
Concretely-Efficient Zero-Knowledge
Arguments for Arithmetic Circuits

and Their Application to Lattice-Based
Cryptography

Carsten Baum1 and Ariel Nof2(B)

1 Aarhus University, Aarhus, Denmark
carsten.baum@outlook.com

2 Technion, Haifa, Israel
arie.nof@cs.biu.ac.il

Abstract. In this work we present a new interactive Zero-Knowledge
Argument of knowledge for general arithmetic circuits. Our protocol is
based on the “MPC-in-the-head”-paradigm of Ishai et al. (STOC 2009)
and follows the recent “MPC-in-the-head with Preprocessing” as pro-
posed by Katz, Kolesnikov and Wang (ACM CCS 2018). However, in
contrast to Katz et al. who used the “cut-and-choose” approach for
pre-processing, we show how to incorporate the well-known “sacrific-
ing” paradigm into “MPC-in-the-head”, which reduces the proof size
when working over arithmetic circuits. Our argument system uses only
lightweight symmetric-key primitives and utilizes a simplified version of
the so-called SPDZ-protocol.

Based on specific properties of our protocol we then show how it can be
used to construct an efficient Zero-Knowledge Argument of Knowledge
for instances of the Short Integer Solution (SIS) problem. We present
different protocols that are tailored to specific uses of SIS, while utilizing
the advantages of our scheme. In particular, we present a variant of our
argument system that allows the parties to sample the circuit “on the
fly”, which may be of independent interest.

We furthermore implemented our Zero-Knowledge argument for SIS
and show that using our protocols it is possible to run a complete inter-
active proof, even for general SIS instances which result in a circuit with
>106 gates, in less than 0.5 s.

1 Introduction

Zero-Knowledge Arguments of Knowledge (ZKAoK) are interactive protocols
that allow a computationally bounded prover to convince a verifier that he
knows a witness for a certain statement, without revealing any further infor-
mation about the witness. Since their introduction in the 80’s [GMR89] these
protocols have been important building blocks for applications in cryptography.
While solutions for very specific languages have been plentiful, many applications
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12110, pp. 495–526, 2020.
https://doi.org/10.1007/978-3-030-45374-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45374-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-45374-9_17

496 C. Baum and A. Nof

require the use of arbitrary (algebraic) circuits in order to prove complex rela-
tionships. For example, proving that two homomorphic commitments contain
the same committed message is generally an easy task, while proving knowl-
edge of a preimage of a SHA-256 hash requires more generic solutions. Recent
years saw a variety of different techniques which aim at providing such ZKAoK
(see [PHGR16,GMO16,AHIV17,BBHR19,WTS+18,BCR+19] to just name a
few), varying in terms of argument size, prover/verification time, interaction
and assumptions. While many of these systems perform very well with large
witnesses and circuit sizes, none of them are a one-size-fits-all solution.

As an example, consider the so-called Short Integer Solution (SIS) problem.
Here, a verifier has a matrix A and a vector t while the prover wants to prove
knowledge of a secret s such that t = As mod q and ||s||∞ ≤ β. SIS and related
problems are crucial building blocks for post-quantum lattice-based cryptogra-
phy and constructing efficient ZKAoK with a small communication complexity
and low prover’s running time has long been a problem: the soundness error of
current special-purpose protocols is constant, meaning that the arguments have
to be repeated many times to actually be convincing to a verifier. A particular,
non-standard approach has been suggested by Bendlin & Damg̊ard [BD10], who
were the first to examine arguments of knowledge for SIS using generic proof
systems. They observed that for certain argument schemes, the function that is
computed to validate a SIS instance has both a very low multiplication depth and
low total number of multiplications, if the secret s is a binary vector. However,
many general ZKAoK systems only provide asymptotic efficiency, meaning that
they require the circuit to be big before their strengths play out [BBC+18]. More-
over, many of these approaches achieve sub-linear communication complexity at
the cost of high prover’s running time [AHIV17,PHGR16]. Other approaches
are insecure to post-quantum attacks [WTS+18,MBKM19,BCC+16,PHGR16]
or rely on knowledge assumptions that are poorly understood.

1.1 ‘MPC-in-the-Head’ and Preprocessing

The “MPC-in-the-head” paradigm is a general technique which is used in our
construction. Before outlining our contributions, we first describe this paradigm.

MPC or Secure Multiparty Computation describes a type of interactive protocol
which allows to securely compute functions on secret data. No information is
leaked beyond the output of the function with correctness even in the presence
of dishonest participants.

MPC-in-the-head was introduced by Ishai et al. [IKOS07] as a technique to
construct generic zero-knowledge proofs from MPC protocols. Here, the state-
ment to be proven is rewritten into a circuit C, which outputs y if and only if its
input w is a correct witness for the statement to be proven. The prover simulates
all parties of an MPC protocol as well as their interaction in his head. These
parties obtain a secret-sharing of the witness w as their input, run a protocol to
evaluate C and send the outputs to the verifier. Moreover, the prover commits

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 497

to the inputs as well as randomness and exchanged messages of each party sep-
arately, and opens a verifier-chosen subset of these commitments to the verifier.
The verifier then checks if these parties were simulated correctly by the prover
and that the messages and the outputs are consistent. On a very high level, this
is a proof of the statement if the MPC scheme is robust against active attacks,
and it is zero-knowledge due to the privacy of it.

Preprocessing is a widely used optimization of practical MPC schemes. Here,
each party begins the actual protocol with shares of correlated randomness,
which is itself independent of the inputs of the protocol. This correlated ran-
domness is then used to speed up the actual computation, and due to its inde-
pendence of the inputs it can be computed ahead of time. To the best of our
knowledge, the first MPC-in-the-head scheme that uses preprocessing was intro-
duced in [KKW18].

1.2 Our Contributions

In this work, we construct a new practically efficient ZKAoK for arithmetic
circuits together with a multitude of techniques and apply these to construct
interactive arguments for SIS. Our scheme is based on the “MPC-in-the-head”
approach and uses only symmetric-key primitives. It has an argument size that
only depends on non-linear gates of the circuit C and low prover running time.
We implemented our construction and report on its practicality. In more details:

‘MPC-in-the-Head’ with Preprocessing. We first generalize the idea of [KKW18]
to work over arithmetic circuits using a variant of the SPDZ MPC protocol
[DPSZ12,LN17] and provide a formal proof of security to their “cut-and-choose”
preprocessing heuristic. Then, we present a new construction where we replace
the “cut-and-choose” mechanism with a “sacrificing”-based approach. While
both approaches have similar cost per MPC instance, our “sacrificing”-based
approach yields a smaller cheating probability, which means that the number of
MPC instances simulated in the proof can be significantly smaller, thus reducing
the overall communication footprint. Our scheme is highly flexible in its choice
of parameters. In particular, by changing the number of parties in the underly-
ing MPC protocol, one can alternate between achieving low communication and
low running time. Our construction only requires efficient standard symmetric
primitives, and thus is plausibly post-quantum secure even in the non-interactive
case [DFMS19]. The two constructions can be found in Sect. 3.

Application to SIS. The MPC scheme which we use in our construction allows
to perform additions and multiplications with public values “for free”, meaning
those do not have an impact on the size of the argument. In the SIS prob-
lem the verification of the input of the prover consists of computing a product
with a public matrix A and a proof that the secret s contains bounded values,
so the first part comes essentially for free. We initially tweak the approach of
[BD10] and only allow s to consist of bits, which allows for a very fast argu-
ment of size using one square gate per element of s. Then, we show how to

498 C. Baum and A. Nof

handle more general distributions of s and introduce some specific optimiza-
tions to reduce communication and computation. In particular, we show how
to adapt advanced techniques such as rejection sampling into the MPC-in-the-
head framework, which yields a circuit with only linear gates. This is described
in Sect. 5.

Experimental Results. We implemented our zero-knowledge protocol for the
Binary SIS problem (i.e., where the secret s is a vector of bits) and ran extensive
experiments with various sets of parameters – both for the SIS problem and for
the simulated MPC protocol. For a 61-bit field and a matrix A of size 1024×4096
(which suffices for many applications such as encryption or commitments), we are
able to run our argument in 1.2 s for 40-bits of statistical security when working
with a single thread. When utilizing 32 threads, this reduces to only 250 ms. This
shows that general lattice-based ZK arguments (which do not rely on structured
lattices) are practical and can be used in real-world applications. To the best of
our knowledge, we are also the first to implement ZK arguments for general SIS.
The results and all the details can be found in Sect. 6.

Sampling Circuits on the Fly. A major source of optimizations to our application
is the fact that our “MPC-in-the-head” protocol allows the prover and the verifier
to negotiate the circuit C during the protocol, under certain circumstances. This
fact is used by us to construct circuits “on the fly” with fewer non-linear gates,
which helps to reduce the argument size. Thus, as an additional contribution
of this work, we provide formal definitions for an argument system where the
circuit is sampled jointly by the prover and the verifier during the execution and
show how to incorporate this into our protocols. This is described in Sect. 4.

Full Version. Due to space limitations, most proofs are deferred to the full
version of this work [BN19] which can be found on eprint.

2 Preliminaries

Unless stated otherwise, operations in this work are carried out over the field
F = Fq for an odd prime q. Fq-elements are identified by the interval [−(q −
1)/2, (q−1)/2]. B denotes the set {0, 1} while [n] stands for {1, . . . , n}. We use λ
as the computational and κ as the statistical security parameters, and generally
assume that q ≈ poly(λ, κ). We use bold lower-case letters such as s to denote
a vector and bold upper-case letters like A for matrices. We let s[i] denote the
ith component of the vector s.

2.1 Programming Model

Our notation for the circuits that we use in this paper will be similar to [BHR12].
The circuit C = (nin, nout, nC , L,R, F) is defined over F, and each wire w will
hold a value from F or ⊥ initially. C has nin input wires, nout output wires and

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 499

nC ≥ nin +nout wires in total. We define I = {1, . . . , nin},W = {1, . . . , nC} and
O = {nC − nout + 1, . . . , nC}. The circuit has ngates = nC − nin gates in total
and we define the set G = {nin + 1, . . . , nC}.

We define functions L : G → W, R : G → W ∪ {⊥} such that L(x) < x as
well as L(x) < R(x) < x if R(x) �= ⊥ (i.e., the function L(x) returns the index
of the left input wire of the gate whereas the function R(x) returns the index
of the right input wire if it exists). The function F : G × F × (F ∪ {⊥}) → F

determines the function which is computed by each gate.
The algorithm eval(C,x) with x ∈ F

nin is defined as follows:

1. For i ∈ [nin] set wi ← x[i].
2. For each g ∈ G set l ← L(g), r ← R(g) and then wg ← F (g, l, r).
3. Output y = (wnC−nout+1, . . . , wnC

)�.

We further restrict F to compute certain functions only: (i) Add: On input
x1, x2 output x1 + x2, (ii) Mult: On input x1, x2 output x1 × x2, (iii) CAdd:
On input x and for the hard-wired a output x+ a, (iv) CMult: On input x and
for the hard-wired a output x × a; and (v) Square: On input x output x2. We
say that C(x) = y if eval(C,x) returns the value y ∈ F

nout . We denote by nmul

and nsq the number of multiplication and square gates in the circuit.

2.2 Zero-Knowledge Arguments of Knowledge

Let TM be an abbreviation for Turing Machines. An iTM is defined to be an
interactive TM, i.e. a Turing Machine with a special communication tape and a
PPT TM is a probabilistic polynomial-time TM. Let LR ⊆ B

∗ be an NP language
and R be its related NP-relation for circuits over F. Thus (x = (C,y),w) ∈ R
iff (C,y) ∈ LR and eval(C,w) = y. We write Rx = {w | (x,w) ∈ R} for the
set of witnesses for a fixed x.

HonestVerifierZeroKnowledgeArgument ofKnowledge (HVZKAoK).
Assume (P,V) is a pair of PPT iTMs and let ξ : B

∗ → [0, 1] be a function. We
say that (P,V) is a zero-knowledge argument of knowledge for the relation R with
knowledge error ξ if the following properties hold:

Completeness: If P and V follow the protocol on input x ∈ LR and private
input w ∈ Rx to P, then V always outputs 1.

Knowledge Soundness: There exists a probabilistic algorithm E called the
knowledge extractor, such that for every interactive prover P̂ and every x ∈ LR,
the algorithm E satisfies the following condition: let δ(x) the probability that
V accepts on input x after interacting with P̂. If δ(x) > ξ(x), then upon input
x ∈ LR and oracle access to P̂, the algorithm E outputs a vector w ∈ Rx in
expected number of steps bounded by O(1

δ(x)−ξ(x)).

Honest Verifier Zero-Knowledge: Let viewP
V (x,w) be a random variable

describing the random challenge of V and the messages V receives from P with
input w during the joint computation on common input x. Then, there exists a
PPT simulator S, such that for all x ∈ LR,w ∈ Rx: S(x) ≈c viewP

V (x,w).

500 C. Baum and A. Nof

This definition suffices, since public-coin protocols like the protocols we consider
in this work, which satisfy the above properties, can be easily transformed to
protocols which are zero-knowledge in general by having the verifier commit to
its challenges at the beginning of the protocol. As is well known, it is possible
to obtain a non-interactive zero-knowledge argument of knowledge (NIZKAoK)
from any HVZKAoK via the Fiat-Shamir transformation [FS86].

2.3 Commitments and Collision-Resistant Hash Functions

We use Commitments and Collision-Resistant Hash Functions (CRHF) as build-
ings blocks in our constructions and thus introduce them now briefly. A com-
mitment scheme allows one party to commit to a message m by sending a com-
mitment value which satisfies the following two properties: (i) Hiding: the com-
mitment reveals nothing about m.; and (ii) Binding: it is (computationally)
infeasible for the committing party to open a committed message m to differ-
ent message m′ �= m. In this work, we assume that the commitment scheme is
instantiated using a cryptographic hash function such as e.g. SHA-256, which
we model as a Random Oracle1 for the purpose of giving a proof of security.

A Collision-Resistant Hash Function (CRHF) is an efficiently computable
function H for which it is “hard” to find x, x′ such that H(x) = H(x′). Usually,
CRHFs are used to compress a long message into a short digest and thus for
almost all messages a collision exists. CRHFs require that a collision is hard to
find for any PPT algorithm.

2.4 The Short Integer Solution Problem

We will now formalize the SIS problem, which was already informally introduced
in the introduction. Fq is the base field of the argument system. At the same
time, the characteristic q will also be the modulus of the SIS instance which is
defined over Zq. To define the Short Integer Solution problem, let n,m ∈ N be
such that n � m. We naturally embed Zq into Z by identifying each mod q-
number with an element from the interval [− q−1

2 , q−1
2] ⊂ Z. We thereby let

||s||∞ be the ∞-norm of the embedding of s ∈ Z
m
q into the module Z

m. Define
Sm

β ⊂ Z
m
q as the subset of m-element vectors with �∞-norm ≤ β.

Definition 1 (Short Integer Solution (SIS)). Let m,n, q be as above and
β ∈ N. Given A ∈ Z

n×m
q and t ∈ Z

n
q , the (inhomogeneous) SIS-problem is to

find s ∈ Z
m
q such that t = As mod q and s ∈ Sm

β .

We collect such (A, s, t) that fulfill Definition 1 in an NP-relation

Rm,n,q,β
SIS = {(x,w) = ((A, t), s) | s ∈ Sm

β ∧ A ∈ F
n×m
q ∧ t = As}.

1 This is to obtain the smallest possible argument size while avoiding attacks such as
[DN19]. A generalization of our scheme without this assumption can be obtained by
generating the randomness for commitments independent of the message.

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 501

In practice, one often encounters proofs that do not show exactly that s ∈ Sm
β

even though the prover has such a value as witness. Instead, they guarantee that
the bound might be a bit bigger, by a factor at most ω which usually is called
slack. We have that Rm,n,q,β

SIS ⊆ Rm,n,q,ω·β
SIS if ω ≥ 1, so any honest prover will

still make the verifier accept if it proves Rm,n,q,ω·β
SIS instead. For simplicity, we

also consider an instance of SIS where s is binary.

Definition 2 (Binary-SIS). Let m,n, q be defined as above. Given A ∈ Z
n×m
q

and t ∈ Z
n
q , the (inhomogeneous) Binary SIS-problem is to find s ∈ B

m such
that t = As mod q.

This Binary-SIS problem is not uncommon and e.g. [BD10,KTX08] used it. Its
relation Rm,n,q

B−SIS can be defined similarly as Rm,n,q,β
SIS .

3 Honest Verifier Arguments of Knowledge
for Arithmetic Circuits

In this section, we introduce our honest verifier zero-knowledge argument of
knowledge (HVZKAoK) protocols for satisfiability of arithmetic circuits. We
begin by describing the underlying MPC protocol to securely compute an arith-
metic circuit. Then, we present two HVZKAoKs based on the MPC protocol
- one that relies on the “cut–and–choose” paradigm and one that uses “sacri-
ficing”. While the first is a direct extension of a recent work of [KKW18], the
second one is completely new to the best of our knowledge.

3.1 The MPC Protocol

Our MPC protocol is a simplified version of the SPDZ2 protocol [DPSZ12]. Let N
denote the number of parties and let P1, . . . , PN denote the parties participating
in the protocol.

Secret Sharing Scheme. Let [[x]] denote an additive sharing of x, i.e. a sharing of
x consists of random x1, . . . , xN ∈ Fq such that x =

∑
i∈[N] xi, where Pi holds

xi. We define the following operations on shares:

open([[x]]): To reveal the secret x each party broadcasts its share xi. Upon
receiving xj from each Pj , Pi sets x =

∑
j∈[N] xj .

[[x]]+ [[y]]: Given two shares xi and yi of x and y, each party Pi defines xi + yi

as its share of the result.
σ + [[x]]: Given a sharing [[x]] and a public constant σ, P1 defines x1 + σ as its
new share while other parties’ shares remain the same.
σ · [[x]]: Given a sharing [[x]] and a public constant σ, each party Pi defines
σ · xi as its share of the product.

2 It works like SPDZ in the sense that it considers dishonest majority, uses an addi-
tive secret sharing and multiplication triples, but without the information-theoretic
MAC.

502 C. Baum and A. Nof

Multiplications. We say that ([[a]], [[b]], [[c]]) is a random multiplication triple if a
and b are random and c = a · b. To multiply [[x]] and [[y]] using a preprocessed
random triple ([[a]], [[b]], [[c]]), the parties do the following:

1. The parties compute [[α]] = [[x]] − [[a]] and [[β]] = [[y]] − [[b]].
2. The parties run open([[α]]) and open([[β]]) to obtain α and β.
3. Each party computes [[z]] = [[c]] − α · [[b]] − β · [[a]] + α · β.

The above is a well-known [Bea91] technique and works because

[[z]] = [[c]] − α · [[b]] − β · [[a]] + α · β

= [[ab]] − (x − a) · [[b]] − (y − b) · [[a]] + (x − a) · (y − b)
= [[xy]]

Squaring. We say that ([[b]], [[d]]) is a random square if b is random and d = b2.
To compute [[x2]] given [[x]] using a preprocessed ([[b]], [[d]]), the parties do the
following:

1. The parties compute [[α]] = [[x]] − [[b]].
2. The parties run open([[α]]) to obtain α.
3. Each party computes [[z]] = α · ([[x]] + [[b]]) + [[d]].

Note that the above holds since

[[z]] = α · ([[x]] + [[b]]) + [[d]] = (x − b) · ([[x]] + [[b]]) + [[b2]]
= [[x2 − b2 + b2]] = [[x2]].

The Protocol. The above building blocks can easily be combined to securely
run eval(·) on a circuit C: after the inputs are secret-shared using [[·]], the
parties apply G as defined in Sect. 2.1 consecutively to the shares. That is, addi-
tion gates and multiplication/addition by-a-public-constant gates are computed
locally, whereas multiplication and square gates are computed using the above
sub-protocols.

Security. For our purpose of using a MPC protocol to establish our zero-
knowledge argument, the used protocol only needs to be secure in the presence
of a semi-honest adversary. Furthermore, it suffices for the protocol to be secure
in the client-server broadcast model, i.e., when the parties who run the proto-
col (the servers) do not hold input and do not see the final output, but rather
receive shares of the inputs from the clients, perform the computation by only
local computation as well as sending broadcast messages to each other, and then
send the output shares back to the clients.

Formally, let Ftr and Fsq be ideal functionalities that provide the parties
with random multiplication triples and squares. We define view

Ftr,Fsq

I,π (C) to be
the view of a subset of parties I during the execution of a protocol π on the
circuit C, in the (Ftr,Fsq)-hybrid model and in the client-server model. The
view consists of the input shares, the correlated randomness they receive from

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 503

the functionalities and the messages they obtain from the other parties while
evaluating C. The security of π is stated in Theorem 1, which is proven in the
full version.

Theorem 1. Let C be an arithmetic circuit over the field F and let π be the
protocol described above. Then, for every subset of parties I ⊂ {P1, . . . , PN}
with |I| ≤ N − 1, there exists a probabilistic polynomial-time algorithm S such
that {S(I, C)}≡{viewFtr,Fsq

I,π (C)}.

3.2 HVZKAoK Protocol Using Cut and Choose

We now explain our first HVZKAoK protocol Πc&c, which is based on the MPC
protocol from Sect. 3.1, and which relies on the cut–and–choose technique to gen-
erate correct random multiplication triples and squares. The formal description
appears in the full version.

The idea behind the protocol is that the prover P proves its knowledge of w
such that C(w) = y by simulating a secure N -party computation of the circuit
over an additive sharing of w, using the MPC protocol described above. Since P
knows the input and thus the values on each wire of the circuit, it can simulate
the execution “in the head”. Since our MPC protocol uses random triples and
squares supplied by the ideal functionalities Ftr and Fsq, the prover P needs to
play their role as well. Clearly, P may try to cheat in the simulated computation,
aiming to cause the verifier V to accept false statements. This is prevented by
having V challenging P in two ways. First, after P has committed to M sets of
random triples and squares, V randomly selects τ of them, which are then opened
to it. The remaining M − τ sets of the pre-processed data are used to support
M − τ circuit computations - each with different randomness. The prover P
performs these computations and commits to the views of the parties, to be then
challenged for the second time by V. In this second challenge, the verifier chooses
a random subset of N −1 parties in each execution, whose views are opened and
tested for consistency. If these two tests pass successfully and the output of the
circuit is y, then V outputs acc. Observe that V cannot learn any information
about the witness w during the protocol: the opened pre-processing executions
reveal only random data which is thrown away afterwards, and the N − 1 views
that are opened do not reveal anything since the MPC protocol is resilient to
N − 1 semi-honest parties. In more details, in Round 1, P commits to M pre-
processing executions. A major source of saving here is using pseudo-randomness
instead of pure randomness. Specifically, P chooses a seed sde for each execution
e, from which it derives the seeds sde,i for each party Pi. These seeds are used
to generate all the random shares held by Pi throughout the computation. Now,
if execution e is selected to be tested by V in Round 2, then P can just send sde

to V, thereby saving communication. For the M − τ preprocessings which are
used in the on-line execution in Round 3, P cannot send the master seed but
rather will have to send N − 1 seeds of the N − 1 parties chosen to be opened
by V in Round 4. Thereby the data of one of the parties is kept secret. Observe,
however, that not all the data held by the parties is random. In particular, when

504 C. Baum and A. Nof

generating a multiplication triple [[ae,k]], [[be,k]], [[ce,k]] (e is the execution index
and k is the index of the gate for which this triple is consumed), one can use
the seeds of the parties to generate the sharing of ae,k and be,k, but once these
are fixed, so is ce,k = ae,k · be,k. Therefore, when generating the sharing of ce,k,
it is necessary to “fix” the initial sharing derived from the random seeds. To
obtain this, the prover also commits to the offset Δe,k for each execution e and
multiplication gate gk, which is added to the initial random sharing [[ce,k]]. The
same applies when generating random squares. Similarly, when the sharings of
the inputs are generated in Round 3, P can use the seeds of the parties to derive
their shares, and then adjust this initial sharing by adding the offset (denoted
by φe,k) to obtain a correct sharing of the given input. Thus, P must commit to
the offset on each input wire as well. To further reduce communication, we hash
all the commitments together and send only the hash value to V.

Cheating Error (Soundness). We compute the probability that V outputs acc
when C(w) �= y. Let c be the number of pre-processing emulations where P
cheats (i.e., by generating incorrect squares or multiplication triples). Since τ
emulations out of M are opened and tested by the verifier, we have that this

step is passed without the cheating being detected with probability (M−c
τ)

(M
τ) . After

this step, M −τ circuit computations are being simulated by the prover. In order
to make the output of the protocol be y, P must cheat (i.e., deviate from the
specification of the MPC protocol) in M − τ − c emulations. Since N − 1 views
are being opened in each such emulation, P clearly will not sabotage the view of
more than one party. Thus, the probability that this is not detected is 1

NM−τ−c .
The overall success cheating probability is therefore

ξc&c(M,N, τ) = max
0≤c≤M−τ

{ (
M−c

τ

)

(
M
τ

) · NM−τ−c

}

Formal Proof. As mentioned before, the above protocol has appeared already
in [KKW18] (for Boolean circuits, but extending it to Arithmetic circuits is
straightforward). However, there it was described as an optimization to their
baseline protocol and so was not formally proven. In the full version we there-
fore provide a proof that the described protocol Πc&c is an honest verifier zero-
knowledge argument of knowledge.

Theorem 2. Let H be a collision-resistant hash function and let com be the Ran-
dom Oracle-based commitment scheme. Then, the protocol Πc&c is an HVZKAoK
with knowledge error (soundness) ξc&c(M,N, τ).

3.3 HVZKAoK Protocol Using Imperfect Preprocessing
and Sacrificing

We now present our second HVZKAoK protocol Πsac. In this protocol, we rely
on a method where one “sacrifices” random multiplication triples and squares

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 505

in order to verify the correctness of multiplication and square operations. The
idea of this protocol is that P does not simulate the execution of a protocol
to compute multiplication and square gates, but rather simulates an execution
of a protocol to verify that the shares on the output wires of these gates are
correctly defined. This means that now P will first define and commit to sharings
of the values on each wire of the circuit and then will simulate an execution of
a verification protocol for multiplication and square gates (recall that for other
gates the computation is local and thus no verification is required). We begin by
describing the verification methods used in our protocol.

Verification of a Multiplication Triple Using Another. This procedure is remi-
niscent to the recent work of [LN17]. Given a random triple ([[a]], [[b]], [[c]]), it is
possible to verify the correctness of a triple ([[x]], [[y]], [[z]]), i.e., that z = x · y,
without revealing any information on either of the triples, in the following way:

1. The parties generate a random ε ∈ F.
2. The parties locally set [[α]] = ε[[x]] + [[a]], [[β]] = [[y]] + [[b]].
3. The parties run open([[α]]) and open([[β]]) to obtain α and β.
4. The parties locally set [[v]] = ε[[z]] − [[c]] + α · [[b]] + β · [[a]] − α · β.
5. The parties run open([[v]]) to obtain v and accept iff v = 0.

Observe that if both triples are correct multiplication triples (i.e., z = xy
and c = ab) then the parties will always accept since

v = ε · z − c + α · b + β · a − α · β

= ε · xy − ab + (ε · x + a)b + (y + b)a − (ε · x + a)(y + b) = 0

In contrast, if one (or both) of the triples are incorrect, then the parties will
accept with probability at most 1/|F| as shown in Lemma 1 whose proof appears
in the full version.

Lemma 1. If ([[a]], [[b]], [[c]]) or ([[x]], [[y]], [[z]]) is an incorrect multiplication triple
then the parties output acc in the sub-protocol above with probability 1

|F| .

Verification of a Square Pair Using Another. Similarly, one can use a random
square ([[b]], [[d]]) to verify the correctness of a given square ([[x]], [[z]]) as follows:

1. The parties generate a random ε ∈ F.
2. The parties locally compute [[α]] = [[x]] − ε[[b]].
3. The parties run open([[α]]) to obtain α.
4. Each party locally computes [[v]] = [[z]] − α · ([[x]] + ε[[b]]) − ε2[[d]].
5. The parties run open([[v]]) to obtain v and accept iff v = 0.

As before, if the squares are correct, i.e., z = x2 and d = b2, then the parties
will accept, since

v = z − α · (x + ε · b) − ε2 · d

= x2 − (x − ε · b) · (x + ε · b) − ε2 · b2

= x2 − x2 + ε2b2 − ε2b2 = 0

506 C. Baum and A. Nof

In contrast, if one of the random squares (or both) is incorrect, then the
parties will accept with probability 2

|F| . This is shown in Lemma 2, which is
proven in the full version.

Lemma 2. If ([[x]], [[z]]) or ([[b]], [[d]]) is an incorrect square, then the parties out-
put acc in the above protocol with probability 2

|F| .

The Protocol. Our AoK protocol is formally described in Figs. 1a and 1b. In
this protocol, the prover P first commits in Round 1 to sharings of the values
on each wire of the circuit and to sharings of random multiplication triples and
squares for M independent executions. As in the previous protocol, we save
communication by deriving all the random shares from a single seed. Then, in
Round 2, V challenges P by choosing the randomness required for the verification
procedure, i.e., an ε value for each multiplication and square gate. Upon receiving
the challenge from V, P simulates M executions of the verification protocol in
Round 3 and commits to the view of the parties in each execution. Then, in
Round 4, V picks its second challenge by choosing, for each execution, N − 1
parties whose view will be opened and tested. In Round 5, P sends to V the seeds
from which the randomness of the N −1 parties was derived and all the messages
sent to these parties from the remaining party Pīe

. As in Πc&c, for values that
are fixed, i.e., inputs, multiplications and squares, P sends also an offset (which
was committed in the first round) to “fix” the sharing to the correct value. As
before, we further reduce the communication cost by hashing the commitments
together and sending only the hash value. Finally, V accepts if and only if all
commitments are correct, the view of each party was computed correctly, the
verification procedures conclude with the parties holding a sharing of 0 for each
multiplication/square gate and the output of the circuit is y.

Cheating Probability (Soundness). We compute the probability that V outputs
acc when C(w) �= y. Observe that all the M executions are independent of each
other. When considering a single instance, P can cheat in either computing the
view of one of the parties or cheat by changing the shares on the output wire of
a multiplication/square gate. In the former case, it will succeed with probability
1
N whereas in the latter case it will succeed with probability 1

|F| or 2
|F| (note that

if there are gates of both types in the circuit, it will be more beneficial for P
to cheat in square gates since 2

|F| > 1
|F|). Furthermore, the best strategy for the

prover is to first cheat in multiplication/square gates and then if it didn’t receive
the desired challenge that will cause the verification process to end successfully,
it can manipulate one of the parties’ view. Thus, if there are square gates in the
circuit, then the overall cheating probability is

ξsac(M,N) =
(

2
|F| +

(

1 − 2
|F|

)

· 1
N

)M

=
(

2N + |F| − 2
|F| · N

)M

.

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 507

Similarly, if there are multiplication gates in the circuit (and no square gates),
then the cheating probability is

ξsac(M,N) =
(

1
|F| +

(

1 − 1
|F|

)

· 1
N

)M

=
(

N + |F| − 1
|F| · N

)M

.

It can be seen that the impact of |F| on the cheating probability in practice is
not important, as the 1/N -term will dominate the expression since N � |F|.

In the full version we will give the full proof of the following.

Theorem 3. Let H be a collision-resistant hash function and let com be the Ran-
dom Oracle-based commitment scheme. Then the protocol Πsac is a HVZKAoK
with knowledge error (soundness) ξsac(M,N).

3.4 Optimizations

The following optimizations can directly be made to our protocols:

1. The prover is required to send N − 1 seeds for each execution e that was not
chosen to be opened. Each of these seeds is used to generate the randomness
of one party throughout the execution. As in [KKW18], we can reduce the
number of seeds that are sent from N − 1 to log N by using a binary tree.

2. We can reduce communication by verifying the correctness of the circuit’s
output in a batched manner, i.e., take a random linear combination of all
outputs, where the randomness is chosen (as an additional challenge) by V.
Then, only the shares of this linear combination result are sent to V.

3. Each multiplication in Πsac is being verified separately. In order to save com-
munication it is possible to batch-verify of them by opening a random linear
combination of all [[v]]-sharings.

3.5 Computation and Communication Cost

By inspecting both Πsac and Πc&c one sees that for each multiplication gate
O(M · N) multiplications in F must be computed. In practice, their runtime
dominates those of the additions in F which can be optimized by carrying out
multiple F-additions over the integers before applying a modular reduction. For
large enough F we have that ξsac(M,N) ≈ (1/N)M , and so for statistical security
parameter κ we have M ·log N = κ which means that we will approximately have
to perform O(κ ·(N/ log N) · |C|) multiplications both at proving and verification
time, but only over the field over which C is actually defined.

Next, we estimate both the practical and asymptotic communication cost
of the Πsac protocol3. Denote by |hash|, |sd| and |com| the length in bits of the
hash values, seeds and commitments. The communication cost of messages sent
from P to V in each round is: (i) Round 1: |hash|; (ii) Round 3: |hash|; and

3 The analysis for Πc&c is described in the full version.

508 C. Baum and A. Nof

Let H be a CRHF and com be the Random Oracle-based commitment scheme.
Inputs: Both P and V hold y ∈ F

nout , a description C over F and parameters
M, N ; P additionally holds w ∈ F

nin such that C(w) = y.

Round 1:
1. P chooses a salt salt ← B

λ and does the following for each e ∈ [M]:
(a) Initialize empty strings ste, {ste,i}i∈[N].
(b) Choose seeds sde, {sde,i}i∈[N] and set ste,i ← sde,i for i ∈ [N].
(c) Prepare the pre-processing data:

– For each multiplication gate gk ∈ G:
i. For each i ∈ [N], use sde,i to generate ae,k,i, be,k,i, ce,k,i. These shares de-

fine the random sharings [[ae,k]], [[be,k]] and [[ce,k]], where ae,k =
∑N

i=1 ae,k,i,
be,k =

∑N
i=1 be,k,i and ce,k =

∑N
i=1 ce,k,i.

ii. Set Δe,k = ae,k · be,k − ce,k and ste ← ste ‖ Δe,k.
iii. Define the random triple for gk to be ([[ae,k]], [[be,k]], [[ce,k]] + Δe,k).
– For each square gate gk ∈ G:
i. For each i ∈ [N] use sde,i to generate be,k,i and de,k,i. These shares define

the random sharings [[be,k]] and [[de,k]], where be,k =
∑N

i=1 be,k,i and de,k =∑N
i=1 de,k,i.

ii. Set Δe,k = (be,k)2 − de,k and ste ← ste ‖ Δe,k.
iii. Define the random square for gk to be ([[be,k]], [[de,k]] + Δe,k).

(d) Choose a random sharing of the inputs:
i. For each i ∈ [N], use sde,i to generate we,1,i, . . . , we,nin,i. These shares define

the random sharings [[we,1]], . . . , [[we,nin]], where we,k =
∑N

i=1 we,k,i.
ii. For each input wire k ∈ I set φe,k = wk − ∑N−1

i=1 we,k,i and ste ← ste ‖ φe,k.
The sharing on this wire then is [[we,k]] + φe,k.

(e) Simulate the computation of C gate-by-gate in topological order:
– For each linear gate, compute the parties’ output shares via the local oper-

ation described in Section 3.1.
– For each multiplication gate gk ∈ G with [[xk]], [[yk]] as inputs:
i. For each i ∈ [N], use sde,i to generate ze,k,i which define the random sharing

[[ze,k]] where ze,k =
∑N

i=1 ze,k,i.
ii. Set: ϕe,k = xk · yk − ∑N

i=1 ze,k,i and ste ← ste ‖ ϕe,k.
The sharing on the output wire is defined to be [[ze,k]] + ϕe,k.

– For each square gate gk ∈ G with sharing [[xk]] on its input wire:
i. For each i ∈ [N] use sde,i to generate ze,k,i. These shares define the random

sharing [[ze,k]] where ze,k =
∑N

i=1 ze,k,i.
ii. Set: ϕe,k = (xk)2 − ∑N

i=1 ze,k,i and ste ← ste ‖ ϕe,k.
The sharing on the output wire is defined to be [[ze,k]] + ϕe,k.

(f) Use sde to generate re ∈ B
λ and compute Γe = com(ste, re, salt).

(g) For each i ∈ [N] use sde,i to generate re,i ∈ B
λ and then compute Γe,i =

com(ste,i, re,i, salt). Then set he = H(Γe ‖ Γe,1 ‖ · · · ‖ Γe,N).
2. Compute hΓ = H(h1 ‖ · · · ‖ hM) and send it to V.

Fig. 1a. The “Sacrificing” based argument Πsac (Part 1)

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 509

Round 2: V chooses sdι and for each e ∈ [M] uses sdι to generate random coeffi-
cients εe,k for each multiplication/square gate gk. V then sends sdι to P.

Round 3: P performs the following steps:
1. Choose a random seed sdE . Use sdι to generate random εe,k as V would do.
2. For each e ∈ [M]:
(a) Initialize an empty string viewe.
(b) For each multiplication gate gk (in topological order) simulate the verification

procedure described in the text using εe,k. In addition, set: viewe ← viewe ‖
αe,k,1 ‖ · · · ‖ αe,k,N ‖ βe,k,1 ‖ · · · ‖ βe,k,N .

(c) For each square gate gk (in topological order) simulate the verification proce-
dure described in the text using εe,k. In addition, sets viewe ← viewe ‖ αe,k,1 ‖
· · · ‖ αe,k,N .

(d) Let ve,k,i be the sharing held by party Pi at the end of the verification proce-
dure of gate gk. Then, for each i ∈ [N] set: viewe ← viewe ‖ ve,k,1 ‖ · · · ‖ ve,k,N .

(e) Let oe,1,i, . . . , oe,nout,i be the shares on the output wires of C held by Pi. Then,
for output wire k ∈ O set: viewe ← viewe ‖ oe,k,1 ‖ · · · ‖ oe,k,N .

3. Generate ge ∈ {0, 1}λ from sdE and set Πe = com(viewe, ge, salt).
4. Compute hπ = H(Π1 ‖ · · · ‖ ΠM) and send it to V.

Round 4: For each e ∈ [M]: V sends a random īe ∈ [N] to P.

Round 5: For each e ∈ [M]:
Let Ie = [N] \ {̄ie}. Then, P sends the following to V: salt, sdE , sde, {sde,i}i∈Ie ,
Γe,̄ie , {φe,k}nin

k=1 , the tuple Δe,k, ϕe,k, αe,k,̄ie , βe,k,̄ie , ve,k,̄ie

)
for each multiplica-

tion or square gate gk, and oe,1,̄ie , . . . , oe,nout ,̄ie .

Output: V outputs acc iff all the following checks succeed:
1. For each e ∈ [M], V uses {sde,i}i∈Ie and the tuple received for each multipli-

cation and square gate to compute the shares of the parties in Ie on each wire
and their shares of each random triple and square. Then, it uses sde to compute
Γe and uses {sde,i}i∈Ie to compute {Γe,i}i∈Ie as an honest prover would do.
Then, using Γe,̄ie received from P, the verifier V computes he.
Then, V checks that hΓ = H(h1 ‖ · · · ‖ hM).

2. For each e ∈ [M], V computes viewe by going gate-by-gate in topological order
and simulating the verification procedure using the tuple received from P for
each multiplication and square gate, and using {oe,k,̄ie}nout

k=1. Then, it computes
Πe as a honest prover would do. Finally, V checks that hπ = H(Π1 ‖ · · · ‖ΠM).

3. For each e ∈ [M] and multiplication/square gate gk, V checks if
∑N

i=1 ve,k,i = 0.
4. For each e ∈ [M], for each k ∈ O, V checks that

∑N
i=1 oe,k,i = yk.

Fig. 1b. The “Sacrificing” based argument Πsac (Part 2)

(iii) Round 5: |sd|+M ·(|sd|+log N · |sd| +|com|+4 log2(|F|) ·nmul + 3 log2(|F|) ·
nsq + log2(|F|) + log2(|F|) · nin + log2(|F|).

Let base(hash, sd, com,M,N) = 2 · |hash|+ |sd| · (2+M log N)+ |com| ·M for
which we only write base when the context is clear. We obtain that the overall
amount of bits sent from P’s side is base+log2(|F|) ·M(4nmul +3nsq +nin +2).

510 C. Baum and A. Nof

Asymptotically, by setting |hash| = |sd| = |com| = O(λ), log2(|F|) = O(log(λ))
and M,N as above we get that the communication cost of P is O(log(λ) · κ ·
(|C|/ log(N))).

4 Sampling Circuits on the Fly

At the end of the previous section we briefly mentioned an optimization where
V checks output correctness by looking only at a linear combination of the out-
puts instead of checking each output separately. In particular, this is done by
having V choosing random coefficients which will be used to compute the lin-
ear combination after P fixes the inputs and (correlated) randomness of the
simulated parties. This process can also be viewed as an interaction where the
parties determine the final circuit’s structure during the execution, as here the
challenge chosen by V adds a layer on top of the initial circuit which consists
of ‘multiplication-by-a-constant’ and addition gates. This idea, which we call
“sampling the circuit on the fly” will be also used in some of the optimizations
suggested for the application presented in Sect. 5. We therefore now formally
establish this idea, so that security of optimizations of this kind can be derived
easily without the need to re-prove security of the whole ZKAoK each time.

Although in the above example only V chooses the circuit that will be eval-
uated, we consider a broader definition where both P,V sample the circuit
together. The sampling process must begin only after P has committed and
fixed the witness and randomness that will be used. This means that from this
point on any form of cheating is possible only during the simulation of the MPC
protocol to compute the sampled circuit, as the witness cannot be tailored any-
more to the actually chosen circuit. We remark that although the circuit will
be jointly sampled by both parties, we restrict the sampling done by V to be
independent of the messages of P and to not require him to keep a secret state
so that the overall protocol stays public-coin. P, in contrast, will be allowed to
make his choice depending on the witness that it committed or on other mes-
sages. At the same time, the choice of P should neither allow him to break the
soundness nor the zero-knowledge property.

In this section, we first provide a formal definition for the notion of circuit
sampling. Then, we show how to incorporate it into our argument system and
finally explain (as an example) how the output linear combination optimization
described above is an instantiation of the general notion and how it fits into the
framework. We want to mention that, independently, Badetscher et al. [BJM19]
introduced a similar concept but in an unrelated context.

4.1 Definition of Circuit Sampling

First, we define the notion of circuit sampling for an NP relation.

Definition 3. (R-circuit Sampler). Let R be an NP relation and SP , SV
be two non-empty sets that can be described with a string of polynomial
length (in the security parameter λ). We say that Sample = (ExtWitness,
Response,SampCircuit) is an R-circuit sampler for (x,w) ∈ R if

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 511

ExtWitness is a PPT algorithm which on input (x,w) outputs an extended
witness ŵ.
Response is a PPT algorithm which on input (x,w, ŵ, τV) outputs τP .
SampCircuit is a deterministic polynomial-time algorithm which on input
(x, τV , τP) outputs a circuit C as well as a description of a set Y .

Furthermore, we require that membership in Y can be decided in polynomial
time. We next define a security game which follows the way we embed these
algorithms into our protocols. Consider the following game, which we denote by
GameR,P ((x,w), SP , SV , λ), executed with P:

1. P outputs ŵ.
2. Choose a random τV ← SV and hand it to P.
3. P outputs τP ∈ SP .
4. Compute (C, Y) ← SampCircuit(x, τP , τV).
5. Output 1 iff C(ŵ) ∈ Y .

To understand the game, observe that Step 1 emulates the commitment to
the witness, made by P in the first step of our protocols, in Step 2 a challenge
is chosen which is followed by the configuration chosen by P in Step 3. Once all
the input for SampCircuit is gathered, (C, Y) are being determined, and P wins
if computing the circuit C on ŵ yields a valid output. In the above definition
there is no validation ensuring that τP used in the game is valid. This can be
done by SampCircuit outputting Y = ∅ for an invalid τP .

We have three requirements from the circuit sampler. First, an obvious
requirement is that if P uses the correct w and chooses τP honestly, then the
output of the game should be 1 (except for a negligible probability).

Definition 4. (Correct R-circuit Sampler). Let Sample be an R-circuit
sampler. If when P on input (x,w) ∈ R computes ŵ ← ExtWitness(x,w) and
τP ← Response(x,w, ŵ, τV), with probability negligibly close to 1 it holds that
GameR,P ((x,w), SP , SV , λ) = 1 then we say that Sample is correct.

We furthermore require soundness. Similarly to the standard definition of it,
here if P wins in the above game with probability > α, then a correct witness
for R can be extracted.

Definition 5. (α-sound R-circuit Sampler). Let Sample be an R-circuit
sampler. If given Pr[GameR,P ((x,w), SP , SV , λ) = 1] > α (where the distribution
is over τV ∈ SV), there exists a deterministic polynomial-time extractor E(ŵ)
which outputs (x,w′) ∈ R then we say that Sample is α-sound.

The definition may look similar to knowledge soundness as defined in Sect. 2.2,
but there are crucial differences: E runs on ŵ in polynomial time and with
probability 1. This is because extracting some w′ from ŵ is an “easy” task (as
we will see in all our circuit sampling uses) and so the only question is whether
w′ is valid for R or not. The definition thus says that if P wins with probability
higher than α, then it must have used the correct witness w to compute ŵ which
can be obtained.

512 C. Baum and A. Nof

Finally, we also need to ensure that the additional interaction does not leak
any information about w. This is formalized in the standard way of requiring the
existence of a simulator who can output an indistinguishable transcript without
knowing w. Clearly, the message τP should not reveal any information about
ŵ to an outsider. However, we additionally need simulatability of C(ŵ): the
sampled circuit may enforce the relation R in different ways than a static circuit
would do, which could potentially leak information.

Definition 6. (Simulatable R-circuit Sampler). Let (x,w) ∈ R and Sample
be an R-circuit sampler. Then we say that Sample is simulatable if there exists
a PPT algorithm S such that

{(τP , C(ŵ)) ← P(x,w, τV)} ≈s {(τP , C(ŵ)) ← S(x, τV)}

where P acts honestly as in Definition 4.

4.2 Circuit Sampling and Our ZKAoK

We now include the above approach into our second protocol Πsac. The modified
protocol Πsamp

sac works as follows, where we highlight the additional steps:

Round 1: For each e ∈ [M] (i.e. each MPC instance), P computes ŵe ←
ExtWitness(x,w). Then, it chooses the randomness used for the execution e (i.e.,
the seeds used to derive all randomness as well as the salt). Finally, P commits
to the extended witness and the randomness and sends it to V.

Round 2: For each e ∈ [M], V samples τV,e as in Step 2 of the above game. It
then sends τV,1, . . . , τV,M to P.

Round 3: P locally computes τP,e ← Response(x,w, ŵe, τV,e) for each e ∈ [M]
as well as (Ce, Ye) ← SampCircuit(x, τP,e, τV,e). It uses Ce in MPC protocol
instance e and sends the remaining first round messages together with τP,e

to V.

Round 4–Round 7: Run rounds 2–5 as in the regular protocol.

Output: Upon receiving the last message, for each e ∈ [M] V recomputes
(Ce, Ye) ← SampCircuit(x, τP,e, τV,e), verifies the MPC transcripts for the indi-
vidual Ce and then tests that each output lies in Ye.

The following Lemma, whose proof appears in the full version, shows that
Πsamp

sac is an HVZKAoK.

Lemma 3. Let Sample be a correct, α-sound and simulatable R-circuit sampler
for the NP-relation R. Then Πsamp

sac is a statistically complete HVZKAoK for R

with knowledge error (α + (1 − α) · ξsac(1, N))M .

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 513

To prove the lemma, the main change compared to the proof of Πsac is that
here the circuits are not identical throughout all instances. Fortunately, it turns
out that this assumption can be relaxed without hurting the runtime of the
extractor E . Completeness and the zero-knowledge property, on the other hand,
follow directly from the original proof.

Impact on the Argument Size and Runtime. As one can see from the
above description, adding Circuit Sampling to the protocol Πsac adds another
two rounds of communication. In terms of argument size, we essentially split
Round 1 into two different parts and make two commitments instead of one
which commit to preprocessed data and evaluation, but now separately. The
extra cost is to send two extra commitments (thus base increases by 2 · |com|),
which is negligible in comparison to the rest of the argument.

Furthermore, it is possible to cut away the extra two rounds of communica-
tion by running the simulation C in Round 3 only, at the expense of introducing
more communication. This can be done by switching from the verification-based
approach of Πsac to the standard forward circuit evaluation of π where we check
the triples/squares while we use them, which is possible because now evaluation
is fully deterministic. This allows to perform evaluation and checking in one
round in parallel. We leave a detailed analysis as future work.

4.3 Output Correctness as a Circuit Sampler

We now revisit the (briefly sketched) idea of output compression in the context
of circuit sampling. Here V chooses random coefficients that are used to compute
the linear combination of the outputs, so that only one value is eventually opened
by the resulting circuit instead of nout.

We first define the three algorithms of the circuit sampler for this optimiza-
tion: ExtWitness receives ((C,y),w) as an input and returns the extended wit-
ness ŵ, which in this case is just w. Response receives as an input the tuple
((C,y),w, ŵ, τV), but note that in this optimization, the verifier’s challenge
τV fully defines the circuit and thus the output of Response is just 1. Finally,
SampCircuit receives ((C,y), τV , τP) as its input and returns the circuit C ′ and
the set Y defined in the following way: The circuit C ′ consists of the original
circuit C and the following layers which are added on top of it: (i) subtraction
gates for subtracting each value on an output wire y′[k] by the expected public
value y[k]; (ii) ‘multiplication-by-a-constant’ gates for each result of the previ-
ous layer, where the constants are defined by τV ; and (iii) addition gates for
summing the results of the previous layer. The set Y consists of one value only.
We summarize the construction in Fig. 2.

The three algorithms defined above satisfy the properties of the Circuit Sam-
pler. Correctness is straightforward. Soundness of the sampler is 1

|F| , since if w

is incorrect, then C(w) ∈ Y with probability 1
|F| because the random coefficients

are uniform (see Lemma 1). Simulation follows since both τP and Y are fixed.

514 C. Baum and A. Nof

Let C = (nin, nout, nC , L, R, F) be a circuit over F.

ExtWitness: On input (x = (C,y),w)) ∈ R set ŵ := w.

SampCircuit: On input τV = (γ) ∈ F
nout output the circuit C′ doing the following:

1. Compute y′ = C(ŵ) where y′ ∈ F
nout and y1 =

∑nout

i=1 γ[i] · (y′[i] − y[i]).
2. Output y1.
Furthermore output the set Y = {(0)}.

Response: Output 1.

Fig. 2. Batching the output check as a circuit sampler.

5 Proving Knowledge of SIS Instances

The protocols from Sect. 3 are asymptotically less communication-efficient than
previous argument systems such as [AHIV17,BBC+18] as can be seen in the
analysis. However, they have advantages when the circuit size is not too big or
when there are many linear gates in the circuit, because the communication is
dominated by the number of non-linear operations in the circuit C and has very
small circuit-independent cost. In this section, we exploit this fact to implement
communication-efficient arguments of knowledge for different versions of the so-
called Short-Integer Solution (SIS) problem.

The section is organized as follows. We begin by presenting an interactive
argument for binary secrets which does not allow any slack, which is the same
as in [BD10]. The approach can be simply generalized to secrets from a larger
interval, but only at the expense of vastly increasing the communication. Then,
we introduce some optimizations that allow us to reduce the communication for
the suggested arguments and then further squeeze down their size by introducing
a slack factor. Throughout the section, for each approach that we present, we
will mention what is the resulting size of the argument, based on the analysis of
Πsamp

sac (which is the same as that of Πsac).

5.1 The Baseline Proof for SIS

We start by presenting an argument for the Binary SIS problem as introduced
in Sect. 2.4. The reason behind that is because general range proofs are hard
using a circuit over F = Fq whereas they are very simple for binary values.
Moreover, the protocol we design for this problem will serve as a starting point
for constructions supporting secrets from larger intervals.

There are two main tasks that the protocol has to achieve, which is to show
that the secret s is a binary vector and the correctness of the product t = As. The
matrix multiplication uses a publicly known matrix, and since linear operations
are free in our used MPC scheme computing t can be done without increasing
the proof size. What remains to show is that the witness consists of bits. This
test is easy to perform because s[i] ∈ {0, 1} is equivalent to s[i]2 − s[i] = 0. We
can therefore let the circuit C compute the square of each element of s and then
perform a linear test. The obtained circuit is described in Fig. 3.

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 515

Witness: w = (s[1], . . . , s[m]) ∈ F
m

Computation:
1. ∀i ∈ [m] compute ri ← s[i]2

2. ∀j ∈ [n] compute yj ← ∑
i∈[m] aj,is[i]

3. ∀i ∈ [m] compute yi+n ← ri − s[i]

ŷ:tuptuO ← (y1, . . . , ym+n)

Fig. 3. A circuit representation of Rm,n,q
B−SIS ; The circuit contains m square gates, has m

inputs and m + n outputs.

For ease of notation we let ai,j ∈ F be the element in the ith row and the
jth column of A. The circuit can be evaluated using one of the protocols from
Sect. 3, with V testing that the circuit’s output ŷ equals (t[1], . . . , t[n], 0, · · · , 0).
This yields a highly efficient protocol, as there are only m non-linear gates in
the circuit that require communication, and all of them are square gates. Using
the cost analysis from Sect. 3.5, we conclude that the total communication by
P is base + log q · M(4m + 2) bits. It is immediate to extend the construction
from Fig. 3 to full SIS instances (which we do in the full version) by taking
the bit-decomposition of each input. There we show that, for secrets s of ∞-
norm ≤ β we will have to expand the witness to contain (�log2(β)� + 2) · m
elements and we furthermore have to evaluate as many square gates. P then
sends base + log q · M(4m · (�log2(β)� + 2) + 2) bits in the argument.

5.2 Amortizing Bit Tests

We now discuss an optimization which aims at reducing the argument size for the
Binary SIS problem by reducing the number of non-linear gates in the circuit.
Recall that in Fig. 3, we defined a circuit for this problem that has m square
gates. Each of the gates was used to verify that one of m inputs is a bit. We now
show how the number of square gates can be reduced to 1, at the cost of adding
elements to the witness. This reduces the overall communication since adding an
element to the witness increases the size of the argument per MPC instance by
one field element, whereas evaluating a square gate requires sending at least two
field elements (secret-shared random square, messages during evaluation of the
gate etc.). The optimization uses circuit sampling where only V has a challenge
and so only V is actually sampling the circuit alone.

Assume that we want to check if m input sharings s[1], . . . , s[m] indeed are
bits, and let |F| � 2m. We can implicitly define the polynomial D(X) ∈ F[X]
of degree at most m − 1 such that ∀i ∈ [m] : D(i) = s[i]. Furthermore, we know
that there exists a polynomial B(X) = D(X) · D(X) of degree at most 2m − 2
such that ∀i ∈ F : D(i)2 = B(i). We thus can say that ∀i ∈ [m] : s[i] ∈ B if and
only if ∀i ∈ [m] : B(i) = D(i).

This allows us to construct a new circuit-sampling procedure. Instead of
testing all s[i] separately for being bits, we let the prover P secret-share the

516 C. Baum and A. Nof

predetermined B(X) as part of the witness. Here, by our above observation
that ∀i ∈ [m] : B(i) = D(i) it is only necessary to share the points B(m +
1), . . . , B(2m − 1) (in addition to sharing all s[i]). Then, using the fact that
Lagrange-interpolation requires only linear operations (so it is entirely local in
the underlying MPC scheme) we let V send a challenge x ∈ F that is the point at
which we will evaluate D,B and test that B(x) − D(x)2 = 0. By the Schwartz-
Zippel-Lemma, we then must have identity of D(X)2 and B(X) except with
probability 2m−2

|F| . In the full version we formalize the above intuition which we
show yields a circuit sampler:

Theorem 4. The aforementioned approach yields a perfectly correct, 2m−2
|F| -

sound and perfectly simulatable circuit sampler for the relation Rm,n,q
B−SIS.

Applying this optimization and using Πsamp
sac , we obtain that the total com-

munication is base+log q ·M(2m+4) bits which is approximately log q ·M(3m)
bits smaller than the baseline approach.

5.3 Trading Argument Size for Slack

So far we have considered only arguments for SIS-instances where the gap
between the norm of correct witnesses and the norm that the argument guar-
antees is small: if we start with ((A,y), s) ∈ Rm,n,q,β

SIS (i.e., ||s||∞ ≤ β) then the
soundness guarantee is that a witness s′ with ((A,y), s′) ∈ Rm,n,q,ωβ

SIS could be
extracted (i.e., ||s||∞ ≤ ωβ) where ω is a small constant. However, the argument
size depends on M ·m · log2(q) · log2(β) as we have to perform non-linear compu-
tations for the bit-decomposition of each input s[i]. The goal of this subsection
is to give an approximate argument of size for the s[i] without having to resort
to bit-decomposition for each s[i]. This would allow for a smaller number of
square- or multiplication-gates as well as a more compact witness. On the other
hand, the arguments will have a larger slack ω which will now also depend on
the number of inputs m.

To achieve a more compact argument, we will ask the prover to show that
random linear combinations of elements from s are small. For this we use a
Lemma from [BL17] who showed that random linear combinations mod q of
elements from s are with certain probability not much smaller than ||s||∞:

Lemma 4. For all s ∈ F
k
q it holds that

Pr
c←Bk

[

|〈c, s〉| <
||s||∞

2

]

≤ 1
2

& Pr
C←B�×k

[

||C · s||∞ <
||s||∞

2

]

≤ 2−�.

Proof. See [BL17, Lemma 2.3 & Corollary 2.4].

The above Lemma only talks about the chance of detecting a vector of high
norm by seeing one large element in the result of the product with a random
binary matrix. In the full version we extend it to the case where we always see
that lots such large elements in the product C · s. This is summed up as follows:

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 517

Corollary 1. Let κ, r ∈ N
+, s ∈ F

k
q , β = ||s||∞ and define

Sβ
κ = {h ∈ F

r·κ
q | ∃T ⊆ [r · κ] ∧ |T | > κ ∧ ∀i ∈ T : |h[i]| ≥ 1

2 · β}. If r ≥ 5 then

Pr
C←B(r·κ)×k

[
C · s �∈ Sβ

κ

] ≤ 2−κ.

The above statements can directly be implemented in our argument system by
the means of circuit sampling. Unfortunately, this results in a new problem,
which is that we cannot output the product of s with a random binary matrix
to V without necessarily leaking information about s.

We resolve this problem using circuit sampling on the side of the prover
and give two different solutions. The first idea is that P can compute u = Cs
and output u+ “small” where “small” is a value of small norm. To achieve good
soundness guarantees we let “small” only be polynomially bigger than ||u||∞ and
use Rejection Sampling to hide the information from the product. Alternatively,
we can allow P to prove knowledge of the bit decomposition of each value of
u = Cs. We now describe both ideas in more detail.

1st Approach: Rejection Sampling. In this solution, we let the prover P add
additional random elements x1, x2, . . . to the witness, which are supposed to be
small. The verifier V will then, as part of his challenge in the circuit sampling,
ask P to open a subset of x1, x2, . . . to show that most of the remaining ones are
indeed of small size. P will then open sums of each u[i] with some xj , subject
to the constraint that this does not leak information about s. V later tests that
each such u[i] + xj is of bounded norm.

As part of rejection sampling a prover aborts whenever the argument would
leak information. But our goal is that the argument is complete with overwhelm-
ing probability. To achieve this, we use an idea which is inspired by the “imper-
fect proof” of [BDLN16]. There, the authors gave a protocol that showed how
to prove knowledge of � − κ out of � SIS instances using cut-and-choose and
rejection sampling. Their approach aborts only with negligible probability and
turns out to be compatible with our application. The circuit sampler, on a high
level, works as follows:

1. P will sample x1, . . . , x16κ uniformly at random from [−π ·m ·β, π ·m ·β] ⊂ F

and commit them as part of ŵ.
2. V with probability 1/2 puts each xi into a set E. It samples a random matrix

C ∈ B
5κ×m and sends E,C as challenges to P.

3. P now sets up a circuit C as follows:
(a) C will output {xe}e∈E . V checks that xe ∈ [−π · m · β, π · m · β].
(b) Compute u = Cs in the circuit. P will go through u[1], . . . ,u[5 · κ], take

the first unused e ∈ E and test if u[i]+xe ∈ [−(π−1) ·m ·β, (π−1) ·m ·β].
If so, then it makes C output vi = u[i] + xe, otherwise it removes e from
E and repeats this procedure with the next-largest e′ ∈ E. V checks that
vi ∈ [−(π − 1) · m · β, (π − 1) · m · β].

We present the full sampler in the full version, together with a proof of the
following Theorem.

518 C. Baum and A. Nof

Theorem 5. The aforementioned approach yields a statistically correct, α-
sound and perfectly simulatable circuit sampler for the relation Rm,n,q,4πm·β

SIS

where α = max{1/|F|, 2−κ}.
A drawback of this approach is the rather big slack of 4π · m. This slack is

caused by two reasons. First, there is an inherent increase of m due to the use
of Lemma 4. In addition, using Rejection Sampling means that we lose another
factor π = 100. One could decrease the constant by using a discrete Gaussian
distribution for the xi as in [Lyu12], but we opted for presenting the above idea
due to its simplicity. On the positive side, there are no non-linear gates in the
sampled circuit and P will only have to add 16 · κ more values to the witness,
independently of β. The sampled circuit will output � + 5κ + 1 elements of F,
which in expectancy is around 13κ + 1 (since each of the 16κ random samples
is opened with probability 1/2).

Summing up, the communication of the argument (excluding τP) when using
Πsamp

sac is base + log2 q · M(m + 29κ + 1) bits.

2nd Approach: The Power of Random Bits. The previous solution has the
disadvantage of having a comparably high slack of 4πm. On the other hand, it
does not use any non-linear gates. We will now show how to decrease the slack
to be essentially m by reintroducing one square gate and adding computational
work. To reduce the slack, we will again rely on Lemma 4. But instead of per-
forming rejection sampling on the output, we perform a range proof for each
element of the matrix product u = Cs. The problem that arises is that C is
only chosen at runtime, while the committed witness must be independent of
the actual values in C. At the same time, we must construct the argument in
such a way that the circuit C will not reveal any information about the product
except for bounds on each value.

We resolve this problem as follows: if the witness has ||s||∞ ≤ β, then since
C ∈ B

κ×m it must hold that ||Cs||∞ ≤ m · β. Thus, letting r be the smallest
integer such that m · β < 2r, it suffices for the prover to show that u[i] ∈
[−2r, 2r −1] (which can be done using bit decomposition as in the generalization
of Sect. 5.1). To show the inclusion P can add random bits xi

0, . . . , x
i
r to the

witness. Then, once the challenge is received from V and u is known to P, it
can compute the bit decomposition u[i] + 2r =

∑r
j=0 2jhi

j for each i ∈ [κ] and
tell V for each j ∈ {0, . . . , r} if it should use xi

j or 1 − xi
j to represent hi

j . As
all xj

i are chosen randomly, this yields a simulatable circuit. The only issue that
remains is for P to prove that each xj

i is indeed a bit. For this task, we use the
method presented in Sect. 5.2, which uses polynomial evaluation and requires a
single non-linear gate. We describe the full circuit sampler in the full version,
together with a proof of the following Theorem.

Theorem 6. Assume that (q−1)/2 > 4mβ. The aforementioned approach yields
a perfectly correct, α-sound and perfectly simulatable circuit sampler for the rela-
tion Rm,n,q,2m·β+4

SIS where α = max{ 2(r+1)κ−1
|F| , 2−κ} and r is the smallest integer

such that m · β ≤ 2r − 1.

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 519

Table 1. Parameters used in the experiments for Πc&c and argument size per parameter
set as a function of ρ = m · log2 |F|.

N Cut-and-Choose

ξ ≤ 2−40 ξ ≤ 2−80

M τ Comm. of P (in KB) M τ Comm. of P (in KB)

2 75 34 31 + 0.123 · ρ 145 63 61.1 + 0.246 · ρ

4 55 32 22.4 + 0.069 · ρ 105 57 44.8 + 0.144 · ρ

8 55 38 20.7 + 0.051 · ρ 95 57 42 + 0.114 · ρ

16 45 26 23.4 + 0.057 · ρ 95 63 41.5 + 0.096 · ρ

32 45 28 23.8 + 0.051 · ρ 85 47 50.4 + 0.114 · ρ

64 45 28 26 + 0.051 · ρ 85 49 53 + 0.108 · ρ

The circuit we obtain has m + κ(r + 1) inputs, one square gate and κ + 2
outputs. Then the total communication of this argument when using Πsamp

sac is
base + log2 q · M(m + κ(r + 2) + 5) bits.

6 Evaluation and Experimental Results

We ran extensive experiments to measure the performance of our two proto-
cols for the Binary-SIS problem. As setup we used Amazon C5.9xlarge instances
using two servers with Intel Platinum 8000 series processors (Skylake-SP) which
have clock speed up to 3.4 GHZ, 36 virtual cores per server (utilized based on
the experiment setup) and 72 Gb RAM. The network bandwidth between the
nodes is 10 Gpbs. For our implementation we used only the baseline construction
for the Binary-SIS problem presented in Sect. 5.1. Nevertheless, this includes the
three general optimizations described in Sect. 3.4. Hash functions as well as com-
mitments were implemented using SHA-256. Generation of pseudo-randomness
from a seed was done using AES in counter-mode where the seed is the AES
key. Thus, |hash| = |com| = 256 bits and |sd| = 128 bits.

We used five sets of parameters for our experiments: (i) log2 |F| = 15, n = 256
and m = 1024; (ii) log2 |F| = 15, n = 256 and m = 4096; (iii) log2 |F| = 31,
n = 512 and m = 2048; (iv) log2 |F| = 59, n = 1024 and m = 4096; and (v)
log2 |F| = 61, n = 1024 and m = 4096.

The first parameter set reflects SIS-based constructions that do not need any
additional functionality. For example, they can be used to instantiate [KTX08]
with a binary secret. The second parameter set is then used to study the impact
of using a much larger message in the commitment scheme, which also shows how
the matrix size impacts the runtimes. The third set would be a typical example
for SIS-based constructions such as somewhat homomorphic commitments and
allows to prove that a committed message is small. An example for an application
would be the commitment scheme of [BDL+18]. The last two sets are used for
applications such as somewhat homomorphic encryption schemes like [BGV14].

520 C. Baum and A. Nof

Table 2. Parameters used in the experiments for Πsac and argument size per parameter
set as a function of ρ = m · log2 |F|.

N Sacrificing

ξ ≤ 2−40 ξ ≤ 2−80

M Comm. of P (in KB) M Comm. of P (in KB)

2 40 26.2 + 0.16 · ρ 80 51.8 + 0.32 · ρ

4 20 16 + 0.08 · ρ 40 31.3 + 0.16 · ρ

8 14 13.2 + 0.056 · ρ 27 24.8 + 0.108 · ρ

16 10 10.9 + 0.04 · ρ 20 21.2 + 0.08 · ρ

32 8 9.9 + 0.032 · ρ 16 19.1 + 0.064 · ρ

64 7 9.6 + 0.028 · ρ 14 18.6 + 0.056 · ρ

Table 3. Best running times in MSec for different sets of SIS parameters, κ = 40.

log2 |F| n m Cut-and-Choose Sacrificing

N M τ Time N M Time

15 256 1024 2 75 34 73.2 4 20 59.4

15 256 4096 2 75 34 295.8 4 20 252.6

31 512 2048 2 75 34 252.3 4 20 217.5

59 1024 4096 2 75 34 1010.4 2 40 1075.1

61 1024 4096 2 75 34 1204.6 2 40 1228.8

We ran experiments for 40 and 80 bits of statistical security κ. For the param-
eter N , i.e. the number of parties in the underlying MPC protocol, we used the
values 2, 4, 8, 16, 32 and 64. Then, given the desired level of security and N we
searched for the parameters for each protocol that minimized the overall cost.

In Πc&c, there are two parameters to define: M (number of pre-processing
executions) and τ (number of pre-processing executions to open). To obtain
these, we wrote a script that finds the minimal M and τ such that ξ(M,N, τ) ≤
2−40 or 2−80. In Πsac, we observe that for our choices of |F| and N , it holds that
3N+|F|−3

N ·|F| ≈ 1
N and so it suffices to choose M such that ξ(M,N) ≈ 1

NM ≤ 2−40

or 2−80.
We summarize the parameters used in our experiments in Tables 1, 2. In

addition, for each set of parameters we give the size of the argument in Kbits
as a formula of the SIS problem parameters ρ = m · log2 |F|. Observe that as
the number of parties N grows, the number of MPC instances in Πsac becomes
much smaller than the number required in Πc&c, which is translated to smaller
proof size. This implies that our new ‘sacrificing’-based approach outperforms
the ‘cut–and–choose’-based method for arithmetic circuits over large fields.

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 521

Running Times. In Table 3 we present the running times (in Msec.) of the two
protocols for 40 bits of security respectively. The results for 80-bit of security
are presented in the full version. For each set of parameters for the SIS problem
we report only the best running times achieved together with the MPC protocol
parameters which lead to the result. As the number of non-linear gates in this
circuit is small, it is not surprising that both schemes achieve similar results.
Observe that small numbers of parties in the MPC protocol lead to faster running
times, in contrast to proof size which is getting smaller when the number of
parties is increased.

It is worth noting that a major source of improvement we discovered was to
postpone the modular reduction in the matrix multiplication to the end. That is,
when the prover/verifier multiply a row in the matrix A with a vector of shares
of s (which is eventually what the computed circuit does), it is highly beneficial
to do the reduction modulo q only at the end of the matrix multiplication. This
simple optimization alone yields an improvement of approximately 33%.

Using Multi-threads. The above results were obtained using a single thread. As
computation time is the bottleneck, we examined what happens when working
with multiple threads which seems to be a straightforward optimization. This
experiment was run for the “toughest” instance of the SIS problem, with log |F| =
61, n = 1024 and m = 4096 and with the MPC protocol parameters who yielded
the best running time in Table 3. The full results appear in the full version.
As we discovered, using two threads already cut the running time by half and
using 20 threads speeds-up the runtime by more than 80%. As a consequence, we
obtain a ZKAoK that runs in less than 0.5 s even for the of SIS instance with
the largest parameters. This is orders of magnitude faster than any previous
implementation for arithmetic circuits of the same size.

Faster Matrix Products and Structured Lattices. In this work we solely focus on
unstructured matrices A for SIS. By micro-benchmarking the results, we observe
that as the size of the matrix A grows, the time spent on computing the matrix
multiplication becomes dominant. In particular, for the large instances, matrix
multiplication takes >85% of the overall local computation time. As we use only
textbook matrix multiplication, this leaves plenty of room for improvement.
Furthermore, on the verifier side it is possible to batch the matrix multiplica-
tions together as only verification is needed. Another direction would be to use
structured matrices i.e. structured lattices, which opens the door for FFT-like
algorithms.

7 Related Work

The landscape for (lattice-based) ZK arguments has drastically changed dur-
ing the past years. We will now describe how our protocol compares with other
state-of-the-art arguments of knowledge in terms of communication, computa-
tion time, accuracy of the proof and the cryptographic assumptions. As most of

522 C. Baum and A. Nof

existing work focuses only on minimizing the proof size, we can only estimate in
many cases what will be the running time compared to ours. For this section,
we used N = 16 parties in underlying MPC protocol for our scheme and set
M accordingly to achieve the desired soundness. We stress that it is possible to
further increase the number of parties in the underlying MPC and reduce the
proof size even more, but at the cost of increasing also the running time.

Protocols for exact SIS. We subsume all protocols that prove the exact solu-
tion here. These are either based on Stern-type arguments [LNSW13], direct
applications of MPC-in-the-head/IOP [AHIV17,BCR+19] or special-purpose
protocols [BLS19,Beu19,YAZ+19]. Though STARKs [BBHR19] fall into the sec-
ond category, we do not consider those as related work as they are rather tailored
to computations with looping components. While [LNSW13] is a specific tech-
nique tailored to problems such as SIS, [AHIV17,BCR+19] require an arithmetic
circuit (similar to us) for the verification of the statement. The comparison in
term of proof size to these works is presented in Table 4.

Table 4. Proof sizes for Binary-SIS and 5-bit secrets, small constant slack, κ = 40.

|F| ≈ 232

Binary
|F| ≈ 232

β = 15
|F| ≈ 261

Binary
|F| ≈ 261

β = 15

Stern [Ste96] 971KB 7285 KB 3703KB 27775 KB

Ligero [AHIV17] 45KB 55 KB 55KB 80 KB

Ours, baseline 357KB 2138 KB 1359KB 8148 KB

Ours, amortized 179KB 1069 KB 680KB 4075 KB

We did not include proof sizes for the Aurora protocol [BCR+19], as the
authors there did not provide a general expression for the proof size, but rather
experimental results for the binary field F2192 . Nevertheless, we expect them to
be comparable to the sizes reported for [AHIV17]. We note that the prover run-
ning time according to their experiments is ≈200 s, and so is expected to be at
least one order of magnitude bigger than in our protocols. The same applies to
Ligero [AHIV17], which requires extensive FFT computations for large polyno-
mials, which cause the prover’s running time to be much higher than ours. We
thus conclude that these approaches, which achieve sun-linear communication,
outperform our approach in the non-interactive setting. However, in the inter-
active setting- for example, when used as a building block in a larger interactive
protocol (that use e.g. lattice-based commitments) with strong runtime require-
ments then our computationally efficient prover is advantageous. Concurrently
to this work, the works of [BLS19,Beu19,YAZ+19] have improved upon the
state of the art of ZKAoK for lattice-based primitives. While it can be expected
that their solutions have the same or better communication complexity than our
approach for exact SIS, it is still unclear what is their computational cost, as
none of these works provides an implementation. Furthermore, in comparison to
their work our protocols can be used to prove arbitrary statements.

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 523

Protocols for SIS with Slack. Here, we compare with the argument system
from the signature scheme of [Lyu12] (see Table 5).

We compare the proof size of [Lyu12] with our baseline protocol and with the
two solutions described in Sect. 5.3. We see that in particular the 2nd protocol of
Sect. 5.3 improves upon [Lyu12] for all three considered cases. This is particularly
true in the cases where the gap between β and |F| is small, as our proof size
increases as |F| grows whereas the size of [Lyu12] depends on the bound β but
not on |F| when optimized correctly. At the same time, increasing β seems not to
substantially change the communication complexity of either of our two proofs,
whereas it has a direct impact on [Lyu12].

Table 5. Proof sizes for non-constant slack with log2(|F|) = 32 and κ = 40.

Protocol Slack Binary SIS SIS with β = 15

Sigma-protocol [Lyu12] 288m 184 KB 223 KB

Ours, Approach 1 (κ = 8) 400m 100 KB 100 KB

Ours, Approach 2 (κ = 8) <3 m 96 KB 97 KB

Ours, Exact 1 179 KB 1069 KB

Other Approaches. Recently, del Pino et al. [dPLS19] showed how to obtain
a ZK argument for our problem setting. While they have a drastically smaller
proof size (in the order of 1.5 KB), their construction relies on the DLog assump-
tion and is therefore not post-quantum secure. Moreover, their computational
efficiency relies on using structured lattices, which we do not need. The same
applies to Hyrax [WTS+18], Sonic [MBKM19] or Libra [XZZ+19], who rely on
the DLog-assumption. Older ZK-SNARKs such as [PHGR16,BSCTV14] would
offer low argument size and verification time but in addition to large keys and
a high prover runtime also rely on very strong assumptions. Similarly, the work
of [BCC+16] is also in the DLog setting. Its lattice-based variant [BBC+18] is so
far not implemented, may have large hidden constants and itself uses ZKAoKs
for SIS as building blocks.

Thanks and Acknowledgements. The authors want to thank Roey Sefi and Assi
Barak for their help with the implementation as well as Carmit Hazay, Yehuda Lindell
and Avishay Yanai as well as the anonymous reviewers for their helpful comments.

The work of both authors was mainly done at Bar Ilan University. Both authors
acknowledge support by the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Min-
ister’s Office. The work of Carsten was additionally funded by the European Research
Council (ERC) under the European Unions’ Horizon 2020 research and innovation
programme under grant agreement No 669255 (MPCPRO).

524 C. Baum and A. Nof

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM (2017)

[BBC+18] Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky,
V.: Sub-linear lattice-based zero-knowledge arguments for arithmetic cir-
cuits. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10992, pp. 669–699. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96881-0 23

[BBHR19] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowl-
edge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 23

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 12

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

[BD10] Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs
for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11799-2 13

[BDL+18] Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.:
More efficient commitments from structured lattice assumptions. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 20

[BDLN16] Baum, C., Damg̊ard, I., Larsen, K.G., Nielsen, M.: How to prove knowl-
edge of small secrets. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 478–498. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53015-3 17

[Bea91] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[Beu19] Beullens, W.: On sigma protocols with helper for MQ and PKP, fishy
signature schemes and more. Cryptology ePrint Archive, Report 2019/490
(2019). https://eprint.iacr.org/2019/490

[BGV14] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. ACM Trans. Comput. Theory
(TOCT) 6(3), 1–36 (2014)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security. ACM (2012)

[BJM19] Badertscher, C., Jost, D., Maurer, U.: Agree-and-prove: generalized
proofs of knowledge and applications. Cryptology ePrint Archive, Report
2019/662 (2019). https://eprint.iacr.org/2019/662

https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-662-53015-3_17
https://doi.org/10.1007/978-3-662-53015-3_17
https://doi.org/10.1007/3-540-46766-1_34
https://eprint.iacr.org/2019/490
https://eprint.iacr.org/2019/662

Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits 525

[BL17] Baum, C., Lyubashevsky, V.: Simple amortized proofs of shortness for lin-
ear relations over polynomial rings (2017). https://eprint.iacr.org/2017/
759

[BLS19] Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er)
exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7 7

[BSCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
zero knowledge for a von Neumann architecture. In: USENIX Security
Symposium (2014)

[BN19] Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography.
Cryptology ePrint Archive, Report 2019/532 (2019). https://eprint.iacr.
org/2019/532

[DFMS19] Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the fiat-shamir
transformation in the quantum random-oracle model. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 13

[DN19] Dinur, I., Nadler, N.: Multi-target attacks on the picnic signature scheme
and related protocols. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 699–727. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17659-4 24

[dPLS19] del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for
FHE and ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11442, pp. 344–373. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17253-4 12

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: Faster zero-knowledge for Boolean
circuits. In: USENIX Security Symposium, Zkboo (2016)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge
from secure multiparty computation. In: Proceedings of the Thirty-Ninth
Annual ACM Symposium on Theory of Computing. ACM (2007)

[KKW18] Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2018 (2018)

[KTX08] Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification
schemes based on the worst-case hardness of lattice problems. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-89255-7 23

https://eprint.iacr.org/2017/759
https://eprint.iacr.org/2017/759
https://doi.org/10.1007/978-3-030-26948-7_7
https://eprint.iacr.org/2019/532
https://eprint.iacr.org/2019/532
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-89255-7_23

526 C. Baum and A. Nof

[LN17] Lindell, Y., Nof, A.: A framework for constructing fast MPC over arith-
metic circuits with malicious adversaries and an honest-majority. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017 (2017)

[LNSW13] Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge
proofs of knowledge for the ISIS problem, and applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 8

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4 43

[MBKM19] Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
snarks from linear-size universal and updatable structured reference
strings. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 2111–2128 (2019)

[PHGR16] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. Commun. ACM 59(2) (2016)

[Ste96] Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf.
Theory 42(6) (1996)

[WTS+18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zkSNARKs without trusted setup. In: Proceedings of the 2018
IEEE Symposium on Security and Privacy, SP 2018 (2018)

[XZZ+19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct
zero-knowledge proofs with optimal prover computation. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 24

[YAZ+19] Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-
based zero-knowledge arguments with standard soundness: construction
and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-26948-7_6

	Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-Based Cryptography
	1 Introduction
	1.1 `MPC-in-the-Head' and Preprocessing
	1.2 Our Contributions

	2 Preliminaries
	2.1 Programming Model
	2.2 Zero-Knowledge Arguments of Knowledge
	2.3 Commitments and Collision-Resistant Hash Functions
	2.4 The Short Integer Solution Problem

	3 Honest Verifier Arguments of Knowledge for Arithmetic Circuits
	3.1 The MPC Protocol
	3.2 HVZKAoK Protocol Using Cut and Choose
	3.3 HVZKAoK Protocol Using Imperfect Preprocessing and Sacrificing
	3.4 Optimizations
	3.5 Computation and Communication Cost

	4 Sampling Circuits on the Fly
	4.1 Definition of Circuit Sampling
	4.2 Circuit Sampling and Our ZKAoK
	4.3 Output Correctness as a Circuit Sampler

	5 Proving Knowledge of SIS Instances
	5.1 The Baseline Proof for SIS
	5.2 Amortizing Bit Tests
	5.3 Trading Argument Size for Slack

	6 Evaluation and Experimental Results
	7 Related Work
	References

