1λ), where Q is the query string
and st is the internal state. Note that we use the property that query string
generation in the monotone delegation scheme is independent of the instance
to be proven.

– Proof ′(1λ, f,Q, (tag, {σtag,i}i∈S∪{0})) runs the prover P (from the monotone
NP delegation scheme), respective to (R, f, {xi}i∈[N]), where xi = mpk‖tag‖i,
R is the NP relation defined by

(mpk‖tag‖i, σ) ∈ R ⇔ Verifympk(tag‖i, σ) = 1,

and f ∈ F is the function corresponding to the access structure. Let A denote
the answer generated by P . Then Proof ′ outputs

pf = (A, tag, σtag,0).

– Verdict′(1λ, f,Q, pf, st,mpk) parses pf = (A, tag, σtag,0), checks that Verifympk

(tag‖0, σtag,0) = 1, and checks that A verifies correctly respective to the NP
statement {xi}i∈[N], where xi = mpk‖tag‖i.

Adding Witness Indistinguishability. We wish to augment the scheme
AccessControl′, and specifically the algorithms (Query′,Proof ′,Verdict′) with wit-
ness indistinguishability properties using the transformation from Sect. 2. The

WI Arguments with Applications to Access Control 119

first idea would be to simply replace the NP proof system (Q,P, V) with its
WI version as obtained from Theorem 2.10, however this is insufficient since
Proof ′ outputs tag, σtag,0 in addition to the response A (note that outputting
tag is necessary in order to avoid collusion, the role of the signature will be
clarified in the proof). However, we can still consider the proof system defined
by (Query′,Proof ′,Verdict′) itself, and apply Theorem 2.10 to this proof sys-
tem in order to obtain witness indistinguishability. We now no longer need to
think about batch verification, and simply consider the NP relation that takes
(mpk, tag, {σtag,i}i∈S) as instance, verifies the signatures w.r.t tag and verifies
that F accepts relative to the resulting structure.

The description of the new (Query,Proof,Verdict) thus follows from
(Query′,Proof ′,Verdict′) above together with Theorem 2.10, which concludes the
description of our access control scheme. We now show that the required prop-
erties still hold.

3.4 Proof of Theorem 3.7 for Our Construction

We show completeness, soundness and WI of the scheme described above. While
completeness will follow straightforwardly based on the correctness of the com-
ponents, and WI follows via the WI properties guaranteed in Theorem 2.10,
soundness is a more serious challenge. The reason is that in the soundness exper-
iment, the adversary has access to the oracle O, which in turn uses msk. We want
to show that an adversary that violates soundness can forge signatures, but this
will require care with respect to the use of the oracle O. Details follow.

Completeness. The completeness follows immediately from the completeness
of (P, V), the completeness of the WI transformation (see Theorem 2.10), and
the correctness of the signature scheme.

Soundness. We prove soundness by again referring to the variant without pri-
vacy AccessControl′, which has a valid syntax for an access control scheme. We
show that an adversary that breaks soundness in AccessControl can be used to
construct an adversary that breaks soundness in AccessControl′, and then pro-
ceed with ruling out this option given the properties of the proof system and
signature scheme. We start by assuming that there exists A such that (infinitely
often)

Pr[Verdict(1λ, f, query, state,mpk, pf∗) = 1] ≥ δ(λ),

where δ(λ) ≥ 1/poly(λ), pf∗ ← A2(1λ, query,AOmsk
1 (1λ,mpk)), and where

(query, state) ← Query(1λ) and (mpk,msk) ← Setup(1λ).
To reduce the soundness claim from AccessControl to AccessControl′, we use

the fact that the reduction from Theorem 2.10 is black-box, non-rewinding
and instance preserving. This means that given an adversary that breaks
the soundness of the delegation scheme (Query,Proof,Verdict) with access to
some oracle, then either there is an adversary with comparable advantage for
(Query′,Proof ′,Verdict′) with the same instance and with access to the same

120 Z. Brakerski and Y. Kalai

oracle, or alternatively there is an adversary with the same oracle for the sWI
scheme or for the remote evaluation scheme. However, for the latter cases oracle
access can easily be simulated given msk, but sWI and the remove evaluation
scheme are secure even given msk.

Therefore, an adversary against the soundness of AccessControl implies an
adversary against the soundness of AccessControl′. That is, we assume that thee
exists A′ such that (infinitely often)

Pr[Verdict′(1λ, f, query, state,mpk, pf∗) = 1] ≥ δ′(λ),

where δ′(λ) ≥ 1/poly(λ), pf∗ ← A′
2(1

λ, query,A′Omsk
1 (1λ,mpk)), and where

(query, state) ← Query′(1λ) and (mpk,msk) ← Setup(1λ). The idea now is to
use Definition 3.4 to extract a signature out of the AccessControl′ adversary and
violate the unforgability of SIG, of course taking into account that A′ has access
to O which is capable of producing signatures. Let pf∗ = (A∗, tag∗, σ∗) denote
the forged proof generated by A′, let q denote a polynomial upper bound on the
number of O queries made by A′, and let TAGS = {tag1, . . . , tagq} be the tags
generated and returned by O on these calls (we recall for the future that tagi

are generated uniformly and independently).
We now consider two cases:

1. In the first case, the adversary A′ forges on a new tag:

Pr[Verdict′(1λ, f, query, state,mpk, pf∗) = 1 ∧ tag∗ �∈ TAGS] ≥ δ′(λ)/2

infinitely often. In this case, we do not need to use the soundness of the
argument system (P, V) since pf∗ includes σ∗ which is a valid signature on
(tag∗‖0). Therefore O can be simulated using a chosen message oracle for the
signature scheme, we are guaranteed that this oracle will never be called on
(tag∗‖0) and therefore we can succeed in the forgery attack.

2. In the second case A′ forges on a tag that was generated by O:

Pr[Verdict′(1λ, f, query, state,mpk, pf∗) = 1 ∧ tag∗ ∈ TAGS] ≥ δ′(λ)/2

infinitely often. Note that either this case or the previous one must occur.
In this case σ∗ is not useful since we queried the chosen message oracle on
(tag∗‖0). We therefore would like to use the extraction property of (P, V) to
extract a signature on (tag∗‖i) for i �∈ S∗ (the set that corresponds to the
query that produced tag∗).
We therefore need to convert A′ into a non-adaptive adversary for (P, V).
First, we notice that (P, V) is applied to an NP language whose instances
are of the form (mpk, tag) and the values {xi} constitute a possible witness.
Since Definition 3.4 only allows to extract from a non-adaptive adversary,
we will need to create an adversary that decides on (mpk, tag) before seeing
query. The separation between A′

1 and A′
2 will thus be useful.

Consider the following distribution over non-adaptive adversaries against
(P, V). More accurately, our distribution will sample pairs of instance

WI Arguments with Applications to Access Control 121

(mpk, tag′) and algorithm B s.t. B(Q) is accepted by V with non-negligible
probability, where Q is a sampled according to the V -prescribed distribution.
The distribution is generated as follows. Sample mpk,msk and a random set
TAGS. Set tag′ to be a random element from TAGS. Execute A′O

1 (1λ,mpk)
to obtain a value ζ, and set B(Q) = A′

2(1
λ, Q, ζ). The expected probability

of success of B(Q) is at least δ′(λ)/(2q) > 1/poly(λ), since with probability
1/q the guess tag′ hits the correct tag∗ (which is an element of TAGS with
probability δ′(λ)/2). This means with non-negligible probability, we sample
(mpk, tag′) for which B succeeds with non-negligible probability.
We can thus apply the extractor that is implied by Definition 3.4, to conclude
that with non-negligible probability, it is possible to extract a set of signatures
on messages (tag∗‖i) for all i ∈ S where S satisfies F . However, in the above
experiment, the oracle O can be replaced with access to a chosen message
signature oracle. We are guaranteed that this oracle is not queries on any S
that satisfies F . Therefore the extractor will allow to produce a signature on
a message for which the chosen message oracle was not queried, thus violating
the unforgability of the signature scheme with non-negligible probability. This
completes the soundness argument.

Witness Indistinguishability. The WI condition follows immediately from
the fact that the commitment scheme is (computationally) hiding, and from the
strong WI property of (PsWI, VsWI).

References

[BBK+16] Bitansky, N., Brakerski, Z., Kalai, Y.T., Paneth, O., Vaikuntanathan, V.:
3-message zero knowledge against human ignorance. IACR Cryptology
ePrint Archive 2016/213 (2016)

[BCC+14] Bitansky, N., et al.: The hunting of the SNARK. IACR Cryptology ePrint
Archive 2014/580 (2014)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: STOC, pp.
111–120. ACM (2013)

[BD18] Brakerski, Z., Döttling, N.: Two-message statistical sender-private OT
from LWE. IACR Cryptology ePrint Archive 2018/530 (2018)

[BHK17] Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and
batch NP verification from standard computational assumptions. In:
Hatami, H., McKenzie, P., King, V. (eds.) Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Mon-
treal, QC, Canada, 19–23 June 2017, pp. 474–482. ACM (2017)

[BKK+17] Badrinarayanan, S., Kalai, Y.T., Khurana, D., Sahai, A., Wichs, D.: Non-
interactive delegation for low-space non-deterministic computation. Cryp-
tology ePrint Archive, Report 2017/1250 (2017). To appear in STOC 2018

[Cha82] Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203.
Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-
4 18

https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18

122 Z. Brakerski and Y. Kalai

[Cha85] Chaum, D.: Security without identification: transaction systems to make
big brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

[DFH12] Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with
low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 4

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 1

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryp-
tion and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14623-7 9

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: Dwork, C. (ed.) Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, 17–20 May 2008, pp. 113–122. ACM (2008). Full ver-
sion in [GKR15]

[GKR15] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. J. ACM 62(4), 27 (2015)

[HK07] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. IACR Cryptology ePrint Archive 2007/118 (2007)

[JKKR17] Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-
dependent simulation in two rounds and its applications. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 158–189.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 6

[Kal05] Kalai, Y.T.: Smooth projective hashing and two-message oblivious trans-
fer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 5

[KKS18] Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability
(and more) in two messages. IACR Cryptology ePrint Archive 2018/168
(2018)

[KP15] Kalai, Y.T., Paneth, O.: Delegating RAM computations. IACR Cryptology
ePrint Archive 2015/957 (2015)

[KPY18] Kalai, Y.T., Paneth, O., Yang, L.: On publicly verifiable delegation from
standard assumptions. IACR Cryptology ePrint Archive 2018/776 (2018).
To appear in STOC 2019

[KRR13] Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory
of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June
2013, pp. 565–574. ACM (2013)

[KRR14] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the
power of no-signaling proofs. In: STOC, pp. 485–494. ACM (2014)

[Mic94] Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20–22
November 1994, pp. 436–453. IEEE Computer Society (1994). Full version
in SIAM J. Comput. 30(4), 1253–1298 (2000)

[Nao89] Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 13

https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/11426639_5
https://doi.org/10.1007/0-387-34805-0_13

WI Arguments with Applications to Access Control 123

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings
of the Twelfth Annual Symposium on Discrete Algorithms, Washington,
DC, USA, 7–9 January 2001, pp. 448–457 (2001)

[OPP14] Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Mali-
ciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 30

[RRR16] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interac-
tive proofs for delegating computation. In: Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cam-
bridge, MA, USA, 18–21 June 2016, pp. 49–62 (2016)

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3–5 November 1982, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-662-44371-2_30

Boosting Verifiable Computation
on Encrypted Data

Dario Fiore1(B), Anca Nitulescu2(B), and David Pointcheval3,4(B)

1 IMDEA Software Institute, Madrid, Spain
dario.fiore@imdea.org

2 COSMIAN, Paris, France
anca.nitulescu@cosmian.com

3 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
david.pointcheval@ens.fr

4 INRIA, Paris, France

Abstract. We consider the setting in which an untrusted server stores
a collection of data and is asked to compute a function over it. In this
scenario, we aim for solutions where the untrusted server does not learn
information about the data and is prevented from cheating. This prob-
lem is addressed by verifiable and private delegation of computation,
proposed by Gennaro, Gentry and Parno (CRYPTO’10), a notion that
is close to both the active areas of homomorphic encryption and verifi-
able computation (VC). However, in spite of the efficiency advances in
the respective areas, VC protocols that guarantee privacy of the inputs
are still expensive. The only exception is a protocol by Fiore, Gennaro
and Pastro (CCS’14) that supports arithmetic circuits of degree at most
2. In this paper we propose new efficient protocols for VC on encrypted
data that improve over the state of the art solution of Fiore et al. in
multiple aspects. First, we can support computations of degree higher
than 2. Second, we achieve public delegatability and public verifiabil-
ity whereas Fiore et al. need the same secret key to encode inputs and
verify outputs. Third, we achieve a new property that guarantees that
verifiers can be convinced about the correctness of the outputs without
learning information on the inputs. The key tool to obtain our new pro-
tocols is a new SNARK that can efficiently handle computations over
a quotient polynomial ring, such as the one used by Ring-LWE some-
what homomorphic encryption schemes. This SNARK in turn relies on
a new commit-and-prove SNARK for proving evaluations on the same
point of several committed polynomials. We propose a construction of
this scheme under an extractability assumption over bilinear groups in
the random oracle model.

1 Introduction

Due to the ubiquity of the Internet and the advent of cloud computing, it is
increasingly common for users to exchange and receive information processed

A. Nitulescu—Work done while being at 3.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 124–154, 2020.
https://doi.org/10.1007/978-3-030-45388-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_5

Boosting Verifiable Computation on Encrypted Data 125

on remote machines. Online storage services are already widely available on the
Internet, and allow users to store, access and share their data from anywhere and
from multiple devices. This phenomenon includes not only storage: it is more
and more common to rely on computation performed on third party machines.

While this shift in the computing trend brings several benefits, new security
challenges also emerge. These challenges are related to a main question: what
happens if the remote machine is not trusted? In this work we are particularly
concerned with two security problems in this space. First, we would like to ensure
that the untrusted machine can perform the computation without learning the
private data of the users. Second, we would like to enable the receivers of com-
putation results to efficiently check that such results are correct. Both problems
are in the scope of two important research lines in cryptography.

Privacy-Preserving Computation. The first problem is related to fully
homomorphic encryption (FHE) [RAD78,Gen09]. While for a long time it was
only known how to construct homomorphic encryption schemes supporting a
single operation (e.g., only addition [Pai99] or multiplication [ElG84]), Gentry’s
breakthrough showed the first FHE scheme that enables computing any function
on encrypted data. If Gentry’s first FHE was mostly a feasibility result, research
in this area has progressed significantly giving rise to many new FHE schemes
(e.g., [SV10,BV11,BGV12,GSW13,DM15,CGGI16,CGGI17]) that are efficient
and see their first practical applications.

Ensuring Correctness of Computation. The second problem is related to
verifiable computation (VC) [GGP10] and related notions such as interactive
proofs [GMR85], probabilistically checkable proofs [AS92] and succinct argu-
ments [Kil92]. Briefly speaking, these are protocols that enable a powerful prover
to convince a verifier that a statement (e.g., correctness of a computation,
y “ f(x)) is true in such a way that the verifier can run with fewer resources,
e.g., faster than re-executing the function. Similarly to FHE, also in this research
area, results have been confined to theory for long time. However, several recent
works have shown a change in this trend, and today we have several VC pro-
tocols that are efficient and have been experimented in practical scenarios, see
e.g., [GKR08,CMT12,GGPR13,PHGR13,BCG+13,Gro16,ZGK+17,WJB+17,
AHIV17,WTs+18,BCG+18,BBC+18,BCR+19,MBKM19,CFQ19,XZZ+19].

1.1 Ensuring Correctness of Privacy-Preserving Computation

In spite of the research mentioned above, the problem of ensuring both the
correctness and the privacy of computation performed on untrusted machines
has received much less attention in the literature. There are three main works
that considered explicitly this problem.

The first one is the seminal paper of Gennaro et al. [GGP10] who introduced
the notion of non-interactive verifiable computation. In [GGP10] they indeed
show how to combine garbled circuits and FHE in order to build a VC scheme
for arbitrary functions that also preserves the privacy of the computation’s inputs
and outputs against the computing machine.

126 D. Fiore et al.

The second work is that of Goldwasser et al. [GKP+13] that shows how to
use their succinct single-key functional encryption scheme in order to build a
VC protocol that preserves the privacy of the inputs (but not of the outputs).

Both these two solutions [GGP10,GKP+13] are however not very satisfac-
tory in terms of efficiency. The main issue in the construction of [GGP10] is
that they need the full power of FHE to perform homomorphic evaluations of
garbled circuits. Some of the efficiency issues in [GKP+13] include the use of
several instances of an attribute-based encryption that must support an expres-
sive class of predicates (at NC1 circuits), and an inherent design limitation (due
to following the approach of [PRV12]) by which their scheme supports functions
with a single bit of output (which in practical scenarios like computing on large
integers would require multiple instances of their protocol).

A third work that considered the problem of ensuring correctness of privacy-
preserving computation is the one of Fiore et al. [FGP14] who proposed a solution
that combines an FHE and a VC scheme. The idea of their generic construc-
tion is rather simple and consists into using a VC in order to prove that the
homomorphic evaluation on ciphertexts has been done correctly. As discussed
in [FGP14], even this solution may encounter efficiency limits. This is due to
the fact that the VC scheme must be executed on a computation that, due to
the FHE ciphertext expansion, is of much larger representation than the compu-
tation that would be executed on plain text. Motivated by this issue, [FGP14]
also proposed an efficient solution that, for the case of quadratic functions, can
avoid this issue. The efficient construction in [FGP14] overcomes the problem
of ciphertext expansion in two ways: (1) they consider homomorphic encryption
schemes working in the Ring-LWE setting in which ciphertexts are represented
by polynomials in a given polynomial ring; (2) they develop, as the VC building
block, an homomorphic MAC scheme especially tailored to handle messages that
are polynomials in which the prover execution can be independent of the degree
of such polynomials. However, for reasons that we will detail later (see Sect. 3),
their technique is inherently bound to computations of multiplicative depth 1.
Also, by using an homomorphic MAC as VC, verification requires a secret key,
the same secret key used to encode the inputs. This limits the applicability of
these solutions to scenarios where users and verifiers are either the same entity
or they share a secret key.

1.2 Our Contributions

We propose a new protocol for verifiable computation on encrypted data that
improves on the state-of-the-art solution of Fiore et al. [FGP14] in multiple
aspects. Notably, we can support HE computations of multiplicative depth larger
than 1. Second, we achieve public verifiability whereas [FGP14] is only privately
verifiable. Finally, our scheme has an additional property that guarantees that
verifiers may be convinced of outputs correctness without learning information
on the original inputs. This latter property is particularly relevant in the publicly
verifiable setting where the users who encrypt the data and the verifiers are dis-
tinct entities. Technically, we achieve this property because our protocol allows

Boosting Verifiable Computation on Encrypted Data 127

for re-randomizing the encrypted results, which was not possible in [FGP14] that
only considered deterministic HE evaluations.

Our key tool to obtain this result is a new SNARK that can efficiently handle
computations that are arithmetic circuits f over a quotient polynomial ring Rq :“
Zq[X]/xR(X)y (exactly like the popular choice for many Ring-LWE schemes) in
which the prover’s costs have a minimal dependence on the degree d of R(X).
Specifically, let f be the circuit over Rq and f̂ be the corresponding circuit
over Zq (i.e., the one that would be computed on plaintexts where additions
and multiplications in Rq are replaced by the corresponding operations in Zq).
Then, whereas a naive application of [FGP14]’s generic solution would incur
a cost for proof generation at least O(d · |f̂ |) where |f̂ | is f̂ ’s circuit size, our
scheme lets proof generation be doable in time O(d ·n+ |f̂ |) where n is f̂ ’s input
size. We stress that here we are considering the cost of proof generation, after
having performed the HE computation; or in other words we consider the cost
of generating the proof once the witness is available. To see how this efficiency
feature concretely improves, consider for example an f̂ that is a multivariate
polynomial of degree c � 2 by which |f̂ | can be nc, and consider that for Ring-
LWE security the degree d can be a rather large integer (e.g., d ≈ 8000). Then
removing the multiplicative factor d · |f̂ | can significantly speed up the prover’s
costs. Let us also notice that the factor d · n is unavoidable as the prover must
read the input.

Our SNARK for arithmetic circuits over polynomial rings is built in a mod-
ular way using two building blocks: a commit-and-prove SNARK for arithmetic
circuits (AC-Π), and a commit-and-prove SNARK for multiple polynomial eval-
uations (MUniEv-Π).

To instantiate AC-Π, we can use any commit-and-prove SNARK for arith-
metic circuits that supports the same commitment key as our scheme MUniEv-Π.
Given the recent result of Campanelli et al. [CFQ19], MUniEv-Π can be instanti-
ated with a variety of schemes including the efficient commit-and-prove variant
of Groth16 [Gro16] proposed in [CFQ19].

For scheme MUniEv-Π, we propose a construction based on the Strong Diffie-
Hellman and Power Knowledge of Exponent (PKE) assumptions in bilinear
groups, in the random oracle model. We believe this scheme can also have other
applications. Slightly more in detail, MUniEv-Π allows one to prove the follow-
ing statement: given a commitment C to � degree-d polynomials {Pj(X)}j , a
commitment C ′ to a vector of � Zq-elements {pj}j , and a public point k, show
that pj “ Pj(k) for all j “ 1 to �. In comparison to using an existing general-
purpose commit-and-prove SNARK for arithmetic circuits (e.g., LegoGroth16
from [CFQ19]), our scheme MUniEv-Π has slightly smaller proofs and proving
time at least three times faster (cf. Sect. 7.3 for more details).

Finally, we note that our scheme MUniEv-Π is in turn constructed from a
SNARK BivPE-Π for the partial evaluation of a committed bivariate polynomial,
i.e., given commitments C and C ′ to P (X,Y) and Q(Y) respectively, prove that
Q(Y) “ P (k, Y) for some public point k. We construct BivPE-Π by extending the
univariate polynomial commitment techniques of Kate et al. [KZG10]. It is worth
mentioning that other works [PST13,ZGK+17] extended [KZG10] to support the

128 D. Fiore et al.

evaluation of multivariate polynomials, which include bivariate ones. However,
the main difference (crucial for our application) is that we can support partial
evaluations in one variable while keeping the result polynomial also committed.

1.3 Organization

In Sect. 2 we introduce notation and basic cryptographic definitions. Section 3
describes our SNARK for arithmetic computations in quotient polynomial rings.
In Sect. 4 we show how to combine our SNARK from Sect. 3 together with Ring-
LWE-based HE schemes in order to build a verifiable computation scheme with
input and output privacy, and also how to achieve the new property of preserv-
ing privacy of the inputs from the verifier. In Sect. 5 we state the computational
assumptions needed by our schemes, and we present the BivPoly.Com commit-
ment. In Sect. 6 we build our SNARK BivPE-Π for bivariate polynomials partial
evaluation and then in Sect. 7 we show how turn it into an efficient MUniEv-Π
for the simultaneous evaluation of many univariate polynomials. In Sect. 8 we
prove the security of our scheme BivPE-Π.

2 Notation and Definitions

Notation. An adversary is denoted by A and is assumed to be probabilistic
Turing machines that run in polynomial time, i.e., PPT. For two PPT machines
A,B, with the writing (A‖B)(x) we denote the execution of A followed by the
execution of B on the same input x and with the same random coins.

2.1 Commitment Schemes

Definition 1 (Non-Interactive Commitment). A non-interactive commit-
ment scheme is a tuple of algorithms Com “ (ComGen,Com,ComVer,OpenVer):

ComGen(1λ) Ñ ck: Generates a commitment public key ck. It specifies a message
space Mck, a randomness (opening) space Rck, and a commitment space Cck.
This algorithm is run by a trusted or distributed authority;

Com(ck,m) Ñ (c, o): Outputs a commitment c and an opening o. Given a mes-
sage m P Mck, it samples o P Rck and computes the commitment (c, o).

ComVer(ck, c) Ñ 0/1: Checks whether c is a well-formed commitment. If so, it
outputs 1, otherwise it outputs 0;
OpenVer(ck, c,m, o) Ñ 0/1: Outputs 1 if the value m P Mck is the committed
message in the commitment c and 0 if (m, o, c) does not correspond to a valid
pair opening-commitment.

We say Com “ (ComGen,Com,ComVer,OpenVer) is a secure commitment
scheme if it satisfies the following properties:

Correctness. Let ck Ð ComGen(1λ). Any commitment of m P Mck honestly
generated (c, o) Ð Com(ck,m) is successfully verified by ComVer(ck, c) and
by OpenVer(ck, c,m, o).

Boosting Verifiable Computation on Encrypted Data 129

Hiding. It is statistically hard, for any adversary A, to generate two mes-
sages m0,m1 P Mck such that A can distinguish between their correspond-
ing commitments c0 and c1 where (c0, o0) Ð Com(ck,m0) and (c1, o1) Ð
Com(ck,m1).

Binding. It is computationally hard, for any adversary A, to come up with a
collision (c,m0, o0,m1, o1), such that o0 and o1 are valid opening values for
two different pre-images m0 ‰ m1 for c. For any adversary A, the following
probability is negligible

Pr

⎡
⎣

OpenVer(ck, c,m0, o0) “ 1 ck Ð ComGen(1λ)
^ OpenVer(ck, c,m1, o1) “ 1 (c, (m0, o0), (m1, o1)) Ð A(ck)

^ m0 ‰ m1

⎤
⎦ .

Knowledge Binding [BL07]. For every adversary A that produces a valid com-
mitment c associated to a message that verifies, i.e. such that ComVer(ck, c) “
1, there is an extractor ExtA that is able to output a pre-image m and a valid
opening o of c, with overwhelming probability:

Pr

⎡
⎣

ck Ð ComGen(1λ)
OpenVer(ck, c,m, o) “ 1 (c; (m, o)) Ð (A‖ExtA)(ck)

ComVer(ck, c) “ 1

⎤
⎦ “ 1 − negl(λ).

For the sake of simplicity, throughout this work, we will omit the commitment
key ck from the input of the algorithms, and with a slight abuse of notation, we
will adopt the writing Com(m) Ñ (c, o).

2.2 SNARKs – Succinct Non-Interactive Arguments of Knowledge

We recall the definition of (zero-knowledge) succinct non-interactive arguments
of knowledge (zk-SNARKs).

Definition 2 (SNARK for NP). A SNARK is defined by three algorithms,

Π.Gen(1λ,R) Ñ crs: on input a security parameter λ P N and a NP relation R,
the generation algorithm outputs a common reference string crs;

Π.Prove(crs, u, w) Ñ π: given a prover reference string crs, an instance u and a
witness w s.t. (u,w) P R, this algorithm produces a proof π;

Π.Ver(crs, u, π) Ñ b: on input a verification state crs, an instance u, and a proof
π, the verifier algorithm outputs b “ 0 (reject) or b “ 1 (accept);

satisfying completeness, succinctness, knowledge-soundness as described below:

Correctness. For all valid statement (u,w) P R,

Pr
[

Ver(crs, u, π) “ 0 crs Ð Π.Gen(1λ,R)
^ (u,w) P R π Ð Prove(crs, u, w)

]
“ negl(λ);

Succintness. The size of the proof is linear in the security parameter λ, i.e.
independent of the size of the computation or the witness;

130 D. Fiore et al.

Knowledge-Soundness [BG93]. A non-interactive proof system Π is
knowledge-sound for the class Z of auxiliary input generators if for any PPT
adversary AKS there exists an extractor ExtA such that:

Pr
[

Ver(crs, u, π) “ 1 crs Ð Π.Gen(1λ,R), aux Ð Z(crs)
^ R(u,w) “ 0 ((u, π);w) Ð (AKS‖ExtA)(crs, aux)

]
“ negl(λ).

Zero Knowledge. A Π protocol is a (statistical) zero-knowledge for a rela-
tion R if there exists a stateful interactive polynomial-size simulator Sim “
(Simcrs,SimProve) such that for all stateful interactive distinguishers D, for
every large enough security parameter λ P N, every auxiliary input aux, the
two probabilities are negligibly close:

Pr[(u,w) P R ^ D(π) “ 1 (crs) Ð Gen(1λ), (u,w) Ð D(crs, aux),
π Ð Prove(crs, u, w)];

Pr[(u,w) P R ^ D(π) “ 1 (crs, trap) Ð Simcrs(1λ), (u,w) Ð D(crs, aux),

π Ð SimProve(crs, trap, u, aux)].

Commit and Prove SNARKs. Let R(u,w) be an NP relation where
w “ ({xi}i, ω). A commit-and-prove SNARK (CaP-SNARK) for commitment
scheme Com and relation R(u,w) is a SNARK for the “commit-and-prove rela-
tion” Rck(u∗, w∗) where u∗ “ (u, {ci}i), w∗ “ ({xi}i, {oi}i, ω) and that holds iff
R(u, ({xi}i, ω)) holds and OpenVer(ci,mi, oi) “ 1 for all i. We adopt the syntax
for CaP-SNARK used in [CFQ19]:

Π.Gen(ck,R) Ñ crs: on input a relation-independent commitment key ck and a
NP relation R, it generates the crs;

Π.Prove(crs, (u, {ci}i), ({xi}i, {oi}i, ω)) Ñ π: outputs a proof;
Π.Ver(crs, (u, {ci}i), π) Ñ b: rejects or accepts the proof.

3 Proof Systems for Arithmetic Function Evaluation over
Quotient Polynomial Rings

In this section we describe our commit-and-prove SNARK for arithmetic com-
putations in quotient polynomial rings.

Let R be the quotient ring Z/xR(X)y for some polynomial R P Z[X] of degree
d. For a prime q " d we define F “ Zq a finite field and Rq “ R/qR. We want to
construct a succinct non-interactive zero-knowledge argument system for some
relation Rf of correct evaluation of an arithmetic function f(·) : Rq

n Ñ Rq

taking n P N inputs in the quotient ring Rq “ R/qR. The function f to be
evaluated on polynomials {Pj}n

j“1 in the quotient ring Rq is considered to be
public.

Let MPoly-Com “ (MPoly.ComGen,MPoly.Com,MPoly.ComVer,MPoly.Open
Ver) be a linearly homomorphic commitment scheme for (many) univariate poly-
nomials, i.e., the message space M consists in vectors of n ď � polynomials of

Boosting Verifiable Computation on Encrypted Data 131

degree d ď ν, for some integer bounds �, ν chosen in MPoly.ComGen. In Sect. 7
we show an efficient instantiation of such a scheme in bilinear groups.

We describe a Commit-and-Prove SNARK, Rq-Π, for commitment scheme
MPoly-Com and for the following relation

Rck
f :“ {(u “ (C,P);w “ ({Pj}n

j“1, ρ, T)) :

MPoly.OpenVer(C, {Pj}, ρ) “ 1 ^ P “ f(Pj) − TR}

The relation Rck
f implicitly contains two bounds �, ν on, respectively, the number

of inputs of f and the degree df of f as an arithmetic circuit.
In a nutshell, given a compact commitment C and a public polynomial P P

Rq, our Rq-Π scheme allows to prove that C opens to some polynomials Pj P
R ∀j “ 1 . . . n such that P is the result of evaluating the function f on {Pj}j ,
evaluation done in the polynomial ring Rq.

High-Level Description of our Rq-Π SNARK. We build our Rq-Π scheme
as a combination of the following building blocks:

– MUniEv-Π “ (MUniEv-Π.Gen,MUniEv-Π.Prove,MUniEv-Π.Ver):
a CaP-SNARK for the simultaneous evaluation of n univariate polynomials
{Pj}n

j“1 in a point k, where {Pj} are committed with MPoly-Com. Proposing
efficient constructions of MPoly-Com and MUniEv-Π are key technical contri-
butions of this paper; these are detailed in Sect. 7.

– AC-Π “ (AC-Π.Gen,AC-Π.Prove,AC-Π.Ver): a CaP-SNARK for arithmetic cir-
cuits over Zq where inputs and outputs are committed (as a vector of degree-0
polynomials) with the MPoly-Com scheme.
Various instantiations of AC-Π compatible with our pairing-based MPoly-Com
commitment can be obtained by using for example the compiler recently pro-
posed in [CFQ19];1 a particularly efficient one is a commit-and-prove variant
of [Gro16].

The two building blocks above are used as follows.
The prover, knowing a quotient polynomial T P Zq[X] such that f((Pj)j) “

P + TR, starts by computing a commitment CT to T P Zq[X] (which may have
degree higher than that of R).

Next, the key idea is that instead of directly proving that P “ f((Pj)j) −
TR for the committed polynomials {Pj} and T (that would require to work
with a large arithmetic circuits f), we use the homomorphic properties of the
polynomial ring Zq[X] to “compress the computation”. Namely, to prove P “
f((Pj)j) − TR, we evaluate all the polynomials in a random point k and then
prove the relation on the resulting scalars, using the fact that:

f̂(Pj(k)) − R(k)T (k) “ (f(Pj) − RT)(k) “ P (k).

1 In particular, relevant to our work is the compiler that shows that commit-and-prove
SNARKs for Pedersen-like commitments can be made compatible with one another.

132 D. Fiore et al.

where f̂ : Zn
q Ñ Zq is an arithmetic circuit that is the same as f except that

every addition (resp. multiplication) in Rq is replaced by an addition (resp.
multiplication) in Zq.

This idea is similar to the homomorphic hash function defined by Fiore et
al. [FGP14]. In [FGP14], they let this idea work by evaluating the polynomials
“in the exponent”, i.e., they publish a set of group elements gki

, and then they
compute homomorphically over these encodings to get gP (k).

This technique however hits two problems: first, they cannot deal with reduc-
tions modulo R(X), and second, to compute homomorphically a multiplication
on these encodings, they have to “consume” a pairing, and thus only degree-2
computations can be supported.

In our case, we solve these issues by exploiting the power of the commit and
prove paradigm in order to obtain, for every evaluation, a fresh random k. Then,
having k P Zq allows us to support higher-degree computations as well as to deal
with modular reductions.

To proceed with the protocol, the prover thus needs to get a random point k,
not of its choice and independent of the values committed in CT and C and of the
statement P . This is possible by using a random oracle Hash to obtain a value k
on which it evaluates the polynomials {Pj(k) “ pj}n

j“1, R(k) “ r, P (k) “ p and
T (k) “ t′.

Next, the prover compactly commits to the respective evaluations (C ′, ρ′) Ð
MPoly.Com(t′, {pj}n

j“1). At this point the prover will use:

1. the MUniEv-Π scheme to prove that C ′ is a commitment to a vector of n + 1
scalars (t, {pj}n

j“1) that are the results of evaluating in point k a vector of
n + 1 polynomials (T, {Pj}n

j“1) that are committed in CT ˆ C;2

2. the AC-Π scheme to prove that p “ P (k) “ f̂((pj)j)−rt′, and that t′, {pj}n
j“1

are openings of C ′.

More formally, the algorithms of the protocol are described in Fig. 1. A
detailed intuition of the functionalities of each algorithm follows.

3.1 Formal Description of Our Rq-Π Scheme

We construct a commit-and-prove SNARK scheme Rq-Π “ (Gen,Prove,Ver) for
any relation Rck

f with respect to some bounds �, ν on the cardinality of {Pj}j

and on the degree df of f .

Relations for MUniEv-Π and AC-Π. We define the intermediate statements
Reval, R̂f to be proven using the two SNARKs, MUniEv-Π and AC-Π:

2 We consider linearly homomorphic commitment schemes MPoly-Com and we commit
in CT and C to vectors of n + 1 ď � polynomials (CT , τ) Ð MPoly.Com(T, 0, 0 . . . 0)
and (C, ρ) Ð MPoly.Com(0, {Pj}nj“1) with an appropriate number of 0’s, i.e.,
(T, {Pj}) “ (T, {0}) + (0, {Pj}), such that computing CT ˆ C results in a com-
mitment (CT ˆ C, τ +ρ) Ð MPoly.Com(T, {Pj}nj“1) to the concatenation of T , {Pj}.

Boosting Verifiable Computation on Encrypted Data 133

Fig. 1. Our SNARK Rq-Π for Evaluations over Polynomial Rings

Reval: We first define the relation for simultaneous evaluation of multiple poly-
nomials on a point k, to be supported by MUniEv-Π. The prover has to convince
the verifier that for a given point k (that in our case is random, but part of the
statement) and two commitments CT ˆ C and C ′, it knows the corresponding
opening values (T, {Pj}j , τ + ρ) and (t′, {pj}j , ρ

′) such that Pj(k) “ pj for all j,
and T (k) “ t′.

More formally, MUniEv-Π.Prove takes as input a statement uC “ (CT ˆ
C,C ′, k), and a witness wC “ ((T, {Pj}), (t′, {pj}), τ + ρ, ρ′), and Reval holds for
(uC , wC) iff:

Reval :“ {(uC , wC) :∀j, pj “ Pj(k) ^ t′ “ T (k) ^ (C′, ρ′) “ MPoly.Com(t′, {pj})
^ (CT ˆ C, τ + ρ) “ MPoly.Com(T, {Pj}j)}.

R̂f : We define the relation for correct computation of f̂ , to be supported
by AC-Π. The prover has to convince the verifier that an equality holds for
some scalar values t′, {pj}, p, r P Zq. The inputs p, r are known by the ver-
ifier (they are public) and t′, {pj} are given implicitly in a committed form
(C ′, ρ′) “ MPoly.Com(t′, {pj}). More formally, given a statement u′ “ (C ′, p, r)
and a witness w′ “ (ρ′, t′, {pj}) for the computation p “ f̂(pj) − rt′ and for the
opening of C ′, the relation is defined as follows:

R̂f :“ {(u′, w′) : p “ f̂(pj) + rt′ ^ (C ′, ρ′) “ MPoly.Com(t′, {pj})}.

CRS Generation. The setup algorithm Rq-Π.Gen(ck,Rck
f), given a commit-

ment key ck Ð MPoly.ComGen(1λ) that supports commitments up to � different
polynomials Pj P Rq (all of degrees ď d) and one commitment to a polynomial

134 D. Fiore et al.

T P Zq[X] of higher degree (up to ν)3 and the NP relation Rck
f including the

bound parameters �, ν, outputs a crs enabling the proof and verification of a
function f of degree df ă ν over a set of polynomials {Pj}n

j“1 of cardinality
n ď �.

First it runs the generation algorithm for MUniEv-Π and computes a part of
the setup, crsC Ð MUniEv-Π.Gen(ck,Reval).

Then it generates a common reference string for AC-Π that will be used for
proving computations of f̂ : crs′ Ð AC-Π.Gen(ck, R̂f). As an observation, AC-Π
assumes commitments to vectors of scalars; these can be done with MPoly-Com,
by seeing them as vectors of degree-0 polynomials.

Prover. Given a reference string crs, statement u “ (C,P) and witness w “
({Pj}n

j“1, ρ, T) where P is a public polynomial, C is a compact commitment
to polynomials {Pj}n

j“1 P Rq with opening ρ, and T P Zq[X] is a quotient
polynomial, the prover algorithm produces a proof π that f((Pj)j) “ P + TR
as follows:

– The prover commits to T “ ∑ν
i“0 TiX

i: (CT , τ) Ð MPoly.Com(T).
– The prover then runs k Ð Hash(C,P,CT) to obtain a random value k.
– The prover evaluates the polynomials in k : {Pj(k) “ pj}n

j“1, R(k) “ r,
P (k) “ p and T (k) “ t.

– The prover commits the respective evaluations t′, {pj}n
j“1 as (C ′, ρ′) Ð

MPoly.Com(ck, t′, {pj}n
j“1).

– The prover runs the algorithm for MUniEv-Π to prove that the opening values
t′, {pj} of the commitment C ′ are evaluation in k of the polynomials T, {Pj},
committed in CT ˆ C:

πC Ð MUniEv-Π.Prove(crsC , uC , wC)

where uC “ (CT ˆ C,C ′, k), wC “ ((T, {Pj}), (t′, {pj}), τ + ρ, ρ′).

– It then runs the proving algorithm of AC-Π for proving the evaluation of f̂
on scalars with a witness w′ for the computation p “ f̂(pj) − rt and for the
opening of C ′:

π′ Ð AC-Π(crs′, u′ “ (C ′, p, r), w′).

– The prover eventually outputs π “ (CT , C ′, πC , π′).

Verifier. The algorithm Ver on input a statement u “ (C,P) and a proof π :“
(CT , C ′, πC , π′) recomputes the randomness k by running k Ð Hash(C,P,CT).
Then the Verifier has only to evaluate the known polynomials P,R in k obtaining
p :“ P (k), r :“ R(k). Once it has all the elements to redefine the two statements
uC :“ (CT ˆ C,C ′, k) and u′ :“ (C ′, p, r) for the proofs πC and π′ it runs the
corresponding verification algorithms of these two SNARKs, MUniEv-Π.Ver and
AC-Π.Ver to check the proofs and outputs the conjunction of the two answers.

3 The commitment key ck can have some special property for optimization, for exam-
ple, it may consist of two keys, one for committing to polynomials Pj P Rq of degrees
ď d and another longer key to commit to polynomials T P Zq[X] of degree ν.

Boosting Verifiable Computation on Encrypted Data 135

3.2 Security Analysis

Theorem 3. Assuming that AC-Π and MUniEv-Π are secure commit-and-prove
arguments of knowledge, the new construction Rq-Π described above satisfies
completeness, succinctness, zero-knowledge and knowledge-soundness.

For lack of space, the proof appears in the full version. Here we provide a short
intuition. Correctness is rather straightforward, and zero-knowledge follows from
the zero-knowledge property of the two SNARKs and the perfect hiding of the
commitment scheme. For knowledge soundness, the proof consists of two main
steps. First, we rely on the knowledge-soundness of the two SNARKs to show
that for any adversary creating an accepting proof there is a knowledge extractor
that, with all but negligible probability, returns witnesses that correctly satisfy
the two relations Reval, R̂f mentioned previously. Second, the only remaining
possibility is that the polynomial V “ P ∗ − f(Pj) + TR is nonzero. However,
V (k) “ 0 and this holds for a random point k sampled by the random oracle
independently of V , which can happen only with probability deg(V)/q which is
negligible.

4 Applications to Computing on Encrypted Data

In this section we detail on how we can use our scheme Rq-Π for computations
over polynomial rings to build a VC scheme with input and output privacy.

4.1 Verifiable Computation

Here we recall the notion of verifiable computation from [GGP10]. We adapt the
definitions to fit the setting (that is in the scope of our construction) where we
have public verifiability and public delegatability [PRV12], as well as privacy
of the inputs and outputs. A VC scheme VC “ (KeyGen,ProbGen,Compute,
Verify,Decode) consists of the following algorithms:

KeyGen(1λ, f) Ñ (PKf , SKf): Given the security parameter, the key generation
algorithm outputs a public key and a matching secret key for the function f .
ProbGenPKf

(x) Ñ (σx, τx): The problem generation algorithm uses the public
key PKf to encode the input x into a public value σx, to be given to the
computing party, and a public value τx to be given to the verifier.
ComputePKf

(σx) Ñ σy: Given the public key PKf and the encoded input, the
compute algorithm returns an encoded version of the function’s output.
VerifyPKf

(τx, σy) Ñ acc: Given the public key PKf for function f , and the
public verifier information τx, the verification algorithm accepts (output acc “ 1)
or rejects (output acc “ 0) an output encoding σy.
DecodeSKf

(σy) Ñ y: Given the secret key SKf for function f , and an output
encoding σy, the decoding algorithm outputs a value y.

136 D. Fiore et al.

The correctness of a VC scheme is the obvious property: if one runs Compute
on an honestly generated input encoding of x, then the output must verify and
its decoding should be y “ f(x).

For security, intuitively we want to say that an adversary that receives the
public parameters for a function f and an encoding of an input x cannot create
an encoding that passes verification and decodes to y′ ‰ f(x). More formally, we
say that a publicly verifiable computation scheme VC is secure for a function f , if
for any PPT adversary A, we have that Pr[ExpPubV erif

A [VC, f, λ] “ 1] “ negl(λ),
where the experiment ExpPubV erif is described below.

The input privacy notion intuitively says that no information about the
inputs is leaked. This is defined using a typical indistinguishability experiment.
Note that input privacy implies also output privacy. More formally, we say that a
publicly verifiable (and publicly delegatable) VC scheme VC is private for a func-
tion f , if for any PPT adversary A, we have that Pr[ExpPriv

A [VC, f, λ] “ 1] ď
1
2 + negl(λ), where the experiment ExpPriv is described below.

Experiment ExpPubV erif
A [VC, f, λ]

(PK,SK) Ð KeyGen(1λ, f);
x Ð A(PKf);
(σx, τx) Ð ProbGenPKf

(x);
σ̂y Ð A(PKf , σx, τx);
âcc Ð VerifyPKf

(τx, σ̂y)
ŷ Ð DecodeSKf

(σ̂y)
If âcc “ 1 and ŷ ‰ f(x),

output ‘1’, else ‘0’;

Experiment ExpPriv
A [VC, f, λ]

b Ð {0, 1};
(PKf , SKf) Ð KeyGen(1λ, f);
(x0,x1) Ð A(PKf)
(σb, τb) Ð ProbGenPKf

(xb);
b̂ Ð A(PKf , σb)
If b̂ “ b, output ‘1’, else ‘0’

4.2 Our VC Scheme

We describe our VC scheme below. The construction is essentially an instantia-
tion of the generic solution of Fiore et al. [FGP14] when using an homomorphic
encryption scheme whose homomorphic evaluation algorithm fits our relation
Rf . This can be obtained by using HE schemes in the Ring-LWE setting where
the ciphertext space works over the same ring Rq supported by our Rq-Π con-
struction, and where the evaluation algorithm does not involve modulus switches
and rounding operations. An example of such a scheme is the one of Brakerski
and Vaikunthanatan [BV11].

Let MPoly-Com “ (MPoly.ComGen,MPoly.ComVer,MPoly.OpenVer) be a
polynomial commitment scheme, Rq-Π “ (Rq-Π.Gen,Rq-Π.Prove,Rq-Π.Ver)
be a CaP zk-SNARK for polynomial rings computation, and let HE “
(HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) be a homomorphic encryption scheme in
the Ring-LWE setting. Then our VC scheme works as follows:

KeyGen(1λ, f̂) Ñ (PKf , SKf):
– Run (pk, sk) Ð HE.KeyGen(λ) to generate a key pair for HE.
– Run crs Ð Rq-Π.Gen(ck,Rck

f) to generate the common reference string of
Rq-Π for the relation Rck

f .
– Set PKf “ (pk, crs, f̂) and SKf “ (sk, crs).

Boosting Verifiable Computation on Encrypted Data 137

ProbGenPKf
(x) Ñ (σx, τx):

– Parse x “ {xi}n
i“1 and compute ciphertexts Pi Ð HE.Enc(pk, xi)

– Compute the commitment (C, ρ) “ MPoly.Com({Pi}) and define σx “
(C, {Pi}, ρ) and τx “ C.

ComputePKf
(σx) Ñ σy:

– Parse σx “ (C, {Pi}, ρ);
– Compute the result ciphertext P Ð HE.Eval(pk, f̂ , {Pi}) “ f({Pi}).
– Run π Ð Rq-Π.Prove(crs, (C,P), ({Pi}, ρ)).
– Define σy “ (P, π)

VerifyPKf
(τx, σy) Ñ acc: output b Ð Rq-Π.Ver(crs, (C,P), π).

DecodeSKf
(τx, σy) Ñ y: Decrypt y “ HE.Dec(sk, P).

Following the general result in [FGP14], the scheme satisfies correctness,
security and privacy. In particular, privacy relies on the semantic security of HE,
and security on the soundness of the SNARK.

4.3 Preserving Privacy of the Inputs Against the Verifier

The VC scheme described in the previous section works when the homomorphic
computation P Ð f({Pi}) on the ciphertexts is deterministic. This can raise the
issue that the result ciphertext P may reveal information on the plaintexts {xi}
underlying {Pi} (e.g., in lattice-based schemes such information may be inferred
by looking at the distribution of the noise recovered as P ’s decryption time).

It would be therefore interesting to capture the setting where one wants to
hide information on the xi’s even from the decryptor. Such a property would
turn useful in scenarios where the data encryptor and decryptor are different
entities. As an example, consider the case of users that store medical data x
on a cloud server which computes some query f on behalf of an analyst, who
however is not entitled to learn more than f(x).

In this section, we provide a formal definition of this property, that we call
context-hiding, and then describe how our scheme from the previous section can
be extended to achieve this additional property.

Defining Context-Hiding. Informally, this property says that output encod-
ings σy, as well as the input verification tokens τx, do not reveal any informa-
tion on the input x. Notably this should hold even against the holders of the
secret key SKf . We formalize this definition in a zero-knowledge style, requiring
the existence of simulator algorithms that, without knowing the input, should
generate (τx, σy) that look like the real ones. More precisely, a VC scheme is
context-hiding for a function f if there exist simulator algorithms S1, S2 such
that:

– the keys (PKf , SKf) and (PK ′
f , SK ′

f) are statistically indistinguishable,
where (PKf , SKf) Ð KeyGen(1λ, f) and (PKf , SKf , td) Ð S1(1λ, f);

138 D. Fiore et al.

– for any input x, the following distributions are negligibly close

(PKf , SKf , σx, τx, σy) ≈ (PKf , SKf , σx, τ ′
x, σ′

y)

where (PKf , SKf , td) Ð S1(1λ, f), (σx, τx) Ð ProbGenPKf
(x),

σy Ð ComputePKf
(σx), and (σ′

y, τ ′
x) Ð S2(td, SKf , f(x)).

Our Context-Hiding Secure VC Scheme. Before describing the scheme in
detail, let us provide some intuition.

The first observation is that for the HE scheme this problem can be solved
by adding to the result P an encryption of 0, P ∗

0 , whose noise can statically hide
that in P (a so called noise flooding technique). However if we do this change
in our VC scheme we have two issues: (1) the computation is not deterministic
anymore; (2) the prover may create a bogus encryption of 0, not of the correct
distribution, in order to make decryption fail. We can solve these issues by using
the fact that, as underlying tool for verifiability, we are using a SNARK that
can handle deterministic computations. In particular, we can do the following.

For (2) we add to the public key s honestly generated encryptions of 0
{P ∗

i }s
i“1, and then ask the untrusted party to compute the result as P ′ “ P +P ∗

0

with P ∗
0 “ ∑n

i“1 bi ·P ∗
i , for uniformly random bits bi. By choosing appropriately

the noise parameters in the P ∗
i ’s and by taking s ≈ λ, based on the leftover hash

lemma, P ∗
0 can statistically hide the noise in P .

Formally, adding such a randomization at the end of computing a func-
tion f guarantees leveled circuit privacy. In a nutshell, a somewhat-FHE HE
is leveled circuit private if there exists a simulator algorithm HE.S such that
HE.S(pk, d, f(x)) ≈ HE.Eval(pk, f,HE.Enc(x)) are statistically close. Here the
input d taken by the simulator represents information on the depth of f .

For (1), we simply consider proving a slightly different relation, that is:

R∗
f :“ {(u “ (C,P ′, {P ∗

i }s
i“1);w “ ({Pj}n

j“1, T, ρ, b1, . . . , bs)) :

(C, ρ) “ MPoly.Com({Pj}) ^ ∀i P [s] bi P {0, 1} ^

P ′ “ f(Pj) +
s∑

i“1

biP
∗
i − TR }

To use our scheme Rq-Π on the above relation, we can do the following. Given
a function f : Rq

n Ñ Rq, define the function f ′ : Rq
n+s ˆ Z

s
q Ñ Rq that takes

n + 2s inputs such that

f̂ ′(x1, . . . , xn, o1, . . . , os, b1, . . . , bs) “ f̂(x1, . . . , xn) +
s∑

i“1

bi · oi.

Then we use our Rq-Π on the following relation

R′
f :“ {(u “ (C ′, P ′);w “ ({Pj}n

j“1, {P ∗
i }s

i“1, {bi}s
i“1, T, ρ′)) :

(C ′, ρ′) “ MPoly.Com({Pj}, {P ∗
i }, {bi}) ^ ∀i P [s]bi P {0, 1} ^

P ′ “ f ′(Pj , {P ∗
i }, {bi}) − TR }

Boosting Verifiable Computation on Encrypted Data 139

where C ′ “ C ˆ C∗ ˆ Cb and ρ′ “ ρ + ρ∗ + ρb. It can be seen that R′
f matches

the format Rf ′ (for the function f ′ and a larger set of inputs) of relations sup-
ported by our Rq-Π scheme. One change however is that the commitment C ′

cannot be created directly by ProbGen as it contains elements that depend on
a specific computation. We can solve this problem by using the homomorphic
property of the commitment scheme: namely we assume that at key generation
a commitment (C∗, ρ∗) “ MPoly.Com({P ∗

i }) is created and made public, and
that the prover creates a similar commitment (Cb, ρb) “ MPoly.Com({bi}) to
the random coefficients. Then C ′ can be obtained as C ·C∗ ·Cb and its opening
is ρ′ “ ρ + ρ∗ + ρb.

A more precise description of the protocol is given below.

KeyGen(1λ, f̂) Ñ (PKf , SKf):
– Run (pk, sk) Ð HE.KeyGen(λ) to generate the key pair for HE.
– Run crs Ð Rq-Π.Gen(ck,Rf ′) to generate the Rq-Π crs for the rela-

tion Rf ′ .
– For i “ 1 to s: P ∗

i Ð HE.Enc(pk, 0) and compute a commitment
(C∗, ρ∗) “ MPoly.Com({P ∗

i }).
– Set PKf “ (pk, {P ∗

i }s
i“1, C

∗, ρ∗, crs, f̂) and SKP “ (sk, crs).
ProbGenPKf

(x) Ñ (σx, τx): this is the same as in the previous section.
ComputePKf

(σx) Ñ σy: parsing σx “ (C, {Pi}, ρ), do the following:
– Sample b1, . . . , bs Ð$ {0, 1} uniformly at random, and compute a com-

mitment (Cb, ρb) “ MPoly.Com({bi}) (thinking of each bi as a degree-0
polynomial).

– Compute the result ciphertext P ′ Ð f({Pi}) +
∑s

i“1 biP
∗
i .

– Run π Ð Rq-Π.Prove(crs, (C ˆ C∗ ˆ Cb, P
′), ({Pi}, {P ∗

i }, {bi}, ρ, ρ∗, ρb)).
– Define σy “ (P ′, Cb, π)

VerifyPKf
(τx, σy) Ñ acc: output b Ð Rq-Π.Ver(crs, (C ˆ C∗ ˆ Cb, P), π).

DecodeSKf
(τx, σy) Ñ y: Decrypt y “ HE.Dec(sk, P ′).

Theorem 4. If HE is semantically secure and circuit private, and Rq-Π is
knowledge sound and zero-knowledge, then the VC described above is correct,
secure, private and context-hiding.

Proof (Sketch). The proof of the result is rather simple. Below we provide a
proof sketch. First, notice that based on the correctness of Rq-Π and that of HE,
we obtain correctness of our protocol.

The security follows from the knowledge soundness of the SNARK. The only
detail to mention is that we also rely on the correctness of the HE scheme in order
to make sure that, for honestly generated ciphertexts {Pi} of {xi}, and {P ∗

i }
for 0, and for binary coefficients {bi}, the ciphertext P ′ Ð f({Pi}) +

∑s
i“1 biP

∗
i

decrypts to f̂(x).
Finally, we can prove context-hiding via a simple hybrid argument based on

the privacy property of the HE scheme and the zero-knowledge of our SNARK.
We define the VC simulators as follows. S1 proceeds exactly as KeyGen except
that it runs the SNARK simulator (crs, td) Ð Simcrs(Rf ′ , λ) instead of Gen, and
set its trapdoor to be td. S2(td, SKf , y) first sets τ ′

x “ C where C is created as a

140 D. Fiore et al.

commitment to some dummy input. Next, it creates Cb as another commitment
to a dummy value, and computes P ′ as an encryption of y using HE.S(pk, d, y)
(where d is information on the depth of f), and finally it invokes the SNARK
simulator π Ð SimProve(crs, (C ˆ C∗ ˆ Cb, P

′)). Then S2 outputs τ ′
x and σ′

y “
(P ′, Cb, π).

The indistinguishability of the keys is immediate from the zero-knowledge of
the SNARK. For the second property, we can define an hybrid simulator S′ that,
with knowledge of σx, runs as S2 but creates P ′ as in Compute. It is easy to
see that the output of S′ is indistinguishable from that of S2 by the property of
HE.Hide, also by the hiding of the commitment and by the zero-knowledge of the
SNARK we obtain that the values (τ ′

x, σ′
y) generated by S′ are indistinguishable

from the ones generated using ProbGen and Compute.

5 Bivariate Polynomial Commitment

Our final goal is to build an efficient instantiation of the MUniEv-Π scheme for
the evaluation on the same point of many univariate polynomials committed
with MPoly-Com. This is the key tool for our Rq-Π scheme for computations
over polynomial rings presented in Sect. 3.

We construct MPoly-Com and MUniEv-Π starting from a commitment
scheme BivPoly.Com for bivariate polynomials and a commit-and-prove argu-
ment BivPE-Π for the partial evaluation, in one variable, of a committed bivariate
polynomial.

In this section we recall bilinear pairings and the computational assump-
tions needed by our schemes, and then we present the BivPoly.Com commitment
scheme. The construction of the BivPE-Π commit-and-prove SNARK is described
in Sect. 6, while their conversion into MPoly-Com and MUniEv-Π appears in
Sect. 7.

5.1 Computational Assumptions

Security of our constructions rely on various computational assumptions. We
state here our assumptions over bilinear groups. Some of them are standard q-
type assumptions in the frame of DLog-hard groups and others are extractable
(non-falsifiable) assumptions, a class of assumptions inherent to the security of
SNARKs as shown in [GW11].

Bilinear Groups. Let the generator G input a security parameter λ and output
a description of a bilinear group gk :“ (q,G,G,GT , e) Ð$G(1λ) such that q is a
λ-bit prime; G,G,GT are cyclic groups of order q; e : G ˆ G Ñ GT is a bilinear
asymetric map (pairing), which means that ∀a, b P Zq : e(ga, gb) “ e(g, g)ab; if g
and g generate G and G respectively, then e(g, g) generates GT ; membership in
G,G,GT can be efficiently decided, group operations and the pairing e are effi-
ciently computable, generators are efficiently sampleable, and the descriptions

Boosting Verifiable Computation on Encrypted Data 141

Fig. 2. Our BivPoly.Com for Bivariate Polynomial

of the groups and group elements each have size O(λ) bits.

The d–Strong Diffie-Hellman Assumption (d–SDH). The Strong Diffie-
Hellman assumption [BB08] says that given (g, gs, . . . , gsd

) it is infeasible to
compute y “ g

1
s−r for a chosen r P Zq. In our applications, a few more group

elements Σ are given as input to the adversary:

Assumption 1 (d−SDH). The d–Strong Diffie-Hellman assumption holds rela-
tive to a bilinear group gk if for all PPT adversaries A we have, on the probability
space gk Ð G(1λ), Σ Ð ((g, gs, . . . gsd

); (g, gs)), g Ð$G, g Ð$G, and s Ð$Zq:

Advd−sdh
A (λ) :“ Pr

[
(r, y) Ð A(gk, Σ) ^ y “ g

1
s−r

]
“ negl(λ).

An adaptation of the proof in Boneh and Boyen [BB08] shows that our variant
of the d − SDH assumption holds in the generic bilinear group model.

Knowledge of Exponent Assumptions. The knowledge of exponent (KEA)
assumption introduced by Damgard [Dam92] says that given g, gα in a group G

it is infeasible to create c, ĉ so ĉ “ cα without knowing a so c “ ga and ĉ “ (gα)a.
d-Power Knowledge of Exponent Assumption (d−PKE) is another long-standing
extractable assumption. It says that given {g, gs, gs2

, . . . , gsd

, ĝ, ĝs, ĝs2
, . . . , ĝsd}

with ĝ “ gα, it is infeasible to create c, ĉ where ĉ “ cα without knowing
a0, a1, . . . ad that satisfy c “ ∏d

i“0(g
si

)ai .

The (d, �)–Bivariate PKE Assumption ((d, �) − BPKE). We introduce a
bivariate power knowledge of exponent assumption that is a simple extension of
the popular d − PKE assumption.

142 D. Fiore et al.

The (d, �)–Bivariate Power Knowledge of Exponent Assumption for a bilinear
group gk, noted by (d, �) − BPKE is a hybrid between PKE assumption for d

different powers of s and � powers of t and KEA assumption for input (h, ĥ :“
hα) P G

2. It takes the two basis (g, ĝ :“ gα), (h, ĥ :“ hα) and all the powers
{gsitj , ĝsitj}d,�

i,j“0 and claims that it is infeasible to create c, ĉ such that ĉ “ cα

without knowing δ, {aij}d,�
i,j“0, that satisfy c “ hδ

∏d,�
i,j“0(g

sitj)aij . More formally:

Assumption 2 ((d, �)−BPKE). The (d, �)−BPKE assumption holds relative to
a bilinear group gk for the class Z of auxiliary input generators if, for every aux P
Z and PPT adversary A, there exists a PPT extractor Ext such that, on the prob-
ability space gk Ð G(1λ), Σ Ð (g, {gsitj}d,�

i,j“0, {ĝsitj}d,�
i,j“0; (h, ĥ, hs); (g, ĝ, gs)),

aux Ð Z(gk, Σ), g, h Ð$G, g Ð$G, α, s, t Ð$Zq, ĝ :“ gα, ĥ :“ hα, and ĝ :“ gα:

Advd−pke
A (λ) :“ Pr

[
(c, ĉ; δ, {aij}d,�

i,j“0) Ð (A‖Ext)(gk, Σ; aux)
e(ĉ, g) “ e(c, gα) ^ c ‰ hδ

∏d,�
i,j“0(g

sitj)aij

]
“ negl(λ).

5.2 Knowledge Commitment for Bivariate Polynomials

Based on an efficient construction of a polynomial commitment scheme proposed
by [KZG10] we further construct a knowledge commitment scheme for bivariate
polynomials that is perfectly hiding and computationally binding. This will later
allow us to use commitments in a CaP-SNARK BivPE-Π for polynomial partial
evaluation.

The commitment scheme BivPoly.Com “ (Biv.ComGen,Biv.Com,Biv.ComVer,
Biv.OpenVer) consists of four algorithms as described in Fig. 2 and it is specialized
for (bivariate) polynomials P P Zq[X,Y]: the message space Mck is defined by
polynomials in Zq[X,Y] of degree in X bounded by a value d and degree in Y
bounded by some value �.

Remark 5. The Biv.ComGen algorithm computes two extra values g1 :“ gs, h1 :“
hs to be added to ck (step 4). Although these elements are not used by the
commitment scheme, they are useful to construct our Commit and Prove SNARK
for partial evaluations of polynomials committed with BivPoly.Com. In other
words, used as a stand alone commitment scheme, BivPoly.Com may have a
slightly shorter commitment key ck (by removing step 4 from Biv.ComGen).

Security of the Commitment BivPoly.Com. We call BivPoly.Com a knowl-
edge commitment, since the prover cannot make a valid commitment without
“knowing” the committed values. We will rely on the (d, �)−BPKE assumption
for extracting the committed polynomials. We can state the following theorem
on the security of BivPoly.Com, whose proof can be found in the full version.

Theorem 6. The commitment scheme BivPoly.Com is perfectly hiding and com-
putationally binding assuming the d − SDH assumption holds in G. Moreover,
assuming (d, �) − BPKE, the scheme is knowledge binding.

Boosting Verifiable Computation on Encrypted Data 143

6 CaP-SNARK for Bivariate Polynomial Evaluation

In this section we show how to construct a commit-and-prove SNARK BivPE-Π
for the partial evaluation in a single variable of bivariate polynomials.

6.1 Relations for Bivariate Polynomial Partial Evaluation

The relation R for partial evaluation of bivariate polynomials is defined over
tuples (k, P (X,Y), Q(Y)) P Zq ˆ Zq[X,Y] ˆ Zq[Y] as follows

R :“ {(k, P (X,Y), Q(Y)) : Q(Y) “ P (k, Y)}.
The scheme we propose in this section is a Commit-and-Prove (CaP) SNARK
for the above R where P P Zq[X,Y] and Q P Zq[Y] are committed in C and C ′

respectively using BivPoly.Com.4

Namely, following the definition from Sect. 2.2, BivPE-Π is a zk-SNARK for
the following commit-and-prove relation

Rck :“ {(u “ (C,C ′, k);w “ (P,Q, ρ, ρ′)) : (1)
(C, ρ) “ Biv.Com(P) ^ (C ′, ρ′) “ Biv.Com(Q) ^ Q(Y) “ P (k, Y)}.

6.2 Our BivPE-Π Scheme for Bivariate Polynomial Evaluation

We aim to build an efficient commit-and-prove SNARK, BivPE-Π, dedicated to
partial evaluation for bivariate polynomials P P Zq[X,Y] in X “ k P Zq.

Our scheme is based on an algebraic property of polynomials. We remark
that (X − k) perfectly divides the polynomial P (X,Y) − P (k, Y) for k P Zq.

BivPE-Π works for an (R-independent) bivariate polynomial commit-
ment scheme BivPoly.Com “ (Biv.ComGen,Biv.Com,Biv.ComVer,Biv.OpenVer),
as detailed in Fig. 3, and has to satisfy completeness, succinctness, zero-knowledge
and knowledge-soundness.

Description of Our BivPE-Π Protocol. Let BivPoly.Com be a bi-variate poly-
nomial knowledge commitment scheme. We construct a zero-knowledge SNARK
scheme for any relation Rck with respect to some bounds d, � on the degrees in
X and in Y of the polynomials P P Zq[X,Y] supported by BivPoly.Com. Our
protocol is formally depicted in Fig. 3.

CRS Generation. The setup algorithm outputs a crs enabling the proof and
verification of statements for the associated relation Rck defined in Eq. (1).

We remark that Gen algorithm is just using the same public information
(commitment key) ck from the BivPoly.Com scheme.

Prover. Given crs, the statement u “ (C,C ′, k) (two commitments C,C ′ and
an evaluation point k) and the witness w “ (P,Q, ρ, ρ′) (the corresponding
polynomials P P Zq[X,Y], Q P Zq[Y] and their randomness ρ, ρ′), the prover
proceeds to compute a proof π that P (k, Y) “ Q(Y), (C, ρ) “ Biv.Com(P), and
(C ′, ρ′) “ Biv.Com(Q) in two steps:
4 Note that, although Q is a uni-variate polynomial in Y , it can also be seen as a

bivariate polynomial.

144 D. Fiore et al.

Fig. 3. Our CaP-SNARK for Bivariate Polynomial Partial Evaluation

Step 1. (From 1 to 3 in the Prove algorithm from Fig. 3.) The prover computes
a witness to the correct (partial) evaluation in k P Zq of the polynomial
P P Zq[X,Y] as P (k, Y) “ Q P Zq[Y]. The witness of this evaluation is a
polynomial W P Zq[X,Y] defined as the quotient W :“ P (X,Y)−Q(Y)

X−k . This
is a well-defined polynomial in Zq[X,Y] if and only if P (k, Y) “ Q P Zq[Y].
The element of the proof π that enables checking this algebraic property
over the polynomials P and Q will be a commitment (D “ (d, d̂), ω) to the
polynomial W , where ω Ð$Zq is a fresh randomness.

Remark 7. To this point, the verifier should be convinced that the polynomial Q
is the good evaluation in k of P , only by checking the corresponding polynomial
equation evaluated in a random hidden point (s, t) : W (s, t)(s − k) “ P (k, t) −
Q(t). This can be translated in terms of commitments (C, ρ)(C ′, ρ′), (D,ω) to
P,Q,W as a pairing check: e(d, g1/g

k) · e(c/c′, g)−1 “ e(h(s−t)ω−(ρ−ρ′), g) where
C “ (c, ĉ), C ′ “ (c′, ĉ′),D “ (d, d̂).

Because of the hiding property, the verifier does not have access to the open-
ings of the commitments, as it does not know the randomness ρ, ρ′, ω.

We therefore need the prover to provide something more together with the
commitment D. The prover needs to compute an extra proof of knowledge of
the randomnesses ω used to create this comitment and of the correct relation to
satisfy with respect to the randomness ρ, ρ′ of the statement commitments C,C ′

such that the pairing expression cancels the respective terms h(ρ−ρ′) and h(s−t)ω.
This is easily solved by building a Schnorr proof of knowledge of the expo-

nents ω, (ρ′ − ρ) that appear in A “ e(h(s−k)ω−(ρ−ρ′), g) “ e(h(ρ′−ρ)h(s−k)ω, g).
If we define g̃ :“ h1/hk “ hs−k, then this proof is a classical Schnorr proof for
the public value A “ e(hρ′−ρg̃ω, g) “ e(h, g)ρ′−ρ · e(g̃, g)ω in the target group G.
But we will show we can make it more efficient.

Step 2. (From 4 to 7 in the Prove algorithm from Fig. 3.) This step consists in
this non-interactive Schnorr proof associated to the value A “ e(hρ′−ρg̃ω, g):
– Choose x, y P Zq,

Boosting Verifiable Computation on Encrypted Data 145

– Define U “ e(hxg̃y, g), this corresponds to the first round in the interactive
Schnorr proof protocol, where the prover sends its commitment.

– Sample the challenge to the Schnorr proof by running the random oracle
(hash function) on input the statement to be proven and the commitment
U: e Ð Hash(u,D,U),

– Compute the answers σ “ x − (ρ′ − ρ)e mod q and τ “ y − ωe mod q.
The values sent as Schnorr proof are three scalars e, σ, τ , where e is the output
of the hash function Hash(u,D,U) and does not depend on the size of U P GT .
After the two described steps, the prover algorithm outputs π :“ (D, e, σ, τ).

Verifier. First, the verifier parses the received statement and proof (steps 1 and
2 in the Ver algorithm from Fig. 3), then it makes sure the commitments C,C ′,D
are well-formed (steps 3 to 5 in the Ver algorithm from Fig. 3) by running the
Biv.ComVer algorithm. If this is not the case, we discard the proof π. To verify the
proof π, one needs the polynomial equation W (X,Y)(X − k) “ P (k, Y)−Q(Y)
to hold for some secret evaluation points (s, t). We can rewrite this equation in
terms of pairings applied to the commitments (C,C ′,D): e(d, g1/g

k)·e(c/c′, g)−1.
If the polynomials W,P,Q evaluated in the secret points s, t satisfy the equation
W (s, t)(s − k) “ P (k, t) − Q(t), then all the exponents in base g cancel out
in the pairing expression. It is not the case for the exponents in base h which
correspond to the randomness used in the commitments. The important remark
is that if D is correct, the remaining value A “ e(d, g1/g

k) · e(c/c′, g)−1 can be
written only in terms of the 3 randomness ρ, ρ′, ω used to commit to P,Q,W :

A “ e(h(s−k)ωh(ρ′−ρ), g) “ e(hρ′−ρg̃ω, g).

This can be checked by the usual verification procedure of the Schnorr proof
transmitted in π, i.e. the values (e, σ, τ): Compute A “ e(d, g1/g

k) · e(c/c′, g)−1

and U “ e(hσ g̃τ , g) · Ae then run the Hash function to check whether e “
Hash(u,D,U).

Security of BivPE-Π. The security of our scheme is captured in the following
theorem whose proof is elaborated in Sect. 8:

Theorem 8. Assuming both the d − SDH and (d, �) − BPKE assumptions hold
in the bilinear group gk, the protocol CaP-BivPE-Π is a zero-knowledge Succinct
Non-Interactive Argument of Knowledge in the random oracle model.

Remark 9. We point out that in the case one is not interested in hiding the
committed bivariate polynomial P and its partial evaluation Q, then it is possible
to define a simplified version of our scheme that does not need the Schnorr-style
proof and thus is secure without random oracles. This protocol is the same as
CaP-BivPE-Π except that one would set ω “ ρ “ ρ′ “ 0 (so the commitments
are no longer hiding); this way the evaluation proof can be just the commitment
D and it can be verified with the pairing check e(d, g1/g

k) “ e(c/c′, g).

146 D. Fiore et al.

7 CaP-SNARK for Simultaneous Evaluations

In this section we show how we can use our BivPE-Π scheme for the partial
evaluation of one bivariate polynomial on a point k in order to prove the evalua-
tion of many univariate polynomials on the same point k. The resulting scheme
MUniEv-Π can be used in the protocol presented in Sect. 4 for verifiable compu-
tation using HE on Ring-LWE.

More precisely, we show how to use our BivPoly.Com and BivPE-Π to define a
commitment scheme and a compact proof system dedicated to multi-polynomials
evaluation in the same random point k: given a single compact knowledge com-
mitment C for a set of univariate polynomials {Pj(X)}j P Zq[X] and a public
evaluation point k P Zq, we want to prove that some values {pj}j committed in
C ′ are indeed evaluations of the committed polynomials in this point k.

7.1 Commitment for Multiple Univariate Polynomials

We describe below, MPoly-Com, our new knowledge commitment for a set of uni-
variate polynomials. It is obtained in a straightforward way from BivPoly.Com. It
is defined as follows, where for simplicity we consider �+1 committed univariate
polynomials Pj “ ∑d

i“0 pijX
i for all 0 ď j ď �, 0 ď i ď d:

MPoly.ComGen(1λ, d, �) Ñ ck: Given some degree bound d and some maximal
bound � + 1 on the cardinal of the polynomial set to be committed, it runs
ck Ð Biv.ComGen(1λ, d, �), where d, � are the bounds on the degrees on X
and Y of the bivariate polynomials in Zq[X,Y].

MPoly.Com(ck, {Pj}0ďjď�) Ñ (C, ρ): Given a set {Pj} of � + 1 polynomials in
Zq[X], with coefficients {pij}iďd,jď�

i,j“0 we can define the bivariate polynomial
P “ ∑d,�

i,j“0 pijX
iY j and run (C, ρ) Ð Biv.Com(ck, P);

MPoly.ComVer(ck, C “ (c, ĉ)) Ñ 0/1: Runs b Ð Biv.ComVer(ck, C “ (c, ĉ));
MPoly.OpenVer(ck, C, {Pj}0ďjď�, ρ) Ñ {Pj}j: Runs P Ð Biv.OpenVer(ck, C, P, ρ)

where P is parsed as
∑d,�

i,j“0 pijX
iY j . then output 1, else output 0 (reject).

We state the following theorem. Its proof (see the full version) simply follows
from the way we encode multiple polynomials into a bivariate one.

Theorem 10. This commitment scheme MPoly-Com is perfectly hiding, com-
putationally binding, and knowledge binding assuming the scheme BivPoly.Com
also is so.

7.2 Succinct Proof of Multiple Evaluations in a Point k

The construction of an efficient MUniEv-Π dedicated to multiple uni-variate poly-
nomial evaluations in some common point k follows as well from the BivPE-Π
scheme we built for partial evaluations. More precisely, for some parameters
d, � and some given knowledge commitments C,C ′ for polynomials of maximal
degree d, {Pj}0ďjď� P Zq[X] and scalars {pj}0ďjď� P Z and a public evaluation

Boosting Verifiable Computation on Encrypted Data 147

point k P Zq, we want to prove that pj is the evaluation Pj(k) for any 0 ď j ď �.

Description of Our CaP MUniEv-Π Protocol. We now describe our protocol
for proving multiple uni-variate polynomial evaluations in some common point
k, where the j index is always considered as 0 ď j ď �, and thus for � + 1
polynomials:

MUniEv-Π.Gen(1λ,Runi) Ñ crs: On input a security parameter λ P N and a
NP relation Runi :“ {(u “ ({Pj}j , k);w “ {pj}) : Pj(k) “ pj}, define
the associated relation Rbi :“ {(u “ (P (X,Y), k);w “ Q(Y)) : Q(Y) “
P (k, Y)} where P (X,Y) :“ ∑�

j“0 PjY
j , Q(Y) :“ ∑�

j“0 pjY
j . Output the

common reference string by running crs Ð Gen(ck,Rbi);
MUniEv-Π.Prove(crs, u “ (C,C ′, k), w “ ({Pj}j , {pj}j , ρ, ρ′): Given crs, the

instance u and the witness w, the prover defines new bi-variate polyno-
mials P (X,Y) :“ ∑�

j“0 PjY
j , Q(Y) :“ ∑�

j“0 pjY
j and compute the proof

π for those: π Ð Prove(crs, u “ (C,C ′, k), w “ (P,Q, ρ, ρ′). Output π :“
(D, e, σ, τ);

MUniEv-Π.Ver(crs, u, π) Ñ b: Same algorithm as for partial-evaluation BivPE-Π.

Remark 11. The commitment D to the bivariate polynomial W P Zq[X,Y] that
appears in the proof can be seen as a commitment to a vector of univariate
polynomials {Wj}j using the MPoly-Com as follows: Write Wj “ ∑d

i“0 wijX
i,

then running MPoly.Com(ck, {Wj}j) gives the same output (D,ω) as running
Biv.Com(ck,W).

Theorem 12. Assuming the BivPE-Π is a public coin argument of knowledge
of openings of C and C ′ to some polynomials P P Zq[X,Y], Q P Zq[Y] such
that P (k, Y) “ Q(Y), then MUniEv-Π is a public coin argument of knowledge of
openings of C and C ′ to a set of polynomials {Pj}j P Zq[X] and a set of scalars
{pj}j P Zq such that Pj(k) “ pj∀0 ď j ă �.

For lack of space, the proof appears in the full version. It is almost a straight-
forward reduction to the properties of BivPE-Π.

7.3 Efficiency and Comparison

We summarize the performance of our scheme MUniEv-Π in terms of prover and
verification time and proof size. The proof consists of 2 elements from the group
G and 3 elements of Zq. Generating a proof for � polynomials of degree d requires
a total of 2�d exponentiations in G in order to compute the commitment D, and
O(�d log d) operations in Zq in order to compute the polynomial W (X,Y) using
polynomial division.5 Verifying a proof requires 5 pairings, and the following
number of exponentiations: 6 in G, 1 in G and 1 in GT .The numbers are obtained
by observing that the six pairings for Biv.ComVer can be batched resulting into
2 pairings and 4 exponentiations in G.
5 Note that W can be computed by aggregating the results of � polynomial divisions

of degree d.

148 D. Fiore et al.

We compare MUniEv-Π against a solution based on a general-purpose
SNARK restricted to proving multiple polynomial evaluations in a commit-and-
prove fashion. For the latter, we choose the LegoGroth16 scheme from [CFQ19],
which makes the SNARK of [Gro16] (which is currently among the most efficient
SNARKs) to efficiently work with committed inputs, and that achieves the fol-
lowing efficiency. The proof consists of 4 elements of G and 1 element of G. Let m
and n be the size and degree of the QAP modeling the evaluation of � polynomi-
als of degree d, and note that m,n � �d. Proof generation requires 2m+n+�d+�
and m exponentiations in G and G respectively, as well as O(n log n) operations
in Zq for a polynomial division. Verification requires 7 pairings.

The analysis above shows that our scheme MUniEv-Π has slightly smaller
proofs and, more notably, has faster proof generation. Considering that m,n � �d
and that G operations are at least twice slower than in G, our prover is at least
3 times faster.

8 Security Analysis of Our CaP BivPE-Π

In what follows we prove the main security result of our paper, Theorem 8. We
focus on knowledge soundness of our CaP BivPE-Π scheme. We defer the reader
to the full version for the proof of correctness and zero-knowledge.

Before going into the technical details of the proof, we provide some intuition
about its strategy. The polynomial commitment scheme BivPoly.Com requires the
prover Prove to exhibit two values (c, ĉ), that are the same encoding of coefficients
of a polynomial P (X,Y) in the exponent, but with respect to different bases.
The reason that we require the prover to duplicate its effort w.r.t. α is so that
the simulator in the security proof can extract representations of (c, ĉ) as a
polynomial P (X,Y), under the (d, �) − BPKE assumption.

Suppose an adversary A manages to forge a SNARK of a false statement
that nonetheless passes the verification test. The intuition behind the proof is
to use the adversary A and the fact that the commitment scheme BivPoly.Com
is extractable to be able to solve the d − SDH assumption for d “ deg(P) in X.
There is a similar complementary case that allows this adversary to solve the
d − SDH assumption for d “ deg(P) in Y (actually � in our notations).

To proceed to proving Theorem 8, we first need two preliminary lemmas:

Lemma 13 (Global Extractor). Assume that BivPoly.Com is an extractable
commitment scheme with perfect hiding and computational binding properties
and that (d, �) − BPKE assumption holds in the bilinear group gk. For any
PPT adversary AKS agains the knowledge soundness of BivPE-Π that has non-
negligeable probability of success in breaking the scheme, there exists an extractor
Ext such that:

Pr

⎡
⎢⎢⎢⎢⎣

crs Ð BivPE-Π.Gen(1λ,R), z Ð Z(crs)
C “ Biv.Com(P, ρ) ((u, π);wit) Ð (AKS‖Ext∗)(crs, z)

^ C ′ “ Biv.Com(Q, ρ′) u :“ (C,C ′, k), π :“ (D,U, σ, τ)
^ D “ Biv.Com(W,ω) wit :“ (P, ρ,Q, ρ′,W, ω)

BivPE-Π.Ver(crs, u, π) “ 1

⎤
⎥⎥⎥⎥⎦

Boosting Verifiable Computation on Encrypted Data 149

“ 1 − negl(λ).

Proof. We show the existence of an extractor Ext∗ that will output the polyno-
mials P (X,Y), Q(Y), W ∗(X,Y) and the randomness ρ, ρ′, ω corresponding to
the commitments C,C ′,D, with overwhelming probability.

Let AKS be an adversary that breaks the KS of the protocol BivPE-Π with
overwhelming probability, meaning it outputs a false proof that passes the ver-
ifier checks. Consider now the adversary BBPKE that takes as input σ Ð (g,

{gsitj}d,�
i,j“0, {ĝsitj}d,�

i,j“0; (h, ĥ, hs); (g, gα, gs)) and runs the adversary AKS against
the scheme. BBPKE can provide a valid CRS to AKS by using its inputs:

crs “ {gk, (gij)
d,�
i,j“0, (ĝij)

d,�
i,j“0; (h, ĥ, h1); (g, gα, g1)}.

The statement u, corresponding to π Ð AKS(crs), contains the values C :“
(c, ĉ), C ′ :“ (c′, ĉ′) that verify e(c, ĝ) “ e(ĉ, g) and e(c′, ĝ) “ e(ĉ′, g). The same
holds for the value D provided in the proof π “ (D, e, σ, τ), i.e. e(d, ĝ) “ e(d̂, g).

Provided that for any adversary BBPKE that outputs valid commitment pair
(c, ĉ), there exists an extractor that returns the corresponding witness (the open-
ing). We run the extractor ExtB associated to BBPKE for each of the inputs
C “ (c, ĉ), C ′ “ (c′, ĉ′),D “ (d, d̂). This returns the description of polynomials
P (X,Y), Q(Y),W ∗(X,Y) and some scalars ρ, ρ′, ω. Note that the existence and
efficacy of ExtB is guaranteed by the (d, �) − BPKE assumption. We will then
define a general extractor Ext∗ associated to the adversary AKS by running ExtB
on the same input. We call this global algorithm composed of the adversary AKS

and the general extractor Ext∗, machine M :“ AKS||Ext∗. ��
Lemma 14 (Extended Adversary Machine). Assume that (d, �) − BPKE
assumption holds in the bilinear group gk and that Schnorr proof used in the
BivPE-Π protocol is sound. For any PPT adversary AKS against the knowledge
soundness of the scheme BivPE-Π that outputs u “ (C,C ′, k), π “ (D, e, σ, τ),
where C,C ′,D are well-formed commitments under BivPoly.Com and the proof
π verifies, i.e. Ver(crs, u, π), there exists a machine, extended adversary A∗

that outputs the same as AKS together with an extended witness wit “
(P, ρ,Q, ρ′,W, ω, δ, γ), where P,W P Zq[X,Y], Q P Zq[Y] are the openings of
the commitments (C,C ′,D) under randomness ρ, ρ′, ω and δ, γ are such that
A “ e(d, g1/g

k) · e(c/c′, g)−1 “ e(hδ g̃γ , g).

Proof. We use the previous defined machine M from Lemma 13 and the rewind-
ing technique [PS00] for proving the soundness of the Schnorr’s proof to extract
the scalars δ, γ such that A “ e(hδ g̃γ , g): Consider the game between the chal-
lenger and the machine M against the soundness of the Schnorr’s proof. The
challenger runs M by fixing the values (C,C ′,D) and changing the oracle defi-
nition to get a fork with e′ Ð Hash(U,D,U) ‰ e. The forger M will output two
distinct forgeries corresponding to the same random oracle query, but for two
distinct answers of the random oracle, e and e′. The Forking Lemma shows that
by rewinding the adversary O(qh/ε) times, where qh is the maximal number of
random oracle queries of the machine M and ε its success probability, then one

150 D. Fiore et al.

finds two such forgeries (σ, τ), (σ′, τ ′) with constant probability, which enables
to compute the values δ, γ such that A “ e(hδ g̃γ , g).

Using the existence of Ext∗ extractor and of the algorithm that rewinds
the machine M in order to obtain the output δ, γ as described before, we can
define an aggregate machine A∗ corresponding to the concatenation of both.
This machine A∗ takes the same input as AKS and outputs the witness corre-
sponding to the commitment openings (P, ρ), (Q, ρ′), (W,ω) and two scalars δ, γ
satisfying A “ e(hδ g̃γ , g). ��

Knowledge Soundness. We now have all the tools to prove the soundness in
two steps.

Step 1. First we show that for every PPT adversary AKS against the soundness
of the protocol, there exists an extractor ExtA that runs on the same input
and random coins as AKS and outputs a witness. Defining the extractor ExtA is
straightforward from the Lemma 13 by running the Ext∗ and keeping just the
values (P, ρ,Q, ρ′) from its output.

Assuming the existence of an adversary AKS and extractor ExtA that has
a non-negligible success probability in winning the soundness game against the
protocol BivPE-Π, we now show that we can either solve the discrete logarithm
problem, or break the d − SDH assumption.

Step 2. Suppose the machine A∗ associated to AKS defined in the Lemma 14
is able to output a cheating pair statement-proof u “ (C,C ′, k), π “ (D, e, σ, τ)
and a witness wit “ (ρ, ρ′, ω, P,Q∗,W ∗, (δ, γ)) such that it passes verification
checks, but the extracted values P P Zq[X,Y], Q∗ P Zq[Y] are not satisfying the
expected relation Q∗(Y) “ P (k, Y).

For simplicity, we will call Δ “ ρ′−ρ. Assuming that the commitment scheme
is binding, then one of the following scenarios must hold:

1. The polynomials extracted do not satisfy the correct relation not even when
evaluated in s: W ∗(s, t) ‰ P (s,t)−Q∗(t)

s−k . This type of forgery can be reduced
to the DLog problem for (g, h) P G, in the case 1 below (see Lemma 15);

2. The polynomial W ∗ P Zq[X,Y] committed in D does not satisfy the correct
relation with respect to the other extracted values P,Q∗, but still evaluated
in s, t we have that W ∗(s, t) “ P (s,t)−Q∗(t)

s−k . We reduce the case to the d−SDH
assumption, in the case 2 below (see Lemma 16).

Lemma 15 (Case 1). Consider the adversarial machine A∗ associated to AKS

defined by the Lemma 14 that outputs some values u “ (k,C,C ′,D, e, σ, τ) and
(ρ, P, ρ′, Q∗, ω,W ∗, δ, γ), such that P (k, Y) ‰ Q∗(Y), where P,W ∗ P Zq[X,Y],
Q∗ P Zq[Y] and (P, ρ), (Q∗, ρ′), (W ∗, ω) are the openings of the commitments
(C,C ′,D) and (δ, γ) satisfy A :“ e(hωgW ∗(s,t), g1/g

k)·e(h−ΔgP (s,t)−Q∗(t), g)−1 “
e(hδ g̃γ , g). Given that the verification check outputs 1 for π, there is a negligible
probability that the values k, P,Q∗,W ∗ are such that W ∗(s, t) ‰ P (s,t)−Q∗(t)

(s−k)

under DLog assumption with respect to the group G.

Boosting Verifiable Computation on Encrypted Data 151

Lemma 16 (Case 2). Consider the adversarial machine A∗ associated to AKS

defined by the Lemma 14 that outputs some values u “ (k,C,C ′,D, e, σ, τ) and
(ρ, P, ρ′, Q∗, ω,W ∗, δ, γ), such that P (k, Y) ‰ Q∗(Y), where P,W ∗ P Zq[X,Y],
Q∗ P Zq[Y] and (P, ρ), (Q∗, ρ′), (W ∗, ω) are the openings of the commitments
(C,C ′,D) and (δ, γ) satisfy A :“ e(hωgW ∗(s,t), g1/g

k)·e(h−ΔgP (s,t)−Q∗(t), g)−1 “
e(hδ g̃γ , g). Given that the verification check outputs 1 for π, there is a negligible
probability that the values k, P,Q∗,W ∗ satisfy W ∗(s, t) “ P (s,t)−Q∗(t)

(s−k) under
d′−SDH assumption with respect to the bilinear group gk, where d′ “ max{d, �}.
For lack of space, the proofs of the lemmas above is in the full version.

Acknowledgments. This work was supported in part by the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – Cryp-
toCloud). The first author has been partially supported by the Spanish Government
under projects SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-
103816), and SECURITAS (ref. RED2018-102321-T), by the Madrid Regional Gov-
ernment under project BLOQUES (ref. S2018/TCS-4339), and by a research gift from
Protocol Labs.

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: Thuraising-
ham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
2087–2104. ACM Press, October/November 2017

[AS92] Arora, S., Safra, S.: Probabilistic checking of proofs; a new characterization
of NP. In: 33rd FOCS, pp. 2–13. IEEE Computer Society Press, October
1992

[BB08] Boneh, D., Boyen, X.: Short signatures without random oracles and the
SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

[BBC+18] Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.:
Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992,
pp. 669–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 23

[BCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40084-1 6

[BCG+18] Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: nearly
linear-time zero-knowledge proofs for correct program execution. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272,
pp. 595–626. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03326-2 20

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-17653-2_4

152 D. Fiore et al.

[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 28

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS
2012, pp. 309–325. ACM, January 2012

[BL07] Buldas, A., Laur, S.: Knowledge-binding commitments with applications
in time-stamping. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol.
4450, pp. 150–165. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-71677-8 11

[BV11] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-lwe and security for key dependent messages. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22792-9 29

[CFQ19] Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and
composition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder,
J., Wang, X., Katz, J. (eds) ACM CCS 2019, pp. 2075–2092. ACM Press,
November 2019

[CGGI16] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homo-
morphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 1

[CGGI17] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624,
pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70694-8 14

[CMT12] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation
with streaming interactive proofs. In: Goldwasser, S., (ed.) ITCS 2012, pp.
90–112. ACM, January 2012

[Dam92] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-
540-46766-1 36

[DM15] Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption
in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 24

[ElG84] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-39568-7 2

[FGP14] Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on
encrypted data. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014,
pp. 844–855. ACM Press, November 2014

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June
2009

https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-540-71677-8_11
https://doi.org/10.1007/978-3-540-71677-8_11
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2

Boosting Verifiable Computation on Encrypted Data 153

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 25

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40084-1 30

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th
ACM STOC, pp. 113–122. ACM Press, May 2008

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–
304. ACM Press, May 1985

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 11

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 5

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM
STOC, pp. 99–108. ACM Press, June 2011

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May
1992

[KZG10] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8 11

[MBKM19] Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference
strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019, pp. 2111–2128. ACM Press, November 2019

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 16

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: 2013 IEEE Symposium on Security and Privacy,
pp. 238–252. IEEE Computer Society Press, May 2013

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16

154 D. Fiore et al.

[PRV12] Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and ver-
ify in public: verifiable computation from attribute-based encryption. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-28914-9 24

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptol. 13(3), 361–396 (2000)

[PST13] Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computa-
tion. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 13

[RAD78] Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homo-
morphisms. Found. Secur. Comput. 4, 169–177 (1978)

[SV10] Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13013-7 25

[WJB+17] Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: Thurais-
ingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
2071–2086. ACM Press, October/November 2017

[WTs+18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on
Security and Privacy, pp. 926–943. IEEE Computer Society Press, May
2018

[XZZ+19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 24

[ZGK+17] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.:
vSQL: verifying arbitrary SQL queries over dynamic outsourced databases.
In: 2017 IEEE Symposium on Security and Privacy, pp. 863–880. IEEE
Computer Society Press, May 2017

https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-030-26954-8_24

Isogeny-Based Cryptography

Lossy CSI-FiSh: Efficient Signature
Scheme with Tight Reduction

to Decisional CSIDH-512

Ali El Kaafarani1,2, Shuichi Katsumata3, and Federico Pintore1(B)

1 Mathematical Institute, University of Oxford, Oxford, UK
federico.pintore@maths.ox.ac.uk

2 PQShield, Oxford, UK
elkaafarani@pqshield.com

3 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo City, Japan

shuichi.katsumata@aist.go.jp

Abstract. Recently, Beullens, Kleinjung, and Vercauteren (Asi-
acrypt’19) provided the first practical isogeny-based digital signature,
obtained from the Fiat-Shamir (FS) paradigm. They worked with the
CSIDH-512 parameters and passed through a new record class group
computation. However, as with all standard FS signatures, the security
proof is highly non-tight and the concrete parameters are set under the
heuristic that the only way to attack the scheme is by finding collisions
for a hash function.

In this paper, we propose an FS-style signature scheme, called Lossy
CSI-FiSh, constructed using the CSIDH-512 parameters and with a secu-
rity proof based on the “Lossy Keys” technique introduced by Kiltz,
Lyubashevsky and Schaffner (Eurocrypt’18). Lossy CSI-FiSh is provably
secure under the same assumption which underlies the security of the
key exchange protocol CSIDH (Castryck et al. (Asiacrypt’18)) and is
almost as efficient as CSI-FiSh. For instance, aiming for small signature
size, our scheme is expected to take around ≈ 800 ms to sign/verify while
producing signatures of size ≈ 280 bytes. This is only twice slower than
CSI-FiSh while having similar signature size for the same parameter set.
As an additional benefit, our scheme is by construction secure both in
the classical and quantum random oracle model.

1 Introduction

1.1 Background

Isogeny-based cryptography is one of the promising candidates for post-quantum
cryptography. While isogeny problems offer simple and efficient solutions to
encryption schemes (or equivalently, key-exchange protocols) [8,25], they turned
out to be rather elusive to use for constructing signature schemes.

At the highest level, all isogeny-based signatures we know thus far are based
on the Fiat-Shamir paradigm [1,18]: prepare a hard relation R based on an
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 157–186, 2020.
https://doi.org/10.1007/978-3-030-45388-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_6

158 A. El Kaafarani et al.

isogeny problem, construct an identification protocol (or sigma protocol) for R,
and use a cryptographic hash function to compile the identification protocol
into a signature scheme in the random oracle model (ROM). Both the two cen-
tral isogeny problems—the computational supersingular isogeny (CSSI) problem
[13] and the group action inverse problem (GAIP) [8]—have been the basis for
constructing signatures. Those based on CSSI, proposed in [21,42], produce sig-
natures of size at least 12 KB even in the most optimized variant [21]. On the
other hand, relying on GAIP and employing the Fiat-Shamir with aborts strat-
egy [31], De Feo and Galbraith introduced a compact isogeny-based signature
named SeaSign [12]. Despite the inefficiency in the signature generation and
verification, SeaSign provides signatures of a remarkably small size (less than
1 kilobyte at the 128-bit security level).

Very recently, a new record class group computation has allowed Beullens,
Kleinjung and Vercauteren [6] to improve SeaSign and obtain the first practical
isogeny-based signature scheme, named CSI-FiSh. Their computation has shed
light on the structure of the ideal class group determined by a specific set of CSIDH
parameters, named CSIDH-512 [8]. This granted a proper uniform sampling from
the ideal class group, and canonical representation of its elements, which enabled
to overcome the costly remedy made by SeaSign. That is, the adoption of a redun-
dant representation of class group elements and performing rejection sampling.
The result is practical efficiency in both signature generation and verification
while maintaining the short signature size offered by SeaSign. However, one impor-
tant remark is that, since CSI-FiSh is specific to the special set of parameters
CSIDH-512, it can offer at most the same security level provided by a hard prob-
lem defined over the CSIDH-512 parameters. Specifically, CSI-FiSh relies on the
GAIP problem, which is believed to have 128-bits of classical and (at most) 64-bits
of quantum security over the CSIDH-512 parameters [8,34].

Tight Security. Fiat-Shamir (FS) signatures [1,18] admit an intuitive and sim-
ple construction in the ROM, however, they are notorious for having a very
loose reduction. Since a loose reduction forces for a stronger hardness assump-
tion, and consequently a less efficient scheme, it has been the focus of several
works to tighten the reduction loss, e.g., [3,19,22,26,32,33,37].

To give a more precise perception of the security loss, assume we had a FS
signature that is secure based on the hardness of a particular hard problem Π.
Then, the security proof of FS signatures in the classical ROM dictates that the
reduction algorithm can break the underlying problem Π with advantage Q−1 ·ε2,
where Q is the number of hash evaluations an adversary can perform and ε is the
advantage of an adversary breaking the security of the FS signature. Therefore,
if we want to instantiate the FS signature with provably secure parameters, we
must assume the hardness of the problem Π for a security level that is much
higher than expected. For instance, if we aim for 128-bits of security for the
FS signature (i.e., ε = 2−128), then assuming a modest Q ≈ 240, we require at
least 296-bits of security for the hard problem Π. Since a hard problem with a
higher level of security must necessitate larger parameters, this leads to inefficient
schemes.

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 159

This undesirable loss in security and efficiency is common to all standard FS
signatures and CSI-FiSh is no exception. However, one large difference between
CSI-FiSh and other FS signatures is that CSI-FiSh relies on a hard problem
defined for a specific security level—the GAIP problem over the CSIDH-512
parameters. For the time being, no other parameter sets are known to provide
the nice algebraic structure required for CSI-FiSh. This is in sharp contrast
with FS signatures based on other hardness assumptions since most hardness
assumptions can “absorb” the reduction loss by setting the parameters larger.
Since GAIP over the CSIDH-512 parameters only offers 128-bits of classical
security, we cannot argue any notion of provable security for CSI-FiSh if we
aim for 128-bits of security. Concretely, if we plug in Q ≈ 240 as above, we can
only provably argue 44-bits of security for CSI-FiSh. Moreover, if we aim for
quantum security, the situation is worse since the reduction algorithm can break
the underlying problem Π with only advantage Q−6 ·ε3 [16,30]. We note that the
currently available resources would probably allow other record computations for
bigger parameters for which GAIP is believed to have a much higher security
level; however, the benefit of having a higher security level would likely be beaten
by the significant slow-down in efficiency.

In practice, this inconvenient reduction loss in FS signatures is usually over-
looked or simply ignored, and the parameters are set assuming that the best
attack against the FS signature is (roughly) finding a collision in the hash func-
tion. In [6], the parameters for CSI-FiSh are set under this simplified assumption
as well. Considering this undesirable gap between practice and theory, a natural
question which arises is:

Can we design an isogeny-based signature scheme as efficient as CSI-FiSh
with provable secure parameters?

1.2 Our Contribution

In this work, we provide a partial answer to the above problem and propose a
new signature scheme, Lossy CSI-FiSh, with the following features:

– It is tightly secure under a natural hardness assumption over the CSIDH-512
parameters, that is, the decisional CSIDH (D-CSIDH) assumption.
We note D-CSIDH is not a new assumption introduced in this paper, as it
was originally defined by Stolbunov in his PhD thesis [39, Problem 2.2] and
implicitly underlies the security of the key exchange protocol CSIDH [8].1

– It is almost as efficient as CSI-FiSh. Compared to CSI-FiSh, the signature
size is the same, the public key is only twice as large, and the runtime of
the signature generation and verification is estimated to be (at most) twice
as slow. For instance, aiming for small signature size, our scheme is expected
to take around ≈ 800 ms to sign/verify while producing signatures of size

1 Roughly, this is parallel to the relation between the Diffie-Hellman (DH) protocol
and the decisional DH assumption [15]. For a more formal discussion, we refer to
Sect. 3.1.

160 A. El Kaafarani et al.

≈ 280 bytes. This is still 150 times faster and around 3 times smaller than
an optimized version of SeaSign for the same parameter set.

– It is secure both in the classical and quantum ROM (QROM). In particular,
we do not require a separate construction using the Unruh transform [40] to
achieve security in the QROM.

We obtain our results by following the line of work that constructs lossy
identification protocols to obtain tightly secure FS signatures [2,26,27,41]. A
lossy identification protocol comes with an additional lossy statement generator
that produces lossy statements which are computationally indistinguishable from
honestly generated statements for the hard relation R induced by some hardness
assumption. Moreover, relative to the lossy statements, the protocol admits sta-
tistical soundness. That is, not even a computationally unbounded adversary can
successfully impersonate a prover. Using the result of Kiltz, Lyubashevsky, and
Schaffner [27] (see Theorem 2.1), a lossy identification protocol directly provides
us an FS signature with a tight reduction in the classical and quantum ROM.

The idea to use a lossy identification protocol to achieve tight security for
isogeny-based FS signatures was also considered by De Feo and Galbraith for
SeaSign [12, Section 8]. In particular, they proposed to take a very large ideal
class group (determined by a big prime p) and then only a small subset as the
space of possible private keys (that results in valid public keys being chosen from
a set of roughly the same cardinality). The signature generation and verification
processes are not altered from the standard SeaSign scheme. The result is that
the lossy variant inherits the inefficiency of the main scheme, with the increment
of the prime p further aggravating the issue. It is evident that the above approach
does not extend to the current version of CSI-FiSh, which requires the specific
CSIDH-512 parameter set.

The lossy identification protocol proposed in this work—which arises from
the observation that the D-CSIDH relation over the CSIDH-512 parameters nat-
urally admits a lossy mode—appears to be much simpler and it smoothly leads
to a practical signature scheme. Our identification protocol enjoys the same opti-
mizations used in [12] and [6]. Using D-CSIDH instead of GAIP as the underlying
assumption, we encounter an obstacle that stems from the fact that D-CSIDH
does not provide natural random self-reducibility properties. However, we dis-
cuss that this issue does not have much of a big impact on the concrete choice
of parameters.

Related Works. There are only a handful of efficient signature schemes that
are tightly and provably secure in the (Q)ROM that we are aware of. The
lattice-based Gentry-Peikert-Vaikuntanathan (GPV) signature [23] or its much-
optimized successor FALCON [20] have tight security in the (Q)ROM. One
notable feature is that the construction natively supports tight security in
both classical and quantum ROM without incurring any overhead. Dilithium
[17], which is a lattice-based FS-type signature, also has tight security in the
(Q)ROM [27]. To achieve tight security, they must modify the public key of
their non-tightly secure scheme to obtain a lossy mode. Unfortunately, when
using a lattice-based hard problem (that is, the learning with errors problem),

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 161

this comes at the cost of making the public key size at least 5 times larger and
the signature size at least 2 times larger, e.g., public key and signature size
grows from (1472, 2701) bytes up to (7712, 5690) bytes. As we mentioned above,
SeaSign [12] goes through the lossy argument as well. They require to use of a
non-standard variant of the GAIP problem and makes it difficult to assess the
increase in signature and public key sizes. We like to highlight that although we
go through the same paradigm of lossy arguments, Lossy CSI-FiSh is based on
a standard assumption and does not incur a large blow up in size; the public
key is only 2 times larger and the signature size remains the same compared to
the non-tight variant CSI-FiSh. Finally, the hash-based signature SPHINCS+

[4] also enjoys tight security in the (Q)ROM under several heuristic assumptions
on the underlying cryptographic hash function.

Roadmap. The rest of the paper is organized as follows. In Sect. 2 we give a
brief preliminary on identification protocols and class group actions. In Sects. 3
and 4 we introduce the new lossy identification protocol and we adapt it using
the optimizations proposed in [6,12] to enlarge the challenge space. In Sect. 5 we
describe the signature scheme obtained through the Fiat-Shamir transform, and
we compare it to CSI-FiSh in terms of bandwidth and computational complexity.
In Sect. 6 we report concluding remarks.

2 Preliminaries

2.1 Identification Protocols

Given two sets X and Y, a subset R ⊂ X × Y is a polynomially computable
binary relation on X × Y if, given (X,W) ∈ X × Y , we can check (X,W) ∈ R in
time poly(|X|). The language LR corresponding to R is the set {X ∈ X | ∃W ∈
Y : (X,W) ∈ R}, where we call W a witness for the statement X ∈ LR.

An identification protocol ID for a relation R is a three-move interactive pro-
tocol between a prover and a verifier. Informally, a prover holding a statement-
witness pair (X,W) ∈ R can prove to the verifier that they indeed possess a valid
witness W without revealing any more than the mere fact that they know W.

Definition 2.1 (Identification Protocol). An identification protocol ID for
a relation R consists of four PPT algorithms (IGen,P = (P1,P2),V), where V is
deterministic and we assume P1 and P2 share states. Let ComSet, ChSet, and
ResSet be the commitment space, challenge space, and response space, respec-
tively. Then, an identification protocol is defined in the following way.

– The key generation algorithm IGen takes the security parameter 1λ as input,
and outputs a statement-witness pair (X,W) ∈ R.

– The prover, on input (X,W), first executes com ← P1(X,W), and then sends
the commitment com to the verifier.

– The verifier chooses a random challenge ch ← ChSet and sends ch to the
prover.

162 A. El Kaafarani et al.

– The prover, given ch, runs resp ← P2(X,W, com, ch) and returns a response
resp to the verifier. Finally, the verifier runs V(X, com, ch, resp) and outputs
1 if they accept, 0 otherwise.

The protocol transcript (com, ch, resp) ∈ ComSet × ChSet × ResSet is said to be
valid in case V(X, com, ch, resp) outputs 1.

We require the following properties from an identification protocol ID. Some of
them may seem non-standard, however, they are all necessary to argue security
of the Fiat-Shamir transform in the (quantum) random oracle model. We note
that some of the properties are simplified and stronger than those in [27], e.g.
we ignore negligible correctness errors. This is done without loss of generality,
since our proposed identification protocol satisfies all the stronger properties.

Correctness. The following holds for all (X,W) ∈ R:

Pr

⎡
⎣V(X, com, ch, resp) = 1

∣∣∣∣∣∣
com ← P1(X,W),

ch ← ChSet,
resp ← P2(X,W, com, ch)

⎤
⎦ = 1.

(Perfect) Honest-Verifier Zero-Knowledge (HVZK). There exists a PPT simu-
lator algorithm Sim that takes as inputs a statement X ∈ LR and a challenge
ch ∈ ChSet, and outputs a commitment com and a response resp such that
(com, ch, resp) is a valid transcript for X. Moreover, the output distribution of
Sim on input (X, ch) is equal to the distribution of those outputs generated via
an honest execution conditioned on the verifier using ch as the challenge. We
note we can consider relaxed variants of HVZK where the distributions are only
required to be computationally indistinguishable.

Min-Entropy. The identification protocol ID has α bits of min-entropy if

Pr
(X,W)←IGen(1λ)

[
min-entropy(com | com ← P1(X,W)) ≥ α)

] ≥ 1 − 2−α.

(Optional) Perfect Unique Response. With overwhelming probability over the
random choice of (X,W) ← IGen(1λ), for any com ∈ ComSet and ch ∈ ChSet,
there exists a unique response resp ∈ ResSet that leads to a valid transcript
(com, ch, resp). This property is required when aiming for strong unforgeabil-
ity (i.e., su-cma) of the FS signature scheme. As we will see, our identification
protocol supports this property by default.

(Optional) Commitment Revocability. With overwhelming probability over the
random choice of (X,W) ← IGen(1λ), for any ch ∈ ChSet and resp ∈ ResSet,
there exists a unique commitment com ∈ ComSet that makes (com, ch, resp) a
valid transcript. Such a commitment can be publicly computed by means of an
algorithm taking (X, ch, resp) as input. This property is unnecessary from a secu-
rity stand point and only allows for shorter signatures. Again, our identification
protocol supports this property by default.

To achieve a tight security proof for Fiat-Shamir signatures (formally defined
later), we further require the identification protocol to satisfy some notion of
lossiness defined below.

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 163

Definition 2.2 (Lossy Identification Protocol). An identification protocol
ID is called lossy - and denoted by IDls - if it admits an extra PPT algorithm
LossyIGen, named lossy key generation algorithm, that on input 1λ outputs Xls ∈
X \ LR.

We require a lossy identification protocol IDls to satisfy the following two prop-
erties.

Indistinguishability of Lossy Statements. We ask that a statement generated
with the lossy key generation algorithm is indistinguishable from a statement
generated by the real key generation algorithm. Let us define the following advan-
tage for an adversary A:

AdvlossyA (λ) :=|Pr[A(Xls) = 1 | Xls ← LossyIGen(1λ)]−
Pr[A(X) = 1 | (X,W) ← IGen(1λ)]|

We say the lossy identification protocol satisfies indistinguishability of lossy
statements if for any PPT (or quantum PT) adversary we have AdvlossyA (λ) =
negl(λ).

Statistical Lossy Soundness. The definition of statistical lossy soundness relies on
the following game, named lossy impersonation game, played by an adversary A
and a challenger.

Setup: The challenger runs Xls ← LossyIGen(1λ) and provides the adversary A
the lossy statement Xls.

Commitment and challenge selection: On input Xls the adversary A selects
a commitment com ∈ ComSet and sends it to the challenger. The challenger
responds by returning a random challenge ch ∈ ChSet.

Output: A outputs a response resp ∈ ResSet. The adversary A wins the game
if (com, ch, resp) is a valid transcript for Xls.

We say IDls is εls-lossy sound if for any unbounded (possibly quantum) adversary
A the winning probability in the above game is less than εls.

2.2 Digital Signature Schemes

Here we introduce the definition of standard signature schemes.

Definition 2.3. A signature scheme ΠS consists of three PPT algorithms
(S.KeyGen,S.Sign,S.Vrfy) such that:

– S.KeyGen(1λ) → (vk, sk): On input a security parameter 1λ, the key genera-
tion algorithm outputs a pair of verification and signing keys (vk, sk);

– S.Sign(sk,M) → σ: On input a signing key sk and a message M, the signing
algorithm outputs a signature σ;

– S.Vrfy(vk,M, σ) → 1/0: On input a verification key vk, a message M and a
signature σ, the verification key outputs 1 (accept) or 0 (reject).

164 A. El Kaafarani et al.

We require a signature scheme ΠS to satisfy the following two properties.

Correctness. For every security parameter 1λ, with λ ∈ N, and every message M
the following holds:

Pr
[
S.Vrfy(vk,M, σ) = 1

∣∣∣∣
(vk, sk) ← S.KeyGen(1λ),

σ ← S.Sign(sk,M)

]
= 1.

Unforgeability. We define the strong unforgeability under chosen message attack
su-cma by the following game played by an adversary A and a challenger.

Setup: The challenger runs (vk, sk) ← S.KeyGen(1λ) and provides the adversary
A the verification key vk. It also prepares an empty set S = ∅.

Signing Queries: The adversary A may adaptively submit messages M to the
challenger. The challenger responds by returning σ ← S.Sign(sk,M) to A. It
then updates the set S ← S ∪ {(M, σ)}.

Output: Finally, A outputs a forgery (M∗, σ∗). We say the adversary A wins if
(M∗, σ∗) �∈ S and S.Vrfy(vk,M∗, σ∗) = 1.

We define the advantage of A as the probability it wins the above game, that is,
Advsu-cma

A (1λ) := Pr[A wins].

Definition 2.4 (Su-cma Security). We say a signature scheme ΠS is su-cma
secure if for all PPT adversaries A, we have Advsu-cma

A (λ) = negl(λ).

2.3 Pseudorandom Functions

Consider a mapping PRF : K ×X → Y, where K is a key space. We say PRF is a
pseudorandom function if for all PPT (or quantum) adversaries, their advantage
defined below is negligible:

AdvPRFA (λ) :=
∣∣∣Pr[APRF(K,·)(1λ) = 1 | K ← K] − Pr[ARF(·)(1λ) = 1]

∣∣∣ ,

where RF : X → Y is a perfect random function. In practice, any standard hash
function (e.g., SHA-3) is believed to be a (quantumly) secure PRF.

2.4 Fiat-Shamir Transformation

The original Fiat-Shamir transformation [1,18] turns a (not necessarily lossy)
identification protocol ID into a digital signature scheme by means of a crypto-
graphic hash function H : {0, 1}∗ → ChSet modeled as a classical random oracle
(RO). For each parallel execution of ID, the challenge is obtained as H(com,M),
where M is the message to sign. Then the resulting digital signature σ is a t-tuple
composed by t commitments and the corresponding responses, where t is set in
such a way that |ChSet|t is exponentially large. Recently, the Fiat-Shamir trans-
formation has been extended to the quantum random oracle model (QROM) as
well [16,27,30].

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 165

In this work, we will be interested in Fiat-Shamir transformations for a spe-
cific type of identification protocol (namely, lossy identification protocol) which
admits tight security proofs. For a general identification protocol, it is well-known
that the Fiat-Shamir signature incurs a prohibitively large reduction loss: the
advantage of breaking the underlying hard problem degrades as O(Q−1 · ε2) in
the classical ROM and as O(Q−6 · ε3) in the quantum ROM, where Q is the
number or random oracle queries made by the adversary and ε is the advantage
against the Fiat-Shamir signature scheme.

The following result is taken from the recent work of Kiltz, Lyubashevsky,
and Schaffner [27].

Theorem 2.1. Assume the identification protocol ID is lossy, perfect HVZK,
has α bits of min-entropy, has perfect unique response, and is εls-lossy sound.
The Fiat-Shamir transformation provides a signature scheme such that, for any
quantum adversary A against su-cma security that issues at most QH queries to
the quantum random oracle, there exists quantum adversaries B and D such that

Advsu-cma
A (λ) ≤ AdvlossyB (λ) + 8(QH + 1)2 · εls + 2−α+1 + AdvPRFD (λ),

and Time(B) = Time(D) = Time(A) + QH ≈ Time(A).
In the classical setting, the only difference is that the bound depends linearly

on QH instead of quadratically.

The above theorem is obtained by derandomizing the Fiat-Shamir signature
by a pseudorandom function PRF and plugging it in Theorem 3.1 of [27]. We
note that some simplification to Theorem 3.1 of [27] is made since our proposed
lossy identification protocol achieves perfect HVZK and perfect unique response.

2.5 Class Group Actions and Hardness Assumption

The action of ideal class groups on elliptic curves was firstly proposed for crypto-
graphic purposes by Couveignes [9], and Rostovtsev and Stolbunov [35,38]. Their
approach was then revised by De Feo, Kieffer and Smith [14], who were unable to
turn it intro practicality despite the introduction of remarkable mathematically-
driven speed-ups. The efficiency issues were overcome by Castryck et al. [8], that
introduced the CSIDH key-exchange protocol restricting to supersingular elliptic
curves. In the following, we will give a brief background on ideal class groups and
their action on supersingular curves. For a more detailed overview we suggest
the consultation of [8] and Cox’s book [10].

Let Fp denote a prime field, with p being an odd prime. Given two elliptic
curves E,E′ defined over Fp, an isogeny ϕ : E → E′ is a non-constant morphism
mapping 0E to 0′

E . Hence each coordinate of ϕ(x, y) can be expressed as a frac-
tion of two polynomials belonging to Fp[x, y]. If their coefficients are contained
in Fp, then we say that ϕ is defined over Fp. A separable isogeny (it induces a
separable extension of function fields) having {0E} as kernel is an isomorphism;
an isogeny having the same domain and range is an endomorphism.

166 A. El Kaafarani et al.

The set of all endomorphisms of an elliptic curve E, together with the zero
map, form a ring under pointwise addition and composition. Such a ring is called
the endomorphism ring of E and it is denoted by End(E). If End(E) is abelian,
the curve is said to be ordinary, otherwise it is said to be supersingular. The
restriction Endp(E) to the endomorphisms defined over Fp constitutes a subring,
which is isomorphic to an order in the quadratic field K = Q(

√−p). An order
is a subring of Q(

√−p) which is also a finitely-generated Z-module containing
a basis of K as a Q-vector space. The set Z[

√−p] = {m + n
√−p | m,n ∈ Z}

satisfies the above three conditions and we will denote it by O. We then consider
the set E��p(O, π) containing all supersingular curves E defined over Fp - modulo
isomorphisms defined over Fp - such that there exists an isomorphism between
O and Endp(E) mapping

√−p ∈ O into the Frobenius endomorphism (x, y) �→
(xp, yp). As shown in [8], each isomorphism class in E��p(O, π) can be uniquely
represented by a single element of Fp if p ≥ 5 is a prime such that p ≡ 3 (mod 8).

A fractional ideal a of O is a finitely generated O-submodule of K. When a is
contained in O, it is said to be integral; when a = αO for some α ∈ K, it is said
to be principal; when there exists another fractional ideal b such that ab = O, it
is called invertible. The invertible fractional ideals of O form an abelian group.
Its quotient by the subgroup composed by principal fractional ideals is a finite
group called ideal class group of O, usually denoted by C�(O). Its cardinality is
the class number of O.

The ideal class group C�(O) acts freely and transitively on the set E��p(O, π)
via the group action 	:

	 : C�(O) × E��p(O, π)→ E��p(O, π)
(a, E) �→a 	 E.

For simplicity, we will use representatives instead of equivalence classes to
denote elements of C�(O) and E��p(O, π). When p is of the form 4�1�2 · · · �s − 1,
with �1, . . . , �s small odd primes, a special integral ideal I�i

⊂ O corresponds
to each prime �i. These ideals allow an easy computation of the group action.
In particular, the action of I�i

on a curve E ∈ E��p(O, π) is determined by an
isogeny having as kernel the unique rational �i-torsion subgroup of E.

The general variant of the CSIDH key-exchange scheme relies on the heuris-
tic that the equivalence classes of the ideals I�1 , . . . ,I�s

, together with their
inverses, generate the entire ideal class group C�(O). In [8], Castryck et al. pro-
pose different sets of parameters for CSIDH, each of them supposedly achieving
a specific quantum security level. For the smallest2 set of parameters, named
CSIDH-512 since p � 2512, the class group structure of C�(O) has been recently
computed by Beullens et al. [6]. They showed that C�(O) is a cyclic group of
odd order N , where N � 2257.1 and C�(O) = 〈I3〉. As a consequence, this group
admits a canonical representation (as ZN) and an efficient uniform sampling of
its elements. For simplicity, in the following we will denote by g the generator I3.

2 The parameter set having the smallest value for the prime p.

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 167

Hardness Assumption. The group action inverse problem (GAIP) is the hard-
ness assumption originally introduced by [8], which underlies the security of both
SeaSign [12] and CSI-FiSh [6]. Although we will not directly use GAIP in our
construction, we provide it as a base point to compare the assumption we intro-
duce.

Definition 2.5 (Group Action Inverse Problem (GAIP)). Given two
supersingular elliptic curves, E,E1 ∈ E��p(O, π), find an element a ∈ C�(O)
such that a 	 E = E1.

3 Base Lossy Identification Protocol from CSIDH-512

The CSI-FiSh signature is obtained by applying the Fiat-Shamir transformation
to an identification protocol originally sketched by Couveignes [9] and Stolbunov
[39]. In this section, we introduce our base lossy identification protocol for any
set of CSIDH parameters for which the ideal class group C�(O) is cyclic, with a
known order N and generator g. We further discuss the corresponding hardness
assumption on which its security relies. Such a scheme considers an exponent
a ∈ ZN , the private key, and two pairs of curves, where the second pair, the
public key, is determined by the action of ga on the first pair. For the concrete
instantiation in Sect. 5, we use the CSIDH-512 parameters.

3.1 Hardness Assumption: Decisional CSIDH

We construct a lossy identification protocol based on the decisional CSIDH (D-
CSIDH) problem, originally defined by Stolbunov in his PhD thesis [39, Problem
2.2].

Definition 3.1 (Decisional CSIDH Problem). Given the set E��p(O, π)
and the ideal class group C�(O), the decisional CSIDH (D-CSIDH) problem asks
to distinguish between the following two distributions:

– (E,H, a 	 E, a 	 H), where the supersingular elliptic curves E and H are
sampled uniformly from E��p(O, π), while a is sampled uniformly from C�(O);

– (E,H,E′,H ′) where E,H,E′,H ′ are supersingular elliptic curves sampled
uniformly from E��p(O, π).

We denote by AdvD-CSIDH
A (λ) the advantage of an adversary A distinguishing the

two distributions. We say that the D-CSIDH assumption holds if for every PPT
(or possibly quantum) adversary A, AdvD-CSIDH

A (λ) is negligible.

The D-CSIDH assumption forms the foundation of the security of the key
exchange protocol proposed by [8], called CSIDH. However, to be completely
accurate, the security of CSIDH not always is equivalent to the D-CSIDH prob-
lem we defined above. The reason for this is that when the structure of the ideal
class group is not known, we cannot properly sample a uniform ideal from C�(O)
(and hence a uniform elliptic curve from the set E��p(O, π)). Namely, in that

168 A. El Kaafarani et al.

case, a party will sample an ideal that is heuristically shown to be close to uni-
formly random over C�(O). Then, to show security of CSIDH, we must assume
the hardness of D-CSIDH for that particular heuristically uniform distribution.
Notably, we do not get a reduction from the above D-CSIDH assumption defined
for truly uniform samples over C�(O). Hence, for the D-CSIDH assumption to be
useful both in a theoretical and practical sense, it is desirable to have an efficient
uniform sampler from the ideal class group C�(O). In this case, the security of
CSIDH will indeed be equivalent to the D-CSIDH assumption.

As for the definition of D-CSIDH, we would like to simply keep it agnostic to
the existence of an efficient sampler from the ideal class group C�(O). However,
throughout the paper, we will always consider a cyclic class group C�(O) with
known order and generator (i.e., the one derived from the CSIDH-512 parame-
ters) so as to be able to efficiently sample uniformly over C�(O).

3.2 Construction of Base Lossy Identification Protocol

The base lossy identification protocol we are going to describe requires C�(O)
to be efficiently sampleable. As anticipated, we will restrict to the case where
C�(O) is cyclic, with a known order N and generator g. This reduces sampling
from C�(O) to uniformly sampling from ZN , and considering the corresponding
power of g.

Let the set X be composed by pairs ((E(0)
1 , E

(0)
2), (E(1)

1 , E
(1)
2)), where E

(0)
1 ,

E
(0)
2 , E

(1)
1 , E

(1)
2 belong to E��p(O, π). By Y we denote the set of witnesses

{a ∈ ZN}, with N being the cardinality of C�(O). We consider the following
binary relation R on X × Y :

R = {(((E(0)
1 , E

(0)
2), (E(1)

1 , E
(1)
2)), a) | E

(1)
1 = ga 	 E

(0)
1 , E

(1)
2 = ga 	 E

(0)
2 } (1)

We note that the language LR is strictly contained in X, i.e. X contains
lossy statements. On the other hand, each statement in X is a valid instance of
the D-CSIDH problem.

The lossy identification protocol IDbase
ls deduced from relation R consists of

a challenge set ChSet = {0, 1} and five algorithms (IGen, LossyIGen,P1,P2,V),
detailed in the following. We note that E0 ∈ E��p(O, π) is the base curve, spec-
ified by the system parameters, and defined by the equation y2 = x3 + x over
Fp.

– Algorithm IGen uniformly samples a, b, c ∈ ZN and outputs a statement-
witness pair (X,W) ∈ R, where X = ((E(0)

1 = gb 	E0, E
(0)
2 = gc 	E0), (E

(1)
1 =

ga 	 E
(0)
1 , E

(1)
2 = ga 	 E

(0)
2)), and W = a.

– Algorithm LossyIGen uniformly samples a, a′, b, c ∈ ZN and outputs a lossy
statement Xls = ((E(0)

1 = gb 	 E0, E
(0)
2 = gc 	 E0), (E

(1)
1 = ga 	 E

(0)
1 , E

(1)
2 =

ga′
	 E

(0)
2)).

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 169

– On input (X,W), P1 generates a random integer r ∈ ZN and returns the
commitment com = (F1 = gr 	 E

(0)
1 , F2 = gr 	 E

(0)
2).

F1 F2

E
(1)
1 E

(0)
1 E

(0)
2 E

(1)
2

gr−a

ga

gr

ga

gr gr−a

– On input (X,W, com, ch), where ch ∈ ChSet, P2 outputs the response resp
which is r if ch = 0, r − a if ch = 1.

– On input (X, com, ch, resp), the verification algorithm V checks that
{

(gresp 	 E
(0)
1 = F1, g

resp 	 E
(0)
2 = F2) if ch = 0

(gresp 	 E
(1)
1 = F1, g

resp 	 E
(1)
2 = F2) if ch = 1

(2)

The interaction between a prover and a verifier within the identification pro-
tocol is summarised in Fig. 1.

Prover: (X,W) ∈ R Verifier: X ∈ LR

r ← ZN , com := (r � E
(0)
1 , r � E

(0)
2) com−−−−−−−−−−−→

ch←−−−−−−−−−−− ch ← {0, 1}
resp := r − ch · W ∈ ZN resp

−−−−−−−−−−−→
1 or 0 ← V(X, com, ch, resp)

Fig. 1. The base lossy identification protocol and its transcript (com, ch, resp).

3.3 Security of Base Lossy Identification Protocol IDBase
ls

We show that the proposed lossy identification protocol IDbase
ls satisfies all the

desired properties presented in Sect. 2.1. Properties for standard identification
protocols - namely, correctness, perfect unique response, and commitment revo-
cability - are straightforward to prove, with the last two verified by noticing
that the group action 	 is transitive and free. Moreover, for the Honest-Verifier
Zero-Knowledge property, consider a simulator Sim defined as follows:

Sim(X, ch): on input a statement X = ((E(0)
1 , E

(0)
2), (E(1)

1 , E
(1)
2)) ∈ LR and a

challenge bit ch ∈ {0, 1}, the simulator samples a random u ∈ ZN and outputs
either of the following tuples, depending on whether ch = 0 or ch = 1:

(
(gu 	 E

(0)
1 , gu 	 E

(0)
2), ch = 0, u

)
,

(
(gu 	 E

(1)
1 , gu 	 E

(1)
2), ch = 1, u

)
.

170 A. El Kaafarani et al.

It can be checked that the transcripts output by the simulator Sim are indistin-
guishable from honest transcripts, since both have uniformly random distributed
values as responses. Finally, by construction, we have log N bits of min-entropy.

The remaining issue is showing that IDbase
ls satisfies the lossy properties (see

Definition 2.2). Specifically, it has indistinguishability of lossy statements and
statistical lossy soundness.

Lemma 3.1. Our lossy identification protocol IDbase
ls satisfies indistinguishabil-

ity of lossy statements assuming the hardness of the D-CSIDH problem. Specifi-
cally, an adversary A with advantage AdvlossyA (λ) can be turned into an adversary
B against the D-CSIDH problem with advantage AdvD-CSIDH

B (λ) = AdvlossyA (λ) and
the same running time.

Proof. The statement is an immediate consequence of the D-CSIDH problem.
In particular, the distribution induced by IGen corresponds to valid D-CSIDH
instances and that of LossyIGen corresponds to random D-CSIDH instances.

Lemma 3.2. Our lossy identification protocol IDbase
ls satisfies statistical εls-lossy

soundness for εls = 1/2 + 1/2N , where N = |C�(O)|.
Proof. First of all, a simple calculation shows that the set of valid statements LR
has size N3. Therefore, since LossyIGen outputs a uniformly random image in the
set X, which has size N4, we have Pr[Xls ← LossyIGen(1λ) : Xls ∈ LR] = 1/N .
Furthermore, for an adversary A against the lossy impersonation game, the
following holds:

Pr[A wins] = Pr[A wins | Xls �∈ LR] Pr[Xls �∈ LR]+
Pr[A wins | Xls ∈ LR] Pr[Xls ∈ LR]

≤Pr[A wins | Xls �∈ LR] ·
(
1 − 1

N

)
+

1
N

.

We show that for any statement Xls �∈ LR and commitment com ∈ ComSet,
there exists at most one challenge ch ∈ ChSet that admits a valid response
resp ∈ ResSet. Since this implies Pr[A wins | Xls �∈ LR] ≤ 1/|ChSet| = 1/2, we
obtain (1/2 + 1/2N)-lossy soundness as desired.

Given a statement Xls = ((E(0)
1 , E

(0)
2), (E(1)

1 , E
(1)
2)) �∈ LR, let us assume

there exist two valid transcripts for Xls. Namely, consider (com, ch, resp) and
(com, ch′, resp′), with ch �= ch′ and com = (F1, F2). Then, it is possible to extract
a witness W such that (Xls,W) ∈ LR. Indeed, assuming ch = 0, the responses
resp, resp′ must satisfy

{
gresp 	 E

(0)
1 = F1, gresp 	 E

(0)
2 = F2,

gresp
′
	 E

(1)
1 = F1, gresp

′
	 E

(1)
2 = F2.

(3)

Therefore, resp − resp′ is the desired witness, that is, E
(1)
1 = gresp−resp′

	 E
(0)
1

and E
(1)
2 = gresp−resp′

	 E
(0)
2 . However, this is a contradiction to Xls �∈ LR.

Therefore, there can exist at most one challenge that possesses a valid response.
This concludes the proof.

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 171

3.4 Lossy Soundness Amplification of IDBase
ls

As typically done, we use standard parallel repetition of the base lossy identifica-
tion protocol IDbase

ls to make the lossy soundness εls negligibly small, as required
when setting the concrete parameters for the relative FS signature according to
Theorem 2.1. Specifically, on input (X,W), the prover runs parallel execution of
the protocol with the verifier, where the verifier uses independent challenges in
each execution.

We make this standard procedure explicit since, unlike sigma-protocols with
2-special soundness, lossy soundness is not closed under parallel repetition. That
is, even if we run t parallel instances of our base protocol IDbase

ls , this will not
result in a protocol with (εls)t-lossy soundness. Namely, we have the following
result.

Lemma 3.3. Consider running t parallel rounds of the base lossy identification
protocol IDbase

ls (with the same statement-witness pair). Then it satisfies statistical
εls-lossy soundness for εls = 1/2t · (1 − 1/N) + 1/N , where N = |C�(O)|. In
particular, we have εls ≤ 1/2t + 1/N .

Proof. The proof is straightforward. In case Xls /∈ LR, we can argue that the
adversary has at most 1/2t probability in winning the lossy impersonation game.
Recalling that Xls ∈ LR happens with probability 1/N over the random choice of
LossyIGen, we can upper bound the advantage of A by εls = 1/2t(1−1/N)+1/N .
This concludes the proof.

All other properties are closed under parallel repetition and inherited directly
from IDbase

ls .

4 Optimized Lossy Identification Protocol from
CSIDH-512

We show several methods to optimize our base lossy identification protocol,
following closely the work of [6,12]. We first prepare a slight variant of the D-
CSIDH assumption, which will form the basis of our optimized schemes.

4.1 Hardness Assumption: Fixed-Curve Multi-decisional CSIDH

We consider a slight variant of D-CSIDH, where we are given many D-CSIDH
tuples, with the first two elliptic curves of each tuple being fixed. Formally, we
consider the following problem, which is equivalent to D-CSIDH when S = 1.

Definition 4.1 (Fixed-Curve Multi-decisional CSIDH Problem). Let S
be a positive integer. Given the ideal class group C�(O) and the set E��p(O, π), the
fixed-curve multi-decisional CSIDH (FCMD-CSIDH) problem with parameter S
asks to distinguish between the following two distributions3:
3 With [S] we denote the set {1, . . . , S}.

172 A. El Kaafarani et al.

– (E,H, (ai 	 E, ai 	 H)i∈[S]), where the supersingular elliptic curves E and
H are sampled uniformly from E��p(O, π), and ai for i ∈ [S] are sampled
uniformly from C�(O);

– (E,H, (E′
i,H

′
i)i∈[S]) where E,H,E′

i,H
′
i for i ∈ [S] are supersingular elliptic

curves sampled uniformly from E��p(O, π).

We denote by AdvFCMD-CSIDH
A,S (λ) the advantage of an adversary A distinguishing

the two distributions. We say that the FCMD-CSIDH assumption with parameter
S holds if for any PPT (or possibly quantum) adversary A, AdvFCMD-CSIDH

A,S (λ) is
negligible.

A tight reduction from the (one-instance) decisional CSIDH problem to the
fixed-curve multi-decisional CSIDH problem with parameter S would have been
desirable, however, this seems to be highly challenging (as long as we view the
group action 	 as a black box). This is in sharp contrast with the classical
decisional DH problem, which admits a nice random self-reducibility property.
The main reason why D-CSIDH does not possess this property seems to stem
from the fact that the group action only allows to add a known constant to the
exponent of g when considering a curve ga ∗ E. In other words, we do not have
an analogous of the mapping ga �→ (ga)r exploited in the classical DH setting.

Therefore, we only have a trivial non-tight reduction from the D-CSIDH
problem to the FCMD-CSIDH problem with parameter S. This is formally stated
in the following lemma.

Lemma 4.1 (D-CSIDH to FCMD-CSIDH). Let S be a positive integer. Let
C�(O) be the ideal class group of an order O in Q(

√−p), with p a prime, and
E��p(O, π) be the corresponding set of supersingular elliptic curves. Then, for
any adversary A for the FCMD-CSIDH problem with parameter S, there exists
an adversary B for the D-CSIDH problem such that

AdvFCMD-CSIDH
A,S ≤ S · AdvD-CSIDH

B ,

and Time(B) ≈ Time(A).

Proof. The proof is elementary. We consider S+1 hybrid games where, in the j-th
game4, an adversary is given (E,H, (E′

i,H
′
i)i∈[S]), where (E′

i,H
′
i)i∈[j] is random

over E��p(O, π)2 and (E′
i,H

′
i)i∈[S]\[j] is of the form (ai 	 E, ai 	 H) for a random

ai ∈ C�(O). We then simply show that each game is indistinguishable using the
D-CSIDH problem to conclude the proof. However, one thing we remark is that
in order for the D-CSIDH adversary B to simulate the view to the FCMD-CSIDH
adversary A, B must be able to sample uniformly from C�(O). This justifies once
more our restriction to cyclic ideal class groups C�(O) having known order and
generator.

We leave it as an interesting open problem to achieve a tight reduction. We
believe a technique which allows such a reduction will most likely have applica-
tions elsewhere.
4 j varies from 0 to S, and with [0] we denote the set {0}.

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 173

Impact on Signature Scheme (and Identification Protocol). Although this loose
reduction is not desirable, fortunately, the integer S will not have a tremendous
impact on the concrete choice of parameters for our signature scheme (and iden-
tification protocol). This is because S is only a parameter chosen at the setup of
the scheme, which is in particular independent of the adversary. This should be
compared to standard non-tight Fiat-Shamir signatures which incurs a reduction
loss of Q−1 · ε2 in the classical ROM and Q−6 · ε3 in the quantum ROM, where Q
is an adversarially dependent parameter denoting the number of RO queries. In
particular, in the original paper of CSI-FiSh [6], S is a constant set between 1 to
218 − 1. Depending on the value of S, we have a tradeoff between the runtimes
of several algorithms and size of public keys and signatures. We refer to Sect. 5
for more details.

4.2 Enlarging Challenge Space of Base Lossy Identification Protocol

We show a variant of our base lossy identification protocol which is obtained
adapting the idea from [6,12] to enlarge the challenge space. In particular, we
will use the FCMD-CSIDH problem with parameter S instead of the D-CSIDH
problem to define the language used in the identification protocol. Formally, the
set of (possibly non-valid) statements is:

X =
{(

(E(0)
1 , E

(0)
2), (E(1)

1 , E
(1)
2), . . . , (E(S)

1 , E
(S)
2)) | E

(i)
1 , E

(i)
2 ∈ E��p(O

)}
,

while the set of witnesses is Y = {(a1, . . . , aS) | a1, . . . , aS ∈ ZN}. We then
consider the following binary relation on X × Y :

R = {(((E(0)
1 , E

(0)
2), (E(1)

1 , E
(1)
2), . . . , (E(S)

1 , E
(S)
2)), (a1, . . . , aS)) ∈ X × Y |

gai 	 E
(0)
1 = E

(i)
1 , gai 	 E

(0)
2 = E

(i)
2 for i ∈ [S]}.

The lossy identification protocol with enlarged challenge space IDenCh
ls deduced

from the above relation R is a simple adaptation of the base scheme IDbase
ls . We

provide the details below for completeness, where the challenge space is enlarged
to ChSet = {0, 1, · · · , S}. Note that S is a parameter chosen by the scheme. Our
base scheme is obtained by setting S = 1.

– Algorithm IGen uniformly samples (ai)i∈[S], b, c ∈ ZN and outputs a
statement-witness pair (X,W) ∈ R, where

X =
(
(E

(0)
1 = gb � E0, E

(0)
2 = gc � E0),

(
E

(i)
1 = gai � E

(0)
1 , E

(i)
2 = gai � E

(0)
2

)
i∈[S]

)
,

and W = (ai)i∈[N].
– Algorithm LossyIGen uniformly samples (ai, a

′
i)i∈[S], b, c ∈ ZN and outputs a

lossy statement

X =
(
(E

(0)
1 = gb � E0, E

(0)
2 = gc � E0),

(
E

(i)
1 = gai � E

(0)
1 , E

(i)
2 = ga

′
i � E

(0)
2

)
i∈[S]

)
,

174 A. El Kaafarani et al.

– On input (X,W), P1 generates a random integer r ∈ ZN and returns the
commitment com = (F1 = gr 	 E

(0)
1 , F2 = gr 	 E

(0)
2).

– On input (X,W, com, ch), where ch ∈ ChSet, P2 outputs the response resp
which is r if ch = 0, r − ach if ch > 0.

– On input (X, com, ch, resp), the verification algorithm V checks that

gresp 	 E
(ch)
1 = F1, gresp 	 E

(ch)
2 = F2

Security of Lossy Identification Protocol IDenCh
ls . The proposed lossy identi-

fication protocol IDenCh
ls inherits most of the desired standard properties presented

in Sect. 2.1 from the base lossy identification protocol IDbase
ls . Namely, correct-

ness, min-entropy, perfect unique response, and commitment revocability triv-
ially follow from those of IDbase

ls . Moreover, the Honest-Verifier Zero-Knowledge
property holds similarly as well. Simply consider a simulator Sim which, on input
X ∈ LR and ch ∈ {0, 1, · · · , S}, outputs ((gu 	 E

(ch)
1 , gu 	 E

(ch)
2), ch, u), where u

is randomly sampled from ZN .
We next show that IDenCh

ls satisfies the lossy properties (see Definition 2.2).
Specifically, it has indistinguishability of lossy statements and statistical lossy
soundness.

Lemma 4.2. Our lossy identification protocol IDenCh
ls satisfies indistinguishabil-

ity of lossy statements assuming the hardness of the FCMD-CSIDH problem
with parameter S. Specifically, an adversary A with advantage AdvlossyA (λ) can be
turned into an adversary B against the FCMD-CSIDH problem with advantage
AdvFCMD-CSIDH

B,S (λ) = AdvlossyA (λ) and same running time.

Proof. The proof is analogous to that of Lemma3.1.

Lemma 4.3. The lossy identification protocol IDenCh
ls satisfies statistical εls-lossy

soundness for εls = (1/(S +1))
∏S

i=1((N − i)/N)+(1−∏S
i=1((N − i)/N)), where

N = |C�(O)|.
Proof. The general strategy is similar to that used for proving Lemma 3.3. We
separate the set X in such a way that in one of the subsets the adversary A
has exactly 1/(S + 1) probability in winning the lossy impersonation game. We
then argue that LossyIGen outputs a statement belonging to this subset with
overwhelming probability. However, unlike the proof in Lemma3.3, we will not
be able to simply use X\LR as such a subset. This is because a computationally
unbounded adversary may be able, for some of the instances in X\LR, to forge
a response for any ch ∈ ChSet.

Recall the set X we consider is of the following form:
(
(E(0)

1 , E
(0)
2),

(
E

(i)
1 = gai 	 E

(0)
1 , E

(i)
2 = ga′

i 	 E
(0)
2

)
i∈[S]

)
,

where (E(0)
1 , E

(0)
2) are arbitrary elements in E��p(O, π), and ai, a

′
i are arbitrary

elements in ZN . We define the set XBAD as the subset of X which satisfies the
following conditions for all distinct i, j ∈ [S]:

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 175

{
ai �= a′

i,

aj − ai �= a′
j − a′

i.
(4)

Below, we first compute |XBAD| and then show that Pr[A wins | Xls ∈ XBAD] is
at most 1/(S + 1).

First, fix arbitrary (E(0)
1 , E

(0)
2). Then, let us consider fixing arbitrary

(a1, a
′
1) ∈ (ZN)2, conditioned on conditions (4). Then, there exist at most

N(N −1) choices of such pairs. Let us further consider fixing arbitrary (a2, a
′
2) ∈

(ZN)2, conditioned on conditions (4). Then, since we have to also satisfy
a2 − a1 �= a′

2 − a′
1, there exist at most N(N − 2) choices of such pairs. Con-

tinuing this procedure, each pair (ai, a
′
i) ∈ (ZN)2, with i ∈ [S], has exactly

N(N − i) freedom. Therefore, we have |XBAD| = N2+S(N − 1) · · · (N − S) and
Pr[Xls ← LossyIGen : Xls ∈ XBAD] equal to (N − 1) · · · (N − S)/NS .

Let us now compute Pr[A wins | Xls ∈ XBAD]. Assume there exist two valid
transcripts for Xls. Namely, consider (com, ch, resp) and (com, ch′, resp′), with
ch �= ch′ and com = (F1, F2). Then, we have

{
gresp 	 E

(ch)
1 = F1, gresp 	 E

(ch)
2 = F2,

gresp
′

	 E
(ch′)
1 = F1, gresp

′
	 E

(ch′)
2 = F2.

Therefore, we can deduce

gresp−resp′
	 E

(ch)
1 = E

(ch′)
1 and gresp−resp′

	 E
(ch)
2 = E

(ch′)
2 .

However, this clearly contradicts conditions (4). Therefore, there can exist at
most one challenge that admits a valid response in case Xls ∈ XBAD. In particular,
this proves Pr[A wins | Xls ∈ XBAD] ≤ 1/(S + 1).

Combining everything together, we conclude.

Pr[A wins]

= Pr[A wins | Xls ∈ XBAD] Pr[Xls ∈ XBAD] + Pr[A wins | Xls �∈ XBAD] Pr[Xls �∈ XBAD]

≤ 1

S + 1
· (N − 1) · · · (N − S)

NS
+

(
1 − (N − 1) · · · (N − S)

NS

)
.

4.3 (Almost) Doubling Challenge Space of Lossy Identification
Scheme IDEnCh

ls

Following the work of [6] and their exploitation of quadratic twists, we show a
simple method to almost double the challenge space of the previous scheme
IDenCh

ls . The new scheme IDdenCh
ls (with a doubly-enlarged challenge set) has

statement-witness pairs almost identical to those of IDenCh
ls . The statement

remains the same, while the witness contains two extra-coordinates, namely
b, c ∈ ZN such that gb 	 E0 = E

(0)
1 , gc 	 E0 = E

(0)
2 . The algorithm IGen is

adjusted according to this modification, while the lossy key generation algorithm
LossyIGen and prover’s first move P1 are defined exactly the same.

The challenge set ChSet now admits also negative values, in particular it is
the set {0,±1, . . . ,±S}. The third move P2 and the Verification algorithm V are
hence converted to deal with these new challenge values:

176 A. El Kaafarani et al.

– On input (X,W, com, ch), where ch ∈ ChSet, P2 outputs the response resp
which is r if ch = 0, r − ach if ch > 0 and r + b + c + a|ch| if ch < 0.

– On input (X, com, ch, resp), the verification algorithm V checks that gresp 	

E
(ch)
1 = F1, gresp 	 E

(ch)
2 = F2 if ch ≥ 0, and

gresp 	 E
(|ch|),tw
1 = F2, gresp 	 E

(|ch|),tw
2 = F1

if ch < 0.

We note that the symbols E
(|ch|),tw
1 , E

(|ch|),tw
2 denote the quadratic twists of the

curve E
(|ch|)
1 and E

(|ch|)
2 , respectively. In particular E

(|ch|),tw
1 = g−a|ch|−b 	 E0,

and E
(|ch|),tw
2 = g−a|ch|−c 	 E0.

Remark 4.1. We exploit the quadratic twist in a slightly different way compared
to [6]. This has the effect of allowing us to base security on the FCMD-CSIDH
assumption rather than the more restricted FCMD-CSIDH assumption where
E

(0)
1 is fixed to be the special elliptic curve E0. The variant proposed in [6,

Section 2.5] in order to extend the challenge set to negative values relies on
the fact that the public key and the commitment are computed starting from
the specific elliptic curve E0. Consequently, the security of their derived sigma
protocol requires the GAIP problem to be hard for this specific E0 as the base
point. This is in contrast to all other schemes provided in [6] which only need
the standard GAIP problem.

Security of Lossy Identification Scheme IDdenCh
ls . The proposed lossy iden-

tification protocol IDdenCh
ls inherits all the standard properties of a lossy identifi-

cation protocol (see Definition 2.1) from the previous scheme IDenCh
ls . Moreover,

since the statement output by IGen and LossyIGen is identical to IDenCh
ls , the

protocol IDdenCh
ls satisfies indistinguishability of lossy statements assuming the

hardness of the FCMD-CSIDH problem.
Finally, the statistical lossy soundness is addressed in the following lemma.

As it can be seen, the shape of εls remains unchanged with respect to Lemma 4.3.

Lemma 4.4. Our lossy identification protocol IDdenCh
ls satisfies statistical εls-

lossy soundness for εls = (1/(2S+1))·∏S
i=1((N −i)/N)+(1−∏S

i=1((N −i)/N)),
where N = |C�(O)|.
Proof. The proof is almost identical to that of Lemma4.3. We consider exactly
the same partition XBAD, X\XBAD for the set of statements X which was intro-
duced in Lemma 4.3. The only difference is that three extra-cases arise from
the extension of the challenge space when computing Pr[A wins | Xls ∈ XBAD].
Namely, consider (com, ch, resp) and (com, ch′, resp′), with ch �= ch′ and com =
(F1, F2), as valid transcripts for Xls. If ch and ch′ are both negative, we have
that resp − resp′ satisfies

{
gresp−resp′

	 E
(|ch|),tw
1 = E

(|ch′|),tw
1

gresp−resp′
	 E

(|ch|),tw
2 = E

(|ch′|),tw
2

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 177

i.e. a|ch| −a|ch′| = a′
|ch| −a′

|ch′|. When ch > 0 and ch′ < 0, for the value resp−resp′

it holds {
gresp−resp′

	 E
(ch)
1 = E

(|ch′|),tw
2

gresp−resp′
	 E

(ch)
2 = E

(|ch′|),tw
1

which implies the analogous relation ach − a|ch′| = a′
ch − a′

|ch′|. The last case to
be taken into account has ch = 0 and ch′ < 0, for which we deduce

{
gresp−resp′

	 E
(0)
1 = E

(|ch′|),tw
2

gresp−resp′
	 E

(0)
2 = E

(|ch′|),tw
1

and then the relation a|ch′| = a′
|ch′|.

Therefore, combining this with conditions (4) in Lemma 4.3, we conclude
that in case Xls ∈ XBAD, there can exist at most one ch ∈ {0,±1, . . . ,±S} which
leads to a valid response resp. This concludes the proof.

4.4 Lossy Soundness Amplification of IDDenCh
ls

For completeness, we provide the following lemma.

Lemma 4.5. Consider running t parallel rounds of the lossy identification pro-
tocol IDdenCh

ls (with the same statement-witness pair). Then it satisfies statistical
εls-lossy soundness for εls = (1/(2S + 1)t) · ∏S

i=1((N − i)/N) + (1 − ∏S
i=1((N −

i)/N)), where N = |C�(O)|.
Proof. The proof is analogous to Lemma3.3.

5 Lossy CSI-FiSh: Tightly Secure Signature from
CSIDH-512

5.1 Construction of Lossy CSI-FiSh

We depict our Lossy CSI-FiSh signature scheme, whose security is based on the
FCMD-CSIDH assumption with parameter S, in Algorithms 1 to 3. It is obtained
by applying the Fiat-Shamir transformation on the (soundness-amplified) lossy
identification protocol IDdenCh

ls introduced in Sect. 4.3. We note that we use a
(quantumly secure) PRF to derandomize the signature generation, to comply
with the hypothesis of Theorem 2.1. In practice, one can simply use any standard
hash function (e.g., SHA-3).5 Moreover, we use the extra property of commit-
ment revocability (see Definition 2.1) of our lossy identification protocol IDdenCh

ls

and let the verifier recover com from resp and ch. This allows us to send t-hash
values rather than 2t-elliptic curves over E��p(O, π), and greatly reduces the
signature size.
5 We note that assuming that a standard cryptographic hash function acts as a PRF

does not add to our set of assumptions, since we are already working in the ROM.

178 A. El Kaafarani et al.

The values S and t are parameters of the signature scheme and can be chosen
by the user allowing for different tradeoffs between security, efficiency and signa-
ture size. Roughly, the only condition which S and t must satisfy is t · log2 S ≈ λ
in the classical setting, where λ is the desired security level. In the quantum
setting, we will require t · log2 S ≈ λ+log2 QH , where QH is the number of hash
evaluations an adversary can make. For fixed S and t, the resulting signature
size is t · (�log2 N� + �log2 S�). A selection of candidate parameters is provided
in Sect. 5.2.

The following asserts the tight security of Lossy CSI-FiSh based on the
FCMD-CSIDH assumption. Observe that the computational advantages appear
with a constant factor (one). Moreover, viewing S as a constant parameter, Lossy
CSI-FiSh admits tight security based on the D-CSIDH assumption as well.

Theorem 5.1. Let Lossy CSI-FiSh be the signature scheme depicted in Algo-
rithms 1, 2, and 3. Then, for any quantum adversary A against su-cma security
of Lossy CSI-FiSh that issues at most QH queries to the quantum random ora-
cle, there exists a quantum adversary B against the FCMD-CSIDH problem with
parameter S and an quantum adversary D against the PRF such that

Advsu-cma
A (λ) ≤ AdvFCMD-CSIDH

B,S (λ) + AdvPRFD (λ) +
2
N

+

+ 8(QH + 1)2 ·
(1

(2S + 1)t
·

∏
i∈[S]

N − i

N
+

(
1 −

∏
i∈[S]

N − i

N

))

and Time(B) = Time(D) = Time(A)+QH ≈ Time(A). Moreover, we can replace
B by a quantum adversary B′ against the D-CSIDH problem such that

AdvFCMD-CSIDH
B,S (λ) ≤ S · AdvD-CSIDH

B′ (λ)

and Time(B) ≈ Time(B′).
In the classical setting, the only difference is that the above bound depends

linearly on QH instead of quadratically. That is, we can replace 8(QH +1)2 with
QH + 1.6

Proof. The theorem is a consequence of Theorem 2.1, Lemmas 4.1, and 4.5, along
with the additional security claims made in Sect. 4. Note that the lossy identifi-
cation protocol IDdenCh

ls has N bits of min entropy, where N is the cardinality of
C�(O).

Remark 5.1. (Shorter Secret Key). Since the secret key sk is composed of
random values, we can use standard tricks to derive them from the PRF key.
In particular, we only require one PRF key, e.g., a 16-byte seed for SHA-3, as
the secret key. This modification has (almost) no effect on the overall concrete
security. In order to simplify the readability, in Algorithm1 we do not make the
use of the PRF explicit while uniformly sampling in ZN .

6 We can get rid of the constant 8 in the classical setting since it is due to the reduction
from the generic quantum search problem. See [24,43] for example.

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 179

Algorithm 1. KeyGen
Input: E0, class number N = |C�(O)|
Output: (pk, sk)
1: b ← ZN , c ← ZN

2: E
(0)
1 = gb � E0, E

(0)
2 = gc � E0

3: for i ∈ {1, . . . , S} do
4: ai ← ZN

5: E
(i)
1 = gai � E

(0)
1 , E

(i)
2 = gai � E

(0)
2

6: pk = [(E
(j)
1 , E

(j)
2) : j ∈ {0, . . . , S}]

7: K ← K � Sample key for PRF.
8: sk = [b, c, ai : i ∈ {1, . . . , S},K]
return: (pk, sk)

Algorithm 2. Sign
Input: (pk, sk, message M)
Output: σ
1: for k ∈ {1, . . . , t} do
2: rk ← ZN � Derive randomness using PRF(K,M||k).

3: F
(k)
1 = grk � E

(0)
1 , F

(k)
2 = grk � E

(0)
2

4: (ch1, . . . , cht) = H(F
(1)
1 || F

(1)
2 || · · · || F

(t)
1 || F

(t)
2 || M)

5: for k ∈ {1, . . . , t} do � Define sign(0) := 0.

6: respk = rk − sign(chk)a|chk| − sign(chk)−|sign(chk)|
2

(b + c) (mod N)

7: σ = (resp1, . . . , respt, ch1, . . . , cht)
return: σ

Algorithm 3. Verify
Input: (pk, signature σ, message M)
Output: Valid / Invalid
1: Parse σ as (resp1, . . . , respt, ch1, . . . , cht)
2: for i ∈ {1, . . . , S} do

3: E
(−i)
1 = E

(i),tw
1 , E

(−i)
2 = E

(i),tw
2 � Compute quadratic twists.

4: for k ∈ {1, . . . , t} do
5: if chk ≥ 0 then
6: F

(k)
1 = grespk � E

(chk)
1 , F

(k)
2 = grespk � E

(chk)
2

7: else
8: F

(k)
1 = grespk � E

(chk)
2 , F

(k)
2 = grespk � E

(chk)
1

9: (ch′
1, . . . , ch

′
t) = H(F

(1)
1 || F

(1)
2 || · · · || F

(t)
1 || F

(t)
2 || M)

10: if (ch1, . . . , cht) == (ch′
1, . . . , ch

′
t) then

11: return: Valid
12: else
13: return: Invalid

180 A. El Kaafarani et al.

5.2 Instantiations and Comparison to CSI-FiSh

In this section, we specialise the Lossy CSI-FiSh to the CSIDH-512 parameters,
and we consider distinct possible values for t and S both in the classical and
quantum setting. For each choice of (S, t), Theorem 5.1 dictates how many bits
of classical/quantum security the scheme guarantees. Clearly, different choices
for (S, t) will lead to different bandwidth and computational efficiency.

Here, the term γ-bit of security for a cryptographic scheme is defined as the
non-existence of an adversary that breaks the scheme with a success ratio bigger
than 2−γ , where the success ratio is the quotient between the adversary’s success
probability and its running time [3]. In the light of Theorem5.1, the number of
bits of security guaranteed by the signature scheme Lossy CSI-FiSh is upper
bounded by the security of the FCMD-CSIDH problem. In line with [8], in the
following we assume that the best methodology to solve the D-CSIDH problem
(and hence FCMD-CSIDH) is solving one of the corresponding GAIP instances.

Aligning with [6], we consider a hash function that is a factor 2u slower than
a standard hash function (as, for example, SHA3) and vary u to obtain tradeoffs
between security and efficiency. Moreover, for the sake of easy comparison, we
consider the same values for S and u that are used in [6]. Below, we first provide
discussions on the size of the public key and signature size of Lossy CSI-FiSh,
both in the classical and quantum setting. We then discuss the efficiency of our
scheme with respect to the running times of signature generation and verification.
The analysis on runtime will be the same for both the classical and quantum
setting.

Classical Setting. The best known classical algorithm to solve the GAIP prob-
lem applies the meet-in-the-middle strategy, and hence has a time complexity
O(

√
N), where N is the cardinality of C�(O). The class group computation exe-

cuted in [6] has shown that N � 2257.1 for CSIDH-512 parameters. This means
that the D-CSIDH problem guarantees at most 128 bits of classical security and
then, in turn, the FCMD-CSIDH problem guarantees at most 128-bits when
S = 1, and at most 128/ log2 S bits when S > 1 (see Lemma 4.1).

By Theorem 5.1, for all classical adversaries running in time at most 2128 and
making at most 2128 (random) queries QH , it holds:

Advsu-cma
A (λ)

Time(A)
≤ S · Adv

D-CSIDH
B′ (λ)

Time(B′)
+

AdvPRFD (λ)
Time(D)

+

+ 2−u ·
(1

(2S + 1)t
·

∏
i∈[S]

N − i

N
+

(
1 −

∏
i∈[S]

N − i

N

))

� S · 2−128 + 2−256 + 2−u · (2S + 1)−t,

where we ignore the min-entropy since it does not give any significant contri-
bution, being smaller than 2256. Furthermore, 1 − ∏

i∈[S](N − i)/N is less than
2−242 even for the biggest value of S considered in the following, i.e. 215 − 1.
Hence, the last term can be safely approximated as 2−u · (2S + 1)−t. Now, since
each of the values of S is of the form 2w − 1, we deduce that 2−u · (2S + 1)−t

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 181

must be bounded by 2−129 to reach −128 + w bits of security. For a fixed value
of u, the smallest value of t for which the above inequality is satisfied is uniquely
defined.

In the following Table 1 we report: for each choice of S and u, the minimum
value of t for which we obtain the maximal security guaranteed by Lossy CSI-
FiSh, the number of bits of such security level, the sizes of signatures and the sizes
of public keys for Lossy CSI-FiSh and CSI-FiSh. The column “bits of security”
is dismissed for CSI-FiSh as it does not provide provable concrete security. We
highlight that for a fixed triple (S, t, u), the signatures produced with our scheme
Lossy CSI-FiSh have exactly the same size as those produced with CSI-FiSh.
Finally, we note that the values for CSI-FiSh reported in Table 1 slightly differ
from those of [6, Table 3], where some approximations were made (e.g., 2S −
1 was approximated with 2S), while our parameters are chosen without any
approximation.

Table 1. Comparison between Lossy CSI-FiSh and CSI-FiSh.

Lossy CSI-FiSh CSI-FiSh

S t u |σ| |pk| Bits of security |pk|
1 74 16 2405B 256B 127 64B

3 43 14 1403B 512B 126 192B

7 30 16 983B 1024B 125 448B

15 25 13 822B 2048B 124 960B

26 − 1 17 16 564B 8.2 KB 122 4 KB

28 − 1 14 11 468B 32.8 KB 120 16.3 KB

210 − 1 12 7 404B 131KB 118 65.5 KB

212 − 1 10 11 339B 524KB 116 262 KB

215 − 1 8 16 274B 4MB 113 2 MB

The differences on the public key sizes between Lossy CSI-FiSh and CSI-FiSh
have a double cause:

– in Lossy CSI-FiSh the starting curves E
(0)
1 , E

(0)
2 are computed by each user

and are part of the public key, while in CSI-FiSh the starting curve E0 is part
of the public parameters of the scheme;

– for each coordinate ai of the private key, with i ∈ [S], Algorithm 1 computes
two curves that will become part of the public key, while in CSI-FiSh only
gai 	 E0 is appended to the public key.

Recalling that each curve in E��p(O, π) can be uniquely represented by an ele-
ment of Fp, with p � 2512, for a given S the size of a CSI-FiSh’s public key is
S · 512 while the size of a public key produced with Lossy CSI-FiSh has length
equal to (S + 2) · 512, with the increment given by the extra term more visible
for small values of S.

182 A. El Kaafarani et al.

Quantum Setting. The best known quantum algorithm for the GAIP prob-
lem is Kuperberg’s algorithm for the hidden shift problem [28,29], which has a
subexponential complexity. The concrete security estimates, however, are still an
active area of research [5,7,34]. In the following we will consider 56 bits of quan-
tum security as a conservative choice, and 64 bits as a more optimistic choice for
the D-CSIDH problem. Consequently, we consider quantum adversaries running
in time at most 256 in the conservative variant, and 264 in the more optimist
one. Analogously, we upper bound the number of possible queries QH by 256 in
the former case, and by 264 in the latter. In both cases, the upper bound on the
security of Lossy CSI-FiSh depends quadratically in QH .

Considering the optimistic variant, the following inequality holds due to The-
orem 5.1:

Advsu-cma
A (λ)

Time(A)
≤ S · Adv

D-CSIDH
B′ (λ)

Time(B′)
+

AdvPRFD (λ)

Time(D)

+ 8 · (QH + 1) · 2−u ·
(1

(2S + 1)t
·

∏
i∈[S]

N − i

N
+

(
1 −

∏
i∈[S]

N − i

N

))

� S · 2−64 + 2−256 + 267−u · (2S + 1)−t,

where the approximation is validated by the same argument as in the classical
setting. We require 267−u · (2S + 1)−t to be bounded by 2−65 in order to reach
−64 + w bits of quantum security, with S = 2w − 1. Analogously, in the conser-
vative variant, we require 259−u · (2S + 1)−t to be bounded by 2−57 in order to
reach −56 + w bits of quantum security, with S = 2w − 1.

In the following Table 2 we differentiate the Conservative and Optimistic
variants, reporting the values of t for each choice of S and u, the security levels
guaranteed in the two cases, and signatures and public keys sizes. We note that
the size of the public key only depends on S, hence it achieves the same size as
in the classical setting (see Table 1).

Table 2. Parameters and achieved quantum security level for Lossy CSI-FiSh.

Conservative variant Optimistic variant

S u |pk| t |σ| Bits of security t |σ| Bits of security

1 16 256 B 64 2080B 55 74 2405 B 63

3 14 512 B 37 1208B 54 43 1403 B 62

7 16 1024 B 26 852B 53 30 983 B 61

15 13 2048 B 21 691B 52 25 822 B 60

26 − 1 16 8.2 KB 15 497B 50 17 564 B 58

28 − 1 11 32.8 KB 12 401B 48 14 468 B 56

210 − 1 7 131 KB 10 337B 46 12 404 B 54

212 − 1 11 524 KB 9 305B 44 10 339 B 52

215 − 1 16 4 MB 7 240B 41 8 274 B 49

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 183

Estimated Performance. The costs of key generation, signing and verifying
are dominated by the class group actions to be executed in each algorithm. For
fixed S and t, the number of actions for each of them is as follows:

– key generation (Algorithm 1) requires 2S + 2 actions, while S of them are
those also computed by the key generation algorithm of CSI-FiSh;

– both signing (Algorithm2) and verifying (Algorithm3) need 2t actions,
exactly twice as many as required by the corresponding algorithms of CSI-
FiSh.

As it can be seen, the key generation would be slighter slower than twice the
key generation of CSI-FiSh, while the signature generation and verification would
be twice that of CSI-FiSh. To provide a concrete benchmark, we estimate the
running times using the two triples (215 − 1, 7, 16) and (23 − 1, 28, 16) reporting
the values of S, t and u for two instances from [6, Table 3]. These two parameter
settings are chosen in order to achieve a small signature size and a small sum
of signature and public key size, respectively. For the first (resp. second) triple,
CSI-FiSh takes the following: 28 m (resp. 400 ms) for key generation, 395 ms
(resp. 1.48 s) for signature generation, and 393 ms (resp. 1.48 s) for signature
verification7. Therefore, we can estimate that for Lossy CSI-FiSh it will take the
following for the respective tuples: ∼ 56 m (resp. ∼920 ms) for key generation,
∼800 ms (resp. 3 s) for signature generation and verification. Here for estimating
the runtime of key generation, we simply scaled the runtime of CSI-FiSh by a
factor (2S + 2) · S−1.

Finally, we provide one potential optimization for lowering the computation
time required by the signing and verifying algorithms of Lossy CSI-FiSh. We
recall that, in order to efficiently compute the action of ga on a given curve, with
a ∈ ZN , it is necessary to find an equivalent representation of ga as a product of
small powers of the special ideals I�i

(see Sect. 2.5). In [6], an algorithm solving
an approximate Closest Vector Problem (CVP) has been proposed to this task.
Therefore, the computation of a class group action consists of two steps: finding
the equivalent representation and computing the isogenies corresponding to the
ideals’ powers. Here, we observe that in Lossy CSI-FiSh most of the group actions
are pairwise coupled, i.e. they use the same exponent. The result is that the
signing and verifying algorithms do not need to execute the finding-equivalent-
representation step for each of the class actions. Therefore, this may potentially
lead to more efficient algorithms depending on the exact runtime of finding the
equivalent representation. We leave it as future work to implement and verify
the validity of this observation.

6 Conclusions and Open Problems

In this work, we construct a new signature scheme based on the CSIDH-512
parameters, called Lossy CSI-FiSh. It is provably secure and tightly reduces to the
7 Their benchmarking experiments were performed on a Dell OptiPlex 3050 machine

with Intel Core i5-7500T CPU @ 2.70 GHz.

184 A. El Kaafarani et al.

D-CSIDH (or FCMD-CSIDH) assumption. Lossy CSI-FiSh inherits most of the
efficiency of CSI-FiSh and shows that a slight modification to CSI-FiSh allows
to set the concrete parameters in a provably secure manner with minimal cost.
In particular, the signature size is as small as CSI-FiSh while the signature gen-
eration and verification are around a factor of two slower. We hope that further
research will allow to improve the efficiency. Optimisations may be specialized for
the scheme (like, for example, halving the number of approximate CVP-problems
to be solved in the key generation) or, more generally, be designed for CSI-FiSh.
Indeed, the latter would likely have an impact also on our scheme.

One of the biggest open problems is to devise a (lossy or non-lossy) identifi-
cation protocol that allows for the challenge set to be ZN rather than the small
set {−S, · · · , S}, as also mentioned in [6]. This will allow for an analogue of
the highly efficient Schnorr signature [36] based on the discrete logarithm prob-
lem. Another challenging yet interesting open problem is to show any type of
random self-reducibility property for the D-CSIDH problem. We believe such a
technique will lend hands to other tightly-secure primitives (e.g., tightly-secure
key exchange protocols) and perhaps shed light to Cramer-Shoup-like techniques
[11] in the isogeny setting.

Acknowledgement. The second author was supported by JST CREST Grant Num-
ber JPMJCR19F6.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 28

2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

3. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

4. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The SPHINCS signature framework. In: ACM-CCS, pp. 17–43 (2019). Submission
to the NIST PQC project

5. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 15

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

7. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH and ordi-
nary isogeny-based schemes. Cryptology ePrint Archive, Report 2018/537 (2018)

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-34578-5_9

Lossy CSI-FiSh: Efficient and Tightly Secure Signature Scheme 185

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

9. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006)

10. Cox, D.A.: Primes of the form x2 + ny2 (2011)
11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure

against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

12. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

13. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

14. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 14

15. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

16. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir trans-
formation in the quantum random-Oracle model. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

17. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR TCHES 1, 238–268 (2018)

18. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 512–
531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 27

20. Fouque, P.-A., et al.: Falcon: Fast-Fourier lattice-based compact signatures over
NTRU

21. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 1

22. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 6

23. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: 40th ACM STOC, pp. 197–206 (2008)

24. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15

186 A. El Kaafarani et al.

25. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

26. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: ACM CCS, pp. 155–164 (2003)

27. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-Oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

28. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC, vol. 22, pp. 20–34 (2013)

29. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

30. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

31. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–
616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 35

32. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
J. Cryptol. 15(1), 1–18 (2002). https://doi.org/10.1007/s00145-001-0005-8

33. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

34. Peikert, C.: He gives C-Sieves on the CSIDH. Cryptology ePrint Archive: Report
2019/725 (2019)

35. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive: Report 2006/145 (2006)

36. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

37. Seurin, Y.: On the exact security of Schnorr-type signatures in the random Oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 33

38. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

39. Stolbunov, A.: Cryptographic schemes based on isogenies (2012)
40. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random Oracle

model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

41. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 3

42. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70972-7 9

43. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp.
679–687 (2012)

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/s00145-001-0005-8
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70972-7_9
https://doi.org/10.1007/978-3-319-70972-7_9

Threshold Schemes from Isogeny
Assumptions

Luca De Feo1 and Michael Meyer2,3(B)

1 IBM Research Zürich, Zürich, Switzerland
2 University of Applied Sciences Wiesbaden, Wiesbaden, Germany

michael.meyer@hs-rm.de
3 University of Würzburg, Würzburg, Germany

Abstract. We initiate the study of threshold schemes based on the
Hard Homogeneous Spaces (HHS) framework of Couveignes. Quantum-
resistant HHS based on supersingular isogeny graphs have recently
become usable thanks to the record class group precomputation per-
formed for the signature scheme CSI-FiSh.

Using the HHS equivalent of the technique of Shamir’s secret shar-
ing in the exponents, we adapt isogeny based schemes to the threshold
setting. In particular we present threshold versions of the CSIDH public
key encryption, and the CSI-FiSh signature schemes.

The main highlight is a threshold version of CSI-FiSh which runs
almost as fast as the original scheme, for message sizes as low as 1880 B,
public key sizes as low as 128 B, and thresholds up to 56; other speed-
size-threshold compromises are possible.

Keywords: Threshold cryptography · Hard Homogeneous Spaces ·
Isogeny-based cryptography · CSIDH · CSI-FiSh

1 Introduction

Threshold cryptography and secret sharing are large areas of interest in the
cryptographic community since the late 1970s, when Shamir [51] and Blakley [7]
published the first secret sharing schemes. In 1989, Desmedt and Frankel [21]
constructed a practical threshold cryptosystem based on Shamir’s secret sharing
and ElGamal encryption [26].

The goal of a k-out-of-n, or (k, n)-threshold scheme is to split a secret key into
multiple shares and distribute them among n parties, each party receiving one
share. Then, for a certain threshold k ≤ n, any k collaborating parties must be able
to compute the cryptographic operation, e.g. decrypt or sign, without learning the
secret key, while any set of less than k parties must be unable to do so.

After the publication of Desmedt and Frankel’s scheme, several other threshold
protocols were proposed; among others, a threshold variant of ElGamal signatures

M. Meyer—Supported by Elektrobit Automotive, Erlangen, Germany.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 187–212, 2020.
https://doi.org/10.1007/978-3-030-45388-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_7&domain=pdf
http://orcid.org/0000-0002-9321-0773
https://doi.org/10.1007/978-3-030-45388-6_7

188 L. De Feo and M. Meyer

by Harn [34], a threshold DSA scheme by Gennaro et al. [32], and Desmedt and
Frankel’s and Shoup’s threshold RSA signature schemes [22,53]. More recently,
applications of threshold schemes in the context of blockchains and cryptocurren-
cies led to a renewed interest in threshold ECDSA schemes [24,31].

However, all of these schemes are either based on discrete logarithm or integer
factorization problems, and are thus not quantum-resistant, since they fall prey
to Shor’s algorithm [52]. Only very recently, Cozzo and Smart [15] reviewed the
post-quantum signature schemes that entered the second round of the NIST
PQC standardization process [43] for threshold variants. Their main observation
is that only the multivariate-based schemes LUOV [5] and Rainbow [23] allow
for a natural threshold construction.

Another popular family of post-quantum schemes is provided by isogeny-
based cryptography [35,36]. While this family is not represented in the NIST
PQC track for signatures, isogeny-based signatures have recently attracted much
attention [4,17,19]. In this work we introduce the first isogeny-based threshold
encryption and signature schemes, based on Shamir’s secret sharing.

Our schemes are simple adaptations of Desmedt and Frankel’s and related
schemes to the Hard Homogeneous Spaces (HHS) framework. This framework
was introduced by Couveignes [14], to generalize both discrete logarithm and
isogeny-based schemes. Encryption schemes for HHS were first proposed by Cou-
veignes [14] and Rostovtsev and Stolbunov [49], then improved by De Feo, Kief-
fer and Smith [18], eventually lead to the development of CSIDH by Castryck,
Lange, Martindale, Panny, and Renes [11].

The possibility of signature schemes based on HHS was first suggested by
Couveignes [14] and Stolbunov [55,56], although no instantiation was known
until recently, when Beullens, Kleinjung, and Vercauteren introduced CSI-
FiSh [4]. Before that, an alternative signature scheme based on a weaker notion
of HHS, named SeaSign, was presented by De Feo and Galbraith [17].

Our Contributions. We introduce threshold variants of the Couveignes–Ro-
stovtsev–Stolbunov encryption and signature schemes, based on Shamir’s secret
sharing. To make the results more easily accessible to non-experts, we first
present our schemes in an abstract way, using the language of HHS, and only
later we analyze their instantiation using CSIDH/CSI-FiSh.

The encryption scheme is a direct adaptation of [21]; the signature scheme is
similar to threshold versions of Schnorr signatures [50]. Both schemes can only
be proven secure in a honest-but-curious security model [9]; we skip the easy
proof for the encryption scheme, and we focus on the more technical one for the
signature scheme, which we prove secure in a static corruptions model, under a
generalization of the Decision Diffie-Hellman Group Action (DDHA) assumption
of Stolbunov.

We conclude with an analysis of the instantiations of the schemes based on
isogeny graphs, in particular on the supersingular isogeny graphs used in CSIDH
and CSI-FiSh.

We view this work as an initial step towards practical threshold schemes
based on HHS and isogenies. Several technical improvements, such as better

Threshold Schemes from Isogeny Assumptions 189

security properties and proofs, are necessary before these protocols can be con-
sidered truly practical. We discuss these issues at the end of this work.

Outline. Section 2 recalls basic facts on secret sharing, threshold cryptography,
and HHS. Section 3 then introduces threshold encryption and signature schemes
based on HHS, and reviews their security features. In Sect. 4, we give details
about the instantiation of these threshold schemes using isogeny graphs. We
conclude by summarizing open problems towards practical applications of our
schemes.

2 Preliminaries

We briefly recall here two fundamental constructions in group-theoretic cryptog-
raphy. The first, Shamir’s secret sharing [51], lets a dealer split a secret s into n
shares, so that any k shares are sufficient to reconstruct s; it is a basic primitive
upon which several threshold protocols can be built.

The second, Couveignes’ Hard Homogeneous Spaces (HHS) [14], is a general
framework that abstracts some isogeny protocols, and that eventually inspired
CSIDH [11]. Although most popular isogeny-based primitives are not, strictly
speaking, instances of HHS, the protocols introduced in this work require an
instance of an HHS in the strictest sense, and will thus be presented using that
formalism.

2.1 Shamir’s Secret Sharing and Threshold Cryptosystems

Shamir’s scheme relies on polynomial interpolation to construct a k-out-of-n
threshold secret sharing, for any pair of integers k ≤ n.

Concretely, a prime q > n is chosen, and the secret s is sampled from Z/qZ. To
break the secret into shares, the dealer samples random coefficients c1, . . . , ck−1 ∈
Z/qZ and forms the polynomial

f(x) = s +
k−1∑

i=1

cix
i;

then they form the shares s1 = f(1), . . . , sn = f(n) and distribute them to the n
participants, denoted by P1, . . . ,Pn. We shall call i the identifier of a participant
Pi, and si his share.

Any k participants, but no less, can reconstruct f using Lagrange’s inter-
polation formula, and then recover s by evaluating f at 0. Explicitly, a set of
participants Pi, with indices taken from a set S ⊂ {1, . . . , n} of cardinality at
least k, can recover the secret s in a single step through the formula

s = f(0) =
∑

i∈S

f(i) ·
∏

j∈S
j �=i

j

j − i
.

190 L. De Feo and M. Meyer

Shamir’s secret sharing enjoys perfect or information theoretic security, mean-
ing that less than k shares provide no information on the secret. Indeed, assuming
that k −1 participants, w.l.o.g. P1, . . . ,Pk−1, put their shares together, the map

(s, c1, . . . , ck−1) �→
(
f(0), f(1), . . . , f(k − 1)

)

is, by Lagrange’s formula, an isomorphism of (Z/qZ)-vector spaces; hence, each
tuple

(
s = f(0), f(1), . . . , f(k − 1)

)
is equally likely to occur.

Threshold Schemes. A major step towards practical threshold schemes based
on Shamir’s secret sharing was Desmedt and Frankel’s threshold variant of ElGa-
mal decryption [21]; a similar approach to design threshold signatures was pro-
posed by Harn [34]. Many other threshold protocols follow a similar pattern,
colloquially referred to as secret sharing in the exponents, that we are now going
to briefly recall.

Let the secret s ∈ Z/qZ and the shares si be distributed as above. Let G
be a cyclic group of order q, and let g be a generator. Assuming that discrete
logarithms are hard in G, the participants’ goal is to compute the shared key gs

without letting anyone learn the secret s. We can again use Lagrange interpola-
tion, but this time in the exponent:

gs = g
∑

si

∏ j
j−i .

To make this idea into a protocol, each party computes gsi from its share si,
and sends it to all other parties. Given at least k shares si of the key with i ∈ S
and #S ≥ k, any party can then compute the shared key as

gs =
∏

i∈S

(gsi)LS
0,i ,

where the exponents

LS
l,i =

∏

j∈S
j �=i

j − l

j − i
mod q (1)

can be precomputed from public information.
If broadcasting the shares gsi to all participants is too expensive, an alterna-

tive is to send them to a central combiner, who is then in charge of computing
gs and finalizing the protocol. As we shall see later, this flexibility will be lost
in our setting.

Secret Sharing in Rings. The proof of perfect security of Shamir’s secret
sharing scheme fundamentally relies on Z/qZ being a field. For reasons that will
become apparent later, we shall need to adapt the scheme to non-prime q, and
thus to general rings of modular integers. This presents two problems: ensuring
that no impossible inversions happen when computing the coefficients LS

l,i in
Eq. (1), and proving security in the more general setting. These obstacles are
not difficult to overcome, as already highlighted in, e.g., RSA-based threshold
schemes [53]; we briefly explain how this is done.

Threshold Schemes from Isogeny Assumptions 191

Impossible inversions arise during the reconstruction of the shared secret when-
ever one of the denominators (j − i) in Lagrange’s formula is not coprime to
q. If q1 is the smallest prime factor of q, then there can be at most q1 dis-
tinct values modulo q1; however, any identifier i congruent to 0 modulo q1 must
be prescribed, since otherwise f(i) mod q1 would leak information on s mod q1.
Hence, at most q1 − 1 participants can take part to Shamir’s scheme in Z/qZ;
for example, using 1, 2, . . . , q1 − 1 as identifiers ensures that no difference of two
of them shares a common factor with q.

Perfect security of the scheme is also achieved by restricting the identifiers to
1, 2, . . . , q1 − 1, or any other set of integers distinct and non-zero modulo all
divisors of q, thus restricting the number of participants to n < q1. We formally
prove this below.

Proposition 1. Let q be an integer with prime factorization q =
∏

qei
i .

Assume q1 is the smallest of the prime factors, let k ≤ n < q1, and sample
s, c1, . . . , ck−1 ∈ Z/qZ uniformly at random. Let

f(x) = s +
k−1∑

i=1

cix
i

and let x1, . . . xk−1 ∈ Z/qZ be distinct and non-zero modulo all qi. Associate a
random variable S to s, and random variables Yi to each f(xi).

The random variables S, Y1, . . . Yk−1 are independent; in particular Shamir’s
(k, n)-secret sharing scheme over Z/qZ is perfectly secure, in the sense that, given
the shares f(x1), . . . , f(xk−1), every secret s is equally likely to have originated
them.

Proof. Consider the map

ρ : (s, c1, . . . , ck−1) �→
(
f(0), f(x1), . . . , f(xk−1)

)
;

since all xi mod qj are distinct and non-zero, its reduction modulo qj is an
isomorphism of Z/qjZ-vector spaces; thus, by the Chinese Remainder Theorem,
ρ is an isomorphism of Z/qZ-modules.

Introducing random variables Y0 for f(0) and Ci for the ci’s, we have that

P{Y0 = f(0), Y1 = f(x1), . . ., Yk−1 = f(xk−1)}
= P{S = s, C1 = c1, . . . , Ck−1 = ck−1} = q−k,

from which we deduce that P{Yi = f(xi)} = q−1. In particular, since s = f(0),

P{S = s, Y1 = f(x1), . . . , Yk−1 = f(xk−1)}
= P{S = s} · P{Y1 = f(x1)} · · · P{Yk−1 = f(xk−1)}

for any s, f(x1), . . . , f(xk−1), implying that S and the Yi’s are independent. �	

192 L. De Feo and M. Meyer

2.2 Hard Homogeneous Spaces

Hard Homogeneous Spaces (HHS) were introduced by Couveignes in [14] as a
generalization of Diffie-Hellman schemes. A principal homogeneous space, or G-
torsor is a set E endowed with a faithful and transitive group action by a group
G.1 In other words, it is defined by a mapping

G × E → E ,

g ∗ E = E′,

satisfying the following properties:

– Compatibility: g′ ∗ (g ∗ E) = (g′g) ∗ E for any g, g′ ∈ G and E ∈ E ;
– Identity: e ∗ E = E if and only if e ∈ G is the identity element;
– Transitivity: for any E,E′ ∈ E there exists a unique g ∈ G such that g ∗ E =

E′;

In particular, if G is finite, these axioms imply that #G = #E .
Couveignes defines a HHS as a finite principal homogeneous space with some

additional algorithmic properties. He requires that the following problems can
be solved efficiently (e.g., in polynomial time):

– Group operations: decide whether a string g represents an element of G, decide
whether g = g′, compute g−1 and gg′;

– Sampling: sample uniformly random elements from G;
– Membership: decide whether a string E represents an element of E , decide

whether E = E′;
– Action: Given g and E, compute g ∗ E.

Furthermore, the following problems should be hard (e.g., not known to be solv-
able in polynomial time):

– Vectorization: Given E,E′ ∈ E , find g ∈ G such that g ∗ E = E′;
– Parallelization: Given E,E′, F ∈ E , such that E′ = g ∗ E, find F ′ = g ∗ F .

As a simple example, let E be a group of prime order q, then G = (Z/qZ)×

acts on E\{1} by a∗g = ga. In this case, the Vectorization problem is the discrete
logarithm problem in E , and the Parallelization problem is the Computational
Diffie–Hellman problem. Hence any discrete logarithm group is also a HHS.

Couveignes’ original proposal used as HHS sets of ordinary elliptic curves
over finite fields, with complex multiplication by a quadratic imaginary order
O; indeed, these are torsors for the class group cl(O), and the Vectorization and
Parallelization problems are not known to be easily solvable. Based on this HHS,
he defined key exchange as a straightforward generalization of the Diffie–Hellman
protocol, and he also sketched an interactive identification scheme.

1 The reader will excuse our extravagant font choices for set and group elements: our
goal is to be consistent with the notation used in Sect. 4 for isogeny-based HHS.

Threshold Schemes from Isogeny Assumptions 193

However, Couveignes’ proposal presents several difficulties, as neither the
group action nor random sampling are known to be easily computable. Inde-
pendently from Couveignes, Rostovtsev and Stolbunov [49,55] proposed a key-
exchange scheme based on the same group action, but with a different representa-
tion of elements of cl(O). This proposal had the benefit of making key-exchange
feasible, if not practical, and subsequent research [18] eventually led to the devel-
opment of CSIDH [11], an efficient key exchange scheme based on the action of
a quadratic class group on a set of supersingular curves.

Nevertheless, none of these constructions satisfies exactly the axioms of a
HHS, since, for example, the cost of evaluating g ∗ E in CSIDH is in the worst
case exponential in the size of g. While every group element has an equivalent
representation that permits to efficiently evaluate the action, computing such
representation is difficult in general. This is not a problem for key-exchange
schemes based on CSIDH, but, for example, it makes identification and signature
schemes more involved and less efficient than what Couveignes had originally
envisioned [17,19].

The roadblock in all these constructions is the fact that the structure of the
class group cl(O) is unknown, and it is thus impossible to have a unique rep-
resentation for its elements. The best algorithm for computing the class group
structure runs in sub-exponential time, and is thus neither practical nor scal-
able; nevertheless the application to isogeny-based signatures motivated Beul-
lens, Kleinjung and Vercauteren [4] to run an intensive computation for the
CSIDH-512 parameter set, which allowed them to construct CSI-FiSh, the most
efficient isogeny-based signature to date.

Currently, CSI-FiSh is the only known instance of HHS based on isogenies:
group elements have unique representation, the group action can be evaluated
efficiently, and the Vectorization and Parallelization problems are believed to
be hard, both classically and quantumly. Unfortunately, parameter generation
requires exponential time in the security parameter, thus CSI-FiSh is a HHS
only in a practical sense for a specific security level, but not in the asymptotic
sense.

In the next sections we are going to introduce threshold schemes based on
HHS; then we will give more details on CSI-FiSh, and look at how the threshold
schemes can be instantiated with it.

3 Threshold Schemes from HHS

We now present threshold schemes based on Hard Homogeneous Spaces.
Let a group G and a set E be given, such that G acts faithfully and transitively

on E and the HHS axioms are satisfied. We are going to require an additional
property: that an element g ∈ G of order q is known, and we shall write q1 for
the smallest prime divisor of q. In particular, these hypotheses imply that there
is an efficiently computable embedding Z/qZ ↪→ G defined by a �→ ga, which we
are going to exploit to embed Shamir’s secret sharing in the HHS.

194 L. De Feo and M. Meyer

Notation. From now on we will use capital letters E,F, . . . to denote elements
of the HHS E , and gothic letters a, b, g, . . . to denote elements of the group G.
Following [4], it will be convenient to see Z/qZ as acting directly on E : we will
write [a] for ga, and [a]E for ga ∗E, where g is the distinguished element of order
q in G.2 Be wary that under this notation [a][b]E = [a + b]E.

Remark 1. The additional hypothesis excludes, in particular, HHS of unknown
order, such as CSIDH (outside of the parameter set shared with CSI-FiSh).

Note that, assuming the factorization of q is known, given any element of G
it is easy to test whether it is of order q. Nevertheless, in some instances it may
be difficult to decide whether an element g′ ∈ G belongs to 〈g〉; this may happen,
for example, if G (Z/qZ)2. This will not impact the protocols we define here,
but is an important property to consider when designing threshold protocols in
the general HHS setting. At any rate, for instantiations based on CSI-FiSh it is
always easy to test membership of 〈g〉.

On the other hand, unless G = 〈g〉, it is a well known hard problem (exponen-
tial in log q) to decide whether given E,E′ ∈ E there exists a ∈ Z/qZ such that
E′ = [a]E. Indeed, a generic solution to this problem would imply an efficient
generic algorithm for solving many instances of discrete logarithms [11].

We now describe a distributed algorithm to compute the group action of
〈g〉 on E in a threshold manner, and explain how it impacts the communication
structure of threshold protocols. Then we present two simple threshold protocols,
a KEM and a signature, directly adapted from their non-threshold counterparts.

3.1 Threshold Group Action

Like in Sect. 2, we assume that the participants P1,P2, . . . possess shares si =
f(i) of a secret s ∈ Z/qZ; their goal is to evaluate the group action [s]E0 for any
given E0 ∈ E , without communicating their shares si.

Let S ⊂ {1, . . . , n} be a set of cardinality at least k, and recall the definition
of the Lagrange coefficients in Eq. (1):

LS
l,i =

∏

j∈S
j �=i

j − l

j − i
mod q.

Then the participants Pi for i ∈ S determine the shared secret by s =
∑

i∈S si ·
LS
0,i. For the sake of simplicity, we will assume that S = {1, ..., k}.

The participants coordinate as follows. First, E0 is sent to P1, who starts by
computing

E1 =
[
s1 · LS

0,1

]
E0.

The resulting E1 is passed on to P2, who continues by computing

E2 =
[
s2 · LS

0,2

]
E1 =

[
s2 · LS

0,2 + s1 · LS
0,1

]
E0.

2 Note that this action is only transitive if g generates G.

Threshold Schemes from Isogeny Assumptions 195

This procedure repeats analogously for the parties P3, ...,Pk−1, and at last Pk

can compute

Ek =
[
sk · LS

0,k

]
Ek−1 =

[
∑

i∈S

si · LS
0,i

]
E0 = [s]E0.

Communication Structure. Comparing the algorithm to classical threshold
Diffie-Hellman protocols as in Sect. 2.1, it is obvious that there are differences in
their structures. There, each party Pi computes gi = gsi from its secret share si

and a common generator g. Anyone can then compute g
LS

0,i
i for each i ∈ S, and

multiply the results to obtain gs.
In our HHS setting, the situation is different. First,

[
si · LS

0,i

]
E cannot be

computed from the knowledge of [si]E and LS
0,i, thus only Pi can compute it.

Consequently, each participant has to know in advance the set S of parties taking
part to the computation, in order to apply LS

0,i.
Further, it is not possible to introduce a combiner, who could proceed as in

the classical case by receiving the different
[
si · LS

0,i

]
E0 and combining them to

obtain [s]E0, since in general the set E is not equipped with a compatible group
operation E ×E → E . Therefore, it is necessary to adopt a sequential round-robin
communication structure:

E0,S−→ P1
E1,S−→ P2

E2,S−→ ...
Ek−1,S−→ Pk

[s]E0−→ .

Note that the order of the Pi can be changed without affecting the final result.
However, this means that Pk is the only party who ends up knowing the result

of the group action. If a cryptographic protocol needs to handle this element
secretly, our algorithm is only suitable for situations where only one participant
is required to know the secret result. Algorithm 1 summarizes the described
approach in the general case.

Algorithm 1: Threshold variant of the group action computation.
Input : E0 ∈ E , set of participants S.
Output: [s]E0.

1 Set E ← E0.
2 foreach i ∈ S do
3 If E /∈ E , participant Pi outputs ⊥ and the algorithm stops.

4 Participant Pi outputs E ← [
si · LS

0,i

]
E.

5 return E.

In a different setting where all participants are required to secretly know
the final result, several modifications are possible. For example, when encrypted
channels between the participants exist, the last participant can simply distribute
through them the resulting [s]E0.

196 L. De Feo and M. Meyer

Alternatively, k parallel executions of Algorithm 1, each arranging the partic-
ipants in a different order, let all participants know the final result. The cost of
this modification is rather high: O(k2) elements of E need to be transmitted, and
O(k2) group actions evaluated. This can be improved to O(k log k) transmitted
elements of E (but still O(k2) group actions) using a binary splitting strategy.

Remark 2. Algorithm 1 does nothing to prevent corrupted participants from
leading to an incorrect output. While threshold schemes based on discrete log-
arithms can often detect and correct malicious behavior (using, e.g., error cor-
recting codes [32]), this is more difficult for HHS. Indeed, there seems to be no
way for a participant to verify the previous participant’s output in Algorithm1,
outside of generic zero-knowledge techniques.

3.2 Threshold HHS ElGamal Decryption

The first application we present for our threshold group action is threshold
decryption, a direct adaptation of [21].

Inspired by the classical ElGamal encryption scheme [26], a PKE protocol in
the HHS settings was first introduced by Stolbunov [49,55,56]. We briefly recall
it here, using the terminology of KEMs.

Public parameters: A HHS (E ,G), a starting element E0 ∈ E , and a hash
function H from E to {0, 1}λ.

Keygen: Sample a secret key a ∈ G, output a and the public key Ea = a ∗ E0.
Encaps: Sample b ∈ G, output K = H(b ∗ Ea) and Eb = b ∗ E0.
Decaps: Given Eb, if Eb ∈ E output K = H(a ∗ Eb), otherwise output ⊥.

The Decaps routine is easily adapted into a threshold algorithm requiring k
participants to collaborate in order to recover the decryption key K. This also
requires modifying Keygen, which must now be executed by a trusted dealer
and integrate Shamir’s secret sharing.

Public parameters: A HHS (E ,G) with a distinguished element g ∈ G of order
q, a starting element E0 ∈ E , and a hash function H from E to {0, 1}λ.

Keygen:
– Sample a secret s ∈ Z/qZ and generate shares si ∈ Z/qZ using Shamir’s

secret sharing;
– Distribute privately si to participant Pi;
– Output public key Ea = [s]E0.

Encaps: Sample b ∈ G, output K = H(b ∗ Ea) and Eb = b ∗ E0.
Decaps: Given Eb and a set S of participants, #S ≥ k, run Algorithm1 to

compute E = [s]Eb; output ⊥ if the algorithm returns ⊥, otherwise output
K = H(E).

The asymmetry of the scheme will not be lost on the reader: while the shared
secret for the threshold group is restricted to be in 〈g〉, there are no restrictions
for Encaps. Although it would be completely possible (maybe even desirable

Threshold Schemes from Isogeny Assumptions 197

for practical reasons) to restrict secrets to 〈g〉 also in the encapsulation, we do
not do so because there is no known way for decapsulation to test whether Eb

has been generated this way.
It is clear that this scheme achieves the stated goal of threshold decryption:

upon receiving a ciphertext, at least k participants must agree to decrypt in order
to recover the key K; only the last participant in the chain learns K. If less than
k participants agree to decrypt, the key K cannot be recovered; however this
security property is only guaranteed when all participants behave honestly.

When allowing for corruptions, the scheme immediately becomes broken.
Indeed in Algorithm 1, when a participant beyond the first receives an input,
they are unable to link it to the ciphertext Eb. This makes it possible to trick an
unwilling participant P into helping decrypt a message: let c be such a message,
a group of k−1 participants only has to wait for a message c′ that P is willing to
decrypt; when P agrees, they submit to it an intermediate value of a computation
for c, which P is unable to distinguish from one for c′. Contrast this to the
original El Gamal threshold decryption of Desmedt and Frankel [21], where each
participant performs its computation directly on the input.

Because of this, the security of the protocol can only be proven in a honest-
but-curious model. We skip the easy security proof, and leave the search for more
refined threshold decryption protocols for future work.

3.3 Threshold Signatures

An identification scheme in the HHS framework was first sketched by Cou-
veignes [14]; in his PhD thesis [56] Stolbunov also suggested applying the Fiat-
Shamir transform [29] to it to obtain a signature scheme. Nevertheless these
schemes stood out of reach until recently, when the class group computation
for CSIDH-512 was completed [4]; CSI-FiSh is effectively Stolbunov’s scheme,
combined with optimizations introduced in SeaSign [17].

CSI-FiSh and its ancestors can be easily adapted into threshold protocols.
We start by recalling the basic interactive zero-knowledge identification scheme:
a prover Peggy wants to convince a verifier Vic that she knows a secret element
a ∈ G such that Ea = a ∗ E0. They proceed as follows:

– Peggy samples a random b ∈ G and commits to Eb = b ∗ E0.
– Vic challenges with a random bit c ∈ {0, 1}.
– If c = 0, Peggy replies with z = b; otherwise she replies with z = ba−1.
– If c = 0, Vic verifies that z ∗ E0 = Eb; otherwise, he verifies that z ∗ Ea = Eb.

It is immediately seen that the scheme is correct, thanks to the properties
of homogeneous spaces, and that it has soundness 1/2. For the zero-knowledge
property, it is crucial that elements in G can be sampled uniformly, and that
they have unique representation. See [4,17,56] for detailed proofs.

We now adapt this scheme into a threshold signature by applying the Fiat-
Shamir transform and Shamir’s secret sharing as before.

198 L. De Feo and M. Meyer

We let again (E ,G) be a HHS with a distinguished element g of order q, we fix
a starting element E0 ∈ E , and a hash function H : {0, 1}∗ → {0, 1}λ. We assume
that a trusted dealer has sampled a random secret s ∈ Z/qZ, securely distributed
shares si to the participants Pi, and published the public key Es = [s]E0.

Here is a sketch of how participants P1, . . . ,Pk can cooperate to sign a mes-
sage m:

– In the commitment phase, the participants collaborate to produce a random
element [b]E0 in a way similar to Algorithm 1, by producing each a random
value bi ∈ Z/qZ and evaluating Ei = [bi]Ei−1.

– Once Ek = [b]E0 is computed, the challenge bit c is obtained from the hash
H(Ek,m).

– If c = 0, each Pi outputs zi = bi, else each Pi outputs zi = bi − si · LS
0,i.

– The signature is (c, z =
∑

zi).

To verify the signature it suffices to check that H([z]E0,m) = 0 . . . , if c = 0,
or that H([z]Es,m) = 1 . . . , if c = 1. Of course, this sketch must be repeated λ
times, in order to ensure the appropriate level of security.

The complete signing algorithm is summarized in Algorithm2. As presented
there, it is rather inefficient in terms of signature size and signing/verification
time. All the key/signature size compromises presented in CSI-FiSh [4] are com-
patible with our threshold adaptation, and would produce a more efficient sig-
nature scheme. The details are left to the reader.

Security Analysis. We conclude with a study of the security of the threshold
signature scheme. Like the other schemes presented here, it is only secure against
(static) honest-but-curious adversaries; however the security proof is more tech-
nical, and we give it in more detail. Since our threshold signature has the same
public key and produces the same signatures as the Stolbunov/CSI-FiSh non-
threshold scheme, we are able to use Gennaro et al.’s security model [32], with
the appropriate modifications to handle a trusted dealer. In a nutshell, security in
this model is proven by showing that the transcript of the threshold protocol can
be simulated given only the signature, even in presence of up to k − 1 corrupted
participants; then, security follows from the unforgeability of the non-threshold
signature scheme. We start with a brief description of the model.

Communication model. We assume the n participants P1, . . . ,Pn have access to
a broadcast channel they use to exchange messages when executing the signature
protocol. On top of that, each participant has access to a private channel with
the trusted dealer T , that they use to receive the secret shares.

The adversary. We consider a static honest-but-curious adversary, i.e., one that
chooses up to k−1 players to corrupt at the beginning of the unforgeability game,
and then observes all their communications, including the secret shares received
from the dealer; other than that, all parties strictly follow the protocol. In the
literature, this type of adversary is often also called semi-honest or passive.

Threshold Schemes from Isogeny Assumptions 199

Algorithm 2: Threshold HHS signature.
Input : Message m, participant set S.
Output: A signature on m.

1 Set (E0
1 , . . . , E0

λ) ← (E0, . . . , E0).
2 Let k ← 0.
3 foreach i ∈ S do
4 Let k ← k + 1.
5 foreach 1 ≤ j ≤ λ do
6 If Ej /∈ E , participant Pi outputs ⊥ and aborts the protocol.
7 Pi samples bi,j ∈ Z/qZ uniformly at random.

8 Pi outputs Ek
j ← [bi,j]E

k−1
j .

9 Let c1 · · · cλ ← H(Ek
1 , . . . , Ek

λ, m).
10 foreach i ∈ S do
11 foreach 1 ≤ j ≤ λ do
12 if cj = 0 then
13 Pi outputs zi,j = bi,j .

14 else
15 Pi outputs zi,j = bi,j − si · LS

0,i.

16 foreach 1 ≤ j ≤ λ do
17 Let zj =

∑
i∈S zi,j .

18 return the signature (c1 · · · cλ, z1, . . . , zλ).

The view of an adversary is the probability distribution on the transcript of
all the information seen by it during the protocol execution: this includes secret
shares, the message m to sign, the messages received from other parties, and the
resulting signature.

Unforgeability. A threshold signature scheme is unforgeable if no polynomial-
time adversary A can produce a signature for a previously unsigned message m,
given the view of A for adaptively chosen messages m1, ...,mQ. This definition
is analogous to the usual notion of UF-CMA. In other words, this means that
A does not learn enough information from transcripts of protocol executions to
forge a valid signature.

Simulatability. Gennaro et al. proved that a threshold signature scheme is
unforgeable if the underlying signature scheme is, and the threshold scheme
is simulatable. This is defined as there being a polynomial time simulator S that
takes as input a message m, the public key Es, a valid signature on m, and the
shares of the corrupted participants, and outputs transcripts that are computa-
tionally indistinguishable from the view of the adversary. Intuitively, this means
that the adversary gains no more information from seeing the transcript, than
from the signature alone.

200 L. De Feo and M. Meyer

The trusted dealer. Unlike the threshold scheme of Gennaro et al., our signature
does not feature a distributed key generation. We thus adopt a hybrid model,
where the generation of the trusted shares is modeled by an ideal functionality
FT , that executes Shamir’s secret sharing, publishes the public key, and dis-
tributes the secret shares to each participant through the private channel.

In particular, the adversary is not able to tamper with FT , and the distin-
guisher has no knowledge of the master secret generated by it.

We will prove simulatability under a new assumption, that we call Power-
DDHA. This decision version of the Scalar-HHS problem of Felderhoff [28] is a
generalization of the Decision Diffie–Hellman Group Action (DDHA) introduced
by Stolbunov [55], and is related to the P -DDH assumption introduced by Kiltz
for discrete logarithm groups [38].

Problem 1 (Power-DDHA problem). Let (E ,G) be a HHS. Let E ∈ E and 1 <
a < #G an integer; let s be a uniformly random element in G. The a-Power-
DDHA problem is: given (a,E, s ∗ E,F), where F ∈ E is an element, either
sampled from the uniform distribution on E , or F = sa ∗ E, decide from which
distribution F is drawn.

Remark 3. The special case of (−1)-Power-DDHA where the HHS is instantiated
with a graph of Fp-isomorphism classes of supersingular curves, and E is the
special curve E : y2 = x3 +x, is known to be solvable efficiently. Other “special”
curves in the graph also enjoy this property, see [12].

This obstacle is easy, but tedious, to circumvent in the proof of the next
theorem. We leave the details to the reader.

Felderhoff proved that the search version of Power-DDHA (Scalar-HHS) is
equivalent to Parallelization whenever the order of G is known and odd [28].
We also recall the formal definition of the Vectorization problem, also known as
Group Action Inverse Problem [55].

Problem 2 (GAIP). Let (E ,G) be a HHS, let E,F be uniformly random elements
of E . The Group Action Inverse Problem asks to compute a ∈ G such that
E = a ∗ F .

It is clear that GAIP is harder than Power-DDHA: given a GAIP solver one
can simply apply it to (E, s∗E), and then use the answer to solve Power-DDHA.

Theorem 1. Under the Power-DDHA assumption, the signature scheme of
Algorithm2 is simulatable.

Stolbunov’s signature scheme is proven secure in the ROM under GAIP
(see [4,17,56]); since GAIP is harder than Power-DDHA, we immediately get
the following theorem.

Corollary 1. Under the Power-DDHA assumption, the signature scheme of
Algorithm2 is unforgeable, when the hash function H is modeled as a random
oracle.

Threshold Schemes from Isogeny Assumptions 201

Proof of Theorem 1. Observe that the public key Es = [s]E0 uniquely determines
s; but that, together with the k − 1 corrupted shares, uniquely determines the
polynomial f in Shamir’s secret sharing, and thus all other shares. We shall
denote by s1, . . . , sn these uniquely determined shares, note however that the
simulator only knows the corrupted ones.

Let (c1 · · · cλ, z1, . . . , zλ) be a signature, and let S be the set of k signers (who
signs a given message is decided by the adversary). To simulate a transcript, the
simulator draws integers zi1,j , . . . , zik−1,j ∈ Z/qZ at random, for any 1 ≤ j ≤ λ,
and sets zik,j = zj − zi1,j − · · · − zik−1,j . Since zj is uniformly distributed, it
is clear all zi,j also are. These values make the second part of the transcript
(lines 12–15 in Algorithm 2).

To complete the transcript, the simulator now needs to output commitments
Eki

j (line 8), where for each i ∈ S we denote by 1 ≤ ki < k the position of i in
S. We start with the case where S contains only one uncorrupted participant,
which can be simulated perfectly.

If cj = 0 the simulator simply sets

Eki
j = [bk1,j + bk2,j + · · · + bki,j]E0 = [zk1,j + zk2,j + · · · + zki,j]E0,

as in Algorithm 2. If cj = 1, define the sequence

E0
s = E0,

Eki
s =

[
si · LS

0,i

]
Eki−1

s ,

so that Es = Ek
s . The simulator can compute all curves Eki

s as follows: assume
the uncorrupted participant Pi is in position ki in S, for any k′ < ki it computes
Ek′

s directly :

Ek′
s =

⎡

⎣
∑

i∈S,ki≤k′
si · LS

0,i

⎤

⎦E0,

whereas for all k′ ≥ ki it computes it backwards from Es:

Ek′
s =

⎡

⎣
∑

i∈S,ki>k′
−si · LS

0,i

⎤

⎦Es.

Then, the commitments are computed as

Eki
j = [zk1,j + zk2,j + · · · + zki,j]E

ki
s ,

which is immediately seen as being the same as in Algorithm 2, thanks to bi,j =
zi,j +si ·LS

0,i. An example of this computation where participants P1 and P3 are
corrupted and participant P2 is not is pictured in Fig. 1.

Because all the choices are uniquely determined once the values zi,j have
been chosen, it is clear that this transcript is perfectly indistinguishable from a
real one, even for a computationally unbounded distinguisher.

202 L. De Feo and M. Meyer

E0 E1
s E2

s Es

E1
j

E2
j

E3
j

• •

•

s1L
S
0,1 s2L

S
0,2 −s3L

S
0,3

b1

b2

b3

z1 z1

z2

z1

z2

z3

Fig. 1. Recomputation of Eki
j given zi,j .

We are left with the case where the set S contains more than one uncorrupted
participant; in this case, we will resort to random sampling. For simplicity, we
will assume that sets S are always sorted in increasing order, so that the relative
order of the participants’ actions does not change from one signature to another.

Like above, we start one direct chain from E0, and one backwards from Es;
both chains stop when they encounter an uncorrupted participant Pi. Now, let
Eki−1

s be the last curve in the direct chain, we set the next curve Eki
s = [ri]E0,

where ri is sampled uniformly from Z/qZ. We also store ri in association with
S, and keep it for reuse the next time the adversary queries for the set S.

We continue the direct chain from Eki
s , either using the knowledge of si ·LS

0,i

for corrupted participants, or sampling a random ri for uncorrupted ones; we
stop when we meet the backwards chain. An example of this process is pictured
below:

E0 E1
s E2

s E3
s E4

s Es
r1 s2LS

0,2 r3 r4 s4LS
0,4

we write in bold data that is obtained through random sampling; the value r4
is implicitly determined by the other four values. After we have determined this
data, we compute the Eki

j ’s and complete the transcript as before.
Now, this transcript is no longer indistinguishable from the real view of the

adversary, however we argue that it still is computationally indistinguishable
assuming Power-DDHA. Indeed, when cj = 1, the distinguisher is able to recover
Eki

s from Eki
j as Eki

s = [−zk1,j − zk2,j − · · · − zki,j]E
ki
j . This means that the

distinguisher will collect many pairs of the form
(
E,

[
si · LS

0,i

]
E

)
(in queries

where Pi is the only uncorrupted participant in S), and many others of the form
(E′, [ri]E′) (where the expected relation would be

(
E′,

[
si · LS′

0,i

]
E′

)
instead).

In general, it will be the case that E′ = [b]E for some b ∈ Z/qZ not necessar-
ily known to the distinguisher; however, by subtracting known factors coming
from corrupted players, the distinguisher can reduce to a distinguishing problem
between ([

∑
s′

i]E0, [
∑

s′
iai]E0) and ([

∑
s′

i]E0, [r]E0), where the s′
i are unknowns

Threshold Schemes from Isogeny Assumptions 203

related to uncorrupted shares si, the ai are known (and possibly 0), and r is ran-
dom. This is an instance of a problem more general than Power-DDHA, and is
thus at least as hard as Power-DDHA.

Hence, assuming Power-DDHA is hard, no polynomial time algorithm can
distinguish between the simulated transcript and the real interaction, thus prov-
ing that the threshold scheme is simulatable. �	

Remark 4. It is evident from the proof that the security of the (n, n)-threshold
signature scheme can be proven without assuming Power-DDHA. The appear-
ance of this surprising assumption seems an artifact related to the limitations
of the HHS framework; indeed, the analogous scheme based on discrete loga-
rithms can be proven as hard as standard Schnorr signatures without additional
assumptions [54]. We hope that further research will improve the state of security
proofs for HHS threshold schemes.

Remark 5. Although our scheme is unforgeable in a (static) honest-but-curious
model, it is obviously non-robust : any participant can lead to an invalid signature
without being detected. Robustness can be added using generic zero-knowledge
techniques, however it would be interesting to achieve it in a more efficient
bespoke fashion.

Another desirable improvement would be to prove security in a stronger
adaptive corruptions model, where the adversary can query the signing oracle
before choosing which participants to corrupt.

4 Instantiations Based on Isogeny Graphs

We now describe an instantiation of the previous schemes based on a principal
homogeneous space of supersingular elliptic curves defined over a finite field Fp.

It was first observed by Delfs and Galbraith [20] that the set of all supersin-
gular curves defined over a prime field Fp partitions into one or two levels, each
level being a principal homogeneous space for the class group of an order of the
quadratic imaginary field Q(

√−p), in a way analogous to the well known theory
of complex multiplication.

These principal homogeneous spaces were first used for a cryptographic pur-
pose in the key-exchange scheme CSIDH [11], however only the precomputation
performed recently by Beullens et al. for the signature scheme CSI-FiSh [4] per-
mits to turn one of these into a true HHS.

We now briefly recall some key facts on CSIDH and CSI-FiSh, before turning
to the instantiation of our threshold schemes. More details on the mathematical
background of isogeny-based cryptography can be found in [16].

4.1 Supersingular Complex Multiplication

From now on we let p be a prime, Fp the field with p elements, and F̄p an
algebraic closure. An elliptic curve E defined over Fp is said to be supersingular
if and only if #E(Fp) = p + 1. It is well known that there are approximately

204 L. De Feo and M. Meyer

p/12 isomorphism classes of supersingular curves, all defined over Fp2 ; of these,
O(

√
p) are defined over Fp.

Let E be a supersingular curve defined over Fp, an endomorphism is an
isogeny from E to itself, and it is said to be defined over Fp (or Fp-rational) if it
commutes with the Frobenius endomorphism π. The Fp-rational endomorphisms
of E form a ring, denoted by EndFp

(E), isomorphic to an order3 of Q(
√−p);

more precisely, it is isomorphic to either Z[
√−p] or Z[(

√−p + 1)/2]. Let O be
such an order, the class group cl(O) is the quotient of the group of invertible
ideals of O by the group of its principal ideals; it is a finite abelian group.

The set of all supersingular curves with EndFp
(E) isomorphic to a given order

O ⊂ Q(
√−p) is called the horizontal isogeny class associated to O. A straightfor-

ward extension to the theory of complex multiplication states that the horizontal
isogeny class of O, up to Fp-isomorphism, is a principal homogeneous space for
cl(O). To make this into a HHS, an efficient (e.g., polynomial in log(p)) algorithm
to evaluate the action of cl(O) is needed. This is where isogenies play an impor-
tant role. Fix an isomorphism EndFp

(E) O, for any invertible ideal a, the action
a ∗ E can be computed as follows: first define the a-torsion subgroup of E as

E[a] = {P ∈ E(F̄p) | α(P) = 0 for all α ∈ a},

this is a finite subgroup of E, and it is stabilized by the Frobenius endomorphism
π; then the unique isogeny φ : E → E/〈E[a]〉 with kernel E[a] is such that
a ∗E = E/〈E[a]〉. It follows that, if a and b are two ideals in the same class, i.e.,
such that a = (α) · b for some element α ∈ O, then E/〈E[a]〉 E/〈E[b]〉.

The curve E/〈E[a]〉 can be efficiently computed using an isogeny evaluation
algorithm [27,57], however the complexity of this operation is polynomial in
the degree of the isogeny, or, equivalently, in the norm N(a) = #(O/a). This
implies that the action of an element a ∈ cl(O) can only be efficiently computed
when a representative of small norm of a is known, or, more generally, when a
decomposition

a =
∏

i

li

with all li of small norm is known.
Now, for any prime �, the ideal (�) ⊂ O is either prime, or it splits into a

product of two (possibly equal) conjugate prime ideals l̄l = (�) of norm �. In
the former case, there are no invertible ideals of norm � in O; in the latter, l
and l̄ are the only ideals of norm �, and they are the inverse of one another in
cl(O). Asymptotically, about 50% of the primes � split, thus we may hope to
form a basis of generators of cl(O) of norms bounded by polylog(p), such that
any element of cl(O) can be represented as a product of polylog(p) elements of
the basis.4

This representation for the elements of cl(O) using a smooth basis is at the
heart of the Couveignes–Rostovtsev–Stolbunov key exchange scheme, and of

3 In this context, an order is a Z-module isomorphic to Z⊕ωZ � Z[ω] for some ω /∈ Q.
4 Jao, Miller and Venkatesan [37] showed that it is indeed possible to bound the norms

by O(log2(p)), assuming the Generalized Riemann Hypothesis.

Threshold Schemes from Isogeny Assumptions 205

CSIDH. However, having a smooth basis may not be enough: to have a HHS,
one still needs to be able to rewrite any element of cl(O) as a compact product
of smooth elements. This is the key difference between CSIDH and CSI-FiSh, as
we shall see next.

4.2 CSIDH and CSI-FiSh

CSIDH was designed to make evaluating the group action of cl(O) as efficient
as possible. To this end, a prime p of the form

p + 1 = 4
n∏

i=1

�i

is selected, where �1, . . . , �n−1 are the first n− 1 odd primes, and �n is chosen so
to make p prime. This choice guarantees several desirable properties:

– The curve E : y2 = x3 + x has Fp-rational endomorphism ring isomorphic
to Z[π], where π =

√−p is the image of the Frobenius endomorphism of E;
– All curves in the horizontal isogeny class of Z[π] can be written in the form

y2 = x3 + Ax2 + x, and the coefficient A uniquely characterizes the Fp-
isomorphism class;

– All �i split in Z[π] as (�i) = līli = 〈�i, π − 1〉 · 〈�i, π + 1〉;
– For any curve E, the li-torsion subgroup is easily found as E[li] = E[�i] ∩

E(Fp).

The first two properties ensure that supersingular isomorphism classes are easy
to construct and represent uniquely, the third guarantees5 that a number expo-
nential in n of ideal classes of Z[π] can be efficiently represented and its action
evaluated, the fourth enables some important optimizations for computing iso-
genies of degree �i.

In CSIDH and optimized variants [13,41,42,44], all ideal classes are implicitly
represented as products

a =
n∏

i=1

lei
i ,

with the exponents ei in some box [−Bi, Bi] (negative exponents are interpreted
as powers of l̄i). Explicitly, the representation of an ideal class a is simply the
vector of exponents (e1, . . . , en). The action of such ideals can be evaluated in
time poly(Bi, ei, n) using isogeny formulas.

In practice, a single parameter set has been fully specified for CSIDH, cor-
responding to the NIST post-quantum level 1.6 The set has n = 74, �73 = 373,
and �74 = 587, yielding a prime p of approximately 512 bits; we shall refer to
it as CSIDH-512. Protocols based on CSIDH-512 usually sample exponents in

5 This guarantee is only heuristic: it is possible, although unlikely, that all li have
small order in cl(Z[π]), and thus generate a small subgroup.

6 NIST defines the security of level 1 as being equivalent to AES-128.

206 L. De Feo and M. Meyer

a box [−5, 5], which heuristically covers almost all the class group, and which
permits to evaluate one class group action in under 30 ms [42].

However, based on this data only, CSIDH is not a HHS. Indeed, all axioms
of an HHS are satisfied but two: it is not possible to efficiently evaluate the
action of any element of cl(Z[π]), and it is not always possible to test equality of
two elements of cl(Z[π]). Take for example the exponent vector (2128, 0, . . . , 0),
corresponding to the ideal a = 〈3, π − 1〉2128 ; this is a valid element of cl(Z[π]),
however without further knowledge its action can only be evaluated through 2128

isogeny evaluations. Hopefully, a has an equivalent representation on the basis
l1, . . . , ln with much smaller exponents, however we have no way to compute it
and, even if we were given it, we could not test their equality.

These problems go away once we have computed the group structure of
cl(Z[π]). More precisely, we need to know the relation lattice of l1, . . . , ln, i.e.,
the lattice

Λ =

{
(e1, . . . , en)

∣∣∣∣∣

n∏

i=0

lei
i = 1

}
,

which yields a representation of the class group as cl(Z[π]) Z
n/Λ. Now, equal-

ity of two exponent vectors e,f can be tested by checking that e − f ∈ Λ, and
any exponent vector e can be evaluated efficiently by finding an (approximate)
closest vector f ∈ Λ and evaluating e − f instead.

Neither computing the relation lattice, nor computing a good reduced basis
for it are easy tasks: the former requires subexponential time in log(p), and the
latter exponential time in n.7 Nevertheless, the computation for the CSIDH-512
parameter set happens to be just within reach of contemporary computers, as
proven by Beullens et al. [4]: they managed to compute the structure of the class
group, which happens to be cyclic of order

#cl(Z[π]) = 3 · 37 · 1407181 · 51593604295295867744293584889·
31599414504681995853008278745587832204909 ≈ 2257.136,

(2)

and a BKZ-reduced basis for the relation lattice. In particular, they found out
that the ideal l1 = 〈3, π − 1〉 generates cl(Z[π]).

Thanks to CSI-FiSh, we thus dispose of a HHS with quantum security esti-
mated at the NIST-1 security level, although scaling to higher security levels
currently looks problematic.

4.3 Instantiation of the Threshold Schemes

Given the CSI-FiSh data, we can now instantiate our threshold schemes. How-
ever, it is evident by Eq. (2) that the full group 〈l1〉 = cl(Z[π]) is not suitable
for them, because the smallest prime factor of its order is 3, thus limiting the
schemes to just 2 participants. We may instead choose as generator l31, which

7 Using a quantum computer, the relation lattice can be computed in polynomial time,
however lattice reduction still requires exponential time.

Threshold Schemes from Isogeny Assumptions 207

limits the schemes to 36 participants, or l1111 , allowing more than a million par-
ticipants.8

Efficiency. The performance of our schemes can be readily inferred from that
of the CSI-FiSh signature scheme.

To evaluate the action of an ideal in cl(Z[π]), CSI-FiSh first solves an approx-
imate closest vector problem using Babai’s nearest plane algorithm [1], and an
algorithm by Doulgerakis, Laarhoven and de Weger [25]; then uses the isogeny
evaluation algorithm of CSIDH. The average cost for one evaluation is reported
to be 135.3 · 106 cycles (40–50 ms on a commercial CPU), which is only 15%
slower than the original CSIDH evaluation.9

In the encryption scheme, each participant computes exactly one class group
action. Since the participants must do their computations sequentially, the total
time for decryption is multiplied by the number of participants; the time for
encryption, on the other hand, is unaffected by the number of participants,
indeed the threshold nature of the protocol is transparent to the user.

In the signature scheme, using the optimization described in [4], depending
on the choice of parameters each participant computes between 6 and 56 group
actions. Since the group action largely dominates the cost of the whole signing
algorithm, we can expect to complete a (k, n)-threshold signature in approxi-
mately k · t ·135.3 ·106 cycles, where 6 ≤ t ≤ 56. However, the t group actions by
a each participant are independent and can be computed in parallel; since the
round-robin evaluation in the threshold scheme leaves plenty of idle cycles for
participants while they wait for other participants’ results, by carefully stagger-
ing the threshold group evaluations the k participants can evaluate the t group
actions with the same efficiency as the non-threshold scheme, as long as k ≤ t.
According to [4, Tables 3, 4], this would provide, for example, quantum-resistant
threshold signatures for up to 16 participants in under 1 s, with public keys of
4 KB and signature size of only 560 B. Another example are 1880 B signatures
with public key size of 128 B and k up to 56 in under 3 s; other interesting com-
promises are possible. These numbers compare favorably to other post-quantum
threshold signatures that are expected to run in seconds [15], and may be espe-
cially interesting for side-channel protected implementations of CSI-FiSh.

Attacks. The security of the threshold schemes is essentially the same as that
of the original single-participant signature and encryption schemes.

8 An alternative way to allow up to 36 participants is to use the action of cl(Z[(π +
1)/2]) on the horizontal isogeny class of y2 = x3 − x: the class group is 3 times
smaller than cl(Z[π]), and still generated by 〈3, π − 1〉. Because the two class group
actions are compatible, the CSI-FiSh data can easily be repurposed for this variant
without additional computations. This approach is detailed in [10].

9 Benchmarks in [4] are based on the original CSIDH implementation [11]. A speed-up
of roughly 30% is to be expected using the techniques in [42].

208 L. De Feo and M. Meyer

The fact that secrets are sampled in a subgroup of cl(Z[π]) of index 3 or 111
has a minor impact on security, as cryptanalyses can exploit this information to
speed-up their searches.

In the classical setting, the best algorithm for both Vectorization and Paral-
lelization is a random-walk approach [20] that finds a path between two super-
singular curves in O(

√
#cl(Z[π])) = O(4

√
p). If, like in our case, we restrict to a

vertex set that is x times smaller, the random walk algorithm will find a collision
approximately

√
x times faster. Hence, we expect a loss in classical security of

less than 4 bits.10

Note that this gain is optimal: if an algorithm could solve the Vectorization
problem in a subgroup of size N/x more than O(

√
x) times faster, then by a

divide and conquer approach the Vectorization problem in the full group of size
N could be solved in less than O(

√
N) operations.

A similar gain can also be obtained in the best quantum algorithm for solv-
ing the Vectorization problem [39,40,48]. However, since its complexity is sub-
exponential, the final gain is even less than 4 bits. The exact quantum security
of CSIDH and CSI-FiSh is currently debated [3,6,8,11,47], nevertheless what-
ever the final consensus turns out to be, the quantum security of our threshold
schemes will be extremely close to it.

5 Conclusion

We introduced threshold variants of encryption and signature schemes based
on Hard Homogeneous Spaces, and efficient quantum-safe instantiations thereof
based on isogeny graphs of supersingular curves (CSIDH).

Our schemes are similar to well known Diffie–Hellman-style threshold
schemes, however they are sharply different in the communication structure:
whereas classical schemes have participants output messages in parallel with
little coordination, our schemes impose a strictly sequential round-robin mes-
sage passing style. Apparently, this limitation trickles down, negatively affecting
many aspects: security properties, security proofs, efficiency.

In our ElGamal-style decryption algorithm, only one participant learns the
cleartext, and we are only able to prove security in a honest-but-curious setting.
While the communication structure is slightly less problematic for the signature
scheme, its security too can only be proven in a honest-but-curious setting with
static corruptions. Interesting questions for future research are efficient protocols
where all participants learn the cleartext, or with stronger security properties,
such as the ability to detect malicious participants.

Another topic we did not address in this work are verifiable distributed key
generation algorithms, which would allow to run the threshold schemes without
resorting to a trusted dealer. As observed by Benaloh [2], Shamir’s secret sharing
is (+,+)-homomorphic: given two secrets s and s′ with respective shares si

10 In reality, it is well known that the size of the search space can also be reduced
by 3 in the original CSIDH, by walking to the surface. Thus, the only reduction in
security comes from the factor of 37.

Threshold Schemes from Isogeny Assumptions 209

and s′
i, the sums of shares si + s′

i form valid shares of s + s′. Based on this
observation, Pedersen [45] constructed a DKG scheme without a trusted dealer,
by having each party set up its own (k, n)-Shamir secret sharing scheme, and
then combining these schemes using the homomorphic property.

While the same homomorphic property also applies to HHS threshold
schemes, it seems difficult to achieve verifiability of the DKG like in [30,33,46].
An interesting research question is the construction of a verifiable DKG in the
general HHS framework, or for specific isogeny-based instantiations.

Finally, the instantiation of our schemes is limited by the feasibility of param-
eter generation: to the present date the only available parameter set is the
CSIDH-512 HHS, as computed by Beullens et al., with security currently esti-
mated at the NIST-1 level. Higher security levels would require extremely inten-
sive computations that are currently out of reach.

Acknowledgment. We thank Gustavo Banegas, Tanja Lange, Chloe Martindale, and
Dustin Moody for raising the topic of threshold cryptography at the Oxford PQC work-
shop. We thank Bertram Poettering, Patrick Towa Nguenewou for helpful discussions,
the anonymous referees and Christophe Petit for helping improve the quality of the
manuscript. Finally, we thank Jörn Steuding and the organizers of the summer school
“Cryptography meets Graph Theory” in Würzburg for supporting Luca De Feo’s visit,
and thereby helping to bootstrap this collaboration.

References

1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

2. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret
(extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 19

3. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 15

4. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
Advances in Cryptology - ASIACRYPT 2019, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

5. Beullens, W., Preneel, B., Szepieniec, A., Vercauteren, F.: LUOV. Round 2 submis-
sion, NIST Post-Quantum Cryptography Standardization (2019). https://www.
esat.kuleuven.be/cosic/pqcrypto/luov/

6. Biasse, J.-F., Iezzi, A., Jacobson, M.J.: A note on the security of CSIDH. In:
Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 153–
168. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9 9

7. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference, vol. 48 (1979)

8. Bonnetain, X., Schrottenloher, A.: Submerging CSIDH. Cryptology ePrint Archive,
Report 2018/537 (2018). https://eprint.iacr.org/2018/537

https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-34578-5_9
https://www.esat.kuleuven.be/cosic/pqcrypto/luov/
https://www.esat.kuleuven.be/cosic/pqcrypto/luov/
https://doi.org/10.1007/978-3-030-05378-9_9
https://eprint.iacr.org/2018/537

210 L. De Feo and M. Meyer

9. Brandão, L.T.A.N., Mouha, N., Vassilev, A.: Threshold schemes for cryptographic
primitives: challenges and opportunities in standardization and validation of
threshold cryptography. NISTIR 8214 (2018). https://nvlpubs.nist.gov/nistpubs/
ir/2019/NIST.IR.8214.pdf

10. Castryck, W., Decru, T.: CSIDH on the surface. Cryptology ePrint Archive, Report
2019/1404 (2019). https://eprint.iacr.org/2019/1404

11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

12. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endo-
morphisms. In: Eurocrypt 2020 (2020, to appear). https://eprint.iacr.org/2019/
1202

13. Cervantes-Vázquez, D., Chenu, M., Chi-Domı́nguez, J.J., De Feo, L., Rodŕıguez-
Henŕıquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
To appear at LATINCRYPT 2019 (2019). https://eprint.iacr.org/2019/837

14. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

15. Cozzo, D., Smart, N.P.: Sharing the LUOV: threshold post-quantum signatures.
In: Second PQC Standardization Conference (2019). https://csrc.nist.gov/CSRC/
media/Events/Second-PQC-Standardization-Conference/documents/accepted-
papers/cozzo-luov-paper.pdf

16. De Feo, L.: Mathematics of isogeny based cryptography (2017). http://arxiv.org/
abs/1711.04062

17. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

18. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 14

19. Decru, T., Panny, L., Vercauteren, F.: Faster seasign signatures through improved
rejection sampling. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol.
11505, pp. 271–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25510-7 15

20. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Crypt. 78(2), 425–440 (2016). https://doi.org/10.1007/
s10623-014-0010-1

21. Desmedt, Y.: Threshold cryptosystems. In: Seberry, J., Zheng, Y. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 1–14. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57220-1 47

22. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Hei-
delberg (1992). https://doi.org/10.1007/3-540-46766-1 37

23. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow. Round 2
submission, NIST Post-Quantum Cryptography Standardization (2019). https://
csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

24. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy
(SP), pp. 980–997. IEEE (2018)

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8214.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8214.pdf
https://eprint.iacr.org/2019/1404
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2019/1202
https://eprint.iacr.org/2019/1202
https://eprint.iacr.org/2019/837
https://eprint.iacr.org/2006/291
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/cozzo-luov-paper.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/cozzo-luov-paper.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/cozzo-luov-paper.pdf
http://arxiv.org/abs/1711.04062
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/3-540-57220-1_47
https://doi.org/10.1007/3-540-57220-1_47
https://doi.org/10.1007/3-540-46766-1_37
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Threshold Schemes from Isogeny Assumptions 211

25. Doulgerakis, E., Laarhoven, T., de Weger, B.: Finding closest lattice vectors using
approximate Voronoi cells. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-25510-7 1

26. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

27. Elkies, N.D.: Elliptic and modular curves over finite fields and related computa-
tional issues. In: 1995 Computational Perspectives on Number Theory. Studies in
Advanced Mathematics, Chicago, IL, vol. 7, pp. 21–76. AMS International Press,
Providence (1998)

28. Felderhoff, J.: Hard homogenous spaces and commutative super singular isogeny
based Diffie-Hellman. Internship report, Inria, France, August 2019. https://hal.
archives-ouvertes.fr/hal-02373179

29. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

30. Fouque, P.-A., Stern, J.: One round threshold discrete-log key generation without
private channels. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 300–316.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2 22

31. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1179–1194. ACM (2018)

32. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 31

33. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 21

34. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital mul-
tisignature. IEEE Proc.-Comput. Digit. Tech. 141(5), 307–313 (1994)

35. Jao, D., et al.: SIKE. Round 2 submission, NIST Post-Quantum Cryptography
Standardization (2019). https://sike.org/

36. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

37. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an
application to elliptic curve cryptography. J. Number Theory 129(6), 1491–1504
(2009). https://doi.org/10.1016/j.jnt.2008.11.006

38. Kiltz, E.: A tool box of cryptographic functions related to the Diffie-Hellman func-
tion. In: Rangan, C.P., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp.
339–349. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45311-3 32

39. Kuperberg, G.: Another sub exponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC. LIPIcs, vol. 22, pp. 22–34. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2013)

40. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

41. Meyer, M., Campos, F., Reith, S.: On Lions and Elligators: an efficient constant-
time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7 17

https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-25510-7_1
https://hal.archives-ouvertes.fr/hal-02373179
https://hal.archives-ouvertes.fr/hal-02373179
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-44586-2_22
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-48910-X_21
https://sike.org/
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1016/j.jnt.2008.11.006
https://doi.org/10.1007/3-540-45311-3_32
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17

212 L. De Feo and M. Meyer

42. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

43. National Institute of Standards and Technology (NIST): Post-Quantum Cryp-
tography Standardization (2016). https://csrc.nist.gov/Projects/post-quantum-
cryptography/Post-Quantum-Cryptography-Standardization

44. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short paper) a faster constant-
time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.)
IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26834-3 2

45. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 47

46. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

47. Peikert, C.: He gives C-Sieves on the CSIDH. In: Eurocrypt 2020 (2020, to appear).
https://eprint.iacr.org/2019/725

48. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space. arXiv preprint quant-ph/0406151 (2004). https://
arxiv.org/abs/quant-ph/0406151

49. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). http://eprint.iacr.org/2006/145

50. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

51. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
52. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
53. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

54. Stinson, D.R., Strobl, R.: Provably secure distributed Schnorr signatures and a (t,
n) threshold scheme for implicit certificates. In: Varadharajan, V., Mu, Y. (eds.)
ACISP 2001. LNCS, vol. 2119, pp. 417–434. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-47719-5 33

55. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

56. Stolbunov, A.: Cryptographic schemes based on isogenies. Doctoral thesis, NTNU
(2012)

57. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A. 271,
238–241 (1971)

https://doi.org/10.1007/978-3-030-05378-9_8
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://eprint.iacr.org/2019/725
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151
http://eprint.iacr.org/2006/145
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33

Multiparty Protocols

Topology-Hiding Computation
for Networks with Unknown Delays

Rio LaVigne1, Chen-Da Liu-Zhang2 , Ueli Maurer2, Tal Moran3,
Marta Mularczyk2(B), and Daniel Tschudi4

1 MIT, Cambridge, USA
rio@mit.edu

2 ETH Zurich, Zürich, Switzerland
{lichen,maurer,mumarta}@inf.ethz.ch

3 IDC Herzliya, Herzliya, Israel
talm@idc.ac.il

4 Concordium, Zürich, Switzerland
dt@concordium.com

Abstract. Topology-Hiding Computation (THC) allows a set of par-
ties to securely compute a function over an incomplete network without
revealing information on the network topology. Since its introduction in
TCC’15 by Moran et al., the research on THC has focused on reducing
the communication complexity, allowing larger graph classes, and toler-
ating stronger corruption types.

All of these results consider a fully synchronous model with a known
upper bound on the maximal delay of all communication channels. Unfor-
tunately, in any realistic setting this bound has to be extremely large,
which makes all fully synchronous protocols inefficient. In the literature
on multi-party computation, this is solved by considering the fully asyn-
chronous model. However, THC is unachievable in this model (and even
hard to define), leaving even the definition of a meaningful model as an
open problem.

The contributions of this paper are threefold. First, we introduce a
meaningful model of unknown and random communication delays for
which THC is both definable and achievable. The probability distribu-
tions of the delays can be arbitrary for each channel, but one needs
to make the (necessary) assumption that the delays are independent.

R. LaVigne—This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1122374. Any opinion,
findings, and conclusions or recommendations expressed in this material are those of the
authors(s) and do not necessarily reflect the views of the National Science Foundation.
Research supported in part by NSF/BSF grant no. 1350619, an MIT-IBM grant, and
a DARPA Young Faculty Award.
T. Moran—Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-
center.
M. Mularczyk—Research supported by the Zurich Information Security and Privacy
Center (ZISC).
D. Tschudi—Work was done while author was at Aarhus University, supported by
advanced ERC grant MPCPRO.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 215–245, 2020.
https://doi.org/10.1007/978-3-030-45388-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_8&domain=pdf
http://orcid.org/0000-0002-0349-3838
http://orcid.org/0000-0001-6188-1049
https://doi.org/10.1007/978-3-030-45388-6_8

216 R. LaVigne et al.

The existing fully-synchronous THC protocols do not work in this setting
and would, in particular, leak information about the topology. Second,
in the model with trusted stateless hardware boxes introduced at Euro-
crypt’18 by Ball et al., we present a THC protocol that works for any
graph class. Third, we explore what is achievable in the standard model
without trusted hardware and present a THC protocol for specific graph
types (cycles and trees) secure under the DDH assumption. The speed of
all protocols scales with the actual (unknown) delay times, in contrast to
all previously known THC protocols whose speed is determined by the
assumed upper bound on the network delay.

1 Introduction

In the wake of GDPR and other privacy laws, companies need ways to process
data in a way such that the trust is distributed among several parties. A fun-
damental solution to this problem is secure multiparty computation. Here, one
commonly assumes that all parties have pairwise communication channels. In
contrast, for many real-world scenarios, the communication network is not com-
plete, and parties can only communicate with a subset of other parties. A natural
question is whether a set of parties can successfully perform a joint computa-
tion over an incomplete communication network while revealing no information
about the network topology.

The problem of topology-hiding computation (THC) was introduced by Moran
et al. [MOR15], who showed that THC is possible in the setting with passive
corruptions and graphs with logarithmic diameter. Further solutions improve
the communication efficiency [HMTZ16] or allow for larger classes of graphs
[AM17,ALM17]. Recent results [BBMM18,LLM+18] even provide THC for fail-
stop or semi-malicious adversaries (although at the price of leaking some small
amount of information about the topology).

However, all those results consider the fully synchronous model, where a
protocol proceeds in rounds. This model makes two assumptions: first, the parties
have access to synchronized clocks, and second, every message is guaranteed to be
delivered within one round. While the first assumption is reasonable in practice,
as nowadays computers usually stay synchronized with milliseconds of variation,
the second assumption makes protocols inherently impractical. This is because
the running time of a protocol is always counted in the number of rounds, and
the round length must be chosen based on the most pessimistic bound on the
message delivery time. For concreteness, consider a network where most of the
time messages are delivered within milliseconds, but one of the connections, once
in a while, may slow down to a couple of hours. In this case, a round would have
to take a couple of hours.

1.1 Contributions

This motivates the goal of this work, which is to construct THC protocols for
more realistic settings, where messages are not guaranteed to be delivered within
a fixed time bound.

Topology-Hiding Computation for Networks with Unknown Delays 217

Model. A natural starting point would be to consider the strongest possible
adversary, i.e. one who fully controls message delivery (this is the standard set-
ting considered by asynchronous MPC, e.g. [BOCG93,Can01]). First, note that
this standard model is not well suited for our setting, since in order to decide
when messages are delivered, the adversary must know the network, which we
attempt to hide. The next logical step is to consider a model where the adversary
can only interfere with delays between parties he controls, but unfortunately,
even this grants the adversary too much power. In fact, we prove in AppendixA
that it is impossible to get a topology-hiding broadcast in this model.

This forces us to define a slightly weaker model. We call it the Probabilistic
Unknown Delay Model and we formally define it in Sect. 2. In this model the
messages are delayed independently of the adversary, but different connections
have different, unbounded probabilistic delays. This means that we throw off
the assumption that makes the synchronous protocols impractical. Still, parties
have access to synchronized clocks.

Protocols. We remark that it is not easy to modify synchronous THC protocols
(even those tolerating fail-stop adversaries) to remain secure in the Probabilistic
Unknown Delay Model. For example, consider the standard technique of letting
each party attach to each message a round number r, and then wait until it
receives all round-r messages before proceeding to the next round. This seems
to inherently leak the topology, as the time at which a party receives a message
for round r reveals information about the neighborhood of the sender (e.g., that
it contains an edge with very long delays).

This forces us to develop new techniques, which result in three new protocols,
secure in the Probabilistic Unknown Delay Model against any number of passive
corruptions. We require a setup, but this setup is independent of the network
topology (it only depends on the number of parties), and it can be used to run
multiple instances of the protocols, with different communication graphs.

Our first two protocols (Sect. 3) implement topology-hiding broadcast (any
functionality can then be realized using standard techniques, by executing a
sequence of broadcasts). The protocols are based on standard assumptions, but
can only be used in limited classes of graphs (the same ones as in [AM17]): cycles
and trees, respectively.1

Furthermore, observe that the running time of a protocol could itself leak
information about the topology. Indeed, this issue seems very difficult to over-
come, since, intuitively, making the running time fully independent of the graph
delays conflicts with our goal to design protocols that run as fast as the actual
network. We deal with this by making the running time of our protocols depend
only on the sum of all the delays in the network.

Then, in Sect. 4, we introduce a protocol that implements any functional-
ity, works on arbitrary connected graphs, and its running time corresponds to

1 Our second protocol works for any graphs, as long as we agree to reveal a spanning
tree: the parties know which of their edges are on the tree and execute the protocol,
ignoring other edges. See also [AM17].

218 R. LaVigne et al.

(one sample of) the sum of all delays. On the other hand, we assume state-
less secure hardware. Intuitively, a hardware box is a stateless program with
an embedded secret key (the same for all parties). This assumption was intro-
duced in [BBMM18] in order to deal with fail-stop adversaries in THC. Similar
assumptions have also been considered before, for example, stateless tamper-
proof tokens [CGS08,GIS+10,CKS+14]2, or honestly-generated secure hardware
[HMQU05,CT10].

While secure hardware is a very strong assumption, the paradigm of con-
structing protocols with the help of a hardware oracle and then replacing the
hardware oracle by more standard assumptions is common in the literature (see
for example the secure hardware box assumption for the case of synchronous
topology-hiding computation (with known upper bounds on the delays) for fail-
stop adversaries [BBMM18], which was later relaxed to standard assumptions
[LLM+18], or the Signature Card assumption for proofs-carrying-data schemes
[CT10]). We hope that the techniques presented in this paper can be useful to
construct protocols in more standard models.

1.2 Related Work

Topology-hiding computation was introduced by Moran et al. in [MOR15]. The
authors propose a broadcast protocol tolerating any number of passive corrup-
tions. The construction uses a series of nested multi-party computations, in
which each node is emulated by its neighbors. This broadcast protocol can then
be used to achieve topology-hiding MPC using standard techniques to trans-
form broadcast channels into secure point-to-point channels. In [HMTZ16], the
authors provide a more efficient construction based on the DDH assumption.
However, both results are only feasible for graphs with logarithmic diameter.
Topology-hiding communication for certain classes of graphs with large diame-
ter was described in [AM17]. This result was finally extended to arbitrary (con-
nected) graphs in [ALM17]. These results were extended to the fail-stop setting
in [BBMM18] based on stateless secure hardware, and [LLM+18] based on stan-
dard assumptions. All of the results mentioned above are in the cryptographic
setting. Moreover, all results are stated in the synchronous communication model
with known upper bounds on the delays.

In the information-theoretic setting, the main result is negative [HJ07]: any
topology-hiding MPC protocol inherently leaks information about the network
graph. This work also shows that if the routing table is leaked, one can construct
an MPC protocol which leaks no additional information.

2 The Probabilistic Unknown Delay Model

At a high level, we assume loosely synchronized clocks, which allow the parties
to proceed in rounds. However, we do not assume that the messages are always
2 The difference here is that a token typically needs to be passed around during the

protocol and the parties can embed their own programs in it, whereas a secure
hardware box is used only by one party and is initialized with the correct program.

Topology-Hiding Computation for Networks with Unknown Delays 219

delivered within one round. Rather, we model channels that have delays drawn
from some distributions each time a message is sent along (a different distribu-
tion for each channel). These delays are a property of the network. As already
mentioned, this allows to achieve a significant speedup, comparable to that of
asynchronous protocols and impossible in the fully synchronous model.

2.1 Impossibility of Stronger Models

Common models for asynchronous communication [BOCG93,Can01] consider a
worst-case scenario and give the adversary the power to schedule the messages.
By scheduling the messages, the adversary automatically learns which parties are
communicating. As a consequence, it is unavoidable that the adversary learns
the topology of the communication graph, which we want to hide.

A natural definition, then, would be to give to the adversary control over
scheduling on channels from his corrupted parties. However, any reasonable
model in which the adversary has the ability to delay messages for an unbounded
amount of time allows him to learn something about the topology of the graph.
In essence, a very long delay from a party behaves almost like an abort, and an
adversary can exploit this much like a fail-stop adversary in the impossibility
result of [MOR15]. We formally prove this in a very weak adversarial model in
AppendixA.

Since delays cannot depend on the adversary without leaking topology, delays
are an inherent property of the given network, much like in real life. As stated
before, we give each edge a delay distribution, and the delays of messages travel-
ing along that edge are sampled from this distribution. This allows us to model
real-life networks where the adversary cannot tamper with the network connec-
tions. For example, on the Internet, delays between two directly connected nodes
depend on their distance and the reliability of their connection.

2.2 Adversary

We consider an adversary, who statically and passively corrupts any set Z ⊆
P = {P1, . . . , Pn} of parties, with |Z| < n. Static corruptions mean that the set
Z is chosen before the protocol execution. Passively corrupted parties follow the
protocol instructions, but the adversary can access their internal states during
the execution.

The setting with passive corruptions and secure hardware boxes is somewhat
subtle. In particular, the adversary is allowed to input to the box of a corrupted
party any messages of his choice, even based on secret states of other corrupted
parties; he can even replay messages from honest parties with different corrupted
inputs. This will be why we need authenticated encryption, for example. Impor-
tantly, in the passive model, the messages actually sent by a corrupted party are
produced using the box with valid inputs.

220 R. LaVigne et al.

2.3 Communication Network and Clocks

Clocks. Each party has access to a clock that ticks at the same rate as every
other clock. These ticks are fast; one can think of them as being milliseconds
long or even faster (essentially, the smallest measurable unit of time).

We model the clocks by the clock functionality Fclock of [KMTZ13], which
we recall here for completeness. The functionality keeps the absolute time τ ,
which is just the number of ticks that have passed since the initialization. Every
single tick, a party is activated, given the time, and runs a part of the protocol.
To ensure that honest parties are activated at least once every clock tick, the
absolute time is increased according to “Ready” messages from honest parties.

Functionality Fclock

The clock functionality stores a counter τ , initially set to 0. For each honest party
Pi it stores a flag di, initialized to 0.

ReadClock: On input (ReadClock) from party Pi return τ .

Ready: On input (Ready) from honest party Pi set di = 1.

ClockUpdate: On every activation the functionality runs this code before doing

anything else.

1: if for every honest party Pi it holds di = 1 then
2: Set di = 0 for every honest party Pi.
3: Set τ = τ + 1.

Because clocks wait for “Ready” messages, computation is instant, happening
within a single clock-tick. While this is not exactly what happens in the real
world, our protocols do not abuse this property. In particular, they proceed in
rounds, where each round takes a number (e.g., one million) clock-ticks. Parties
process and send messages only once in a round, and remain passive at other
times (in real world, this would be the time they perform the computation).

Network. The (incomplete) network with delays is modeled by the network
functionality Fnet. Similar to the synchronous models for THC, the description
of the communication graph is inputted before the protocol execution by a special
party Psetting. In our case, this description also contains a (possibly different)
probability distribution for each edge indicating its delay. Each party can ask
the functionality for its neighborhood in the communication graph and the delay
distributions on the edges to its neighbors.3 During the protocol execution, at

3 In fact, our hardware-based protocol does not use this information, and our protocols
for cycles and trees only need upper bounds on the expected values of the delays.
This bound can be easily established, e.g. by probing the connection.

Topology-Hiding Computation for Networks with Unknown Delays 221

every clock tick, parties can send to each neighbor a message, which is delivered
after a delay sampled from a given distribution.

Functionality Fnet

The functionality is connected to a clock functionality Fclock. The functionality
stores a communication graph G and, for each edge e, a distribution De from
which delays are sampled. Initially, G contains no edges. The functionality also
stores the current time τ and a set of message tuples buffer which initially is
empty.

Clock Update: Each time the functionality is activated, it first queries Fclock

for the current time and updates τ accordingly.

Initialization Step: // This is done at most once, before the protocol starts.

The party Psetting inputs a communication graph G and, for each edge e, a distri-
bution De. The functionality stores G and De.

Graph Info: On input (GetInfo) from an honest party Pi, the functionality

outputs to Pi its neighborhood NG(Pi) and the delay distribution D(i,j) for all
j ∈ NG(Pi).

Communication Step:

– On input (Send, i, j, m) from party Pi, where Pj ∈ NG(Pi), Fnet samples the
delay dij for the edge (i, j) from D(i,j) and records the tuple (τ+dij , Pi, Pj , m)
in buffer.a

– On input (FetchMessages, i) from Pi, for each message tuple (T, Pk, Pi, m)
from buffer where T ≤ τ , the functionality removes the tuple from buffer

and outputs (k, m) to Pi.

a Technically, our model allows to send in one round multiple independent messages.

However, our protocols do not exploit this property; we only assume that messages are

independent if they are sent in different rounds.

Leakage in the Ideal World. During the protocol execution the adversary
can learn local neighborhoods from Fnet. Therefore, any ideal-world adversary
should also have access to this information. This is ensured by the ideal-world
functionality FL

info, which has the same initialization step and the same graph
information as Fnet, but does not allow for actual communication.

Moreover, in any protocol it is unavoidable that the adversary learns the
time at which the output is revealed. In previous synchronous THC protocols,
this quantity corresponded to a fixed number of rounds (depending on an upper
bound on the graph size or its diameter). This can no longer be the case in our
model, where the number of rounds it takes to deliver a message is unbounded.
Hence, it is necessary to parameterize FL

info by a leakage function L, that allows
the adversary to compute the output time. L depends on the set D of all delay

222 R. LaVigne et al.

distributions in the network, but it does not depend on the communication graph
itself. Additionally, we allow the adversary to pass to L an auxiliary input, that
will accommodate any protocol parameters that influence the output time.

For example, in our protocol based on secure hardware, L will return the
distribution of the sum of all network delays, rounded to the next multiple of
the round length R (where R is provided as auxiliary input by the adversary).

Functionality FL
info

Initialization Step: // This is done at most once, before the protocol starts.

The party Psetting inputs a communication graph G and, for each edge e, a distri-
bution De. The functionality stores G and De.

Graph Info:

– On input (GetInfo) from an honest party Pi, the functionality outputs to Pi

its neighborhood NG(Pi) and the delay distribution D(i,j) for all j ∈ NG(Pi).
– On the first input (GetInfo, aux) from the adversary the functionality out-

puts: the neighborhood of all corrupted parties, the delay distribution of
every edge where at least one of the nodes is corrupted, and the leakage
L(aux, D), where D is the set of all delay distributions in the network.

2.4 Additional Related Work

Katz et al. [KMTZ13] introduce eventual-delivery and channels with a fixed
known upper bound. These functionalities implement communication between
two parties, where the adversary can set, for each message, the delay after which
it is delivered. For reasons stated at the beginning of this section, such function-
alities cannot be used directly to model topology-hiding computation. Instead
of point-to-point channels we need to model the whole communication network,
and we cannot allow the adversary to set the delays. Intuitively, Fnet implements
a number of bounded-delay channels, each of which is modified so that the delay
is chosen once and independently of the adversary. If we did not consider hiding
the topology, our modified channels would be a stronger assumption.

Cohen et al. [CCGZ16] define different channels with probabilistic delays,
for example point-to-point channels (the SMT functionalities) and an all-to-all
channel (parallel SMT, or PSMT). However, their PSMT functionality cannot
be easily modified to model THC, since the delivery time is sampled once for
all parties. One could modify the SMT functionalities and use their parallel
composition, but we find our formulation simpler and much better suited for
THC.

Topology-Hiding Computation for Networks with Unknown Delays 223

3 Protocols for Restricted Classes of Graphs

This section considers protocols that realize topology-hiding broadcast in the
Probabilistic Unknown Delay Model under standard assumptions (in particular,
we give an instantiation based on DDH), but in the limited setting where graphs
are trees or cycles. We stress that we can deal with any graphs if a spanning tree
is revealed. In the following, we first recall the known technique to achieve fully-
synchronous THC using random walks and so-called PKCR encryption [ALM17].
Then, we extend PKCR by certain additional properties, which allows us to
construct a broadcast protocol for cycles in the Probabilistic Unknown Delay
Model. Finally, we extend this protocol to trees.

3.1 Synchronous THC from Random Walks

Currently, the most efficient fully-synchronous THC protocols are based on the
technique of correlated random walks, introduced in [ALM17]. Intuitively, a
PKCR scheme is assumed, which is an enhanced public-key encryption scheme
on group elements, where the public keys come with a group operation: we
write pk12 = pk1 � pk2. The encryption and decryption algorithms are denoted
PKCR.Enc(m, pk) and PKCR.Dec(c, sk), respectively. Additionally, a party can
add a layer of encryption to a ciphertext c encrypted under pk1, using the algo-
rithm PKCR.AddLayer(c, sk2), which outputs an encryption c′ under the com-
bined key pk12. This operation can be undone with PKCR.DelLayer(c′, sk2). We
also require that PKCR is homomorphic and rerandomizable (note that the lat-
ter is implied).

The goal is to broadcast one bit. However, we instead realize the OR function-
ality, which can then be used for broadcast (in the semi-honest setting) by having
the sender input his bit, and all other parties input 0. The protocol proceeds as
follows. A party starts by encrypting 0 if its input bit is 0, and a random group
element otherwise, under a fresh key. In the first, so-called aggregate phase, this
ciphertext travels along a random walk for a fixed number of rounds R (col-
lecting the input bits of each party until it has traversed the whole graph with
high probability). In each round, each party adds a layer of encryption to the
received ciphertext (using a freshly generated key) and homomorphically adds
its input. After R rounds, the parties start the decrypt phase, in which they
send the final ciphertext back through the same walk it traversed in the first
phase, and the layers of encryption are removed (using the secret keys stored
during the aggregate phase). It is important that the ciphertext is sent via the
same walk, to remove exactly the same layers of encryption that were added in
the first phase. The parties determine this walk based on how they routed the
ciphertext in the corresponding round of the aggregate phase. After another R
rounds, each party interprets the group element as a 0-bit (the 0 element) or as
a 1-bit (any other element).

This technique breaks down in the Probabilistic Unknown Delay Model. For
example, it is not clear how to choose R such that the walk traverses the whole
graph since it would depend on an upper bound on the delays. Moreover, in the

224 R. LaVigne et al.

decrypt phase, parties no longer know how to route a ciphertext back via the
same walk it took in the aggregate phase. This is because they do not know
the number of steps it already made in the backward walk (this depends on
the actual delays). Furthermore, it is not straightforward to modify the random
walk technique to deal with this. For instance, the standard method of attaching
a round number to every message (to count the number of encryption layers)
reveals information about the topology.

3.2 Protocol for Cycles

We assume an enhanced PKCR scheme, denoted PKCR*. The main differences
from PKCR are as follows. First, the message space in PKCR* is now the set
{0, 1}, and it is disjoint from the ciphertext space. This allows to distinguish
between a layered ciphertext and a plaintext. Moreover, we no longer require
explicit homomorphism, but instead use the algorithm PKCR*.ToOne(c) that
transforms an encryption of 0 into an encryption of 1 without knowing the
public key.4 We formally define PKCR* and give an instantiation based on the
DDH assumption in AppendixB.

Rounds. Although we are striving for a protocol that behaves in a somewhat
asynchronous way, we still have a notion of rounds defined by a certain number
of clock ticks. Even though each party is activated in every clock tick, each
party receives, processes and sends a message only every R clock ticks—this
keeps parties in sync despite delays, without clogging the network. Even if no
message is received, a message is sent.5 This means that at time τ , we are on
round rτ = �τ/R�; the τ parameter will be dropped if obvious from context.
Moreover, observe that the message complexity increases as R decreases. For
reference, R can be thought of as relatively large, say 1,000 or more; this is also
so that parties are able to completely process messages every round.

A Protocol with Constant Delays. To better explain our ideas, we first
describe our protocol in the setting with constant delays, and then modify it to
deal with any delay distributions.

The high-level idea is to execute directly the decrypt phase of the random-
walk protocol, where the walk is simply the cycle traversal, and the combined
public key corresponding to the ciphertext resulting from the aggregate phase is
given as the setup (note that this is independent of the order of parties on the
graph). More concretely, we assume that each party Pi holds a secret key ski

4 Its functionality does not matter and is left undefined on encryptions of 1.
5 If the parties do not send at every round, the topology would leak. Intuitively, when

a party Pi sends the initial message to its right neighbor Pj , the right neighbor
of Pj learns how big the delay from Pi to Pj was. We can extend this to larger
neighborhood, eventually revealing information about relative positions of corrupted
parties.

Topology-Hiding Computation for Networks with Unknown Delays 225

and the combined public key pk = pk1 � . . .�pkn. Assume for the moment that
each party knows who the next clockwise party is in the cycle. At the beginning,
a party Pi, every round (i.e., every R clock ticks), starts a new cycle traversal
by sending to the next party a fresh encryption of its input PKCR*.Enc(bi, pk).
Once Pi starts receiving ciphertexts from its neighbor (note that since the delays
are fixed, there is at most one ciphertext arriving in a given round), it instead
continues the cycle traversals. That is, every time it receives a ciphertext c
from the previous neighbor, it deletes the layer of encryption using its secret
key: PKCR*.DelLayer(c, ski). It then rerandomizes the result and sends it to
the next party. The sender additionally transforms the ciphertext it receives to
a 1-ciphertext in case its bit is 1. After traversing the whole cycle, all layers
of encryption are removed and the parties can recognize a plaintext bit. This
happens at the same time for every party.

In order to remove the assumption that each party knows who the next
clockwise party is, we simply traverse the cycle in both directions.

A Protocol Accounting for Variable Delays. The above approach breaks
down with arbitrary delays, where many messages can arrive at the same round.
We deal with this by additionally ensuring that every message is received in
a predictable timely manner: we will be repeating message sends. As stated in
Sect. 2, the delays could be variable, but we make the assumption that if messages
are sent at least R clock-ticks from each other, then the delay for each message is
independent. We also assume that the median value of the delay along each edge
is polynomial, denoted as Med[De]. Now, since the protocol will handle messages
in rounds, the actual values we need to consider are all in rounds: �Med[De]/R�.

Now, if over κ rounds, P1 sends a message c each round, the probability that
none of the copies arrives after κ+ �Med[De]/R� rounds is negligible in terms of
κ, the security parameter (see full version [LLM+19] for the proof). Because we
are guaranteed to have the message by that time (and we believe with reasonable
network delays, median delay is small), we wait until time (κ+�Med[De]/R�) ·R
has passed from when the original message was sent before processing it.6

For the purposes of this sketch, we will just consider sending messages one
way around the protocol. We will also focus on P1 (with neighbors Pn and P2)
since all parties will behave in an identical manner. First, the setup phase gives
every party the combined public key pk = pk1�. . .�pkn. At each step, processing
a message will involve using the PKCR.DelLayer functionality for their key.

In the first round, P1 sends its bit (0 if not the source node, bs if the source
node) encrypted under pk to P2, let’s call this message c

(1)
1 . P1 will wait w =

κ + �Med[De]/R� rounds to receive Pn’s first message during this time. Now,
because P1 needs to make sure c

(1)
1 makes it to P2, for the next κ rounds, P1

continues to send c
(1)
1 . However, because P1 also needs to hide w (and thus cannot

6 Note that delays between rounds are independent, but not within the round. This
means we need to send copies of the message over multiple rounds for this strategy
to work.

226 R. LaVigne et al.

reveal when it starts sending its processed message from Pn), P1 starts sending a
new ciphertext encrypting the same message, c

(1)
2 (again κ times over κ rounds),

until it has waited w rounds—so, P1 is sending c
(1)
1 and c

(1)
2 in the second round,

c
(1)
1 , c

(1)
2 and c

(1)
3 the third round and so forth until it sends c

(1)
1 , . . . c

(1)
κ in round

κ. Then it stops sending c
(1)
1 and starts sending c

(1)
κ+1. P1 will only ever send κ

messages at once per round. Once it has waited w rounds, P1 is guaranteed to
have received the message from Pn and can process and forward that message,
again sending it κ times over κ rounds. In the next round, P1 will then be
guaranteed to receive the next message from Pn, and so on.

Let MedRSum[D] =
∑n

i=1

⌈
Med[D(i,(i+1 mod n)+1)]/R

⌉
denote the median-

round-sum of the delays. Because each party waits like this, the protocol has a
guaranteed time to end, the same for all parties:

R ·
n∑

i=1

wi = R (nκ + MedRSum[D]) .

This is the only information ‘leaked’ from the protocol: all parties learn the
sum of ceiling’d medians, MedRSum[D]. Additionally, parties all know the (real,
not a round-delay) distribution of delays for messages to reach them, and thus
can compute �Med[De]/R� for their adjacent edges.

Formally, the protocol CycleProt is described as follows.

Protocol CycleProt

// The common input of all parties is the round length R. Additionally, the sender
Ps has the input bit bs.
Setup: For i ∈ {1, . . . , n}, let (pki, ski) = PKCR*.KGen(1κ). Let pk = pk1 �

. . . � pkn. The setup outputs to each party Pi its secret key ski and the product
public key pk.

Initialization for each Pi:

– Send (GetInfo) to the functionality Fnet and assign randomly the labels P 0,
P 1 to the two neighbors.

– Let Rec0,Rec1 be lists of received messages from P 0 and P 1 respectively, both
initialized to ⊥ . Let Send0 and Send1 be sets initialized to ∅; these are the
sets of messages that are ready to be sent.

– For each � ∈ {0, 1}, D(i,�) is the delay distribution on the edge between Pi

and P �, obtained from Finfo.
– Let w� = κ +

⌈
Med[D(i,�)]/R

⌉
be the time Pi waits before sending a message

from P � to P 1−�

Execution for each Pi:

1: Send (ReadClock) to the functionality Fclock and let τ be the output. If τ
mod R �= 0, send (Ready) to the functionality Fclock. Otherwise, let r = τ/R
be the current round number and do the following:

Topology-Hiding Computation for Networks with Unknown Delays 227

2: Receive messages: Send (FetchMessages, i) to the functionality Fnet. For
each message (rc, c) received from a neighbor P �, set Rec�[rc + w�] = c.

3: Process if no messages received: For each neighbor P � such that Rec�[r] = ⊥,
start a new cycle traversal in the direction of P 1−�:

– If Pi is sender (i.e. i = s) then add (κ, r,PKCR*.Enc(bs, pk)) to Send1−�.
– Otherwise, add (κ, r,PKCR*.Enc(0, pk)) to Send1−�.

4: Process received messages: For each P � such that Rec�[r] �= ⊥ (we have
received a message from P �), set d = PKCR*.DelLayer(Rec�[r], ski), and do
the following:

– If d ∈ {0, 1}, output d and halt (we have decrypted the source bit).
– Otherwise, if i = s and bs = 1, then set d = PKCR*.ToOne(d). Then, in

either case, add (κ, r,PKCR*.Rand(d)) to Send1−�.
5: Send message: For each � ∈ {0, 1}, let Sending� = {(k, rc, c) ∈ Send� : k > 0}.

For each (k, rc, c) ∈ Sending�, send (rc, c) to P �.
6: Update Send set: For each (k, rc, c) ∈ Sending�, remove (k, rc, c) from Send�

and insert (k − 1, rc, c) to Send�.
7: Send (Ready) to the functionality Fclock.

In the full version [LLM+19] we prove the following theorem (FBC denotes
the broadcast functionality).

Theorem 1. The protocol CycleProt UC-realizes (Fclock,FLmedian
info ,FBC) in the

(Fclock,Fnet)-hybrid model with an adversary who statically passively corrupts
any number of parties, where the leakage function is defined as Lmedian(R,D) =
MedRSum[D].7

3.3 Protocol for Trees

We show how to modify the cycle protocol presented in the previous section
to securely realize the broadcast functionality FBC in any tree. As observed in
[AM17], given a tree, nodes can locally compute their local views of a cycle-
traversal of the tree. However, to apply the cycle protocol to this cycle-traversal,
we would need as setup a combined public key that has each secret key ski as
many times as Pi appears in the cycle-traversal. To handle that, each party sim-
ply removes its secret key from the ciphertexts received from the first neighbor,
and we can assume the same setup as in the cycle protocol.

In the full version [LLM+19] we give a formal description of the protocol
TreeProt. The proof of the following theorem is a straightforward extension of
the proof of Theorem 1.

Theorem 2. The protocol TreeProt UC-realizes (Fclock,FLmedian
info ,FBC) in the

(Fclock,Fnet)-hybrid model with an adversary who statically passively corrupts
any number of parties, where the leakage function is defined as Lmedian(R,D) =
MedRSum[D].
7 Note that the round length R is a parameter of the protocol, so we allow the adver-

sary to provide it.

228 R. LaVigne et al.

4 Protocol for General Graphs

We present a protocol that allows us to securely realize any functionality in
any connected communication graph with unknown delay distributions on the
edges. For that, we use the same setup as [BBMM18]: we assume that the parties
have access to secure hardware boxes, initialized with the same secret key, and
executing the same functionality FHW, independent of the graph and the realized
functionality (see [BBMM18] for details of this model).

Our protocol is divided into two sub-protocols: preprocessing and compu-
tation. Both sub-protocols do not terminate on their own. Rather, we assume
that each party gets a signal when it can finish each sub-protocol.8 The prepro-
cessing is executed only once, before any input is specified and can be re-used.
Intuitively, it outputs, for each party, an encryption of the entire communication
graph under the secret key embedded in the hardware boxes. The computa-
tion allows to evaluate any function, with the help of the encrypted information
outputted by the preprocessing. One output of preprocessing can be used to
execute the computation any number of times, each time with different function
and different inputs.

In the following, we formally describe both protocols. To make the exposition
easier to follow, we postpone the precise definition of the functionality FHW exe-
cuted by the hardware boxes, to AppendixC, and for now only give an informal
description of its behavior whenever FHW is invoked.

4.1 Preprocessing

The preprocessing is executed without any inputs. The output is a pair (idi, c),
where idi is a (secret) random string used to identify a party, and c is a ciphertext
that contains an encrypted state with the whole graph. This output pair will be
inputted to the computation protocol.

At a high level, the protocol floods the network with encrypted partial images
of the graph, until the signal to terminate occurs. We assume that the sig-
nal occurs late enough for all parties to collect all information. In more detail,
throughout the protocol, a party Pi keeps an encrypted state c, containing infor-
mation about the graph and parties’ id’s, that it collected up to a given point.
Initially, c contains only the local neighborhood and idi chosen at random by
Pi. Then, every round, Pi sends c to all its neighbors. When it receives a state
cj from a neighbor Pj , it uses the functionality FHW box to update c with the
information from cj . That is, FHW gets as input two encrypted states containing
partial images on the graph, respectively, decrypts both states and merges the
information into a new state, which is encrypted and output.
8 In practice, this is not an unrealistic assumption. It would be enough, for example,

if each party was given a very rough upper bound on the time it takes to flood
the network and traverse all edges of the graph (for instance, a constant number
proportional to the sum of delays on all edges). This is still faster than assuming
worst-case upper bounds on the delays along edges, as one would need to do to adapt
a fully synchronous protocol.

Topology-Hiding Computation for Networks with Unknown Delays 229

Protocol Hw-Preprocessing

// The common input of all parties is the round length R.

Setup: Each party Pi has access to a secure hardware box functionality FHW.

Initialization for each Pi: Choose an identifier idi at random and send

(GetInfo) to Fnet, to obtain the neighborhood NG(Pi). Input (i, idi,NG(Pi))
to FHW and store the resulting encrypted state c.

Execution for each Pi at every round (every R clock ticks):

1: Send c to each Pj ∈ NG(i).
2: Send (FetchMessages, i) to Fnet. For each received message c′, input

(idi, c, c
′) to FHW and set the updated state c to the result.

Termination for each Pi: Upon receiving the signal, output (idi, c).

4.2 Computation

The inputs to the computation protocol are, for every Pi, its input xi, a descrip-
tion of the function fi that evaluates Pi’s output of the computed function, and
the values idi and ci, outputted by preprocessing.

The high-level idea is that the hardware box FHW gets as part of its input
the value ci, containing, among others, the encrypted communication graph.
This allows it to deterministically compute an Eulerian cycle, which visits every
edge exactly twice. Then, every party starts a traversal of the Eulerian cycle,
in order to collect the inputs from all parties. Once all inputs are collected, the
box computes the function and gives the output to the party. Traversing each
edge exactly twice allows all parties to learn the output at a time that does not
depend on the graph topology but (roughly) on the distribution of the sum of
the delays. Of course, all messages are encrypted under the secret key embedded
in the hardware boxes.

This means that at any time during the protocol there are n cycle traversals
going through the graph (one per a starting party). Each of the traversals visits
all edges in the graph twice. So in each round a party Pi processes messages for
up to n traversals. To hide the number of actual traversal processed Pi sends n
messages to each of its neighbors. This means that each round, Pi receives from
each neighbor n messages. It inputs all of them to its hardware box (together
with its input to the computed function) and receives back, for each neighbor,
a set of n messages that it then sends to him.

A party receives the output once the cycle has been traversed, which takes
time proportional to the sum of the rounded delays. Once the parties receive
output, they continue executing the protocol until they receive the termination
signal, which we assume occurs late enough for all parties to get their outputs.

230 R. LaVigne et al.

There are still some subtle issues, that the above sketch does not address.
First, the adversary could try to tamper with the ciphertexts. For example, in
our protocol a message contains a list of id’s that identifies the path it already
traversed. This is done so that the adversary cannot extend the traversal on
behalf of an honest party Pi without knowing its secret idi. Now the adversary
could try to extend this list nevertheless, by copying part of the encrypted state
of a corrupted party—recall that this state contains all idi’s. To prevent such
situations, we use authenticated encryption.

Second, we need to specify when the parties input the function they are
evaluating into the box. Doing this at the very end would allow the adversary
to evaluate many functions of her choice, including the identity. So instead, in
our protocol the function is inputted once, when the cycle traversal is started,
and it is always a part of the message. This way, when the output is computed,
the function is taken from a message that has been already processed by all
honest parties. Since honest parties only process messages that are actually sent
to them, and even corrupted parties only send correctly generated messages, this
function must be the correct one. In some sense, when sending the first message
to an honest party, the adversary commits herself to the correct function.

A similar problem occurs when the parties input to their boxes the inputs
to the computed function. A sequence of corrupted parties at the end of the
traversal can emulate the last steps of the protocol many times, with different
inputs. To prevent this, we traverse the cycle twice. After the first traversal, the
inputs are collected and the function is evaluated. Then, the (still encrypted)
output traverses the cycle for the second time, and only then is given to the
parties.

Finally, we observe that at the end of the protocol, a graph component of
neighboring corrupted parties learns where the traversal enters their compo-
nent (this can be done by fast-forwarding the protocol). Depending on how the
eulerian cycle is computed, this could leak information about the topology. To
address this, we introduce in Sect. 4.3 an algorithm for computing the traver-
sal that does not have this issue (formally, the last part of the cycle can be
simulated).

Protocol Hw-Computation

// The common input of all parties is the round length R. Additionally, each Pi

has input (xi, fi, idi, ci), where idi is the identifier chosen in Hw-Preprocessing,
and ci is the encrypted state outputted by Hw-Preprocessing.

Setup: Each party Pi has access to a secure hardware box functionality FHW.

Initialization for each Pi: For each neighbor Pj , let Ej = ∅.

Execution for each Pi at every r clock ticks:

1: Send (FetchMessages) to Fnet and receive the messages (E1, . . . , Eν).

Topology-Hiding Computation for Networks with Unknown Delays 231

2: Choose r at random and input (i, idi, ci,
⋃

j Ej , xi, fi, r) to FHW. Get the

result (val, {(E′
1, next1), . . . , (E′

k, nextk)}). If val �= ⊥, output val, but con-
tinue running.

3: For each (E′
j , nextj), for each e ∈ E′

j , send e to nextj via (Send, i, nextj , e).
a

Termination for each Pi: Upon receiving the signal, terminate.

a We will assume that every message sent in this round is independent. In this case

this is equivalent to assuming only independence between rounds—since there is an

upper bound n on the number of messages sent at once, one can always make the

round longer, partition it into slots separated by a sufficient time interval, and send

one message in every slot.

Realizing Reactive Functionalities. Reactive functionalities are those which
require explicit interaction between parties, e.g. if the function we realize is very
simple but we want to evaluate a complex function, parties may need to run
this protocol multiple times in sequence, using previous outputs to generate the
next inputs. Our current hardware protocol allows us to realize secure function
evaluation. In the synchronous setting, this can be easily extended to reactive
functionalities by invoking many function evaluations in sequence. However, in
the setting with unknown delays this is no longer clear. For example, if our
protocol is composed sequentially in the naive way, then parties start the second
execution at different times, which leaks topology.

So, to get reactive functionalities or composition to work for this hardware
protocol we can do one of two things. First, we could add a synchronization
point before each ‘round’ of the reactive function. Second, we could employ the
same trick as for the cycle/tree protocol in Sect. 3, sending the same message
many times so that with high probability it arrives to the next node within
some reasonable time interval. With this method, every party ends the protocol
at exactly the same time, and so can start the next protocol at the same time,
despite the delays.

The running time of the protocol Hardware depends only on the sum of all
delays in the network, each rounded to the next multiple of the round length
R, which is the only information leaked in the ideal world. In the full version
[LLM+19] we prove the following theorem.

Theorem 3. For any efficiently computable and well-formed9 functionality F ,
the protocol Hardware UC-realizes (Fclock,FLsum

info ,F) in the (Fclock,Fnet,FHW)-
hybrid model with an adversary who statically passively corrupts any number of
parties, where Lsum := R

∑
De∈D�De/R�.

Remark. One can observe that in our protocol the hardware boxes must be able
to evaluate a complex function. This can be resolved at the cost of efficiency, by

9 Intuitively, a functionality is well-formed if its code does not depend on the ID’s of
the corrupted parties. We refer to [CLOS02] for a detailed description.

232 R. LaVigne et al.

computing the functionality by many calls to the simple broadcast functionality.
Note that even if we require one synchronization point per broadcast, this still
seems reasonable, since it is possible to evaluate any function with constant
number of broadcasts [DI05,LPSY15].

4.3 Computing the Eulerian Cycle

It turns out that not every algorithm computing an Eulerian cycle can be used
in FHW to achieve THC. In particular, during the execution of our protocol the
adversary learns some information about a part of the cycle, which for some
algorithms depends on the graph. More technically, during the simulation, it
is necessary to compute the time when the adversary learns the output, and
this happens as soon as the Eulerian cycle traversal enters a fragment of con-
secutive corrupted parties containing the output party. This is because it can
“fast-forward” the protocol (without communication). Hence, we need an algo-
rithm for computing such a cycle on a graph with doubled edges, for which the
“entry point” to a connected component (of corrupted parties) can be simulated
with only the knowledge of the component.

Common algorithms, such as Fleury or Hierholzer [Fle83,Fle91], check a
global property of the graph and hence cannot be used without the knowledge of
the entire graph topology. Moreover, a distributed algorithm in the local model
(where the parties only have knowledge of its neighbors) such as [Mak97] is also
not enough, since the algorithm has to be executed until the end in order to
know what is the last part of the cycle.

We present the algorithm EulerianCycle, which, if executed from a node u on
a connected neighborhood containing u, leads to the same starting path as if it
was executed on the whole graph. This property is enough to simulate, since the
simulator can compute the last fragment of the Eulerian Cycle in the corrupted
neighborhood. We note that the start of the cycle generated by our algorithm
can be simulated, however, the simulator needs to compute the end. Hence, the
hardware boxes will traverse the path outputted by EulerianCycle from the end.

Fig. 1. An example of a graph G (on the left) and the corresponding tree T , computed
by EulerianCycle(1, G) (on the right). The eulerian cycle (on the graph with doubled
edges) is (1, 2, 4, 1, 3, 1, 3, 5, 3, 4, 2, 1).

Topology-Hiding Computation for Networks with Unknown Delays 233

The idea is to generate a tree from the graph, in such a way that the gener-
ated tree contains exactly the same edges as the graph. To do that, the tree is
generated in a DFS-manner from a source u. At every step, a new edge (the one
that leads to the smallest id according to a DFS order, and without repeating
nodes) is added to the tree. Since the graph is connected, all edges are eventually
added. Moreover, each edge is added exactly once, since no repeated nodes are
expanded. See Fig. 1 for an example execution.

Algorithm EulerianCycle(u,G = (E, V))

// Computes an eulerian cycle on the graph G with the set of nodes V and the
set of edges E (where each edge is considered doubled), starting at node u ∈ V .
We assume some ordering on V .

1: Let T be the tree with a single root node u.
2: while E �= ∅ do
3: if there is no v ∈ V such that (u, v) ∈ E then
4: Set u = parent(T , u)
5: else
6: Pick the smallest v such that (u, v) ∈ E and append v to the children

of u in T .
7: Set E = E \ {(u, v)}.
8: If v /∈ nodes(T), then set u = v.

9: Output the path corresponding to the in-order traversal of T .

Appendix

A Adversarially-Controlled Delays Leak Topology

Much like how adversarially-controlled aborts were shown to leak topological
information in [MOR15], we can show that adversarially-controlled delays also
leak topological information. First, note that if we have bounded delays, we can
always use a synchronous protocol, starting the next round after waiting the
maximum delay. So, in order for this model to be interesting, we must assume
the adversary has unbounded delays. In order to be as general as possible, we
prove this with the weakest model we can while still giving the adversary some
control over its delays: the adversary can only add delay to messages leaving
corrupt nodes.

Our proof will follow the structure of [MOR15], using a similar game-based
definition and even using the same adversarially-chosen graphs (see Fig. 2). Our
game is straightforward. The adversary gives the challenger two graphs and a
set of corrupt nodes so that the corrupt neighborhoods are identical when there
is no adversarially added delay. The challenger then chooses one of those graphs
at random, runs the protocol, and gives the views of all corrupt nodes to the
adversary. The adversary wins if she can tell which graph was used. In [MOR15],

234 R. LaVigne et al.

the adversary would choose a round to failstop one of its corrupt parties. In our
model, the adversary will instead choose a time (clock-tick) to add what we call
a long-delay (which is just a very long delay on sending that and all subsequent
messages). The adversary will be able to detect the delay based on when the
protocol ends: if the delay was early in the protocol, the protocol takes longer
to finish for all parties, and if it was late, the protocol will still finish quickly for
most parties.

This impossibility result translates to an impossibility in the simulation-based
setting since a secure protocol for the simulation-based setting would imply a
secure protocol for the game-based setting.

Fig. 2. Graphs used to prove the impossibility of THC with adversarial delays. PS is
the sender. The corrupted parties (black dots) are: PL and PR (they delay messages),
and the detective PD. The adversary determines whether PD (and its two neighbors)
are on the left or on the right.

A.1 Adversarially-Controlled Delay Indistinguishability-based
Security Definition

Before proving the impossibility result, we first formally define our model. This
model is as weak as possible while still assuming delays are somewhat controlled
by the adversary. We will assume a minimum delay along edges: it takes at least
one clock-tick for a message to get from one party to another.

Delay Algorithms. In order to give the adversary as little power as possible,
we define a public (and arbitrary) randomized algorithm that outputs the delays
for a graph for protocol Π. Both the adversary and challenger have access to
this algorithm and can sample from it.

Definition 1. A indistinguishability-delay algorithm (IDA) for a protocol Π,
DelayAlgorithmΠ , is a probabilistic polynomial-time algorithm that takes as input
an arbitrary graph outputs unbounded polynomial delays for every time τ and
every edge in the graph. Explicitely, for any graph G = (V,E), DelayAlgorithm(G)
outputs T such that for every edge (i, j) ∈ Eb and time τ , T ((i, j), τ) = d(i,j),τ
is a delay that is at least one.

The Indistinguishability Game. This indistinguishability definition is a game
between an adversary A and challenger C adapted from [MOR15]. Let DelayAl-
gorithm be an IDA as defined above.

Topology-Hiding Computation for Networks with Unknown Delays 235

– Setup: Let G be a class of graphs and Π a topology-hiding broadcast protocol
that works on any of the networks described by G according to our adversarial
delay model, and let DelayAlgorithm be a public, fixed IDA algorithm. Without
loss of generality, let P1 have input x ∈ {0, 1}, the broadcast bit.

– A chooses two graphs G0 = (V0, E0) and G1 = (V1, E1) from G and then a
subset Z of the parties to corrupt. Z must look locally the same in both G0

and G1. Formally, Z ⊂ V0 ∩ V1 and NG0(Z) = NG1(Z). If this doesn’t hold,
C wins automatically.
A then generates TZ , a function defining delays for every edge at every time-
step controlled by the adversary. That is, TZ((i, j), τ) = d(i,j),τ , and if Pi ∈ Z,
then every message sent from Pi to Pj at time τ is delayed by an extra d(i,j),τ .
A sends G0, G1,Z, and TZ to C.

– C chooses a random b ∈ {0, 1} and executes Π in Gb with delays according
to DelayAlgorithm(Gb) = T for all messages sent from honest parties. For
messages sent from corrupt parties, delay is determined by the time and
parties as follows: for time τ a message sent from party Pi ∈ Z to Pj has
delay T ((i, j), τ)+TZ((i, j), τ) in reaching Pj . A receives the view of all parties
in Z during the execution.

– A then outputs b′ ∈ {0, 1} and wins if b′ = b and loses otherwise.

Notice that in this model, the adversary statically and passively corrupts any
set of parties, and statically determines what delays to add to the protocol.

Definition 2. A protocol Π is indistinguishable under chosen delay attack
(IND-CDA) over a class of graphs G if for any PPT adversary A, there exists
an IDA DelayAlgorithm such that

Pr[A wins] ≤ 1
2

+ negl(n).

A.2 Proof that Adversarially-Controlled Delays Leak Topology

First, we will define what we mean when we say a protocol is ‘weakly’ realized
in the adversarial delay model. Intuitively, it is just that the protocol outputs
the correct bit to all parties if there is no adversarial delay.

Definition 3. A protocol Π weakly realizes the broadcast functionality if Π is
such that when all parties execute honestly with delays determined by any IDA,
all parties get the broadcast bit within polynomial time (with all but negligible
probability).

Theorem 4. There does not exist an IND-CDA secure protocol Π that weakly
realizes the broadcast functionality of any class of graphs G that contains line
graphs.

Throughout the proof and associated claim, we refer to a specific pair of
graphs that the adversary has chosen to distinguish between, winning the IND-
CDA game. Both graphs will be a line of n vertices: G = (V,E) where E =

236 R. LaVigne et al.

{(Pi, Pi+1)}i=1,...,n−1. We will let Π be a protocol executed on G that weakly
realizes broadcast when P1 is the broadcaster, see Fig. 2.

Our adversary in this model will either add no delay, or will add a very long
polynomial delay to every message sent after some time τ .

Notice that A is given access to DelayAlgorithm at the start of the protocol.
One can sample from DelayAlgorithm using G0, G1, and Z to get an upper bound
T on the time it takes Π to terminate with all but negligible probability. Since
Π weakly realizes broadcast, T is polynomial. So, A has access to this upper
bound T .

Long-Delays. Let a long-delay be a delay that lasts for T clock-ticks. Consider
an adversary that will only add long-delays to a protocol, and once an adversary
has long-delayed a message, he must continue to long-delay messages along that
edge until the end of the protocol. That is, once the adverary decides to delay
along some edge, all subsequent messages along that edge cannot arrive for at
least T clock-ticks.

Claim. Consider any party Pv whose neighbors do not add any extra delay as
described by the long-delay paragraph above. As in [MOR15], let Hv,b be the
event that Pv outputs the broadcast bit by time T (Pv may still be running the
protocol by time T or terminate by guessing a bit by T). Let Eτ be the event
that the first long-delay is at time τ . Then either Π is not IND-CDA secure, or
there exists a bit b such that

|Pr [Hv,b|ET−1] − Pr [Hv,b|E0]| ≥ 1
2

− negl(n).

Proof. If some Pi long-delays at time 0, then the first message it sends is at time
T , and so the graph is disconnected until time T . This makes it impossible for
parties separated from P1 to learn about the output bit by time T . So, by that
time, these parties must either guess an output bit (and be right with probability
at most 1/2) or output nothing and keep running the protocol (which is still not
Hv,b). If Π is IND-CDA secure, then all honest parties must have the same
probability of outputting the output bit by time T , and so there exists a b such
that Pr[Hv,b|E0] ≤ 1

2 − negl(n) for all honest parties Pv.
However, if Pi long-delays at time T − 1, then the only parties possibly

affected by Pi are Pi−1 and Pi+1; all other parties will get the output by
time T and the information that Pi delayed cannot reach them (recall we
assumed a minimum delay of at least one clock-tick in the DelayAlgorithm).
So, Pr[Hv,b|E0] = Pr[Hv,b|no extra delays] = 1 − negl(n) for all honest parties
without a delaying neighbor by the definition of weakly realizing broadcast.

The claim follows: |Pr [Hv,b|ET−1] − Pr [Hv,b|E0]| ≥ |12 − negl(n) − 1| ≥
1
2 − negl(n). �
Proof (Theorem 4). This just follows from the previous claim. A simple hybrid
argument shows that there exists a pair (τ∗, b) ∈ {0, . . . , T − 1} × {0, 1} such
that

|Pr [Hv,b|Eτ∗] − Pr [Hv,b|Eτ∗+1]| ≥ 1
2T

− negl(n)

Topology-Hiding Computation for Networks with Unknown Delays 237

for all Pv who do not have a neighbor delaying. Since T is polynomial, this
is a non-negligible value. Without loss of generality, assume Pr[Hv,b|Eτ∗] >
Pr[Hv,b|Eτ∗+1]. Leveraging this difference, we will construct an adversary A
that can win the IND-CDA game with non-negligible probability.

A chooses two graphs G0 and G1. G = G0 and G1 is G except parties 3, 4,
and 5 are exchanged with parties n−2, n−1, and n respectively. A corrupts the
source part PS := P1, a left party PL := Pn/2−1, a right party PR := Pn/2+1,
and the detective party PD := P4. See Fig. 2 for how this looks. The goal of A
will be to determine if PD is to the left or right side of the network (close to the
broadcaster or far).

A computes the upper bound T using DelayAlgorithm and randomly guesses
(τ∗, b) that satisfy the inequality above. At time τ , A initiates a long-delay at
party PL, and at time τ +1, A initiates a long-delay at party PR. So, A gives the
challenger TZ where TZ((i, j), t) = 0 for t < τ∗, and for t ≥ τ∗: TZ((L, n/2), t) =
TZ((L, n/2 − 2), t)T and TZ((R,n/2), t + 1) = TZ((R,n/2 + 2), t + 1) = T .

Notice that news of PL’s delay at time τ∗ cannot reach PR or any other party
on the right side of the graph by time T . Also note that the time A gets output
for each of its corrupt parties is noted in the transcript.

If C chooses G0, then PD is on the left side of the graph and has probability
Pr[HD,b|Eτ∗] of having the output bit by time T because its view is consistent
with PL delaying at time τ∗. If C chooses G1, then PD is on the right side of
the graph, and has a view consistent with the first long delay happening at
time τ∗ + 1 and therefore has Pr[HD,b|Eτ∗] of having the output bit by time T .
Because there is a noticeable difference in these probabilities, A can distinguish
between these two cases with 1

2 plus some non-negligible probability. �

Consequences of this Lower Bound. We note that this is just one model
where we prove it is impossible for the adversary to control delays. However, we
restrict the adversary a great deal, to the point of saying that regardless of what
the natural network delays are, the adversary can learn something about the
topology of the graph. The lower bound proved in this model seems to rule out
any possible model (simulation or game-based) where the adversary has power
over delays.

B PKCR* Encryption

This section formally defines PKCR*—the extended Privately Key Commutative
and Rerandomizable (PKCR) encryption of [AM17].

Let PK, SK and C denote the public key, secret key and ciphertext spaces.
In contrast to PKCR, the message space is {0, 1}. Moreover, C ∩ {0, 1} = ∅.
As in any public-key encryption scheme, we have the algorithms PKCR*.KGen :
{0, 1}∗ → PK × SK and PKCR*.Enc : {0, 1} × PK → C for key generation
and encryption, respectively (decryption can be implemented via deleting lay-
ers). Moreover, we require the following properties, where only the first two are
provided (with minor differences) by PKCR.

238 R. LaVigne et al.

Key-Commutative. PK forms a commutative group under the operation �. In
particular, given any pk1, pk2 ∈ PK and the secret key sk1 corresponding to
pk1, we can efficiently compute pk3 = pk1 � pk2 ∈ PK (note that sk1 can be
replaced by sk2, since PK is commutative).
This group must interact well with ciphertexts; there exists a pair of deter-
ministic efficiently computable algorithms PKCR*.AddLayer : C × SK → C
and PKCR*.DelLayer : C × SK → C ∪ {0, 1} such that for every pair of public
keys pk1, pk2 ∈ PK with corresponding secret keys sk1 and sk2, for every bit
b ∈ {0, 1}, and every ciphertext c = PKCR*.Enc(b, pk1), with overwhelming
probability it holds that:

– The ciphertext PKCR*.AddLayer(c, sk2) is an encryption of b under the
public key pk1 � pk2.

– PKCR*.DelLayer(c, sk2) is an encryption of b under the public key pk1 �
pk−1

2 .
– PKCR*.DelLayer(c, sk1) = b.

Notice that we need the secret key to perform these operations.10

Rerandomizable. There exists an efficient probabilistic algorithm PKCR*.Rand :
C → C, which re-randomizes a ciphertext.11 Formally, we require that for
every public key pk ∈ PK, every bit b, and every c = PKCR*.Enc(b, pk), the
following distributions are computationally indistinguishable:

{(b, c, pk,PKCR*.Enc(b, pk))} ≈ {(b, c, pk,PKCR*.Rand(c, pk))}

Transforming a 0-ciphertext to a 1-ciphertext. There exists an efficient algorithm
PKCR*.ToOne : C → C, such that for every pk ∈ PK and for every c =
PKCR*.Enc(0, pk), the output of PKCR*.ToOne(c) is an encryption of 1 under
pk.

Key anonymity. A ciphertext reveals no information about which public key was
used in encryption. Formally, we require that PKCR* is key-indistinguishable
(or IK-CPA secure), as defined by Bellare et al. [BBDP01].

B.1 Construction of PKCR* Based on DDH

We use a cyclic group G = 〈g〉. We keep as ciphertext a pair of group elements
(c1, c2). The first group element contains the message. The second group element
contains the secret keys of each layer of encryption. All information is contained
in the exponent.

To add a layer of encryption with a secret key sk, one simply raises the
second element to sk. Similarly, one can remove layers of encryption. When all
layers of encryption are removed, both group elements are either equal c1 = c2

10 In PKCR of [ALM17], computing pk1�pk2 does not require the secret key. Moreover,
PKCR requires perfect correctness.

11 In [ALM17] the rerandomization algorithm is given the public key as input. We also
note that they require public keys to be re-randomizable, while we do not need this
property.

Topology-Hiding Computation for Networks with Unknown Delays 239

(the message is 0) or c1 = c22 (the message is 1). To transform an encryption of
0 to an encryption of 1, one simply squares the first group element.

Algorithm PKCR*

We let G be a group of order p, generated by g. These parameters are implicitly
passed to all algorithms (formally, they are part of each ciphertext and an input
to key generation).

PKCR*.KGen

1: Sample the secret key sk uniform
at random from Zp.

2: Output (gsk, sk).

PKCR*.Enc(b, y)

1: Sample r at random from Zp.
2: Output c = (g(b+1)r, yr).

PKCR*.AddLayer((c1, c2), sk)

1: Output (c1, c
sk
2).

PKCR*.Rand((c1, c2))

1: Sample r at random from Zp.
2: Output (cr

1, c
r
2).

PKCR*.DelLayer((c1, c2), sk)

1: Set c′
2 = csk

−1

2 .
2: if c1 = c′

2 then Output 0.
3: else if c1 = c′2

2 then Output 1.
4: else Output (c1, c

′
2).

PKCR*.ToOne((c1, c2))

1: Output (c21, c2).

The proof of security of our scheme can be found in the full version [LLM+19].

C The Function Executed by the Hardware Boxes

The functionality FHW contains hard-wired the following values: a symmetric
encryption key pk, and a key rk for a pseudo-random function prf. Whenever
it outputs an encryption, it uses an authenticated encryption scheme AE with
key pk, and with encryption randomness computed as prfrk(x), where x is the
whole input of FHW. FHW can receive three types of input, depending on the
current stage of the protocol: the initial input and an intermediate input during
Hw-Preprocessing, and an intermediate input during Hw-Computation. On any
other inputs, FHW outputs ⊥.

Behavior During Preprocessing. During the preprocessing, the first input
is a triple (i, idi,NG(Pi)), and next inputs are triples (id, c, cj), where c and cj

are states of parties, encrypted under pk. In particular, the state of a party Pi

consists of the following information:

– i: the index of Pi,
– G: the current image of the graph (stored in an n-by-n matrix),
– ID = (id1, . . . , idn): a vector, containing the currently known identifiers of

parties.

On the first input, FHW outputs an encryption of the initial state, that is, the
state where the graph G contains only the direct neighborhood of Pi, and ID

240 R. LaVigne et al.

contains only the value idi chosen by Pi. For the inputs of the form (id, c, cj),
FHW decrypts the states c and cj and merges the information they contain into
a new state s, which it then encrypts and outputs.

Behavior During Computation. Recall that the goal of FHW at this stage
is to compute the next encrypted messages, which a party Pi will send to its
neighbors. That is, it takes as input a set of encrypted messages received by Pi

and, for each neighbor of Pi, outputs a set of n messages to be sent.
Each encrypted message contains information about which graph traversal it

is a part of, about the current progress of the traversal, and about all the inputs
collected so far. Moreover, we include the information from the encrypted state:
(i, G, ID) and the function f of the party starting the cycle. Intuitively, the
reason for including f and the encrypted state is that, since the adversary is
passive, the information taken from the message must be correct (for example,
now a corrupted party cannot use its box to evaluate any function of its choice).
Formally, an encrypted message from another node decrypts to a message mj

containing the following elements:

– j is the party number (the publicly known number between 1 and n, not the
party’s id)

– IDj is the vector of unique random id’s. Carrying this in the message allows
us to ensure that inputs are all consistent with the same parties.

– Gj is the adjacency matrix of the network graph. It is also used to check
consistency.

– Pathj = (id1, . . . , id4n2
): a vector of length 4n2, containing the current set

of identifiers of parties visited so far along the graph traversal starting at Pj

(recall that the eulerian cycle of length at most 2n2 is traversed twice).
– fj is the function that parties will compute.
– �xj is a vector that has a slot for every party to put its input. It starts as

being completely empty, but gains an entry when it visits a new node on the
graph. We also check this for consistency (a party trying to input a different
value from the one they started with will not be able to use the hardware).

At a high level, FHW first discards any dummy or repeated messages (a party
can receive many messages, but the hardware box needs to continue at most n
Eulerian cycles), and then processes each remaining message. If a message has
traversed the whole Eulerian cycle, FHW computes and reveals the function
applied to the inputs. Otherwise, it creates an encryption of a new message with
the current party’s id added to the current path, and its input added to the list
of inputs, and next contains the id of the destination neighbor. After processing
all messages, for each destination neighbor, it adds correctly formated dummy
encryptions, so that exactly n encryptions are sent to each neighbor.

The functionality FHW is formally described below. It calls the following
subroutines:

– AggregateTours takes as input a set of messages M . Each of these messages
contain information about a Eulerian Cycle, the party that started that Eule-
rian Cycle, and the path traversed so far. The subroutine selects the (at most

Topology-Hiding Computation for Networks with Unknown Delays 241

n) messages that start from different parties. It is expected that Eulerian
Cycles starting from the same party, are exactly the same message.

– ContinueTour takes as input a specific message, a Eulerian Cycle that the
message must traverse, and a current party’s input and number. If the Eule-
rian Cycle has not been traversed, it then creates a new message containing
a path with the current party’s input and id appended to the corresponding
variables, and also the id of the party where the message should be sent.
Otherwise, it outputs a flag indicating that the Eulerian Cycle has ended and
the output must be revealed.

– EncryptAndFormatOutput takes as input a set of pairs message-
destination, and appends to each possible destination parsable messages until
there are n messages. It then encrypts each message and outputs, for each
possible destination a set of encryptions and the id of the party where the
encryptions must be sent.

Functionality FHW

Setup: The hardware box is initialized with a symmetric encryption key pk and

a PRF key rk.

Initial input during Hw-Preprocessing

Input: x = (i, idi,NG(Pi))
1: Compute the initial vector ID as a vector of n ⊥’s except with idi in the i-th

position.
2: Compute a new adjacency matrix Gi with the only entries being the local

neighborhood of Pi.
3: Compute the initial state s = (i, ID, Gi)

Output: the encrypted initial state AE.Encpk(s; prfrk(x)).

Intermediate input during Hw-Preprocessing

Input: x = (id, c, cj), where id is the identifier of Pi, c is the encrypted state
of Pi, and cj is the state of a neighbor Pj .

1: Compute the states (i, ID, G) = AE.Decpk(c) and (j, IDj , Gj) = AE.Decpk(cj).
2: Compute the new state s = (i, ID′, G′), where ID′ contains all identifiers which

appear in IDj or ID, and G′ is the union of G and Gj .
Output: the encrypted state AE.Encpk(s; prfrk(x)).

Intermediate input during Hw-Computation

Input: x = (i, id, c, E, xi, fi, r), where i is the party’s index, id is the iden-
tifier of Pi, c is the encrypted state of Pi, E is the set of encrypted messages
(freshly gotten from the buffer), xi is the input, fi is the evaluated function
and r is a fresh random value.

1: Decrypt the messages M = {AE.Decpk(e) | e ∈ E} (output ⊥ if any decryp-
tion fails).

2: Let L = AggregateTours(M), and output ⊥ if AggregateTours outputs ⊥.

242 R. LaVigne et al.

3: Let S = ∅, val = ⊥.
4: if L = ∅ then// Start the traversal.
5: Decrypt the state (i, ID, G) = AE.Decpk(c) (output ⊥ if the decryption

fails). // The graph and the ID-vector are taken from the encrypted state.

6: Let Path = (id, ⊥, . . . , ⊥) be a vector of length 4n2. Let x be the vector
of length n, initialized to ⊥ and set x[i] = xi.

7: Compute Touri as the reverse Euler Cycle for G starting at party Pi.
8: Let m = (i, ID, G, Path, fi, x).
9: Add (m, Touri[2]) to S.

10: else// Continue traversals.
11: for m ∈ L do
12: Parse m = (j, IDj , Gj , Pathj , fj , �xj). // The graph and the ID-vector

are taken from the message.
13: Compute Tourj as the reverse Euler Cycle for G starting at party Pj .
14: Parse Pathj = (p1, . . . , p�j , ⊥, . . . , ⊥). Output ⊥ if any of the following

conditions holds:
– id �= IDj [i]
– p�j �= i
– for any l ∈ [�j], pl �= Tourj [l mod 2m]

15: Let (m′, next) = ContinueTour(m, xi, i, Tourj).
16: if m′ = Output then
17: Let val = fi(�xj).
18: else
19: Add (m′, next) to S.

20: Output : (val, EncryptAndFormatOutput(i, G, r, S, 0))

Functionality FHW-subroutines

AggregateTours (M)

// Takes a set of messages and for each party outputs a message that corresponds
to its Euler Cycles.

1: If any m ∈ M does not parse properly, return ⊥.
2: Let L = ∅.
3: for each m ∈ M do
4: Parse m = (j, ID, G, Path, f, �x).
5: if ∃m′ := (j, ∗, ∗, ∗, ∗, ∗) ∈ L and m′ �= m then
6: Output ⊥.

7: if m /∈ L then
8: Add m to L.
9: return L

ContinueTour (mj , xi, i, Tourj)

1: Parse mj = (j, IDj , Gj , Pathj , fj , �xj).

Topology-Hiding Computation for Networks with Unknown Delays 243

2: Parse Pathj = (p1, . . . , p�j , ⊥, . . . , ⊥).
3: if �j = 4m − 1 and Tourj [(�j + 1) mod 2m] = i then
4: return (Output, 0).

5: Set Pathj = (p1, . . . , p�j , Tourj [(�j + 1) mod 2m], ⊥, . . . , ⊥).
6: If �xj [i] = ⊥, then set �xj [i] = xi.
7: return (mj , Tourj [(�j + 1) mod 2m]).

EncryptAndFormatOutput (i, G, r, S, sim)a

1: For each d ∈ NG(i), let Md = {m : (m, d) ∈ S}.
2: for d ∈ NG(i) do
3: If |Md| < n, pad Md with fake, but parsable, messages until it is length

n (messages that start with the party number being 0).

4: for d ∈ NG(i) do
5: Let k = 0, Ed = ∅.
6: for m ∈ Md do
7: if sim = 0 then
8: Add AE.Encpk(m; prfrk(Md, k, r)) to Ed. // Used in protocol
9: else

10: Add AE.Encpk(m; r) to Ed. // Used in simulator

11: return {(Ed, d) : d ∈ NG(i)}

a The additional input sim ∈ {0, 1} will be used by the simulator and can be ignored

at this point.

References

[ALM17] Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all
graphs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 447–467. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 15

[AM17] Akavia, A., Moran, T.: Topology-hiding computation beyond logarithmic
diameter. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
II. LNCS, vol. 10212, pp. 609–637. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 21

[BBDP01] Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in
public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol.
2248, pp. 566–582. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45682-1 33

[BBMM18] Ball, M., Boyle, E., Malkin, T., Moran, T.: Exploring the boundaries of
topology-hiding computation. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 294–325. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 10

[BOCG93] Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation.
In: 25th ACM STOC, pp. 52–61. ACM Press, May 1993

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-319-78372-7_10

244 R. LaVigne et al.

[CCGZ16] Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and
composability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 240–269. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53015-3 9

[CGS08] Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure com-
putation using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 31

[CKS+14] Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Effi-
cient) universally composable oblivious transfer using a minimal number
of stateless tokens. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
638–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54242-8 27

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally compos-
able two-party and multi-party secure computation. In: Proceedings of
the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp.
494–503. ACM (2002)

[CT10] Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from
signature cards. In: ICS, vol. 10, pp. 310–331 (2010)

[DI05] Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a
black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). https://doi.
org/10.1007/11535218 23

[Fle83] Fleury, M.: Deux problèmes de géométrie de situation. J. de
mathématiques élémentaires 2, 257–261 (1883)

[Fle91] Fleischner, H.: X. 1 algorithms for Eulerian trails. Eulerian Graphs Relat.
Top. : Part 1 (Ann. Discrete Math.) 2(50), 1–13 (1991)

[GIS+10] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryp-
tography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 19

[HJ07] Hinkelmann, M., Jakoby, A.: Communications in unknown networks: pre-
serving the secret of topology. Theor. Comput. Sci. 384(2–3), 184–200
(2007)

[HMQU05] Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally composable zero-
knowledge arguments and commitments from signature cards. In: 5th Cen-
tral European Conference on Cryptology (2005)

[HMTZ16] Hirt, M., Maurer, U., Tschudi, D., Zikas, V.: Network-hiding communica-
tion and applications to multi-party protocols. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 335–365. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 12

[KMTZ13] Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable
synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36594-2 27

[LLM+18] LaVigne, R., Liu-Zhang, C.-D., Maurer, U., Moran, T., Mularczyk, M.,
Tschudi, D.: Topology-hiding computation beyond semi-honest adver-
saries. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol.
11240, pp. 3–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03810-6 1

https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-642-54242-8_27
https://doi.org/10.1007/978-3-642-54242-8_27
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-662-53008-5_12
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-030-03810-6_1
https://doi.org/10.1007/978-3-030-03810-6_1

Topology-Hiding Computation for Networks with Unknown Delays 245

[LLM+19] LaVigne, R., Liu-Zhang, C.-D., Maurer, U., Moran, T., Mularczyk, M.,
Tschudi, D.: Topology-hiding computation for networks with unknown
delays. Cryptology ePrint Archive, Report 2019/1211 (2019). https://
eprint.iacr.org/2019/1211

[LPSY15] Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round
multi-party computation combining BMR and SPDZ. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 16

[Mak97] Makki, S.A.M.: A distributed algorithm for constructing an Eulerian tour.
In: IEEE International Performance, Computing, and Communications
Conference, 1997. IPCCC 1997, pp. 94–100. IEEE (1997)

[MOR15] Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp.
159–181. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46494-6 8

https://eprint.iacr.org/2019/1211
https://eprint.iacr.org/2019/1211
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-46494-6_8
https://doi.org/10.1007/978-3-662-46494-6_8

Sublinear-Round Byzantine Agreement
Under Corrupt Majority

T.-H. Hubert Chan1(B), Rafael Pass2, and Elaine Shi3

1 The University of Hong Kong, Pok Fu Lam, Hong Kong
hubert@cs.hku.hk

2 Cornell Tech, New York, USA
3 Cornell University, New York, USA

Abstract. Although Byzantine Agreement (BA) has been studied for
three decades, perhaps somewhat surprisingly, there still exist signifi-
cant gaps in our understanding regarding its round complexity. A long-
standing open question is the following: can we achieve BA with sublinear
round complexity under corrupt majority? Due to the beautiful works by
Garay et al. (FOCS’07) and Fitzi and Nielsen (DISC’09), we have par-
tial and affirmative answers to this question albeit for the narrow regime
f = n/2+o(n) where f is the number of corrupt nodes and n is the total
number of nodes. So far, no positive result is known about the setting
f > 0.51n even for static corruption!

In this paper, we make progress along this somewhat stagnant front.
We show that there exists a corrupt-majority BA protocol that termi-
nates in O(1

ε
log 1

δ
) rounds in the worst case, satisfies consistency with

probability at least 1− δ, and tolerates (1− ε) fraction of corrupt nodes.
Our protocol secures against an adversary that can corrupt nodes adap-
tively during the protocol execution but cannot perform “after-the-fact”
removal of honest messages that have already been sent prior to corrup-
tion. Our upper bound is optimal up to a logarithmic factor in light of
the elegant Ω(1/ε) lower bound by Garay et al. (FOCS’07).

Keywords: Byzantine agreement · Sublinear round complexity ·
Corrupt majority

1 Introduction

A central abstraction in distributed systems and cryptography is Byzantine
Agreement (BA), where a designated sender aims to communicate a bit to mul-
tiple receivers. We require two security properties, consistency and validity. Con-
sistency requires that all honest nodes output the same bit; and validity requires
that they all output the sender’s bit if the sender is honest. Since the beginning
of distributed computing, a foundational and important question is the round

T.-H. Hubert Chan is partially supported by the Hong Kong RGC under the grant
17200418.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 246–265, 2020.
https://doi.org/10.1007/978-3-030-45388-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_9

Sublinear-Round Byzantine Agreement Under Corrupt Majority 247

complexity of Byzantine Agreement. A line of elegant works have investigated
this question. The celebrated work of Dolev and Strong [11] showed that there
exists an (f +1)-round BA protocol that tolerates up to f Byzantine corruptions
for any f < n. Further, they showed that f + 1 rounds is optimal for determin-
istic protocols. Subsequently, it was shown that randomized protocols can over-
come this f + 1 round complexity lower bound: specifically, a sequence of works
[2,12,21], beginning with Feldman and Micali [12]’s ingenious work, showed the
existence of expected constant-round protocols in the honest-majority setting.

Now, an important question is whether we can achieve similar results for
the corrupt majority setting, i.e., can randomized protocols help us overcome the
(f +1)-round complexity lower bound when the majority of nodes can be corrupt?

Perhaps somewhat surprisingly, despite decades of research on Byzantine
Agreement, our understanding of this fundamental question remains limited. To
the best of our knowledge, the only known results prior to our work are restricted
to very narrow parameter regimes, that is, when the number of corrupt nodes
is just a little more than 1/2. Specifically, Fitzi and Nielsen [13] showed that
if the number of corrupt nodes is n/2 + k, then an O(k)-round (randomized)
BA protocol exists assuming the existence of a PKI and secure signatures (and
their work improves the earlier result by Garay et al. [14]). In other words, so
far we only know how to construct sublinear-round BA protocols in the corrupt
majority setting when the number of corruptions is n/2 + o(n).

1.1 Our Results and Contributions

We make progress along this somewhat stagnant front. We show a positive result
in the corrupt majority setting assuming the existence of a public-key infrastruc-
ture and standard cryptographic assumptions. For any 0 < ε, δ < 1, suppose that
the adversary corrupts at most (1 − ε)n nodes and runs in time polynomial in
some security parameter κ, then we can construct a BA protocol that reaches
agreement in O(log(1/δ)/ε) number of rounds with probability 1 − δ − negl(κ)
where negl(κ) is a negligibly small function in κ corresponding to the probability
that the cryptographic primitives employed are broken.

Remark 1. Typically, one requires that the protocol’s (statistical) failure proba-
bility δ be a negligible function in some statistical security parameter1 λ: in this
typical case, the reader can think of log(1/δ) as being polylogarithmic in λ (and
independent of n).

Our result is almost optimal in light of an elegant round-complexity lower
bound for randomized Byzantine Agreement (BA) by Garay et al. [14]. Specifi-
cally, they show that any randomized BA protocol (allowing up to constant fail-
ure probability) must consume Ω(n/(n−f)) rounds—note that for f = (1−ε)n,
the lower bound becomes Ω(1/ε). In comparison, our upper bound is optimal
up to a log(1/δ) factor.
1 Here we use a different parameter λ to distinguish from the security parameter κ

that is related to the strength of the cryptographic primitives employed.

248 T.-H. H. Chan et al.

Note that our result allows for ε to be a function in n. For example, for
ε = O(1), we give an O(log(1/δ))-round protocol; and for ε = O(1/

√
n), we give

an O(
√

n · log(1/δ))-round protocol. Finally, for any f ≤ n − ω(log(1/δ)), we
achieve sublinear (in n) number of rounds which is asymptotically better than
the celebrated Dolev-Strong protocol [11].

Theorem 1 (Nearly round-optimal protocols for corrupt majority).
Assume the existence of a public-key infrastructure (PKI) and standard cryp-
tographic assumptions. For parameters ε, δ ∈ (0, 1) which are allowed to be func-
tions in n, there exists a protocol that terminates in O(log(1/δ)/ε) number of
rounds and achieves BA with 1 − δ − negl(κ) probability in the presence of an
adversary that adaptively corrupts at most (1− ε)n nodes and runs in time poly-
nomial in κ.

We stress that previously, except for the narrow parameter regime f =
0.5n + o(n), no sublinear-round protocol is known for the corrupt majority set-
ting, not even under static corruption and making any conceivable assumption
including very strong ones such as random oracles and the ability of honest
nodes to erase secrets from memory. Importantly, even under static corruption,
the standard random committee election technique that is commonly adopted for
an honest-majority setting [1,3,19,23,24] fails for corrupt majority for reasons
we will explain later in this section as well as Sect. 3.1! Our protocol works in
a model where the adversary may adaptively corrupt nodes in the middle of
the execution, as long as the adversary cannot retroactively erase messages that
were already sent before the corruption took place [1].

Finally, to aid understanding of Theorem 1, we remark that the existence of
a public-key infrastructure is long known to be necessary for achieving BA under
corrupt majority—without any setup assumptions, BA is not possible under 1/3
or more corruptions [25].

Technical Highlights. In an honest majority setting assuming static corrup-
tion, a standard technique [1,3,19,23,24] is to elect a random, polylogarithmi-
cally sized committee to run a round-inefficient BA protocol; and non-committee
members will decide on a value that is vouched for by the majority of the com-
mittee. It is tempting to think that the same technique will work for a corrupt
majority setting but this intuition turns out to be wrong because majority voting
no longer works here.

Our approach adopts a two-step recipe. First, we describe a new technique
that combines the random committee election idea with the well-known Dolev-
Strong protocol [11], but in a non-blackbox manner to allow non-committee mem-
bers who do not have voting power to keep committee members informed of their
latest local state during the consensus. With this technique, we can construct an
O(log(1/δ)/ε)-round BA protocol secure against (1−ε)n static corruptions. Even
this static-corruption result is new and advances the state-of-the-art regarding
the round complexity of BA under corrupt majority.

Next, we describe a technique to upgrade our protocol to defend against even
an adaptive adversary. The challenge here is that if the random committee is

Sublinear-Round Byzantine Agreement Under Corrupt Majority 249

elected a priori, an adaptive adversary can simply corrupt the entire commit-
tee. To defend against such an adversary, we employ adaptively secure Verifiable
Random Functions (VRFs) to secretly elect a committee, such that the commit-
tee is not revealed until they need to cast votes in the protocol. Not only so, an
important technical subtlety is that the committee election must be bit-specific,
i.e., the committee that is allowed to vote on 0 is elected independently from the
committee that is allowed to vote on 1—otherwise, upon observing some com-
mittee members voting for 0, the adaptive adversary can immediately corrupt
these nodes and make them vote for 1 too (and it turns out that such an attack
can break both consistency and validity). Bit-specific committee election is a new
technique that was first described in the very recent works by Abraham et al. [1]
(PODC’19) and Chan et al. [5] (Eurocrypt’19) where they focus on constructing
adaptively secure, bandwidth-efficient consensus protocols. Interestingly, while
existing works [1,5] rely on this technique to improve the bandwidth consump-
tion of adaptively secure BA under honest majority, we are the first to use these
techniques to achieve a non-trivial round complexity result for corrupt majority.

Last but not the least, our techniques for achieving these results are in fact
conceptually simpler than those of Fitzi and Nielsen [13] (which is an improve-
ment of Garay et al. [14]); and moreover, our results apply to a broad parameter
regime whereas the prior works [13,14] only achieve sublinear-round for the nar-
row regime f < n/2 + o(n). We view the conceptual simplicity as an advantage
of our approach.

Open Questions. Although our work advances the state-of-the-art in a fun-
damental area that has been somewhat stagnant, we still have not completely
closed the gap in our understanding. Some interesting open questions remain.

– For example, can we achieve sublinear-round BA under corrupt majority with
a strongly adaptive adversary who is even allowed to remove messages sent
by an honest node in round r by adaptively corrupting the node in the same
round? Many earlier works in the BA literature in fact consider such a strongly
adaptive adversary [4,11,16,21,23].

– Another interesting question is whether we can weaken the setup assumptions
needed to get such a result. Specifically, observe that the setup assumptions
we need are slightly stronger than that of Dolev and Strong [11].

– For honest majority, expected constant round BA is known [1,2,12,21]. The
protocols in this paper are not expected constant round. Therefore, an inter-
esting direction is whether we can have expected constant round protocols in
the corrupt majority setting—note that due to the lower bound by Garay et
al. [14], this can only be possible if constant fraction of the nodes are corrupt.

We leave these directions for future work.

Additional Related Work. Several other works [8,20] proved lower bounds on
the worst-case round complexity of randomized BA; and the online full version
of this paper [6] presented complete proofs of these lower bounds. Note that
these lower bounds are incomparable to Garay et al.’s lower bound [14]. Cohen

250 T.-H. H. Chan et al.

et al. [10] prove lower bounds on the round complexity of randomized Byzantine
agreement (BA) protocols, bounding the halting probability of such protocols
after one and two rounds.

A line of works in the literature [9,15,18] have focused on a simulation-based
notion of adaptive security for Byzantine Broadcast, where the concern is that
the adversary should not be able to observe what the sender wants to broadcast,
and then adaptively corrupt the sender to flip the bit. This notion is stronger
than what we consider in this paper, but such a strong notion was only achieved
earlier by making stronger assumptions than in our paper [15], i.e., the “atomic
message” model: after adaptively corrupting a node i, the adversary not only is
unable to erase a message i already sent in this round, but also must wait for at
least one maximum network delay before the corrupt i can start sending corrupt
messages.

2 Preliminaries

2.1 Protocol Execution Model

We assume a standard protocol execution model with n nodes indexed with
[n] := {1, 2, . . . , n}. An external party called the environment and denoted Z
provides inputs to honest nodes and receives outputs from the honest nodes.
An adversary denoted A controls a subset of the nodes which are said to be
corrupt; all other nodes are said to be honest. All corrupt nodes are under the
control of A, i.e., the messages they receive are forwarded to A, and A controls
what messages they will send once they become corrupt. The adversary A and
the environment Z are allowed to freely exchange messages any time during the
execution. To capture protocols that employ cryptography, we assume that all
nodes as well as A and Z are Interactive Turing Machines that run in time
polynomial in some security parameter κ; further, we assume that κ is known
to all nodes as well as A and Z.

We assume a standard synchronous network model. Whenever honest nodes
send a message, the message is delivered to honest recipients at the beginning
of the next round.

Adaptivity of the Adversary. We shall assume an adaptive adversary that
can corrupt nodes in the middle of the execution. The adversary can observe
all currently honest nodes’ messages in round r before deciding which subset of
these nodes to corrupt in round r. Suppose an honest node P sends a message
in some round r and then becomes corrupt in the same round—in this case
we assume that the adversary cannot perform “after-the-fact” removal and a-
posteriori delete the message that was sent by P in round r before it became
corrupt. However, since P is corrupt, the adversary may now inject additional
round-r messages on behalf of P .

Sublinear-Round Byzantine Agreement Under Corrupt Majority 251

For ease of understanding, in our exposition we will first describe a warmup
protocol secure against a static adversary: such an adversary is required to
declare the set of corrupt nodes before the start of the execution.

2.2 Byzantine Agreement

In this section we formally define Byzantine Agreement. Recall that there are n
nodes indexed by {0, 1, 2, . . . , n−1}. Without loss of generality, we shall assume
that node 0 is the designated sender.

Syntax. Before the protocol starts, the sender receives an input b ∈ {0, 1} from
the environment Z. At the end of the protocol, every node i (including the
sender) outputs a bit bi to the environment Z.

Security Definition. We say that a protocol (satisfying the above syntax)
achieves BA with probability p with respect to (A,Z), iff with probability at
least p over the choice of the randomized execution, the following properties are
satisfied:

– Consistency. If an honest node outputs bi and another honest node outputs
bj to Z, then it must hold that bi = bj .

– Validity. If the designated sender remains honest throughout and its input is
b, then any honest node’s output to Z must be b.

3 Technical Roadmap: Nearly Round-Optimal BA
for Corrupt Majority

In this section, we give a slightly informal presentation of our construction. Later
on in Sects. 4 and 5, we present a formal description along with formal proofs.

3.1 Warmup: Any Constant Fraction of Static Corruption

For simplicity, let us first focus on the simpler case when the adversary is con-
strained to making static corruptions. Let ε denote the fraction of honest nodes,
where ε can potentially be a function of n; however, as a warmup, we assume ε
to be some arbitrarily small constant in this section. We will later extend our
approach to more general choices of ε and to the case of adaptive corruptions. We
stress, however, that except for the narrow parameter regimes in Garay et al.’s
result [14], previously it was unknown how to achieve sublinear-round BA in
the corrupt majority setting even assuming static corruptions. We use δ > 0 to
denote the failure probability (for consistency).

Flawed Strawman Approach. One tempting but flawed approach is to ran-
domly elect a small committee of log(1/δ) nodes—for the time being, imag-
ine that a random leader election oracle exists—and have the committee run

252 T.-H. H. Chan et al.

a corrupt-majority BA protocol such as Dolev-Strong [11]. For the special case
ε = Θ(1) and static corruption, it is not hard to show that except with O(δ)
probability, the committee consists of at least 1 honest node. Thus all honest
nodes within the small committee can reach agreement on a bit b∗ in log(1/δ)
number of rounds. Unfortunately, there does not seem to be any straightforward
way to securely convey this bit to the non-committee nodes (note that the com-
mon approach of taking a majority vote among the committee fails to work in
the corrupt majority setting).

To resolve this challenge, our insight is to combine the random committee
election idea and the Dolev-Strong protocol in a non-blackbox manner.

Background: the Dolev-Strong Protocol. We start by reviewing the classi-
cal Dolev-Strong protocol [11] that achieves linear round complexity and toler-
ates any number of corruptions—henceforth the term “multicast” means “send
to everyone”2:

– Every node i maintains an Extractedi set that is initialized to be empty. In
round 0, the sender signs its input bit b, and multicasts b and the signature.

– For each round r = 1 . . . n: for each bit b ∈ {0, 1}, if node i has observed valid
signatures on b from at least r distinct nodes including the designated sender
and b /∈ Extractedi: compute a signature on b; multicast b and all signatures
it has observed on b (including its own); include b in Extractedi.

– At the end of the protocol, each node i outputs the bit contained in Extractedi

if |Extractedi| = 1; else it outputs a canonical bit 0.

This protocol retains consistency, if the number K of rounds is strictly larger
than the number f of (eventually) corrupt nodes. First, if an honest node i first
adds a bit b to its Extractedi set in any round r < K, then by the end of round
r +1, b must be in every honest node’s Extracted set. Further, if a honest node i
first adds a bit b to its Extractedi set in the last round K (which is at least f +1),
then at least one out of the K ≥ f + 1 signatures it has observed in round K
must be from an honest node—it holds that this honest node must have added
b to its Extracted set in some round r < K before the last round; and thus by
the end of the last round K, every honest node will have b in its Extracted set.

Achieving Agreement for Non-committee Members. Recall that the
problem with the näıve committee election approach is how to convey the com-
mittee’s decision to the non-committee members. To this end we will combine
the committee election idea with Dolev and Strong’s protocol in a non-blackbox
manner. Suppose that a leader election oracle exists that helps us elect a commit-
tee of log(1/δ) nodes after the adversary chooses the corrupt nodes. As argued
earlier, except with probability O(δ), there is at least one honest node in the
committee.

2 Since in many consensus works the word broadcast is used to mean “Byzantine
Agreement”, we use “multicast” rather than “broadcast” to avoid ambiguity.

Sublinear-Round Byzantine Agreement Under Corrupt Majority 253

Henceforth we assume that only the committee members are authorized sign-
ers and signatures from any non-committee node will be ignored. Our key insight
is to divide each round r of the Dolev-Strong protocol into two mini-rounds:

– Every node i maintains an Extractedi set that is initialized to be empty. In
round 0, the sender signs its input bit b, and multicasts b and the signature.

– For each round r = 1, 2, . . . , S +1 where S = log(1/δ) denotes the committee
size,
1. In the first mini-round, if any node i receives a bit b /∈ Extractedi with r

signatures from distinct signers, it adds b to Extracted and multicasts b
tagged with all signatures observed so far for b.

2. In the second mini-round, only the committee members perform the
actions above and moreover a committee member always appends its own
signature for b when multicasting b (and all other seen signatures on b).

– Each node i outputs the bit contained in Extractedi if |Extractedi| = 1; else it
outputs a canonical bit 0.

Note that this approach guarantees that if any honest node newly adds a bit
b to its Extracted set in round r, then all committee nodes must have signed it
by the end of round r (if not earlier) and multicast the corresponding signature.
Thus in the first mini-round of round r +1, every honest node will have added b
to its Extracted set. At this moment, it is not difficult to see that as long as one
committee member is honest, if the above protocol is executed for at least f + 1
rounds then we can argue consistency using a similar approach as Dolev-Strong.

3.2 Achieving Adaptive Security and Removing the Leader
Election Oracle

The above protocol enables the committee to securely convey its decision to non-
committee nodes; unfortunately, the protocol does not defend against adaptive
corruptions. Specifically, since the elected committee is small relative to n, an
adaptive adversary can simply corrupt all committee members after they are
elected. We now present an approach for achieving adaptive security borrow-
ing the “bit-specific committee election” idea that was previously employed in
the construction of small-bandwidth honest-majority BA protocols by Abraham
et al. [1] and Chan et al. [5]. As a by-product we will have instantiated the leader
election oracle that was needed earlier.

Our idea is to tie the committee election to each individual bit, i.e., there is a
separate committee that are allowed to vote on 0 and 1 respectively (henceforth
called the 0-committee and the 1-committee respectively), and the designated
sender is in both committees. Specifically, Abraham et al. [1] and Chan et al. [5]
describe how to realize bit-specific committee election using a suitable Verifiable
Random Function (VRF) with adaptive security. Take b = 0 as an example. For
a node i to determine if he is on the 0-committee, he checks the following:

let (ρ, π) := VRFski(0), and check if ρ < Dp

254 T.-H. H. Chan et al.

Here ski is his private key, Dp is an appropriate difficulty parameter that deter-
mines the success probability (denoted p) of each election attempt, and π is a
proof generated by the VRF which will be used below for verification. Concretely,
the probability p is chosen such that the expected number of nodes elected into
either the 0-committee or 1-committee is log(1/δ). To convince others that i is
indeed an eligible member of the 0-committee, i reveals both ρ and π, and every-
one can now verify, using i’s public key, that indeed ρ is the correct outcome of
the VRF.

We now explain how to use bit-specific committee election to achieve adaptive
security. Suppose a 0-committee member i becomes immediately corrupt after
signing 0 and multicasting signatures on 0. However, corrupting node i does not
necessarily help voting for the bit 1—in particular, since the two committees are
independently selected, node i is only as good as any other node in terms of its
likelihood of being elected into the 1-committee. Thus, corrupting node i is only
as good as corrupting any other node at this point. In the proof of Lemma 2, we
will formalize the above intuition.

Putting it Altogether. We say that a tuple (b, i, π) is a valid vote on b iff
either (1) i = 1 is the designated sender and π is a valid signature on b from i;
or (2) i �= 1 and π is a valid VRF proof proving i to be in the b-committee. The
protocol is described below.

– Every node i initializes Extractedi := ∅. The sender signs its input bit b and
multicasts b as well as the signature.

– For round r = 1, . . . , log(1/δ), every node i performs the following:
1. First mini-round: for every b /∈ Extractedi such that the node has observed

at least r votes from distinct nodes including the sender: add b to
Extractedi; multicast b and all observed votes on b.

2. Second mini-round: for every b /∈ Extractedi, if node i belongs to the
b-committee and moreover the node has observed at least r votes from
distinct nodes including the sender: add b to Extractedi; compute a new
vote on b; multicast b and all observed votes on b (including the newly
created one).

– Every node i outputs the bit contained in Extractedi if |Extractedi| = 1; else
output a canonical bit 0.

3.3 Organization of the Subsequent Formal Sections

The subsequent sections formalize the description contained in this section.
Specifically, in Sect. 4, we describe an idealized version of the protocol assuming
an ideal eligibility election oracle, and we conduct stochastic analysis of the ide-
alized protocol for more general choices of ε. Next, in Sect. 5, we describe how
to replace the idealized leader eligibility election oracle with suitable adaptively
secure cryptographic primitives, and yet retain the security properties of the
idealized protocol.

Sublinear-Round Byzantine Agreement Under Corrupt Majority 255

4 Formal Description of Fmine-Hybrid Protocol

In the sections to follow, we will formally present our upper bound for the cor-
rupt majority case. We will first describe our protocol assuming an idealized
oracle called Fmine that is in charge of random eligibility election 3—this app-
roach allows us to “abstract away” the cryptography and focus on analyzing the
stochastic properties of the protocol first. Later in Sect. 5, we will show how to
leverage standard techniques to remove the Fmine assumption and instantiate it
with appropriate, adaptively secure cryptography.

Henceforth, to make our description and proofs more precise, we define some
additional terminology. At any time in the protocol, nodes that remain honest
so far are referred to as so-far honest nodes; nodes that remain honest till the
end of the protocol are referred to as forever honest nodes.

4.1 Ideal Functionality Fmine for Random Eligibility Determination

The idealized oracle Fmine provides the following functionality. A node i can
query Fmine to check if it is an eligible member of the b-committee where
b ∈ {0, 1}. Upon receiving such a query, Fmine flips a random coin (with appro-
priate probability) to determine the answer; further Fmine stores this answer and
returns it to any node that queries it henceforth.

More formally, the Fmine ideal functionality has two activation points:

– Whenever a node i calls mine(b) for the first time where b ∈ {0, 1}, Fmine flips
a random coin (parametrized with an appropriate probability p) to decide if
i is a committee member for b.
Henceforth if a node i calls Fmine.mine(b), we also say that i makes a mining
attempt for the bit b.

– If node i has called mine(b) and the attempt is successful, anyone who
calls Fmine.verify(b, i) will obtain an answer of 1; all other calls to
Fmine.verify(b, i) will return 0.

Henceforth in the paper, we assume that the choice of the success probability
p is a global, public parameter. We will describe how to choose p later.

4.2 Formal Protocol in the Fmine-Hybrid World

We describe how to achieve adaptively secure BA with sublinear round com-
plexity, tolerating 1 − ε fraction of corruption for any arbitrarily small positive
constant ε. Recall that without loss of generality, we assume that node 0 is the
designated sender.

Valid Vote. With respect to some moment in time, a valid vote for the value b
from node i is of the following form:

3 The name Fmine is making an analogy to Bitcoin mining. Each call to Fmine is like
an attempt to mine a ticket to vote in the protocol.

256 T.-H. H. Chan et al.

Byzantine Agreement: Synchronous Network with Corrupt Majority

Parameters: Let ε be the fraction of forever honest nodes and δ be the desired failure
probability.
Fmine is instantiated with a probability p := min{1, 1

εn
log 2

δ
}. Let R = � 3

ε
· ln 2

δ
� be

the total number of stages.

Stage 0: Initialization. No message is multicast in this stage.

– The sender 0 produces a valid 1-batch of vote for its value b0 by producing a
signature Sig0(b0).

– Every node i sets Extractedi ← ∅.

Stage r ∈ [1..R]. Each such stage consists of 2 rounds.

1. In the first round, every node i performs the following:
– For each bit b, if node i has seen a valid r-batch of votes for b and b /∈

Extractedi, then it multicasts any such r-batch for b to everyone, and sets
Extractedi ← Extractedi ∪ {b}.

2. In the second round, each node i �= 1 does the following. For each bit b, if it
has seen a valid r-batch of votes for b and node i has never called Fmine.mine(b)
before, then it calls Fmine.mine(b) and executes the following if the result is
successful:
– It sets Extractedi ← Extractedi ∪ {b}.
– It multicasts a valid (r + 1)-batch of votes for b, possibly by adding its own

valid vote (b, i).

Stage R + 1: Termination. No message is multicast in this stage. Every node i
performs the following:

– For each bit b, if node i has seen a valid (R + 1)-batch for b, it sets Extractedi ←
Extractedi ∪ {b}.

– Output to Z. If |Extractedi| = 1, then it outputs the unique bi ∈ Extractedi to
Z; otherwise, outputs the default value 0 to Z.

Fig. 1. Our protocol. The protocol is described in the Fmine-hybrid world. Section 5
will explain how to instantiate Fmine with cryptographic assumptions.

– If i = 0, i.e., i is the sender, then a valid vote is of the form (b, 0, Sig0(b)),
where Sig0(b) denotes a valid signature from the sender on the bit b.

– For i �= 0, a valid vote w.r.t. some time t is of the form (b, i) such that
Fmine.verify(b, i) returns 1 at time t, i.e., by time t, node i must have called
Fmine.mine(b) and the result must have been successful.

Valid Vote Batch. For r ≥ 1, a valid r-batch of votes for value b consists of
valid votes for value b from r distinct nodes, one of which must be the sender 0.
Note that just like the definition of a valid vote, a valid vote batch is also defined
w.r.t. to some moment of time (which we sometimes omit writing explicitly if
the context is clear).

Sublinear-Round Byzantine Agreement Under Corrupt Majority 257

Since we have explained the intutition behind our protocol earlier, we now
give a formal presentation of the protocol in Fig. 1—here “multicast” means
sending a message to everyone.

4.3 Analysis in the Fmine-Hybrid World

In this subsection, we shall prove the following theorem for our Fmine-hybrid-
world protocol described in Fig. 1.

Theorem 2. Assume that the signature scheme is secure. For any 0 < ε, δ <
1 (that can be functions of n), the Fmine-hybrid Byzantine agreement protocol
described in Fig. 1 satisfies consistency (with probability at least 1−δ) and validity
and terminates in 2 · � 3

ε ln 2
δ 	 rounds (with probability 1) w.r.t. any non-uniform

p.p.t. (A,Z) that corrupts no more than (1 − ε)n nodes.

Committee. Without loss of generality, we consider a modification to the pro-
tocol, where Fmine flips a coin for each (b, i) pair upfront. When Fmine receives
mine queries, it simply retrieves the corresponding coin that has already been
flipped earlier. In this world, we can define the notion of committees more easily:
For each bit b, a node i �= 1 is in the committee Comb for b, if Coin[b, i] = 1.

Honest and Corrupt Votes. A (valid) vote for a bit b from a node i is said
to be honest if the node is so-far honest at the moment the vote is cast, which is
the moment when node i calls Fmine.mine(b); otherwise, the (valid) vote is said
to be corrupt or dishonest.

Handling Signature Failure. Assume that the signature scheme is secure,
and that A and Z are probabilistic polynomial time, it must hold that except
with negligible probability, no so-far honest node should have a forged signature
in view. This is formalized in the following fact:

Fact 1 (No signature failure). Assume that the signature scheme is secure.
Then, except with negligible probability, the following holds: if the sender is so-
far honest and did not sign the bit b ∈ {0, 1}, then no so-far honest node has
seen a valid signature on b from the sender.

Proof. By straightforward reduction to signature security.

There are two types of bad events that can cause our protocol’s security
to fail: (1) signature failure (captured by Fact 1); and (2) other stochastic bad
events related to Fmine’s coin flips. In the next subsection, we will bound the
probability of the latter type of bad events—and there we will pretend that the
signature scheme is “ideal” and there are no signature failures—but we stress
that technically, we are actually taking a union bound over signature failure and
the stochastic bad events analyzed in the next subsection.

258 T.-H. H. Chan et al.

Proofs: Bounding Stochastic Bad Events. The protocol clearly satisfies
termination; and validity also follows trivially from Fact 1. Thus the remainder
of this section will focus on the consistency proof. Our proofs work for general
choices of parameters, including the honest fraction ε (which can be a function of
n) and the failure probability δ. As a special case, assuming that ε is any arbitrar-
ily small positive constant and moreover, the mining difficulty parameter p and
the total number of stages R are chosen as in Fig. 1, then the failure probability
δ = e−ω(log κ) would be a negligible function in the security parameter κ.

To prove consistency, we will prove that there is no discrepancy for either bit
(except with δ probability), which is formally defined as follows.

Discrepancy for b. A discrepancy for b ∈ {0, 1} occurs if at the end of the
protocol there exist two honest nodes such that b is in exactly one of the two
corresponding extracted sets. We further classify the following two types of dis-
crepancy if, in addition, the following conditions are satisfied.

Type-A. A type-A discrepancy for b occurs when b is first added to some honest
node’s extracted set in some stage in [1..R].

Type-B. A type-B discrepancy for value b occurs when R + 1 is the only stage
in which b is added to any honest node’s extracted set.

Fact 2. If an honest vote is cast for value b (at the second round of some stage)
during the protocol, then for each forever honest node i, it holds at termination
that b ∈ Extractedi.

Lemma 1 (Type-A Discrepancy). Suppose the probability of success for
Fmine.mine(·) is p := min{1, 1

εn · log 1
δ }. For any value b, a type-A discrepancy

for value b happens with probability at most δ.

Proof. It suffices to prove the claim that if a type-A discrepancy for value b
occurs, then there are at least εn nodes, each of which has called Fmine.mine(b)
with unsuccessful result at some moment when it is still so-far honest. For the
trivial case e−εn ≥ δ, we have p = 1 and every mining attempt must be successful.
For the case e−εn < δ, this event happens with probability at most (1 − p)εn ≤
exp(−εnp) ≤ δ, which implies the result of the lemma.

The rest of the proof establishes the above claim. Observe that a type-A
discrepancy implies that at some moment, there is a first time when a so-far
honest node adds b to its extracted set in some stage r ∈ [1..R]. If this happened
in the second round of stage r, then this so-far honest node is in Comb and would
have been able to cast a valid (r+1)-batch of votes that can be seen by everyone
in stage r + 1. Therefore, a type-A discrepancy means that b is first added to a
so-far honest node i in the first round of stage r, which means node i has seen
some valid r-batch of votes.

Since this node i is so-far honest, it will multicast this batch to everyone,
and every so-far honest node that has not tried to call Fmine.mine(b) before will
call Fmine.mine(b) in the second round of stage r.

Sublinear-Round Byzantine Agreement Under Corrupt Majority 259

Since a type-A discrepancy occurs, it must be case that all (previous or
present) trials of Fmine.mine(b) by so-far honest nodes have returned unsuccess-
ful. Since at any moment, the number of so-far honest nodes is at least εn, we
conclude that the claim is true, and this completes the proof.

Fact 3 (Chernoff Bound). Suppose X is the sum of independent {0, 1}-
random variables. Then, for any τ > 0, the following holds:

Pr[X ≥ (1 + τ)E[X]] ≤ exp(−τ · min{τ, 1} · E[X]
3

)

Lemma 2 (Type-B Discrepancy). Let p := min{1, 1
εn log 1

δ } as in Lemma 1,
and set R := � 3

ε · ln 1
δ 	. Then, for any value b, a type-B discrepancy for b happens

with probability at most δ.

Proof. A type-B discrepancy for b occurs implies that some honest node i sees a
valid (R+1)-batch of votes, which are all cast by dishonest nodes. This is because
if one of the votes was cast by a so-far honest node (in the second round) of some
stage r ∈ [1..R], then everyone would have seen a valid (r + 1)-batch in stage
r + 1, in which case a discrepancy would not have occurred.

Observe that a dishonest vote is cast only if a node is corrupted before it calls
Fmine.mine(b) for the first time. There are at most (1 − ε)n dishonest nodes and
each of them can call Fmine.mine(b) successfully independently with probability
p. Important: Note that even if nodes are corrupted adaptively (for instance,
based on mining results of other values), the success probability of mining value b
is still p.

For the trivial case, δ ≤ e−εn, R ≥ 3n is not interesting; hence, it suffices to
consider δ > e−εn and p < 1. We next consider two cases.

Case ε ≥ 1
4 . Set τ := 3ε

1−ε ≥ 1. By Chernoff Bound, the probability that there
are more than R = � 3

ε · ln 1
δ 	 ≥ (1 + τ)(1 − ε)np dishonest votes is at most

exp(− τ(1−ε)np
3) = δ.

Case ε < 1
4 . Set τ = 1. By Chernoff Bound, the probability that there are more

than R = � 3
ε · ln 1

δ 	 ≥ (1+τ)(1−ε)np dishonest votes is at most exp(− (1−ε)np
3) ≤

δ.

Corollary 1. Suppose that with probability 1, there are at least ε fraction of
forever honest nodes and let δ be the desired failure probability. By setting the
mining success probability p := min{1, 1

εn log 2
δ } and R := � 3

ε · ln 2
δ 	, the protocol

satisfies consistency with probability at least 1 − δ.

Proof. For the trivial case δ
2 ≤ e−εn, the bound R ≥ 3n is not interesting. Hence,

it suffices to consider δ
2 > e−εn and p < 1.

To use union bound over type-A and type-B discrepancy for both values of
b, we set the failure probability to be δ

2 in Lemmas 1 and 2.

260 T.-H. H. Chan et al.

5 Removing the Idealized Functionality Fmine

So far, we have assumed the existence of an Fmine ideal functionality. In this
section, we describe how to instantiate the protocols in the real world. Our
techniques follow the approach described by Abraham et al. [1]. Although this
part is not a contribution of our paper, for completeness, we describe all the
building blocks and the approach in a self-contained manner.

5.1 Preliminary: Adaptively Secure Non-interactive
Zero-Knowledge Proofs

We use f(κ) ≈ g(κ) to mean that there exists a negligible function ν(κ) such
that |f(κ) − g(κ)| < ν(κ).

A non-interactive proof system henceforth denoted nizk for an NP language
L consists of the following algorithms.

– crs ← Gen(1κ,L): Takes in a security parameter κ, a description of the lan-
guage L, and generates a common reference string crs.

– π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that
(stmt, w) ∈ L, and produces a proof π.

– b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and
outputs 0 (reject) or 1 (accept).

Perfect Completeness. A non-interactive proof system is said to be perfectly
complete, if an honest prover with a valid witness can always convince an honest
verifier. More formally, for any (stmt, w) ∈ L, we have that

Pr [crs ← Gen(1κ,L), π ← P(crs, stmt, w) : V(crs, stmt, π) = 1] = 1

Non-erasure Computational Zero-Knowledge. Non-erasure zero-
knowledge requires that under a simulated CRS, there is a simulated prover
that can produce proofs without needing the witness. Further, upon obtaining
a valid witness to a statement a-posteriori, the simulated prover can explain the
simulated NIZK with the correct witness.

We say that a proof system (Gen,P,V) satisfies non-erasure computa-
tional zero-knowledge iff there exists probabilistic polynomial time algorithms
(Gen0,P0,Explain) such that

Pr
[
crs ← Gen(1κ),AReal(crs,·,·)(crs) = 1

]
≈

Pr
[
(crs0, τ0) ← Gen0(1κ),AIdeal(crs0,τ0,·,·)(crs0) = 1

]
,

where Real(crs, stmt, w) runs the honest prover P(crs, stmt, w) with randomness
r and obtains the proof π, it then outputs (π, r); Ideal(crs0, τ0, stmt, w) runs
the simulated prover π ← P0(crs0, τ0, stmt, ρ) with randomness ρ and without a
witness, and then runs r ← Explain(crs0, τ0, stmt, w, ρ) and outputs (π, r).

Sublinear-Round Byzantine Agreement Under Corrupt Majority 261

Perfect Knowledge Extration. We say that a proof system (Gen,P,V) sat-
isfies perfect knowledge extraction, if there exists probabilistic polynomial-time
algorithms (Gen1,Extr), such that for all (even unbounded) adversary A,

Pr [crs ← Gen(1κ) : A(crs) = 1] = Pr [(crs1, τ1) ← Gen1(1κ) : A(crs1) = 1] ,

and moreover,

Pr [(crs1, τ1) ← Gen1(1κ); (stmt, π) ← A(crs1);w ← Extr(crs1, τ1, stmt, π) :
V(crs1, stmt, π) = 1, but (stmt, w) /∈ L] = 0

5.2 Adaptively Secure Non-interactive Commitment Scheme

An adaptively secure non-interactive commitment scheme consists of the follow-
ing algorithms:

– crs ← Gen(1κ): Takes in a security parameter κ, and generates a common
reference string crs.

– C ← com(crs, v, ρ): Takes in crs, a value v, and a random string ρ, and outputs
a committed value C.

– b ← ver(crs, C, v, ρ): Takes in a crs, a commitment C, a purported opening
(v, ρ), and outputs 0 (reject) or 1 (accept).

Computationally Hiding Under Selective Opening. We say that a
commitment scheme (Gen, com, ver) is computationally hiding under selec-
tive opening, iff there exists a probabilistic polynomial time algorithms
(Gen0, com0,Explain) such that

Pr
[
crs ← Gen(1κ),AReal(crs,·)(crs) = 1

]
≈

Pr
[
(crs0, τ0) ← Gen0(1κ),AIdeal(crs0,τ0,·)(crs0) = 1

]
,

where Real(crs, v) runs the honest algorithm com(crs, v, r) with randomness r
and obtains the commitment C, it then outputs (C, r); Ideal(crs0, τ0, v) runs the
simulated algorithm C ← comm0(crs0, τ0, ρ) with randomness ρ and without v,
and then runs r ← Explain(crs0, τ0, v, ρ) and outputs (C, r).

Perfectly Binding. A commitment scheme is said to be perfectly binding iff
for every crs in the support of the honest CRS generation algorithm, there does
not exist (v, ρ) �= (v′, ρ′) such that com(crs, v, ρ) = com(crs, v′, ρ′).

Theorem 3 (Instantiation of our NIZK and commitment schemes [17]).
Assume standard bilinear group assumptions4. Then, there exists a proof system
that satisfies perfect completeness, non-erasure computational zero-knowledge,
and perfect knowledge extraction. Further, there exist a commitment scheme that
is perfectly binding and computationally hiding under selective opening.
4 We need either the subgroup decision assumption or the decisional linear assumption

according to Groth et al. [17].

262 T.-H. H. Chan et al.

Proof. The existence of such a NIZK scheme was shown by Groth et al. [17]
via a building block that they called homomorphic proof commitment scheme.
This building block can also be used to achieve a commitment scheme with the
desired properties.

NP Language Used in Our Construction. In our construction, we will use
the following NP language L. A pair (stmt, w) ∈ L iff

– parse stmt := (ρ, c, crscomm, b), parse w := (sk, s);
– it must hold that c = comm(crscomm, sk, s), and PRFsk(b) = ρ.

5.3 Removing Fmine with Cryptography

Cryptographic Building Blocks. We can remove the Fmine oracle by lever-
aging cryptographic building blocks including a pseudorandom function family,
a non-interactive zero-knowledge proof system that satisfies computational zero-
knowledge and computational soundness, and a perfectly binding and computa-
tionally hiding commitment scheme.

Compiler from Ideal-World Protocol to a Real-World Protocol. Essen-
tially, with these primitives we can construct an appropriate VRF with adaptive
security. Note that some earlier works [7,22] also achieved such an adaptively
secure VRF using unique signatures and random oracles. Here we adopt the
approach in Abraham et al. [1], since it removes the random oracle assumption.

We now provide a formal description of how to compile our Fmine-hybrid pro-
tocols into real-world protocols using cryptography. The intuition is very simple.
Every node commits to a PRF secret key in its public key. This committed secret
key is used to evaluate a PRF on b = 0 or b = 1 to determine whether the node
belongs to the b-th committee. The node can then prove to everyone that the
eligibility determination is performed correctly by employing a NIZK. Below we
give a more formal description of how to rely on this idea to compile the earlier
Fmine-hybrid protocol to the real world.

– PKI setup. Upfront, a trusted party runs the CRS generation algorithms
of the commitment and the NIZK scheme to obtain crscomm and crsnizk. It
then chooses a secret PRF key for every node, where the i-th node has key
ski. It publishes (crscomm, crsnizk) as the public parameters, and each node i’s
public key denoted pki is computed as a commitment of ski using a random
string si. The collection of all users’ public keys is published to form the PKI,
i.e., the mapping from each node i to its public key pki is public information.
Further, each node i is given the secret key (ski, si).

– Instantiating Fmine.mine. Recall that in the ideal-world protocol a node i
calls Fmine.mine(b) to check if it is in the b-th committee. Now, instead, the
node i calls ρ := PRFski(b), and computes the NIZK proof

π := nizk.P((ρ, pki, crscomm, b), (ski, si))

Sublinear-Round Byzantine Agreement Under Corrupt Majority 263

where si the randomness used in committing ski during the trusted setup.
Intuitively, this zero-knowledge proof proves that the evaluation outcome ρ is
correct w.r.t. the node’s public key (which is a commitment of its secret key).
The mining attempt for b is considered successful if ρ < Dp where Dp is
an appropriate difficulty parameter such that a random string of appropriate
length is less than Dp with probability p—the probability p is selected in the
same way as the earlier Fmine-hybrid world in Fig. 1.
Recall that earlier in our Fmine-hybrid protocol, every message multicast by
a so-far honest node i is a vote of the form (b, i) where node i has successfully
called Fmine.mine(b). Each such message (b, i) that node i wants to multi-
cast is translated to the real-world protocol as follows: we rewrite (b, i) as
(b, i, ρ, π) where the terms ρ and π are those generated by i in place of calling
Fmine.mine(b) in the real world (as explained above). Note that in our Fmine-
hybrid protocols a node j �= i may also relay a message (b, i) mined by i—in
the real world, node j would be relaying (b, i, ρ, π) instead.

– Instantiating Fmine.verify. In the Fmine-hybrid world, a node would call
Fmine.verify to check the validity of votes upon receiving them, In the real-
world protocol, we perform the following instead: upon receiving the vote
(b, i, ρ, π), a node can verify the vote’s validity by checking:
1. ρ < Dp where p is an appropriate difficulty parameter parametrized in

the same way as Fig. 1 and
2. π is indeed a valid NIZK for the statement formed by the tuple

(ρ, pki, crscomm, b). The tuple is discarded unless both checks pass.

Extending the Security Guarantees to the Real-World Protocol. Now
using the same proofs as Abraham et al. [1], we can prove that the compiled
real-world protocols enjoy the same security properties as the Fmine-hybrid pro-
tocols. Since the proofs follow identically, we omit the details and refer the reader
to Abraham et al. [1]. In the following theorem we assume that the pseudo-
random function family employed is secure, the non-interactive zero-knowledge
proof system employed satisfies computational zero-knowledge and computa-
tional soundness, and moreover, the commitment scheme is perfectly binding
and computationally hiding.

Theorem 4 (Real-world protocol: restatement of Theorem 1). Assume
that the cryptographic primitives employed are secure in the sense mentioned
above5. For parameters ε, δ ∈ (0, 1) which are allowed to be functions in n,
the aforementioned real-world protocol terminates in O(log(1/δ)/ε) number of
rounds and achieves BA with 1 − δ − negl(κ) probability in the presence of an
adversary that adaptively corrupts at most (1 − ε)n nodes and runs in time
polynomial in κ.

5 Specifically, see the “Cryptographic building blocks” paragraph above for the
required security notions of the cryptographic primitives employed.

264 T.-H. H. Chan et al.

Proof. Note our techniques for instantiating Fmine with actual cryptography
are borrowed from Abraham et al. [1]. Their proof for showing that the real-
world protocol preserves the security properties proved in the ideal world is
immediately applicable to our case.

Acknowledgments. We would like to thank Vassilis Zikas for very helpful discus-
sions, and we gratefully thank the PKC’2020 reviewers for the detailed and thoughtful
comments.

References

1. Abraham, I., et al.: Communication complexity of Byzantine agreement, revisited.
In: PODC (2019)

2. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous Byzantine
agreement with optimal resilience, expected o(n2) communication, and expected
o(1) rounds. In: Financial Cryptography and Data Security (FC) (2019)

3. Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation: multi-party
computation for (parallel) RAM programs. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 742–762. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 36

4. Braud-Santoni, N., Guerraoui, R., Huc, F.: Fast Byzantine agreement. In: ACM
Symposium on Principles of Distributed Computing, PODC 2013, Montreal, QC,
Canada, 22–24 July 2013, pp. 57–64 (2013)

5. Hubert Chan, T.-H., Pass, R., Shi, E.: Consensus through herding. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 720–749. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 24

6. Hubert Chan, T.-H., Pass, R., Shi, E.: Sublinear-round Byzantine agreement under
corrupt majority (2019). Online full version of this paper. https://eprint.iacr.org/
2019/886

7. Chen, J., Micali, S.: ALGORAND: the efficient and democratic ledger (2016).
https://arxiv.org/abs/1607.01341

8. Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in
realistic failure models. J. ACM 36(3), 591–614 (1989)

9. Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 240–269. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 9

10. Cohen, R., Haitner, I., Makriyannis, N., Orland, M., Samorodnitsky, A.: On the
round complexity of randomized Byzantine agreement. In: 33rd International Sym-
posium on Distributed Computing, DISC 2019, Budapest, Hungary, 14–18 October
2019, pp. 12:1–12:17 (2019)

11. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. SIAM COMP 12(4), 656–666 (1983)

12. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

13. Fitzi, M., Nielsen, J.B.: On the number of synchronous rounds sufficient for authen-
ticated Byzantine agreement. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp.
449–463. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04355-
0 46

https://doi.org/10.1007/978-3-662-48000-7_36
https://doi.org/10.1007/978-3-030-17653-2_24
https://eprint.iacr.org/2019/886
https://eprint.iacr.org/2019/886
https://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-642-04355-0_46
https://doi.org/10.1007/978-3-642-04355-0_46

Sublinear-Round Byzantine Agreement Under Corrupt Majority 265

14. Garay, J., Katz, J., Koo, C.-Y., Ostrovsky, R.: Round complexity of authenticated
broadcast with a dishonest majority. In: 48th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), November 2007

15. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.-S.: Adaptively secure broadcast,
revisited. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, PODC 2011, pp. 179–186. ACM, New
York (2011)

16. Goldwasser, S., Pavlov, E., Vaikuntanathan, V.: Fault-tolerant distributed comput-
ing in full-information networks. In: Proceedings of the 47th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2006), Berkeley, California,
USA, 21–24 October 2006, pp. 15–26 (2006)

17. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

18. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 24

19. Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast asynchronous
Byzantine agreement and leader election with full information. ACM Trans. Algo-
rithms 6(4), 68:1–68:28 (2010)

20. Karlin, A., Yao, A.C.-C.: Probabilistic lower bounds for byzantine agreement.
Manuscript (1986)

21. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

22. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

23. King, V., Saia, J.: Breaking the O(N2) bit barrier: scalable Byzantine agreement
with an adaptive adversary. J. ACM 58(4), 18:1–18:24 (2011)

24. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: SODA (2006)
25. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4(3), 382–401 (1982)

https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

Bandwidth-Efficient Threshold EC-DSA

Guilhem Castagnos1, Dario Catalano2, Fabien Laguillaumie3,
Federico Savasta2,4, and Ida Tucker3(B)

1 Université de Bordeaux, Inria, CNRS, IMB UMR 5251, 33405 Talence, France
2 Università di Catania, Catania, Italy

3 Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, 69342 Lyon Cedex 07, France
ida.tucker@ens-lyon.fr

4 Scuola Superiore di Catania, Catania, Italy

Abstract. Threshold Signatures allow n parties to share the power of
issuing digital signatures so that any coalition of size at least t + 1 can
sign, whereas groups of t or less players cannot. Over the last few years
many schemes addressed the question of realizing efficient threshold vari-
ants for the specific case of EC-DSA signatures. In this paper we present
new solutions to the problem that aim at reducing the overall bandwidth
consumption. Our main contribution is a new variant of the Gennaro and
Goldfeder protocol from ACM CCS 2018 that avoids all the required
range proofs, while retaining provable security against malicious adver-
saries in the dishonest majority setting. Our experiments show that – for
all levels of security – our signing protocol reduces the bandwidth con-
sumption of best previously known secure protocols for factors varying
between 4.4 and 9, while key generation is consistently two times less
expensive. Furthermore compared to these same protocols, our signature
generation is faster for 192-bits of security and beyond.

1 Introduction

A threshold signature scheme allows n, mutually mistrusting, users to share the
capability of signing documents under a common public key. The threshold t < n
typically indicates that any subset of at least t+1 users can collaborate in order
to issue a valid signature. On the other hand, no coalition of t or less users
can do so. Moreover, if an attacker corrupts up to t users this does not leak
any information on the underlying secret key. This latter property is very use-
ful in practice as it significantly reduces the loss induced by a security break in.
The study of threshold signatures (and more generally of threshold cryptography
[Des88,DF90,GJKR96b,SG98,Sho00,Boy86,CH89,MR01]) attracted significant
interest from the early 1990s to the early 2000s. Over the last few years, thresh-
old signatures and, in particular, threshold EC-DSA signatures raised renewed
interest. This mainly comes from the fact that EC-DSA is the signature scheme
adopted in Bitcoin and other cryptocurrencies. Indeed, a secure, flexible and
efficient protocol for threshold EC-DSA signatures can be very effective against
the theft of Bitcoins. Protecting EC-DSA signing keys is equivalent to securing
Bitcoin: instead of storing a signing key in one single location one could share
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 266–296, 2020.
https://doi.org/10.1007/978-3-030-45388-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_10

Bandwidth-Efficient Threshold EC-DSA 267

it among several servers so that none of them knows it in full and a quorum is
needed to produce new signatures. This also means that an attacker should be
able to break in into more than t servers to get anything meaningful.

Notice that, in order for a secure solution to be any useful in the cryp-
tocurrency world, efficiency and flexibility are of fundamental importance. Here
flexibility mainly refers to the possibility of arbitrarily setting the threshold.
Efficiency, on the other hand, takes into account both the computational costs
and the bandwidth consumption induced by the protocol.

Before the advent of cryptocurrencies, known solutions to the problem fell
short either in terms of flexibility or in terms of efficiency (or both). The state
of the art was the work of Gennaro et al. [GJKR96a] where to implement a
threshold of t servers one needed to share the key among a total of at least
n = 2t + 1 servers, thus making n-out-of-n sharings impossible (i.e. sharings
where all parties are required to participate to the signing process). This was later
addressed by Mackenzie and Reiter [MR01] for the specific two party setting (i.e.
where t = 1 and n = 2) but the proposed protocol heavily relies on inefficient zero
knowledge proofs, thus making the resulting protocol of little practical interest.

Over the last few years, improved solutions have been proposed both for
the two party [Lin17,DKLs18,CCL+19] and for the more general t-out-of-n
case [GGN16,GG18,LN18,DKLs19]. Focusing on the latter case, all these solu-
tions still have drawbacks either in terms of bandwidth costs (e.g. [DKLs19]
and [LN18] for their OT implementation), somewhat heavy setup [GGN16] or
underlying assumptions [GG18].

Our Contribution. In this paper we present new techniques to realize efficient
threshold variants of the EC-DSA signature scheme. Our resulting protocols are
particularly efficient in terms of bandwidth consumption and, as several recent
works (e.g. [GG18]) allow to consider any threshold t such that n ≥ t + 1.

Our main contribution is a new variant of the Gennaro and Goldfeder proto-
col [GG18] that manages to avoid all the required range proofs, while retaining
comparable overall (computational) efficiency.

To better explain our contribution let us briefly describe how (basic) EC-DSA
works. The public key is an elliptic curve point Q and the signing key is x, where
Q ← xP , and P is a generator of the group of points of the elliptic curve of prime
order q. To sign a message m one first hashes it using some hash function H and
then proceeds as follows. Choose a random k ∈ Z/qZ and compute R = k−1P .
Letting r ← rx mod q – where R = (rx, ry) – set s ← k(H(m) + rx) mod q. The
signature is the pair (r, s).

The difficulty when trying to devise a threshold variant of this scheme comes
from the fact that one has to compute both R = k−1P and a multiplication of the
two secret values k, x. In [GG18] Gennaro and Goldfeder address this as follows.
Starting from two secrets a = a1 + · · · + an, b = b1 + · · · + bn additively shared
among the parties (i.e. Pi holds ai and bi), players compute ab =

∑
i,j aibj by

computing additive shares of each aibj . This can be achieved via a simple two
party protocol, originally proposed by Gilboa [Gil99] in the setting of two party
RSA key generation, which parties execute in a pairwise way. Slightly more
in detail, this latter protocol relies on linearly homomorphic encryption and

268 G. Castagnos et al.

Gennaro and Goldfeder implement it using Paillier’s cryptosystem as underly-
ing building block. This choice, however, becomes problematic when dealing with
malicious adversaries, as Paillier plaintexts live in (Z/NZ) (for N large compos-
ite) whereas EC-DSA signatures live in Z/qZ (q prime). To avoid inconsistencies,
one then needs to choose N significantly larger than q, so that no wrap arounds
occur during the execution of the whole protocol. To prevent malicious behavior,
this also induces the need of expensive range proofs, i.e. when sending Enc(xi)
a player also needs to prove that xi is small enough.

To fix this, one might be tempted to resort to the hash proof systems based
technique recently proposed by Castagnos et al. [CCL+19]. This methodology
allows an efficient instantiation from class groups of imaginary quadratic fields
that, in turn, builds upon the Castagnos and Laguillaumie [CL15] homomorphic
encryption scheme. One key feature of this scheme and its variants (CL from
now on) is that they allow instantiations where the message space is Z/qZ and
this q can be the same large prime used in EC-DSA signatures. Unfortunately,
however, this feature comes at the cost of loosing surjectivity. More precisely,
and differently than Paillier, CL is not surjective in the ciphertext space and
the set of valid CL ciphertexts is not even efficiently recognizable. Even worse,
known techniques to prove the validity of a CL ciphertext are rather inefficient
as they all use binary challenges. This means that to get soundness error 2−t

the proof needs to be repeated t times.
Back to our threshold EC-DSA setting, naively switching from Paillier to

CL, only means trading inefficient range proofs with inefficient proofs of validity
for ciphertexts!

In this paper, we develop new techniques that address exactly this issue. As a
first contribution we develop new efficient protocols to prove CL ciphertexts are
well formed. This result is quite general and can have useful applications even
beyond the specific threshold setting considered in this paper (and indeed can be
used to improve the efficiency of the recent two party protocol from [CCL+19]).

Next, we revisit the Gennaro and Goldfeder protocol and propose a new
CL-based EC-DSA variant where the aforementioned multiplication step can be
done efficiently and without resorting to range proofs.

Our constructions rely on two recently introduced assumptions on class
groups. Informally, given a group Ĝ the first one states that it is hard to
find low order elements in Ĝ (low order assumption) while the latter assumes
that it is hard to find roots of random elements in Ĝ (strong root assump-
tion). Both these assumptions are believed to hold in class groups of imaginary
quadratic fields [BH01,DF02,BBHM02,Lip12] and were recently used in, e.g.
[BBF18,Pie19,Wes19].

From a technical perspective, resorting to these assumptions allows us to dra-
matically improve the efficiency of the (zero knowledge) arguments of knowledge
needed by our protocols. Informally this can be explained as follows. In the class
group setting, the order of the group Ĝ is unknown (to all parties, even to those
who set up the parameters). This is typically a bad thing when doing arguments
of knowledge as, unless one restricts to binary challenges, it is not immediate
how to argue the extractability of the witness.

Bandwidth-Efficient Threshold EC-DSA 269

In our proofs, we manage to prove that, no matter how big the challenge
space is, either one can extract the witness or one can find a root for some given
(random) element of the group, thus violating the strong root assumption. Our
argument is actually more convoluted than that as, for technical reasons that
won’t be discussed here, we still need to make sure that no undetected low order
elements are maliciously injected in the protocols (e.g. to extract unauthorized
information). This is where the low order assumption comes into play and allows
us to avoid hard to handle corner cases in our proofs. Challenges also arise from
the fact that in order to reduce to the hardness of finding roots, our reduction
should output eth roots where e is not a power of two, since, as observed in
concluding remarks of [CCL+19], computing square roots or finding elements of
order 2 can be done efficiently in class groups knowing the factorization of the
discriminant (which is public in our case).

We also provide in Sect. 5 a zero knowledge proof of knowledge (without
computational assumptions) for groups of unknown order in order to improve
our setup. That proof can also be of independent interest and actually improves
the key generation of [CCL+19] for two party EC-DSA.

Efficiency Comparisons. We compare the speed and communication costs
of our protocol to those of the scheme by Gennaro and Goldfeder [GG18] and
that of Lindell et al. [LN18] for the standard NIST curves P-256, P-384 and
P-521, corresponding to levels of security 128, 192 and 256. For the encryption
scheme, we start with a 112 bit security, as in their implementations, but also
study the case where its level of security matches that of the elliptic curves. Our
comparisons show that for all security levels our signing protocol reduces the
bandwidth consumption of best previously known secure protocols for factors
varying between 4.4 and 9, while key generation is consistently two times less
expensive. Moreover, we even outperform (for all security levels) the stripped
down implementation of [GG18] where a number of range proofs are omitted.
We believe this to be an important aspect of our schemes. Indeed, as Gennaro
and Goldfeder themselves point out in [GG18], omitting these proofs leaks infor-
mation on the shared signing key. While they conjecture that this information is
limited enough for the protocol to remain secure, no formal analysis is provided.

In terms of timings, though for standard levels of security (112 and 128) our
signing protocol is up to four times slower than that of [LN18], for higher levels
of security the trend is inverted, such that for 256-bit security we are twice as
fast as all other secure schemes considered1.

2 Preliminaries

Notations. For a distribution D, we write d ←↩ D to refer to d being sampled
from D and b

$←− B if b is sampled uniformly in the set B. In an interactive
protocol IP, between parties P1, . . . , Pn for some integer n > 1, we denote by
1 But still twice as slow as the stripped down [GG18] protocol.

270 G. Castagnos et al.

IP〈x1; . . . ;xn〉 → 〈y1; . . . ; yn〉 the joint execution of parties {Pi}i∈[n] in the proto-
col, with respective inputs xi, and where Pi’s private output at the end of the exe-
cution is yi. If all parties receive the same output y we write IP〈x1; . . . ;xn〉 → 〈y〉.
A (P)PT algo stands for an algorithm running in (probabilistic) polynomial time
w.r.t. the length of its inputs.

Classical tools that we use (Zero-knowledge proofs, Feldman verifiable secret
sharing, Commitments) are described in the full version [CCL+20, Section 2.1].

2.1 The Elliptic Curve Digital Signature Algorithm

Elliptic Curve Digital Signature Algorithm. EC-DSA is the elliptic curve ana-
logue of the Digital Signature Algoritm (DSA). It was put forth by Vanstone
[Van92] and accepted as ISO, ANSI, IEEE and FIPS standards. It works in a
group (G,+) of prime order q (of say μ bits) of points of an elliptic curve over
a finite field, generated by P and consists of the following algorithms.

KeyGen(G, q, P) → (x,Q) where x
$←− Z/qZ is the secret signing key and Q := xP

is the public verification key.
Sign(x,m) → (r, s) where r and s are computed as follows:

1. Compute m′: the μ leftmost bits of SHA256(m) where m is to be signed.
2. Sample k

$←− (Z/qZ)∗ and compute R := k−1P ; denote R = (rx, ry) and
let r := rx mod q. If r = 0 choose another k.

3. Compute s := k · (m′ + r · x) mod q.
Verif(Q,m, (r, s)) → {0, 1} indicating whether or not the signature is accepted.

The standard security notion required of digital signature schemes is that of
existential unforgeability under chosen message attacks (eu-cma) [GMR88].

Definition 1 (Existential unforgeability [GMR88]). Consider a digital sig-
nature scheme S = (KeyGen,Sign,Verif), and a PPT algorithm A, which is given
as input a verification key vk output by KeyGen(1λ) → (sk, vk) and oracle access
to the signing algorithm Sign(sk, .) to whom it can (adaptively) request signatures
on messages of its choice. Let M be the set of queried messages. S is existentially
unforgeable if for any such A, the probability Adveu-cma

S,A that A produces a valid
signature on a message m /∈ M is a negligible function of λ.

(t, n)-threshold EC-DSA. For a threshold t and a number of parties n > t,
threshold EC-DSA consists of the following interactive protocols:

IKeyGen〈(G, q, P); . . . ; (G, q, P)〉 → 〈(x1, Q); . . . ; (xn, Q)〉 s.t. KeyGen(G, q, P) →
(x,Q) where x1, . . . , xn constitute a (t, n) threshold secret sharing of x.

ISign〈(x1,m); . . . ; (xn,m)〉 → 〈(r, s)〉 or 〈⊥〉 where ⊥ is the error output, signi-
fying the parties may abort the protocol, and Sign(x,m) → (r, s).

The verification algorithm is non interactive and identical to that of EC-DSA.
Following [GJKR96b], we present a game-based definition of security analo-

gous to eu-cma: threshold unforgeability under chosen message attacks (tu-cma).

Bandwidth-Efficient Threshold EC-DSA 271

Definition 2 (Threshold signature unforgeability [GJKR96b]). Consider
a (t, n)-threshold signature scheme IS = (IKeyGen, ISign,Verif), and a PPT algo-
rithm A, having corrupted at most t players, and which is given the view of the
protocols IKeyGen and ISign on input messages of its choice (chosen adaptively)
as well as signatures on those messages. Let M be the set of aforementioned
messages. IS is unforgeable if for any such A, the probability Advtu-cma

IS,A that A
can produce a signature on a message m /∈ M is a negligible function of λ.

2.2 Building Blocks from Class Groups

An Instantiation of the CL Framework. Castagnos and Laguillaumie introduced
the framework of a group with an easy discrete logarithm (Dlog) subgroup in
[CL15], which was later enhanced in [CLT18,CCL+19] and gave concrete instan-
tiation from class groups of quadratic fields. Some background on class groups of
quadratic fields in cryptography can be found in [BH01] and in [CL15, Appx. B].

We briefly sketch the instantiation given in [CCL+19, Sec. 4.1] and the result-
ing group generator Gen that we will use in this paper. The interested reader
can refer to [CL15,CCL+19] for concrete details.

Given a prime q consider another random prime q̃, the fundamental dis-
criminant ΔK = −qq̃ and the associated class group C(ΔK). By choosing q̃ s.t.
qq̃ ≡ −1 (mod 4) and (q/q̃) = −1, we have that the 2−Sylow subgroup of C(ΔK)
has order 2. The size of q̃ is chosen s.t. computing the class number h(ΔK) takes
time 2λ. We then consider the suborder of discriminant Δq = −q2ΔK . Then,
we denote (Ĝ, ·) the finite abelian subgroup of squares of C(Δq), which corre-
sponds to the odd part. It is possible to check efficiently if an element is in Ĝ
(cf. [Lag80]). One can exhibit a subgroup F generated by f ∈ Ĝ where f is
represented by an ideal of norm q2. This subgroup has order q and there exists a
deterministic PT algorithm for the discrete logarithm (Dlog) problem in F (cf.
[CL15, Proposition C – 1]). Then we build deterministically a q−th power of Ĝ
by lifting the class of an ideal of discriminant ΔK above the smallest splitting
prime. In the following, we will denote ĝq this deterministic generator. We will
then consider an element gq constructed as a random power of ĝq. This slightly
changes the construction of [CCL+19], in order to make a reduction to a strong
root problem for the soundness of the argument of knowledge of Subsect. 3.1.
One can compute an upper bound s̃ for the order of ĝq, using an upper bound
of h(ΔK). For this, one can use the fact that h(ΔK) < 1

π log |ΔK |√|ΔK |, or
obtain a slightly better bound from the analytic class number formula.

For our application the prime q will have at least 256 bits, in that case q is
prime to h(ΔK) except with negligible probability. Therefore q will be prime to
the order of ĝq which is a divisor of h(ΔK).

Notation. We denote Gen the algorithm that on input a security parameter λ
and a prime q, outputs (s̃, f, ĝq, Ĝ, F) defined as above. We also denote Solve
the deterministic PT algorithm that solves the Dlog problem in F . This pair of
algorithms is an instance of the framework of a group with an easy Dlog subgroup

272 G. Castagnos et al.

(cf. [CCL+19, Definition 4]). For a random power gq of ĝq we will denote Gq the
subgroup generated by gq, g = gqf and G the subgroup generated by g.

Hard Subgroup Membership Assumption. We recall the definition of the HSM
problem for an output (s̃, f, ĝq, Ĝ, F) of Gen. For a random power gq of ĝq the
HSM assumption states it is hard to distinguish the elements of Gq in G. As a
result this HSM assumption is closely related to Paillier’s DCR assumption, they
are essentially the same assumption in different groups, hence there is no direct
reduction between them. HSM was first used by [CLT18] within class groups,
though cryptography based on class groups is now well established, and is seeing
renewed interest (e.g. [CIL17,CLT18,BBBF18,Wes19,CCL+19]).

Definition 3 (HSM assumption). For (s̃, f, ĝq, Ĝ, F) an output of Gen, gq a
random power of ĝq and g := gqf , we denote D (resp. Dq) a distribution over
the integers s.t. the distribution {gx, x ←↩ D} (resp. {ĝx

q , x ←↩ Dq}) is at distance
less than 2−λ from the uniform distribution in 〈g〉 (resp. in 〈ĝq〉). Let A be an
adversary for the HSM problem, its advantage is defined as:

AdvHSMA (λ) :=
∣
∣
∣
∣2 · Pr

[
b = b� : (s̃, f, ĝq, Ĝ, F) ← Gen(1λ, q), t ←↩ Dq, gq = ĝt

q,

x ←↩ D, x′ ←↩ Dq, b
$←− {0, 1}, Z0 ← gx, Z1 ← gx′

q ,

b� ← A(q, s̃, f, ĝq, gq, Ĝ, F, Zb,Solve(.))
] − 1

∣
∣
∣
∣

The HSM problem is said to be hard in G if for all probabilistic polynomial time
algorithm A, AdvHSMA (λ) is negligible.

Remark that compared to previous works, we modify slightly the assumption by
considering a random element gq instead of using the deterministic element ĝq.

Resulting Encryption Scheme. We recall the linearly homomorphic encryption
scheme of [CLT18] whose ind-cpa-security relies on the HSM assumption. The
scheme somewhat generalises Camenisch and Shoup’s approach in [CS03]. This
scheme is the basis of the threshold EC-DSA protocol of Sect. 3. We use the
output of Gen(1λ, q) and as in Definition 3, we set gq = ĝt

q for t ←↩ Dq. The
public parameters of the scheme are pp := (s̃, f, ĝq, gq, Ĝ, F, q). To instantiate
Dq, we set Ã ≥ s̃ · 240 s.t. {gr

q , r ←↩ [Ã]} is at distance less than 2−40 from the
uniform distribution in Gq. The plaintext space is Z/qZ. The scheme is depicted
in Fig. 1.

Theorem 1 ([CLT18]). The CL scheme described in Fig. 1 is semantically
secure under chosen plaintext attacks (ind-cpa) under the HSM assumption.

2.3 Algorithmic Assumptions

We here provide further definitions for the algorithmic assumptions on which the
security of our protocol relies. As in [CCL+19], we need the HSM assumption

Bandwidth-Efficient Threshold EC-DSA 273

Algo. KeyGen(pp)

1. Pick sk ←↩ [Ã] and pk := gsk
q

2. Return (pk, sk)

Algo. Enc(pk, m)

1. Pick r ←↩ [Ã]
2. Return (gr

q , fmpkr)

Algo. Dec(sk, (c1, c2))

1. Compute M = c2/csk1
2. Return Solve(M)

Fig. 1. Description of the CL encryption scheme

guaranteeing the ind-cpa-security of the linearly homomorphic encryption
scheme. We also use two additional assumptions: one which states that it is
hard to find low order elements in the group Ĝ, and one which states that it is
hard to find roots in Ĝ of random elements of the subgroup 〈ĝq〉. These assump-
tions allow us to significantly improve the efficiency of the ZKAoK needed in
our protocol. Indeed, as the order of the group we work in is unknown, we can-
not (unless challenges are binary as done in [CCL+19]) immediately extract the
witness from two answers corresponding to two different challenges of a given
statement. However we show in the ZKAoK of Sect. 3.1 that whatever the chal-
lenge space, if one cannot extract the witness, then one can break at least one of
these two assumptions. Consequently these assumptions allow us to significantly
increase the challenge space of our proofs, and reduce the number of rounds
in the protocol to achieve a satisfying soundness, which yields an improvement
both in terms of bandwidth and of computational complexity.

Using such assumptions in the context of generalized Schnorr Proofs in groups
of unknown order is not novel (cf. e.g. [DF02,CKY09]). We adapt these tech-
niques for our specific subgroups of a class group of an imaginary quadratic field,
and state them with respect to Gen.

Definition 4 (Low order assumption). Consider a security parameter λ ∈
N, and γ ∈ N. The γ-low order problem (LOPγ) is (t(λ), εLO(λ))-secure for Gen
if, given the output of Gen, no algorithm A running in time ≤ t(λ) can output a
γ-low order element in Ĝ with probability greater than εLO(λ). More precisely,

εLO(λ) := Pr[μd = 1, 1 �= μ ∈ Ĝ, 1 < d < γ :

(s̃, f, ĝq, Ĝ, F) $←− Gen(1λ, q); (μ, d) $←− A(s̃, f, ĝq, Ĝ, F)].

The γ-low order assumption holds if t = poly(λ), and εLO is negligible in λ.

We now define a strong root assumption for class groups. This can be seen as
a generalisation of the strong RSA assumption adapted to class groups where
computing square roots is easy knowing the factorisation of the discriminant,
and tailor it to our needs by considering challenges in a subgroup.

Definition 5 (Strong root assumption for Class Groups). Consider a
security parameter λ ∈ N, and let A be a probabilistic algorithm. We run Gen
on input (1λ, q) to get (s̃, f, ĝq, Ĝ, F) and we give this output and a random
Y ∈ 〈ĝq〉 as an input to A. We say that A solves the strong root problem for
class groups (SRP) if A outputs a positive integer e �= 2k for all k and X ∈ Ĝ, s.t.
Y = Xe. In particular, the SRP is (t(λ), εSR(λ))-secure for Gen if any adversary
A, running in time ≤ t(λ), solves the SRP with probability at most εSR(λ).

274 G. Castagnos et al.

On the Hardness of These Assumptions in Class Groups. For our applications,
we will use the strong root assumption and the low order assumption in the con-
text of class groups. These assumptions are not completely novel in this setting:
Damg̊ard and Fujisaki [DF02] explicitly consider variants of these assumptions
in this context. Then, Lipmaa used a strong root assumption in class groups
to build accumulators without trusted setup in [Lip12]. Recently, an interac-
tive variant of the strong root assumption was used, still in the context of class
groups, by Wesolowski to build verifiable delay functions without trusted setup.
Furthermore, the low order assumption is also used to implement Pietrzak’s ver-
ifiable delay functions with class groups (see [BBF18,Pie19]). In the following,
we advocate the hardness of these assumptions in the context of class groups.

The root problem and its hardness was considered in [BH01,BBHM02] in
the context of class groups to design signature schemes. It is similar to the RSA
problem: the adversary is not allowed to choose the exponent e. These works
compare the hardness of this problem with the problem of computing the group
order and conclude that there is no better known method to compute a solution
to the root problem than to compute the order of the group.

The strong root assumption is a generalisation of the strong RSA assumption.
Again, the best known algorithm to solve this problem is to compute the order of
the group to be able to invert exponents. For strong RSA this means factoring the
modulus. For the strong root problem in class groups, this means computing the
class number, and best known algorithms for this problem have worst complexity
than those to factor integers.

Note that we have specialized this assumption for exponents e which are
not powers of 2: as mentioned in [CCL+19], one can compute square roots in
polynomial time in class groups of quadratic fields, knowing the factorisation of
the discriminant (which is public in our setting), cf. [Lag80].

Concerning the low order assumption, we need the γ−low order problem to
be hard in Ĝ, where γ can be up to 2128. Note that in our instantiation, the
discriminant is chosen such that the 2−Sylow subgroup is isomorphic to Z/2Z.
It is well known that the element of order 2 can be computed from the (known)
factorisation of Δq. However, we work with the odd part, which is the group of
squares in this context, so we do not take this element into account.

Let us see that the proportion of such elements of low order is very low in the
odd part. From the Cohen Lenstra heuristics [CL84] the odd part of a class group
C(Δ) of an imaginary quadratic field is cyclic with probability 97.75%. In [HS06],
extending these heuristics, it is conjectured that the probability an integer d
divides the order h(Δ) of C(Δ) is less than (1d + 1

d log d). As a consequence, if
the odd part of C(Δ) is cyclic then the expected number of elements of order
less than γ is less than

∑
d�γ

(
1
d + 1

d log d

)
ϕ(d), which can be bounded above by

2γ. For 128 bits of security, our class number will have around 913 bits, so the
proportion of elements of order less than 2128 is less than 2−784.

Moreover, if the odd part of the class group is non cyclic, it is very likely that
it is of the form Z/n1Z ⊕ Z/n2Z where n2|n1 and n2 is very small. Still from
the Cohen Lenstra heuristics, the probability that the p−rank (the number of

Bandwidth-Efficient Threshold EC-DSA 275

cyclic factors in the p−Sylow subgroup) of the odd part is equal to r is equal
to η∞(p)

pr2ηr(p)2
where ηr(p) =

∏r
k=1(1 − p−k). If we have two cyclic factors, and

p|n2, then the p−rank is 2. If p > 220 the probability of having a p−rank equal
to 2 is less than 2−80. Similarly, we cannot have many small cyclic components:
the 3−rank is 6 with probability less than 2−83. Actually, we know only 3 class
groups of such 3 ranks [Que87].

There have been intense efforts on the construction of families of discrimi-
nants such that there exist elements of a given small order p or with a given
p−rank. However, these families are very sparse and will be reached by our gen-
eration algorithm of the discriminant only with negligible probability. The basic
idea of these constructions is to build a discriminant Δ in order to obtain solu-
tions of a Diophantine equation that gives m and the representation of a non
principal ideal I of norm m such that Ip is principal, and I has order p in C(Δ)
(see eg [Bue76] or [Bel04] for more references).

Solving such a norm equation for a fixed discriminant has been mentioned
as a starting point for an attack in [BBF18] combined with the Coppersmith’s
method, but no concrete advances on the problem have been proposed.

3 Threshold EC-DSA Protocol

We here provide a construction for (t, n)-threshold EC-DSA signing from the CL
framework. Security – which does not degrade with the number of signatures
queried by the adversary in the tu-cma game (cf. Definition 2) – relies on the
assumptions and tools introduced in Sect. 2. Throughout the article we consider
the group of points of an elliptic curve G of order q, generated by P .

As in many previous works on multiparty EC-DSA (e.g. [MR01,Lin17,
GG18]), we use a linearly homomorphic encryption scheme. This enables parties
to perform operations collaboratively while keeping their inputs secret. Explicitly
a party Pi sends a ciphertext encrypting its secret share (under its own public
key) to party Pj , Pj then performs homomorphic operations on this ciphertext
(using its own secret share), and sends the resulting ciphertext back to Pi –
intuitively Pi should learn nothing more about the operations performed by Pj

than that revealed by decrypting the ciphertext it receives. To ensure this, Pi

must prove to Pj that the ciphertext it first sent is ‘well formed’. To this end
in Sect. 3.1, we provide an efficient zero-knowledge argument of knowledge of
the plaintext and of the randomness used to compute a CL ciphertext (defined
in Sect. 2.3). This ZKAoK is essential to secure our protocol against malicious
adversaries. Next, in Sect. 3.2 we explain how parties interactively set up the
public parameters of the CL encryption scheme, so that the assumptions under-
lying the ZKAoK hold. Though – for clarity – we describe this interactive set
up as a separate protocol, it can be done in parallel to the IKeyGen protocol of
threshold EC-DSA, thereby only increasing by one the number of rounds of the
threshold signing protocol. Finally, in Sect. 3.3 we present our (t, n)-threshold
EC-DSA signing protocol, whose security will be demonstrated in Sect. 4.

276 G. Castagnos et al.

3.1 ZKAoK Ensuring a CL Ciphertext Is Well Formed

Consider a prover P having computed an encryption of a ∈ Z/qZ with random-

ness r
$←− [Ã], i.e. c := (c1, c2) with c1 := gr

q , c2 := pkrfa. We present a zero
knowledge argument of knowledge for the following relation:

REnc := {(pk, c); (a, r) | pk ∈ ̂G; r ∈ [ÃC(240 + 2)]; a ∈ Z/qZ; c1 = grq ∧ c2 = pkrfa}.
The interactive protocol is given in Fig. 2. We denote C the challenge set, and
C := |C|. The only constraint on C is that the C-low order assumption holds.

Setup:

1. (s̃, f, ĝq, ̂G, F) ← Gen(1λ, q).

2. Let Ã := s̃ · 240, sample t
$←− [Ã] and let gq := ĝt

q.

Prover ((pk, c), a ∈ Z/qZ; r ∈ [Ã]) Verifier ((pk, c))

r1
$←− [240ÃC]

r2
$←− Z/qZ

t1 := gr1
q

t2 := pkr1fr2 t1,t2−−−−−−−−−−−−−−→
k

$←−
k←−−−−−−−−−−−−

u1 := r1 + kr ∈ Z

u2 := r2 + ka ∈ Z/qZ
u1,u2−−−−−−−−−−−−−−−→ Check u1 ∈ [ÃC(240 + 1)]

and u2 ∈ Z/qZ and gu1
q = t1c

k
1

and pku1fu2 = t2(c2)k

Fig. 2. Zero-knowledge argument of knowledge for REnc.

Theorem 2. If the strong root assumption is (t′(λ), εSR(λ))-secure for Gen,
and the C-low order assumption is (t′(λ), εLO(λ))-secure for Gen, denoting
ε := max(εSR(λ), εLO(λ)), then the interactive protocol of Fig. 2 is a compu-
tationally convincing proof of knowledge for REnc with knowledge error κ, time
bound t and failure probability ν(λ), where ν(λ) = 8ε, t(λ) < t′(λ)/448 and
κ(λ) = max(4/C, 448t(λ)/t′(λ)). If r ∈ [s̃ · 240] (it is so when the prover is
honest), the protocol is honest verifier statistical zero-knowledge.

Proof. Computational soundness is proven in the full version [CCL+20, Thm. 2].

Completeness. If P knows r ∈ [Ã] and a ∈ Z/qZ s.t. (pk, c); (a, r) ∈ REnc, and
both parties follow the protocol, one has u1 ∈ [ÃC(240 + 1)] and u2 ∈ Z/qZ;
pku1fu2 = pkr1+k·rfr2+k·a = pkr1fr2(pkrfa)k = t2c

k
2 ; and gu1

q = gr1+k·r
q = t1c

k
1 .

Honest Verifier Zero-Knowledge. Given pk, c = (c1, c2) a simulator can sample

k
$←− [C[, u1

$←− [ÃC(240 + 1)] and u2
$←− Z/qZ, compute t2 := pku1fu2c−k

2 and
t1 := gu1

q c−k
1 such that the transcript (pk, c, t2, t1, k, u1, u2) is indistinguishable

from a transcript produced by a real execution of the protocol.

Bandwidth-Efficient Threshold EC-DSA 277

3.2 Interactive Set Up for the CL Encryption Scheme

Generating a Random Generator gq. In order to use the above ZKAoK it must
hold that gq is a random element of the subgroup 〈ĝq〉 where (s̃, f, ĝq, Ĝ, F) ←
Gen(1λ, q). Precisely if a malicious prover P ∗ could break the soundness of the
ZKAoK, an adversary S trying to break the SRP, given input a random gq,
should be able to feed this input to P ∗, and use P ∗ to solve it’s own challenge.
Consequently, as the ZKAoK will be used peer-to-peer by all parties in the
threshold EC-DSA protocol, they will collaboratively generate – in the interac-
tive IKeyGen – the public parameters (s̃, f, ĝq, Ĝ, F), and a common gq which
is random to each party. We call this interactive sub-protocol ISetup, since it
allows parties to collaboratively set up the public parameters for the CL encryp-
tion scheme. All parties then use this gq to compute their public keys and as a
basis for the CL encryption scheme. As explained in Sect. 2.2 the generation of
(s̃, f, ĝq, Ĝ, F) is deterministic from a pair of primes q̃ and q, we overload the
notation (s̃, f, ĝq, Ĝ, F) ← Gen(q̃, q) to refer to this deterministic set up. We first
define the functionality computed by ISetup, running in two steps.

Definition 6. For a number of parties n, ISetup consists of the following inter-
active protocols:

Step 1. 〈k; . . . ; k〉 → 〈q̃〉 or 〈⊥〉 where ⊥ is the error output, signifying the
parties may abort the protocol, and q̃ is a random k bit prime.

Step 2. 〈(q̃, q); . . . ; (q̃, q)〉 → 〈(s̃, f, ĝq, Ĝ, F, gq, t1); . . . ; (s̃, f, ĝq, Ĝ, F, gq, tn)〉 or
〈⊥〉 where (s̃, f, ĝq, Ĝ, F) ← Gen(q̃, q), and values t1, . . . , tn ∈ [240s̃] constitute
additive shares of t such that gq = ĝt

q.

For n parties to collaboratively run ISetup, they perform the following steps:

Step 1—Generation of random public prime q̃ of bit-size k.

1. Each Pi samples a random ri
$←− {0, 1}k, computes (ci, di) ← Com(ri) and

broadcasts ci.
2. After receiving {cj}j �=i, each Pi broadcasts di thus revealing ri.
3. All players compute the common output q̃ := next-prime(

⊕n
j=1 rj).

Step 2—Generation of gq.

1. From q̃, (and the order of the elliptic curve q) all parties can use the deter-
ministic set up of [CL15,CCL+19] which sets a generator ĝq.

2. Next each player Pi performs the following steps:
(a) Sample a random ti

$←− [240s̃]; compute gi := ĝti
q ; (c̃i, d̃i) ← Com(gi), and

broadcast c̃i.
(b) Receive {c̃j}j �=i. Broadcast d̃i thus revealing gi.
(c) Perform a ZKPOK of ti such that gi = ĝti

q .2 If a proof fails, abort.

3. Each party computes gq :=
∏n

j=1 gj = ĝ
∑

tj
q , and has output (s̃, f, ĝq,

Ĝ, F, gq, ti).

2 This can be done as in [CCL+19] (without relying on the strong root assumption).

278 G. Castagnos et al.

Theorem 3 states the security of the interactive protocol described in steps
1 and 2 above. The simulation and proof of indistinguishability are provided in
the full version [CCL+20].

Theorem 3. If the commitment scheme is non-malleable and equivocal; and the
proofs πi are zero knowledge proofs of knowledge of discrete logarithm in 〈ĝq〉,
then steps 1 and 2 described above securely compute ISetup with abort, in the
presence of a malicious adversary corrupting any t < n parties, with point-to-
point channels.

Remark 1. The randomness of q̃ is not crucial to the security of the EC-DSA pro-
tocol: conversely to RSA prime factors, here q̃ is public. However traditionally,
class group based crypto uses random discriminants; we provide a distributed
version of the setup of [CL15] in which the prime q̃ is random. In our ISetup
algorithm, the output of next-prime is biased. To patch this, for the same com-
plexity, parties could jointly generate a seed for a prime pseudo-random generator
to generate q̃; such a source of randomness would be sufficient in this context.

3.3 Resulting Threshold EC-DSA Protocol

We now describe the overall protocol. Participants run on input (G, q, P) used
by the EC-DSA signature scheme. In Fig. 3, and in phases 1, 3, 4, 5 of Fig. 4,
all players perform the same operations (on their respective inputs) w.r.t. all
other parties, so we only describe the actions of some party Pi. In particular
if Pi broadcasts some value vi, implicitly Pi receives vj broadcast by Pj for all
j ∈ [n], j �= i. Broadcasts from Pi to all other players are denoted by double
arrows, whereas peer-to-peer communications are denoted by single arrows.

On the other hand, Phase 2 of Fig. 4 is performed by all pairs of players
{(Pi, Pj)}i�=j . Each player will thus perform (n− 1) times the set of instructions
on the left (performed by Pi on the figure) and (n − 1) times those on the right
hand side of the figure (performed by Pj).

Key Generation. We assume that prior to the interactive key generation pro-
tocol IKeyGen, all parties run the ISetup protocol of Sect. 3.2 s.t. they output
a common random generator gq. Each party uses this gq to generate its’ CL
encryption key pair, and to verify the ZKAoK in the ISign protocol. Although
IKeyGen and ISetup are here described as two separate protocols, they can be ran
in parallel. Consequently, in practice the number of rounds in IKeyGen increases
by 1 broadcast per party if the ZK proofs are made non interactive, and by 2
broadcasts if it is performed interactively between players.

The IKeyGen protocol (also depicted in Fig. 3) proceeds as follows:

1. Each Pi samples a random ui
$←− Z/qZ; computes [kgci, kgdi] ← Com(uiP)

and generates a pair of keys (ski, pki) for the CL encryption scheme. Each Pi

broadcasts (pki, kgci).
2. Each Pi broadcasts kgdi. Let Qi ← Open(kgci, kgdi). Party Pi performs a

(t, n) Feldman-VSS of ui, with Qi as the free term in the exponent. The EC-
DSA public key is set to Q =

∑n
i=1 Qi. Each player adds the private shares

Bandwidth-Efficient Threshold EC-DSA 279

Fig. 3. Threshold key generation

received during the n Feldman VSS protocols. The resulting values xi are a
(t, n) Shamir’s secret sharing of the secret signing key x. Observe that all
parties know {Xi := xi · P}i∈[n].

3. Each Pi proves in ZK that he knows xi using Schnorr’s protocol [Sch91].

Signing. The signature generation protocol runs on input m and the output of
the IKeyGen protocol of Fig. 3. We denote S ⊆ [n] the subset of players which
collaborate to sign m. Assuming |S| = t one can convert the (t, n) shares {xi}i∈[n]

of x into (t, t) shares {wi}i∈S of x using the appropriate Lagrangian coefficients.
Since the Xi = xi · P and Lagrangian coefficients are public values, all parties
can compute {Wi := gwi}i∈S . We here describe the steps of the algorithm. A
global view of the interactions is also provided in Fig. 4.

Phase 1: Each party Pi samples ki, γi
$←− Z/qZ and ri

$←− [Ã] uniformly at
random. It computes cki

← Enc(pki, ki; ri), a ZKAoK πi that the
ciphertext is well formed, and [ci, di] ← Com(γiP). Each Pi broadcasts
(ci, cki

, πi).
Phase 2: Intuition: denoting k :=

∑
i∈S ki and γ :=

∑
i∈S γi it holds that kγ =∑

i,j∈S kjγi and kx =
∑

i,j∈S kjwi. The aim of Phase 2 is to convert
the multiplicative shares kj and γi of (kjγi) (resp. kj and wi of (kjwi))
into additive shares αj,i + βj,i = kjγi (resp. μj,i + νj,i = kjwi). Phase
2 is performed peer-to-peer between each pair {(Pi, Pj)}i�=j , s.t. at the
end of the phase, Pi knows {αi,j , βj,i, μi,j , νj,i}j∈S,j �=i.
Each peer-to-peer interaction proceeds as follows:
(a) Pi samples βj,i, νj,i

$←− Z/qZ, and computes Bj,i := νj,i · P . It
uses the homomorphic properties of the encryption scheme and
the ciphertext ckj

broadcast by Pj in Phase 1 to compute ckjγi

and ckjwi
: encryptions under pkj of kjγi − βj,i and kjwi − νj,i

respectively.

280 G. Castagnos et al.

Fig. 4. Threshold signature protocol

(b) Pi sends (ckjγi
, ckjwi

, Bj,i) to Pj , who decrypts both ciphertexts to
recover respectively αj,i and μj,i.

(c) Since Wi is public, Pj verifies that Pi used the same wi as that
used to compute Q by checking μj,i ·P +Bj,i. If the check fails, Pj

aborts.
Pi computes δi := kiγi +

∑
j �=i(αi,j +βj,i) and σi := kiwi +

∑
j �=i(μi,j +

νj,i).
Phase 3: Each Pi broadcasts δi. All players compute δ :=

∑
i∈S δi.

Phase 4: (a) Each Pi broadcasts di which decommits to Γi.
(b) Each Pi proves knowledge of γi s.t. Γi = γiP . All players compute

R := δ−1(
∑

i∈S Γi) = k · P and r := H ′(R) ∈ Z/qZ.

Phase 5: (a) Each Pi computes si = kim+σir, samples �i, ρi
$←− Z/qZ uniformly

at random, computes Vi := siR + �iP ; Ai := ρiP ; and [̂ci, d̂i] ←
Com(Vi, Ai). Each Pi broadcasts ĉi.

Bandwidth-Efficient Threshold EC-DSA 281

(b) Each party Pi decommits by broadcasting d̂i along with a
NIZKPoK of (si, �i, ρi) s.t. (Vi = siR + �iP) ∧ (Ai = ρiP). It
checks all the proofs it gets from other parties. If a proof fails Pi

aborts.
(c) All parties compute V := −mP − rQ +

∑
i∈S Vi, A :=

∑
i∈S Ai.

Each party Pi computes Ui := ρiV , Ti := �iA and the commitment
[c̃i, d̃i] ← Com(Ui, Ti). It then broadcasts c̃i.

(d) Each Pi decommits to (Ui, Ti) by broadcasting d̃i.
(e) All players check

∑
i∈S Ti =

∑
i∈S Ai. If the check fails they abort.

(f) Each Pi broadcasts si s.t. all players can compute s :=
∑

i∈S si.
They check that (r, s) is a valid EC-DSA signature, if so, they
output (r, s), otherwise they abort the protocol.

4 Security

The security proof is a reduction to the unforgeability of standard EC-DSA. We
demonstrate that if there exists a PPT algorithm A which breaks the threshold
EC-DSA protocol of Figs. 3 and 4, then we can construct a forger F which
uses A to break the unforgeability of standard EC-DSA. To this end F must
simulate the environment of A, so that A’s view of its interactions with F are
indistinguishable from A’s view in a real execution of the protocol. Precisely,
we show that if an adversary A corrupts {Pj}j>1, one can construct a forger
F simulating P1 s.t. the output distribution of F is indistinguishable from A’s
view in an interaction with an honest party P1 (all players play symmetric roles
in the protocol so it is sufficient to provide a simulation for P1). F gets as input
an EC-DSA public key Q, and has access to a signing oracle for messages of its
choice. After this query phase, F must output a forgery, i.e. a signature σ for a
message m of its choice, which it did not receive from the oracle.

4.1 Simulating the Key Generation Protocol

On input a public key Q := x · P , the forger F must set up in its simulation
with A this same public key Q (w/o knowing x). This will allow F to subse-
quently simulate interactively signing messages with A, using the output of its’
(standard) EC-DSA signing oracle.

The main differences with the proof of [GG18] arise from the fact F knows
it’s own decryption key sk1, but does not extract that of other players. Indeed
the encryption scheme we use results from hash proof systems, whose security
is statistical, thus the fact F uses its’ secret key does not compromise security,
and we can still reduce the security of the protocol to the ind-cpa-security of
the encryption scheme. However as we do not prove knowledge of secret keys
associated to public keys in the key generation protocol, F can not extract the
decryption keys of corrupted players. The simulation is described below.

Simulating. P1 in IKeyGen

1. F receives a public key Q from it’s EC-DSA challenger.

282 G. Castagnos et al.

2. Repeat the following steps (by rewinding A) until A sends correct decom-
mitments for P2, . . . , Pn on both iterations.

3. F selects a random value u1 ∈ Z/qZ, computes [kgc1, kgd1] ← Com(u1P)
and broadcasts kgc1. F receives {kgcj}j∈[n],j �=1.

4. F broadcasts kgd1 and receives {kgdj}j∈[n],j �=1. For i ∈ [n], let Qi ←
Open(kgci, kgdi) be the revealed commitment value of each party. Each
player performs a (t, n) Feldman-VSS of the value Qi, with Qi as the free
term in the exponent.

5. F samples a CL encryption key pair (pk1, sk1)
$←− KeyGen(1λ).

6. F broadcasts pk1 and receives the public keys {pkj}j∈[n],j �=1.
7. F rewinds A to the decommitment step and

– equivocates P1’s commitment to k̂gd so that the committed value revealed
is now Q̂1 := Q − ∑n

j=2 Qj .
– simulates the Feldman-VSS with free term Q̂1.

8. A will broadcast the decommitments {k̂gdj}j∈[n],j �=1. Let {Q̂j}j=2...n be the
committed value revealed by A at this point (⊥ if A refuses to decommit).

9. All players compute the public signing key Q̂ :=
∑n

i=1 Q̂i. If any Qi = ⊥ in
the previous step, then Q̂ := ⊥.

10. Each player Pi adds the private shares it received during the n Feldman VSS
protocols to obtain xi (such that the xi are a (t, n) Shamir’s secret sharing
of the secret key x =

∑
i ui). Note that due to the free term in the exponent,

the values Xi := xi · P are public.
11. F simulates the ZKPoK that it knows x1 corresponding to X1, and for j ∈

[n], j �= 1, F receives from A a Schnorr ZKPoK of xj such that Xj := xj ·P .
F can extract the values {xj}j∈[n],j �=1 from these ZKPoK.

4.2 Simulating the Signature Generation

On input m, F must simulate the interactive signature protocol from A’s view.
We define k̃i := Dec(ski, cki

), which F can extract from the proofs Π, and
k̃ :=

∑
i∈S k̃i. Let k ∈ Z/qZ denote the value s.t. R := k−1 · P in Phase 4 of the

signing protocol. Notice that if any of the players mess up the computation of
R by revealing wrong shares δi, we may have k �= k̃ mod q. As in [GG18], we
distinguish two types of executions of the protocol: an execution where k̃ = k
mod q is said to be semi-correct, whereas an execution where k̃ �= k mod q is
non semi-correct. Both executions will be simulated differently. At the end of
Phase 4, when both simulations diverge, F knows k and k̃, so it can detect if it
is in a semi-correct execution or not and chose how to simulate P1.

We point out that F does not know the secret share w1 of x associated with
P1, but it knows the shares {wj}j∈S,j �=1 of all the other players. Indeed F can
compute these from the values {xj}j∈[n],j �=1 extracted during key generation. It
also knows W1 = w1 · P from the key generation protocol. Moreover F knows
the encryption keys {pkj}j∈S of all players, and it’s own decryption key sk1.

In the following simulation F aborts whenever A refuses to decommit any of
the committed values, fails a ZK proof, or if the signature (r, s) does not verify.

Bandwidth-Efficient Threshold EC-DSA 283

Simulating. P1 in ISign

Phase 1: As in a real execution, F samples k1, γ1
$←− Z/qZ and r1

$←− [Ã]
uniformly at random. It computes ck1 ← Enc(pk1, k1; r1), the associ-
ated ZKAoK Π1, and [c1, d1] ← Com(γ1P). It broadcasts (c1, ck1 ,Π1)
before receiving {cj , ckj

,Πj}j∈S,j �=1 from A. F checks the proofs are
valid and extracts the encrypted values {kj}j∈S,j �=1 from which it com-
putes k̃ :=

∑
i∈S ki.

Phase 2: (a) For j ∈ S, j �= 1, F computes βj,1, ckjγ1 as in a real execution of
the protocol, however since it only knows W1 = w1P (but not w1),

it samples a random μj,1
$←− Z/qZ and sets ckjw1 ← Enc(pkj , μj,1),

and Bj,1 := kj · W1 − μj,1 · P . F then sends (ckjγ1 , ckjw1 , Bj,1) to
Pj .

(b) When it receives (ck1γi
, ck1wj

, B1,j) from Pj , it decrypts as in a real
execution of the protocol to obtain α1,j and μ1,j

(c) F verifies that μ1,jP + B1,j = k1Wj . If so, since F also knows k1
and wj , it computes ν1,j = k1wj − μ1,j mod q

F computes δ1 := k1γ1 +
∑

k �=1 α1,k +
∑

k �=1 βk,1. However F cannot
compute σ1 since it does not know w1, but it can compute

∑

i>1

σi =
∑

i>1

(kiwi +
∑

j �=i

μi,j + νj,i) =
∑

i>1

∑

j �=i

(μi,j + νj,i) +
∑

i>1

kiwi

=
∑

i>1

(μi,1 + ν1,i) +
∑

i>1;j>1

kiwj

since it knows all the values {kj}j∈S , {wj}j∈S,j �=1, it chooses the ran-
dom values μi,1 and it can compute all of the shares ν1,j = k1wj −μ1,j

mod q.
Phase 3: F broadcasts δ1 and receives all the {δj}j∈S,j �=1 from A. Let δ :=∑

i∈S δi.
Phase 4: (a) F broadcasts d1 which decommits to Γ1, and A reveals {dj}j∈S,j �=1

which decommit to {Γj}j∈S,j>1.
(b) F proves knowledge of γ1 s.t. Γ1 = γ1P , and for j ∈ S, j �= 1,

receives the PoK of γj s.t. Γj = γjP . F extracts {γj}j∈S,j �=1 from
which it computes γ :=

∑
i∈S γi mod q and k := δ · γ−1 mod q.

(c) If k = k̃ mod q (semi-correct execution), F proceeds as follows:
– F requests a signature (r, s) for m from its EC-DSA signing oracle.
– F computes R := s−1(m ·P + r ·Q) ∈ G (note that r = H ′(R) ∈

Z/qZ).
– F rewinds A to the decommitment step at Phase 4. (a) and

equivocates P1’s commitment to open to Γ̂1 := δ · R − ∑
i>1 Γi.

It also simulates the proof of knowledge of γ̂1 s.t. Γ̂1 = γ̂1P .
Note that δ−1(Γ̂1 +

∑
i>1 Γi) = R.

Phase 5: Now F knows
∑

j∈S,j �=1 sj held by A since sj = kjm + σjr.
• F computes s1 held by P1 as s1 := s − ∑

j∈S,j �=1 sj .
• F continues the steps of Phase 5 as in a real execution.

284 G. Castagnos et al.

(d) Else k �= k̃ mod q (non-semi-correct), and F proceeds as follows:
– F computes R := δ−1(

∑
i∈S Γi) = k · P and r := H ′(R) ∈ Z/qZ.

– Phase 5: F does the following
• sample a random s̃1

$←− Zq.
• sample �1, ρ1

$←− Z/qZ, compute V1 := s1R + �1P ; A1 := ρ1P ;
[̂c1, d̂1] ← Com(V1, A1) and send ĉ1 to A.

• receive {ĉj}j �=1 and decommit by broadcasting d̂1. Proove knowl-
edge of (s1, �1, ρ1) s.t. (V1 = s1R + �1P) ∧ (A1 = ρ1P).

• For j ∈ S, j �= 1, F receive d̂j and the ZKPoK of (sj , �j , ρj) s.t.
Vj = sjR + �jP ∧ Aj = ρjP .

• Compute V := −mP − rQ +
∑

i∈S Vi, A :=
∑

i∈S A1, T1 := �1A

and sample a random U1
$←− G.

• Compute [c̃1, d̃1] ← Com(U1, T1) and send c̃1 to A. Upon receiv-
ing {c̃j}j �=1 from A, broadcast d̃1 and receive the {d̃j}j �=1.

• Now since
∑

i∈S T1 �= ∑
i∈S U1 both A and F abort.

4.3 The Simulation of a Semi-correct Execution

Lemma 1. Assuming the strong root assumption and the C-low order assump-
tion hold for Gen; the CL encryption scheme is ind-cpa-secure; and the commit-
ment scheme is non-malleable and equivocable; then on input m the simulation
either outputs a valid signature (r, s) or aborts, and is computationally indistin-
guishable from a semi-correct real execution.

Proof. The differences between the real and simulated views are the following:

1. F does not know w1, so it cannot compute ckjw1 as in a real execution of
the protocol. However under the strong root and C-low order assumption in
Ĝ, F can extract kj from the proofs in Phase 1. It then samples a random
μj,1 ∈ Z/qZ, computes Bj,1 := kj · W1 − μj,1 · P , and ckjw1 ← Enc(pkj , μj,1).
The resulting view of A is indistinguishable from an honestly generated one
since μj,1 is uniformly distributed in Z/qZ, both in real and simulated exe-
cutions; ckj

was proven to be a valid ciphertext, so ciphertexts computed
using homomorphic operations over ckj

and fresh ciphertexts computed with
pkj follow identical distributions from A’s view. And finally Bj,1 follows a
uniform distribution in G both in real and simulated executions, and passes
the check Bj,1 + μj,1 · P = kj · W1 performed by A.

2. F computes Γ̂1 := δ ·R−∑
i>1 Γi, and equivocates its commitment c1 s.t. d1

decommits to Γ̂1. Let us denote γ̂1 ∈ Z/qZ the value s.t. Γ̂1 = γ̂1P , where γ̂1
is unknown to F, but the forger can simulate the ZKPoK of γ̂1.
Let us further denote k̂ ∈ Z/qZ the randomness (unknown to F) used by
its’ signing oracle to produce (r, s). It holds that δ = k̂(γ̂1 +

∑
j∈S,j>1 γj).

Finally, let us denote k̂1 := k̂ − ∑
j∈S,j>1 kj .

Since δ was made public in Phase 3, by decommiting to Γ̂1 = γ̂1P instead

Bandwidth-Efficient Threshold EC-DSA 285

of Γ1 = γ1P , F is implicitly using k̂1 �= k1, even though A received an
encryption of k1 in Phase 2. However, if A could tell apart a real and simu-
lated execution based on this difference, one could use A to break the indis-
tinguishabilty of the encryption scheme. So, under the assumption the CL
encryption scheme is ind-cpa-secure, this change is unnoticeable to A.

3. F does not know σ1, and thus cannot compute s1 as in a real execution.
Instead it computes s1 = s − ∑

j∈S,j �=1 sj = s − ∑
j∈S,j �=1(kjm + σjr) where

(implicitly) s = k̂(m + rx). So s1 = k̂1m + r(k̂x − ∑
j∈S,j �=1 σj), and F is

implicitly setting σ̂1 := k̂x − ∑
j∈S,j �=1 σj s.t. k̂x = σ̂1 +

∑
j∈S,j �=1 σj .

We note that, since the real execution is semi correct, the correct shares of
k for the adversary are the ki that the simulator knows and R = k̂P =
(k̂1 +

∑
j∈S,j �=1 kj). Therefore the value s1 computed by F is consistent with

a correct share for P1 for a valid signature (r, s), which makes Phase 5 indis-
tinguishable from the real execution to the adversary.
In particular, observe that if none of the parties aborted during Phase 2, the
output shares are correct. So if A here uses the values {σj}j∈S,j>1 as com-
puted in a real execution of the protocol, it expects the signature generation
protocol to output a valid signature. And indeed with F’s choice of σ̂1 and k̂1,
the protocol will terminate, outputting the valid signature (r, s) it received
from its signing oracle. Conversely, if A attempts to cheat in Phase 5 by
using a different set of σj ’s than those prescribed by the protocol, the check∑

i∈S Ti =
∑

i∈S Ui will fail, and all parties abort, as in a real execution of
the protocol. �

4.4 Non Semi-correct Executions

Lemma 2. Assuming the strong root assumption and the C-low order assump-
tion hold for Gen; the DDH assumption holds in G; and the commitment scheme
is non-malleable and equivocable; then the simulation is computationally indis-
tinguishable from a non-semi-correct real execution.

Proof. We construct three games between the simulator F (running P1) and the
adversary A (running all other players). In G0, F runs the real protocol. The
only change between G0 and G1 is that in G1, F chooses U1 as a random group
element. In G2 the simulator F runs the simulation described in Sect. 4.2.

Indistinguishability of G0 and G1. We prove that if there exists an adversary
A0 distinguishing games G0 and G1, A0 can be used to break the DDH assump-
tion in Ĝ. Let Ã = a ·P , B̃ = b ·P , C̃ = c ·P be the DDH challenge where c = ab
or c is random in Zq. The DDH distinguisher F0 runs A0, simulating the key
generation phase s.t. Q = B̃. It does so by rewinding A0 in step 7 of the IKeyGen
simulation and changing the decommitment of P1 to Q1 := B̃ − ∑

j∈[n],j �=1 Qj .
F0 also extracts the values {xj}j∈[n],j �=1 chosen by A0 from the ZKPoK of step
11 of the IKeyGen simulation. Note that at this point Q = B̃ and F0 knows xi

and the decryption key sk1 matching pk1, but not b and therefore not x1.

286 G. Castagnos et al.

Next F0 runs the signature generation protocol for a non-semi-correct exe-
cution. Recall that S ⊆ [n] denotes the subset of players collaborating in ISign.
Denoting t := |S|, the (t, n) shares {xi}i∈′n] are converted into (t, t) shares
{wi}i∈S as per the protocol. Thus b =

∑
i∈S wi where F0 knows {wj}j∈S,j �=1

but not w1. We denote wA :=
∑

j∈S,j �=1 wj (which is known to F0) s.t.
w1 = b − wA. F0 runs the protocol normally for Phases 1, 2, 3, 4. It extracts
the values {γj}j∈S,j �=1 from the proof of knowledge in Phase 4, and knows γ1
since it ran P1 normally. Therefore F0 knows k such that R = k−1 · P since
k = (

∑
i γi)−1δ mod q. It also knows k1 (chosen normally according to the

protocol) and {kj}j∈S,j �=1 which it can extract from the proofs in Phase 1.
Before moving to the simulation of Phase 5, let’s look at Phase 2 of the

protocol for the computation of the shares σi. We note that since F0 knows
sk1 it also knows all the shares μ1,j since it can decrypt the ciphertext ck1wj

it
receives from Pj . However F0 does not know w1 therefore it sends the encryption
of a random μj,1 to Pj and sets (implicitly) νj,1 = kjw1 − μj,1. At the end the
share σ1 held by P1 is

σ1 = k1w1 +
∑

j∈S,j �=1

(μ1,j + νj,1) = k̃w1 +
∑

j∈S,j �=1

(μ1,j − μj,1) where k̃ =
∑

i∈S

ki.

Recall that since this is a non-semi-correct execution k̃ �= k where R = k−1 · P .
Since w1 = b−wA we have σ1 = k̃b+μ1 where μ1 =

∑
j∈S,j �=1(μ1,j −μj,1)− k̃wA

with μ1, k̃ known to F0. This allows F0 to compute the correct value σ1 · P =
k̃B̃ + μ1 · P and therefore the correct value of s1 · R as:

s1 · R = (k1m + rσ1) · R = k−1(k1m + rσ1) · P

= k−1(k1m + rμ1) · P + k−1(k̃r) · B̃ = μ̂1 · P + β̂1 · B̃

where μ̂1 = k−1(k1m + rμ1) and β̂1 = k−1k̃r are known to F0.
In the simulation of Phase 5, F0 selects a random �1 and sets V1 := s1·R+�1·P,

A1 = ρ1 · P = Ã = a · P . It simulates the ZK proof (since it does not know ρ1 or
s1). It extracts si, �i, ρi from A0’s proofs s.t. Vi = si ·R+�i ·P = k−1si ·P +�i ·P
and Ai = ρi · P . Let sA =

∑
j∈S,j �=1 k−1sj . Note that, substituting the above

relations (and setting � =
∑

i∈S �i), we have: V = −m · P − r · Q +
∑

i∈S Vi =
� · P + s1 · R + (sA − m) · P − r · Q. Moreover Q = B̃ so −r · Q = −r · B̃, and:

V = � · P + μ̂1 · P + β̂1 · B̃ + (sA − m) · P − r · B̃ = (� + θ) · P + κ · B̃

where F0 knows θ = μ̂1 + sA − m and κ = β̂1 − r. Note that for executions that
are not semi-correct κ �= 0.

Next F0 computes T1 := �1 · A (correctly), but computes U1 as U1 := (� +
θ) · Ã + κ · C̃, using this U1 it continues as per the real protocol and aborts on
the check

∑
i∈S Ti =

∑
i∈S Ui.

Observe that when C̃ = ab · P , by our choice of a = ρ1 and b = x, we have
that U1 = (� + θ)ρ1 · P + κ · ρ1B̃ = ρ1 · V as in Game G0. However when C̃ is
a random group element, U1 is uniformly distributed as in G1. Therefore under
the DDH assumption G0 and G1 are indistinguishable.

Bandwidth-Efficient Threshold EC-DSA 287

Indistinguishability of G1 and G2. In G2, F broadcasts a random Ṽ1 =
s̃1 · R + �1 · P . This is indistinguishable from the correct V1 = s1 · R + �1 · P
thanks to the mask �1 ·P which (under the DDH assumption) is computationally
indistinguishable from a random value, since the adversary only knows A1. To be
precise, let Ã = (a− δ) ·P, B̃ = b ·P and C̃ = ab ·P be the DDH challenge where
δ is either 0 or random in Zq. The simulator proceeds as in G0 (i.e. the regular
protocol) until Phase 5. In Phase 5 F0 broadcasts V1 = s̃1 · R + Ã and A1 = B̃.
It simulates the ZKPoK (it does not know �1 or ρ1), and extracts si, �i, ρi from
the adversary s.t. Vi = si · R + �i · P = k−1si · P + �i · P and Ai = ρi · P .

Next F0 samples a random U1 and sets T1 := C̃ +
∑

j∈S,j �=1 ρj · Ã before
aborting. Note that when Ã = a · P , we implicitly set a = �1 and b = ρ1
and have V1 = s1 · R + �1 · P and T1 = �1 · A as in Game G1. However when
Ã = a·P−δ·P with a random δ, then this is equivalent to having V1 = s̃1·R+�1·P
and T1 = �1 · A with a randomly distributed s̃1 as in Game G2. Therefore under
the DDH assumption G1 and G2 are indistinguishable.

4.5 Concluding the Proof

As mentioned at the beginning of Sect. 4.2 the forger F simulating A’s environ-
ment can detect whether we are in a semi-correct-execution or not, i.e. whether
A decides to be malicious and terminate the protocol with an invalid signature.
Consequently F always knows how to simulate A’s view and all simulations are
indistinguishable of real executions of the protocol. Moreover if A, having cor-
rupted up to t parties in the threshold EC-DSA protocol, outputs a forgery, since
F set up with A the same public key Q as it received from its’ EC-DSA chal-
lenger, F can use this signature as its own forgery, thus breaking the existential
unforgeability of standard EC-DSA.

Denoting Advtu-cma
Π,A , A’s advantage in breaking the existential unforgeability

of our threshold protocol, and Adveu-cma
ecdsa,F the forger F’s advantage in break-

ing the existential unforgeability of standard EC-DSA, from Lemmas 1 and 2
it holds that if the DDH assumption holds in G; the strong root assumption
and the C-low order assumption hold for Gen; the CL encryption scheme is
ind-cpa-secure; and the commitment scheme is non-malleable and equivocable
then: |Adveu-cma

ecdsa,F − Advtu-cma
Π,A | ≤ negl(λ). Under the security of the EC-DSA sig-

nature scheme, Adveu-cma
ecdsa,F must be negligible, which implies that Advtu-cma

Π,A should
too, thus contradicting the assumption that A has non-negligible advantage of
forging a signature for our protocol. We can thus state the following theorem,
which captures the security of the protocol.

Theorem 4. Assuming standard EC-DSA is existentially unforgeable; the DDH
assumption holds in G; the strong root assumption and the C-low order assump-
tion hold for Gen; the CL encryption scheme is ind-cpa-secure; and the com-
mitment scheme is non-malleable and equivocable, then the (t, n)-threshold EC-
DSA protocol of Figs. 3 and 4 is an existentially unforgeable threshold signature
scheme.

288 G. Castagnos et al.

5 Further Improvements

5.1 An Improved ZKPoK Which Kills Low Order Elements

We here provide a proof of knowledge of discrete logarithm in a group of unknown
order. Traditionally, if one wants to perform such a proof, the challenge set must
be binary, which implies expensive protocols as the proof must be repeated
many times to achieve a satisfying (non computational) soundness error. Here
using what we call the lowest common multiple trick, we are able to signifi-
cantly increase the challenge set, and thereby reduce the number of repetitions
required of the proof. We first present the resulting proof, before providing two
applications: one for the CL.ISetup protocol of Sect. 3.2, and another for the two
party EC-DSA protocol of [CCL+19]. Throughout this subsection we denote
y := lcm(1, 2, 3, . . . , 210).

The Lowest Common Multiple Trick. For a given statement h, the proof does not
actually prove knowledge of the Dlog of h, but rather of hy. Precisely, the protocol
of Fig. 5 is a zero knowledge proof of knowledge for the following relation:

Rlcm−DL := {(h, gq); z | hy = gz
q}.

Fig. 5. ZKPoK of z s.t. hy = gzq where y = lcm(1, 2, 3, . . . , 210)

Correctness. If h = gx
q , then gu

q = gr+kx
q = gr

q · (gx
q)k = t · hk and V accepts.

Special Soundness. Suppose that for a committed value t, prover P ∗ can
answer correctly for two different challenges k1 and k2. We call u1 and u2 the
two answers. Let k := k1 − k2 and u := u1 − u2, then since gu1

q = t · hk1 and
gu2

q = t · hk2 , it holds that gu
q = hk. By the choice of the challenge set, y/k is

an integer and so (gu
q)y/k = (hk)y/k = hy. Denoting z := uy/k, P ∗ can compute

z such that gz
q = hy, so if P can convince V for two different challenge values,

then P ∗ can compute a z satisfying the relation.

Zero Knowledge. Given h a simulator can sample k
$←− {0, 1}10 and u

$←−
[0, s̃ · (290 + k)], compute t := gu

q · h−k, such that distribution of the resulting
transcript (h, t, k, u) is statistically close to those produced by a real execution
of the protocol (this holds since an honest prover samples x from [s̃ · 240], the
challenge space is of size 210 and r is sampled from a set of size s̃ · 290, which
thus statistically hides kx).

Bandwidth-Efficient Threshold EC-DSA 289

Application to the CL Interactive Set Up. In the ISetup protocol of Sect. 3.2, in
Step 2. 2. (c) each Pi computes πi := ZKPoKgi

{(ti) : gi = ĝti
q }. In fact it suffices

for them to compute ZKPoKgi
{(zi) : gy

i = ĝzi
q }, where y := lcm(1, 2, 3, . . . , 210)

using the lcm trick. Then in Step 2. 3. all players compute gq := (
∏n

j=1 gj)y. The
resulting gq has the required properties to be plugged into the IKeyGen protocol.
We use this modified interactive set up for our efficiency comparisons of Sect. 6.

Application to the [CCL+19] Interactive Key Generation. Castagnos et al.
recently put forth a generic two party EC-DSA protocol from hash proof systems
[CCL+19]. They rely on a ZKPoK for the following relation:

RCL−DL := {(pk, (c1, c2), Q); (x, r) | c1 = gr
q ∧ c2 = fxpkr ∧ Q = xP}.

The interactive proof they provide uses binary challenges, consequently in order
to achieve a satisfying soundness error of 2−λ, the proof must be repeated λ
times. Using the lcm trick one can divide by 10 this number of rounds, though
we obtain a ZKPoK for the following relation:

RCL−lcm := {(pk, (c1, c2), Q); (x, z) | cy
1 = gz

q ∧ cy
2 = fx·ypkz ∧ Q = xP}.

In their protocol this ZKPoK is computed by Alice, who sends this proof to Bob
s.t. he is convinced her ciphertext c = (c1, c2) is well formed. Bob then performs
some homomorphic operations on c and sends the result back to Alice. Now since
with the proof based on the lcm trick, Bob is only convinced that cy is a valid
ciphertext, Bob raises c to the power y before performing his homomorphic
operations3. When Alice decrypts she multiplies the decrypted value by y−1

mod q (this last step is much more efficient than Bob’s exponentiation).

Remark 2. The size of the challenge set C from which k is sampled fixes the
number of protocol repetitions required to achieve a reasonable soundness error.
It is thus desirable to take C as large as possible. However, at the end of the
protocol, V is only convinced that hy is well formed, where y = lcm(1, . . . , |C|).
So if V wants to perform operations on h which are returned to P , without
risking leaking any information to P , V must raise h to the power y before
proceeding. When plugged into the [CCL+19] two-party EC-DSA protocol this
entails raising a ciphertext to the power y at the end of the key generation phase.
So |C| must be chosen small enough for this exponentiation to take reasonable
time. Hence we set C := {0, 1}10, and y = lcm(1, . . . , 210), which is a 1479
bits integer, so exponentiating to the power y remains efficient. To achieve a
soundness error of 2−λ the protocol must be repeated λ/10 times.

5.2 Assuming a Standardised Group

If we assume a standardised set up process, which allowed to provide a descrip-
tion of Ĝ, of the subgroups F and Gq and of a random generator gq of Gq,
one could completely omit the interactive set up phase for the CL encryption
3 For correctness Bob also needs to multiply the signed message m′ by y mod q,

during the signature algorithm.

290 G. Castagnos et al.

scheme and have all parties use the output of this standardised process. This
significantly improves the IKeyGen protocol, as mentionned in Sect. 6.

Furthermore, assuming such a set up, we can replace the most expensive
ZKPoK in [CCL+19] by an argument of knowledge for the same relation using
similar techniques to those of Sect. 3.1, and relying on the strong root and low
order assumptions in Ĝ. The resulting ZKAoK and a proof of its security are
provided in the full version of this article [CCL+20, Section 5.2].

6 Efficiency Comparisons

In this section, we analyse the theoretical complexity of our protocol by count-
ing the number of exponentiations and communication of group elements. We
compare the communication cost of our protocol to that of [GG18,LN18]4 for
the standard NIST curves P-256, P-384 and P-521, corresponding to levels of
security 128, 192 and 256. For the encryption scheme, we start with a 112 bit
security, as in the implementations of [GG18,LN18], but also study the case
where its level of security matches the security of the elliptic curves.

The computed comm. cost is for our provably secure protocol as described in
Sect. 3. Conversely the implementation which [GG18] provided omits a number
of range proofs present in their described protocol. Though this substantially
improves the efficiency of their scheme, they themselves note that removing
these proofs creates an attack which leaks information on the secret signing key
shared among the servers. They conjecture this information is limited enough
for the protocol to remain secure, however since no formal analysis is performed,
the resulting scheme is not proven secure. For a fair comparison we estimate
the comm. cost and timings of both their secure protocol and the stripped down
version. In terms of bandwidth we outperform even their stripped down protocol.

In both protocols, when possible zero knowledge proofs are performed non
interactively, replacing the challenge by a hash value, whose size depends on the
security parameter λ. We note that our interactive set up for the CL encryption
scheme uses a ZKPoK where challenges are of size 10bits (using the lcm trick),
it must thus be repeated λ/10 times. We note however that the PoK of integer
factorization used in the key generation of [GG18] has similar issues.

For non-malleable equivocable commitments, we use a cryptographic hash
function H and define the commitment to x as h = H(x, r), for a uniformly
chosen r of length λ and assume that H behaves as a random oracle.

4 These are the best performing protocols using similar construction techniques to us
(from homomorphic encryption), and achieving the same functionality, i.e. (t, n)-
threshold ECDSA for any t s.t. n ≥ t+ 1. We do not compare to [DKLs18,DKLs19]
as they use OT which leads to protocols with a much higher communication cost.
Similarly, and as noted in [DKO+19] a direct comparison to [DKO+19,SA19] is
difficult as they rely on preprocessing to achieve efficient signing, which is a level
of optimisation we have not considered. We don’t compare to [GGN16,BGG17] as
[GG18] is already faster and cheaper in terms of communication complexity.

Bandwidth-Efficient Threshold EC-DSA 291

The comm. cost comparison is done by counting the number of bits that
are both sent and received by a given party throughout the protocol5. In terms
of timings, we count the number of exponentiations in the class group (for our
protocol), the bit size of the exponent, and multiply this by 3/2 of the cost of
a multiplication in the group. We compare this to an equivalent computation
for [GG18], where we count exponentiations modulo N and N2, the bit size of
the exponent, and multiply this by 3/2 of the cost of a multiplication modulo
N (resp. N2). We do not count exponentiations and multiplications over the
group of points of the elliptic curve as these are very cheap compared to the
aforementioned computations, furthermore both protocols essentially perform
identical operations on the curve.

The [LN18] Protocol with Paillier Encryption. We use the figures Lindell et al.
provide in [LN18, Table 1] to compare our protocol to theirs. We note that – to
their advantage – their key generation should include additional costs which are
not counted in our figures (e.g. local Paillier key generation, verification of the
ZKP of correctness of the Paillier key). The resulting costs are given in Fig. 6a

The [GG18] Protocol with Paillier Encryption. The main cost in their key gener-
ation protocol is the ZKPoK of integer factorization, which is instantiated using
[PS00, Theorem 8]. Precisely each prover commits to K values mod N , the chal-
lenge lives mod B, the final opening is an element of size A, where, as prescribed
by Poupard and Stern, we take log(A) = log(N), log(B) = λ and K = λ+log(|N |)

log(C)

where C := 260 is chosen s.t. Floyd’s cycle-finding algorithm is efficient in a
space of size smaller than C. For their signature protocol, the cost of the ZK
Proofs used in the MtA protocol are counted using [GG18, Appendix A].

The results are summarized in Fig. 6b. Since the range proofs (omitted in the
stripped down version) only occur in the signing protocol, the timings and comm.
cost of their interactive key generation is identical in both settings, we thus only
provide these figures once. The comm. cost of each protocol is given in Bytes.
The columns correspond to the elliptic curve used for EC-DSA, the security
parameter λ in bits for the encryption scheme, the corresponding bit size of the
modulus N , the timings of one Paillier exponentiation, of the key generation and
of the signing phase and the total comm. in bytes for each interactive protocol.
Modulus sizes are set according to the NIST recommendations.

Our Protocol with CL Encryption. For key generation we take into account the
interactive key generation for the CL encryption scheme, which is done in parallel
with IKeyGen s.t. the number of rounds of IKeyGen increases by only one broad-
cast per player. In IKeyGen, each party performs 2 class group exponentiations
of log(s̃) + 40 bits (where s̃ ≈ √

q · q̃), to compute generators gi and public keys
pki, and λ/10 × n exponentiations of log(s̃) + 90 bits for the proofs and checks
in the ISetup sub-protocol.

Note that exponentiations in 〈f〉 are almost free. Signing uses 2 + 10t expo-
nentiations of log(s̃) + 40 bits (for computing ciphertexts and homomorphic

5 Broadcasting one element is counted as sending one element.

292 G. Castagnos et al.

operations), 2(t + 1) of log(s̃) + 80 + λ (for the ZKAoK) and 2t exponentiations
of size q (for homomorphic scalar multiplication of ciphertexts).

The results for our protocols are summarized in Fig. 6c. The columns corre-
spond to the elliptic curve used for EC-DSA, the security parameter λ in bits for
the encryption scheme, the corresponding fundamental discriminant ΔK = −q · q̃
bit size, the timings of one class group exponentiation (for an exponent of λ+40
bits, i.e. that used for encryption), of the key generation and of the signing phase
and the total comm. in bytes for IKeyGen and ISign. The discriminant sizes are
chosen according to [BJS10].

Rounds. In terms of the number of rounds, we perform identically to [LN18]. Our
IKeyGen requires 5 rounds (only 4 assuming a standardised set up), compared to
4 in [GG18]. Our signing protocol requires 8 rounds as opposed to 9 in [GG18].

Curve λ (bits) N (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes)
P-256 112 2048 0.0023 > 52n + 52 99t > 6 336(n − 1) 16 064t
P-256 128 3072 0.0048 > 162n + 162 310t > 9 152(n − 1) 22 208t
P-384 192 7680 0.0186 > 1 571n + 1571 3 000t > 22 176(n − 1) 51 744t
P-521 256 15360 0.0519 > 8 769n + 8769 16 741t > 43 672(n − 1) 99 845t

(a) [LN18]’s secure t out of n protocol.

Provably secure (with range proofs) Stripped down
Curve λ (bits) N (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes) ISign (ms) ISign (Bytes)
P-256 112 2048 0.0023 64n + 7 140t 32(n + t) + 9 990n − 64 23 308t + 588 28t 4 932t + 588
P-256 128 3072 0.0048 293n + 22 428t 32(n + t) + 21 392n − 64 33 568t + 608 88t 7 008t + 608
P-384 192 7680 0.0186 7 017n + 214 4 071t 48(n + t) + 128088n − 96 81 072t + 912 857t 16 656t + 912
P-521 256 15360 0.0519 77 725n + 1196 22 528t 65(n + t) + 503 591n − 130 159 391t + 1232 4783t 32 470t + 1231

(b) [GG18]’s t out of n protocol.

Curve λ (bits) ΔK (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes)
P-256 112 1348 0.029 366n + 62 430t + 137 32(n+ t) + 2951n − 64 3670t+ 1747

P-256 128 1827 0.038 744n + 109 730t + 237 32(n+ t) + 4297n − 64 4455t+ 2052

P-384 192 3598 0.077 4 145n + 424 2780t+ 903 48(n+ t) + 10851n − 96 8022t+ 3560

P-521 256 5971 0.137 16 432n + 1243 8011t+ 2,608 65(n+ t) + 22942n − 130 12576t+ 5433

(c) Our secure t out of n protocol – With an interactive CL setup.

Fig. 6. Comparative sizes (in bits), timings (in ms) & comm. cost (in Bytes)

Comparison. Figure 6 shows that the protocols of [LN18,GG18] are faster for
both key generation and signing for standard security levels for the encryption
scheme (112 and 128 bits of security) while our solution remains of the same order
of magnitude. However our signing protocol is fastest from a 192-bits security
level. In terms of communication, our solution outperforms both protocols for all
security levels, factors vary according to the number of users n and the threshold
t. In terms of rounds, our protocols use the same number of rounds as Lindell’s.
For key generation we use one more than [GG18], for signing we use one less.

This situation can be explained by the following facts. Firstly with class
groups of quadratic fields we can use lower parameters than with Z/nZ (the
best algorithm against the discrete logarithm problem in class groups has com-
plexity O(L[1/2, o(1)]) compared to an O(L[1/3, o(1)]) for factoring). However,

Bandwidth-Efficient Threshold EC-DSA 293

the group law is more complex in class groups, indeed exponentiations in class
groups are cheaper than those modulo N2 from the 192 bits level. So even if
removing range proofs allows us to drastically reduce the number of exponenti-
ations, our solution only takes less time from that level (while being of the same
order of magnitude below this level).

We note that assuming a standardized set up for CL (as mentioned in
Sect. 5.2), one would reduce the bandwidth consumption of IKeyGen by a factor
varying from 6 to 16 (for increasing levels of security). Moreover in terms of tim-
ings, the only exponentiation in the class group would be each party computing
its own ciphertext, and so the only operations linear in the number of users n
would be on the curve (or integers modulo q), which are extremely efficient.

Acknowledgements. We thank Rosario Gennaro and Steven Goldfeder for fruitful
discussions. We also thank Omer Shlomovits for interesting insight on issues related to
the practical implementation of threshold EC-DSA. This work was supported by the
French ANR ALAMBIC project (ANR-16-CE39-0006). The research of Dario Catalano
was partially supported by the Università degli Studi di Catania, “Piano della Ricerca
2016/2018—Linea di intervento 2”.

References

[BBBF18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96884-1 25

[BBF18] Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712 (2018)

[BBHM02] Biehl, I., Buchmann, J., Hamdy, S., Meyer, A.: A signature scheme based
on the intractability of computing roots. Des. Codes Crypt. 25(3), 223–236
(2002)

[Bel04] Belabas, K.: On quadratic fields with large 3-rank. Math. Comput.
73(248), 2061–2074 (2004)

[BGG17] Boneh, D., Gennaro, R., Goldfeder, S.: Using level-1 homomorphic encryp-
tion to improve threshold DSA signatures for bitcoin wallet security. In:
Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368,
pp. 352–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25283-0 19

[BH01] Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Public Key
Cryptography and Computational Number Theory. De Gruyter Proceed-
ings in Mathematics (2001)

[BJS10] Biasse, J.-F., Jacobson, M.J., Silvester, A.K.: Security estimates for
quadratic field based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.)
ACISP 2010. LNCS, vol. 6168, pp. 233–247. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14081-5 15

[Boy86] Boyd, C.: Digital multisignature. In: Cryptography and Coding (1986)
[Bue76] Buell, D.A.: Class groups of quadratic fields. Math. Comput. 30(135),

610–623 (1976)

https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-25283-0_19
https://doi.org/10.1007/978-3-030-25283-0_19
https://doi.org/10.1007/978-3-642-14081-5_15

294 G. Castagnos et al.

[CCL+19] Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.:
Two-party ECDSA from hash proof systems and efficient instantiations.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS,
vol. 11694, pp. 191–221. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 7

[CCL+20] Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker,
I.: Bandwidth-efficient threshold EC-DSA. Cryptology ePrint Archive,
Report 2020/084 (2020)

[CH89] Croft, R.A., Harris, S.P.: Public-key cryptography and reusable shared
secret. In: Cryptography and Coding (1989)

[CIL17] Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching pro-
tocols revisited: switching modulo p. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 255–287. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 9

[CKY09] Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized
Schnorr proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 425–442. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01001-9 25

[CL84] Cohen, H., Lenstra, H.W.: Heuristics on class groups. In: Chudnovsky,
D.V., Chudnovsky, G.V., Cohn, H., Nathanson, M.B. (eds.) Number The-
ory. LNM, vol. 1052, pp. 26–36. Springer, Heidelberg (1984). https://doi.
org/10.1007/BFb0071539

[CL15] Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from
DDH. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2 26

[CLT18] Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unre-
stricted inner product functional encryption modulo p. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 733–
764. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-
3 25

[CS97] Camenisch, J., Stadler, M.: Efficient group signature schemes for large
groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–
424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

[CS03] Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption
of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45146-4 8

[DDN00] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J.
Comput. 30(2), 391–437 (2000)

[Des88] Desmedt, Y.: Society and group oriented cryptography: a new concept.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 8

[DF90] Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 28

[DF02] Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment
scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36178-2 8

https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/BFb0071539
https://doi.org/10.1007/BFb0071539
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-36178-2_8

Bandwidth-Efficient Threshold EC-DSA 295

[DKLs18] Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold
ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press (2018)

[DKLs19] Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from
ECDSA assumptions: the multiparty case. In: 2019 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press (2019)

[DKO+19] Dalskov, A.P.K., Keller, M., Orlandi, C., Shrishak, K., Shulman, H.: Secur-
ing DNSSEC keys via threshold ECDSA from generic MPC. IACR Cryp-
tology ePrint Archive, 2019:889 (2019)

[Fel87] Feldman, P.: A practical scheme for non-interactive verifiable secret shar-
ing. In: Proceedings of FOCS 1987. IEEE Computer Society (1987)

[GG18] Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast
trustless setup. In: ACM CCS 2018. ACM Press (2018)

[GGN16] Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet secu-
rity. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016.
LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-39555-5 9

[Gil99] Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 8

[GJKR96a] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient
sharing of RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 157–172. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-68697-5 13

[GJKR96b] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS
signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
68339-9 31

[GMR88] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–
308 (1988)

[HS06] Hamdy, S., Saidak, F.: Arithmetic properties of class numbers of imaginary
quadratic fields. JP J. Algebra Number Theory Appl. 6(1), 129–148 (2006)

[Lag80] Lagarias, J.: Worst-case complexity bounds for algorithms in the theory
of integral quadratic forms. J. Algorithms 1(2), 142–186 (1980)

[Lin17] Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 21

[Lip12] Lipmaa, H.: Secure accumulators from euclidean rings without trusted
setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol.
7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31284-7 14

[LN18] Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. In:
ACM CCS 2018. ACM Press (2018)

[MR01] MacKenzie, P.D., Reiter, M.K.: Two-party generation of DSA signatures.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 8

[Pie19] Pietrzak, K.: Simple verifiable delay functions. In: ITCS 2019. LIPIcs
(2019)

https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-68697-5_13
https://doi.org/10.1007/3-540-68697-5_13
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/3-540-44647-8_8

296 G. Castagnos et al.

[PR05] Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th
FOCS. IEEE Computer Society Press (2005)

[PS00] Poupard, G., Stern, J.: Short proofs of knowledge for factoring. In: Imai,
H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 147–166. Springer,
Heidelberg (2000). https://doi.org/10.1007/978-3-540-46588-1 11

[Que87] Quer, J.: Corps quadratiques de 3-rang 6 et courbes elliptiques de rang
12. C. R. Acad. Sci. Paris Sér. I 305, 215–218 (1987)

[SA19] Smart, N.P., Alaoui, Y.T.: Distributing any elliptic curve based protocol:
with an application to MixNets. IACR Cryptology ePrint Archive 2019:768
(2019)

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991)

[SG98] Shoup, V., Gennaro, R.: Securing threshold cryptosystems against cho-
sen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054113

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[Sho00] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EURO-

CRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 15

[Van92] Vanstone, S.: Responses to NIST’s proposal. Commun. ACM 35, 41–54
(1992). (communicated by John Anderson)

[Wes19] Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 379–407.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-540-46588-1_11
https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/978-3-030-17659-4_13

Secure Computation and Related
Primitives

Blazing Fast OT for Three-Round UC OT
Extension

Ran Canetti1, Pratik Sarkar1(B), and Xiao Wang2

1 Boston University, Boston, USA
{canetti,pratik93}@bu.edu

2 Northwestern University, Evanston, USA
wangxiao@cs.northwestern.edu

Abstract. Oblivious Transfer (OT) is an important building block for
multi-party computation (MPC). Since OT requires expensive public-
key operations, efficiency-conscious MPC protocols use an OT extension
(OTE) mechanism [Beaver 96, Ishai et al. 03] to provide the functionality
of many independent OT instances with the same sender and receiver,
using only symmetric-key operations plus few instances of some base
OT protocol. Consequently there is significant interest in constructing
OTE friendly protocols, namely protocols that, when used as base-OT
for OTE, result in extended OT that are both round-efficient and cost-
efficient. We present the most efficient OTE-friendly protocol to date.
Specifically:

– Our base protocol incurs only 3 exponentiations per instance.
– Our base protocol results in a 3 round extended OT protocol.
– The extended protocol is UC secure in the Observable Random Ora-

cle Model (ROM) under the CDH assumption.
For comparison, the state of the art for base OTs that result in 3-round
OTE are proven only in the programmable ROM, and require 4 expo-
nentiations under Interactive DDH or 6 exponentiations under DDH
[Masney-Rindal 19]. We also implement our protocol and benchmark it
against the Simplest OT protocol [Chou and Orlandi, Latincrypt 2015],
which is the most efficient and widely used OT protocol but not known
to suffice for OTE. The computation cost is roughly the same in both
cases. Interestingly, our base OT is also 3 rounds. However, we slightly
modify the extension mechanism (which normally adds a round) so as
to preserve the number of rounds in our case.

1 Introduction

Oblivious Transfer (OT) is a fundamental primitive for multi-party computation
(MPC). It has been shown to be complete [GMW87,Kil88] and has become the
most widely used building block in both the two-party setting [Yao86,NNOB12]
and the multi-party setting [BLO16,WRK17,HSS17]. However, oblivious trans-
fer is expensive since it requires public key operations [IR89]. This limitation
is mitigated by the seminal concept of OT extension [Bea96,IKNP03], which
allows the parties to compute m = poly(κ) number of OTs using only κ “base
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 299–327, 2020.
https://doi.org/10.1007/978-3-030-45388-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_11

300 R. Canetti et al.

OTs” and O(m) symmetric-key operations, where κ is the computational secu-
rity parameter. This yields a large number of OTs at the cost of O(1) symmetric
key operations.

The state-of-the-art protocol for malicious OT extension [KOS15] can com-
pute more than ten million OTs per second in a high bandwidth network setting.
As such, it appears that the problem of constructing efficient OT extension has
been resolved. However, some challenges remain. First, we note that the cost
of the base OTs remains a significant consideration when m is only moderately
larger than κ and security against all-but-one corruption is needed. For instance,
Wang et al. [WRK17] reported that in their implementation of a malicious 128-
party computation tolerating 127-party corruption in the WAN setting, it takes
about 140 s to securely evaluate an AES circuit, where 80 s (more than 55% of
the total cost!) are spent on computing base OTs.

Another challenge is the number of rounds. Ideally, we would like to obtain
extended OT with only two rounds. However, here we have only two known
solutions: The original OT extension pf Beaver [Bea96] which is highly inefficient
due to non-black-box use of the underlying symmetric-key primitives, and the
Boyle et al. [BCG+19] two-round OT extension, based on the Learning Parity
with Noise (LPN) assumption, whose performance is better than IKNP-like OT
extension only when the network bandwidth is low (≈100 Mbps).

The other approach taken in the literature is to apply a black-box OT exten-
sion (such as that of [KOS15]) to some base OT. This method, however results
in an additional round. In fact, recent result by Garg et al. [GMMM18] shows
that this is inevitable, namely (n + 1) rounds for OT extension are necessary if
an n-round base OT is used. Thus, this approach seems to result in extended
OT protocols with three or more rounds. Furthermore, the state-of-the-art two-
round OT protocols are much slower than the best three-round OT protocols.
For example, the two-round OT by Peikert et al. [PVW08] requires 11 expo-
nentiations. More recently, [MR19] proposed an OT that requires 6 exponentia-
tions under standard DDH assumption or 4 exponentiations under non-standard
IDDH assumption. This means that even three-round extended OT protocols,
obtained in this way, are less than optimally efficient.

Another set of challenges revolves around the level of security obtained and
the assumptions used. Chou and Orlandi [CO15] proposed a base-OT protocol
with malicious security (dubbed as CO-OT). The work of [HL17] proposed a sim-
ilar protocol. However, it has been shown [BPRS17,GIR17,LM18] that this pro-
tocol and [HL17] cannot be proven secure with simulation-based security because
a simulator cannot extract a corrupt receiver’s choice bit. There have been some
works [BPRS17,DKLs18] trying to fix this issue, but all of them require either
much more computation or higher round complexity. Masny and Rindal [MR19]
recently proposed a UC-secure OT in the programmable random oracle model
(ROM). Their performance is slightly worse than CO-OT under non-standard
notion of interactive version of the Decisional Diffie Hellman (IDDH) assumption
and much worse under Decisional Diffie Hellman (DDH) assumption.

Blazing Fast OT for Three-Round UC OT Extension 301

Table 1. Comparison to related protocols. “#Rounds of OT extension” is the
round complexity of the best OT extension with selected base OT protocol. IDDH refers
to interactive DDH, not known to be reducible to DDH. PRO refers to programmable
RO; ORO refers to observable RO.
aDo not provide simulation-based security.
bIncur a one-time computation cost of one NIZKPoK.

Protocol
#Exponentiations #Rounds of Computational Trusted

per base OT OT Extension Assumption Setup

[PVW08] 11 3 DDH CRS
[CO15]a 3 4 CDH PRO

[BPRS17] 11 3 DDH PRO
[HL17]a 5 4 CDH PRO

[DKLs18]b 3 6 CDH ORO
[MR19] 4 3 IDDH PRO
[MR19] 6 3 DDH PRO

This work 3 3 CDH ORO

1.1 Our Contributions

In this paper, we construct an OT protocol tailored to be base OT for the
[KOS15] OT extension. Our protocol is highly efficient, and results in a 3 round
extended OT that is UC secure in the observable ROM assuming only CDH. See
Table 1 for comparison with the state of the art.

The key idea underlying our construction is to design a three-round base OT
protocol that circumvents the lower bound proved by Garg et al. [GMMM18].
This is achieved by considering a slight modification of the KOS extension, that
is specific to our base OT protocol: The parties use the inputs for the base OT
protocol to compute the OT extension messages in parallel to the execution
of the base-OT computation. This yields a round-preserving three-round OT
extension protocol. To preserve efficiency, we only use some specific property
of the base OT protocol (and thus non-black-box to base OT), but avoid non-
black-box use of any underlying primitives or computational assumptions. We
observe that our protocol is compatible with OT extension protocols [ALSZ15,
PSS17,OOS17] in the IKNP domain. It also works for state-of-the-art 1-out-of-
N OT extension protocols [PSS17,OOS17]. See Sect. 3 for more discussion. Our
detailed contributions are listed as follows:

– Weaker base-OT Functionality. To securely realize OT extension effi-
ciently, we consider a UC-secure base-OT functionality that allows selective
failure attack by a corrupt sender. We further relax the UC-security require-
ment to only sender-sided simulation-based security; on the receiver-side, we
demonstrate that indistinguishability based security suffices for KOS, pro-
vided the receiver’s input can be extracted.

– Weaker Assumptions. Our protocol is secure assuming CDH in the observ-
able random oracle (ORO) model. Our assumptions and trusted setup are

302 R. Canetti et al.

weaker and far more well-studied than other protocols with comparable effi-
ciency. When used in the OT extension, the OT extension protocol becomes
UC-secure.

– Best efficiency. Our protocol requires three exponentiations per OT and is
as efficient as the CO-OT [CO15]. This is also experimentally verified based
on implementation. Since CO-OT (which is insecure) is the most efficient
among all existing OT protocols, our new OT with provable security is also
the most efficient.

– Round Preserving. Our OT protocol requires three rounds, one round more
than necessary; however, one unique feature of our protocol is that its last two
rounds of messages can be securely sent in parallel with the OT-extension
messages and thus resulting in a three-round OT extension protocol.

– Empirical Comparison. Finally, we implement our protocol and demon-
strate its high performance. In detail, our protocol is as efficient as the OT
by Chou and Orlandi (which cannot be proven UC secure). When used in
the OT extension, our protocol results in a even better performance due to
reduced round complexity.

We note that the original KOS paper had an interactive coin tossing sub-
protocol. It resulted in a 5 rounds protocol and it relied on Correlation Robust
Function (CRF). The subprotocol was made non-interactive by the work of
[DKLs18] using the Fiat-Shamir transform by relying on a non-programmable
random oracle. This reduced the round complexity to 3. We consider this round
optimized variant of KOS in the RO model since we already require the RO for
our OT protocol.

1.2 More Discussion on Related Works

Here we highlight the protocols from prior OT literature that are relevant to our
work. A comparison can be found in Table 1.

– The two-round UC-secure OT protocol by [PVW08] is a candidate for the
base OTs in KOS. Its optimized variant computes 11 exponentiations and is
proven secure in the common reference string model under DDH assumption.

– The Simplest OT (or CO-OT) was proposed by Chou and Orlandi [CO15].
It computes 3 exponentiations in the programmable random oracle (PRO)
model assuming CDH. It requires 2 rounds to compute a random OT, but
their OT messages cannot be parallelized with the OT extension messages,
thus resulting in a 4 round OT extension. It has been shown [LM18] that
this protocol cannot be proven secure with simulation-based security because
a simulator cannot extract a corrupt receiver’s choice bit. For proving UC-
security of the OT extension protocol, the inputs of the receiver (of the base
OT) has to be extracted.

– The work of [DKLs18] proposed a 5 round OT protocol, with selective failure,
for the base OTs in the ORO model. They compute 3 exponentiations per
OT and incur a one-time computation of a non-interactive zero-knowledge

Blazing Fast OT for Three-Round UC OT Extension 303

proof of knowledge (NIZKPoK) for Discrete Log. The high round complexity
of the base OTs leads to a 6 round OT extension since their last OT message
cannot be parallelized with the last message of the OT extension.

– A recent work by [MR19] proposed non-interactive OTs from non-interactive
Key Exchange. The resulting OT extension would still require 3 rounds. Their
optimized variant requires 4 exponentiations under IDDH assumption and
their unoptimized variant requires 6 exponentiations in the PRO model. How-
ever, IDDH is not known to be reducible to the standard DDH assumption.

– Silent OT extension [BCG+19] does not follow the IKNP-style extension.
Instead, it can be viewed as a special case of vector OLE [BCGI18] and
requires an LPN assumption. The resulting protocol can be more efficient
than KOS under low network bandwidth.

Roadmap. In the next section, we introduce some notations and important
concepts used in this paper. In Sect. 3, we present the key intuitions behind
our protocols. This is followed by our weakened OT functionality in Sect. 4.
Then, we show that our weakened OT functionality suffices to obtain the KOS
OT extension in Sect. 5. We instantiate κ instances of our OT functionality in
Sect. 6. Finally, we present our implementation details and compare it with the
CO-OT in Sect. 7.

2 Preliminaries

Notations. We denote by a ← D a uniform sampling of an element a from a
distribution D. The set of elements {1, . . . , n} is represented by [n]. A function
neg(()·) is said to be negligible, if for every polynomial p(·), there exists a con-
stant c, such that for all n > c, it holds that neg(()n) < 1

p(n) . We denote a
probabilistic polynomial time algorithm as PPT. We denote the computational
security parameter by κ and statistical security parameter by μ respectively. Let
Zq denote the field of order q, where q = p−1

2 and p are primes. Let G be the mul-
tiplicative group corresponding to Z

∗
p with generator g, where CDH assumption

holds. We denote a field of size 2κ as F. Our security proofs are in the Universal
Composability (UC) framework of [Can01]. We refer to the original paper for
details. For a bit b ∈ {0, 1}, we denote 1 − b by b̄. We denote a matrix as M
where Mi refers to the ith column and Mj as the jth row of M respectively.
Given a field element x ∈ F and a bit vector a = (a1, a2, . . . , aκ) we denote
component-wise multiplication as x · a = (a1 · x, a2 · x, . . . , aκ · x). In our OT
extension protocol, the sender is denoted as SExt and the receiver is denoted as
RExt respectively.

Random Oracle Model. A random oracle (RO) functionality is parametrized
by a domain and a range and it is as FRO in Fig. 2. A random oracle query
on message m is denoted by FRO(m). The random oracle functionality can be
broadly classified [CDG+18] into three categories based on its features- plain RO,
observable RO and programmable RO. A plain RO returns a random string, from

304 R. Canetti et al.

OT

OT interacts with a sender S and a receiver R:
– On input (Choose, rec, sid, b) from R where b ∈ {0, 1}; if no message of the form

(rec, sid, b) has been recorded in the memory, store (rec, sid, b) and send (rec, sid)
to S.

– On input (Transfer, sen, sid, (a0, a1)) from S with a0, a1 ∈ {0, 1}n, if no mes-
sage of the form (sen, sid, (a0, a1)) is recorded and a message of the form
(rec, sid, b) is stored, send (sent, sid, ab) to R and (sent, sid) to S. Ignore future
messages with the same sid.

Fig. 1. The ideal functionality FOT for Oblivious Transfer

its range, upon being queried on a message m, from its domain. An observable
RO inherits the properties of the plain RO but in addition it grants the simulator
to observe the queries made, to FRO, by the adversary. Our proofs hold in the
global RO (GRO) model of [CJS14] where the observable RO is replaced by the
GRO.

Tweakable Correlation Robust Hash. OT extension requires a correlation robust
hash function. We adopted the definition proposed by Guo et al. [GKW+19],
where a tweak is explicitly included in the hash function too. Given a function
CRF : T × {0, 1}κ → {0, 1}κ, define OΔ(t, w) def= CRF(t, w ⊕ Δ), where t ∈ T .
Let Func denote the set of functions from T × {0, 1}κ to {0, 1}κ.

Definition 1. Given a function CRF : T ×{0, 1}κ → {0, 1}κ, a uniform distri-
bution on {0, 1}κ namely Uκ, we say that CRFis tweakable correlation robust
if for any PPT distinguisher D, if

∣
∣
∣
∣

Pr
Δ←Uκ

[

DΔ(·) = 1
]

− Pr
f←Func

[

Df(·) = 1
]
∣
∣
∣
∣
= negli(κ).

Note that in our use of tweakable correlation robust hash, T is a tuple of values,
one for sid and one for index i.

Oblivious Transfer. In a 1-out-of-2 OT, we have a sender (S) holding two inputs
a0, a1 ∈ {0, 1}n and a receiver (R) holding a choice bit b. The correctness of OT
means that R will obtain ab as the outcome of the protocol. At the same time, S
should learn nothing about b, and R should learn nothing about the other input
of S, namely ab̄. The ideal OT functionality FOT is shown in Fig. 1.

3 Technical Overview

In this section we give an overview of our technical contributions. First, we recall
the KOS OT extension from a high-level. We argue that the base OTs in KOS

Blazing Fast OT for Three-Round UC OT Extension 305

RO

RO is parameterized by a domain D and range R and it proceeds as follows, running
on security parameter k:

– RO maintains a list L (which is initially empty) of pairs of values (m̂, ĥ), s.t.
m̂ ∈ D and ĥ ∈ R.

– Upon receiving a value (sid, m) (where m ∈ D) perform the following: If there
is a pair (m, ĥ), for some ĥ ∈ R, in the list L, set h := ĥ. If there is no such
pair, sample h ←R R and store the pair (m, h) in L. Once h is set, reply to the
activating machine with (sid, h).

Fig. 2. The ideal functionality FOT for Random Oracle

do not require UC security. Building on this idea, we propose a weaker OT
functionality and then we provide an efficient three-round OT protocol which
would yield a three round OT extension.

3.1 Overview of KOS

In the KOS OT extension, the sender SExt and receiver RExt wants to generate m
OTs using κ invocations to FOT (base OTs) and symmetric key operations. The
sender SExt plays the role of a receiver in the base OTs. He samples a random
κ bit string s and invokes ith instance of FOT with ith bit of s for i ∈ [κ]. The
receiver RExt invokes FOT as sender with random pads (ki,0,ki,1). SExt obtains
ki,si

from the ith base OT. In addition, RExt also sends a mapping D from his
inputs to the (ki,0,ki,1) values. Upon obtaining this mapping D and the base-
OT output, the sender computes his mapping Q. He computes correlated pads
for the extended OTs using s and Q as CRF(sid, j,Qj) and CRF(sid, j,Qj ⊕ s)
for j ∈ [m], where CRF is a correlation robust function. If the receiver’s input
bit for j-th extended OT is 0, then he can compute Qj , else he can compute
Qj ⊕ s. The other value remains hidden due to s and security of CRF. Using
the correlated pads, SExt encrypts his inputs for the extended OTs and sends it
to RExt.

In addition, SExt also performs a consistency check on matrix D is correctly
formed by RExt, else a malformed D matrix would leak the bits of s rendering
the protocol insecure. The original KOS paper had an interactive check phase.
It was made non-interactive by the work of [DKLs18] using the Fiat-Shamir
transform by relying on the observable random oracle. Our protocol also uses
the same non-interactive check to obtain a 3-round OT extension protocol where
the checks are run in the second OT extension message. The base OTs are run
for 3 rounds and the last message of the OT extension is sent in parallel to the
last message of the base OT. Next, we discuss our proposed relaxations in the
base OT functionality.

306 R. Canetti et al.

3.2 Relaxation in the OT Functionality

Firstly, it can be observed that the parties invoke the base OTs in KOS with
random OTs. So, one can consider random OT functionality instead of full OT
functionality. Next, we can allow selective failure in the base OTs. The work of
KOS and [DKLs18] showed that the base OTs do not require full UC-security of
an OT functionality. Instead, the functionality can allow a corrupt sender (i.e.
RExt in the OT extension) to launch a selective failure attack on the s bits of the
receiver (i.e. SExt in the OT extension). In such a case, the corrupt R∗

Ext will still
have a negligible advantage in breaking the security of the extended OTs. We
claim that the OT functionality can be further relaxed based on the following
observations in the KOS protocol.

1. Delayed input extraction of receiver: The inputs of the receiver (SExt)
in the base OTs can be extracted after SExt sends the last message of the
OT Extension protocol. Recall, that the last message of the OT Extension
protocol consists of the inputs of SExt encrypted with the correlated pads.
The simulator against a corrupt S∗

Ext can simulate the second message of the
OT extension without the knowledge of s. Later, it can extract s from the
base OTs and then extract SExt’s inputs from the last message.

2. Corrupt receiver can abort after base OT: A corrupt receiver (SExt)
can abort after obtaining the results of base-OT protocol corresponding to
s. In such a case, the honest RExt would just abort the protocol as the base
OTs resulted in an abort. For each base OT, one of the input of RExt remain
hidden from SExt due to the security of the OT; thus hiding RExt’s inputs.

3. Batch of κ OT: The OT extension protocol requires κ base OTs between
the parties. So, the base OTs can be computed in a batch of κ OTs instead
of κ independent instances of the OT protocol.

Based on the above observations we can consider the following relaxations to
the OT functionality for a corrupt receiver.

1. Indistinguishability based security against corrupt receiver with
input extraction: We can reduce the simulation based security for a cor-
rupt receiver to an indistinguishability based security. We need an extractor
algorithm Ext that can extract the input bit b of a corrupt receiver, given
blackbox access to it. The corrupt receiver cannot distinguish its real world
view from a view constructed with the sender’s message corresponding to bit
b̄ set as 0κ.

2. Corrupt receiver can abort without input extraction: A corrupt
receiver can decide to abort in the OT functionality and in such a case the
Ext does not need to extract his inputs.

3. Corrupt receiver cannot compute both sender messages: A corrupt
receiver cannot compute both sender input messages from the OT transcript
and his internal randomness, even if he aborts the protocol.

Blazing Fast OT for Three-Round UC OT Extension 307

3.3 Usage in KOS OT Extension

The above relaxations in the base-OT functionality are justified since we do not
require simulation based security in the OT extension protocol for the base OTs.
This is because the base OTs are internal to the protocol; hence the input/output
of the honest parties in the base OTs are inaccessible to the environment Z who
tries to distinguish between real and ideal world executions of the OT extension
protocol. Indistinguishability based security suffices for a corrupt receiver (i.e. a
corrupt SExt) in the base OTs, if we are guaranteed that the following conditions
hold:

1. If the base OTs succeed then the input s of the receiver (i.e. SExt) can be
extracted after obtaining the OT extension last message as that is used by
the simulator (for a corrupt S∗

Ext) to extract the input messages of S∗
Ext. This

is guaranteed by the correctness of Ext algorithm when the base OT protocol
succeeds.

2. In case the base OT aborts, then the Ext does not need to extract the inputs
of S∗

Ext since the OT extension protocol terminates with an abort too.
3. The corrupt S∗

Ext should not be able to distinguish between the real world
interaction with honest RExt, and ideal world interaction with the simulator.
In the ideal world, the simulator runs with input for the extended OTs as all
0s string. S∗

Ext, playing the role of receiver in the base OT, cannot compute
both sender messages of the base OT. Based on this property, we tweak our
OT extension protocol by relying on the random oracle. The tweak ensures
that one of the sender’s messages in the each base OT will be hidden from S∗

Ext.
Thus, he cannot distinguish the real world from the ideal world by relying
on the security of the original KOS protocol. Our tweak incurs a minimal
overhead of 2 RO queries for each base OT.

We also utilize the fact that the base OTs are computed in a batch of κ OTs.
This allows us to efficiently implement a batch of κ instances of the above (weak-
ened) OT functionality based on observable random oracle. Next, we discuss our
OT protocol which implements a batch of κ instances of weak OT functionality,
as discussed above.

3.4 Optimized OT Protocol in the Observable RO Model

We consider an OT protocol in the observable random oracle model where the
receiver R generates receiver OT parameter T by invoking a random oracle FRO1

on a seed. He samples a random α ← Zq and computes his first message based
on his input bit b as B, where

B = gα · T b

He sends B and seed to the sender S. The sender computes T from seed and
samples a random r ← Zq. S computes sender OT parameters- z = gr and sends
z to R. S computes his random pads p0 and p1 by invoking a random oracle FRO2

as follows:

308 R. Canetti et al.

p0 = FRO2(sid, Br)

p1 = FRO2(sid, (B
T)r)

Upon obtaining z, R computes his output pad pb as follows:

pb = FRO2(sid, zα) = FRO2(sid, grα)

This protocol ensures that a corrupt receiver R∗ cannot compute both random
pads as that would require invoking FRO2 on Br and (B

T)r = Br

T r . Such a corrupt
receiver could be used to break the CDH assumption where (T, z) = (gt, gr) is
the CDH challenge. The queries made by R∗ to FRO2 can be used to obtain T r

which is the answer to the CDH challenge. This OT protocol also perfectly hides
the input b of an honest receiver from a corrupt receiver as α and α− t are valid
receiver randomness for b = 0 and b = 1 respectively, where B = gα. However,
this protocol doesn’t allow extraction of receiver or sender’s inputs from the OT
messages in the observable RO model.

Adding Receiver Input Extraction. To add receiver’s input extraction the
sender adds a challenge in the second round of the OT protocol.

chall = FRO3(sid, p0) ⊕ FRO3(sid, p1).

The receiver has to respond to the challenge by computing his answer Ans.

Ans = FRO3(sid, pb) ⊕ (b · chall) = FRO3(sid, p0).

R has to query FRO3 to compute Ans and assists a simulator to extract a corrupt
receiver’s input. R sends Ans to the sender in a third OT message. This increases
the round complexity to 3 but it ensures that the simulator can extract the
receiver’s input bit from the RO queries of FRO3 if Ans is valid. This is similar to
the challenge-response paradigm introduced in the work of [DKLs18]. However,
a corrupt sender can compute the challenge in a malicious way such that he can
find out the bits of receiver from the response and the receiver fails to identify
such an attack. The work of [DKLs18] tackles this issue by making the sender
open his randomness (for computing the challenge) to the receiver in a fourth
OT message. We ensure correctness of the challenge by making the sender send
a proof γ along with the challenge in the second OT message,

γ = FRO3(sid,FRO3(sid, p0)) = FRO3(sid, Ans).

After obtaining the second OT message, the receiver can compute Ans and verify
the proof γ. If γ is valid then he sends Ans to sender else he aborts. This ensures
input extraction of receiver as argued before but it adds selective failure attack
by a corrupt sender S∗. S∗ can try to guess the bits of receiver and based on
that he can maliciously construct the challenge. However, our OT functionality
accommodates selective failure attack over a batch of κ OTs and hence this
challenge-prove-response paradigm would work in our case. Next, we show that
this trick already provides extraction of a corrupt sender’s input.

Blazing Fast OT for Three-Round UC OT Extension 309

Adding Sender Input Extraction. Our challenge-prove-response paradigm
allows us to construct a protocol where the sender’s inputs can be extracted if
a batch of � > μ OTs are run together. In KOS, κ OTs are run where κ > μ.
Now, we will explain the reason behind our assumption of � > μ. In a batch of �
OTs, every OT uses the same T and z = gr, i.e. the ith OT pad is of the form:

pi,0 = FRO2(sid, Br
i),

pi,1 = FRO2(sid, (Bi

T)r),

where Bi is chosen by R based on his randomness αi and input bit bi for the
i-th OT. In such a case, the sender sends a unique challenge challi for each OT
as follows:

challi = FRO3(sid, pi,0) ⊕ FRO3(sid, pi,1).

Now, the receiver computes the answer resp to the challenge as:

respi = FRO3(sid, pb) ⊕ (b · chall) = FRO3(sid, p0).

The answer to the challenge is optimized to sending one string for the whole
batch instead of κ strings, as follows:

Ans = FRO4(sid,FRO3(sid, resp1),FRO3(sid, resp2), . . . FRO3(sid, respκ))
= FRO4(sid,FRO3(sid, p1,0),FRO3(sid, p2,0), . . . FRO3(sid, pκ,0)).

The proof sent by the sender is also modified accordingly as:

γ = FRO3(sid,FRO4(sid,FRO3(sid, p1,0),FRO3(sid, p2,0), . . . FRO3(sid, pκ,0)))
= FRO3(sid, Ans).

The receiver can check his computed answer with the proof and then respond
with Ans. This tweak allows us to extract a corrupt sender’s input for � > μ OTs.
The simulator can extract T r by observing the queries- Br

i and (Bi

T)r made by S
to FRO2. Sender needs to query FRO2 for computing pi,0 and pi,1 values, which are
in turn used to compute the challenge and proof for � > μ OTs. Sender can avoid
querying FRO2 with both- Br

i and (Bi

T)r. In that case, he has to either guess the
corresponding RO query results, i.e. pi,0 or pi,1, or he launches a selective failure
attack for every OT and he has to correctly guess receiver’s input bit for every
OT. This is because, the receiver’s input is random and he will compute the Ans
and it will not match with the γ sent by the sender, except with 2−μ probability,
since γ and challi were computed without correctly computing the pi,0 or pi,1

values, for every i ∈ [�]. Thus, the simulator can observe FRO2, compute the
candidate pi,0, pi,1, match with challi values and γ and extract the correct T r.
Using T r, he can extract the sender’s input messages.

3.5 Circumventing the Impossibility Result of [GMMM18]

We circumvent the impossibility result of [GMMM18] by allowing the OT exten-
sion receiver RExt, i.e. base OT sender, to use the base OT output messages to

310 R. Canetti et al.

send his mapping D in the second round of the OT extension protocol. If the
base OT receiver fails to answer the base OT challenge then RExt aborts else he
computes his OT extension output message. The base OT security ensures that
a corrupt base OT receiver (i.e. S∗

Ext) cannot compute both messages of the base
OT sender (i.e. RExt). This hides the input of RExt in D even though we use the
base OT messages before it has terminated. Such non-blackbox usage of the 3
round base-OT protocol allows us to obtain a 3 round OT extension protocol.

4 Weakening the Oblivious Transfer Functionality

In this section, we discuss the type of security that we require from the base OT
protocols of the KOS OT extension. We demonstrate that by gradually relaxing
the FOT functionality, where the parties choose their own input, to a random OT
where the functionality provides random inputs to the parties. Next, we allow
selective failure attack by a sender on receiver’s inputs and define it as FSF-rOT.
We also allow a corrupt receiver to abort the protocol. We relax the UC-security
of this protocol to one-sided simulation. Finally, we formally define our notion
of weakened OT which provides simulation based security for a corrupt sender
and indistinguishability security against a corrupt receiver.

Random Oblivious Transfer. The OT functionality can be relaxed to consider
random inputs, i.e. FrOT. In this case, the inputs of an honest sender and an
honest receiver are chosen randomly by the functionality. However, a malicious
sender (also a malicious receiver) can choose his own inputs. The ideal random
OT functionality has been presented in Fig. 3.

Random Oblivious Transfer with Selective Failure and Explicit Abort. We can
further weaken the FrOT functionality to allow selective failure attacks by a
corrupt sender. Here, the corrupt sender S∗ can try to guess the random input
of the receiver by setting its message, corresponding to bit 0 as ⊥, whereas the
message corresponding to bit 1 is set correctly. An honest receiver would abort
if his input bit b is 0, else he continues with the protocol. This would leak b to
S∗. We also allow a corrupt receiver R∗ to explicitly abort the protocol after it
obtains its input message ab. In such a case, the functionality notifies the sender
regarding the abort. Our FSF-rOT functionality has been modeled in Fig. 4.

Oblivious Transfer for KOS. It was shown in the work of KOS and [DKLs18]
that κ instances of FSF-rOT (without the Abort option) suffices to instanti-
ate the κ base OTs in the KOS OT extension protocol. However, this requires
simulation based security against a corrupt R∗, where the simulator needs to
extract the input of R∗ and simulate the sender’s message s.t. they open to the
correct message, i.e. ab, even if R∗ aborts the protocol. However, such a strong
requirement from FSF-rOT is an overkill for instantiating the base-OT protocols.
We demonstrate that the security against a corrupt receiver can be reduced to
indistinguishability based security and his input need not be extracted when he
aborts. More precisely:

Blazing Fast OT for Three-Round UC OT Extension 311

rOT

OT interacts with a sender S and a receiver R:
– On input (Choose, rec, sid) from R; if no message of the form (rec, sid, b) has

been recorded in the memory, sample b ← {0, 1}, store (rec, sid, b) and send
(rec, sid) to S and (b, sid) to R.

– On input (Choose∗, rec, sid, b) from R∗ where b ∈ {0, 1}; if no message of the
form (rec, sid, b) has been recorded in the memory, store (rec, sid, b) and send
(rec, sid) to S and (b, sid) to R.

– On input (Transfer, sen, sid) from S, if no message of the form (sen, sid, (a0, a1))
is recorded and a message of the form (rec, sid, b) is stored, sample a0, a1 ←
{0, 1}n, store (sen, sid, (a0, a1)) in memory and send (sent, sid, (b, ab)) to R and
(sent, sid, (a0, a1)) to S. Ignore future messages with the same sid.

– On input (Transfer∗, sen, sid, (a0, a1)) from S∗ with a0, a1 ∈ {0, 1}n, if no
message of the form (sen, sid, (a0, a1)) is recorded and a message of the form
(rec, sid, b) is stored, send (sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S.
Ignore future messages with the same sid.

Fig. 3. The ideal functionality FrOT for random Oblivious Transfer

– Indistinguishability against a Malicious R∗: In the KOS OT extension,
the invocations to the base OT functionality is internal to the OT extension
protocol. The environment Z does not have access to it; hence it cannot choose
inputs for the honest parties in the base OT functionality. This permits us
to use an efficient OT protocol to emulate the functionality, s.t. it provides
simulation based security against a corrupt S∗ whereas for a corrupt R∗, it
provides indistinguishability based security. Such a relaxation allows us to
use observable random oracle instead of a programmable one in 3 rounds.
Previous protocols, like [DKLs18] used observable RO but they required 5
rounds for the base OTs, where the last 2 rounds where spent in simulating
the honest sender’s messages, i.e. providing simulation based security against
corrupt R∗. The work of [MR19] obtain a two-round OT but they require
twice the amount of exponentiation as ours by extracting the receiver’s input
from the first OT message.

– Input of R∗ need not be extracted during Abort: When the sender
S∗
Ext of the OT extension protocol (acting as the receiver R∗ of the base OTs)

misbehaves and causes an abort, the OT extension protocol leads to an abort.
In such a case, the input messages (in the extended OTs) of S∗

Ext need not be
extracted. Hence, it is not necessary to extract the inputs of S∗

Ext(or R∗) in
the base OTs. This allows us to push the extraction of the R∗ input until the
last round of the base OT (in our case also the last round of OT extension),
where it can be extracted when he computes the base OTs correctly. In case
he aborts then it is guaranteed that he cannot compute both sender messages.
This allows us to save on the number of exponentiations.

312 R. Canetti et al.

SF-rOT

SF-rOT interacts with a sender S and receiver R :
– On input (Choose, rec, sid) from R; if no message of the form (rec, sid, b) has been

recorded in the memory, sample b ← {0, 1}, store (rec, sid, b) and send (rec, sid)
to S and (b, sid) to R. If a message of the form (sen, sid, (a0, a1)) is stored, send
(sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S and ignore future messages
with the same sid.

– On input (Choose∗, rec, sid, b) from R∗ where b ∈ {0, 1}; if no message of the
form (rec, sid, b) has been recorded in the memory, store (rec, sid, b) and send
(rec, sid) to S and (b, sid) to R. If a message of the form (sen, sid, (a0, a1)) is
stored, send (sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S and ignore future
messages with the same sid.

– On input (Guess∗, sen, sid, b′) from S∗, if (rec, sid, b) exists in memory, b′ ∈
{0, 1, ⊥} and there does not exist (sen, sid, (Guess, ·)) in memory then store
(sen, sid, (Guess, b′)) in memory and perform the following:

• If b′ = ⊥, do nothing.
• If b′ = �, send (Cheat-Detected, S) to R and (Cheat-Detected) to S.
• If b′ = b, send (Cheat-Undetected) to S.
• If b′ �= b, send (Cheat-Detected, S) to R and (Cheat-Detected) to S.

– On input (Transfer, sen, sid) from S, if no message of the form (sen, sid, (a0, a1))
is stored; sample a0, a1 ← {0, 1}κ, store (sen, sid, (a0, a1)) in memory and send
(Received, sid) to R and S. If a message of the form (rec, sid, b) is stored, send
(sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S and ignore future messages
with the same sid.

– On input (Transfer∗, sen, sid, (a0, a1)) from S∗, if no message of the form
(sen, sid, (a0, a1)) is stored then store (sen, sid, (a0, a1)) in memory and send
(Received, sid) to R and S. If a message of the form (rec, sid, b) is stored, then
send (sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S and ignore future mes-
sages with the same sid.

– On input (Abort, rec, b, sid) from R∗, if messages of the form - (sen, sid, (a0, a1))
is stored; send (sent, sid, (b, ab)) to R and (Abort, sid, (a0, a1)) to S. Ignore
future messages with the same sid.

Fig. 4. The ideal functionality FSF-rOT for Random Oblivious Transfer with Selective
Failure

– Batch of κ > μ OTs: We consider a batch of κ > μ invocations of OT
protocol for the base OTs. This is necessary since a corrupt receiver of OT
extension R∗

Ext can launch a selective failure attack on the inputs of SExt to the
base OT. Since the inputs are random, R∗

Ext can at most determine μ inputs
bits of SExt’s randomness. However, that gives him a negligible advantage in
breaking the security of the OT extension protocol due to the security of the
underlying OT extension protocol.

Blazing Fast OT for Three-Round UC OT Extension 313

We also assume there exists a PPT algorithm Ext that can extract the input of
a malicious R∗, if he does not abort the protocol. We formally define our sender-
simulatable FSF-rOT with the following security properties required against a
corrupt receiver:

Definition 2. Let FSF-rOT be the Oblivious Transfer functionality as shown in
Fig. 4. We say that a protocol πOT securely computes FSF-rOT with sender-sided
simulation with input extractability of receiver if the following holds:

1. For every non-uniform PPT adversary S∗ controlling the sender in the real
model, there exists a non-uniform PPT adversary Sim for the ideal model,
such that for any environment Z,

idealFSF-rOT,Sim,Z((a0, a1), b, z)z∈{0,1}∗ ≈ realπOT,S∗,Z((a0, a1), b, z)z∈{0,1}∗ .

2. For every non-uniform PPT adversary A controlling the receiver R∗, the fol-
lowing holds:
– Property 1: If the sender did not abort, then there exists a PPT extractor

algorithm Ext such that the following holds:

Pr

[

(a0, a1) ← SFSF-rOT , (b, ab) ← AFSF-rOT , b′ ← ExtA

: (b �= b′) ∧ (a0 �= ⊥) ∧ (a1 �= ⊥)

]

≤ negli(κ)

– Property 2: If the sender did not abort, then the view of R∗ is independent
of ab̄. More formally the following condition holds:

VS
πOT,R∗(z)((a0, a1), b, z)z∈{0,1}∗ ≈ VS

πOT,R∗(z)((ã0, ã1), b, z)z∈{0,1}∗ ,

where Ext outputs b on interacting with R∗. VS
πOT,R∗(z) denotes the view of

adversarial R∗ after a real execution of protocol πOT with the honest sender
S, with random sender inputs (a0, a1), and (ã0, ã1) where ãb ← {0, 1}κ

and ãb̄ = 0κ respectively.
– Property 3: R∗ cannot compute both sender messages except with negligible

probability. More formally the following condition holds:

Pr

[
(a0, a1) ← SFSF-rOT , (a′

0, a
′
1) ← AFSF-rOT : (a0 = a′

0) ∧ (a1 = a′
1)

]
≤ negli(κ)

5 Oblivious Transfer Extension Using πκ
OT

In this section we show that the base OTs (a.k.a seed OTs) in the KOS OT
extension can be instantiated using κ invocations to the modified (according
to Definition 2) FSF-rOT. This results in an efficient seed OT phase, where each
base OT requires 3 exponentiations. We assume that there exists a protocol πκ

OT

which implements(according to Definition 2) κ instances of FSF-rOT. Then we use
πκ
OT to implement the base OTs. Our protocol has been presented in Fig. 5.

314 R. Canetti et al.

πKOS

– Public Inputs: Group G, fields Zq and F, and generator g of group G.
– Private Inputs: S has m pairs

{
aj,0, aj,1

}
j∈[m]

of κ bit strings. R has m selec-
tion bit vector r = (r1, · · · , rm) such that each rj ∈ {0, 1}.

– Functionalities: PRG : {0, 1}κ → {0, 1}m+κ, RO1 : {0, 1}κ×{0, 1}κ → {0, 1}κ,
RO2 : {0, 1}κ × {0, 1}(m+κ)×κ → F

m+κ and CRF : {0, 1}κ × [m] × {0, 1}κ →
{0, 1}κ.

– Notations: πκ
OT implements κ instances of SF-rOT(according to Def. 2).

Seed OT Phase I:

1. For i ∈ [κ], S invokes the ith instance of πκ
OT with message (Choose, rec, sid) to

obtain si. He forms s = {s1, s2, . . . , sκ} ∈ {0, 1}κ.
2. For i ∈ [κ], R invokes the ith instance of πκ

OT with message (Transfer, sen, sid)
to obtain ki,0,ki,1 ∈ {0, 1}κ.

OT Extension Phase I:

1. R forms three (m+κ)×κ matrices M, R and D in the following way and sends
D to S:
– Sets Mi = PRG(RO1(sid,ki,0)).
– Samples τ ← {0, 1}κ and sets r′ = r||τ .
– Sets Rj = (r′

j , . . . , r
′
j). Clearly, R

i = r′.
– Set Di = Mi ⊕ PRG(RO1(sid,ki,1)) ⊕ Ri.

Consistency Check Phase I :

1. R computes challenge χ = {χ1, . . . , χm+κ} of consistency check as follows: χ̃ =
{χ1, . . . , χm+κ} = RO2(sid,D).

2. R computes u =
⊕

j∈(m+κ)(χj · Mj) and v =
⊕

j∈(m+κ)(χj · Rj). R sends u
and v to S.

Seed OT Phase II:

1. If S receives a Cheat-Detected message from πκ
OT then he aborts.

2. S receives ki,si from the ith instance of πκ
OT for i ∈ [κ].

Consistency Check Phase II :

1. On receiving D, S forms (m + κ) × κ matrix Q with the jth column of Q set
as Qi = si 	 Di

) ⊕ PRG(RO1(sid,ki,si)). Clearly, (i) Qi = Mi ⊕ (si 	 Ri)
)

and (ii) Qj = Mj ⊕ (s 	 Rj)
)
= Mj ⊕ (s 	 rj)

)
.

2. S obtains χ̃ values from D and computes w =
⊕

j∈(m+κ)(χj · Qj). S checks
that w = u ⊕ s · v.

OT Extension Phase II:

1. For every j ∈ [m], S computes yj,0 = aj,0 ⊕ CRF(sid, j,Qj) and yj,1 = aj,1 ⊕
CRF(sid, j,Qj ⊕ s). S sends {yj,0,yj,1}j∈[m] to R.

2. If R obtains Abort message from πκ
OT, then he aborts.

3. For every j ∈ [m], R recovers a′
j = yj,rj

⊕CRF(sid, j,Mj). R outputs {a′
j}j∈[m].

Fig. 5. KOS OT Extension using πκ
OT

Blazing Fast OT for Three-Round UC OT Extension 315

5.1 Security Proof

We prove UC-security of our OT extension protocol πKOS by relying on the secu-
rity properties of πκ

OT, correlation robust function, PRG and RO. More precisely,
we prove Theorem 1.

Theorem 1. Assuming PRG is a secure pseudorandom generator, CRF is a
tweakable correlation robust function, FRO2 is an observable random oracle and
πκ
OT implements (according to Definition 2) κ instances of FSF-rOT, then πKOS

UC-securely implements m = poly(κ) instances of FOT functionality.

Proof. We will first argue security for a corrupt sender and then for a corrupt
receiver. In both cases, we give a simulator algorithm and provide an indistin-
guishability argument.

The simulator for a statically corrupt S∗ constructs the M,R and D matrices
using r = 0m by following the honest receiver algorithm. S∗ cannot obtain both
ki,0 and ki,1 (due to the security of πκ

OT against a corrupt receiver). Hence,
R remains hidden due to the PRG security. The simulator will invoke the Ext
algorithm of πκ

OT to obtain the randomness of S∗, i.e. s. Using s, the simulator
can compute back the sender’s messages. Our simulator has been provided in
Fig. 6. We argue indistinguishability between real and ideal world by providing
hybrids and proving indistinguishability between each pair of consecutive hybrids
as follows:

– HYB0: Real world.
– HYB1: Same as HYB0, except the reduction constructs M,D and R using r =

0m. Indistinguishability follows since the corrupt sender cannot compute both
messages in the base OTs due to security of πκ

OT. Then one of FRO1(sid,ki,0)
and FRO1(sid,ki,1) remains hidden for every i ∈ [κ] due to the RO assumption
of FRO1.

– HYB2: Same as HYB1, except the reduction extracts s by invoking Ext algo-
rithm of πκ

OT. Indistinguishability follows due to the correctness of Ext algo-
rithm, which is guaranteed by the security of πκ

OT when the OT extension
sender does not abort.

– HYB3: Same as HYB2, except the reduction successfully extracts sender’s
input messages using M and s. This HYB3 is identical to HYB2 due to cor-
rectness of the OT extension protocol.

Next, we discuss the simulation for a corrupt R∗. The simulator will extract
the (ki,0,ki,1) values by invoking the simulator(for corrupt sender) of πκ

OT. A
corrupt R∗ can perform selective failure attack on the base OTs but the KOS
protocol is resilient to such attacks. R∗ can also construct the R matrix in such
a way that it is not monochrome, i.e. some of the rows of M does not contain all
0s or all 1s. In such a case the consistency checks detect it with high probability
and the sender aborts. If the checks pass, then R∗ infers limited knowledge about
the bits of s. We refer to the original KOS [KOS15] paper for more details. Our
simulator algorithm has been presented in Fig. 7. Next, we present our hybrids
and indistinguishability argument:

316 R. Canetti et al.

– Functionalities: PRG : {0, 1}κ → {0, 1}m+μ, RO1 : {0, 1}κ×{0, 1}κ → {0, 1}κ,
RO2 : {0, 1}κ × {0, 1}(m+κ)×κ → F

m+κ and CRF : {0, 1}κ × [m] × {0, 1}κ →
{0, 1}κ.

Seed OT Phase I:

1. Sim invokes the ith instance of πκ
OT with message (Transfer, sen, sid) to obtain

ki,0,ki,1 ∈ {0, 1}κ for i ∈ [κ].
OT Extension Phase I:

– Sim forms matrices M, R and D, following the honest receiver algorithm using
r = 0m.

– Sim sends Di = Mi ⊕ PRG(RO1(sid,ki,1)) ⊕ Ri.
Consistency Check Phase I :
Sim computes u and v using the honest receiver algorithm and sends it to S∗.

Seed OT Phase II:
S∗ performs his own adversarial algorithm.

Consistency Check Phase II :
S∗ performs his own adversarial algorithm.

OT Extension Phase II:

1. For every j ∈ [m], S∗ sends {yj,0,yj,1}j∈[m] to Sim.
2. If Sim obtains Abort message from πκ

OT, then he aborts.
3. Else, Sim invokes Ext algorithm to obtain s.
4. For every j ∈ [m], Sim recovers a′

j,0 = yj,0 ⊕ CRF(sid, j,Mj) and a′
j,1 = yj,1 ⊕

CRF(sid, j,Mj ⊕ s).
5. For j ∈ [m], Sim invokes jth instance of OT with input (a′

j,0, a
′
j,1).

Fig. 6. Simulation against a statically corrupt S∗

– HYB0: Real world.
– HYB1: Same as HYB0, except the reduction invokes the simulator (for corrupt

sender) of FSF-rOT to obtain (ki,0,ki,1).
– HYB2: Same as HYB1, except the reduction aborts if M has more than μ

non-monochromatic rows. The real world sender would abort due to the cor-
rectness of the consistency checks, which follow from the RO assumption.
Thus, indistinguishability follows from the RO assumption.

– HYB3: Same as HYB2, except the simulator extracts R∗ input and simulates
the yj,0 and yj,1 according to the simulation algorithm. Indistinguishability
follows due to the CRF assumption. ��

5.2 Efficiency

Our instantiation of the KOS protocol has a minimal overhead of two random
oracle, per base OT, on top of the modified KOS protocol of [DKLs18]. The
original communication complexity remains preserved. Using Fiat-Shamir like

Blazing Fast OT for Three-Round UC OT Extension 317

– Functionalities: PRG : {0, 1}κ → {0, 1}m+μ, RO1 : {0, 1}κ×{0, 1}κ → {0, 1}κ,
RO2 : {0, 1}κ × {0, 1}(m+κ)×κ → F

m+κ and CRF : {0, 1}κ × [m] × {0, 1}κ →
{0, 1}κ.

Seed OT Phase I:
For i ∈ [κ], Sim invokes the ith instance of πκ

OT with message (Choose, rec, sid) to
obtain si. He forms s = {s1, s2, . . . , sκ} ∈ {0, 1}κ.

OT Extension Phase I:
R∗ sends D to Sim.

Consistency Check Phase I :
R∗ sends u and v to Sim.

Seed OT Phase II:

1. If Sim receives a Cheat-Detected message from πκ
OT then he aborts.

2. Sim invokes the simulator (for corrupt sender) of SF-rOT to obtain (ki,0,ki,1)
values for i ∈ [κ].

Consistency Check Phase II :

1. Sim computes Q matrix following the honest sender algorithm.
2. Sim computes Ri = Di ⊕PRG(RO1(sid,ki,0))⊕PRG(RO1(sid,ki,1)) for i ∈ [κ].
3. Sim verifies u and v by following the honest sender algorithm and aborts if

check fails.
4. Sim aborts if M has at least μ non-monochromatic rows.
OT Extension Phase II:

1. For every j ∈ [m], Sim invokes jth instance of OT with input rj to obtain aj .
2. For every j ∈ [m], Sim sets yj,rj = aj ⊕ CRF(sid, j,Qj ⊕ rj · s) and yj,r̄j ←

{0, 1}κ.

Fig. 7. Simulation against a statically corrupt R∗

transform of [DKLs18] the consistency checks have become non-interactive. In
the original KOS protocol, the consistency checks required 2 extra rounds for
coin-tossing protocol between the parties. In the next section we will provide
an efficient protocol for πκ

OT using 3 rounds. The base-OT messages can be sent
in parallel to the OT extension messages. Thus, it would be round preserving
and it will circumvent the impossibility result of [GMMM18] since we consider
non-blackbox usage of the base-OT protocol.

6 Implementing κ Instances of FSF-rOT

In this section we present our protocol π�
OT which implements (according to

Definition 2) � = κ instances of FSF-rOT assuming Observable Random Oracle,
where κ > μ. We refer to Sect. 3 for a detailed overview. Our protocol has been
presented in Fig. 8.

318 R. Canetti et al.

π�
OT

– Public Inputs: Group G, field Zq and generator g of group G.
– Private Inputs: Sender S and receiver R do not possess any private inputs.
– Random Oracles: RO1 : {0, 1}2κ → G, RO2 : {0, 1}κ × G → {0, 1}κ, FRO3 :

{0, 1}2κ → {0, 1}κ, RO4 : {0, 1}(�+1)κ → {0, 1}κ.

Choose:

– Receiver Parameters: R samples seed ← {0, 1}κ and computes T ←
FRO1(sid, seed). R sends seed as OT receiver parameters.

– Receiver Message: For i ∈ [�], R computes its message for ith OT as follows :
• R samples bi as its random input for ith OT.
• R samples αi ← Zq and sets Bi = gαiT bi

• R sends Bi as ith OT message.

Transfer:

– Sender Parameters: S computes T ← RO1(sid, seed). S samples r ← Zq and
computes z = gr. S sends z to R as OT sender parameters.

– Sender Message: For i ∈ [�], S computes its message for ith OT as follows :
• S computes pi,0 = RO2 (sid, Br

i) and pi,1 = RO2(sid, Bi
T

)r
).

• S sets (pi,0, pi,1) as its random inputs messages for ith OT.

– Challenge Computation: S computes the challenge for ith OT as
challi = RO3(sid, pi,0) ⊕ RO3(sid, pi,1) for i ∈ [�]. S sends Chall =
(chall1, chall2, . . . , chall�) to R.

– Proof Computation: S computes the answer to the challenge as follows :

Ans = RO4(sid, RO3(sid, p1,0), RO3(sid, p2,0), . . . , RO3(sid, p�,0)).

S computes the validity proof of challenge as γ = RO3(sid, Ans). S sends the
proof γ to R.

Response:

– Message Decryption: For i ∈ [�], R computes pi,bi = RO2(sid, zαi).

– Response Computation: For i ∈ [�], R computes respi = RO3(sid, pi,bi) ⊕ (b ·
challi). R computes response as Ans′ = RO4(sid, resp1, resp2, . . . , resp�).

– Challenge Verification: R aborts if RO3(sid, Ans′) �= γ. Else, he sends Ans′ to S
and outputs {(bi, pbi)}i∈[�].

Verification:

– S aborts if Ans �= Ans′. Else, he outputs (pi,0, pi,1) as his output for ith OT.

Fig. 8. Protocol computing � instances of FSF-rOT according to Definition 2

Blazing Fast OT for Three-Round UC OT Extension 319

6.1 Security Proof

We prove security of our protocol πOT by proving Theorem2. In Sect. 5, we will
show that such a relaxation in security suffices for KOS OT extension.

Theorem 2. Assuming the Decisional Diffie-Hellman holds in group G, then
πκ
OT (Fig. 8) UC-securely implements �(> μ) instances of FSF-rOT functionality

(according to Definition 2) in the observable random oracle model with sender-
sided simulation.

Proof. We will first argue security for a corrupt sender and then for a corrupt
receiver. In the first case we provide a simulator and in the latter part we provide
an indistinguishability argument.

The simulator for a statically corrupt sender S∗ will use the observability of
the ROs to extract the sender’s input, since he cannot program FRO1 on seed.
He will compute the receiver message with random input bits. He can compute
either gαir by following the receiver algorithm and extract one of the sender’s
input message for ith OT. In order to extract the other sender’s input message,
he needs to find out T r. Assume for sake of simplicity, that the simulator’s input
bit for all OTs are bi = 0 and he can compute pi,0 and ai,0, for all i ∈ [κ]. He
tries to compute pi,1 values as follows:

1. Observe the queries made by S∗ to FRO3 for computing challi using pi,1 for
every i ∈ [κ]. Extract candidate pi,1 values s.t. chall is well-formed using pi,0

and pi,1. It is guaranteed that from every challi, Sim can get at most one
candidate pi,1 value.

2. After obtaining candidate pi,1 values for each ith OT, the simulator observes
the queries made to FRO2 to obtain pi,1. If there aren’t any such query, then
the simulator sets adversary’s guess for ith OT as 0 in the selective failure
attack. Else, simulator will obtain an unique (guaranteed by RO assumption)
query ρi,1, s.t. FRO2(sid, ρi,1) = pi,1.

3. Simulator obtains all the candidate values of T r from ρi,0(which he can com-
pute locally) and ρi,1. Let A = {A1, A2, . . . , A�} denote the list of values
obtained as Ai = ρi,0

ρi,1
for i ∈ [κ] for i ∈ [κ]. Let A be the value which has

been obtained the maximum number of times from the OTs. The simulator
sets A as the supposed T r value. If there are more than μ OTs whose Ai val-
ues are different from A, then simulator sends (Guess,Sim,, sid) to FSF-rOT

and aborts. In such a case, S∗ can distinguish the real and ideal world, only
if the honest receiver does not abort. To ensure that, S∗ must correctly guess
the random input bits of the honest R. Thus, S∗ can distinguish with 2−μ

probability if he miscomputed more than μ OTs. Otherwise, the simulator
can extract T r = A value correctly.

4. Given the correct T r value, simulator computes the correct pi,1 values whose
corresponding Aj values were different from A.

Next, the simulator needs to simulate the selective OT failure attacks. Sim
simulates the selective failure attack by checking whether challi is correctly

320 R. Canetti et al.

formed or not, i.e. if challi = FRO3(sid, pi,0) ⊕ FRO3(sid, pi,1) then A is not per-
forming a selective failure attack. Else, he has performed a selective failure attack
on the receiver’s input. Simulator needs to find out the bit b′ which adversary
has guessed and invoke FSF-rOT with (Guess,Sim, sid,). Sim performs this by
observing the queries made by A to FRO4 and FRO3.

1. Sim observes the queries made to FRO3 and compares it with γ. If γ was formed
without querying FRO3, then Sim aborts as the real world sender would also
abort irrespective of input, due to RO assumption. There can be only one
such candidate query β s.t. FRO3(sid, β) = γ, due to RO assumption. β is the
candidate for Ans that S must have obtained while computing γ.

2. Next, Sim searches for y = (y1y2 . . . y�), s.t. FRO4(sid, y) = β, due to RO
assumption.

3. Upon finding such a y tuple, it individually checks for y′
i values s.t. yi =

FRO3(sid, y′
i).

4. These y′
i values are then individually matched with the pads (pi,0, pi,1) and

challi. If pi,0 = y′
i, then challi is correctly formed for b′ = 0 and so Sim sets

b′ = 0. If FRO3(sid, pi,1) ⊕ challi = y′
i then challi is correctly formed for b′ = 0

and so Sim sets b′ = 1. Else, the challenge is malformed for both b′ = 0 and
b′ = 1; hence the simulator aborts as the honest sender would also abort.

If there are more than μ OTs where the A has launched a selective failure attack
then the simulator aborts and sends (Guess,Sim, sid,) to FSF-rOT. Finally, the
simulator invokes FSF-rOT with input (Guess,Sim, b′, sid). It should be noted
that the input bit bi remains perfectly hidden in Bi = gαi since αi and αi − t are
valid randomness for bi = 0 and bi = 1 respectively. The real and ideal world are
statistically indistinguishable except with 2−μ probability. The simulation algo-
rithm has been provided in Fig. 9 and the formal hybrids and indistinguishability
argument are as follows:

– HYB0: Real world.
– HYB1: Same as HYB0, except the reduction except the reduction computes

(pi,0, pi,1) by following the simulation strategy and computes A = T r, or
aborts if necessary. Indistinguishability follows due to RO assumption as dis-
cussed previously.

– HYB2: Same as HYB1, except the reduction invokes FSF-rOT with input pi,0 =
pi,1 = ⊥ and aborts if there are 0 or 2 (and more) candidate values for β.
Indistinguishability follows from RO assumption.

– HYB3: Same as HYB2, except the reduction invokes FSF-rOT with input pi,0 =
pi,1 = ⊥ and aborts if there are 0 or 2 (and more) candidate values for y.
Indistinguishability follows from RO assumption.

– HYB4: Same as HYB3, except the reduction invokes FSF-rOT with input pi,0 =
pi,1 = ⊥ and aborts if there are 0 or 2 (and more) candidate values for y′

i for
each i ∈ [�]. Indistinguishability follows from RO assumption.

– HYB5: Same as HYB4, except the reduction aborts if there are ¿μ OTs where
the sender has launched a selective failure attack. Indistinguishability follows
statistically since the inputs of the honest sender are identically distributed

Blazing Fast OT for Three-Round UC OT Extension 321

to the inputs of the reduction, and both are random. The probability that
the reduction aborts and the sender doesn’t abort in the real world is 2−μ.

– HYB6: Same as HYB5, except the reduction simulates the selective failure
attack following the simulation algorithm. Indistinguishability follows due to
the RO assumption.

– HYB7: Same as HYB6, except Sim computes (pi,0, pi,1) following the simu-
lation strategy and invokes FSF-rOT with it. This hybrid is identical to the
previous hybrid.

This completes the security proof for a corrupt sender. Next, we discuss the
case for a corrupt receiver. In this case, the simulator either extracts the input bit
of a corrupt receiver or it aborts. In the real world, the honest sender would also
abort. However, in both cases the receiver can obtain the message corresponding
to his bit after the OT protocol results in an abort by the sender. More formally,
the simulator for a corrupt receiver R∗ will set (ci,0, ci,1) values randomly. Later,
upon obtaining the second OT second message, the receiver can follow either of
the two tactics:

– Resp is valid: The receiver can query FRO2 to compute pi,bi
, corresponding

to his input bit bi for ith OT. Then he can correctly compute the response to
the challenge by running the honest receiver algorithm. This would result in
the sender accepting the response to the challenge. The simulator can observe
the queries made to the random oracles to extract bi and invoke FSF-rOT with
input bi.

– Resp is invalid: On the other hand, the receiver can send a random response
to the challenge and force the sender to abort. However, the receiver can
decrypt the message corresponding to his input bit bi after the protocol ends
by running the honest receiver’s algorithm. This would hamper simulation as
the simulator cannot extract bi during the protocol since R∗ did not query the
random oracles. Hence, the message decrypted (after the protocol aborted) by
R∗ in the simulated world will be distinguishable from the message decrypted
(after the protocol aborted) by R∗ in the simulated world. Based on abi

,
the view of R∗ can be distinguished by the environment Z; hence simulation
would fail.

Next, we show indistinguishability based security for a corrupt receiver. We
demonstrate that there exists a PPT algorithm Ext who can extract the input
choice bit of R∗ if Ext has blackbox access to R∗ for the protocol session. If R∗

decides to forcefully abort the protocol, then it is guaranteed that he cannot
compute both sender input messages as that would require solving the CDH
problem. We present our Ext algorithm in Fig. 10 and we modularly discuss the
details of our proof by arguing that each property in Definition 2 holds for our
protocol.

– Correctness of Ext algorithm: The corrupt receiver has to compute a
correct answer to the challenge. To do that, he has to query either Br

i or
(Bi · T−1)r to FRO2, to obtain pi,0 or pi,1 and construct the correct response

322 R. Canetti et al.

– Functionalities: Random Oracles RO1 : {0, 1}κ×{0, 1}κ → G, RO2 : {0, 1}κ×
G → {0, 1}κ, RO3 : {0, 1}κ × {0, 1}κ → {0, 1}κ, RO4 : {0, 1}κ × {0, 1}�κ →
{0, 1}κ.

Choose:

– Receiver Parameters: Sim runs the honest receiver algorithm.

– Receiver Message: Sim runs the honest receiver algorithm.

Transfer:

– S∗ sends (z, Chall, γ).
Response:

– Message Decryption: Sim extracts and sender’s messages as follows:
• Sim computes pi,bi = RO2(sid, zα

i).
• Sim extracts candidate pi,b̄i

values for each i ∈ [κ] by observing the queries
made to RO3 for computing challi = RO3(sid, pi,0) ⊕ RO3(sid, pi,1).

• Sim extracts ρi,b̄i
from the query list of RO2, s.t. RO2(sid, ρi,b̄i

) = pi,b̄i
.

• Sim computes A = {Ai}i∈[κ] =
ρi,0
ρi,1

. Sets A as the most frequent Ai value
in A. If there are at least μ Ai values s.t. Ai �= A, then invoke SF-rOT with
message (Guess, Sim, sid, �) and abort. Else, consider T r = A.

• Sim computes the correct value of pi,b̄i
= RO2(sid, zαi · A−1).

– Challenge Verification and Response Computation: Sim extracts values by ob-
serving RO queries as follows:

• Sim extracts β s.t. RO3(sid, β) = γ. Set Ans = β by observing RO3. Sim
observes RO4 to extract y = (y1, y2, . . . , y�), s.t. RO4(sid, y) = Ans.

• For i ∈ [�], Sim extracts y′
i s.t. RO3(sid, y′

i) = yi for each i ∈ [�].
If Sim either finds two or more matching queries, or he finds no matching query
then he invokes SF-rOT with input messages pi,0 = pi,1 = ⊥ and aborts. For
i ∈ [�], Sim computes chall′i = RO3(pi,0)⊕ RO3(pi,1) and performs the following:

• If challi = chall′i: If y′
i = pi,0 and pi,1 was queried to RO3, then invoke

FSF-rOT with input (Guess, Sim, sid, ⊥) else abort.
• If challi �= chall′i: If y′

i = pi,0 then set b′
i = 0 else if RO3(sid, pi,0)⊕challi = y′

i

then set b′
i = 1. Invoke SF-rOT with input (Guess, Sim, sid, b′

i).
• Else, Sim aborts in the simulated execution.

– If Sim receives (Cheat-Detected) from any SF-rOT instance then he aborts.
– For i ∈ [�], Sim computes Ans′ following honest receiver algorithm using input

{bi}i∈[�]. Sends Ans′ to S∗ or he aborts.
– Sim invokes ith instance of SF-rOT with input (Transfer∗, sen, sid, (pi,0, pi,1))

for i ∈ [�].

Fig. 9. Simulation against a statically corrupt S∗

using FRO3(sid, pi,0) or FRO3(sid, pi,1). He can bypass querying the RO if he
can correctly guess pi,0 or pi,1 or FRO3(sid, pi,0) or FRO3(sid, pi,1). However,
that occurs with negligible probability. Thus, the Ext algorithm succeeds if

Blazing Fast OT for Three-Round UC OT Extension 323

– Functionalities: Random Oracles RO1 : {0, 1}κ×{0, 1}κ → G, FRO2 : {0, 1}κ×
G → {0, 1}κ, RO3 : {0, 1}κ × {0, 1}κ → {0, 1}κ, RO4 : {0, 1}κ × {0, 1}�κ →
{0, 1}κ.

Choose:

– Receiver Parameters: R∗ sends seed as OT receiver parameters.
– Receiver Message: For i ∈ [�], R∗ sends Bi as ith OT message.

Transfer:
Ext follows honest sender algorithm.

Response:
R∗ sends Ans′.

Verification:

– If Ans′ is not valid then set bi = ⊥ for i ∈ [�] and abort.
– For i ∈ [�], Ext extracts bi as follows and performs the following -

• If R∗ queried both Br
i and (Bi · T −1)r to RO3 then set bi = ⊥.

• If R∗ queried ρi,b′
i
= (Bi · T −b′

i)r to RO3 to obtain pi,b′
i
then set bi = b′

i

else set bi = ⊥.
• Output bi.

Fig. 10. Extractor Algorithm Ext

R∗ correctly responds to the challenge. In such a case, R∗ queries FRO2; hence
Ext can correctly extract bi.

– R∗ cannot compute both pi,0 and pi,1: It can be observed that if R∗

obtains both pi,0 and pi,1 by querying FRO2 on ρi,0 and ρi,1 respectively, then
he can be used to solve the CDH problem where the CDH challenge instance
is T = gt and z = gr. The solution to the CDH challenge would be T r = ρi,0

ρi,1
.

Here, we can assume that the reduction programs FRO1 on seed s.t. it returns
the CDH challenge T . This is a reasonable assumption to make since we are
programming the RO in the reduction. Such programming instances can be
found out in the work of [DKLs18].

– Indistinguishability of R∗ views: The real world view of the corrupt
receiver R∗ − VS

πOT,R∗(z)((pi,0, pi,1), b, z)z∈{0,1}∗ , after executing an OT pro-
tocol with S using random inputs is indistinguishable from the ideal world
view of R∗−VS

πOT,R∗(z)((p̃i,0, p̃i,1), b, z)z∈{0,1}∗ , after executing an OT protocol
with sender since the sender only sends z. This is because R∗ cannot query
ρi,˜bi

to FRO2 (due to CDH assumption) and hence pi,b̄i
and p̃i,b̄i

= 0κ would
look indistinguishable due to the RO assumption.

This completes our proof of Theorem 2. ��

324 R. Canetti et al.

Table 2. Comparing the performance to compute κ = 128 base OTs using our protocol
and CO-OT.

RTT < 0.1 ms 50 ms 100 ms 200 ms

CO-OT [CO15] 21 ms 67 ms 117 ms 217 ms
This work 21 ms 67 ms 117 ms 217 ms

6.2 Efficiency

Overall the complexity of our protocol is similar to the CO-OT protocol. Our
protocol requires the receiver to compute 2 exponentiations and the sender to
compute 1 exponentiation for each OT. The sender needs to compute 5 RO
queries and the receiver need to query the RO for 4 times, for each OT. The
receiver needs to communicate one group element and one κ bit string for each
OT. The sender needs to send 4κ bit strings for each OT.

In addition, the sender has a one-time computation of 1 exponentiation, one
RO query and communication of one group element, which can be reused. The
receiver has a one-time communication of κ bit string and one-time computation
of one RO query.

7 Implementation and Evaluation

We will study the concrete performance of our OT protocol in this section. As
we have analyzed in previous sections, our OT protocol is expected to be as fast
as the CO-OT protocol by Chou and Orlandi [CO15], which is the most efficient
OT protocol but not provably UC-secure and does not provide input extraction
of a corrupt receiver. Since all state-of-the-art OT protocols are slower than CO-
OT, the above is sufficient to demonstrate the efficiency of our protocol against
all other alternatives [MR19,DKLs18].

We implement CO-OT and our protocol using relic-toolkit [AG] and test
them on a machine with a 3 GHz Intel Xeon CPU. No multi-thread or assembly-
level optimization is used. We throttle the network bandwidth to be 1 Gbps but
with different network round-trip time (RTT, measured by ping). The perfor-
mance is summarized in Table 2, where we can see that the performance of our
protocol is identical to the CO-OT protocol for different network latency val-
ues. This is expected as both protocols have the same number of exponentiation
operations. Note that prior works [CO15,MR19] reported performance of CO-
OT with low-level hardware-dependent accelerations. Our protocol can benefit
from them too, resulting in even higher performance. We further applied both
protocols as the base OT to compute OT extension. We can see that due to the
reduce round complexity of our protocol, we are to obtain a better efficiency
with the overall running time improved by one RTT (Table 3).

Blazing Fast OT for Three-Round UC OT Extension 325

Table 3. Comparing the performance to compute 107 random OTs using KOS with
base OT as our protocol and CO-OT.

RTT < 0.1 ms 50 ms 100 ms 200 ms

CO-OT [CO15]+KOS 1300 ms 1388 ms 1496 ms 1679 ms
This work +KOS 1300 ms 1327 ms 1391 ms 1485 ms

Acknowledgements. This work was supported by the IARPA ACHILLES project,
the NSF MACS project and NSF grant CNS-1422965. The first author also thanks the
Check Point Institute for Information Security.

References

[AG] Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryp-
tography. https://github.com/relic-toolkit/relic

[ALSZ15] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer extensions with security for malicious adversaries. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 26

[BCG+19] Boyle, E., et al.: Efficient two-round OT extension and silent non-
interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer and Com-
munications Security, pp. 291–308. ACM Press, November 2019

[BCGI18] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018:
25th Conference on Computer and Communications Security, pp. 896–912.
ACM Press, October 2018

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: 28th Annual ACM Symposium on Theory of Comput-
ing, pp. 479–488. ACM Press, May 1996

[BLO16] Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure mul-
tiparty computation for the internet. In: Weippl, E.R., Katzenbeisser, S.,
Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Con-
ference on Computer and Communications Security, pp. 578–590. ACM
Press, October 2016

[BPRS17] Byali, M., Patra, A., Ravi, D., Sarkar, P.: Fast and universally-composable
oblivious transfer and commitment scheme with adaptive security. Cryp-
tology ePrint Archive, Report 2017/1165 (2017). https://eprint.iacr.org/
2017/1165

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd Annual Symposium on Foundations of Com-
puter Science, pp. 136–145. IEEE Computer Society Press, October 2001

[CDG+18] Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.:
The wonderful world of global random oracles. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 11

https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/978-3-662-46800-5_26
https://eprint.iacr.org/2017/1165
https://eprint.iacr.org/2017/1165
https://doi.org/10.1007/978-3-319-78381-9_11

326 R. Canetti et al.

[CJS14] Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global
random oracle. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014:
21st Conference on Computer and Communications Security, pp. 597–608.
ACM Press, November 2014

[CO15] Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In:
Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS,
vol. 9230, pp. 40–58. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22174-8 3

[DKLs18] Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold
ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security
and Privacy, pp. 980–997. IEEE Computer Society Press, May 2018

[GIR17] Genç, Z.A., Iovino, V., Rial, A.: “The simplest protocol for oblivious trans-
fer” revisited. Cryptology ePrint Archive, Report 2017/370 (2017). http://
eprint.iacr.org/2017/370

[GKW+19] Guo, C., Katz, J., Wang, X., Weng, C., Yu, Y.: Better concrete security
for half-gates garbling (in the multi-instance setting). Cryptology ePrint
Archive, Report 2019/1168 (2019). https://eprint.iacr.org/2019/1168

[GMMM18] Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity
of OT extension. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 545–574. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96878-0 19

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho,
A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp.
218–229. ACM Press, May 1987

[HL17] Hauck, E., Loss, J.: Efficient and universally composable protocols for
oblivious transfer from the CDH assumption. Cryptology ePrint Archive,
Report 2017/1011 (2017). http://eprint.iacr.org/2017/1011

[HSS17] Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC
combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8 21

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, Seattle, Washigton, USA, 14–17 May 1989, pp.
44–61 (1989)

[Kil88] Kilian, J.: Zero-knowledge with log-space verifiers. In: 29th Annual Sym-
posium on Foundations of Computer Science, pp. 25–35. IEEE Computer
Society Press, October 1988

[KOS15] Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with opti-
mal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 35

[LM18] Li, B., Micciancio, D.: Equational security proofs of oblivious transfer
protocols. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769,
pp. 527–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76578-5 18

https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-319-22174-8_3
http://eprint.iacr.org/2017/370
http://eprint.iacr.org/2017/370
https://eprint.iacr.org/2019/1168
https://doi.org/10.1007/978-3-319-96878-0_19
https://doi.org/10.1007/978-3-319-96878-0_19
http://eprint.iacr.org/2017/1011
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-319-76578-5_18
https://doi.org/10.1007/978-3-319-76578-5_18

Blazing Fast OT for Three-Round UC OT Extension 327

[MR19] Masny, D., Rindal, P.: Endemic oblivious transfer. In: Cavallaro, L.,
Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th Conference
on Computer and Communications Security, pp. 309–326. ACM Press,
November 2019

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 40

[OOS17] Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT exten-
sion with application to private set intersection. In: Handschuh, H. (ed.)
CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52153-4 22

[PSS17] Patra, A., Sarkar, P., Suresh, A.: Fast actively secure OT extension for
short secrets. In: 24th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2017, San Diego, California, USA, 26 February–1
March 2017 (2017)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[WRK17] Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty compu-
tation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017: 24th Conference on Computer and Communications
Security, pp. 39–56. ACM Press, October/November 2017

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th Annual Symposium on Foundations of Computer Science, pp.
162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

Going Beyond Dual Execution:
MPC for Functions with Efficient Verification

Carmit Hazay1(B), Abhi Shelat2(B),

and Muthuramakrishnan Venkitasubramaniam3(B)

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 Northeastern University, Boston, USA
abhi@neu.edu

3 University of Rochester, Rochester, USA
muthuv@cs.rochester.edu

Abstract. The dual execution paradigm of Mohassel and Franklin (PKC’06) and
Huang, Katz and Evans (IEEE ’12) shows how to achieve the notion of 1-bit leak-
age security at roughly twice the cost of semi-honest security for the special case
of two-party secure computation. To date, there are no multi-party computation
(MPC) protocols that offer such a strong trade-off between security and semi-
honest performance.

Our main result is to address this shortcoming by designing 1-bit leakage pro-
tocols for the multi-party setting, albeit for a special class of functions. We say
that function f (x, y) is efficiently verifiable by g if the running time of g is always
smaller than f and g(x, y, z) = 1 if and only if f (x, y) = z.

In the two-party setting, we first improve dual execution by observing that the
“second execution” can be an evaluation of g instead of f , and that by definition,
the evaluation of g is asymptotically more efficient.

Our main MPC result is to construct a 1-bit leakage protocol for such functions
from any passive protocol for f that is secure up to additive errors and any active
protocol for g. An important result by Genkin et al. (STOC ’14) shows how the
classic protocols by Goldreich et al. (STOC ’87) and Ben-Or et al. (STOC ’88)
naturally support this property, which allows to instantiate our compiler with two-
party and multi-party protocols.

A key technical result we prove is that the passive protocol for distributed
garbling due to Beaver et al. (STOC ’90) is in fact secure up to additive errors
against malicious adversaries, thereby, yielding another powerful instantiation of
our paradigm in the constant-round multi-party setting.

As another concrete example of instantiating our approach, we present a novel
protocol for computing perfect matching that is secure in the 1-bit leakage model
and whose communication complexity is less than the honest-but-curious imple-
mentations of textbook algorithms for perfect matching.

Keywords: Secure computation · Semi-honest security · Dual execution ·
Greedy algorithms

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 328–356, 2020.
https://doi.org/10.1007/978-3-030-45388-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_12

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 329

1 Introduction

Current approaches for designing secure two-party (2PC) and multi-party (MPC) pro-
tocols follow a generic compiler pattern that transforms the function f into either a
Boolean circuit or a RAM program and then applies a method to securely evaluate each
gate or RAM operation in the program. This approach has been successful at evaluating
many interesting functions such as the AES function [MOR03,MNPS04,BNP08,LP12,
NO09,NNOB12,KSS12,RHH14], edit distance [HEKM11], textbook RSA operations
[KSMB13] and graph algorithms [LHS+14,KS14].

The main result in this paper is to introduce a new method for constructing secure
computation protocols that exploits the properties of the function of interest f . Our
resulting protocols are secure in the one-bit leakage security model1 and are asymp-
totically more efficient than using generic compiler-based techniques. In particular, we
study secure computation protocols for a natural class of functions f which have effi-
cient verifiers, i.e., given x, y, z, it is more efficient to verify f (x, y) = z than to com-
pute f (x, y).

Notable examples in this class include: (a) Frievald [Fre77]’s celebrated technique
verifies a matrix multiplication in time O(�2) whereas the schoolbook algorithms for
matrix multiplication require O(�3) operations, (b) although it takes O(E2V) or O(V3)
to compute a maxflow for a graph G = (V, E), given the flow f , one can verify
its min-cut in time O(E + V), (c) a minimum spanning tree can be verified in linear
time [Kin95], (d) after solving any linear program, slack variables can be used to verify
the optimal against the input constraints. Another interesting class includes sampling
from complex distributions via rejection sampling. Here the procedure is to sample uni-
formly and apply a predicate to the result until the sample passes. Verification of the
sample, on the other hand, requires only 1 application of the predicate, and can thus be
asymptotically faster. Moreover, in a secure computation context, the parties’ inputs are
simply their random coins. Thus, 1-bit leakage can have essentially no security impli-
cation since the adversary can easily guess. One such example is sampling from the set
of RSA moduli (product of two primes, as required for threshold RSA crypto systems).
The best methods to (securely) sample [FLOP18] require roughly O(log2(n)) attempts
to chose an O(n)-bit prime and then perform a multiplication and apply a bi-primality
test, whereas verifying takes 1 multiplication and 1 bi-primality test.

On the other hand, we remark that there are some situations where leaking even 1
but could be harmful. For instance, in case of functions with one input bit, the adver-
sary can leak the entire input of the honest party. Another example is when the secure
computation is involved with medical or financial data where the attacker can extract
a high order bit of information, such as whether an employee earns more than a cer-
tain amount of money or whether the DNA string includes a certain gene that causes a
particular disease.

In the 1-bit leakage model, where the adversary is allowed to learn at most 1-bit of
the honest party’s input, the dual execution paradigm of Mohassel and Franklin [MF06]
is the most efficient black-box protocol to date, incurring twice the cost of the passive

1 Where the security definition allows the adversary to submit an arbitrary leakage predicate
such that the honest party learns its output condition on whether the predicate is true when
applied on the parties’ inputs.

330 C. Hazay et al.

Yao protocol. Even though protocols for full security [WRK17a,WRK17b,KRRW18]
have improved significantly over the recent past, dual execution offers much better con-
crete efficiency at low overhead without significantly compromising security [HKE12].
Security with 1-bit leakage is arguably sufficient in many cases, as the leakage legiti-
mately allowed by the ideal functionality is often more significant than the very limited
type of leakage in this model. For instance, secure computation with one bit of leakage
has been adopted by Calctopia [cal] to perform secure computation on data stored in
local private spreadsheets of the parties. In this paper, for the special class of functions
with efficient verifiers, we are able to show an overhead that is less than twice the cost
of passive protocol.

1-bit Leakage for 2-party. To introduce the power of efficiently verifiable f , our first
result is a black-box two-party protocol that securely computes a function f in the
1-bit leakage model with communication complexity roughly p(| f |, κ) + p(|g|, κ) +
poly(κ) where p represents the cost of Yao’s garbled encoding of a function [Yao86],
κ is a security parameter and | f | and |g| represent the size of the circuits that compute
those functions respectively. Prior work requires 2p(| f |, κ) + poly(κ), and thus, our
methods offer improvement (up to a factor of 2) for functions with asymptotically faster
verification (e.g., matrix multiplication). Our main insight is to modify the dual execu-
tion technique introduced by Mohassel and Franklin [MF06] and refined by Huang,
Katz and Evans [HKE12] to exploit the efficient verifier. Our analysis also shows that
the secure equality test that is used at the end of both prior protocols is not necessary.
While this result is purely a concrete improvement for a special class of functions, it
introduces the insight needed for our main results in this paper. Importantly, we stress
that the verification circuit g is never more complex than f , as in the worst case it can be
instantiated with f . Our protocol takes advantage of the case when the (multiplicative)
complexity of g is smaller than f where checking is often easier than computing.

1-bit Leakage Beyond 2-party Boolean Computations via Dual Execution. Our
main result is to show how to extend the dual execution technique to multi-party pro-
tocols such as [GMW87] and [BMR90]. These are the first general class of black-box
protocols in the multi-party setting to achieve security against 1-bit leakage where the
cost of the protocol is (1+ ε) times the passive counterparts. Our insight here is that
while prior work on dual execution required “one-sided security” in the analysis (where
one-sided security implies active security for one party and passive security for the
other), we can instead rely on the weaker property of additive independent errors—a
useful notion introduced by Genkin et al. in [GIP+14]. We remark that prior work on
the paradigm of dual execution explicitly applies to boolean computation via garbled
circuits and only for the two-party setting.

In the multi-party setting, the recent maliciously secure protocol of Wang et al.
[WRK17b] relies on cut-and-choose mechanism and incurs Ω(s/ log |C|) overhead
for a statistical parameter s and circuit C. A crucial idea in this family of works toward
achieving active security is to generate authenticated triples. Our paradigm can be used
to improve their overheads (at the price of 1-bit leakage and verifiable functions) by
requiring fewer triples that are authenticated. Our computation requires (unauthenti-
cated) triples (secure up to additive attacks) for computing the function and authenti-
cated triples for verifying the result. If we relax the black-box requirement, the work

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 331

of [KPR18] achieves malicious security using tailor-made zero-knowledge proofs, but,
still incurs a significant overhead over the passive protocol.

While the maliciously secure MPC protocols of [IPS08,IPS09,CGH+18] have con-
stant communication overhead, their computational overhead is super-constant in the
circuit size. Meanwhile, the work of [HSS17] introduces an asymptotically good pro-
tocol that achieves constant communication overhead over a passive protocol, but only
for a constant number of parties due to the restrictions imposed by the IPS compiler.
Our work (similar to the dual-execution paradigm) achieves both constant computation
and communication overheads theoretically and concretely in the most general setting,
albeit for a restricted class of functionalities, but in both honest and dishonest majority
settings.

Finally, Hazay et al. [HIV17] demonstrate a non-interactive two-party protocol with
leakage for arbitrary functions with communication overhead that is strictly greater than
1+ s/k where s and k are the statistical and computational security parameters. In con-
trast, our work can achieve overheads 1+ 1/n if verification is O(1/n) simpler than
computing (which is the case for many of our examples). Secondly, the computational
overhead of our approach is also close to 1 while the work of [HIV17] is O(logn) due
to Shamir Sharing.

The Additive Security of [BMR90]-Style Garbling. The work of [GIP+14] allows us
to instantiate our protocol with the [GMW87] protocol in the OT and OLE hybrids for
Boolean and arithmetic functionalities. However, these protocols require more than a
constant number of rounds. As a third contribution, we show that we can instantiate
our framework with the distributed garbling (BMR) protocol due to Beaver, Micali and
Rogaway [BMR90]. Specifically, a key technical lemma we prove is that the BMR pro-
tocol is secure up to additive independent errors on the internal wires of the circuit. We
remark that this is the first constant-round protocol for which such a result has been
established. Furthermore, this result is of independent interest as it can enable com-
munication efficient multi-party protocols in the full security (i.e., no leakage) setting
assuming the exitance of efficient Binary AMD circuit transformations.

Additive Security of Perfect Matching. As a case study for practitioners of our tech-
nique, we present a protocol for the problem of computing a perfect matching in a graph.
This considers a scenario where the edges of a graph are distributed between the par-
ticipants. Secure perfect matching and its generalization maximum matching are useful
for assigned drivers to passengers in ridesharing services and more generally resource
allocation. We show how this protocol satisfies the property that an adversary is limited
to forcing additive, input-independent errors, and thus, we can apply our technique. Our
protocol is iterative and requires secure computation of smaller independent tasks, most
notably, matrix multiplication and matrix inversion for which we use Beaver triples
techniques similar to Mohossel and Zhang [MZ17]. The communication complexity of
our protocol is O(V2 logV) which is asymptotically more efficient than even using pas-
sive generic MPC on the best algorithm to compute perfect matching [Har06], which
would result in communication O(Vω) where ω is the matrix-multiplication exponent
(3 in the case of schoolbook algorithm). Passive generic MPC techniques applied to
other algorithms for computing matchings (e.g., flow-based algorithms) would require
ORAM data structures and would be even less efficient than O(Vω).

332 C. Hazay et al.

Constant-Overhead Cryptography. A fundamental goal in cryptography is to obtain
constant-overhead in computation (and consequently communication as well) over their
“insecure” analogues. The recent work of Appelbaum et al. [ADI+17] provided the first
construction of a passively secure protocol for evaluating an arithmetic circuit over a
finite field F in the setting of secure two-party computation where the computational
overhead is constant over naively computing via an insecure protocol. We are inter-
ested in a related fundamental problem of achieving constant-overhead in computation
for constructing an actively secure protocol over the best passive analogue. To frame
the question more precisely (and eliminate inefficient constructions based on stronger
primitives), we can restrict to constructions in the OT - hybrid for boolean computations
(resp., OLE-hybrid for arithmetic computations). Recent works [GIP+14,HIV17] have
shown constant communication (as opposed to computation) overhead passive-to-active
compilation. However, achieving constant computation overhead has largely remained
an open problem. The dual execution framework provides the first construction of a
constant computational overhead compilation boolean circuits in the two-party setting
at the price of 1-bit leakage, where the constant, in fact, is 2. Our work can be seen as
making significant progress in answering this fundamental questions, where, at the same
price of 1-bit leakage, we demonstrate a 1+ o(1) computational overhead passive-to-
active compilation for securely computing boolean and arithmetic computations in two
party and multi-party settings where the computations are “easily” verifiable.

We now discuss our key insights for each of the above contributions.

1.1 Results in the 1-bit Leakage Model

Brief Summary of Dual Execution. In the dual execution technique introduced by
Mohassel and Franklin in [MF06], the parties run Yao’s 2-party protocol first with Alice
as the generator and Bob as the evaluator, and a second time with the roles reversed.
Thus, Alice and Bob have putative outputs from the protocol instance in which they act
as evaluator. However, if one party constructs an incorrect circuit, then the other holds
an incorrect result. To ensure correctness, Alice and Bob perform a maliciously secure
protocol to check equality of their outputs. If this check passes, they both output their
respective strings. Mohassel and Franklin further provided a definition of a k-leakage
model. Intuitively, when k = 1, the adversary can learn “1-bit” of the counter party’s
input from the equality test. (See Sect. 2.2 for a formal definition.) In a followup, Huang,
Katz and Evans [HKE12] used the same approach, providing a security proof for this
notion. They also specified a custom-designed equality test in the random oracle model
that relies on an additively homomorphic encryption scheme. Note that even if the final
equality test passes, the adversary may still learn a bit about the honest party’s input
due selective failure attacks. For example, an adversary corrupting Alice may produce
a garbled circuit that produces the correct answer if the first bit of Bob’s input is 1. Then,
in the case that Bob’s input begins with 1, the protocol execution is indistinguishable
from an honest execution, and yet, Alice concludes that Bob’s input begins with 1. This
1 bit of leakage seems unavoidable when the adversary fully controls one of the garbled
circuits.

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 333

Our Contribution. As noted above, prior work requires two copies of the garbled cir-
cuit for the function f and then run a maliciously secure equality test between outputs.2

Our first observation is that after the first execution, one of the parties has a putative
answer, z = f (x, y), which can be used in the next protocol execution. In particular,
for functions whose outputs can be efficiently verified in less time than it takes to com-
pute the output, we show that it is unnecessary to compute f again. Rather, it suffices
for the second party to run the verification algorithm g(x, y, z) instead. Despite the sim-
plicity of the concept, we encountered a number of subtle issues before settling on the
following high-level approach for the 2-party setting. We present a novel protocol that
make black-box usage of its underlying primitives.

In the first execution, Bob, as the evaluator, learns wire labels wz for the output z
but it is important that Bob does not have the decoding information for wz. Instead,
Alice provides a commitment to the decoding information for these wire labels. In the
second execution, Bob acts as the generator of the checking circuit and commits to
the 2 output labels for the single-bit of its output. In this circuit, Alice inputs x and
the decoding information whereas Bob inputs the wire labels wz. The checking circuit
verifies the correctness of the former, performs the decoding of wz and runs the efficient
verification g(x, y, z). The output of this circuit is a single bit denoting whether the
verification succeeded. Alice evaluates the garbled circuit and commits to the single
output wire label ṽ. Bob sends the decoding information, and if the verification passes
(i.e., the output decodes to 1), then Alice decommits to ṽ and Bob decommits to wz.

Notice that the above requires Alice to commit to decoding for wire labels wz, and
for the check circuit to decode the labels. One approach to implement our commitment
scheme is using verifiable secret-sharing (VSS), which allows the verification circuit to
be “non-cryptographic” (and in fact information theoretic) so that our overall protocol
is black-box in the underlying cryptographic primitives.3. In particular, Alice uses a
k-out-of-n VSS scheme to commit to the decoding information for these wire labels,
and Alice and Bob use OT so that Bob can recover k such shares (and thus needs 1
more share to decode). In the second execution, Alice inputs x and the n VSS decoding
shares whereas Bob inputs the wire labels wz and his k decoding shares. Finally, the
checking circuit verifies that Bob’s k shares appear in the set of Alice’s n shares.

Let us now argue correctness (omitting subtle issues that are handled in the simu-
lation argument in the proof of Theorem 3). In essence, our protocol guarantees two
properties. First, if an answer is revealed to Bob, then there must be a valid input x′ for
Alice such that the result is the computation of f (x′, y). Second, the leakage to Alice
is whether an arbitrary pre-determined predicate chosen by Alice over Bob’s input is
equal to the value of the function under specific inputs for Alice and Bob. This leakage
is morally similar to the leakage introduced in the Mohassel-Franklin dual execution
approach. As we mentioned above, selective failure attacks still apply and thus, the best

2 [HKE12] observed that their protocol need not achieve fully malicious security, but does sat-
isfy a notion that is stronger than honest-but-curious security.

3 One could instead use commitments for the translation table, but this would require the check
circuit to implement the cryptographic verification procedure of the decommitments. In some
circumstances AES-based commitments (or other methods) might be concretely better than
decoding the VSS.

334 C. Hazay et al.

security we can guarantee against a malicious Alice is 1-bit leakage. We claim, how-
ever, a slightly stronger version of security than [HKE12], where the adversary learns
the output of the function only if the 1-bit leakage predicate evaluates to 1.4

When Bob is malicious, then Bob holds one set of wire labels that is correct as the
garbled circuit is correct. However, Bob could produce a malicious program checker.
The basic guarantee of the protocol w.r.t Alice is that the only output that can be revealed
to Alice is through the wire labels obtained by Bob in the first phase; since Alice is
honest, this is a valid output of the function under some specific inputs of Alice and Bob.
Bob can force Alice to reveal the decoding information, but with very high probability,
Alice either outputs abort (because Bob denies Alice the output), or Alice outputs the
correct output. In both cases, we can construct a simulator for Bob.

Our protocol does not need a maliciously secure equality test as per [MF06,
HKE12]. While our protocol achieves less overall communication and computation,
for some very small circuits our protocol may not achieve a faster wall-clock. However,
for large functions, the factor of 2 savings in communication and computational can
overcome this penalty.

1.2 Extending Dual Execution to Other Protocols

The dual execution technique has so far only applied to Yao’s garbled circuit protocols
because Yao’s protocol offers a one-sided correctness property. Namely, the honest gar-
bler can ensure that the counter-party computes a correct output. The main result in this
paper is to answer the natural question of whether other secure computation protocols
that do not offer one-sided correctness can be efficiently transformed into ones that offer
1-bit leakage security at a cost that is much less than fully malicious security. A second
question is whether we can go beyond the two-party setting. It is not clear apriori how
1-bit leakage in the dual execution paradigm is possible in the multi-party setting where
there is not a natural notion of “running the protocol in the other direction”.

We answer these questions affirmatively for efficiently verifiable functions by show-
ing how to construct novel 1-bit leakage protocols from classic secure computation
protocols such as [GMW87] and [BGW88], extending the dual execution paradigm in
the two domains. Our technique leverages the work of Genkin et al. [GIP+14] who
shows that slight modifications of these protocols already offer security up to addi-
tive errors. Specifically, they show that for slight variants of the passive protocols, the
attack space of a malicious adversary is limited to adding an input-independent value
to any wire of the circuit. Whereas Genkin et al. then refine such protocols to be fully
malicious, we present a lightweight alternative that achieves 1-bit leakage. Namely,
after evaluating f modulo such additive errors, the parties perform a maliciously secure
evaluation of g(x, y, z), and determine the output based on the result of that compu-
tation. In contrast, the work of Genkin et al. [GIP+14] shows how to transform the
function to another function that is immune to additive attacks. While this work and
follow up works [GIP+14,GIP15,GIW16] demonstrate compilers with constant over-
head for arithmetic circuits over a large field, for the case of Boolean circuits, the best

4 While this notion is suggested heuristically in [HKE12], we achieve it formally. This notion is
similar to the 2−s-CovIDA notion presented by Mohassel and Riva [MR13].

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 335

compilation due to [GIW16] incurs a polylogarithmic overhead. Moreover, the previ-
ous works have worked only for non-constant round protocols, specifically those whose
complexity is proportional to the depth of the circuit.

In this work, we make two important contributions. Our simple compiler offers
lightweight malicious protocols for efficiently verifiable f for a wide variety of proto-
cols both in the two-party and multi-party settings. The computation and communica-
tion complexities of our protocols are less than twice the cost of the passive counter-
parts (in the OT or OLE-hybrid models). Second, we provide a key technical lemma
that shows the first constant-round protocol that fits the [GIP+14] paradigm. More pre-
cisely, we show that a variant of the distributed garbling protocol (BMR) due to Beaver
et al. [BMR90] offers security up to additive errors. This result allows us to instantiate
our paradigm with the multi-party BMR protocol as well.

Unlike in our Yao-based protocol, we here require a malicious evaluation of g. It
would be preferable to use a simpler, additive error secure protocol for g, but we cur-
rently do not know how to securely combine the outputs of f and g if both have additive
errors. Nonetheless, even the malicious evaluation of g can be substantially more effi-
cient than the honest-but-curious evaluation of f . For example, when f grows as �3 and
g grows as �2, as soon as � exceeds the security parameter κ (i.e., for moderate input
sizes), the overall communication for a malicious evaluation of g can be less than that
of f . Second, our approach extends to the multi-party setting. Examples of such func-
tions include max-flow, perfect-matching, linear program. Thus our technique offers an
advantage for an interesting class of functions. We remark that the input-independent
additive security property was crucially used when (sequentially) composing a proto-
col for f with a protocol g. Specifically, an attempt to weaken this security property
requires the simulator to precisely obtain the “attack” from the adversary.

Finally, we highlight an interesting theoretical consequence of our result regard-
ing the additive resilience of the BMR protocol. As mentioned before, for the case of
Boolean circuits, the best AMD compilation is due to [GIW16] and incurs a polylog-
arithmic overhead. If this result [GIW16] can be improved from polylogarithmic over-
head to a constant, then combined with our protocol will yield the first constant-round
multi-party protocol for Boolean computations whose communication and computation
complexity is a constant overhead over the passive counterpart, where previous proto-
cols have incurred Ω(s) overhead for a statistical parameter s.

Beyond Additively Secure Protocols. In all our instantiations (of the second result), we
rely on an “additive security” property of the protocol implementing f . It is tempting to
ask if our framework can work for other weaker variants. It is conceivable that the only
demand one would need from the protocol for f is privacy against active adversaries,
however, to formally prove 1-bit leakage, one needs to precisely capture the attack
caused by an active adversary on the protocol in order to extract the leakage function.
In this respect, additive security is one formulation that facilitates this. We leave it as
future work to generalize this approach for other types of attacks.

On Randomized Functionalities. In this work, we prove our theorems for determinis-
tic f and g. However, the techniques extend to some cases when f and g are random-
ized. For example, Harvey’s perfect matching algorithm is a randomized algorithm and
it works in our framework because it has a unique output. We believe our framework

336 C. Hazay et al.

will generalize to randomized f and g if the algorithm admits “unique” outputs. While
we do not formalize “uniqueness” for algorithms, the reason our compilers require the
output to be unique is because the “weaker” protocol we rely on for f could allow
an active adversary to adaptively choose one of the solutions if more than one exist.
Such an adversary will not be caught in our framework as g might return accept for
all solutions and it is unclear how to simulate or how to formalize this attack via an
ideal functionality. That being said, we believe that in some cases we can extend our
framework beyond deterministic functionalities and leave it for future work.

2 Preliminaries

2.1 Verifiable Secret Sharing (VSS)

A verifiable secret sharing (VSS) [CGMA85] scheme is a two-stage secret sharing
protocol for implementing the following functionality. In the first stage, denoted by
Share(s), a special player referred to as dealer, shares a secret s among n players, in
the presence of at most t corrupted players. In the second stage, denoted by Recon,
players exchange their views of the share stage, and reconstruct the value s. We use
notation Recon(S1, . . . ,Sn) to refer to this procedure. The functionality ensures that
when the dealer is honest, before the second stage begins, the t corrupted players have
no information about the secret. Moreover, when the dealer is dishonest, at the end of
the share phase the honest players would have realized it through an accusation mecha-
nism that disqualifies the dealer. A VSS scheme can tolerate errors on malicious dealer
and players on distributing inconsistent or incorrect shares, indeed the critical property
is that even in case the dealer is dishonest but has not been disqualified, still the sec-
ond stage always reconstructs the same string among the honest players. In this paper,
we use a (n, t)-perfectly secure VSS scheme with a deterministic reconstruction proce-
dure [GIKR01].

Definition 1 (VSS Scheme). An (n+ 1, t)-perfectly secure VSS scheme consists of a
pair of protocols VSS = 〈Share, Recon〉 that implement respectively the sharing and
reconstruction phases as follows.

Share(s). Player Pn+1 referred to as dealer runs on input a secret s and random-
ness rn+1, while any other player Pi, 1 ≤ i ≤ n, runs on input a randomness ri. During
this phase players can send (both private and broadcast) messages in multiple rounds.

Recon(S1, . . . ,Sn). Each shareholder sends its view vi of the sharing phase to each
other player, and on input the views of all players (that can include bad or empty views)
each player outputs a reconstruction of the secret s.

All computations performed by honest players are efficient. The computationally
unbounded adversary can corrupt up to t players that can deviate from the above pro-
cedures. The following security properties hold.

– Commitment: if the dealer is dishonest then one of the following two cases happen:
(1) during the sharing phase honest players disqualify the dealer, therefore they
output a special value ⊥ and will refuse to play the reconstruction phase; (2) during
the sharing phase honest players do not disqualify the dealer, therefore such a phase

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 337

determines a unique value s∗ that belongs to the set of possible legal values that
does not include ⊥, which will be reconstructed by the honest players during the
reconstruction phase.

– Secrecy: if the dealer is honest then the adversary obtains no information about the
shared secret before running the protocol Recon.

– Correctness: if the dealer is honest throughout the protocols then each honest
player will output the shared secret s at the end of protocol Recon.

We are interested in a deterministic reconstruction procedure, therefore we adopt the
scheme of [GIKR01] that implements an (n+ 1, �n/4)-perfectly secure VSS scheme.

2.2 Secure Computation with 1-bit Leakage

In this section, we present a security definition that incorporates the notion of 1-bit leak-
age. For simplicity, we provide it for the two-party setting. It can easily be extended to
multiparty setting. We consider static corruptions by malicious adversaries who may
deviate from the protocol in an arbitrary manner. Our notion will follow the standard
Goldreich’s formalization of an Ideal and Real executions [Gol04] with the appropriate
weakening from [HKE12] in which the adversary is allowed to submit a leakage pred-
icate. However, our notion will be stronger than the definition in [HKE12] because the
adversary learns the output in the optimistic case. These experiments will capture the
idea of correctness and input independence: the honest party’s output still corresponds
to f (x, y) and the adversary’s input is independent of the honest party’s input.

Real Execution. A two-party protocol Π is executed by Alice and Bob. The adversary
A receives the inputs of the corrupted party and arbitrary auxiliary input z and sends
all messages on behalf of the corrupted party. The honest party follows the instructions
in Π. We define the random variable ViewΠ,A(z)(x, y, κ) to denote the entire view of
adversary A in the execution of Π where Alice holds input x, Bob holds input y and the
security parameter is 1κ . We define the random variable outΠ,A(z)(x, y, κ) to denote the
output of the honest party after the execution of the protocol. Finally, define the tuple

REALΠ,A(z)(x, y, z) ≡ (ViewΠ,A(z)(x, y, κ),outΠ,A(z)(x, y, κ))

Ideal Execution. In the ideal execution, parties Alice and Bob interact with an ideal
functionality; as before, the adversary has corrupted one of the parties, Alice holds
input x, Bob holds input y and both hold the security parameter 1κ . The adversary
receives the input of the corrupted party and has an arbitrary auxiliary input string z.
The honest party sends its input to the trusted party. The corrupted party controlled by
A may send an arbitrary input ỹ to the trusted party. Denote the pair of inputs sent to
the trusted party as (x̃, ỹ). The adversary also sends an arbitrary Boolean function g
to the trusted party. The trusted party computes the predicate g(x̃, ỹ). If the predicate
evaluates to 0, the trusted party sends “abort” to both parties. If the predicate evaluates
to 1, the trusted party evaluates f (x̃, ỹ) and and gives both values to the adversary. If
the adversary sends the message “stop” to the trusted third party, then the honest party
is given ⊥. Otherwise, the honest party is given f (x̃, ỹ). (This models the inherent lack

338 C. Hazay et al.

of complete fairness.) The honest party outputs the message given by the trusted third
party. The adversary can output an arbitrary string of its view. We define the random
variable outAf ,A(z)(x, y, κ) to denote the output of the adversary A and outhf ,A(z)(x, y, κ)
to denote the output of the honest party. Finally, define the tuple IDEAL f ,A(z)(x, y, κ) ≡
(outAf ,A(z)(x, y, κ),out

h
f ,A(z)(x, y, κ)).

Definition 1. A protocol Π for the function f is said to securely compute f with 1-bit
leakage if for every p.p.t. adversary A, there exists a p.p.t. simulator S in the ideal
model such that

{
REALΠ,A(z)(x, y, κ)

}
x,y,z∈{0,1}∗,κ∈N

≈c

{
IDEAL f ,S(z)(x, y, κ)

}
x,y,z∈{0,1}∗,κ∈N

Remark. We mention the security notion of ε-CovIDA introduced by Mohassel and
Riva [MR13] which implies our notion for the correct parameters. Essentially, this
notion requires that if a player is trying to cheat, the other players can catch it with
probability 1 − ε, but even if it is not caught (i.e., with probability ε) the cheater can
only learn a single bit of extra information about the other players’ inputs, and the
correctness of the output is still guaranteed.

Extending to Multiparty Protocols. Similarly to the two-party case, we define the
random variable ViewΠ,A(z),I (x1, . . . , xm, n) to denote the entire view of adver-
sary A in the execution of Π where party Pi holds input xi, the adversary corrupts
the parties in I , and the security parameter is 1n. We define the random variable
outΠ,A(z),I (x1, . . . , xm, n) to denote the output of the honest party j ∈ [m]/I after
the execution of the protocol. Finally, define the tuple

REALΠ,A(z),I (x1, . . . , xm, n)
≡ (ViewΠ,A(z),I (x1, . . . , xm, n),outΠ,A(z),I (x1, . . . , xm, n))

Analogously, in the ideal world, we allow the adversary to submit a leakage function g
to the ideal functionality. We define outAf ,A(z),I (x1, . . . , xm, n) to denote the output of

the adversary A and outhf ,A(z),I (x1, . . . , xm, n) to denote the output of the honest party.
Finally, define the tuple

IDEAL f ,A(z)(x1, . . . , xm, n)

≡ (outAf ,A(z),I (x1, . . . , xm, n),out
h
f ,A(z),I (x1, . . . , xm, n))

Finally, security is defined by requiring indistinguishability of REAL and IDEAL.

Remark 1. To achieve stand-alone (full) security our proofs only rely on sequential
composition, which in turn requires the sub-protocols to only satisfy stand-alone secu-
rity. Nevertheless, we note that our proofs can further achieve UC security if the under-
lying sub-protocols achieve UC security.

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 339

2.3 Garbled Circuits

Definition 2 (Garbling scheme). A garbling scheme Garb = (Grb,Enc,Eval,Dec)
consists of four polynomial-time algorithms that work as follows:

– (C̃,dk, sk) ← Grb(1κ , C): is a probabilistic algorithm that takes as input a circuit
C with 2n input wires and n output wires and returns a garbled circuit C̃, a set of
decoding keys dk = (dk1, . . . , dkn) and a secret key sk.

– x̃ := Enc(sk, x) is a deterministic algorithm that takes an input a secret key sk,
an input x and returns an encoded input x̃. We denote this algorithm by x̃ :=
Enc(sk, x̃). In this work we consider decomposable garbled schemes. Namely, the
algorithm takes multiple input bits x = (x1, . . . , xn), runs Enc(sk, ·) on each xi and
returns the garbled inputs x̃1 through x̃n, denoted by input labels.

– ỹ := Eval(C̃, x̃): is a deterministic algorithm that takes as input a garbled circuit C̃
and encoded inputs x̃ and returns encoded outputs ỹ.

– {⊥, yi} := Dec(dki, ỹi): is a deterministic algorithm that takes as input a decod-
ing key dki and an encoded output ỹi and returns either the failure symbol ⊥ or
an output yi. We write {⊥, y} := Dec(dk, ỹ) to denote the algorithm that takes
multiple garbled outputs ỹ = (ỹ1 . . . ỹn), runs Dec(dki, ·) on each ỹi and returns
the outputs y1 through yn.

We remark that we only require that our garbling scheme maintains the privacy property,
rather than stronger properties such as authenticity or obliviousness.

Correctness. We say that Garb is correct if for all n ∈ N, for any polynomial-size
circuit C, for all inputs x in the domain of C, for all (C̃,dk, sk) output by Grb(1κ , C),
for x̃ := Enc(sk, x) and ỹ := Eval(C̃, x̃) and for all i ∈ [n], yi := Dec(dki, ỹi), where
(y1, . . . , yn) = C(x).

Privacy. We say that a garbling scheme Garb is secure if there exists a PPT algorithm
SimGC such that for any family of polynomial-size circuits Cκ and sequence of inputs
{xκ}κ ,

{(C̃,dk, sk) ← Grb(1κ , Cκ); x̃ := Enc(sk, xκ) : (C̃, x̃,dk)}κ
c≈

{y = C(xκ) : SimGC (1κ , Cκ , y)}κ .

2.4 The [BMR90] Garbling

An extension of Yao garbled circuits approach [Yao86] for any number of parties n
introduced by Beaver, Micali and Rogaway in [BMR90] leading to the first constant-
round protocol. This protocol has an offline phase in which the garbled circuit is created,
and an online phase in which the garbled circuit is evaluated. The [BMR90] garbling
technique involves garbling each gate separately using pseudorandom generators (or
pseudorandom functions) while ensuring consistency between the wires. This method
was recently improved by Lindell et al. in [LPSY15] which introduced an NC0 func-
tionality for this task, while demonstrating that the PRF values submitted by each party

340 C. Hazay et al.

need not be checked for consistency (or computed by the functionality), as inconsis-
tency would imply an abort by at least one honest party. Moreover, an abort event is
independent of the honest parties’ inputs due to the way each gate is garbled. In more
details, the garbling functionality used in [LPSY15] is a modification of the garbling
functionality introduced in [BMR90] and is applicable for any number of parties n.
Namely, let C denote the circuit computed by the parties. Then for every wire w, party
Pi inputs to the functionality two keys kiw,0, k

i
w,1 and the PRF computations based on

these keys, as well as a masking bit share λi
w. The functionality creates the garbling for

each gate which includes four rows such that each row is combined of n ciphertexts.
We will now describe the technical details of the BMR garbling. Without loss of

generality, we assume that C is a Boolean circuit comprising of fan-in two AND and
XOR gates, a total number of W wires and G gates. Then for every AND gate g ∈ G
with input wires 1 ≤ a, b ≤ W and output wire c, the garbled row r1, r2 ∈ {0, 1} in

gate g is expressed as the concatenation of Rg,r1,r2 = {Rj
g,r1r2}nj=1, where

Rg,j
r1r2 =

n⊕

i=1

(
PRFkia,r1

(g, j, r1, r2) ⊕ PRFkib,r2
(g, j, r1, r2)

)

︸ ︷︷ ︸
Ciphertext Padding

⊕ kjc,0 ⊕
(

χr1,r2︸ ︷︷ ︸
Perm. Bit

· (kjc,1 ⊕ kjc,0)︸ ︷︷ ︸
Wire’s Δ

)

︸ ︷︷ ︸
Plaintext

and PRF is a PRF, kia,0, k
i
a,1 and kib,0, k

i
b,1 are the respective input keys of party Pi,

whereas kic,0, k
i
c,1 are its output keys. Furthermore, for every a, b and r1, r2 as above the

permutation bit χr1,r2 , that “chooses” the output key to be encrypted, is defined by

χr1,r2 = ((λa ⊕ r1) · (λb ⊕ r2)) ⊕ λc

As specified above, the inputs to the [LPSY15]-style functionality may be incon-
sistent, implying an incorrect computation. We next describe their functionality for
a general circuit C with n inputs x1, . . . , xn where xi represents the value input by
party Pi. Let F = {PRFk : {0, 1}κ → {0, 1}κ}k∈{0,1}∗,κ∈N be a family of PRFs.
Then the encoding procedure takes the inputs x1, . . . , xn and additional random inputs

R1, . . . ,Rn where each Rj is comprised of PRF keys {kjw,0, kjw,1}w, masking bits shares

{λ
j
w}w and PRF evaluations

{
F
g,j
w,0,0,F

g,j
w,0,1,F

g,j
w,1,0,F

g,j
w,1,1

}
w∈W,g∈G

that allegedly correspond to

{
PRF

kjw,0
(g, j, 0, 0),PRF

kjw,0
(g, j, 0, 1),PRF

kjw,1
(g, j, 1, 0),PRF

kjw,1
(g, j, 1, 1)

}
w∈W,g∈G

The encoding procedure BMR.Encode on input ((x1,R1), ..., (xn,Rn)) outputs

(Rg,j
00 ,R

g,j
01 ,R

g,j
10 ,R

g,j
11)g∈G,j∈[n]

Garbled Tables

(Λw, k1w,Λw
, . . . , knw,Λw

)w∈Inp
keys and masks for input wires

(λw)w∈Out

Output translation table

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 341

where

Rg,j
r1,r2 =

(n⊕

i=1

F
g,i
a,r1,r2

)
⊕

(n⊕

i=1

F
g,i
b,r1,r2

)
⊕ Sg,jr1,r2

Sg,jr1,r2 = kjc,0 ⊕ χr1,r2 · (kjc,1 ⊕ kjc,0)

χr1,r2 = AND
(
λa ⊕ r1,λb ⊕ r2

) ⊕ λc = [(λa ⊕ r1) · (λb ⊕ r2)] ⊕ λc

λw =

{
λ
jw
w if w ∈ Inp // input wire

λ1
w ⊕ · · · ⊕ λn

w if w ∈ W/Inp // internal wire

Λw = λw ⊕ xw for all w ∈ Inp // masked input bit

and wires a, b and c ∈ W denote the input and output wires respectively for gate g ∈ G.
Inp ⊆ W denotes the set of input wires to the circuit, jw ∈ [n] denotes the party whose
input flows the wire w and xw the corresponding input. Out ⊆ W denotes the set of
output wires.

The decoding procedure basically corresponds to the evaluation of the garbled cir-
cuit. More formally, the decoding procedure BMR.Decode is defined iteratively gate by
gate according to some standard (arbitrary) topological ordering of the gates. In partic-

ular, given an encoding information kjw,Λw
for every input wire w and j ∈ [n], of some

input x, then for each gate g with input wires a and b and output wire c compute

kjc = Rg,j
r1,r2 ⊕

n⊕

i=1

(
PRFkia,Λa

(g, j,Λa,Λb) ⊕ PRFkib,Λb
(g, j,Λa,Λb)

)

Finally given Λw for every output wire w, compute the output carried in wire w as

Λw ⊕
(⊕n

j=1 λ
j
w

)
.

Our proof makes use of the active key terminology originated from [LP09] which
refers to a PRF key that is revealed to the adversary during the garbled circuit evaluation.
Similarly, an inactive key refers to a wire key that is not revealed to the adversary
during the evaluation. Each wire in the circuit is always associated with one active key
and one inactive key (otherwise privacy would be violated). Developing this notion, an
active path refers to the entire path visited throughout the evaluation. In the BMR-style
garbling, the active path is chosen at random based on the masking bits that hide the
actual wire value.

3 Dual Execution with Efficient Verification

In this section, we present a secure computation protocol for functions that have efficient
verification that achieves security against active adversaries with 1-bit leakage. The
protocol follows the spirit of the dual-execution [MF06]. However, we achieve greater
efficiency as we do not require to garble the same circuit twice and our protocols do not
require an extra secure equality test. Note, our technique can also be applied to functions
that do not have efficient verification: namely, the predicate g can simply recompute f
in addition to performing its other checks. In this sense, our framework subsumes prior
dual-execution techniques for achieving 1-bit leakage.

342 C. Hazay et al.

Definition 2. We say that function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ can be verified
with predicate g, if f (xA, xB) = z ⇔ g(xA, xB, z) = 1

Our protocol is described in the (FCOM,FOT)-hybrid where FCOM is the ideal com-
mitment functionality and FOT is the ideal 1-out-of-2 oblivious transfer functionality.
We require a garbling scheme Garb = (Grb,Enc,Eval,Dec) as per Definition 2 in our
protocol. Let f be an arbitrary two-party functionality that can be verified with predi-
cate g. Let Px describe the circuit that on input y computes f (x, y). Let Py,w̃,t,S describe
the circuit that on input (x, s) outputs 1 if and only if

1. t and s are consistent on the set S ⊂ [n], and
2. g(x, y,w) = 1 where w = Dec(dk, w̃) and dk is the reconstruction of s, and
3. w �= ⊥.

and otherwise outputs ⊥.

Theorem 3. Assuming the existence of a garbling scheme, protocol Π f
1−LEAK

described

in Fig. 1 securely realizes F f
1−LEAK

in the (FCOM,FOT)-hybrid with communication
complexity p(| f |) + p(|g| +O(κ)) + poly(κ).

Remark 2. Note that when |g| = o(| f |), then our protocol achieves complexity that is
(1+ o(1))| f |, whereas prior work requires 2| f | communication. In practice, this factor
of 2 in complexity can be substantial.

Proof: We first describe simulators for Alice and Bob and then prove correctness of
simulation.

Simulating Alice. In the ideal world, the simulator SA internally simulates FCOM and
FOT for Alice.

In Phase 1, Bob does not send any message directly to Alice. Bob only provides
inputs to the FOT. The calls made to the FOT functionality are internally simulated by
SA where it collects all the sender’s message to the functionality. At the end of Phase
1, SA obtains sk, s from adversary Alice via the OT calls. Using s it reconstructs dk. It
chooses a random t subset S of [n] and sets t = {si}i∈S.

In Phase 2, recall that Bob garbles the circuit Py,w̃,t,S where y is Bob’s input, t is
the set of shares of dk obtained by Bob on set S, and w̃ is the output of the garbled
circuit evaluation in Phase 1. It first obtains Alice’s input x, s′ from its message to the
FOT functionality in the second step of Phase 2. In the third message, the simulator has
to send a garbling to Alice. If s′ fails to agree with s on the set of indices S or does
not reconstruct to dk, then SA generates a Garbled Circuit that outputs 0 on all inputs.
Otherwise, SA computes the leakage function gA as follows:
Function gA: Input y, Parameters: C̃,dk, sk, x.

– Compute ỹ := Enc(sk, y), evaluate w̃ := Eval(C̃, ỹ) and obtain w = Dec(dk, w̃).
– Then compute g(x, y,w) and output the result.

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 343

Fig. 1. Π f
1−LEAK

: A 1-LEAK protocol for f

The simulator submits this leakage function gA along with Alice’s input x. Recall
that the ideal functionality w.r.t Alice will return f (x, y) if and only if g(y) = 1. If
g(y) = 1 and the simulator obtains w = f (x, y) then it will simulate a garbled circuit
that outputs 1.

If Alice fails to send the result of the evaluation or sends inconsistent shares of
dk, the simulator does not allow the output to be delivered to Bob. Otherwise, it com-
pletes the execution with Alice and outputs its view by first computing w̃ such that
w = Dec(dk, w̃) where w was received from the ideal functionality and faking the
decommitment to w̃ in the end of Phase 2. If the protocol completes, then the Simulator
lets the output to be delivered to Bob.
Correctness of Simulation: It follows from the description of the simulator SA that
the only messages that the simulator fakes in the ideal world include the garbled circuit

344 C. Hazay et al.

Bob generates in Phase 2 and the decommitment to w̃ in step 7. Indistinguishability
will essentially follow from the fact that the simulator uses the correct output for the
simulated garbled circuit in Phase 2 and the security of the garbling scheme.

More precisely, we consider an intermediate hybrid H and a simulator S1 that
receives Bob’s input y. The simulation proceeds identically to the real world in Phase
1 with the exception that all the FOT and FCOM calls are simulated by S1 where it
obtains all the messages between Alice and these functionalities. In the second phase,
the garbled circuit is constructed according to the real simulator S where g is computed
locally by S1 as it has Bob’s input. If in the computation by g, the value obtained for w̃
is inconsistent with what was decoded by Bob in Phase 1, then the simulator aborts.

Hybrid H1. Indistinguishability of H1 from the real world can be reduced to the security
of the garbling scheme if we show that (1) the probability that the simulator aborts is
negligible, and (2) the output used by the simulator S1 to simulate the garbled circuit in
the Phase 2 is indistinguishable distributed to the output obtained by Alice in the real
world while evaluating the garbled circuit. There are two cases:

Case 1: Output is 0 because s′ is inconsistent with t: The probability that this event
occurs is identical in the real and simulation (an in particular in this hybrid experi-
ment).

Case 2: s′ is consistent with t: By a standard analysis, we can claim that except with
negligible probability s′ is reconstructed correctly to dk in evaluation of program
garbled program P in the real world, where dk is the reconstruction of s. Next,
we observe that the first step in the computation of gA proceeds identically to the
actions of Bob in Phase 1. Therefore, the w̃ obtained in the computation by gA will
be indistinguishable distributed to w̃ seen in the protocol in Phase 1 in this hybrid.
Conditioned on this, the second step of the computation of gA follows identical to
the evaluation of P because the w obtained by computing Dec(dk, w̃) will result
in the same value and the other values x and y are the same by construction.

This means that, except with negligible probability, the output of g conditioned on s′
being consistent with t is identical to the evaluation of the program P in the real world.
Therefore, we can conclude the view of the adversary in the real world and H1 are
computationally indistinguishable.

Next, we compare H1 and the ideal world. The only difference between these two
experiments is in Step 7 of Phase 2 where the message w̃ is decommitted to by Bob to
Alice. In H1 this is done according to the real world and in the ideal world, S computes
w̃ from dk and w. To argue indistinguishability, we first remark that conditioned on
s′ being consistent with t, then except with negligible probability, if gA returns a 1,
it holds that the value obtained by Bob in the first Phase must have been w̃ and that
f (x, y) = w by the correctness of the function g. This means when s′ is consistent
with t the simulation is identically distributed and the output received by Bob in the
ideal world is correct. On the other hand, when s′ is inconsistent with t, the view of
Alice in H1 and the ideal world are identically distributed. This concludes the proof of
indistinguishability and the correctness of the simulation.

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 345

Simulating Bob. To simulate a malicious Bob in Phase 1, SB obtains Bob’s input y from
the FOT calls. Next, it samples wire labels w̃ and creates a simulated garbled circuit that
evaluates to set of wire labels w̃. Next Bob tries to retrieve a subset of the VSS shares
of dk. Let S be the set of indices. SB creates t shares t and provides that as the output
to Bob in Step 4. Finally, it collects the message committed to by Bob in the last step of
Phase 1.

In Phase 2, the simulator obtains skP,dkP from Bob and the garbling P̃. It con-
structs the following leakage function gB.
Function gB: Input x, Parameters: P̃,dkP, skP, y,dk.

– Compute w = f (x, y) and extends the shares t to set of shares s = (s1, . . . , sn) such
that s agrees with t on set S and s reconstructs to dk such that Dec(dk, w̃) = w.

– Compute x̃ := Enc(skP, (x, s)), evaluate ṽ := Eval(P̃, x̃) and obtain v =
Dec(dkP, ṽ) and return v as the result.

SB submits the leakage function to the ideal functionality. If the result is 0, then SB

makes Alice abort. If the result of the leakage function is 1, it obtains w = f (x, y) from
the ideal functionality. Alice sends ṽ to Bob such that 1 = Dec(dkP, ṽ) (computed
using dkP) and set of shares (s1, . . . , sn) such that w = Dec(dk, w̃) and (s1, . . . , sn)
reconstructs to dk and agrees with t on the set S.

Correctness of Simulation: Briefly, we follow a similar approach as with the sim-
ulation of Alice. In other words, we argue that the leakage function gB mimics the
evaluation by Alice in Phase 2 on the right inputs. We consider intermediate hybrid
experiments to argue indistinguishability.

Hybrid H1: In this hybrid, we consider a simulator that receives Alice’s input. The
hybrid experiment proceeds identically to the real world with the exception that the
simulator picks a translation table dk computes w̃ such that w = Dec(dk, w̃) where
w = f (x, y). Recall that the simulator can extract y from Bob in Step 2 from the OT
call. Next, it simulates a garbled circuit on behalf of Alice such that the evaluation
by Bob results in w̃. The rest of the protocol follows identically to the real world.
Indistinguishability of H1 and the real world follows from the simulation of the garbling
scheme.

Hybrid H2: In this hybrid, we consider a simulator that only chooses w̃ to create a
simulated garbled circuit. Then it samples only VSS shares received by Bob. Namely,
it simulates t shares for the indexes received by Bob. Then it follows the algorithm gB

and extends the shares t to set of shares s = (s1, . . . , sn) such that s agrees with t on
set S and s reconstructs to dk such that Dec(dk, w̃) = w. The rest of the execution
proceeds identically to H1. Indistinguishability of H2 and H1 follows from the perfect
security of the VSS scheme and the fact the distribution of dk is identically distributed
in H1 and H2 conditioned on the event Dec(dk, w̃) = w.

Finally, we argue that Hybrid H2 and the real simulation are identically distributed
as the computation performed by gB follows exactly the simulation in H2. This com-
pletes the security proof. �

346 C. Hazay et al.

4 Additively Secure Protocols with Program Checkers

In this section, we show how to obtain security with one-bit leakage against malicious
adversaries for a wide class of functionalities both in the two-party and the multi-party
settings. On a high-level, we combine (1) an additively secure protocol for f , that is, a
protocol that is secure against active adversaries up to additive attacks (cf. Definition
7) and, (2) a protocol for the verification algorithm g that is secure against malicious
adversaries. We can rely on any malicious protocol for g.

To instantiate the additively secure protocol, we rely on a core lemma proving by
Genkin et al. in [GIP+14], a work which introduced the notion of additively secure
circuits. This lemma considers the malicious security of classic passively secure proto-
cols, such as [GMW87,Bea91,BGW88], when executed in the presence of malicious
adversaries. Informally speaking, Genkin et al. showed that for most classic honest-
but-curious secure computation protocols for circuit evaluation, the effect of any active
adversary corresponds precisely to an additive attack on the original circuit’s wires
where the additive attack is independent of the honest party’s inputs. In particular, such
protocols provide a mechanism to simulate adversaries where in addition to extract-
ing an input from the adversary also extracts an additive attack to be supplied to the
ideal functionality. Genkin et al. showed that slight variations of the passively secure
protocols by Goldreich, Micali and Wigderson [GMW87] (Construction 5.8 [GIP+14]),
Ben-Or, Goldwasser and Wigderson [BGW88] (Construction 5.5 [GIP+14]) and several
others, are secure up to additive attacks.

Our contributions in this section are two fold:

1. In Sect. 4.2, we show that the distributed garbling protocol of Beaver et al. [BMR90]
is in fact additively secure when the “offline” part of the protocol is executed
using any additively secure protocol. This is the first constant-round protocol
that has shown to be additively secure in the OT-hybrid. All previous works
[GIP+14,GIP15,GIW16] considered protocols whose round complexity is propor-
tional to the depth of the circuit or worked in the OLE-hybrid for large fields.

2. In Sect. 4.3, we provide a compiler that takes any additively secure protocol for f and
combines it with a maliciously secure protocol for the “leaner” g to obtain a mali-
ciously protocol for f that is secure against malicious adversaries up to 1-bit leakage.
Roughly speaking the idea is that in an additively secure protocol, the adversary can
only affect the computation in an input-independent and private manner. Therefore,
a checking step can prevent an incorrect answer from being revealed.

4.1 Additive Attacks and AMD Circuits

In what follows we borrow the terminology and definitions verbatim from [GIP+14,
GIW16]. We note that in this work we work with binary fields F2.

Definition 4 (AMD code [CDF+08]). An (n, k, ε)-AMD code is a pair of circuits
(Encode,Decode) where Encode : Fn → Fk is randomized and Decode : Fk → Fn+1

is deterministic such that the following properties hold:

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 347

– Perfect completeness. For all x ∈ Fn,

Pr[Decode(Encode(x)) = (0, x)] = 1.

– Additive robustness. For any a ∈ Fk, a �= 0, and for any x ∈ Fn it holds that

Pr[Decode(Encode(x) + a) /∈ ERROR] ≤ ε.

Definition 5 (Additive attack). An additive attack A on a circuit C is a fixed vector of
field elements which is independent from the inputs and internal values ofC.A contains
an entry for every wire ofC, and has the following effect on the evaluation of the circuit.
For every wire ω connecting gates a and b in C, the entry of A that corresponds to ω
is added to the output of a, and the computation of the gate b uses the derived value.
Similarly, for every output gate o, the entry of A that corresponds to the wire in the
output of o is added to the value of this output.

Definition 6 (Additively corruptible version of a circuit). LetC : FI1 × . . .×FIn →
FO1 × . . . × FOn be an n-party circuit containing W wires. We define the additively
corruptible version of C to be the n-party functionality f̃ : FI1 × . . . × FIn × FW →
FO1 × . . . × FOn that takes an additional input from the adversary which indicates
an additive error for every wire of C. For all (x,A), f̃ (x,A) outputs the result of the
additively corrupted C, denoted by CA, as specified by the additive attack A (A is the
simulator’s attack on C) when invoked on the inputs x.

Definition 7 (Additively secure implementation). Let ε > 0. We say that a random-
ized circuit Ĉ : Fn → Ft × Fk is an ε-additively-secure implementation of a function
f : Fn → Fk if the following holds.

– Completeness. For every x ∈ Fn, Pr[Ĉ(x) = f (x)] = 1.
– Additive attack security. For any additive attack A there exist ain ∈ Fn, and a
distribution Aout over Fk, such that for every x ∈ Fn,

SD(CA(x), f (x+ ain) +Aout) ≤ ε

where SD denotes statistical distance between two distributions.

Towards introducing our transformations, we conclude with definition of a protocol
compiler to be a function Γ that takes as input the description of a functionality F and
parameter param and gives a protocol specification ΠF = Γ(param,F). Furthermore,

Definition 8. Let κ be the security parameter. A protocol compiler Γ is said to be secure
up to additive attacks if for any functionality F , Γ(F , κ) realizes F̃ with security
against active adversaries, where F̃ is defined to be the functionality that is identi-
cal to F with the exception that it additionally receives an additive attack A from the
adversary, to be applied to each wire of the circuit.

348 C. Hazay et al.

4.2 Additive Security of BMR Distributed Garbling

In this section we will prove that the BMR encoding is resilient to additive attacks.
Recall that in the standard passive BMR protocol for the function f , the parties first
jointly compute garbled tables in an offline phase for the circuit C that computes f .
Then in an online phase, each party Pi reveals their masked input bits followed by the
parties revealing their input key labels corresponding to the input bits. Upon receiving
the values, the parties evaluate the garbled circuit and output the result of the evaluation.
Now, we prove that if we replace the passive protocol to compute the garbled tables
with an additively secure protocol then we obtain an additively secure protocol for the
underlying function f . More formally, let π1 = Γ(CBMR, κ) be the additively secure
protocol that computes the shares of the garbled tables in the distributed BMR garbling
functionality CBMR specified in Sect. 2.4 and let π2 be the protocol obtained by replacing
the offline phase of the passive BMR protocol with π1. For example, one can instantiate
this protocol with the GMW protocol. We prove the following theorem,

Theorem 9. For an arbitrary n-party function f , let π2 be as defined above. Then for
any malicious adversary A, there exists a simulator S that can simulate A’s view in
the f̃C(x1, . . . , xn,A)-hybrid where f̃C outputs the result of the additively corrupted C
as specified by the additive attack A.

Before we proceed to the proof of Theorem 9, we illustrate an interesting application
of our theorem. One of the main applications to additive resilient circuits was compiling
secure computation protocols from passive to active security with low overhead. While
the works [GIP+14,GIP15] resolve the question for arithmetic computations over large
fields, the question remains open for Boolean computations. The work of Genkin et
al. [GIW16] provides a passive to active compilation for Boolean circuits with poly-
logarithmic overhead. However, all the protocols that have been considered in previous
work belong to the class of non-constant round protocols (protocols whose complex-
ity depends on the depth of the circuit). We are the first to demonstrate this property
for a constant-round protocol. Moreover, if optimal compilation of binary AMD cir-
cuits is achievable, then our result will imply communication optimal multi-party pro-
tocols for Boolean computations in constant-round. All previous works, incur at least
an Ω(s/log|C|) overhead of compiling passive to active in the OT-hybrid in the multi-
party setting.5

We next provide a high-level overview of the additive security against malicious
adversaries of the BMR protocol in the (non-leaky) full security setting. Consider the
BMR distributed garbling functionality CBMR that outputs shares of the garbled tables.
We need to translate an additive attack to the offline functionality to a corresponding
attack on the wires of the original circuit C. Towards this, we first recall how a garbled
row in the distributed garbling of BMR looks like. Recall that each party Pi contributes
a pair of keys (kiw,0, k

i
w,1) for every wire w and mask λi

w. The combined mask (or color

bit) of a gate is defined as λw = ⊕iλ
i
w. Then the (r1, r2)th row for r1, r2 ∈ {0, 1} of

the garbled gate g can be expressed as follows:

5 In the two-party setting, the work of [HIV17] provides a constant overhead passive to active
compiler for garbled circuits.

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 349

Rg,j
r1r2 =

n⊕

i=1

(
PRFkia,r1

(g, j, r1, r2) ⊕ PRFkib,r2
(g, j, r1, r2)

)

︸ ︷︷ ︸
Ciphertext Padding

⊕ kjc,0 ⊕
(

χr1,r2︸ ︷︷ ︸
Perm. Bit

· (kjc,1 ⊕ kjc,0)︸ ︷︷ ︸
Wire’s Δ

)

︸ ︷︷ ︸
Plaintext

where χr1,r2 = ((λa ⊕ r1) · (λb ⊕ r2)) ⊕ λc.
Next, we analyze an additive attack on the protocol computing the distributed gar-

bling. We break this into two main parts: additive errors on the PRF values and additive
errors on the plaintext part (containing the target keys). It was already shown in prior
work [HSS17] that additive errors on the PRF values cannot affect the correctness of
the computation if the plaintext is computed correctly. On a high-level, this is because
for the computation at a gate to change, the adversary will have to guess the difference
of the two keys of the honest party for the output wire. We next analyze an additive
attack on the plaintext. The formula for computing the plaintext is:

(
χr1,r2 · (kjc,1 ⊕ kjc,0)

)

=
[(⊕

j∈[n]
λ
j
a ⊕ r1

)

︸ ︷︷ ︸
⊕ e1

·
(⊕

j∈[n]
λ
j
b ⊕ r2

)

︸ ︷︷ ︸
⊕ e2

⊕
(⊕

j∈[n]
λ
j
c

)

︸ ︷︷ ︸
⊕ e3

]
·
(
kjc,1 ⊕ kjc,0

)

︸ ︷︷ ︸
⊕ e4

.

The high-level goal here is that given an additive attack Ag
BMR on the garbling of

gate g, we need to extract a corresponding additive attack on the wires of the original
computed circuit C. We can define additive errors e1, e2, e3 and e4 and express any
generic additive attack on this part as follows:

[(⊕

j∈[n]
λ
j
a ⊕ r1 ⊕ e1

)
·
(⊕

j∈[n]
λ
j
b ⊕ r2 ⊕ e2

)
⊕

(⊕

j∈[n]
λ
j
c ⊕ e3

)]

·
(
kjc,1 ⊕ kjc,0 ⊕ e4

)

To argue that the additive error e4 cannot render an incorrect computation, we
observe that, this error can, at best, mess with the key being encrypted, but cannot
change the value unless the adversary can guess the key chosen by the honest party.
Therefore, this will not cause any additive error in the computation of the circuit wires.
The remaining errors seem to correspond directly to corresponding wires of the cir-
cuit. While this is the basic intuition, formally arguing that given any additive attack
on the computation of the distributed garbling, extracting a corresponding attack on the
actual circuit (being garbled) turns out to be subtle and technical. We now proceed to
the formal proof of security.

350 C. Hazay et al.

Proof: We will start with a protocol that is secure up to additive attacks for realiz-
ing the distributed garbling functionality. For example, we can rely on the passive
[GMW87] protocol instantiated with a malicious OT protocol. Therefore, given any
active adversary that attacks this protocol, we can consider an equivalent adversary in
the CA

BMR-hybrid that provides its inputs and an attack vector for the distributed garbling
functionality.

Description of the Simulator. The simulator S begins a real execution with adversary
A. First, it extracts the adversary’s inputs and an additive attack vector ABMR for func-
tionality CBMR. Next, the simulator determines the active path. The inactive rows for the
garbled tables will then be replaced with random values. To determine the active path, it
defines Λw values for all wires. For the input wires carrying honest party inputs, it will
choose them at random. For the internal wires, it will proceed in a topological ordering
of the gates, determining the Λw values for the output of the gates along this ordering.
Towards this, it picks an honest party Pj. Let g be a gate in this ordering. Inductively, on
the topological ordering, we will ensure that a Λw value has already been chosen for the
output wires of gates 1, . . . , (g − 1). Let a and b denote the input wires of gate g. Then
the simulator proceeds as follows. From the attack vector ABMR, the simulator identifies

the additive errors e1, e2, e
j
3, e

j
4, e

j
5 such that row number (Λa,Λb) in the garbled table

for g can be written as:

n⊕

i=1

(
PRFkia,r1

(g, j, r1, r2) ⊕ PRFkib,r2
(g, j,Λa,Λb)

)

⊕
[(⊕

j∈[n]
λ
j
a ⊕ Λa ⊕ e1

)
·
(⊕

j∈[n]
λ
j
b ⊕ Λb ⊕ e2

)
⊕

(⊕

j∈[n]
λ
j
c ⊕ ej3

)]

·
(
kjc,1 ⊕ kjc,0 ⊕ ej4

)
⊕ kjc,0 ⊕ ej5

Next, it defines

Λc =
(⊕

j∈[n]
λ
j
a ⊕ Λa ⊕ e1

)
·
(⊕

j∈[n]
λ
j
b ⊕ Λb ⊕ e2

)
⊕

(⊕

j∈[n]
λ
j
c ⊕ ej3

)

Recall that the simulator needs to extract an additive attack vector AC on the under-

lying circuit. The simulator includes the additive errors e1, e2, e
j
3 respectively to the

wires a, b and c in this vector.
Note that the set of Λw values for all wires specifies the active rows for all gates.

Namely, the row (Λa,Λb) is the active row for gate g with input wires a, b. In simulating
the inactive rows, the simulator sets the honest party’s shares to be uniformly random.

For the active rows, the simulator first picks one key kjc for the honest party Pj and sets
the active row as follows:

–
⊕n

i=1

(
PRFkia(g, j,Λa,Λb) ⊕ PRFkib

(g, j,Λa,Λb)
)

⊕ kjc ⊕ ej5 if Λc = 0.

–
⊕n

i=1

(
PRFkia(g, j,Λa,Λb) ⊕ PRFkib

(g, j,Λa,Λb)
)

⊕ kjc ⊕ e4 ⊕ ej5 else.

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 351

Based on this garbled table, the shares are revealed for the honest party. Finally,
for the output translation table the simulator submits the attack vector AC to the ideal

functionality and receives the output. The simulator fixes λ
j
w so that Λw ⊕ (⊕n

j=1λ
j
w)

is equal to the output received from the functionality.
The complete proof is provided in the full version. �

4.3 Compiling Additively Secure Protocols

We now present a compiler that takes an additively secure protocol for F and a mali-
cious protocol for the leaner verifier functionality and produces a protocol that is secure
against active adversaries with 1-bit leakage for functionalities that have efficient veri-
fiability.

Theorem 10. Let Γ1 be a protocol compiler that is secure up to additive attacks against
static, active adversaries, Γ2 a protocol compiler that is fully secure against corruption
by static, active adversaries. Then, there exists a protocol compiler Γ to securely com-
pute with abort a deterministic functionality F : {0, 1}n × {0, 1}n → {0, 1}m verifi-
able with predicate G against static, active adversaries up to 1-bit leakage for the same
corruption model. Furthermore, the computational and communication complexity of
Γ(F , κ) is proportional to sum of the respective measures of Γ1(F∗, κ) and Γ2(G∗, κ)
where |F∗| = O(|F |) + poly(n,m, κ) and |G∗| = O(|G|) + poly(m, n, κ).

Proof: Unlike our protocol for garbled circuits from Sect. 3, where a protocol with
one-sided security suffices, here we require a fully-secure protocol for G. Nonetheless,
as we show in Sect. 5 that such a protocol can still lead to efficiency improvements over
other techniques. The functionality F∗ is a slight variant of F , which outputs additive
shares of the output to the parties instead of the output itself. Similarly, the functionality
G∗ is a slight variant of G, that takes as input the additive shares of the output and
applies the function on the reconstructed value. Our protocol compiler proceeds in the
following steps given a security parameter κ and n-party functionality F that takes
n inputs x1, . . . , xn and gives shares of the m-bit to all parties. Consider an arbitrary
functionality F verifiable with predicate G.

– Construct functionality F∗ that takes input xi from Pi (i ∈ [n]) and outputs
(s1, . . . , sn) where party Pi receives output si such that ∑i si = f (x1, . . . , xn).

– Let G∗ be the function that takes as input (xi, si) from party Pi (i ∈ [n]) and com-
putes s = ∑i si and b=G(x1, . . . , xn, s). Finally, It outputs s if and only if b = 1.

The protocol now proceeds as follows:

1. In the first step, the parties execute protocol Π1 = Γ1(F∗, κ) where Pi uses input xi
and receives si as the output.

2. The parties next engage in the protocol Π2 = Γ2(G∗, κ) where Alice uses (xi, si)
as its input. Their final output is their output from protocol Π2.

We show that this protocol achieves security against active adversaries with 1-bit
leakage. For simplicity, we consider a hybrid protocol Π∗ in the (F̃ ∗,G∗)-hybrid where

352 C. Hazay et al.

F̃ ∗ is the functionality that besides the inputs for F∗ also gets an additive attack A
from the adversary. Note that we only need to rely on a sequential composition, which
holds even in the simple stand-alone setting. The protocol proceeds in two steps. Honest
parties provide inputs to F̃ ∗ as specified in Step 1 of the above protocol, receive their
answer, and following that send their inputs to G∗ as specified in Step 2 and receive
their answers. We construct a simulator S for an arbitrary adversary A in this modified
protocol Π∗. We remark that to consider the protocol in this hybrid, we crucially rely on
the fact that both protocols admit standard security in the presence of active adversaries.
In particular, both protocols provide a mechanism to extract the corrupted parties’ inputs
(and possibly other auxiliary information).

Let A be an adversary that corrupts the set of parties I . The simulator begins an
execution and receives from the adversary the inputs set {xi}i∈I as well as an additive
attack vector A. It provides as output random values {si}i∈I . Next it receives as input
{(x∗

i , s
∗
i)}i∈I and computes the following leakage predicate described in Fig. 2.

FUNCTION
Parameters:
Input:
Output: The functionality proceeds as follows:

Let
Output where and
for

Fig. 2. Leakage function for A.

The simulator submits {x∗
i }i∈I and gB to the ideal functionality and receives y

which it feeds internally to A. Recall that the functionality returns an answer if and
only if the leakage predicate returns 1. We remark that even if G can be realized with
a protocol that has guaranteed output delivery, the resulting protocol will only achieve
security with abort as the adversary can make the computation fail by making the first
part of the protocol output an incorrect answer.

Proof of Correctness. As the leakage function simulates what happens in the real pro-
tocol and the additive sharing of the output information theoretically hides the output,
our simulation is perfect. We only need to argue that if an output is received by an hon-
est party then it corresponds to the right output. In other words, we need to argue that
ŷ = y. This follows directly from the definition of efficiently verifiable functions and
the fact that F is deterministic. �

5 Perfect Matching Protocol Secure up to Additive Attacks

A perfect matching of a graph is a matching in which every vertex of the graph is
incident to exactly one edge of the matching. Algorithms for perfect matchings are

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 353

well-studied. For instance, the classic Ford-Fulkerson algorithm for maxflow can be
used to find a matching in O(VE) for the specific case of bipartite graphs. However,
when this algorithm is transformed into a secure protocol, each execution of breadth-
first requires the use of special ORAM data structures.

In the general case, finding a perfect matching in G reduces to solving a system of
V linear equations in E variables. Applying such general methods from prior work to
construct a secure computation protocol results in a communication complexity of at
least O(VE) which for dense graphs could be O(V3). An alternative approach would
be to construct a protocol from one of the many standard algorithms for solving per-
fect matching. The textbook algorithm for perfect matching due to Edmond runs in
time O(V2E) and the Micali-Vazirani algorithm requires O(E

√
V). However, both

these algorithms require complicated input-dependent memory accesses which when
translated to a secure protocol incurs heavy communication and computational over-
head. Rabin and Vazirani [RV89] gave a randomized algorithm with runtime O(Vω+1)
where ω is the matrix multiplication exponent. Mucha and Sankowski [MS04] improve
this approach to O(Vω). In contrast, the algorithm that we present below in the matrix
multiplication hybrid model runs in local time O(Vω) where ω is the (best) matrix
multiplication exponent and requires communication O(V2 logV).

Our starting point is the work of Harvey [Har06] who showed an O(Vω) algorithm
to compute the perfect matching. Our first insight is that an oblivious algorithm can
be extracted from this work and adapted to a secure computation protocol in a hybrid
model where the parties have access to a matrix-multiplication and matrix-inverse func-
tionalities that work on shared inputs. While Harvey’s algorithm runs in time O(Vω),
our communication complexity is better because a secure computation protocol for
matrix multiplication requires O(n2) communication using (additively) homomorphic
encryption while locally computing it requires O(nω) time. Next, we show that by
instantiating the above functionalities using a maliciously secure protocol, the passive
version of the protocol is secure against active adversaries up to additive attacks, anal-
ogous to [GMW87] additive security in the OT-hybrid from [GIP+14].

Finally, to obtain a protocol with 1-bit leakage, we note that it is easy to verify
a perfect matching. It suffices to ensure that each vertex appears at most once in the
matching, the size of the matching is V/2 and the edges were present in E. In fact, it
can be done in time O(V + E) but it suffices for our application that the verification be
done in O(V2). We can achieve this obliviously by scanning element by element in the
adjacency matrix of the graph and verifying the above conditions. We conclude with
the following theorem proven in the full version.

Theorem 11. For a graph G = (V, E), there exists a data-oblivious algorithm that
verifies that a putative matching M for G is perfect in time O(V2).

Acknowledgements. We thank the anonymous PKC 2020 reviewers for their valuable feedback.
The first author is supported by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and
by ISF grant 1316/18. The second author is supported by NSF Awards 1664445 and 1646671.
The third author is supported by Google Faculty Research Grant and NSF Award CNS-1618884.
The views expressed are those of the authors and do not reflect the official policy or position of
Google, the Department of Defense, the National Science Foundation, or the U.S. Government.

354 C. Hazay et al.

References

[ADI+17] Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63688-7 8

[Bea91] Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: STOC,
pp. 1–10 (1988)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

[BNP08] Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS, pp. 257–266 (2008)

[cal] http://www.calctopia.com
[CDF+08] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-

ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

[CGH+18] Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

[CGMA85] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: FOCS, pp.
383–395 (1985)

[FLOP18] Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 12

[Fre77] Freivalds, F.: Probabilistic machines can use less running time. In: IFIP Congress,
pp. 839–842 (1977)

[GIKR01] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable
secret sharing and secure multicast. In: STOC, pp. 580–589 (2001)

[GIP+14] Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC, pp. 495–504
(2014)

[GIP15] Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

[GIW16] Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty com-
putation. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 336–366.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 14

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

[Gol04] Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/3-540-46766-1_34
http://www.calctopia.com
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96881-0_12
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-53641-4_14

Going Beyond Dual Execution: MPC for Functions with Efficient Verification 355

[Har06] Harvey, N.J.A.: Algebraic structures and algorithms for matching and matroid prob-
lems. In: FOCS, pp. 531–542 (2006)

[HEKM11] Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using
garbled circuits. In: USENIX (2011)

[HIV17] Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits with
constant communication overhead in the plain model. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 3–39. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 1

[HKE12] Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: strengthening semi-honest pro-
tocols with dual execution. In: IEEE Symposium on Security and Privacy, pp. 272–
284 (2012)

[HSS17] Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest
majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

[Kin95] King, V.: A simpler minimum spanning tree verification algorithm. In: Akl, S.G.,
Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 440–
448. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60220-8 83

[KPR18] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–189.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

[KRRW18] Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling
for faster secure two-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 365–391. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 13

[KS14] Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

[KSMB13] Kreuter, B., Shelat, A., Mood, B., Butler, K.R.B.: PCF: a portable circuit format for
scalable two-party secure computation. In: USENIX, pp. 321–336 (2013)

[KSS12] Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with malicious
adversaries. In: USENIX, pp. 285–300 (2012)

[LHS+14] Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient RAM-model
secure computation. In: IEEE Symposium on Security and Privacy, pp. 623–638
(2014)

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2009). https://doi.org/10.1007/s00145-008-
9036-8

[LP12] Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivi-
ous transfer. J. Cryptol. 25(4), 680–722 (2012). https://doi.org/10.1007/s00145-011-
9107-0

[LPSY15] Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party
computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48000-7 16

https://doi.org/10.1007/978-3-319-70503-3_1
https://doi.org/10.1007/978-3-319-70503-3_1
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/3-540-60220-8_83
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-011-9107-0
https://doi.org/10.1007/s00145-011-9107-0
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-48000-7_16

356 C. Hazay et al.

[MF06] Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party com-
putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 30

[MNPS04] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation
system. In: USENIX, pp. 287–302 (2004)

[MOR03] MacKenzie, P.D., Oprea, A., Reiter, M.K.: Automatic generation of two-party com-
putations. In: CCS, pp. 210–219 (2003)

[MR13] Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more efficient and
secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40084-1 3

[MS04] Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In:
FOCS, pp.248–255 (2004)

[MZ17] Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: IEEE SP 2017 (2017)

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32009-5 40

[NO09] Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

[RHH14] Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language for
generic, mixed-mode multiparty computations. In: IEEE Symposium on Security
and Privacy, pp. 655–670 (2014)

[RV89] Rabin, M.O., Vazirani, V.V.: Maximum matchings in general graphs through ran-
domization. J. Algorithms 10(4), 557–567 (1989)

[WRK17a] Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: CCS, pp. 21–37 (2017)

[WRK17b] Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
CCS, pp. 39–56 (2017)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/978-3-642-40084-1_3
https://doi.org/10.1007/978-3-642-40084-1_3
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-00457-5_22

MonZ2ka: Fast Maliciously Secure Two
Party Computation on Z2k

Dario Catalano1, Mario Di Raimondo1(B), Dario Fiore2, and Irene Giacomelli3

1 Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
diraimondo@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain
3 Protocol Labs, San Francisco, USA

Abstract. In this paper we present a new 2-party protocol for secure
computation over rings of the form Z2k . As many recent efficient MPC
protocols supporting dishonest majority, our protocol consists of a heav-
ier (input-independent) pre-processing phase and a very efficient online
stage. Our offline phase is similar to BeDOZa (Bendlin et al. Eurocrypt
2011) but employs Joye-Libert (JL, Eurocrypt 2013) as underlying homo-
morphic cryptosystem and, notably, it can be proven secure without
resorting to the expensive sacrifice step. JL turns out to be particularly
well suited for the ring setting as it naturally supports Z2k as underlying
message space. Moreover, it enjoys several additional properties (such as
valid ciphertext-verifiability and efficiency) that make it a very good fit
for MPC in general. As a main technical contribution we show how to
take advantage of all these properties (and of more properties that we
introduce in this work, such as a ZK proof of correct multiplication) in
order to design a two-party protocol that is efficient, fast and easy to
implement in practice.

Our solution is particularly well suited for relatively large choices of k
(e.g. k = 128), but compares favorably with the state of the art solution
of SPDZ2k (Cramer et al. Crypto 2018) already for the practically very
relevant case of Z264 .

1 Introduction

Secure Multi-Party Computation (MPC) allows a set of mutually mistrusting
parties to jointly compute a function f of their inputs x1, . . . xn in such a way
that correctness and security are guaranteed. Correctness means that at the end
of the protocol the parties have computed f(x1, . . . , xn). Security means that, at
the end of the interaction, party Pi, holding xi, learns only (the i-th component
of) the output f(x1, . . . , xn) and nothing else. The interesting feature of MPC
is that security should be preserved even when there is an adversary A that
controls some of the participants and, for the case of malicious security, takes
full control of the corrupted parties, influencing their behaviors in arbitrary ways.
The security model for MPC (e.g., the Universal Composability framework [7])
formalizes this by stating that a protocol should be considered secure if its
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 357–386, 2020.
https://doi.org/10.1007/978-3-030-45388-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_13

358 D. Catalano et al.

execution is essentially equivalent to an ideal protocol where the computation is
performed by a fully trusted third party.

In terms of applications, a particularly relevant case is the two party setting
or, more in general, the case where the adversary (maliciously) controls half
or more users. This scenario is notoriously hard to handle efficiently. Indeed,
it is well-known that fast information theoretic solutions are not possible and
expensive public key cryptography needs to be employed to achieve security.

In recent years, several works (e.g. [4,13]) noticed that one can improve effi-
ciency by dividing the computation in two stages: an expensive offline stage
where public key cryptography is used in order to perform a pre-computation
independent of the inputs, and an online stage in which, once the inputs become
available, one performs the actual computation in a fast way, using only infor-
mation theoretic techniques. More in detail, in these works pre-computation
essentially consists in creating random triples of the form (a, b, ab). There are
two main approaches to create these triples: using fast, but bandwidth ineffi-
cient, oblivious transfer extensions (e.g. [18]), or using more compact, but less
computationally efficient, homomorphic encryption schemes.

When it comes to achieve security against malicious adversaries, the main
technique used by these protocols are unconditionally secure MACs. For instance,
in the celebrated SPDZ protocol [11,13] a MAC key is shared and used to authen-
ticate the random triples generated in the offline phase; this prevents players from
cheating when using this same material in the on-line phase. Since information
theoretically secure MACs are typically constructed over finite fields, most exist-
ing solutions for dishonest majority MPC assume that the computation takes
the form of an arithmetic circuit over a finite field (such as Zp for prime p).
An exception is the recent work of Cramer et al. [9] (SPDZ2k) that proposes an
efficient protocol that supports operations modulo 2k. This choice comes par-
ticularly handy in practice: for instance, working modulo 2k (and specifically
264) closely matches modern CPU computations and allows protocol designers
to directly apply optimizations and tricks that are possible there and that are
often expensive to emulate modulo p. In order to handle operations in Z2k , the
key technical contribution of the Cramer et al. solution is a new information
theoretic MAC that allows to authenticate messages in this ring. In a nutshell,
they achieve this by choosing a random secret key in a sufficiently large space
Z2s and by performing all the computations in the larger ring Z2k+s so as to be
able to bound with 2−s the probability that an information theoretic adversary
can forge a valid MAC. The new MAC is then used to construct an online pro-
tocol a-la SPDZ where computation is done in the ring Z2k+s (i.e. the values
and the MACs are additively secret-shared in Z2k+s). The preprocessing stage,
on the other hand, is implemented via a MASCOT-like [18] protocol, whose
communication costs are roughly twice those of the original MASCOT.

Our Contribution. In this paper we propose MonZa1, a fast, two-party pro-
tocol for secure computation over the ring Z2k . Our solution uses the authen-
1 The name MonZa is inspired by the famous race track hosting the Formula One

Italian Grand Prix.

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 359

tication mechanism of [9], but we generate random triples using homomorphic
encryption. Specifically, we use the Joye-Libert [5,17] additively homomorphic
cryptosystem (JL from now on), that turns out to be very well suited for our
setting as it naturally supports Z2n (for flexible choices of n) as underlying mes-
sage space. This scheme is efficient both in terms of encryption/decryption costs
and in terms of bandwidth consumption (much more efficient than Paillier, for
instance). More crucially, the JL cryptosystem has three additional properties
that make it a perfect fit for multiparty computation. First, in JL all valid cipher-
texts are publicly and efficiently recognizable. Second, JL has circuit privacy (for
linear functionalities) in a very natural way. Third, one can generate different
instances of JL that share the same plaintext space. The first two properties are
particularly useful as they allow us to avoid the use of expensive zero-knowledge
proofs for proving ciphertexts validity; this is in contrast to solutions based
on lattice-based schemes where ciphertexts validity and circuit privacy require
cumbersome techniques (related to preventing the injection of “bad noise” by a
dishonest party). Moreover, since the scheme naturally works over Z2n we also
do not need zero-knowledge proofs to show that a plaintext lies in a certain range
(this would be needed if using Paillier, for instance).

In this paper we show how to take advantage of all the aforementioned prop-
erties of the JL cryptosystem (and even more properties that we add in this work
– see slightly below) in order to design an efficient 2PC protocol for computations
over the ring Z2k .

We fully implemented MonZa’s off-line phase2 and performed a collection of
experiments in order to evaluate, in terms of both bandwidth and computation,
the efficiency of our solution. Details are given in Sect. 5. Notably, our bandwidth
analysis shows that MonZa is particularly convenient for relatively large choices
of k (e.g. k = 64 or 128) in which case it compares favorably with the state of
the art solution of SPDZ2k [9]. The benchmarks confirm the practical efficiency
of our protocol.

An Overview of Our Techniques. In order to design an efficient (prepro-
cessing) 2PC protocol based on JL we cannot simply plug it as “yet another
additively-homomorphic encryption” in existing approaches.

If we consider SPDZ [13], one could in principle enhance JL to support
one homomorphic multiplication using the transformation of [8]; SPDZ however
requires parties to threshold-decrypt ciphertexts at the end of preprocessing, and
one drawback of JL is that it misses an efficient threshold decryption protocol3.

Another option is to plug JL into a BeDOZa-style protocol [4]. In addition
to the fact that BeDOZa works over a finite field while in our case we work in
a ring with non-invertible elements, a major challenge is that in BeDOZa each
party must execute a ZK protocol for correct multiplication, and such a protocol
is not available for JL. Moreover, due to the fact that not all elements of the
ring are invertible, one cannot use classical Sigma-protocol techniques to get it.
2 We only focuses on the preprocessing stage since the online one is identical to [9].
3 Also, coming up with an efficient, constant-round, protocol for a threshold JL decryp-

tion seems far from trivial due to the bit-by-bit extraction technique in the algorithm.

360 D. Catalano et al.

Finally, if one is concerned with avoiding proofs of correct multiplication,
the recent Overdrive protocol [19] (still working over finite fields) showed how to
avoid them if the linearly homomorphic encryption scheme satisfies a stronger
security notion called enhanced CPA. Very informally, this property states that
non-linear operations on ciphertexts are not possible. Somewhat surprisingly,
this route turns out to not be viable in the setting of Z2n . We formally prove
that no encryption scheme that is linearly homomorphic over plaintext space
Z2n can achieve enhanced CPA security. This essentially tells us that, in the Z2n

setting, proofs of correct multiplication are sort of unavoidable.
Our (preprocessing) protocol shares some similarities with both BeDOZa

[4] and Overdrive [19] in the sense that it employs an asymmetric Gilboa-like
[15] multiplication protocol: P1 has a key pair (sk, pk) and P2 has the public
key pk. To multiply their shares a1 and b2 the parties perform the following
simple protocol. P1 sends Encpk(a1) to P2. P2 chooses a random r ∈ Z2n and
sends C = Encpk(a1)b2Encpk(−r) = Encpk(a1b2 − r) back to P1. P1 decrypts the
received plaintext and sets it as its share of the product a1b2. P2’s share is just r.
Notice that both BeDoZa and Overdrive use this protocol in a symmetric way:
each player has a different key pair and to compute the shares of the product of
secret-shared values in the two-party setting the protocol is executed two times
(once for each mixed product). On the other hand, the design of the offline
phase of our MonZa protocol is asymmetric: we require only one key pair and
one party computes the intermediate ciphertexts of the form of C for both mixed
products, while the other party decrypts. Since generating a ciphertext C is much
less expensive than decrypting it (in JL), our MonZa protocol is well-suited for
applications in the server-client model, where one party has less computational
power than the other one.

Making the basic multiplication protocol described before secure against
malicious adversaries requires more work though. Intuitively, P2 has to show
that he performed the above operation correctly. In principle this can be done
with a ZK proof protocol where P2 sends a commitment Com(a2) and convinces
P1 that C satisfies the multiplicative relation C = Encpk(a1)a2Encpk(−r). A
difficulty arises from the fact that doing this with JL is tricky. Solving these
challenges is one of the main technical contributions of this paper.

To illustrate the problem let us consider the simpler case of proving knowledge
of a JL plaintext. Informally, JL can be seen as a generalization of the well known
Goldwasser-Micali cryptosystem [16]. The message space is M = Z2n , and the
public key is N, g, where N = pq is the product of two primes p = 2np′ + 1 and
q = 2q′ + 1 such that p′, q′ are also primes4, and g is an element of maximal
order in Z

∗
N and whose Jacobi symbol is 1. To encrypt m ∈ M one chooses a

random x ∈ Z
∗
N and sets C = gmx2n

mod N . To prove knowledge of m one would
be tempted to use (an adapted version of) a standard, Schnorr-like, three move
protocol. Very roughly this would go as follows. The prover starts by sending the
encryption R of a random message r and, upon receiving a challenge e ∈ {0, 1}n,

4 We remark that the original scheme from [17] allows more flexibility in the choice of
p and q. For the sake of this discussion the choices above are good enough.

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 361

it sends z, y such that gzy2n

= RCe mod N . Completeness and (honest) verifier
ZK are easy to argue, but the problems are in proving (special) soundness.
Indeed two accepting transcripts (for the same R) lead to an equation of the form
gz1−z2 ŷ2n

= Ce1−e2 mod N from which we cannot always extract the message
since e1 − e2 might well be non invertible in Z2n .

We overcome this issue by defining a slightly different protocol and by doing
a careful analysis which shows that one can actually extract the least n − s
significant bits of the plaintext encrypted in C. More importantly, we extend
this technique to work in the more involved case of proving a multiplication
relation. Precisely, we propose an HVZK sigma-protocol for proving knowledge
of b, r mod 2n−s such that C = AbEncpk1(r) and B = Encpk2(b), where pk1 pk2
are public keys of two different JL instances with the same message space Z2n .
Our protocol for correct multiplication is quite efficient – the prover sends 7
elements of Z

∗
N and 2 values of n bits each – and this is partly due to the fact

that JL allows to naturally create two instantiations with the same message
space (this is for example not possible with Paillier’s encryption scheme). In
order to cope with the limitation of extracting fewer bits in our applications,
we show that we can instantiate JL with a larger message space Z2k+2s while
keeping the shares of our triples over Z2k+s .

As additional remark, we point out that our MonZa protocol departs from
previous work [4,13] also in the fact that it does not resort to the expensive
sacrifice step to guarantee security. Informally, many existing protocols check the
validity of each produced triple by “sacrificing” another triple where the same
multiplication relation is expected to hold. This techniques makes the resulting
protocols less efficient than one would like them to be as one needs to generate
twice as many triples than needed. By exploiting both the algebraic properties of
JL and the fact that our protocol is specifically tailored to the two party setting,
we manage to replace the sacrifice step with a simplified (and more efficient)
version of the HVZK sigma-protocol discussed above.

Other Related Work. There are several works about MPC protocol based on
secret-sharing, however only few of these focus on computation over the rings
[10]. For the ring Z2k besides the SPDZ2k protocol mentioned above, Sharemind
[6] is a well-known and efficient protocol based on replicated secret-sharing.
Sharemind works in the 3-party setting with honest-majority and it is passively
secure only. Recently, Araki et al. [2] improved the efficiency of Sharemind,
while [1,14] extended it to the case of active corruption. However, all these
works are restricted to the case of honest majority. Damgaard et al. [12] present
a compiler for achieving active security starting from a passively-secure MPC
protocol that can be used for ring-MPC protocols too. The compiler is perfectly
secure, however the active security comes at the price of reducing the corruption
threshold (from t corrupted players to approximately

√
t).

In a concurrent and independent work, Orsini et al. [20] proposed a protocol,
Overdrive2k, to perform secure MPC over Z2k from somewhat homomorphic
encryption. Similarly to ours, their solution improves SPDZ2k in terms of band-

362 D. Catalano et al.

width consumption. In terms of techniques, Overdrive2k and MonZa are rather
different. At the heart of Overdrive2k is a new packing technique for the BGV
cryptosystem that works for Z2k ; also their protocol works in the general multi-
party setting (i.e., the number of participants is ≥2). Our solution, on the other
hand, is tailored to the two-party setting and builds on new zero-knowledge
techniques for the JL cryptosystem, and the overall protocol is arguably math-
ematically simpler.

Road Map. We start describing the notation, the cryptography primitives and
the security model used in this paper in Sect. 2. In particular, Sect. 2.5 recalls the
information theoretic MAC defined in SPDZ2k and also used by MonZa. Then,
our MPC protocol is described in the following two sections: Sect. 3 describes the
new offline phase that we design for MonZa (protocol ΠOffline), while the online
phase, which follows the SPDZ2k blueprint, is described in the full version of
this paper. Sect. 4 recalls the JL encryption scheme and presents the new proof
of correct multiplication for this encryption scheme (protocol ΠZKPoCM). Finally,
we conclude with an analysis of the efficiency of ΠOffline and ΠZKPoCM in Sect. 5.

2 Preliminaries

2.1 Notation

Given a finite set D, sampling a uniformly random element from D is denoted
by r ← D. We denote by ZM the ring of the integers modulo M (where
M ≥ 2). We say that a function ε is negligible in n if for every positive
polynomial p there exists a constant c such that ε(n) < 1

p(n) when n > c.
Two families X = {Xn}n∈N and Y = {Yn}n∈N of random variables are said
to be statistically indistinguishable, denoted by X ≈s Y , if it holds that

∑
a

|Pr[Xn = a] − Pr[Yn = a]| is negligible in n. Two ensembles are said to be
computationally indistinguishable, denoted by X ≈c Y , if it holds that for any
computationally bounded (non-uniform probabilistic polynomial-time (PPT))
distinguisher D | Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| is negligible in n.

2.2 Linearly-Homomorphic Encryption for Messages in Z2n

To design our protocols, we use a public-key encryption scheme whose message
space is the ring Z2n and it has a linear homomorphic property. More precisely,
we assume that there exists a triple of algorithms (Gen,Enc,Dec) with the fol-
lowing property:

Algorithms: Gen(1λ, n) is a randomized procedure that takes as input the secu-
rity parameter λ and the message bit-length n, and outputs a matching pair
of secret and public keys (sk, pk). The public key defines a ciphertext space C.
Enc is a randomized algorithm keyed by pk that takes as input values in Z2n .
We write Encpk(m, r) when we want to explicitly indicate that r is the ran-
dom value used in the procedure, otherwise we write Encpk(m).

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 363

Dec is a deterministic function keyed by sk. It holds that for any m ∈ Z2n ,
Pr[Decsk(Encpk(m)) = m] = 1 (the probability is taken over the random coins
of Gen and Enc).

Additive property : Let C be the set of all possible ciphertexts, then there
exists an operation � on C such that for any a-tuple of ciphertexts c1 ←
Encpk(m1), . . . , ca ← Encpk(ma) (a positive integer), it holds that Pr[Decsk

(c1 � · · · � ca) = m1 + · · · + ma mod 2n] = 1. We will use the notation
c�a = c � · · · � c (a times).

Lossy keys5: We also require the existence of a modified key generation algo-
rithm, G̃en, that on the same input λ, n generates a public key p̃k with
the following property. For any m ∈ Z2n , {Enc

˜pk(m)}λ ≈s {Enc
˜pk(0)}λ (i.e.,

Enc
˜pk(m) is statistically indistinguishable from an encryption of zero). More-

over, public keys produced by G̃en (called lossy keys) are computationally
indistinguishable from those produced by the standard key generation algo-
rithm.
Notice that semantic security follows from the indistinguishability of keys
and the indistinguishability of encryption under the lossy keys.

Circuit privacy for linear functions: Informally, this property states that cipher-
texts obtained through homomorphic evaluations are statistically indistin-
guishable from fresh encryptions of the resulting message. For simplicity, in
our work we assume that homomorphic operations (i.e., �) are deterministic,
and we state circuit privacy slightly differently: for any a, b ∈ Z2n and any
ciphertext A ∈ Encpk(a), B ∈ Encpk(b) we have that A � B � Encpk(0) ≈s

Encpk(a + b). An implication of this property (that we use in our protocols)
is that for any plaintexts α, β, γ ∈ Z2n and any C ∈ Encpk(γ), it holds
C�α � Encpk(β) ≈s Encpk(αγ + β).

Publicly Checkable Ciphertexts: we require that membership of a ciphertext in
the ciphertext space, i.e., C ∈ C, can be efficiently and publicly tested given
only the public key.

2.3 Commitments

Another building block we use in our constructions is an extractable commitment
scheme for messages in Z2n . That is, in the following we assume that there exists
a tuple of algorithms (cGen,Com) with the following properties:

Algorithms: The procedure cGen(1λ, n) takes as input the security parameter λ
and the message bit-length n. The output is the commitment key ck and the
extraction trapdoor information tX .
Com is a randomized algorithm keyed by ck that takes as input values in
Z2n . We write Comck(m, r) when we want to explicitly indicate that r is the
random value used in the procedure, otherwise we write Comck(m).

5 For a CPA-secure additive encryption scheme this property always holds: include
C = Encpk(b) in the public key with b = 0 for Gen and b = 1 for ˜Gen, and redefine
encryption as Encpk(m) = C�m � Encpk(0).

364 D. Catalano et al.

Computationally hiding and unconditionally binding : We require that (1) for
any m,m′ ∈ Z2n , Comck(m) ≈c Comck(m′), and (2) for any C in the com-
mitment space there exists at most one pair (m, r) such that it holds that
C = Comck(m, r).

Extractability : Finally, we require the existence of a PPT algorithm that allows
to compute m from a commitment C = Comck(m, r) and the trapdoor tX .

Finally, we also require the existence of lossy keys for the commitment scheme
too. That is, there exists a modified key-generation algorithm c̃Gen that gener-
ates lossy commitment keys (i.e., any Com

˜ck(m), where c̃k ← c̃Gen, is statistically
indistinguishable from a commitment to zero) that are computationally indistin-
guishable from those produced by the standard key generation algorithm. From
the above description it is rather clear that such a commitment scheme can be
instantiated using a public key encryption scheme with the lossy key property.
Indeed, in Sect. 4 we show that the Joye-Libert encryption scheme [5,17] satisfies
the definition of additive encryption scheme given in Sect. 2.2 and can be used
to instantiate the commitment scheme with the properties required here.

In the following we will use the notation Encpk(m) (or Comck(m)) for a mes-
sage m ∈ Z2n′ also when the encryption (or commitment) scheme has message
space Z2n (with n ≥ n′). Indeed, we can think Z2n′ as a subset of Z2n .

2.4 Security Model

The protocols presented in this paper are for two parties, P1 and P2, and they
are proven secure in the Universal Composability (UC) model [7]. In particular,
our protocols will be proven secure against a malicious static adversary. In other
words, the adversary may deviate from the protocol in any arbitrary way and can
only corrupt parties before the protocol execution starts. Since it is not possible
to construct an UC-secure MPC protocol with dishonest majority without a set-
up assumption, in this paper we rely on the registered public-key model [3]. In
particular, we assume that there is a functionality FKeyGen (described in Fig. 1)
that generates correct keys for both the additive encryption scheme and the
mixed commitment scheme.

Finally, for the sake of simpler protocol description, we will use a standard
coin tossing functionality FRand to generate public randomness. When activated
from all the parties with input (rand, u), the functionality FRand samples r ←
{0, 1}u and return it to all parties. FRand can be implemented using commitments
of random values in the random oracle model or additive encryption in the key-
register model.

2.5 Value-Representation in SPDZ2k

The SPDZ2k protocol [9] is an n-party MPC protocol in the preprocessing model
for computation over a ring. The backbone of this protocol is the representation
of values: each element is authenticated via an information-theoretic MAC and
both the value and the MAC are secret-shared among the parties. In this section

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 365

Functionality KeyGen

Let (Gen,Enc,Dec) be additive encryption scheme and (cGen,Com) an extractable
commitment scheme. KeyGen interacts with the parties P1 and P2 and the simulator
S, which can abort any time, and proceeds as follows.

– When activated on input (EncKeys, sid, λ, n) from both parties: if P1 is honest,
KeyGen runs Gen(1λ, n) and generates a key-pair (sk, pk); if P1 is corrupted the

functionality gets r∗ from S and it runs Gen(1λ, n) using r∗ as random tape.
The functionality sends (sk, pk) to P1 and pk to P2.

– When activated on input (ComKey, sid, λ, n) from both parties: if P2 is honest,
KeyGen runs cGen(1λ, n) and generates a commitment key ck; if P2 is corrupted

the functionality gets r′ from S and it runs cGen(1λ, n) using r′ as random
tape. The functionality sends ck to both parties.

Fig. 1. Functionality for the keys generation.

we recall the details of the SPDZ2k value-representation because our 2-party
protocol will use it.

The MAC scheme has two parameter: k, where Z2k is the ring in which the
inputs lie, and the security parameter s. The MAC key6 α is sampled uniformly
at random from Z2k+s and the MAC of a value x ∈ Z2k is defined as

m(x) = α · x̃ mod 2k+s

where x̃ ∈ Z2k+s such that x = x̃ mod 2k. Then the values x̃ and m(x) are
additively secret-shared among the parties. The key α is fixed and also additively
shared (i.e. α =

∑n
i=1 α(i) mod 2k+s and α(i) ∈ Z2k+s held by player Pi). In

other words, the [·]-representation of a value x ∈ Z2k is given by:

[x] = {(x(i),m(i)(x))}i=1,...,n and
n∑

i=1

m(i)(x) = (
n∑

i=1

x(i)) · (
n∑

i=1

α(i)) mod 2k+s

where (x(i),m(i)(x)) ∈ (Z2k+s)2 is known by player Pi.
Linear operations on shared and authenticated values are possible. In partic-

ular, we recall here the procedure AffineComb of [9]: the parties have u values
[x1], . . . , [xu], to compute the representation of y = c +

∑u
i=1 ci · xi mod 2k,

where c, c1, . . . , cu are public values, the parties proceed as follow:

1. Party P1 sets y(1) = c +
∑u

i=1 ci · x
(1)
i mod 2k+s;

2. Each party Pj with j �= 1 sets y(j) =
∑u

i=1 ci · x
(j)
i mod 2k+s;

3. Each party Pj sets m(j)(y) = α(j) · c +
∑u

i=1 ci · m(j)(xi) mod 2k+s;

6 The last (most significant) k bits of the MAC key are not actually required to
be random, since the security of the MPC protocol follows from α mod 2s being
random. However, sampling α from Z2k+s simplifies the description of the protocols.

366 D. Catalano et al.

In the following, we will say that parties compute [y] = c +
∑u

i=1 ci · [xi] to
indicate that this procedure is executed.

3 Offline Phase

Our 2-party MPC protocol is divided in two phases: an offline phase, which is
independent of both the input and the function, and an online phase, where the
actual computation takes place. In the offline phase, the parties generate corre-
lated randomness in the form of singles and triples. Then, in the on-line phase,
as in the SPDZ2k protocol, these values are consumed to create representation
of the inputs, and to multiply shared and authenticated values and to verify the
MACs (more details in the full version of this paper).

The exact functionality FOffline that is implemented in the offline phase is
described in Fig. 2. The correlated randomness generated by FOffline for honest
players has three forms: (1) authenticated single7 (j, [r]), where r is sampled
uniformly at random from Z2k+s , and r is expressed in the [·]-representation
using a trivial sharing: r(j) = r and the other share is zero (i.e., r is known
by Pj only), (2) shared and authenticated single [r], where again r is sampled
uniformly at random from Z2k+s and expressed using the [·]-representation, but
no party knows the value, and (3) shared and authenticated triple [a], [b], [c].
Here, a, b, c are all shared and authenticated singles over Z2k+s such that it
holds c = a · b mod 2k.

The idea behind the specification of the corruption is that the environment
is allowed to specify the share of a single for Pi corrupted (i = 1 or i = 2), and
the share of c in a triple and the share of the MACs for P2 corrupted. Then,
the data for the honest party is chosen consistently with the values given by the
environment to guarantee correctness of the MAC and the multiplication. Notice
that the environment has no power to choose some of the shares of a corrupted P1

(i.e., the share of c and of the MACs); this is to reflect the different roles that the
two parties have in our offline protocol and, in particular in the multiplication
sub-protocol (more detail in the following).

The basic building block we use to generate both a single and a triple is a
2-party multiplication protocol (i.e., a protocol to compute an additive shar-
ing of the product of two secret values). Indeed in the 2-party case, and due
to the nature of the MACs used in the [·]-representation, such multiplication
protocol is sufficient for computing both the product of secret-shared values
and to authenticate a secret-shared value. Similarly to other MPC protocols like
BeDOZa [4] and Overdrive [19], in order to implement the 2-party multiplica-
tion protocol we use an additive encryption scheme (Gen,Enc,Dec) as defined in
Sect. 2.2. The high-level idea is simple: assume that party P1 has a pair (pk, sk)
and input x(1), while party P2 knows only the public key pk and has input
x(2). To compute an additive sharing of x(1) · x(2), P1 sends C1 = Encpk(x(1))

7 The [·]-representation for a value x of k + s bits means that we additively share in
Z2k+s the value x and its MAC x · α mod 2k+s. However, only the first k bits of x
are authenticated.

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 367

Functionality Offline

Offline interacts with the parties P1 and P2 and the simulator S, which can abort
any time, and proceeds as follows.
For the sake of brevity, the description of functionality uses the following macro
(i.e., internal subroutine) that is executed to compute an additive secret-sharing of
the MAC of secret-shared values respect to a given global key α.

Auth(x(1), x(2)):

1. Let x = x(1) + x(2) mod 2k+s and m(x) = α · x mod 2k+s;
If P2 is corrupted, wait for m2 ∈ Z2k+s from S, otherwise sample m2 ←
Z2k+s at random. Define m1 = m(x) − m2 mod 2k+s.

2. Send m1 to P1, and send m2 to P2 if P2 honest.

Initialize: When activated on the first time on input (Init, sid, k, s) from all the
parties, the functionality stores k and s. Then, for j = 1, 2, Offline waits for S
to send α(j) ∈ Z2k+s if Pj is corrupted, otherwise Offline samples α(j) ← Z2k+s

and forwards it to Pj . The functionality stores α = α(1) + α(2) mod 2k+s.

In each other activation,

Single: On input (Single, Pj , sid, ssid) from all parties, the functionality does the
following.
1. Offline waits for S to send r ∈ Z2k+s if Pj is corrupted, otherwise it samples

r ← Z2k+s and forwards it to Pj .
2. Offline executes Auth(r, 0): P1 gets m(1)(r) and P2 gets m(2)(r). The values

(ssid, r, m(j)(r)) and (ssid, 0, m(i)(r)) are stored as local share of (j, [r]) by
Pj and the other player Pi.

On input (Single, sid, ssid) from all parties, the functionality does the following.
1. For j = 1, 2, Offline waits for S to send r(j) ∈ Z2k+s if Pj is corrupted;

otherwise it samples r(j) ← Z2k+s and forwards it to Pj .
2. Offline executes Auth(r(1), r(2)): for j = 1, 2, Pj gets m(j)(r) and stores

(ssid, r(j), m(j)(r)) as its local share of [r] .

Triple: On input (Triple, sid, ssid) from all parties, the functionality does the
following.
1. For j = 1, 2, Offline waits for S to send a(j), b(j) ∈ Z2k+s if Pj is corrupted,

otherwise Offline samples a(j), b(j) ← Z2k+s and forwards these to Pj . Let
a = a(1) + a(2) mod 2k+s, b = b(1) + b(2) mod 2k+s and c ∈ Z2k+s such that
c = a · b mod 2k.

2. If P2 is corrupted, wait for c(2) ∈ Z2k+s from S, otherwise sample c(2) ←
Z2k+s at random. Define c(1) = c−c(2) mod 2k+s. The functionality sends
c(1) to P1, and sends c(2) to P2 if P2 honest.

3. Offline executes Auth(a(1), a(2)), Auth(b(1), b(2)) and Auth(c(1), c(2)): for
j = 1, 2, Pj gets m(j)(a), m(j)(b) and m(j)(c); party Pj stores
(ssidi, a

(j), m(j)(a)), (ssidi, b
(j), m(j)(b)) and (ssidi, c

(j), m(j)(c)) as its
share of ([a], [b], [c]).

Fig. 2. Functionality for the offline phase (preprocessing). It generates the shares of
the global MAC key, and it produces singles and triples.

368 D. Catalano et al.

to P2, who samples y(2) uniformly at random from the message space and com-
putes C = C�x(2)

1 � Encpk(y(2)). Now, P2 sends C to P1, who decrypts and get
y(1) = x(1) · x(2) + y(2). Passive security follows easily from the properties of the
underlying encryption scheme. To achieve active security, we need to assure that
P1 sends an actual encryption and that P2 computes C following the instruction
in the protocol. The first property is easy to guarantee because we assume that
the underlying encryption scheme has a publicly checkable ciphertext space. For
the other task, we use a Zero-Knowledge (ZK) proof.

More precisely in the description of protocol ΠOffline, we assume the existence
of the sub-protocol ΠZKPoCM. This is a 3-move standard Σ-protocol where the
functionality FRand (Sect. 2.4) generates the challenge sent in the second messages
for both players. We assume that the keys for an additive encryption scheme
and an extractable commitment scheme have been generated correctly by an
invocation to FKeyGen. Both schemes have the same message space Z2k+2s . The
prover wants to convince the verifier that a given ciphertext C satisfy a precise
relation among a value it knows and another public ciphertext C1. That is,
the common input is two ciphertexts, C and C1, and a commitment C2, the
private input of the prover is m, r ∈ Z2k+s such that C2 = Comck(m̃) and
C = C�m

1 � Encpk(r̃) where m̃ and r̃ are values in the (larger) message space
such that m = m̃ mod 2k+s and r = r̃ mod 2k+s . We give more details on this
and an instantiation of this sub-protocol in Sect. 4.1.

Protocol ΠOffline is described in Figs. 3 and 4. For the sake of brevity, we use
the sub-protocol Mult that captures the actively secure multiplication protocol
described before (assuming that the ciphertext C1 and the commitment C2 were
sent previously). Mult is used to compute both the MAC of a given value and
the product of shared values. For example, to implement (Single, P1) (i.e., to
authenticate a value r known by P1), the parties need to compute the shares of
the product r · α(2) mod 2k+s (where α(2) is P2’s share of the global MAC key).
This is done by running the 2-party multiplication protocol Mult where C1 is an
encryption of r done by P1 and C2 is a commitment to α(2) (Fig. 3).

Analogously, to compute the mixed products for generating a triple (e.g.,
a(1) · b(2) mod 2k+s where a(i), b(j) are shares of singles) the parties execute Mult
two times (in the example, C1 is an encryption of a(1) and C2 is a commitment to
b(2)). Finally, the Mult sub-protocol is used again to authenticate the product c
(Fig. 4). Notice that the sub-protocol Mult does not commit a party to its output,
therefore for the triple generation we need to add an extra check. This guarantees
that a party uses the correct value (i.e. its output from the multiplication step) in
the authentication step. Without this check a corrupted party could authenticate
a wrong share c̃(i) and this would create an insecure triple (i.e., a triple where
c = a · b + Δ mod 2k+s and Δ �= 0 mod 2k known by the corrupted party). We
implement the check using again a ZK proof for encrypted/committed values8.

8 In order to use the same ZK-proof for both players we need to assume that the com-
mitment scheme has the same homomorphic property as the encryption scheme. If
the commitment scheme is instantiated using the encryption as observed in Sect. 2.3,
the homomorphic property clearly holds.

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 369

Protocol ΠOffline

The protocol is run by parties P1 and P2. (Gen,Enc,Dec) is an additive encryp-
tion scheme and (cGen,Com) is an extractable commitment scheme as defined in
Section 2. For both these schemes, the message space is in Z2k+2s .

In the steps of ΠOffline described in the following, we will use multiple times the
sub-protocol Mult described below.

Mult(x(1), C1, x
(2), C2):

Common input: the commitment C2 = Comck(x(2)) and the ciphertext C1 =
Encpk(x(1)); Input for P1: x(1) ∈ Z2k+s ; Input for P2: x(2) ∈ Z2k+s .
1. P2 samples r̃ ← Z2k+2s , sends D = C�x(2)

1 � Encpk(r̃) to P1 and invokes
ΠZKPoCM playing the role of the prover with private input (x(2), r̃ mod 2k+s)
and public input (C1, D, C2);

2. If ΠZKPoCM doesn’t abort, P1 computes ỹ(1) = Decsk(D)
Output: for P1 the value y(1) = ỹ(1) mod 2k+s, for P2 the value y(2) = −r̃ mod
2k+s. Notice that y(1) + y(2) = x(1) · x(2) mod 2k+s.

Initialize:
1. For i = 1, 2, when activated on the first time on input (Init, sid, k, s), Pi

sends (EncKeys, sid, λ, k + 2s) and (ComKey, sid, λ, k + 2s) to KeyGen; P1

gets sk, pk, ck and P2 gets pk, ck.
2. P1 samples α(1) ← Z2k+s and sends Δ1 = Encpk(α(1)) to P2;
3. P2 samples α(2) ← Z2k+s and sends Δ2 = Comck(α(2)) to P1.

In each other activation,

Single:
On input (Single, P1, sid, ssid), the parties do the following.
1. P1 samples r ← Z2k+s , sends R = Encpk(r) to P2;
2. P2 invokes Mult(r, R, α(2), Δ2), P1 gets y(1) and P2 gets y(2);
3. P1 sets m(1)(r) = α(1) · r + y(1) mod 2k+s and stores (ssid, r, m(1)(r)) as

its share of (1, [r]), P2 stores (ssid, 0, y(2)) as its share of (1, [r]).

On input (Single, P2, sid, ssid), the parties do the following.
1. P2 samples r ← Z2k+s and sends R = Comck(r) to P1;
2. P1 invokes Mult(α(1), Δ1, r, R), P1 gets y(1) and P2 gets y(2);
3. P2 sets m(2)(r) = α(2) · r + y(2) mod 2k+s and stores (ssid, r, m(2)(r)) as

its share of (2, [r]), P1 stores (ssid, 0, y(1)) as its share of (2, [r]).

On input (Single, sid, ssid), the parties do the following.
1. Run (Singles, P1) and (Singles, P2) and generate (1, [r(1)]) and (2, [r(2)]),

respectively;
2. Compute [r] = [r(1)] + [r(2)] and store it with index ssid.

Fig. 3. Protocol for preprocessing.

370 D. Catalano et al.

In particular, we use a modified (simpler) version of ΠZKPoCM. This version, which
we call ΠZKPoMCV, allows the prover to convince the verifier that, given three
ciphertexts (or commitments) A,B, C̃, the prover knows b such that C̃ = A�b.
We give more details on this and an instantiation of this ZK proof in Sect. 4.2.

Protocol ΠOffline (continued)

Triple: On input (Triple, sid, ssid), the parties do the following.
1. The parties run two times the Single command and get their shares of [a]

and [b] (let A(1) = Encpk(a(1)), A(2) = Comck(a(2)) and B(1) = Encpk(b(1)),
B(2) = Comck(b(2)) be the intermediate values computed during the execu-
tion of the Single steps);

2. Multiplication:
– P2 invokes Mult(a(1), A(1), b(2), B(2)), Pi gets y(i) for i = 1, 2;

(let D = (A(1))�b(2) � Encpk(−y(2)) be the ciphertext computed and
sent by P2 in this Mult and let R = Comck(−y(2)) be the commit-
ment computed and send by P2 during the corresponding ΠZKPoCM, see
Section 4.1)

– P2 invokes Mult(b(1), B(1), a(2), A(2)), Pi gets z(i) for i = 1, 2;
(let D′ = (B(1))�a(2) � Encpk(−z(2)) be the ciphertext computed and
sent by P2 in this Mult and let R′ = Comck(−z(2)) be the commit-
ment computed and send by P2 during the corresponding ΠZKPoCM, see
Section 4.1)

– For j = 1, 2, Pj sets c(j) = a(j) · b(j) + y(j) + z(j) mod 2k+s.
3. Authentication:

– P1 computes C̃(1) = Encpk(a(1)b(1)) and P2 computes C̃(2) =
Comck(a(2)b(2)); for j = 1, 2, Pj sends C̃(j) to the other party and
invokes ΠZKPoMCV playing the role of the prover with public input
(A(j), B(j), C̃(j)). If the ZK proofs do not abort, P2 computes C(1) =
C̃(1) � D � D′ and P1 computes C(2) = C̃(2) �−1 R �−1 R′;

– P2 invokes Mult(c(1), C(1), α(2), Δ2), Pi gets y(i) for i = 1, 2;
– P2 invokes Mult(α(1), Δ1, c

(2), C(2)), Pi gets z(i) for i = 1, 2;
– For j = 1, 2, Pj sets m(j)(c) = c(j) · α(j) + y(j) + z(j) mod 2k+s and

store (c(j), m(j)(c)) as its share of [c] (c = a · b mod 2k+s);

Fig. 4. Triple generation in the preprocessing.

Theorem 1. Assume that the underlying encryption scheme and commitment
scheme satisfy the definitions in Sect. 2. Then, protocol ΠOffline implements
FOffline with computational security against any static active adversary in the
(FKeyGen, FRand)-hybrid model.

Proof. We use the variant of the UC model where the environment Z plays
the role of both the distinguisher and the adversary. The environment always
chooses the input for the honest player and gets its output when the execution

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 371

is done. Moreover, in the protocol execution Z corrupts Pi (i = 1 or i = 2) and
takes control of its actions (i.e. Z decides the messages sent by Pi and reads
the message received by this party). We argue about UC security, defining a
simulator Si that interacts with Z and the functionality FOffline and simulates
the view of Z when attacking the protocol execution. The simulator Si has the
power of choosing the input that Pi sends to FOffline and getting its output. In
Figs. 5 and 6 we define S1 and S2, respectively. The simulator Si behaves as
an honest party P3−i running the protocol with the environment Z controlling
the corrupted party. Here we show that a poly-time environment Z can not
distinguish between the real view (i.e., the view in the execution of the protocol)
and an ideal view (i.e. the view in the interaction with the simulator).

Case i = 1 (P1 is corrupted). We will argue now that the existence of a poly-
time environment Z that distinguishes a real-view from an ideal one contradicts
the key-indistinguishability property of the underlying commitment scheme.
More in details, assume that there exists a Z that can distinguish between a
real view and an ideal one with significant probability ε. We construct a distin-
guisher D that given a commitment key ck∗ produces a view of the same form
as what Z sees and with the following property: D uniformly chooses a bit b,
if ck∗ is a standard key, then view is an ideal-view when b = 1 and view is an
real-view when b = 0; if ck∗ is lossy, then view generated when b = 0 and view
generated when b = 1 are statistically indistinguishable. The view produced by
D is given to Z that outputs a bit b′ (i.e., b′ = 0 means protocol execution
and b′ = 1 means simulated execution); if b′ = b, D outputs “standard key”,
otherwise it outputs “lossy key”. It is easy to see that D wins with probability
close to ε/2. We define D as follow.

On input ck∗, D generates (sk, pk) using Gen, initializes a local copy of Z,
sends ck∗ and (sk, pk) to Z and starts executing the protocol ΠOffline where Z
controls party P1 and D plays P2. The distinguisher D samples a bit b ← {0, 1}.
If b = 1, D plays P2 running the same instruction written for the simulator S1.
D completes view choosing the outputs for P2 as FOffline would do. If b = 0, D
follows the instructions for an honest P2 in the protocol ΠOffline and P2’s out-
puts in view are the values used in this execution. By construction, if ck∗ is a
standard key, then the view produced by D corresponds to a real-view if b = 0,
and to an ideal-view if b = 1. On the other hand, if ck∗ is a lossy key, then
in any view each commitment is statistically indistinguishable from a commit-
ment to zero and the messages produced as prover in ΠZKPoCM are statistically
indistinguishable because they can be simulated by the ZK simulator (uncon-
ditional zero-knowledge property, special case of Theorem3). The same holds
for ΠZKPoMCV (the messages produced as prover in ΠZKPoMCV are statistically
indistinguishable because of the unconditional zero-knowledge property, refer to
Sect. 4.2). Moreover, in any view each ciphertext of the form C = C�b

1 �Encpk(r)
is statistically indistinguishable to a fresh encryption of a random message (cir-
cuit privacy). Therefore the view produced by D when b = 0 is statistically close
to the one produced when b = 1.

372 D. Catalano et al.

The simulator S1 is defined by the following instructions:

– Simulating the initialize command:
1. Simulation of the call to KeyGen: S1 runs Gen(1λ, k + 2s), cGen(1λ, k + 2s)

and gets (sk, pk) and ck. S1 sends pk, sk, ck to Z.
2. S1 receives Δ′

1 from Z, computes α′(1) = Decsk(Δ′
1) and sends (Init, α′(1))

to Offline.
3. The simulator behaves as an honest P2 in the protocol ΠOffline: S1 samples

α′(2) ← Z2k+s and sends Δ′
2 = Comck(α′(2)) to Z.

– Simulating the (Single, P1) command:
1. S1 receives R′ ∈ C from Z and computes r′ = Decsk(R′).
2. The simulator behaves as an honest P2 in the sub-protocol

Mult(r′, R′, α′(2), Δ′
2): S1 samples r̃′ ← Z2k+2s , computes C′ =

R′�α′(2) � Encpk(r̃′) and sends C′ to Z. Then the simulator behaves
as an honest prover in the protocol ΠZKPoCM with private input
(α′(2), r̃′ mod 2k+s) and common input C′, R′, Δ′

2 (the simulator also
simulates Rand). If there is no abort, the simulator sends r′ to Offline.

– Simulating the (Single, P2) command:
1. The simulator behaves as an honest P2 in the protocol ΠOffline: S1 samples

r′ ← Z2k+s and sends R′ = Comck(r′) to Z.
2. The simulator behaves as an honest P2 in the sub-protocol

Mult(α′(1), Δ′
1, r

′, R′): S1 samples r̃′ ← Z2k+2s , computes C′ =
Δ′�r′

1 � Encpk(r̃′) and sends C′ to Z. Then the simulator behaves as an
honest prover in the protocol ΠZKPoCM with private input (r′, r̃′ mod 2k+s)
and common input C′, R′, Δ′

1.

– Simulating the Single command:
1. The same as before in (Single, P1) to extract (1, r′(1)) and emulating an

honest P2 in (Single, P2) to generate (2, r′(2)).

– Simulating the Triple command:
1. The same as in Single to extract a′(1) and b′(1), and emulating an honest

P2 to generate a′(2) and b′(2).
2. In any invocation of the sub-protocols Mult and ΠZKPoMCV, the simulator

behaves as an honest P2.
3. If the ZK-proofs do not fail, S1 sends a′(1) and b′(1) to Offline.

Fig. 5. Simulator for a corrupted P1 in the ΠOffline protocol.

Case i = 2 (P2 is corrupted). The rationale is the same as in the previous
case: we show that a poly-time environment Z that distinguishes a real view
from an ideal one can be used to construct a distinguisher D that contradicts
the key-indistinguishability property of the underlying encryption scheme. We
define D as follow.

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 373

The simulator S2 is defined by the following instructions:

– Simulating the initialize command:
1. Simulation of the call to KeyGen: S2 runs Gen(1λ, k + 2s), cGen(1λ, k + 2s)

and it gets (sk, pk) and (ck, tX). S2 sends pk, ck to Z and stores the trapdoor
tX .

2. The simulator behaves as an honest P1 in the protocol ΠOffline: S2 samples
α′(1) ← Z2k+s , sends Δ′

1 = Encpk(α′(1)) to Z.
3. S2 receives Δ′

2 from Z, extracts α′(2) from Δ′
2 using tX and sends

(Init, α′(2)) to Offline.

– Simulating the (Single, P1) command:
1. The simulator behaves as an honest P1 in the protocol ΠOffline: S2 samples

r′ ← Z2k+s , sends R′ = Encpk(r′) to Z.
2. Simulation of the sub-protocol Mult(r′, R′, α′(2), Δ′

2): S2 receives C′ and
behaves as an honest verifier in the protocol ΠZKPoCM on public input
(R′, Δ′

2, C
′) (S2 simulates Rand too). If the proof is accepted, the simulator

computes y′(2) = r′ ·α′(2) −Decsk(C′) mod 2k+s and sends (Single, P2, y
′(2))

to Offline.

– Simulating the (Single, P2) command:
1. S2 receives R′ from Z and extracts r′ from R′ using tX ;
2. Simulation of the sub-protocol Mult(α′(1), Δ′

1, r, R
′): S2 receives C′ and

behaves as an honest verifier in the protocol ΠZKPoCM on common input
(Δ′

1, R
′, C′). If the proof is accepted, S2 computes y′(2) = r′ · α′(1) −

Decsk(C′) mod 2k+s and sends (Single, P2, r
′, y′(2)) to Offline.

– Simulating the Single command:
1. The same as before in (Single, P1) and (Single, P2) to extract

(2, r′(2), m(2)(r′)).

– Simulating the Triple command:
1. The same as in Single to extract (a′(2), m(2)(a′)) and (b′(2), m(2)(b′)).

In a similar way, the simulator extracts the environment’s shares
(c′(2), m(2)(c′)) from the ciphertexts received in the multiplication and the
authentication step.

2. In any invocation of the sub-protocol ΠZKPoMCV, the simulator behaves as
an honest P1.

3. If the ZK-proofs do not fail, S2 sends the extracted values to Offline.

Fig. 6. Simulator for a corrupted P2 in the ΠOffline protocol.

On input pk∗, D generates (ck, tX) using cGen, initializes a copy of Z, sends
pk∗ and ck to Z and starts executing the protocol ΠOffline where Z controls party
P2 and D plays P1. The distinguisher D samples a bit b ← {0, 1}. If b = 1, D
plays P1 running the same instruction written for the simulator S2 and completes
view choosing the outputs for P1 as FOffline would do. If b = 0, D follows the
instructions for an honest P1 in the protocol. However, in the Mult sub-protocol,
when D receives the ciphertext C, it can not decrypt because it does not have

374 D. Catalano et al.

the secret key. On the other hand, D is allowed to rewind its copy of Z and
therefore it can use the knowledge extractor of protocol ΠZKPoCM (Theorem 4).
For example, if the proof ΠZKPoCM is run to check C = Encpk(a)�b̃ � Encpk(−r̃),
D gets from the knowledge extractor b = b̃ mod 2k+s and r = r̃ mod 2k+s and it
can compute its share as y = a · b− r mod 2k+s, and then continues the protocol
as if it had decrypted. Again, by construction, if pk∗ is a standard key, then the
view produced by D corresponds (statistically) to a real-view if b = 0, and to
an ideal-view if b = 1. On the other hand, if pk∗ is a lossy key, the ciphertexts
contained in the two views are statistically indistinguishable by definition of
lossy key. And, as in case i = 1, the messages produced as prover in ΠZKPoMCV

(and contained in the two views) are statistically indistinguishable because of
the unconditional zero-knowledge property.

3.1 On the Impossibility of Enhanced-CPA Security in Z2n :
Comparing with Overdrive Offline Phase

Recently Keller et al. [19] constructed an n-party MPC protocol in the prepro-
cessing model, where the online phase goes as the one in the SPDZ protocol,
while the offline is base on a 2-party multiplication protocol similar to the one
used in our paper. However, in [19] the ZK proof of correct multiplication is
replaced by a postponed check to verify the correctness of the output (similar
to the “SPDZ sacrifice”). The possibility of a selective failure attack that this
approach introduces is avoided assuming that the underlying encryption scheme
satisfies a stronger notion of security called enhanced CPA. This notion is recalled
in the full version of this paper. Here we prove that, somewhat surprisingly, this
notion cannot be achieved by encryption schemes that are linearly homomorphic
over rings of the form Z2n . More precisely, we show that any encryption scheme
that is both linearly homomorphic and whose message space is Z2n cannot satisfy
enhanced CPA security.

Theorem 2. Let (Gen,Enc,Dec) be an additive encryption scheme whose mes-
sage space is Z2n (see Sect. 2.2), then the scheme cannot achieve enhanced CPA
security (see the full version of this paper for further details).

Proof. We prove the theorem by showing an efficient adversary A that success-
fully wins in the enhanced CPA-security game, with non negligible advantage. A
works as follows. It receives from the challenger both the public key pk and the
encryption C = Encpk(m) of a random message m ∈ Z2n . Using the homomor-
phic properties of the scheme, A computes a new ciphertext C ′ that encrypts
the original message “shifted” by n − 1 positions to the left. Notice that this
only amounts at (homomorphically) multiplying the plaintext by the constant
2n−1 (i.e., C ′ = C�2n−1

= Encpk(2n−1 · m)). A proceeds by querying the oracle
on input C ′: if the answer is yes A learns that the least significant bit (lsb) of
m is 0; otherwise it learns that it is 1. Now, when the challenger sends out the
test message m′, A checks if lsb(m′) �= lsb(m) and outputs 1 if this is the case
(and 0 otherwise). It is easy to check that such an adversary manages to guess

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 375

the secret bit chosen by the challenger much better than at random (i.e. the
winning probability for A is 1/4).

4 Joye-Libert Cryptosystem and Companion Protocols

In this section we recall the Joye-Libert (JL) cryptosystem [5,17], we refer to
the original papers for details missing here.

Gen(1λ, n): The algorithm starts by choosing two random λ-bit primes p, q, satis-
fying the following constraints p ≡ 1 mod 2n and q ≡ 3 mod 4. For simplicity,
we let p = 2np′ + 1 and q = 2q′ + 1 where both p′ and q′ are primes.9 Let g
be a random generator of both Z

∗
p and Z

∗
q , N = pq, and μ = p′. The public

key is pk = (g, n,N) and the secret key is sk = μ.
The message space is M = {0, 1}n while the ciphertext space C is the sub-
set of Z

∗
N with Jacobi symbol 1. We note that membership in C can be

efficiently and publicly checked by computing the Jacobi symbol
(

C
N

)
of a

purposed ciphertext C.
Encpk(m): Choose a random x ∈ Z

∗
N and output C = gmx2n

mod N . With a
slight abuse of notation we write Encpk(m;x) to specify the randomness used.

Decsk(C): First, compute d = Cμ mod p and then retrieve m bit by bit, as
follows. Notice that d = (gμ)m mod p where gμ is an element of order 2n

in Z
∗
p. One can compute the least significant bit m0 of m = mn−1...m0 by

computing d2
n−1

mod p. Indeed, this is 1 if and only if m0 = 0. Knowing
mi−1...m0 one computes mi as follows: set mi = 0 if and only if

(
d/(gμ(mi−1...m0))

)2n−i−1

= 1 mod p

If one is interested in retrieving only the lowest n′ < n bits of the message, the
above mechanism can simply stop at the n′-th step. We can use this optimization
in our application where n = k + 2s and one is supposed to decrypt and then
take the result mod 2k+s. It is worthy to note that the decryption cost is linear
in the message bit-size: for the considered settings it can be even faster than a
Paillier cryptosystem as confirmed by experiments in Sect. 5. As shown in [5,17],
the scheme is linearly homomorphic over Z2n .

Security. As shown in [5,17], the JL scheme is semantically secure under the
n-quadratic residuosity (n-QR) assumption (that is like the standard quadratic
residuosity for a p ≡ 1 mod 2n). Moreover, the security analysis shows that
the scheme has the nice property of lossy public keys that we require in our
applications (see Sect. 2.2). The “lossy” key generation algorithm Gen consists
into sampling g as a 2n-residue, i.e., g ← h2n

for a random h ∈ Z
∗
N . Indis-

tinguishability of lossy keys from real ones is proven in [5,17]. Finally, observe

9 It is not strictly necessary that p′ and q′ are both primes: nevertheless for security
each of them should contain a big enough prime factor.

376 D. Catalano et al.

that for JL circuit privacy holds whenever one adds a fresh encryption of 0 after
an homomorphic computation (or equivalently, as used in our applications, the
homomorphic computation involves an addition of a freshly generated cipher-
text).

JL as a Commitment Scheme. It is straightforward to see that the JL cryptosys-
tem is a perfectly binding and computationally hiding commitment scheme for
messages in Z2n : opening simply consists into revealing the randomness used to
generate a ciphertext. Such commitments are extractable using an X-trapdoor
that is the decryption key. Moreover, the lossy keys property immediately yields
that JL is also a “mixed” commitment. Indeed, when generating the public key in
lossy mode, commitments become computationally binding and perfectly hiding.

Here we show that in lossy mode, the commitment is also equivocable. This
result is of independent interest since we do not use equivocation in our protocols.

First, recall that a key in equivocation mode is a g = h2n

for a random
h ∈ Z

∗
N that is stored as the equivocation trapdoor. Given h one can equivocate

a commitment to m with randomness r to an arbitrary m′ as follows. Let C =
gmr2

n

mod N = (hmr)2
n

mod N and let m′ = m + α over integers; we can
rewrite the previous equation as (hm+α−αr)2

n

mod N = gm′
(h−αr)2

n

mod N
and thus setting r′ = h−αr mod N does the job.

Companion Protocols. In the next section we propose an HVZK protocol for
proving correct multiplication relations. Then we show a protocol for proving
(partial) knowledge of plaintexts of JL ciphertexts. This is not used in our 2PC
protocol but is of independent interest and is given in the full version of this
paper.

4.1 Zero-Knowledge Proof of Correct Multiplication

Here we propose an instantiation of the protocol ΠZKPoCM. For i = 1, 2, let
pki = (gi, n,Ni) be a JL public key (both working with the same message space)
and let Ci be the respective ciphertext spaces. In Fig. 7 we describe a Σ-protocol
for the NP relation R′ ⊆ (Z2n−s)2 × C2

1 × C2:

R′ ={((b, r), (A, C, B)) | ∃ (b̃, r̃) ∈ (Z2n)2, (xr, xb) ∈ Z
∗
N1 × Z

∗
N2 s.t.

B = Encpk2(b̃, xb), C = A�b̃ � Encpk1(r̃, xr), b = b̃ mod 2n−s, r = r̃ mod 2n−s}.

This proof system allows one to prove knowledge of the least n − s significant
bits of the messages b̃, r̃ used to define the ciphertext C.

Intuitively, the reason why we do not prove knowledge of the entire mes-
sages is that, for technical reasons related to the fact that not all messages are
invertible, this is actually not possible. Interestingly enough, however, if we set
challenges to be integers of s bits, then we can recover all but the s most sig-
nificant bits. This means that if one carefully encrypts messages that are small

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 377

enough (e.g., all the s most significant bits are zero), then one can actually
recover the full message.

In what follows we prove that the protocol ΠZKPoCM guarantees correctness,
(honest verifier) zero knowledge and special soundness.

Completeness. This can be seen by inspection of the protocol.

Protocol ΠZKPoCM

Common input for prover and verifier: two JL public keys pki = (gi, n, Ni), for
i = 1, 2, and JL ciphertexts A, C ∈ C1 and B ∈ C2.
Private input for the prover: b̃, r̃ ∈ Z2n and (xr, xb) ∈ Z

∗
N1 × Z

∗
N2 such that B =

Encpk2(b̃, xb) and C = A�b̃ � Encpk1(r̃, xr).

1. P samples β ∈ Z
∗
N2 and computes R = Encpk2(r̃, β) = gr̃

2β2n mod N2.
Also it samples x, y ← Z2n and v ← Z

∗
N1 , γx, γy ← Z

∗
N2 and computes:

D = Axgy
1v2n mod N1, X = gx

2γ2n

x mod N2, Y = gy
2γ2n

y mod N2. It sends
R, D, X, Y to the verifier.

2. The verifier sends backa e ← Z2s .
3. The prover computes zb = x + eb̃ mod 2n, zr = y + er̃ mod 2n and qb, qr such

that qb2n = x + eb̃ − zb and qr2n = y + er̃ − zr, computes δb = γxxe
bg

qb
2 mod

N2, δr = γyβegqr
2 mod N2, ω = Aqbxe

rg
qr
1 v mod N1, and sends to the verifier

zb, zr, δb, δr, ω.
4. The verifier accepts if and only if all the following checks pass

(a) DCe = AzbEncpk1(zr, ω)
(b) XBe = g

zb
2 δ2

n

b mod N2 = Encpk2(zb, δb)
(c) Y Re = gzr

2 δ2
n

r mod N2 = Encpk2(zr, δr)
and if A, C, D ∈ C1 and B, R, X, Y ∈ C2 hold.

a For the sake of simplicity, Rand is used to generate the challenge e when ΠZKPoCM

is used as sub-protocol of ΠOffline.

Fig. 7. Proof of correct multiplication for JL-encryptions

Theorem 3 (Honest-Verifier Zero-Knowledge). If JL is a semantically
secure public key encryption, then the protocol in Fig. 7 is honest-verifier zero-
knowledge. Furthermore, if in the protocol the public key pk2 is generated in lossy
mode, then honest-verifier zero-knowledge holds unconditionally.

Proof. First, we describe a simulator that works as follows. Given a challenge
e and JL ciphertexts A,B,C: sample zb, zr ← Z2n , R ← C2, δb, δr ← Z

∗
N2

,
ω ← Z

∗
N1

, and set D = Azbgzr
1 ω2n

C−e mod N1, X = gzb
2 δ2

n

b B−e mod N2 and
Y = gzr

2 δ2
n

r R−e mod N2.

378 D. Catalano et al.

We claim that the simulated proof is computationally indistinguishable from
the real one under the assumption that JL is semantically secure. The only
(information-theoretic) difference between the real proof and the simulated one
is that in the simulation R is the encryption of a random message, not the same r̃
known by the honest prover. This however is not noticeable to a computationally-
bounded distinguisher. More formally, this can be argued by defining an hybrid
simulator that takes as input r̃ and computes the proof as the simulator above
with the only difference that R is a fresh encryption of r̃. The proofs created
by this hybrid simulator are computationally indistinguishable from the ones
created by the ZK simulator under the assumption that JL (over public key pk2)
is semantic secure. As a next step, one must argue that the proofs created by this
hybrid simulator and the ones of the honest prover are distributed identically.
This can be verified by inspection.

Finally, when pk2 is lossy, then we can skip the computational step of the
proof since, even if R is sampled randomly, by the lossy property is distributed
identically to a lossy encryption of r̃.

Theorem 4 (Special Soundness). The protocol in Fig. 7 has special sound-
ness.

Proof. We prove that a prover cannot succeed in proving a wrong statement
unless with negligible probability. We prove this as follows.

Assume that, for the same values used in steps 1 and 2 of the protocol, a
prover manages to successfully answer for a non negligible fraction of challenges
e. This means that there exist e1, e2, e1 �= e2 (and wlog e1 > e2) such that

1. CΔe=e1−e2 = AΔzb=zb1−zb2Enc(Δzr = zr1 − zr2, ω/ω′)
2. BΔe = gΔzb

2 (δb/δ′b)
2n

mod N2

3. RΔe = gΔzr
2 (δr/δ′r)

2n

mod N2

We distinguish between 2 cases, depending on whether gcd(Δe, 2n) = 1 or not.

Case gcd(Δe, 2n) = 1. In this case one can easily extract a full b̃ ∈ Z2n as
b̃ = Δzb/Δe mod 2n and r̃ ∈ Z2n as r̃ = Δzr/Δe mod 2n.

Case gcd(Δe, 2n) �= 1. In this case let gcd(Δe, 2n) = 2t for some t ≤ s (the
latter holds because e1, e2 ∈ Z2s). We can rewrite the three equations above
as follows
1. C2te′

= AΔzbEnc(Δzr, ω/ω′)
2. B2te′

= gΔzb
2 (δb/δ′b)

2n

mod N2

3. R2te′
= gΔzr

2 (δr/δ′r)
2n

mod N2

From now on let us focus on the second equation above (the same argument
will trivially hold for the third equation). First let d be the inverse of e′ mod 2n.
Exponentiating both sides of the equation to d leads to the following B2t

=

gdΔzb
2

(
(δb/δ′b)

d
)2n

mod N2. Notice that since g2 is not a quadratic residue, the

integer dΔzb must be even. Let t′ be the largest integer such that 2t′
divides

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 379

dΔzb, i.e., dΔzb = 2t′
d′ for some odd number d′. Clearly t′ ≤ n. We can rewrite

the equation as

B2t

= g2
t′

d′
2

(
(δb/δ′b)

d
)2n

mod N2 (1)

We distinguish two cases: (a) t > t′ and (b) t ≤ t′.

Case (a) t > t′: If (1) holds and B2t−t′
/(gd′

2

(
(δb/δ′b)

d
)2n−t′

) mod N2 /∈
{−1, 1}, then we can immediately factor N2 since we found a nontrivial root
of unity. Given the factorization of N2 extracting b̃ from B is possible using
decryption. Otherwise, we have that

B2t−t′
= u · gd′

2

(
(δb/δ′b)

d
)2n−t′

mod N2 (2)

for u = 1 or u = −1. We show that neither of the cases can occur. If u = 1, the
equality (2) is not possible because d′ is odd and g2 is not a quadratic residue
by construction. If u = −1, (2) is not possible because in this group setting
(p ≡ 1 mod 2n and q ≡ 3 mod 4) −1 has Jabobi symbol −1 in Z

∗
N2

(see [5,
Theorem 1]) whereas all the other terms of the equation have Jacobi symbol 1.
This concludes case (a).

Case (b) t ≤ t′: Let b̃ ∈ Z2n be the integer encrypted in B. By the
homomorphic property of JL we have that B2t

is a ciphertext that encrypts
2tb̃ mod 2n = 2t(b̃ mod 2n−t) = 2tbt.

From Eq. (1), we can write B2t

as an encryption of 2t′
d′. Combined with

the previous observation we have 2t(b̃ mod 2n−t) = 2t′
d′ and using the fact that

t ≤ t′ we obtain that bt = b̃ mod 2n−t = 2t′−td′ = dΔzb2−t. This shows that
dΔzb2−t ∈ Z2n−t is the (n−t)-bit portion of the message encrypted in B. Finally,
since t ≤ s we can set b = (dΔzb2−t) mod 2n−s. This concludes the proof about
extractability of b.

By applying exactly the same argument above to R and the third verification
equation, we can extract r ∈ Z2n−s as r = (dΔzr2−t) mod 2n−s.

Towards concluding the proof, let us recall that the relation requires

B = Encpk2(b̃, xb), C = A�b̃ � Encpk1(r̃, xr), b = b̃ mod 2n−s, r = r̃ mod 2n−s

We have already extracted b and r; in what follows we need to argue that they
satisfy the relation above. The check about B is already satisfied. So let us focus
on the remaining checks.

Let ã be the integer encrypted in A, namely let us write A = gã
1x2n

a . Similarly,
let c̃ ∈ Z2n be the integer encrypted in C. Then showing that the extracted values
satisfy the relation means to show that c̃ = ãb̃ + r̃ mod 2n such that the least
n − s significant bits of b̃, r̃ are b and r respectively. More formally, this means
to show that there is some qs such that c̃ can be written as asb + r + qs2n−s, for
as = ã mod 2n−s. In other words, cs = c̃ mod 2n−s = asb + r mod 2n−s.

380 D. Catalano et al.

Now let us consider the first equation. By the homomorphic property we have
that C2t

is a ciphertext that encrypts c′ = 2tc̃ mod 2n = 2t(c̃ mod 2n−t) = 2tct.
From the first verification equation, exponentiating both sides of the equation

by d = e′−1 mod 2n, we get C2t

= AdΔzbgdΔzr
1

(
(ω/ω′)d

)2n

mod N1 and using
the expression of A, we can rewrite the equation as

C2t

= g
d(ãΔzb+Δzr)
1

(
xdΔzb

a (ω/ω′)d
)2n

mod N1

= g
ã(dΔzb)+(dΔzr)
1

(
xdΔzb

a (ω/ω′)d
)2n

mod N1

= gα̃
1

(
gqα

1 xdΔzb
a (ω/ω′)d

)2n

mod N1

where in the last equation we used ãdΔzb + dΔzr = α̃ + qα2n.
Thus we have that c′ = α. Notice that 2t divides both dΔzb and dΔzr (this

follows from the arguments used in the extractability of b and r), and thus by
definition of α̃, 2t | α̃. In particular, α̃2−t = ãdΔzb2−t + dΔzr2−t − qα2n−t.

Therefore, ct = c′2−t = α̃2−t = ãdΔzb2−t + dΔzr2−t − qα2n−t = ãbt + rt −
qα2n−t = atbt + rt + q2n−t.

If we take both sides mod 2n−s (recall that t ≤ s), we have that cs = c̃ mod
2n−s = asb + r mod 2n−s as it was to be proven.

4.2 Zero-Knowledge Proof of Correct Multiplication of Two
Committed (or Encrypted) Values

Here we propose an instantiation of the protocol ΠZKPoMCV that allows a prover
to show that she correctly performed multiplication of two committed (or
encrypted) values. The protocol is given in Fig. 8. Essentially, it considers a
special case of the relation supported by the protocol in the previous section in
which r = 0 and the ciphertexts are under the same public key. This specializa-
tion allows us to simplify and optimize the resulting protocol. Let pk = (g, n,N)
be a JL public key and C its corresponding ciphertext space10. Specifically, we
give a Σ-protocol for the NP relation R ⊆ (Z2n−s) × C3:

R ={(b, (A,C,B)) | ∃ b̃ ∈ Z2n , (xr, xb) ∈ (Z∗
N)2 s.t.

B = Encpk(b̃, xb), C = A�b̃ � Encpk(0, xr), b = b̃ mod 2n−s}.

As in previous protocols in this paper, this proof system allows one to prove
knowledge of the least n − s significant bits of the message b̃ used to define the
ciphertext C.

Notice that correctness of the protocol ΠZKPoCM can be easily inferred by
inspection. Special soundness follows as a special case of Theorem 4 (when ignor-
ing the third equation and setting r = 0). Honest verifier zero-knowledge also

10 When ΠZKPoMCV is used in the offline phase of MonZ2ka, we have pk = pk1 if the P1

is the prover or pk = pk2 if P2 is the prover (pk1, pk2 are the keys used in ΠZKPoCM).

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 381

follows as a special case of Theorem 3. Interestingly, however, in this protocol
ΠZKPoMCV the zero knowledge property holds unconditionally. Recall that in the
proof of Theorem 3 the only reason we needed to resort to the semantic security
of JL was because of the possible difference between the ciphertext R used by the
prover and the one sampled by the simulator. Since in our case there is no such
a difference, there is also no difference between the real proof and the simulated
one.

Protocol ΠZKPoMCV

Common input for prover and verifier: A JL public key pk = (g, n, N), and JL
commitments (ciphertexts) A, B, C ∈ C.
Private input for the prover: b̃ ∈ Z2n and xb, xr ∈ Z

∗
N such that B = Encpk(b̃, xb)

and C = A�b̃ � Encpk(0, xr).

1. P samples x ← Z2n and v, γx ← Z
∗
N and computes: D = Axv2n mod N ,

X = gxγ2n

x mod N . It sends D, X to the verifier.
2. The verifier sends backa e ← Z2s .
3. The prover computes zb = x + eb̃ mod 2n and qb such that qb2n = x + eb̃ − zb,

computes
δb = γxxe

bg
qb mod N, ω = Aqbvxe

r mod N , and sends to the verifier zb, δb, ω.
4. The verifier accepts if and only if all the following checks pass

(a) DCe = AzbEncpk(0, ω)
(b) XBe = gzbδ2

n

b mod N = Encpk(zb, δb)
and if A, B, C, D, X ∈ C holds.

a Again, for the sake of simplicity, Rand is used to generate the challenge e when
ΠZKPoMCV is used as sub-protocol of ΠOffline.

Fig. 8. Modified (simpler) version of ΠZKPoCM.

5 Efficiency Analysis

Here we turn to estimate the efficiency of our preprocessing protocol with respect
to SPDZ2k in [9]; the online phase is essentially the same. Before entering into
the details of the evaluation, in the next section we discuss a variant of our
offline protocol that significantly reduces the overall bandwidth consumption at
the cost of (1) explicitly requiring the random oracle heuristic, and (2) increasing
the computational overhead of both players. Next, we analyze the efficiency of
both the base and optimized versions.

Optimization Using Random Oracles. First, assume that P1 knows the
secret key corresponding to the encryption scheme (Gen,Enc,Dec) (as it already
holds), and that P2 is given the extraction trapdoor for the (extractable)

382 D. Catalano et al.

commitment (cGen,Com). Since valid JL ciphertexts – and commitments – are
both easy to recognize and easy to sample, the holder of the secret decryp-
tion key (resp. extraction trapdoor) has an alternative way to generate a cou-
ple (m,Enc(m)) (resp. (m,Com(m)) with m random: it first samples a random
ciphertext Enc(m) (resp. commitment Com(m)), and then extracts m using the
secret key11. It is straightforward to see that these two sampling procedures (i.e.,
via encryption or decryption) generate the same distribution.

The related security proofs would require minor changes to the simulators
S1,S2: for example, S1 in (Single, P1) would get R′ from FRand, instead of from
Z, and in (Single, P2) it would compute r′ from R′ (again received from FRand)
using the extraction trapdoor of the commitment, as the honest P2 would do.

This simple idea can be used to gain in communication complexity as fol-
lows. In protocol ΠOffline on input (Single, P1, sid, ssid), the parties can get a
common R = Encpk(r), without any communication, by simply setting R ←
H1(ω1, sid, ssid) where ω1 is some common auxiliary information and H1 is a
random oracle mapping into the ciphertext space of Encpk. Similarly, on input
(Single, P2, sid, ssid), the parties can get a common R = Comck(r) by setting
R ← H2(ω2, sid, ssid) (where, again, ω2 is some common auxiliary information
and H2 is a random oracle mapping into the commitment space of Comck).

Similarly, the communication complexity of ΠZKPoCM (see Sect. 4.1) can be
reduced by generating X and Y using the random oracle in exactly the same
way. Moreover the resulting protocols remain secure with these modifications as,
all the quantities retain the same original distribution and, as proved in Sect. 4.1,
the (special) soundness of ΠZKPoCM holds unconditionally. The same holds for
ΠZKPoMCV (see Sect. 4.2): the transmission of X (an encryption of random value
x) can be avoided.

Bandwidth Usage. The bandwidth of our sub-protocols depends on
few parameters: the size of the generic modulus used in the JL encryp-
tion/commitment schemes denoted as |N |, the message bit-length k, the sta-
tistical security parameter s and the internal parameter n = k + 2s.

We analyze the elements exchanged between the parties. The sub-protocol
ΠZKPoCM in Fig. 7 sends a total of 7 elements of size |N | and two of n bits.
The sub-protocol ΠZKPoMCV in Fig. 8 sends four elements of size |N | and one of
n bits. The multiplication sub-protocol Mult in Fig. 3 sends an element of size
|N | before an invocation of ΠZKPoCM. The sub-protocols (Single, Pi) in Fig. 3
send an encryption/commitment (size |N |) followed by an instance of Mult; the
variant Single, used to generate a shared random value unknown to all parties,
runs (Single, P1) and (Single, P2). Finally, in Triple one invokes two times Single,
four times Mult, two times ΠZKPoCM and sends four encryptions/commitments

11 More precisely, in order for the above idea to be any useful in our protocols, we also
need to extract the randomness associated to the encryption/commitment. Luckily,
this happens to be the case when using JL as underlying building block.

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 383

Table 1. Bandwidth analysis of our sub-protocols

ΠZKPoCM ΠZKPoMCV Mult (Single, Pi) Single Triple

MonZ2ka base 7|N | + 2n 4|N | + n 8|N | + 2n 9|N | + 2n 18|N | + 4n 78|N |+18n

MonZ2ka optim. 5|N | + 2n 3|N | + n 6|N | + 2n 6|N | + 2n 12|N | + 4n 56|N |+18n

with size |N | bits12. In the summary on Table 1 we also consider the optimized
version of our protocol discussed in Sect. 5.

For a concrete comparison we consider some significant settings, varying the
available parameters, and comparing the results with data on SPDZ2k in [9].
For each considered computational security level S ∈ {80, 112, 128}, we select
a proper statistical security parameter s according to the message bit-length
k ∈ {32, 64, 128}. The size of the modulus N is selected according to recent
NIST recommendations13. The extended comparison is reported in Table 2 with
bold remarks on the best values per triple and single generation14. The global
costs to generate a triple and a single (input sharing) in SPDZ2k are computed
according to the formulas 2(k + 2s)(9s + 4k) and (s + 1)(k + 2s) reported in
Section 7 of [9]. For the input sharing step of our protocols we consider the cost
of (Single, Pi) as a random shared value known to Pi is later used to share a
secret input belonging to him .

Implementation and Computational Benchmark. We implemented the
off-line phase of the base version of MonZ2ka15: it produces triples and singles
that could be used in the on-line phase of SPDZ2k . Our implementation is writ-
ten in language C and uses the GNU Multiprecision Library16 (GMP) for the
MPI operations. We used two servers equipped with an Intel Xeon 8124M CPU
running at 3.0 GHz: each server hosts a single thread running one of the two par-
ties. We simulated three typical deploying scenarios: two servers connected by a
common 1 Gigabit Ethernet LAN with an average latency (intended as Round
Trip Time—RTT) of 0.5 ms and two servers hosted by two different data-centers
connected by a fast WAN with 17 ms of latency17 or by a very-limited WAN
with 100 ms of latency and a bandwidth of 50 Mb/s.

12 Similarly to the analysis in [9], we ignore the negligible costs of FRand and of the
check of the openings in Triple as it can be performed in a batch when producing
many triples at once.

13 https://keylength.com.
14 For sake of completeness, in the border case with S = 80, s = 40 and k = 128,

we considered a slightly larger modulus |N | = 1160 in order to satisfy the security
constraint k + 2s < 1

4
log2(N) − S on JL scheme from [5].

15 The source code of our project is publicly available at: https://github.com/crypto-
unict/monza-mpc.

16 https://gmplib.org.
17 We considered the actual ping delay between Amazon and Google data-centers.

https://keylength.com
https://github.com/crypto-unict/monza-mpc
https://github.com/crypto-unict/monza-mpc
https://gmplib.org

384 D. Catalano et al.

Table 2. Bandwidth comparison with SPDZ2k (costs in kbit)

SPDZ2k MonZ2ka base MonZ2ka optim.

S |N | k s triple input triple input triple input

32 32 79.87 3.17 81.60 9.41 59.07 6.34

80 1024 64 40 177.41 5.90 82.46 9.50 59.94 6.43

128 40 362.75 8.53 94.22 10.86 68.70 7.38

32 32 79.87 3.17 161.47 18.62 116.42 12.48

112 2048 64 56 267.52 10.03 162.91 18.78 117.86 12.64

128 56 487.68 13.68 164.06 18.91 119.01 12.77

32 32 79.87 3.17 241.34 27.84 173.76 18.62

128 3072 64 64 319.49 12.48 243.07 28.03 175.49 18.82

128 64 557.06 16.64 244.22 28.16 176.64 18.94

(S: comp. sec. level; N : JL-schemes modulus; k: message bit-length; s: stat. sec. level)

The underlying JL encryption scheme has been implemented following the
specifications in [5] with few adjustments: adaptation of the decryption algorithm
to support the partial extraction of the plaintext18 (as described in Sect. 4), usage
of some precomputed values derived by some components of the public and secret
keys (as described in Section 5.2 in [5]) and a faster encryption exploiting some
fixed base exponentiations.

For each protocol we measured the effective (wall clock) time required to get
the final output but also the CPU usage (in percent): indeed in a real implemen-
tation the CPU can become idle waiting for incoming values delayed by network
latency. Even a medium latency can degrade the final performance of an inter-
active protocol: in order to overcome this limit, we engineered the possibility to
run on a single CPU thread a batch of interlaced runs in order to piggyback the
passing network messages. As shown by our tests, this allows to get even on a
very slow WAN connection almost the same throughput rate of a LAN.

The experiments used the following parameters: message bit-length k = 64,
computational security level S = 112, statistical security level s = 56 and JL
modulus size |N | = 2048 bit. The benchmarks reported in Table 3 are obtained
as average on a batch of several runs with low standard deviation (1%). The
value in the column “average time” is intended as the average cost of a single
item of the batch.

18 JL decryption can be surprisingly fast for small messages; as reference a Paillier
decryption, with identical parameters/machine/setting used in Table 3, has a cost
that range from 7864µs to 4323µs (if CRT is exploited). JL requires only 4054µs.

MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k 385

Table 3. Benchmarks on MonZ2ka off-line protocol

triple input

latency batch av. time CPU P1 CPU P2 throug. av. time CPU P1 CPU P2 throug.

(ms) (items) (ms) (%) (%) (item/s) (ms) (%) (%) (item/s)

1 56.65 80% 32% 17.65 7.99 70% 24% 125.16

0.5 100 52.24 86% 35% 19.14 7.41 74% 26% 134.95

(LAN) 1000 52.36 85% 35% 19.10 7.43 74% 26% 134.59

1 253.68 18% 7% 3.94 40.37 14% 5% 24.77

17.0 1000 53.05 84% 34% 18.85 7.52 74% 25% 132.99

(WAN) 2000 52.34 85% 34% 19.11 7.42 74% 26% 134.77

1 1252.53 4% 2% 206.85 40.37 3% 1% 4.83

100.0 1000 58.34 77% 31% 17.14 8.25 67% 23% 121.21

(WAN) 4000 55.44 81% 33% 18.03 7.95 70% 24% 125.79

Acknowledgements. The research of Dario Catalano and Mario Di Raimondo has
been partially supported by the Università degli Studi di Catania, “Piano della Ricerca
2016/2018—Linea di intervento 2”.

The research of Dario Fiore has been partially supported by the Spanish Gov-
ernment under projects SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref.
EUR2019-103816), and SECURITAS (ref. RED2018-102321-T), and by the Madrid
Regional Government under project BLOQUES (ref. S2018/TCS-4339).

References

1. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-
ing the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security
and Privacy, pp. 843–862. IEEE Computer Society Press, May 2017

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.), ACM CCS 2016, pp.
805–817. ACM Press, October 2016

3. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195. IEEE Computer
Society Press, October 2004

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

5. Benhamouda, F., Herranz, J., Joye, M., Libert, B.: Efficient cryptosystems from
2k-th power residue symbols. J. Cryptol. 30(2), 519–549 (2017). https://doi.org/
10.1007/s00145-016-9229-5

6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/s00145-016-9229-5
https://doi.org/10.1007/s00145-016-9229-5
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13

386 D. Catalano et al.

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

8. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015, pp. 1518–1529. ACM Press, October 2015

9. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Heidelberg (2018). https://
doi.org/10.1007/978-3-319-96881-0 26

10. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation
over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 37

11. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

12. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
efficient MPC over arbitrary rings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 799–829. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96881-0 27

13. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

14. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 225–
255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

15. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

16. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC, pp. 365–377. ACM
Press, May 1982

17. Joye, M., Libert, B.: Efficient cryptosystems from 2k -th power residue symbols.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
76–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 5

18. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

19. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

20. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: efficient secure MPC over
z2k from somewhat homomorphic encryption. Cryptology ePrint Archive, Report
2019/153 (2019)

https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/978-3-642-38348-9_5
https://doi.org/10.1007/978-3-319-78372-7_6

Post-Quantum Primitives

Generic Authenticated Key Exchange
in the Quantum Random Oracle Model

Kathrin Hövelmanns1(B), Eike Kiltz1, Sven Schäge1, and Dominique Unruh2

1 Ruhr-Universität Bochum, Bochum, Germany
{kathrin.Hoevelmanns,eike.kiltz,sven.schaege}@rub.de

2 University of Tartu, Tartu, Estonia
unruh@ut.ee

Abstract. We propose FOAKE, a generic construction of two-message
authenticated key exchange (AKE) from any passively secure public
key encryption (PKE) in the quantum random oracle model (QROM).
Whereas previous AKE constructions relied on a Diffie-Hellman key
exchange or required the underlying PKE scheme to be perfectly cor-
rect, our transformation allows arbitrary PKE schemes with non-perfect
correctness. Dealing with imperfect schemes is one of the major diffi-
culties in a setting involving active attacks. Our direct construction,
when applied to schemes such as the submissions to the recent NIST
post-quantum competition, is more natural than previous AKE trans-
formations. Furthermore, we avoid the use of (quantum-secure) digital
signature schemes which are considerably less efficient than their PKE
counterparts. As a consequence, we can instantiate our AKE transfor-
mation with any of the submissions to the recent NIST competition, e.g.,
ones based on codes and lattices.

FOAKE can be seen as a generalisation of the well known Fujisaki-
Okamoto transformation (for building actively secure PKE from pas-
sively secure PKE) to the AKE setting. As a helper result, we also provide
a security proof for the Fujisaki-Okamoto transformation in the QROM
for PKE with non-perfect correctness which is tighter and tolerates a
larger correctness error than previous proofs.

Keywords: Authenticated key exchange · Quantum random oracle
model · NIST · Fujisaki-Okamoto

1 Introduction

Authenticated Key Exchange. Besides public key encryption (PKE) and
digital signatures, authenticated key exchange (AKE) is arguably one of the
most important cryptographic building blocks in modern security systems.
In the last two decades, research on AKE protocols has made tremendous
progress in developing more solid theoretical foundations [10,19,31,38] as well
as increasingly efficient designs of AKE protocols [37,44,47]. Most AKE pro-
tocols rely on constructions based on an ad-hoc Diffie-Hellman key exchange
that is authenticated either via digital signatures, non-interactive key exchange
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 389–422, 2020.
https://doi.org/10.1007/978-3-030-45388-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_14

390 K. Hövelmanns et al.

(usually a Diffie-Hellman key exchange performed on long-term Diffie-Hellman
keys), or public key encryption. While in the literature one can find many pro-
tocols that use one of the two former building blocks, results for PKE-based
authentication are rather rare [8,17]. Even rarer are constructions that only rely
on PKE, discarding Diffie-Hellman key exchanges entirely. Notable recent excep-
tions are [23,24] and the protocol in [2], the latter of which has been criticised
for having a flawed security proof and a weak security model [39,46].

The NIST Post-Quantum Competition. Recently, some of the above men-
tioned designs have gathered renewed interest in the quest of finding AKE proto-
cols that are secure against quantum adversaries, i.e., adversaries equipped with
a quantum computer. In particular, the National Institute of Standards and
Technology (NIST) announced a competition with the goal to standardise new
PKE and signature algorithms [41] with security against quantum adversaries.
With the understanding that an AKE protocol can be constructed from low level
primitives such as quantum-secure PKE and signature schemes, the NIST did
not require the submissions to describe a concrete AKE protocol. Many PKE and
signature candidates base their security on the hardness of certain problems over
lattices and codes, which are generally believed to resist quantum adversaries.

The quantum ROM. Quantum computers may execute all “offline primitives”
such as hash functions on arbitrary superpositions, which motivated the intro-
duction of the quantum (accessible) random oracle model (QROM) [14]. While
the adversary’s capability to issue quantum queries to the random oracle ren-
ders many proof strategies significantly more complicated, it is nowadays gener-
ally believed that only proofs in the QROM imply provable security guarantees
against quantum adversaries.

AKE and Quantum-Secure Signatures. Digital signatures are useful for the
“authentication” part in AKE, but unfortunately all known quantum-secure con-
structions would add a considerable overhead to the AKE protocol. Therefore, if
at all possible, we prefer to build AKE protocols only from PKE schemes, with-
out using signatures.1 Our ultimate goal is to build a system that remains secure
in the presence of quantum computers, meaning that even currently employed
(very fast) signatures schemes based on elliptic curves are not an option.

Central Research Question for Quantum-Secure AKE. In summary,
motivated by post-quantum secure cryptography and the NIST competition, we
are interested in the following question:

How to build an actively secure AKE protocol from any passively
secure PKE in the quantum random oracle model, without using
signatures?

(The terms “actively secure AKE” and “passively secure PKE” will be made
more precise later.) Surprisingly, one of the main technical difficulties is that
1 Clearly, PKE requires a working public-key infrastructure (PKI) which in turn

requires signatures to certify the public-key. However, a user only has to verify a
given certificate once and for all, which means the overhead of a quantum-secure
signature can be neglected.

Generic AKE in the QROM 391

the underlying PKE scheme might come with a small probability of decryption
failure, i.e., first encrypting and then decrypting does not yield the original
message. This property is called non-perfect correctness, and it is common for
quantum-secure schemes from lattices and codes, rendering them useless for all
previous constructions that relied on perfect correctness.2

Previous Constructions of AKE from public-key primitives. The
generic AKE protocol of Fujioka et al. [23] (itself based on [17]) transforms
a passively secure PKE scheme PKE and an actively (i.e., IND-CCA) secure
PKE scheme PKEcca into an AKE protocol. We will refer to this transforma-
tion as FSXY[PKE,PKEcca]. Since the FSXY transformation is in the standard
model, it is likely to be secure with the same proof in the post-quantum set-
ting and thus also in the QROM. The standard way to obtain actively secure
encryption from passively secure ones is the Fujisaki-Okamoto transformation
PKEcca = FO[PKE,G,H] [25,26]. In its “implicit rejection” variant [28], it comes
with a recently discovered security proof [43] that models the hash functions G
and H as quantum random oracles. Indeed, the combined AKE transformation
FSXY[PKE,FO[PKE,G,H]] transforms passively secure encryption into AKE that
is very likely to be secure in the QROM, without using digital signatures, hence
giving a first answer to our above question. It has, however, two main drawbacks.

– Perfect correctness requirement. Transformation FSXY is not known to
have a security proof if the underlying scheme does not satisfy perfect correct-
ness. Likewise, the relatively tight QROM proof for FO that was given in [43]
requires the underlying scheme to be perfectly correct, and a generalisation
of the proof for schemes with non-perfect correctness is not straightforward.
Hence, it is unclear whether FSXY[PKE,FO[PKE,G,H]] can be instantiated
with lattice- or code-based encryption schemes.

– Lack of simplicity. The Fujisaki-Okamoto transformation already involves
hashing the key using hash function H, and FSXY involves even more (poten-
tially redundant) hashing of the (already hashed) session key. Overall, the
combined transformation seems overly complicated and hence impractical.

In [24], a transformation was given that started from oneway-secure KEMs,
but its security proof was given in the ROM, and its generalisation to the QROM
was explicitly left as an open problem. Furthermore, it involves more hashing,
similar to transformation FSXY.

Hence, it seems desirable to provide a simplified transformation that gets rid
of unnecessary hashing steps, and that can be proven secure in the QROM even

2 There exist generic transformations that can immunise against decryption errors
(e.g., [22]). Even though they are quite efficient in theory, the induced overhead is
still not acceptable for practical purposes. While lattice schemes could be rendered
perfectly correct by putting a limit on the noise, and setting the modulus of the LWE
instance large enough (see, e.g., [12,29]), the security level cannot be maintained
without increasing the problem’s dimension, accordingly. Since this modification
would lead to increased public-key and ciphertext length, many NIST submissions
deliberately made the design choice of having imperfect correctness.

392 K. Hövelmanns et al.

if the underlying scheme does not satisfy perfect correctness. As a motivating
example, note that the Kyber AKE protocol [16] can be seen as a result of
applying such a simplified transformation to the Kyber PKE scheme, although
coming without a formal security proof.

1.1 Our Contributions

Our main contribution is a transformation, FOAKE[PKE,G,H] (“Fujisaki-Okamoto
for AKE”) that converts any passively secure encryption scheme into an actively
secure AKE protocol, with provable security in the quantum random oracle
model. It can deal with non-perfect correctness and does not use digital signa-
tures. Our transformation FOAKE can be viewed as a modification of the trans-
formation given in [24]. Furthermore, we provide a precise game-based security
definition for two-message AKE protocols. As a side result, we also give a security
proof for the Fujisaki-Okamoto transformation in the QROM in Sect. 3 that deals
with correctness errors. It can be seen as the KEM analogue of our main result,
the AKE proof. Our proof strategy differs from and improves on the bounds of
a previously published proof of the Fujisaki-Okamoto transformation for KEMs
in the QROM [32].

FO Transformation for KEMs. To simplify the presentation of FOAKE, we first
give some background on the Fujisaki-Okamoto transformation for KEMs. In its
original form [25,26], FO yields an encryption scheme that is IND-CCA secure
in the random oracle model [9] from combining any One-Way secure asymmet-
ric encryption scheme with any one-time secure symmetric encryption scheme.
In “A Designer’s Guide to KEMs”, Dent [21] provided FO-like IND-CCA secure
KEMs. (Recall that any IND-CCA secure Key Encapsulation Mechanism can be
combined with any (one-time) chosen-ciphertext secure symmetric encryption
scheme to obtain a IND-CCA secure PKE scheme [20].) Since all of the transfor-
mations mentioned above required the underlying PKE scheme to be perfectly
correct, and due to the increased popularity of lattice-based schemes with non-
perfect correctness, [28] gave several modularisations of FO-like transformations
and proved them robust against correctness errors. The key observation was
that FO-like transformations essentially consists of two separate steps and can
be dissected into two transformations, as sketched in the introduction of [28]:

– Transformation T: “Derandomise” and “re-encrypt”. Starting from an encryp-
tion scheme PKE and a hash function G, encryption of PKE′ = T[PKE,G] is
defined by

Enc′(pk ,m) := Enc(pk ,m;G(m)),

where G(m) is used as the random coins for Enc, rendering Enc′ deterministic.
Dec′(sk , c) first decrypts c into m′ and rejects if Enc(pk ,m′;G(m′)) �= c (“re-
encryption”).

– Transformation U�⊥
m : “Hashing”. Starting from an encryption scheme PKE′ and

a hash function H, key encapsulation mechanism KEM �⊥
m = U�⊥

m [PKE′,H] with
“implicit rejection” is defined by

Generic AKE in the QROM 393

Fig. 1. Comparison of [43]’s modular transformation (green) with ours. Solid arrows
indicate tight reductions, dashed arrows indicate non-tight reductions. (Color figure
online)

Encaps(pk) := (c ← Enc′(pk ,m),K := H(m)), (1)

where m is picked at random from the message space, and

Decaps(sk , c) =

{
H(m) m �= ⊥
H(s, c) m = ⊥ ,

where m := Dec(sk , c) and s is a random seed which is contained in sk . In
the context of the FO transformation, implicit rejection was first introduced
by Persichetti [42, Sec. 5.3].

Transformation T was proven secure both in the (classical) ROM and the
QROM, and U�⊥

m was proven secure in the ROM. To achieve QROM security,
[28] gave a modification of U�⊥

m , called QU�⊥
m , but its security proof in the QROM

suffered from a quartic3 loss in tightness, and furthermore, most real-world pro-
posals are designed such that they fit the framework of FO �⊥

m = U�⊥
m ◦ T, not

QU�⊥
m ◦ T.
A slightly different modularisation was introduced in [43]: they gave transfor-

mations TPunc (“Puncturing and Encrypt-with-Hash”) and SXY (“Hashing with
implicit reject and reencryption”). SXY differs from U�⊥

m in that it reencrypts
during decryption. Hence, it can only be applied to deterministic schemes. Even
in the QROM, its CCA security tightly reduces to an intermediate notion called
Disjoint Simulatability (DS) of ciphertexts. Intuitively, disjoint simulatability
means that we can efficiently sample “fake ciphertexts” that are computation-
ally indistinguishable from real PKE ciphertexts (“simulatability”), while the set
of possible fake ciphertexts is required to be (almost) disjoint from the set of
real ciphertexts. DS is naturally satisfied by many code/lattice-based encryption
schemes. Additionally, it can be achieved using transformation Punc, i.e., by
puncturing the underlying schemes’ message space at one point and using this
message to sample fake encryptions. Deterministic DS can be achieved by using
transformation TPunc, albeit non-tightly: the reduction suffers from quadratic
loss in security and an additional factor of q, the number of the adversary’s hash
queries.

3 Not just quadratic, but indeed quartic.

394 K. Hövelmanns et al.

However, the reduction that is given in [43] requires the underlying encryption
scheme to be perfectly correct. Later, [32] gave non-modular security proofs
for the transformations FO �⊥

m and FO �⊥ as well as a security proof for SXY4

for schemes with correctness errors, which still suffered from quadratic loss in
security and an additional factor of q, the latter of which this work improves
to √

q.
Our transformation FO �⊥

m can be applied to any PKE scheme that is both
IND-CPA and DS secure. The reduction is tighter than the one that results from
combining those of TPunc and SXY in [43], and also than the reduction given in
[33]. This is due to our use of the improved Oneway-to-Hiding lemma [3, Thm. 1:
“Semi-classical O2H”]. Furthermore, we achieve a better correctness bound (the
square of the bound given in [33]) due to a better bound for the generic distin-
guishing problem. In cases where PKE is not already DS, this requirement can be
waived with negligible loss of efficiency: To rely on IND-CPA alone, all that has
to be done is to plug in transformation Punc. A visualisation is given in Fig. 1.

Security Model for Two-Message Authenticated Key Exchange. We
introduce a simple game-based security model for (non-parallel) two-message
AKE protocols, i.e., protocols where the responder sends his message only after
having received the initiator’s message. Technically, in our model, and similar
to previous literature, we define several oracles that the attacker has access
to. However, in contrast to most other security models, the inner workings of
these oracles and their management via the challenger are precisely defined with
pseudo-code.

Details on our Models. We define two security notions for two-message
AKEs: key indistinguishability against active attacks (IND-AA) and the weaker
notion of indistinguishability against active attacks without state reveal in the
test session (IND-StAA). IND-AA captures the classical notion of key indistin-
guishability (as introduced by Bellare and Rogaway [10]) as well as security
against reflection attacks, key compromise impersonation (KCI) attacks, and
weak forward secrecy (wFS) [37]. It is based on the Canetti-Krawczyk (CK)
model and allows the attacker to reveal (all) secret state information as com-
pared to only ephemeral keys. As already pointed out by [17], this makes our
model incomparable to the eCK model [38] but strictly stronger than the CK
model. Essentially, the IND-AA model states that the session key remains indis-
tinguishable from a random one even if

1. the attacker knows either the long-term secret key or the secret state infor-
mation (but not both) of both parties involved in the test session, as long as
it did not modify the message received by the test session,

2. and also if the attacker modified the message received by the test session, as
long as it did not obtain the long-term secret key of the test session’s peer.

4 Note that nomenclature of [33] is a bit misleading: while the respective KEM is
called U�⊥

m , it is actually transformation SXY (it reencrypts during decryption, which
U�⊥

m does not).

Generic AKE in the QROM 395

We also consider the slightly weaker model IND-StAA (in which we will prove
the security of our AKE protocols), where 2. is substituted by

2’. and also if the attacker modified the message received by the test session,
as long as it did neither obtain the long-term secret key of the test session’s
peer nor the test session’s state. The latter strategy, we will call a state
attack.

We remark that IND-StAA security is essentially the same notion that was
achieved by the FSXY transformation [23].5 In the full version we provide a
more general perspective on how our model compares to existing ones.

Our Authenticated Key-Exchange Protocol. Our transformation FOAKE

transforms any passively secure PKE (with potential non-perfect correctness)
into an IND-StAA secure AKE. FOAKE is a simplification of the transformation
FSXY[PKE,FO[PKE,G,H]] mentioned above, where the derivation of the session
key K uses only one single hash function H. FOAKE can be regarded as the AKE
analogue of the Fujisaki-Okamoto transformation.

Transformation FOAKE[PKE,G,H] is described in Fig. 2 and uses transform
PKE′ = T[PKE,G] as a building block. (The full construction is given in Fig. 15,
see Sect. 5.) Our main security result (Theorem 3) states that FOAKE[PKE,G,H]
is an IND-StAA-secure AKE if the underlying probabilistic PKE is DS as well as
IND-CPA secure and has negligible correctness error, and furthermore G and H
are modeled as quantum random oracles.

The proof essentially is the AKE analogue to the security proof of FO �⊥
m we

give in Sect. 3.2: By definition of our security model, it always holds that at
least one of the messages mi, mj and m̃ is hidden from the adversary (unless it
loses trivially) since it may not reveal a party’s secret key and its session state
at the same time. Adapting the simulation technique in [43], we can simulate
the session keys even if we do not know the corresponding secret key ski (skj ,
s̃k). Assuming that PKE is DS, we can replace the corresponding ciphertext ci

(cj , c̃) of the test session with a fake ciphertext, rendering the test session’s key
completely random from the adversary’s view due to PKE’s disjointness.

Let us add two remarks. Firstly, we cannot prove the security of
FOAKE[PKE,G,H] in the stronger sense of IND-AA and actually, it is not secure
against state attacks. Secondly, note that our security statement involves the
probabilistic scheme PKE rather than PKE′. Unfortunately, we were not able to
provide a modular proof of AKE solely based on reasonable security properties
of PKE′ = T[PKE,G]. The reason for this is indeed the non-perfect correctness
of PKE. This difficulty corresponds to the difficulty to generalise [43]’s result for
deterministic encryption schemes with correctness errors discussed above.

5 The difference is that the model from [23] furthermore allows a “partial reveal” of
the test session’s state. For simplicity and due to their little practical relevance, we
decided not to include such partial session reveal queries in our model. We remark
that, however, our protocol could be proven secure in this slightly stronger model.

396 K. Hövelmanns et al.

Fig. 2. A visualisation of our authenticated key-exchange protocol FOAKE. We make
the convention that, in case any of the Dec′ algorithms returns ⊥, the session key
K is derived deterministically and pseudorandomly from the player’s state (“implicit
rejection”).

Concrete Applications. Our transformation can be applied to any scheme
that is IND-CPA secure with post-quantum security, e.g., Frodo [40], Kyber [16],
and Lizard [5]. Recall that the additional requirement of DS can be achieved with
negligible loss of efficiency. However, in many applications even this negligible
loss is inexistent since most of the aforementioned schemes can already be proven
DS under the same assumption that their IND-CPA security is based upon.

Subsequent Work. Since this paper was published on eprint, there has been
more work on CCA security of FO in the QROM ([13,35]), essentially achieving
the same level of tightness as this work. [13] achieves more modularity, and
covers a class of schemes that is both less and more restrictive at the same time:
They only require schemes to be oneway-secure (instead of CPA, as required in
this work), but the schemes have to meet an additional injectivity requirement
(specified below).

Tightness for FO. Reductions from CCA security to CPA security in the
QROM usually suffer from tightness loss in two separate ways: The best known
bounds for probabilistic schemes to this date are essentially of the form √

q
√

ε,
where q is the number of the adversary’s hash queries, and ε is the reduc-
tion’s CPA advantage. Hence, the loss consists of both a loss regarding q (q-
nontightness), and worse, a quadratic loss regarding the level of CPA security
(root-nontightness). For the general setting where one starts from a probabilistic
scheme, there have not been tightness improvements since this work:

Essentially, [35] is an update of [32] that makes use of the improved Oneway-
to-Hiding bounds given in [3], thereby improving [32]’s bound q

√
ε to √

q
√

ε,

Generic AKE in the QROM 397

with the security requirement switching from onewayness to IND-CPA. The result
seems to differ from this work solely in its (nonmodular) proof structure.

In [13], a new modular proof for FO was given by starting from probabilistic
onewayness and choosing deterministic oneway-security as their intermediate6
notion, opposed to our (strictly stronger) intermediate notion of deterministic
DS. This approach matches the observation that if one can start from a scheme
that already is deterministically oneway-secure (like [12]), derandomisation step
T is superfluous. In this case, only transformation U has to be applied, which is
proven secure q-tightly. The weaker intermediate notion, however, shifts the root-
nontightness to second transformation U. Therefore, the result still is heavily
non-tight, even if derandomising via T is skipped. Furthermore, no tightness
improvements whatsoever are achieved if the underlying scheme is not already
deterministic, and thus has to be derandomised using T first.

Modularity. The modular proof of [13] is achieved by introducing an addi-
tional notion for the intermediate scheme that deals with correctness errors.
Unfortunately, the possibility of correctness errors complicate modular attempts
on analysing FO: For underlying probabilistic schemes, [13] requires more than
this work since its approach only is applicable if the “intermediate” scheme is
injective with overwhelming probability. It is very likely that the modular app-
roach of [13] could be generalised to an AKE proof that similarly is modular and
hence, conceptually nicer. But this gain in modularity would come at a cost: The
approach only is applicable if the derandomised scheme is essentially injective.
We would, therefore, add an unnecessary restriction on the class of schemes that
AKE can be based upon.

Open Problems. In the literature, one can find several Diffie-Hellman based
protocols that achieve IND-AA security, for example HMQV [37]. However, none
of them provides security against quantum computers. We leave as an interesting
open problem to design a generic and efficient two-message AKE protocol in
our stronger IND-AA model, preferably with a security proof in the QROM to
guarantee its security even in the presence of quantum adversaries.

While [13] gave a proof of CCA security that is conceptually cleaner, it still is
heavily non-tight due to its root-nontightness, with the root-nontightness stem-
ming from its usage of a standard Oneway-to-Hiding strategy. Recent work [34]
proved that for reductions using this standard approach, suffering from quadratic
security loss is inevitable. We would like to point out, however, that we do not
view this result as an impossibility result7. It rather proves impossibility of root-
tightness for a certain type of reduction, and thereby informs us how to adapt
possible future proof strategies: A root-tight proof of CCA security still might

6 By “intermediate”, we mean the deterministic scheme that is to be plugged into
one of the U-transforms. In most cases, it is derived by starting from a probabilistic
scheme and first applying derandomisation transformation T.

7 A strict impossibility result would have to consist of a concrete scheme as well as a
concrete attack, with the latter matching the given upper bound.

398 K. Hövelmanns et al.

be achievable, but the respective reduction would have to be more sophisticated
than extracting oneway solutions for the underlying scheme by simply applying
Oneway-to-Hiding.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. For a set S, |S| denotes the cardinality of S.
For a finite set S, we denote the sampling of a uniform random element x by
x ←$ S, while we denote the sampling according to some distribution D by
x ← D. By �B� we denote the bit that is 1 if the boolean Statement B is true,
and otherwise 0.

Algorithms. We denote deterministic computation of an algorithm A on input
x by y := A(x). We denote algorithms with access to an oracle O by AO. Unless
stated otherwise, we assume all our algorithms to be probabilistic and denote
the computation by y ← A(x).

Games. Following [11,45], we use code-based games. We implicitly assume
boolean flags to be initialised to false, numerical types to 0, sets to ∅, and strings
to the empty string ε. We make the convention that a procedure terminates once
it has returned an output.

2.1 Public-Key Encryption

Syntax. A public-key encryption scheme PKE = (KG,Enc,Dec) consists of
three algorithms, and a finite message space M which we assume to be efficiently
recognisable. The key generation algorithm KG outputs a key pair (pk , sk), where
pk also defines a finite randomness space R = R(pk) as well as a ciphertext space
C. The encryption algorithm Enc, on input pk and a message m ∈ M, outputs
an encryption c ← Enc(pk ,m) of m under the public key pk . If necessary, we
make the used randomness of encryption explicit by writing c := Enc(pk ,m; r),
where r ←$ R. The decryption algorithm Dec, on input sk and a ciphertext c,
outputs either a message m = Dec(sk , c) ∈ M or a special symbol ⊥ /∈ M to
indicate that c is not a valid ciphertext.

Definition 1 (Collision probability of key generation). We define

μ(KG) := Pr[(pk , sk) ← KG, (pk ′, sk ′) ← KG : pk = pk′].

Definition 2 (Collision probability of ciphertexts). We define

μ(Enc) := Pr[(pk , sk) ← KG, m, m′ ←$ M, c ← Enc(pk , m), c′ ← Enc(pk , m′) : c = c′].

Definition 3 (γ-Spreadness). [25] We say that PKE is γ-spread iff for all key
pairs (pk , sk) ∈ supp(KG) and all messages m ∈ M it holds that

max
c∈C

Pr[r ←$ R : Enc(pk ,m; r) = c] ≤ 2−γ .

Generic AKE in the QROM 399

Fig. 3. Games IND-CPAb for PKE (b ∈ F2) and game IND-CCA for KEM.

Definition 4 (Correctness). [28] We define δ := E[maxm∈M Pr[c ←
Enc(pk ,m) : Dec(sk , c) �= m]], where the expectation is taken over (pk , sk) ← KG.

Security. We now define the notion of Indistinguishability under Chosen
Plaintext Attacks (IND-CPA) for public-key encryption.

Definition 5 (IND-CPA). Let PKE = (KG,Enc,Dec) be a public-key encryption
scheme. We define game IND-CPA game as in Fig. 3, and the IND-CPA advantage
function of a quantum adversary A = (A1,A2) against PKE (such that A2 has
binary output) as

AdvIND-CPA
PKE (A) := |Pr[IND-CPAA

1 ⇒ 1] − Pr[IND-CPAA
0 ⇒ 1]|.

We also define IND-CPA security in the random oracle model model, where PKE
and adversary A are given access to a random oracle.

Disjoint simulatability. Following [43], we consider PKE where it is possi-
ble to efficiently sample fake ciphertexts that are indistinguishable from proper
encryptions, while the probability that the sampling algorithm hits a proper
encryption is small.

Definition 6. (DS) Let PKE = (KG,Enc,Dec) be a PKE scheme with mes-
sage space M and ciphertext space C, coming with an additional PPT algorithm
Enc. For quantum adversaries A, we define the advantage against PKE’s disjoint
simulatability as

AdvDS
PKE,Enc

(A) :=|Pr[pk ← KG,m ←$ M, c ← Enc(pk ,m) : 1 ← A(pk , c)]

− Pr[pk ← KG, c ← Enc(pk) : 1 ← A(pk , c)]|.

When there is no chance of confusion, we will drop Enc from the advantage’s
subscript for convenience.

We call PKE εdis-disjoint if for all pk ∈ supp(KG), Pr[c ← Enc(pk) : c ∈
Enc(pk ,M;R)] ≤ εdis.

400 K. Hövelmanns et al.

2.2 Key Encapsulation

Syntax. A key encapsulation mechanism KEM = (KG,Encaps,Decaps) consists
of three algorithms. The key generation algorithm KG outputs a key pair (pk , sk),
where pk also defines a finite key space K. The encapsulation algorithm Encaps,
on input pk , outputs a tuple (K, c) where c is said to be an encapsulation of
the key K which is contained in key space K. The deterministic decapsulation
algorithm Decaps, on input sk and an encapsulation c, outputs either a key
K := Decaps(sk , c) ∈ K or a special symbol ⊥ /∈ K to indicate that c is not a
valid encapsulation.

We call KEM δ-correct if

Pr [Decaps(sk , c) �= K | (pk , sk) ← KG; (K, c) ← Encaps(pk)] ≤ δ.

Note that the above definition also makes sense in the random oracle model since
KEM ciphertexts do not depend on messages.

Security. We now define a security notion for key encapsulation:
Indistinguishbility under Chosen Ciphertext Attacks (IND-CCA).

Definition 7 (IND-CCA). We define the IND-CCA game as in Fig. 3 and the
IND-CCA advantage function of an adversary A (with binary output) against
KEM as

AdvIND-CCA
KEM (A) := |Pr[IND-CCAA ⇒ 1] − 1/2|.

2.3 Quantum Computation

Qubits. For simplicity, we will treat a qubit as a vector |ϕ〉 ∈ C
2, i.e., a linear

combination |ϕ〉 = α · |0〉 + β · |1〉 of the two basis states (vectors) |0〉 and |1〉
with the additional requirement to the probability amplitudes α, β ∈ C that
|α|2+ |β|2 = 1. The basis {|0〉, |1〉} is called standard orthonormal computational
basis. The qubit |ϕ〉 is said to be in superposition. Classical bits can be interpreted
as quantum bits via the mapping (b �→ 1 · |b〉 + 0 · |1 − b〉).
Quantum Registers. We will treat a quantum register as a collection of mul-
tiple qubits, i.e. a linear combination |ϕ〉 := ∑

x∈F
n
2

αx · |x〉, where αx ∈ C, with
the additional restriction that

∑
x∈F

n
2

|αx|2 = 1. As in the one-dimensional case,
we call the basis {|x〉}x∈F

n
2

the standard orthonormal computational basis. We
say that |ϕ〉 = ∑

x∈F
n
2

αx · |x〉 contains the classical query x if αx �= 0.

Measurements. Qubits can be measured with respect to a basis. In this paper,
we will only consider measurements in the standard orthonormal computational
basis, and denote this measurement by Measure(·), where the outcome of
Measure(|ϕ〉) for a single qubit |ϕ〉 = α · |0〉+ β · |1〉 will be 0 with probability
|α|2 and 1 with probability |β|2, and the outcome of measuring a qubit register
|ϕ〉 = ∑

x∈F
n
2

αx · |x〉 will be x with probability |αx|2. Note that the amplitudes
collapse during a measurement, this means that by measuring α · |0〉+ β · |1〉, α

Generic AKE in the QROM 401

and β are switched to one of the combinations in {±(1, 0), ±(0, 1)}. Likewise,
in the n-dimensional case, all amplitudes are switched to 0 except for the one
that belongs to the measurement outcome and which will be switched to 1.

Quantum oracles and quantum Adversaries. Following [6,14], we view a
quantum oracle |O〉 as a mapping

|x〉|y〉 �→ |x〉|y ⊕ O(x)〉,
where O : F

n
2 → F

m
2 , and model quantum adversaries A with access to O by a

sequence U1, |O〉, U2, · · · , |O〉, UN of unitary transformations. We write A|O〉 to
indicate that the oracles are quantum-accessible (contrary to oracles which can
only process classical bits).

Quantum random oracle model. We consider security games in the quan-
tum random oracle model (QROM) as their counterparts in the classical random
oracle model, with the difference that we consider quantum adversaries that are
given quantum access to the (offline) random oracles involved, and classical
access to all other (online) oracles. For example, in the IND-CPA game, the adver-
sary only obtains a classical encryption, like in [18], and unlike in [15]. In the
IND-CCA game, the adversary only has access to a classical decryption oracle,
unlike in [27] and [1].

Zhandry [48] proved that no quantum algorithm A|O〉, issuing at most q
quantum queries to |O〉, can distinguish between a random function O : F

m
2 → F

n
2

and a 2q-wise independent function f2q. For concreteness, we view f2q : F
m
2 → F

n
2

as a random polynomial of degree 2q over the finite field F2n . The running time
to evaluate f2q is linear in q. In this article, we will use this observation in the
context of security reductions, where quantum adversary B simulates quantum
adversary A|O〉 issuing at most q queries to |O〉. Hence, the running time of B
is Time(B) = Time(A) + q · Time(O), where Time(O) denotes the time it takes
to simulate |O〉. Using the observation above, B can use a 2q-wise independent
function in order to (information-theoretically) simulate |O〉, and we obtain that
the running time of B is Time(B) = Time(A) + q · Time(f2q), and the time
Time(f2q) to evaluate f2q is linear in q. Following [43] and [36], we make use
of the fact that the second term of this running time (quadratic in q) can be
further reduced to linear in q in the quantum random-oracle model where B
can simply use another random oracle to simulate |O〉. Assuming evaluating the
random oracle takes one time unit, we write Time(B) = Time(A) + q, which is
approximately Time(A).

Oneway to Hiding with semi-classical oracles. In [3], Ambainis et al.
defined semi-classical oracles that return a state that was measured with respect
to one of the input registers. In particular, to any subset S ⊂ X, they associated
the following semi-classical oracle OSC

S : Algorithm OSC
S , when queried on |ψ, 0〉,

measures with respect to the projectors M1 and M0, where M1 :=
∑

x∈S |x〉〈x|
and M0 :=

∑
x/∈S |x〉〈x|. The oracle then initialises the second register to |b〉 for

the measured bit b. This means that |ψ, 0〉 collapses to either a state |ψ′, 0〉 such
that |ψ′〉 only contains elements of X \ S or to a state |ψ′, 1〉 such that |ψ′〉 only

402 K. Hövelmanns et al.

contains elements of S. Let FIND denote the event that the latter ever is the
case, i.e., that OSC

S ever answers with |ψ′, 1〉 for some ψ′. To a quantum-accessible
oracle G and a subset S ⊂ X, Ambainis et al. associate the following punctured
oracle G \ S that removes S from the domain of G unless FIND occurs (Fig. 4).

Fig. 4. Punctured oracle G\S for O2H.

The following theorem is a simplification of statement (2) given in [3, Thm. 1:
“Semi-classical O2H”], and of [3, Cor. 1]. It differs in the following way: While [3]
consider adversaries that might execute parallel oracle invocations and therefore
differentiate between query depth d and number of queries q, we use the upper
bound q ≥ d for simplicity.

Theorem 1. Let S ⊂ X be random. Let G,H ∈ Y X be random functions such
that G|X\S = H|X\S, and let z be a random bitstring. (S, G, H, and z may have
an arbitrary joint distribution.) Then, for all quantum algorithms A issuing at
most q queries that, on input z, output either 0 or 1,

|Pr[1 ← A|G〉(z)] − Pr[1 ← A|H〉(z)]| ≤ 2 ·
√

qPr[b ← A|G\S〉(z) : FIND].

If furthermore S := {x} for x ←$ X, and x and z are independent,

Pr[b ← A|G\S〉(z) : FIND] ≤ 4q
|X| .

Generic quantum Distinguishing Problem with bounded probabili-

ties. For λ ∈ [0, 1], let Bλ be the Bernoulli distribution, i.e., Pr[b = 1] = λ for
the bit b ← Bλ. Let X be some finite set. The generic quantum distinguishing
problem ([4, Lemma 37], [30, Lem. 3]) is to distinguish quantum access to an
oracle F : X → F2, such that for each x ∈ X, F (x) is distributed according to
Bλ, from quantum access to the zero function. We will need the following slight
variation. The Gequantum Distinguishing Problem with Bounded probabilities
GDPB is like the quantum distinguishing problem with the difference that the
Bernoulli parameter λx may depend on x, but still is upper bounded by a global
λ. The upper bound we give is the same as in [30, Lem. 3]. It is proven in the
full version.

Lemma 1 (Generic Distinguishing Problem with Bounded Probabili-
ties). [Generic Distinguishing Problem with Bounded Probabilities] Let X be a

Generic AKE in the QROM 403

finite set, and let λ ∈ [0, 1]. Then, for any (unbounded, quantum) algorithm A
issuing at most q quantum queries,

|Pr[GDPBA
λ,0 ⇒ 1] − Pr[GDPBA

λ,1 ⇒ 1]| ≤ 8(q + 1)2 · λ,

where games GDPBA
λ,b (for bit b ∈ F2) are defined as follows:

GAME GDPBλ,b

01 (λx)x∈X ← A1

02 if ∃x ∈ X s.t. λx > λ return 0
03 if b = 0
04 F := 0
05 else for all x ∈ X
06 F (x) ← Bλx

07 b′ ← A
|F 〉
2

08 return b′

3 The FO Transformation: QROM Security
with Correctness Errors

In Sect. 3.1, we modularise transformation TPunc that was given in [43] and
that turns any public key encryption scheme that is IND-CPA secure into a
deterministic one that is DS. Transformation TPunc essentially consists of first
puncturing the message space at one point (transformation Punc, to achieve
probabilistic DS), and then applying transformation T. Next, in Sect. 3.2, we
show that transformation U�⊥

m , when applied to T, transforms any encryption
scheme that is DS as well as IND-CPA into a KEM that is IND-CCA secure. We
believe that many lattice-based schemes fulfill DS in a natural way,8 but for the
sake of completeness, we will show in the full version how transformation Punc
can be used to waive the requirement of DS with negligible loss of efficiency.

3.1 Modularisation of TPunc

We modularise transformation TPunc (“Puncturing and Encrypt-with-Hash”)
that was given in [43], and that turns any IND-CPA secure PKE scheme into a
deterministic one that is DS. Note that apart from reencryption, TPunc[PKE0,G]
given in [43] and our modularisation T[Punc[PKE0],G] are equal. We first give
transformation Punc that turns any IND-CPA secure scheme into a scheme that

8 Fake encryptions could be sampled uniformly random. DS would follow from the
LWE assumption, and since LWE samples are relatively sparse, uniform sampling
should be disjoint.

404 K. Hövelmanns et al.

Fig. 5. Encryption and fake encryption sampling of PKE = Punc[PKE0].

is both DS and IND-CPA. We show that transformation T turns any scheme that
is DS as well as IND-CPA secure into a deterministic scheme that is DS.

Transformation Punc: From IND-CPA to probabilistic DS security
Transformation Punc turns any IND-CPA secure public-key encryption scheme
into a DS secure one by puncturing the message space at one message and sam-
pling encryptions of this message as fake encryptions.

The Construction. To a public-key encryption scheme PKE0 = (KG0,
Enc0,Dec0) with message space M0, we associate PKE := Punc[PKE0, m̂] :=
(KG := KG0,Enc,Dec := Dec0) with message space M := M0 \ {m̂} for some
message m̂ ∈ M. Encryption and fake encryption sampling of PKE are defined in
Fig. 5. Note that transformation Punc will only be used as a helper transforma-
tion to achieve DS, generically. We prove that Punc achieves DS from IND-CPA
security in the full version.

Transformation T: From probabilistic to deterministic DS security
Transformation T [7] turns any probabilistic public-key encryption scheme into
a deterministic one. The transformed scheme is DS, given that PKE is DS as well
as IND-CPA secure. Our security proof is tighter than the proof given for TPunc
(see [43, Theorem 3.3]) due to our use of the semi-classical O2H theorem.

The Construction. Take an encryption scheme PKE = (KG,Enc,Dec) with
message space M and randomness space R. Assume PKE to be additionally
endowed with a sampling algorithm Enc (see Definition 6). To PKE and random
oracle G : M → R, we associate PKE′ = T[PKE,G], where the algorithms of
PKE′ = (KG′ := KG,Enc′,Dec′,Enc

′
:= Enc) are defined in Fig. 6. Note that Enc′

deterministically computes the ciphertext as c := Enc(pk ,m;G(m)).

Fig. 6. Deterministic encryption scheme PKE′ = T[PKE,G].

The following lemma states that combined IND-CPA and DS security of PKE
imply the DS security of PKE′.

Generic AKE in the QROM 405

Fig. 7. Games G0 - G5 for the proof of Lemma2.

Lemma 2 (DS security of PKE′). If PKE is ε-disjoint, so is PKE′. For all
adversaries A issuing at most qG (quantum) queries to G, there exist an adversary
BIND and an adversary BDS such that

AdvDS
PKE′(A) ≤ AdvDS

PKE(BDS) + 2 ·
√

qG · AdvIND-CPA
PKE (BIND) +

4q2G
|M|

≤ AdvDS
PKE(BDS) + 2 ·

√
qG · AdvIND-CPA

PKE (BIND) +
4qG√|M| ,

and the running time of each adversary is about that of B.

Proof. It is straightforward to prove disjointness since Enc′(pk ,M) is subset of
Enc(pk ,M;R). Let A be a DS adversary against PKE′. Consider the sequence
of games given in Fig. 7. Per definition,

AdvDS
PKE′(A) = |Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]|

≤ |Pr[GA
0 ⇒ 1] − Pr[GA

3 ⇒ 1]| + |Pr[GA
1 ⇒ 1] − Pr[GA

3 ⇒ 1]|.

To upper bound |Pr[GA
0 ⇒ 1]−Pr[GA

3 ⇒ 1]|, consider adversary BDS against
the disjoint simulatability of the underlying scheme PKE, given in Fig. 8. BDS

runs in the time that is required to run A and to simulate G for qG queries. Since
BDS perfectly simulates game G0 if run with a fake ciphertext as input, and game
G3 if run with a random encryption c ← Enc(pk ,m∗),

|Pr[GA
0 ⇒ 1] − Pr[GA

3 ⇒ 1]| = AdvDS
PKE(BDS).

It remains to upper bound |Pr[GA
1 ⇒ 1]−Pr[GA

3 ⇒ 1]|. We claim that there
exists an adversary BIND such that

|Pr[GA
1 ⇒ 1] − Pr[GA

3 ⇒ 1]| ≤ 2

√
qG · AdvIND-CPA

PKE (BIND) +
4q2G
|M| .

406 K. Hövelmanns et al.

Fig. 8. Adversaries BDS and BIND- for the proof of Lemma2.

Game G2. In game G2, we replace oracle access to G with oracle acces to H in
line 08, where H is defined as follows: we pick a uniformly random r∗ in line 08
and let H(m) := G(m) for all m �= m∗, and H(m∗) := r∗. Note that this change
also affects the challenge ciphertext c∗ since it is now defined relative to this new
r∗, i.e., we now have c∗ = Enc(pk ,m∗;H(m∗)). Since r∗ is uniformly random and
G is a random oracle, so is H, and since we kept c∗ consistent, this change is
purely conceptual and

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1].

Game G3. In game G3, we switch back to oracle access to G, but keep c∗ unaf-
fected by this change. We now are ready to use Oneway to Hiding with semi-
classical oracles. Intuitively, the first part of O2H states that if oracles G and H
only differ on point m∗, the probability of an adversary being able to tell G and
H apart is directly related to m∗ being detectable in its random oracle queries.
Detecting m∗ is formalised by game G4, in which each of the random oracle
queries of A is measured with respect to projector |m∗〉〈m∗|, thereby collapsing
the query to either m∗ (and switching flag FIND to true) or a superposition
that does not contain m∗ at all. Following the notation of [3], we denote this
process by a call to oracle OSC

{m∗}, see line 08. Applying the first statement of
Theorem 1 for S := {m∗}, and z := (pk , c∗ := Enc(pk ,m∗; r∗)), we obtain

|Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒ 1]| ≤ 2 ·
√

qG · Pr[GA
4 ⇒ 1].

Game G5. In game G5, c∗ ← Enc(pk ,m∗) is replaced with an encryption of
0. Since in game G5, (pk , c∗) is independent of m∗, we can apply the second
statement of O2H that upper bounds the probability of finding an independent
point m∗, relative to the number of queries and the size of the search space M.
We obtain

Pr[GA
5 ⇒ 1] ≤ 4qG

|M| .

To upper bound |Pr[GA
4 ⇒ 1] − Pr[GA

5 ⇒ 1]|, consider adversary BIND against
the IND-CPA security of PKE, also given in Fig. 8. BIND runs in the time that
is required to run A and to simulate the measured version of oracle G for qG

Generic AKE in the QROM 407

Fig. 9. Key encapsulation mechanism KEM = FO�⊥
m [PKE,G,H] = U�⊥

m [T[PKE,G],H].
Oracle Hr is used to generate random values whenever reencryption fails. This strategy
is called implicit reject. Amongst others, it is used in [28,43], and [32]. For simplicity of
the proof, Hr is modelled as an internal random oracle that cannot be accessed directly.
For implementation, it would be sufficient to use a PRF.

queries. BIND perfectly simulates game G4 if run in game IND-CPA0 and game
G5 if run in game IND-CPA1, therefore,

|Pr[GA
4 ⇒ 1] − Pr[GA

5 ⇒ 1]| = AdvIND-CPA
PKE (BIND).

Collecting the probabilities yields

Pr[GA
4 ⇒ 1] ≤ AdvIND-CPA

PKE (BIND) +
4qG
|M| .

��

3.2 Transformation FO�⊥
m and Correctness Errors

Transformation SXY [43] got rid of the additional hash (sometimes called key
confirmation) that was included in [28]’s quantum transformation QU�⊥

m . SXY
is essentially the (classical) transformation U�⊥

m that was also given in [28], and
apart from doing without the additional hash, it comes with a tight security
reduction in the QROM. SXY differs from the (classical) transformation U�⊥

m

only in the regard that it reencrypts during decapsulation. (In [28], reencryption
is done during decryption of T.)

The security proof given in [43] requires the underlying encryption scheme
to be perfectly correct, and it turned out that their analysis cannot be trivially
adapted to take possible decryption failures into account in a generic setting. A
discussion of this matter is given in the full version. What we show instead is
that the combined transformation FO �⊥

m = U�⊥
m [T[−,G],H] turns any encryption

scheme that is DS as well as IND-CPA into a KEM that is IND-CCA secure in the
QROM, even if the underlying encryption scheme comes with a small probability
of decryption failure. Our reduction is tighter as the (combined) reduction in [43]
due to our tighter security proof for T.

The Construction. To PKE = (KG,Enc,Dec) with message space M and
randomness space R, and random oracles H : M → K, G : M → R, and an
additional internal random oracle Hr : C → K that can not be directly accessed,
we associate KEM = FO �⊥

m [PKE,G,H] := U�⊥
m [T[PKE,G],H], where the algorithms

of KEM = (KG,Encaps,Decaps) are given in Fig. 9.

408 K. Hövelmanns et al.

Fig. 10. Games G0 – G6 for the proof of Lemma2. f (lines 04 and 26) is an internal 2q-
wise independent hash function, where q := qG+qH+2 ·qD +1, that cannot be accessed
by A. Sample(Y) is a probabilistic algorithm that returns a uniformly distributed y ←$

Y . Sample(Y ; f(m)) denotes the deterministic execution of Sample(Y) using explicitly
given randomness f(m).

Security of KEM. The following theorem (whose proof is essentially the same
as in [43] except for the consideration of possible decryption failure) establishes
that IND-CCA security of KEM reduces to DS and IND-CPA security of PKE, in
the quantum random oracle model.

Theorem 2 (PKE DS + IND-CPA QROM⇒ KEM IND-CCA). Assume PKE to be
δ-correct, and to come with a fake sampling algorithm Enc such that PKE is
εdis-disjoint. Then, for any (quantum) IND-CCA adversary A issuing at most
qD (classical) queries to the decapsulation oracle Decaps, at most qH quan-
tum queries to H, and at most qG quantum queries to G, there exist (quantum)
adversaries BDS and BIND such that

AdvIND-CCA
KEM (A) ≤ 8 · (2 · qG + qH + qD + 4)2 · δ +AdvDS

PKE(BDS)

+ 2 ·
√
(qG + qH) · AdvIND-CPA

PKE (BIND) +
4(qG + qH)2

|M| + εdis,

and the running time of BDS and BIND is about that of A.

Proof. Let A be an adversary against the IND-CCA security of KEM, issuing at
most qD queries to Decaps, at most qH queries to the quantum random oracle H,
and at most qG queries to the quantum random oracle G. Consider the sequence
of games given in Fig. 10.

Generic AKE in the QROM 409

Game G0. Since game G0 is the original IND-CCA game,

AdvIND-CCA
KEM (A) = |Pr[GA

0 ⇒ 1] − 1/2|.

Game G1. In game G1, we enforce that no decryption failure will occur: For
fixed (pk , sk) and message m ∈ M, let

Rbad(pk , sk ,m) := {r ∈ R | Dec(sk ,Enc(pk ,m; r)) �= m}

denote the set of “bad” randomness. We replace random oracle G in line 05 with
Gpk ,sk that only samples from good randomness. Further, define

δ(pk , sk ,m) := |Rbad(pk ,sk ,m)|/|R| (2)

as the fraction of bad randomness, and δ(pk , sk) := maxm∈M δ(pk , sk ,m). With
this notation, δ = E[maxm∈M δ(pk , sk ,m)], where the expectation is taken over
(pk , sk) ← KG.

To upper bound |Pr[GA
0 = 1] − Pr[GA

1 = 1]|, we construct an (unbounded,
quantum) adversary B against the generic distinguishing problem with bounded
probabilities GDPB (see Lemma 1) in Fig. 11, issuing qG + qD +1 queries to F. B
draws a key pair (pk , sk) ← KG and computes the parameters λ(m) of the generic
distinguishing problem as λ(m) := δ(pk , sk ,m), which are bounded by λ :=
δ(pk , sk). To analyze B, we first fix (pk , sk). For each m ∈ M, by the definition
of game GDPBλ,1, the random variable F(m) is bernoulli-distributed according to
Bλ(m) = Bδ(pk ,sk ,m). By construction, the random variable G(m) defined in line
28 if F(m) = 0 and in line 30 if F(m) = 1 is uniformly distributed in R. Therefore,
G is a (quantum-accessible) random oracle, and B|F〉 perfectly simulates game
G0 if executed in game GDPBλ,1. Since B|F〉 also perfectly simulates game G1 if
executed in game GDPBλ,0,

|Pr[GA
0 = 1] − Pr[GA

1 = 1]| = |Pr[GDPBB
λ,1 = 1] − Pr[GDPBB

λ,0 = 1]|,

and according to Lemma 1,

|Pr[GDPBB
λ,1 = 1] − Pr[GDPBB

λ,0 = 1]| ≤ 8 · (qG + qD + 2)2 · δ.

Game G2. In game G2, we prepare getting rid of the secret key by plugging in
encryption into random oracle H: Instead of drawing H ←$ KM, we draw Hq ←$

KC in line 07 and define H := Hq(Enc(pk ,−;G(−))) in line 08. For consistency,
we also change key K∗

0 in line 14 from letting K∗
0 := H(m∗) to letting K∗

0 :=
Hq(c∗), which is a purely conceptual change since c∗ = Enc(pk ,m∗;G(m∗)).
Additionally, we make the change of H explicit in oracle Decaps, i.e., we change
oracle Decaps in line 14 such that it returns K := Hq(c) whenever Enc(pk ,m′;
G(m′)) = c. Since G only samples from good randomness, encryption is rendered
perfectly correct and hence, injective. Since encryption is injective, H still is
uniformly random. Furthermore, since we only change Decaps for ciphertexts

410 K. Hövelmanns et al.

Fig. 11. Adversaries B and B′ executed in game GDPBδ(pk,sk) with access to F (and
additional oracles Hr and H or Hq, respectively) for the proof of Theorem 2. Parameters
δ(pk , sk , m) are defined in Eq. (2). Function f (lines 28 and 30) is an internal 2q-wise
independent hash function, where q := qG + qD + 1 for B, and qG + qH + 1 for B′, that
cannot be accessed by A.

c where c = Enc(pk ,m′;G(m′)), we maintain consistency of H and Decaps. In
conclusion, A’s view is identical in both games and

Pr[GA
1 = 1] = Pr[GA

2 = 1].

Game G3. In game G3, we change oracle Decaps such that it always returns
K := Hq(c), as opposed to returning K := Hr(c) as in game G2 whenever
decryption or reencryption fails (see line 21). We argue that this change does not
affect A’s view: If there exists no message m such that c = Enc(pk ,m;G(m)),
oracle Decaps(c) returns a random value (that can not possibly correlate to
any random oracle query to H) in both games, therefore Decaps(c) is a random
value independent of all other input to A in both games. And if there exists some
message m such that c = Enc(pk ,m;G(m)), Decaps(c) would have returned
Hq(c) in both games, anyway: Since G(m) ∈ R\Rbad(pk , sk ,m) for all messages

Generic AKE in the QROM 411

m, it holds that m′ := Dec(sk , c) = m �= ⊥ and that Enc(pk ,m′;G(m′)) = c.
Hence, A’s view is identical in both games and

Pr[GA
2 = 1] = Pr[GA

3 = 1].

Game G4. In game G4, we switch back to using G ←$ RM instead of Gpk ,sk .
With the same reasoning as for the gamehop from game G0 to G1,

|Pr[GA
3 = 1] − Pr[GA

4 = 1]| = |Pr[GDPBB′
λ,1 = 1] − Pr[GDPBB′

λ,0 = 1]|
≤ 8 · (qG + qH + 2)2 · δ,

where adversary B′ (that issues at most issuing qG + qH + 1 queries to F) is also
given in Fig. 11.

So far, we established

AdvIND-CCA
KEM (A) ≤ |Pr[GA

4 ⇒ 1] − 1/2| + 8 · (2 · qG + qH + qD + 4)2 · δ.

The rest of the proof proceeds similar to the proof in [43], aside from the fact
that we consider the particular scheme T[PKE,G] instead of a generic encryption
scheme that is deterministically DS.

Game G5. In game G5, the challenge ciphertext c∗ gets decoupled from
message m∗ by sampling c∗ ← Enc(pk) in line 12 instead of letting c∗ :=
Enc(pk ,m∗;G(m∗)). Consider the adversary CDS against the disjoint simulata-
bility of T[PKE,G] given in Fig. 12. Since CDS perfectly simulates game G4 if run
with deterministic encryption c∗ := Enc(pk ,m∗;G(m∗)) of a random message
m∗, and game G5 if run with a fake ciphertext,

|Pr[GA
4 = 1] − Pr[GA

5 = 1]| = AdvDS
T[PKE,G](CDS),

and according to Lemma 2, there exist an adversary BDS and an adversary BIND

with roughly the same running time such that

AdvDS
T[PKE,G](CDS) ≤AdvDS

PKE(BDS) + 2 ·
√

(qG + qH) · AdvIND-CPA
PKE (BIND) +

4(qG + qH)2

|M| .

Game G6. In game G6, the game is changed in line 15 such that it always uses
a randomly picked challenge key. Since both K∗

0 and K∗
1 are independent of all

other input to A in game G6,

Pr[GA
6 ⇒ 1] = 1/2.

It remains to upper bound |Pr[GA
5 = 1] − Pr[GA

6 = 1]|. To this end, it is suffi-
cient to upper bound the probability that any of the queries to Hq could possibly
contain c∗. Each query to Hq is either a classical query, triggered by A query-
ing Decaps on some ciphertext c, or a query in superposition, triggered by A
querying H. Since queries to Decaps on c∗ are explicitly forbidden, the only
possibility would be one of A’s queries to H. A’s queries to H trigger queries

412 K. Hövelmanns et al.

Fig. 12. Adversary CDS (with access to additional oracles Hr and Hq) against the disjoint
simulatability of T[PKE,G] for the proof of Theorem 2.

to Hq that are of the form
∑

m αm|Enc(pk ,m;G(m))〉. They cannot contain c∗

unless there exists some message m such that Enc(pk ,m;G(m)) = c∗. Since we
assume PKE to be εdis-disjoint,

|Pr[GA
5 = 1] − Pr[GA

6 = 1]| ≤ εdis.

3.3 CCA Security Without Disjoint Simulatability

In the full version we show that transformation Punc can be used to waive the
requirement of DS: Plugging in transformation Punc (before using FO �⊥

m) achieves
IND-CCA security from IND-CPA security alone, as long as PKE is γ-spread (see
Definition 3).

4 Two-Message Authenticated Key Exchange

A two-message key exchange protocol AKE = (KG, Init,Derinit,Derresp) consists
of four algorithms. Given the security parameter, the key generation algorithm
KG outputs a key pair (pk , sk). The initialisation algorithm Init, on input sk and
pk ′, outputs a message M and a state st. The responder’s derivation algorithm
Derresp, on input sk ′, pk and M , outputs a key K, and also a message M ′. The
initiator’s derivation algorithm Derinit, on input sk , pk ′, M ′ and st, outputs a
key K.

Running a Key Exchange Protocol between two Parties. To run a
two-message key exchange protocol, the algorithms KG, Init, Derinit, and Derresp
are executed in an interactive manner between two parties Pi and Pj with key
pairs (sk i, pk i), (sk j , pk j) ← KG. To execute the protocol, the parties call the
algorithms in the following way:

1. Pi computes (M, st) ← Init(sk i, pk j) and sends M to Pj .
2. Pj computes (M ′,K ′) ← Derresp(sk j , pk i,M) and sends M ′ to Pi.
3. Pi computes K := Derinit(ski, pkj ,M

′, st).

Generic AKE in the QROM 413

Note that in contrast to the holder Pi, the peer Pj will not be required to
save any (secret) state information besides the key K ′.

Our Security Model. We consider N parties P1, . . . ,PN , each holding a key
pair (sk i, pk i), and possibly having several sessions at once. The sessions run
the protocol with access to the party’s long-term key material, while also having
their own set of (session-specific) local variables. The local variables of each
session, identified by the integer sID, are the following:

Party Pi (pk i, sk i) Party Pj (pk j , sk j)

(M, st) ← Init(sk i, pk j)

(M ′, K′) ← Derresp(sk j , pk i, M)

K := Derinit(ski, pkj , M
′, st)

M

M ′

1. An integer holder ∈ [N] that points to the party running the session.
2. An integer peer ∈ [N] that points to the party the session is communicating

with.
3. A string sent that holds the message sent by the session.
4. A string received that holds the message received by the session.
5. A string st that holds (secret) internal state values and intermediary results

required by the session.
6. A string role that holds the information whether the session’s key was derived

by Derinit or Derresp.
7. The session key K.

In our security model, the adversary A is given black-box access to the set
of processes Init, Derresp and Derinit that execute the AKE algorithms. To model
the attacker’s control of the network, we allow A to establish new sessions via
EST, to call either INIT and DERinit or DERresp, each at most once per session
(see Fig. 13, page 23). Since both derivation processes can be called on arbitrary
input, A may relay their input faithfully as well as modify the data on transit.
Moreover, the attacker is additionally granted queries to reveal both secret pro-
cess data, namely using oracles REVEAL, REV-STATE and CORRUPT (see
Fig. 14, page 24). Oracles REVEAL and REV-STATE both can be queried on
an arbitrary session ID, with oracle REVEAL revealing the respective session’s
key (if already defined), and oracle REV-STATE revealing the respective ses-
sion’s internal state. Oracle CORRUPT can be queried on an arbitrary number
i ∈ [N] to reveal the respective party’s long-term key material. Usage of this ora-
cle allows the attacker to corrupt the test session’s holder, the oracle therefore
models the possibility of KCI attacks. Combined usage of oracles REV-STATE

and CORRUPT allows the attacker to obtain the state as well as the long-term
secret key on both sides of the session, the oracles therefore model the possi-
bility of MEX attacks. After choosing a test session, either the session’s key or

414 K. Hövelmanns et al.

Fig. 13. Games IND-AAb and IND-StAAb for AKE, where b ∈ F2. The collection of
oracles O used in lines 05 and 27 is defined by O := {EST, INIT, DERresp, DERinit,
REVEAL, REV-STATE, CORRUPT,TEST}. Oracles REVEAL, REV-STATE,
CORRUPT, and TEST are given in Fig. 14. Game IND-StAAb only differs from
IND-AAb in ruling out one more kind of attack: A’s bit b′ does not count in games
IND-AAb if helper procedure Trivial returns true, see line 06. In games IND-StAAb,
A’s bit b′ does not count already if procedure ATTACK (that includes Trivial and
additionally checks for state-attacks on the test session) returns true, see line 28.

a uniformly random key is returned. The attacker’s task is to distinguish these
two cases, to this end it outputs a bit.

Definition 8 (Key Indistinguishability of AKE). We define games
IND-AAb and IND-StAAb for b ∈ F2 as in Figs. 13 and 14.

We define the IND-AA advantage function of an adversary A against AKE as

AdvIND-AA
AKE (A) := |Pr[IND-AAA

1 ⇒ 1] − Pr[IND-AAA
0 ⇒ 1]|,

and the IND-StAA advantage function of an adversary A against AKE excluding
test-state-attacks as

AdvIND-StAA
AKE (A) := |Pr[IND-StAAA

1 ⇒ 1] − Pr[IND-StAAA
0 ⇒ 1]|.

Generic AKE in the QROM 415

Fig. 14. Helper procedures Trivial and ATTACK and oracles REVEAL,
REV-STATE, CORRUPT, and TEST of games IND-AA and IND-StAA defined in
Fig. 13.

We call a session completed iff sKey[sID] �= ⊥, which implies that either
DERresp(sID,m) or DERinit(sID,m) was queried for some message m. We
say that a completed session sID was recreated iff there exists a session
sID′ �= sID such that (holder[sID],peer[sID]) = (holder[sID′],peer[sID′]),
role[sID] = role[sID′], sent[sID] = sent[sID′], received[sID] = received[sID′]
and state[sID] = state[sID′]. We say that two completed sessions sID1

and sID2 match iff (holder[sID1],peer[sID1]) = (peer[sID2], holder[sID2]),
(sent[sID1], received[sID1]) = (received[sID2], sent[sID2]), and role[sID1] �=
role[sID2]. We say that A tampered with the test session sID∗ if at the end
of the security game, there exists no matching session for sID∗ Nonexistence of
a matching session implies that A must have called the derivation process on a
message of its own choosing.

Helper procedure Trivial (Fig. 14) is used in all games to exclude the possibil-
ity of trivial attacks, and helper procedure ATTACK (also Fig. 14) is defined in

416 K. Hövelmanns et al.

games IND-StAAb to exclude the possibility of trivial attacks as well as one non-
trivial attack that we will discuss below. During execution of Trivial, the game
creates list M(sID∗) of all matching sessions that were executed throughout the
game (see line 55), and A’s output bit b′ counts in games IND-AAb only if Trivial
returns false, i.e., if test session sID∗ was completed and all of the following
conditions hold:

1. A did not obtain the key of sID∗ by querying REVEAL on sID∗ or any
matching session, see lines 49 and 56.

2. A did not obtain both the holder i’s secret key sk i and the test session’s
internal state, see line 51. We enforce that ¬corrupted[i] or ¬revState[sID∗]
since otherwise, A is allowed to obtain all information required to trivially
compute Der(sk i, pk j , received[sID∗], state[sID∗]).

3. A did not obtain both the peer’s secret key sk j and the internal state of any
matching session, see line 58. We enforce that ¬corrupted[j] or ¬revState[sID]
for all sID s. th. sID ∈ M(sID∗) for the same reason as discussed in 2: A could
trivially compute Der(sk j , pk i, received[sID], state[sID]) for some matching
session sID.

4. A did not both tamper with the test session and obtain the peer j’s secret key
sk j , see line 61. We enforce that M(sID∗) �= ∅ or ¬corrupted[j] to exclude
the following trivial attack: A could learn the peer’s secret key sk j via query
CORRUPT[j] and either

– receive a message M by querying INIT on sID∗, compute (M ′,K ′) ←
Derresp(sk j , pk i,M) without having to call DERresp, and then call
DERinit(sID∗,M ′), thereby ensuring that sKey[sID∗] = K ′,

– or compute (M, st) ← Init(sk j , pk i) without having to call INIT, receive
a message M ′ by querying DERresp(sID∗,M), and trivially compute
Derinit(sk j , pk i,M

′, st).

A’s output bit b′ only counts in games IND-StAAb if ATTACK returns false,
i.e., if both of the following conditions hold:

1. Trivial returns false
2. A did not both tamper with the test session and obtain its internal state, see

line 64. We enforce that M(sID∗) �= ∅ or ¬revState[sID∗] in game IND-StAA
for the following reason: In an active attack, given that the test session’s
internal state got leaked, it is possible for some protocols to choose a message
M ′ such that the result of algorithm Derinit(sk i, pk j ,M

′, st) can be computed
without knowledge of any of the long-term keys sk i or sk j . In this setting, an
adversary might query INIT on sID∗, learn the internal state st by querying
REV-STATE on sID∗, choose its own message M ′ without a call to DERresp
and finally call DERinit(sID∗,M ′), thereby being enabled to anticipate the
resulting key.

Generic AKE in the QROM 417

Fig. 15. IND-StAA secure AKE protocol AKE = FOAKE[PKE,G,H]. Oracles H′
R and

H′
L1, H

′
L2 and H′

L3 are used to generate random values whenever reencryption fails. (For
encryption, this strategy is called implicit reject Amongst others, it is used in [28], [43]
and [32].) For simplicity of the proof, H′

R and H′
L1, H

′
L2 and H′

L3 are internal random
oracles that cannot be accessed directly. For implementation, it would be sufficient to
use a PRF.

5 Transformation from PKE to AKE

Transformation FOAKE constructs a IND-StAA-secure AKE protocol from a PKE
scheme that is both DS and IND-CPA secure. If we plug in transformation Punc
before applying FOAKE, we achieve IND-StAA-security from CPA security alone.

The Construction. To a PKE scheme PKE = (KG,Enc,Dec) with message
space M, and random oracles G and H, we associate

AKE = FOAKE[PKE,G,H] = (KG, Init,Derresp,Derinit).

The algorithms of AKE are defined in Fig. 15.

IND-StAA Security of FOAKE. The following theorem establishes that
IND-StAA security of AKE reduces to DS and IND-CPA security of PKE (see
Definition 6).

Theorem 3 (PKE DS + IND-CPA ⇒ AKE IND-StAA). Assume PKE to be δ-
correct, and to come with a sampling algorithm Enc such that it is ε-disjoint.
Then, for any IND-StAA adversary B that establishes S sessions and issues at
most qR (classical) queries to REVEAL, at most qG (quantum) queries to ran-
dom oracle G and at most qH (quantum) queries to random oracle H, there exists
an adversary ADS against the disjoint simulatability of T[PKE,G] issuing at most
qG + 2qH + 3S queries to G such that

AdvIND-StAA
AKE (B) ≤ 2 · S · (S + 3 · N) · AdvDS

T[PKE,G](ADS) + 32 · (S + 3 · N) · (qG + 2qH + 4S)2 · δ

+ 4 · S · (S + N) · εdis + S2 · (N + 1) · μ(KG) · μ(Enc) + 2 · S2 · μ(KG),

418 K. Hövelmanns et al.

and the running time of ADS is about that of B. Due to Lemma2, there exist
adversaries CDS and CIND against PKE such that

Adv
IND-StAA
AKE (B) ≤ 2 · S · (S + 3 · N) · Adv

DS
PKE(CDS)

+ 4 · S · (S + 3 · N) ·
√

(qG + 2qH + 3S) · AdvIND-CPA
PKE (CIND) +

4(qG + 2qH + 3S)2

|M|
+ 32 · (S + 3 · N) · (qG + 2qH + 3S)

2 · δ + 4 · S · (S + N) · εdis

+ S
2 · (N + 1) · μ(KG) · μ(Enc) + 2 · S

2 · μ(KG),

and the running times of CDS and CIND is about that of B.

Proof Sketch. To prove IND-StAA security of FOAKE[PKE,G,H], we consider
an adversary B with black-box access to the protocols’ algorithms and to oracles
that reveal keys of completed sessions, internal states, and long-term secret keys
of participating parties as specified in game IND-StAA (see Fig. 13). Intuitively,
B will always be able to obtain all-but-one of the three secret messages mi, mj

and m̃ that are picked during execution of the test session between Pi and Pj :

1. We first consider the case that B executed the test session honestly. Note that
on the right-hand side of the protocol there exists no state. We assume that
B has learned the secret key of party Pj and hence knows mj . Additionally, B
could either learn the secret key of party Pi and thereby, compute mi, or the
state on the left-hand side of the protocol including s̃k , and thereby, compute
m̃, but not both.

2. In the case that B did not execute the test session honestly, B is not only for-
bidden to obtain the long-term secret key of the test session’s peer, but also to
obtain the test session’s state due to our restriction in game IND-StAA. Given
that B modified the exchanged messages, the test session’s side is decoupled
from the other side. If the test session is on the right-hand side, messages mj

and m̃ can be obtained, but message mi can not because we forbid to learn
peer i’s secret key. If the test session is on the left-hand side, messages mi

and m̃ can be obtained, but message mj can not because we forbid both to
learn the test session’s state and to learn peer j’s secret key.

In every possible scenario of game IND-StAA, at least one message can not be
obtained trivially and is still protected by PKE’s IND-CPA security, and the
respective ciphertext can be replaced with fake encryptions due to PKE’s disjoint
simulatability. Consequently, the session key K is pseudorandom. A detailed,
game-based proof is given in the full version.

So far we have ignored the fact that B has access to an oracle that reveals
the keys of completed sessions. This implicitly provides B a decryption oracle
with respect to the secret keys sk i and sk j . In our proof, we want to make
use of the technique from [43] to simulate the decryption oracles by patching
encryption into the random oracle H. In order to extend their technique to PKE
schemes with non-perfect correctness, during the security proof we also need to
patch random oracle G in a way that (Enc′,Dec′) (relative to the patched G)
provides perfect correctness. This strategy is the AKE analogue to the technique

Generic AKE in the QROM 419

used in our analysis of the Fujisaki-Okamoto transformation given in Sect. 3,
in particular, during our proof of Theorem2. The latter also explains why our
transformation does not work with any deterministic encryption scheme, but
only with the ones that are derived by using transformation T. For more details
on this issue, we also refer to the full version.

5.1 IND-StAA Security Without Disjoint Simulatability

In the full version we show that transformation Punc can be used to waive the
requirement of DS: Plugging in transformation Punc before using FOAKE achieves
IND-StAA security from IND-CPA security alone, as long as PKE is γ-spread.

Acknowledgments. We would like to thank the anonymous reviewers of Eurocrypt
2018, Crypto 2019 and Asiacrypt 2019 for their helpful comments and suggestions.
This work was supported by the European Union PROMETHEUS project (Horizon
2020 Research and Innovation Program, grant 780701), the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strat-
egy (EXC 2092 CASA, 390781972), ERC Project ERCC (FP7/615074), the German
Federal Ministry of Education and Research (BMBF) Project DigiSeal (16KIS0695),
the United States Air Force Office of Scientific Research (AFOSR) via AOARD Grant
“Verification of Quantum Cryptography” (FA2386-17-1-4022), the project “Research
and preparation of an ERC grant application on Certified Quantum Security”
(MOBERC12), the ERC Consolidator grant “Certified Quantum Security” (819317),
the Estonian Centre of Excellence in IT (EXCITE) funded by the ERDF, and by
the institutional research funding IUT2-1 of the Estonian Ministry of Education and
Research.

References

1. Alagic, G., Jeffery, S., Ozols, M., Poremba, A.: On non-adaptive quantum chosen-
ciphertext attacks and learning with errors. CoRR abs/1808.09655 (2018)

2. Alawatugoda, J., Boyd, C., Stebila, D.: Continuous after-the-fact leakage-resilient
key exchange. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp.
258–273. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_17

3. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. Cryptology ePrint Archive, Report 2018/904 (2018). http://
eprint.iacr.org/2018/904

4. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: 55th Annual Symposium on Foun-
dations of Computer Science, 18–21 October 2014, pp. 474–483. IEEE Computer
Society Press, Philadelphia (2014)

5. Banik, S., Isobe, T.: Some cryptanalytic results on lizard. Cryptology ePrint
Archive, Report 2017/346 (2017). http://eprint.iacr.org/2017/346

6. Beals, R., Buhrman, H., Cleve, R., Mosca, M., Wolf, R.: Quantum lower bounds
by polynomials. In: 39th Annual Symposium on Foundations of Computer Science,
8–11 November 1998, pp. 352–361. IEEE Computer Society Press, Palo Alto (1998)

7. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30

https://doi.org/10.1007/978-3-319-08344-5_17
http://eprint.iacr.org/2018/904
http://eprint.iacr.org/2018/904
http://eprint.iacr.org/2017/346
https://doi.org/10.1007/978-3-540-74143-5_30

420 K. Hövelmanns et al.

8. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In:
30th Annual ACM Symposium on Theory of Computing, 23–26 May 1998, pp.
419–428. ACM Press, Dallas (1998)

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S.,
Ashby, V. (eds.) ACM CCS 93: 1st Conference on Computer and Communications
Security, 3–5 November 1993, pp. 62–73. ACM Press, Fairfax (1993)

10. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2_21

11. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679_25

12. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
prime. Cryptology ePrint Archive, Report 2016/461 (2016). http://eprint.iacr.org/
2016/461

13. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. Cryptology ePrint
Archive, Report 2019/590 (2019). https://eprint.iacr.org/2019/590

14. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0_3

15. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1_21

16. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive, Report 2017/634 (2017). http://eprint.iacr.org/
2017/634

17. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0_6

18. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low
T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 609–629. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7_30

19. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6_28

20. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

21. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40974-8_12

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
http://eprint.iacr.org/2016/461
http://eprint.iacr.org/2016/461
https://eprint.iacr.org/2019/590
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/634
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-540-40974-8_12

Generic AKE in the QROM 421

22. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3_21

23. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8_28

24. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.G. (eds.) ASIACCS 13: 8th ACM
Symposium on Information, Computer and Communications Security, 8–10 May
2013, pp. 83–94. ACM Press, Hangzhou (2013)

25. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

26. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

27. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53015-3_3

28. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2_12

29. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets for
NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 118–135. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30574-3_10

30. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7_15

31. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5_17

32. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

33. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsula-
tion mechanism in the quantum random oracle model, revisited. Cryptology ePrint
Archive, Report 2017/1096, July 2018. https://eprint.iacr.org/2017/1096/

34. Jiang, H., Zhang, Z., Ma, Z.: On the non-tightness of measurement-based reduc-
tions for key encapsulation mechanism in the quantum random oracle model. Cryp-
tology ePrint Archive, Report 2019/494 (2019). https://eprint.iacr.org/2019/494

35. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsula-
tion mechanism in the quantum random oracle model. Cryptology ePrint Archive,
Report 2019/134 (2019). https://eprint.iacr.org/2019/134

https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-540-30574-3_10
https://doi.org/10.1007/978-3-540-30574-3_10
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-319-96878-0_4
https://eprint.iacr.org/2017/1096/
https://eprint.iacr.org/2019/494
https://eprint.iacr.org/2019/134

422 K. Hövelmanns et al.

36. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7_18

37. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218_33

38. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol.
4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
75670-5_1

39. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on Computer and
Communications Security, 31 October–2 November 2017, pp. 1343–1360. ACM
Press, Dallas (2017)

40. Naehrig, M., et al.: FrodoKEM. Technical report, National Institute of
Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions

41. NIST: National institute for standards and technology. Postquantum crypto project
(2017). http://csrc.nist.gov/groups/ST/post-quantum-crypto/

42. Persichetti, E.: Improving the efficiency of code-based cryptography. Ph.D. thesis
(2012). http://persichetti.webs.com/Thesis%20Final.pdf

43. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7_17

44. Schäge, S.: TOPAS: 2-pass key exchange with full perfect forward secrecy and
optimal communication complexity. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015: 22nd Conference on Computer and Communications Security, 12–16
October 2015, pp. 1224–1235. ACM Press, Denver (2015)

45. Shoup, V.: Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/
2004/332

46. Toorani, M.: On continuous after-the-fact leakage-resilient key exchange. In: Pro-
ceedings of the Second Workshop on Cryptography and Security in Computing
Systems. CS2 2015, pp. 31:31–31:34. ACM, New York (2015). http://doi.acm.org/
10.1145/2694805.2694811

47. Yao, A.C.C., Zhao, Y.: OAKE: a new family of implicitly authenticated Diffie-
Hellman protocols. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS
2013: 20th Conference on Computer and Communications Security, 4–8 November
2013, pp. 1113–1128. ACM Press, Berlin (2013)

48. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32009-5_44

https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://persichetti.webs.com/Thesis%20Final.pdf
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
http://doi.acm.org/10.1145/2694805.2694811
http://doi.acm.org/10.1145/2694805.2694811
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

Threshold Ring Signatures:
New Definitions and Post-quantum

Security

Abida Haque(B) and Alessandra Scafuro

North Carolina State University, Raleigh, USA
{ahaque3,ascafur}@ncsu.edu

Abstract. A t-out-of-N threshold ring signature allows t parties to
jointly and anonymously compute a signature on behalf on N public
keys, selected in an arbitrary manner among the set of all public keys
registered in the system.

Existing definitions for t-out-of-N threshold ring signatures guaran-
tee security only when the public keys are honestly generated, and many
even restrict the ability of the adversary to actively participate in the
computation of the signatures. Such definitions do not capture the open
settings envisioned for threshold ring signatures, where parties can inde-
pendently add themselves to the system, and join other parties for the
computation of the signature.

Furthermore, known constructions of threshold ring signatures are
not provably secure in the post-quantum setting, either because they are
based on non-post quantum secure problems (e.g. Discrete Log, RSA),
or because they rely on transformations such as Fiat-Shamir, that are
not always secure in the quantum random oracle model (QROM).

In this paper, we provide the first definition of t-out-of-N threshold
ring signatures against active adversaries who can participate in the sys-
tem and arbitrarily deviate from the prescribed procedures. Second, we
present a post-quantum secure realization based on any (post-quantum
secure) trapdoor commitment, which we prove secure in the QROM. Our
construction is black-box and it can be instantiated with any trapdoor
commitment, thus allowing the use of a variety of hardness assumptions.

Keywords: Threshold ring signatures · QROM · PQ-Security

1 Introduction

A threshold cryptographic scheme enforces that a certain cryptographic action
is performed only if a quorum of users agree to proceed. For instance, in a
threshold signature scheme, a signature for a message msg should be accepted
only if at least t signers within a larger group of N signers used their secret keys
to compute it. One benefit of a threshold scheme is the tolerance to failures: even

A. Haque and A. Scafuro—Research Supported by NSF grants #1012798, #1764025,
Cisco Research Program Award CG#1194107.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 423–452, 2020.
https://doi.org/10.1007/978-3-030-45388-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_15

424 A. Haque and A. Scafuro

if an adversary learns some (less than t) keys of compromised machines, she still
will not be able to generate valid signatures. A threshold scheme is also tolerant
to benign misbehavior of users: if a set of nodes is off-line, signatures can still be
produced, as long as at least t users are active. Due to these additional robustness
properties of threshold signatures, there is interest from real applications (e.g.,
multi-signatures in Bitcoin). Threshold signatures are also target of the latest
NIST standardization effort [28].

In this paper, we describe a threshold ring signature scheme, where in addi-
tion to a quorum of t-out-of-N secret keys, one requires that: (1) the identity
of the t signers remains private (from anyone who did not participate in the
signing process) within the N public keys of the ring and (2) the set of N public
keys is established in an ad-hoc manner among the set of all available public
keys in the system (which can be more than N). There is no group manager,
nor a centralized join procedure: parties join the system freely with keys of their
choice, hence the name ring instead of group1.

Threshold ring signatures [10] suit decentralized settings where parties
dynamically join and leave the system, the number of active parties at any point
is not known, and there is an interest in protecting the identity of the parties
that endorse a certain statement. For example, in a trust blockchain, one could
impose that certain transactions are added to the blockchain only if at least t
trustees approved the operation, without revealing their identity. Threshold ring
signatures can be applied to any scenario where a statement must be endorsed
by a quorum, but parties need to protect their identities.

We want two security properties in a threshold ring signature: unforgeability
and anonymity. Unforgeability requires that fewer than t users together cannot
compute a signature on behalf of any ring. Anonymity requires that if a signature
is associated to a ring R of N users, then any possible subset of t users is equally
likely to be the set of signers. This can be modeled as: given a signature over a
ring R, any either of the two subsets S0 and S1 of R are equally likely to be the
set of keys used for computing the signature. We call S0 (S1) the signing set.

Since ring signatures target open settings where keys are generated indepen-
dently by each party, when evaluating the security of the scheme one should
take into account that some keys can be generated maliciously and possibly
adaptively on the public keys already present in the system and the signatures
already produced. For example, an adversary could try to join a system with
a key that is generated adaptively based on the other keys generated so far,
with the purpose of being able to sign a message even if she controls less than t
signers, or she can craft her public keys in such a way that if it is included in a
ring R by set of signers S, she will be able to learn some information about the
signing set S. This observation was already made by Bender, Katz and Morselli
in [4] for the case of 1-out-N ring signatures. Note that in the threshold setting,
t people must collaborate to obtain the signature, thus the adversary has the
additional capabilities of interacting with the honest parties when computing a
signature.

1 In group signatures [14], a group manager computes the keys for the users, and
possesses the trapdoors to violate the anonymity of a signer.

Threshold Ring Signatures: New Definitions and Post-quantum Security 425

1.1 Limitations of Previous Work

Security Definitions Capture only Passive Adversaries. Several thresh-
old ring signature schemes have been provided in literature but, somewhat sur-
prisingly, most consider adversaries with the following restrictions. First, the
adversary cannot create keys maliciously, that is, an adversary can only obtain
honestly generated keys, and in some cases, cannot even choose to receive more
(honest) keys, since all public keys are created once and for all and given to her
(e.g., [5,31]). Second, the adversary cannot corrupt parties (e.g. [5,30,31]), or, if
corruption is allowed, the adversary never participates in the signing process as
a member of the signing set. Only Abe et al. [1,2] consider the possibility of an
adversary who can add their own keys to the ring, but only for the unforgeability
property. Anonymity still relies on all keys being generated honestly.

In the real world, the above restrictions mean that no anonymity (and in
most work no unforgeability) guarantee is provided when the adversary is able
to observe honest parties’ keys (or signatures) before generating her public key,
and can be involved in the computation of some of the signatures.

Bender, Katz and Morselli observed in [4] that such restrictions on the adver-
sary do not reflect the setting for which 1-out-N ring signatures were devised
in the first place, which is a decentralized open systems where parties can join
dynamically. In the case of threshold ring signatures where t parties need to col-
laborate to produce a signature, definitions that precisely capture the capability
of an active adversary are crucial. Specifically, while it is true that anonymity of
a signature σ∗ for a ring R can be guaranteed only as long as the adversary did
not participate in computing σ∗, one should take into account that the adversary
can still participate in the computation of other signatures σ1, σ2, . . ., with some
of the same signers that computed σ∗, and can use this knowledge to infer infor-
mation about the signers who compute σ∗. To the best of our knowledge there
seem to be no definition in literature that captures all of the above adversarial
(and realistic) capabilities.

No Provable Post-quantum Security. Existing threshold ring signature
schemes do not present a provably post-quantum secure analysis. They are either
based on hard problems that are not post-quantum resistant [10,25,30,34,41]
(e.g., Discrete Log, RSA, bilinear maps), or, when based on post-quantum resis-
tant hardness assumptions [5,11,27,31] (e.g., lattices, multivariate code) they
use the Fiat-Shamir transform [18], the security of which is not known to hold
in general in the quantum random oracle model (QROM) [3,7]. Exciting recent
work [17,26] show that for Sigma-protocols with special properties the Fiat-
Shamir transform is secure even in the QROM, however it is not known whether
this result can be applied to the existing threshold signatures. We note that it is
possible that Abe et al.’s [2] scheme could be instantiated using post-quantum
Sigma-protocols (and thus be post-quantum secure), but it is not clear whether
this is the case. We discuss previous signatures in more detail in Sect. 2.

426 A. Haque and A. Scafuro

1.2 Our Contribution

Our contributions are security definitions and provable post-quantum security.
We elaborate on each contribution below.

Security Definitions in Presence of Active Adversaries. We provide the
first definitions for threshold ring signatures that capture realistic adversarial
capabilities. The adversary may deviate arbitrarily from any of the signature
procedures (i.e., key generation and signature generation). This is in contrast
with previous work that considered passive adversaries who follow the prescribed
procedures.

Provably Post-quantum Secure Threshold Ring Signature in QROM.
We provide a general construction of threshold ring signatures in the QROM
based on any post-quantum secure trapdoor commitment scheme. The trap-
door commitment scheme is treated as a black-box and therefore can be instan-
tiated with various hardness assumptions. Our construction is an abstraction
and generalization of previous approaches. Post-quantum security in the QROM
is achieved by applying the Unruh’s transform [36]. For completeness, we also
discuss an implementation of post-quantum secure trapdoor commitment from
any (post-quantum secure) one-way function using the circuit of the one-way-
function and a folklore transformation from Sigma-protocols to trapdoor com-
mitments.

Security Definitions in Presence of Active Adversaries. We define new security
games for capturing anonymity and unforgeability for threshold ring signatures
in presence of adversaries that are actively participating in the system. In our
anonymity definition, our adversary can actively participate by adding keys that
she maliciously crafted, and by participating in the signing process. More specif-
ically, in the anonymity game, the adversary is given access to oracles that allow
her to generate new public keys (on behalf of honest parties), corrupt a party by
learning her secret key, and compute signatures for rings R and signings sets S
of her choice that can contain arbitrarily malicious keys, added on the fly in the
system. The adversary can use these oracles to train by participating in many
joint signature computation with other honest parties.

In the challenge phase, the adversary chooses a ring R that can contain
malicious or corrupted keys, and two candidate signing sets S0, S1. These signing
sets must contain only honest keys. She queries the signing oracle with R, S0,
S1 and a message msg and obtains a signature σ∗, computed using signing set
Sb, and she wins the game if she guesses b.

The main difference with existing definitions is that in previous work the
adversary could only query the signing oracle with keys honestly generated (via
the key generation oracle) and could not participate with malicious keys in the
signing process. Such definitions only anonymity guarantee security against an
external observer who does not actively interact with the system. Our definitions
are inspired by Bender et al. [4] but they are not a straightforward extensions
of theirs. They are provided in Sect. 3.

Threshold Ring Signatures: New Definitions and Post-quantum Security 427

Post-quantum Threshold Ring-Signature from any Trapdoor Commitment. A
well known paradigm to construct a t-out-of-N threshold signature schemes is to
use a t-out-of-N threshold Secret Sharing scheme (e.g. Shamir [33] secret sharing
scheme2) and leverage the unpredictability properties of a random oracle H to
force t parties to use their secret keys to “adjust” their shares so that they match
the output of H.

We follow such a paradigm and use trapdoor commitments to allow signers to
adjust the t shares. More specifically, recall that a trapdoor commitment scheme
is defined by some public key pk that anyone can use to compute a commitment c
of a message y i.e., c ← Compk(y) such that c is hiding, that is, it reveals nothing
about y; and binding, that is, later c can only be opened as y. However, if one
knows a secret trapdoor sk associated to the parameters pk, she can compute a
“fake” commitment c ← TCompk(sk) that can be later opened as any message
y′ using the trapdoor.

At a high level, our threshold ring signature works as follows: the public key
of a signer corresponds to the public key pk of a trapdoor commitment T C (as
well as a field element α used for Shamir’s secret sharing); the signing key is the
trapdoor sk. When t parties want to jointly sign a message msg, they choose
N − t other keys (pks1 , pks2 , . . . , pksN−t) from the set of all keys published so
far 3; they then choose N − t points (ys1 , ys2 , . . . , ysN−t) and use the non-signer
public keys to commit to each point, thus obtaining N − t commitments. For the
remaining t commitments, each signer pks will prepare his own fake commitment.
The result of this step is a vector of N commitments (c1, . . . , cN) of which t are
trapdoor (and thus can be equivocated later), and N − t are binding.

Next, the random oracle is evaluated on the vector of all N commitments to
obtain another point (0, z) where z = H(msg, c1, . . . , cN). Now, the signers have
(N − t + 1) points that uniquely identify a polynomial P of degree N − t. Once
P is defined, each signer pks can compute ys = P (αs) and use the trapdoor
sks to equivocate commitment cs so that it opens to ys. The final signature
simply consists of the N commitments and openings. The verifier will simply
check that the openings are valid and lead to points (α1, y1), . . . , (αN , yN), (0, z)
that lie on the same N − t-degree polynomial P . The verifier will also check that
z = H(msg, c1, . . . , cN).

For unforgeability, due to the unpredictability of H, the value z is known to
an adversary only after the points have been committed in (c1, . . . , cN). If the
adversary controls less than t signers—and thus knows less than t trapdoors—she
cannot adjust t points, unless she is breaking the (post-quantum4) binding prop-
erty of the underlying commitments. For anonymity, recall that the difference
2 In (t, N)- Shamir Secret Sharing, to share a secret s, a dealer compute a random

polynomial P of degree t − 1 with constant term s. The i-th share of the secret is
computed as yi = P (αi), for some field element αi. Given t shares the secret can be
reconstructed using polynomial interpolation.

3 In practice we will have a leader choosing such points. We stress that the leader does
not have to be trusted.

4 In Sect. 6.1 we discuss in more detail why the issue of binding in presence of quantum
adversaries, discussed in [3], does not affect our construction.

428 A. Haque and A. Scafuro

between a signature computed by signers in set S0 versus S1 is in the positions
of the trapdoor commitments. Thus, an adversary winning the anonymity game
is able to distinguish which commitments are computed using the trapdoor,
therefore violating the (post-quantum) trapdoor property of the commitment.

These security arguments are straightforward at a high level. However, in
the formal proof via hybrid arguments one has to switch from the case where
the trapdoors are used (and signers and non-signers behave differently) to the
case where no trapdoor is used, and thus the adversary has no advantage in
breaking anonymity. This is possible by leveraging the programmability of the
random oracle H that would allow the reductions to know the point (0, z) of the
polynomial before computing the commitments (thus, such commitments do not
need to be equivocated). Similarly, when reducing unforgeability to the binding
of the underlying trapdoor commitment, we need the reduction to simulate the
signing oracle without knowing the trapdoor (otherwise, it would not possible
to break binding). In particular, to break binding the reduction needs to know
two openings of at least one commitment. In the classical case, this can be done
by rewinding the adversary and adaptively programming the random oracle.
However, this proof technique is not directly applicable when the adversary has
quantum access to the random oracle. As shown by Unruh in [36], rewinding
a quantum-capable adversary and programming the random oracle impacts the
state of the adversary, and does not guarantee extraction.

In our construction, we obtain on-line extractability by applying the Unruh
transform [36]. The main idea of this transform is not to extract by rewinding the
adversary. Rather, all the outputs that are needed are contained in the signature.
In the proof, we replace H with a 2q-wise independent function (where q is the
maximum number of oracle queries), which is indistinguishable from the random
oracle. Thus, the extractor can invert the function and find two openings.

The signature is modified so the same vector of commitments (c1, . . . , cN)
is associated to multiple points z1, . . . , zm and therefore will require m different
openings. The signers will then encrypt, using a random permutation G, modeled
as a random oracle, m multiple openings of the same commitments cs. Namely,
for a commitment cs, the signer additionally sends m encryptions (gs

1, . . . , g
s
m)

where gj = G(ys
j ||ops

j ||rs
j) and where ys

j , op
s
j is the j-th opening of cs and rs

j is
a random key used for encryption. Here m is the statistical security parameter.
Among the m encrytions, each signers will only provide the decryption of one
opening (ys

j , op
s
j) for a single j ∈ [m] (chosen via a random oracle). Note that for

the non-signers, the openings will all be the same value. This technique allow the
reduction, who sees all encryptions, to “invert” the values random permutation G
and obtain at least two openings (ys

j , op
s
j), (ỹs

j , õp
s
j) for the same commitment cs.

To amplify the probability of inverting and extracting enough openings, this
is repeated n times, using cut-and-choose techniques. To sum up, the value n is
the number of commitments (of a single ring member) and m is the number of
openings a signer makes for each. For each of the n commitments and their m
possible openings, in the signature, one will see only one “line” of openings. For
programmability, we also use a indistinguishability lemma shown in Unruh [36].

Threshold Ring Signatures: New Definitions and Post-quantum Security 429

While the secret sharing and Random Oracle paradigm is common to con-
struct ring and threshold ring signatures, our construction presents two novel
benefits. First, it is black-box in any trapdoor commitment, and thus it can
be instantiated under any assumption that allows one to construct trapdoor
commitments (e.g., lattice-based or hash-based trapdoor commitments) and it
generalizes previous constructions [1]. In particular, this allows parties to poten-
tially use different trapdoor commitment schemes, as long as they publish the
corresponding public key and the procedure to commit. This does not violate
security, since the security of honest parties should not depend on the quality of
the other’s parties key. Indeed, in the security game, anonymity is guaranteed
as long as there are two subsets S0 and S1 containing all honest keys, while
unforgeability is guaranteed as long as ≤ t keys are corrupted. In the other
cases, security cannot be guaranteed. Second, our construction is the first to be
analyzed in the quantum random oracle model, and therefore provides provably
post-quantum security guarantees.

Trapdoor Commitment from Post-quantum Secure One-Way Function. For com-
pleteness, we informally discuss a possible implementation of post-quantum
secure trapdoor commitment (details are provided in Sect. 6). It is folklore that
trapdoor commitment schemes can be constructed from any honest-verifier zero-
knowledge (HVZK) Sigma-protocol [16], for a language L. Let f be a post-
quantum secure one-way function (e.g., SHA-3), let Cf be the associated arith-
metic of boolean circuit. Let (Σ.P1, Σ.V,Σ.P2) be the 3 moves of a (post-
quantum secure) Sigma protocol, with a transcript (c, e, z) and let Σ.Sim be
the HVZK simulator associated to Σ. Let X ∈ L if there exists an W such
that X = Cf (W). The public key of a party is X. The trapdoor key is W . To
commit to a message msg honestly, a party simply runs Sim(X,msg) and obtain
c, z where c is the commitment and z,msg will be the opening. To create a trap-
door commitment, a party computes c ← Σ.P1(X,W) and then to open to a
message m∗ she will simply run Σ.P2(X,Y, c,msg∗) and obtain the opening z. A
post-quantum secure Σ protocol can be based for example on Blum’s protocol
for Graph Hamiltonicity instantiated with a statistically binding commitment.
ZkBoo [21] is another example of post-quantum secure Sigma-protocol.

Discussion on Our Contribution and Previous Work. A natural question is
whether previous constructions of threshold ring signatures also satisfy our
stronger security definition – at least classically.

As most previous constructions assume only honest participants, at the very
least they lack the appropriate consistency checks. It may be the case that if these
schemes are modified to check for malicious participants, they would preserve
their security in the presence of active adversaries.

However, we stress that this should not suggest that previous security defi-
nitions are sufficient. Indeed, one could devise a threshold ring signature scheme
that satisfies all of the security properties in the presence of passive adversaries
but that are completely insecure in the presence of active adversaries.

430 A. Haque and A. Scafuro

2 Related Work

In this section, we review previous work. We first describe (threshold) ring sig-
natures, pointing out the definitions of security as well as whether their work
considered post-quantum security. We summarize the schemes in Table 1. The
purpose of the table is not to argue efficiency of our construction, but to highlight
the stronger security guarantees that we provide, while achieving asymptotically
comparable efficiency. Next, we describe thresholdization techniques, finally, and
how to ensure post-quantum security.

(Threshold) Ring Signatures. Threshold ring signatures were introduced by Bres-
son, Stern and Szydlo (BSS) in [10] as an extension of the ring signatures intro-
duced by Rivest, Shamir and Tauman (RST) [32] to the t-out-of-N case. Schemes
such as BSS, Liu et al., Okamoto et al., and Yuen et al. [10,24,29,41] are based
on hard problems that are not post-quantum secure. Moreover, their security
definitions do not allow adversarially chosen keys.

More recently Bettaieb and Schrek [5] (improving on Aguilar et al. [27])
showed a lattice-based threshold signature. However, the security game they
consider is weak: the adversary cannot create nor corrupt keys before choosing
the signing sets and the ring for the challenge phase. Furthermore, the security
of their scheme is not formally analyzed in the post-quantum setting. Katz,
Kolesnikov, and Wang [23] showed a method for building efficient ring signatures
using symmetric-key primitives only, it is an interesting question how to extend
it to the threshold case, while preserving the efficiency.

Thresholdizing. The concept of trapdoor commitments comes from Brassard
et al. [9], and is used by Jakobsson et al. [22] for designated verifier signatures.
It is possible to thresholdize their scheme using the ideas of Cramer et al. [15].
Cramer et al. show how to build a threshold scheme in which the prover shows
he knows at least t out of N solutions without revealing which t solutions are
involved. This concept has obvious parallels with the techniques in our scheme,
although it uses different terminology. Many threshold schemes use the same
techniques as set forth by Cramer et al.

The basic concept is the use of a secret sharing scheme, in which a secret is
distributed among the N parties so that any t of them can recreate the secret.
In the first ring signature scheme RST [32], the authors suggested the idea of
using [15] to thresholdize their scheme, which was later done by BSS [10].

Related to our work are Boldyreva [6], which discusses threshold and multi-
signature schemes though does not focus on anonymity, and the “thresholdizers”
shown by Boneh et al. in [8]. However, both works focus on systems that have
a centralized setup and group managers; moreover, the work of [6] is based on
non-post-quantum secure assumptions such as DDH and RSA.

Post-quantum Security. The Fiat-Shamir transformation [18] is a method to turn
a Sigma-protocol into a non-interactive signature. Many of the threshold ring
signatures described above utilize Fiat-Shamir. However, as Ambainis et al. [3]
showed, the Fiat-Shamir construction is not secure against quantum adversaries
in general.

Threshold Ring Signatures: New Definitions and Post-quantum Security 431

Table 1. Comparison of other threshold ring signature schemes. Other schemes may
not use post-quantum secure problems. t, N are the threshold and ring size.

Work
Hardness Assumption/

PQ-Secure?
QROM

Adv.
Keys

Signature Size

Our work Trapdoor Commitment � Yes Yes 3Nn + Nmn †

Abe et al. [2] Trapdoor OWPs, Σ-Prot � No Yes (N − t) + N

Aguilar et al. [27] Syndrome Decoding � No (FS) No Nk †
Bettaieb et al. [5] Lattice � No (FS) No 1 + 3t + Nt

Bresson et al. [10] RSA ✗ No No 1O(t)�log1(N)�(t + N)

Chang et al. [12] T-OWP; Σ-Prot � No No 1(N − t) + N , cf. [2]

Liu et al. [25] Bilinear Maps ✗ No No N − t + N

Okamoto [30] Discrete Log ✗ No No O(kN)

Petzoldt [31] Quadratic MQ Problem � No (FS) No O(N)

Wong et al. [40] Trapdoor OWPs � No No N + 1N cf. [10]

Yuen et al. [41] CDH, subgroup ✗ No No 1N+1
� Post-quantum secure problem
✗ Not post-quantum secure
� Shows instances where the generic hardness assumption Trapdoor One-Way Permuta-
tions (T-OWP) could be post-quantum secure, although no candidate of PQ-secure T-
OWP currently exists. They instantiated their scheme with a discrete logarithm/RSA
type of function.
† n, m and k statistical security parameters.

To show the security of a scheme using the Fiat-Shamir transformation, one
typically uses rewinding. This means that a simulation measures the output from
an adversary, rewinds him, and then runs another execution from some save
point onwards. However, a quantum adversary may notice that a simulation has
measured his output, and this changes his quantum state.

Another possible transformation is Fischlin [20], but Ambainis et al. [3] also
showed that Fischlins’s scheme is insecure in general. The transformation does
not require rewinding, but has a concept of saving the list of all query inputs.
In the quantum setting, this list is not well-defined. Furthermore, Fischlin’s
transformation has the condition that the Sigma-protocols must have “unique
responses”, which means that it cannot transform all Sigma-protocols. On the
other hand, Fiat-Shamir can transform arbitrary Sigma-protocols.

Applying the quantum rewinding technique introduced by Watrous [39] to
Sigma-protocols with a “strict soundness” property, Unruh [35] was able to create
quantum proofs of knowledge. Requiring strict soundness is stringent, and yields
inefficient schemes. Recently, Don et al. [17] and Zhandry/Liu [26] proved some
less restrictive settings. Both works find methods that allow reprogramming
of the QROM by using “collapsing” Sigma-protocols. The notion of collapsing
comes from Unruh [38]. The idea is that it is not possible to tell whether a
superposition of responses in a Sigma-protocol were measured or not. While it
may be possible to pick settings such that Fiat-Shamir (or Fischlin) remains

432 A. Haque and A. Scafuro

secure even in the post-quantum setting, the Unruh transformation [36] is a
generic quantum-secure construction and can be applied to any Sigma-protocol.

Chase et al. [13] also proposed post-quantum digital signature schemes, in
which they showed two variants of a signature scheme. The first, named Fish,
was created using the Fiat-Shamir transformation, whereas the second, Picnic,
used the Unruh transformation.

3 Preliminaries

In the following, we describe the basic notation. Then we describe the concepts
needed to create our threshold ring signature scheme.

Notation. When not explicitly stated, we assume that the algorithms are param-
eterized by a security parameter λ. We write [N] = {1, . . . , N}, and (ai)i∈[N] to
indicate a sequence of values indexed by i. A negligible function negl(n) : N → R

is a function such that for every positive polynomial poly(n) there exists an N
such that for all n > N , negl(n) (n) < 1

poly(n) . Most algorithms we describe
are classical and probabilistic polynomial time (PPT). Other algorithms are
quantum polynomial time (QPT), which is a quantum algorithm that runs in
polynomial time. In this paper, a QPT adversary is one who can locally run
quantum computation and may have quantum access to the random oracle. We
use the notation s ←$ S to say that s is randomly chosen from a set S. We use
the notation y ← f(x) to show that f is a randomized algorithm. For deter-
ministic algorithms we use y := f(x). We may make randomness explicit and
write y := f(x; r). Finally, a family of functions F is k-wise-independent if for
any distinct x1, . . . , xk, it is the case that for any f ←$ F , f(x1), . . . , f(xk) are
independent and uniform random values. Random polynomials of degree k − 1
are a k−wise-independent family.

Trapdoor Commitment Scheme. A commitment scheme involves two parties, a
sender and a receiver. A sender sends some commitment of a message to the
receiver. The commitment is hiding, meaning the receiver cannot discover what
the message is. Later, the sender may open their commitment by sending the
message and some auxiliary opening information, which acts as evidence. The
commitment is binding, meaning that the sender cannot change what the original
message is.

Trapdoor commitment schemes are commitment schemes [19] where if the
user knows some trapdoor, then he can open a commitment to any message
he wishes. In contrast, without a trapdoor, a user can only open the original
message he committed to.

A trapdoor commitment scheme has four security properties: completeness,
hiding, binding, and trapdoor indistinguishability. Completeness demands that
the receiver always accepts any honest execution of the commitment and open-
ing phase. That is, for any message, the receiver is convinced by any correctly
computed commitment and opening. Hiding is the same as for a commitment
scheme, and binding is the same for users without access to the trapdoor (thus we

Threshold Ring Signatures: New Definitions and Post-quantum Security 433

omit more detailed description). Finally, trapdoor indistinguishability (or trap-
door for short) means that, upon opening, it should be infeasible for the receiver
to distinguish whether the original commitment was honest or a counterfeit. We
formalize this property in Experiment 1.

Definition 1 (Trapdoor Commitment Scheme). A trapdoor commitment
scheme is a tuple of PPT algorithms T C = (Setup, KGen, Com, TCom, TOpen,
VerifyOpen) for a messages space M where:

– pp ← Setup(1λ). On input the security parameter λ, Setup returns pub-
lic parameters pp. In some commitment schemes this algorithm may not be
needed.

– (pk, trap) ← KGen(1λ, pp). On input the security parameter λ and (possibly
empty) public parameters pp, outputs a public key pk and a trapdoor trap.

– (c, op) ← Compk(m): On input a public key pk and a message m, Com returns
a commitment c to message m and opening information op.

– (state, c) ← TCompk(trap). On input a public key pk, a trapdoor trap, TCom
returns a counterfeit commitment c, and a state state.

– op ← TOpen(trap, state, c,m). On input a trapdoor trap, state, a commitment
c, and a message m, TOpen returns an opening op.

– b := VerifyOpenpk(c, op,m). Given a commitment c, a public key pk, auxiliary
opening information op, and a message m, outputs a bit b.

– b := Valid(pp, pk): On input public parameters pp and a public key pk, returns
whether pk is well-formed.

Experiment 1 (Trapdoor Indistinguishability TrapT C
A (λ)). We define an

oracle TrapRealb which on input mi, outputs a commitment and opening for mi.
If b = 0, TrapReal0 computes (ci, opi) ← Compk(mi). If b = 1, then TrapReal1

computes (state, ci) ← TCompk(trap) and opi ← TOpen(trap, state, c,mi).

Let A be a QPT with classical access to the challenger.

Training Phase

1. The challenger runs pp ← Setup(1λ) and (pk, trap) ← KGen(1λ, pp) and gives
pp and pk to A.

2. A uniform bit b ∈ {0, 1} is chosen.
3. A can (classically) query TrapRealb on input messages mi and obtain ci, opi

for polynomially many i.

Challenge Phase

1. Finally, A outputs b′.
2. If b = b′, then the output of the experiment 1 (and we say A wins the game).

Else, output 0.

Definition 2 (Trapdoor Indistinguishability). A trapdoor commitment
scheme T C satisfies post-quantum secure trapdoor indistinguishability if for all
QPT adversaries A, there exists a negligible function negl such that:

Pr[TrapT C
A (λ) = 1] ≤ 1

2
+ negl(λ)

434 A. Haque and A. Scafuro

3.1 Threshold Ring Signatures in Presence of Active Adversaries

We provide our new definition of a t-out-of-N ring signature scheme which con-
siders active (and thus more realistic) adversaries. We denote the set of all public
keys which are added to the system as P = (vk1, vk2, vk3, . . .). We call P a ring.
The notation R denotes the indices of the keys chosen from P , which we call a
subring, where |R| = N . A signer s is represented by their public-private key
pair (vks, sks). We always enumerate the members of R as 1, . . . , N . The sign-
ers are represented by the subset S ⊆ R, while the non-signers are denoted as
NS ⊆ R. We have S � NS = R, where � represents the disjoint union. We use
T to represent the secret keys of the signers, that is: T = {sks|s ∈ S}.

Definition 3 ((t,N)-Threshold Ring Signature Scheme). A (t,N)-thresh-
old ring signature scheme is a 4-tuple of algorithms (Setup,KGen,ThSign,Vfy).
A set of signers S ⊂ P signs the message msg with respect to a subring R ⊂ P
with |S| ≥ t.

– pp ← Setup(1λ). On input the security parameter, generates public parameters
pp.

– (vks, sks) ← KGen(pp, 1λ): On input the security parameter λ and the public
parameters pp generates a public-private keypair for ring member s.

– σ ← ThSignpp(msg, T,R). This is a possibly interactive procedure. The players
owning the secret keys in set T interact in order to jointly produce a ring
signature σ on a message m and subring P ⊆ P , where |T | ≥ t.

– b := Vfypp(msg, R, σ). Verifier checks that σ is a correct threshold signature on
message msg with respect to R. If the signature is valid, then b = 1, otherwise
b = 0.

A threshold ring signature scheme satisfies completeness, t-unforgeability, and
t-anonymity. Completeness means that if the signers follow the ThSign algorithm
correctly, an honest verifier should accept their proof. Formally:

Definition 4 (Perfect completeness. (Setup, KGen, ThSign, Vfy) is com-
plete if for QPT A it holds:

Pr

⎡
⎢⎢⎣

pp ← Setup(1λ)
{(vks, sks) ← KGen(pp)}s∈P

(msg, S,R) ← A(pp, {(vks, sks)}s∈P)
σ ← ThSignpp(msg, T (S), R)

:
S ⊆ P =⇒
Vfy(msg, R, σ) = 1

⎤
⎥⎥⎦ = 1

Classical Oracles. For the security properties of unforgeability and anonymity,
we give the adversary the ability to (classically) query three different types of
oracles in arbitrary interleaf during training. The only difference between an
adversary to anonymity and to unforgeability is in the challenge phase.

– OKGen(s): The oracle produces (vks, sks) for player s using KGen and returns
vks to A. The set of honestly generated keys is updated by P = P ∪ {vks}.

Threshold Ring Signatures: New Definitions and Post-quantum Security 435

– OSign(msg, S,R): A requests a signature on message msg with signers S with
respect to a ring R, where |R| = N and R ⊂ P . S could contain both honestly
generated keys or adversarially generated keys, hence, S = Scorr � Shon (the
disjoint union of corrupted and honest members), where Scorr denotes the
set of corrupted members and Shon is the set of honest members. T is the set
of private keys of signers in Shon. The oracle follows the algorithm for OSign
with the secret keys that he controls. R and S may include adversarially
chosen keys or keys of corrupted parties. To produce a signature, A must
cooperate with the oracle and participate in the signing procedure. Then the
oracle outputs σ ← ThSign(msg, T,R).

– Corrupt(s): Let Pcorr be the set of corrupted keys. If vks /∈ Pcorr then return
the secret key sks to A. Update Pcorr = Pcorr ∪ {vks}.

– ORegister(s, vk): On input a signer s and a public key vk, if vk ∈ P , return
⊥. Otherwise, the oracle adds vks = vk to P and Pcorr.

Experiment 2 (t-Unforgeability Game SigForgeTRSF (t, λ)). On a (t,N)-
threshold ring signature scheme TRS = (Setup, KGen, ThSign, Vfy) we define
a game for a QPT adversary A and security parameter is λ.

Training Phase

1. The challenger runs pp ← Setup(1λ) and forwards pp to A.
2. Initially, the ring P = ∅ and the set of corrupted users is Pcorr = ∅.
3. The adversary F is given (classical) access to a key generation oracle OKGen,

a signing oracle OSign, and a corruption oracle Corrupt, and may add keys
using ORegister.

Challenge Phase F produces σ∗, msg∗ and R∗. F wins the game if

1. |R∗| ≥ t
2. |Pcorr ∩ R∗| < t
3. (msg∗, R∗) is new
4. Vfy(msg∗, R∗, σ∗) = 1

Definition 5 (t-Unforgeability wrt Insider Corruption). A (t,N)- thresh-
old ring signature scheme TRS satisfies t-Unforgeability wrt Insider Corruption
if for all QPT adversaries F , there exists a negligible function negl such that:

Pr[SigForgeTRSF (t, λ) → 1] ≤ negl(λ)

Experiment 3 (t-Anonymity wrt adversarial keys). On a (t,N)-
threshold ring signature scheme TRS, we define the t-anonymity game
AnonKeyTRSA (t, λ) for a QPT adversary A.

Training Phase

1. The challenger runs pp ← Setup(1λ) and forwards pp to A.
2. Initially, the ring P = ∅ and the set of corrupted users is Pcorr = ∅.
3. The adversary A is given (classical) access to a key generation oracle OKGen,

a signing oracle OSign, and a corruption oracle Corrupt, and may add keys
using ORegister.

436 A. Haque and A. Scafuro

Challenge Phase

1. A requests a signature on message msg∗ from one of two signing sets S0, S1

with respect to a ring R, where |S0| = |S1| = t and S0 ∪S1 ∩ Pcorr = ∅ (i.e.,
signing sets do not contain corrupted parties). However, the remaining keys
in R may contain corrupted parties.

2. The challenger returns σ∗ ← ThSign(msg∗, Tb, R), for a random bit b. Here
Tb represents the secret keys corresponding to Sb.

3. A returns the bit b′. A is said to win the game if b′ = b.

Definition 6 (Anonymity wrt adversarial Keys). A (t,N)-threshold ring
signature scheme TRS satisfies t-Anonymity wrt Adversarial Keys if for all QPT
adversaries A, there exists a negligible function negl such that:

Pr[AnonKeyTRSA (t, λ) → 1] ≤ 1
2

+ negl(λ)

4 Post-quantum Secure Threshold Ring Signatures

We describe our (t,N)-threshold ring signature scheme TRS. For reference, all
notation in the protocol is in Table 2. We call an ordered list of public keys a
ring P , where P = (vk1, vk2, . . .). We denote a subring of P as R. We always
enumerate the R as 1, . . . , N . This allows us to avoid more cumbersome notation
such as vkis . Finally, we reference a signer by their index s, so that he is the
s-th public key in R. A ring member s ∈ [N] is represented by their public-
private key pair (vks, sks). In TRS each ring member s has their public key as
vks = (pks, αs), where pks is the public key for T C and αs ∈ F is a random
element of F. Their private key sks is their trapdoor for T C. To simplify the
indexing in the construction and proof we denote the set S as a set of indices,
that is S ⊆ [N].

com1

comi

comn

c11
. . . cN

1

..

.
. . .

..

.

c1i
. . . cN

i

...
. . .

.

..

c1n . . . cN
n

Commitments

i

y1i,1 . . . yN
i,1

..

.
. . .

..

.

y1i,Ji
. . . yN

i,Ji

...
. . .

.

..

y1i,m . . . yN
i,m

Inputs to

commitments

op1i,1 . . . opN
i,1

..

.
. . .

..

.

op1i,Ji
. . . opN

i,Ji

...
. . .

.

..

op1i,m . . . opN
i,m

Opening

Information

r1i,1 . . . rN
i,1

..

.
. . .

..

.

r1i,Ji
. . . rN

i,Ji

...
. . .

.

..

r1i,m . . . rN
i,m

Randomness

g1i,1 . . . gN
i,1

..

.
. . .

..

.

g1i,Ji
. . . gN

i,Ji

...
. . .

.

..

g1i,m . . . gN
i,m

Hash invertibly

Inputs/Openings for comiCommitments for each i “Encryptions” using G

Fig. 1. Graphical representation of a signature.

Threshold Ring Signatures: New Definitions and Post-quantum Security 437

Our building blocks are a post-quantum secure trapdoor commitment scheme
T C, a (t,N) Shamir secret sharing scheme, a random oracle H = (H1,H2) and
a random permutation G. The index 1 or 2 for H informs the random oracle
which type of query is being made. H and G are fixed in the Setup phase.

Suppose that a set of t parties, which we call signers, would like to sign a
message msg on behalf of a subring R ⊆ P . Let S be the set of indices denoting
the signers. Let the remaining members of the subring be denoted as NS = R\S.

At a high level, a signature for message msg will consist of N commitments
(c1, . . . , cN) – one for each public key pki in the ring R – to N points y1, . . . , yN

that interpolate to (N − t)-degree random polynomial rpoly with constant term
z (i.e., such that rpoly(0) = z). The value z is chosen as H1(msg, c1, . . . , cN).
The commitments are computed as follows. Among the signers there is one
distinguished member known as the leader, who is chosen by some arbitrary
process. Each of the signers creates a trapdoor commitment, under they public
key pks, which they can later open to any message. For each of the non-signers
in NS the leader creates an honest commitment to a random point y. Using the
N − t points committed in the non-signer’s commitment and the output of the
random oracle z, the leader has N − t + 1 points to interpolate a polynomial
rpoly using Lagrange interpolation (that we denote by Lagrange). Then each
signer uses rpoly to compute the point ys := rpoly(αs). Finally, they use their
trapdoor sks to equivocate their commitment cs to ys.

Table 2. Notation.

Sym Meaning

t Threshold

N Number of members of the ring

P Ordered list of public keys P = (vk1, vk2, . . .)

R Subring R ⊆ P

S Set of indices identifying the signers in R

T Secret keys to signers in S, T = {sks}s∈S

NS Set of indices denoting non-signers where NS ⊆ [N]

n Number of commitments each signer will make

i Indexing over n

m Number of openings each signer will make

j Indexing over m

Lagrange Lagrange interpolation

M Message space over field F

C Commitment space over some field F

G G ←$RO. G : M × F × F → M × F × F

H H = (H1, H2) where H ←$RO

H1 H1 : M × CN × [m] → F

H2 H2 : M × CN × (ran(G))N×m → [m]

T C Trapdoor commitment scheme

λ ∈ N Security parameter

438 A. Haque and A. Scafuro

The signature will consist of all commitments (c1, . . . , cN) and openings
(y1, . . . , yN) for polynomial rpoly. Since for the security proof we need to extract
two openings (and thus violate binding), we must force the signers to generate
many openings for the same trapdoor commitment. This is where we use the
Unruh transformation [36]. This is done by having m points z1, . . . , zm and thus
m distinct polynomials that should be interpolated using the same set of points
committed in com=(c1, . . . , cN). The signers therefore prepare m set of openings,
one for each polynomial rpoly1, . . . , rpolym. All these openings are “encrypted”
using the one-way permutation G (which is invertible by the reduction during
the proof), producing the line (g1i , . . . , gN

i) for each point zi. Only one set of
openings, denoted by J , is eventually revealed to the verifier. J is chosen using
another random oracle H2, computed by (com, gs

i) for all i ∈ [n]. To amplify the
probability of extraction, the above process is repeated n times in parallel. The
values n and m are statistical security parameters. The leader and signer proce-
dures are in Figs. 3 and 4. The remaining algorithms (for setup, key generation,
and verify) are described in Fig. 2.

To sum up our (t,N) ring signature σ consists of the following elements.
n “lines” of commitments comi where comi = (cs

i)s∈[N]. For each line we
have m rows that represent possible “openings” of the same commitments:
σi = ({(cs

i ,y
s
i,Ji

, ops
i,Ji

,rs
i,Ji

)}N
s=1, {gs

i,j}
N,m
s=1,j=1). We will only reveal one of these

m rows. See Fig. 1 for a pictorial representation of the final signature.

5 Post-quantum Security of TRS

Theorem 1. If T C := (Setup, Com, TCom, TOpen, VerifyOpen) is a post-
quantum secure Trapdoor Commitment Scheme, and H1,H2, G are modeled as
quantum-accessible random oracles then TRS achieves perfect completeness (per
Definition 4), t-Anonymity wrt to Adversially Chosen Keys (per Definition 3)
and t-Unforgeability w.r.t to Insider Corruption (per Definition 2) in the quan-
tum random oracle model in presence of QPT adversaries.

Our threshold ring signature scheme has the properties of completeness,
signer anonymity, and unforgeability for a threshold t-out-of-N . The anonymity
and unforgeability proofs are similar. The difference is in the challenge phase. For
unforgeability, the adversary produces a threshold ring signature; in anonymity,
the adversary chooses between two signing sets. Anonymity is proven via reduc-
tion to trapdoor indistinguishability, while unforgeability is proven via reduction
to binding of the underlying trapdoor commitment scheme.

In both proofs, the QPT adversary has quantum access to the random ora-
cles H1,H2, G, to the underlying trapdoor commitment procedure, and classical
access to the oracles OSign, Corrupt, and OKGen. This captures the fact that
honest parties run classically.

Threshold Ring Signatures: New Definitions and Post-quantum Security 439

(t, N)- Threshold Ring Signature TRS

Setup: Setup(1λ). Chooses G ←$Perm and H ←$RO, where H is diversified as
H1, H2. Returns pp = (H, G).

Key Generation: KGen(pp). For the s− th member joining the ring, running the
key generation yields (pks, sks) ← T C.Setup and αs ←$F. Set vks = (pks, αs).

Threshold Signing Procedure: ThSignpp(msg, T, R)
This is an interactive procedure run among the parties in the set S to jointly sign
a message msg on behalf of the ring R, with |R| = N and |S| ≥ t. The non-
signers are indexed as NS, so that R = S � NS. Before starting the protocol, all
participants check whether the other keys in the chosen ring are valid using Valid.
The procedure starts with one party in S (chosen arbitrarily) running the Leader
procedure (Fig. 3). Every party in S runs the Signer procedure (Fig. 4). The two
algorithms Leader and Signer run in parallel.

Verification: Vfy(msg, R, σ) Calculate for each σi, i = 1, . . . , n:

b
?= Valid(pks)∀s ∈ R

1 ?= VerifyOpenpks
(cs

i , op
s
i,Ji

, ys
i,Ji

)∀s ∈ R

comi = {cs
i }s∈[N]

Ji := H2(msg, comi, {gsij}N,m
s=1,j=1)

zi,Ji := H1(msg, comi, Ji)

gs
i,Ji

?= G(ys
i,Ji

||ops
i,Ji

||rs
i,Ji

)∀s ∈ R

rpoly(·) = Lagrange({(αs, ys
i,Ji

)|s ∈ R} ∪ (0, zi,Ji))

deg(rpoly)
?

≤ N − t

rpolyi,Ji
(αs) ?= ys

i,Ji
for all s ∈ R

If the values match on all checks, then the verifier outputs 1. Otherwise, 0.

Fig. 2. The (t, N) - Threshold Ring Signature scheme TRS

5.1 Proofs

Completeness. Completeness is the idea that honest signers produce a signa-
ture which is accepted by an honest verifier, and is proven using the guarantees
of Shamir’s secret sharing and the commitment scheme. Completeness demands
that any t honest parties can compute an accepting signature on any message
msg with respect to a subring R ⊆ P (|R| = N) of which they are members. We
assume that the public keys of the underlying trapdoor commitment scheme T C

440 A. Haque and A. Scafuro

Leader
for i = 1 to n do

for q ∈ NS do
yq

i ←$F

(cq
i , op

q
i) ← Compkq (yq)

Multicast: Send cq
i , yq

i ,
opq

i to all s ∈ S.
for s ∈ S do

Wait: Get cs
i from s ∈ S.

comi := (cs
i)

N
s=1

for j = 1 to m do
zi,j := H1(msg, comi, j)

rpolyi,j(·) :=
Lagrange({(αq, yq

i)|q ∈ NS} ∪
(0, zi,j))

for s ∈ S do
Wait: Get gs

i,j ∀s ∈ S.
for q ∈ NS do

rq
i,j ←$F

gq
i,j := G(yq

i ||opq
i ||r

q
i,j)

Multicast: Sends gq
i,j , rq

i,j

for q ∈ NS.
Ji =

H2(msg, comi, (gs
ij)

N,m
s=1,j=1)

Wait: Get openings on index
Ji from ∀s ∈ S.

if VerifyOpenpks(cs
i , op

s
i,Ji

,

ys
i,Ji

) ?= 1 ∀s ∈ S then
σi =

({(cs
i , y

s
i,Ji

, ops
i,Ji

, rs
i,Ji

)}N
s=1,

{gs
i,j}N,m

s=1,j=1)
else

Abort � Aborts if a signer
does not give correct opening.
Return σ = ((σi)ni=1, R)

ThSignpp(msg, T, R)

Fig. 3. The Leader is chosen arbitrarily
from among the signers.

Signer
for i = 1 to n do

states
i , c

s
i ← TCom(sks).

Wait: Get yq
i , cq

i , op
q
i of q ∈ NS

from Leader, then verify.
for q ∈ NS do

1 ?= VerifyOpenpks(cq
i , op

q
i)

Multicast: Send cs
i to ∀s ∈ S

Wait: Get cs
i ∀s ∈ S

comi = (cs
i)

N
s=1

for j = 1 to m do
zi,j := H1(msg, comi, j)

rpolyi,j(·) :=
Lagrange({(αq, yq

i)|q ∈ NS} ∪
(0, zi,j))

y′s
ij := rpolyij(α

s)
ops

i,j ← TOpen(sks, states,
cs

i , y
′s
i,j).

rs
i,j ←$F

gs
i,j := G(y′s

i,j ||ops
i,j ||rs

i,j)
Multicast: Send gs

ij .
Wait: Get gs

i,j for all s ∈ S.
Wait:Get from leader ∀q ∈

NS gs
i,j and rs

i,j .
Ji = H2(msg, comi,

(gs
i,j)

N,m
s=1,j=1)

Check gq
i,Ji

?=
G(yq

i,Ji
||opq

i,Ji
||rq

i,Ji
) for q ∈ NS

Return (cs
i,Ji

, ys
i,Ji

ops
i,Ji

, rs
i,Ji

)ni=1

Fig. 4. The Signer algorithm works in
parallel with the Leader algorithm.

have the correct format and can be used by anyone to compute valid commit-
ments and openings; the signers may check this using Valid on all public keys of
the chosen subring. The t signers can compute valid commitments for the N − t
non-signers as well as themselves.

Threshold Ring Signatures: New Definitions and Post-quantum Security 441

For the ring members from s = 1, . . . , N , consider the vector of commitments
comi and the associated The inputs and openings for comi at Ji:[

c1i,j · · · ct
i,j ct+1

i,j · · · cN
i,j

]
[
(y1

i,1, op
1
i,1) · · · (yt

i,1, op
t
i,1) (yt+1

i,1 , opt+1
i,1) · · · (yN

i,1, op
N
i,1)

]

For the inputs (ys
i,Ji

)N,n
s=1,i=1, the Leader picks and commits to random

points (yq
i,Ji

)q∈NS . With up to N − t non-signers, there are N − t + 1 points
{(αq, yq

i,Ji
)|q ∈ NS} ∪ (0, zi,Ji

). Lagrange interpolation on these points yields a
polynomial rpolyi,Ji

such that deg(rpolyi,Ji
) ≤ N − t. Using rpolyi,Ji

, the s ∈ S
use their trapdoors to find points ys

i,Ji
that fit on rpolyi,Ji

. The commitments
computed with both non-signers and signers are valid, so all the openings pro-
vided as part of the signature will correctly verify.

Because rpolyi,Ji
is the unique polynomial that fits on all points (ys

i,Ji
)N
s=1,

it does not matter which points the verifier uses to recalculate rpolyi,Ji
. The

verifier will see that deg(rpolyi,Ji
) ≤ N − t and rpolyiJi

(αs) = ys
i,Ji

for all i and
for all s and for any Ji.

Hybrids (Common for Both Anonymity and Unforgeability). We recall
that in the t-Anonymity 3 and t-Unforgeability Experiment 2, the adversary has
access to the same oracles in the training phase. It is only in the challenge phase
that the experiments differ: an adversary Aanon to anonymity produces two
signing sets and must distinguish between them, and a forger F must produce
a t-out-of-N threshold ring signature (knowing only t − 1 secret keys).

For both proofs, we replace each trapdoor commitment with an honest com-
mitment over a sequence of arguments. Each step is computationally indistin-
guishable from the previous step due to trapdoor indistinguishability. To show
this formally, we use a hybrid argument where we move from hybrid H0 where
honest signers use their trapdoor to compute their commitments, to hybrid HN+5

where all commitments are computed honestly.
In the last hybrid HN+5 no honest keys involved in the signatures use the

trapdoor. We change how the OSign oracle behaves in order to remove usage of
trapdoors in an indistinguishable manner. We denote as OSignH�

as the modified
OSign algorithm in the hybrid sequence.

The proof is divided into two stages. In the first stage, we show a sequence of
hybrids to program the output of the random oracles H1 and H2. In particular,
we program the values Ji and zi,j ahead of time so that for the unopened rows,
we no longer use valid openings. Once we have the possibility of not having to
use trapdoors anywhere (since we need to provide only one opening, that we
know ahead of time), we move to the second stage of hybrids, where we replace
trapdoor commitments with honest commitments.

In order to do this, the random oracle H must be programmed such that
H(x) = z for a particular x and z, so long as the values still look random for
the adversary. By knowing the point z ahead of time, an oracle can produce a
valid signature using only honest commitments.

We define H�+5 for � ∈ [N] so that on a signature request, ring members
s ∈ [�] are always calculated using an honest commitment, regardless of whether

442 A. Haque and A. Scafuro

vks is in the signing set. We use the OSign described in HN+5 in both proofs of
unforgeability and anonymity. We describe the list of hybrids below, changing
the OSign oracle.

H0: The original game with OSign (and H) as defined in Sect. 3.1.
H1: Instead of getting Ji, i ∈ [n] from the random oracle, the challenger

chooses Ji at random and programs the random oracle H to return the
values for Ji. This allows the challenger to know ahead of time which
of the lines he needs to open. To show H0 and H1 are computationally
indistinguishable in presence of a QPT adversary who makes q-queries to
the QRO, we use a result by Unruh (see Sect. 3 of [36]).

H2: (Bridging step). Because Ji is known ahead of time now, we add an if-
statement to note when the iteration j = Ji occurs and continue. The
challenger is going through the same steps for the inner loop, so this
makes no difference.

H3: The challenger replaces the intercept value zi,Ji
with a randomly chosen

value and programs H to return zi,Ji
on query H1(msg, comi, Ji). Since

H1 is chosen from RO, it is indistinguishable from random by a QPT
algorithm. Programming H to return zi,Ji

is indistinguishable to a QPT
algorithm. We use the fact that comi has superlogarithmic entropy.

H4: As zi,Ji
is picked before commitments are created, when the challenger

knows the openings for the non-signers, he can calculate the polynomial
rpolyi,Ji

. If the leader is honest, the challenger can simply pick the inputs
for the commitments (the ys

i,Ji
). Even if the adversary controls the leader

and selects inputs in an adversarial way, the use of zi,Ji
ensures that

the polynomial is random. For corrupted parties, the challenger waits for
the adversary to give the inputs. In both H3 and H4, Lagrange gives a
random polynomial. We only change the order of when the polynomial is
calculated. Now that zi,Ji

is chosen even before commitments are created.
H5: Since the values for j �= Ji of ys

i,j , op
s
i,j , r

s
i,j are never to be opened, instead

of calculating these points using the normal system, the challenger simply
picks the inputs and other values at random for all s ∈ [N]. G is hiding,
so it is not feasible for any QPT adversary to learn anything more about
the pre-image to G. Even when the adversary knows what the openings
to the commitments are, G is salted with a random value.

H�+5 : For � = 1, . . . , N . For hybrid H�+5, on a signature query, ring members
s = 1, . . . , � are always calculated using an honest commitment, whether
s is in the signing set or not. To show H(�+1)+5 is indistinguishable from
H�+5: On a signing query, in H(�+1)+5, the commitment for signer � + 1
is calculated using an honest commitment. In H�+5, the commitment for
ring member � + 1 is calculated by using a trapdoor commitment. These
two cases are computationally indistinguishable if trapdoor commitments
and honest commitments are computationally indistinguishable. We see
that for all � = 1, . . . , N + 5 where |R| = N , the probability of distin-
guishing between H� and H(�−1) is negligible.

Threshold Ring Signatures: New Definitions and Post-quantum Security 443

Anonymity. Following Fig. 1, a signature σ parses into n lines: comi (where
comi = (cs

i)s∈[N]) and for each line there are m associated rows. The difference
between the signers and non-signers is in the columns. A non-signer column
contains the same openings across all m rows; a signer column instead will have
a different opening on each row. We note that Aanon is given only one row (among
the m) of openings. For other rows he is only given gs

i,j , which is calculated as
gs

i,j := G(ys
i,j ||ops

i ||rs
i,j). If Aanon can distinguish between the signing sets simply

observing the openings that were made available, then either it is possible to
(1) learn something about the pre-image of gs

i,j or (2) to distinguish between
trapdoor and honest commitments. Such an Aanon is therefore either violating
the hiding properties of G or the trapdoor indistinguishability of T C. Note that
following hybrids H�+5 for � = 1, . . . , N , an adversary who could distinguish
between the signing sets could also distinguish between trapdoor and honest
commitments. In H5, we use the hiding properties of G.

In the t-Anonymity Experiment 3, the QPT adversary Aanon submits a mes-
sage msg and two signing sets S0, S1 from a subring R. S0 and S1 must not be
corrupted, but R may contain malicious keys. The challenger flips a bit b ∈ {0, 1}
and computes the signature σ on msg with the keys of Sb. Then Aanon will guess
which of S0, S1 was used.

Suppose that an adversary in H0 wins with advantage ν. We change OSign
via the hybrids as described before. In HN+5, all honest keys involved in the
signature no longer use a trapdoor. This means that regardless of which sets S0

and S1 Aanon picks, the signature will be calculated in exactly the same way.
Thus the probability of Aanon winning the anonymity game in HN+5 must be
1
2 . We conclude that the probability of Aanon winning in H0 must be at most
1
2 + ν(λ). Using the fact that each hybrid is computationally indistinguishable
from the previous one, we can conclude that no adversary can win the original
t-Anonymity game in H0 except with negligible advantage ν(λ).

To be more specific, here we show the reduction for each step in hybrids H�+5

for � = 1, . . . , N + 5. Let Aanon be playing in H�+5 such that on on each request
for OSign, the challenger will return OSignH�+5

. Suppose that Aanon wins H�+5

with probability p�(λ) for all � ∈ [N], i.e.,

|Pr[Aanon(σ) = 1|σ ← ThSign(msg∗, S0, R)]−
Pr[Aanon(σ) = 1|σ ← ThSign(msg∗, S1, R)]| = p�(λ).

We write the difference between the probability of Aanon winning when play-
ing in H�+5 and in H(�+1)+5 as |p�+1 − p�|. Assume that |p�+1 − p�| is non-
negligible. Next, we construct an adversary to trapdoor Atr who uses Aanon.

Reduction 1: Atr

1. Atr is given a public parameter pk from his challenger.
2. Atr picks a random index � ∈ [N] and sets pk� := pk.
3. Atr activates Aanon. Then on each query:

444 A. Haque and A. Scafuro

– OKGen(s): if � �= s, Atr generates (pks, sks) and αs ←$F. He forwards
vks = (pks, αs) to Aanon. For s = �, Atr forwards pk� := pk and some
α� ←$F.

– Corrupt(s): Aanon requests sks, which Atr sends. If s = �, Atr will
Abort.

– OSign(msg, S,R), Atr will follow OSignH(�−1)+5
(msg, S,R), except for

signer �. If � is in the signing set, then Atr will query his challenger
y� and receive (c�, op�) in return. Otherwise, he calculates (c�, op�) ←
Com(y�).

4. When Aanon requests two signing sets, S0 and S1, Atr picks a bit b and
signs with respect to Sb. Atr follows his same strategy as in the training
phase, sending a request out to his challenger if � ∈ Sb.

5. Aanon responds with b.
6. When D outputs b, Atr outputs the same.

Probability Analysis Case 1. Atr is playing with the trapdoor oracle, Ot.
Then for each y� requested from Ot, Atr receives c� and op� back, where

state�, c� ← TCom(ski) and op� ← TOpen(sk�, state�, c�, y�). Then c� is a trap-
door if vk� ∈ S. Thus to D, the view looks exactly the same as the game for
H�+5, i.e.,

Pr[Aanon wins |H�+5] = Pr[AOt
tr = 1]

Case 2. Atr is playing with the commitment oracle, Oc. For each request y�, Atr

receives (c�, op�) ← Compk�(y�) back. Then c� is always an honest commitment
regardless of whether vk� ∈ S. Thus to Aanon, the view looks exactly the same
as the game with a challenger for H(�+1)+5, i.e.,

Pr[Aanon wins |H�+1+5] = Pr[AOc
tr = 1] =⇒

|Pr[Aanon wins |H�+5] − Pr[Aanon wins |H�+1+5]| =
|Pr[AOc

tr = 1] − Pr[AOt
tr = 1]| = |p�+1 − p�|

Then Atr can win the trapdoor indistinguishability game with non-negligible
probability, a contradiction. We see that Aanon cannot win H�+5 and H(�+1)+5

with non-negligible differences for � = 1 to N .

Unforgeability. A successful forgery verifies for t signers, but the adversary has
knowledge of only up to t − 1 secret keys. As in the anonymity proof, we swap
each trapdoor commitment out with an honest commitment over a sequence of
arguments. In the final step, the forger receives only honest commitments for all
signing queries. The commitments com = c1, . . . , cN must be produced before
learning the value z, which is necessary to produce the unique polynomial rpoly
of degree N − t. In a valid signature, all the openings must somehow fall onto
rpoly. As H is unpredictable, the forger cannot guess what z is ahead of time, so
she also cannot guess the inputs such that they all fall on rpoly. This means the
forger must be able to open the commitments to a different value after learning z.
Thus, if the forger is able to produce a valid signature, then with high probability
she must have broken the binding of an honest commitment.

Threshold Ring Signatures: New Definitions and Post-quantum Security 445

In the t-Unforgeability Experiment 2, the adversary has access to the same
oracles as in the Anonymity game in the training phase. To win the game she
needs to provide a valid signature σ∗, computed on a ring of her choice, and
the only restriction is that the ring contains at most t − 1 corrupted keys. If the
adversary provides a valid signature where fewer than t keys were corrupted, then
at least one commitment was created using an uncorrupted key (the adversary
was not given the corresponding trapdoor). Two openings of that commitment
can be extracted using the permutation G.

In addition to the hybrids described above, we write a hybrid in which G is
replaced by a uniformly random polynomial of degree 2qO−1. Such a polynomial
is a 2qO independent function, and is indistinguishable from G (per Zhandry [42])
in presence of a quantum adversary making at most qO queries to the G. On a
successful forgery, the simulation can invert the values using G and obtain many
openings (ys

j , op
s
j), (ỹs

j , õp
s
j) for the same commitment cs. With high probability,

at least one commitment must have two valid openings. As all commitments are
honest now, the two valid openings for the same commitment break binding.

In the reduction 2, we show B that uses a successful forgery by F to break
the binding property of T C. Recall that in the binding experiment, an adversary
is given public parameters pk, and their goal is to compute a commitment under
pk and two different openings msg, op and msg′, op′ where msg �= msg′. The idea
is that B will place the public pk as the answer of the idx-th query to the key
generation oracle.

B will simulate all the oracles to F . B will abort only when F asks to corrupt
key pk. When F provides a forgery σ∗ for a ring containing pk, B checks if pk
was chosen by F as as one of the signers in the forgery. Then B will try to extract
the openings for the commitments computed under key pk by inverting G.

Reduction 2: B(1λ, pk)

1. B picks an index idx ∈ [qKG] at random.
2. B picks G to be a random polynomial of degree 2qO − 1, and gets H ←$RO.

Then pp = (H, G).
3. B activates F . B forwards pp to F . F has (quantum) access to H and G. B

emulates the oracles to F as follows:
(a) On each OKGen(s) request from F , B calculates (vks, sks) ← KGen(pp)

and forwards vks to F . On the idx − th query, B will send the pk she
received along with some αidx ←$F.

(b) On each Corrupt(s) query, B returns sks. If F requests Corrupt(idx),
Abort.

(c) For OSignHN+6
(msg, S, R): B returns σ ← OSignHN+6

(msg, S, R) (i.e.,

using all honest commitments). Note that if F does not cooperate, then
B must Abort.

4. F has to query H and G for its forgery. For queries to H, B will answer as
H would (except where H has been reprogrammed). B will calculate answers
for G herself.

446 A. Haque and A. Scafuro

5. Finally, F will output a forgery (σ∗,msg∗, R∗). The forged signature contains
for i = 1, . . . , n:

σi = ({(cs
i , y

s
i,Ji

, ops
i,Ji

, rs
i,Ji

)}N
s=1, {gs

i,j}N,m
s=1,j=1)

6. If F has a successful forgery, and idx ∈ R∗, B will for i = 1, . . . , n, take σi

and for j = 1, . . . , m calculate

yidx
i,j ||opidx

i,j ||ridx
i,j = G−1(gidx

i,j).

For all j, B will scan (yidx
ij , opidx

ij). If there exist j, j′ (j �= j′) such that:

(yidx
i,j , opidx

i,j) �= (yidx
i,j′ , opidx

i,j′)

1 = VerifyOpenpk(cidx
i , opidx

i,j , yidx
i,j)

1 = VerifyOpenpk(cidx
i , opidx

i,j′ , yidx
i,j′)

Then B will output (yidx
i,j , opidx

i,j), (yidx
i,j′ , opidx

i,j′), cidx
i .

Suppose F makes qKG(λ) queries to KGen, qS(λ) queries to OSign, and qO(λ)
to the random oracle H and G. For shorthand, we will write qKG, qS , qO without
the security parameter. Consider the following cases where F has a forgery

σ∗ = {σi = ({(cs
i , y

s
i,Ji

, ops
i,Ji

, rs
i,Ji

)}N
s=1, {gs

i,j}N,m
s=1,j=1)}i∈[N].

Since B is capable of inverting all of G, B can see all the openings for every
commitment for each ring member.

Probability Analysis. B will for i = 1, . . . , n take σi and for j = 1, . . . , m calculate

yidx
i,j ||opidx

i,j ||ridx
ij = G−1(gidx

i,j).

For all j, B will scan (yidx
ij , opidx

ij). We note that B wins if there exists an i for
which idx has two valid openings on cidx

i . B does not win if for all i, idx has
one or fewer valid openings. We can describe these outcomes as one of the three
following cases:

1. (Good: idx is in the signing set and openings are correct) For some i, idx has
two valid openings to the commitment cidx

i which are given by (yidx
ij , opidx

ij)
and (yidx

ij′ , opidx
ij′). We call idx a signer in this case.

2. (Bad: idx is non-signer.) If for all i, (ys
i,j , op

s
i,j), j ∈ [m] are all equal, or we

have that idx /∈ R∗. In this case we call idx a non-signer. Then B fails.
3. (Bad: idx has invalid openings) The signature verifies, but ∀j �= Ji, if

(yidx
i,j , opidx

i,j) �= (yidx
i,Ji

, opidx
i,Ji

), then it is not true that

1 = VerifyOpenpkidx
(cidx

i , opidx
i,j , yidx

i,j).

Case 2: There is a threshold requirement that there must be at least t distinct
signers. There are at most qKG ring members. B picks index idx at random from

Threshold Ring Signatures: New Definitions and Post-quantum Security 447

[qKG]. That means B picked an index inside F ’s eventual signing set for his ring
signature with probability t

qKG
. The probability of not being a signer covers both

the case of idx being in the ring but not a signer, as well as idx not being in
the ring at all. This means B fails to pick a member of the signing set with
probability 1 − t

qKG
= qKG−t

qKG
.

Case 3: The signature verifies, but for all j �= Ji, if (yidx
i,j , opidx

i,j) �= (yidx
i,Ji

, opidx
i,Ji

),
then 1 �= VerifyOpenpkidx(cidx

i , opidx
i,j , yidx

i,j). This means F picked the point yidx
iJi

to
commit to such that (αidx, yidx

i,Ji
) would be on a polynomial rpolyi,Ji

. Recall that
rpolyi,Ji

has the point (0, ziJi
), where zi,Ji

= H1(msg, comi, Ji). Furthermore,
zi,Ji

completely determines the polynomial. Even knowing every other coefficient
of rpolyi,Ji

, F cannot determine any points on the polynomial.
As zi,Ji

is random, F can determine the correct value of (αidx, yidx
i,Ji

) with
probability no better than 1

F
. Also, F would also have to know the point Ji where

the commitments would be opened. The value of Ji comes from H2, which is a
random oracle. F would have to have guessed Ji in advance and his probability
of doing so is 1

m . Finally, F must guess Ji for all i ∈ [n]. Uniformly choosing
a correct random Ji and a point (αidx, yidx

i,Ji
) for i ∈ [n] occurs with probability

1
mn

1
F
.

The bad cases occur with probability: qKG−t
qKG

+ 1
mn · 1

F
≤ qKG−t

qKG
+ negl(λ)).

If F forges with probability p(λ), B breaks binding with probability

p(λ) ·
(

t

qKG
− negl(λ)

)
.

This means that if p(λ) is non-negligible, then B is able to break binding
with non-negligible probability. We conclude that no adversary F can produce
a successful forgery except with negligible probability.

6 Trapdoor Commitments from OWFs

In this section, we discuss a possible instantiation of a post-quantum secure
trapdoor commitment from any post-quantum secure one-way function (OWF).
The idea is to leverage a folklore transformation of Σ-protocol into a trapdoor
commitment. We start by describing a Σ-protocol and then show how to create
a trapdoor commitment scheme from a Σ-protocol. Second, we show how to use
any OWF to create an efficiently decidable language L. Finally, we show that
how to construct post-quantum Σ-protocols on the language of L.

Description of Σ-protocol. Let L be an NP language, with a witness relation
RL. For our purposes, relation RL is hard, meaning that for any (x, y) ∈ RL,
given only the statement x it is hard to find the witness y. A Σ-protocol [16] for a
language L is a three-message proof system between two interactive algorithms,
a prover P and a verifier V. P knows (x, y) which is a statement and witness
where (x, y) ∈ RL. V is given x. The interaction for a Σ-protocol goes as follows:

1. Σ.P1: P starts the interaction by sending a commitment c to the verifier.

448 A. Haque and A. Scafuro

2. Σ.V : Upon receipt of c, V sends a challenge e.
3. Σ.P2: P calculates the response z and sends z to V.

V uses the transcript (c, e, z) and statement x ∈ L and outputs a bit to either
accept or reject.

A Σ-protocol for a relation RL has three security properties: completeness,
special soundness, and special honest verifier zero-knowledge (SHVZK). The
completeness property of a Σ-protocol guarantees that if the prover knows a
witness y for x ∈ L, then for a commitment c, he is able to answer to any chal-
lenge e in the challenge space with z such that the transcript (c, e, z) and x ∈ L is
accepting. Secondly, special soundness guarantees that from any two transcripts
for x ∈ L with the same commitment, i.e., (c, e, z) and (c, e′, z′) one can extract
the witness y. Finally, the SHVZK property guarantees that, if the challenge e
is given in advance (that is, before computing c), then a simulator can compute
an accepting transcript (c, e, z) in polynomial time without knowing the witness.
The transcript computed by the simulator has the same distribution as that
of a transcript produced by an interaction between the prover and verifier. We
denote the simulator by Sim(x, e) which outputs (c, z).

Let Σ be a Σ-protocol associated with the language L with prover and verifier
(P,V). Let Sim be a SHVZK simulator for Σ. Let M be the challenge space
for Σ. Then Σ = (Σ.P1, Σ.V,Σ.P2). Σ.P1 is the first step where P sends a
commitment c, Σ.V has V send a challenge, and Σ.P2 is the response from P.

At a high level, the challenge of the Σ-protocol will correspond to the mes-
sage that a committer wants to commit to. A committer who knows the witness
can answer any challenge, meaning he can open to any message he wants. A com-
mitter without knowledge of the witness can still create a transcript using Sim,
using their desired input as the challenge. Then we define a trapdoor commit-
ment scheme T C which is parameterized by a language L and (Σ.P1, Σ.P2, Σ.V)
for L, simulator Sim.

T C[Σ]

– pp ← Setup(1λ). On input the security parameter λ, generates public
parameters: the NP language L for instances of size poly (λ) and the
associated proof system (Σ.P1, Σ.P2, Σ.V,Σ.Sim).

– (pk, trap) ← KGen(1λ, pp). Generates an instance (x, y) ∈ R and sets
pk = x and trap = y.

– (c, op) ← Compk(m): To commit to a message m, run (c, op) ←
Sim(pk,m). Output commitment c. The opening op is the response.

– (state, c) ← TComx(trap). Output (c, state) from Σ.P1(x, y) where state
is the internal randomness used by Σ.P1.

– op ← TOpen(trap, state, c,m′). On a message and commitment m′, c
output op = Σ.P2(x, c,m′, y, state).

– b := VerifyOpenx(c,m, op). Output V(x, c,m, op).

Threshold Ring Signatures: New Definitions and Post-quantum Security 449

Theorem 2. If Σ is a Σ-protocol over a hard relation R, then T C[Σ] is hiding,
binding, and trapdoor indistinguishable.

Proof (Sketch).
Binding. Binding follows from special soundness, since one commitment and two
openings, i.e., (c,m, op) and (c,m′, op′) allows one to extract the witness.
Trapdoor and Hiding. Hiding follows from trapdoor indistinguishability. Infor-
mally, trapdoor indistinguishability follows from the SHVZK property that guar-
antees that the simulated transcript (honest commitment) is indistinguishable
from the prover’s transcript (trapdoor commitment).

How to Instantiate a Post-quantum Secure Relation. Let f be a post-
quantum secure OWF. An hard relationship R can be instantiated with f as
follows: (x,w) ∈ R if x = f(w). Statement-witness pairs can be generated as
follows: let f : {0, 1}poly(λ) → {0, 1}poly(λ) be an OWF. Pick a random w ∈
{0, 1}poly(λ) and compute x = f(w). Concretely, one can instantiate f with a
collision-resistant hash function such as SHA-3, which is currently considered
post-quantum secure.

Post-quantum Secure Σ-Protocol. A post-quantum secure Σ-Protocol must
maintain special soundness and HVZK in presence of quantum adversaries. A
possible instantiation of such a Σ-Protocol is from the Blum protocol for Hamil-
tonian Graph (which is NP-complete) when the first round is computed using a
statistically binding commitment and the hiding of which is preserved in pres-
ence of quantum adversaries. As we discussed in Sect. 6.1, while in the quantum
case, the definition of binding does not protect the case in which the adver-
sary might not be actually committed to the message until the actual opening,
this does not affect the 2-special soundness property, which simply states that
if two transcripts (and thus two openings) are provided, then a witness can be
extracted.

6.1 On the Notion of Binding in Presence of Quantum Adversaries

In order to allow signers to be able to change their inputs to the commitments,
we use a computationally binding commitment scheme. Computational bind-
ing (classical style) intuitively covers the idea that an adversary cannot change
his mind on what the input message is. It is hard to find c, where (m, op) and
(m′, op′) are valid openings for c but m �= m′. Unruh posits [37] that this defini-
tion is no good in the quantum realm because of the following attack:

1. A creates c, a commitment.
2. A receives a random m from his challenger.
3. A produces the op s.t. (m, op) is a valid opening to c.

This breaks the intuitive idea that A can’t “change his mind”. Is a trapdoor
commitment-based ring signature scheme in fact secure against quantum adver-
saries? Because of the way the ThSign algorithm is constructed, if a trapdoor

450 A. Haque and A. Scafuro

commit scheme has only the property of classical binding, the threshold ring
signature is secure against quantum adversaries.

The Leader is required to come up with inputs and commitments for the
non-signers. If the underlying TCom is susceptible to the attack, the Leader
could create cq

i for some non-signer q. However, then he must somehow produce
yq

i , opq
i that opens cq

i . As only up to t − 1 other signers are corrupt, at least one
of the other signers will not accept cq

i unless he also sees some valid message
and opening for it. Thus, the attack of producing any new message and open-
ing (m′, op′) happens only after the corrupted signer has produced (m, op) as
some valid message and opening ahead of time. Producing the original (m, op)
collapses the quantum state. We conclude that a commitment scheme which is
computationally binding against quantum polynomial time adversaries is suffi-
cient for the security of our threshold ring signature scheme.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

2. Abe, M., Ohkubo, M., Suzuki, K.: Efficient threshold signer-ambiguous signatures
from variety of keys. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
87(2), 471–479 (2004)

3. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 474–483. IEEE (2014)

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

5. Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38616-9 3

6. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

7. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

8. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

9. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

10. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 30

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/3-540-45708-9_30

Threshold Ring Signatures: New Definitions and Post-quantum Security 451

11. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring
signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14712-8 16

12. Chang, Y.F., Chang, C.C., Lin, P.Y.: A concealed t-out-of-n signer ambiguous
signature scheme with variety of keys. Informatica 18(4), 535–546 (2007)

13. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1825–1842. ACM (2017)

14. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

15. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

16. Damgaard, I.: On σ-protocols
17. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-

mation in the quantum random-oracle model. Cryptology ePrint Archive, Report
2019/190 (2019). https://eprint.iacr.org/2019/190

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Fischlin, M.: Trapdoor commitment schemes and their applications (2001)
20. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with

online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

21. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: 25th {USENIX} Security Symposium ({USENIX} Security 16), pp.
1069–1083 (2016)

22. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

23. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, 15–19 October 2018, pp. 525–537 (2018). https://doi.org/
10.1145/3243734.3243805

24. Liu, J.K., Wei, V.K., Wong, D.S.: A Separable Threshold Ring Signature Scheme.
In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6 2

25. Liu, J.K., Wong, D.S.: On the security models of (threshold) ring signature
schemes. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 204–217.
Springer, Heidelberg (2005). https://doi.org/10.1007/11496618 16

26. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. Cryptology ePrint
Archive, Report 2019/262 (2019). https://eprint.iacr.org/2019/262

27. Melchor, C.A., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient threshold
ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7),
4833–4842 (2011)

28. NIST: Threshold schemes for cryptographic primitives. https://csrc.nist.gov/
News/2019/threshold-schemes-for-crypto-primitives-nistir8214

https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://eprint.iacr.org/2019/190
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1007/978-3-540-24691-6_2
https://doi.org/10.1007/11496618_16
https://eprint.iacr.org/2019/262
https://csrc.nist.gov/News/2019/threshold-schemes-for-crypto-primitives-nistir8214
https://csrc.nist.gov/News/2019/threshold-schemes-for-crypto-primitives-nistir8214

452 A. Haque and A. Scafuro

29. Okamoto, T., Tso, R., Yamaguchi, M., Okamoto, E.: A k-out-of-n ring signature
with flexible participation for signers

30. Okamoto, T., Tso, R., Yamaguchi, M., Okamoto, E.: A k-out-of-n ring signature
with flexible participation for signers. IACR Cryptology ePrint Archive 2018, 728
(2018). https://eprint.iacr.org/2018/728

31. Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate based threshold ring sig-
nature scheme. Appl. Algebra Eng. Commun. Comput. 24(3–4), 255–275 (2013)

32. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

33. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
34. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separa-

ble linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30556-9 30

35. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

36. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

37. Unruh, D.: Collapse-binding quantum commitments without random oracles. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 166–195.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 6

38. Unruh, D.: Post-quantum security of Fiat-Shamir. Cryptology ePrint Archive,
Report 2017/398 (2017). https://eprint.iacr.org/2017/398

39. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

40. Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the RS-code construction of ring
signature schemes and a threshold setting of RST. In: Qing, S., Gollmann, D.,
Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 34–46. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39927-8 4

41. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Threshold ring signature
without random oracles. In: Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security. ASIACCS 2011, pp. 261–267.
ACM, New York (2011). https://doi.org/10.1145/1966913.1966947

42. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. Int. J. Quant. Inf. 13(04), 1550014 (2015)

https://eprint.iacr.org/2018/728
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-540-30556-9_30
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-53890-6_6
https://eprint.iacr.org/2017/398
https://doi.org/10.1007/978-3-540-39927-8_4
https://doi.org/10.1145/1966913.1966947

Tight and Optimal Reductions
for Signatures Based on Average

Trapdoor Preimage Sampleable Functions
and Applications to Code-Based

Signatures

André Chailloux1 and Thomas Debris-Alazard1,2(B)

1 Inria de Paris, EPI COSMIQ, Paris, France
andre.chailloux@inria.fr

2 Information Security Group, Royal Holloway, University of London, Egham, UK
thomas.debris@rhul.ac.uk

Abstract. The GPV construction [GPV08] presents a generic construc-
tion of signature schemes in the Hash and Sign paradigm and is used in
some lattice based signatures. This construction requires a family F of
trapdoor preimage sampleable functions (TPSF). In this work we extend
this notion to the weaker Average TPSF (ATPSF) and show that the
GPV construction also holds for ATPSF in the Random Oracle Model
(ROM). We also introduce the problem of finding a Claw with a ran-
dom function (Claw(RF)) and present a tight security reduction to the
Claw(RF) problem. Our reduction is also optimal meaning that an algo-
rithm that solves the Claw(RF) problem breaks the scheme. We extend
these results to the quantum setting and prove this same tight and opti-
mal reduction in the QROM. Finally, we apply these results to code-
based signatures, notably the Wave signature scheme and prove security
for it in the ROM and the QROM, improving and extending the original
analysis of [DST19a].

1 Introduction

Signature schemes are an important element of many cryptographic applications
and are one of the schemes standardized by the post-quantum NIST competition
[Nis17]. Assessing the exact security (and hence the efficiency) of these schemes is
therefore a very important task, both against classical and quantum computers.
The GPV construction [GPV08] presents a generic construction of signature
schemes in the Hash and Sign paradigm. This construction requires a family
F of trapdoor preimage sampleable functions (TPSF), which informally is a
collection of functions that are hard to invert but which can be easily inverted
with some trapdoor. There are two specific properties of their construction:

1. The inversion algorithm that uses the trapdoor should have good repartition
properties for each image y. This means that for each image y, the inversion
algorithm should output a preimage x according to a certain distribution D.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 453–479, 2020.
https://doi.org/10.1007/978-3-030-45388-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_16

454 A. Chailloux and T. Debris-Alazard

2. The security of the resulting signature scheme is tightly based on the collision
resistance of the family F and not on the one-wayness.

These properties were tailored for lattice based schemes where these two proper-
ties hold. For example, the lattice-based FALCON signature scheme [FHK+17]
is based on the GPV construction. Notice that it is also possible to base the
security on one-wayness instead of collision resistance. However, in the generic
setting, this can lead to non tight reductions similarly as for Full Domain Hash
signatures [BR93,Cor00].

In this paper, we extend the notion of TPSF where the property (1) above
should hold only on average for y, defining the notion of Average TPSF (ATPSF).
A direct use of the leftover hash lemma shows that we can go from an ATPSF
to a TPSF with a quadratic loss in the security of F1. What we show is the
following:

– We show that this quadratic loss is not necessary and that we can use ATPSF
instead of TPSF without any loss.

– Applying the GPV construction of signature schemes from a family F of
ATPSF, we show that the security of the signature scheme ie equivalent to
solving the Claw with Random Function (Claw(RF)) problem for F . Infor-
mally, in the Claw(RF) problem, we are given a random function H and a
random f from F and we want to find (x, y) such that f(x) = H(y).

– We extend this to the quantum setting and show that our tight and optimal
results also hold in the QROM.

– We apply these results to the Wave signature scheme [DST19a] and show
more formally its classical and quantum security.

Recently, Chen, Genise and Mukherjee [CGM19] relaxed the GPV construction
and use approximate trapdoor functions. They use their results to construct
more efficient lattice-based signature schemes. They relax the constraint they
put on their preimage. On the other hand, we still require exact preimages but
we only require that the inversion algorithm gives a preimage close to the target
distribution D only on average on the images. Our results can therefore be seen
as another application of relaxing the GPV construction, but for applications
beyond lattices.

One of the implications of our results is that:

Collision �
Claw(RF)

�
Signature

� One way.

This means that the collision problem is easier than the Claw(RF) problem which
itself is easier than the preimage problem. Moreover, attacking the signature
scheme is equivalently hard to solving the Claw(RF) problem in the ROM. In
the case of lattices, we have:2,3

1 What we mean by this is explicited by Proposition 3 of this paper.
2 SIS: Short Integer Solution problem commonly used in lattice-based cryptography.
3 ISIS: Inhomogeneous Short Integer Solution.

Tight and Optimal Reductions for Signatures Based on ATPSF 455

Collision ≈ SIS � Signature � One way = ISIS ≈ SIS.

From the above diagram, we can see that the GPV construction gives for
lattices a tight and optimal reduction to the hardness of inversion. This is because
this problem is essentially as hard as finding collisions (SIS ≈ ISIS). In the
context of code-based cryptography, things are very different. In many regimes
used for signatures, the collision problem is actually easy to solve. Therefore, we
can only use the non-tight reduction to one wayness. From there, there are two
possibilities: (1) lose the factor associated to non-tightness and have a big loss in
parameters or (2) ignore the non-tightness and assume it won’t have a practical
impact. Solution (2) is of course very risky as the security proof of the actual
scheme becomes incomplete. On the other hand, those that decide on (1) have a
loss in parameters which could be unnecessary. The importance of tightness for
security reductions is well shown in the survey paper [KM19]. There has been for
example a recent attack [KZ19] on the MQDSS scheme [CHR+16], exploiting
non-tightness of the security reduction which wasn’t taken into account.

What we also advocate through our result is that if we want to study the
concrete security of these signature schemes in the ROM, the Claw(RF) prob-
lem is the actual problem we should be looking at. Others that would want to
construct a family of ATPSF for which the collision problem is easier than the
preimage problem can use our results to study the real security of their schemes.
Because we also prove this optimal security in the quantum ROM, our result is
especially adapted for post-quantum cryptography.

In order to prove our results, we use fairly standard techniques in the ROM
based on reprogramming the hashing and signing oracles. In order to do this
formally, we need to keep track of the internal memory of the reprogrammed
oracles - which is often a problem that is discarded in game based reductions - and
not only look at their output distributions. We take the approach of constructing
more explicitly an algorithm for the Claw(RF) problem from an attacker that
attacks the signature scheme instead of using the game formalism, even though
we strongly inspire ourselves from this formalism. An interesting aspect of our
proof is that we manage to reprogram only the signing oracle, and not the hashing
oracle, which reduces the requirement on the family of ATPSF functions.

For the quantum case, our proofs mainly use a result by Zhandry [Zha12] on
the indistinguishability of close quantum oracles. Here, we need to reprogram
the hash function as well since we cannot work on the internal memory of the
quantum oracles. Our proof has some similarities with the one in [BDF+11]
where the security of the GPV construction is proven in the asymptotic setting.
Our contributions here was to extend this proof to ATPSF, to perform practical
security claims and to show a tight reduction to the Claw(RF) problem.

2 Preliminaries

Probabilistic Notation. Let D be a distribution, and X be a random variable.

The notation X
$←↩ D denotes that X is distributed according to D. Furthermore,

456 A. Chailloux and T. Debris-Alazard

for a set S, we will denote by U(S) the uniform distribution over S. We use the

same notations for picking elements: y
$←↩ D means that y is picked according to

D while y
$←↩ S denotes that y is uniformly distributed over S.

Sometimes when we wish to emphasize on which probability space the prob-
abilities or the expectations are taken, we note on the right of a symbol “:”
the random variable specifying the associated probability space over which the
probabilities or expectations are taken. For instance the probability P(E : X) of
the event E is taken over the random variable X.

The statistical distance between two discrete probability distributions D1,D2

over a same space E is defined as:

Δ(D0,D1)
�
=

1
2

∑

x∈E
|D0(x) − D1(x)|.

The statistical distance Δ satisfies the triangle inequality.
A function f(λ) is said to be negligible, and we denote this by f ∈ negl(λ),

if for all polynomials p(λ), |f(λ)| < p(λ)−1 for all sufficiently large λ.
For any two sets D,R, we denote by FD

R the set of functions from D to R.

Query Algorithms and Oracles. For any algorithm A, we denote by |A| it’s
total running time. We will also consider query algorithms AO that will make a
certain amount of calls to an oracle O. For us, an oracle O will be a deterministic
or probabilistic function for which we have only a black box access. When we
write AO, it will mean that the oracle is non specified and we can replace O
with any oracle.

For a query algorithm AO, we write |AO| = (t, q) indicating that its running
time is t and that it performs q queries to O. Unless specified otherwise, the
running time of the oracle O is 1. An algorithm can also query different oracles,
which we indicate as AO1,O2 and |AO1,O2 | = (t, q1, q2) indicates that it runs in
time t and it performs q1 queries to O1 and q2 queries to O2.

For any (deterministic or probabilistic) function f , we denote by Of its asso-
ciated oracle, and we will write it:

Of (x)

return f(x).

An important concept in this paper will be the oracles with internal memory.
We will denote by O(x;L) a query x to oracle O which has internal memory L.
If the result to this query is y and the internal memory is changed to L′, we
will write return (y;L′). This internal memory is private and is not part of the
public output of the oracle.

One oracle of interest will be the random oracle. It mimics a uniformly chosen
random function from FD

R . We will denote this oracle ORO (the sets D and R
are implicit).

ORO(x; L)

if ∃!y : (x, y) ∈ L, return (y; L)

otherwise, pick y
$←↩ Rλ, return (y; L ∪ {(x, y)})

Tight and Optimal Reductions for Signatures Based on ATPSF 457

This oracle mimics a call to a random function. Each time x is queried, a
random image y is constructed. If the same x is called afterwards, the same
output y should be given. Therefore, we have a list L that stores values (x, y)
already specified by the function. If L is initialized with ∅, we should never have
x, y, y′ �= y such that (x, y) ∈ L and (x, y′) ∈ L. For any algorithm AO, we have:

P

(
AOg outputs 0 | g

$←↩FD
R

)
= P

(
AORO outputs 0 | ORO is initialized with L = ∅

)
.

Another important aspect of query algorithms is that if we consider an algo-
rithm AO and two close oracles O1,O2, then AO1 and AO2 will be close. This
is at the core of the game formalism presented for instance in [Sho04]. More
formally,

Proposition 1. Let AO be a query algorithm with |AO| = (t, q). Let O1,O2 be
two oracles such that:

∀x,L, Δ(O1(x;L),O2(x;L)) ≤ δ.

Then we have:
∣∣P

(
AO1 outputs 0

)
− P

(
AO2 outputs 0

)∣∣ ≤ qδ.

3 Digital Signatures and EUF-CMA Security Model
in a Classical/Quantum Setting

A signature scheme S consists of three algorithms (S.keygen,S.sign,
S.verify):

– S.keygen(1λ) → (pk, sk) is the generation of the public key pk and the secret
key sk from the security parameter λ.

– S.sign(m,pk, sk) → σm: generates the signature σm of a message m from
m,pk, sk.

– S.verify(m,σ,pk) → {0, 1} verifies that σ is a valid signature of m using
m,σ,pk. The output 1 corresponds to a valid signature.

Correctness. A signature scheme is defined as correct if when we sample
(pk, sk) ← S.keygen(1λ), we have for each m:

S.verify(m,S.sign(m,pk, sk),pk) = 1.

Security Definitions. We consider the EUF-CMA (Existential Universal Forgery
for Chosen Message Attack) security for signature schemes. A key pair (pk, sk) ←
S.keygen(1λ) is generated. The goal of the adversary A is, knowing only pk,
to construct a pair (m,σm) such that σm is a valid signature for m but we give
him some additional power. He can query a signing oracle OSign, that does the
following:

458 A. Chailloux and T. Debris-Alazard

proc Sign(m)

σm ← S.sign(m, pk, sk)
return σm

Notice here that the signing oracle has access to pk and sk. The goal of the
adversary is then in this case to output a valid signature σm∗ for a message m∗

that has not been queried to the signing oracle.

Definition 1. Let AO be a query algorithm, we define

AdvEUF-CMA
S (AO) = P

(
S.verify(m∗, σ∗,pk) = 1 and m∗ has not

been queried in OSign : (pk, sk) ← S.keygen(1λ), (m∗, σ∗) ← AOSign(pk)
)
.

For any time t and number of queries qsign, we define:

AdvEUF-CMA
S (t, qsign) = max

AO :|AO|=(t,qsign)
AdvEUF-CMA

S (AO).

For a quantum adversary, we define similarly the quantum EUF-CMA advan-
tage as:

QAdvEUF-CMA
S (t, qsign) = max

AO:|AO|=(t,qsign)
AdvEUF-CMA

S (AO).

where the maximum is over quantum query algorithms that perform classical
queries to OSign.

It is actually standard, even if the algorithm is quantum, to consider classical
queries to the signing oracle. This is because in the real life scenario that moti-
vates this security definition, signing queries are done to an external party that
can force you to perform classical queries. In the post-quantum standardization
process, the NIST indeed requires only security against classical queries to the
signing oracle.

4 Family of ATPSF

In this work we will use the Full Domain Hash (FDH) paradigm of signature
schemes [BR96,Cor02]. The key ingredient of this kind of constructions is a trap-
door one-way function f : D → R and a cryptographic hash function H. The
corresponding FDH scheme to sign a message m uses the trapdoor to choose
a signature x ∈ f−1(H(m)). The verification step simply consists in comput-
ing H(m) and f(x) to ensure that f(x) = H(m). The difficulty for designing
such primitives is the fact that each time a message is signed, the signature is
made public while the secret trapdoor has been used to produce it. Therefore,
we must ensure that no information of the trapdoor leaks after the inversion.
However, in the nice case where f is a permutation this does not matter. Indeed,
the hash of the message H(m) is classically considered as random and thus the

Tight and Optimal Reductions for Signatures Based on ATPSF 459

inverse x = f−1(H(m)) will be random too and in this way distributed inde-
pendently of the trapdoor. This is typically the case for signatures schemes like
RSA. Nevertheless, building one-way permutations in the post-quantum world
like in code/lattice-based cryptography is a hard condition to meet. Usually
[GPV08,DST19b] functions are many-to-one and then it is non-trivial to build
trapdoor candidates with an inversion algorithm which is oblivious to the used
trapdoor. Building a secure FDH signature in this situation can be achieved by
imposing additional properties [GPV08] to the one-way function. This is mostly
captured by the notion of Trapdoor Preimage Sampleable Functions (TPSF)
[GPV08, Definition 5.3.1]. We express below this concept in a slightly relaxed
way dropping the domain sampleability condition and only assuming that the
preimage sampleable property holds on average and not for any possible ele-
ment in the function range. This will be sufficient for proving the security of the
associated FDH scheme.

Definition 2. An ε-ATPSF (for Average Trapdoor Preimage Sampleable Func-
tions (or Function Family)) is an efficient triplet of probabilistic algorithms
(TrapGen, SampDom, SampPre) where:

• TrapGen(1λ) → (f, τ). Takes the security parameter λ and outputs f :
Dλ → Rλ, an efficiently computable function with an efficient description,
and τ , the trapdoor that will allow to invert f .

• SampDom(f) → x. Takes a function f : Dλ → Rλ (with an efficient descrip-
tion) as an input and outputs some x ∈ Dλ.

• SampPre(f, τ, y) → x. Takes a function f with associated trapdoor τ , an
element y ∈ Rλ and outputs x ∈ Dλ s.t. f(x) = y.

We define:

εf,τ
�
= Δ

(
SampDom(f),SampPre(f, τ, U(Rλ))

)
,

where SampPre(f, τ, U(Rλ)) is sampled as follows: pick y
$←↩ Rλ, return

SampPre(f, τ, y). We require that our triplet of algorithms satisfies

E(f,τ)←TrapGen(1λ) (εf,τ) ≤ ε. (1)

The main difference with the definition of TPSF as defined [GPV08, Def-

inition 5.3.1] is that we consider an average y
$←↩ Rλ instead of wanting the

property for almost all y. Furthermore, it is also asked for TPSF to verify
that E(f,t)←TrapGen(1λ) (Δ(f(SampDom(f)), U(Rλ))) ≤ ε′ (domain sampleabil-
ity condition) for some ε′ whereas we, a priori, don’t request anything of this
kind for ATPSF. We show now that ε-ATPSF family verifies the domain sam-
pleability condition of [GPV08].

Proposition 2. Let F = (TrapGen, SampDom, SampPre) be a collection of
ε-ATPSF. We have for any f, τ

Δ(f(SampDom(f)), U(Rλ)) ≤ εf,τ (2)

460 A. Chailloux and T. Debris-Alazard

where for a fixed f , f(SampDom(f)) is the distribution which is sampled as
follows: x ← SampDom(f), return f(x). Furthermore,

E(f,τ)←TrapGen(1λ) [Δ(f(SampDom(f)), U(Rλ))] ≤ ε (3)

Proof. We write

εf,τ = Δ
(
SampDom(f),SampPre(f, τ, U(Rλ))

)

≥ Δ
(
f(SampDom(f)), f(SampPre(f, τ, U(Rλ)))

)

= Δ(f(SampDom(f)), U(Rλ))

where the first inequality uses the fact that for any deterministic function f
and random variables X and Y (see [GM02] for a proof), Δ(f(X), f(Y)) ≤
Δ(X,Y). This proves Eq. (2). We conclude the proof by taking the expectation
over (f, t) ← TrapGen(1λ). ��

We now also show that we can replace the average property of the ATPSF
with one that works for almost all y, but with a root loss in the sampleability
error ε.

Proposition 3 ([S19]). Let F = (TrapGen, SampDom, SampPre) be an
ε-ATPSF and for (f, τ) output by TrapGen(1λ). We have

1
|Rλ| · #

{
y ∈ Rλ : Δ (SampPre(f, y),Xy) >

√
εf,τ

}
≤ 2

√
εf,τ ,

where Xy denotes the distribution of Xy
$←↩SampDom(f) given f(Xy) = y,

meaning

∀x ∈ Dλ, P (Xy = x)
�
=P (SampDom(f) = x | f(SampDom(f)) = y) . (4)

Proof. The first part of the proof is to prove the following equation:

2εf,τ ≥ 1
|Rλ|

∑

y∈Rλ

Δ (SampPre(f, y),Xy) (5)

Let us denote for all y ∈ Rλ,

py
�
=P (SampDom(f) = x | f(SampDom(f)) = y) .

We have the following computation,
εf,τ = Δ(SampPre(f, t, U(Rλ)), SampDom(f))

=
1

2

∑

y

∑

x∈f−1(y)

∣∣∣∣∣P (SampDom(f) = x) −
1

|Rλ|
P(SampPre(f, τ, y) = x)

∣∣∣∣∣

=
1

2

∑

y

∑

x∈f−1(y)

∣∣∣∣∣P (SampDom(f) = x) −
py

|Rλ|
+

py

|Rλ|
−

1

|Rλ|
P(SampPre(f, τ, y) = x)

∣∣∣∣∣

≥
1

2

∑

y

1

|Rλ|
∑

x∈f−1(y)

∣∣py − P(SampPre(f, τ, y) = x)
∣∣−

1

2

∑

y

∑

x∈f−1(y)

py

∣∣∣∣∣
P (SampDom(f)=x)

py
−

1

|Rλ|

∣∣∣∣∣

=
∑

y∈Rλ

1

|Rλ|
Δ

(
SampPre(f, τ, y), Xy

)
−

1

2

∑

y

∑

x∈f−1(y)

py

∣∣∣∣∣
P (SampDom(f) = x)

py
−

1

|Rλ|

∣∣∣∣∣ (6)

Tight and Optimal Reductions for Signatures Based on ATPSF 461

Now we have for all x ∈ f−1(y) and by definition of py,

P (SampDom(f) = x)

py
=

P (SampDom(f) = x)

P (SampDom(f) = x | f(SampDom(f)) = y)

=
P (SampDom(f) = x)

P (f(SampDom(f)) = y | SampDom(f) = x)
P(SampDom(f) = x)

P(f(SampDom(f)) = y)

=
P(f(SampDom(f)) = y)

P (f(SampDom(f)) = y | SampDom(f) = x)

= P(f(SampDom(f)) = y) (7)

where in the last line we used the fact that f(x) = y. Therefore, by putting (7)
in (6) and using that

∑
x∈f−1(y) py = 1 we get,

εf,τ ≥
∑

y∈Rλ

1
|Rλ|Δ (SampPre(f, τ, y),Xy) − Δ(f(SampDom(f)),U(Rλ))

≥
∑

y∈Rλ

1
|Rλ|Δ (SampPre(f, τ, y),Xy) − εf,τ .

where the last inequality comes from Proposition 2. This proves Eq. (5). In order
to conclude, we write

∑

y∈Rλ

1

|Rλ|
Δ (SampPre(f, τ, y), Xy) ≥

√
εf,τ

|Rλ|
· #

{
y ∈ Rλ : Δ (SampPre(f, y), Xy) >

√
εf,τ

}
.

Plugging this into Eq. 5, we get the desired result. ��

4.1 Constructing a Signature Scheme from ATPSF

As pointed out in [S19], the fact that a collection of ATPSF verifies the preim-
age property for almost all inputs is enough to build a signature scheme as in
[GPV08] and to use the security reduction given in [GPV08, Proposition 6.1].
Nevertheless, by doing this we loose a square factor. We propose here to gener-
alize the construction of [GPV08] by adding a random salt in the signing algo-
rithm. More precisely, given a collection an ATPSF F = (TrapGen, SampDom,
SampPre) we define the following Full Domain Hash signature scheme SF : select
a cryptographic hash function H : {0, 1}∗ → Rλ and a random salt r of size λ0

(λ0 will be precised later). Consider the following three algorithms of the signa-
ture SF :

SF .keygen(1λ) SF .sign(m,pk, sk) SF .verify(m, (x, r),pk)

(f, τ) ← TrapGen(1λ) r
$←↩{0, 1}λ0 y ← H(m, r)

return (pk, sk) = (f, τ) y ← H(m, r) if f(x) = y return 1
x ← SampPre(y, sk) else return 0
return(x, r)

462 A. Chailloux and T. Debris-Alazard

Our aim in what follows is to give a tight security reduction of this scheme
using directly the average property of ATPS. In order to do so, we must first
define different computational problems to reduce and in particular we introduce
our Claw(RF) problem. This is the aim of the following section.

The Random Oracle Model (ROM) in This Construction. In the random oracle
model, we replace the function H with a random function h : {0, 1}∗×{0, 1}λ0 →
Rλ to which we only give black box access. Recall the EUF-CMA advantage of
SF :

AdvEUF-CMA
SF (AOSign) = P

(
H(m∗, r∗) = f(x∗) and m∗ has not been

queried in OSign : (pk, sk) ← S.keygen(1λ), (m∗, r∗, x∗) ← AOSign(pk)
)

where OSign is the oracle defined in Sect. 3. The ROM assumption says that any
algorithm can only use H in a black box fashion and that it behaves as a random
function. This translates to the fact that A can be seen as query algorithm not
only to the signing oracle but also to the H function and that the EUF-CMA
advantage is equal to the following one:

P

(
h(m∗, r∗) = f(x∗) and m∗ has not been queried in OSign : h

$←↩F
{0,1}∗×{0,1}λ0

Rλ

(pk, sk) ← S.keygen(1λ), (m∗, r∗, x∗) ← AOSign,Oh(pk)
)
.

5 One-Wayness, Collision Resistance and the Claw
with Random Function Problem

The interest in using trapdoor functions for signatures is that these functions
should be hard to invert without the trapdoor τ . Ideally, we want to reduce
the security of the signature scheme to the hardness of inverting the function.
However, this is not always possible and we have to reduce the security to other
problems.

5.1 Definitions

We first present the notion of advantage related to one-wayness and collision
finding. We then define our Claw(RF) problem and the associated advantage.

Definition 3. Let F = (TrapGen, SampDom, SampPre) be an ATPSF. For
any algorithm A, we define:

AdvOW
F (A)

�
=P

(
f(x) = y : (f, τ) ← TrapGen(1λ), y

$←↩ Rλ, x ← A(f, y)

)
,

AdvColl
F (A)

�
=P

(
f(x1) = f(x2) ∧ x1 �= x2 : (f, τ) ← TrapGen(1λ), (x1, x2) ← A(f)

)
.

Tight and Optimal Reductions for Signatures Based on ATPSF 463

For any time t, we also define

AdvOW
F (t)

�
= max

A:|A|=t
AdvOW

F (A),

AdvColl
F (t)

�
= max

A:|A|=t
AdvColl

F (A).

Now, we define the Claw(RF) problem.

Problem 1 (Claw with Random Function - Claw(RF)).

• Instance: a function f and a random function h to which we only have black
box access.

• Goal: find x, y such that f(x) = h(y).

From there, we define the Claw(RF) advantage for any query algorithm AO.

Definition 4. Let F = (TrapGen, SampDom, SampPre) be an ATPRF.

Adv
Claw(RF)
F (AO

)
�
= P

(
f(x) = h(y) : h

$←↩F
D
R , (f, τ) ← TrapGen(1

λ
), (x, y) ← AOh (f)

)

= P

(
f(x) = ORO(y) : (f, τ) ← TrapGen(1

λ
), (x, y) ← AORO (f)

)

For any time t and any number of queries q, we also define

Adv
Claw(RF)
F (t, q)

�
= max

AO:|AO|=(t,q)
Adv

Claw(RF)
F (AO).

Similarly, if we consider quantum algorithms, we can define the quantum advan-
tages QAdvOW

F (t), QAdvColl
F (t) and QAdv

Claw(RF)
F (t, q) where we maximize over

quantum query algorithms. In the case of QAdv
Claw(RF)
F (t, q), we allow quantum

queries to Oh.

5.2 Relating These Different Advantages

In this section, we present the relationship between the different advantages.

Proposition 4. Let F be an ε-ATPRF For any time t, we have

AdvOW
F (t) ≤ Adv

Claw(RF)
F (t, 1)

Adv
Claw(RF)
F (t, q) ≤ q · AdvOW

F (t)

Adv
Claw(RF)
F (t, q) ≤ AdvColl

F (t + Õ(q)) + qε + E(f,t)←TrapGen

(
1

MNP(f)

)

where for (f, τ) ← TrapGen(1λ), the minimal number of preimages MNP(f)
is

MNP(f)
�
= min

y
(|{x : f(x) = y|}) .

464 A. Chailloux and T. Debris-Alazard

Proof. We prove each inequality separately.

1. AdvOW
F (t) ≤ Adv

Claw(RF)
F (t, 1).

Let A be an algorithm running in time t with one-way advantage AdvOW
F (t). We

consider the following algorithm

BOg (f): x2
$←↩D, y

�
= g(x2), x1 ← A(f, y), return (x1, x2).

For a random g whose inputs are in D, y is a uniform element in Rλ. More-
over, since f(x1) = g(x2) is equivalent to f(x1) = y, we have AdvOW

F (A) ≤
Adv

Claw(RF)
F (BOg). Finally notice that BOg makes a single call to g and runs in

the same time as A, which concludes the proof. ��

2. Adv
Claw(RF)
F (t, q) ≤ q · AdvOW

F (t).

Let AO be a query algorithm running in time t, performing q queries to O with
Claw(RF) advantage Adv

Claw(RF)
F (t, q). Let ORO(x;L) be the random oracle.

We construct a new procedure O′′
j,y0 which is equivalent to ORO except the jth

call that outputs y0. In the internal memory of O′′
j,y0 , we will keep track in a

index i that corresponds to the number of times the oracle was queried +1.

proc O′′
j,y0(x; L, i)

if ∃!y : (x, y) ∈ L, return (y; L, (i + 1))
otherwise if i = j return (y0; L ∪ {(x, y0)}, (i + 1)

else take y
$←↩ Rλ, return (y; L ∪ {(x, y)}, (i + 1))

Notice that if j and y0 are chosen at random then this doesn’t change the
behavior of the oracle. We consider the following algorithm

B(f, y0): j
$←↩{1, . . . , q}, (x1, x2) ← AO′′

j,y0 , return x1

Notice that we have replaced in A calls to ORO with calls to O′′
j,y0

. We write

Adv
Claw(RF)
F (AO

)

= P

(
f(x1) = ORO(x2) : (f, τ) ← TrapGen(1

λ
), (x1, x2) ← AORO (f)

)

= P

[
f(x1) = O′′

j,y(x2) : (f, τ) ← TrapGen(1
λ
), j

$←↩{1, . . . , q}, y
$←↩ Rλ, (x1, x2) ← AO′′

j,y (f)
]

≥
1

q
P

[
f(x1) = y : (f, τ) ← TrapGen(1

λ
), j

$←↩{1, . . . , q}, y
$←↩ Rλ, (x1, x2) ← AO′′

j,y (f)
]

=
1

q
P

[
f(x1) = y : (f, τ) ← TrapGen(1

λ
), y

$←↩ Rλ, x1 ← B(f, y)
]

where the inequality comes from the fact that when x2 is queried in O′′
j,y(x2),

there is a probability of 1
q that this corresponds to the jth query on average on

j which corresponds to O′′
j,y(x2) = y. ��

3. Adv
Claw(RF)
F (t, q) ≤ AdvColl

F (t + Õ(q)) + qε + E(f,t)←TrapGen

(
1

MNP(f)

)
.

Tight and Optimal Reductions for Signatures Based on ATPSF 465

Let AO be a query algorithm running in time t, performing q queries to O
with Claw(RF) advantage Adv

Claw(RF)
F (t, q). We use the random oracle ORO

and write

Adv
Claw(RF)
F (AO

) = P

(
f(x1) = ORO(x2) : (f, τ) ← TrapGen(1

λ
), (x1, x2) ← AORO (f)

) (8)

We now define another procedure O′
f that is similar to ORO but we change

the way y is sampled.

proc O′
f (x; L)

if ∃y : (x, y) ∈ L, return (y; L)

otherwise compute z ← SampDom(f), y
�
= f(z), return (y; L ∪ {(x, y)})

Therefore we have:

∀x,L, Δ
(
ORO(x;L),O′

f (x;L)
)

≤ ε (9)

from Proposition 2.
We now consider the following (queryless) algorithm B: run AO. Each time

O is called, run O′
f and keep track efficiently of the internal memory L, with a

sorted list. Initialize L = ∅. The list L is of size at most q so each membership
query to L can be done in time at most O(log(q)), so B runs in time t + Õ(q).
Moreover, since O′

f is called q times, using Eqs. (8), (9) and Proposition 1, we
have

Adv
Claw(RF)
F (AO

) ≤ P

(
f(x1) = O′

f (x2) : (f, τ) ← TrapGen(1
λ
), (x1, x2) ← B(f)

)
+ qε.

Now, we construct the following algorithm C: run B. Each time O′
f (x;L) is called,

keep track of the value z such that f(z) = O′
f (x). Let x1, x2 be the output of

B(f). Let z such that O′
f (x2) = f(z). Output (x1, z). Again, C runs in time

t + Õ(q). We have

Adv
Claw(RF)
F (AO

) ≤ P

(
f(x1) = f(z) : (f, τ) ← TrapGen(1

λ
), (x1, z) ← C(f)

)
+ qε.

In order to relate this to the collision advantage, we just need to find the prob-
ability that x1 �= z in the above. From the construction of C and Of ′ , we have
that z is a random preimage of f(x1). Therefore, x1 �= z with probability at
least 1 − 1

MNP(f)
4. From there, we can conclude

Adv
Claw(RF)
F (AO) ≤ AdvColl

F (C) + qε + E(f,t)←TrapGen

(
1

MNP(f)

)
.

��

4 A similar argument was already implicitly used in [GPV08].

466 A. Chailloux and T. Debris-Alazard

6 Tight Reduction to the Claw Problem, with ATPSF

6.1 Proof of Our Main Theorem

Theorem 1. Let F = (TrapGen,SampDom,SampPre) be a collection of ε-
ATPSF with security parameter λ. Let SF be the associated Hash and Sign sig-
nature scheme with salt size λ0. For any t, qhash, qsign, we have

AdvEUF-CMA
SF (t, qhash, qsign) ≤ Adv

Claw(RF)
F (Õ(t), qhash) + qsign

(
ε +

(qsign + qhash)

2λ0

)

and by taking λ0 = λ + 2 log(qsign) + log(qhash), we have

AdvEUF-CMA
SF (t, qhash, qsign) ≤ Adv

Claw(RF)
F (Õ(t), qhash) + qsignε +

1
2λ

.

Proof. Let AOHash,OSign be an attacker with |AOHash,OSign | = (t, qhash, qsign) such
that AdvEUF-CMA

SF (t, qhash, qsign) = AdvEUF-CMA
SF (AOHash,OSign). We show how to

construct a query algorithm CO to attack the claw with random function prop-
erty of F . In the signature scheme SF , we have the following hash and sign
procedures, where the Hash procedure is the Random Oracle.

proc Hash(x; L)

if ∃!y : (x, y) ∈ L, return (y; L)

otherwise, pick y
$←↩ Rλ, return (y; L ∪ {(x, y)})

proc Sign(m; L)

r
$←↩{0, 1}λ0

(y; L′) ← Hash(m||r; L)
x ← SampPre(f, τ, y)
return (x, r; L′)

Recall that L corresponds to the list of input/output pairs already queried to
the Hash function. Here, both procedures use the same L and each time is it
updated, this update happens for both procedures at the same time. We first
rewrite the Sign procedure by replacing the Hash procedure inside it with its
explicit code:

proc Sign(m; L)

r
$←↩{0, 1}λ0

(y; L′) ← Hash(m||r; L)
x ← SampPre(f, τ, y)
return (x, r; L′)

=

proc Sign(m; L)

r
$←↩{0, 1}λ0

if ∃!y : (m||r, y) ∈ L
then

x
$←↩ SampPre(f, τ, y)

return (x, r; L)
else

y
$←↩ Rλ

x
$←↩ SampPre(f, τ, y)

L′ �
= L ∪ {(m||r, y)}

return (x, r; L′)

Tight and Optimal Reductions for Signatures Based on ATPSF 467

Now, we present a new signature procedure Sign′, that will be close to Sign
but doesn’t use τ .

proc Sign′(m; L)

r
$←↩{0, 1}λ0

if ∃!y : (m||r, y) ∈ L
then

return ⊥
else

x
$←↩ SampDom(f)

y
�
= f(x)

L′ �
= L ∪ {(m||r, y)}

return (x, r; L′)

We made two changes from Sign to Sign′. In the case where ∃!y0, : (m||r, y0) ∈ L,
Sign′ outputs ⊥. In the other case, Sign′ also has a different way of sampling x and
y. We show that these two changes do not change a lot the output distribution
of the sign procedure:

Lemma 1. For any f, τ as well as m and L, we have Δ
(
Sign(m;L),Sign′

(m;L)
)

≤ εf,τ + |L|
2λ0

.

Proof. We consider the following intermediate procedure Signint

proc Signint(m; L)

r
$←↩{0, 1}λ0

if ∃!y0 : (m||r, y0) ∈ L
then

return ⊥
else

y
$←↩ Rλ

x
$←↩ SampPre(f, τ, y)

L′ �
= L ∪ {(m||r, y)}

return (x, r; L′)

Sign(m;L) and Signint(m;L) only differ when for the random choice r
$←↩{0, 1}λ0 ,

∃!y0 : (m||r, y0) ∈ L. This event happens with probability at most |L|
2λ0

hence
Δ(Sign(m;L),Signint(m;L)) ≤ |L|

2λ0
.

Now, let’s look at the distance between Signint(m;L) and Sign′(m;L). The
only difference in those distributions comes from the way x and y are sampled.
Since both in Signint and Sign′, we have y = f(x) (and f is deterministic), the
only difference comes from the way x is sampled. Therefore,

Δ
(
Signint(m; L), Sign′(m; L)

)
= Δ (SampPre(f, τ, U(Rλ)),SampDom(f)) = εf,τ

and we can therefore conclude the proof using the triangle inequality. ��

468 A. Chailloux and T. Debris-Alazard

We are now ready to finish the proof of Theorem1. From an adversary
AOHash,OSign(f), we construct an algorithm BOHash,OSign′ (f) which corresponds to
running AOHash,OSign but calls to OSign are replaced with calls to OSign′ . We also
ask B to emulate by himself the oracles OHash,O′

Sign. To do this, it initializes
L = ∅ and runs these algorithms by himself by updating L efficiently via a
sorted list. Notice that this was not possible with OSign because it required τ
that B does not have access to. Let us define Adv′(·) as:

Adv′(BOHash,OSign′)
�
=P

(
f(x∗) = Hash(m∗||r∗) ∧ (m∗, e∗, r∗) wasn’t answered

by OSign′ in B : (f, τ) ← TrapGen(1λ), (m∗, r∗, x∗) ← BOHash,OSign′ (f)
)
.

On average on f , the outputs of BOHash,OSign′ differ from those of AOHash,OSign(f)
only because we replaced calls to OSign with calls to OSign′ . There are qsign such
calls and using Lemma 1, we have:

AdvEUF-CMA
SF (AOHash,OSign) ≤ Adv′(BOHash,OSign′) + qsign

(
ε +

(qsign + qhash)
2λ0

)

where we here also averaged over (f, τ) ← TrapGen(1λ).
When we first discussed the random oracle model, we showed how when

calling an oracle Og for a random g, we could “internalize” the random function
into each call of ORO. In order to reach the quantity Adv

Claw(RF)
F , we have to

undo this step and externalize the random function, but we want to keep the
internal memory L since it can also be modified by OSign′ . More precisely, for
any function g, we define

proc Hashg(x; L)

if ∃!y : (x, y) ∈ L, return (y; L)
otherwise, return (g(x); L ∪ {(x, g(x))})

.

When, we run Hash, each time a fresh x is queried - meaning ∀y, (x, y) /∈ L -
we pick a random value y as its output. Equivalently, we can compute all those
possible values y at the beginning, characterized by values g(x) for a random
function g. Therefore, we have

Adv′(BOHash,OSign′) = P

(
Hashg(m∗||r∗) = f(x∗) ∧ m∗ wasn’t queried to

OSign′ in B : g
$←↩RF , (f, τ) ← TrapGen(1λ), (m∗, r∗, x∗) ← BOHashg ,OSign′ (f)

)
.

Now, for a fixed g, let’s try to characterize Hashg(m||r) for any m, r. If
∀y, (m||r, y) /∈ L then Hashg(m||r) = g(m||r). Otherwise, let y such that
(m||r, y) ∈ L and we distinguish 2 cases:

1. (m||r, y) was put in L after a call to Hash, then Hashg(m||r) = g(m||r).
2. (m||r, y) was put in L after a call to Sign′, then m was queried to OSign′ .

Tight and Optimal Reductions for Signatures Based on ATPSF 469

Therefore, for any triplet (m∗, r∗, x∗) ← BOHashg ,OSign′ , we have:

m∗ is not queried to OSign′ or m∗ is queried and (x∗, r∗) is not answered by OSign′

⇔ Hashg(m∗||r∗) = g(m∗||r∗).

From there, we have:

Adv′(BOHash,OSign′) = P

(
g(m∗||r∗) = f(x∗) : g ← F

{0,1}∗×{0,1}λ0

Rλ
,

(f, τ) ← TrapGen(1λ), (m∗, r∗, x∗) ← BOHashg ,OSign′ (f)
)
.

In order to conclude, notice that the algorithm BOHashg ,OSign′ can be seen as an
algorithm COg that runs in time Õ(t) and performs qhash queries to Og, so

Adv′(BOHash,OSign′) = P

(
g(m∗||r∗) = f(x∗) : g ← F

{0,1}∗×{0,1}λ0

Rλ
,

(f, τ) ← TrapGen(1λ), (m∗, r∗, x∗) ← COg(f)
)

= Adv
Claw(RF)
F (COg)

Putting everything together, we get Adv
Claw(RF)
F (COg) = Adv′(BOHash,OSign′) and

AdvEUF-CMA
SF (AOHash,OSign) ≤ Adv

Claw(RF)
F (COg) + qsign

(
ε +

(qsign + qhash)
2λ0

)

which concludes the proof. ��

7 Quantum Security Proof in the QROM

In this section, we will prove that in the quantum setting, we can also prove
the security of SF for a collection F of ATPSF. We first present the quantum
random oracle model.

7.1 The Quantum Random Oracle Model

The Quantum Random Oracle Model (QROM) is a model where we model
a certain function with a random function H but since we are in the quan-
tum setting, we have a black box access to H and thus also to the unitary
OH(|x〉|y〉) = |x〉|H(x) + y〉. Unlike the classical setting, when calling OH for a
randomly chosen H, we will not be able to generate values H(x) on the fly as
we did classically since a quantum query potentially queries all values H(x) at
the same time5. Hopefully we will still have tools to reprogram the QROM.
5 It is actually possible to do this via the quantum lazy sampling routine [CMSZ19]

but we will use simpler tools here.

470 A. Chailloux and T. Debris-Alazard

When a function h is drawn uniformly from the set of functions FD
{0,1}m ,

we can equivalently, for each input x ∈ D, draw h(x)
$←↩{0, 1}m, which fully

specified the function h. For each distribution T on {0, 1}m, let us consider
the distribution of functions FunT where h ← FunT means that for each x,

h(x)
$←↩ T . In [Zha12], Zhandry showed the following relation.

Proposition 5. Let AO be a quantum query algorithm running in time t and
making q queries to the oracle O. Let T be a probability distribution on {0, 1}m

such that Δ(T ,U({0, 1}m)) ≤ ε. We have

∣∣∣ P

(
AOh outputs 1 : h ← FD

{0,1}m

)
− P

(
AOg outputs 1 : g ← FunT

) ∣∣∣ ≤ 8π√
3
q3/2√ε.

One can compare this to the classical case, which follows directly from Proposi-
tion 1.

Proposition 6. Let AO be a classical query algorithm running in time t and
making q queries to the oracle O. Let T be a probability distribution on {0, 1}m

such that Δ(T ,U({0, 1}m)) ≤ ε. We have
∣∣∣P

(
AOh outputs 1 : h ← FD

{0,1}m

)
− P

(
AOg outputs 1 : g ← FunT

)∣∣∣ ≤ qε.

With Proposition 5, we will be able to prove the quantum security of SF .

7.2 Tight Quantum Security of SF

The goal of this section is to prove the following theorem

Theorem 2. Let F = (TrapGen,SampDom,SampPre) be an ε-ATPSF. Let
SF be the associated Hash and Sign signature scheme. Let q = qHash + qSign, we
have

QADV
EUF-CMA
SF (t, qhash, qsign) ≤

1

2

(
QADV

Claw(RF)
(Õ(t), qhash) +

8π
√
6

q
3/2√

ε + qsign

(
ε +

qsign

2λ0

))
.

By taking λ0 = λ + 2 log(qsign), this gives

QADV
EUF-CMA
SF (t, qhash, qsign) ≤

1

2

(
QADV

Claw(RF)
(Õ(t), qhash) +

8π
√
6

q
3/2√

ε + qsignε +
1

2λ

)
.

Before proving this statement, we need to add another definition. Let
F = (TrapGen,SampDom,SampPre) be an ε-ATPSF. We said that
SampDom(f) was an efficient probabilistic algorithm. Here, we need
to explicit this randomness and work with a deterministic algorithm.
Let SampDomdet(f,K) be the algorithm which corresponds to running
SampDom(f) with randomness K ∈ {0, 1}k. What this means is that running

SampDom(f) is done by choosing K
$←↩{0, 1}k and running SampDomdet(f,K).

With this new definition, we can go and prove our theorem.

Tight and Optimal Reductions for Signatures Based on ATPSF 471

Proof (of Theorem 2). Fix F ,SF and let AOHash,OSign an adversary in the quantum
EUF-CMA model with |AOHash,OSign | = (t, qHash, qSign) running in time t. In all our
discussion, we fix a pair (f, τ) and we consider the Hash and Sign procedures of
SF for this fixed pair. We write
QADV EUF-CMA

SF (AOHash,OSign |(f, τ)) the advantage for this pair (f, τ) and we have

QADV EUF-CMA
SF (AOHash,OSign) = E(f,τ)←TrapGen(1λ)QADV EUF-CMA

SF (AOHash,OSign |(f, τ)).

We consider 2 quantum accessible pseudo-random functions O1 : {0, 1}λ0 →
{0, 1} and O2 : {0, 1}∗ × {0, 1}λ0 → {0, 1}k, modeled as random function in
the QROM. Using these functions, we construct the following function Hash′ :
{0, 1}∗ × {0, 1}λ0 → Rλ as follows:

proc Hash′(m, r)

b
�
= O1(r).

If b = 0, return Hash(m, r).
if b = 1, return f(SampDomdet(f,O2(m, r))).

First note that we can easily construct an efficient quantum circuit for OHash′

using OHash and O1,O2. Also, since Hash,O1 and O2 are random functions,
Hash′(m, r) follows a distribution which is at most εf,τ

2 -close to the uniform
distribution for each m, r. Indeed, Hash′(m, r) follows the uniform distribution
with probability 1

2 and the distribution SampDom(f) with probability 1
2 . But

these two distributions are at most at distance εf,τ from Proposition 2. This
means that

∀(m, r), Δ(Hash(m, r),Hash′(m, r)) ≤ εf,τ

2
.

We also call Sign′ the procedure Sign where we replaced Hash with Hash′. From
the above, we have

∀m, Δ(Sign(m),Sign′(m)) ≤ εf,τ

2
.

Using Proposition 5, we get

QADV
EUF-CMA
SF (AOHash,OSign |(f, τ)) ≤ QADV

EUF-CMA
SF (AO

Hash′ ,O
Sign′ |(f, τ)) +

8π
√
6

q
3/2√

εf,τ .

We now change Sign′ into Sign′′ that doesn’t use the trapdoor and can be
emulated with only the public key.

proc Sign′(m)

r
$←↩{0, 1}λ0

y ← Hash′(m, r)
x ← SampPre(f, τ, y)
return (x, r)

→

proc Sign′′(m)

r
$←↩{0, 1}λ0

b
�
= O1(r). If b = 0, go back to step above.

If b = 1, x
�
= SampDomdet(f, O2(m, r))

return (x, r).

472 A. Chailloux and T. Debris-Alazard

When calling Sign′′(m), the r chosen part of the output is a random value in
{0, 1}λ0 such that O1(m, r) = 1. The probability that this r wasn’t returned by
a previous Sign′′ query is therefore at least 1− qSign

2(λ0−1) . When this is the case, the
distance between a call to Sign′ and Sign′′ is equal to εf,τ , since K is uniformly
random (using Proposition 2). Therefore, we have for each m

Δ(Sign′(m),Sign′′(m)) ≤ 2qSign
2λ
0

+ εf,τ .

Using Proposition 5, we get

QADV
EUF-CMA
SF (AO

Hash′ ,O
Sign′ |(f, τ)) ≤ QADV

EUF-CMA
SF (AO

Hash′ ,O
Sign′′ |(f, τ)) + qsign(

2qSign

2λ
0

+ εf,τ).

Putting everything together, we get

QADV
EUF-CMA
SF (AOHash,OSign |(f, τ)) ≤ QADV

EUF-CMA
SF (AO

Hash′ ,O
Sign′′ |(f, τ)) +

8π
√
6

q
3/2√

εf,τ

+ qsign(
2qSign

2λ
0

+ εf,τ),

and by taking the expectation over (f, τ) ← TrapGen(1λ), we get

QADV
EUF-CMA
SF (AOHash,OSign) ≤ QADV

EUF-CMA
SF (AO

Hash′ ,O
Sign′′

) +
8π
√
6

q
3/2√

ε + qsign(
2qSign

2λ
0

+ ε).

where we used the concavity of the root function and Jensen’s inequality. In
order to conclude, let’s write

QADV
EUF-CMA
SF (AO

Hash′ ,O
Sign′′

) = P

(
Hash′

(m
∗

, r
∗
) = f(x

∗
) and m

∗
has not been queried in OSign′′ :

(f, τ) ← TrapGen, (m
∗

, x
∗

, r
∗
) ← AO

Hash′ ,O
Sign′′

(f)
)

=
1

2
P

(
Hash(m∗

, r
∗
) = f(x

∗
) :

(f, τ) ← TrapGen, (m
∗

, x
∗

, r
∗
) ← AO

Hash′ ,O
Sign′′

(f)
)

=
1

2
QADV

Claw(RF)
(AO

Hash′ ,O
Sign′′

).

Here, we used the fact that if m∗ is not queried in Sign′′, the value of O1(m∗, r∗)
is random and is equal to 0 with probability 1

2 . When this occurs, we have
Hash′(m, r) = Hash(m, r). Finally, notice that AOHash′ ,O′′

Sign can be performed
locally with the public key and oracle calls to OHash so we can write AOHash′ ,O′′

Sign =
BOHash for some algorithm B. We have therefore

QADV
EUF-CMA
SF (AOHash,OSign) ≤

1

2

(
QADV

Claw(RF)
(BOHash) +

8π
√
6

q
3/2√

ε + qsign

(
ε +

qsign

2λ0

))
.

Notice finally that B makes as much queries to Hash as A and runs in essentially
the same time (Õ(t)), which concludes the proof. ��

Tight and Optimal Reductions for Signatures Based on ATPSF 473

8 Applying the Result to Code-Based Signatures
Based on ATPSF

In this Section, we present a general analysis of code-based signatures based on
ATPSF families. We will show that using the tightness to the Claw(RF) problem
gives better results than using the standard inversion or collision problem. This
section is motivated by the WAVE signature scheme [DST19a], that constructs
a code-based ATPSF family, but is relevant for any such construction.

8.1 Canonical Construction of Code-Based ATPSF

We present here the definition of a canonical code-based ATPSF, adapting Def-
inition 2, that we call CBATPSF.

Here the notation | · | denotes the Hamming weight, i.e: the number of non
zero component of a vector. Furthermore, vectors will be written with bold letters
(such as e) and uppercase bold letters are used to denote matrices (such as H).
Vectors will be in row notation.

Definition 5. An ε-CBATPSF (for Code Based Average Trapdoor Preimage
Sampleable Functions (or Function Family)) is an efficient triplet of probabilistic
algorithms (TrapGen, SampDom, SampPre) with parameters n, k, q, w (that
can depend on the security parameter λ) where:

• TrapGen(1λ) → (H, τ). Takes the security parameter λ and outputs H ∈
F
(n−k)×n
q , and a trapdoor τ . We also define Dλ = {e ∈ F

n
q : |e| = w} and

Rλ = F
n−k
q . The trapdoor function maps then any e ∈ Dλ to eH ∈ Rλ.

• SampDom(H) → e. Takes a matrix H ∈ F
(n−k)×n
q and outputs a vector

e ∈ Dλ.
• SampPre(H, τ, s) → e. Takes a matrix H ∈ F

(n−k)×n
q with associated trap-

door τ , an element s ∈ Rλ and outputs e ∈ Dλ s.t. eH = s.

For this definition, the one-wayness, collision and Claw(RF) problems become
the following, for a fixed algorithm A that outputs elements e in Dλ, meaning
that e ∈ F

n
q and |e| = w:

Adv
OW
F (A) = P

(
eH

ᵀ
= s : (H, τ) ← TrapGen(1

λ
), s

$←↩ F
n−k
2 , e ← A(H, s)

)
,

Adv
Coll
F (A) = P

(
e1H

ᵀ
= e2H

ᵀ ∧ e1 = e2 : (H, τ) ← TrapGen(1
λ
), (e1, e2) ← A(H)

)
,

Adv
Claw(RF)
F (AO

) =P

(
e1H

ᵀ
=e2H

ᵀ
: h

$←↩F
Dλ
Rλ

, (H, τ) ← TrapGen(1
λ
), (e1, e2) ← AOh (H)

)
.

These problems are directly related to standard problems used in code-based
cryptography as we will see in the next section. These problem are believed to
be hard when the matrix H is chosen uniformly at random from the set of full
rank matrices. However, in the CBATPSF construction, this matrix is generated
from TrapGen so it needn’t be uniform. We therefore have to argue that these

474 A. Chailloux and T. Debris-Alazard

problems remains hard for matrices H generated from TrapGen. A way to do
this is to argue that these matrices are computationally indistinguishable from
uniformly random matrices of full rank.

Let FRk,n
q

�
={H ∈ F

k×n
q : H has full rank}. We define the advantage

AdvTvsU
F (A) of distinguishing matrices generated from TrapGen(1λ) with uni-

formly chosen matrices of full rank, for any algorithm A:

Adv
T vsU
F (A)

�
=

∣∣∣∣P
(

A(H) outputs 1 : (H, τ) ← TrapGen(1
λ
)
)

− P

(
A(H) outputs 1 : H

$←↩ FR
k,n
q

)∣∣∣∣ .

We also define, for any time t: AdvTvsU
F (t) = maxA:|A|=t AdvTvsU

F (A).

8.2 Relating Hardness of Breaking the CBATPSF
with the Hardness of Breaking Standard Code-Based Problems

In this section, we will relate the different advantages (for one-wayness, collision
and Claw(RF)) with known problems in code-based cryptography. This will show
that using our tight reduction to the Claw(RF) will give better results than using
one-wayness or collision finding.

One-Wayness vs. Syndrome Decoding. The syndrome decoding problem
is the most studied problem in code-based cryptography.

Problem 2 (Syndrome Decoding - SD(n, q, k, w)).

– Instance: a parity-check matrix H ∈ F
(n−k)×n
q of rank n − k, a syndrome

s ∈ F
n−k
q ,

– Output: e ∈ F
n
q of Hamming weight w such that eHᵀ = s

This problem is believed to be hard when the matrix H is chosen ran-
domly fromFRk,n

q and the syndrome s is chosen at random. This setting
has been extensively studied in [Pra62,Ste88,Dum91,Bar97,FS09,MMT11,
BJMM12,CS15,MO15,DT17,BM18,BCDL19]. It is also known to be NP-
complete in the worst case [BMvT78] and there is a search to decision reduction
(see for instance [FS96]). For any algorithm A, we define the (average case)
syndrome decoding advantage as

Definition 6 (SD-advantage(n, q, k, w)). For any algorithm A, we define

AdvSD
(n,q,k,w)(A)

�
=P

(
eHᵀ = s and |e| = w : H

$←↩FRk,n
q , s

$←↩Fn−k
q , e ← A(H, s)

)
,

and for any time t, we also define, AdvSD
(n,q,k,w)(t)

�
= maxA:|A|=t AdvSD

(n,q,k,w)(A).

Notice that this is exactly the one-wayness advantage of the CBATPSF , except
that H is chosen uniformly and not from TrapGen. Therefore, we immediately
have for any t

Tight and Optimal Reductions for Signatures Based on ATPSF 475

AdvOW
F (t) ≤ AdvSD

(n,q,R,ω)(t) + AdvTvsU
F (t). (10)

Now consider the signature scheme SF based on a CBATPSF F as defined
in Definition 5. By combining Theorem1, Proposition 4, and Eq. (10), we imme-
diately get the following proposition.

Proposition 7. Let F be an ε-CBATPSF as defined in Definition 5 and let SF

be the corresponding signature scheme. We have:

Adv
EUF-CMA
SF (t, qhash, qsign) ≤ qhash

(
Adv

SD
(n,q,k,w)(Õ(t)) + Adv

T vsU
F (t)

)
+qsign

(
ε +

(qsign + qhash)

2λ0

)
.

Notice here that there is a qhash factor in front of AdvSD
(n,q,k,w)(Õ(t)) which implies

a significant loss in the security reduction.

Claw(RF) vs. DOOM Problem. Decode One Out of Many is a multitarget
generalization of the syndrome decoding problem. Instead of giving one syn-
drome s as input, we give several random syndromes and we have to solve the
syndrome decoding problem for one of these syndromes. The way we model
having access to these syndromes is by giving a black box access to a random
function h that outputs these syndromes.

Problem 3 (Decoding One Out of Many - DOOM(n, q, k, w)).

– Instance: a parity-check matrix H ∈ F
(n−k)×n
q of rank n − k and a function

h : D → F
n
q for some domain D, to which we only have a black box access.

– Output: e ∈ F
n
q of Hamming weight w and i ∈ D such that eHᵀ = h(i)

This is problem is sometimes defined when we get as an input N random
syndromes s1, . . . , sN . This can be reformulated in our problem by first com-
puting h(i) for i ∈ {1, . . . , N} and setting si = h(i). This problem has been
studied in quite a few papers [JJ02,Sen11,DST17,BCDL19]. It is easier than
the syndrome decoding problem and sometimes quite significantly. We define
the DOOM advantage as follows, for any query algorithm AO.

Definition 7 (DOOM-advantage(n, q, k, w)). For any algorithm A, we
define

Adv
DOOM
(n,q,k,w)(A

O
)

�
= P

(
eH

ᵀ
= h(i) and |e| = w : H

$←↩FR
k,n
q , h

$←↩F
Dλ
Rλ

, (e, i) ← AOh (H)
)

,

and for any time t, we also define AdvDOOM
(n,q,k,w)(t, q)

�
= maxAO :|AO|=(t,q)

AdvDOOM
(n,q,k,w)(AO).

Again, this is exactly the Claw(RF) advantage up to the distribution of the
input matrix H. This means we have

Adv
Claw(RF)
F (t, q) ≤ AdvDOOM

(n,q,k,w)(t, q) + AdvTvsU
F (t). (11)

By combining Theorem 1 and Eq. (11), we immediately get:

476 A. Chailloux and T. Debris-Alazard

Proposition 8. Let F be an ε-CBATPSF as defined in Definition 5 and let SF

be the corresponding signature scheme. We have

AdvEUF-CMA
SF (t, qhash, qsign)≤AdvDOOM

(n,q,k,w)(t)+AdvTvsU
F (t)+qsign

(
ε +

(qsign + qhash)

2λ0

)
.

Here, we have the reduction to the DOOM problem. Even though it is simpler
than syndrome decoding, the reduction is tight so it will overall give much better
results.

Using the Collision Problem. One could also, as in [GPV08], replace the
Claw(RF) problem with the collision problem. However, in the case of codes,
this problem is much simpler. Actually, there is a large range of parameters
for which the problem can be solved in polynomial time while the syndrome
decoding or DOOM problems are solved in exponential time.

8.3 Wave Instantiation

In this context authors, of [DST19a] constructed a signature scheme called Wave,
based on an CBATPSF family. As far as we know, this is the first post-quantum
signature scheme based on this paradigm that doesn’t use lattice based assump-
tions. To accomplish this they introduced a family of codes which forms their
trapdoor, namely the permuted generalized (U,U + V)-codes. The presentation
of this trapdoor is out of the scope of this paper. Wave constructs an ε-CBATPSF
family with the following parameters:

n = 66.34λ, w = 0.9396n, q = 3, k = 0.66n.

With this choice of parameters, ε and AdvTvsU
F (t) are small enough to have

128 bits of security. The interested reader can read the long version of Wave
[DST19b], in particular [DST19b, Theorem 3, p39] and [DST19b, Proposition
14, page 31] to have more details. Notice also that the public key has log2(3)n2

bits.
Here, we are in a parameter range where the collision problem is simple, so we

can’t use the original tight GPV bound. However, as studied in [BCDL19], the
best classical algorithms for DOOM have essentially the same complexity than
those for Syndrome Decoding. This means that in order to derive the security
of Wave, if Proposition 7 was used instead of Proposition 8, we would have to
double the value of n and hence increase the public key size (already quite large)
by a factor of 4. This shows on a concrete example the importance of our results.

9 Conclusion

In this paper, we extended the GPV construction of signature schemes by allow-
ing the use of ATPSF instead of TPSF. We also presented a security reduction
of these signature schemes to the Claw(RF) which is not only tight but also

Tight and Optimal Reductions for Signatures Based on ATPSF 477

optimal, meaning that an algorithm that solves the Claw(RF) also breaks the
underlying signature scheme.

Our results allow to extend the GPV construction to non-lattice based
schemes. In particular, for code-based cryptography, it is often easy to find
collisions for the underlying trapdoor function. What we showed is that with
this construction, we cannot have a tight reduction to Syndrome Decoding so
we cannot ignore the non-tightness to SD. On the other side, losing a q factor
(the number of queries) in the security reduction is greatly overkill. The good
approach is to consider the Claw(RF) problem which in the code-based setting
is the DOOM problem. Because of our optimality results, the Claw(RF) should
always be the studied problem in GPV-like construction in order to correctly
assess the security of the signature scheme.

More generally, we advocate that all Hash and Sign signatures should fol-
low similar guidelines. This was implicitly done for lattices because SIS and
ISIS are considered of same difficulty and the associated Claw(RF) problem
lies between them.

Acknowledgments. The work of Debris-Alazard was supported by the grant EPSRC
EP/S02087X/1.

References

[Bar97] Barg, A.: Minimun distance decoding algorithms for linear codes. In: Mora,
T., Mattson, H. (eds.) AAECC 1997. LNCS, vol. 1255, pp. 1–14. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63163-1 1

[BCDL19] Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary
syndrome decoding with large weights. preprint, February 2019.
arXiv:1903.07464. To appear in the proceedings of SAC 2019

[BDF+11] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C.,
Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25385-0 3

[BJMM12] Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary lin-
ear codes in 2n/20: how 1 + 1 = 0 improves information set decoding. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 31

[BM18] Both, L., May, A.: Decoding linear codes with high error rate and its impact
for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-79063-3 2

[BMvT78] Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability
of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: CCS 1993, Proceedings of the 1st ACM
Conference on Computer and Communications Security, Fairfax, Virginia,
USA, 3–5 November 1993, pp. 62–73 (1993)

https://doi.org/10.1007/3-540-63163-1_1
http://arxiv.org/abs/1903.07464
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2

478 A. Chailloux and T. Debris-Alazard

[BR96] Bellare, M., Rogaway, P.: The exact security of digital signatures-how to
sign with RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 399–416. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 34

[CGM19] Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices
and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34618-8 1

[CHR+16] Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.:
From 5-pass MQ-based identification to MQ-based signatures. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 5

[CMSZ19] Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling
and game-playing proofs for quantum indifferentiability. Cryptology ePrint
Archive, Report 2019/428 (2019). https://eprint.iacr.org/2019/428

[Cor00] Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44598-6 14

[Cor02] Coron, J.-S.: Optimal security proofs for PSS and other signature schemes.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

[CS15] Canto-Torres, R., Sendrier, N.: Analysis of information set decoding for a
sub-linear error weight (2015). Preprint

[DST17] Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: SURF: a new code-based
signature scheme. Preprint, September 2017. arXiv:1706.08065v3

[DST19a] Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trap-
door one-way preimage sampleable functions based on codes. In: Galbraith,
S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 2

[DST19b] Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of
trapdoor one-way preimage sampleable functions based on codes. Cryp-
tology ePrint Archive, Report 2018/996, March 2019. https://eprint.iacr.
org/2018/996

[DT17] Debris-Alazard, T., Tillich, J.-P.: Statistical decoding. preprint, January
2017. arXiv:1701.07416

[Dum91] Dumer, I.: On minimum distance decoding of linear codes. In: Proceed-
ings of the 5th Joint Soviet-Swedish International Workshop Information
Theory, Moscow, pp. 50–52 (1991)

[FHK+17] Fouque, P.-A., et al.: Falcon: fast-Fourier lattice-based compact signatures
over NTRU. First round submission to the NIST post-quantum cryptogra-
phy call, November 2017

[FS96] Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as
secure as syndrome decoding. In: Maurer, U. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996). https://doi.
org/10.1007/3-540-68339-9 22

[FS09] Finiasz, M., Sendrier, N.: Security bounds for the design of code-based
cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 88–105. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 6

https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-662-53890-6_5
https://eprint.iacr.org/2019/428
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-46035-7_18
http://arxiv.org/abs/1706.08065v3
https://doi.org/10.1007/978-3-030-34578-5_2
https://eprint.iacr.org/2018/996
https://eprint.iacr.org/2018/996
http://arxiv.org/abs/1701.07416
https://doi.org/10.1007/3-540-68339-9_22
https://doi.org/10.1007/3-540-68339-9_22
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1007/978-3-642-10366-7_6

Tight and Optimal Reductions for Signatures Based on ATPSF 479

[GM02] Goldwasser, S., Micciancio, D.: Complexity of Lattice Problems: A Crypto-
graphic Perspective. Kluwer International Series in Engineering and Com-
puter Science, vol. 671. Kluwer Academic Publishers, Heidelberg (2002)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM
(2008)

[JJ02] Johansson, T., Jönsson, F.: On the complexity of some cryptographic prob-
lems based on the general decoding problem. IEEE Trans. Inf. Theory
48(10), 2669–2678 (2002)

[KM19] Koblitz, N., Menezes, A.: Critical perspectives on provable security: fifteen
years of “another look” papers. Adv. Math. Commun. 13, 517–558 (2019)

[KZ19] Kales, D., Zaverucha, G.: NIST round-2 official comment (2019).
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/
documents/round-2/official-comments/mqdss-round2-official-comment.
pdf

[MMT11] May, A., Meurer, A., Thomae, E.: Decoding random linear codes in
Õ(20.054n). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25385-0 6

[MO15] May, A., Ozerov, I.: On computing nearest neighbors with applications to
decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 9

[Nis17] NIST: Post-quantum cryptography standardization (2017). https://csrc.
nist.gov/projects/post-quantum-cryptography

[Pra62] Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans.
Inf. Theory 8(5), 5–9 (1962)

[S19] Personal communication with Damien Stehlé
[Sen11] Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto

2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25405-5 4

[Sho04] Shoup, V.: Sequences of games: a tool for taming complexity in security
proofs. IACR Cryptology ePrint Archive, 2004:332 (2004)

[Ste88] Stern, J.: A method for finding codewords of small weight. In: Cohen, G.,
Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113.
Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850

[Zha12] Zhandry, M.: How to construct quantum random functions. In: Proceedings
of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science. FOCS 2012, pp. 679–687. IEEE Computer Society, Washington,
DC (2012)

https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/round-2/official-comments/mqdss-round2-official-comment.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/round-2/official-comments/mqdss-round2-official-comment.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/round-2/official-comments/mqdss-round2-official-comment.pdf
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/BFb0019850

Cryptanalysis and Concrete Security

Faster Cofactorization with ECM
Using Mixed Representations

Cyril Bouvier and Laurent Imbert(B)

LIRMM, CNRS, Univ. Montpellier, Montpellier, France
{cyril.bouvier,laurent.imbert}@lirmm.fr

Abstract. This paper introduces a novel implementation of the ellip-
tic curve factoring method specifically designed for medium-size integers
such as those arising by billions in the cofactorization step of the Num-
ber Field Sieve. In this context, our algorithm requires fewer modular
multiplications than any other publicly available implementation. The
main ingredients are: the use of batches of primes, fast point tripling,
optimal double-base decompositions and Lucas chains, and a good mix
of Edwards and Montgomery representations.

Keywords: Elliptic curve method · Cofactorization · Double-base
representation · Twisted Edwards curve · Montgomery curve ·
CADO-NFS

1 Introduction

The Elliptic Curve Method (ECM) invented by H. W. Lenstra Jr. in 1985 [18]
is probably the most versatile algorithm for integer factorization. It remains the
asymptotically fastest known method for finding medium-size prime factors of
large integers. The 50 largest factors found with ECM have 68 to 83 digits; they
are recorded in [26]. ECM is also a core ingredient of the Number Field Sieve
(NFS) [17], the most efficient general purpose algorithm for factoring “hard”
composite integers of the form N = pq with p, q ≈ √

N . ECM is equally essential
in all NFS variants for computing discrete logarithms over finite fields. In NFS
and its variants, ECM is used as a subroutine of the sieving phase. It is also
employed in the descent phase for discrete logarithms computations. Together
with other factoring algorithms such as the Quadratic Sieve, p − 1 or p + 1,
it is extensively used in the so-called cofactorization step. This important step
consists of breaking into primes billions of composite integers of a hundred-ish
bits that are known to have no small prime factor. The time spent in ECM
for these medium-size, yet hard to factor integers is therefore substantial. For
example, with CADO-NFS [24], the cofactorization time for a 200-digit RSA
number represents between 15% and 22% of the sieving phase. According to [9],
cofactorization represented roughly one third of the sieving phase and 5% to 20%
of the total wall-clock time in the current world-record factorization of a 768-bit
RSA number [16]. For larger factorization or discrete logarithm computations,

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 483–504, 2020.
https://doi.org/10.1007/978-3-030-45388-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_17

484 C. Bouvier and L. Imbert

Bos and Kleinjung anticipate that the time spent in cofactorization, notably
ECM, becomes more and more important [9].

Since its invention, ECM has been the subject of many improvements [27]. It
has been shown that the choice of “good” elliptic curve representations and
parameters plays an important role in both the efficiency of ECM and its
probability of success. Historically, Lenstra considered short Weierstrass curves
together with Jacobian coordinates. Then, Montgomery introduced a new model
for elliptic curves together with a system of coordinates perfectly suited to
ECM [22]. Montgomery curves have been the best option for about twenty five
years. This setting is used in GMP-ECM [28], a state-of-the-art implementa-
tion of ECM. More than twenty five years later, building over the works of
Edwards [13], Bernstein et al. proposed an efficient implementation of ECM
using twisted Edwards curves [4]. Yet, there is no clear general answer to the
question of which curve model is best suited to ECM.

In this work, we propose an algorithm specifically designed for the medium-
size integers that occur in the cofactorization step of NFS. We extend ideas from
Dixon and Lenstra [12] and from Bos and Kleinjung [9] by processing the scalar
of the first stage of ECM by batches of primes. Unlike [9] and [15] which only con-
sider NAF decompositions for these batches, we take advantage of the fastest
known tripling formula on twisted Edwards curves [6] together with optimal
double-base decompositions. Finally, we also use Lucas chains by exploiting the
birational equivalence between twisted Edwards curves and Montgomery curves
and by switching from one model to the other when appropriate. Our algo-
rithm performs fewer modular multiplications than any other publicly available
implementation. Our results are implemented in the CADO-NFS software [24].
Updates and more detailed data are available online at http://eco.lirmm.net/
double-base ECM/.

2 Preliminaries

In this section, we present the basics of ECM. Then we recall the definitions of
Montgomery curves and twisted Edwards curves together with the associated
point representations and arithmetic operations.

In order to compare the cost of the different elliptic operations and scalar
multiplication algorithms, we count the number of modular multiplications (M)
and squarings (S). To ease the comparisons, we assume that both operations take
the same time (i.e. 1S = 1M) as in other ECM implementation papers [4,9,15].1

2.1 The Elliptic Curve Method

Lenstra’s elliptic curve method [18] is often viewed as a generalization of Pollard’s
p−1 algorithm in the sense that it exploits the possible smoothness of the order

1 This claim is also supported by our experiments with CADO-NFS modular arith-
metic functions for 64-bit, 96-bit and 128-bit integers.

http://eco.lirmm.net/double-base_ECM/
http://eco.lirmm.net/double-base_ECM/

Faster Cofactorization with ECM Using Mixed Representations 485

of an elliptic curve defined over an unknown prime divisor of a given composite
integer N .

ECM starts by choosing an elliptic curve E over Z/NZ and a point P on
E. In practice, one usually selects a “random” curve EQ : y2 = x3 + ax + b
over Q together with a nontorsion point P ′ on EQ, and then reduces the curve
parameters a, b and the coordinates of P ′ modulo N to get E and P . Unlike
elliptic curves defined over finite fields, the set of points E(Z/NZ) contains non-
affine points that are different from the point at infinity, i.e., projective points
(X : Y : Z) with Z �= 0 and Z not invertible modulo N . For these “special”
points, gcd(N,Z) gives a factor of N . The purpose of ECM is thus to produce
these “special” points with a reasonably high probability and at reasonably low
cost.

Let p be an unknown prime dividing N , and let Ep be the curve defined over
Fp by reducing the equation of E modulo p. The goal of ECM is to produce
(virtually) the point at infinity on Ep while carrying-out all the computations
on E. ECM does so by computing Q = [k]P ∈ E for a fixed scalar k. It achieves
its goal whenever #Ep divides k. To that end, k is chosen such that, #Ep | k
whenever #Ep is B1-powersmooth for a carefully chosen bound B1. (An integer
is B-powersmooth if none of the prime powers dividing that integer is greater
than B.) Most current implementations use k = lcm(2, 3, 4, . . . , B1) as it offers
an excellent balance between efficiency and probability of success. For B1 ∈ N,
we have:

k = lcm(2, 3, 4, . . . , B1) =
∏

p prime ≤B1

p�logp(B1)� (1)

In the following, the multiset composed of all primes p less than or equal to B1,
each occurring exactly �logp(B1)� times, is denoted MB1 .

The approach described so far is often referred to as “stage 1”. There is a
“stage 2” continuation for ECM which takes as input an integer bound B2 ≥ B1

and succeeds if the order #Ep is B1-powersmooth except for one prime factor
which may lie between B1 and B2.

In this article, we focus on the use of ECM as a subroutine of the NFS
algorithm. In this case, the values of B1 and B2 are relatively small and usually
hardcoded. For example, in CADO-NFS [24], the ECM computations are done
with a predefined set of values for B1 and B2 (some possible values for B1 are
105, 601 and 3517). In this context, it may be worthwhile to perform some
precomputations on the hardcoded values.

2.2 Montgomery Curves

Historically, the elliptic curve method was implemented using short Weierstrass
curves. Montgomery curves were described in [22] to improve the efficiency of
ECM by reducing the cost of elliptic operations. Montgomery curves are used in
many implementations of ECM, for example in GMP-ECM [28], the most-widely
used ECM implementation.

486 C. Bouvier and L. Imbert

Definition 1 (Montgomery curve). Let K be a field and A,B ∈ K such that
B(A2 − 4) �= 0. A Montgomery curve, denoted EM

A,B, is an elliptic curve whose
affine points are all (x, y) ∈ K2 such that

By2 = x3 + Ax2 + x. (2)

In practice, projective coordinates (X : Y : Z) are used to avoid field inver-
sions. Montgomery proposed to drop the Y coordinate, performing the compu-
tations on X and Z only. In the so-called XZ coordinate system, a point is
denoted (X : : Z). An immediate consequence is that one cannot distinguish
between a point and its opposite. This implies that, given two distinct points on
the curve, one can compute their sum, only if one knows their difference. This
new operation is called a differential addition.

As seen in Table 1, XZ coordinates on Montgomery curves allow for very
fast point doubling and differential addition. However, the condition imposed
by the use of a differential addition forces to use specific scalar multiplication
algorithms (see Sect. 3.3).

Note that the doubling formula is often accounted for 2M + 2S plus one
multiplication by a small constant. Yet, this operation count is relevant only
when the curve coefficient A is chosen such that (A+2)/4 is small. In Table 1 we
report a cost of 5M for dDBL because our choice of parameterization prevents
us from assigning any particular value to (A + 2)/4. We give more details in
Sect. 2.5.

Table 1. Arithmetic cost of elliptic operations for Montgomery curves in XZ coordi-
nates under the assumption 1S = 1M

Elliptic Operation Notation Input → Output Cost

Differential Addition dADD XZ → XZ 4M + 2S = 6M

Doubling dDBL XZ → XZ 3M + 2S = 5M

2.3 Twisted Edwards Curves

In [13] Edwards introduced a new normal form for elliptic curves which, among
other advantages, benefit from fast elliptic operations. These curves have been
generalized by Bernstein et al. [2]. A new coordinate system with a faster group
law was introduced in [14], and their usage in ECM was considered in [3,4].

Definition 2 (Twisted Edwards curve). Let K be a field and let a, d ∈ K
such that ad(a − d) �= 0. A twisted Edwards curve, denoted EE

a,d, is an elliptic
curve whose affine points are all (x, y) ∈ K2 such that

ax2 + y2 = 1 + dx2y2. (3)

Faster Cofactorization with ECM Using Mixed Representations 487

In practice, the fastest formulas are obtained using a combination of three
coordinates systems denoted projective, completed and extended. Input and out-
put points are always represented in extended or projective coordinates, whereas
completed coordinates are mainly used as an internal format. In the following,
we shall use the best known formula from [14] for point doubling and point
addition on twisted Edwards curves. Besides, an important feature of twisted
Edwards curves is the existence of an efficient formula for point tripling [6].

In this article, we only consider twisted Edwards curves with a = −1. These
curves allow for faster arithmetic and enjoy good torsion properties with regard
to their use in ECM [1]. (See Sect. 2.5 for more details.) The input and out-
put formats as well as the costs of the different elliptic operations that will be
considered in the following are summarized in Table 2.

Table 2. Arithmetic cost of elliptic operations for twisted Edwards curves with a = −1
under the assumption 1S = 1M

Elliptic Operation Notation Input → Output Cost

Addition

ADDcomp ext. → comp. 4M

ADD ext. → proj. 7M

ADDε ext. → ext. 8M

Doubling
DBL ext. or proj. → proj. 3M + 4S = 7M

DBLε ext. or proj. → ext. 4M + 4S = 8M

Tripling
TPL ext. or proj. → proj. 9M + 3S = 12M

TPLε ext. or proj. → ext. 11M + 3S = 14M

Contrary to Montgomery curves, twisted Edwards curves have a true elliptic
addition. Hence the scalar multiplication can be computed using every generic
algorithm available.

2.4 The Best of Both Worlds

The best choice between Montgomery and Edwards curves for implementing the
first stage of ECM depends on many parameters on top of which are the size
of k (which depends on B1), the memory available to store precomputed values,
and the scalar multiplication algorithm used to compute [k]P . In this article,
we exploit the best of both worlds by mixing twisted Edwards and Montgomery
representations. We exploit a result from [2] which states that every twisted
Edwards curve is birationally equivalent over its base field to a Montgomery
curve. To the best of our knowledge, mixing Edwards and Montgomery repre-
sentations was first suggested in [10] to speed-up arithmetic on elliptic curves in
the x-coordinate-only setting. More recently, the idea has also been employed in
the SIDH context [19].

488 C. Bouvier and L. Imbert

Let K be a field with char(K) �= 2. According to [2, Theorem 3.2], every
twisted Edwards curve EE

a,d defined over K is birationally equivalent over K to
the Montgomery curve EM

A,B , where A = 2(a+d)(a−d) and B = 4/(a−d). The
map

(x, y) 	→ ((1 + y)/(1 − y), (1 + y)/(1 − y)x) (4)

is a birational equivalence from EE
a,d to EM

A,B . (see [2, page 4] for a proof.) Using
this map, we define a partial addition formula, denoted ADDM, which takes two
points in extended coordinates on a twisted Edwards curve and computes their
sum in XZ coordinates on the equivalent Montgomery curve. We express ADDM

as the composition of the group law on the completed twisted Edwards curve
E

E

a,d and a partial conversion map, where

E
E

a,d = {((X : Z), (Y : T)) ∈ P1 × P1 : aX2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2}.

(See [8] for more details on completed twisted Edwards curves and [3] for their
usage in the ECM context.)

Given two points in extended coordinates on a twisted Edwards curve, the
elliptic operation denoted ADDcomp computes their sum in completed coordi-
nates ((X : Z), (Y : T)) in 4M. Then, given that point in completed coordinates,
one gets a representative in extended coordinates in another 4M using the map

((X : Z), (Y : T)) 	→ (XT : Y Z : ZT : XY). (5)

If only projective coordinates are needed, one simply omits the product XY .
Observe that in the addition formulas on twisted Edwards curves introduced
in [14] and recorded in Bernstein and Lange’s Explicit Formula Database [7],
the completed coordinates of the sum correspond to the four intermediate values
((E : G), (H : F)).

For X �= 0, the composition of the maps (4) and (5) is well defined. The map

((X : Z), (Y : T)) 	−→ (T + Y : Z(T + Y)/X : T − Y) (6)

sends points on a completed twisted Edwards curve with X �= 0 to projective
points on the equivalent Montgomery curve. For XZ coordinates, one simply
omits the second coordinate:

((X : Z), (Y : T)) 	−→ (T + Y : : T − Y). (7)

Therefore, when defined, the operation ADDM, which takes as input two
points of a twisted Edwards curves in extended coordinates and computes their
sum on the equivalent Montgomery curves in XZ coordinates, costs only 4M
(see Table 3).

Let us now focus on the points for which (6) is not defined. The completed
points with X = 0 correspond on EE

a,d to (0,−1), the affine point of order 2,
or (0, 1) the point at infinity. Using (7), the completed point ((0 : 1), (−1, 1)) of
order 2 is mapped to the point (0 : : 1) of order 2 on the Montgomery curve. In
this case, the mapping to XZ coordinates is thus well defined.

Faster Cofactorization with ECM Using Mixed Representations 489

However, the map (7) sends the completed point at infinity ((0 : 1), (1 : 1)) to
the point (2 : : 0) on the Montgomery curve, which is different from (0 : 1 : 0), the
point at infinity on EM

A,B . Nevertheless, in our context, using the point (2 : : 0)
in place of the point at infinity (0 : : 0) is sufficient. Indeed, for all prime p
dividing N , if the computations on the Edwards curve produce the point at
infinity modulo p, what is important is that the map (7) returns a point on
the equivalent Montgomery curve with Z ≡ 0 (mod p). From the formulas for
dDBL and dADD, it is easy to see that the remaining computations on the
Montgomery curve also produce a point with Z ≡ 0 (mod p). We have thus
preserved the fact that p should divide the greatest common divisor between N
and the Z-coordinate of the final point.

Table 3. New elliptic operation to switch from twisted Edwards curves to Montgomery
curves

Elliptic Operation Notation Input → Output Cost

Add & Switch ADDM Twisted Edwards ext. → Montgomery XZ 4M

Note that after an ADDM, moving back to the twisted Edwards curve is
not possible since the map (7) is not invertible, as the Y coordinate on the
Montgomery curve is “lost”. Nevertheless, as will be explained in Sect. 3, we
easily circumvert this obstacle by processing all the computations on the twisted
Edwards curve before moving to the equivalent Montgomery curve for finalizing
the scalar multiplication. Therefore, we never need to convert a point from XZ
Montgomery back to the equivalent twisted Edwards curve.

2.5 Parameterization

In order to improve the probability of success of the ECM algorithm, we need
to be able to generate curves with good torsion properties. Infinite families of
curves with a rational or elliptic parametrization are used in the context of ECM
to generate many different curves. Many of the best families for twisted Edwards
curves have a = −1. So, restricting ourselves to twisted Edwards curves with
a = −1 not only improves the arithmetic cost but also allows us to use curves
with good torsion properties [1].

In practice, we use the parameterization from [3, Theorem 5.4] to generate a
twisted Edwards curve with a = −1. We only need to compute the coefficients
of the starting point in extended coordinates as the curve parameter d is never
used in the formulæ. For the equivalent Montgomery curve, we solely compute
the curve coefficient A since B is never used in the formulæ.

Using the parametrization from [3, Theorem 5.4] prevents us from choosing
the curve coefficient A of the associated Montgomery curve. By choosing A such
that (A + 2)/4 is small, we could have replaced, in the doubling formula, a
multiplication by a multiplication by a small constant. In our context, i.e., using
medium-size integers, the arithmetic gain is not significant. Thus, we favored
better torsion properties over a slightly lower theoretical arithmetic cost.

490 C. Bouvier and L. Imbert

3 Scalar Multiplication

After choosing a smoothness bound B1 and a point P on an elliptic curve E,
the core of the first stage of ECM consists of multiplying P by the scalar

k = lcm(2, 3, 4, . . . , B1) =
∏

p prime ≤B1

p�logp(B1)�

An elementary algorithm for computing [k]P thus consists of performing, for
each prime p ≤ B1, exactly �logp(B1)� scalar multiplications by p. These scalar
multiplications may be computed using any addition chain compatible with the
chosen curve E. If one uses the traditional binary addition chain, the number
of point doublings depends on the bitlength of p, whereas the number of point
additions is determined by its Hamming weight w(p). Reducing the number of
point additions by lowering the density of non-zero digits in the representation
of the scalar is the core of many efficient scalar multiplication algorithms.

In the ECM context, the scalar k is entirely determined by the smoothness
bound B1. We may therefore derive much more efficient algorithms for computing
[k]P . For example, instead of considering the primes pi one at a time, one may
multiply some of them together such that the weight of the product w(

∏
i pi)

is lower than the sum of the individual weights
∑

i w(pi). This idea was first
proposed by Dixon and Lenstra [12]. As an example, they give three primes
p1 = 1028107, p2 = 1030639, p3 = 1097101, of respective Hamming weights
10, 16 and 11, such that their product has Hamming weight 8. Beyond this
example, the idea is advantageous only if one can find “good” recombinations
for all the prime factors of k. Dixon and Lenstra used a greedy approach to find
combination of primes by triples and managed to divide the overall number of
point additions by roughly three. At that time, finding such a partition of the
multiset MB1 by triples was the best they could hope for. Surprisingly, they
did not consider signed-digit representations to further reduce the overall cost.
Clearly, their approach becomes unpractical for larger B1 values and/or more
general prime recombinations. Twenty years after Dixon and Lenstra’s paper,
Bos and Kleinjung managed to generalize the idea to arbitrary recombinations of
primes and to extend its applicability to much larger B1 values [9]. Considering
all possible partitions of MB1 being totally out of reach, they opted for the
opposite strategy. A huge quantity of integers with very low density of non-zero
digits in NAF form was first tested for smoothness. Then, among those integers
that were B1-powersmooth, a greedy algorithm was used to find a partition of
MB1 such that the cost of the resulting sequence of operations was minimal.
For B1 = 256, the best chain found led to a scalar multiplication algorithm
which require 361 doublings and only 38 additions. The decomposition of k =
lcm(2, . . . , 256) into 15 batches of prime-products and their NAF expansions2

are given in Table 4.
2 You may have observed that two of the given expansions do not satisfy the non-

adjacent form, with two consecutive ones in their most significant positions. This is
simply because evaluating 3P as 4P − P is more expensive than 2P + P .

Faster Cofactorization with ECM Using Mixed Representations 491

Table 4. An example of the best chain found for B1 = 256 (see [9])

Batches of prime-products NAF expansion Cost

23 · 89 211 − 20 86M
83 · 197 214 − 25 − 20 115M
191 · 193 215 + 212 − 20 122M
13 · 19 · 199 215 + 214 + 20 122M
5 · 13 · 37 · 109 218 + 20 135M
32 · 7 · 53 · 157 219 − 26 − 20 150M
103 · 137 · 223 221 + 220 + 210 + 20 172M
5 · 61 · 149 · 179 223 − 218 + 213 − 20 186M
3 · 5 · 29 · 43 · 113 · 127 228 − 20 205M
3 · 7 · 11 · 167 · 173 · 181 230 + 227 + 211 + 20 235M
3 · 47 · 59 · 67 · 73 · 211 233 − 222 − 219 + 28 + 26 − 20 272M
11 · 31 · 79 · 101 · 131 · 241 236 + 234 + 218 + 22 + 20 285M
17 · 107 · 139 · 163 · 229 · 233 241 − 224 − 213 − 29 − 20 320M
41 · 71 · 97 · 151 · 227 · 239 · 251 249 + 244 + 236 + 232 − 23 − 20 383M
28 28 56M

Total 2844M

In the following, we shall use the term “block” to denote a batch of prime-
products such as those given in Table 4. For each block, Dixon and Lenstra simply
used addition chains, whereas Bos and Kleinjung took advantage of addition-
subtraction chains through NAF decompositions. In this work, we consider more
general decompositions in order to further reduce the overall cost. More precisely,
we use three types of representations: double-base expansions, double-base chains
(which contain NAF) and a subset of Lucas addition chains.

As an example, let us consider the primes p1 = 100003, p2 = 100019 and
p3 = 109831. Using the NAF decomposition, computing [p1]P requires 9 DBL,
7 DBLε, 6 ADD and 1 ADDε, resulting in 169M. Similarly, [p2]P and [p3]P
require 169M and 168M respectively. The NAF representation of their product
only requires 447M, i.e. 59 fewer multiplications than the cost of considering
p1, p2 and p3 independently.

Let us now consider the following double-base representations of the same
three primes. We have:

100003 = 21531 + 2931 + 2631 − 2331 − 22 − 1 (8)

100019 = 21531 + 2931 + 2631 − 2231 − 1 (9)

109831 = 21233 − 2831 + 23 − 1 (10)

Using (8), one may thus compute [p1]P with 10 DBL, 5 DBLε, 1 TPL, 4 ADD
and 1 ADDε for a total cost of 158 M. Using (9) and (10), [p2]P and [p3]P

492 C. Bouvier and L. Imbert

requires 150M and 145M respectively. On twisted Edwards curves, the usage of
triplings is thus already advantageous. Yet, the following double-base chain for
their product

(((((2231 + 1)2631 − 1)21433 − 1)2431 − 1)2433 − 1)2431 − 1, (11)

leads to a chain for computing [p1p2p3]P with 28 DBL, 6 DBLε, 10 TPL, 6
ADD and 1 ADDε, for a total cost of 407M. This represents an extra 40M
saving compared to the NAF-based approach.

In the next sections, we detail the generation of double-base expansions and
double-base chains (which includes NAF) that are both compatible with twisted
Edwards curves. We also present our strategy for generating a subset of Lucas
chains for use with Montgomery curves.

3.1 Generation of Double-Base Expansions

Let n be a positive integer, and let α, β be two pairwise integers. A double-base
expansion of n can be seen as a partition of n into distinct parts of the form
αaβb. In this work, we solely consider the special case (α, β) = (2, 3) and we
extend the usual notion of partition by allowing the parts to be either positive
or negative, such that

n =
m∑

i=0

±2di3ti , (12)

where (di, ti) �= (dj , tj) for every 0 ≤ i < j ≤ m. Following the usual convention
for integer partitions, we assume that the parts form a non-increasing3 sequence
so that |2di3ti | > |2dj 3tj | for all 0 ≤ i < j ≤ m. The length of a double-base
expansion is equal to the number of parts in (12). Examples of double-base
expansions of lengths 6, 5 and 4 respectively are given in (8), (9) and (10).

Given a double-base expansion for n as in (12), one can compute [n]P with
D = maxi di doublings, T = maxi ti triplings and at most m additions using
an algorithm by Meloni and Hasan [23]. Their algorithm is inspired by Yao’s
method [25] and requires the evaluation and storage of at most m elliptic curve
points.

In order to limit the amount of additional storage in the resulting algorithms,
we generated double-base expansions with at most 4 terms, i.e. for m varying
from 1 to 3. In practice, the memory requirements for the resulting algorithms
are very low (see Sect. 5) and comparable to Bos and Kleinjung’s low storage
setting.

In fact, setting such a low value for the maximal length of double-base expan-
sions was necessary to reduce computational workload. Indeed, without any
restrictions, the total number of double-base chains with m + 1 terms and such
that D ≤ Dmax and T ≤ Tmax is equal to

3 In this case a decreasing sequence since the parts are distincts.

Faster Cofactorization with ECM Using Mixed Representations 493

2m+1

(
(Dmax + 1)(Tmax + 1)

m + 1

)
.

In our context, it was clearly more appropriate to let D and T cover larger ranges
than to increase m. In Table 5, we give the parameters for m, D and T that we
considered.

A few observations can be made to avoid generating the same double-base
expansion more than once. First, notice that a double-base expansion for n imme-
diately provides a double-base expansion for −n by switching the sign of all the
parts in (12). Hence, by imposing the sign of one of the terms, we generated
only double-base expansions for positive integers; hence dividing the work effort
by a factor two. We also noticed that a double-base expansion for n is easily
converted into a double-base expansion for any integer of the form n × 2a3b, by
adding a (resp. b) to each di (resp. ti). Therefore, we only generated double-base
expansions whose terms have no common factors. Given D > 0 and T > 0, the
number of double-base expansions of length m + 1 satisfying the above condi-
tions can be computed exactly using a classical inclusion-exclusion principle. For
completeness, we give the exact formula in AppendixA. In Table 5, we give the
total number of double-base expansions that we generated for m = 1, 2, 3 and
different intervals for D and T . For each double-base expansion, we tested the
corresponding integer for 213-powersmoothness. We then evaluated the cost of
Meloni and Hasan’s scalar multiplication algorithm for those remaining double-
base expansions. Unlike NAF decompositions, the double-base number system
is highly redundant. For each value of m, we removed duplicates by keeping only
double-base expansions of minimal cost. Yet, there might still exist duplicates
for different values of m. Finally, we observed that it is always faster to pro-
cess the powers of 2 after switching to Montgomery XZ coordinates. Thus, in
order to reduce memory and speed-up the combination step (see Sect. 4), we
filtered out all blocks corresponding to even integers. In Table 5, the column
#db-exp gives the numbers of different double-base expansions that we gen-
erated for each value of m, the column #pow.smooth is the number of those
expansions which corresponded to B1-powersmooth integers, and the column
#uniq (odd) accounts only for expansions of minimal costs corresponding to odd
integers.

As seen in Table 5, for m = 3, we had to drastically reduce the upper bounds
on D and T . Indeed, allowing D and T to span the intervals of values used
for m < 3 would have required the generation of around 1.84 · 1014 expansions.
Nonetheless, in order to generate more integers of potential interest, we consid-
ered a subset of double-base expansions, namely double-base chains.

494 C. Bouvier and L. Imbert

Table 5. Data on generated double-base expansions for B1 = 213

m D T #db-exp #pow.smooth #uniq (odd) CPU time

1 0 – 255 0 – 127 1.30 · 105 1.15 · 103 1.06 · 103 0 h

2 0 – 255 0 – 127 6.37 · 109 4.09 · 105 2.97 · 105 3 h

3 0 – 128 0 – 64 3.04 · 1012 1.64 · 108 9.04 · 107 1048 h

Total 3.04 · 1012 1.64 · 108 1051 h

3.2 Generation of Double-Base Chains

A double-base chain for n is a double-base expansion as in (12) with divisibility
conditions on the parts. More precisely, we impose that 2di3ti 2di+13ti+1 for
i ≥ 0, where denotes the divisibility order, i.e. x y ⇐⇒ y|x. All the
double-base expansions given in the previous example are in fact double-base
chains. The use of double-base chains for elliptic curve scalar multiplication was
first introduced by Dimitrov et al. [11].

Given a double-base chain for n, one can compute [n]P with m additions,
D = d0 doublings and T = t0 triplings using a natural decomposition à la Horner
as in (11). Unlike double-base expansions, the subsequent scalar multiplication
algorithm does not require any additional storage.

The divisibility condition on the parts allows us to generate double-base
chains for much larger values for m,D and T . As for double-base expansions,
we only generated double-base chains for positive integers by fixing the sign of
the first part 2d03t0 . We also restricted our generation to double-base chains
whose terms have no common factors, i.e. such that the smallest part 2dm3tm =
±1. Under these conditions, the number of double-base chains with exactly D
doublings, T triplings and m additions is given by:

2m
m−1∑

i=0

(−1)m−i+1

(
m

i + 1

)(
D + i

D

)(
T + i

T

)
.

In Table 6 we give the number of double-base chains that we generated for
different set of parameters m, D and T . Observe that double-base chains with
T = 0 correspond to NAF expansions. In total, we generated more than 2.57·1013

double-base chains, among which 2.29 · 1010 corresponded to B1-powersmooth
integers, in approximately 9000 CPU hours.

3.3 Generation of Lucas Chains

As seen in Sect. 2.2, Montgomery curves only admit a differential addition.
Therefore the previous constructions (double-base expansions and chains) can-
not be used to perform scalar multiplication. Instead, one uses Lucas chains.

Let n be a positive integer. A Lucas chain of length � for n is a sequence of
integers (c0, c1, . . . , c�) such that c0 = 1, c� = n, and for every 1 ≤ i ≤ �, either

Faster Cofactorization with ECM Using Mixed Representations 495

Table 6. Data on generated double-base chains with smoothness bound 213

m D T #db-chains #pow.smooth #uniq (odd) CPU time

1 0 – 255 0 – 127 6.55 · 104 4.35 · 102 3.93 · 102 0 h

2 0 – 255 0 – 127 1.09 · 109 3.82 · 104 2.82 · 104 1 h

3 0 – 220 0 – 110 3.41 · 1012 2.67 · 106 1.54 · 106 1653 h

3 221 – 255 0 7.84 · 106 0 0 0 h

4 0 – 75 0 – 40 3.20 · 1012 1.43 · 108 5.99 · 107 1013 h

4 76 – 255 0 2.73 · 109 5.46 · 102 3.12 · 102 1 h

5 0 – 50 0 – 10 2.86 · 1011 1.86 · 109 4.25 · 108 68 h

5 51 – 255 0 2.76 · 1011 2.98 · 105 2.06 · 105 121 h

6 0 – 25 0 – 10 2.35 · 1011 1.68 · 1010 9.04 · 108 171 h

6 26 – 200 0 5.27 · 1012 3.01 · 107 1.33 · 107 2204 h

7 0 – 115 0 5.61 · 1012 3.68 · 108 1.19 · 108 1596 h

8 0 – 80 0 7.42 · 1012 3.66 · 109 9.09 · 108 2240 h

Total 2.57 · 1013 2.29 · 1010 9068 h

it exists j < i such that ci = 2cj (doubling step), or there exist j0, j1, jd < i such
that ci = cj0 + cj1 and cjd

= ±(cj0 − cj1) (addition step).
Using a Lucas chain for n, [n]P can be obtained by computing [ci]P , for

1 ≤ i ≤ �. When an addition step is encountered, the definition ensures that the
difference of the two operands is already available. In general, Lucas chains are
longer than binary, NAF, or double-base chains. Nevertheless, they sometimes
lead to fast scalar multiplication algorithms since the cost of a differential addi-
tion is smaller than that of a plain addition.

The PRAC algorithm proposed by Montgomery [21] provides an efficient way
to generate Lucas chains for any given integer n. It works by applying rules to
a set of 3 points A, B and C, starting with A = [2]P , B = C = P . The rule
to apply is chosen from a set of 9 rules based on two auxiliary integers d and e,
starting with d = n−�n/φ� and e = 2�n/φ�−n, where φ is the golden ratio. The
two following invariants are maintained throughout the algorithm: ±C = A − B
and [n]P = [d]A + [e]B.

We produced Lucas chains by generating all possible combinations using
up to 13 PRAC rules. Observe that the nine rules from PRAC are not uniform
regarding the type and number of curve operations they gather. For example,
rule #2 consists of 2 doublings and 2 additions, whereas rule #4 only performs
1 addition. Consequently, the exhaustive generation of PRAC chains of length
up to 13 allowed us to generate integers of size up to 26 bits. As there was lots of
duplicates, we only kept the best Lucas chains for all odd integers before testing
for smoothness. Data on the Lucas chains that we generated is given in Table 7.

496 C. Bouvier and L. Imbert

Table 7. Data on generated Lucas chains for B1 = 213. Only Lucas chains correspond-
ing to odd integers were considered

#PRAC rules #Lucas chains #uniq #pow.smooth CPU time

13 2.08 · 1019 1.25 · 107 4.63 · 106 741 h

4 Combination of Blocks for ECM Stage 1

Let B be the set of all blocks generated with one of the method described in the
previous section. For each block b ∈ B, we define n(b) as the integer associated
to b, and Mb as the multiset composed of the prime factors (counted with
multiplicity) of n(b). We also define the arithmetic cost of b, denoted cost(b),
as the sum of the costs of the elliptic operations used to compute the scalar
multiplication by n(b) using the algorithm associated to b. The arithmetic cost
per bit, denoted acpb(b), is defined as cost(b)/ log2(n(b)).

By extension, we use the same notations for a set of blocks. Let A ⊂ B.
Then n(A) =

∏
b∈A n(b), MA =

⋃
b∈A Mb, acpb(A) = cost(A)/ log2(n(A)). For

the arithmetic cost, we need to take into account the switch from the twisted
Edwards curve to the Montgomery curve, if necessary. Thus

cost(A) =
∑

b∈A
cost(b) + δ(A) (cost(ADDM) − cost(ADDε))︸ ︷︷ ︸

−4M

,

where

δ(A) =

{
1 if A contains at least 1 PRAC block
0 otherwise

In practice, it is always cheaper to process the �log2 B1� occurrences of the
prime 2 in MB1 using PRAC blocks. Therefore, we always switch from a twisted
Edwards curve to the equivalent Montgomery curve at some point. Yet, the
computations performed on the Montgomery curve are not restricted to the
powers of 2. The PRAC blocks used in our best combinations often contains
a few primes greater than 2 (see Table 8 and the data recorded at http://eco.
lirmm.net/double-base ECM/).

Let B1 > 0 be the smoothness bound for ECM stage 1. The combination
algorithms presented in the next sections consist of finding a subset S of B such
that

⋃
b∈S Mb = MB1 , or equivalently

∏
b∈S n(b) = k, which minimizes cost(S).

4.1 Bos–Kleinjung Algorithm

In 2012, Bos and Kleinjung describe a fast algorithm to compute a non-optimal
solution (see [9, Algorithm 1]). The algorithm can be sketched as follow: start
with M = MB1 and S = ∅. Then, while M �= ∅: pick the “best” block b ∈ B
such that Mb ⊆ M and the ratio dbl(b)/ add(b) is large enough (where dbl(b)
and add(b) denote the number of doublings and additions in the NAF chain used

http://eco.lirmm.net/double-base_ECM/
http://eco.lirmm.net/double-base_ECM/

Faster Cofactorization with ECM Using Mixed Representations 497

to represent n(b)). Then, add b in S and subtract Mb from M. Once the loop is
exited, the algorithm returns S. The bound on dbl(b)/ add(b) can be decreased
during the algorithm if no block satisfies both conditions.

At each iteration, the “best” block is chosen with the help of a score function.
This function is defined to favor blocks whose multisets share many large factors
with the current multiset M of remaining factors. For a multiset M and a block
b such that Mb �= ∅ and Mb ⊆ M, the score function is defined by4:

score(b,M) =
�log2(max(M))	∑

�=1
a�(M)
=0

a�(Mb)
a�(M)

, (13)

where

a�(M) =
#{p ∈ M | �log2(p)� = �}

#M .

By default, the “best” block is the one which minimizes the score function.
In [9], a randomized version of the algorithm is also presented. The random-

ization is used to generate lots of different sets of solution and, hopefully, to
improve the cost of the best one. Given an integer 0 < x < 1, the randomized
version selects the block with the smallest score with probability x or, with prob-
ability 1 − x, skip it and repeat this procedure for the block with the second
smallest score and so on.

4.2 Our Algorithm

In a recent work, the authors of [15] replaced the ratio dbl(b)/ add(b) from Bos
and Kleinjung’s algorithm by the function

κ(b) =
log2(n(b))

dbl(b) + 8/7 add(b) − log2(n(b))
,

in order to take into account the bitlength of n(b). This function κ produces
slightly better results than Bos and Kleinjung’s algorithm (see Table 9 in the
“no storage” context). Yet, it is not readily adapted to our setting since it
makes it difficult to take into account the costs of triplings and the fact that
we use both twisted Edwards and Montgomery curves. For our combination
algorithm, we consider a more generic function based on the arithmetic cost
per bit of a block (acpb) as defined at the beginning of Sect. 4. Notice that
on twisted Edwards curves, the function κ used by the authors of [15] is
closely related to the arithmetic cost per bits of a NAF block. Indeed, we have
acpb(b) � (7 dbl(b) + 8 add(b))/ log2(n(b)) = 7/κ(b) + 7.

For our combination algorithm, we decided not to use the score function
from Bos and Kleinjung’s algorithm as we observed that it does not always
achieve its goal to favor blocks with many large factors. For example, let us
4 There is a small mistake in the definition given in [9] which we were able to correct

thanks to the examples following the definition.

498 C. Bouvier and L. Imbert

consider B1 = 256 and two blocks b1 and b2 such that Mb1 = {233, 193, 163} and
Mb2 = {233, 193, 179, 109, 103, 73}. We would like the score function to favor the
block b2 since it contains more factors of sizes similar to the size of the elements of
b1. Yet, using (13), one gets score(b1,MB1) = 3.043 and score(b2,MB1) = 4.214,
which means that the algorithm would select b1 instead of b2. Moreover, if b3 is
the best block that we could imagine with Mb3 = MB1 , then its score would be
worse than the two previous one, with score(b3,MB1) = 8.

We observed that using an algorithm similar the Bos and Kleinjung’s algo-
rithm where we always choose the block with the smallest arithmetic cost per
bit did not yield better results than [9] or [15]. Thus, we tried a more exhaustive
approach. A complete exhaustive search was totally out of reach, even for not-
so-large values of B1. However, the information provided by the previous results
allowed us to envisage a somewhat exhaustive strategy.

Recall that our goal is to construct a subset S of B which minimizes cost(S)
and satisfies

⋃
b∈S Mb = MB1 .

In order to reduce the enumeration depth, our first heuristic was to bound
the number of blocks in the solution set S. This constraint is rather natural as
we want to favor blocks with many factors.

To further speed up our combination algorithm, we try to reduce the width
of each step in the enumeration. First, notice that we can very easily obtain
an upper bound on the arithmetic cost of the best solution set, for example by
running the algorithms from Bos and Kleinjung [9] or from Ishii et al. [15] using
our set of blocks B. Then, we can use the following observation. Let C be an
upper bound on the arithmetic cost of the best solution set and let S0 ⊆ B
be a partial solution, i.e., such that

⋃
b∈S0

Mb � MB1 . Then a solution set S
containing S0 satisfies cost(S) < C, only if S \ S0 contains at least one block
whose arithmetic cost per bit is not greater than

acpbmax =
C − (cost(S0) + (1 − δ(S0))(cost(ADDM) − cost(ADDε)))

log2(n(MB1)) − log2(n(S0))
. (14)

If we build our solution sets by adding blocks by increasing value of their
arithmetic cost per bit, Equation (14) provides an upper bound for the arith-
metic cost per bit of the next block that can be added to a partial solution
set. A pseudo-code version of our combination algorithm is described in Algo-
rithm1 and an implementation in C is available at http://eco.lirmm.net/double-
base ECM/.

In Table 8, we give the best combination produced with Algorithm1 for
B1 = 256. The resulting scalar multiplication algorithm requires 96 fewer mul-
tiplications than the best result from Bos and Kleinjung (see Table 4).

5 Results and Comparison

In this section, we compare the cost of our implementation of ECM with the
following implementations:

http://eco.lirmm.net/double-base_ECM/
http://eco.lirmm.net/double-base_ECM/

Faster Cofactorization with ECM Using Mixed Representations 499

Algorithm 1 combine
Input: a set of blocks B, a positive integer B1, a bound � on the length and an upper

bound C on the arithmetic cost
Output: the solution set S with minimal cost such that #S ≤ �, cost(S) < C and

MS = MB1 ; or Failure if not such set exists

1: function Enum rec(S0, Mrem, Brem)
2: S ← Failure � by convention, we define cost(Failure) to be C
3: Bnew ← Brem

4: acpbmax ← value obtained using Equation (14) with S0, MB1 and C
5: for all b ∈ Brem do
6: if acpb(b) > acpbmax then
7: break from the for loop
8: else if Mb ⊆ Mrem then
9: Snew ← S0 ∪ {b}

10: Mnew ← Mrem \ Mb

11: if Mnew = ∅ and cost(Snew) < cost(S) then
12: S ← Snew

13: else if Mnew 	= ∅ and #Snew < � then
14: Srec ← Enum rec(Snew, Mnew, Bnew)
15: if cost(Srec) < cost(S) then
16: S ← Srec

17: Bnew ← Bnew \ {b}
18: return S

19: Sort B by increasing value of acpb
20: return Enum rec(∅, MB1 , B)

– the ECM code inside CADO-NFS [24] (version 2.3),
– the software EECM-MPFQ [5],
– the article “ECM at Work” [9],
– the article [15], referenced as “ECM on Kalray” in the following.

The ECM code inside CADO-NFS is the only implementation that uses
Montgomery curves. The other three use twisted Edwards curves with a = −1.
For “ECM at work”, we consider the two settings called no storage and low
storage as presented in the article. The cost comparison for the stage 1 of ECM
is given in Table 9. In Fig. 1, we compare the arithmetic cost per bit of these
various implementations for more values of B1.

For curves with the same torsion as the ones we use (see Sect. 2.5), the stage
1 of GMP-ECM is implemented with Montgomery curves and uses the same
algorithms as CADO-NFS. Thus, for theses curves, the stage 1 of GMP-ECM
and CADO-NFS have the same cost.

Regarding storage requirements, our implementation is also competitive. For
the blocks using Lucas chains on Montgomery curves, we only need three extra
points in XZ coordinates, in addition to the input and output points. For double-
base chains, we do not need any extra point and for double-base expansions, as

500 C. Bouvier and L. Imbert

Table 8. The best set of blocks computed with our algorithm for B1 = 256. Type c
corresponds to double-base chains, type e to double-base expansions and type m to
blocks processed on the Mongomery model.

Blocks Type Cost

193 · 127 · 109 · 107 · 61 · 13 · 7 c 212 · 318 − 1 309M

151 · 31 · 7 c 215 − 1 114M

227 · 73 · 67 · 17 c 221 · 32 + 1 180M

167 · 149 · 5 c 29 · 35 − 1 132M

251 · 43 · 41 c 214 · 33 + 24 · 32 + 1 151M

241 · 229 · 19 c 220 + 24 − 1 157M

211 · 139 · 13 · 11 c 222 − 28 − 1 171M

233 · 191 · 173 · 157 c 227 · 32 + 218 · 3 − 1 230M

223 · 137 · 103 · 83 · 37 c 230 · 32 + 211 − 1 251M

179 · 101 · 97 · 47 · 29 · 23 · 5 c 238 − 23 − 1 283M

181 · 131 · 89 · 59 · 11 c 224 · 34 + 217 · 34 − 28 − 1 241M

239 · 199 · 197 · 163 · 113 · 79 · 71 · 53 e 246 · 36 + 242 + 214 + 33 421M

Switch to Montgomery. Last addition in the above block is an ADDM −4M

5 · 35 m 72M

28 m 40M

Total 2748M

Table 9. Number of modular multiplication (M) for various implementations of ECM
(stage 1) and some commonly used smoothness bounds B1 assuming 1S = 1M

B1 = 256 512 1024 8192

CADO-NFS [24] 3091 6410 12916 104428

EECM-MPFQ [5] 3074 6135 12036 93040

ECM at Work (no storage) [9] 2844 5806 11508 91074

ECM on Kalray [15] 2843 5786 11468 90730

ECM at Work (low storage) [9] 2831 5740 11375 89991

this work 2748 5667 11257 89572

we only generated expansions with at most 4 terms, we need at most 4 additional
points in extended coordinates. So our storage requirements are similar to the
low storage setting of [9] and much lower than the hundred of points required
by EECM-MPFQ.

We note that the fact that the output of stage 1 is a point in XZ coordinates
on a Montgomery curve is not a burden for the stage 2 of the ECM algorithm.
The stage 2 from [9,15] is computed using a baby-step giant-step algorithm.
A complete description in the case of twisted Edwards curves is given in [20,
Sect. 3.2]. In CADO-NFS, the stage 2 also uses a baby-step giant-step algorithm,

Faster Cofactorization with ECM Using Mixed Representations 501

 7.5

 7.6

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 8.4

 8.5

 8.6

 8.7

 8.8

 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Ar
ith

m
et

ic
 c

os
t p

er
 b

it

B1

cado-nfs 2.3.0
EECM-MPFQ

ECM at Work no storage
ECM for Kalray

ECM at Work low storage
Our work

Fig. 1. Arithmetic cost per bit for the scalar multiplication of ECM stage 1 of ECM
assuming 1S = 1M.

Table 10. Number of modular multiplications (M) for ECM stage 2 assuming
1S = 1M

B1 = 256 512 1024 8192

B2 = 214 3 · 214 7 · 214 80 · 214

CADO-NFS [24] 2387 6120 13264 134761

ECM on Kalray [15] (based on [20]) 2538 5812 11410 91122

this work 2227 5160 10273 89866

but on Montgomery curves. Using the same approach, we managed to greatly
reduce the cost of stage 2 thanks to using finer parameters adjustments. More
precisely, the baby-step giant-step method for stage 2 of ECM is parameterized
by a value called ω, which in CADO-NFS was set to a constant value. We
observed that adjusting ω according to the values of B1 and B2 yields significant
speed-ups for large values of B1 and B2. The costs of the stage 2 for these different
implementations are given in Table 10.

In order to evaluate the practical impact of our approach, we implemented
our new algorithms for scalar multiplications in CADO-NFS. To assess the effi-
ciency for large composite numbers, we run a small part of the sieving phase
for RSA-200 and RSA-220 with the default parameters and observed that the
cofactorization time decreased by 5% to 10%, in accordance with our theoretical
estimates.

502 C. Bouvier and L. Imbert

6 Conclusion

In the context of NFS cofactorization, ECM is used to break billions of medium-
size integers into primes. In practice, only a few B1-values are used, making it
possible to precompute almost optimal algorithms for these customary B1-values.
Following the works from Dixon and Lenstra and Bos and Kleinjung, we gener-
ated over 1019 chains of various types and combined them using a quasi exhaus-
tive approach. Our implementation uses both twisted Edwards curves, through
efficient double-base decompositions, and Montgomery curves. For switching
from one model to the other, we introduced a partial addition-and-switch oper-
ation which computes the sum in Montgomery XZ coordinates of two points
given on an equivalent Edwards curve.

For B1 ≤ 8192, our implementation requires fewer modular multiplications
than any other publicly available implementation of ECM. It requires signif-
icantly less memory than EECM-MPFQ. The arithmetic cost per bit of our
implementation is relatively stable, around 7.6M. Extending the current app-
roach based on prime batches and recombination, for example by considering
extended double-base expansions and chains, is possible. Yet, significant speed-
ups seems difficult to prefigure. For larger B1-values, our combination algorithm
is likely to become unpractical. However, it can be used iteratively to extend
any current best combination results.

A Counting Double-Base Expansions

Number of double-base expansions of the form n = 2d03t0 +
∑m

i=1 ±2di3ti with
maxi di = D, maxi ti = T and whose terms have no common factors:

2m

[(
(D + 1)(T + 1)

m + 1

)
− 2

(
(D + 1)T

m + 1

)
− 2

(
(T + 1)D

m + 1

)

+ 4
(

DT

m + 1

)
+

(
(D + 1)(T − 1)

m + 1

)
+

(
(T + 1)(D − 1)

m + 1

)

−2
(

(D − 1)T
m + 1

)
− 2

(
(T − 1)D

m + 1

)
+

(
(D − 1)(T − 1)

m + 1

)]

The proof is omitted. It follows a classical inclusion-exclusion principle.

References

1. Barbulescu, R., Bos, J.W., Bouvier, C., Kleinjung, T., Montgomery, P.: Finding
ECM-friendly curves through a study of Galois properties. In: ANTS X: Proceed-
ings of the Tenth Algorithmic Number Theory Symposium. Open Book Series,
vol. 1, pp. 63–86 (2013). https://doi.org/10.2140/obs.2013.1.63

2. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 26

https://doi.org/10.2140/obs.2013.1.63
https://doi.org/10.1007/978-3-540-68164-9_26

Faster Cofactorization with ECM Using Mixed Representations 503

3. Bernstein, D.J., Birkner, P., Lange, T.: Starfish on strike. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 61–80. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14712-8 4

4. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves.
Math. Comput. 82, 1139–1179 (2013)

5. Bernstein, D.J., Birkner, P., Lange, T., Peters, C., et al.: EECM-MPFQ: ECM
using Edwards curves. http://eecm.cr.yp.to/index.html

6. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Double-base scalar multiplication
revisited. Cryptology ePrint Archive, Report 2017/037 (2017). https://eprint.iacr.
org/2017/037

7. Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.
org/EFD/. joint work by Daniel J. Bernstein and Tanja Lange, building on work
by many authors

8. Bernstein, D.J., Lange, T.: A complete set of addition laws for incomplete Edwards
curves. Cryptology ePrint Archive, Report 2009/580 (2009). https://eprint.iacr.
org/2009/580

9. Bos, J.W., Kleinjung, T.: ECM at work. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 467–484. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 29

10. Castryck, W., Galbraith, S., Farashahi, R.R.: Efficient arithmetic on elliptic curves
using a mixed Edwards-Montgomery representation. Cryptology ePrint Archive,
Report 2008/218 (2008). https://eprint.iacr.org/2008/218

11. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005). https://doi.org/10.1007/
11593447 4

12. Dixon, B., Lenstra, A.K.: Massively parallel elliptic curve factoring. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 183–193. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-47555-9 16

13. Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44, 393–
422 (2007)

14. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted edwards curves revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 20

15. Ishii, M., Detrey, J., Gaudry, P., Inomata, A., Fujikawa, K.: Fast modular arith-
metic on the Kalray MPPA-256 processor for an energy-efficient implementation
of ECM. IEEE Transactions on Computers 66(12), 2019–2030 (2017). https://doi.
org/10.1109/TC.2017.2704082, https://hal.inria.fr/hal-01299697

16. Kleinjung, T., et al.: Factorization of a 768-Bit RSA modulus. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 18

17. Lenstra, A.K., Lenstra, H.W. (eds.): The Development of the Number Field Sieve.
Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993). https://doi.
org/10.1007/BFb0091534

18. Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126(3), 649–673
(1987)

19. Meyer, M., Reith, S., Campos, F.: On hybrid SIDH schemes using Edwards
and Montgomery curve arithmetic. Cryptology ePrint Archive, Report 2017/1213
(2017). https://eprint.iacr.org/2017/1213

20. Miele, A.: On the analysis of public-key cryptologic algorithms. Ph.D. thesis, EPFL
(2015)

https://doi.org/10.1007/978-3-642-14712-8_4
http://eecm.cr.yp.to/index.html
https://eprint.iacr.org/2017/037
https://eprint.iacr.org/2017/037
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
https://eprint.iacr.org/2009/580
https://eprint.iacr.org/2009/580
https://doi.org/10.1007/978-3-642-34961-4_29
https://doi.org/10.1007/978-3-642-34961-4_29
https://eprint.iacr.org/2008/218
https://doi.org/10.1007/11593447_4
https://doi.org/10.1007/11593447_4
https://doi.org/10.1007/3-540-47555-9_16
https://doi.org/10.1007/978-3-540-89255-7_20
https://doi.org/10.1109/TC.2017.2704082
https://doi.org/10.1109/TC.2017.2704082
https://hal.inria.fr/hal-01299697
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/BFb0091534
https://doi.org/10.1007/BFb0091534
https://eprint.iacr.org/2017/1213

504 C. Bouvier and L. Imbert

21. Montgomery, P.L.: Evaluating recurrences of form Xm+n = f(Xm, Xn, Xm−n) via
Lucas chains (1983, unpublished)

22. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

23. Méloni, N., Hasan, M.A.: Elliptic curve scalar multiplication combining Yao’s algo-
rithm and double bases. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol.
5747, pp. 304–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04138-9 22

24. The CADO-NFS Development Team: CADO-NFS, an implementation of the num-
ber field Sieve algorithm (2017). http://cado-nfs.gforge.inria.fr/. release 2.3.0

25. Yao, A.C.C.: On the evaluation of powers. SIAM J. Comput. 5(1), 100–103 (1976)
26. Zimmermann, P.: 50 largest factors found by ECM. https://members.loria.fr/

PZimmermann/records/top50.html
27. Zimmermann, P., Dodson, B.: 20 Years of ECM. In: Hess, F., Pauli, S., Pohst,

M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 525–542. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086 37

28. Zimmermann, P., et al.: GMP-ECM (elliptic curve method for integer factoriza-
tion). https://gforge.inria.fr/projects/ecm/

https://doi.org/10.1007/978-3-642-04138-9_22
https://doi.org/10.1007/978-3-642-04138-9_22
http://cado-nfs.gforge.inria.fr/
https://members.loria.fr/PZimmermann/records/top50.html
https://members.loria.fr/PZimmermann/records/top50.html
https://doi.org/10.1007/11792086_37
https://gforge.inria.fr/projects/ecm/

Improved Classical Cryptanalysis of SIKE
in Practice

Craig Costello1, Patrick Longa1, Michael Naehrig1(B), Joost Renes2,
and Fernando Virdia3(B)

1 Microsoft Research, Redmond, WA, USA
{craigco,plonga,mnaehrig}@microsoft.com

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
j.renes@cs.ru.nl

3 Information Security Group, Royal Holloway, University of London, Egham, UK
fernando.virdia.2016@rhul.ac.uk

Abstract. The main contribution of this work is an optimized imple-
mentation of the van Oorschot-Wiener (vOW) parallel collision finding
algorithm. As is typical for cryptanalysis against conjectured hard prob-
lems (e. g. factoring or discrete logarithms), challenges can arise in the
implementation that are not captured in the theory, making the per-
formance of the algorithm in practice a crucial element of estimating
security. We present a number of novel improvements, both to generic
instantiations of the vOW algorithm finding collisions in arbitrary func-
tions, and to its instantiation in the context of the supersingular isogeny
key encapsulation (SIKE) protocol, that culminate in an improved clas-
sical cryptanalysis of the computational supersingular isogeny (CSSI)
problem. In particular, we present a scalable implementation that can
be applied to the Round-2 parameter sets of SIKE that can be used to
give confidence in their security levels.

Keywords: Post-quantum cryptography · Supersingular elliptic
curves · Isogenies · SIDH · SIKE · Parallel collision search · van
Oorschot-Wiener algorithm

1 Introduction

The supersingular isogeny key encapsulation (SIKE) proposal [7] – the actively
secure version of Jao and De Feo’s SIDH key exchange [8] – is one of 17 second

J. Renes—Partially supported by the Technology Foundation STW (project 13499 –
TYPHOON & ASPASIA), from the Dutch government. Part of this work was done
while Joost was an intern at Microsoft Research.
F. Virdia—Partially supported by the EPSRC and the UK government as part of
the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of
London (EP/P009301/1). Part of this work was done while Fernando was an intern at
Microsoft Research.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 505–534, 2020.
https://doi.org/10.1007/978-3-030-45388-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_18

506 C. Costello et al.

round candidate public key encryption or key establishment proposals submit-
ted to the post-quantum cryptography standardization process initiated by the
U.S. National Institute of Standards and Technology (NIST). It is the only pro-
posal whose security is based on the computational supersingular isogeny (CSSI)
problem. Currently, the best known classical and quantum attacks on the CSSI
problem are generic claw finding attacks: given two functions f : A → C and
g : B → C with domains of equal size, the claw finding problem is to find a pair
(a, b) such that f(a) = g(b). The original security analysis by Jao and De Feo [8,
§5.2] estimates the complexity of the CSSI problem by assuming the optimal
black-box asymptotic complexities for the claw finding problem: classically, it
can be solved in O(|A|+ |B|) time using O(|A|) space. On a quantum computer,
Tani’s algorithm [22] relies on a generalization of Grover’s search algorithm by
Szegedy [21] and uses quantum walks on Johnson graphs to solve the claw finding
problem in O(3

√|A||B|) time. Following Jao and De Feo, the SIKE team used
these asymptotics to specify three Round-1 parametrizations that were intended
to meet the requirements for the NIST security categories 1, 3 and 5 defined in
terms of resources needed for AES key search [14, p. 18].

Prior to 2018, the literature on SIDH (starting with Jao and De Feo’s original
paper [8]) has consistently cited a meet-in-the-middle algorithm for claw finding
as the best known classical algorithm for solving the CSSI problem. In 2018,
Adj, Cervantes-Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez [1]
made a significant step towards a better understanding of the problem’s concrete
classical complexity. They show that, while the meet-in-the-middle algorithm
has the lowest known classical runtime, its storage requirements are so large (for
instances of cryptographic size) that its application is not meaningful in any
reasonable model of cryptanalytic computation. Indeed, the best classical AES
key search algorithms only require a modest amount of storage, so a fair and
correct analysis must take into account the available time/memory trade-offs.
Consequently, Adj et al. fix a conservative upper bound on storage capacity that
is considered “prohibitively costly for the foreseeable future” [1, §5], i.e., 280

units of storage, and analyze the runtime of relevant algorithms subject to this
capacity. They conclude that despite its higher running time, the van Oorschot-
Wiener (vOW) parallel collision finding algorithm [23] has significantly lower
space requirements and is the best classical algorithm for the CSSI problem.
Thus, its concrete complexity should instead be used to assess the security of
SIDH/SIKE against (known) classical attacks. Their analysis ultimately shows
that the SIKE team used rather conservative classical security estimates and
that significantly smaller parameters can be used to achieve the requisite level
of classical security.

Jaques and Schanck [9] provide an in-depth analysis of quantum algorithms
for claw finding applied to the CSSI problem. In particular, they analyse the
complexity of implementing and querying quantum memory, which is needed in
Tani’s algorithm and which previously had not been taken into account in the
quantum security estimates for SIDH/SIKE. Along with Tani’s algorithm, they
also consider a direct application of Grover search [5] to claw finding. Similar
to the classical analysis of Adj et al., they conclude that the SIKE proposal’s

Improved Classical Cryptanalysis of SIKE in Practice 507

quantum security estimates were too conservative. In fact, Jaques and Schank’s
analysis shows that the best known quantum algorithms do not achieve a signifi-
cant advantage over the classical vOW algorithm. In some attack scenarios, it is
the classical security that is the limiting factor for achieving a specified security
level. While quantum algorithms promise to be more efficient for attackers with
limited memory, classical vOW outperforms quantum algorithms for attackers
with limited time. Thus, the precise, real-world complexity of the vOW parallel
collision search algorithm is paramount in the discussion of (current and future)
parameters for SIDH/SIKE.

Based on the above cryptanalytic results, the parameter sets in the SIKE
specification were adjusted in Round 2 of the NIST standardization process. The
specification now contains the parameter sets SIKEp434, SIKEp503, SIKEp610
and SIKEp751 targeting the NIST security categories 1, 2, 3 and 5, respectively.

Contributions. We present an implementation of the van Oorschot-Wiener algo-
rithm that is intended to be a step towards a real-world, large-scale cryptanalytic
effort. Our work extends that of Adj et al. by introducing novel improvements to
implementations of the generic vOW collision finding algorithm and improving
the instantiations specific to the contexts of SIDH and SIKE. Besides signifi-
cantly optimizing the efficiency of the underlying finite-field and elliptic-curve
arithmetic by incorporating the state-of-the-art formulas, we present several opti-
mizations related to the structure of the isogeny graph.

The source code will be released under a free license. Beyond being able to
reproduce our results, we hope that our C/C++ implementations can function
as the basis for further experiments to assess the security of isogeny-based cryp-
tography, and that they can be used for other applications of the collision finding
algorithm. In fact, we provide two implementations: an optimized C code base
for both generic collision finding as well as solving the CSSI problem, and a
C++ version designed for modularity, and to allow easy porting to alternative
collision finding settings at little cost to efficiency (e. g. for the hybrid attack on
lattice-based schemes [6], symmetric cryptography, or highly distributed setups).

Our extensions and improvements to the vOW implementation and analysis
in [1] include:

– Faster collision checking. One of the main steps in the vOW algorithm is to
check whether a given collision is the golden collision (see Sect. 2). Experimen-
tally, our optimized version of generic vOW found that it constitutes close to
20% of the entire algorithm (aligning with van Oorschot and Wiener’s anal-
ysis [23, §4.2]). We give a novel, much more efficient method, which is based
on a cycle-finding technique by Sedgewick, Szymanski and Yao [18]. It tem-
porarily uses a small amount of local storage (which can be input dynamically
as a parameter) during the random walks to accelerate collision checking –
see Sect. 3.4.

– SIKE-specific optimizations. Although the best algorithm for the general CSSI
problem is generic (i.e. there are no better known algorithms that exploit its
underlying mathematical structure), we take advantage of multiple optimiza-
tions that apply to the concrete instantiations in the SIKE specification [7].

508 C. Costello et al.

Firstly, we show how to exploit the choice of the starting curve as a subfield
curve, by defining random walks on (conjugate) classes of j-invariants; such
a modified walk is analogous to the walk that exploits the negation map in
Pollard’s rho algorithm for the ECDLP [27] – see Sect. 3.1. Secondly, we show
how to exploit that, in SIKE, the isomorphism class of the output curve is
not randomized (this possibility was already pointed out by De Feo, Jao and
Plût [3]), by using the leakage of the dual of the final isogeny – see Sect. 3.1.
We quantify the precise security loss suffered by these choices.

– Precomputation. Generic collision finding algorithms like vOW are often
implemented to target high-speed symmetric primitives. In contrast to those
applications, for the CSSI problem, the computation of large-degree isogenies
is the overwhelming bottle-neck of the random walks. Therefore, speeding up
the isogeny computations translates directly to a similar speedup of the entire
collision finding process. We show how to exhaust any available local memory
to achieve such speedups via the precomputation of parts of the isogeny tree
– see Sect. 3.3.

– Experimental results. For all of the improvements mentioned above, we
demonstrate their feasibility by analyzing the runtime of the implementa-
tion. In doing so, we re-confirm the analyses of van Oorschot and Wiener [23]
and Adj et al. [1] in the context of SIDH (with a factor 2 improvement) and
extend them to SIKE – see Table 1. Furthermore, we go beyond the setting
of small parameters and propose an alternative way of predicting the vOW
runtime for actual Round 2 parameters, in particular SIKEp434, giving an
upper bound on their security level – see Sect. 5.1.

2 Preliminaries: van Oorschot-Wiener’s Collision Search

After defining the CSSI problem in Sect. 2.1, we describe the classical meet-in-the-
middle claw finding algorithm in Sect. 2.2. It is both simpler than, and helps moti-
vate, the description of the vOW parallel collision finding algorithm in Sect. 2.3.
The complexity analysis of the generic vOW algorithm is given in Sect. 2.4.

2.1 The CSSI Problem

Herein, we restrict to the popular scenario whereby an instance of SIDH/SIKE
is parameterized by a prime p = 2e23e3 −1 with 2e2 ≈ 3e3 and e3 � 1; all known
implementations, including those in the SIKE submission, specify a prime of
this form. Since p ≡ 3 mod 4, we fix Fp2 = Fp(i) with i2 + 1 = 0 throughout.
We work with the set of isomorphism classes of supersingular elliptic curves in
characteristic p. There are roughly p/12 such classes, and these are identified
by their Fp2 -rational j-invariants [20, p. 146]. Each supersingular j-invariant
belongs to the same isogeny class [11].

In this paper, isogenies are non-constant rational maps between two elliptic
curves that are also group homomorphisms. We work only with separable iso-
genies, meaning that the degree of any given isogeny is equal to the size of its

Improved Classical Cryptanalysis of SIKE in Practice 509

kernel. Any subgroup G ⊂ E determines a unique isogeny (up to isomorphism)
whose kernel is G; this isogeny can be computed using Vélu’s formulas [25].

For a prime � �= p, there are precisely �+1 isogenies of degree � that emanate
from a given supersingular curve. This induces a graph G� – called a supersingular
isogeny graph – whose nodes are the supersingular isomorphism classes and
whose vertices are the degree-� isogenies (up to isomorphism) between them.
The graph G� is connected and, with the exception of the nodes corresponding
to j-invariants 0 and 1728, an (� + 1)-regular multigraph which satisfies the
Ramanujan expansion property (see [3, §2.1]). Since every isogeny φ : E → E′

has a unique (up to isomorphism) dual isogeny φ̂ : E′ → E, we can view G� as
an undirected graph (excluding j = 0, 1728). We discuss the special node with
j-invariant 1728 in Sect. 3.1.

For any n with p � n, the set of n-torsion points, E[n] = {P ∈ E(F̄p) : [n]P =
0E}, satisfies E[n] ∼= Zn⊕Zn. Let (�, e) ∈ {(2, e2), (3, e3)}. Following [3, Problem
5.2] (see also [1, §2.4]), we define a simplified version of the CSSI problem that
underlies the SIDH and SIKE protocols within the above context as follows.

Definition 1 (CSSI). Given two supersingular elliptic curves E and E/G
defined over Fp2 such that up to isomorphism there exists a unique isogeny
φ : E → E/G of degree �e with (cyclic) kernel ker φ = G, the computational
supersingular isogeny (CSSI) problem is to compute φ or, equivalently, to deter-
mine a generator for G.

2.2 The Meet-in-the-middle Claw Finding Algorithm

The most naive approach to solving CSSI is to perform a brute force search for
G. Since the number of cyclic subgroups of order �e in E(Fp2) is (�+1)�e−1, this
takes O(�e) time. The claw finding algorithm uses the fact that we can view G�

as an undirected graph, so that we can instead meet in the middle. Following [8]
(and assuming for simplicity that e is even), we can build two trees of curves:
the leaves of the first determine the set of all isomorphism classes �e/2-isogenous
to that of E, those of the second the set of all classes �e/2-isogenous to that of
E/G. While there are (�+1)�e/2−1 classes in each set, with overwhelmingly high
probability there is only one class that lies in both sets [8, §5.1]. It corresponds
to the node in the middle of the path from E to E/G, and once it is found, the
CSSI problem is solved by composing the �e/2-isogeny emanating from E with
the dual of that emanating from E/G. Assuming that all (� + 1)�e/2−1 classes
emanating from one of the sides can be computed and stored, solving the CSSI
problem this way takes O(�e/2) time.

It was not until the work of Adj et al. [1] that the classical complexity of this
claw finding algorithm in the context of CSSI analysis was scrutinized. Given that
�e/2 ≈ p1/4, and that the smallest prime p used to instantiate SIDH/SIKE prior
to [1] was larger than 2500, Adj et al. argue that the O(p1/4) storage required
to solve the problem as described above is infeasible. Instead, they fix 280 as an
upper bound on the number of units that can be stored, and analyze the runtime
of the claw finding algorithm subject to this storage capacity. At any given time,

510 C. Costello et al.

an attacker can now only afford to store a small fraction of the O(�e/2) nodes
emanating from one side, try all nodes from the other side, and repeat this
process until the CSSI problem is solved. Adj et al. therefore conclude that, for
CSSI instances of cryptographic relevance, the meet-in-the-middle algorithm is
more costly than the vOW algorithm described in the sequel.

2.3 Solving CSSI with van Oorschot-Wiener

Let S = {0, 1} × {
0, . . . , (� + 1)�e/2−1 − 1

}
, E0 = E and E1 = E/G. Each

(i, y) ∈ S represents a kernel subgroup on the elliptic curve Ei. For example, for
� = 2, Adj et al. [1, §4.4] define a correspondence between (i, y) = (i, (b, k)) ∈
{0, 1}×({0, 1, 2} × {

0, . . . , 2e/2−1 − 1
})

and the cyclic subgroup 〈Ri〉 ⊂ Ei with

Ri =

{
Pi +

[
b2e/2−1 + k

]
Qi if b = 0, 1 ,

[
2k

]
Pi + Qi if b = 2 ,

where 〈Pi, Qi〉 = Ei[2e/2−1] .

Let h : S → E0(Fp2) ∪ E1(Fp2), (i, y) �→ Ri and let f : S → S be the function
that, on input of (i, y), computes the isogeny of degree �e/2 with kernel subgroup
〈Ri〉 emanating from Ei, evaluates the j-invariant j(Ei/〈Ri〉), and maps it back
to S using a function g. In order to make f behave like a (pseudo-)random
function on S, the function g : Fp2 → S is chosen to be (pseudo-)random.

A collision for f is a pair x, x′ ∈ S with f(x) = f(x′) and x �= x′. If f
is modeled as a random function, the expected number of collisions (over the
set of random functions) is around |S|/2 [23, §4.2]. For SIDH, we rely on the
function h described above, while for SIKE, h is defined in Sect. 3.2 (in both
cases for � = 2). Note that necessarily there exists one special collision, namely
the one between the two subgroups (one on E and one on E/G) that map to
the same j-invariant and solve the CSSI problem. Since this is the only useful
collision, we follow convention [1,23] and refer to it as the golden collision. For
the remainder of this section we abstract away from the setting of isogenies, since
it is not necessary to understand the van Oorschot-Wiener algorithm. That is,
we assume that f is a truly random function on S for which we aim to find a
single golden collision.

The vOW algorithm requires a proportion θ of the points in |S| to be distin-
guished points. Whether or not a point is distinguished can be decided by any
efficiently computable function S → {0, 1}, so long as it ensures that close to
θ · |S| of the |S| points are deemed distinguished. The algorithm searches for
collisions of f by performing many iterative walks in parallel as follows. Each
walk starts at a random point x0 ∈ S and produces a trail of points xi = f(xi−1)
for i = 1, 2, . . . until a distinguished point xd is reached. The triple (x0, xd, d)
is then added to a single common list and the processor chooses a new starting
point at random to produce a new trail.1

1 In our scenario, many collisions are encountered before the golden collision is found.
Starting new trails (rather than continuing on from distinguished points) avoids
falling into cycles and repeatedly detecting the same collisions [23, p. 6, Footnote 5].

Improved Classical Cryptanalysis of SIKE in Practice 511

Let w denote the number of triples of the form (x0, xd, d) that can be stored in
the list. To simplify memory access, van Oorschot and Wiener suggest making the
memory address for a given triple a function of its distinguished point. Optimized
parametrizations geared towards real-world CSSI instantiations will have w �
θ · |S|, i. e. one cannot store enough triples to account for all of the distinguished
points. This gives rise to three scenarios when we attempt to store a given triple
in memory. The first is that the memory at the given address is empty, in which
case we write the triple there and continue; the second is that the memory
is occupied by a triple with a different distinguished point, in which case we
overwrite it with the new triple and continue; the third scenario is that the two
triples contain the same distinguished point, in which case we have a collision and
we must now check whether or not it is the golden collision. Let these two triples
be (x0, xd, d) and (x′

0, x
′
d′ , d′) with xd = x′

d′ , and assume d′ > d. To check the
collision, we walk x′

0 forward by iterating (x′
0, d

′) ← (f(x′
0), d

′ − 1) until d′ = d,
so that both walks are the same number of steps from the distinguished point.
We then step both walks forward in unison iterating (x0, x

′
0) ← (f(x0), f(x′

0))
until we find x0 �= x′

0 such that f(x0) = f(x′
0). If this is the golden collision, we

are done. Otherwise, we replace the old triple with the new triple and continue.
Note that the expected value of d, i. e. the expected length of the trails, is
geometrically distributed with mean 1/θ.

Van Oorschot and Wiener note that two undesirable occurrences can arise
during their algorithm. First, a trail can collide with the starting point of another
trail, which is called a Robin Hood. In practice, they note that θ is small enough
that this occurs rarely. If it does, we replace the triple in memory by the triple
found last. Second, a walk can enter into a cycle that does not contain a dis-
tinguished point. In [23], the suggested workaround is to set a maximum trail
length (e. g. 20/θ), and to abandon trails beyond this point.

Perhaps the most subtle aspect of the algorithm is that we are essentially
forced to restart the above process many times, for many different instantiations
of the random function f . As explained in [23, §4.2], there exist roughly |S|/2
collisions for f , and on average we have to find this many collisions before we
encounter the golden collision. However, not all collisions occur equally likely; for
any given f , the golden collision may have a very low probability of detection.
For example, one or both of the two points that constitute the golden collision
could have very few trails leading into them, or in the extreme case, none at all;
if so we would have to be extremely lucky to find the collision, i. e. by randomly
choosing the two points as starting points. Thus, van Oorschot and Wiener
explain that the best average runtime is achieved by trying a function f until
a requisite number of distinguished points have been found (how many will be
discussed in the next subsection), and then restarting with a new function until
the golden collision is found. Henceforth, we use fn with n ∈ Z instead of f ,
where the subscript indicates the different function versions.

512 C. Costello et al.

2.4 Complexity Analysis of van Oorschot-Wiener

Van Oorschot and Wiener give a complexity analysis for finding a golden colli-
sion [23, §4.2], but note that their complexity analysis is “flawed”, giving multiple
reasons as to why a precise closed formula for the runtime is difficult to achieve.
Instead, after obtaining a general form for the runtime formula, they choose
to determine several of the constants experimentally. We reproduce this flawed
analysis, since we refer back to it throughout.

Recall that w triples (x0, xd, d) can be stored in memory. Whenever the
memory is full, the average number of points on trails leading to those w distin-
guished points is w/θ. Writing N = |S| and given any element of S, (uniformly)
randomly generated as output of the random function fn, the probability of it
being on the pre-existing trails is therefore w/(Nθ). Thus, on average we com-
pute Nθ/w points per collision. Checking a collision using the method described
above requires 2/θ steps on average, which gives the total average cost per col-
lision as Nθ/w + 2/θ. Taking θ =

√
2w/N minimizes this cost to

√
8N/w. As

N/2 collisions are required (on average) to find the golden collision, we require
(on average)

√
2N3/w function iterations to solve the CSSI problem.

Let m be the number of processors run in parallel and t the time taken to
evaluate the function fn. Since the algorithm parallelizes perfectly [23, §3] (in
theory), the total runtime T required to find the golden collision is

T =
2.5
m

√
N3/w · t , (1)

where 2.5 is one of the constants determined experimentally in [23]. Some adjust-
ments need to be made to the parameters because the phase where the memory is
being filled with distinguished points is not accurately captured in the analysis.
To describe the true performance of the algorithm, the fraction of distinguished
points is set to θ = α

√
w/N and the optimal constant α is determined experi-

mentally. The heuristic analysis by van Oorschot and Wiener suggests α = 2.25,
which is verified by Adj et al. for SIDH.

Equation (1) shows that the memory size of w distinguished points has a
crucial influence on the runtime of the vOW algorithm. It is therefore important
to store distinguished points as compactly as possible. If the property for a
point to be distinguished is a number of leading or trailing zeroes in its bit
representation, these zeroes do not have to be stored, shortening the bit length
of xd in the triple (x0, xd, d). Given a distinguished point rate θ, the number
of zeroes would be �− log θ�. The counter d must be large enough to store the
number of steps in the longest trail, for example d must have �log(20/θ)� bits. A
distinguished point can thus be stored with about 2 log N + log 20 bits as most
of the counter can be stored in the space of the omitted zero bits.

This deduction of the total runtime assumes that fn behaves like an average
random function. The average behavior can be achieved by using a number of
different function versions fn as explained above. To decide how long one such
function fn should be run before moving on, van Oorschot and Wiener intro-
duce the constant β. The function version needs to be changed and distinguished

Improved Classical Cryptanalysis of SIKE in Practice 513

points in memory discarded after β ·w distinguished points have been produced.
This constant is determined heuristically, analogously to the determination of α.
For that purpose, a single n is fixed and run until β · w distinguished points are
produced. In the meantime, the number of function iterations (i) and distinct
collisions (c) are counted. The number of function versions can then be approx-
imated as n/(2c), while the expected runtime can be estimated as in/(2c). It is
concluded that the latter is minimal for β = 10.

We note that this experiment is extremely useful. Namely, it provides a very
close estimate on the runtime without having to complete the full algorithm. For
that reason, we run the same experiment to estimate the impact of improved
collision checking (see Fig. 3 in Sect. 3.4).

3 Parallel Collision Search for Supersingular Isogenies

In this section we describe optimizations that we employ when specializing the
van Oorschot-Wiener algorithm to SIKE. We discuss improvements based on the
SIKE design in Sect. 3.1 and explain the specific instantiation of the vOW algo-
rithm in Sect. 3.2. Finally, we show how to use local memory for precomputation
in Sect. 3.3 and to improve collision locating in Sect. 3.4.

3.1 Solving SIKE Instances

Although the problem underlying SIKE is closely related to the original SIDH
problem, there are slight differences. In this section, we discuss their impact on
the vOW algorithm and show how to reduce the search space from size 3 · 2e2−1

(resp. 4 · 3e3−1) to 2e2−4 (resp. 3e3−1).
As usual, let {�,m} = {2, 3} and let φ : E → EA be an isogeny of degree

�e� for which the goal is to retrieve the (cyclic) kernel ker φ. We opt to represent
curves in Montgomery form [13] EA : y2 = x3 + Ax2 + x with constant A ∈ Fp2 .
The Montgomery form allows for very efficient arithmetic, which is why it has
been used in the SIKE proposal. Further note that, if {U, V } is a basis of E[mem],
then the points φ(U), φ(V) are given as well. But as we do not use these points
on EA and assume the simplified version of the CSSI problem as presented in
Definition 1, we simply think of a challenge as being given by the curve EA.

Since isogenies of degree �e� are determined by cyclic subgroups of size �e� ,
there are exactly (� + 1)�e�−1 of them. This forms the basis for the general
algorithm specified for SIDH by Adj et al. [1], essentially defining a random
function on the set of cyclic subgroups.

Moving to SIKE, we observe that an important public parameter of its speci-
fication is the starting curve E0. Since p = 2e2 ·3e3 −1 is congruent to 3 modulo 4
for e2 > 1, the curve y2 = x3 +x is supersingular for any choice of (large) e2 and
e3, and this curve was chosen as the starting curve in the Round-1 SIKE speci-
fication. In Round 2, the starting curve has been changed to y2 = x3 + 6x2 + x.

514 C. Costello et al.

Choice of Secret Keys. Any point R of order �e� on E0 satisfies R = [s]P+[r]Q for
r, s ∈ Z�e� , where both s and r do not vanish modulo �. The SIKE specification
[7, §1.3.8] assumes s to be invertible and simply sets s = 1. This choice simplifies
implementations by making the secret key a sequence of random bits that is easy
to sample. When � = 2, an appropriate choice of P,Q allows to avoid exceptional
cases in the isogeny arithmetic [17, Lemma 2]. The main consequence of this is
that the key space has size �e� as opposed to (� + 1)�e�−1.

The Initial Step. Our first observation is that although nodes in the isogeny
graph generally have in-degree � + 1, this is not true for vertices adjacent or
equal to j = 0 or j = 1728. In particular, the curve E0 : y2 = x3 + x has
j-invariant j = 1728 which in the case of � = 2 has in-degree 2, while its (only)
adjacent node has in-degree 4. This is shown in Fig. 1a. For � = 3 the curve has
in-degree 2, while its adjacent nodes have in-degree 5; see Fig. 1b. This illustrates
that although the number of distinct kernels is �e� , the number of distinct walks
(say, as a sequence of j-invariants) in the isogeny graph is only 2e2−1 (resp.
2 · 3e3−1) for � = 2 (resp. � = 3). We align the two (without loss of precision) by
starting our walks from the curve E6 : y2 = x3 + 6x2 + x when � = 2. If � = 3,
we can define the kernel on a curve in the class of the left or right adjacent node
to j = 1728 (the choice indicated by a single bit).

The reason for this behavior is that E0 has a non-trivial automorphism group
containing the distortion map ψ that maps (x, y) �→ (−x, iy) (with inverse −ψ).
For any kernel 〈R〉 of size �e� we have E0/〈R〉 ∼= E0/〈ψ(R)〉 while 〈R〉 �= 〈ψ(R)〉,
essentially collapsing the two kernels into a single walk in the graph.

0 6

(a) The 2-isogeny graph

0

(b) The 3-isogeny graph

Fig. 1. Isogeny graphs starting from curves y2 = x3 +Ax2 +x where nodes are labeled
by their A-coefficient.

Remark 1. The presence of the distortion map on the node with j = 1728 thus
leads to loops and double edges in the graph, which reduces the entropy of
the private and public keys. This security reduction for SIDH or SIKE can be
easily circumvented by moving the starting node from E0 to E6 (with j(E6) =
287496), which avoids the loop and double edge for � = 2. More concretely,
setting up a torsion basis {P,Q} of E6[2e] such that [2e−1]Q = (0, 0) and choosing
private keys r ∈ Z�e corresponding to kernels 〈P + [r]Q〉 implies this result.
This suggestion has indeed been included in the Round-2 update to the SIKE
specification. Note that the Round-1 SIKE specification set up Q as a point
of order 2e defined over Fp [7, §1.3.3]. Such a point does not exist on E6, as

Improved Classical Cryptanalysis of SIKE in Practice 515

E6[2e](Fp) ∼= Z2e−1 × Z2. This only implies that the description of Q is longer
as it lies in E6(Fp2) \ E6(Fp).

It is not obvious how the nodes of E6 and E0 are connected in the 3-isogeny
graph, there is no reason to believe they are close. Therefore, we believe moving
to E6 alleviates issues with double edges in the 3-isogeny graph as well.

The Final Step. Recall that our elliptic curves are represented in Montgomery
form and that isogenies of degree 2e2 are computed as a sequence of 4-isogenies.
As already noted in [3, §4.3.2], the choice of arithmetic in SIKE implies that the
points (1,±√

A + 2) ∈ EA lie in the kernel of the dual of the secret isogeny.
Hence, the final step can be immediately recomputed from the public key.
Consequently, EA/〈(1,±√

A + 2)〉 is isogenous to E0 by an isogeny of degree
2e2−2, and to E6 by an isogeny of degree 2e2−3. Therefore, replacing EA by
EA/〈(1,±√

A + 2)〉 reduces the number of distinct walks to 2e2−3 for � = 2.
For � = 3, the representative EA of its isomorphism class can be obtained as

the co-domain curve of a 3-isogeny starting from any of its adjacent nodes. As
far as we know, this does not leak any information about the final 3-isogeny.

Remark 2. To address the issue of leaking the final kernel, we notice that for
any Ā ∈ Fp2 with j(EĀ) = j(EA) we have

Ā ∈
{

±A,±(3x2 + A)/
√

x2
2 − 1,±(3z2 + A)/

√
z22 − 1

}
, (2)

where x2, z2 ∈ Fp2 are chosen such that x3 + Ax2 + x = x(x − x2)(x − z2). That
is, the isomorphism class contains exactly six Montgomery curves. One can show
that each of the 6 distinct 4-isogenies emanating from j(EA) can be computed
by selecting Ā as above and using a kernel point (of order 4) with x-coordinate
1. Therefore, randomly choosing Ā from any of the options in (2) is equivalent
to randomizing the kernel of the final isogeny. Unfortunately, selecting Ā to be
anything other than ±A seems to require an expensive square root. For this
reason, we do not suggest full randomization, but emphasize that the random
selection of one of ±A leads to a single bit of randomization at essentially no
computational effort. As a result, one would only leak the kernel of the final
2-isogeny (with kernel (0, 0)) instead of the last 4-isogeny.

The Frobenius Endomorphism. Every isomorphism class can be represented by
an elliptic curve E defined over Fp2 and has an associated Frobenius map π :
E → E(p), (x, y) �→ (xp, yp). For any kernel 〈R〉 ⊂ E, we have

j(E/〈R〉)p = j(E(p)/〈π(R)〉) .

As a result, it suffices to search for a path to a curve with j-invariant equal to
j(EA) or j(EA)p. In other words, we define an equivalence relation on the set
of j-invariants by j0 ∼ j1 if and only if j1 ∈ {j0, jp

0}. Finding a path to EA

reduces to finding a path to any representative of the class [j(EA)]. In Fig. 2 we

516 C. Costello et al.

show how the classes propagate through the 2-isogeny graph starting at E6. A
very similar structure appears in the 3-isogeny graph. Note that we assume that
isogeny degree is approximately

√
p, making it unlikely for endomorphisms of

that degree to exist. As such, the leaves of trees such as in Fig. 2 most probably
are all distinct.

6

33

664554

1313111212117891010987

Fig. 2. Part of the 2-isogeny graph for any large p = 2e2 · 3e3 − 1 starting at E6 :
y2 = x3 + 6x2 + x. Black dots represent curves defined over Fp, j-invariants in the
same equivalence class are denoted by equal numbers. All edges represent 2-isogenies.
In particular, there are exactly 23 + 1 = 9 classes at distance 4 from E6.

Although the number of classes is approximately half the number of j-
invariants, it is perhaps not obvious how to translate this into a computational
advantage. First assume that � = 2, and that the optimizations specified above
are taken into consideration. That is, we start on the curve E6 and look for
an isogeny of degree 2e2−3 to the curve EA. As usual, kernels are of the form
P + [r]Q for some basis {P,Q}. Note that there is no reason to choose P and
Q exactly as (multiples of) those in the SIKE specification, so we expand on a
particularly simple choice here.

Recall first that #E6(Fp) = 2e2 · 3e3 [20, Exercise V.5.10]. Since the Fp-
rational endomorphism ring of E6 is isomorphic to one of Z[π] or Z[(1+π)/2] [4,
Proposition 2.4], a result by Lenstra [10, Theorem 1(a)] tells us that

E6(Fp) ∼=
{

Z3e3 × Z2e2 if EndFp
(E) ∼= Z[π] ,

Z3e3 × Z2e2−1 × Z2 if EndFp
(E) ∼= Z[1+π

2] .

Consequently, there exists an Fp-rational point of order 2e2−3 and we can choose
Q to be this element. Moreover, p ≡ 7 mod 8 implies that

√
2 ∈ Fp, and therefore

that E6[2] ⊂ E6(Fp). In other words, π acts trivially on points of order 2. Since
π fixes Q and has eigenvalues ±1, for any other element P such that 〈P,Q〉 =
E6[2e2−3], the action of Frobenius is given by

π |〈P,Q〉=
(−1 0

μ 1

)
, for some μ ∈ Z2e2−3 .

Improved Classical Cryptanalysis of SIKE in Practice 517

Note that [2e2−2]P has order 2 and therefore is fixed under π. As a result, μ
is even. Replacing P by P − μ

2Q leads to a basis {P,Q} such that π(P) = −P
and π(Q) = Q. Note that the value of μ can be easily found (e. g. by using the
Pohlig-Hellman algorithm [19]) since the group order is extremely smooth.

Given such a basis {P,Q}, the conjugate of the j-invariant determined by
〈R = P +[r]Q〉 is given by the isogeny with kernel 〈−π(R) = P +[2e2−3−r]Q〉. As
a result, every class {j, jp} can be uniquely represented by r ∈ {0, 1, . . . , 2e2−4}.
If we start the algorithm by separately testing r = 2e2−4, the remainder can be
reduced to searching for kernels 〈P + [r]Q〉 where r ∈ {0, 1, . . . , 2e2−4 − 1}. This
reduces the search space to size 2e2−4.

By a completely analogous (and even simpler) argument, we can fix a basis of
E[3e3−1] on any of the two adjacent nodes of E0 in the 3-isogeny graph such that
the action of π on this basis is described by a diagonal matrix with eigenvalues
±1. Similar to the case of � = 2, this allows a reduction of the search space from
2 · 3e3−1 to (approximately) 3e3−1.

Overall, the presence of the Frobenius endomorphism on the node with j =
1728 reduces the number of equivalence classes that are at a given distance from
j. While the Round-2 SIKE specification has moved away from j = 1728, the
curve E6 still has a Frobenius endomorphism. Indeed, in that case it is not
helpful to differentiate between j-invariants in the same equivalence class. As
(almost) every equivalence class contains 2 representatives at a certain depth,
one less bit of randomness is needed to compute an isogeny of the same degree
(see e. g. Fig. 2, where the final step could always move to the left node). These
issues can be avoided by moving to a curve where the Frobenius map is not an
endomorphism. While this prevents the Frobenius trick, it is a subtle issue (see
Remark 3).

Remark 3. The curve E0 : y2 = x3 + x has a known endomorphism ring [20,
III.4.4], which is helpful in certain attack scenarios [16]. Although one would
prefer to start on a random node in the graph, there is no known way of randomly
selecting one other than choosing a random walk in the isogeny graph. However,
the walk itself cannot be public and it is unclear how to verifiably achieve this.

3.2 Applying van Oorschot-Wiener to SIKE

In this section, we fix � = 2 and describe in detail how to implement the van
Oorschot-Wiener algorithm (with parameters defined as in Sects. 2.3–2.4). We
point out a subtle mistake in the algorithm (appearing already in the original
paper [23] and also used in the work of Adj et al. [1]) and show how to overcome
it. The solution involves using a different notion of distinguishedness, and it
allows us to achieve the average vOW runtime for a fixed instance. This allows us
to focus on one particular instance, where we are then able to use precomputation
in order to analyze the algorithm’s behavior (when applied to SIKE) at a much
larger scale.

Again, we assume to be given a challenge curve EA that is isogenous of
degree 2e2−3 to E6 and aim to find the isogeny. We write e = e2/2 and let

518 C. Costello et al.

S = {0, 1, . . . , 2e−1 − 1}. Fix points P,Q ∈ E6 and U, V ∈ EA such that
E6[2e−1] = 〈P,Q〉 and EA[2e−2] = 〈U, V 〉, where π(P) = −P and π(Q) = Q.

The Step Function. We begin by describing the function family fn. As fn maps
through classes (of size 1 or 2) in Fp2 , we first define a canonical representative
of the class. Since the conjugate of j = a + b · i ∈ Fp2 is j = a − b · i, we say
that j is even whenever lsb(b) = 0. Using >> to denote the rightshift operator,
we define the function h from S to the set of supersingular j-invariants by

h : r �→
{

j if j is even
j otherwise

, for j =

{
j(E6/〈P + [r >> 1]Q〉) if lsb(r) = 0
j(EA/〈U + [r >> 1]V 〉) if lsb(r) = 1

.

In other words, the least significant bit of r determines whether we compute
an isogeny starting from E6 or EA, while we always ensure to end up on an
even j-invariant. Finally, we define fn : S → S by fn(r) = gn(h(r)), where gn

is a hash function indexed by n that maps h(r) back into S. More concretely,
we let gn be the extended output function (XOF) based on AES in CBC mode
using the AES-NI instruction set (see Sect. 4), with the initialization vector and
plaintext set to 0 and the key determined by n.

Note that the Frobenius map π is an endomorphism on E6, but not (necessar-
ily) on EA. Given r ∈ {0, 1, . . . 2e−2 −1}, kernels of the form P +[r]Q determine
isogenies of degree 2e−1 starting from E6, yet it follows from Sect. 3.1 that they
correspond to exactly 2e−2 (distinct) equivalence classes of j-invariants. Kernels
of the form U + [r]V determine 2e−2-isogenies from EA, all of which lead to dis-
tinct, non-conjugate j-invariants. So h maps bijectively into a set of size 2e−1−1,
with only a single collision given by the isogeny from E6 to EA.

Distinguished Points and Memory. Assume the memory to have size w a power
of 2. This is not technically necessary, but simplifies both the arguments and
the implementation. Elements of S are represented by exactly e − 1 bits and we
assume that log w � e − 1.

Adj et al. [1, §4.4] determine the memory position of a triple (r0, rd, d) using
the log w least significant bits of MD5(3, rd). Moreover, the value rd is distin-
guished if and only if MD5(2, rd) ≤ 232θ mod 232 (viewing the output of MD5
as an integer). Although the algorithm will run, it has several complications.

1. Calling a hash function at every step to check for distinguishedness causes
overhead. Similarly, requiring a hash function computation for every read and
write operation to memory causes unnecessary overhead.

2. The algorithm (typically) requires the use of several functions fn for distinct
n. Since the memory location of elements is independent of n, distinguished
points (r0, rd, d) found by fn and (s0, se, e) found by fn+1 (say), with se =
rd, will be classified as a valid collision, triggering the backtracking subroutine.
This will fail since fn and fn+1 give rise to different random functions, leading
to work going to waste. To counteract this, one could keep track of n in
memory. As this is costly, the approach of Adj et al. is to zero out the memory

Improved Classical Cryptanalysis of SIKE in Practice 519

when the maximum number of distinguished points for a given n is reached.
This can get expensive as well, especially in the case of large distributed
memory.

3. The distinguishedness property is independent of n. Although the runtime of
the algorithm is estimated to be 2.5

√|S|3/w by van Oorschot and Wiener [23,
§4.2], this is only true if one takes the average over all collisions. However, for
SIKE (and whenever one wants to find a specific collision), its input values
are fixed. That is, if the golden collision of the function f is determined by
values r, s ∈ S such that f(r) = f(s), then the golden collision of fn (for all n)
also occurs for r and s. The runtime will be above average if one or both of r
and s are distinguished. This is because the algorithm samples a new starting
value every time it reaches r or s, only computing fn(r) or fn(s) when they
are sampled as initial values. Since distinguishedness is independent of n, this
behavior propagates throughout all the fn.

We give a solution to all of these problems. First, we note that elements of S
are uniform bit strings of length e − 1. Since the value rd of the triple is always
the output of the (random) step function, we simply let the log w least significant
bits determine the memory location. More precisely, the triple (r0, rd, d) is stored
in the memory location indexed by (rd + n) mod w. Notice that we choose the
location to be dependent on n. Therefore, if two triples (r0, rd, d) and (s0, se, e)
with se = rd are distinguished under functions fn and fm respectively (with
n �= m), they will be stored at different locations (rd + n) mod w �= (se + m)
mod w, sparing us the backtracking. Moreover, any other value (t0, tc, c) that is
stored during function version fm at the address of (r0, rd, d) will have tc �= rd,
and will not be a collision, sparing us the backtracking. Of course, a memory
address could be written to during both fn and fn+w and never in between. But
for reasonable values of n and w this is highly unlikely, and it would only incur
in the (relatively small) cost of checking for an invalid collision when it happens.

Secondly, we define a better distinguishedness property. Since it should be
independent of the memory location, we use the value of rd >> log w. As usual,
using all of the remaining e − 1 − log w independent bits of rd, we define an
integer bound by B = θ ·2e−1−log w. We then define rd to be distinguished if and
only if

(rd >> log w) + n · B ≤ B mod 2e−1−log w .

With that, every element of S is distinguished for approximately one in every B
functions fn. Although we do not prove that this reduces every instance to the
average case, it holds true heuristically.

We observe that the most significant bits rd >> log w of a distinguished ele-
ment rd are not always zero. This would be preferable since it reduces the mem-
ory requirement, not needing to store the top bits that are zero [23, §6]. Instead
we can simply write the value (rd >> log w) + n · B mod 2e−1−log w to memory,
which by definition is at most B. Adding and subtracting n·B modulo 2e−1−log w

when writing to and reading from memory has negligible overhead.
We note that making distinguishedness depend on the function version also

causes a triple (—, rd,—) to be unlikely to be distinguished often (where time

520 C. Costello et al.

is measured in function versions), giving time to the algorithm to overwrite a
stored triple (r0, rd, d) with a different triple (s0, se, e) with se �= rd, reducing
the change of invalid collisions. Since both fn-dependent memory location and
distinguishedness are cheap to realise, we keep both.

Remark 4. The problems we address appear for SIDH, while the above descrip-
tion solves them for SIKE. An analogous solution works for SIDH, but one should
be careful that the values of S are not uniform bit strings. They are elements
(i, b, k) ∈ {1, 2} × {0, 1, 2} × {0, . . . , 2e2/2 − 1} [1, §4.4] which are represented as
(3 + e2/2)-bit strings where the least significant bit determines i and the two
next lower order bits determine b. Instead, we define the memory location by
the value ((rd >> 3) + n) mod w and the distinguishedness property by

(rd >> (log w + 3)) + n · B ≤ B mod 2e−1−log w , B = θ · 2e−4−log w .

Here, one should be even more careful not to lose too much precision for θ, but
again the assumption that e − 1 � log w should alleviate this. In all of our
instances this is not a concern.

Precomputing the Step Function and Experiments. The main upside to the above
modifications is that every problem instance will have a guaranteed average
runtime of (approximately) 2.5

√|S|3/w. As such, we do not have to worry about
running into an unlucky instance.

However, there is a second useful consequence: to analyze the behavior of our
modifications, it is sufficient to analyze a single instance. Now observe that any
function fn is of the form fn = gn ◦h, where h is fixed across the different n and
by far the most expensive part of the evaluation of fn. For testing any instance
for which h(S) fits into our memory, we can therefore simply precompute h(r)
for all r ∈ S and store them in a table indexed by r. The evaluation of the step
function fn(r) then simply looks up h(r) in the table, and evaluates it under
gn (which is comparatively fast). This improves the speed of our benchmarks
significantly, while not affecting any outcomes regarding a precise analysis of the
vOW algorithm.2

We summarize the results so far in Table 1, comparing the results of our
implementation to the expected theoretical outcome as well as the results of Adj
et al. [1]. Note that our results are close to optimal, and showcase the expected
speedup of a factor

√
63 ≈ 15× in the number of steps when moving from SIDH

to SIKE. Moreover, we note that our software solves the SIDH instances using
less than half the number of steps that were taken for the same instances in [1].
The primes used in Table 1 are

23 · 232 · 320 − 1 , 31 · 236 · 322 − 1 , 71 · 240 · 325 − 1 , 37 · 244 · 327 − 1 ,

13 · 248 · 330 − 1 , 252 · 333 − 1 , 57 · 256 · 335 − 1 .

2 Of course, this strategy is not useful for a distributed attack on an actual crypto-
graphically sized problem instance. It only aids the efficiency of small-sized experi-
ments in order to get a better understanding of the algorithm.

Improved Classical Cryptanalysis of SIKE in Practice 521

Table 1. The average number of function versions n and evaluations of fn used for
finding an isogeny of degree 2e2 . The expected value (Exp.) for the number of function
versions resp. steps is reported as 0.45 · |S|/w resp. log (2.5 · √|S|3/w), for set size

|S| = 3 ·2e2/2 resp. |S| = 2e2/2−1 for SIDH resp. SIKE. The numbers are averaged over
1000 iterations and use 20 cores.

Function versions Steps

e2 logw
Exp. [1] This Exp. [1] This

SIDH SIKE SIDH SIDH SIKE SIDH SIKE SIDH SIDH SIKE

32 9 173 29 319 177 28 23.20 19.32 24.38 23.29 19.58

36 10 346 58 838 342 54 25.70 21.82 27.25 25.74 21.89

40 11 691 115 1015 677 103 28.20 24.32 29.01 28.33 24.40

44 13 691 115 942 704 107 30.20 26.32 30.91 30.37 26.42

48 13 2765 461 – – 434 33.20 29.32 – – 29.38

52 15 2765 461 – – 422 35.20 31.32 – – 31.34

56 17 2765 461 – – 424 37.20 33.32 – – 33.38

3.3 Partial Isogeny Precomputation

Computationally, the most expensive part of the vOW step function is the
(repeated) evaluation of isogenies of degree �e�/2−1. To alleviate this burden,
one can partially precompute the isogeny tree by computing all possible isoge-
nies of a fixed degree Δ and storing a table of the image curves together with
some torsion points (that help to complete the isogenies from these intermediate
curves. Such precomputation presents a trade-off between memory and compu-
tation time for the step function). We elaborate on the method in detail. As it
applies to the general case of SIDH, we discuss that first and then specialize to
SIKE instances with � = 2.3

Let E be a supersingular curve and P,Q ∈ E be such that 〈P,Q〉 = E[�d],
for some d > 0 (typically d ≈ e�/2). Let R = [s]P + [r]Q be a point of order �d,
and φ : E → E/〈R〉 an isogeny of degree �d with kernel 〈R〉. Recall that � does
not divide both r and s. We split the isogeny φ into two isogenies in the usual
way, with the first having degree �Δ for some 0 < Δ < d as follows.

Write s = s0 + s1�
Δ and r = r0 + r1�

Δ for s0, r0 ∈ Z�Δ and s1, r1 ∈
Z�d−Δ . Then R = [s0]P + [r0]Q + [�Δ]([s1]P + [r1]Q), while the point RΔ =
[�d−Δ]R = [s0]([�d−Δ]P) + [r0]([�d−Δ]Q) generates the kernel of the isogeny
φΔ : E → E/〈RΔ〉 of degree �Δ. The point φΔ(R) on E/〈RΔ〉 has order
�d−Δ and determines an isogeny ψΔ : E/〈RΔ〉 → E/〈R〉 of degree �Δ−d

such that φ = ψΔ ◦ φΔ. Crucially, the first pair of partial scalars (s0 = s
mod �Δ , r0 = r mod �Δ) determines φΔ and the points φΔ([s0]P + [r0]Q),
φΔ([�Δ]P) and φΔ([�Δ]Q) on E/〈RΔ〉. Given this curve and these points,

3 The extreme case, when the full isogeny tree from one side is precomputed, corre-
sponds to the meet-in-the-middle algorithm as described by Adj et al. [1].

522 C. Costello et al.

the second pair of partial scalars (s1 = �s/�Δ� , r1 = �r/�Δ�) determines
ker ψΔ = (φΔ([s0]P + [r0]Q)) + [s1]φΔ([�Δ]P) + [r1]φΔ([�Δ]Q) and allows to
complete the isogeny φ. Therefore, precomputation consists of computing a table
with entries

[
E/〈RΔ〉, φΔ([s0]P + [r0]Q), φΔ([�Δ]P), φΔ([�Δ]Q)

]
,

for all (s0, r0) ∈ Z
2
�Δ such that � does not divide both s0 and r0. Such a table

entry can then be used to compute any full degree isogeny of degree �d with
kernel point R = [s]P + [r]Q such that s ≡ s0 mod �Δ and r ≡ r0 mod �Δ and
any (s1, r1).

However, it suffices to store only two points on E/〈RΔ〉. If � � s, we can
assume that s = 1 and R = P + [r]Q for r ∈ Z�d . Then RΔ = [�d−Δ]P + [r0 ·
�d−Δ]Q and the precomputed table only needs to contain entries of the form

[
E/〈RΔ〉, PΔ = φΔ(P + [r0]Q), QΔ = φΔ([�Δ]Q)

]
(3)

for all r0 ∈ Z�Δ . The kernel of ψΔ (for completing φ) can be computed as
φΔ(R) = PΔ + [r1]QΔ for any r with r ≡ r0 mod �Δ. If � | s, then � � r and
R = [�t]P + Q for some t ∈ Z�d−1 such that s = �t. In that case table entries are
of the form

[
E/〈RΔ〉, PΔ = φΔ([�Δ]P), QΔ = φΔ([�t0]P + Q)

]

for all t0 ∈ Z�Δ−1 , while ker ψΔ = [t1]PΔ + QΔ. Altogether, the table contains
�Δ + �Δ−1 = (� + 1) · �Δ−1 entries and reduces the cost of any isogeny of degree
�d from d log d to (d − Δ) log(d − Δ) [3, §4.2.2].

Now we move on to SIKE and fix � = 2. That is, we assume s = 1 and
every table entry to be of the form (3). Recall that the function h takes as
input a value r ∈ Z�e−1 (where e = e2/2) and computes an isogeny with kernel
〈P + [r >> 1]Q〉 on E6 if lsb(r) = 0, and an isogeny with kernel 〈U + [r >> 1]V 〉
on EA otherwise. The latter reflects the case above with d = e − 2 perfectly,
leading to a precomputed table of size 2Δ from EA while reducing the cost of
the isogeny from (e − 2) log(e − 2) to (e − 2 − Δ) log(e − 2 − Δ). The case of the
curve E6 is slightly different due to the presence of the Frobenius endomorphism.
Although there are 2e−2 distinct equivalence classes of j-invariants, the degree
of the corresponding isogenies is 2e−1. As such, we compute a table of size
2Δ comprising of the equivalence classes of j-invariants at depth Δ + 1 away
from E6.4 As a result, all isogenies used throughout the whole implementation
have fixed degree e − 2 − Δ. The isogeny cost reduces from (e − 1) log(e − 1) to
(e−2−Δ) log(e−2−Δ) and choosing Δ such that e−2−Δ ≡ 0 mod 2 allows the
use of 4-isogenies as in SIKE. Table 2 demonstrates the effect of precomputation
on the SIKE step function.

4 This slightly changes how an element r0 + r12
Δ ∈ Z2e−2 , for r0 ∈ Z2Δ and r1 ∈

Z2e−2−Δ , corresponds to an isogeny. Instead of kernel 〈P + [r0 + r12
Δ]Q〉, it now

gives rise to the kernel 〈P + [r0 + r12
Δ+1]Q〉. This has no impact on the algorithm.

Improved Classical Cryptanalysis of SIKE in Practice 523

Table 2. Effect of precomputation on the running time of the SIKE step function.
Numbers represent the cumulative running time in seconds of 1000000 calls to the step
function, for the corresponding modulus and precomputation depth Δ. All experiments
were run on Atomkohle.

Δ

e2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

32 20.51 17.96 15.47 13.09 10.91 8.84 7.17 4.92 — — — — — — —

36 23.50 20.46 17.91 15.45 13.08 10.85 8.82 7.18 4.84 — — — — — —

40 26.79 23.60 20.97 18.45 15.96 13.60 11.42 9.35 7.62 5.00 — — — — —

44 29.37 26.34 23.58 21.01 18.44 15.96 13.60 11.38 9.32 7.70 4.89 — — — —

48 32.48 29.57 26.88 24.21 21.33 18.80 16.25 13.83 11.57 9.41 7.70 4.87 — — —

52 36.38 32.93 29.92 27.13 24.15 21.53 18.85 16.36 13.93 11.64 9.48 7.76 4.87 — —

56 40.05 35.48 33.29 29.67 26.80 25.60 21.46 18.94 16.43 14.60 11.83 9.73 8.03 4.89 —

60 41.56 38.54 35.72 32.73 29.91 27.09 24.38 21.69 19.17 16.68 14.26 12.03 9.95 8.26 4.96

Computing an Isogeny Tree. To obtain the lookup table, one computes image
curves and torsion points for all isogenies of degree 2Δ (resp. 2Δ+1) and stores
them indexed by their kernel representation. Adj et al. [1, Section 3.2] describe
a depth-first-search approach to compute the required curves as the leaves of a
full 2-isogeny tree of depth e2/2 for the meet-in-the-middle algorithm (c. f. [1,
Fig. 1]). This method is much more efficient than the naive way of computing
full 2e2/2-isogenies for all possible kernel points. Obviously, it can be applied for
partial trees to compute isogenies of degree 2Δ (resp. 2Δ+1) and an analogous
version can utilize a 4-isogeny tree.

Using Memory for Precomputation. Depending on the specific problem instances
and communication properties of the network, the memory required for precom-
putation could alternatively be used as part of the main memory that stores
distinguished points. In other words, precomputed tables might take away a
certain amount of memory from the distinguished point storage space.

Assume that due to latency and communication constraints, each of the m
parallel processors needs its own table of size τ(Δ), and for simplicity that every
processor precomputes the same depth tree. For example, for the SIDH case of
Adj et al. [1] we would assume each processor to have precomputed a table of
size τ(Δ) = 2 · (2Δ +2Δ−1) = 3 ·2Δ. For SIKE, this size is τ(Δ) = 2 ·2Δ = 2Δ+1.

As shown in Sect. 2.4, each distinguished point is represented with roughly e2
bits (i. e. about 1

2 log p bits) since log |S| = e2/2−1. This takes into account that
the �− log θ� leading zeros in a distinguished point are omitted in memory. Every
entry in the precomputed table can be represented by three Fp2 elements (i. e.
about 6 log p bits). Therefore, each such table element uses memory that could
store about 12 distinguished points instead. For precomputation depth Δ, the
table entries thus use space for 12 · τ(Δ) distinguished points. This means that
the vOW main memory is reduced from w to w−12 ·τ(Δ) ·m points (when each
of the m processors stores its own table). Thus, the number of function iterations

524 C. Costello et al.

increases by a factor 1/
√

1 − 12 · τ(Δ) · m/w. Note that this is well-defined since
12 · τ(Δ) · m cannot exceed the maximum available memory w.

While taking away memory increases the expected number of function iter-
ations, precomputation reduces the step function cost by a factor σ(Δ, e). We
have σ(Δ, e) = (e−Δ) log(e−Δ)/(e log e) for SIDH (given e2 is even), while for
SIKE (separating the two equally likely cases where we start from E6 resp. EA)

σ(Δ, e) =
1
2

(
(e − 2 − Δ) log(e − 2 − Δ)

(e − 2) log(e − 2)
+

(e − 2 − Δ) log(e − 2 − Δ)
(e − 1) log(e − 1)

)
. (4)

The total runtime of the van Oorschot-Wiener algorithm decreases if

σ(Δ, e)
√

1 − 12 · τ(Δ) · m/w
< 1 .

Remark 5. In an actual distributed implementation, the situation might be dif-
ferent and favor precomputation more. For example, it is reasonable to assume
that several processors in a multi-core machine are able to share a precomputed
table. Furthermore, depending on the design of the main memory, each machine
may have memory available that cannot contribute to it and might as well be
used to store a table for a limited amount of precomputation. In such situations,
using memory for lookup tables might not have any negative effect on the overall
runtime. Example 1 shows that speed-ups for cryptographic parameters can be
obtained with very small tables, making this scenario more realistic.

Example 1. Let p = 2216 · 3137 − 1 and (e,m,w) = (108, 264, 280), following
the setup of [1, Remark 6]. For both SIKE and SIDH, the (near) optimal pre-
computation depth is Δ = 6 and each processor pre-computes a local table
that takes up space for 12 · τ(Δ) distinguished elements; this requires around
41 resp. 62 kilobytes of memory per processor (totalling 2.34% resp. 3.52% of
the full memory w). In both cases, the step function cost is reduced by a factor
σ(Δ, e) ≈ 0.93. For SIKE, we decrease the runtime of the full algorithm by a
factor approximately 0.94, for SIDH, by about 0.95.

However, a more realistic example assumes that many processors can share
the precomputation table. In our setup, a machine of 40 cores can share a single
table. In that case, the optimal depth is found at Δ = 12. For SIKE, we use
a table of about 2.7 megabytes per processor (totalling approximately 3.75% of
the total memory w). The cost of the algorithm is reduced by a factor 0.88. For
SIDH we obtain a table of size 4.0 megabytes (5.63% of the total memory). The
runtime is decreased by a factor 0.89.

3.4 Fast Collision Checking

As discussed in Remark 5, in a distributed implementation processors are likely
to have local memory that cannot contribute to the main memory (that which
is used for storing distinguished point triples). We now describe another way to

Improved Classical Cryptanalysis of SIKE in Practice 525

use such memory to significantly improve the overall runtime of van Oorschot-
Wiener. Analogous to Sect. 3.3, even if memory is consumed that could other-
wise be used to store distinguished points, we argue that dedicating a moderate
amount of storage to this faster collision checking reduces the overall runtime.

Recall from Sect. 2.3 that a single walk in the vOW algorithm starts at a
point x0 ∈ S and produces a trail of points xi = f(xi−1) for i = 1, 2, . . . , until it
reaches a distinguished point xd. Assume that the triple (x0, xd, d) collides with
a triple, say (y0, ye, e), previously stored in main memory and that it is not a
mere memory collision. To check if we have found the golden collision, we need
to locate the indices i < d and j < e for which xi �= yj and f(xi) = f(yj). Van
Oorschot and Wiener note that, since d and e have expected value 1/θ, retracing
the two paths from their starting points to the colliding point requires 2/θ total
steps on average [23, p. 9]. Our goal is to lower the overall runtime by reducing
the number of function iterations for retracing.

Saving Intermediate Values. Suppose that apart from the global memory for
keeping distinguished points, a processor has access to enough local memory
to store t − 1 additional points intermittently (more on what this means in a
moment). On a walk from x0 to xd, it now stores t + 1 points in total. These
points (xd0 = x0, xd1 , . . . , xdt

= xd), where 0 = d0 < d1 < · · · < dt, can now be
used together with (y0, ye), to locate the collision more efficiently.

We start by copying y0 to y′, e to e′ and iterate steps y′ ← f(y′), e′ ← e′ −1.
When y′ is the same distance away from the distinguished point as the closest of
the saved points, say xdj

(i.e. j is minimal with e′ = dt − dj), we check whether
y′ = xdj

. If not, we set y0 ← y′ and step y′ forward dj+1 −dj steps and compare
again. This is repeated until y′ collides with one of the saved points, say xdk

.
Note that equality checks only occur with the xdi

and not at every step as in the
original collision checking function. Once the minimal index k with y′ = xdk

is
detected, we know that the collision must take place between xdk−1 and xdk

. At
this point, the original collision checking function without saving intermediate
points can be called on the triples (xdk−1 , xdk

, dk − dk−1) and (y0, y′, dk − dk−1).
Note that if the collision occurs at xd0 , we have a Robin Hood and return false.

What have we gained? First of all, the trail with stored points is not retraced
at all, only in the final call to the original collision checking, on a single subin-
terval of length dk − dk−1, which in general is much shorter than the original
trail length dt. The trail starting at y0 is fully retraced to the collision, where
additional steps are taken that cover the colliding interval. The savings are larger
when intervals are shorter and thus when more intermediate points are saved.
This approach is implemented in our software.

Figure 3 shows how the number of function steps for checking and locating
collisions is reduced when running vOW on an AES-based function with a set
of size 230 and memory of size 215. With α = 2.25, the average walk length is
1/θ ≈ 80. There is an immediate gain for even allowing a small number of inter-
mediate points. However, additional gains become smaller when increasing this
number because, when the maximal number of intermediate points approaches the
average trail length, almost every point can be stored and adding more memory
does not add more intermediate points, nor influence the distance between them.

526 C. Costello et al.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Maximum intermediate values

3.5

4.0

4.5

5.0

5.5

6.0

6.5

N
u
m
b
er

of
st
ep
s
lo
ca
ti
n
g

1e6

Average

Exp. for 0 int. values

Fig. 3. Number of steps used for locating a collision as a function of maximum amount
of intermediate values allowed for the AES-based random function with log |S| = 30,
log w = 15. Averaged over 64 function versions, using 28 cores and run on Atomkohle.

Remark 6. There is potential for further improvement by allowing storage for
2t − 2 points. As above, the t − 1 points (xd0 , . . . , xdk−2 , xdk+1 , xdt

) are stored
while walking the trail. But during collision checking against (y0, ye, e), t−1 addi-
tional intermediate points are stored when retracing the trail from y0. When
the collision is encountered, the latter points take the place of the xdi

and
(y0, ye) ← (xdk−1 , xdk

). Storage for the t− 1 elements (xd0 , . . . , xdk−2 , xdk+1 , xdt
)

can be reused for keeping intermittent points when retracing the trail from the
new y0. Repeating this procedure, we recurse until ye = f(y0), at which point
we check for the golden collision. Note that splitting the space for 2t − 2 points
in half eases the exposition, but might be suboptimal. The optimal allocation of
memory to the different trails should be determined for a large scale cryptana-
lytic effort based on how much memory is available.

How to Save Points Intermittently. It remains to describe how the t−1 interme-
diate points are stored. Given the expected trail length of 1/θ, one could store
points at regular intervals of length 1/(tθ). However, walks much longer than
1/θ would lead to a much larger distance between the final intermediate point
and the distinguished point; walks much shorter than 1/θ would lead to unused
memory that could have decreased the average gap between intermediate points.
In the ideal scenario, a full set of (t − 1) additional points is stored and they
are as close to being equally spaced as possible when the distinguished point is
reached. Since trails randomly vary in length, the best approach involves over-
writing previously placed points in such a way that the distances between points
grow with the trail length.

Improved Classical Cryptanalysis of SIKE in Practice 527

We modify an algorithm for finding cycles in random walks by Sedgewick,
Szymanski and Yao [18]. In the first t steps of the trail, the allocated memory
is exhausted by storing a point at every step, so that (d0, d1, . . . , dt−1, dt) =
(0, 1, . . . , t − 1, t), and the points are all at distance 1 from one another. At any
stage of the procedure, define δ = minj>0{dj − dj−1}. From hereon, every δ
steps, we simply look for the smallest value of j where dj −dj−1 = δ, remove the
point xdj

from the list, and add the current point to the list. At some point, the
last point that is δ steps away from another point will be deleted and replaced by
a point that is twice as far away from the last; by definition, δ is simultaneously
doubled and all of the points in the list are δ away from each other.

4 Implementation

We produced two implementations of the van Oorschot-Wiener algorithm, one in
C, optimized for efficiency, and a more modular one in C++. The C implementa-
tion makes use of the Microsoft SIDH library [12] for field and curve arithmetic
when running the attack against SIDH and SIKE instances. We have modified
their code to support smaller primes, and added non-constant time operations
if beneficial (e. g. finite field inversions). For parallel computations we use the
gcc implementation of OpenMP 4.5 [15]. For simplifying batch experiments we
wrote Python wrappers to our code using SWIG [2].

The experiments are run on two different machines. The first, referred to
as Atomkohle, contains two Intel(R) Xeon(R) E5-2690 v4 CPUs running at
2.60 GHz that both have 14 physical cores (so 28 in total). The second, referred
to as Solardiesel, contains two Intel(R) Xeon(R) Gold 6138 CPUs at 2.00 GHz
that have 20 cores each (40 in total). Unless specified otherwise, all measure-
ments and statistics reported in this paper have been produced using the C
implementation and are compiled with gcc version 6.3.0.

Optimized Implementation. The C software contains three step functions to run
experiments. The first is a generic, fast random function, and the other two are
those arising from random walks in the 2-isogeny graph as determined by the
SIDH (see Sect. 2.3) and SIKE (see Sect. 3.2) specifications. This allows the use of
a fast random function to verify that our implementation matches the expected
asymptotic values (confirming the original vOW analysis [23]) and linear speed-
up on larger sets, while also displaying our improvements in the SIDH and SIKE
settings (e. g. as shown in Table 1).

Modular Implementation. While for all SIDH and SIKE experiments we used our
C implementation on individual multi-core machines, it would be interesting to
deploy the van Oorschot-Wiener algorithm in alternative settings. For example,
running attacks with more cores distributed over the internet could change the
balance between the cost of a step function evaluation and the cost of memory
access, and would certainly present memory topology and core synchronization
challenges. Furthermore, collision-finding techniques play a role in the cryptanal-
ysis of other encryption schemes, e. g. NTRU [6,24], where memory constrained

528 C. Costello et al.

Table 3. Reproduction of Table 3 from [1], using our C++ implementation, using
an AES-based generic random function on Atomkohle. Experiments are run using 20
cores. #fn is the number of different random functions used per instance.

Expected Average

log |S| log w #runs #fn log
√|S|3/w #fn log

√|S|3/w cycles

18 9 1000 230.40 23.82 204.74 23.83 30.23

20 10 1000 460.80 26.32 420.01 26.27 30.57

22 11 1000 921.60 28.82 898.79 28.86 33.05

24 13 1000 921.60 30.82 850.49 30.74 34.89

cryptanalytic experiments could be useful. Since it could be tricky to adapt our
C code to such varied settings, we also produced a C++ implementation with the
goal of obtaining a more modular, developer-friendly, code base. Test results on
a fast, generic, random function showing that it matches the expected asymp-
totics can be found in Table 3. Ideally, it should not be too difficult to write
“drivers” for access to different forms of memory (say, storage over the internet
rather than local RAM), or different sets S and step functions fn.

Selecting a XOF and PRNG. One goal of actually implementing vOW is to ver-
ify the runtime against the asymptotic theoretical values, using a fast random
function. Adj et al. [1] chose to use an MD5-based random function for this pur-
pose. We have instead opted for a custom XOF based on AES-CBC mode using
AES-NI instructions. This provides much better performance on modern hard-
ware, while guaranteeing cryptographic properties of the function. Regarding
our PRNG, we use AES-CTR mode with AES-NI instructions.

In Table 4 we reproduce [23, Table 1] which computes the O(·) constant in
front of the expected number of steps for the optimal choice of θ and is used
to determine the constant α, to demonstrate the validity of our pseudo-random
step function.

5 Analysis of SIKE Round-2 Parameters

In the Round 2 of the NIST standardization effort, the analyses of Adj et al. [1]
and Jaques and Schanck [9] have prompted the introduction of two new parame-
ter sets to the SIKE submission, SIKEp434 and SIKEp610, as well as a security
reassessment of the parameter sets SIKEp503 and SIKEp751. The four sets are
based on the primes p434 = 22163137−1, p503 = 22503159−1, p610 = 23053192−1
and p751 = 23723239−1, and target security categories 1, 2, 3 and 5, respectively.

This section provides concrete classical security estimates for these parameter
sets, in two different ways; the first follows an approach similar to the one by van
Oorschot and Wiener and Adj et al. We count the average number of oracle calls
to run the vOW algorithm and multiply them by the complexity of the oracle

Improved Classical Cryptanalysis of SIKE in Practice 529

Table 4. Reproduction of [23, Table 1], using the AES-based XOF on Solardiesel,
i. e. the number of function steps required to find the golden collision divided by
|S|3/2/w1/2. The experiments are averaged over 1000 function versions and run with
20 cores.

log w

log |S| 2 4 6 8 10 12 14 16

20 3.90 2.87 2.62 2.52 2.48 2.45 2.40 2.28

24 3.99 2.89 2.60 2.51 2.48 2.48 2.47 2.45

28 3.95 2.92 2.59 2.51 2.49 2.48 2.48 2.47

32 4.07 2.90 2.61 2.51 2.49 2.48 2.48 2.48

36 4.22 2.94 2.60 2.52 2.49 2.48 2.48 2.48

itself, measured in x64 instructions. This leads to a more informed estimate than
provided by Adj et al. and Jaques and Schanck, but the final result remains the
same – see Sect. 5.1. A downside of this approach is that although it captures
much of the algorithm’s cost, it ignores some potentially significant parts. In
particular, it does not account for the cost of memory access (assumed free) or
the practical difficulty of scaling across different cores (assumed linear), see [1,
§5, Remark 6]. We present an alternative method in Sect. 5.2.

5.1 Concrete Security of SIKE Round-2 Parameters

In Table 5 we use the Round-2 SIKE implementation to estimate the number of
x64 instructions necessary to compute half-size isogenies. More specifically, we
provide estimations for 2�e2/2�−2-isogenies in Table 5a and for 3�e3/2�-isogenies
in Table 5b. These instruction counts are intended to be lower bounds on the
number of classical gates required to mount vOW, and we argue that these
estimates are still conservative with respect to the true gate count. A lower
bound on the runtime of the vOW algorithm can now simply be obtained by
multiplying the costs of the above isogeny oracles with the number of times
they are called, which we summarize in Table 6. Our analysis concludes that the
number of classical gates required for (i) vOW on SIKEp434 is at least 2143, (ii)
vOW on SIKEp503 is at least 2170, (iii) vOW on SIKEp610 is at least 2210, and
(iv) vOW on SIKEp751 is at least 2262. Note that the counts for (i) and (iii)
closely agree with classical gate counts by Jaques and Schanck, who are also
rather conservative in their costing of the isogeny functions – see [9, §7.1].

5.2 Concrete Security of SIKEp434

Finally, we focus our attention on arguably the most interesting cryptanalytic
target, namely the SIKE Round-2 category-1 parameter set SIKEp434 with
claimed (classical) security comparable to AES-128. Although the analysis in

530 C. Costello et al.

Table 5. Isogeny costs in terms of the total number of x64 instructions isum, broken
down into multiplication instructions imul, addition, subtraction and logical instruc-
tions iasl and move instructions imov; M denotes multiplication, S squaring, add
addition and sub subtraction in Fp2 .

DBL 4-iso M S add sub imul iasl imov log(isum)

SIKEp434 282 166 2124 1560 1726 1228 595476 2099108 1534760 22.01

SIKEp503 362 189 2582 1858 2047 1480 905376 3332506 2099672 22.60

SIKEp610 434 255 3266 2398 2653 1888 1638294 5433856 3553530 23.34

SIKEp751 548 334 4196 3100 3434 2432 3254832 9365124 9863656 24.42

(a) Costs for a 2�e2/2�−2-isogeny (omitting single 2-isogenies for odd exponent) using
an optimal strategy composed of quadrupling and 4-isogeny steps; DBL denotes a
point doubling, 4-iso a 4-isogeny computation, and the cost for DBL is assumed to be
4M + 2S + 2add + 2sub and for 4-iso it is 6M + 6S + 7add + 4sub.

TPL 3-iso M S add sub imul iasl imov log(isum)

SIKEp434 199 217 2695 2080 3635 2478 769445 2826741 2067722 22.43

SIKEp503 229 275 3253 2520 4537 2978 1172192 4479442 2875831 23.02

SIKEp610 290 350 4130 3200 5770 3780 2112930 7266720 4861220 23.76

SIKEp751 395 429 5339 4120 7191 4910 4208868 12471749 13228173 24.83

(b) Costs for a 3�e3/2�-isogeny (omitting single 3-isogenies for odd exponent) using
an optimal strategy composed of point tripling and 3-isogeny steps; TPL denotes a
point tripling, 3-iso a 3-isogeny computation and the cost for TPL is assumed to be
7M + 5S + 3add + 7sub and for 3-iso it is 6M + 5S + 14add + 5sub.

Table 6. Average number of x64 instructions to run vOW on the 2- and 3-torsion for
the Round-2 SIKE parameters with memory size w = 280, set size N = |S| = 2e2/2−1 for
the 2-torsion and N = |S| = 3(e3−1)/2 for the 3-torsion – see Sect. 3. Numbers are shown
as the floor of their base-2 logarithms. The number of isogeny computations, #isog,
is computed by setting m = t = 1 in Eq. (1), and the numbers isum of instructions
for each isogeny are taken from Tables 5a and 5b. The total number of instructions,
vOW, is the product of #isog and isum and is intended to act as a lower bound on
the number of gates required to solve the CSSI problem with the vOW algorithm.

2-torsion 3-torsion

N #isog isum vOW N #isog isum vOW

SIKEp434 107 121 22 143 107 122 22 144

SIKEp503 124 147 23 170 125 149 23 172

SIKEp610 151 187 23 210 150 187 23 210

SIKEp751 185 238 24 262 188 244 24 268

Improved Classical Cryptanalysis of SIKE in Practice 531

the previous section shows agreement between our estimates and those in the
literature, all approaches so far have one thing in common: communication and
memory access costs are not taken into account. As these become non-negligible
when the memory and the number of cores grow — already mentioned in the
context of SIDH/SIKE by Adj. et al. [1, Remark 6] — one can wonder how
significant they are. Since such costs are often difficult to capture in theoretical
models, we take a more practical approach.

We start by noticing that the current complexity estimates are measured in
average number of oracle calls, where an oracle call corresponds to an isogeny
computation (e. g. of degree 2106 or 368 for SIKEp434). Given the fact that we
now have an optimized implementation of the algorithm itself, a simple alterna-
tive is to measure the complexity in average number of cycles instead. Much of
the heuristic approach of van Oorschot and Wiener [23, §4.2] remains the same;
we run a single function version and measure the number of distinct collisions it
generates, from which we approximate the runtime of the full algorithm. That
is, we assume that each function version behaves approximately the same with
respect to the number of distinct collisions it generates, which van Oorschot
and Wiener heuristically show to be true for w ≥ 216 (the results for different
function versions are within 1% of one another). Thus, writing N for the set size
and c for the number of distinct collisions generated per function version, every
function version has (independent) probability 2c/N to find the golden collision
and completing the vOW algorithm requires on average N/(2c) versions. If each
one requires t cycles to complete, the average total runtime is therefore tN/(2c).

Equivalently, on average we need t/c cycles per generated collision, of which
there are N/2 in total, leading to the above average runtime. Therefore, one
may want to simplify the analysis by generating only very few collisions and
approximating the runtime from that. However, we note that t/c is very large
in the beginning of the algorithm as the memory starts out being empty, while
the distribution of distinguished points in memory becomes biased towards those
with lower probability of producing a collision – see [23, §4.2]. It may be possible
to run less than a full function version to get a close approximation of t/c, but
we consider this out of scope for this work and stick with completing a function
version for our estimations.

Looking at the conjectured setup proposed by Adj et al. (i. e. memory w =
280, m = 264 cores), when used against SIKEp434 the number of oracle calls
grows linearly with

√
Nw/m, where N = 2107, while each oracle call takes on

the order of 222 x64 instructions (see Table 5a). In the theoretical model where
memory accesses are free and the algorithm parallelizes perfectly, the function
version can be run with approximately 251.5 x64 instructions per core (and to
run the full algorithm we need approximately 227 function versions, agreeing
with the estimates in Table 6). If each x64 instruction were a single cycle on a
machine running at 1 GHz, such a computation would finish in about 37 days.
Although it should be noted that such a setup is not realistic, other combinations
of resources allow for (theoretically) running a single function version within a
reasonable amount of time (say, a year). It is not clear that these runtimes will

532 C. Costello et al.

hold true in practice, as for example distributing the experiment across different
machines can cause significant overhead. We consider exploring this overhead,
e. g. by analyzing how different network topologies affect the results, a very
worthwhile research direction.

In a more constrained environment, i. e. when running experiments on Atom-
kohle for which we choose w ∈ {216, 218, 220} and m = 28, running a single
SIKEp434 function version requires millions of years. Instead, we decrease the
degree e of the isogeny we try to reconstruct, but do not change the finite field,
to a point where experiments run in a few hours. Crucially, if the theoretical
analysis of van Oorschot and Wiener holds up for these resources, then the run-
time of a function version grows linearly with

√
N and we can extrapolate the

runtime of a single function version for the actual SIKEp434 parameters on such
a setup by drawing a line through the data points. Interestingly, the difference
between this approximation of the security of SIKEp434 when compared to the
theory can be seen as an error measure for the theoretical analysis of vOW (the
better the fit, the closer the theory to reality).

More concretely, we choose e = 28, 30, . . . , 42 and measure the cycle counts
to complete one function version and the number of distinct collisions that they
generate. We use precomputation depth Δ = 16 and to account for the differ-
ence of the cost of the oracle (a 2e-isogeny) we normalize the cycle count by a
factor σ(Δ, e) · ζ(e), with ζ(e) = (1/2) · ((e − 2) log(e − 2) + (e − 1) log(e − 1))
the estimated average cost of the oracle and σ(Δ, e) given as in Eq. (4). Hence,
we have a measure for the average number t/c of cycles required to generate a
single collision, which we summarize in Table 7.

For a fixed w, we then extrapolate, using the least squares method, the
function that maps

√
2e−1 to the corresponding value in the table. This leads to

the three approximation functions

z16(e) = σ(Δ, e) · ζ(e) · (3.44.. ·
√

2e−1 + 19247.78..) ,

z18(e) = σ(Δ, e) · ζ(e) · (1.72.. ·
√

2e−1 + 6151.88..) ,

z20(e) = σ(Δ, e) · ζ(e) · (0.87.. ·
√

2e−1 − 928.81..) ,

where the factor σ(Δ, e) ·ζ(e) is only there to undo the normalization factor. For
any w, the runtime of a single function version for SIKEp434 is then zlog(w)(e)
cycles, while the full algorithm has total runtime 2e−2 · zlog(w)(e) cycles, since
|N | = 2e−1. Thus, setting e = 108, we expect vOW on SIKEp434 to have a
runtime of 2170.47.., 2169.47.. and 2168.50.. cycles for w = 216, w = 218 and w = 220

respectively. For comparison, using Eq. (1) combined with the approximation of
the cost of the isogeny oracle of Table 5a, we expect runtimes 2170.71.., 2169.71..

and 2168.71.. x64 instructions respectively. We observe that these approximations
match very closely, confirming that the theoretical estimates lie very close to the
practical runtimes for these values of w and m. Indeed, this is no surprise, as
such small values should not cause significant overhead.

However, we emphasize that this is the first time a theoretical estimate on the
security of SIKEp434 is met with serious practical consideration (i. e. without

Improved Classical Cryptanalysis of SIKE in Practice 533

Table 7. Number of cycles (measured in thousands and rounded to the nearest multiple
of 103) to generate a single collision, for different memory sizes w and isogeny instances
of degree 2e2 , where e = e2/2. All numbers are scaled by a factor σ(Δ, e) · ζ(e).

w
e

28 30 32 34 36 38 40 42

216 69 113 177 391 726 1 331 2 257 5 261
218 – 57 90 196 362 659 1 122 2 642
220 – – 46 99 182 331 557 1 340

ignoring memory access times and issues with parallelism). If our setup with
w = 220 was run on an instance with e = 108 it would require (on average)
2168.50.. cycles to complete. We believe this value could therefore be viewed as
an upper bound on the security level of SIKEp434. On the other hand, the
analyses of Adj et al. [1] and Jaques and Schanck [9], assuming w = 280 and
m = 264, provide a lower bound on the security level. This gap could be closed by
computing zlog(w) for larger values of w and m and showing that they agree with
the theoretical estimations, which is a valuable effort that should be seriously
considered to understand the security of SIKEp434. It is of course not clear that
the gap between the upper and lower bound will vanish completely; scaling the
setup to large memory and distributed systems will cause significant overhead,
which is also noticeable in cryptanalytic efforts in other domains [26].

Acknowledgements. We thank Greg Zaverucha and Christian Konig for helpful dis-
cussions and their input to this paper, and Martin Albrecht for providing access to two
of his machines for running our experiments.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J.-J., Menezes, A., Rodŕıguez-
Henŕıquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, pp. 322–343. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-7 15

2. Beazley, D.M.: SWIG: an easy to use tool for integrating scripting languages with
C and C++. In: USENIX Tcl/Tk Workshop. USENIX Association (1996)

3. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

4. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Crypt. 78(2), 425–440 (2016)

5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC
1996. ACM (1996)

6. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 9

7. Jao, D., et al.: SIKE: Supersingular isogeny key encapsulation (2017). Manuscript
available at sike.org/

https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-540-74143-5_9
https://sike.org/

534 C. Costello et al.

8. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

9. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

10. Lenstra Jr., H.W.: Complex multiplication structure of elliptic curves. J. Number
Theory 56(2), 227–241 (1996)

11. Mestre, J.-F.: La méthode des graphes. Exemples et applications. In: Proceed-
ings of the International Conference on Class Numbers and Fundamental Units of
Algebraic Number Fields (Katata), pp. 217–242 (1986)

12. Microsoft. SIDH Library v3.0 (2015–2019). https://github.com/Microsoft/
PQCrypto-SIDH

13. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

14. National Institute of Standards and Technology. Post-quantum cryptography
standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

15. OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 4.5, November 2015

16. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

17. Renes, J.: Computing isogenies between montgomery curves using the action of (0,
0). In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp.
229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 11

18. Sedgewick, R., Szymanski, T.G., Yao, A.C.: The complexity of finding cycles in
periodic functions. SIAM J. Comput. 11(2), 376–390 (1982)

19. Shanks, D.: Class number, a theory of factorization, and genera. In: Proceedings
of Symposium Pure Math, vol. 20, pp. 415–440 (1971)

20. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09494-6

21. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: FOCS 2004,
pp. 32–41. IEEE (2004)

22. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285–5297 (2009)

23. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

24. van Vredendaal, C.: Reduced memory meet-in-the-middle attack against the NTRU
private key. LMS J. Comput. Math. 19(A), 43–57 (2016)

25. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des
Sciences des Paris 273, 238–241 (1971)

26. Wiener, M.J.: The full cost of cryptanalytic attacks. J. Cryptol. 17(2), 105–124
(2004). https://doi.org/10.1007/s00145-003-0213-5

27. Wiener, M.J., Zuccherato, R.J.: Faster attacks on elliptic curve cryptosystems. In:
Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8 15

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-79063-3_11
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/s00145-003-0213-5
https://doi.org/10.1007/3-540-48892-8_15

A Short-List of Pairing-Friendly Curves
Resistant to Special TNFS at the 128-Bit

Security Level

Aurore Guillevic(B)

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
aurore.guillevic@inria.fr

Abstract. There have been notable improvements in discrete logarithm
computations in finite fields since 2015 and the introduction of the Tower
Number Field Sieve algorithm (TNFS) for extension fields. The Special
TNFS is very efficient in finite fields that are target groups of pair-
ings on elliptic curves, where the characteristic is special (e.g. sparse).
The key sizes for pairings should be increased, and alternative pairing-
friendly curves can be considered. We revisit the Special variant of TNFS
for pairing-friendly curves. In this case the characteristic is given by a
polynomial of moderate degree (between 4 and 38) and tiny coefficients,
evaluated at an integer (a seed). We present a polynomial selection with
a new practical trade-off between degree and coefficient size. As a conse-
quence, the security of curves computed by Barbulescu, El Mrabet and
Ghammam in 2019 should be revised: we obtain a smaller estimated cost
of STNFS for all curves except BLS12 and BN. To obtain TNFS-secure
curves, we reconsider the Brezing–Weng generic construction of families
of pairing-friendly curves and estimate the cost of our new Special TNFS
algorithm for these curves. This improves on the work of Fotiadis and
Konstantinou, Fotiadis and Martindale, and Barbulescu, El Mrabet and
Ghammam. We obtain a short-list of interesting families of curves that
are resistant to the Special TNFS algorithm, of embedding degrees 10 to
16 for the 128-bit security level. We conclude that at the 128-bit security
level, BLS-12 and Fotiadis–Konstantinou–Martindale curves with k = 12
over a 440 to 448-bit prime field seem to be the best choice for pairing
efficiency. We also give hints at the 192-bit security level.

1 Introduction

A cryptographic pairing is a bilinear non-degenerate map from two groups G1 and
G2 to a target group GT , where the three groups share a common prime order r.
The first two groups are distinct subgroups of the group of points E(Fpk) of an
elliptic curve E defined over a prime field Fp, and the third group is a multiplicative
subgroup of order r of a finite field Fpk , where k is the minimal integer such that
r | pk − 1, and is called the embedding degree. Pairing-friendly curves such that
k is small (between 1 and 20 for example) should be designed on purpose, as the
embedding degree is usually very large, of the magnitude of r.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 535–564, 2020.
https://doi.org/10.1007/978-3-030-45388-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_19

536 A. Guillevic

Freeman, Scott and Teske presented a taxonomy of pairing-friendly curves in
[20]. Until 2015, the size of the target finite field Fpk was chosen to be the same as
a prime field Fq offering the desired security, that is, a 3072-bit (or 3200-bit) finite
field for a 128-bit security level. The size of Fq is deduced from the asymptotic com-
plexity of the Number Field Sieve Lp(1/3, c) = exp((c+o(1))(ln p)1/3(ln ln p)2/3),
where c = (64/9)1/3 ≈ 1.923 for general prime fields and c = (32/9)1/3 ≈ 1.526 for
special primes having a very sparse representation. Barreto–Naehrig (BN) curves
became very popular. A BN curve defined over a prime field has prime order and
embedding degree 12, hence choosing p and r of 256 bits gives 128 bits of secu-
rity on the curve, and pk is about 3072-bit long, as desired to match the 128-bit
security level in Fpk . But it turned out that prime fields and extension fields of
the same total size q and pk do not offer the same security. The state of affairs for
extension fields is complicated, with many different cases.

In 2015 and 2016, Barbulescu, Gaudry and Kleinjung, followed by Kim and
Barbulescu and Kim and Jeong [5,26,27] revisited Schirokauer’s Tower Num-
ber Field Sieve algorithm (TNFS) and applied this new setting to finite fields
of composite extension degrees. The asymptotic complexity of this new algo-
rithm decreased significantly, from LQ(1/3, 2.201) to LQ(1/3, 1.526) and in par-
ticular, below the complexity of a generic DL computation in a prime field, in
LQ(1/3, 1.923). This makes mandatory to revisit the sizes and choices of pairing-
friendly curves.

Fotiadis and Konstantinou [17] revisited the Brezing–Weng method to gener-
ate families of pairing-friendly curves and identified a list of interesting choices of
moderate embedding degrees to match the 128-bit security level. However, they
considered the asymptotic complexity of STNFS to deduce the security offered
by the curves. It gives a first hint on the sizes of finite fields to choose but is
not precise enough. Later Menezes, Sarkar and Singh [29], then Barbulescu and
Duquesne [3] and in 2019 Guillevic and Singh [23] refined the analysis of STNFS
to obtain more precise sizes of finite fields to match a given security level. Fotiadis
and Martindale [18] focused on composite embedding degrees k ∈ {8, 9, 10, 12}
for the 128-bit security level, Guillevic, Masson and Thomé [22] considered a
modification of the Cocks–Pinch method for k ∈ {5, 6, 7, 8}, and Barbulescu,
El Mrabet and Ghammam spanned embedding degrees from 9 to 53.

This is an active topic: the standardisation of pairings is under discussions at
IETF [32] and at ISO for updating the standard on pairing-friendly curves [24].
Particular pairing-friendly curves (e.g. cycles of curves [12]) are also needed in
zero-knowledge proofs and blockchains (ZCash uses a BLS12-381 curve [7,35],
Ethereum a BN-256 curve [15], and Zexe a BLS12-377 curve and a Cocks–Pinch
curve of embedding degree 6 [8, Fig. 8]).

Our Contributions
We introduce a practical variant of special polynomial selection for STNFS that
applies to target finite fields of pairing-friendly curves. It does not change the
asymptotic complexity of STNFS but it changes the estimated cost of STNFS
as computed by Barbulescu and Duquesne.

We extend the work of Fotiadis and Konstantinou [17], and identify another
criterion to be resistant to STNFS: the polynomial p(x) defining the field

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 537

characteristic should have no automorphism. Then we build on the work of
Guillevic and Singh [23] to estimate finely the cost of a discrete logarithm com-
putation with STNFS. We write a SageMath script to automatically and sys-
tematically compare many polynomial selections, and in particular, change of
variables on p(x). We consider embedding degrees from 9 to 17 at the 128-bit
security level. This is a complement to the work of Fotiadis and Martindale [18],
where embedding degrees 8, 9, 10 and 12 are considered at this security level. We
also identify non-optimal parameter choices in the recent preprint of Barbulescu,
El Mrabet and Ghammam [4], resulting in over-estimated cost of STNFS and
under-estimated finite field size. We conclude with a short-list of STNFS-secure
pairing-friendly curves of embedding degrees from 10 to 16. The source code of
this work is available in Python/SageMath at

https://gitlab.inria.fr/tnfs-alpha/alpha/tree/master/sage

The work in [22] showed that a pairing-friendly curve over a non-special
prime, and with a prime embedding degree k = 5, 7 gives a slow pairing com-
putation, about three times slower than the best candidate: a BLS12-curve over
a 446-bit prime field. Here we estimate that a curve of prime embedding degree
k = 11, 13 with a special prime will not provide a competitive pairing computa-
tion, despite a smaller prime p, of 333 bits for k = 11 and 310 bits for k = 13,
compared to a 446-bit prime p for BLS12 curves, but may provide a faster arith-
metic in G1 (elliptic curve scalar multiplication over Fp) thanks to a smaller
finite field.

Organisation of the Paper. In Sect. 2 we recall briefly the special tower number
field sieve algorithm and the approximation of running-time made in [23]. We
present our variant of special polynomial selection for pairing-friendly curves.
In Sect. 3 we recall the Brezing–Weng construction for pairing-friendly curves,
then we list the possible curves for the 128-bit security level, and we present
the results of simulation of STNFS for each curve. We select a short-list of nine
secure curves. In Sect. 4 we roughly estimate the cost of the Miller loop for
an optimal ate pairing computation on the curves of the short-list that do not
appear in previous works. In Sect. 5 we estimate the cost of STNFS for curves
at the 192-bit security level for k ∈ {14, 15, 20, 21, 27, 28}. This is more complex
than the 128-bit security level. We conclude in Sect. 6.

2 The Special Tower Number Field Sieve

In this section, we sketch the TNFS algorithm. We refer to [5,23,26,27] for an
extended description of TNFS. The TNFS algorithm falls in the broader Number
Field Sieve algorithms. To compute a discrete logarithm in a finite field, one first
computes a large amount of precomputed data. A first important ingredient is
the factor base. A finite field Fpk has no factorisation of elements into irreducible
elements or prime elements. However a number field has a ring of integers, and
factorisation of ideals in prime ideals. Equipped with a map from a (sub)ring of

https://gitlab.inria.fr/tnfs-alpha/alpha/tree/master/sage

538 A. Guillevic

integers of a number field to a finite field, one can factor ideals in prime ideals,
then map each prime factor to the finite field to obtain a factorisation in Fpk .
(There are now well-defined and cheap procedures to handle non-principal ideals
and non-torsion units). The factor base is made of the prime ideals (usually of
degree one) of small norm, bounded by the smoothness bound B. The first step of
the algorithm is defining two non-isomorphic number fields with two irreducible
polynomials f and g, sharing a common irreducible factor ψ of degree k modulo
p (a common root if one targets a prime field Fp), so that one has two maps
from the ring of integers of number fields defined by f and g, to the same finite
field Fpk = Fp[x]/(ψ(x)).

The next step is collecting a large number of relations involving the primes
of the factor base. We will say that an algebraic integer is B-smooth if it fac-
tors in prime ideals of degree one and norm bounded by B (B is an integer).
Once enough relations are collected, taking the logarithm of the multiplicative
relations, one obtains a large set of linear equations whose unknowns are the dis-
crete logarithms of the prime ideals of the factor base. Solving the system, one
obtains the discrete logarithms of the factor base elements. Finally, to compute
the discrete logarithm of a given target in the finite field, one lifts the target in
the number field, and tries to find a smooth decomposition of this target over
the prime ideals whose logarithms are known.

In the Number Field Sieve setting, two distinct number fields are needed, so
that their ring of integers can be mapped to the finite field Fpk . In the Tower
NFS setting, one consider two extensions of a same number field. Let k be the
extension degree, and k = ηκ where η, κ are integers (η = k and κ = 1 if k is
prime). One chooses an irreducible monic polynomial h(Y) ∈ Z[Y], irreducible
modulo p, of degree η and small coefficients. Define the number field Kh =
Q[Y]/(h(Y)), and let y denotes a root of h in Kh. Let Oh denotes the ring of
integers of Kh, and let Zy be a subring of Oh (we take the same notations as
[23]). Let p = (p, h(Y)) be the unique prime ideal of Oh above p. One selects a
pair of polynomials fy(X), gy(X) so that reduced modulo (p, h(Y)), they share a
common irreducible factor ψy(X) of degree κ. Let Ky,f and Ky,g be the number
fields defined above Kh by fy(X) and gy(X) respectively, and Oy,f , Oy,g their
ring of algebraic integers. Let xy,f be a root of fy(X) in Ky,f and xy,g a root of
gy(X) in Ky,g. We have the following setting (Fig. 1) and commutative diagram
(Fig. 2).

In the relation collection step, one enumerates all a(Y) = a0 + a1Y + . . . +
aη−1Y

η−1, b(Y) = b0 + b1Y + . . . + bη−1Y
η−1 ∈ Z[Y] such that integers |ai|, |bi|

are bounded by the relation collection bound A. The aim is to compute the norms
of a(y) + b(y)xy,f in Ky,f and a(y) + b(y)xy,g in Ky,g and store the pairs (a, b)
whose norms are B-smooth. Assuming h(Y), fY (X) are monic, the norm is

Nf = NormKy,f /Q(a(y) + b(y)x) = ResY (ResX(a(Y) + b(Y)X, fY (X)), h(Y))

and for a non-monic gy(X) of leading coefficient lc(gy),

Ng = NormKy,g/Q(a(y) + b(y)xy,f)| lc(gy)|n (1)

= ResY (ResX(a(Y) + b(Y)X, gY (X)), h(Y)). (2)

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 539

Q

Kh = Q[Y]/(h(Y))

deg h = η

Ky,f = Kh[X]/(fy(X)) Kh[X]/(gy(X)) = Ky,g

deg fy ≥ κ deg gy ≥ κ

Fig. 1. Extensions of number field for TNFS

Zy[X]

Zy[X]/(fy(X)) Zy[X]/(gy(X))

Fpn

mod mod

Fig. 2. Commutative diagram for TNFS.

The schedule of TNFS can be summarised in four important steps.

1. Polynomial selection: choosing h(Y), fy(X), gy(X) so as to minimise the inte-
gers Nf and Ng;

2. Relation collection: obtaining many a(y) + b(y)X whose absolute norms in
Ky,f and Ky,g w.r.t. Q are B-smooth. The coefficients ai, bi have absolute
value bounded by A, where a(y) = a0 + a1y + . . . + aiy

η−1, b(y) = b0 + b1y +
. . . + biy

η−1;
3. Linear algebra: each relation encodes a row of a large sparse matrix. After a

filtering step (preprocessing of the matrix to remove the singletons and small
cliques) the right kernel is computed with the Block–Wiedemann algorithm;

4. Individual discrete logarithm computation: obtain the database of discrete
logarithms of the prime ideals of factor base. Then given a target in Fpn , lift
in one of the number fields, Ky,f or Ky,g, and obtain a smooth decomposi-
tion. Sum the discrete logarithms of the factor base involved in the smooth
decomposition to obtain the logarithm of the target.

2.1 Estimation of TNFS Cost

This is an important concern to know the finite field size needed to match
a security level such as 128 bits. Lenstra and Verheul designed an approach
to extrapolate prime field sizes from the asymptotic complexity of NFS [28].

540 A. Guillevic

This complexity is Lp(1/3, (64/9)1/3). First the unknown o(1) in the for-
mula is removed, in other words, it is set to zero. Then one considers a
recent record computation, for example the 768-bit DL computation in 2017
for a prime p768 required the equivalent of 5300 core-years on Intel Xeon
E5-2660 at 2.2 GHz, i.e. about 276 clock-cycles. Then one finds a factor δ
s.t. δ exp((64/9)1/3(log p768)1/3(log log p768)2/3) = 276: this is δ ≈ 8.2. Finally,
one extrapolates and finds b s.t. δ exp((64/9)1/3(log 2b)1/3(log log 2b)2/3) = 2128,
this is b = 2940. It means that a 2940-bit prime field Fp would offer 128 bits
of security. In practice, a 3072-bit prime field is considered safe for the 128-bit
security level.

Unfortunately, this extrapolation trick, which is already debatable for prime
fields, cannot be applied straightforwardly for extension fields, as shown in
[29]. There is no record computation available for scaling the formula, of the
form Lpk(1/3, c), with c a constant for the variant of NFS. Moreover the best
asymptotic complexities are met for very specific properties of η, κ (Fig. 1)
in terms of pn and this is [26, Table 4]. For Conjugation-TNFS to obtain
c = (48/9)1/3, one reads κ = (ln pn/(12 ln ln pn))1/3 for instance. For STNFS
to obtain c = (32/9)1/3, one needs p to be d-SNFS, that is p = P (u) and P
is a polynomial of degree d and very small coefficients, with d = ((2/3)1/3 +
o(1))(ln pn/(ln ln pn))1/3/κ. But in practice, n is fixed to a small integer, for
example n = 12, and pn ranges (roughly) from 3072 to 6144 bits. In other
words, the optimal case for the parameters n, η, κ, pn is not necessarily met for
a given pn in practice.

The asymptotic formula for c, κ, η, p is obtained as follows. One chooses a
polynomial selection method. The degree of h is η, its coefficient size is negligible,
the degrees of f, g depend on κ and the coefficient sizes of f , g depend on
η, κ, pn. With the Conjugation method, we have (deg f,deg g) = (2κ, κ) and
‖f‖∞ = O(1), ‖g‖∞ = O(

√
p). The integers (resultants) of step 2 are bounded

by a formula based on Eq. (1) in η, κ, ‖f‖∞, ‖g‖∞, ‖h‖∞. The Canfield–Erdös–
Pomerance theorem states the proportion of B-smooth integers up to a bound
N . Multiplying the proportion of B-smooth integers of Step 2 by the number of
valid pairs (a(y), b(y)), in other words the volume of the relation collection (this
is ≈ A2κ), one gets the expected total number of relations, at a cost dominated
by the total number of pairs to proceed (A2κ). One wants as many relations as
possible, at a minimal cost. There are ≈ B/ log B primes up to B, and prime
ideals of norm up to B. The square matrix has ≈ 2B/ log B columns, this is the
number of prime ideals in the two factor bases. The linear algebra costs roughly
B2 operations. Then one balances the costs of Step 2 and Step 3 by setting them
equal. Then one minimises the cost, obtaining a formula for the parameters A,B
in terms of the inputs η, κ, pn, and this is [26, Tab. 4].

Menezes, Sarkar and Singh observed that the bound on the size of the norms
is not tight [29]. There are combinatorial factors in η, κ, ‖h‖∞ that are removed in
the asymptotic estimate as they disappear in the o(1), and the size of coefficients
of h are assumed to tend to 1, but in practice this is not the case. To circumvent
this theoretical limitation, Menezes, Sarkar and Singh reconsidered the steps

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 541

of the algorithm. They bounded the size of norms for a given input (denote
the bound N), and optimised the parameters A,B, but for fixed n, η, κ. They
used the first-order term of the Canfield–Erdös–Pomerance asymptotic formula
to estimate the proportion of B-smooth integers of size up to N , that is, u−u

where u = log N/ log B. Later in [3] Barbulescu and Duquesne averaged the
size of norms over a sample of about 26000 random inputs (a, b). They replaced
the Canfield–Erdös–Pomerance asymptotic formula by the Dickman-ρ function
to compute the B-smoothness probability of random integers of bounded size.
Then Guillevic and Singh [23] computed the smoothness bias of the resultants
with respect to integers of the same size (α value of polynomials), simulated
the relation collection of TNFS, and averaged the smoothness probability over
random samples, as a TNFS variant of the Murphy E function. This estimate
should be done for each set of parameters (p(x), u, A,B). Theory meets practice
at this edge: the Murphy-E function was first designed to rank the yield of pairs
of polynomials for a given prime p, smoothness bound B and sieving area A2, and
is based on the Dickman-ρ function. It runs as a brute-force search of promising
pairs of polynomials in Step 1, for record computations.

We build on these two previous works [3,23]. In particular, we model the
relation collection cost as [23, Eq. 6.3] and the linear algebra cost as [23, Eq. 6.5].

Cost of relation collection =
(2A + 1)2·η · log(log(B))

2 · (#aut(h) gcd(deg(f),deg(g)))
(3)

where A is the bound on the coefficients ai, bi in the relation collection. The
a(y) = a0 +a1y + . . .+aη−1y

η−1 and b(y) = b0 + . . .+ bη−1y
η−1 have coefficients

ai, bi in [−A,A], and bη−1 ≥ 0. There are (2A + 1)2η/2 such pairs (a(y), b(y)).
For each pair, one computes the norms Nf , Ng and test for B-smoothness, this
is estimated as costing log log B. The process can be faster for specific choices
of h, fy, gy where automorphisms are available, hence the denominator. We also
model

Cost of Linear Algebra = cnst · wt · (#B ÷ flt)2 (4)

where cnst is a constant representing the cost of a multiplication modulo �, wt
is the weight per row (number of non-zero entries), #B is the total size of the
factor base (f -side and g-side), and flt is the reducing factor of the filtering
step. Following [23], cnst = ��/64� is the machine-word size of �, wt = 200 and
flt = 20.

Remark 1. The arbitrary choice wt = 200 and flt = 20 is not satisfying, in
particular for high security levels. The two parameters would need to increase
slowly with the size of inputs. Barbulescu and Duquesne set an upper bound
flt = log2 B [3, Conjecture 1], but compared to recent record computations
made with cado-nfs, it is a bit too much. More work is needed to solve this
issue.

For each pairing-friendly curve parameters (p(x), u) we run Algorithm 2.1
from [23, Alg. 6.1] to estimate the number of relations obtained for given inputs
A,B. The Dickman-ρ function is denoted by Dρ. We write a SageMath code to

542 A. Guillevic

automatically adjust the parameters A,B so that enough relations are obtained
and the cost of linear algebra and relation collection are finely balanced, in order
to minimise the total estimated cost of TNFS.

Algorithm 2.1: Monte-Carlo approximation of Murphy’s E for TNFS [23,
Alg. 6.1] (computes an estimation of the number of relations)

Input: Polynomials fy, gy, h, αf , αg, parameter A ∈ N, smoothness bound B, N ≈ 105

Output: Yield estimate (number of relations)
1 Pfg ← 0
2 for n := 1 to N do

3 (a0, . . . , aη−1) ← random tuple in {−A, A}2 deg h

4 (b0, . . . , bη−1) ← random tuple in {−A, A}2 deg h−1 × {0, A}
5 if gcd(a0, . . . , aη−1, b0, . . . , bη−1) �= 1 then
6 continue

7 a(Y) ← ∑η−1
i=0 aiY

i; a ← a(y)Oh; b(Y) ← ∑η−1
i=0 biY

i; b ← b(y)Oh

8 if the ideals a, b are not coprime (a + b �= 1) then
9 continue

10 Nf ← |Res(h,Res(fy, a(Y) − b(Y)X))|
11 Ng ← |Res(h,Res(gy, a(Y) − b(Y)X))|
12 uf ← (lnNf + αf)/ lnB ; pf ← Dρ(uf) + (1 − γ)Dρ(u − 1)/ lnNf

13 ug ← (lnNg + αg)/ lnB ; pg ← Dρ(ug) + (1 − γ)Dρ(u − 1)/ lnNg

14 Pfg ← Pfg + pf pg

15 Pfg ← Pfg/N
16 w ← index of group of torsion units of Oh

17 V ← (2A + 1)2 deg h/(2wζKh
(2))

18 return V × Pfg

2.2 Special Polynomial Selection

We refine the special polynomial selection introduced in [5] and present a variant
particularly suited for certain families of pairing-friendly curves that appear in
the recent preprint [4].

Pairing-friendly curves have a special characteristic p, given by a polynomial
p(x) of small degree evaluated at an integer u. For BLS12 curves, we have p(x) =
(x6 − 2x5 + 2x3 + x + 1)/3, and for a 381-bit prime p, u = −(263 + 262 + 260 +
257+248+216) [7]. Joux and Pierrot introduced a dedicated polynomial selection
that takes advantage of the polynomial form p = p(u) [25]. The adaptation to
the Tower setting is the following.

Joux–Pierrot Polynomial Selection for TNFS. Assume there exists an
integer u ≈ p1/d and a polynomial P (U) of degree d and small coefficients
‖P (U)‖∞ = O(1), such that P (u) = 0 mod p. Select a monic polynomial Sy(X)
of degree κ and small coefficients ‖Sy(X)‖∞ = O(1), such that gy(X) = Sy(X)−
u and fy(X) = P (Sy(X)) are irreducible. Finally select a monic irreducible h(Y).
Then (h(Y), fy(X), gy(X)) are STNFS polynomials.

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 543

Joux–Pierrot Polynomial Selection for TNFS with Automorphism.
We recall a variant of the Joux–Pierrot method to obtain a pair of polynomi-
als (fy, gy) admitting an automorphism, when k is not prime. First select an
auxiliary polynomial with automorphism, for example from the list in [16].

– κ = 2: ct(X) = X2 − tX + 1, σ : X 	→ 1/X; ct(X) = X2 + t, σ : X 	→ −X;
– κ = 3: ct(X) = X3 − tX2 − (t + 3)X − 1, σ : X 	→ −(X + 1)/X;
– κ = 4: ct(X) = X4 − tX3 − 6X2 + tX + 1, σ : X 	→ −(X + 1)/(X − 1);
– κ = 6: ct(X) = X6 − 2tX5 − (5t + 15)X4 − 20X3 + 5tX2 + (2t + 6)X + 1,

σ : X 	→ −(2X + 1)/(X − 1).

If gcd(κ, η) = 1, define fy(X) = ResU (cU (X), P (U)) and gy(X) = cu(X). If
gcd(κ, η) > 1, define fy(X) = ResU (cUy(X), P (U)) and gy(X) = cuy(X), or
alternatively, fy(X) = ResU (cU+y(X), P (U)) and gy(X) = cu+y(X). If fy, gy

are irreducible, select a monic irreducible h(Y). Then (h(Y), fy(X), gy(X)) are
STNFS polynomials.

Example 1 ([23, Table 7]). To minimise the size of norms and the total estimated
cost of STNFS for BLS12-381 curves, one chooses h of degree 6, and fy, gy share
a common irreducible factor of degree 2 modulo (p, h(Y)). The prime p of BLS12
curves satisfies p = P (u)/3, where P (x) = x6−2x5+2x3+x+1. The polynomials
selected in [23, Table 7] are h = Y 6 − Y 2 + 1, fy = ResU (P (U),X2 − UY) =
X12 − 2yX10 + 2y3X6 + y5X2 + y2 − 1 mod h(Y) and gy = X2 − uy = X2 +
15132376222941642752y.

Improvements on the Joux–Pierrot Method. The pairing-friendly curves
of Sect. 3 are defined over prime fields whose characteristic has a polynomial form
p = p(u) for an integer seed u, where p(x) has very small coefficients and degree
from 4 (BN curves) to 46 (Construction 6.7 for k = 9, Table 2). We observed that
when the degree of p(x) is larger than 12, the average size of norms obtained
with Algorithm 2.1 is not satisfying. In other words, for a same size of finite
field Fpk but different families of curves with p(x) of very different degrees, one
obtain very different estimated costs of STNFS. We explain in the following our
method to obtain a lower estimated cost of STNFS when the degree of p(x) is
too large and the Joux–Pierrot method does not give good enough results.

In [5, §5.2] and in the SageMath script provided with [4], one observes that
when it is possible, the degree of the polynomial P is divided by two without
increasing the size of the coefficients. We name it Variant 1.

Variant 1 (Even polynomial p(x)). When p(x) is an even polynomial (that
is, with only even degree monomials, and one has p(x) = p(−x)), then one
defines P (x) such that P (x2) = p(x), and P has degree deg(p(x))/2. The pair of
polynomials (for TNFS) (P (x), x − u2) satisfies Resx(P (x), x − u2) = P (u2) =
p(u) = p as desired.

We adapt this technique to palindrome polynomials (also mentioned in [5, §5.2]).

544 A. Guillevic

Variant 2 (Palindrome polynomial p(x)). When p(x) = p(1/x)xdeg p(x),
then we define P (x) to be the minimal polynomial of α+1/α in the number field
defined by p(x), K = Q[x]/(p(x)) = Q(α). Then P (x) has degree deg(p(x))/2
and small coefficients (as long as p(x) has small coefficients). The pair of poly-
nomials (for TNFS) is (P (x), ux − (u2 + 1)), and Resx(P (x), ux − (u2 + 1)) =
udeg P P (u + 1/u) ≡ 0 mod p(u) as desired.

Variant 3 (Polynomial p(x) with automorphism). More generally when
there is an automorphism available for p(x), say σ, of order two i.e. σ2(a) = a,
then we define P (x) to be the minimal polynomial of a + σ(a) (the trace of
the automorphism is invariant). Then P (x) has degree deg(p(x))/2 and small
coefficients (as long as p(x) has small coefficients). The second polynomial for
TNFS is x − (u + σ(u)). If a + σ(a) does not have a good expression (a fraction
of linear polynomials in a), then one computes a half-extended GCD of p(x)
and x + σ(x) to obtain x + σ(x) = s1(x)/s2(x). If the degrees of s1 and s2 are
small, one can define s2(u)x−s1(x) as the second polynomial for NFS. We have
Resx(P (x), s2(u)x − s1(u)) = sdeg P

2 (u)P (u + σ(u)) ≡ 0 mod p(u).

These three variants already allow more possibility of trade-off between f and g
in terms of degrees and coefficient size: one divides the degree of f by two and
increases the coefficient size of g by a factor two (‖gy‖∞ ≈ u2 instead of u).

Variant 4. When p(x) has tiny coefficients and a high degree, it might be worth
doing the following transformation, knowing the seed u. Write p(x) =

∑d
i=0 pix

i

where d = deg p(x) and pi are tiny integer coefficients. Then for an integer l in
the range 2 ≤ l ≤ d/2, define

P (x) =
d∑

i=0

piu
i mod lx�i/l	.

Then P (x) has degree �d/l� (the floor integer of the number d/l) and coeffi-
cients at most ul−1, and P (ul) = p(u). The pair of polynomials (for TNFS) is
(P (x), x − ul), and Resx(P (x), x − ul) = P (ul) ≡ 0 mod p(u) as desired.

This is possible to combine Variant 4 with one of Variants 1, 2 or 3. With these
alternative pairs of polynomials, we can have more balanced size of norms, hence
a higher smoothness probability, and a lower DL cost estimation. Our results are
given in the right-most column of Table 3 page 18. It has direct impact on many
curves of embedding degrees 9, 10, 11, 13, 14, 17, in particular, the curves whose
polynomial p(x) has a high degree.

Example 2. Let us consider a curve of embedding degree k = 13, discriminant
D = 3, following Construction 6.6. The polynomial defining the characteristic is
p(x) = (x28+x27+x26+x15−2x14+x13+x2−2x+1)/3. It has no automorphism.
We define P (x) = (u + 1)x9 + u2x8 + x5 + u(1 − 2u)x4 + u2 − 2u + 1 such that
P (u3) = 3p(u), and u is a seed for a particular curve. A degree 13 irreducible
polynomial h(Y) and the pair (f, g) = (P (x), x−u3) can be used for polynomial
selection with STNFS.

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 545

Example 3. Consider a curve of embedding degree 17, named Construction 6.6
in Sect. 3. It has p(x) = (x36 + x35 + x34 + x19 + 4x18 + x17 + x2 + x + 1)/3
and automorphism σ : x 	→ 1/x. Variant 2 gives P (x) = x18 + x17 − 17x16 −
17x15 +119x14 +119x13 −442x12 −442x11 +935x10 +935x9 −1122x8 −1122x7 +
714x6+714x5−204x4−204x3+17x2+18x+4 such that P (x+1/x)x18 = 3p(x).
Applying Variant 4, we obtain P (x) = u(x9+(v−17)x8−(17v−119)x7+(119v−
442)x6 − (442v −935)x5 +(935v −1122)x4 − (1122v −714)x3 +(714v −204)x2 −
(204v − 17)x + 18v + 4), where v = (u + 1/u) = (u2 + 1)/u (we multiply by
u to get integer coefficients). The pair (P (x), u2x − (u2 + 1)2) can be used for
STNFS. Since deg p(x) = 36, the seed u will be very small, and the coefficients
of P in u2 are small.

3 Complete Families of Pairing-Friendly Curves

We will apply our new special polynomial selection to paring-friendly curves
whose parameters are given by polynomials, such as BN and BLS12 curves.
We recall the generic Brezing–Weng construction of families of pairing-friendly
curves. A family will be encoded by three parameters: the embedding degree k,
the discriminant D, and a choice e0 to compute the trace. It allows to capture
all cyclotomic constructions of pairing-friendly curves with three parameters.
The BN curves, KSS curves [20, §6.2] and Fotiadis–Konstantinou and Fotiadis–
Martindale curves [17,18] do not fall in the cyclotomic framework because r(x)
is not a cyclotomic polynomial.

3.1 Brezing–Weng Constructions of Pairing-Friendly Curves

A set of the complete families presented in the Freeman, Scott and Teske paper
[20] are special instances of the generic Brezing–Weng construction [9] that we
recall in Algorithm 3.1. In this framework, r(x) is chosen to be a cyclotomic
polynomial, and we name it a cyclotomic construction. For BN curves, r(x) is
one factor of an Aurifeuillean factorisation of a cyclotomic polynomial. For KSS
curves, r(x) is a minimal polynomial of an algebraic element of a cyclotomic
field. Freeman, Scott and Teske [20] obtain complete families that correspond
to specific choices of trace in Algorithm 3.1. We recall the BLS construction [6],
with D = 3 in Table 1. The construction is generalised in [20] as Construction
6.6, and gives polynomial families for any k such that 18 � k, and D = 3.
Constructions 6.6 and BLS give the same polynomials for k = 24, for other
embedding degrees, only the ρ-value is the same. The BLS construction gives
a very simple Miller loop of ate pairing, of length x = t − 1 (without extra
Frobenius and line computation), which is optimal. Constructions 6.2, 6.3 and
6.4 in [20] are polynomial families with D = 1 and k = 1 mod 2, k = 2 mod 4
and k = 4 mod 8 respectively. We report the construction number from [20] in
Table 2.

Unfortunately, [4] does not consider cyclotomic methods with small discrim-
inants other than 1, 2 and 3. In [9, p. 137], Brezing and Weng give alterna-
tives such as D = 5 for k = 10. Recently, Fotiadis and Konstantinou used the

546 A. Guillevic

Algorithm 3.1: Cyclo(k,D, e0) – Cyclotomic construction of pairing-
friendly curves
1 if D = 1 then m ← 4/ gcd(4, k)
2 else if D = 2 then m ← 8/ gcd(8, k)
3 else if D = 3 then m ← 3/ gcd(3, k)
4 else m ← 1
5 rx ← Φkm(x); K ← Q[x]/(r(x)); ζkm ← a root of rx in K
6 if −D is not a square mod rx then return ⊥
7 if gcd(e0, k) �= 1 then return ⊥
8 tx ← xme0 + 1 mod rx

9 yx ← a polynomial in x mapping to ((tx(ζkm) − 2)
√−D/D) in K

10 px ← (t2x + Dy2
x)/4

11 if px is not irreducible then return ⊥
12 if px does not represent primes then return ⊥
13 return (px, rx, tx, yx, D)

Brezing–Weng method with small discriminants D to generate other pairing-
friendly curves whose ρ-value is slightly larger but that are more resistant to
TNFS [17]. For k = 10, Fotiadis and Konstantinou list alternatives with D = 5
and D = 15, for k = 11, with D = 11, for k = 13, with D = 13. For smaller
embedding degrees, between 5 and 8, the ρ value is larger than 2. We refer to [22]
for TNFS-resistant curves in this case with a modification of the Cocks–Pinch
method.

3.2 Reducing the Possibilities

For BLS12 and BN curves, the finite field size identified as secure for 128 bits of
security is about 12×448 = 5376. The arithmetic on these curves is already very
well optimised. Hence we decided to reduce the investigation of other families of
curves to those where pk is smaller than 5376 bits.

The minimum size of r is 256 bits to ensure the security on the curve, and
the size of p is given by the ρ-value defined as the ratio between the degree of
p(x) and r(x). We choose the sharp constraint (at the 128-bit security level)

3072 ≤ 256ρk ≤ 5376 (5)

to reduce the number of families to consider. If ρ = 1 we obtain the upper bound
k ≤ 21, and if ρ = 2 then we obtain the lower bound k ≥ 6. We obtain candidates
with 9 ≤ k ≤ 17, in Table 2 page 15.

Small Embedding Degrees up to 8. Embedding degree 1 is considered in [10].
Embedding degrees 2 and 3 are obtained with supersingular curves [21, § IX.13 p.
204]. Embedding degrees 3, 4, and 6 are obtained with MNT curves. Embedding
degrees 5 to 8 were compared in [22]. We focus on embedding degrees 9 to 17
for the 128-bit security level.

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 547

Table 1. Polynomials of the BLS families for k = 3i and k = 2i · 3 (for example
k ∈ {6, 9, 12, 24, 27, 48}). In practice, it is very popular for k = 12.

k = 3i

r(x) = Φ3i(x)/3 = (x2·3i−1
+ x3i−1

+ 1)/3

t(x) = x + 1

c(x) = (x − 1)2

y(x) = (x − 1)(2x3i−1
+ 1)/3

p(x) = (t2(x) + 3y2(x))/4 = (x2 + x + 1 + (x − 1)2x3i−1
(x3i−1

+ 1))/3

k = 2i · 3

r(x) = Φ2i·3(x) = (x2i − x2i−1
+ 1)

t(x) = x + 1

c(x) = (x − 1)2/3

y(x) = (x − 1)(2x2i−1 − 1)/3

p(x) = (t2(x) + 3y2(x))/4 = (x2 + x + 1 + (x − 1)2x2i−1
(x2i−1 − 1))/3

Embedding Degree 9. There are three families of pairing-friendly curves of embed-
ding degree k = 9, discriminant D = 3 and ρ = 4/3. We focus on D = 3 to have
a twist of order three since 3 | k. Alternatives are D = 1 and ρ = 11/6, D = 2
and ρ = 23/12. Another family with D = 3 is given in [33, §4.4] from the
Aurifeuillean factorisation of Φ9(−3x2).

Embedding Degree 10. We will consider three additional families for k = 10: with
D = 1 and trace t = x18 + 1 mod r(x) (in [9, p. 137] and [20, Construction 6.5]),
with D = 5, r(x) = Φ20(x) and t = x18+1 mod r(x) ([17, Table 2 and Example 5]),
and with D = 15, r(x) = Φ30(x) and t(x) = x3 + 1 [17, Table 2]. With D = 3,
no cyclotomic construction is valid, we consider the ρ = 2 option in [4]. With D =
2, the construction is not interesting: the polynomial p(x) has degree 30 and the
choices of seeds u are very limited. There were no choice of u to get a pair of primes
(p, r) such that r is 256-bit long or more, and p is at most 512-bit long.

Embedding Degree 11. With D = 1, r(x) = Φ44(x) and t(x) = x24 +1 mod r(x),
the family has ρ = 1.3, this is Construction 6.2 in [4]. The other possibilities
of t(x) = x4e0 + 1 mod r(x) are e0 ∈ {1, 2, 7}. We discard e0 = 2 since no seed
u was found so that pk ≤ 5376. With D = 3, e0 = 4 is Construction 6.6, and
e0 ∈ {8, 1} gives two other valid families of curves. With D = 11, we obtain two
families of curves with e0 ∈ {4, 8} (e0 = 8 appears in [17, Table 4]).

Embedding Degree 12. For embedding degree 12, we concentrate on D = 3 to
maximise the twist. The BLS12 and BN curves are the most popular curves
of embedding degree 12, and recently Fotiadis and Martindale highlighted a
competitive Fotiadis–Konstantinou (FK) curve of embedding degree 12 and dis-
criminant D = 3 [17,18]. Curves of discriminant D = 1 have a twist of degree

548 A. Guillevic

4. Construction 6.4 from [20] produces a family with ρ = 2, the size of p is not
suited. Applying the Brezing–Weng method, we do not obtain other families
(p(x) does not produce primes). With D = 2 there is one family of curves and
ρ = 7/4. Note that in this case, only a quadratic twist is available, the pairing
computation will be slower compared to BLS12 curves with D = 3 and sextic
twists.

Embedding Degree 13. Since −13 is not a square in Q(ζ13), we concentrate on
D = 1 with r(x) = Φ4×13(x) and D = 3 with r(x) = Φ3×13(x). For D = 1,
the trace is x4e0 + 1 where e0 ∈ {1, 7} give valid families of curves, and e0 = 7
corresponds to Construction 6.2. For D = 3, the trace is t(x) = x3e0 + 1 and
e0 = 9 corresponds to Construction 6.6. We also consider e0 ∈ {1, 2, 10}.

Embedding Degree 14. We concentrate on Construction 6.3 and 6.6. The other
choices of e0 in the Brezing–Weng construction do not produce families of curves
satisfying the bounds on the size of pk. In particular, D = −7 produces an
alternative family whose ρ-value is too large.

Embedding Degree 17. In addition to Construction 6.2 and 6.6, we consider D = 3
and trace t(x) = x3×12 + 1 mod r(x) where r(x) = Φ3×17. Actually because of
the very large degree of p(x) (36 and 38), it was not possible to find a seed u so
that pk is smaller than 5376 bits. However for a comparison to [4], we include
the three families of curves in our security estimate.

Other Embedding Degrees. For embedding degree 16 we take the KSS-16 curves,
these are (6.11) in [20]. Embedding degrees 15 and above 17 do not satisfy the
conditions (5), however we include k = 15 to compare to [4].

For 9 ≤ k ≤ 17, we list in Table 2 the available families satisfying Eq. (5).
Moreover we will later restrict to D = 3 when 3 | k and D = 1 when 4 | k to
ensure the higher degree of twist.

3.3 Security Estimate for the Finite Field

The next step is to determine the size of the finite field Fpk to ensure the required
security w.r.t. a DL computation with any variant of the NFS algorithm.

Refinement of Barbulescu–El Mrabet–Ghammam Results. In the
preprint [4], Barbulescu, El Mrabet and Ghammam presented a consequent list
of pairing-friendly curves of embedding degrees 6 to 53 for the three common
security levels of 128, 192 and 256 bits. There were about 150 distinct curves.
We compare the curves of [4] that are listed in Table 2.

We obtain lower DL cost estimates in the embedding field of these curves,
except for k = 9 construction LZZW (that we set in the BLS framework). Some-
times the cost for STNFS is not given in [4], we give our estimate. We investi-
gated these differences by running the scripts provided with [4] and developing a
second implementation based on the SageMath code available with [22,23]. We
develop the following improvements.

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 549

Table 2. Pairing-friendly Constructions for 9 ≤ k ≤ 17 such that 3072 ≤ 256ρk ≤
5376. Parameters m and e0 match Algorithm 3.1. The value 256ρ is an approximation
of the minimal bit-size of p required to ensure r to be of 256 bits, so that the curve
E(Fp) offers 128 bits of security. We include k = 12 Construction 6.4, and k = 15
although 256ρk is too large, for they are refereed in Tables 3 and 4.

k Construction D m e0 ρ deg p(x) σp(x)
256ρ�
256ρk�
9 Cyclo (BLS) 3 1 1 1.33=4/3 8 x4−x3−1

x2+x
342 3072

9 Cyclo 3 1 4 1.33=4/3 8 1/x 342 3072

9 Cyclo (6.6) 3 1 7 1.33=4/3 8 x4+x3+x2+x−1
1−x2 342 3072

9 Cyclo (6.2) 1 4 5 1.83=11/6 22 −x 470 4224

9 Cyclo (6.7) 2 8 1 1.92=23/12 46 −x 491 4416

9 Cyclo (FM10) 3 1 5 2.00=2 12 Id 512 4608

10 Cyclo (6.5) 1 2 9 1.50=3/2 12 −x 384 3840

10 Cyclo (6.3) (FM13) 1 2 1 1.75=7/4 14 −x 448 4480

10 Cyclo (FM16) 2 4 9 1.88=15/8 30 −x 480 4800

10 (Cyclo) 6.6 3 3 1 2.00=2 16 Id 512 5120

10 Cyclo (FM14) 5 2 9 1.75=7/4 14 −x 448 4480

10 Cyclo (FM15) 15 3 1 1.75=7/4 14 Id 448 4480

11 Cyclo (6.2) 1 4 6 1.30=13/10 26 −x 333 3661

11 Cyclo 1 4 1 1.50=3/2 30 −x 384 4224

11 Cyclo 1 4 7 1.70=17/10 34 −x 436 4788

11 Cyclo (6.6) 3 3 4 1.20=6/5 24 1/x 308 3380

11 Cyclo 3 3 8 1.30=13/10 26 Id 333 3661

11 Cyclo 3 3 1 1.40=7/5 28 Id 359 3943

11 Cyclo 11 1 4 1.60=8/5 16 Id 410 4506

11 Cyclo 11 1 8 1.60=8/5 16 1/x 410 4506

12 BN (6.8) 3 1 1 1.00=1 4 1/(6x) 256 3072

12 Cyclo (BLS) 3 1 1 1.50=3/2 6 Id 384 4608

12 FK12 (FM17) 3 1 – 1.50=3/2 6 Id 384 4608

12 FM19 3 1 – 1.50=3/2 6 Id 384 4608

12 FM20 3 1 – 1.50=3/2 6 Id 384 4608

12 Cyclo (6.7) (FM18) 2 2 1 1.75=7/4 14 −x 448 5376

12 (Cyclo) 6.4 1 1 1 2.00=2 8 −1/x 512 6144

13 Cyclo (6.2) 1 4 7 1.25=5/4 30 −x 320 4160

13 Cyclo 1 4 1 1.42=17/12 34 −x 363 4715

13 Cyclo (6.6) 3 3 9 1.17=7/6 28 Id 299 3883

13 Cyclo 3 3 1 1.33=4/3 32 Id 342 4438

13 Cyclo 3 3 10 1.42=17/12 34 Id 363 4715

13 Cyclo 3 3 2 1.58=19/12 38 Id 406 5270

14 Cyclo (6.3) 1 2 1 1.50=3/2 18 −x 384 5376

14 Cyclo (6.6) 3 3 5 1.33=4/3 16 Id 342 4779

15 Cyclo (BLS) 3 1 1 1.50=3/2 12 Id 384 5760

15 Cyclo (6.6) 3 1 11 1.50=3/2 12 Id 384 5760

16 KSS16 (6.11) 1 – – 1.25=5/4 10 Id 320 5120

17 Cyclo (6.2) 1 4 9 1.18=19/16 38 −x 304 5168

17 Cyclo (6.6) 3 3 6 1.12=9/8 36 1/x 288 4896

17 Cyclo 3 3 12 1.19=19/16 38 Id 304 5168

550 A. Guillevic

1. Given pk as input, for each possible integer factorisation k = ηκ with η > 1, we
generate many irreducible polynomials h of degree η and pairs of polynomials
(fy, gy).

2. For each set of polynomials (h, fy, gy), the code iterates and adjusts auto-
matically the parameters A, B (sieving bound, smoothness bound) in order
to find the best combination that balances the costs of relation collection
and linear algebra, so that the total cost is minimised. When plugging these
values into the former scripts and adding a tiny offset if needed, one obtains
the new results.

3. We implement the improvements of the Special setting described in the Vari-
ants 1–4: automorphisms and changes of variables on p(x) to minimise the
average size of norms.

4. We compute the joint average size of norms and smoothness probabilities
for Ky,f and Ky,g simultaneously. This allows to compute the ratio of non-
coprime ideals a(y)O, b(y)O and validates the formula 1/ζKh

(2).

We obtain the results of Tables 3, 4 and 5. In Table 3, we reproduce the
results of Barbulescu, El Mrabet and Ghammam [4, §3.4]. We hereafter make
the following remarks.

Remark 2.

– We do not consider even embedding degrees k with Construction 6.2. As
explained in [20], 6.2 is valid for odd embedding degrees, 6.3 is for k = 2 mod
4, and 6.4 for k = 4 mod 8. Hence we do not report even k with 6.2 in Table 3.

– For k = 10 and construction 6.3, we obtained a lower DL cost with η = 10
instead of η = 5. We obtained 2122 instead of 2134.

– For all curves but BN and BLS12, we obtain a lower estimated cost with
optimised parameters A,B and Sect. 2.1.

– When the degree of p(x) is large, we apply one of the variants using auto-
morphisms 1, 2 or 3 if applicable, so that deg P = deg p(x)/2. We compared
without the polynomial variants and observed a lower DL cost estimate with
Variants 1 or 2 when the degree of p(x) is more than 12. Note that the Vari-
ant 2 is commented in the Python script of [4] for k = 17(6.6).

– We observed that when the degree of P is more than 12 (after applying
Variants 1, 2 or 3 if applicable), applying our improvement 4 reduces further
the estimated complexity of STNFS. We obtained the smallest cost with P
of degree between 4 and 12. This case is reported in the right-most column
of Tables 3 and 4. The curves involved with this improvement are k = 9(6.7),
k = 10(6.6), k = 11(6.2), k = 13(6.2) and k = 13(6.6), k = 14(6.6) and
k = 17(6.2), k = 17(6.6).

Moreover, we applied our work to the parameter seeds of [4]. The previous
remarks apply: we do not consider the seeds of even k with Construction 6.2
([4, Table 10]). We identified five seeds that produce insecure curves because the
STNFS estimated cost in Fpk is below 2128: these are k = 9 BLS (denoted LZZW
in [4, Table 23]), k = 9 (6.2), k = 10 (6.3), k = 11 (6.2) and k = 11 (6.6). Our
DL security estimate is given in bold coloured font in Table 4.

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 551

For k = 10 (6.3), the size of u is smaller than the minimum size recommended
in [4, §3.4] (p(u) is 433-bit long instead of 446, and r(u) is 249-bit long, smaller
than 256 bits). For k13(6.2), the minimum size recommended in [4, §3.4] is p(u)
of 329 bits, but the seed produces a 599-bit prime p. The security is much larger
than 2128. These two cases are reported in italic coloured font in Table 4.

Our Results. In Table 5 we present our estimations of STNFS security. For
each curve family in Table 2, we first generate seeds and parameters so that r
is at least a 256-bit prime. Then we run our estimation of STNFS, trying many
combinations of degrees of h(Y) and of P (x). When the cost is smaller than
2128, we increase the size of the seed u and generate larger parameters r(u) and
p(u). We report the minimum size of p so that r is at least 256-bit long, and the
security in Fpk is at least 2128.

For each embedding degree k, we highlight in coloured background the family
that has no automorphism available in p(x) so that the Variants 1, 2 and 3 do not
apply, and so that p(u) has minimal possible size. We eliminate the embedding
degree k = 17. Since p(x) has large degree of 36 or 38, it was not possible to
find a seed u so that p(u) and r(u) are prime, and pk(u) is less than 5376 bits
(constrain of Eq. (5)). We eliminate embedding degree k = 9: the curves whose
p(x) has no automorphism do not satisfy pk(u) ≤ 5376.

There are eleven highlighted families in Table 5. The families of Fotiadis and
Martindale [18] with k = 12 and D = 3 (denoted FM17, FM19 and FM20) have
very similar properties and like in [18], we only include FM17 in our final short
list (for the same bitsize of p(u), FM17 produces r(u) one bit larger than FM19
and four bits larger than FM20).

We are left with a final short-list of nine STNFS-secure pairing-friendly
curves that we summarise in Table 6. We give the polynomials p(x), r(x), t(x)
as Curves 1, 2, 3, 4, 5. We add the modified Cocks–Pinch curve with k = 8 from
[22] as it looks quite promising in terms of pairing efficiency [1].

Remark 3. The curves listed below all admit a fast endomorphism from the
complex multiplication, because their discriminant −D is small. For curves with
−D = −4 and j-invariant 1728, the endomorphism is (x, y) 	→ (−x, iy), where
i2 = −1 (in short Weierstrass representation). The curves are ordinary, p ≡
1 mod 4, and there exists i ∈ Fp such that i2 = −1 mod p. More precisely, we
can easily precompute i. The characteristic p has form p = (t2 +y2)/4 where t is
the trace, and t2 − 4p = −y2. Then

√−1 ≡ t/y mod p. The endomorphism has
characteristic polynomial x2 + 1, and eigenvalue

√−1 mod r, where r | p + 1 − t
and r is prime. Writing p+1−t = ((t−2)2+y2)/4, one has

√−1 ≡ (t−2)/y mod r.
This is explained in details in [34]. When the cofactor c of the elliptic curve such
that r · c = p + 1 − t is larger (not just 1 or 2 for example), and the curve has
parameters of polynomial form, one can reduce the lattice spanned by the rows
(r(x), 0) and (y(x), t(x) − 2) to obtain a short basis. The Magma language for
example allows lattice reduction over polynomials.

For curves with −D = −3, the endomorphism is (x, y) 	→ (ωx, y), where
ω ∈ Fp is a third root of unity, such that ω2 +ω +1 = 0. The endomorphism has

552 A. Guillevic

Table 3. Pairing-friendly Constructions for 9 ≤ k ≤ 17 from Table 2 and their security
estimate in [4], with η = deg h, n = ηκ (see Fig. 2). In several cases the data in [4] was
missing or unexpected (it seems that the parameters A, B were not enough optimised).
The polynomial P (xi) equals 3p(x) for D = 3, 4p(x) for D = 1, 8p(x) for D = 2, p(x)
for BN, and P (x + 1) = 980p(x) for KSS16.

k Construction D, m, e0deg

p(x)

p bitspk bits r η poly P deg P DL cost new params deg P DL cost

[4] Section 2.1

9 Cyclo (BLS) 3, 1, 1 8 591 5314 4439 P (x) 8 128128

9 Cyclo (6.6) 3, 1, 7 8 535 4810 4019 P (x) 8 129122

9 Cyclo (6.2) 1, 4, 5 22 484 4356 2669 P (x2) 11 134116

9 Cyclo (6.7) 2, 8, 1 46 520 4672 2739 P (x2) 23 266220 P (u4) 11 140

10Cyclo (6.3) 1, 2, 1 14 446 4460 2565 P (x2) 7 134133 η = 10 7 121

10(Cyclo) 6.6 3, 3, 1 16 511 5104 25610P (x) 16 166152 P (u2) 8 150

11Cyclo (6.2) 1, 4, 6 26 337 3698 18911P (x2) 13 173118

11Cyclo (6.6) 3, 3, 4 24 311 3421 78 11P (x) 24 ∅ 232 P (x + 1/x) 12 114

12BN (6.8) 3, –, – 4 462 5534 4626 P (x) 4 128135

12Cyclo (BLS) 3, 1, 1 6 461 5525 3086 P (x) 6 128135

12Cyclo (6.7) 2, 2, 1 14 445 5340 25612P (x2) 7 148134

12(Cyclo) 6.4 1, 1, 1 8 510 6120 25612P (x) 8 ∅ 138

13Cyclo (6.2) 1, 4, 7 30 329 4265 21813P (x2) 15 325143 P (u4) 7 140

13Cyclo (6.6) 3, 3, 9 28 309 4009 21813P (x) 28 ∅ 288 P (u3) 9 140

14Cyclo (6.3) 1, 2, 1 18 394 5516 26414P (x2) 9 148132

14Cyclo (6.6) 3, 3, 5 16 351 4906 26414P (x) 16 175151 P (u2) 8 151

15Cyclo (BLS) 3, 1, 1 12 383 5745 25715P (x) 12 286138

15Cyclo (6.6) 3, 1, 11 12 383 5736 25615P (x) 12 175138

16KSS16 (6.11)1, –, – 10 331 5281 25716P (x + 1) 10 154140

17Cyclo (6.2) 1, 4, 9 38 304 5153 13517P (x2) 19 254189 P (u4) 9 153

17Cyclo (6.6) 3, 3, 6 36 348 5914 24917P (x + 1/x)18 ∅ 186 P ((u + 1/u)2)9 168

characteristic polynomial x2+x+1 and eigenvalue λ mod r such that λ2+λ+1 =
0 mod r. We can easily precompute ω and λ. Since p = (t2+3y2)/4, then

√−3 ≡
t/y mod p, and ω ≡ (−1+

√−3)/2 ≡ (−y+ t)/(2y) mod p. We also have
√−3 ≡

(t−2)/y mod r. The eigenvalue is λ ≡ (−1+
√−3)/2 ≡ (−y+t−2)/(2y) mod r.

Since the square roots are given up to sign, in practice one obtains equality
up to sign ([±λ](xp, yP) = (ωxP , yP) or [±λ](xP , yP) = (ω2xP , yP)), that is, a
practical adjustment is required.

We give a polynomial form of low degree for β =
√−D mod p and λ =√−D mod r for the curves below.

Curve 1. A pairing-friendly curve y2 = x3 + ax + b with the Brezing–Weng
method, k = 10, D = 15, m = 3, e0 = 1, ρ = 7/4 = 1.75 ([17, Table 2]).
r = Φ30(x) = x8 + x7 − x5 − x4 − x3 + x + 1
p = (4x14 + 4x13 + x12 − 12x11 − 12x10 − 7x9 + 11x8

+ 17x7 + 15x6 − 3x5 − 11x4 + x3 − 2x2 + 3x + 6)/15
t = x3 + 1 ; y = (x − 1)(4x6 + 6x5 + 6x4 − 3x2 − 5x − 3)/15
u = 1, 3, 6, 13 mod 15 ; c = (x − 1)(2x2 + x + 2)(2x2 + 3x + 3)/15
The Hilbert class polynomial is H(−15) = x2 + 191025x − 121287375 of
discriminant 5(33 · 5 · 72 · 13)2. For a root j0 = 135(−1415 ± 637

√
5)/2 of

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 553

Table 4. Seeds provided in [3,4,19]. No seed is given for k = 9, k = 10 with 6.6,
k = 17. The seeds for k = 12, 16 are from [3].

k curve ref seed u p(u)

bits

pk(u)

bits

r(u)

bits

η, special poly DL

cost

9 BLS [4, T.23] 274 + 235 − 222 + 2 591 5314 443 9P (x) 128

9 BLS [19, §8.1] 270 + 259 + 246 + 241 + 1 559 5026 419 9P (x) 125

9 6.2 [4, T.6] −1 + 23 + 24 + 25 + 29 + 210 + 222 483 4339 265 9P (x2) 116

9 6.7 [4, T.19] −1 − 24 + 26 + 29 + 211 = 0xa2f 520 4672 273 9P (u4) 140

10 6.3 [4, T.7] 1 + 23 − 25 + 210 + 213 + 231 433 4321 249 10P (x2) 120

11 6.2 [4, T.6] −1 + 28 + 214 363 3993 281 11P (x2) 122

11 6.6 [4, T.16] 24 + 26 + 27 + 29 + 210 + 214 338 3718 283 11P (x + 1/x) 118

12 BN [3] 2114 + 2101 − 214 − 1 462 5535 462 6P (x) 135

12 BLS [3] −277 + 250 + 233 461 5525 308 6P (x) 134

12 6.7 [4, T.18] 1 + 214 + 217 + 232 446 5341 257 12P (x2) 134

12 6.4 [4, T.8] 1 + 2 + 23 + 28 + 29 + 211 + 264 511 6121 257 12P (x) 138

13 6.2 [4, T.6] 1 + 2 + 23 + 24 + 28 + 210 + 214 + 220 599 7784 481 13P (x2) 162

13 6.6 [4, T.16] 24 + 27 + 210 + 211 + 213 = 0x2c90 376 4886 324 13P (u3) 152

14 6.3 [4, T.7] 1 − 22 + 26 + 29 − 212 − 215 − 219 + 222 391 5464 262 14P (x2) 131

14 6.6 [4, T.15] −1 + 26 + 27 + 29 + 210 + 213 + 217 + 222 352 4917 265 14P (u2) 150

15 BLS [19, §8.1] 22 + 25 + 219 + 231 371 5557 249 15P (x) 137

15 BLS [4, T.23] 2 + 210 + 216 + 219 + 232 383 5737 257 15P (x) 138

15 6.6 [4, T.14] 1 + 22 + 212 + 216 + 232 383 5737 257 15P (x) 138

16 KSS [3] −234 + 227 − 223 + 220 − 211 + 1 330 5280 257 16P (x + 1) 140

H(−15) modulo p, one has a = −3j0/(j0 − 1728), b = 2j0/(j0 − 1728). A
simplified pair is (a, b) = (−3(245 ± 416

√
5), 154(±416 + 49

√
5)). Moreover if

ω = j0/(j0 − 1728) = 52/112 ± 25 · 5 · 13
√

5/(72112) is a square modulo p, one
can have a′ = −3, b′ = b/ω3/2. If the curve y2 = x3 + ax + b is the quadratic
twist (of order p + 1 + t instead of p + 1 − t), then y2 = x3 + aν2x + bν3 is the
curve we want, where ν is a non-square modulo p.

The short eigenvalue of the endomorphism for GLV (see [34]) is λ =
√−15 ≡

2x7−2x5−4x4−2x3−2x2+4x+3 ≡ (2x4+x3−4x2+x+2)/(x3−x) mod r(x).
Note that the square root is defined up to sign. We also have

√−15 ≡ (−64x13−
24x12 +8x11 +250x10 +92x9 +32x8 − 448x7 − 226x6 − 146x5 +398x4 +222x3 +
32x2 − 42x − 159)/45 mod p(x). The endomorphism can be obtained from a
3-isogeny and a 5-isogeny. There are two 3-isogenies and two 5-isogenies, one
combination gives an endomorphism (we were able to check it on a numerical
example in Magma, and obtained the eigenvalue −λ(u)).

Curve 2. A pairing-friendly curve y2 = x3 + b with the Brezing–Weng method,
k = 11, D = 3, m = 3, e0 = 8, ρ = 13/10 = 1.30. Since D = 3, a = 0.
r = Φ33(x) = x20 − x19 + x17 − x16 + x14 − x13 + x11 − x10 + x9 − x7 + x6

−x4 + x3 − x + 1
p = (x26 + x24 + x22 + x15 − 2x13 + x11 + x4 − 2x2 + 1)/3
t = x3×8 + 1 mod r = −x13 − x2 + 1 ; y = (x13 + 2x11 − x2 + 1)/3
u = 1, 2 mod 3 ; c = (x2 − x + 1)(x2 + x + 1)2/3

554 A. Guillevic

Table 5. Pairing-friendly Constructions for 9 ≤ k ≤ 17 from Table 2 and our new
security estimate. For k = 17, r is a prime divisor of r(u) but r(u) itself is not prime,
there is a cofactor (mark ∗). For many families with k = 11 and k = 13, it was not
possible to find a seed u such that r is 256-bit long (+) because r(x) has a high degree.

k Construction D, m, e0 deg

p(x)

p

bits

pk

bits

rbits η Sect-

ion 2.2

deg

P

‖P‖ P DL

cost

9 Cyclo (BLS) 3, 1, 1 8 608 5472 456 9 8 1 P (x) = 3p(x) 130

9 Cyclo (6.6) 3, 1, 7 8 608 5472 456 9 8 1 P (x) = 3p(x) 130

9 Cyclo (6.2) 1, 4, 5 22 640 5752 350 9 (1) 11 1 P (x2) = 4p(x) 130

9 Cyclo (6.7) 2, 8, 1 46 520 4672 273+ 9 (1+4) 11 u2 P (u4) = 8p(u) 140

9 Cyclo (FM10) 3, 1, 5 12 608 5472 304 9 12 1 P (x) = 3p(x) 133

10 Cyclo (6.5) 1, 2, 9 12 480 4800 322 5 (1) 6 1 P (x2) = 3p(x) 128

10 Cyclo (6.3, FM13) 1, 2, 1 14 512 5120 294 10 (1) 7 1 P (x2) = 4p(x) 129

10 Cyclo (FM16) 2, 4, 9 30 488 4871 262+ 10 (1) 15 1 P (x2) = 8p(x) 141

10 (Cyclo) 6.6 3, 3, 1 16 511 5104 256 10 (4) 8 u P (u2) = 3p(u) 145

10 Cyclo (FM14) 5, 2, 9 14 480 4800 276 10 (1) 7 1 P (x2) = 20p(x) 128

10 Cyclo (FM15) 15, 3, 1 14 446 4460 256 10 14 1 P (x) = 15p(x) 133

11 Cyclo (6.2) 1,4,6 26 414 4554 320 11 (1) 13 1 P (x2) = 4p(x) 130

11 Cyclo 1, 4, 1 30 391 4297 262+ 11 (1+4) 7 u2 P (u4) = 4p(u) 136

11 Cyclo 1, 4, 7 34 444 4876 262+ 11 (1+4) 8 u2 P (u4) = 4p(u) 146

11 Cyclo (6.6) 3, 3, 4 24 446 4899 373 11 (2) 12 1 x12P (x + 1/x) = 3p(x) 128

11 Cyclo 3, 3, 8 26 333 3663 258+ 11 (4) 8 u2 P (u3) = 3p(u) 131

11 Cyclo 3, 3, 1 28 355 3901 255+ 11 (4) 9 u2 P (u3) = 3p(u) 135

11 Cyclo 3, 3, 1 28 373 4101 268+ 11 (4) 9 u2 P (u3) = 3p(u) 139

11 Cyclo 11, 1, 4 16 411 4521 256 11 (4) 8 u P (u2) = 11p(u) 145

11 Cyclo 11, 1, 8 16 480 5280 298 11 (2) 8 1 x8P (x + 1/x) = 11p(x) 130

12 BN (6.8) 3, –, – 4 446 5376 446 6 4 1 P (x) = p(x) 132

12 Cyclo (BLS) 3, 1, 1 6 446 5376 299 6 6 1 P (x) = 3p(x) 132

12 FK12 (FM17) 3, –, – 6 446 5352 296 6 6 1 P (6x + 2) = 108p(x) 136

12 FM19 3, –, – 6 446 5352 295 6 6 1 P (x) = 225p(x) 135

12 FM20 3, –, – 6 446 5352 292 6 6 1 P (x + 3) = 1425p(x) 137

12 Cyclo (6.7, FM18) 2, 2, 1 14 445 5329 256 12 (1) 7 1 P (x2) = 8p(x) 134

12 (Cyclo) 6.4 1, 1, 1 8 509 6097 256 12 8 1 P (x) = 4p(x) 138

13 Cyclo (6.2) 1, 4, 7 30 339 4396 256∗ 13 (1+4) 7 u2 P (u4) = 4p(u) 142

13 Cyclo 1, 4, 1 34 380 4931 270+ 13 (1+4) 8 u2 P (u4) = 4p(u) 141

13 Cyclo (6.6) 3, 3, 9 28 310 4027 267+ 13 (4) 9 u2 P (u3) = 3p(u) 140

13 Cyclo 3, 3, 1 32 348 4512 262+ 13 (4) 10 u2 P (u3) = 3p(u) 139

13 Cyclo 3, 3, 10 34 388 5037 275+ 13 (4) 8 u2 P (u4) = 3p(u) 144

13 Cyclo 3, 3, 2 38 403 5233 256 13 (4) 6 u2 P (u6) = 3p(u) 150

14 Cyclo (6.3) 1, 2, 1 18 382 5376 256 14 (1) 9 1 P (x2) = 4p(x) 130

14 Cyclo (6.6) 3, 3, 5 16 340 4755 256 14 (4) 8 u P (u2) = 3p(u) 148

15 Cyclo (BLS) 3, 1, 1 12 381 5715 256 15 12 1 P (x) = 3p(x) 137

15 Cyclo (6.6) 3, 1, 11 12 381 5715 256 15 12 1 P (x) = 3p(x) 137

16 KSS16 (6.11) 1, –, – 10 330 5280 256 16 10 1 P (x) = 980p(x − 1) 140

17 Cyclo (6.2) 1, 4, 9 38 382 6494 262∗ 17 (1+4) 9 u2 P (u4) = 4p(u) 167

17 Cyclo (6.2) 1, 4, 9 38 359 6087 254∗ 17 (1+4) 9 u2 P (u4) = 4p(u) 164

17 Cyclo (6.6) 3, 3, 6 36 374 6358 281∗ 17 (2+4) 9 u2 P ((u + 1/u)2)u36 = 3p(u) 172

17 Cyclo 3, 3, 12 38 337 5718 255∗ 17 (4) 9 u3 P (u4) = 3p(u) 165

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 555

Table 6. Our short-list of pairing-friendly curves at the 128-bit security level.

k Construction D, m, e0 deg seed u p bits pk bits r bits DL cost

p(x) in F
pk

6 Cocks–Pinch 3, –, – 4 2128 − 2124 − 269 [22] 672 4028 256 128 [22]

8 Cocks–Pinch 1, –, – 8 264 − 254 + 237 + 232 − 4[22] 544 4349 256 131 [22]

10 Cyclo(FM15) 15, 3, 1 14 232 − 226 − 217 + 210 − 1, a = −3 446 4460 256 133

11 Cyclo 3, 3, 8 26 −213 + 210 − 28 − 25 − 23 − 2 = −0x1d2a, 333 3663 258+ 131

b = 13

11 Cyclo 11, 1, 4 16 −226 + 221 + 219 − 211 − 29 − 1, a = 2 412 4522 256 145

12 BN (6.8) 3, –, – 4 2110 + 236 + 1, b = 257 [31] 446 5376 446 132 [23]

12 Cyclo (BLS) 3, 1, 1 6 −(274 + 273 + 263 + 257 + 250 + 217 + 1), 446 5376 299 132 [23]

b = 1 [22,23]

12 FK12 (FM17) 3, –, – 6 −272 − 271 − 236, b = −2 [18, §4(b)] 446 5352 296 136

13 Cyclo (6.6) 3, 3, 9 28 211 + 28 − 26 − 24 = 0x8b0, b = −17 310 4027 267+ 140

14 Cyclo (6.6) 3, 3, 5 16 221 + 219 + 210 − 26, b = −4 340 4755 256 148

16 KSS16 (6.11) 1, –, – 10 −234 + 227 − 223 + 220 − 211 + 1, a = 1 [3] 330 5280 257 140 [23]

16 KSS16 (6.11) 1, –, – 10 234 − 230 + 226 + 223 + 214 − 25 + 1, a = 1 330 5268 256 140

The eigenvalue of the endomorphism (x, y) 	→ (ωx, y) is λ ≡ (−1 +
√−3)/2 ≡

x11 ≡ (x10−x9+x7−x6+x4−x3+x−1)/(x9−x8+x6−x5+x3−x2+1) mod r(x),
and ω ≡ (−1+

√−3)/2 ≡ (2x25 −x24 +5x23 +7x21 −x20 +8x19 +x18 +7x17 −
x16 + 8x15 + 3x14 + 6x13 − 2x12 + 6x11 − x10 − 2x9 + x8 + 2x7 − x6 − 2x5 + x4 +
4x3 − 2x2 − 3x − 1)/5.

Curve 3. A pairing-friendly curve y2 = x3 + ax + b with the Brezing–
Weng method, k = 11, D = 11, m = 1, e0 = 4, ρ = 8/5 = 1.6.
r = Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1
p = (x16 + 2x15 + x14 − x12 − 3x11 − x5 + 9x4 − x3 + x + 3)/11
t = x4 + 1 ; y = (2x8 + 2x7 − x4 − 2x3 + 2x2 − 2x − 1)/11
u = 1 mod 11 ; c = (x − 1)2(x4 + 3x3 + 4x2 + 4x + 3)
The j-invariant of a curve of discriminant −11 is −32768 = −215, and
(a, b) = (−264, 1694). Moreover if 22 is a square modulo p, one can define
(a′, b′) = (−3, 7

√
22/24). The endomorphism can be obtained from a 11-

isogeny. The eigenvalue is λ ≡ √−11 ≡ 2x9 + 2x5 + 2x4 + 2x3 + 2x + 1 ≡
(2x5 + x4 − 2x3 + 2x2 − x − 2)/(x4 + x) mod r(x).

Curve 4. A pairing-friendly curve y2 = x3 + b with the Brezing–Weng method,
k = 13, D = 3, m = 3, e0 = 9 (this is (6.6)), ρ = 7/6 = 1.17. Since D = 3, a = 0.
r = Φ39(x) = x24 − x23 + x21 − x20 + x18 − x17 + x15 − x14 + x12 − x10 + x9

− x7 + x6 − x4 + x3 − x + 1
p = (x28 + x27 + x26 + x15 − 2x14 + x13 + x2 − 2x + 1)/3
t = (x3×9 + 1) mod r = −x14 − x + 1 ; y = (x14 + 2x13 − x + 1)/3
u = 1 mod 3 ; c = (x2 + x + 1)2/3
The endomorphism is (x, y) 	→ (ωx, y) where ω ≡ (−1 +

√−3)/2 ≡ x26 + x25 +
2x24 + x23 + 2x22 + x21 + 2x20 + x19 + 2x18 + x17 + 2x16 + x15 + 2x14 + x13 −

556 A. Guillevic

x12 + x11 − x10 + x9 − x8 + x7 − x6 + x5 − x4 + x3 − x2 + x − 1 mod p(x). The
eigenvalue is λ ≡ (−1 +

√−3)/2 ≡ x13 ≡ (x11 − x10 + x8 − x7 + x5 − x4 + x2 −
x)/(x12 − x11 + x9 − x8 + x6 − x5 + x3 − x2 + 1) mod r(x).

Curve 5. A pairing-friendly curve y2 = x3 + b with the Brezing–Weng method,
k = 14, D = 3, m = 3, e0 = 5 (this is (6.6)), ρ = 4/3 = 1.33. Since D = 3,
a = 0.
r = Φ42(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x + 1
p = (x16 + x15 + x14 − x9 + 2x8 − x7 + x2 − 2x + 1)/3
t = (x3×5 + 1) mod r = x8 − x + 1 ; y = (x8 + 2x7 + x − 1)/3
u = 1 mod 3 ; c = (x2 − x + 1)(x2 + x + 1)/3

The endomorphism is (x, y) 	→ (ωx, y) where ω ≡ (−1 +
√−3)/2 ≡ (2x15 +

3x14 + 5x13 + 4x12 + 5x11 + 4x10 + 5x9 + 2x8 + 5x7 − x6 + x5 − x4 + x3 −
x2 + 3x − 4)/3 mod p(x). The eigenvalue is λ ≡ (−1 +

√−3)/2 ≡ x13 ≡
(x5 + x4 − x2 − x)/(x6 − x4 − x3 + x + 1) mod r(x).

4 Optimal Ate Pairing Computation: Miller Loop

We leave to future work the final exponentiation and we focus on the Miller loop,
sketched in Algorithm 4.1. We compare the curves of Table 6 to [22, Table 8]
and summarise the costs in Table 8. Let mk denotes a multiplication in Fpk ,
m a multiplication in Fp, sk a square in Fpk and s a square in Fp. For curves
y2 = x3 + b with j-invariant 0 (a = 0), we give the counts from [13]. For prime
embedding degrees (k = 11, 13), we apply the formulas from [22, Table 5].

Algorithm 4.1: MillerFunction(u, P,Q)
Input: E, Fp, Fpk , P ∈ E(Fp)[r], Q ∈ E(Fpk)[r] in affine coord., πp(Q) = [p]Q,

u ∈ N.
Result: f = fu,Q(P)

1 f ← 1; R ← Q;
2 for b from the second most significant bit of u to the least do
3 � ← �R,R(P); R ← [2]R ; DoubleLine
4 v ← v[2]R(P) ; VerticalLine
5 f ← f2 · �/v; Update1
6 if b = 1 then
7 � ← �R,Q(P); R ← R + Q ; AddLine
8 v ← vR+Q(P) ; VerticalLine
9 f ← f · �/v ; Update2

10 return f ;

The cost of a Miller function fu,Q(P) for optimal ate pairing computation
is given by Eq. (6), where nbits is the bitlength and HW2-NAF is the Hamming
weight in 2-non-adjacent form, and ik an inversion in Fpk (Table 7).

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 557

Table 7. Miller loop cost in Weierstrass model from [11,13,22].

k curve DoubleLine

AddLine

VerticalLine Update1

Update2

reference

any k y2 = x3 + ax + b 5mk + 6sk + 2km

10mk + 3sk

km 4mk +2sk

4mk

[22, Alg. 3,4,5]

any k y2 = x3 + b 5mk + 5sk + 2km

10mk + 3sk

km 4mk +2sk

4mk

[22, Alg. 3,4,5]

2 | k y2 = x3 + b

quadratic twist

2mk/2 +7sk/2 + km

10mk/2+2sk/2+km

0 mk + sk

mk

[13, §5, Tab. 3]

2 | k y2 = x3 − 3x + b

quadratic twist

6mk/2 +4sk/2 + km

10mk/2+3sk/2+km

0 mk + sk

mk

[11]

CostMillerFunction = (nbits(2-NAF(u)) − 1) (CostDoubleLine + CostVerticalLine)
+ (nbits(2-NAF(u)) − 2)CostUpdate1

+ (HW2-NAF(u) − 1)(CostAddLine + CostVerticalLine + CostUpdate2)
+ (if there is no twist)ik. (6)

The Miller loop is a product of Miller functions fm,Q(P), lines �R,S(P) and
verticals vR(P). In all our cases the Miller loop has length of the form upi +
u2pj + pl with i, j, l positive integers and is computed as

fpi

u,Q(P)fpj

u2,Q(P)�πi
p(uQ),πj

p(u2Q)(P)/vπi
p(uQ)+πj

p(u2Q)(P)�πi
p(uQ)+πj

p(u2Q),πl
p(Q)(P).

The vertical vπi
p(uQ)+πj

p(u2Q)+πl
p(Q)(P) can be removed as the point is at infinity.

We can optimise with fu2,Q(P) = fu
u,Q(P)fu,uQ(P). We first compute fu,Q(P),

then we start a second Miller iteration over u from f = fu,Q(P) instead of f = 1
and with the point uQ instead of Q. Computing uQ in affine coordinates from
Jacobian coordinates costs ik + sk + 3mk. The exponentiation fu

u,Q is almost
free: the squares are shared with the computation of fu,uQ(P). It costs one
more multiplication mk in addition steps. The computations πi

p(uQ), πl
p(Q) cost

2fk because uQ is in affine coordinates, while πj
p(u

2Q) costs 3fk, with u2Q in
projective coordinates. A general formula is

CostMillerLoop = (nbits(2-NAF(u)) − 1)(CostDoubleLine + CostVerticalLine)
+ (nbits(2-NAF(u)) − 2)CostUpdate1

+ (HW2-NAF(u) − 1)(CostAddLine + CostVerticalLine + CostUpdate2)
+ ik + sk + 3mk (we computed fu,Q(P) and [u]Q in affine coordinates)
+ (nbits(u) − 1)(CostDoubleLine + CostVerticalLine + CostUpdate1)
+ (HW(u) − 1)(CostAddLine + CostVerticalLine + CostUpdate2 + mk)

+ (1 or 2)fk + mk (we computed fpi

u,Q(P)fpj

u2,Q(P) and [u2]Q)

+ (4 or 5)fk + 2(CostAddLine + CostUpdate2) + CostVerticalLine + ik (7)

558 A. Guillevic

If HW2-NAF(u) HW(u) then one can replace u by the form 2-NAF(u) and
HW(u) by HW2-NAF(u) in the second Miller loop to save addition steps, at a
cost of one extra inversion ik.

A Tate pairing has Miller loop fr,P (Q). The curve arithmetic is in the base
field Fp instead of Fpk , but the Miller loop has length log2 r bits, this is at least
256 bits. The estimated cost has the same formula given in Eq. (6) but with
2-NAF(r) instead of u.

4.1 Prime Embedding Degrees 11 and 13

Curve 2 (k = 11, D = 3, a = 0, p of 333 bits, u = -0x1d2a). The optimal
ate Miller loop has length u + u2p5 + p6. The formula is

fu,Q(P)fp5

u2,Q(P)�uQ,π5
p(u

2Q)/vuQ+π5
p(u

2Q)�uQ+π5
p(u

2Q),π6
p(Q)

(we omit vuQ+π5
p(u

2Q)+π6
p(Q)(P) because uQ + π5

p(u2Q) + π6
p(Q) = O). The seed

u = -0x1d2a is 13-bit long and has Hamming weight 7, and 2-NAF(u) is 14-
bit long and has Hamming weight 6. Since D = 3, we have a = 0. No twist is
available. From Eq. (7) with (1+5)fk for Frobenius, we obtain 87km+413mk +
213sk + 6fk + 2ik. A schoolbook implementation of multiplication and squaring
would give mk = k2m = 121m and sk = k(k−1)m = 110m. A Frobenius power
in Fp11 costs 10m, assuming p = 1 mod 11 and some precomputations. We obtain
the upper bound 74420m + 2ik. An optimised Karatsuba multiplication in Fpk

would require at least klog2 3m, that is, 45m. Assuming that sk ≈ mk ≈ 45m,
we obtain the lower bound 29187m + 2ik.

For the Tate pairing, from Eq. (6) with r = Φ33(u), 2-NAF(r) of 258 bits and
Hamming weight 86, we obtain 1026km+1364mk+512sk+2477m+1540s+ik, it
is roughly 235127m+1540s+ik with schoolbook mk, sk, and 98183m+1540s+ik
with optimised Karatsuba-like mk, sk.

Curve 3 (k = 11, D = 11, a = 2, p of 412 bits, u = -0x3d80a01). The
optimal ate Miller loop has length u − p3. The formula is

fu,Q(P)�uQ,−π3
p(Q)(P)

(we omit vuQ−π3
p(Q)(P) because uQ − π3

p(Q) = O). We have u of 26 bits and
Hamming weight 9, 2-NAF(u) of 27 bits and HW2-NAF(u) = 6, and a = 2. No
twist is available. We obtain from Eq. (6) with in addition 2fk + CostAddLine +
CostUpdate2, the cost 83km + 314mk + 224sk + 3fk + ik. With the upper bound
mk = k2m and sk = k(k−1)m, the count is 63577m+ ik. With the lower bound
m11 = s11 = 45m, the count is 25153m + ik.

A Tate pairing would cost more than the previous curve since a = 2 instead
of a = 0, with this time r = Φ11(u)/11 of 256 bits, 2-NAF(r) of 257 bits, and
HW2-NAF(r) = 87. The estimated cost is 1026km+ 1364mk + 510sk + 2738m+
1794s+ik, upper bound 235168m+1794s+ik, lower bound 98354m+1794s+ik.

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 559

Curve 4 (k = 13, D = 3, (6.6), a = 0, p of 310 bits, u = 0x8b0). The
optimal ate Miller loop has length u2 + up + p2, giving

fu2,Q(P)fp
u,Q(P)�u2Q,π(uQ)(P)/vu2Q+π(uQ)�u2Q+πp(uQ),π2

p(Q)

(we omit vu2Q+πp(uQ)+π2
p(Q)(P)). We have u and 2-NAF(u) of 12 bits and Ham-

ming weight 4, and a = 0, but no twist is available. From Eq. 7 with (1 + 4)fk,
we obtain 73km+313mk +177sk +5fk +2ik. With the schoolbook upper bound
m13 = k2m = 169m and s13 = k(k − 1)m = 156m, the count is 81518m + 2ik.
With the Karatsuba-like lower bound m13 = s13 = 13log2 3m = 59m, the count
is 29919m + ik. For Tate from Eq. 6 with 2-NAF(r) of 268 bits and Hamming
weight 90, the cost is 1068km + 1420mk + 532sk + 2581m + 1602s + ik, upper
bound 339437m + 1602s + ik and lower bound 131633m + 1602s + ik.

4.2 Even Embedding Degrees 10 and 14

The vertical lines can be removed, thanks to the quadratic twist, because the x-
coordinates are in a proper subfield Fpk/2 . The optimisation of line and tangent
computation focused on curves with twists of degrees 3, 4 and 6 in [13]. We refer
to the former papers [2,11] for pairing formulas on curves with quadratic twists
only. The count is

CostMillerLoop = (nbits(u) − 1)CostDoubleLine + (nbits(u) − 2)CostUpdate1

+ (HW(u) − 1)(CostAddLine + CostUpdate2)
+ ik/2 + sk/2 + 3mk/2 (we computed fu,Q(P) and [u]Q in affine coord.)
+ (nbits(u) − 1)(CostDoubleLine + CostUpdate1)
+ (HW(u) − 1)(CostAddLine + CostUpdate2 + mk)

+ (1 or 2)fk + mk (we computed (fpi

u,Q(P)fpj

u2,Q(P)) and [u2]Q)

+ (2 or 3)fk/2 + CostAddLine + CostUpdate2 (8)

Curve 1 (k = 10, D = 15, a = −3, p of 446 bits, u = 0xfbfe03ff). The
optimal ate Miller loop has length u − p2 + u2p3. The formula is

fu,Q(P)fp3

u2,Q(P)�uQ,π3
p(u

2Q)(P)

and we removed the line �uQ+π3
p(u

2Q),π2
p(Q)(P) as it is a vertical. Computing

π3
p(u2Q) costs 3fk/2. We have u of 32 bits, HW(u) = 24, 2-NAF(u) of 33 bits,

HW2-NAF(u) = 5, a = −3, and a quadratic twist is available. We write u in 2-
NAF form for both Miller functions, it costs one extra inversion ik and allows to
save 27 addition steps in the second Miller function, and obtain 72km+76mk +
62sk+fk+525mk/2+280sk/2+3fk/2+ik+ik/2. We have mk/2 = m5, a schoolbook
implementation of a multiplication in Fp5 would need m5 = k2m = 25m, and a
square s5 = k(k−1)m = 20m, then with a quadratic extension, Fp10 would have
m10 = 3m5 = 75m (with Karatsuba) and s10 = 2m5 = 50m. The total count

560 A. Guillevic

would be 32648m + ik + ik/2. With optimised Karatsuba-like formulas [30], we
would have the lower bound m5 = s5 = 13m, and m10 = 39m, s10 = 26m, and
the final count would be 15784m + ik + ik/2.

Curve 5 (k = 14, D = 3, (6.6), a = 0, p of 340 bits, u = 0x2803c0). The
optimal ate Miller loop has length u2 + up + p2. The Miller loop formula is

fu2,Q(P)fp
u,Q(P)�u2Q,πp(uQ)(P)

We removed the line �u2Q+πp(uQ),π2
p(Q) as it is a vertical. We have u of 22 bits,

HW(u) = 6, 2-NAF(u) of 22 bits, HW2-NAF(u) = 4, a = 0, and a quadratic
twist is available. Computing πp(uQ) costs 2fk/2. We obtain from Eq. (8) 51km+
56mk + 41sk + fk + 177mk/2 + 313sk/2 + 2fk/2 + ik/2. From [30], we consider
the lower (Karatsuba) bound m7 = s7 = 22m, and m14 = 3m7 = 66m, s14 =
2m7 = 44m. We obtain 17020m + i7, where m is a multiplication in Fp of 340
bits. With 2-NAF(u) for the second Miller function, the cost is 49km+ 52mk +
41sk +fk +157mk/2+309sk/2+2fk/2+ ik + ik/2, upper bound 39037m+ ik + ik/2,
lower bound 16200m + ik + ik/2.

4.3 Comparison

The five curves of Sects. 4.1 and 4.2 are compared to BN, BLS12, FK12 and
KSS16 curves, and modified Cocks-Pinch curves in Table 8. The curves of even
embedding degrees k = 10, 14 are not competitive by a factor two compared
to KSS16 curves (over a 339-bit field, Miller loop in 7691m) and BLS12, FK12
curves (over a 446-bit field, Miller loop in 7805m and 7853m resp.), because
they have only a quadratic twist, whereas KSS16 curves have a quartic twist
and BLS12, FK12 curves have a sextic twist. The curves of prime embedding
degrees k = 11, 13 are not competitive by a factor four compared to the same
curves, because no twist is available.

5 Overview of the 192-Bit Security Level

At the 192-bit security level, we would like to set the constrain

7168 ≤ 384ρk ≤ 14336. (9)

With ρ = 1 we obtain k ≤ 37, and with ρ = 2 we obtain k ≥ 10. Curves
like Fotiadis–Konstantinou with exactly ρ = 2 satisfy (9) for 10 ≤ k ≤ 18.
No cyclotomic family of embedding degree above 32 satisfying (9) was found.
For BN, BLS12, BLS24, KSS16, KSS18, we reproduce in Table 9 the results of
Guillevic and Singh [23]: BN with a 1022-bit p, BLS12 with a 1150-bit p, KSS16
with a 766-bit prime p, KSS18 with a 638-bit prime p, BLS24 with a 509-bit
prime p. We list in Table 10 seed ranges for k ∈ {14, 15, 20, 21, 27, 28}. We also
refer to [18] for alternative curves with ρ = 2. We leave to future work a complete
study of pairing-friendly curves at the 192-bit security level.

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 561

Table 8. Count for Miller loop cost from [22] for Cocks–Pinch and BN, BLS12, KSS16,
and from [18] for FK12 (a.k.a. FM17).

Curve bits p Miller loop final exp. total

Cocks–Pinch k = 6 672 4601m 3871m 8472m

Cocks–Pinch k = 8 544 4502m 7056m 11558m

BN 446 11620m 5349m 16969m

BLS12 446 7805m 7723m 15528m

FK12 (FM17) 446 7853m 8002m 15855m

KSS16 339 7691m 18235m 25926m

k = 11, D = 3, a = 0 333 29187m + 2i11

k = 11, D = 11, a = 2 412 25153m + i11

k = 13, D = 3, a = 0 310 29919m + 2i13

k = 10, D = 15, a = −3 446 15784m + i10 + i5

k = 14, D = 3, a = 0 340 16200m + i14 + i7

Table 9. Seeds at the 192-bit security level from [23].

k curve r bits p bits pk bits seed u DL cost

12 BN 1022 1022 12255 −2254 + 233 + 26 191

12 BLS12 768 1150 13799 −2192 + 2188 − 2115 − 2110 − 244 − 1 193

16 KSS16 605 766 12255 278 − 276 − 228 + 214 + 27 + 1 194

18 KSS18 474 638 11477 280 + 277 + 276 − 261 − 253 − 214 193

24 BLS24 409 509 12202 −251 − 228 + 211 − 1 [14] 193

Table 10. Seeds at the 192-bit security level for k ∈ {14, 15, 20, 21, 27, 28}. For k =
14, 15 the range of u is such that p is 928-bit long (a smaller p of 920 to 928 bits is
possible). For k = 20, u is s.t. r is 448-bit long. For k = 21, 27, 28, u is s.t. r is 384-bit
long.

k curve D, m, e0 r bits p bits pk bits seed u DL cost

14 Cyclo 1, 2, 1 (6.3) 620 928 12979–12992
u ≥ 0xc382fe8f05eaf

u ≤ 0xcb2ff529e85b5
194

15 Cyclo 3, 1, 1 (BLS-15) 620 928 13906–13920

u ≤ -0x29b3f997f573d609c26f

u ≥ -0x2c2ecd2df12c9d54ec07

u ≥ 0x29b3f997f573d6097e04

u ≤ 0x2c2ecd2df12c9d52b8c9

193

20 Cyclo 1, 1, 1 (6.4) 448 669–670 13371–13400
u ≥ 0xeac0c6e7dd29e3

u ≤ 0xffffffffffd1ed
192

21 Cyclo 3, 1, 1 (BLS-21) 384 510–511 10691–10719
-0xf1a1c083 ≥ u ≥ -0xffff6fd1

0xf1a1ddd7 ≤ u ≤ 0xffffccc1
195

27 Cyclo 3, 1, 1 (BLS-27) 384 426–427 11496–11524
-0x29487b ≥ u ≥ -0x2ac5ea

0x2955f1 ≤ u ≤ 0x2ac66d
212

28 Cyclo 1, 1, 1 (6.2) 384 510 14243–14280 0xf1a202f1 ≤ u ≤ 0xffffd341 208

562 A. Guillevic

6 Conclusion

Because of the Special Tower Number Field Sieve algorithm, the security of
pairing-friendly curves should be reconsidered. We presented a new variant of
STNFS for pairing-friendly curves constructed with the Brezing–Weng method,
where the characteristic has a polynomial form. It does not apply to the modified
Cocks–Pinch curves of [22]. We refine the analysis of Barbulescu, El Mrabet and
Ghammam and present an updated short-list of secure pairing-friendly curves at
the 128-bit security level. For embedding degrees from 10 to 16, we obtain curves
so that the size of pk is at least 3663 bits (k = 11) and at most 5376 bits (for
BLS12 curves). The estimated cost of a DL computation with STNFS for these
finite fields is between 2128 and 2148. The fastest pairings are obtained with a
BLS12 curve or a Fotiadis–Konstantinou–Martindale curve of embedding degree
12, discriminant 3 and twist of degree 6 over a 446-bit prime. The additional
curves of this paper have embedding degrees 10, 11, 13 and 14 and a twist of
degree 2 for even embedding degrees. It was not sure by how much a prime
embedding degree k allows to reduce the total size of pk: for k = 11 the smallest
possible p is 333 bit long, and for k = 13 p is 310 bit long. Although p is
smaller than 446 bits, no twist is available with a prime embedding degree. For
this reason, the efficiency of pairings on prime embedding degree curves is not
competitive compared to BLS12 and FK12 curves.

References

1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic

2. Arène, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the Tate
pairing. J. Number Theory 131(5, Elliptic Curve Cryptography), 842–857 (2011).
https://doi.org/10.1016/j.jnt.2010.05.013. http://cryptojedi.org/papers/#edpair

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2019). https://doi.org/10.1007/s00145-018-9280-5. https://
ia.cr/2017/334

4. Barbulescu, R., El Mrabet, N., Ghammam, L.: A taxonomy of pairings, their secu-
rity, their complexity. ePrint 2019/485, 24 September 2019. https://ia.cr/2019/
485

5. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–
55. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 2.
https://ia.cr/2015/505

6. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

7. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction. Zcash blog, 11
March 2017. https://blog.z.cash/new-snark-curve/

https://github.com/relic-toolkit/relic
https://doi.org/10.1016/j.jnt.2010.05.013
http://cryptojedi.org/papers/#edpair
https://doi.org/10.1007/s00145-018-9280-5
https://ia.cr/2017/334
https://ia.cr/2017/334
https://ia.cr/2019/485
https://ia.cr/2019/485
https://doi.org/10.1007/978-3-662-48800-3_2
https://ia.cr/2015/505
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://blog.z.cash/new-snark-curve/

A Short-List of Pairing-Friendly Curves Resistant to Special TNFS 563

8. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE:
enabling decentralized private computation. In: 2020 IEEE Symposium on
Security and Privacy (SP), pp. 1114–1131. IEEE Computer Society, Los
Alamitos (2020). https://www.computer.org/csdl/proceedings-article/sp/2020/
349700b114/1iqVRI2nNra. https://ia.cr/2018/962

9. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des.
Codes Cryptogr. 37(1), 133–141 (2005). https://doi.org/10.1007/s10623-004-3808-
4. https://ia.cr/2003/143

10. Chatterjee, S., Menezes, A., Rodŕıguez-Henŕıquez, F.: On instantiating pairing-
based protocols with elliptic curves of embedding degree one. IEEE Trans.
Comput. 66(6), 1061–1070 (2017). https://doi.org/10.1109/TC.2016.2633340.
https://ia.cr/2016/403

11. Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of Tate pairing in
projective coordinate over general characteristic fields. In: Park, C., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005). https://
doi.org/10.1007/11496618 13

12. Chiesa, A., Chua, L., Weidner, M.: On cycles of pairing-friendly elliptic curves.
SIAM J. Appl. Algebr. Geom. 3(2), 175–192 (2019). https://doi.org/10.1137/
18M1173708

13. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 14. https://ia.cr/2009/615

14. Costello, C., Lauter, K., Naehrig, M.: Attractive subfamilies of BLS curves for
implementing high-security pairings. In: Bernstein, D.J., Chatterjee, S. (eds.)
INDOCRYPT 2011. LNCS, vol. 7107, pp. 320–342. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25578-6 23. https://ia.cr/2011/465

15. Euthereum, Go implementation. https://github.com/ethereum/go-ethereum/
tree/master/crypto/bn256

16. Foster, K.: HT90 and “simplest” number fields. Illinois J. Math. 55(4), 1621–1655
(2011). http://arxiv.org/abs/1207.6099

17. Fotiadis, G., Konstantinou, E.: TNFS resistant families of pairing-friendly elliptic
curves. Theor. Comput. Sci. 800, 73–89 (2019). https://doi.org/10.1016/j.tcs.2019.
10.017. https://ia.cr/2018/1017

18. Fotiadis, G., Martindale, C.: Optimal TNFS-secure pairings on elliptic curves with
composite embedding degree. ePrint 2019/555 (2019). https://ia.cr/2019/555

19. Fouotsa, E., El Mrabet, N., Pecha, A.: Computing optimal ate pairings on elliptic
curves with embedding degree 9, 15 and 27. ePrint 2016/1187 (2016). https://ia.
cr/2016/1187

20. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-9048-z.
https://ia.cr/2006/372

21. Galbraith, S.: Pairings. In: Blake, I.F., Seroussi, G., Smart, N.P. (eds.) Advances in
Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series,
pp. 183–214. Cambridge University Press, Cambridge (2005). https://doi.org/10.
1017/CBO9780511546570.011

22. Guillevic, A., Masson, S., Thomé, E.: Cocks–Pinch curves of embedding degrees five
to eight and optimal ate pairing computation. Des. Codes Cryptogr. 1–35 (2020).
https://doi.org/10.1007/s10623-020-00727-w. https://hal.inria.fr/hal-02305051

23. Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number
field sieve algorithm. ePrint 2019/885 (2019). https://ia.cr/2019/885

https://www.computer.org/csdl/proceedings-article/sp/2020/349700b114/1iqVRI2nNra
https://www.computer.org/csdl/proceedings-article/sp/2020/349700b114/1iqVRI2nNra
https://ia.cr/2018/962
https://doi.org/10.1007/s10623-004-3808-4
https://doi.org/10.1007/s10623-004-3808-4
https://ia.cr/2003/143
https://doi.org/10.1109/TC.2016.2633340
https://ia.cr/2016/403
https://doi.org/10.1007/11496618_13
https://doi.org/10.1007/11496618_13
https://doi.org/10.1137/18M1173708
https://doi.org/10.1137/18M1173708
https://doi.org/10.1007/978-3-642-13013-7_14
https://doi.org/10.1007/978-3-642-13013-7_14
https://ia.cr/2009/615
https://doi.org/10.1007/978-3-642-25578-6_23
https://ia.cr/2011/465
https://github.com/ethereum/go-ethereum/tree/master/crypto/bn256
https://github.com/ethereum/go-ethereum/tree/master/crypto/bn256
http://arxiv.org/abs/1207.6099
https://doi.org/10.1016/j.tcs.2019.10.017
https://doi.org/10.1016/j.tcs.2019.10.017
https://ia.cr/2018/1017
https://ia.cr/2019/555
https://ia.cr/2016/1187
https://ia.cr/2016/1187
https://doi.org/10.1007/s00145-009-9048-z
https://ia.cr/2006/372
https://doi.org/10.1017/CBO9780511546570.011
https://doi.org/10.1017/CBO9780511546570.011
https://doi.org/10.1007/s10623-020-00727-w
https://hal.inria.fr/hal-02305051
https://ia.cr/2019/885

564 A. Guillevic

24. ISO: ISO/IEC 15946–5:2017 Information technology - Security techniques - Cryp-
tographic techniques based on elliptic curves - Part 5: Elliptic curve generation, 2
edn., August 2017. https://www.iso.org/standard/69726.html

25. Joux, A., Pierrot, C.: The special number field sieve in Fpn - application to pairing-
friendly constructions. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365,
pp. 45–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4 3.
https://ia.cr/2013/582

26. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20. https://ia.cr/2015/1027

27. Kim, T., Jeong, J.: Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 388–408. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 16. https://ia.cr/2016/526

28. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol. 14(4),
255–293 (2001). https://doi.org/10.1007/s00145-001-0009-4

29. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography. In: Phan, R.C.-W., Yung,
M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 83–108. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61273-7 5. https://ia.cr/2016/1102

30. Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. IEEE Trans.
Comput. 54, 362–369 (2005). https://doi.org/10.1109/TC.2005.49

31. Pereira, G.C., Simpĺıcio, M.A., Naehrig, M., Barreto, P.S.: A family of
implementation-friendly BN elliptic curves. J. Syst. Softw. 84(8), 1319–1326
(2011). https://doi.org/10.1016/j.jss.2011.03.083. https://ia.cr/2010/429

32. Sakemi, Y., Kobayashi, T., Saito, T.: Pairing-friendly curves. IETF draft, Novem-
ber 2019. https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-00

33. Scott, M., Guillevic, A.: A new family of pairing-friendly elliptic curves. In:
Budaghyan, L., Rodŕıguez-Henŕıquez, F. (eds.) WAIFI 2018. LNCS, vol. 11321,
pp. 43–57. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05153-2 2.
https://ia.cr/2018/193

34. Smith, B.: Easy scalar decompositions for efficient scalar multiplication on
elliptic curves and genus 2 Jacobians. Contemp. Math. 637, 15 (2015).
https://hal.inria.fr/hal-00874925

35. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-381
elliptic curve. IACR TCHES 2019(4), 154–179 (2019). https://doi.org/10.13154/
tches.v2019.i4.154-179

https://www.iso.org/standard/69726.html
https://doi.org/10.1007/978-3-319-04873-4_3
https://ia.cr/2013/582
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://ia.cr/2015/1027
https://doi.org/10.1007/978-3-662-54365-8_16
https://doi.org/10.1007/978-3-662-54365-8_16
https://ia.cr/2016/526
https://doi.org/10.1007/s00145-001-0009-4
https://doi.org/10.1007/978-3-319-61273-7_5
https://ia.cr/2016/1102
https://doi.org/10.1109/TC.2005.49
https://doi.org/10.1016/j.jss.2011.03.083
https://ia.cr/2010/429
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-00
https://doi.org/10.1007/978-3-030-05153-2_2
https://ia.cr/2018/193
https://hal.inria.fr/hal-00874925
https://doi.org/10.13154/tches.v2019.i4.154-179
https://doi.org/10.13154/tches.v2019.i4.154-179

Privacy-Preserving Schemes

Privacy-Preserving Authenticated Key
Exchange and the Case of IKEv2

Sven Schäge(B), Jörg Schwenk, and Sebastian Lauer

Ruhr-Universität Bochum, Bochum, Germany
{sven.schaege,joerg.schwenk,sebastian.lauer}@rub.de

Abstract. In this paper, we present a strong, formal, and general-purpose crypto-
graphic model for privacy-preserving authenticated key exchange (PPAKE) pro-
tocols. PPAKE protocols are secure in the traditional AKE sense but additionally
guarantee the confidentiality of the identities used in communication sessions.
Our model has several useful and novel features, among others: it is a proper
extension of classical AKE models, guarantees in a strong sense that the confi-
dentiality of session keys is independent from the secrecy of the used identities,
and it is the first to support what we call dynamic modes, where the responsi-
bility of selecting the identities of the communication partners may vary over
several protocol runs. We show the validity of our model by applying it to the
cryptographic core of IPsec IKEv2 with signature-based authentication where
the need for dynamic modes is practically well-motivated. In our analysis, we not
only show that this protocol provides strong classical AKE security guarantees
but also that the identities that are used by the parties remain hidden in success-
ful protocol runs. Historically, the Internet Key Exchange (IKE) protocol was
the first real-world AKE to incorporate privacy-preserving techniques. However,
lately privacy-preserving techniques have gained renewed interest in the design
process of important protocols like TLS 1.3 (with encrypted SNI) and NOISE.
We believe that our new model can be a solid foundation to analyze these and
other practical protocols with respect to their privacy guarantees, in particular, in
the now so wide-spread scenario where multiple virtual servers are hosted on a
single machine.

Keywords: Privacy · Authenticated key exchange · IKE · IPsec · PPAKE ·
Modes

1 Introduction

1.1 Privacy in AKE Protocols

Privacy in authenticated key exchange (AKE) protocols has a chequered history.
In some variants of the early Station-to-Station protocol [16], digital signatures are

S. Schäge—Supported by the German Federal Ministry of Education and Research (BMBF)
Project DigiSeal (16KIS0695).
J. Schwenk—Supported by the German Research Foundation under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972 and the Cisco University Research Program Fund through
the Silicon Valley Community Foundation.
S. Lauer—Supported by the German Research Foundation under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 567–596, 2020.
https://doi.org/10.1007/978-3-030-45388-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_20

568 S. Schäge et al.

encrypted with an Diffie-Hellman (DHKE) key to hide the identity, and in SKEME [28],
identities were only sent in encrypted form. Both protocols influenced the development
of the Internet Key Exchange (IKEv1) protocol, where identities are protected in 5 out
of 6 public key based authentication modes. The main idea was to use keys derived
from an unauthenticated DHKE to encrypt those messages (displayed in light grey in
Fig. 1) which contain identity information. This approach was adopted for IKEv2, and
for novel protocols like QUIC and TLS 1.3.

Fig. 1. Overview on the phase structure of IPsec IKEv1 (left) and IKEv2 (right).

The most important AKE protocol, TLS, is up to Version 1.2 not privacy-preserving:
Certificates and digital signatures are sent in the clear, so identities of parties can be
revealed even by a passive eavesdropper. To describe the situation somewhat dramati-
cally: if someone would use TLS 1.2 in mutual authentication mode over TOR [17], the
identity of both client and server would immediately be revealed at the TOR exit node.

With the development of novel protocols and protocol families like QUIC [19],
TLS 1.3 [18], NOISE [38], or SIGNAL [9], interest in privacy was revived. “Enhancing
privacy” was formulated as a goal for all of these protocols, but the term “privacy” was
never formally defined in the context of AKE protocols.

1.2 A New Security Model

We close this gap by presenting a formal model called privacy-preserving AKE
(PPAKE) that allows us to precisely describe the privacy guarantees offered by proto-
cols like QUIC, TLS 1.3 (with ESNIs), NOISE, and IPsec IKE. Essentially, our model
formalizes that in a PPAKE the identities used by the communication partners remain
confidential in successful protocol runs.

We stress that our model is a proper extension of classical security models like [7,
32]. Let us provide a brief overview on the features of our model. As one of our main
changes to classical models we provide every party with two possible identities (key
pairs) that this party might use to authenticate messages with. In general, a protocol run
may now be executed with either of these keys. Our new notion of privacy formalizes
that it should be infeasible in a privacy-preserving AKE protocol, to distinguish which
identity is actually used. (We note that, if we set one of these keys to a constant and
only use the other, we easily obtain the classical security definition that is formalized

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 569

in many previous works like [7,32].) The choice of which of the two identities will be
used can be independent in each protocol run. (To this end we extend the set of local
variables of oracles.)

As one of our main novelties, we also introduce two distinct ways to select which
of these identities should actually be used. The first way is for each party to decide on
the identity on its own. This models P2P-like protocols. The second way is to make the
communication partner decide on the identity to be used. This approach of selecting
identities, from now on referred to as the classical mode, models situations where for
example a client would like to choose among the set of identities hosted by a single
server machine like in a multi-hosted webserver setting. In such a scenario a single
computer may host several (virtual) servers, among which there is one that may provide
security-critical information or services (for example information on political oppo-
sition groups). We remark that, in such a privacy-preserving protocol, the to-be-used
identity needs to be the transferred to the communication partner. For privacy reasons,
this cannot happen in the clear what makes such protocols more challenging to build
than protocols in classical modes. In the following, and slightly jumping ahead, we
generally refer to a particular set of responsibilities that encode who decides on the
identities used by initiator and responder as mode.

Our new security model formalizes very strong guarantees: we grant the attacker the
ability to query the used identities of arbitrary communication partners. For security, we
then require that it remains infeasible to decide which identity has actually been used in
a successful protocol run. In our analysis we allow each party to use the same long-term
keys in all supported modes, possibly differing over several protocol runs.

To illustrate the validity of our approach, we have chosen Internet Key Exchange
Version 2 (IKEv2) for several reasons: (1) IKEv2 is fully standardized. (2) IKEv2 is
being widely deployed, so we can justify our model with details on how to actually
instantiate the protocol in a privacy-preserving way. (3) IKEv2 is interesting in its own
right – no reduction-based security analysis of its privacy guarantees has been pub-
lished up to now, and it is a prime example of an important real-world protocol with
somewhat confusing details resulting from the standardization process. We believe that
our model can also be deployed on protocols like QUIC or NOISE that also implement
mechanisms to protect identities.

1.3 Comparison with TOR and Practical Motivation

A short discussion about TOR [17] is necessary, since TOR is still the benchmark in
privacy protection on the Internet.

THE TOR NETWORK. Our model is not suitable for the TOR network, which guar-
antees privacy even in a Byzantine networking environment, i.e. against an adversary
who controls large parts (but not all) of the Internet, and parts of the TOR network
itself. Our assumptions on the network are stronger, and our adversary is weaker than a
TOR adversary – we assume an active man-in-the-middle attacker that controls a large,
but well-defined part of the Internet, such that we can get rid of identifiers like IP or
MAC addresses by placing simple, trustworthy TCP proxies at the entry points of the
adversary controlled network.

570 S. Schäge et al.

THE TOR PROTOCOL. The cryptographic protocol behind the TOR network is some-
thing different. Roughly, it can be compared to three nested executions of a server-only
authenticated TLS handshake, the servers being the TOR nodes. In each of these exe-
cutions, encryption keys from the previous execution are used to protect the handshake
messages, and the next TOR node authenticates itself to the TOR client. Our model fits
to any of these three executions analyzed separately, but not for the nested case.

REAL-WORLD USEFULNESS OF PRIVACY-PRESERVING KEY EXCHANGE: THE

CASE OF SNI-BASED CENSORSHIP IN SOUTH KOREA. To show that PPAKE is nev-
ertheless practically well motivated, recall that when using TLS-secured connections,
Server Name Indicators (SNIs) are used by clients to specify which virtual server
exactly a clients wants to address when connecting to a public machine that realizes
domain-based virtual hosting. Traditionally, SNIs are sent in the clear. In a recent effort
to improve the privacy of TLS 1.3, Encrypted Server Name Indicators (ESNI) were
introduced that can hide the SNI field from outsiders such that the exact destination
a clients wants to communicate with remains secret [39]. In spirit, this implements a
privacy-preserving key exchange protocol (though for a final assessment a formal anal-
ysis is required – a pressing open problem for future work).

Recently, the South Korean government (i.e. the so-called Korea Communications
Standards Commission (KCSC) responsible for censorship) has, in a widely criticized
move1, started to implement a system that denies access to more than 800 pre-selected
foreign websites to its citizens2. When secured with TLS, this system uses SNI fields
to identify destination sites to block the traffic. However, when ESNIs are used, this
filtering technique fails. This has prompted the South Korean government to stop ESNI-
based traffic entirely. To us, this shows that PPAKE protocols significantly increase the
technical difficulties to filter websites. Moreover when PPAKE protocols are widely
adopted, this or similar approaches to mass censorship cannot work efficiently anymore
without sacrificing the availability of major parts of the Internet infrastructure to their
citizens – a move that would likely lead to strong political repercussions.

1.4 IPsec IKEv2 Is PPAKE

The Internet Key Exchange (IKE) protocol is the “handshake” protocol for negotiating
IPsec keys and algorithms. It currently exists in two versions, IKEv1 [21] and IKEv2
[24,25]. Both consist of two phases, which are depicted in Fig. 1. Both contain an unau-
thenticated Diffie-Hellman Key Exchange (DHKE) in Phase 1, where the resulting keys
are used to protect privacy-related data in later messages.

IKEv2, which will be explained in detail in Sect. 4, is a 2-stage authenticated key
exchange protocol (cf. Fig. 1). Stage/Phase 1 is only executed once, to establish a set
of authenticated symmetric keys. This set of keys is the basis of multiple executions
of Phase 2, each of which results in freshly derived keys that are used to protect cer-
tain IP connections. Jumping ahead, our security analysis will show that these keys

1 https://www.koreatimes.co.kr/www/nation/2019/02/119 264003.html.
2 Official announcement in Korean, retrieved 05-14-2019: https://kcc.go.kr/user.do?mode=

view\&page=A05030000\&dc=K05030000\&boardId=1113\&cp=1\&boardSeq=46820.

https://www.koreatimes.co.kr/www/nation/2019/02/119_264003.html
https://kcc.go.kr/user.do?mode=view\&page=A05030000\&dc=K05030000\&boardId=1113\&cp=1\&boardSeq=46820
https://kcc.go.kr/user.do?mode=view\&page=A05030000\&dc=K05030000\&boardId=1113\&cp=1\&boardSeq=46820

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 571

are indistinguishable from random. What makes IKEv2 also privacy-preserving is that
some related keys are used to encrypt all identity-related data exchanged between the
communication partners.

1.5 On the Challenge of Constructing PPAKE

We caution that, although it might appear so, many natural approaches for protecting
identities cannot be applied in the setting of PPAKE. This makes the design of new
PPAKE protocols a non-trivial task. In particular, standard anonymity preserving prim-
itives like ring or group signatures [3,5,40] cannot be applied in a straight-forward way
to implement PPAKE, in contrast to for example recent constructions of deniable key
exchange [41]. To explain this, let us consider the following example. Consider a multi-
homed server, where each of its virtual servers is associated with a dedicated key pair.
Also assume the availability of a basic security protocol that for each virtual server
authenticates messages via digital signatures using its corresponding key pair. To con-
struct a privacy-preserving protocol, a naı̈ve approach would advocate the use of ring
signatures [40] that are computed using all the public keys of the hosted virtual servers.
Intuitively, the ring signature hides which application exactly signed a given message.
While this solution indeed provides high anonymity guarantees for the sender, it crit-
ically fails in terms of authentication. The problem is that once a single secret key is
corrupted, the attacker can easily impersonate any other virtual server to the client with
it using the ring signature scheme. We stress that it is not despite the use of a ring sig-
nature scheme that this attack is possible but rather because of it: it is the very purpose
and core functionality of ring signatures to enable users to craft messages on behalf of
other users. A single (unnoticed) corruption would thus threaten all other uncorrupted
virtual servers.3 We believe that these security guarantees are too weak in practice and
therefore opt to formalize a much stronger security notion. Importantly, in our model, if
a secret key is corrupted, this should have no influence on the security of the remaining
virtual servers. This should not only hold for the derived session keys but also for the
confidentiality of the identities. Our high requirements in terms of security will likely
come at the cost of more complicated designs for provably secure PPAKE protocols as
compared to generic constructions that rely on standard building blocks like privacy-
preserving signatures.

1.6 Contributions

We make the following contributions:

– We motivate and present a new formal model that allows to describe very pre-
cisely the privacy features of real-world key exchange protocols. Our model prop-
erly extends existing key exchange models and guarantees that protocols have strong

3 The situation gets worse in case secret keys are used on several server machines, for exam-
ple in load-balancing solutions. Corrupting a single key would threaten all virtual servers on
machines where this key is deployed.

572 S. Schäge et al.

security properties. In particular, and in contrast to previous works, it guarantees that
the confidentiality of keys and identities are independent of each other.4

– We provide a rigorous and comprehensive reduction-based security analysis of the
IKEv2 protocol with signature-based authentication, one of the most important real-
world cryptographic protocols. To model a protocol option we exploit our novel
mode concept. This results in a proof that covers two modes, the classical mode and
one in which the initiator decides on the identity used by the responder. This is the
first formal proof of the privacy properties guaranteed by an IKEv2 protocol.

Let us provide some intuition for some of the conceptually novel features of our model:

DYNAMIC MODES. First, we stress that none of the existing works considers what
we call dynamic modes. Our model allows that a single party may not only have sev-
eral key pairs but also behave differently over the course of several protocol runs with
regard to its responsibility for selecting the actually used identity. More concretely, in
some protocol runs the party may decide on its own which of its identities it will use and
sometimes it will be the communication partner who decides this. Likewise the respon-
sibility for choosing the communication partner’s key material may vary. We stress that
in some situations these protocol runs cannot be examined separately since they all rely
on the same long-term key material. Running the protocol in distinct modes may help
the attacker considerably to violate the protocol’s security.5 In the full version, we pro-
vide a sketch of a protocol that serves as a separation result between security models
with static and dynamic modes. Moreover, as mentioned before, we stress that our proof
of IPsec will apply the mode concept to model that either the initiator or the responder
may decide on the responder’s identity.

PUBLIC MODES. Another striking feature of our model is that we allow the attacker
to obtain information on the mode of oracles before using them. On the one hand, this
allows her to adaptively specify in which modes the protocol should be run in by the
honest parties. She can thus freely follow an arbitrary learning strategy that relies on a
series of clever choices of modes for the respective protocol runs. On the other hand, it
also allows for attacks that aim at making oracles communicate with each other that do
not have fitting modes, i.e. where there is no common agreement on who is supposed to
decide on some identity used by one of the parties. In particular, the attacker may exploit
settings where none of the parties or even both of the parties try to specify a certain iden-
tity. We technically implement this by using oracles with pre-specified modes among
which the attacker may choose. Moreover, the mode is public information and thus also
known to the attacker before the execution. Such a modeling is practically well moti-
vated by the fact that protocol implementations often use distinct network interfaces

4 Via this, the model for example covers scenarios well where privacy breaches are generally
more probable than attacks on the session key. Even if by some error privacy is violated, the
session keys still remain secure. Protocols proven secure in our model are thus well suited in
these scenarios.

5 A rough analogy is that in modern AKE models parties may serve as initiators and responders
with the same key material. A corresponding proof should then guarantee that sessions where
a party runs the protocol as initiator do not help to break key indistinguishability even when
the party also runs the protocol as responder. The security model only covers this, if parties
may assume both roles.

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 573

(e.g. TCP ports) for different protocol variants (or even just for different communica-
tion directions): a user machine may expect incoming connection attempts on a network
interface that is distinct from the one used for outgoing connection attempts. In particu-
lar, our way of modeling reflects attacks in which the attacker relays messages between
oracles that otherwise would not result in a correct protocol execution.

1.7 Related Works

There are several related papers that cover privacy issues in key exchange protocols.
Let us describe how our work differs.

SEPARATED SECURITY DEFINITIONS. First of all, we stress that our new security def-
inition is stronger than one in which key indistinguishability and privacy are treated
separately and not all the attacking queries are available in both security experiments,
like [2,20]. We observe that in general such an approach may have the benefit that it
can be very simple to re-use existing results: one simply could take a protocol with a
proof of key indistinguishability and add the proof of privacy (while even introducing
new privacy-related attacking queries). However, we opt for a much stronger model.
Our new model requires that classical key indistinguishability of some protocol holds
even in the presence of attacks that adaptively unmask identities – and vice versa: we
require confidentiality of identities even in the presence of queries that let the attacker
reveal session keys. Only such an approach formally guarantees that the two security
properties are indeed independent in a protocol, i.e. that revealing identities does not
violate key indistinguishability and revealing keys does not violate privacy. Moreover,
it is clearly stronger than the classical approach, because even in the key indistinguisha-
bility game, the attacker is provided more generous attack queries.

SYMMETRIC SETTING. Some of the previous works [20,33] focus on settings with
symmetric long-term keys that are used for authentication. However, a closer inspection
reveals that technically, the asymmetric AKE setting is much more challenging. This is
because in the crucial security experiment of the symmetric setting (involving the Test-
oracle), the attacker may not be given the common secret key of the communicating
parties since it could then easily impersonate the peer. In contrast, in (strong variants
of) the classical AKE model the attacker only may not be given the secret key of the
peer (until the peer’s oracle accepts): the attacker may always be given the public key of
the peer and when modeling key compromise impersonation attacks (KCI) [30] it may
also be given the holder’s secret key. The holder’s keys and the peer’s public key may
be valuable additional information for the attacker to break the privacy guarantees of
the protocol. An analogous attacking resource is not available for symmetric key based
key exchange protocols.

ASYMMETRIC SETTING. There are three other works that also introduce security mod-
els in the asymmetric setting based on the indistinguishability of identities which we
briefly would like to outline here. In [12], the authors focus on an analysis of the
OPACITY protocol suite and their model aims to capture the properties provided by
that protocol. As a striking feature of their security model they only consider protocol
runs where at most a single party has more than one identity. As a consequence they

574 S. Schäge et al.

require that the peer of the Test-oracle in general needs to be uncorrupted when defin-
ing successful attacks. Our notion is considerably more fine-grained and covers more
application scenarios. First, we allow both, the holder of the Test-oracle and its peer to
have more than one identity. Next, we allow that all the public keys of some party may
be corrupted (at some point in time) which allows modeling of KCI attacks and perfect
forward secrecy in the first place. In practice this is an important asset. In multi-homed
webservers, it captures, for example, situations where the attacker may obtain the key
material of one of the hosted servers. In these cases, the security of other servers that
are hosted on the same machine should remain untouched. Moreover, we stress that the
model of [12] does not consider dynamic modes. The model rather focuses on a sin-
gle configuration where in the security game only a client (called card in the context
of OPACITY) holds more than one identity. The work probably closest to ours is that
of Zhao [43] which also relies on the indistinguishability of identities. However, there
are several important differences. Next, and most importantly, we observe that in com-
parison to our model the one in [43] has considerably weaker security guarantees. In a
nutshell, Zhao only introduces a single random bit in the Test-session that at the same
time specifies both, (i) which identity will be used in the Test-oracle, and (ii) whether
the session key is random or real. As a consequence, the Zhao model may deem pro-
tocols secure where (i) we cannot reveal the used identity without compromising the
indistinguishability of the session key from random or (ii) we cannot reveal the real
session key without compromising the privacy of the used identity. (This is also made
explicit in the winning condition in [43].) Essentially this amounts to the fact that the
secrecy of the session key and of the used identities may not be independent of each
other – although a protocol is provably secure. To us, this seems rather unnatural and we
opt for a much stronger notion. Moreover the lack of independence guarantees between
keys and identities makes it much harder to argue that Zhao’s model (and that of [2])
is a proper extension of classical AKE models since (new) queries – that only reveal
used identities – may theoretically violate the security of session keys. What is also
technically striking is that in the Zhao model, there is only a single but rather unnat-
ural mechanism to specifically reveal the identity used by some party in the protocol.
More concretely, if the attacker would like to reveal the identity used by some oracle it
has to query its partnered oracle for it. Finally, and similar to the papers mentioned so
far, [43] does not provide the same freedom to the attacker as given in our model via
the concept of dynamic and public modes. It is thus not clear what security guarantees
a protocol has when the identity used by some party is sometimes decided on by itself
and sometimes by its communication partner (independent of the current role assumed).
Similarly, [43] does not provide a mechanism for the attacker to make two oracles com-
municate with each other that have distinct expectations on who has to choose the used
identities (non-fitting modes). Finally, the most recent work [2] focuses on the unilat-
eral privacy of TLS. The proposed model seems very weak as it treats privacy only. As
emphasized before, treating privacy and key indistinguishability separately is generally
problematic, as such a definition can, for example, not provide insights on the secrecy
of session keys when identities are revealed. Moreover, [2] does not allow for corrup-
tions on parties on the tested machine and so does not model any form of PFS or KCI
security. In addition, the work does also not cover what our dynamic modes achieve.

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 575

IKE. In, Canetti and Krawczyk use the cryptographic analysis of so-called SIGMA-
protocols [8,29] to examine the security of IKE. We note that the variant actually imple-
mented in IPsec [24,25] is considerably more complicated than the IKE description
in [8]. In their paper they also argue about the identity concealment of identities but
their analysis remains informal. In particular, it is not explicit what exactly constitutes
trivial attacks or if the attacker is granted adaptive access to the identity information of
other sessions. Moreover, their analysis does not cover some subtle details present in
the IPsec standard that may leak crucial information. For example, they do not consider
the length of signatures although distinct signature length can help the attacker to easily
identify the source of a message.

Finally, in the literature one can also find several other academic proposals for “pri-
vacy preserving” protocols that use concepts of “privacy” that are considerably different
from what aim to achieve.

DENIABILITY. Intuitively, deniability of a security protocol executed between Alice
and Bob means that the transcript of a protocol execution cannot be used to convince
any third party Carol that Alice or Bob has actually participated in the protocol run.
Stronger forms of deniability [15] also require that Bob should not be able to convince
Carol even when Bob reveals to Carol his secret long-term key and all secret session-
specific information like his ephemeral secret keys, intermediate values and the final
session key. Yao et al. describe a family of deniable Internet key exchange protocols
[42]. Deniability is a very strong notion of security. However, it can usually not be
fulfilled (except for some very weak, relaxed versions of the definition) by security
protocols where the parties authenticate via classical digital signatures [15]. This is
simply because Bob can always use Alice’s digital signature over some session specific
information to prove that Alice actually was involved in that session.

The security property that we try to model is unrelated to the notion of deniability
although security mechanism that achieve deniability may also be used to enforce our
notion of privacy and vice versa. In particular, the protocol that we will analyse does
rely on digital signatures.

1.8 Building Blocks

In our proof, we rely on standard security definitions of digital signature schemes
SIG = (SIG.Gen,SIG.Sign,SIG.Vfy), pseudorandom functions (PRFs) PRFk(x) :=
PRF(k, x), a weak variant of the PRF-ODH assumption and authenticated encryption
schemes AE = (Enc,Dec).

2 PPAKE in Practice: Generic Construction, Comparison
and Limitations

Let us examine in more detail how existing protocols try to protect the identity of the
involved parties. To this end we isolate an instructive common design that can be found
in several widespread protocols.

576 S. Schäge et al.

WIDESPREAD CONSTRUCTION IN REAL-WORLD AKE PROTOCOLS. Figure 2 depicts
the generic construction that is used in TLS 1.3, QUIC, IPsec IKE, SSH and certain pat-
terns of NOISE to protect protocol messages that contain identity-related data such as
identities, public keys or digital signatures. This construction consists of an anonymous
DH handshake, from which keying material k is derived. This keying material k is then
used to encrypt all subsequent messages. There are modifications of this design, e.g. in
TLS 1.3 and QUIC the order of messages m3 and m4 is reversed, but its main security
properties remain identical.

Initiator
(skI , pkI)

Responder
(skR, pkR)

Key Agreement

−−−−−−−
m1 = gx

→−−−−−−−−−−−−−−−−−
−−−−−−−←

m2 = gy

−−−−−−−−−−−−−−−−−

Key Derivation

k ← KDF (gxy)

Apply Encryption to Identity-Related Data

−
m3 = Enck(IDI , pkI , authI)→−−−−−−−−−−−−−−−−−−−−−−−

if authI invalid abort

←−
m4 = Enck(IDR, pkR, authR)−−−−−−−−−−−−−−−−−−−−−−−−

if authR invalid abort

Fig. 2. Generic construction to protect privacy in AKE protocols.

The goal of this construction is to hide the identity of the communicating partners
in the presence of a network adversary on the application level, by first establishing
anonymous keying material and then using this material to encrypt identity-related data.
This construction does of course not hide network-level identity data like IP addresses,
so other privacy mechanisms like TCP proxies or the TOR network may be used to hide
them when necessary.

Other constructions are possible, but rarely used or critical to privacy. For example,
in the NOISE pattern used by WhatsApp, the long-lived public key of the WhatsApp
server is known to all clients, and thus there is no need to transmit the server’s identity
data at the application level – however, this is only possible because the server’s identity
is public and need not be hidden.

GENERIC WEAKNESS. All protocols following the design pattern from Fig. 2 share the
same weakness when it comes to privacy protection – an active attacker can always
reveal the identity of the first party which uses the anonymous DH keying material, at

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 577

the cost of causing a fatal error in the handshake. To do so, she simply establishes herself
as a man-in-the-middle for the anonymous DH handshake and is therefore able to derive
the (different) keying material used by both parties. She is then able to decrypt the
first subsequent protocol message that she receives. In the plaintexts of these messages
the parties finally authenticate themselves and the previously exchanged data in some
verifiable way. This fact has already been mentioned in [29]. In practice, for protocols
like TLS and QUIC, the server identity can always be revealed with this attack. For
IPsec IKE, it is the initiator’s identity that is vulnerable, and for NOISE this depends on
the pattern which is used.

We clarify, however, that this strategy is not an attack in the sense of our formal
security definition on the privacy properties since the parties will recognize the modifi-
cations of the messages and abort the handshake. Our model presented in Sect. 3 (and
all previous models as well) rather guarantee that if a party accepts, the used identi-
ties remain confidential. On a technical level, this is not different from the classical
key-indistinguishability notion of AKE security where we only consider the security
of keys computed by partners that accept. However, we caution that conceptually ses-
sion keys are simply random values that are used to protect meaningful messages later,
whereas identities should already be regarded as meaningful messages that are sent
in the early key exchange phase. Thus revealing identities is, in a sense, more prob-
lematic than revealing session keys, in particular if the initiator’s choice of identities
cannot be regarded as independent among distinct sessions. It is interesting future work
to rigorously formalize and generalize the above generic attack and to provide formal
impossibility results for a broader class of protocol designs.

We remark that for the responder, which authenticates second, the above attack
seems not applicable. It is therefore conceivable to formalize a stronger property for the
secrecy of identities selected by the responder which does not rely on session accep-
tance. However, this would require a precise formalization of who authenticates second,
and it is unclear what this would mean for implicitly authenticated protocols that do not
provide authentication in the sense of [4]. Moreover, the practical relevance for such a
definition is also not clear.

To avoid the attack in practice one can envisage extra means, like running the proto-
col (several times6) with a randomly chosen identity before the actual communication
session. The identities obtained in the pre-runs are then worthless for the attacker. More-
over, frequent aborts in this stage may point to a present active adversary and prompt
other actions like for example changing the communication network.

SELECTION OF IDENTITIES. Existing real-world protocols use different approaches on
how to select identities. In client-server protocols like TLS 1.3 and QUIC, the client
chooses which identity he wants to communicate with (e.g. by selecting the hostname
of a virtual webserver in a multi-homed server scenario), and which identity he wants
to use (e.g. by selecting one of the client certificates stored in the webbrowser). In
classical P2P-protocols, in contrast, identities are traditionally chosen by the holder of
that identity itself. A typical example is a party that uses distinct certified key pairs

6 To make it hard for the attacker to decide when the real communication attempt is started one
could randomly choose the number of steps.

578 S. Schäge et al.

to access more than one network resource. The IPsec protocol that we analyse allows
either the initiator or the responder to decide on the identity used by the responder.

3 Security Model for PPAKE

In the following, we will present our new security model. It is designed as a proper
extension to classical AKE models [7,32], a conceptually highly desirable feature in key
exchange that helps to prevent the introduction of new models which are incomparable
to established ones. In classical models, indistinguishability of session keys is used as
a primary criterion of the security of the protocols. This is usually checked via a so
called Test-query, which, based on a random bit b, either returns the real session key, or
a random value. The goal of the adversary is to compute this bit b.

We extend this model by introducing a criterion for indistinguishability of identities
used in the protocol handshake. To this end, we equip each party (client/initiator and
server/responder) with two different identities. Next, we introduce two local variables,
the selector bits d and f : d models which identity is used to authenticate data with,
while f indicates the identity used by the communication partner.

We emphasize that d, f point to the identities that are actually used. However, this
is not enough to model the sketched application scenarios comprehensively. Therefore,
we also introduce the so-called mode mode = (u, v) that contains a pair of public
variables. Essentially, the mode determines who is supposed to set the bits d and f
in a protocol run. The intuition is that either the used identity d of one party may be
determined by the party itself – or its communication partner. In our multi-host server
example, the server machine may decide on its own on the actually used virtual server
– or let the client choose it. We emphasize that in our security model the mode is our
leverage to let the attacker specify who is responsible for choosing selector bits – and
create ambiguities about that by relaying messages between oracles with non-fitting
modes.

To model security, the adversary may now request two different challenges from the
challenger with an extended Test-query:

– By asking Test(πs
i ,KEY), he requests the classical key indistinguishability chal-

lenge.
– By asking Test(πs

i , (ID, 0/1)), he requests an identity indistinguishability challenge,
for one of the two pairs of identities.

In the following we provide a formal exposition of the model.

MODES AS PUBLIC VARIABLES. We stress that we deliberately model the mode to
be public. The decision to introduce public session-specific variables models practice
realistically. If a client for example connects to a multi-hosted server, it is well aware of
the requirement to select the virtual server precisely (among the set of all hosted virtual
servers present). The server, on the other hand, expects the client to choose one of its
virtual servers in the protocol run. It does not aim to determine the virtual server on
its own.7 In situations where the communication partners have common expectations

7 An alternative approach is to have each party prepare and manage several types of oracles.
Each of these types would represent one possible mode and the party will somehow have to
choose the correct type for each protocol run.

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 579

on who is supposed to determine the two identities we say that their modes fit (a for-
mal definition follows). We also stress that our choice is also crucial to cover dynamic
modes. Essentially, making the mode session-specific allows modes to differ among
the sessions of a single party in the first place. Otherwise, the responsibility of who is
allowed to choose identities would be associated to parties (and fixed for each oracle).
This is, however not realistic, as in practice the same long-term key material will often
be used in several modes because of costs for certification of public keys or simpler key
management. As stated before, in our protocol analysis, we also have to consider two
modes.

3.1 Computational Model for Key Exchange

Following [4,6,7,11,22,32], we model the execution environment in terms of PPTs.
Our notation closely follows [22].

EXECUTION ENVIRONMENT. Let P = {P1, . . . , Pn} denote the parties involved in the
cryptographic protocol Π. Each party Pi holds two identities ID0

i and ID1
i . Moreover,

each of these identities is associated with a long-lived key pair (skb
i , pkb

i) for b ∈ {0, 1}.
Each party Pi may fork off processes {πs

i : s ∈ {1, ..., l}} called oracles in the follow-
ing. We use subscripts and superscripts to denote that oracle πs

i is the s-th oracle of party
Pi. Pi is also often called the holder of πs

i . Furthermore, we use the same subscripts
and superscripts to denote the variables of πs

i . If πs
i sends the first protocol message,

we also refer to it as initiator, otherwise it is called responder.

LOCAL AND GLOBAL VARIABLES. Each oracle πs
i shares the global variables of party

Pi, and may use the secret keys of Pi for decryption or signature generation. It stores
the following local variables in its own process memory.

– A session key k = ks
i .

– The identity selector bit d = ds
i ∈ {0, 1}. It determines that identity IDd

i (and skd
i)

is used in the protocol run.
– A variable Partner = (j, f) that indicates its intended partner. It contains a pointer

j ∈ [1;n] to a party Pj ∈ {P1, . . . , Pn}, often called the peer of π, and a partner
selector bit f ∈ {0, 1}. The values stored in Partnersi indicate that the public key
pkf

j is used by oracle πs
i to check if the received data has been authenticated.

– Finally, each oracle πs
i holds a publicly accessible mode modes

i = (us
i , v

s
i) ∈

{0, 1}2. It is used to indicate how the identity bits of the oracles are chosen in the
protocol run. Generally, a 0-entry denotes that variables are chosen by πs

i , a 1 means
that variables are chosen by the communication partner.

All local variables are initially set to some special symbol ⊥ that is not in the
domains of any of these variables. Throughout the protocol execution, each oracle may
read and write its variables according to the protocol definition. An oracle πs

i performs
actions as described in the protocol specification, and may either accept or reject in the
end. The final goal of a PPAKE protocol is to establish a session key k. The adversary
A /∈ {P1, ..., Pn} is a special party that may interact with all process oracles by issuing
different types of queries.

580 S. Schäge et al.

FITTING MODES. The bit us
i determines if a process oracle πs

i chooses its own identity
(or not) whereas the bit vs

i determines if πs
i chooses the identity of its intended partner

(or not). More precisely: either ds
i is simply computed by πs

i (this is indicated via us
i =

0), or the communication partner πt
j of πs

i is supposed to choose f t
j and the protocol

will make πs
i set ds

i = f t
j at some point (indicated by setting us

i = 1). Similarly, fs
i may

either simply be computed by πs
i (indicated by vs

i = 0) or the communication partner
πt

j of πs
i selects dt

j and the protocol makes πs
i set fs

i = dt
j (indicated by vs

i = 1).
Modes of two communicating oracles πs

i and πt
j must fit in the absence of an attacker.

Intuitively this guarantees that any identity or partner selector bit is set exactly once,
i.e. each selector bit is determined by exactly one oracle. More formally:

Definition 1. We say that (identity) selector bit us
i and (partner) selector bit vt

j fit if
us

i + vt
j = 1. Moreover, we say that the modes of two oracles πs

i and πt
j fit if u

s
i + vt

j =
1 and vs

i + ut
j = 1.

Throughout the paper we may sometimes also refer to the mode of some protocol. By
that we mean the possible modes an initiator oracle may be in.

3.2 Adversarial Model for Key Exchange

ADVERSARIAL CAPABILITIES. The attacker model defines the capabilities that the
attacker is granted. In addition to standard queries we introduce the novel query Unmask
that allows the adversary to learn each of the two identity bits used by an oracle. We also
extend the classical Test-query to not only provide candidate keys but also candidate
selector bits. We stress that if the attacker does not call Unmask at all, restricts itself to
only query candidate keys via Test (and not identity information), and if for each party
the two keys pairs and identities are equal and always corrupted at the same time, we
immediately obtain the classical attacker model of authenticated key exchange. Thus
our model is a proper extension of the classical AKE model.

– Send(πs
i ,m): The active adversary can use this query to send any message m of his

own choice to oracle πs
i . The oracle will respond according to the protocol specifi-

cation. If m = (∅, Pj), where ∅ denotes the special string that is not included in the
alphabet of the messages, πs

i is activated, i.e. πs
i will respond with the first protocol

message of a protocol run with intended partner Pj .
– Reveal(πs

i): The adversary may learn the session key ks
i computed by process πs

i by
asking this query. We require that ks

i �= ⊥ iff πs
i has accepted.

– Corrupt(Pi, w): For w ∈ {0, 1}, the adversary can send this query to any of the
oracles πs

i . The oracle will answer with the long-lived key pairs (skw
i , pkw

i) of party
Pi. The pair Pi, w and the corresponding key pair (skw

i , pkw
i) are then marked as

corrupted. Keys that are not corrupted are called uncorrupted.
– Unmask(πs

i , z): If the bit z ∈ {0, 1} is such that z = 0, the adversary is given the
identity selector bit ds

i computed by process πs
i . In case z = 1, the adversary may

learn the partner selector bit fs
i of πs

i . If πs
i has not accepted, ⊥ is output. We require

that ds
i , f

s
i �= ⊥ iff πs

i has accepted.

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 581

– Test(πs
i ,m): This query can only be asked once and after this, we often refer to πs

i

as the so-called Test-oracle. If process πs
i has not (yet) accepted, the failure symbol

⊥ is returned. Otherwise the oracle flips a fair coin b and proceeds as follows:
m = KEY: If b = 0 then the actual session key k0 = k computed by process

πs
i is returned. If b = 1, a uniformly random element k1 from the keyspace is

returned. If m = KEY, the output of the Test-oracle is called the candidate key.
m = (ID, z): If the bit z ∈ {0, 1} equals 0, the adversary is given ds

i ⊕ b. In case
z = 1, the adversary obtains fs

i ⊕ b. If m = (ID, z), we call the final output of
the Test-oracle candidate (identity or partner) selector bit.

RATIONALE AND IMPLICATIONS. Essentially our model aims at introducing a new
way for the attacker to win the security game besides the classical approach of guessing
the session key. Our extension, the computations for case m = (ID, z), captures that the
attacker is given either the real selector bit of the Test-oracle – or its negation. When
calling the Test-query the adversary uses z to distinguish between identity selector bit
and partner selector bit in case m = (ID, z). Please note that the role of b is consistent
in each of the choices for m. Essentially b determines if the attacker is given the real
state variable stored by πs

i (b = 0) or not (b = 1). When formalizing security we will
require the attacker to distinguish these two cases.

Observe that the security-critical selector bits, like session keys, are by definition
shared among two oracles if no attacker is present: ks

i = kt
j , ds

i = f t
j , and fs

i = dt
j .

So intuitively, by allowing to also disclose the partner selector bit our model captures
realistic scenarios where an adversary attempts to deduce the used identity of some
party via attacking that party itself or its communication partner, in contrast to [43].
In this way, a security proof of a protocol in our model provides strong guarantees on
the confidentiality of the used identities. Essentially, a proof states that the confiden-
tiality of the session key or selector bits of one oracle does not depend on the security
(or insecurity) of the secret information of other, ‘unrelated’ oracles. It is clear that
the definition of ‘unrelated’ is highly critical in this context and in the following we
will devote some effort to motivate our formalization. Also note that even though we
introduce multiple identities to each party this does not increase the susceptibility to
unknown-key share attacks, where at least one of the communication partners is tricked
into believing it shares the session key with some other communication partner. The rea-
son why our model is not more susceptible is that (i) communication endpoints are still
fully specified in the security model via combinations of party and identity identifiers
and (ii) communication endpoints are still associated with cryptographic key material
that is used to authenticate messages with in the protocol run. However, we note that
it is not sufficient in the protocol run to specify communication partners solely via
their party identifier as is common in classical models where parties are associated with
cryptographic keys. Leaving the used identity unspecified, parties could be tricked into
believing they share a key with some identity of some peer although they actually share
it with another identity of that same peer.

3.3 Original Key Partnering

To exclude trivial attacks in the security model, a variety of definitions exist in the
literature, starting with the classical definitions of matching conversations [4] and ses-

582 S. Schäge et al.

sion identifiers [7], up to the more sophisticated distinction between contributive and
matching session identifiers introduced in [19]. Recently, at CCS’17 the authors of [34]
showed that matching conversation based security notions are often vulnerable to so-
called no-match attacks. We therefore choose their conceptually novel partnering defi-
nition, called original key partnering, that is independent of the exchanged messages of
the protocol. We remark that as sketched in [34] it leads to conceptually more simple
security proofs since only a subset of active attacks need to be considered. We note,
however, that the specification of our model is not bound to one partnering definition.
The concrete choice of partnering is rather orthogonal to our contribution. It is only in
the security proof for IKEv2 that we will formally rely on original key partnering.

Definition 2 (Original Key). The original key of a pair of communicating πs
i and πt

j

oracles is the session key that is computed by each of the oracles in a protocol run with
an entirely passive attacker. We use ok(πs

i , π
t
j) to denote the original key if πs

i is the
initiator of the protocol run and πt

j the responder.

Definition 3 (Original Key Partnering). Two oracles πs
i and πt

j are said to be part-
nered if both of them have computed their original key ok(πs

i , π
t
j).

In the following we may use Ms
i to denote the set of all oracles partnered with πs

i .

3.4 Security and Privacy Model

SECURITY GAME. We define protocol security via a game. We call the protocol insecure
if an efficient (PPT) adversary can win the game with non-negligible advantage.

Definition 4 (Security Game). Consider the following security game played between
a challenger C and an adversary A.

1. The challenger simulates n parties Pi, i ∈ {1, ..., n}. For each party Pi, he computes
identities ID0

i , ID1
i and randomly generates key pairs (sk0

i , pk0
i), (sk1

i , pk1
i). All

public keys are given to the attacker.
2. The adversary may ask arbitrary queries Send,Reveal, Unmask, Corrupt, and Test

to any process πs
i with i ∈ {1, ..., n}, s ∈ {1, ..., �}. Queries can be made adaptively.

For each process πs
i the challenger chooses random selector bits if the mode requires

so: if us
i = 0, ds

i is chosen uniformly at random; in case vs
i = 0, fs

i is chosen
uniformly at random. The Test-query can only be asked once.

3. Finally, the adversary outputs bit b′ ∈ {0, 1}, its guess for b.

Definition 5 (Secure PPAKE). Let A be a PPT adversary, interacting with challenger
C in the security game described above. Assume the attacker calls Test(πs

i ,m) that
internally computes bit b. Let d be πs

i ’s identity selector bit, let Partner
s
i = (Pj , f) be

its intended partner with partner selector bit f , and let b′ be the output of A. We say
the adversary wins the game, if b = b′ and at least one of the following holds
1. m = KEY, then we require that (i) no query Reveal(πs

i) has been asked, (ii) no
query Reveal(πt

j) has been asked to any oracle πt
j such that πs

i is partnered with
πt

j , and (iii) Partnersi = (Pj , f) has not been corrupted while Ms
i = ∅ (there is no

partner oracle).

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 583

2. m = (ID, 0), then we require that (i) no query Unmask(πi
s, 0) has been asked, (ii)

no Unmask(πt
j , 1) query has been asked to any oracle πt

j such that πs
i is partnered

with πt
j , and (iii) Partnersi = (Pj , f) has not been corrupted while Ms

i = ∅.
3. m = (ID, 1), then we require that (i) no query Unmask(πi

s, 1) has been asked, (ii)
no Unmask(πt

j) query has been asked to any oracle πt
j such that πs

i is partnered
with πt

j , and (iii) Partnersi = (Pj , f) has not been corrupted while Ms
i = ∅.

We say that an authenticated key exchange protocol Π is εPP-AKE-secure if any PPT
adversary A has at most an advantage of εPP-AKE i.e.

|Pr [b = b′] − 1/2| ≤ εPP-AKE.

Observe that if we focus on key indistinguishability only, i.e. ignoring the Unmask
query and the identity options for the Test query, our model provides all attack queries
that are present in the original Bellare-Rogaway model [4]. Moreover, our model cap-
tures several important attack variants that involve the corruption of secret keys. To
model key compromise impersonation (KCI) attacks [30] we allow the attacker to
always corrupt the holder of the Test-oracle. Moreover, we also allow the corruption
of long-term keys given in Πs

i (while carefully ruling out trivial attacks via 1.(iii)).
This models (full) perfect forward secrecy. Finally, since there is no restriction on the
relation of the key material of initiator or responder our model considers reflection
attacks [30], where parties communicate with themselves (e.g. between two devices
that use the same long-term secret).

REMARKS. Let us consider a variant of a no-match attack [34] that does the following:
(1) it modifies the messages exchanged between two oracles such that the two oracles
are not partnered anymore. However, assume further, that the attacker’s modifications
do not influence the computations of the selector bits of the two oracles. Since the two
oracles are not partnered anymore, the attacker may (2) disclose the selector bits of one
oracle while answering the Test-query for the other. However, since the computations
of the selector bits have not been influenced at all, the attacker may now trivially answer
the Test-query for m = (ID, z). This theoretical attack has major implications for the
protocol design. What it amounts to – from a constructionist perspective – is that active
modifications that change the partnering status of two oracles should always make their
selector bits independent of each other – from the attacker’s point of view. At the same
time, our model requires a considerable amount of independence between the secrecy
of the selector bits and the confidentiality of the session key. To see this observe that our
model provides strong guarantees for the secrecy of the selector bits even if the session
keys of two partnered oracles are exposed. (Observe that in 1. of Definition 5, there is no
restriction on the use of the Reveal query.) In the opposite direction, our model provides
strong guarantees for the confidentiality of the session key even if the selector bits of
two partnered oracles are exposed using the Unmask query. (We notice that in 2. and 3.
of Definition 5 there is no restriction on the use of the Unmask query.)

3.5 Additional Considerations

EXPLICIT AUTHENTICATION. We stress that there is no obstacle to adding classical
explicit authentication [4] or its generalizations [34] and variants [31] to the set of

584 S. Schäge et al.

security guarantees captured by our model. Technically, all we have to do is to add
another winning condition which essentially states that for each accepting oracle, there
is exists another oracle that is partnered.

PRIVACY-PRESERVING AUTHENTICATED AND CONFIDENTIAL CHANNEL ESTAB-
LISHMENT (PPACCE). Our modifications to the classical model can be transferred to
the ACCE model [22] and its derivatives. In a nutshell, the main difference to AKE pro-
tocols is that the security analysis focuses on the security of the transferred messages
and not on the secrecy of the derived keys. Recall that in these models, the Test query
was replaced by the two queries Encrypt and Decrypt to model the security properties
of the established channel.

Exactly as before we may equip oracles with selector bits and modes, and as before
we may add two additional winning conditions that revolve around the secrecy of the
selector bits. We reintroduce the Test-query for m = (ID, z) but do not require any
changes to the encryption or decryption queries: for better modularity and cleaner secu-
rity arguments we may consider protocols where only the session key computation
depends on the used identity. Once this key is established the symmetric encryption
layer is independent of any further reference to identities.

UNILATERAL AUTHENTICATION. Our model is defined with respect to mutual authen-
tication, where both communication partners have long-term keys. However, it can eas-
ily be used to analyse protocols with unilateral authentication where only servers have
long-term key material to authenticate themselves with. As before, clients or servers
may determine which identity the server should use. However, there are no selector bits
for the client identity. To obtain a model for unilateral authentication we simply require
that the Test-query can only challenge the single identity bit that specifies the used
server identity.

4 Internet Protocol Security (IPsec)

IPSEC ARCHITECTURE. IPsec functionality is integrated in virtually all operating sys-
tems, and in most network devices. It is the basis for industry-level Virtual Private
Networks (VPN), e.g. to connect the automotive industry with their suppliers. Thus its
practical importance is comparable to TLS, and the IPsec protocol suite is at least as
complex.

In contrast to TLS, the “Record Layer” of IPsec is packet-based, not stream based,
and consists of the two data formats Authentication Header (AH) [26] and Encapsu-
lating Security Payload (ESP) [27]. Both data formats can either be used in Transport
mode, where the original IP header is used in ESP and AH, and Tunnel mode, where a
new IP header is prepended to the packet. The security of this packet-based encryption
layer is quite well understood today [13,14,37].

IPsec can be used in different scenarios. The end-to-end encryption scenario is
called host-to-host (H2H), and this is the only scenario in which Transport mode can be
used. Other scenarios involve IPsec gateways as encryption endpoints, which enforces
the use of Tunnel mode – host-to-gateway (H2G) to enable remote access to a com-
pany network, and gateway-to-gateway (G2G) to connect separate local area networks
(LAN) over the Internet.

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 585

Fig. 3. Host-to-host IPsec connection through two NAT gateways.

To illustrate the applicability of our formal model, consider the typical H2H IPsec
scenario depicted in Fig. 3: We have two LANs, which are connected via Network
Address Translation (NAT). These gateways do hide all network-level identity informa-
tion like IP addresses or UDP/TCP port numbers, both in IPsec “Record Layer” com-
munications and in the IKE handshake (Fig. 4), by substituting the private IP addresses
used by the different hosts to a single valid IPv4 address. Now a host A in LAN 1 (the
Initiator) wants to set up an IPsec connection with a host B (the Responder) in LAN 2.
A therefore performs an IKE handshake with B, which the adversary can observe and
manipulate only after network-based identity information has been removed by the NAT
gateways – he thus only observes network traffic between LAN 1 and LAN 2.

His goal is to determine the private IP addresses of the hosts A and B which com-
municate, and this information has been removed from the IP packets. However, before
two hosts can communicate via IPsec ESP, they have to perform an IKE handshake
which is only partly encrypted, and may leak information about the host’s identities
IDI0, IDI1, IDR0 or IDR1. Our goal is to show that this is not the case, under some well-
defined assumptions given by our model.

INTERNET KEY EXCHANGE (IKE). The IPsec “handshake”, which is called Internet
Key Exchange (IKE), is used in two major versions, IKEv1 [21] and IKEv2 [24,25].
Although IKEv1 is declared to be deprecated, it is still active in most codebases.

IKE consists of two phases (cf. Fig. 1): In Phase 1, which is executed only once,
DHKE is combined with variety of authentication mechanisms (four in IKEv1, two
in IKEv2) to establish a set of authenticated symmetric keys. Phase 2, which can be
executed several times, derives fresh symmetric keys to be used in AH or ESP from this
set of keys, by exchanging fresh nonces and optionally performing another DHKE.

While the cryptographic core of IPsec has been analyzed quite early [29], the sheer
complexity of IPsec made it difficult to provide a reduction-based security proof. A
symbolic security analysis, updating [35], has been performed in [10], but due to the
high level of abstraction the automated tool (Scyther) required, some small but impor-
tant details of the protocols had to be simplified. For example, the reflection attack
against IKEv2 Phase 2 described in [10] works for the given abstraction, but not against
any implementation, because different handshake keys are used in both directions. We
note that our abstraction of IPsec also considers distinct keys for the two communica-
tion directions.

586 S. Schäge et al.

IKEV2. The target of our security and privacy proof is IKEv2, the current version of
IKE. IKEv2 is a complex protocol consisting of two phases. Phase 1 is a complete, pub-
lic key based authenticated key exchange protocol (comparable to the full TLS hand-
shake), and comprises messages m1 through m4 in Fig. 4. With the first two messages,
initiator and responder negotiate cryptographic algorithms and parameters (SA and
SA), exchange 4 nonces (SPII,SPIR, nI , nR), and perform a DHKE. Any active adver-
sary may interfere with these two messages.

Authenticity of the keys derived after this first exchange is only established later,
through two digital signatures over partial protocol transcripts. The partial transcript
includes all data sent by the signing party in the first exchange, plus the nonce nX sent
by the other party, plus a MAC on the sender’s identity.

Phase 1 is however chained and interleaved with Phase 2 (comparable to TLS ses-
sion resumption) through a key derivation key kd which is used in both phases. This
key is derived after the first message exchange, authenticated in the second exchange,
and applied for the first AH/ESP key derivation immediately after the second exchange,
in which also a second cryptographic parameter negotiation (SA2, SA2) takes place.
This second negotiation and the second key derivation are part of Phase 2, and the first
instance of Phase 2 is thus interleaved with Phase 1.

The protocol can be configured in two ways: either the initiator or the responder may
decide on the responder identity. Technically this is signaled in message m3 by sending
or not sending IDR. To formally capture this we will use our novel mode concept. We
stress that it is not realistic to provide separate proofs for each mode since both use the
same long-term keys. Such an approach could not exclude attackers that dynamically
switch between modes.

5 IKEv2 Is a Secure PPAKE Protocol

In this section we state the PPAKE security of IKEv2 Phase 1. In our corresponding
proof we first show that IKEv2 Phase 1 fulfills the security properties of key indistin-
guishability as described in Definition 5 (1). Then we prove the privacy properties in
the sense of Definition 5 (2) and (3). In our proofs we consider two modes in which the
identity of the responder can be either chosen by itself or by the initiator.

RELYING ON THE PRF-ODH ASSUMPTION. In IKEv2 Phase 1 the first two messages
are used to exchange ephemeral Diffie-Hellman (DH) shares gx and gy . Since both
messages are unauthenticated, any adversary could possibly exchange one of the val-
ues with its own DH values gx′

or gy′
. For successful simulation, the challenger thus

should always be able to answer all queries that involve only one of the values gx or
gy . However, to argue that the keys kai|kar|kei|ker are secure, the value derived from
gxy should still be indistinguishable from random. We therefore deploy the PRF-ODH
assumption in the proof: to deal with modified values gx′

or gy′
the reduction can query

the ODH (resp. ODHv) oracle for the correct output of the pseudorandom function.

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 587

Initiator
(skI , pkI)

Responder
(skR, pkR)

IKE SA INIT
x

$← Zq, X ← gx,
nI

$← {0, 1}µ,
m1 := (SA,X, nI)

−
SPII, 0, m1→−−−−−−−−−−−

y
$← Zq, Y ← gy

nR
$← {0, 1}µ,

m2 := (SA, Y, nR, [CREQ])

←−
SPII,SPIR, m2−−−−−−−−−−−

s ← PRF1(gxy, nI |nR),
kd|kai|kar|kei|ker|kpi|kpr ← PRF2(s, nI |nR|SPII|SPIR)

IKE AUTH

Messages Encrypted-then-MACed with (kei, kai), (ker, kar)
parties abort on decryption failure

ti ← PRF3(kpi, IDI)
σi ←

SignskI
(SPII|SPIR|0|m1|nR|ti)

m3 :=
(IDI , [CERT], [CREQ], [IDR], σi, SA2, auxi)

−
SPII,SPIR, m3→−−−−−−−−−−−

if σi invalid abort
tr ← PRF3(kpr, IDR)

σr ←
SignskR

(SPII|SPIR|m2|nI |tr)
m4 :=

(IDR, [CERT], σr, SA2, auxr)

←−
SPII,SPIR, m4−−−−−−−−−−−

if σr invalid abort

k′
ei|k′

ai|k′
er|k′

ar ← PRF2(kd, nI |nR)

Fig. 4. IPsec IKEv2 Phase 1 with digital signature based authentication. Brackets [·] denote
optional values. In our security proof we will consider two modes, one where IDR is decided
on by the initiator oracle by indeed sending it in message m3 and one where IDR is decided on
by the responder oracle. Thus the protocol modes are mode = (0, 0) and mode′ = (0, 1). We
assume that the responder oracle aborts in case their modes do not fit. (Either the responder oracle
does receive IDR in m3 although it would like to decide it on its own, or it does not receive IDR

although it expects it.) The common session key is k′
ei|k′

ai|k′
er|k′

ar .

588 S. Schäge et al.

ON THE (IR)RELEVANCE OF ti AND tr FOR SECURITY. In the third and fourth message
both parties compute a tag t by using PRF3 with input IDI (resp. IDR). Surprisingly,
this value has little influence on the PPAKE security properties of the protocol. To see
the reason for this intuitively and jumping ahead, observe that as long as the output
of the first evaluation of PRF2 is indistinguishable from random, the protocol remains
secure even if the attacker obtains the keys kpi and kpr. First, key indistinguishability
still holds since kpi and kpr are independent from the session key to any PPT attacker.
Moreover, the AE keys are independent from these values. However, this means that the
AE encryption does not provide any information on the sent plaintexts. Therefore the
attacker does not obtain ti or tr, and thus no check value to test one of the keys kpi, kpr

against. Our security proof will give formal evidence for this, as it indeed does not rely
on the security of PRF3. We find this property striking.

One reason for the introduction of PRF3 may be that, in the absence of authenti-
cated encryption of message m3 and m4, it helps to mitigate attacks where initiator and
responder each establish an authenticated connection with the adversary, but the adver-
sary simply forwards the first two messages between them, thus in effect establishing
an authenticated channel directly between these two. This constitutes an unknown key
share attack. A similar attack was described for TLS Renegotiation [1].

Theorem 1. Let μ be the length of the nonces and q be the prime-order group G gen-
erated by g. Let n be the number of parties and t be the number of sessions per party.
Assume the signature is εSIG-secure and length-preserving, the pseudorandom func-
tion PRF2 is εPRF-secure, the PRF-ODH-problem is εPRF-ODH-secure with respect to G
and PRF1. Then, for any PPT ε-adversary that breaks the IKEv2 Phase1 protocol as
depicted in Fig. 4 (with modes mode = (0, 0) and mode′ = (0, 1)), we have

ε ≤ 2 ·
(

(nt)2
(

4εPRF + 3εPRF-ODH + 3εAE +
3
2μ

+
3
q

)
+ 3n2tεSIG

)

We consider different types of adversaries:

1. The Initiator-Adversary, which succeeds by guessing the output of Test(πs
i ,m) cor-

rectly where πs
i is initiator

2. The Responder-Adversary which succeeds by guessing the output of Test(πs
i ,m)

correctly where πs
i is responder

We prove Theorem 1 by proving two lemmas, the second of which can be found
in the full version for space reasons. Lemma 1 bounds the probability that Initiator-
adversaries succeed. It remains to show a lemma that bounds the probability that
Responder-adversaries succeed. The overall strategy is to first show that all derived
keys are indistinguishable from random. This follows from the security of the anony-
mous key exchange which is authenticated via signatures. Next the security of keys is
used to argue that no identity-related information is revealed from the ciphertexts by
reducing to the security of the authenticated encryption system. In the following we
will provide two lemmas that help to establish a proof for Lemma 1.

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 589

5.1 Proof for Initiator-Adversaries

First, we show the security of the protocol in the sense of Definition 5 for Initiator-
adversaries with modes mode = (0, 0) and mode′ = (0, 1). We have to distinguish
between three different cases for the Test(pisi ,m)-query:

1. m = KEY
2. m = (ID, z) with z = 0 (ID0 − Initiator)
3. m = (ID, z) with z = 1 (ID1 − Initiator)

Lemma 1. For any PPT εInitiator-adversary that breaks the IKEv2 Phase1 protocol as
specified in Fig. 4, we have

εInitiator ≤ εKEY−Initiator + εID0−Initiator + εID1−Initiator.

To show the correctness of Lemma 1 we will prove the following lemmas.

Lemma 2. For any PPT adversary AKEY−Initiator, the probability that AKEY−Initiator

answers the Test(∗,KEY)-challenge correctly is at most 1
2 + εKEY−Initiator with

εKEY−Initiator ≤ (nt)2
(

2εPRF + εPRF-ODH +
1
2μ

+
1
q

)
+ n2tεSIG.

Proof. In the following let Advδ := |Pr[b′ = b]− 1
2 | be the advantage of A in Game δ.

Game 0. Game 0 is the original security game PP-AKE and therefore it holds

Pr[b = b′] =
1
2

+ εKEY−Initiator =
1
2

+ Adv0.

Game 1. In Game 1 we raise event coll if (i) a nonce collision occurs or (ii) a collision
among the ephemeral keys X,Y occurs. In this case the challenger aborts the game and
chooses a random bit. We know that at most n · t nonces nI and nR with length μ are
chosen. Moreover we know that at most n · t ephemeral secret keys are chosen, each

from Zq. We can bound the probability of event coll by (nt)2

2µ + (nt)2

q . We have

Adv0 ≤ Adv1 +
(nt)2

2μ
+

(nt)2

q
.

Game 2. We now want to guess the initiator oracle πs
i and its intended peer which

will be tested by the adversary. For this, the challenger chooses random indices
(i∗, s∗, j∗) $← [n]× [t]× [n]. If the attacker issues Test(πs

i ,KEY) with (i, s) �= (i∗, s∗),
πs∗

i∗ is not initiator, or Partnersi = (j, f) with j �= j∗ the challenger aborts the game
and chooses b′ at random, thus

Adv1 ≤ n2t · Adv2.

Game 3. In the protocol both parties compute a signature over the exchanged DH
shares and nonces. If πs

i receives a message with a valid signature σ∗ while interact-
ing with intended partner j∗, but there exists no oracle πt

j∗ which has computed the
signature, we raise event sigForge. We claim

Adv2 ≤ Adv3 + Pr[sigForge].

590 S. Schäge et al.

The probability of event sigForge is estimated as follows. Since the signature contains
both random nonces, and we have excluded nonce collisions, the attacker cannot replay
a previous signature. Now we use this information to build an attacker B against the
security of the signature scheme as follows. B receives a public key pk∗ as input. Since
πs

i has an intended partner oracle πt
j , the challenger sets pkj = pk∗. Then B gener-

ates all secret and public keys for parties i �= j honestly. B simulates the PP-AKE
game for AKEY−Initiator and can use the SIG challenger to create signatures under pkj .
If AKEY−Initiator outputs a message with a valid signature under pkj , then B can use the
signature to break security. Therefore,

Adv2 ≤ Adv3 + εSIG.

Thus from now on, we may assume that no signature forgeries occur. Moreover
by assumption Pj∗ is uncorrupted. This means that the signature must indeed have
been computed by the responder oracle. Moreover, since πs∗

i∗ accepts and because the
responder oracle also signs the received nonce nI , the attacker cannot modify nI on
transit. However, the initiator ephemeral key X is not protected in this way. Observe
that the SPII and SPIR are also protected by each signature.

Game 4. In this game we guess πt∗
j∗ the oracle of Pj∗ that created the signature σr

received by πs∗
i∗ . It holds that

Adv3 ≤ t · Adv4.

Game 5. Let gx∗
be the Diffie-Hellman share chosen by πs∗

i∗ and gy∗
be the Diffie-

Hellman share chosen by πt∗
j∗ . Both session oracles need to compute gx∗y∗

to generate
the ephemeral secret s ← PRF1(gx∗y∗

, nI |nR). In this game we replace the secret s that
is computed by the initiator with a random value ŝ. (Recall that the initiator is indeed
guaranteed to compute this value, since the responder’s public key is protected against
modifications by the signature schemes.) All other values are computed as before. We
claim that

Adv4 ≤ Adv5 + εPRF-ODH.

Suppose an attacker A that can distinguish between Games 5 and 4. We use A to build
an attacker B to solve the PRF-ODH problem. B plays the PRF-ODH experiment and is
first given gx∗

:= gu, gy∗
:= gv, nI |nR. B uses the Diffie-Hellman shares gx∗

and gy∗

as the first two messages of the oracles πs∗
i∗ and πt∗

j∗ together with the nonces (nI)s∗
i∗ :=

nI and (nR)t∗
j∗ := nR. The initiator will now use z as the output of the PRF. Moreover, if

the initiator’s ephemeral public key (which is not protected by the responder’s signature)
is not modified on the way to the responder, the responder will also use z as the output
of the PRF. However, if gx∗

is modified to gx′ �= gx∗
, B can use the oracle of the

PRF-ODH assumption ODH to compute the corresponding responder’s output s′ of the
PRF. We note that in this case, s is independent from s′. B can now use knowledge
of s′ to simulate the rest of the computations in πt∗

j∗ honestly. If z is the real output of
the pseudorandom function we are in Game 4 and if z is a random value we simulate
perfectly Game 5, and every attacker that can distinguish both games can be used to
solve the PRF-ODH assumption.

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 591

Game 6. The next step is to replace the output u = PRF2(s, nI |nR|SPII |SPIR) by
a random value u∗. Thus all the keys derived at this stage, and in particular kd are also
truly random. Only if, πs∗

i∗ and πt∗
j∗ have up to now computed the same value s we will

also substitute the output of πt∗
j∗ to u∗. Distinguishing Games 6 and 5 implies an attacker

which breaks the security of the pseudorandom function, thus we have

Adv5 ≤ Adv6 + εPRF.

Game 7. In the last step of the protocol the session keys are computed via v =
PRF2(kd, nI |nR). In our last game we replace this value by a truly random function.
Only if πt∗

j∗ has computed the same value kd we will also replace its output as well.
Every adversary which can distinguish between Games 7 and 6 implies an attacker
which can be used to break the security of the pseudorandom function. Moreover, in
Game 7 the attacker always receives a random key after sending the Test query, which
implies Adv7 = 0 and

Adv6 ≤ 0 + εPRF = εPRF.

Summing up all probabilities above we can conclude

εKEY−Initiator ≤ n2t (t(2εPRF + εPRF-ODH) + εSIG) +
(nt)2

2μ
+

(nt)2

q
.

Observe that so far all arguments are independent of the mode actually used. Next,
we will prove that the protocol is privacy preserving. We recall that the adversary is
allowed to ask Reveal-queries to the Test-oracle and its partner.

Lemma 3. For any PPT adversary AID0−Initiator, the probability that AID0−Initiator

answers the Test(∗, (ID, 0))-challenge correctly is at most 1
2 + εID0−Initiator with

εID0−Initiator ≤ (nt)2
(

εAE + εPRF + εPRF-ODH +
1
2μ

+
1
q

)
+ n2tεSIG.

Game 0. In this and the following proofs we extend Game 6 in the proof of Lemma 2
and we have

Adv0 ≤ n2t (t(Adv1 + εPRF + εPRF-ODH) + εSIG) +
(nt)2

2μ
+

(nt)2

q
.

After Game 0 the encryption keys (kei, ker) and authentication keys (kai, kar) are now
chosen at uniformly random by the Test-oracle πs∗

i∗ .

Game 1. We now substitute d := ds∗
i∗ by d′ := ds∗

i∗ ⊕ 1 thus effectively switching from
IDd to IDd′ . At the same time we substitute the signature generated by the initiator that

was constructed using sk
(d)
i∗ by a signature that uses the other secret key sk

(d′)
i∗ . In case

the oracle πt∗
j∗ has computed the same encryption and authentication keys, we will also

substitute f := f t∗
j∗ by f ′ := f t∗

j∗ ⊕ 1. We construct an attacker B that uses a successful
attacker A against the privacy property of the protocol to break the security of the under-
lying authenticated encryption scheme as follows. To encrypt (SPII,SPIR,m3) B uses

592 S. Schäge et al.

the ENC oracle of the authenticated encryption scheme and sets M0 as SPII,SPIR,m3

with ID=IDd and M1 as (SPII,SPIR,m3) with ID=IDd′ . The so generated cipher-
text cd is sent to the responder oracle. After the w ← Test(πs

i , (ID, 0)) message for
w = ds∗

i∗ ⊕ b, B outputs a random bit b to A which in turn responds with guess b′. B can
now use b′ to break the security of the authenticated encryption scheme by outputting
w ⊕ b′. Therefore,

Adv1 ≤ Adv2 + εAE.

Game 2. Since we have entirely switched the used identity in the last game, in this
game the attacker has advantage 0 to win the security game.

Adv2 = 0.

Summing up all probabilities above we can conclude

εID0−Initiator ≤ n2t (t(εAE + εPRF + εPRF-ODH) + εSIG) +
(nt)2

2μ
+

(nt)2

q
.

Again all arguments are independent of the mode as we have shown privacy of the
identity used by the initiator. This identity will always be specified by the initiator. Note
that we require that signatures have to be length preserving. Else the attacker could triv-
ially break the privacy property by comparing the length of message m3 under different
identities. An other approach would be to employ a length-hiding authenticated encryp-
tion scheme.

Lemma 4. For any PPT adversary AID1−Initiator, the probability that AID1−Initiator

answers the Test(∗, (ID, 1))-challenge of some oracle with mode = (0, 0) or mode′ =
(0, 1) correctly is at most 1

2 + εID−Initiator with

εID1−Initiator ≤ (nt)2
(

2εAE + εPRF + εPRF-ODH +
1
2μ

+
1
q

)
+ n2tεSIG.

The proof for Lemma 4 is similar to the previous one and can be found in the full
version.

5.2 Additional Considerations

MODELING SIGNATURES AS LENGTH-PRESERVING IN THE SECURITY PROOF. What
we expect is that parties use the same signature scheme when dealing with multiple
identities on one machine. If this is not the case, or if signatures for the two identi-
ties differ in length, the adversary may be able to distinguish identities based on the
length of the exchanged ciphertexts. In case signatures have the same length, no matter
which identity is used, we may use the classical form of security notions for authenti-
cated encryption. However, we stress that it is very easy to extend the security proof to
signature schemes which are not length preserving or where the key pairs key entirely
different signature schemes, e.g. an RSA-based scheme for the first identity and an DH-
based scheme for the second identity. In this case, we need still to ensure in the security

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 593

proof for m = (ID, z) that the adversary cannot notice if we substitute one signature for
another, even if the signature lengths may vary. At this point we would need to rely on
the security properties of length hiding authenticated encryption as introduced by [36].

PRACTICAL INSTANTIATIONS AND LIMITATIONS. Our security result holds for the
protocol specified in Fig. 4 which models IPsec IKEv2 using signature schemes. The
standard [24,25] points to various concrete instantiations for the signature scheme, the
PRFs, and the authenticated encryption scheme via widespread and well-known crypto-
graphic primitives like AES or HMAC. Our proof clearly only holds if IKEv2 is instan-
tiated with secure variants of these primitives. We stress that, as in previous analyses of
real world protocols, our model does not cover all practical attacks. In this sense, we
stress that the confidentiality of identities is, of course, only preserved if practical imple-
mentations do not reveal them in other messages. Moreover, our model does not cover
cross-ciphersuite, cross-protocol, key reuse attacks (e.g. [23]), or physical attacks on
devices like side channel analysis. Nevertheless, our result acts as an important source
of confidence in the security of IKEv2, provides new insights into the design of the
protocol, and may give hints to implementors.

6 Summary and Future Work

In this paper we have proposed a general-purpose key exchange model that formal-
izes privacy in a very strong way. Our model is a proper extension of classical AKE
models. We have applied our model to the analysis of IPsec IKEv2 with authentication
based on signature schemes. To formally take full account of both protocol options we
have exploited the new features of our novel security model. Our work shows that this
protocol is a secure privacy-preserving AKE protocol.

We believe that our model is of independent interest and may serve as a tool to anal-
yse other protocols that aim to guarantee the confidentiality of identities, like TLS 1.3
client identities and certain modes of the NOISE protocol. Our result on IPsec IKEv2
is just a first stepping stone and there are many open questions regarding the security
properties of the remaining modes of the protocol that may be subject of future research
efforts.

References

1. Alvestrand, H., Housley, R.: IESG Procedures for Handling of Independent and IRTF Stream
Submissions. RFC 5742 (Best Current Practice), December 2009

2. Arfaoui, G., Bultel, X., Fouque, P.-A., Nedelcu, A., Onete, C.: The privacy of the TLS 1.3
protocol. In: PoPETs, vol. 2019, no. 4, pp. 190–210 (2019)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal defini-
tions, simplified requirements, and a construction based on general assumptions. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9 38

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 21

https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21

594 S. Schäge et al.

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups.
In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30574-3 11

6. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-station (STS)
protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 154–170. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 12

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–
474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 28

8. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange proto-
col. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45708-9 10

9. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security anal-
ysis of the signal messaging protocol. In: 2017 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 451–466. IEEE (2017)

10. Cremers, C.J.F.: Key exchange in IPsec revisited: formal analysis of IKEv1 and IKEv2.
In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 315–334. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2 18

11. Cremers, C.J.F., Feltz, M.: Beyond eCK: perfect forward secrecy under actor compromise
and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33167-1 42

12. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G.A., Mittelbach, A., Onete, C.: A cryp-
tographic analysis of OPACITY. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 345–362. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40203-6 20

13. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-only configura-
tions. In: 2007 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 20–23 May
2007, pp. 335–349. IEEE Computer Society Press (2007)

14. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt configu-
rations. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, Chicago,
Illinois, USA, 4–8 October 2010, pp. 493–504. ACM Press (2010)

15. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key exchange.
In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, Alexandria,
Virginia, USA, 30 October–3 November 2006, pp. 400–409. ACM Press (2006)

16. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key
exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992). https://doi.org/10.1007/
BF00124891

17. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. Tech-
nical report, Naval Research Lab Washington DC (2004)

18. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS
1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
Denver, CO, USA, 12–16 October 2015, pp. 1197–1210. ACM Press (2015)

19. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC protocol.
In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, Scottsdale, AZ, USA, 3–7 November
2014, pp. 1193–1204. ACM Press (2014)

20. Fouque, P.-A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA protocol.
In: PoPETs, vol. 2016, no. 4, pp. 255–275 (2016)

21. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). RFC 2409 (Proposed Standard),
November 1998. Obsoleted by RFC 4306, updated by RFC 4109

https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/978-3-642-23822-2_18
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1007/BF00124891
https://doi.org/10.1007/BF00124891

Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2 595

22. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–
293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 17

23. Jager, T., Schwenk, J., Somorovsky, J.: On the security of TLS 1.3 and QUIC against weak-
nesses in PKCS#1 v1.5 encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
Denver, CO, USA, 12–16 October 2015, pp. 1185–1196. ACM Press (2015)

24. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet Key Exchange Protocol Version 2
(IKEv2). RFC 5996 (Proposed Standard), September 2010. Obsoleted by RFC 7296, updated
by RFCs 5998, 6989

25. Kaufman, C. (ed.): Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Proposed Stan-
dard), December 2005. Obsoleted by RFC 5996, updated by RFC 5282

26. Kent, S.: IP Authentication Header. RFC 4302 (Proposed Standard), December 2005
27. Kent, S.: IP Encapsulating Security Payload (ESP). RFC 4303 (Proposed Standard), Decem-

ber 2005
28. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet. In: Pro-

ceedings of Internet Society Symposium on Network and Distributed Systems Security, pp.
114–127, February 1996

29. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and
its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–
425. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 24

30. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 33

31. Krawczyk, H.: A unilateral-to-mutual authentication compiler for key exchange (with appli-
cations to client authentication in TLS 1.3). In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, Vienna, Austria, 24–28 October 2016, pp.
1438–1450. ACM Press (2016)

32. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange.
In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5 1

33. Lee, M.-F., Smart, N.P., Warinschi, B., Watson, G.J.: Anonymity guarantees of the
UMTS/LTE authentication and connection protocol. Int. J. Inf. Secur. 13(6), 513–527 (2014).
https://doi.org/10.1007/s10207-014-0231-3

34. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining trivial attacks
for security protocols is not trivial. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.), ACM CCS 2017, Dallas, TX, USA, 31 October–2 November 2017, pp. 1343–1360.
ACM Press (2017)

35. Meadows, C.:. Analysis of the internet key exchange protocol using the NRL protocol ana-
lyzer. In: 1999 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 1999,
pp. 216–231. IEEE Computer Society Press (1999)

36. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: attacks and proofs for the
TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 372–389. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 20

37. Paterson, K.G., Yau, A.K.L.: Cryptography in theory and practice: the case of encryption in
IPsec. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 12–29. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 2

38. Perrin, T.: The noise protocol framework, October 2007. http://noiseprotocol.org/noise.pdf.
Revision 33

39. Rescorla, E., Oku, K., Sullivan, N., Wood, C.A.: Encrypted server name indication for TLS
1.3. Internet-Draft draft-ietf-tls-esni-03, Internet Engineering Task Force, March 2019. Work
in Progress

https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/s10207-014-0231-3
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/11761679_2
http://noiseprotocol.org/noise.pdf

596 S. Schäge et al.

40. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45682-1 32

41. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Ray, I., Li, N.,
Kruegel, C. (eds.) ACM CCS 2015, Denver, CO, USA, 12–16 October 2015, pp. 1211–1223.
ACM Press (2015)

42. Yao, A.C.-C., Zhao, Y.: Privacy-preserving authenticated key-exchange over internet. IEEE
Trans. Inf. Forensics Secur. 9(1), 125–140 (2014)

43. Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, Vienna, Aus-
tria, 24–28 October 2016, pp. 1464–1479. ACM Press (2016)

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32

Linearly-Homomorphic Signatures
and Scalable Mix-Nets

Chloé Hébant1,2(B), Duong Hieu Phan3, and David Pointcheval1,2

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
chloe.hebant@ens.fr
2 Inria, Paris, France

3 Université de Limoges, Limoges, France

Abstract. Anonymity is a primary ingredient for our digital life. Several
tools have been designed to address it such as, for authentication, blind
signatures, group signatures or anonymous credentials and, for confiden-
tiality, randomizable encryption or mix-nets. When it comes to complex
electronic voting schemes, random shuffling of authenticated ciphertexts
with mix-nets is the only known tool. However, it requires huge and com-
plex zero-knowledge proofs to guarantee the actual permutation of the
initial ciphertexts in a privacy-preserving way.

In this paper, we propose a new approach for proving correct shuffling
of signed ElGamal ciphertexts: the mix-servers can simply randomize
individual ballots, which means the ciphertexts, the signatures, and the
verification keys, with an additional global proof of constant size, and
the output will be publicly verifiable. The security proof is in the generic
bilinear group model. The computational complexity for the each mix-
server is linear in the number of ballots. Verification is also linear in the
number of ballots, but independent of the number of rounds of mixing.
This leads to a new highly scalable technique. Our construction makes
use of linearly-homomorphic signatures, with new features, that are of
independent interest.

Keywords: Anonymity · Random shuffling · Linearly-homomorphic
signatures

1 Introduction

A shuffle of ciphertexts is a set of ciphertexts of the same plaintexts but in
a permuted order such that it is not possible to trace back the senders after
decryption. It can be used as a building block to anonymously send messages:
if several servers perform a shuffle successively, nobody can trace the messages.
More precisely, one honest mix-server suffices to mask the order of the ciphertexts
even if all the other ones are dishonest. Moreover increasing the number of mix-
servers leads to a safer protocol but also increases its cost. The succession of
shuffles constitutes the notion of a mix-net protocol introduced by Chaum [14],
with applications to anonymous emails, anonymous routing, but also e-voting.
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 597–627, 2020.
https://doi.org/10.1007/978-3-030-45388-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_21

598 C. Hébant et al.

1.1 State of the Art

Usually, a shuffle of ciphertexts is a permutation applied to randomized cipher-
texts. Randomization of the ciphertexts provides the privacy guarantee, but one
additionally needs to prove the permutation property. This last step requires
huge and complex zero-knowledge proofs. In the main two techniques, Furukawa
and Sako [21] make proofs of permutation matrices and Neff [31] considers poly-
nomials which remain identical with a permutation of the roots. While the lat-
ter approach produces the most efficient schemes, they need to be interactive.
Groth and Ishai [23] exploited this interactive approach and proposed the first
zero-knowledge argument for the correctness of a shuffle with sub-linear com-
munication complexity, but computational complexity is super-linear which was
then improved by Bayer and Groth [3]. As this is a public random coin inter-
active Zero-Knowledge protocol, the Fiat-Shamir heuristic [18] can be applied
to make it non-interactive in the random oracle model. However, with multiple
mixing steps, which are required if one wants to guarantee anonymity even if
some mix-servers are malicious, the final proof is linear in this number of steps,
and the verification cost becomes prohibitive.

The former approach with proof of permutation matrix is more classical,
with many candidates. Groth and Lu [24] proposed the first non-interactive zero-
knowledge (NIZK) proof of shuffle without random oracles, using Groth-Sahai
proofs with pairings [25], but under non-standard computational assumptions
that hold in the generic bilinear group model. Even with that, computations are
still very expansive because the overhead proof is linear in Nn, where n is the
number of ciphertexts and N the number of mixing rounds. In addition, they
needed a Common Reference String (CRS) linear in n. More recently, Fauzi et
al. [17] proposed a new pairing-based NIZK shuffle argument to improve the
computation for both the prover and the verifier, and improved the soundness
of the protocol. But they still had a CRS linear in the number of ciphertexts,
and the soundness holds in the generic bilinear group model.

We propose a totally new approach that handles each ciphertext in an inde-
pendent way, with just a constant-size overhead in the final proof. The over-
head after each shuffle can indeed be updated to keep it constant-size. From
our knowledge, this is the most scalable solution. It relies on Groth-Sahai proofs
with pairings [25] and a new computational assumption that holds in the generic
bilinear group model. As a consequence, assumptions are quite similar to [24],
but we have a constant-size CRS and a constant-size overhead proof.

Compared to the most efficient schemes to date, namely the Fauzi et al.’s
scheme [17], our scheme is also proven in the generic bilinear group model, but
the CRS is shorter: just 8 group elements in contrast to a CRS with a number
of group elements linear in the number of ballots. Moreover, in our scheme, the
proof is constant-size, independently of the number of mixing rounds, while the
proof of Fauzi et al.’s scheme grows linearly in the number of rounds. Hence,
from 2 rounds, our scheme has a better verifier’s computation cost and for 3
rounds the proof sizes are almost the same with the two schemes. With more
rounds, our construction gets much better compared to the Fauzi et al.’s scheme,

Linearly-Homomorphic Signatures and Scalable Mix-Nets 599

and the input ballots already contain signatures by their senders, which makes
it quite attractive for electronic voting.

1.2 Our Approach

In our shuffle, each ciphertext Ci (encrypted vote in the ballot, in the context
of electronic voting) is signed by its sender and the mix-server randomizes the
ciphertexts {Ci} and permutes them into the set {C ′

i} in a provable way. The
goal of the proof is to show the existence of a permutation Π from {Ci} to
{C ′

i} such that for every i, C ′
Π(i) is a randomization of Ci. Then, the output

ciphertexts can be mixed again by another mix-server.
Our approach avoids the proof of an explicit permutation Π on all the cipher-

texts (per mixing step) but still guarantees the appropriate properties deeply
using the linearly-homomorphic signature schemes:

– each user is associated to a signing/verification key-pair for a linearly-homo-
morphic signature scheme [8], and uses it to sign his ciphertext and a way
to randomize it. This guarantees that the mix-server will only be able to
generate new signatures on randomized ciphertexts, which are unlinkable to
the original ciphertexts, due to the new random coins. However, unchanged
verification keys would still allow linkability;

– each verification key of the users is thus also certified with a linearly-homo-
morphic signature scheme, that allows randomization too as well as adapta-
tion of the above signature on the ciphertext, and provides unlinkability.

When talking about linearly-homomorphic signature schemes, we consider sig-
natures that are malleable and that allow to sign any linear combination of the
already signed vectors [8]. In order to be able to use this property on the latter
scheme that signs the verification keys of the former scheme, it will additionally
require some homomorphic property on the keys.

However, whereas ciphertexts are signed under different keys, which excludes
combinations, the verification keys are all signed under the authority’s key. Fur-
thermore, a linearly-homomorphic signature scheme not only allows multiplica-
tion by a constant, but also linear combinations, which would allow combinations
of keys and thus, possibly, of ballots. In order to avoid such combinations, we
require a tag-based signature, that allows only linear combinations between sig-
natures using the same tag. As such signatures allow to derive a signature of any
message in the sub-vector space spanned by the initially signed messages, when
there is no tag, only one sub-vector space can be considered, whereas tags allow
to deal with multiple sub-vector space. In the latter case, one thus talks about
Linearly-Homomorphic Signature (LH-Sign), whereas the former case is named
One-Time Linearly-Homomorphic Signature (OT-LH-Sign).

In the full version [27], we provide a generic conversion from OT-LH-Sign to
LH-Sign, using Square Diffie-Hellman tuples (g, gwi , gw2

i) for the tags. So, starting
from an efficient OT-LH-Sign, one can derive all the tools needed for our mix-net
application. However, in the body of the paper, we also provide a more efficient
LH-Sign version, and we thus focus on it in the following.

600 C. Hébant et al.

Unforgeability of the signature schemes will essentially provide the soundness
of the proof of correct mixing: only permutations of ballots are possible. Eventu-
ally, unlinkability (a.k.a. zero-knowledge property) will be satisfied thanks to the
randomizations that are indistinguishable for various users, under some DDH-
like assumptions, and the final random permutation of all the ciphertexts. With
the above linear homomorphisms of the signatures, we can indeed guarantee that
the output C ′

j is a randomization of an input Ci, and the verification keys are
unlinkable.

More precisely, the signature unforgeability will guarantee that all the ballots
in the output ballot-box come from legitimate signers: we will also have to make
sure that there is no duplicates, nor new ballots, and the same numbers of
ballots in the input ballot-box and output ballot-box for the formal proof of
permutation.

This technique of randomizing ciphertexts and verification keys, and adapting
signatures, can be seen as an extension of signatures on randomizable cipher-
texts [5] which however did not allow updates of the verification keys. This pre-
vious approach excluded anonymity because of the invariant verification keys.
Our new approach can find more applications where anonymity and privacy are
crucial properties.

1.3 Organization

In the next section, we recall some usual assumptions in pairing-based groups,
and we introduce a new unlinkability assumption that will be one of the core
assumptions of our applications. Note that it holds in the generic bilinear group
model. In Sect. 3, we recall the notion of linearly-homomorphic signatures, with
a construction of a one-time linearly-homomorphic signature scheme and its
security analysis in the generic bilinear group model. Then we extend it to handle
multiple sub-vector spaces. We then apply these constructions to mix-networks in
Sect. 4, followed by a detailed security analysis in Sect. 5. Eventually, we conclude
with some applications in Sect. 6.

2 Computational Assumptions

In this section, we will first recall some classical computational assumptions and
introduce a new one, of independent interest, as it can find many use cases for
privacy-preserving protocols.

2.1 Classical Assumptions

All our assumptions will be in the Diffie-Hellman vein, in the pairing setting.
We will thus consider an algorithm that, on a security parameter κ, generates
param = (G1,G2,GT , p, g, g, e) ← G(κ), an asymmetric pairing setting, with
three groups G1,G2,GT of prime order p (with 2κ bit-length), g is a generator
of G1 and g is a generator of G2. In addition, the application e : G1 ×G2 → GT

Linearly-Homomorphic Signatures and Scalable Mix-Nets 601

is a non-degenerated bilinear map, hence e(g, g) is also a generator of GT . For
the sake of clarity, in all the paper, elements of G2 will be in Fraktur font.

Definition 1 (Discrete Logarithm (DL) Assumption). In a group G of
prime order p, it states that for any generator g, given y = gx, it is computa-
tionally hard to recover x.

Definition 2 (Symmetric External Discrete Logarithm (SEDL) Assum-
ption). In groups G1 and G2 of prime order p, it states that for any generators
g and g of G1 and G2 respectively, given f = gx and f = gx, it is computationally
hard to recover x.

Definition 3 (Decisional Diffie-Hellman (DDH) Assumption). In a group
G of prime order p, it states that for any generator g, the two following distri-
butions are computationally indistinguishable:

Ddh(g) = {(g, gx, h, hx);h $← G, x,
$← Zp}

D4
$(g) = {(g, gx, h, hy);h $← G, x, y,

$← Zp}.

This is well-know, using an hybrid argument, or the random-self-reducibility, that
this assumption implies the Decisional Multi Diffie-Hellman (DMDH) Assump-
tion, which claims the indistinguishability, for any constant n ∈ N, of the distri-
butions:

Dn
mdh(g) = {(g, (gxi)i, h, (hxi)i);h

$← G, (xi)i
$← Z

n
p}

D2n+2
$ (g) = {(g, (gxi)i, h, (hyi)i);h

$← G, (xi)i, (yi)i
$← Z

n
p}.

2.2 Unlinkability Assumption

For anonymity properties, we will use some kind of credential, that can be defined
as follows for a scalar u and a basis g ∈ G1, with g ∈ G2, r, t ∈ Zp:

Cred(u, g; g, r, t) =
(
g, gt, gr, gtr+u, g, gt, gu

)

Definition 4 (Unlinkability Assumption). In groups G1 and G2 of prime
order p, for any g ∈ G1 and g ∈ G2, with the definition below, it states that the
distributions Dg,g(u, u) and Dg,g(u, v) are computationally indistinguishable, for
any u, v ∈ Zp:

Dg,g(u, v) =

{

(Cred(u, g; g, r, t),Cred(v, g; g′, r′, t′));
g′ $← G2,

r, t, r′, t′ $← Zp

}

Intuitively, as we can write the credential as, where × stands for the element-wise
product,

Cred(u, g; g, r, t) =
((

g
g

)
,

(
g
g

)t

,

(
g
gt

)r

×
(

1
gu

)
, gu

)

602 C. Hébant et al.

the third component is an ElGamal ciphertext of the gu, which hides it, and
makes indistinguishable another encryption gu from an encryption of gv while,
given (g, gu) and (g′, g′v), one cannot guess whether u = v, under the DDH
assumption in G2. However the pairing relation allows to check consistency:

e(grt+u, g) = e(gr, gt) · e(g, gu) = e(gr, gt) · e(g, g)u

e(gr′t′+v, g′) = e(gr′
, g′t′

) · e(g, g′v) = e(gr′
, g′t′

) · e(g, g′)v

Because of the independent group elements g and g′ = gs in the two credentials,
this assumption clearly holds in the generic bilinear group model, as one would
either need to compare u = v or equivalently rt = r′t′, whereas combinations
only lead to e(g, g) to the relevant powers rt, sr′t′, as well as u and sv, for an
unknown s.

Thanks to this unlinkability assumption, and the randomizability of the
above credential, proving knowledge of u can lead to anonymous credentials.
However, our main application will be for our anonymous shuffles presented in
Sect. 4.

3 Linearly-Homomorphic Signatures

The notion of homomorphic signatures dates back to [29], with notions in [2],
but the linearly-homomorphic signatures, that allow to sign vector sub-spaces,
were introduced in [8], with several follow-up by Boneh and Freeman [9,10]
and formal security definitions in [19]. In another direction, Abe et al. [1] pro-
posed the notion of structure-preserving signature, where keys, messages and
signatures all belong in the same group. Later Libert et al. [30] combined both
notions and proposed a linearly-homomorphic signature scheme, that is further-
more structure-preserving. Our work is inspired from this construction, but in
the asymmetric-pairing setting, and keys do not belong to the same group as
the message and signatures. The structure-preserving property is then relaxed
but fits our needs, as we will use two layers of linearly-homomorphic signature
schemes, with swapped groups for the keys and the messages.

3.1 Definition and Security

In this first part, we begin with the formal definition of linearly-homomorphic sig-
nature scheme, and the security requirement, the so-called unforgeability in case
of signatures. Then, we will introduce a new property for linearly-homomorphic
signature scheme: the randomizable tag. It will be the key element to obtain the
privacy in our mix-net. Our definition is inspired from [30], but with a possible
private key associated to a tag.

Definition 5 (Linearly-Homomorphic Signature Scheme (LH-Sign)). A
linearly-homomorphic signature scheme with messages in M ∈ G

n, for a cyclic
group (G,×) of prime order p, some n ∈ poly(κ), and some tag set T , consists
of the seven algorithms (Setup,Keygen,NewTag,VerifTag,Sign,DerivSign,Verif):

Linearly-Homomorphic Signatures and Scalable Mix-Nets 603

Setup(1κ): Given a security parameter κ, it outputs the global parameter param,
which includes the tag space T ;

Keygen(param, n): Given a public parameter param and an integer n, it outputs
a key pair (sk, vk). We will assume that vk implicitly contains param and sk
implicitly contains vk;

NewTag(sk): Given a signing key sk, it outputs a tag τ and its associated secret
key τ̃ ;

VerifTag(vk, τ): Given a verification key vk and a tag τ , it outputs 1 if the tag is
valid and 0 otherwise;

Sign(sk, τ̃ ,M): Given a signing key, a secret key tag τ̃ and a vector-message
M = (Mi)i ∈ G

n, it outputs the signature σ under the tag τ ;
DerivSign(vk, τ, (ωi,Mi, σi)�

i=1): Given a public key vk, a tag τ and � tuples of
weights ωi ∈ Zp and signed messages Mi in σi, it outputs a signature σ on
the vector M =

∏�
i=1 M

ωi
i under the tag τ ;

Verif(vk, τ,M, σ): Given a verification key vk, a tag τ , a vector-message M and
a signature σ, it outputs 1 if VerifTag(vk, τ) = 1 and σ is also valid relative
to vk and τ , and 0 otherwise.

The tag in DerivSign allows linear combinations of signatures under the same
tag but excludes any operation between signatures under different tags. The
latter exclusion will be formalized by the unforgeability. However, the former
property is the correctness: for any keys (sk, vk) ← Keygen(param, n), for any tags
(τ, τ̃) ← NewTag(sk), if σi = Sign(sk, τ̃ ,M i) are valid signatures for i = 1, . . . , �
and σ = DerivSign(vk, τ, {ωi,M i, σi}�

i=1) from some scalars ωi, then both

VerifTag(vk, τ) = 1 Verif(vk, τ,M , σ) = 1.

Our definition includes, but is more relaxed than, [30] as we allow a secret key
associated to the tag, hence the NewTag algorithm: in such a case, the signer
can only sign a message on a tag he generated himself. When there is no secret
associated to the tag, actually one can consider that τ̃ = τ is enough to generate
the signature (in addition to sk). Whereas the DerivSign algorithm generates a
signature under the same tag, we do not enforce to keep the same tag in the
unforgeability notion below, this will allow our tag randomizability. However, we
expect only signatures on linear combinations of messages already signed under
a same tag, as we formalize in the following security notion.

Unforgeability. Whereas linear combinations are possible under the same tag,
other combinations (non-linear or under different tags) should not be possible.
This is the unforgeability notion (note that we talk about linear combinations
component-wise in the exponents, as we consider a multiplicative group G).

Definition 6 (Unforgeability for LH-Sign). For a LH-Sign scheme with mes-
sages in G

n, for any adversary A that, given tags and signatures on messages
(Mi)i under tags (τi)i both of its choice (for Chosen-Message Attacks), outputs a
valid tuple (vk, τ,M, σ) with τ ∈ T , there must exist (ωi)i∈Iτ′ , where Iτ ′ is the set
of messages already signed under some tag τ ′ ∈ {τi}i, such that M =

∏
i∈Iτ′ M

ωi
i

with overwhelming probability.

604 C. Hébant et al.

Again, because of our relaxed version compared to [30], we do not exclude
the adversary to be able to generate valid signatures under new tags. The
linear-homomorphism for signatures, also known as signatures on vector-spaces,
requires that the adversary cannot generate a valid signature on a message out-
side the vector spaces spanned by the already signed messages. Tags are just a
way to keep together vectors that define vector spaces. The adversary can rename
a vector space with another tag, this is not a security issue. On the opposite,
we will exploit this feature for unlinkability with the additional randomizability
property on tags (see below).

However, as in [30], we will also consider a weaker notion of linearly-homo-
morphic signature: a one-time linearly-homomorphic signature (OT-LH-Sign),
where the set of tags is a singleton T = {ε}. Then we can drop the algorithms
NewTag and VerifTag, as well as the τ and τ̃ .

3.2 Our One-Time Linearly-Homomorphic Signature

Libert et al. [30] proposed a construction whose security relies on the Simulta-
neous Double Pairing assumption, which is implied by the linear assumption in
the symmetric case. In our use case we will need two LH-Sign schemes. While
the first one can simply be one-time and thus possibly in the standard model,
the second one needs randomizable tags and we do not know how to build it in
the standard model. Thus, we will consider a variant of Libert et al. [30] that
can only be proven in the generic bilinear group model [6,11,32].

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asym-
metric bilinear setting, where g and g are random generators of G1 and G2

respectively. We set param = (G1,G2,GT , p, g, g, e);
Keygen(param, n): Given the public parameters param, one randomly chooses

ski = si
$← Zp, for i = 1, . . . , n, which defines the signing key sk = (ski)n

i=1,
and the verification key vk = (gi)n

i=0 for gi = gsi and g0 = g;
Sign(sk,M = (Mi)i): Given a signing key sk = (si)i and a vector-message M =

(Mi)i ∈ G
n
1 , one sets σ =

∏n
i=1 Msi

i ∈ G1;
DerivSign(vk, (ωi,M i, σi)�

i=1): Given a verification key and � tuples of weights
ωi ∈ Zp and signed messages M i in σi, it outputs σ =

∏
σωi

i ;
Verif(vk,M = (Mi)i, σ): Given a verification key vk, a vector-message M , and a

signature σ, one checks whether the equality e(σ, g0) =
∏n

i=1 e(Mi, gi) holds
or not.

From this description, the derivation of signatures is trivial as the signature
of the product of messages is the product of the signatures. But we also have
additional properties with the keys:

Property 7 (Message Homomorphism). Given several vector-messages with their
signatures, it is possible to generate the signature of any linear combination of
the vector-messages, applying the operation on the signatures.

When the messages are the same, one can ask for similar property on the key:

Linearly-Homomorphic Signatures and Scalable Mix-Nets 605

Property 8 (Key Homomorphism). Given a vector-message with signatures
under several keys, it is possible to generate the signature of this vector-message
under any linear combination of the keys.

DerivSignKey(M , (ωi, vki, σi)�
i=1): Given a message M and � tuples of weights

ωi ∈ Zp and signatures σi of M under vki, it outputs a signature σ of M

under the verification key vk =
∏�

i=1 vk
ωi
i .

In our case, if a message-signature is valid for a verification key vk, then it is also
valid for the verification key vk′ = vkα, for any α, as e(σ, g0) =

∏n
i=1 e(Mi, gi)

implies e(σ, gα
0) =

∏n
i=1 e(Mi, g

α
i). However, for two different verification keys vk

and vk′, and signatures σ and σ′ of M :
∏n

i=1 e(Mi, g
α
i · g′

i
β) =

∏n
i=1 e(Mi, gi)α ·

e(Mi, g
′
i)

β = e(σ, gα
0) · e(σ′, g′

0
β), so σ′′ = σασ′β is a valid signature of M under

vk′′ = vkαvk′β if g′
0 = g0.

Property 9 (Weak Key Homomorphism). Given a vector-message with signa-
tures under several keys (with a specific restriction, as a common g0 in our
case), it is possible to generate the signature of this vector-message under any
linear combination of the keys.

Eventually, one needs to prove the unforgeability:

Theorem 10 (Unforgeability). Let us consider an adversary A in the generic
bilinear group model. Given valid pairs (Mj , σj)j under a verification key vk
(Mi’s possibly of adversary’s choice, for Chosen-Message Attacks), when A pro-
duces a new valid pair (M, σ) under the same verification key vk, there exist
(αj)j such that M =

∏
j M

αj

j .

Proof. The adversary A is given (M j = (Mj,i)i, σj)j which contains group ele-
ments in G1, as well as the verification key vk = (gk)k in G2. Note that in the
generic bilinear group model, programmability of the encoding allows to sim-
ulate the signatures for chosen messages, which provides the security against
Chosen-Message Attacks.

For any combination query, the simulator will consider the input elements as
independent variables Xj,i, Vj , and Sk to formally represent the discrete loga-
rithms of Mj,i and σi in basis g, and gk in basis g0 = g. As usual, any new element
can be seen as a multivariate polynomial in these variables, of degree maximal 2
(when there is a mix between G1 and G2 group elements). If two elements corre-
spond to the same polynomial, they are definitely equal, and the simulator will
provide the same representation. If two elements correspond to different polyno-
mials, the simulator will provide random independent representations. The view
of the adversary remains unchanged unless the actual instantiations would make
the representations equal: they would be equal with probability at most 2/p,
when the variables are set to random values. After N combination queries, we
have at most N2/2 pairs of different polynomials that might lead to a collision
for a random setting with probability less than N2/p. Excluding such collisions,

606 C. Hébant et al.

we can thus consider the polynomial representations only, denoted ∼. Then, for
the output (M = (Mk)k, σ), one knows αk,j,i, βk,j , γi,j , δj , such that:

Mk ∼
∑

j,i

αk,j,iXj,i +
∑

j

βk,jVj σ ∼
∑

j,i

γj,iXj,i +
∑

j

δjVj .

As ((Mj,i)i, σj)j and ((Mk)k, σ), are valid input and output pairs, we have the
following relations between polynomials:

Vj =
∑

i

Xj,iSi

∑

j,i

γj,iXj,i +
∑

j

δjVj =
∑

k

⎛

⎝
∑

j,i

αk,j,iXj,i +
∑

j

βk,jVj

⎞

⎠Sk

=
∑

k,j,i

αk,j,iXj,iSk +
∑

k,j

βk,jVjSk

Hence, the two polynomials are equal:
∑

j,i

γj,iXj,i +
∑

j,i

(δj − αi,j,i)Xj,iSi =
∑

k �=i,j,i

αk,j,iXj,iSk +
∑

k,j

βk,jVjSk

which leads, for all i, j, to γj,i = 0 and δj = αi,j,i, and for k �= i, αk,j,i = 0 and
βk,j = 0. Hence, Mk ∼

∑
j δjXj,k and σ ∼

∑
j δjVj , which means that we have

(δj)j such that Mk =
∏

j M
δj

j,k and σ =
∏

j σ
δj

j . ��

3.3 Notations and Constraints

We recall that linear combinations are seen in the exponents. Since we will mainly
work on sub-vector spaces of dimension 2 (in a larger vector space), we will denote
σ = Sign(sk, (M ,M ′)), with the verification check Verif(vk, σ, (M ,M ′)) = 1, a
signature that allows to derive a valid σ′ for any linear combinations of M
and M ′. In general, σ can be the concatenation of σ1 = Sign(sk,M) and σ2 =
Sign(sk,M ′), but some joint random coins may be needed, and some common
elements can be merged (the tag), as it will be shown in the full instantiation.

We will also be interested in signing affine spaces: given a signature on M
and N , one wants to limit signatures on M ×N α and 1 ×N β . This is possible
by expanding the messages with one more component: for M = (g,M) and
N = (1,N), linear combinations are of the form (gα,M αN β). By imposing the
first component to be g, one limits to α = 1, and thus to (g,MN β) = M ×N

β
,

while by imposing the first component to be 1, one limits to α = 0, and thus to
(1,N β) = N

β
.

3.4 FSH Linearly-Homomorphic Signature Scheme

In [30], they proposed a full-fledged LH-Sign by adding a public tag during the
signature. In our mix-net construction, tags will be related to the identities of
the users, and so some kind of randomizability will be required for anonymity,

Linearly-Homomorphic Signatures and Scalable Mix-Nets 607

which is not possible with their scheme. Instead, we will consider the scheme
proposed in [20], which is a full-fledged LH-Sign version of our previous scheme.
We can describe it as follows, using our notations:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asym-
metric bilinear setting, where g and g are random generators of G1 and
G2 respectively. The set of tags is T = G1 × G2. We then define param =
(G1,G2,GT , p, g, g, e; T);

Keygen(param, n): Given the public parameters param, one randomly chooses
ski = si

$← Zp, for i = 1, . . . , n, which defines the signing key sk = (ski)i, and
the verification key vk = (gi)n

i=0 for gi = gsi and g0 = g;
NewTag(sk): It chooses a random scalar R

$← Zp and sets τ = (τ1 = g1/R, τ2 =
g
1/R
0) and τ̃ = R;

VerifTag(vk, τ): Given a verification key vk = (gi)n
i=0 and a tag τ = (τ1, τ2), it

checks whether e(τ1, g0) = e(g, τ2) holds or not;
Sign(sk, τ̃ ,M = (Mi)i): Given a signing key sk = (si)i and a vector-message

M = (Mi)i ∈ G
n
1 , together with some secret tag τ̃ , one sets σ = (

∏
i Msi

i)τ̃ ;
DerivSign(vk, τ, (ωi,M i, σi)�

i=1): Given a verification key vk, a tag τ and � tuples
of weights ωi ∈ Zp and signed messages M i in σi, it outputs σ =

∏
σωi

i ;
Verif(vk, τ,M = (Mi)i, σ): Given a verification key vk = (gi)i, a vector-message

M = (Mi)i, and a signature σ under the tag τ = (τ1, τ2), one checks if the
equalities e(σ, τ2) =

∏n
i=1 e(Mi, gi) and e(τ1, g0) = e(g, τ2) hold or not.

When the secret keys for tags are all privately and randomly chosen, indepen-
dently for each signature, unforgeability has been proven in [20], under Chosen-
Message Attacks, in the generic bilinear group model. The intuition is the follow-
ing: first, under the Knowledge of Exponent Assumption [16,22,26], from a new
pair (τ1, τ2), on the input of either (g, g) or any other honestly generated pair
(g, g0), one can extract the common exponent 1/R in the two components. Then,
one can see σ as the signature with the secret key (Rsi)i, with the generator
g
1/R
0 , instead of g0 in the previous construction.

However, if one knows two signatures σ and σ′ on M and M ′ respectively,
under the same tag τ = (τ1, τ2) with private key τ̃ , and the same key vk, then
σασ′β is a valid signature of M αM ′β , still under the same tag τ and the same
key vk: this is thus a LH-Sign, where one can control the families of messages
that can be combined. In addition, one can define a tag randomizable property:

Property 11 (Tag Randomizability). Given a valid tuple (vk, τ,M , σ), one can
derive a new valid tuple (vk, τ ′,M , σ′), for a tag τ ′ unlinkable to τ .

Our LH-Sign has the tag randomizability property, with the algorithm RandTag
defined by:

RandTag(vk, τ,M , σ): Given a verification key vk, a tag τ = (τ1, τ2) and a signa-
ture σ on a vector-message M = (Mi)i ∈ G

n
1 , it chooses μ ∈ Z

∗
p and outputs

τ ′ = (τ1/μ
1 , τ

1/μ
2) and adapts σ′ = σμ.

608 C. Hébant et al.

Indeed, from a signature σ on M under the tag τ = (τ1, τ2) for the key vk, σ′ =
σμ is a new signature on M for the same key vk under the tag τ ′ = (τ1/μ

1 , τ
1/μ
2),

perfectly unlinkable to τ , as this is a new random Diffie-Hellman tuple in basis
(g, g0) with τ̃ ′ = μτ̃ , for g0 in vk.

As already explained above, we will essentially work on sub-vector spaces
of dimension 2: we will thus denote σ = (σ1, σ2) = Sign(sk, τ̃ , (M ,M ′)), under
the tag τ = (τ1, τ2), where σ1 = Sign(sk, τ̃ ,M) and σ2 = Sign(sk, τ̃ ,M ′), for a
common private key R = τ̃ which led to τ = (τ1, τ2).

Note that in the following, the use of this LH-Sign signature scheme will
swap G1 and G2, as the messages to be signed will be the verification keys of the
previous OT-LH-Sign signature scheme, and thus in G2. Then the verification
keys of this LH-Sign scheme will be in G1.

4 Mix-Networks

A mix-net is a network of mix-servers [14] that allows to shuffle ciphertexts so
that all the input ciphertexts are in the output set, but cannot be linked together.
Whereas it is easy for a server to apply a random permutation on ciphertexts
and randomize them, it is not that easy to provide a proof of correctness that is
publicly verifiable, and compact. In this section we present our mix-net where
the proof of correctness will be implicit thanks to the properties of the (linearly-
homomorphic) signatures and two proofs of Diffie-Hellman tuples.

In a first step, we provide a high-level description of our construction to give
the intuitions of our new method. However, this high-level presentation suffers
several issues, which are then presented in the second step, while the third step
details the solutions, with the full scheme. At this point, the global proof of
mixing, after several mix-servers, is linear (and verification thus has a linear
cost) in the number of mix-servers. In the fourth and last step, we explain how
to obtain a constant-time overhead for the proof to publish, and thus for the
verification.

4.1 General Description

We first provide a high-level description of our mix-net in Fig. 1. As said above,
the goal of this presentation is just for the intuition: there are still many prob-
lems, that will be highlighted and addressed in the next sections. We need two
signature schemes:

– any OT-LH-Sign scheme (Setup,Keygen,Sign,DerivSign,Verif), with additional
DerivSignKey, that will be used to sign ElGamal ciphertexts in G1: the cipher-
texts Ci and the signatures σi belong to G1 and are verified with the user’
verification keys vki = (gk)k in G2;

– and any LH-Sign with randomizable tag scheme (Setup∗, Keygen∗, NewTag∗,
RandTag∗, VerifTag∗, Sign∗, DerivSign∗, Verif∗) that will be used to sign users’
verification keys vki in G2: the signatures Σi also belong to G2 and are verified
with Certification Authority’s verification key VK = (gk)k in G1.

Linearly-Homomorphic Signatures and Scalable Mix-Nets 609

Each user Ui generates a pair (ski, vki) ← Keygen() to sign vectors in G1. Ui first
encrypts his message Mi under an ElGamal encryption scheme, with encryption
key EK and signs it to obtain the signed-encrypted ballot (Ci, σi,1) under vki.
Obviously, some guarantees are needed.

In order to be sure that a ballot is legitimate, all the verification keys must
be certified by the system (certification authority CA) that signs vki under SK,
where (SK,VK) ← Keygen∗(), into Σi. Then, anyone can verify the certified keys
(vki, Σi)i are valid under the system verification key VK. Since we want to avoid
combinations between verification keys, we use LH-Sign with randomizable tags
to sign the verification keys with a tag τi per user Ui.

Because of encryption, Mi is protected, but this is not enough as it will be
decrypted in the end. One also needs to guarantee unlinkability between the
input and output ballots to guarantee anonymity of users. As the ballot boxes
contain the ciphertexts, as well as the verification keys, the ballots must be
transformed in an unlinkable way, then they can be output in a permuted way.

To have C ′
i unlinkable to Ci, C ′

i must be a randomization of Ci. With an
ElGamal encryption, it is possible to randomize a ciphertext by multiplying by
an encryption of 1. Thus, anyone can compute an encryption C0 of 1, and as
we use an OT-LH-Sign scheme, from a signature σi,0 of C0 under the user’s
key, one can adapt σi,1 by using the message homomorphism (Property 7) with

Fig. 1. High-level description (insecure scheme)

610 C. Hébant et al.

DerivSign to obtain σ∗
i,1. In the same way, vk′

i and τ ′
i must be randomizations

of respectively vki and τi. If vk′
i = vkα

i , its signature must be derived from Σi

with DerivSign∗ and τ ′
i is obtained with the randomizable tag (Property 11) with

RandTag∗. Eventually, as we change the verification key, σ′
i,0 and σ′

i,1 must be
adapted, which is possible thanks to the weak key homomorphism (Property 9)
with DerivSignKey.

Then one generates a random permutation Π to output a new ballot-box
with permuted randomized ballots (vk′

Π(i), Σ
′
Π(i), C

′
Π(i), σ

′
Π(i),0, σ

′
Π(i),1)i.

4.2 Difficulties

The above high-level scheme gives intuitions of our main approach. However, to
get the required security, we still face a few issues that will be explained below
and which motivate the full scheme described in the next section.

Expanded Vectors. From the signatures σi,0 and σi,1 with an OT-LH-Sign scheme,
anyone can compute σ = DerivSign(vki, {(α,C0, σi,0), (β,Ci, σi,1)}) for any α, β.
As explained in Sect. 3.3, we can impose β = 1 and the right format of C ′

i.

Non-Trivial Transformation. The weak key homomorphism allows to randomize
vki into vk′

i = vkα
i but, with our scheme, Verif(vkα

i , Ci, σi,1) is valid for any α �= 0
if and only if Verif(vki, Ci, σi,1) is valid. This provides a link between vk′

i and
vki. To solve this issue, we introduce a randomizer vk0, as for the ciphertext.
This is a special vector also signed by CA to randomize vki in a non-trivial
way: vk′

i = (vki · vkδi
0)α. We will thus also have the signature Σi,0 of vk0 and

the signature Σi,1 (instead of Σi) of vki, both under the same tag τi to allow
combinations.

Legitimate Ballots. Whereas all the ballots must be signed, nothing prevents
a mix-server to delete a ballot or to add a ballot signed by a legitimate user
(that owns a valid key vki). If one first checks that the number of ballots is kept
unchanged, it is still possible that a ballot was replaced by a new legitimate
ballot. Since we will consider honest and corrupted users (and so honest and
corrupted ballots), four cases are possible: one replaces an honest or corrupted
ballot by another honest or corrupted one. Our scheme will not provide guaran-
tees against the replacement of a corrupted ballot by another corrupted ballot.
Nonetheless, by adding a zero-knowledge proof of Diffie-Hellman tuple between
the products of the verification keys before and after the mix, we can avoid all
the other cases involving honest users.

Multiple Servers. After the last round, one gets a proof that the output ballot-
box contains a permutation of randomized ciphertexts from the input ballot-box.
However, the last mix-server could start from the initial ballot-box instead of
the previous one, and then know the permutation. This would break anonymity,
as soon as the last mix-server is dishonest. We will ask the mix-servers to sign
their contributions to prove the multiple and independent permutations: each

Linearly-Homomorphic Signatures and Scalable Mix-Nets 611

Fig. 2. Detailed shuffling of ElGamal ciphertexts

mix-server j generates the Diffie-Hellman proofs from BBox(j−1) to BBox(j),
and signs them. We will then detail this solution in the next section, which will
provide a proof linear in the number of ballots and in the number of mix-servers
(because of the multiple signature). Thereafter, with specific multi-signature,
one can become independent of the number of mix-servers.

4.3 Our Scheme

With all the previous remarks and explanations, we can now provide the full
description of our scheme which is given in Fig. 2.

Keys. As we will sign expanded ciphertexts of dimension 4 (see below), each user
needs a secret-verification key pair (ski, vki) ← Keygen(param, 4) in Z

4
p×G

5
2. With

612 C. Hébant et al.

our OT-LH-Sign, the first element of vki is common for all the users and initialized
to g0 = g. Then, one also needs a signature Σi = (Σi,0, Σi,1) with our LH-Sign
from the certification authority of the pair (vk0, vki) where vk0 = (1, 1, g0, 1, 1)
is used to make the non-trivial transformation on vki during the mixes. This
signature is signed by the authority possessing (SK,VK) ← Keygen∗(param′, 5)
in Z

5
p ×G

6
1 with a specific tag τi per user. Eventually, each mix-server has a pair

of (standard) signature scheme (SKj ,VKj) ← SKeygen() just to sign with SSign
its mixing contribution. The keys VK and (VKj)j , as well as EK = h = gd ∈ G1

and the random �
$← G1, are assumed to be known to everybody.

As we are using ciphertexts with ElGamal, the ciphertext for randomization
is C0 = (g, h), the trivial encryption of 1 = g0, with random coin equal to 1.

Initial Ballots. Each user encrypts his message Mi under EK to obtain Ci =
(ai, bi). With the remarks we already made, one needs to expand Ci into
Ci = (g, �i, ai, bi) and C0 into C0 = (1, �, g, h). The addition of the first ele-
ment is due to the affine space we want in the signature σi (see Sect. 3.3)
and the second element is because we randomize the third position of vki with
vk0 = (1, 1, g0, 1, 1) and because the first position of vki is used for the verifi-
cation but not to sign (the last four elements of vki are used to sign). Finally,
σi = (σi,0, σi,1) is simply the OT-LH-Sign of (C0, Ci) under the signing key ski.

Mix. To make a mix, the j-th mix-server computes the randomized verification
keys vk′

i = (vki · vkδi
0)α, the randomized ciphertexts C

′
i = Ci · C

γi

0 and the
randomized tags τ ′

i = τ
1/μi

i , and updates the signatures σ′
i and Σ′

i, thanks to the
properties of the signatures. The random scalar α is common to all the ballots,
but γi, δi, μi are independent random scalars for each ballot. Then, the mix-
server chooses a permutation Π and sets the j-th ballot-box BBox(j) with all
the randomized and permuted ballots (C ′

Π(i), �
′
Π(i), σ

′
Π(i), vk

′
Π(i), Σ

′
Π(i), τ

′
Π(i))i.

As already explained, the mix-server also needs to make a proof proof(j) from
BBox(j−1) to BBox(j), to guarantee the proper relations between the products
of the verification keys and the products of the messages, and signs it in sig(j).
Finally, the output of the mix contains BBox(j) and (proof(k), sig(k))j

k=1 the set
of proofs and mix-server signatures of the previous mixes until the j-th mix.

Proofs. Let us denote F =
∏

fi = g
∑

ui

0 and F′ =
∏

f′i = g′
0

∑
ui the product

of the second element of the user’s verification key on all the input ballots and
output ballots. If the input and output ballot-boxes contain the same ballots
(with the same secret ui), then F′ = Fα, with g′

0 = gα
0 . Hence one adds a proof

of Diffie-Hellman tuple for (g0, g′
0,F,F′). Together with the verification that there

is the same number of ballots in the input and output of the mix, we will show
that the same (honest) users are represented in the two ballot-boxes. Since we
cannot allow multiple ballots from the same user, we have the guarantee that the
same messages from all the honest users are represented in the two ballot-boxes.

The additional proof of Diffie-Hellman tuple for (g, h,
∏

a′
i/

∏
ai,

∏
b′
i/

∏
bi)

will limit the exchange of ballots for corrupted users, as the products of the

Linearly-Homomorphic Signatures and Scalable Mix-Nets 613

Fig. 3. Detailed verification of shuffling

plaintexts must remain the same:
∏

M ′
i =

∏
Mi. Since we already know these

products will be the same for honest users, this products must be the same from
corrupted users. This will limit the impact of the attack of Cortier-Smyth [15].

With these two Diffie-Hellman proofs, the output ballots are a permutation
of the input ones. We could use any non-interactive zero-knowledge proofs of
Diffie-Hellman tuples (NIZKDH-Setup,NIZKDH-Proof,NIZKDH-Verif) and any sig-
nature (SSetup,SSign,SVerif) to sign the proofs but the next section will provide
interesting choices, from the length point of view.

Verification. The complete verification process, after N mix-servers, is presented
in Fig. 3. After all the mixes are done, it just requires the input ballot-box
BBox(0), the output ballot-box BBox(N), and the signed proofs (proof(k), sig(k)),
for k = 1, . . . , N without the elements that were useful for randomization only.
The verifier checks the number of input ballots is the same as the number of
output ballots, the verification keys (the fi’s) in input ballots are all distinct,
the signatures σi,1, σ

′
i,1, Σi,1 and Σ′

i,1 are valid on individual input and output
tuples (equations recalled in the full version [27]) and all the proofs proof(k)

with the signatures sig(k) are valid with NIZKDH-Verif and SVerif respectively.
For that, we suppose that the statement is included in each zero-knowledge
proof. Thus, even if the intermediate ballot-boxes are not given to the verifier,
it is still possible to perform the verification.

4.4 Constant-Size Proof

From Fig. 3, one can note that our mix-net provides a quite compact proof, as
it just requires BBox(0) and BBox(N), and the signed proofs (proof(k), sig(k)),
for k = 1, . . . , N . The size is thus linear in n and N . This is the same for the
verification complexity.

Whereas the linear complexity in n cannot be avoided, as the ballot-box
must be transferred, the part linear in N could be avoided. Indeed, each proof
proof(j) ensures the relations from the j −1-th ballot-box to the j-th ballot-box.
The global chain of proofs ensures the relations from the initial ballot-box to

614 C. Hébant et al.

the last ballot-box. From the soundness point on view, a compact global proof
would be enough. But for privacy, one wants to be sure that multiple mix-servers
contributed, to get unlinkability as soon as one server is honest.

To avoid the dependence in N , one can use Groth-Sahai proofs [25] (see the
full version [27] for details) to combine together the proofs into a unique one as
already used in Chase et al. [13]. However, to be sure that all the mix-servers
contributed: each mix-server does as above, but also receives a partial proof
proof ′(j−1) from the initial ballot-box to the j − 1-th ballot-box and, thanks to
the homomorphic properties of the Groth-Sahai proof, updates it into proof′(j),
to prove the relation from the initial ballot-box and the j-th ballot-box, as shown
in the full version [27] for the Diffie-Hellman proof between the products of the
keys (the proof is similar for the product of the ciphertexts but with G1 and G2

swapped). At the end of the mixing steps, one has the same elements as above,
plus the global proof proof ′(N). All the mix-servers can now verify the proofs and
the contributions of all the servers. Only this global proof can be kept, but signed
by all the servers: using the multi-signature of Boneh-Drijvers-Neven [7], that
is recalled in the full version [27], the size of the signature msig keeps constant,
whatever the number of mix-servers. Hence, after multiple mixing steps, the size
of the mixing proof (with the input and output ballot-boxes) remains constant.

4.5 Efficiency

We consider VK and (VKj)j are long-term keys known to everybody, as well as
EK and �. However, for fair comparison, we do not consider vki as long-term
keys, and consider them as part of the input of the verifier. But we insist that
the fi’s in the input ballot-box must be all distinct.

Size of Verifier’s Input: The verifier receives:

(Ci, σi,1, vki, Σi,1, τi)n
i=1 (C

′
i, σ

′
i,1, vk

′
i, Σ

′
i,1, τ

′
i)

n
i=1 (proof ′(N)

,msig′(N))

As the first element g0 of vki is common to all the users (as well as g′
0 of vk′

i),
the set of all the users’ verification keys is represented by 4 × n + 1 elements
of G2. Then, all input or output ballots contains 2 × 5n elements from G1 and
2 × (6n + 1) elements from G2.

The global proof proof′(N) is just 4 elements of G1 and 4 elements of G2 and
msig one element in G2. Hence, the full verifier’s input contains: 10n+4 elements
of G1, 12n + 6 elements of G2, whatever the number of mix-servers.

Verifier’s Computation. Using batch verification [4,12,28], the verifier only needs
to make 8n + 7 pairing evaluations to verify together all the signatures σi,1,
σ′

i,1, Σi,1, Σ′
i,1, τi, τ ′

i , 6 pairing evaluations to verify proof′(N) and 2 pairing
evaluations to verify msig.

With some specific choices of the bases for the batch verification, as presented
in the full version [27], one can improve to 8n + 14 pairing evaluations for the
global verification. This has to be compared to the 4n+1 pairing evaluations that
have anyway to be performed to verify the signatures in the initial ballot-box.

Linearly-Homomorphic Signatures and Scalable Mix-Nets 615

5 Security Analysis

Let us now formally prove the two security properties: the soundness means
the output ballot-box contains a permutation of randomizations of the input
ballot-box and privacy means one cannot link an input ciphertext to an output
ciphertext, as soon as one mix-server is honest.

We stress that we are in a particular case where users have private signing
keys, and ballots are signed. Unfortunately these keys allow to trace the ballots:
with ski = (ui, vi, xi, yi) and g′

0, one can recover vk′
i, which contradicts privacy

for this ballot. They might also allow to exchange some ballots, which contradicts
soundness for these ballots. As a consequence, we do not provide any guarantee
to corrupted users, whose keys have been given to the adversary (or even possibly
generated by the adversary), but we expect honest users to be protected:

– soundness for honest users means that all the plaintexts of the honest users
in the input ballot-box are in the output ballot-box;

– privacy for honest users means that ballots of honest users are unlinkable
from the input ballot-box to the output ballot-box.

5.1 Proof of Soundness

As just explained, we first study the soundness of our protocol, but for honest
users only, in the certified key setting, where all the users must prove the knowl-
edge of their private keys before getting their verification keys vki certified by
the Certification Authority in Σi.

Definition 12 (Soundness for Honest Users). A mix-net M is said sound
for honest users in the certified key setting, if any PPT adversary A has a neg-
ligible success probability in the following security game:

1. The challenger generates the certification keys (SK,VK) and the encryption
keys (DK,EK);

2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗;
– proves its knowledge of the secrete keys to get the certifications Σi on vki,

for i ∈ I∗;
– decides on the set I of the (honest and corrupted) users that will generate

a ballot;
– generates the ballots (Bi)i∈I∗ for the corrupted users but provides the

messages (Mi)i∈I\I∗ for the honest users;
3. The challenger generates the keys of the honest users (ski, vki)i∈I\I∗ and their

ballots (Bi)i∈I\I∗ . The initial ballot-box is thus defined by BBox = (Bi)i∈I ;
4. The adversary mixes BBox in a provable way into (BBox′, proof).

The adversary wins if MixVerif(BBox,BBox′, proof) = 1 but {Decrypt∗(BBox)} �=
{Decrypt∗(BBox′)}, where Decrypt∗ extracts the plaintexts (using the decryption
key DK), but ignores ballots of non-honest users (using the private keys of honest
users) and sets of plaintexts can have repetitions.

616 C. Hébant et al.

One can note that this security game does not depend on the mixing steps,
but just considers the global mixing, from the input ballot-box BBox to the
output ballot-box BBox′. The proof proof contains all the elements for proving
the honest behavior. In our case, this is just the two Diffie-Hellman proofs.

Theorem 13 (Soundness for Honest Users of Our Mix-Net). Our mix-
net protocol is sound for honest users, in the certified key setting, assuming the
unforgeability against Chosen-Message Attacks of the LH-Sign and OT-LH-Sign
signature schemes and the SEDL assumption.

Proof. For proving this theorem, we will assume the verification is successful
(MixVerif(BBox, BBox′, proof) = 1) and show that for all the honest ballots, in
the input and output ballot-boxes, there is a permutation from the input ones
to the outputs ones. And we do it in two steps: first, honest keys vk′

i in the
output ballot-box are permuted randomizations of the honest keys vki in the
input ballot-box; then we prove it for the plaintexts.

Permutation of Honest Keys. We first modify the security game by using the
unforgeability against Chosen-Message Attacks of the LH-Sign signature scheme:
we are given VK, and ask the Tag-oracle and the Signing-oracle to obtain Σi on
all the verification keys vki and vk0. The rest remains unchanged. Note that
because of the proof of knowledge of the private keys ski before getting vki

certified, one can also extract them. Actually, one just needs to extract ui for
all the corrupted users. Then one knows all the legitimate ui’s (for honest and
corrupted users).

Under the unforgeability of the signature scheme (Setup∗, Keygen∗, NewTag∗,
RandTag∗, VerifTag∗, Sign∗, DerivSign∗, Verif∗), for any output ballot with ver-
ification key vk′

j there exists a related legitimate verification key vki such that
vk′

j = vkαi
i × vkzi

0 , for some scalars zi, and αi.
Since in our construction vki = (g0, fi, li, gi, hi) and vk0 = (1, 1, g0, 1, 1),

and vk′
j = (g′

0, f
′
j , l

′
j , g

′
j , h

′
j) and vk′

0 = (1, 1, g′
0, 1, 1) with a common g′

0 for all
the keys, αi is a common scalar α: vk′

j = (vki × vkδi
0)α and vk′

0 = vkα
0 . As a

consequence, all the keys in the output ballot-box are derived in a similar way
from legitimate keys (signed by the Certification Authority): u′

j = ui remains
unchanged. However this does not means they were all in the input ballot-box:
the adversary could insert a ballot with a legitimate verification key vki, which
was not in the initial ballot-box.

The verification process also includes a Diffie-Hellman proof for the tuple
(g0, g′

0,
∏

i fi,
∏

j f
′
j). This means that

∑
i ui are the same on the input ballots

and the output ballots. As one additionally checks the numbers of input ballots
and output ballots are the same, the adversary can just replace an input ballot
by a new one: if N is the set of new ballots and D the set of deleted ballots, the
sums must compensate:

∑
D ui =

∑
N ui.

The second game uses the SEDL assumption and the simulation-soundness
of the proof of knowledge of ski (in the certified key setting): Let us be given
a tuple (g, f = gu, g, f = gu), as input of a SEDL challenge in G2 and G1: the

Linearly-Homomorphic Signatures and Scalable Mix-Nets 617

simulator will guess an honest user i∗ that will be deleted, and implicitly sets
ui∗ = u, with fi∗ , which allows it to use f = gui∗ in the signature of Ci∗ on
the first component g, while all the other scalars are chosen by the simulator
(vi∗ , xi∗ , yi∗), as well as all the other honest user’ keys, the authority signing
keys, and, for all the corrupted users, the secret element ui can be extracted
at the certification time (using the extractor from the zero-knowledge proof of
knowledge) while the zero-knowledge simulator is used for i∗, thanks to the
simulation-soundness.

If some honest user is deleted in the output ballot-box, with probability
greater than 1/n, this is i∗: as shown above,

∑
D ui =

∑
N ui, so ui∗ =

∑
N ui −∑

D\{i∗} ui, which breaks the symmetric external discrete logarithm assumption.

Permutation of Honest Ballots. The last game uses the unforgeability of the OT-
LH-Sign signature scheme under Chosen-Message Attacks: the simulator receives
one verification key vk, that will be assigned at a random honest user i∗, whereas
all the other keys are honestly generated. The simulator also generates (SK,VK)
and (DK,EK), as well as all signatures Σi and the honest ballots (with a signing
query for σi∗). Then, the adversary outputs a proven mix of the ballot-box.
We have just proven that there exists a bijection Π from I into J such that
vk′

Π(i) = (vki × vkδi
0)α for some scalar δi, for all the honest users i among the

input users in I.
From the signature verification on the output tuples, C ′

Π(i) is signed under

vk′
Π(i) in σ′

Π(i),1, for every i: e(σ′
Π(i),1, g

′
0) = e(g, fαi)·e(�′

Π(i), l
α
i g

αδi
0)·e(a′

Π(i), g
α
i)·

e(b′
Π(i), h

α
i), and since the same α appears in g′

0 = gα
0 , then for every i, we have

e(σ′
Π(i), g0) = e(g, fi) · e(�′

Π(i), lig
δi
0) · e(a′

Π(i), gi) · e(b′
Π(i), hi)

= e(g, fi) · e(�′
Π(i), li) · e(a′

Π(i), gi) · e(b′
Π(i), hi) · e(�′δi

Π(i), g0)

and so σ′
Π(i)/�′δi

Π(i) is a signature of C
′
Π(i) = (g, �′

Π(i), a
′
Π(i), b

′
Π(i)) under vki:

under the unforgeability assumption of the signature scheme, C ′
Π(i∗) is necessar-

ily a linear combination of the already signed vectors under vki∗ , which are Ci∗

and C0, with some coefficients u, v: a′
Π(i∗) = au

i∗gv, b′
Π(i∗) = bu

i∗hv, and g = gu1v.
Hence, u = 1, which means that C ′

Π(i∗) is a randomization of Ci∗ .
We stress that for this property to hold, each key vki must appear at most

once in the ballots, otherwise some combinations would be possible. Hence the
test that all the fi’s are distinct in the input ballot-box. ��

We stress that this proposition only guarantees permutation of ciphertexts for
honest users. There is indeed no formal guarantee for corrupted users whose
signing keys are under the control of a mix-server. The latter could indeed replace
the ciphertexts of some corrupted users, by some other ciphertexts under the
same identity or even under the identity of another corrupted user. One can
note that replacing ciphertexts (and plaintexts) even for corrupted users is not
that easy because of the additional Diffie-Hellman proof on the ciphertexts,
which implies

∏
Mi =

∏
M ′

i where the first product is over all the messages Mi

618 C. Hébant et al.

in BBox and the second product is over all the messages M ′
i in BBox′. However,

this property is more for the privacy, as we will see below. As a consequence, our
result that guarantees a permutation on the honest ballots is optimal. We cannot
guarantee anything for the users that share their keys with the mix-servers.

5.2 Proof of Privacy: Unlinkability

After proving the soundness, we have to prove the anonymity (a.k.a. unlinkabil-
ity), which can also be seen as zero-knowledge property. More precisely, as for
the soundness, privacy will only be guaranteed for honest users.

Definition 14 (Privacy for Honest Users). A mix-net M is said to provide
privacy for honest users in the certified key setting, if any PPT adversary A has
a negligible advantage in guessing b in the following security game:

1. The challenger generates the certification keys (SK,VK) and the encryption
keys (DK,EK);

2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗;
– proves its knowledge of the secret keys to get the certifications Σi on vki,

for i ∈ I∗;
– decides on the corrupted mix-servers J ∗ and generates itself their keys

(VKj)j∈J ∗ ;
– decides on the set J of the (honest and corrupted) mix-servers that will

make mixes;
– decides on the set I of the (honest and corrupted) users that will generate

a ballot;
– generates the ballots (Bi)i∈I∗ for the corrupted users but provides the

messages (Mi)i∈I\I∗ for the honest users;
3. The challenger generates the keys of the honest mix-servers (SKj ,VKj)j∈J \J ∗

the keys of the honest users (ski, vki)i∈I\I∗ and their ballots (Bi)i∈I\I∗ .

The initial ballot-box is thus defined by BBox = (Bi)i∈I . The challenger randomly
chooses a bit b

$← {0, 1} and then enters into a loop for j ∈ J with the attacker:

– let I∗
j−1 be the set of indices of the ballots of the corrupted users in the input

ballot-box BBox(j−1);
– if j ∈ J ∗, A builds itself the new ballot-box BBox(j) with the proof proof(j);
– if j �∈ J ∗, A provides two permutations Πj,0 and Πj,1 of its choice, with the

restriction they must be identical on I∗
j−1, then the challenger runs the mixing

with Πj,b, and provides the output (BBox(j), proof(j));

In the end, the adversary outputs its guess b′ for b. The experiment outputs 1 if
b′ = b and 0 otherwise.

Contrarily to the soundness security game, the adversary can see the outputs of
all the mixing steps to make its decision, hence the index j for the mix-servers.
In addition, some can be honest, some can be corrupted. We will assume at least
one is honest.

Linearly-Homomorphic Signatures and Scalable Mix-Nets 619

Theorem 15. Our Mix-Net protocol provides privacy for honest users, in the
certified key setting, if (at least) one mix-server is honest, under our unlinkability
assumption (see Definition 4), and the DDH assumptions in both G1 and G2.

Proof. This proof will follow a series of games (Gi)i, where we study the advan-
tage Advi of the adversary in guessing b. We start from the real security game
and conclude with a game where all the ballots are random, independently from
the permutations. Hence, the advantage will be trivially 0.

Game G0: This is the real game, where the challenger (our simulator) generates
SK and VK for the certification authority signature, and randomly chooses
d

$← Zp to generate the encryption public key EK = h = gd. One also sets
vk0 = (1, 1, g0 = gA, 1, 1) and C0 = EncryptEK(1) = (g, h) expanded into
C0 = (1, �, C0) with the noise parameter �

$← G1. Actually, A = 1 in the
initial step, when the user encrypts his message Mi, but since the shuffling
may happens after several other shuffling iterations, we have the successive
exponentiations to multiple α (in A) for vk0. The attacker A chooses the
set of the initial indices of the corrupted users I∗ and the set of the ini-
tial indices of the corrupted mix-servers J ∗, provides their verification keys
((vki)i∈I∗ , (VKj)j∈J ∗) together with an extractable zero-knowledge proof of
knowledge of ski.
From I and J , one generates the signing keys for the honest mix-servers
j ∈ J \J ∗, and set J to the index of the last honest mix-server. For each
i ∈ I, one chooses τi = Ri

$← Zp and sets τi = (τi,1 = g1/Ri , τi,2 = g1/Ri). For
each honest user i ∈ I\I∗, one randomly chooses ui, vi, xi, yi, ri, ρi

$← Zp to
generate vki = (g0 = g, fi = gui

0 , li = gvi
0 , gi = gxi

0 , hi = gyi

0), and eventually
generates all the signatures Σi of (vki, vk0) under SK with respect to the tag
τi (using SK and (τ̃i)i).
For the corrupted users, the simulator directly receives the ballots (Bi =
(Ci, σi, vki, Σi, τi))i∈I∗ while for the honest users, it receives (Mi)i∈I\I∗ and
computes Ci = EncryptEK(Mi) = (ai = gri , bi = hriMi), Ci = (g, �i = �ρi , Ci)
and the signature σi of (Ci, C0) under ski. The input ballot-box is then
BBox(0) = {(Bi)i∈I} including the ballots of the honest and corrupted users.
Let I∗

0 = I∗ be the set of the initial indices of the corrupted users.
The simulator randomly chooses b

$← {0, 1} and now begins the loop of the
mixes: depending if the mix-server j is corrupted or not, the simulator directly
receives (BBox(j), proof(j)) from the adversary or receives (Πj,0,Πj,1). In the
latter case, one first checks if Πj,0

∣
∣
I∗

j−1
= Πj,1

∣
∣
I∗

j−1
using the honest secret

keys to determine I∗
j−1. Then, the simulator randomly chooses global α

$← Zp

and individual γi, δi, μi
$← Zp for all the users, as an honest mix-server would

do, to compute

vk′
i = (g′

0 = gα
0 , f′i = fαi , l′i = (li · gδi

0)α, g′
i = gα

i , h′
i = hα

i) = (vki · vkδi
0)α

vk′
0 = (1, 1, g′

0, 1, 1) = vkα
0

C
′
i = (g, �′

i = �i · �γi

0 , a′
i = ai · gγi

0 , b′
i = bi · hγi

0) = Ci · C0
γi

620 C. Hébant et al.

σ′
i = (σ′

i,0 = σi,0 · �′
0
δi , σ′

i,1 = σi,1 · σγi

i,0 · �′
i
δi)

Σ′
i = (Σ′

i,0 = Σαμi

i,0 , Σ′
i,1 = (Σi,1 · Σδi

i,0)
αμi)

τ ′
i = (τ ′

i,1 = τ
1/μi

i,1 , τ ′
i,2 = τ

1/μi

i,2)

and sets BBox(j) = (B′
Πj,b(i)

)i. Eventually, the simulator computes the proof

proof(j) for (g0, g′
0,

∏
fi,

∏
f′i) and (g, h,

∏
a′

i/
∏

ai,
∏

b′
i/

∏
bi), and signs it

using SKj .
After the full loop on all the mix-servers, the adversary outputs its guess b′:
AdvG0 = PrG0 [b

′ = b]. One important remark is that under the previous
soundness result, which has exactly the same setup, the input ballot-box for
the last honest mix-server necessarily contains a randomization of the initial
honest ballots (the adversary against the soundness is the above adversary
together with the honest simulator up to its last honest round, that does not
need any secret). Only the behavior of this last honest mix-server will be
modified below.

Game G1: We first switch the Diffie-Hellman proofs for (g0, g′
0,

∏
fi,

∏
f′i) to the

zero-knowledge setting: if the input ballot-box for the last honest mix-server
is not a randomization of the initial honest ballots, that can be tested using
the decryption key, one has built a distinguisher between the settings of the
zero-knowledge proofs. In this new setting, one can use the zero-knowledge
simulator that does not use α. Under the zero-knowledge property, AdvG0 <
AdvG1 + negl().

Game G2: We also switch the proofs for (g, h,
∏

a′
i/

∏
ai,

∏
b′
i/

∏
bi) to the

zero-knowledge setting: as above, the distance remains negligible. In this new
setting, one can use the zero-knowledge simulator that does not use

∑
i γi.

Under the zero-knowledge property, AdvG1 < AdvG2 + negl().
Game G3: In this game, we do not know anymore the decryption key, and use

the indistinguishability of the encryption scheme (which relies on the Deci-
sional Diffie-Hellman assumption): in an hybrid way, we replace the cipher-
texts Ci of the honest users by an encryption of 1: Ci = EncryptEK(1). Under
the DDH assumption in G1, AdvG2 < AdvG3 + negl().

Game G4: This corresponds to Ci = (ai = gri , bi = hri). But now we can know
d, but � is random: under the DDH assumption, we can replace the random
value �i = �ρi by �i = �ri . Ultimately, we set Ci = (g, �i = �ri , ai = gri , bi =
hri) for ri

$← Zp, for all the honest users, in the initial ballot-box. Under the
DDH assumption in G1, AdvG3 < AdvG4 + negl().

Game G5: In this game, one can first extract the keys of the corrupted users
during the certification phase. Then, all the honest mix-servers generate ran-
dom signing keys sk′

i, random tags τ ′
i , and random encryptions C ′

i of 1, for all
the honest users (the one who do not correspond to the extracted keys), and
generate the signatures using the signing keys SK and sk′

i, but still behave
honestly for the ballots of the corrupted users. Then, they apply the permu-
tations Πj,b on the randomized ballots.

Linearly-Homomorphic Signatures and Scalable Mix-Nets 621

Lemma 16 (Random Ballots for Honest Users). Under the Unlinkability
Assumption (see Definition 4) and DDH assumption in G2, the view is compu-
tationally indistinguishable: AdvG4 < AdvG5 + negl().

In this last game, the i-th honest user is simulated with initial and output (after
each honest mix-server) ciphertexts that are random encryptions of 1, and initial
and output signing keys (and thus verification keys vki and vk′

i) independently
random. As a consequence, permutations Πj,b are applied on random ballots,
which is perfectly indistinguishable from applying Πj,1−b (as we have restricted
the two permutations to be identical on ballots of corrupted users): AdvG5 = 0.
Which leads to Adv0 ≤ negl(). ��
Proof of Lemma 16. In the above sequences of games, from G0 to G4, we could
have checked whether the honest vki’s in the successive ballot-boxes are permu-
tations of randomized honest initial keys, just using the secret keys of the honest
users. So, we can assume in the next hybrid games, from G0(j) to G8(j), for
j = N, . . . , 1 that the input ballots in BBox(j−1) contain proper permutations of
randomized honest initial keys, as nothing is modified before the generation of
this ballot-box. In the following series of hybrid games, for index j, the honest
mix-servers up to the j − 1-th round play as in G4 and from the j + 1-th round,
they play as in G5. Only the behavior of the j-th mix-server is modified: starting
from an honest behavior. Hence, G0(N) = G4.

Game G0(j): In this hybrid game, we assume that the initial ballot-box has been
correctly generated (with Ci = (g, �i = �ri , ai = gri , bi = hri) for ri

$← Zp,
for all the honest users), and mixing steps up to BBox(j) have been honestly
generated (excepted the zero-knowledge proofs that have been simulated).
The next rounds are generated at random by honest mix-servers: random
signing keys sk′

i and random ciphertexts C
′
i = (g, �′

i = �r′
i , a′

i = gr′
i , b′

i = hr′
i),

with random r′
i, and then correct signatures, using SK and sk′

i. The following
sequence of games will modify the randomization of BBox(j−1) into BBox(j)
if the j-th mix-server is honest.

Game G1(j): We now start modifying the randomization of the ballots by the
j-th mix-server, for the corrupted users. As we assumed the signatures Σi pro-
vided by the certification authority from a proof of knowledge of ski, our sim-
ulator has access to ski = (ui, vi, xi, zi) for all the corrupted users. The mixing
step consists in updating the ciphertexts, the keys and the signatures, and we
show how to do it without using α such that g′

0 = gα
0 but, instead, just g′

0,
ski, C0 = (1, �, g, h) and the individual random coins γi, δi: from Bi a received
ballot of a corrupted user, one can compute vk′

i = (g′
0, g

′
0
ui , g′

0
vi+δi , g′

0
xi , g′

0
yi)

and C
′
i = Ci · Cγi

0 , and then the signatures σ′
i and Σ′

i using the signing keys,
and choosing τ̃ ′

i
$← Zp. This simulation is perfect for the corrupted users:

AdvG1(j) = AdvG0(j).
Game G2(j): We now modify the simulation of the honest ballots. In this game,

we choose random d, e
$← Zp for h = gd and � = ge. Then we have simulated

Ci = (g, �i = �ri , ai = gri , bi = hri) the ciphertext in BBox(0) and we can

622 C. Hébant et al.

set C
′
i = (g, �′

i = �r′
i , a′

i = gr′
i , b′

i = hr′
i) the ciphertext in BBox(j) for known

random scalars ri, r
′
i

$← Zp, where r′
i is actually ri +γi: γi is the accumulation

of all the noises. All the signatures are still simulated using the signing keys
(and τ̃ ′

i = R′
i

$← Zp), with g′
0 = gα

0 for a random scalar α. This simulation is
perfectly the same as above: AdvG2(j) = AdvG1(j).
Before continuing, we study the format of the initial and randomized ballots:
by denoting σi the initial signature in BBox(0) and σ′

i the signature to generate
in BBox(j), we have the following relations:

e(σi,0, g0) = e(g, gihi
dli

e) e(σi,1, g0) = e(g, fi(gihi
dli

e)ri)

e(σ′
i,0, g

′
0) = e(g, g′

ih
′
i
d
l′i

e) e(σ′
i,1, g

′
0) = e(g, f′i(g

′
ih

′
i
d
l′i

e)r′
i)

If we formally denote σi,0 = gti and σi,1 = gsi , then we have

g0
ti = gihi

dli
e and g0

si = fi(gihi
dli

e)ri = fig0
tiri

which implies si = ui + tiri. Similarly, if we formally denote σ′
i,0 = g′t′

i and
σ′

i,1 = gs′
i , and set α as the product of all the α’s and δi as aggregation of all

the δi’s (with α’s) in the previous rounds plus this round, from

g0
αt′

i = g′
0
t′
i = g′

ih
′
i
d
l′i

e = gi
αhi

αd(ligδi
0)αe

g0
αs′

i = g′
0
s′

i = f′i(g
′
ih

′
i
d
l′i

e)r′
i = fαi (gα

i h
α
i

d(ligδi
0)αe)r′

i

we also have g0
t′
i = (gihi

dlei)g
δie
0 and g0

s′
i = fi(gih

d
i l

e
i)

r′
ig

eδir
′
i

0 which implies
s′

i = ui + t′ir
′
i. As consequence:

σi,1 = gui · (gri)ti = gui · ai
ti and σ′

i,1 = gui · (gr′
i)t′

i = gui · a′
i
t′
i

Game G3(j): Let us randomly choose scalars ui, ri, r
′
i, ti, t

′
i and α, then, from

(g, g0), we can set g′
0 ← gα

0 , ai ← gri , σi,1 ← ati
i gui , fi ← gui

0 , as well as
a′

i ← gr′
i , σ′

i,1 ← a′
i
t′
igui , f′i ← g′

0
ui .

Then, one additionally chooses xi, yi
$← Zp and sets

gi ← gxi
0 hi ← gyi

0 li ← (gti
0 /(gih

d
i))

1/e Ci ← (g, ae
i , ai, a

d
i)

g′
i ← g′

0
xi h′

i ← g′
0
yi l′i ← (g′

0
t′
i/(g′

ih
′
i
d))1/e C

′
i ← (g, a′

i
e
, a′

i, a
′
i
d)

By construction: gti
0 = gih

d
i l

e
i , g

′
0
t′
i = g′

ih
′
i
d
l′i

e, and

σi,1 = ati
i gui = gtiri × gui σ′

i,1 = a′
i
t′
igui = gt′

ir
′
i × gui

With σi,0 ← gti and σ′
i,0 ← gt′

i , σi and σ′
i are valid signatures of (Ci, C0) and

(C
′
i, C0) respectively. Then, the verification keys vki = (g0, fi, li, gi, hi) and

vk′
i = (g′

0, f
′
i, l

′
i, g

′
i, h

′
i) are correctly related for the secret keys (ui, vi, xi, yi).

From li = (gti
0 /(gih

d
i))

1/e = g
(ti−xi−dyi)/e
0 : we have vi = (ti − xi − dyi)/e.

Linearly-Homomorphic Signatures and Scalable Mix-Nets 623

From l′i = (g′
0
t′
i/(g′

ih
′
i
d))1/e = g′

0
(t′

i−xi−dyi)/e: we have v′
i = (t′i −xi −dyi)/e =

(t′i − ti)/e + vi, which means that δi = (t′i − ti)/e.
Using the signing key SK, we can complete and sign vki (with random Ri)
and vk′

i (with random R′
i, which implicitly defines μi). As shown above, this

perfectly simulates the view of the adversary for the honest ballots in the
initial ballot-box BBox(0), with Bi = (Ci, σi, vki, Σi, τi) and a randomized
version in the updated ballot-box BBox(j), with B′

i = (C
′
i, σ

′
i, vk

′
i, Σ

′
i, τ

′
i):

AdvG3(j) = AdvG2(j).
Game G4(j): Let us be given Cred(ui, g; g0, ri, ti) and Cred(ui, g; g′

0, r
′
i, t

′
i), for

random ui
$← Zp, which provide all the required inputs from the first part of

the simulation in the previous game (before choosing xi, yi). They all follow
the distribution Dg,g0(ui, ui). As we do not need to know α to randomize
ballots for corrupted users, we can thus continue the simulation as above, in
a perfectly indistinguishable way: AdvG4(j) = AdvG3(j).

Game G5(j): Let us be given two credentials of ui and u′
i, Cred(ui, g; g0, ri, ti)

and Cred(u′
i, g; g′

0, r
′
i, t

′
i), for random ui, u

′
i

$← Zp. Inputs follow the distribu-
tion Dg,g0(ui, u

′
i) and we do as above. Under the Unlinkability Assumption

(see Definition 4) the view is computationally indistinguishable: AdvG4(j) <
AdvG5(j) + negl().

Game G6(j): We receive a Multi Diffie-Hellman tuple (g0, gi, hi, g
′
0, g

′
i, h

′
i)

$←
D6

mdh(g0). So we know all the scalars, except xi, yi and α, which are implicitly
defined by the input challenge. Then, by choosing ti, t

′
i

$← Zp, we can define
li, l

′
i as in the previous game, and the ciphertexts and signatures are generated

honestly with random scalars ri, r
′
i

$← Zp: AdvG6(j) = AdvG5(j).
Game G7(j): We now receive (g0, gi, hi, g

′
0, g

′
i, h

′
i)

$← D6
$(g0). We do the simula-

tion as above. The view of the adversary is indistinguishable under the DDH
assumption in G2: AdvG6(j) < AdvG7(j) + negl().

In this game, vk′
i = (g′

0, fi = g′
0
u′

i , li = g′
0
v′

i , gi = g′
0
x′

i , hi = g′
0
y′

i), with
x′

i, y
′
i

$← Zp because of the random tuple, v′
i = vi + (t′i − ti)/e, for random t′i

and ti, it is thus also random, and u′
i is chosen at random.

Game G8(j): We now choose at random the signing keys ski = (ui, vi, xi, yi)
and sk′

i = (u′
i, v

′
i, x

′
i, y

′
i) in order to sign the ciphertexts: AdvG8(j) = AdvG7(j).

With this last game, one can see that G8(1) = G5. Furthermore, for each round
j = N, . . . , 1, we have AdvG0(j) ≤ AdvG8(j) + negl(), while G0(j − 1) = G8(j):
AdvG4 = AdvG0(N) ≤ AdvG8(1) + negl() = AdvG5 + negl(). ��

6 Applications

We now discuss use-cases of mix-nets: electronic voting and anonymous routing.
In both cases, a mix-server can, on the fly, perform individual verifications and
randomization of ballots, as well as the product of the fi’s and the ciphertexts
adaptively until the ballots are all sent. Eventually, at the closing time for a vote
or at the end of a time lapse for routing, one just has to do and sign global proof
of Diffie-Hellman tuples, and then output the ballots in a permuted order.

624 C. Hébant et al.

6.1 Electronic Voting

Our mix-net fits well the case of e-voting because after the multiple mixing steps,
all the mix-servers can perform a second round to sign in a compact way the
constant-size proof, certifying each of their contributions. The input size as well
as the computation cost of the verifier are both independent on the number of
mixing steps. To our knowledge it is the first scheme with this very nice property.

About security, as explained, soundness and privacy are guaranteed for the
honest users only: honest users are sure that their votes are randomized in the
output ballot-box, and their input-output ballots are unlinkable. This is of course
the most important requirements. However, since the ui’s are used to guarantee
that no ballots are deleted or inserted, this is important those values to be
unknown to the mix-server.

In the full version [27], we propose a second construction that uses Square
Diffie-Hellman tuples (gr,Ai = gwi

r ,Bi = Awi
i) as tags to add in any one-time lin-

early homomorphic signature to obtain a linearly homomorphic signature with
randomizable tags. Then, one can use

∏
A′

j = (
∏

Ai)α instead of
∏

f′j and
(
∏

fi)α, in the Diffie-Hellman tuple, to guarantee the permutation of the verifi-
cation keys. Only the privacy of the wi’s is required to guarantee the soundness.

The proof that
∏

Mi =
∏

M ′
i is actually never used in the previous security

proofs, as it counts for privacy in e-voting only. Indeed, in our privacy security
game we let the adversary choose the messages of the honest users. In a voting
scheme, the adversary could not choose them and would like to learn the vote
of a target voter. The first mix-server could take the vote (ciphertext) of this
voter and ask several corrupted voters to duplicate this vote. The bias in the
tally would reveal the vote of the target voter: the proof on the products of
the plaintexts avoids this modification during the mixing. This does not exclude
the attack of Cortier-Smyth [15] if the votes are publicly sent, as the corrupted
voters could simply use the ciphertext for their own ballots.

6.2 Message Routing

Another important use case of mix-nets is in routing protocols where the mix-
servers are proxy servers guaranteeing that no one can trace a request of a
message. In this scenario, it is not possible to perform a second round on the
mix-servers to obtain the multi-signature and the efficiency is thus linear in the
number of mixing steps. It is still an open problem to avoid the second round
while maintaining the independence in the number of mix-servers.

Acknowledgments. This work was supported in part by the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – Cryp-
toCloud) and the French ANR ALAMBIC Project (ANR16-CE39-0006).

Linearly-Homomorphic Signatures and Scalable Mix-Nets 625

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., shelat, a., Waters, B., et al.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 1

3. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

4. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
218–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-
2 14

5. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 25

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

7. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS,
vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03329-3 15

8. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

9. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 10

10. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 1

11. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

12. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 14

13. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18

626 C. Hébant et al.

14. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981). https://doi.org/10.1145/
358549.358563

15. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot
secrecy. J. Comput. Secur. 21(1), 89–148 (2013). http://dl.acm.org/citation.cfm?
id=2595846.2595849

16. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

17. Fauzi, P., Lipmaa, H., Siim, J., Zaj ↪ac, M.: An efficient pairing-based shuffle argu-
ment. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol.
10625, pp. 97–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 4

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 41

20. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019)

21. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 22

22. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

23. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 22

24. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 4

25. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

26. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055744

27. Hébant, C., Phan, D.H., Pointcheval, D.: Linearly-homomorphic signatures and
scalable mix-nets. Cryptology ePrint Archive, Report 2019/547 (2019). https://
eprint.iacr.org/2019/547

28. Herold, G., Hoffmann, M., Klooß, M., Ràfols, C., Rupp, A.: New techniques for
structural batch verification in bilinear groups with applications to Groth-Sahai
proofs. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1547–1564. ACM Press , October/November 2017

29. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
http://dl.acm.org/citation.cfm?id=2595846.2595849
http://dl.acm.org/citation.cfm?id=2595846.2595849
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/BFb0055744
https://eprint.iacr.org/2019/547
https://eprint.iacr.org/2019/547
https://doi.org/10.1007/3-540-45760-7_17

Linearly-Homomorphic Signatures and Scalable Mix-Nets 627

30. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 17

31. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In:
Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001, pp. 116–125. ACM Press,
November 2001

32. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1007/3-540-69053-0_18

Efficient Redactable Signature and
Application to Anonymous Credentials

Olivier Sanders(B)

Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
olivier.sanders@orange.com

Abstract. Let us assume that Alice has received a constant-size signa-
ture on a set of messages {mi}n

i=1 from some organization. Depending
on the situation, Alice might need to disclose, prove relations about or
hide some of these messages. Ideally, the complexity of the correspond-
ing protocols should not depend on the hidden messages. In particular,
if Alice wants to disclose only k messages, then the authenticity of the
latter should be verifiable in at most O(k) operations.

Many solutions were proposed over the past decades, but they only
provide a partial answer to this problem. In particular, we note that they
suffer either from the need to prove knowledge of the hidden elements or
from the inability to prove that the latter satisfy some relations.

In this paper, we propose a very efficient constant-size redactable sig-
nature scheme that addresses all the problems above. Signatures can
indeed be redacted to remain valid only on a subset of k messages
included in {mi}n

i=1. The resulting redacted signature consists of 4 ele-
ments and can be verified with essentially k exponentiations. Different
shows of the same signature can moreover be made unlinkable leading to
a very efficient anonymous credentials system.

1 Introduction

Digital Signature is a major cryptographic tool that is used to attest the authen-
ticity of a digital data, ensuring that not even one bit has been modified. This
rigidity is a strength in many scenarios but it also comes with its drawbacks.
One of them is that verification of a standard signature requires knowledge of
the full signed message.

For example, let us consider the case of a database containing n elements
{mi}n

i=1 that should be certified by some authority. If the latter signs the whole
set {mi}n

i=1, there is only one signature σ but checking the authenticity of even
one element requires to download the full database. Obviously, this problem
could be avoided by signing separately each element but this would replace
one signature by potentially billions (n) of them. Between these two solutions
one can find different trade-offs, such as splitting {mi}n

i=1 into different subsets
that would be signed individually, but none of them is fully satisfying. Even
solutions based on hash functions, such as Merkle tree, require to download at

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 628–656, 2020.
https://doi.org/10.1007/978-3-030-45388-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_22

Efficient Redactable Signature and Application to Anonymous Credentials 629

least a logarithmic number of elements. Moreover, using hash functions prevents
efficient proofs of knowledge, which will cause further problems.

The problem described above is not just related to efficiency. It indeed means
that, to check the validity of a signature without using hash functions, one must
have access to all the signed messages which is also a privacy issue. This problem
is probably more obvious in a context where a user gets his attributes (e.g.
his name, birthdate, address, etc) certified by some authority and then needs
to prove the authenticity of only one of them. For example, to benefit from
a preferential rate, he might need to prove that he is under 25 years of age.
With a standard digital signature, he needs to send all his attributes, even if the
latter are totally irrelevant. This means that the merchant will not only have
information on his age, but he will also know his name, address and so on.

This problem is far from new in cryptography and a very classical solution
for the user is to prove knowledge of the hidden attributes and that the latter are
indeed certified by a credential issued by the organization. This requires a digital
signature scheme with some nice features but this is not a real problem as several
such schemes [4,10,21] have already been proposed. Actually, most anonymous
credentials (or attribute based credentials) systems [1,9,10,21] work this way to
solve our problem. Moreover, such a primitive can provide additional security
guarantees, such as unlinkability of different showings, which are particularly
interesting in many contexts.

Regarding privacy, this solution is thus fully satisfying. Regarding efficiency,
things got worse as the unnecessary attributes must now be hidden in proofs of
knowledge whose cost is at least greater than the one of sending all the attributes
in clear. We believe that this problem is inherent to constructions based on digital
signatures. As we explain above the latter indeed require the whole set of signed
messages to be verified and do not support efficient partial verification. It seems
therefore necessary to find another building block to avoid this problem.

Another strategy could be based on cryptographic accumulators, such as the
ones from [2,19]. An accumulator C indeed allows to accumulate many elements
{mi} ∈ I while remaining of constant size. Moreover, for any accumulated mes-
sage mi, it is possible to derive a witness wi proving that mi has indeed been
accumulated in C. If C is further signed, then one gets efficient partial verifica-
tion on a message mi: given C, the signature on C and the witness wi, one can
indeed check the authenticity of mi without knowing any other messages. By
using appropriate zero-knowledge proofs, one could even achieve some privacy
properties. Actually, this is reminiscent of the approach of [15]. The authors
indeed extend Nguyen’s accumulator [19] to enable efficient proof that a subset
{mi}i∈I ⊂ {mi}n

i=1 has been accumulated. They then show how to combine their
accumulator with signatures on equivalence classes to construct an anonymous
credentials system with very nice features. Unfortunately, with their solution,
once elements are accumulated, one only has the possibility to disclose them,
not to prove that they satisfy some relations while hiding them. Concretely, in
our example with user’s attributes, this means that the user can now reveal his
birthdate and any other necessary attribute, but not just prove (efficiently) that
he is under 25.

630 O. Sanders

Compared to the previous anonymous credentials cited above, [15] thus solves
the efficiency issue but by removing an important feature of anonymous creden-
tials, which implicitly harms privacy.

Finally, the problem of checking the authenticity of parts of the signed mes-
sages while hiding the other ones has already been considered by papers on
redactable signature [6,18,20]. This primitive allows the user to quote parts
of the message signed under σ and yet to prove that the latter is valid on
the disclosed parts. Actually, this might seem exactly what we need here but,
unfortunately, most redactable signatures aim at achieving some properties, such
as transparency (original signatures should be indistinguishable from redacted
ones), that do not seem relevant in our context and that negatively impact
efficiency. Nevertheless, in [7], Camenisch et al. introduce a new variant of
redactable signature, called unlinkable redactable signature (URS), that does not
consider such outlying properties and that is thus perfectly tailored for appli-
cations to privacy-preserving protocols. As an example, the authors construct
from an URS an anonymous credentials system with remarkable asymptotic
complexity. Unfortunately, in this case, asymptotic complexity is not indicative
of concrete performances. Current instantiations are indeed still very costly and
can hardly compete with the most efficient solutions in practice (see Sect. 7).
Moreover, their construction makes use of a vector commitment scheme that
shares commonalities with the accumulator used in [15], which leads to the same
issue: attributes can be either disclosed or hidden, but proving that some of
them satisfy non trivial relations cannot be done efficiently. Nevertheless, to be
fair, we must note that [7] provides security in the UC framework [11], which
explains in part the efficiency gap with alternative solutions

1.1 Our Contribution

In this work we follow the approach based on URS from [7], but with the aim of
achieving extremely efficient protocols. To this end, we construct a very flexible
redactable signature scheme, that can be made unlinkable at almost no cost. We
then explain how to use it to construct an anonymous credentials system with
remarkable efficiency and that still supports proof of relations about attributes,
contrarily to [15].

Our starting point is the Pointcheval-Sanders (PS) signature scheme [21] that
generates constant size signatures on blocks of messages (m1, . . . ,mn). As shown
in [21], it comes with a series of features that are extremely useful in a privacy
preserving context, such as the ability to efficiently prove knowledge of a signa-
ture or to generate a signature on a committed message. Unfortunately, when
used to construct anonymous credentials systems, this scheme suffers from the
problems described above, namely the fact that non disclosed messages heavily
impact complexity, because their knowledge must be proven. Concretely, if one
discloses k attributes (and thus hide/redact the n−k other ones), one must still
send O(n − k) elements to the verifier (besides the k disclosed attributes) and
the latter must still perform O(n) operations.

Efficient Redactable Signature and Application to Anonymous Credentials 631

The first contribution of our paper is the construction of an efficient
redactable signature scheme RS from PS signatures. At first sight, this problem
might seem easy to solve due to the simple algebraic structure of PS signatures.
Indeed, in a bilinear group (G1, G2, GT), a PS signature on (m1, . . . ,mn), issued
with secret key (x, y1, . . . , yn), is a pair (σ̃1, σ̃2) ∈ G2 where σ̃1 is random and
σ̃2 = σ̃

x+
∑n

i=1 yi·mi

1 . By providing (X,Y1, . . . , Yn) = (gx, gy1 , . . . , gyn) for some
generator g ∈ G1 in the public key, one can test the validity of (σ̃1, σ̃2) using the
pairing e:

e(X ·
n

∏

i=1

Y mi
i , σ̃1) = e(g, σ̃2)

When one asks to verify the authenticity of only a subset {mi}i∈I of
messages, it might be tempting to only send (σ̃1, σ̃2) along with an element
σ1 =

∏

i∈[1,n]\I Y mi
i that would accumulate all the redacted elements. The pre-

vious equation would then simply become

e(X · σ1 ·
∏

i∈I
Y mi

i , σ̃1) = e(g, σ̃2). (1)

Such a scheme would be extremely efficient: only a constant number of ele-
ments1 needs to be sent to the verifier and the later only needs to perform k
exponentiations in G1. Moreover, the structure of the resulting scheme makes
combination with Schnorr’s proof of knowledge [23] trivial. One can then hide
and prove relations about any mi with i ∈ I.

Unfortunately, such a scheme is not secure. We provide details on the problem
in Sect. 4.1 but intuitively it stems from the fact that the adversary can hide
anything in σ1, including elements of the form Y ri

i with i ∈ I that it could use
to cheat the verifier. A solution could then be to prove that σ1 only aggregates
the elements Y mi

i with i ∈ [1, n]\I, by running the classical Schnorr’s protocol to
prove knowledge of the corresponding mi. Unfortunately, such a solution takes us
back to square one: we need to send O(n − k) elements and verification requires
O(n) operations.

Fortunately, we can do far better by observing that we do not really care
about the elements accumulated in σ1. If the adversary manages to add some
elements to σ1 such that the verification equation above is still verified, this is
not a problem as long as the added elements are not of the form Y ri

i for i ∈ I
and known ri. Actually, the ability to add random elements to σ1 should be kept
since it will be the key to achieve unlinkability, as we will explain.

To retain security, we must then force the user to prove that σ1 does not
aggregate an element of the above form. Surprisingly, this can be done very
efficiently by noticing that the polynomial f defined by e(g, g̃)f(y1,...,yn) =
e(σ1,

∏

i∈I ˜Yi) will necessarily contain a monomial of the form y2
j for some j ∈ I

if the user has cheated. Conversely, with a valid σ1, f will not contain such kind

1 We here follow the convention of previous works that do not include the disclosed
elements {mi} in the complexity evaluation.

632 O. Sanders

of monomials, the only degree 2 monomials being of the form yi · yj for i �= j.
By providing appropriate elements in the public key we can enable the user to
prove that f is of the right form by simply providing an element σ2 in G1 such
that e(σ1,

∏

i∈I ˜Yi) = e(σ2, g̃). That is, we get a secure redactable signature with
remarkable efficiency: redacted signatures contain 4 elements and can be verified
with 4 pairings and k exponentiations, whatever the values of k and n.

We believe that such a redactable signature is of independent interest. How-
ever, although it is redactable and unforgeable, it is not unlinkable and so cannot
be directly used to build an anonymous credentials system. Our next contribu-
tion is then to enhance it to construct an URS in the sense of [7].

Here, the transformation is based on our previous observation. Our “proof of
validity” of σ1 does not prove that σ1 is of the expected form

∏

i∈[1,n]\I Y mi
i but

simply that it does not contain illicit elements Y ri
i , for i ∈ I. In particular, we

can aggregate anything in σ1 as long as it is not of the latter form and Eq. (1) is
verified. To satisfy both conditions, we will use the fact that PS signatures can
be sequentially aggregated to add to (σ̃1, σ̃2) a signature on a random message
t under a dummy public key and then modify σ1 and σ2 appropriately. That is,
a new derived signature on {mi}i∈I is the resulting aggregate signature whose
messages {mi}i∈[1,n]\I and t have been redacted. As we prove in our paper, the
random elements added in the process perfectly blind the original signature and
thus ensure unlinkability at almost no cost: few additional exponentiations to
redact the signature, but the signature size and the verification process remain
unchanged.

Once we have our unlinkable redactable signature scheme, the transforma-
tion into an anonymous credentials system is rather straightforward because we
inherit most of the nice features of PS signatures. We just have to adapt the pro-
tocol to get a credential on a committed value from [21] and then to add a proof
of knowledge of the user’s secret key during the showing process. Regarding effi-
ciency, there is almost no change and the resulting protocol compares favourably
with the state-of-the-art (see Sect. 7). In particular, in our system, the user only
has to send a constant number of elements to prove possession of k attributes
and the verifier only has to perform O(k) operations, even if the credential was
initially issued on a much larger number n of attributes. The main difference
with our URS construction is the anonymity proof that is more intricate and
that now makes use of the DDH assumption.

In the end, we get a remarkably versatile system which can provide both
security and privacy with very good performance.

1.2 Organisation

We recall in Sect. 2 the definition of bilinear groups and two computational
assumptions that we use to prove the security of our schemes. The syntax and
the security model of redactable signatures (resp. anonymous credentials) are
provided in Sect. 3 (resp. Sect. 6). Our redactable signature scheme is presented in
Sect. 4 along with a variant achieving additional properties. The security proofs

Efficient Redactable Signature and Application to Anonymous Credentials 633

of our main construction can be found in the same section, those for the variant
are provided in the full version [22] of this paper due to lack of space. Our
anonymous credentials system is described, and proved secure, in Sect. 6. Finally,
we compare the efficiency of our constructions with the one of the most relevant
schemes from the state-of-the-art in Sect. 7.

2 Preliminaries

Bilinear Groups. Our construction requires bilinear groups whose definition
is recalled below.

Definition 1. Bilinear groups are a set of three groups G1, G2, and GT of order
p along with a map, called pairing, e : G1 × G2 → GT that is

1. bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab;
2. non-degenerate: for any g ∈ G

∗
1 and g̃ ∈ G

∗
2, e(g, g̃) �= 1GT

;
3. efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

In this work, we need bilinear groups of prime order with type 3 pairings [16],
meaning that no efficiently computable homomorphism is known between G1 and
G2. We stress that this is not a significant restriction since this yields the most
efficient parameters [12,17].

Computational Assumptions. The security analysis of our protocols will
make use of the following two assumptions.

– DL assumption: Given (g, ga) ∈ G
2, the DL assumption in the group G states

that it is hard to recover a.
– DDH assumption: Given (g, ga, gb, gc) ∈ G

4, the DDH assumption in the group
G states that it is hard to decide whether c = a · b or c is random.

3 Redactable Signatures

A signature σ on some set of messages {mi}n
i=1 is redactable if it is possible to

derive from it a signature σI on a subset of messages {mi}i∈I , with I ⊂ [1, n].
The point is that the verification of σI no longer requires the knowledge of the
messages mi for i ∈ I, where I = [1, n] \ I. This feature is particularly useful
when one only needs to check the authenticity of a subset of the messages.
However, redacting messages does not necessarily mean hiding them and so it is
necessary to consider additional properties when privacy is required. This leads
us to the following definition of redactable signatures, adapted from [7].

634 O. Sanders

3.1 Syntax

A redactable signature consists of the 4 following algorithms.

– Keygen(1k, n): On input a security parameter 1k and an integer n, this algo-
rithm returns a key pair (sk, pk) supporting signatures on sets of n messages
{mi}n

i=1.
– Sign(sk, {mi}n

i=1): On input n messages {mi}n
i=1 and the signing key sk, this

algorithm outputs a signature σ.
– Derive(pk, σ, {mi}n

i=1, I): On input a signature σ on {mi}n
i=1, the public key

pk and a subset I ⊂ [1, n], this algorithm returns a redacted (or derived)
signature σI on the subset of messages {mi}i∈I . In this paper, we will omit
the subscript I of σI if this set is clear from the context.

– Verify(pk, σ, {mi}i∈I): On input the public key pk, a set of messages {mi}i∈I
and a signature σ (redacted or not), this algorithm outputs 1 (valid) or 0
(invalid).

Notation. In this paper, we will consider sets of messages {mi}n
i=1 instead of

vectors (m1, . . . ,mn) to highlight the benefits of redactability. Indeed, with this
notation, a redacted signature σI can be verified only with the knowledge of the
|I| elements in {mi}i∈I . Conversely, with a vector notation, verification of σI

would still require to send a vector of n elements (m′
1, . . . ,m

′
n), with m′

i =⊥ for
i ∈ I.

We nevertheless stress that it is only a notation issue. In particular, even with
our notation, the position of the messages (indicated by their index) remains
crucial. For example, if m1 = m′

2 and m2 = m′
1, then we stress that a valid

signature on {m1,m2} is not valid on {m′
1,m

′
2} (this would be considered as

a valid forgery in our security game). More generally, we will consider in this
paper that {mi}i∈I ⊂ {m′

i}n
i=1 when mi = m′

i ∀i ∈ I.

3.2 Security Model

Correctness. Correctness requires that, for honestly generated keys, honestly
generated and honestly derived signatures always verify.

Unforgeability. In [7], the authors consider a very strong notion of unforge-
ability. Indeed, besides the natural requirements for a signature scheme, their
definition considers a signature σI on {mi}i∈I , derived from a signature σ valid
on {mi}n

i=1, as a forgery if the adversary only had access to other redacted ver-
sions σJk

of σ with Jk �= I. Concretely, this means that the adversary succeeds
if it can produce a new redacted version of a signature, even if the signer has
actually signed the messages {mi}i∈I . In this paper, we will call this security
notion “strong unforgeability” because it is reminiscent of the eponymous notion
for standard digital signature schemes.

Although we will show that our unlinkable redactable signature scheme of
Sect. 4.2 satisfies this strong property, we believe that it is too strong for many

Efficient Redactable Signature and Application to Anonymous Credentials 635

scenarios. For example our anonymous credentials construction only needs a
weaker version, that we simply call “unforgeability”, where new derivations of
a signature are no longer considered as a forgery. Moreover, the strong unforge-
ability notion forbids some nice features, such as the ability to further redact a
redacted signature. Finally, as we will show in Sect. 4.1, we can construct more
efficient schemes if we only aim at achieving our unforgeability property.

We therefore think that it is relevant to consider this new notion that we
define below. However, for completeness, we also recall the original one from [7].

Our security experiments in Fig. 1 make use of a counter c and three tables,
Q1, Q2 and Q3, along with the following oracles:

– OSign∗({mi}n
i=1): on input a set of n messages, this oracle returns

Sign(sk, {mi}n
i=1), stores Q1[c] = (σ, {mi}n

i=1) and increments c ← c + 1.
– OSign({mi}n

i=1): on input a set of n messages, this oracle computes σ ←
Sign(sk, {mi}n

i=1), stores Q1[c] = (σ, {mi}n
i=1) and increments c ← c + 1.

– ODerive(k, I): on input an index k and a set I, this algorithm returns ⊥
if Q1[k] = ∅ or if I � [1, n]. Else, it uses σ and {mi}n

i=1 stored in Q1[k] to
return Derive(pk, σ, {mi}n

i=1, I). The set {mi}i∈I is then added to Q2.
– OReveal(k): on input an index k, this algorithm returns ⊥ if Q1[k] = ∅ and

Q1[k] = (σ, {mi}n
i=1) otherwise. The set {mi}n

i=1 is then added to Q3.

We note that the only difference between OSign∗ and OSign is that the for-
mer returns the signature, contrarily to the latter that does not return anything.
Our unforgeability experiment only uses OSign∗, which makes the OReveal and
ODerive oracles useless. For convenience, the set of messages {mi}n

i=1 stored in
Q1[j] will be denoted {m

(j)
i }n

i=1.
A redactable signature scheme is unforgeable if Advuf (A) = |Pr[Expuf

A
(1k, n) = 1]| is negligible for any polynomial time adversary A. A redactable
signature scheme is strongly unforgeable if Advsuf (A) = |Pr[Expsuf

A (1k, n) = 1]|
is negligible for any polynomial time adversary A.

Unlinkability. Unlinkability states that it should be hard to link back a derived
signature σI to its origin σ, unless the disclosed (non redacted) messages {mi}i∈I
trivially allow to do so. In particular, this implies that σI does not leak any
information on the redacted messages {mi}i∈I , even for an adversary that has
generated the public key pk. This property is formally defined by the experi-
ment Expunl−b

A (1k, n) of Fig. 1. A redactable signature scheme is unlinkable if
Advunl = |Pr[Expunl−1

A (1k, n) = 1] − Pr[Expunl−0
A (1k, n) = 1]| is negligible for

any polynomial time adversary A.

4 Short Redactable Signatures

4.1 Our Construction

Our main building block to construct an unlinkable redactable signature or an
anonymous credentials system will be the following redactable signature scheme

636 O. Sanders

Unforgeability
Exp

uf
A (1k, n)

1. c ← 0; Q1 ← ∅;
2. (sk, pk) ← Keygen(1k, n)
3. (σ∗, {mi}i∈I) ← AOSign∗

(pk)
4. Return 1 if I �= ∅

and Verify(pk, σ∗, {mi}i∈I) = 1
and ∀j < c, ∃kj ∈ I : mkj �= m

(j)
kj

5. Else, return 0

Strong Unforgeability
Exp

suf
A (1k, n)

1. Q1, Q2, Q3 ← ∅;
2. (sk, pk) ← Keygen(1k, n)
3. (σ∗, {mi}i∈I) ← AOSign,ODerive,OReveal(pk)
4. Return 1 if I �= ∅

and Verify(pk, σ∗, {mi}i∈I) = 1
and {mi}i∈I /∈ Q2

and ∀{m′
i}n

i=1 ∈ Q3 :
∃kj ∈ I : mkj �= m′

kj

5. Else, return 0
Unlinkability
Expunl−b

A (1k, n)

1. (pk, I, {m
(0)
i }n

i=1, {m
(1)
i }n

i=1, σ
(0), σ(1)) ← A()

2. If Verify(pk, σ(0), {m
(0)
i }n

i=1) = 0, return 0
3. If Verify(pk, σ(1), {m

(1)
i }n

i=1) = 0, return 0
4. If ∃j ∈ I : m

(0)
j �= m

(1)
j , return 0

5. σ
(b)
I ← Derive(pk, σ(b), {m

(b)
i }n

i=1, I)
6. b′ ← A(σ(b)

I)
7. Return b′.

Fig. 1. Security notions for redactable signatures

RS. The latter is unforgeable but it is clearly not unlinkable. We will explain
in the next section how to enhance it to achieve this property. Nevertheless,
we believe that this construction might be of independent interest due to its
efficiency, for scenarios where privacy is not necessary.

Intuition. The signatures output by our Sign algorithm are PS signatures [21]
on the messages (m1, ...,mn). However, such signatures do not support partial
verification, on a subset of {mi}n

i=1: all the signed messages must be disclosed,
or one must prove knowledge of them, which in all cases imply to send at least
n elements and to perform n exponentiations to verify the signature.

When considering the verification equation of PS signatures e(X
∏n

i=1 Y mi
i ,

σ̃1) = e(g, σ̃2), it might be tempting to circumvent this problem by simply
regrouping all the elements {Y mi

i }i∈I in σ1 =
∏

i∈I Y mi
i . The verification equa-

tion would then become:

e(X · σ1

∏

i∈I
Y mi

i , σ̃1) = e(g, σ̃2).

Unfortunately, the resulting scheme would clearly be insecure. Indeed, noth-
ing prevents a dishonest user from hiding some parts of the disclosed messages
in σ1 to deceive the verifier. For example, if one receives a signature on {mi}n

i=1,

Efficient Redactable Signature and Application to Anonymous Credentials 637

one can set σ1 = Y r
1 ·

n
∏

i=2

Y mi
i and then claims a signature on m1 − r, for any

r ∈ Zp. Indeed, in such a case

e(X · σ1 · Y m1−r
1 , σ̃1) = e(X · Y m1−r

1 · Y r
1

r
∏

i=2

Y mi
i , σ̃1)

= e(g, σ̃2)

so the equation would be verified. The element σ1 cannot therefore be any ele-
ment of G1, it is necessary to prove that it only accumulates messages whose
index is not in I. The conceptually simplest solution, that is actually used in
most anonymous credentials constructions, is to prove knowledge of the undis-
closed messages. However, as we have explained, this leads to a cost at least linear
in the size of I. We therefore use here a much more efficient solution, based on
the following idea. If σ is a signature that has been honestly derived for I, then
the pairing e(σ1,

∏

i∈I ˜Yi) evaluates to e(g, g̃)f(y1,...,yn) for some polynomial f
whose monomials are of the form yi ·yj , for i �= j. Conversely, if one tries to hide
some parts of the disclosed messages in σ1, as in the attack we sketched above,
then f now contains monomials of the form y2

i , for some i ∈ [1, n].
These two cases can easily be distinguished by adding the elements Zi,j =

gyi·yj to the public key, for i �= j. Indeed, these elements can trivially be used
to reconstruct f in the former case, whereas they will not be sufficient in the
latter case. Concretely, an honest user can compute σ2 ← ∏

i∈I,j∈I Z
mj

i,j and
then prove that σ1 is well formed with our second verification equation:

e(σ1,
∏

i∈I
˜Yi) = e(σ2, g̃)

Providing a similar element for an invalid σ1 is equivalent to computing
g

∑
j∈J y2

j , for some J ⊂ [1, n], which is thought to be impossible in bilinear
groups, given only the elements of the public key. A formal security analysis is
provided in Sect. 4.3. We nevertheless recall that our redactable signature scheme
RS is not strongly unforgeable. Such a property is achieved by our construction
URS as a (positive) side effect of unlinkability.

The Scheme.

– Keygen(1k, n): on input a security parameter 1k and an integer n, this
algorithm generates (g, g̃) $← G

∗
1 × G

∗
2 along with (n + 1) random scalars

x, y1, . . . , yn
$← Zp and computes the following elements:

• X ← gx

• Yi ← gyi , ∀1 ≤ i ≤ n
• ˜Yi ← g̃yi , ∀1 ≤ i ≤ n
• Zi,j ← gyi·yj , ∀1 ≤ i �= j ≤ n

The secret key sk is then (x, y1, . . . , yn) whereas the public key pk is
(X, {(Yi, ˜Yi)}1≤i≤n, {Zi,j}1≤i�=j≤n).

638 O. Sanders

– Sign(sk, {mi}n
i=1): To sign n messages m1, . . . ,mn, the signer selects a ran-

dom element σ̃1
$← G2, computes σ̃2 ← σ̃

x+
∑n

i=1 yi·mi

1 and then outputs the
signature σ = (1G1 , 1G1 , σ̃1, σ̃2).

– Derive(pk, σ, {mi}n
i=1, I): on input a signature σ = (σ1, σ2, σ̃1, σ̃2) on

{mi}n
i=1, the public key pk and a subset I ⊂ [1, n], this algorithm gener-

ates:
• σ′

1 =
∏

j∈I Y
mj

j

• σ′
2 =

∏

i∈I,j∈I Z
mj

i,j =
∏

j∈I(
∏

i∈I Zi,j)mj

where I = [1, n] \ I. If I = [1, n], then I = ∅ and σ′
1 = σ′

2 = 1G1 . In all cases,
the signer returns the derived signature σI = (σ′

1, σ
′
2, σ̃1, σ̃2) on {mi}i∈I .

– Verify(pk, σ, {mi}i∈I): A signature σ = (σ1, σ2, σ̃1, σ̃2) ∈ G
2
1 × (G∗

2)
2 is valid

on a subset of messages {mi}i∈I if the following equalities hold, in which case
the algorithm returns 1:
1. e(X · σ1

∏

i∈I Y mi
i , σ̃1) = e(g, σ̃2)

2. e(σ1,
∏

i∈I ˜Yi) = e(σ2, g̃)
If (at least) one of these equations is not satisfied, then the algorithm
returns 0.

Remark 2. We add (1G1 , 1G1) to the signatures returned by Sign so that they
have the same structure as derived signatures, produced by Derive. We note
that, for such signatures, the second verification equation is trivially satisfied
and does not require pairing computations: both pairings evaluate to 1GT

.
We stress that any signature derived for a subset I can be verified without

knowledge of the redacted messages (those whose indices are in I). Moreover, the
computational cost for the verifier does not depend on the number of redacted
messages, namely |I|.
Remark 3. One can note that Zi,j = Zj,i for all 1 ≤ i �= j ≤ n. Therefore the
public pk contains 1 + n(n+3)

2 elements. Nevertheless, we note that verification
does not require the knowledge of the elements Zi,j that are only useful to
derive signatures. In practice, one could then define a verification key vk =
(X, {(Yi, ˜Yi)}1≤i≤n), containing only 1 + 2n elements, that is sufficient to verify
any signature (derived or not).

4.2 Achieving Unlinkability

The redactable scheme RS described in Sect. 4.1 is unforgeable but it is not
unlinkable. As in [21], we could try to rerandomize each element by raising it
to some random power, but this would only work for the (σ̃1, σ̃2) part of the
signature. Rerandomizing similarly the other half of the signature seems to be
much more complex and is likely to require more elements and more pairing
equations to prove validity of the resulting signature.

We therefore use two tricks to achieve unlinkability. The first one is that
we can add in σ1 any element that is not of the form Y r

i , for i ∈ I and some
known scalar r. The second one is the ability of PS signatures to be sequentially

Efficient Redactable Signature and Application to Anonymous Credentials 639

aggregated. Concretely, we will aggregate a signature on a random message t
under a dummy public key to the original signature and we will then include t
in the set of redacted messages. Intuitively, the randomness of t will hide any
information on the messages mi ∈ I, thus ensuring unlinkability. Moreover, it
remains easy to prove well-formedness of the resulting σ1 due to the use of a
dummy public key for which we know the corresponding secret key (in practice
we will define the latter value as 1, but any other value would work). We thus
get unlinkable signatures of the same size as previously and whose generation
only requires few additional computations.

An Unlinkable Redactable Signature. The only differences between our
unlinkable scheme URS and the one described in the previous section can be
found in the Derive algorithm. Therefore, we here only describe this algorithm
and refer to Sect. 4.1 for the description of the other algorithms that remain
unchanged.

– Derive(pk, σ, {mi}n
i=1, I): on input a signature σ = (σ̃1, σ̃2) on {mi}n

i=1, the
public key pk and a subset I ⊂ [1, n], this algorithm generates 2 random
scalars r, t

$← Zp and computes the following elements:
• σ̃′

1 ← σ̃r
1

• σ̃′
2 ← σ̃r

2 · (σ̃′
1)

t

• σ′
1 ← gt

∏

j∈I Y
mj

j

• σ′
2 ← (

∏

i∈I Yi)t
∏

i∈I,j∈I Z
mj

i,j

where I = [1, n] \ I. If I = [1, n] then I = ∅ and (σ′
1, σ

′
2) = (gt,

n
∏

i=1

Y t
i).

In all cases, the signer returns the derived signature σI = (σ′
1, σ

′
2, σ̃

′
1, σ̃

′
2) on

{mi}i∈I .

The resulting derived signature has exactly the same size and the same struc-
ture as in the previous scheme RS. In particular, it is worthy to note that the
verification algorithm remains unchanged and so that an unlinkable signature is
also a valid signature for RS. Alternatively, we can see the Derive algorithm of
the previous section as a particular case of this one, where r = 1 and t = 0.

Regarding the computational cost, we note that generating an unlinkable
signature essentially requires 5 additional exponentiations (2 in G1 and 3 in G2)
compared to the scheme RS.

Correctness. Let σI = (σ1, σ2, σ̃1, σ̃2) be a derived signature on {mi}i∈I out-
putted by this new Derive algorithm. We then have:

e(X · σ1

∏

i∈I
Y mi

i , σ̃1) = e(gt+x+
∑n

i=1 yi·mi , σ̃1)

= e(g, σ̃2)

640 O. Sanders

and

e(σ1,
∏

i∈I
˜Yi) = e(gt

∏

j∈I
Y

mj

j ,
∏

i∈I
˜Yi)

= e((
∏

i∈I
Yi)t(

∏

j∈I
Y

mj

j)
∑

i∈I yi , g̃)

= e((
∏

i∈I
Yi)t

∏

i∈I,j∈I
Z

mj

i,j , g̃)

= e(σ2, g̃)

which proves correctness of our scheme.

4.3 Security Analysis

The unforgeability of the scheme URS directly relies on the one of RS, proven in the
generic group model. Proving strong unforgeability of URS requires to adapt the
previous proof, which is done in the full version [22] of this paper. In all cases, we
recall that we only consider type 3 pairings in this paper. Regarding unlinkability,
we prove that the randomness added to our derived signatures perfectly hide the
undisclosed messages and the original signatures. This is formally stated by the
following theorem.

Theorem 4. – RS is an unforgeable redactable signature scheme in the generic
group model.

– URS is an unforgeable redactable signature scheme if RS is unforgeable.
– URS is a strongly unforgeable redactable signature scheme in the generic group

model.
– URS is an unconditionally unlinkable redactable signature scheme.

Proofs of Unforgeability. We proceed in two steps and first show the unforge-
ability of the scheme RS described in Sect. 4.1. We next extend this result to the
unlinkable construction URS of Sect. 4.2.

Lemma 5. In the generic group model, no adversary can break the unforgeability
of the scheme RS with probability greater than 3(4qO +qG + 1+n(n+3)

2)2/2p, where
qG is a bound on the number of group oracle queries and qO is a bound on the
number of OSign∗ queries.

Proof. The adversary has access to the group elements provided in the public key
pk = (X, {(Yi, ˜Yi)}1≤i≤n, {Zi,j}1≤i�=j≤n) and those contained by the signatures
σ(i) returned by the OSign∗ oracle on (mi,1, . . . ,mi,n). In the following, each
group element is associated with a polynomial whose formal variables are the
scalars unknown to the adversary, namely x, y1, . . . , yn and ri such that σ̃i,1 =
g̃ri . We must first prove that the adversary is unable to symbolically produce a
valid forgery (σ1, σ2, σ̃1, σ̃2) for some subset of messages {mi}i∈I .

Efficient Redactable Signature and Application to Anonymous Credentials 641

In the generic group model, the only way for the adversary to generate
new group elements is to use the group oracle queries. This means that there
are known scalars (a, b, {ci}n

i=1, {di,j}1≤i�=j≤n), (a′, b′, {c′
i}n

i=1, {d′
i,j}1≤i�=j≤n),

(α, {βi}n
i=1, {γi}qO

i=1, {δi}qO

i=1) and (α′, {β′
i}n

i=1, {γ′
i}qO

i=1, {δ′
i}qO

i=1) such that:

σ1 = ga · Xb ·
n

∏

i=1

Y ci
i ·

∏

1≤i�=j≤n

Z
di,j

i,j

σ2 = ga′ · Xb′ ·
n

∏

i=1

Y
c′

i
i ·

∏

1≤i�=j≤n

Z
d′

i,j

i,j

σ̃1 = g̃α ·
n

∏

i=1

˜Y βi

i ·
qO
∏

i=1

σ̃γi

i,1 ·
qO
∏

i=1

σ̃δi
i,2

σ̃2 = g̃α′ ·
n

∏

i=1

˜Y
β′

i
i ·

qO
∏

i=1

σ̃
γ′

i
i,1 ·

qO
∏

i=1

σ̃
δ′

i
i,2

We do not consider separately the elements σi,1 and σi,2 because they are
public combinations of {Yi}n

i=1 and {Zi,j}1≤i�=j≤n.
Since (σ1, σ2, σ̃1, σ̃2) is a valid signature on {mi}i∈I , we know that:

1. e(X · σ1

∏

i∈I
Y mi

i , σ̃1) = e(g, σ̃2)

2. e(σ1,
∏

i∈I ˜Yi) = e(σ2, g̃)

Moreover, (σ1, σ2, σ̃1, σ̃2) is a valid forgery only if it cannot be trivially
derived from the output of the OSign∗ oracle. Concretely, this means that,
for any � ∈ [1, q0], there is at least one index k� ∈ I such that m�,k�

�= mk�
.

Now, if we consider the second equation we get the following polynomial
relation:

(a+b·x+
n∑

i=1

ci ·yi+
∑

1≤i�=j≤n

di,j ·yi ·yj)
∑

i∈I
yi = a′+b′ ·x+

n∑

i=1

c′
i ·yi+

∑

1≤i�=j≤n

d′
i,j ·yi ·yj

Since I �= ∅, for each monomial of the left member, there is at least an index
i ∈ [1, n] such that the monomial is a multiple of yi. Therefore me must have
a′ = b′ = 0. Moreover, if one of the coefficients di,j were not zero, then the left
member would be of degree 3 whereas the right one would be of degree 2. We
can then conclude that di,j = 0 ∀1 ≤ i �= j ≤ n and thus get:

(a + b · x +
n

∑

i=1

ci · yi)
∑

i∈I
yi =

n
∑

i=1

c′
i · yi +

∑

1≤i�=j≤n

d′
i,j · yi · yj

We can then note that there is no longer any term in x in the right member,
which implies that b = 0. Moreover, there is no term in y2

i in the right member
which means that ci = 0, ∀i ∈ I. We can therefore conclude that:

642 O. Sanders

σ1 = ga ·
∏

i∈I
Y ci

i

σ2 =
n

∏

i=1

Y
c′

i
i ·

∏

1≤i�=j≤n

Z
d′

i,j

i,j

Now, let us consider the first equation, which gives the following polynomial
relation:

(x + a +
∑

i∈I
ci · yi +

∑

i∈I
yi · mi)(

qO
∑

i=1

γi · ri +
qO
∑

i=1

δi · ri(x +
n

∑

j=1

yj · mi,j)+

α +
n

∑

i=1

βi · yi) = α′ +
n

∑

i=1

β′
i · yi +

qO
∑

i=1

γ′
i · ri +

qO
∑

i=1

δ′
i · ri(x +

n
∑

j=1

yj · mi,j)

On the left side, there is a unique monomial of the form δi · ri ·x2, ∀i ∈ [1, n],
whereas there is no term in x2 on the right side. We can then conclude that
δi = 0, ∀i ∈ [1, n]:

(x + a +
∑

i∈I
ci · yi +

∑

i∈I
yi · mi)(

qO
∑

i=1

γi · ri + α +
n

∑

i=1

βi · yi)

= α′ +
n

∑

i=1

β′
i · yi +

qO
∑

i=1

γ′
i · ri +

qO
∑

i=1

δ′
i · ri(x +

n
∑

j=1

yj · mi,j)

One can then note that, in the right member, all the monomials of degree 1
in x are also a multiple of some ri. Therefore, we can conclude that α = 0 and
that βi = 0, ∀i ∈ [1, n]. It then no longer remains any constant term in the left
member, which implies that α′ = 0:

(x + a +
∑

i∈I
ci · yi +

∑

i∈I
yi · mi)(

qO
∑

i=1

γi · ri)

=
n

∑

i=1

β′
i · yi +

qO
∑

i=1

γ′
i · ri +

qO
∑

i=1

δ′
i · ri(x +

n
∑

j=1

yj · mi,j)

The factor
qO
∑

i=1

γi ·ri on the left side implies that all monomials are a multiple

of some ri. This means that β′
i = 0, ∀i ∈ [1, n]:

(x+a+
∑

i∈I
ci ·yi +

∑

i∈I
yi ·mi)(

qO
∑

i=1

γi ·ri) =
qO
∑

i=1

γ′
i ·ri +

qO
∑

i=1

δ′
i ·ri(x+

n
∑

j=1

yj ·mi,j)

Now, if we consider this relation as an equality between polynomials in the
variables ri, we get, for each � ∈ [1, qO]:

(x + a +
∑

i∈I
ci · yi +

∑

i∈I
yi · mi)γ� = γ′

� + δ′
�(x +

n
∑

j=1

yj · mi,j)

Efficient Redactable Signature and Application to Anonymous Credentials 643

However, we know that, for any � ∈ [1, q0], there is at least one index k� ∈ I
such that m�,k�

�= mk�
. This implies that δ′

� = γ� = γ′
� = 0 ∀� ∈ [1, q0], which is

impossible. The adversary cannot therefore symbolically produce a valid forgery.
It remains to assess the probability of an accidental validity, when two differ-

ent polynomials evaluate to the same value. All the polynomials considered in
this proof are of degree at most 3. Since there are at most (4qO + qG + 1+n(n+3)

2)
polynomials, the probability of an accidental validity is bounded by 3(4qO +qG+
1+n(n+3)

2)2/2p according to the Schwartz-Zippel lemma, which is negligible. ��
Our next lemma shows that the unforgeability of RS implies the one of our

unlinkable scheme URS from Sect. 4.2.

Lemma 6. Any adversary A against the unforgeability of our unlinkable scheme
URS can be converted into an adversary against the unforgeability of RS, succeed-
ing with the same probability.

Proof. Our reduction R uses A, an adversary against the unforgeability of URS,
to break the unforgeability of RS. There will be then two unforgeability games.
To avoid any confusion, we will refer to the unforgeability game of our basic
scheme as the “RS game” and to the one of our unlinkable scheme as the “URS
game”.

R starts the RS game and then obtains a public key pk that it forwards to
A. When it receives a OSign∗ query, it simply forwards it to the corresponding
oracle of the RS game and then receives a valid signature σ = (σ1, σ2, σ̃1, σ̃2) for
RS. It then selects two random scalars r and t and computes:

– σ′
1 = σ1 · gt;

– σ′
2 = σ2 · (

∏

i∈I Yi)t;
– σ̃′

1 = σ̃r
1;

– σ̃′
2 = σ̃r

2 · (σ̃′
1)

t.

Finally, it returns σ = (σ′
1, σ

′
2, σ̃

′
1, σ̃

′
2) to the adversary A.

The fact that R forwards each query to the oracles of the RS game implies
that the sets of messages stored in Q1 are exactly the same for both games.
Since the oracle of the URS game is perfectly simulated, the adversary eventually
outputs a forgery which is a valid derived signature σ∗ for URS. Since RS and
URS have the same verification algorithm, σ∗ is also a valid signature for RS.
Moreover, our previous remark on Q1 means that σ∗ is also a valid forgery for
the RS game. R then never fails when A succeeds, which concludes the proof.

Proof of Unlinkability. We prove here that a signature σI on {mi}i∈I derived
from an original signature σ on {mi}n

i=1 is distributed independently of σ and
{mi}i∈I . Since the messages output by the adversary in the unlinkability game
satisfy m

(0)
i = m

(1)
i , ∀i ∈ I, this means that the advantage of the adversary can

only be negligible in this game.
Concretely, let τ̃ be a random element of G2 and u be a random scalar.

For a signature σ = (σ1, σ2, σ̃1, σ̃2) on {mi}n
i=1 and any subset I ⊂ [1, n], we

644 O. Sanders

define t = u − ∑

i∈I yi · mi and r = v
s , where v and s are such that τ̃ = g̃v

and σ̃1 = g̃s. Since u and τ̃ are random, r and t are also random and so are
distributed as specified in the Derive algorithm. Running the latter algorithm
on (σ, {mi}n

i=1, I) with these values would then lead to the derived signature
σI = (σ′

1, σ
′
2, σ̃

′
1, σ̃

′
2) with:

– σ̃′
1 = σ̃r

1 = τ̃
– σ̃′

2 = σ̃r
2 · (σ̃′

1)
t = τ̃x+

∑
i∈I yi·mi · τ̃u

– σ′
1 = gt

∏

j∈I Y
mj

j = gu

– σ′
2 = (

∏

i∈I Yi)t
∏

i∈I,j∈I Z
mj

i,j = gu·∑i∈I yi

Since u and τ̃ are random, the derived signature σI is clearly independent of
the original signature and of the messages {mi}i∈I , which concludes the proof.

5 Anonymous Credentials

Anonymous credential (also called attribute-based credential) is a broad notion
that usually encompasses any system that allows some organization to issue a
credential on users’ attributes such that (1) the users can later prove that their
attributes are certified and (2) the elements revealed by the users when they
show their credential cannot be linked to a specific issuance (unless the revealed
attributes trivially allow to do so).

However, there is no unique, commonly accepted definition of anonymous
credentials, but rather several variants of the same intuitive notion. For example,
some definitions [5,14] assume that the credential are only shown once, whereas
others support multiple (and unlinkable) showing of a credential [10,15,21]. We
follow in this section the definition from [15] that consider multiple, interactive
showings.

5.1 Syntax

An anonymous credentials system is defined by the following algorithms.

– OrgKeygen(1k, n): This algorithm takes as input a security parameter 1k and
an integer n defining a bound on the number of attributes to certify and
returns the organization key pair (sk, pk).

– UserKeygen(pk): This algorithm returns a user’s key pair (usk, upk) from the
organization public key pk.

– (Obtain(usk, pk, {mi}n
i=1), Issue(upk, sk, {mi}n

i=1): To obtain an anonymous
credential on a set of attributes {mi}n

i=1, the user, running Obtain, inter-
acts with the organization, running Issue. The former algorithm additionally
requires the user’s secret key usk and the organization public key pk whereas
the latter requires upk and sk. At the end of the protocol, Obtain returns
either a credential σ or ⊥.

Efficient Redactable Signature and Application to Anonymous Credentials 645

– (Show(pk, usk, {mi}n
i=1, I, σ), Verify(pk, {mi}i∈I)): These algorithms are run

by a user and a verifier, respectively, who interact during execution. Show
enables the user to prove that a subset {mi}i∈I of his attributes, with I ⊂
[1, n], has been certified. It takes as input the credential σ, the organization
public key pk, the whole set of attributes {mi}n

i=1 along with the intended
subset I. The Verify algorithm only takes as input pk and the subset {mi}i∈I
and returns either 1 (accept) or 0 (reject).

5.2 Security Model

The security model considered here is the one from [15], that we slightly modify
to harmonize this section with the one on redactable signature (Sect. 3).

Besides correctness, an anonymous credentials system must achieve unforge-
ability and anonymity that essentially mirror the unforgeability and unlinkability
notions for redactable signatures. As in Sect. 3, we define these properties by the
experiments described in Fig. 2 that use the following oracles along with two sets:
HU, the set containing the identities of honest users and CU, that contains the
ones of corrupt users. We additionally define the set Att that stores {i, {mj}n

j=1}
each time a credential is generated for user i on {mj}n

j=1 by the oracles OObtIss
and OIssue below. We say that {i, {mj}j∈I} ⊂ Att if ∃{i, {m′

j}n
j=1} ∈ Att with

m′
j = mj for all j ∈ I.

– OHU(i): on input an identity i, this oracle returns ⊥ if i ∈ HU ∪ CU. Else it
generates a key pair (uski, upki) ← UserKeygen(pk) and returns upki. The
identity i is then added to HU.

– OCU(i, upk): on input an identity i and optionally a public key upk, this oracle
registers a new corrupt user with public key upk if i /∈ HU and returns uski

and all the associated credentials otherwise. In the latter case, i is removed
from HU. In all cases, i is added to CU.

– OObtIss(i, {mj}n
j=1): on input an identity i ∈ HU and a set of attributes

{mj}n
j=1, this oracle runs (Obtain(uski, pk, {mj}n

j=1), Issue(upki, sk,
{mj}n

j=1) and stores the resulting output. The elements {i, {mj}n
j=1} are

then added to Att. If i /∈ HU, the oracle returns ⊥.
– OObtain(i, {mj}n

j=1): on input an identity i ∈ HU and a set of attributes
{mj}n

j=1, this oracle runs Obtain(uski, pk, {mj}n
j=1) and stores the resulting

output. If i /∈ HU, the oracle returns ⊥. This oracle is used by an adversary
impersonating the organization to issue a credential to an honest user.

– OIssue(i, {mj}n
j=1): on input an identity i ∈ CU and a set of attributes

{mj}n
j=1, this oracle runs Issue(upki, sk, {mj}n

j=1). The elements
{

i, {mj}n
j=1

}

are then added to Att. If i /∈ CU, the oracle returns ⊥. This
oracle is used by an adversary playing a malicious user to get a certificate
from an honest organization.

– OShow(k, I): Let σ(k) be the credential issued on {m
(k)
j }n

j=1 for a user ik
during the k-th query to OObtIss or OObtain. If ik /∈ HU, this oracle returns
⊥. Else, this oracle runs Show(pk, uskik

, {m
(k)
j }n

j=1, I, σ(k)) with the adversary
playing a malicious verifier.

646 O. Sanders

Unforgeability
Exp

uf
A (1k, n)

1. (sk, pk) ← Keygen(1k, n)
2. {mj}j∈I ← AOHU,OCU,OObtIss,OIssue,OShow(pk)
3. b ← (A(), Verify(pk, {mj}j∈I))
4. If {i, {mj}j∈I} ⊂ Att with i ∈ CU or if b = 0, return 0
5. Return 1.

Anonymity
Expano−b

A (1k, n)

1. (sk, pk) ← Keygen(1k, n)
2. (j0, j1, {mi}i∈I) ← AOHU,OCU,OObtain,OShow(sk)
3. If {jb′ , {mi}i∈I ⊂�} Att for b′ ∈ {0, 1}, return 0
4. (Show(pk, uskjb , {m

(jb)
i }n

j=1, I, σ(k)), A())

5. b∗ ← AOHU,OCU,OObtain,OShow(sk)
6. If OCU has been queried on jb′ for b′ ∈ {0, 1}, return 0
7. Return b∗.

Fig. 2. Security notions for anonymous credentials

Correctness. A showing of a credential σ with respect to a set {mi}i∈I always
verify if σ was honestly issued on {mi}n

i=1, with I ∈ [1, n].

Unforgeability. A credential system is unforgeable if Advuf (A) =
|Pr[Expuf

A (1k, n) = 1]| is negligible for any polynomial time adversary A.

Anonymity. The anonymity property is defined by the Expano−b
A experi-

ment in Fig. 2, for b ∈ {0, 1}. A credential system is anonymous if Advano =
|Pr[Expano−1

A (1k, n) = 1] − Pr[Expano−0
A (1k, n) = 1]| is negligible for any polyno-

mial time adversary A.
Our definition assumes that the organization key pair (sk, pk) is honestly

generated and then sent to the adversary, contrarily to [15] that lets the adversary
generates its own key pair. This modification indeed allows us to reduce the size
of the public key pk in our next construction. Nevertheless, we stress that the
latter can satisfy the original definition from [15] if we add a non-interactive
zero-knowledge proof of knowledge of sk in pk.

6 Our Anonymous Credentials System

As noticed in [7,15], an unlinkable redactable signature scheme is very similar
to an anonymous credentials system [8], also called attribute-based credentials
system. Indeed, it can be used to prove that some data have been certified
without being traced, while hiding (redacting) all the other signed data. To
achieve all the properties expected from an anonymous credentials system, it

Efficient Redactable Signature and Application to Anonymous Credentials 647

thus essentially lacks the ability to issue credentials on the user’s secret key and
then to present the credentials with respect to this key.

In this paper we use the definition of anonymous credentials provided in [15]
and thus consider an interactive presentation protocol. However, the latter can
easily be made non interactive by using the Fiat-Shamir heuristic [13] on the
proof of knowledge that it contains.

6.1 Our Construction

In our system, the user’s secret key usk is simply a random scalar that defines
the public key upk as g̃usk. Using the protocols described in [21], that we slightly
modify, the user is able to get a redactable signature σ on usk and a set of
attributes {mi}n

i=1 without revealing usk. Such a signature σ then acts as a
credential for this user. To show a credential on some attributes {mi}i∈I , the
user essentially runs the Derive algorithm on σ and {usk} ∪ {mi}i∈I and then
prove knowledge of usk.

Our construction can thus be seen as an interactive version of our URS
scheme supporting proofs of knowledge of secret attributes. However, such mod-
ifications make the security proofs more intricate. In particular, anonymity no
longer holds unconditionally, but under the DDH assumption in G2. Intuitively,
this is due to the fact that usk must be kept secret but cannot either be aggre-
gated to the set of undisclosed messages. Therefore, the distribution of derived
signatures can no longer be made independent of usk and thus we cannot rely
on the same arguments as those used in the security proof of Sect. 4.3.

– OrgKeygen(1k, n): On input a security parameter 1k and an integer n, this
algorithm generates (n + 2) random scalars x, y0, y1, . . . , yn

$← Zp and com-
putes the following elements:

• X ← gx

• Yi ← gyi , ∀0 ≤ i ≤ n
• ˜Yi ← g̃yi , ∀0 ≤ i ≤ n
• Zi,j ← gyi·yj , ∀0 ≤ i �= j ≤ n

The secret key sk is then (x, y0, y1, . . . , yn) whereas the public key pk is
(X, {(Yi, ˜Yi)}0≤i≤n, {Zi,j}0≤i�=j≤n)

– UserKeygen(pk): To generate a key pair (usk, upk) for a user, this algorithm
selects a random usk

$← Zp and computes upk ← g̃usk.
– (Obtain(usk, pk, {mi}n

i=1), Issue(upk, sk, {mi}n
i=1): To obtain an anonymous

credential on a set of attributes {mi}n
i=1, the user first sends her public key

upk along with a proof of knowledge of usk, using for example the Schnorr’s
protocol [23]. If the proof is correct, then the organization selects a random
r

$← Zp and returns σ = (σ̃1, σ̃2) ← (g̃r, upkr·y0 · g̃r(x+
∑n

i=1 yi·mi)) to the user.
– (Show(pk, usk, {mi}n

i=1, I, σ), Verify(pk, {mi}i∈I)): For I ⊂ [1, n], we define
I0 = {0} ∪ I. The protocol to show a credential on a subset {mi}i∈I is
described in Fig. 3.

648 O. Sanders

User(pk, usk, {mi}n
i=1, I, σ) Verifier(pk, {mi}i∈I)

k, r, t
$← Zp

σ′
1 ← gt · ∏

j∈[1,n]\I Y
mj

j

σ′
2 ← (

∏
i∈I0

Yi)t · ∏
i∈I0,j∈[1,n]\I Z

mj

i,j

σ̃′
1 ← σ̃r

1

σ̃′
2 ← σ̃r

2 · (σ̃′
1)t

C ← e(Y k
0 , σ̃′

1)
(σ′

1, σ
′
2, σ̃

′
1, σ̃

′
2), C−−−−−−−−−−−−−−−−→ If (σ̃′

1, σ̃
′
2) /∈ (G∗

2)2, return 0.
Else, c

$← Zp
c←−−−−−−−−−−−−−−−− B = e(X · σ′

1

∏
i∈I Y mi

i , (σ̃′
1)−1)

s = k + c · usk s−−−−−−−−−−−−−−−−→ If e(Y s
0 , σ̃′

1) · C−1 = [B · e(g, σ̃′
2)]c

and e(σ′
1,

∏
i∈I0

Ỹi) = e(σ′
2, g̃)

return 1
Else, return 0

Fig. 3. A protocol to show a credential σ on a subset {mi}i∈I

Correctness. For a valid credential σ issued on (m1, . . . ,mn) and usk, we have:

e(X · Y usk
0 ·

n
∏

i=1

Y mi
i , σ̃1) = e(g, σ̃2)

which is equivalent to:

e(Y usk
0 , σ̃1) = e(g, σ̃2) · e(X ·

n
∏

i=1

Y mi
i , σ̃1)−1

Therefore:

e(Y s
0 , σ̃′

1) · C−1 = e(Y usk
0 , σ̃1)r·c

= [e(g, σ̃2) · e(X ·
n

∏

i=1

Y mi
i , σ̃1)−1]r·c

= [e(g, σ̃′
2) · e(g, σ̃′

1)
−t · e(X ·

n
∏

i=1

Y mi
i , (σ̃′

1)
−1)]c

= [e(g, σ̃′
2) · e(X · gt ·

∏

i∈I
Y mi

i ·
∏

i∈[1,n]\I
Y mi

i , (σ̃′
1)

−1)]c

= [e(g, σ̃′
2) · e(X · σ′

1 ·
∏

i∈I
Y mi

i , (σ̃′
1)

−1)]c

= [e(g, σ̃′
2) · B]c

Efficient Redactable Signature and Application to Anonymous Credentials 649

and

e(σ′
1,

∏

i∈I0

˜Yi) = e(
∏

j∈[1,n]\I
Y

mj

j ,
∏

i∈I0

˜Yi) · e(gt,
∏

i∈I0

˜Yi)

= e((
∏

j∈[1,n]\I
Y

mj

j)
∑

i∈I0
yi , g̃) · e((

∏

i∈I0

Yi)t, g̃)

= e(σ′
2, g̃)

which implies correctness of our protocol.

Proving Knowledge of Attributes. As we have explained, our Show protocol
essentially consists in deriving a signature on usk ∪ {mi}i∈I and then proving
knowledge of usk. The latter proof is very easy to produce using Schnorr’s proto-
col because usk is an exponent in the verification equation. We note that this is
also true for every attribute mi such that i ∈ I. Therefore, the protocol of Fig. 3
can easily be extended to hide and prove knowledge of the attributes {mj}j∈J ,
for any subset J ⊂ I.

6.2 Security Analysis

The structure of our Show protocol makes the unforgeability proof rather
straightforward: if an adversary is able to prove possession of a credential on
a set of attributes that it does not own, then it is able to produce a valid forgery
for our URS system or to impersonate an honest user. Since our protocol requires
that the users prove knowledge of their secret key, the latter case implies an
attack against the discrete logarithm. Proving anonymity of our credential sys-
tem is more subtle as we cannot simply rely on the unlinkability of URS.

Theorem 7. – Our credential system is unforgeable if URS is unforgeable and
if the DL assumption holds in G2.

– Our credential system is anonymous under the DDH assumption in G2.

Proof of Unforgeability. Let A be an adversary against the unforgeability of
our anonymous credentials system. During the game, A returns a set of attributes
{mi}i∈I and then proves possession of a credential on this set. Obviously, the
credentials issued by oracles to corrupt users cannot be valid on {mi}i∈I . How-
ever, honest users could possess a credential on such attributes, which leads to
consider two different cases in our proof. Let usk be the secret key whose knowl-
edge is proved by the adversary when it shows the credential on {mi}i∈I , we
distinguish two types of adversary:

– Type 1: ∃i ∈ HU such that uski = usk
– Type 2: ∀i ∈ HU, uski �= usk.

650 O. Sanders

Lemma 8. Any type 1 adversary A succeeding with probability ε can be con-
verted into an adversary against the discrete logarithm assumption in G2 suc-
ceeding with probability ε

q , where q is a bound on the number of honest users.

Proof. Let (g̃, g̃a) be a DL challenge. Our reduction R generates the organisation
key pair using g̃ as the generator for G2 and returns pk to A. Since we consider
a type 1 adversary, we know that there is an index i such that A will try to
impersonate the i-th honest user. Our reduction R then makes a guess on i ∈
[1, q] and proceeds as follows.

– OHU: Let j be the index query to this oracle. If j �= i, then R proceeds as
usual. Else, it returns upki = g̃a.

– OCU: If R receives a corruption query on an honest user j, it returns uskj if
j �= i and aborts otherwise.

– OObtIss: R knows the organization secret sk and so perfectly simulates the
organization’s side of this protocol. It can also play the role of any honest
user j if j �= i. Else, it simulates the proof of knowledge of uski.

– OIssue: R knows sk and so is perfectly able to answer any query.
– OShow: If the queried credential belongs to j �= i, then R is able to run the
Show protocol defined in Fig. 3. Else, it runs the first steps of the protocols
but simulates the knowledge of uski.

One can note that the game is perfectly simulated if the guess on i is correct,
which occurs with probability 1

q . In such a case, a successful adversary A proves
knowledge of uski = a when it shows its credential. R can then run the extractor
of the proof of knowledge to recover a, that it returns as a valid solution to the
DL problem. The probability of success of R is then ε

q . ��
Lemma 9. Any type 2 adversary A can be converted into an adversary against
the unforgeability of the URS scheme succeeding with the same probability.

Proof. Our reduction R runs the unforgeability game of the URS scheme
for the parameter n + 1 and so receives a public key (X, {(Yi, ˜Yi)}1≤i≤n+1,
{Zi,j}1≤i�=j≤n+1). R changes the indices of the elements of the public key, start-
ing from 0 instead of 1, and then returns pk = (X, {(Yi, ˜Yi)}0≤i≤n, {Zi,j}0≤i�=j≤n)
to A. It can then answers oracle queries as follows.

– OHU: R proceeds as usual, and stores the corresponding secret key.
– OCU: Here again, R proceeds as usual.
– OObtIss: Let i ∈ HU and {mi}n

i=1 be the input of this oracle. The reduction
recovers the secret key uski that it has generated for user i and then submits
(uski,m1, . . . ,mn) to the signing oracle OSign∗. It then receives a URS signa-
ture (σ1, σ2, σ̃1, σ̃2) whose first two elements are 1G1 . R then discards σ1 and
σ2 and stores the resulting credential (σ̃1, σ̃2).

– OIssue: Let i ∈ CU and {mi}n
i=1 be the input of this oracle. R extracts uski

from the proof of knowledge produced by A and then proceeds as previously
to get a URS signature on (uski,m1, . . . ,mn). Here again, the new credential
is defined as (σ̃1, σ̃2).

Efficient Redactable Signature and Application to Anonymous Credentials 651

– OShow: Let i and {mi}i∈I be the inputs of this oracle. A show query can only
be made for a credential that has been issued through the OObtIss oracle.
Since the latter oracle uses the OSign∗ oracle of the unforgeability game of
the URS scheme, there is a corresponding signature σ on (uski,m1, . . . ,mn) in
the table Q1. R can then run the Derive algorithm on σ and {uski}∪{mi}i∈I
and gets (σ′

1, σ
′
2, σ̃

′
1, σ̃

′
2) such that:

• σ̃′
2 = (σ̃′

1)
t+x+y0·uski+

∑n
i=1 yi·mi

• σ′
1 ← gt · ∏

j∈[1,n]\I Y
mj

j

• σ′
2 ← (

∏

i∈I0
Yi)t · ∏

i∈I0,j∈[1,n]\I Z
mj

i,j

The elements σ′
1, σ′

2, σ̃′
1 and σ̃′

2 are therefore distributed as in the Show
protocol of Fig. 3. It then only remains to compute C = e(Y k

0 , σ̃′
1) for some

random k and to return a valid s using uski.

R can handle any oracle query and never aborts. Therefore, at the end of
the game, A is able, with some probability ε, to prove possession of a credential
on {mi}i∈I . Our reduction extracts from the proof of knowledge contained in
the Show protocol the value usk and stores the elements σ′

1, σ′
2, σ̃′

1 and σ̃′
2. The

latter constitute a valid derived signature on {usk} ∪ {mi}i∈I .
Since we here consider a type 2 adversary, usk must be different from uski, for

any honest user i. Moreover, to be considered as an attack against unforgeability,
no credential owned by corrupt users can be valid on this set of messages. This
means that, for any credential on (uski,m

′
1, . . . ,m

′
n) with i ∈ CU, we have either

usk �= uski or ∃j ∈ I such that mj �= m′
j . In all cases, this means that σ =

(σ′
1, σ

′
2, σ̃

′
1, σ̃

′
2) and {usk} ∪ {mi}i∈I is a valid forgery against our URS scheme,

which concludes our proof. ��

Proof of Anonymity. Let (g̃, g̃a, g̃b, g̃c) be a DDH challenge in G2. We con-
struct a reduction R that uses A, an adversary succeeding against the anonymity
of our credential system with advantage ε, to decide whether c = a · b.

At the beginning of the game Expano−b
A , R generates the organization key

pair (sk, pk) and forwards it to A that eventually returns (j0, j1, {mi}i∈I). R
then makes a guess on the identity of the user ib that will possess the credential
σ(jb) targeted by A and answers the oracle queries as follows.

– OHU: Let j be the identity submitted to this oracle. If j �= ib, then R proceeds
as usual. Else, it returns g̃a as the public key upkib

of user ib.
– OCU: R proceeds as usual, unless this oracle is queried on ib, in which case

R aborts.
– OObtain: For any j �= ib, R knows uskj and so is able to run the Obtain

protocol as usual. If j = ib, then R sends the public key upkib
and simulates

the proof of knowledge of a.
– OShow: Here again, R proceeds as usual or by simulating the proof of knowl-

edge of the secret key if the credential belongs to ib.

652 O. Sanders

At some point in the game, the adversary outputs the identifiers j0 and j1
of two users, along with a set of attributes {mi}i∈I . If jb �= ib, then R aborts.
Else, it proceeds as follows.

R first selects two random scalars k and α and sets σ̃′
1 = gb. It then computes:

– σ̃′
2 ← (σ̃′

1)
α+x+

∑
i∈I yi·mi · (gc)y0

– σ′
1 = gα

– σ′
2 = (σ′

1)
∑

i∈I0
yi

and simulates knowledge of a.
If c = a · b, then, by setting t = α − ∑

i∈[1,n]\I yi · mi, one can see that
(σ′

1, σ
′
2, σ̃

′
1, σ̃

′
2) is distributed as in the protocol of Fig. 3. Else, c is random, which

means that σ̃′
2 is a random element of G2. Since σ′

1, σ′
2 and σ̃′

1 are independent
of a and {mi}i∈[1,n]\I , A cannot succeed in this game with non negligible advan-
tage. Therefore any change in the behaviour of A can be used to solve the DDH
problem in G2, unless R aborts. The advantage of R is then at least ε

q , where q
is a bound on the number of honest users.

7 Efficiency

We describe in this section the complexity of the redactable signature schemes
RS and URS before comparing the one of our anonymous credentials system with
the most relevant systems of the state-of-the-art.

Redactable Signatures. Table 1 provides the most important figures regard-
ing the size and computational complexity of the schemes RS and URS. For sake
of clarity, we only consider the most expensive operations, such as exponentia-
tions and pairings, and do not take into account the other ones. As in Remark
3, we define the subset vk of the elements of the public key pk that are necessary
to verify signatures. Our efficiency analysis is based on the descriptions of the
schemes from Sects. 4.1 and 4.2 that aim at minimizing the complexity in G2,
where operations are usually less efficient and elements are larger than in G1.
Nevertheless, we note that we can safely switch G1 and G2 if needed.

Table 1. Complexity of our Redactable Signature Schemes. The costs of Derive and
Verify are provided for a set {mi}i∈I of k elements. Here, r2 denotes the generation
of a random element in G2, ei denotes an exponentiation in Gi, for i ∈ {1, 2}, and pi

denotes an equation involving i pairings.

vk pk σ Sign Derive Verify

RS (n + 1)G1

+nG2

n2+n+2
2

G1

+nG2
2G1 + 2G2 1r2 + 1e2 2(n − k)e1 ke1 + 2p2

URS (n + 1)G1

+nG2

n2+n+2
2

G1

+nG2
2G1 + 2G2 1r2 + 1e2

2(n − k + 1)e1
+3e2

ke1 + 2p2

Efficient Redactable Signature and Application to Anonymous Credentials 653

Anonymous Credentials. We compare in Table 2 the efficiency of our anony-
mous credentials system from Sect. 6 with the one of different approaches sup-
porting multiple unlinkable showings of credentials. Most of the references and
figures are extracted from the comparison in [15]. The latter shows that the
existing solutions mostly differ in the size of the public key and of the credential
and in the complexity of the showing process. For sake of clarity, we therefore
only consider these features in our table and, for example, do not take into
account the complexity of the Issuing process. We nevertheless note that our
issuing process is among the most efficient ones. Similarly, we do not indicate
in our table the computational assumptions that underlie the security of the
constructions and refer to [15] for this information. We indeed note that, except
for [9], all of them rely on the generic group model (GGM) or on non-standard
assumptions (that are themselves proven in the GGM), which seems to be the
price for efficiency and functionalities.

Table 2. Comparison of different anonymous credentials systems. The pk, vk and σ
colomns refer to the size of the public key, of the verification key and of the credential,
respectively. |Show| indicates the number of elements exchanged by the user and the
verifier when the former shows k attributes. The Show and Verify colomns indicate the
computational complexity for the user and the verifier, respectively. The last colomn
indicates whether the scheme only supports selective (s) disclosure, or if it also allows
to prove relations (r) about the attributes.

Scheme pk/vk σ |Show| Show Verify Proof

[9] O(n)/O(n) O(1) O(n − k) O(n − k) O(n) r
[10] O(n)/O(n) O(n) O(n) O(n) O(n) r
[1] O(n)/O(n) O(1) O(n − k) O(n − k) O(n) r
[21] O(n)/O(n) O(1) O(n − k) O(n − k) O(n) r
[7] O(n)/O(n) O(1) O(1) O(n − k) O(k) s
[15] O(n)/O(n) O(1) O(1) O(n − k) O(k) s
Sect. 6 O(n2)/O(n) O(1) O(1) O(n − k) O(k) r

This table shows that, for a long time, a credential issued on n attributes
needed O(n) operations to be verified, even if the user only showed k attributes.
Moreover, it was necessary to prove knowledge of the (n − k) hidden attributes,
which implied to send O(n − k) elements during the protocol.

Our protocol circumvents this problem and proposes a constant size creden-
tial with a constant number of elements to send during Show. Moreover, a verifier
who only needs to check k attributes only has to perform k operations, which
seems optimal. However one can note that our scheme is not the first one to
achieve such remarkable features. We therefore need to go beyond asymptotic
comparison when it comes to [7] and [15].

Regarding [7], the situation is quite simple. Although it has nice asymptotic
complexity, the O(1) notation for |Show| hides about 100 groups elements to show
a credential (see [15]). It is therefore far less practical than our scheme and the

654 O. Sanders

one from [15]. Nevertheless, we must mention that it is the only one to achieve
strong security in the UC framework [11], which may justify the efficiency gap.

Regarding [15], we note that our public key is larger, although it can be
restricted to O(n) elements if we only consider elements necessary for the ver-
ification, as explained in Remark 3. Our credential only consists of 2 elements
of G2 and so is roughly twice shorter than the one from [15] that consists of 3
elements of G1, 1 of G2 and 2 scalars.

In our case, to show a credential, a user must send 2 elements of G1, 2 of G2,
1 of GT and one scalar, contrarily to 8 elements of G1, 1 of G2 and two scalars
in [15]. If we use Barreto-Naehrig curves [3] to instantiate the bilinear group, we
get roughly the same complexity because of the element in GT in our protocol.
However, we note that the latter is the commitment of a Schnorr’s proof and so
could be replaced by a scalar if we choose to make our protocol non-interactive
using the Fiat-Shamir heuristic [13]. In such a case, our Show protocol would be
twice more efficient than the one from [15].

Finally, we believe that the main difference between these two schemes can
be found in the ability to prove relations about the attributes. Indeed, in our
protocol, each disclosed element is involved as an exponent of some public ele-
ment in the verification equation so it is easy to hide it using Schnorr’s proof of
knowledge [23] and then to prove that it satisfies another relation (hence the “r”
in the last column). Conversely, in [15], the disclosed attributes are roots of some
polynomial fT (a) that is involved in the verification equation, with a a secret
parameter of their scheme. Proving knowledge of these attributes is thus much
more complex than in our case, so [15] cannot be used if one needs to efficiently
prove some relations about them.

8 Conclusion

In this paper, we have provided a remarkably versatile and efficient signature
scheme. Given a signature σ on a set of messages {mi}n

i=1, one can indeed
disclose, prove relations about or redact any subset of {mi}n

i=1. Moreover, the
number (n − k) of undisclosed messages does not impact communication or
verification complexity, leading to very efficient partial verification of a signature
when k is small.

This ability to redact or prove relations about parts of the message is partic-
ularly useful when privacy is critical and we show that our scheme can be used to
construct an anonymous credentials system with the same features. The result-
ing protocol then combines almost all the best properties of previous solutions,
with constant-size credentials and O(k) verification complexity, along with the
ability to prove relations about attributes.

We believe that anonymous credentials are just an example of application
of our scheme and that the latter could be useful as a building block for other
primitives, in particular privacy-preserving ones.

Efficient Redactable Signature and Application to Anonymous Credentials 655

Acknowledgements. The authors are grateful for the support of the ANR through
project ANR-16-CE39-0014 PERSOCLOUD and project ANR-18-CE-39-0019-02
MobiS5.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

2. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: EuroS&P 2017, pp. 301–315 (2017)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

5. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy, January 2000

6. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and
constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–
104. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2 6

7. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp.
262–288. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 11

8. Camenisch, J., Lysyanskaya, A.: An identity escrow scheme with appointed veri-
fiers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 388–407. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 23

9. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

10. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

12. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of Ψ revisited. Discrete Appl. Math. 159(13), 1311–1322 (2011)

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 12

15. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019)

https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-642-13708-2_6
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/3-540-44647-8_23
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12

656 O. Sanders

16. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

17. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson Jr., M., Locasto, M.E., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38980-1 22

18. Haber, S., et al.: Efficient signature schemes supporting redaction, pseudonymiza-
tion, and data deidentification. In: Abe, M., Gligor, V. (eds.) ASIACCS 2008, pp.
353–362. ACM Press, March 2008

19. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

20. Nojima, R., Tamura, J., Kadobayashi, Y., Kikuchi, H.: A storage efficient
redactable signature in the standard model. In: Samarati, P., Yung, M., Mar-
tinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 326–337. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04474-8 26

21. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

22. Sanders, O.: Efficient redactable signature and application to anonymous creden-
tials. IACR Cryptology ePrint Archive, vol. 1201 (2019)

23. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-04474-8_26
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/0-387-34805-0_22

Author Index

Abdolmaleki, Behzad I-590
Abe, Masayuki I-558
Agrawal, Shweta I-34
Agrikola, Thomas I-187
Ambrona, Miguel I-558

Bai, Shi II-66
Baum, Carsten I-495
Bhattacharyya, Rishiraj I-249
Bouvier, Cyril II-483
Brakerski, Zvika II-97

Canetti, Ran II-299
Cao, Nairen I-279
Castagnos, Guilhem II-266
Catalano, Dario II-266, II-357
Chailloux, André II-453
Chakraborty, Suvradip I-220
Chan, T.-H. Hubert II-246
Costello, Craig II-505
Couteau, Geoffroy I-187

Das, Dipayan II-66
Daza, Vanesa I-527
De Feo, Luca II-187
Debris-Alazard, Thomas II-453
Derler, David I-462
Di Raimondo, Mario II-357
Dowling, Benjamin I-341
Ducas, Léo II-3

El Kaafarani, Ali II-157

Fan, Shuqin II-37
Fiore, Dario II-124, II-357

Garg, Sanjam I-123
Gay, Romain I-95, I-123
Genise, Nicholas I-623
Giacomelli, Irene II-357
Gong, Guang I-396
Gu, Dawu I-309
Guillevic, Aurore II-535
Guo, Siyao I-374

Hajiabadi, Mohammad I-123
Haque, Abida II-423
Hazay, Carmit II-328
He, Jingnan I-396
Hébant, Chloé II-597
Hiromasa, Ryo II-66
Hofheinz, Dennis I-187
Hövelmanns, Kathrin II-389

Imbert, Laurent II-483
Iovino, Vincenzo I-65

Jiang, Shaoquan I-396

Kalai, Yael II-97
Kamath, Pritish I-374
Katsumata, Shuichi II-157
Kawahara, Yuto I-3
Kiltz, Eike II-389

Laarhoven, Thijs II-3
Laguillaumie, Fabien II-266
Lai, Qiqi I-652
Langrehr, Roman I-153
Lauer, Sebastian II-567
LaVigne, Rio II-215
Libert, Benoît I-34
Lipmaa, Helger I-590
Liu, Feng-Hao I-652
Liu, Joseph K. I-309
Liu-Zhang, Chen-Da II-215
Longa, Patrick II-505

Maitra, Monosij I-34
Maurer, Ueli II-215
Meyer, Michael II-187
Micciancio, Daniele I-623
Moran, Tal II-215
Mularczyk, Marta II-215

Naehrig, Michael II-505
Nguyen, Khoa I-396
Nishimaki, Ryo I-3

Nitulescu, Anca II-124
Nof, Ariel I-495

O’Neill, Adam I-279
Ohkubo, Miyako I-558

Pan, Jiaxin I-153
Pass, Rafael II-246
Peikert, Chris I-431, I-623
Phan, Duong Hieu II-597
Pintore, Federico II-157
Pointcheval, David II-124, II-597
Prabhakaran, Manoj I-220

Ràfols, Carla I-527
Renes, Joost II-505
Rial, Alfredo I-65
Roenne, Peter B. I-65
Rosca, Miruna II-66
Rosen, Alon I-374
Rösler, Paul I-341
Ryan, Peter Y. A. I-65

Sakzad, Amin I-309, II-66
Samelin, Kai I-462
Sanders, Olivier II-628
Sarkar, Pratik II-299
Savasta, Federico II-266
Scafuro, Alessandra II-423
Schäge, Sven II-389, II-567
Schwenk, Jörg I-341, II-567
Shelat, Abhi II-328
Shi, Elaine II-246
Shiehian, Sina I-431
Siim, Janno I-590

Slamanig, Daniel I-462
Soroush, Najmeh I-65
Sotiraki, Katerina I-374
Stehlé, Damien II-66
Steinfeld, Ron I-309, II-66
Sun, Shi-Feng I-309

Titiu, Radu I-34
Tomida, Junichi I-3
Tschudi, Daniel II-215
Tucker, Ida II-266

Unruh, Dominique II-389

van Woerden, Wessel P. J. II-3
Venkitasubramaniam, Muthuramakrishnan

II-328
Virdia, Fernando II-505

Walter, Michael I-623
Wang, Huaxiong I-396
Wang, Xiao II-299
Wang, Zhedong I-652
Wichs, Daniel I-220

Yang, Kang II-37
Yu, Yu II-37

Zacharakis, Alexandros I-527
Zaheri, Mohammad I-279
Zając, Michał I-590
Zhang, Jiang II-37
Zhang, Zhenfei II-66
Zhang, Zhenfeng II-37

658 Author Index

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Lattice-Based Cryptography
	The Randomized Slicer for CVPP: Sharper, Faster, Smaller, Batchier
	1 Introduction
	1.1 Contributions
	1.2 Working Heuristics

	2 Preliminaries
	2.1 Notation
	2.2 Spherical Geometry
	2.3 Lattices
	2.4 Solving CVPP with the Randomized Slicer

	3 The Random Walk Model
	4 Numerical Approximations
	4.1 Discretization
	4.2 Convex Optimization
	4.3 Numerical Results

	5 An Exact Solution for the Randomized Slicer
	6 Memoryless Nearest Neighbour Searching
	7 Bounded Distance Decoding with Preprocessing
	8 Application to Graph-Based NNS
	References

	Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices: KEMs and Signatures of Smaller Sizes
	1 Introduction
	1.1 Comparison with NIST Round2 Lattice-Based PKEs/KEMs
	1.2 Comparison with NIST Round2 Lattice-Based Signatures
	1.3 Organizations

	2 Preliminaries
	2.1 Notation
	2.2 Definitions
	2.3 High/Low Order Bits and Hints

	3 An Improved KEM from AMLWE
	3.1 Design Rationale
	3.2 The Construction
	3.3 Provable Security
	3.4 Choices of Parameters

	4 An Improved Signature from AMLWE and AMSIS
	4.1 Design Rationale
	4.2 The Construction
	4.3 Provable Security
	4.4 Choices of Parameters

	5 Known Attacks Against AMLWE and AMSIS
	5.1 Concrete Security of KEM
	5.2 Concrete Security of SIG

	A Definitions of Hard Problems
	References

	MPSign: A Signature from Small-Secret Middle-Product Learning with Errors
	1 Introduction
	1.1 Contributions
	1.2 Comparison with Prior Works

	2 Preliminaries
	2.1 Polynomials and Matrices
	2.2 Gaussian Distributions
	2.3 Polynomial and Middle-Product Learning with Errors
	2.4 Cryptographic Definitions

	3 Hardness of Middle-Product LWE with Small Secrets
	4 An Attack on Inhomogeneous PSIS with Small Secrets
	5 A Signature Scheme Based on Small Secrets MPLWE
	5.1 The Identification Scheme
	5.2 The Signature Scheme

	6 Concrete Parameters
	7 Implementation
	References

	Proofs and Arguments II
	Witness Indistinguishability for Any Single-Round Argument with Applications to Access Control
	1 Introduction
	1.1 Our Witness Indistinguishability Transformation
	1.2 Application: Succinct Single-Round Access Control
	1.3 Technical Overview of Our WI Transformation

	2 Witness Indistinguishability for Any Argument System
	2.1 Preliminaries
	2.2 Private Remote Evaluation
	2.3 Making Single-Round Protocols Witness Indistinguishable

	3 Succinct Single-Round Access Control Scheme
	3.1 Delegation for Batch-NP Families
	3.2 Known Batch Delegation Schemes
	3.3 Our Scheme
	3.4 Proof of Theorem 3.7 for Our Construction

	References

	Boosting Verifiable Computation on Encrypted Data
	1 Introduction
	1.1 Ensuring Correctness of Privacy-Preserving Computation
	1.2 Our Contributions
	1.3 Organization

	2 Notation and Definitions
	2.1 Commitment Schemes
	2.2 SNARKs – Succinct Non-Interactive Arguments of Knowledge

	3 Proof Systems for Arithmetic Function Evaluation over Quotient Polynomial Rings
	3.1 Formal Description of Our Rq- Scheme
	3.2 Security Analysis

	4 Applications to Computing on Encrypted Data
	4.1 Verifiable Computation
	4.2 Our VC Scheme
	4.3 Preserving Privacy of the Inputs Against the Verifier

	5 Bivariate Polynomial Commitment
	5.1 Computational Assumptions
	5.2 Knowledge Commitment for Bivariate Polynomials

	6 CaP-SNARK for Bivariate Polynomial Evaluation
	6.1 Relations for Bivariate Polynomial Partial Evaluation
	6.2 Our BivPE- Scheme for Bivariate Polynomial Evaluation

	7 CaP-SNARK for Simultaneous Evaluations
	7.1 Commitment for Multiple Univariate Polynomials
	7.2 Succinct Proof of Multiple Evaluations in a Point k
	7.3 Efficiency and Comparison

	8 Security Analysis of Our CaP BivPE-
	References

	Isogeny-Based Cryptography
	Lossy CSI-FiSh: Efficient Signature Scheme with Tight Reduction to Decisional CSIDH-512
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 Identification Protocols
	2.2 Digital Signature Schemes
	2.3 Pseudorandom Functions
	2.4 Fiat-Shamir Transformation
	2.5 Class Group Actions and Hardness Assumption

	3 Base Lossy Identification Protocol from CSIDH-512
	3.1 Hardness Assumption: Decisional CSIDH
	3.2 Construction of Base Lossy Identification Protocol
	3.3 Security of Base Lossy Identification Protocol IDBasels
	3.4 Lossy Soundness Amplification of IDBasels

	4 Optimized Lossy Identification Protocol from CSIDH-512
	4.1 Hardness Assumption: Fixed-Curve Multi-decisional CSIDH
	4.2 Enlarging Challenge Space of Base Lossy Identification Protocol
	4.3 (Almost) Doubling Challenge Space of Lossy Identification Scheme IDEnChls
	4.4 Lossy Soundness Amplification of IDDenChls

	5 Lossy CSI-FiSh: Tightly Secure Signature from CSIDH-512
	5.1 Construction of Lossy CSI-FiSh
	5.2 Instantiations and Comparison to CSI-FiSh

	6 Conclusions and Open Problems
	References

	Threshold Schemes from Isogeny Assumptions
	1 Introduction
	2 Preliminaries
	2.1 Shamir's Secret Sharing and Threshold Cryptosystems
	2.2 Hard Homogeneous Spaces

	3 Threshold Schemes from HHS
	3.1 Threshold Group Action
	3.2 Threshold HHS ElGamal Decryption
	3.3 Threshold Signatures

	4 Instantiations Based on Isogeny Graphs
	4.1 Supersingular Complex Multiplication
	4.2 CSIDH and CSI-FiSh
	4.3 Instantiation of the Threshold Schemes

	5 Conclusion
	References

	Multiparty Protocols
	Topology-Hiding Computation for Networks with Unknown Delays
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 The Probabilistic Unknown Delay Model
	2.1 Impossibility of Stronger Models
	2.2 Adversary
	2.3 Communication Network and Clocks
	2.4 Additional Related Work

	3 Protocols for Restricted Classes of Graphs
	3.1 Synchronous THC from Random Walks
	3.2 Protocol for Cycles
	3.3 Protocol for Trees

	4 Protocol for General Graphs
	4.1 Preprocessing
	4.2 Computation
	4.3 Computing the Eulerian Cycle

	A Adversarially-Controlled Delays Leak Topology
	A.1 Adversarially-Controlled Delay Indistinguishability-based Security Definition
	A.2 Proof that Adversarially-Controlled Delays Leak Topology

	B PKCR* Encryption
	B.1 Construction of PKCR* Based on DDH

	C The Function Executed by the Hardware Boxes
	References

	Sublinear-Round Byzantine Agreement Under Corrupt Majority
	1 Introduction
	1.1 Our Results and Contributions

	2 Preliminaries
	2.1 Protocol Execution Model
	2.2 Byzantine Agreement

	3 Technical Roadmap: Nearly Round-Optimal BA for Corrupt Majority
	3.1 Warmup: Any Constant Fraction of Static Corruption
	3.2 Achieving Adaptive Security and Removing the Leader Election Oracle
	3.3 Organization of the Subsequent Formal Sections

	4 Formal Description of Fmine-Hybrid Protocol
	4.1 Ideal Functionality Fmine for Random Eligibility Determination
	4.2 Formal Protocol in the Fmine-Hybrid World
	4.3 Analysis in the Fmine-Hybrid World

	5 Removing the Idealized Functionality Fmine
	5.1 Preliminary: Adaptively Secure Non-interactive Zero-Knowledge Proofs
	5.2 Adaptively Secure Non-interactive Commitment Scheme
	5.3 Removing Fmine with Cryptography

	References

	Bandwidth-Efficient Threshold EC-DSA
	1 Introduction
	2 Preliminaries
	2.1 The Elliptic Curve Digital Signature Algorithm
	2.2 Building Blocks from Class Groups
	2.3 Algorithmic Assumptions

	3 Threshold EC-DSA Protocol
	3.1 ZKAoK Ensuring a CL Ciphertext Is Well Formed
	3.2 Interactive Set Up for the CL Encryption Scheme
	3.3 Resulting Threshold EC-DSA Protocol

	4 Security
	4.1 Simulating the Key Generation Protocol
	4.2 Simulating the Signature Generation
	4.3 The Simulation of a Semi-correct Execution
	4.4 Non Semi-correct Executions
	4.5 Concluding the Proof

	5 Further Improvements
	5.1 An Improved ZKPoK Which Kills Low Order Elements
	5.2 Assuming a Standardised Group

	6 Efficiency Comparisons
	References

	Secure Computation and Related Primitives
	Blazing Fast OT for Three-Round UC OT Extension
	1 Introduction
	1.1 Our Contributions
	1.2 More Discussion on Related Works

	2 Preliminaries
	3 Technical Overview
	3.1 Overview of KOS
	3.2 Relaxation in the OT Functionality
	3.3 Usage in KOS OT Extension
	3.4 Optimized OT Protocol in the Observable RO Model
	3.5 Circumventing the Impossibility Result of ch11C:GMMM18

	4 Weakening the Oblivious Transfer Functionality
	5 Oblivious Transfer Extension Using OT
	5.1 Security Proof
	5.2 Efficiency

	6 Implementing Instances of FSF-rOT
	6.1 Security Proof
	6.2 Efficiency

	7 Implementation and Evaluation
	References

	Going Beyond Dual Execution: MPC for Functions with Efficient Verification
	1 Introduction
	1.1 Results in the 1-bit Leakage Model
	1.2 Extending Dual Execution to Other Protocols

	2 Preliminaries
	2.1 Verifiable Secret Sharing (VSS)
	2.2 Secure Computation with 1-bit Leakage
	2.3 Garbled Circuits
	2.4 The ch12BeaverMR90 Garbling

	3 Dual Execution with Efficient Verification
	4 Additively Secure Protocols with Program Checkers
	4.1 Additive Attacks and AMD Circuits
	4.2 Additive Security of BMR Distributed Garbling
	4.3 Compiling Additively Secure Protocols

	5 Perfect Matching Protocol Secure up to Additive Attacks
	References

	MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Linearly-Homomorphic Encryption for Messages in Z2n
	2.3 Commitments
	2.4 Security Model
	2.5 Value-Representation in SPDZ2k

	3 Offline Phase
	3.1 On the Impossibility of Enhanced-CPA Security in Z2n: Comparing with Overdrive Offline Phase

	4 Joye-Libert Cryptosystem and Companion Protocols
	4.1 Zero-Knowledge Proof of Correct Multiplication
	4.2 Zero-Knowledge Proof of Correct Multiplication of Two Committed (or Encrypted) Values

	5 Efficiency Analysis
	References

	Post-Quantum Primitives
	Generic Authenticated Key Exchange in the Quantum Random Oracle Model
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Public-Key Encryption
	2.2 Key Encapsulation
	2.3 Quantum Computation

	3 The FO Transformation: QROM Security with Correctness Errors
	3.1 Modularisation of TPunc
	3.2 Transformation FOm and Correctness Errors
	3.3 CCA Security Without Disjoint Simulatability

	4 Two-Message Authenticated Key Exchange
	5 Transformation from PKE to AKE
	5.1 IND-StAA Security Without Disjoint Simulatability

	References

	Threshold Ring Signatures: New Definitions and Post-quantum Security
	1 Introduction
	1.1 Limitations of Previous Work
	1.2 Our Contribution

	2 Related Work
	3 Preliminaries
	3.1 Threshold Ring Signatures in Presence of Active Adversaries

	4 Post-quantum Secure Threshold Ring Signatures
	5 Post-quantum Security of TRS
	5.1 Proofs

	6 Trapdoor Commitments from OWFs
	6.1 On the Notion of Binding in Presence of Quantum Adversaries

	References

	Tight and Optimal Reductions for Signatures Based on Average Trapdoor Preimage Sampleable Functions and Applications to Code-Based Signatures
	1 Introduction
	2 Preliminaries
	3 Digital Signatures and EUF-CMA Security Model in a Classical/Quantum Setting
	4 Family of ATPSF
	4.1 Constructing a Signature Scheme from ATPSF

	5 One-Wayness, Collision Resistance and the Claw with Random Function Problem
	5.1 Definitions
	5.2 Relating These Different Advantages

	6 Tight Reduction to the Claw Problem, with ATPSF
	6.1 Proof of Our Main Theorem

	7 Quantum Security Proof in the QROM
	7.1 The Quantum Random Oracle Model
	7.2 Tight Quantum Security of SF

	8 Applying the Result to Code-Based Signatures Based on ATPSF
	8.1 Canonical Construction of Code-Based ATPSF
	8.2 Relating Hardness of Breaking the CBATPSF with the Hardness of Breaking Standard Code-Based Problems
	8.3 Wave Instantiation

	9 Conclusion
	References

	Cryptanalysis and Concrete Security
	Faster Cofactorization with ECM Using Mixed Representations
	1 Introduction
	2 Preliminaries
	2.1 The Elliptic Curve Method
	2.2 Montgomery Curves
	2.3 Twisted Edwards Curves
	2.4 The Best of Both Worlds
	2.5 Parameterization

	3 Scalar Multiplication
	3.1 Generation of Double-Base Expansions
	3.2 Generation of Double-Base Chains
	3.3 Generation of Lucas Chains

	4 Combination of Blocks for ECM Stage 1
	4.1 Bos–Kleinjung Algorithm
	4.2 Our Algorithm

	5 Results and Comparison
	6 Conclusion
	A Counting Double-Base Expansions
	References

	Improved Classical Cryptanalysis of SIKE in Practice
	1 Introduction
	2 Preliminaries: van Oorschot-Wiener's Collision Search
	2.1 The CSSI Problem
	2.2 The Meet-in-the-middle Claw Finding Algorithm
	2.3 Solving CSSI with van Oorschot-Wiener
	2.4 Complexity Analysis of van Oorschot-Wiener

	3 Parallel Collision Search for Supersingular Isogenies
	3.1 Solving SIKE Instances
	3.2 Applying van Oorschot-Wiener to SIKE
	3.3 Partial Isogeny Precomputation
	3.4 Fast Collision Checking

	4 Implementation
	5 Analysis of SIKE Round-2 Parameters
	5.1 Concrete Security of SIKE Round-2 Parameters
	5.2 Concrete Security of SIKEp434

	References

	A Short-List of Pairing-Friendly Curves Resistant to Special TNFS at the 128-Bit Security Level
	1 Introduction
	2 The Special Tower Number Field Sieve
	2.1 Estimation of TNFS Cost
	2.2 Special Polynomial Selection

	3 Complete Families of Pairing-Friendly Curves
	3.1 Brezing–Weng Constructions of Pairing-Friendly Curves
	3.2 Reducing the Possibilities
	3.3 Security Estimate for the Finite Field

	4 Optimal Ate Pairing Computation: Miller Loop
	4.1 Prime Embedding Degrees 11 and 13
	4.2 Even Embedding Degrees 10 and 14
	4.3 Comparison

	5 Overview of the 192-Bit Security Level
	6 Conclusion
	References

	Privacy-Preserving Schemes
	Privacy-Preserving Authenticated Key Exchange and the Case of IKEv2
	1 Introduction
	1.1 Privacy in AKE Protocols
	1.2 A New Security Model
	1.3 Comparison with TOR and Practical Motivation
	1.4 IPsec IKEv2 Is PPAKE
	1.5 On the Challenge of Constructing PPAKE
	1.6 Contributions
	1.7 Related Works
	1.8 Building Blocks

	2 PPAKE in Practice: Generic Construction, Comparison and Limitations
	3 Security Model for PPAKE
	3.1 Computational Model for Key Exchange
	3.2 Adversarial Model for Key Exchange
	3.3 Original Key Partnering
	3.4 Security and Privacy Model
	3.5 Additional Considerations

	4 Internet Protocol Security (IPsec)
	5 IKEv2 Is a Secure PPAKE Protocol
	5.1 Proof for Initiator-Adversaries
	5.2 Additional Considerations

	6 Summary and Future Work
	References

	Linearly-Homomorphic Signatures and Scalable Mix-Nets
	1 Introduction
	1.1 State of the Art
	1.2 Our Approach
	1.3 Organization

	2 Computational Assumptions
	2.1 Classical Assumptions
	2.2 Unlinkability Assumption

	3 Linearly-Homomorphic Signatures
	3.1 Definition and Security
	3.2 Our One-Time Linearly-Homomorphic Signature
	3.3 Notations and Constraints
	3.4 FSH Linearly-Homomorphic Signature Scheme

	4 Mix-Networks
	4.1 General Description
	4.2 Difficulties
	4.3 Our Scheme
	4.4 Constant-Size Proof
	4.5 Efficiency

	5 Security Analysis
	5.1 Proof of Soundness
	5.2 Proof of Privacy: Unlinkability

	6 Applications
	6.1 Electronic Voting
	6.2 Message Routing

	References

	Efficient Redactable Signature and Application to Anonymous Credentials
	1 Introduction
	1.1 Our Contribution
	1.2 Organisation

	2 Preliminaries
	3 Redactable Signatures
	3.1 Syntax
	3.2 Security Model

	4 Short Redactable Signatures
	4.1 Our Construction
	4.2 Achieving Unlinkability
	4.3 Security Analysis

	5 Anonymous Credentials
	5.1 Syntax
	5.2 Security Model

	6 Our Anonymous Credentials System
	6.1 Our Construction
	6.2 Security Analysis

	7 Efficiency
	8 Conclusion
	References

	Author Index

