
Aggelos Kiayias
Markulf Kohlweiss
Petros Wallden
Vassilis Zikas (Eds.)

LN
CS

 1
21

10

23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography
Edinburgh, UK, May 4–7, 2020
Proceedings, Part I

Public-Key Cryptography – 
PKC 2020



Lecture Notes in Computer Science 12110

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Aggelos Kiayias • Markulf Kohlweiss •

Petros Wallden • Vassilis Zikas (Eds.)

Public-Key Cryptography –

PKC 2020
23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography
Edinburgh, UK, May 4–7, 2020
Proceedings, Part I

123



Editors
Aggelos Kiayias
University of Edinburgh
Edinburgh, UK

Markulf Kohlweiss
University of Edinburgh
Edinburgh, UK

Petros Wallden
University of Edinburgh
Edinburgh, UK

Vassilis Zikas
University of Edinburgh
Edinburgh, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45373-2 ISBN 978-3-030-45374-9 (eBook)
https://doi.org/10.1007/978-3-030-45374-9

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-45374-9


Preface

The 23rd IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2020) was held during May 4–7, 2020, in Edinburgh, Scotland,
UK. This conference series is organized annually by the International Association of
Cryptologic Research (IACR). It is the main annual conference with an explicit focus
on public-key cryptography sponsored by IACR. The proceedings are comprised of
two volumes and include the 44 papers that were selected by the Program Committee.

A total of 180 submissions were received for consideration for this year’s program.
Three submissions were table rejected due to significant deviations from the instruc-
tions of the call for papers. Submissions were assigned to at least three reviewers, while
submissions by Program Committee members received at least four reviews.

The review period was divided in three stages, the first one reserved for individual
reviewing that lasted five weeks. It was followed by the second stage, where the
authors were given the opportunity to respond to the reviews. Finally in the third stage,
which lasted about 5 weeks, the Program Committee members engaged in discussion
taking into account the rebuttal comments submitted by the authors. In addition to the
rebuttal, in a number of occasions, the authors of the papers were engaged with
additional questions and clarifications. Seven of the papers were conditionally accepted
and received a final additional round of reviewing. The reviewing and paper selection
process was a difficult task and I am deeply grateful to the members of the Program
Committee for their hard and thorough work. Additionally, my deep gratitude is
extended to the 252 external reviewers who assisted the Program Committee. The
submissions included two papers with which the program chair had a soft conflict of
interest (they included in their author list researchers based at the University of
Edinburgh). For these two papers, the chair abstained from the management of the
discussion and delegated this task to a Program Committee member. I am grateful to
Helger Lipmaa for his help in managing these two papers. I would like to also thank
Shai Halevi for his web submission and review software which we used for managing
the whole process very successfully.

The invited talk at PKC 2020, entitled “How low can we go?” was delivered by
Yuval Ishai. I would like to thank Yuval for accepting the invitation and contributing to
the program this year as well as all the authors who submitted their work. I would like
to also thank my good colleagues and co-editors of these two volumes, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas who served as general co-chairs this
year. A special thanks is also due to Dimitris Karakostas who helped with the website
of the conference, Gareth Beedham who assisted in various administrative tasks, and all

This proceedings volume was prepared before the conference took place and it reflects its original
planning, irrespective of the disruption caused by the COVID-19 pandemic.



PhD students at the School of Informatics who helped with the conference organiza-
tion. Finally, I am deeply grateful to our industry sponsors, listed in the conference’s
website, who provided generous financial support.

May 2020 Aggelos Kiayias
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How Low Can We Go?
(Invited Talk)

Yuval Ishai

Computer Science Department, Technion
yuvali@cs.technion.il

Abstract. Given a cryptographic task, such as encrypting a message or securely
computing a given function, a natural question is to find the “minimal cost” of
carrying out this task. The question can take a variety of forms, depending on the
cost measure. For instance, one can try to minimize computation, communica-
tion, rounds, or randomness. In the case of computational cost, one can consider
different computation models, such as circuits or branching programs, and dif-
ferent cost metrics, such as size or depth. The answer to the question may further
depend on the type of computational assumptions one is willing to make.

The study of this question, for different cryptographic tasks and clean
asymptotic cost measures, has led to a rich body of work with useful and often
unexpected results. The talk will survey some of this work, highlighting con-
nections between different research areas in cryptography and relevance beyond
cryptography.

In addition to the direct interest in minimizing well-motivated complexity
measures, there are cases in which “high-end” cryptographic tasks, such as
secure multiparty computation or program obfuscation, call for minimizing
different cost measures of lower-end primitives that would otherwise seem
poorly motivated. I will give some examples of this kind.

Finally, I will make the case that despite the progress already made, there is
much more to be explored. Research in this area can greatly benefit from more
cooperation between theoretical and applied cryptographers, as well as between
cryptographers and researchers from other fields, including computational
complexity, algorithms, computational learning theory, coding and information
theory.

Supported by ERC Project NTSC (742754), NSF-BSF grant 2015782, BSF grant 2018393, and a grant
from the Ministry of Science and Technology, Israel and Department of Science and Technology,
Government of India.
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Fast, Compact, and Expressive
Attribute-Based Encryption

Junichi Tomida(B), Yuto Kawahara, and Ryo Nishimaki

NTT Secure Platform Laboratories, Tokyo, Japan
{junichi.tomida.vw,yuto.kawahara.yk,ryo.nishimaki.zk}@hco.ntt.co.jp

Abstract. Attribute-based encryption (ABE) is an advanced crypto-
graphic tool and useful to build various types of access control systems.
Toward the goal of making ABE more practical, we propose key-policy
(KP) and ciphertext-policy (CP) ABE schemes, which first support
unbounded sizes of attribute sets and policies with negation and multi-
use of attributes, allow fast decryption, and are adaptively secure under
a standard assumption, simultaneously. Our schemes are more expres-
sive than previous schemes and efficient enough. To achieve the adaptive
security along with the other properties, we refine the technique intro-
duced by Kowalczyk and Wee (Eurocrypt’19) so that we can apply the
technique more expressive ABE schemes. Furthermore, we also present a
new proof technique that allows us to remove redundant elements used
in their ABE schemes. We implement our schemes in 128-bit security
level and present their benchmarks for an ordinary personal computer
and smartphones. They show that all algorithms run in one second with
the personal computer when they handle any policy or attribute set with
one hundred attributes.

Keywords: Attribute-based encryption · Standard assumption ·
Non-monotone · Unbounded · Multi-use · Random oracle model

1 Introduction

Attribute-based encryption (ABE) [17] is an advanced form of public key encryp-
tion (PKE), which yields fine-grained access control over encrypted data. More
concretely, ABE allows us to embed an attribute x into a ciphertext when we
encrypt a message. An authority that has a master secret key can issue a secret
key that is associated with a predicate y. The ciphertext can be decrypted with
the secret key only if x and y satisfy some relation R.

Previously, ABE schemes have been proposed for various relations, such as
equality [9], threshold [29], orthogonality of vectors [19], and so on. One of the
most notable relations among them is that expressed by an access structure
[7,17]. In a key-policy ABE (KP-ABE) scheme, for instance, one can embed an
access structure in a secret key such as (Year:1991–2000 AND Category:jazz).
The secret key can decrypt ciphertexts that have attributes Year:1991–2000 and
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12110, pp. 3–33, 2020.
https://doi.org/10.1007/978-3-030-45374-9_1
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4 J. Tomida et al.

Category:jazz but cannot ones that only have at most one of them. Ciphertext-
policy ABE (CP-ABE) is a dual of KP-ABE and allows us to embed an access
structure into ciphertexts.

Recently, Agrawal and Chase proposed practical KP-ABE and CP-ABE
schemes named FAME [1], which are the first schemes that simultaneously:

1. have no restriction on sizes of policies and attribute sets (unboundedness);
2. allow an arbitrary string as an attribute (large universe);
3. are based on the fast Type-III pairings;
4. need a small number of pairings for decryption;
5. satisfy the adaptive security under standard assumptions.

All these properties are arguably important in practice. We briefly explain the
reasons. The first two properties say about scalability. It is not uncommon that
we extend a system to add new attributes to a database in operation. In such
cases, scalability is essential property because if the scheme does not have the
scalability, we need a redeployment of the scheme. The second two properties
say about efficiency. The efficiency of building blocks directly affects that of
the entire system. Thus, efficient cryptographic schemes are desirable. The final
property says about security. In contrast to the selective security, the adap-
tive security considers a model that captures a natural attack of an adversary
against a scheme. Additionally, standard assumptions are based on well-studied
hard problems and thus reliable. Hence, the adaptive security under standard
assumptions guarantees that schemes are secure enough.

1.1 Our Contribution

Toward the goal to make ABE schemes more usable and realistic, we propose
more expressive schemes. More precisely, we propose KP-ABE and CP-ABE
schemes that satisfy all the above properties and additionally allow us to use

6. negation in a natural form (non-monotonicity);
7. the same attribute more than once (multi-use of attributes or compactness);

in a policy. These properties allow us to use more fine-grained policies that are
commonly used in practice. Negation is essential for access control by blacklist-
ing. Multi-use of attributes in policies is indispensable to express certain types of
policies such as (A AND B) OR (A AND C) OR (B AND D), where A,B,C,D
are Boolean variables.

Thanks to great works on ABE [3,21,27], we have several ABE schemes that
can handle unbounded sizes of attribute sets and policies in prime-order groups.
To our knowledge, however, there are no schemes that achieve all the properties
listed above simultaneously. We summarize previous schemes and ours in Table 1.

One note is that our schemes require the random oracle model for security
analysis as well as FAME. Whereas a random oracle cannot be replaced with
any implemented hash function in some particular cases [11], it is still a widely
accepted and standard methodology to analyze the security of cryptographic
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Table 1. Comparison of unbounded KP and CP-ABE schemes based on prime-order
groups.

Scheme Unbounded-

ness

Large

universe

Type-III Fast

Dec

Standard

assump.

Non

monotonicity

Multi-

use

w/o

RO

OT12 [27] � � � × � � × �
AC17 [1] � � � � � × × ×
CGKW18 [13] � � � × � × × �
KW19 [21] � � � × � × � �
Att19 [3] � � � × × ×a � �
Ours � � � � b � � � ×
aThe scheme that is explicitly described by Attrapadung [3] can handle negation, but it is not

the natural form that we consider.
bThe number of pairings in decryption of our schemes does not depend on the size of policies

or the number of attributes but only depends on the number of multi-use of labels in a policy.

Thus, as long as considering the same setting as FAME, which imposes one-use restriction on

policies, the decryption requires only a constant number of pairings.

schemes. Actually, many practical schemes that are used in the real world require
the random oracle model for their security analysis [5,6,15].

In the following, we elaborate on the last two properties.

Non-monotonicity. Previously, there are several works that consider access
structures including negation (non-monotone access structures) in ABE [3,4,
24,26–28,32]. Among them, only the negation form defined by Okamoto and
Takashima (OT negation) [26,27] is different from that by the others (non-OT
negation). Considering an example is the best way to describe the difference.
Let attributes consist of a pair of a label and value, e.g., Year:1991–2000,
where Year is a label and 1991–2000 is a value. Suppose there are two labels
Year and Category in an access control system supported by KP-ABE. Then,
non-OT negation is like (NOT Year:1991–2000) whereas OT negation is like
(Year:NOT 1991–2000). Semantically, the former implies that the secret key can
decrypt a ciphertext if it does not have attribute Year:1991–2000. On the other
hand, the latter implies that a ciphertext is decryptable if it has an attribute on
label Year and its attribute is not 1991–2000.

When we consider large universe ABE, which is exactly the desirable case
in practice, the natural negation form is arguably OT negation. In large uni-
verse ABE, it is unreasonable to fix all attributes used in a system at the setup
phase because the most significant advantage of large universe ABE is that we
can utilize an exponentially large number of attributes. Associating strings with
attributes that the ABE scheme handles in an ad-hoc way by a hash function
would be a better solution. However, if we use non-OT negation in the system,
we have to fix all attributes that the system supports at the setup phase. This
is because a secret key whose policy is negation of an attribute that the system
has not supported before can decrypt all ciphertexts generated so far. More con-
cretely, in the above example, we consider the case where we add a new label
Artist in the system. Then, if an authority issues a key whose policy is (NOT
Artist:The Beatles), all previous ciphertexts are decrypted by the key even if
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the underlying content is by The Beatles because they do not have an attribute
on label Artist. On the other hand, OT negation does not cause this inconve-
nience because a key whose policy is (Artist:NOT The Beatles) is useless to
decrypt ciphertexts without an attribute on label Artist. Thus, we refer to OT
negation as a natural form.

Note that we can use monotone ABE as non-monotone ABE by preparing
attributes for both positive and negative if they are small-universe constructions,
in which the number of attributes are polynomially bounded. That is, non-
possession of attributes can be expressed by possession of negative attributes.
However, this is not the case in large-universe constructions because we can-
not attach an exponentially large number of negative attributes to a ciphertext
or secret key. Hence, monotone ABE and non-monotone ABE are completely
different things in the context of large-universe constructions.

Multi-use of Attributes (Compactness). Many ABE schemes whose secu-
rity relies on the dual system methodology [30] have a one-use restriction on
access structures [12,13,23,26,27]. In an ABE scheme with the one-use restric-
tion, one can use only policies in which all attributes appear once. That is, one
cannot embed a policy into a ciphertext or secret key such as ((Year:1991–
2000 AND Category:jazz) OR (Year:2001–2010 AND Category:jazz)
OR (Year:2001–2010 AND Artist:The Beatles)) because attributes Cate-
gory:jazz and Year:2001–2010 appear twice in the policy.

One way to circumvent this restriction is to prepare multiple nominal
attributes for each single attribute in advance like Category:jazz-1, . . . , Cat-
egory:jazz-d for Category:jazz. However, this solution has two problems. The
first is that the maximum number d of multi-use is fixed at the setup phase. Thus,
the access structures that the scheme supports are still limited. The second is
that, in KP-ABE, for instance, the solution increases the sizes of ciphertexts
proportionally to the maximum number of multi-use, and it leads to efficiency
loss. This prevents the solution to set a sufficiently large number for the limit.

On the other hand, in an ABE scheme that supports multi-use of attributes,
we have no restrictions on policies and can combine any attributes in an arbitrary
way to generate a policy. In KP-ABE, for instance, the sizes of ciphertexts are
independent of policies and thus satisfies “compactness” [21].

1.2 Design of Our ABE Schemes

In the following, we focus on the design our KP-ABE scheme, and the CP-ABE
scheme is similarly constructed. The relation R of our ABE is close to that by
Okamoto and Takashima in [27]. As we mentioned, an attribute consists of a label
and value. A predicate is an arbitrary Boolean formula that is a combination of
variables by operations AND, OR, and NOT such as ((Year:1991–2000 AND
Category:jazz) OR (Year:1991–2000 AND Artist:NOT The Beatles)). A
formal definition of R is described in Definition 2.5.
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Our scheme is based on the dual system encryption, which we can instantiate
from either composite-order or prime-order bilinear groups [12,25,30,31]. Our
actual scheme is based on prime-order bilinear groups following the framework by
Chen et al. [12] to utilize the dual system methodology in prime-order groups and
the technique by Agrawal and Chase [1] to utilize a random oracle in asymmetric
prime-order bilinear groups. For ease of exposition, we describe the composite-
order variant of our scheme here. Let N = p1p2 for primes p1 and p2, and
(G,H,GT ) be bilinear groups of order N . Let g and h be generators of G and
H, and gi and hi be generators of subgroups Gi and Hi of order pi for i = {1, 2},
respectively. Let R : {0, 1}∗ → G1 ×G1 be a hash function modeled as a random
oracle, and its input is a label. We denote the output of R(i) by (gui

1 , ghi
1 ). Then,

our scheme can be written as

pk = (g1, h1, e(g1, h1)α)

ct = (hs
1, {g

s(xiui+hi)
1
︸ ︷︷ ︸

ct of IBE

}i∈S , e(g1, h1)sαM)

sk =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

{hri
1 }i∈[n],

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

gαi · g
ri(yiuψ(i)+hψ(i))
1

︸ ︷︷ ︸

sk of IBE

or
g−αi · g

riuψ(i)
1 ,

gyiαi · g
rihψ(i)
1

︸ ︷︷ ︸

sk of NIBE

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

i∈[n]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where S is the set of labels, n is the number of variables in the formula, ψ : [n] →
{0, 1}∗ is a function that specifies the label of each variable, αi is a share of the
secret α, and xi and yi are the values for label i. Note that the reason ct and sk
contain both elements in G and H is to utilize a hash function in asymmetric
groups as FAME [1].

The high-level idea of the construction is a combination of secret sharing (SS)
and two-mode identity-based encryption (TIBE) [32]. TIBE is obtained by just
combining identity-based encryption (IBE) and negation of IBE (NIBE). Our
scheme can instantiate an arbitrary number of TIBE on the fly by leveraging
hash function R, and each instance corresponds to each label. A secret key of
our scheme consists of secret keys of IBE and NIBE, and each secret key hides
a share αi of a master secret α generated by SS according to the formula. A
ciphertext of ABE consists of ciphertexts of IBE, which have the same form
as those in Boneh-Boyen IBE [8]. Note that ciphertexts of IBE and NIBE are
identical, and thus we do not need to include both ciphertexts of IBE and NIBE
in a ciphertext of our scheme. In decryption, one computes {e(g1, h1)sαi}i for
labels in which the relation of (in)equality between the ciphertext and secret
keys is satisfied. Note that one cannot compute e(g1, h1)sαi if the relation of
(in)equality does not hold in label i, thanks to the security of underlying TIBE.
If e(g1, h1)sα is recovered via reconstruction of SS, which means that the policy
in the secret key is satisfied by the attribute in the ciphertext, one can decrypt
the ciphertext of ABE. By the construction, e(g1, h1)sαi cannot be computed if
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a ciphertext of ABE does not contain a ciphertext of TIBE for label i, and this
property yields OT negation.

1.3 Our Main Technique

We can easily prove the adaptive security of our scheme from a standard assump-
tion by the dual system methodology and the predicate encoding framework as
in [31] if ψ is injective, or the scheme has the one-use restriction of labels in poli-
cies. However, if it is not the case, to prove the adaptive security of the scheme
from standard assumptions becomes quite difficult and had been a long-standing
open problem. Very recently, Kowalczyk and Wee brought a breakthrough for
this problem (KW19) [21]. More precisely, they proposed a methodology to prove
the adaptive security of the most simple ABE scheme, which supports monotone
NC1 circuits (or equivalently Boolean formulae) for a small attribute universe.
The scheme can be written in composite-order groups as

pk = (g1, h1, g
w1
1 , . . . , gw�

1 , e(g1, h1)α)
ct = (gs

1, {gswi
1 }i∈S , e(g1, h1)sαM)

sk = ({hri
1 }i∈[n], {hαi · h

riwψ(i)
1 }i∈[n]).

Roughly speaking, this scheme can be seen as KP-ABE whose ingredients are
ElGamal-like encryption whereas the counterpart of our scheme corresponds to
TIBE.

We briefly recall the framework by KW19. Their framework follows the dual
system methodology, which is the standard technique to achieve the adaptive
security. In the methodology, we change the challenge ciphertext and secret keys
into the semi-functional form. Roughly speaking, semi-functional ciphertexts and
secret keys have an additional structure in G2 and H2 as follows:

ct = (gs, {gswi}i∈S , e(g, h)sαM)

sk = ({hri
1 }i∈[n], {hαi · h

riwψ(i)
1 · hγi

2 }i∈[n]),

where γi is a share of a random secret γ.
In the dual system methodology, we consider a series of hybrids where we first

change the challenge ciphertext into the semi-functional form and then the secret
keys into the semi-functional form one by one. In the latter part, the methodology
allows us to focus on only one secret key by leveraging components in G2 and
H2. Therefore, to show the following indistinguishability for the adaptive choice
of ct and the one key sk is sufficient to change the target secret key into a
semi-functional form:

⎧
⎨

⎩

ct : (gs
2, {gswi

2 }i∈S),

sk : ({hri
2 }i∈[n], {h

riwψ(i)+ γ0,i

2 }i∈[n])

⎫
⎬

⎭
≈c

⎧
⎨

⎩

(gs
2, {gswi

2 }i∈S),

({hri
2 }i∈[n], {h

riwψ(i)+ γ1,i

2 }i∈[n])

⎫
⎬

⎭

where γ0,i is a share of secret 0 and γ1,i is a share of secret γ. This core component
is called core 1-ABE.
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The difficulty of showing the indistinguishability of core 1-ABE from a stan-
dard assumption arises from the fact that we need to embed a computational
problem into sk depending on ct. That is, if an adversary first asks for sk, a sim-
ulator has no idea on how to embed the computational problem into sk. Their
framework tells us how to construct a series of hybrids to show the above indis-
tinguishability. In each transition of hybrids, the simulator guesses a part of the
adversary’s output that has sufficient information to embed the problem into sk.
Simultaneously, the part must be so small that the simulator can guess it with
non-negligible probability. In our case, the part tells the correct element in sk
where the simulator embeds the problem. Observe that each γi is masked by
ElGamal-like encryption in H2. Thus, we can embed the DDH problem based
on the guess and gradually change shares {γi}i∈[n].

At a glance, their framework seems applicable to our scheme directly, but
actually, it does not work. The main problem is the fact that whereas their
framework tells us the location and its label where we should embed the problem
in sk, it does not tell us the value of the label in ct. In other words, the difficulty
of directly applying their framework to our scheme seems essentially the same
as that of proving the adaptive security of Boneh-Boyen IBE, which was proven
secure only in the selective setting. This problem does not occur in the scheme
by KW19 because the corresponding part is just the ElGamal-like encryption,
that is, public-key encryption.

To overcome the problem, we introduce new usage of KW19 framework that
allows us to utilize the dual system methodology more beneficially. As we men-
tioned previously, a secret key of our scheme contains many secret keys of TIBE
based on the dual system encryption. Furthermore, the framework tells us which
secret key should be changed in each hybrid in the core 1-ABE. Thus, we can
gradually randomize the component in H2 of each element in sk by the dual
system methodology instead of the DDH problem in H2.

For simplicity, we show the case where we apply our new technique to the
scheme by KW19. In our technique, we consider the following indistinguishability
of core 1-ABE:
⎧

⎨

⎩

(gs, {gswi}i∈S),

({hri
1 }i∈[n], {h

riwψ(i)
1 · h

γ0,i

2 }i∈[n])

⎫

⎬

⎭

≈c

⎧

⎨

⎩

(gs, {gswi}i∈S),

({hri
1 }i∈[n], {h

riwψ(i)
1 · h

γ1,i

2 }i∈[n])

⎫

⎬

⎭

.

The difference from the original core 1-ABE is that our core 1-ABE considers
both normal space (G1 and H1) and semi-functional space (G2 and H2), whereas
the original one considers only semi-functional space. We use the dual system
methodology to randomize the component in H2. Let i∗ be the location where
γi∗ is supposed to be changed in some two hybrids, which means that i∗ �∈ S.
Then, from the subgroup assumption, the dual system methodology argue that
(hri∗

1 , h
ri∗ wψ(i∗)
1 ·hγi∗

2 ) ≈c (hri∗ , hri∗ wψ(i∗) ·hγi∗
2 ). Then, we can observe that wψ(i∗)

mod p2 in sk is randomly distributed in Zp2 from the Chinese remainder theorem
and the fact i∗ �∈ S. Thus, term γi is completely hidden by term ri∗wψ(i∗). Unlike
the framework by KW19, we can apply this technique to our scheme similarly.
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1.4 Other Techniques

Furthermore, we give the following technical contributions:

– reducing the number of pairings in decryption;
– reducing the number of shares of secret sharing;
– making the proof simpler;
– presenting our CP-ABE scheme.

Number of Pairings. Our scheme described in Sect. 1.2 requires O(n) pairings
in decryption. To reduce the number, we employ the construction by Agrawal and
Chase in [2]. That is, we use an exponent rπ(i) instead of ri, where π(i) = |{j |
ψ(j) = ψ(i), j ≤ i}|. In this construction, we need O(d) pairings in decryption
where d = max π(i) is the maximum number of multi-use of labels in the policy.
Because our scheme in prime-order groups follows the construction, it allows fast
decryption for secret keys with a small number of multi-use of labels. We show
that we can prove the security of our schemes under standard assumptions even
if we use this construction. Note that the construction by Agrawal and Chase
relies on a q-type assumption.

Number of Shares. In the scheme by KW19, they use a secret sharing scheme
where the number of shares corresponds to the summation of the numbers of
gates and input wires when we capture a Boolean formula as a circuit. On the
other hand, our schemes employ a secret sharing scheme where the number of
shares corresponds to only the number of input wires. Their framework derives
from the technique to prove the adaptive security of secret sharing for monotone
circuits by Jafargholi et al. [18], which requires the same number of shares as
in KW19. We guess that this is why their construction employs such a secret
sharing scheme. However, we show that we do not need shares for the gates in
secret sharing schemes for Boolean formulae to utilize the framework.

Simpler Proof. Our scheme follows the technique of FAME to make our scheme
unbounded by a hash function [1]. We show that we can utilize a pseudorandom
function (PRF) to significantly ease the security proof. Concretely, we can skip
the part that corresponds to Hyb0 to Hyb2,3,q in their security proof [1, Appendix
C]. Note that the additional computational cost by the modification is quite small
compared with the whole procedure of the key generation because it requires only
small numbers of PRF evaluations and multiplications in Zp for each element in
a secret key.

CP-ABE Scheme. We present our CP-ABE scheme and its security proof
(described in the full version). Note that the security proof of our CP-ABE
scheme is more complicated than that of our KP-ABE scheme, because we need
two hidden spaces as in [13,16] due to a technical reason.
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1.5 Implementation and Evaluation

We implement our KP and CP-ABE schemes in 128-bit security level and measure
benchmarks for an ordinary personal computer and two smartphones: iPhone XR
and Pixel 3. In our schemes, a running time of each algorithm is affected by the
numbers of negation and multi-use of labels in a policy as well as the number of
attributes. To show the effects of these factors, we present benchmarks for four
types of policies that differ in the existence of negation and multi-use.

We roughly describe the running times of our schemes when we handle a
policy or attribute set with 100 attributes on a personal computer. In all cases,
our KP-ABE (resp. CP-ABE) scheme takes about 0.4 to 0.7 s (resp. 0.4 to 0.9 s)
for encryption and key generation. Decryption is heavily affected by a type of
policy, and our schemes take only about 0.02 s (KP & CP) in the fastest case
and 0.5 (KP) or 0.7 s (CP) even in the slowest case. Thus, we can conclude that
our schemes take less than 1 s in any process and any cases with 100 attributes.

We also implement KP and CP-ABE schemes by Okamoto and Takashima
(OT12), which are the only known ABE schemes that support OT negation and
the unboundedness [27]. There are no known schemes that are as expressive as
ours (see Table 1), and OT12 seems to have a closet functionality. This is why
we choose OT12 to compare. The comparison between our schemes and OT12
shows that our schemes achieve significant speedups for each algorithm.

2 Preliminaries

2.1 Notation

For a natural number n ∈ N, [n] denotes a set {1, . . . , n}. For a set S, s ← S
denotes that s is uniformly chosen from S. For matrices with the same number of
rows A1 and A2, (A1||A2) denotes the matrix generated by their concatenation.
We denote the whole space spanned by all columns of matrix A by span(A). For
a matrix A := (aj,�)j,� over Zp, [A]i (i ∈ {1, 2, T}) denotes a matrix over Gi

whose (j, �) entry is g
aj,�

i , and we apply the similar notation to vectors and
scalars. We denote ([A]1, [A]2) by [A]1,2. For matrices A and B where A�B
is defined, we abuse the pairing notation in the following way: e([A]1, [B]2) =
[A�B]T . A function f : N → R is called negligible if f(λ) = λ−ω(1) and denotes
f(λ) ≤ negl(λ). For families of distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N,
X ≈c Y means that they are computationally indistinguishable.

2.2 Basic Tools

Boolean Formula and NC1. A monotone Boolean formula can be represented
by a Boolean circuit whose all gates have fan-in 2 and fan-out 1. We can specify
a monotone Boolean formula f : {0, 1}n → {0, 1} as f = (n,w, v,G), where
n,m, v ∈ N and G : [v] → {AND, OR}× [w]3. This means the Boolean formula f
has n input wires, w wires including the input wires, and v gates. We number the
wires 1, . . . , w and the gates 1, . . . , v. The function G specifies a type, incoming
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wires, and an outgoing wire of each gate. That is, for G(i) = (T, a, b, c) such
that a < b < c, T specifies a type of gate i, a and b specify the incoming wires,
and c specifies the outgoing wire. A non-monotone Boolean formula additionally
contains NOT gates, which have fan-in 1 and fan-out 1. It is well-known that we
can express all non-monotone Boolean formulae by one in which all NOT gates
are put on the input wires, and we only consider such formulae in this paper.
Thus, we can specify a non-monotone Boolean formula f ′ : {0, 1}n → {0, 1} as
f ′ = (f, t), where f = (n,w, v,G) is a monotone Boolean formula and t : [n] →
{0, 1} specifies input gates that connect to a NOT gate. That is, input wire i
connects to a NOT gate if t(i) = 0 and does not if t(i) = 1.

Standard complexity theory tells us that circuit complexity class NC1 and
Boolean formulae are equivalent. It is known also that NC1 is equivalent to the
class captured by log-depth Boolean formulae (see e.g., [21]). Thus, the circuit
complexity class captured by Boolean formulae is equivalent to the class captured
by log-depth Boolean formulae.

Definition 2.1 (Pseudorandom Functions). A pseudorandom function
(PRF) family F := {FK}K∈Kλ

with a key space Kλ, a domain Xλ, and a range
Yλ is a function family that consists of functions FK : Xλ → Yλ. Let Rλ be a
set of functions consisting of all functions whose domain and range are Xλ and
Yλ respectively. For any PPT adversary A, the following condition holds,

AdvPRFA (λ) := |Pr[1 ← AFK(·)] − Pr[1 ← AR(·)]| ≤ negl(λ),

where K ← Kλ and R ← Rλ.

Definition 2.2 (Bilinear Groups). A description of bilinear groups
G:=(p,G1, G2, GT , g1, g2, e) consist of a prime p, cyclic groups G1, G2, GT of
order p, generators g1 and g2 of G1 and G2 respectively, and a bilinear map
e : G1 × G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha
1 , h

b
2) = e(h1, h2)ab.

– (Non-degeneracy): For g1 and g2, gT := e(g1, g2) is a generator of GT .

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs
a description of bilinear groups G with Ω(λ) bit prime. In this paper, we refer
to Type-I groups, where efficient isomorphisms exist in both way between G1

and G2, as symmetric bilinear groups, and Type-III groups, where no efficient
isomorphisms exist between them, as asymmetric bilinear groups.

For the proofs of our schemes, we utilize the Dk-MDDH assumption [14],
which is generalization of the DDH assumption. There are mainly two types of
Dk-MDDH assumption families for asymmetric bilinear groups. In the first one,
an instance contains unilateral group elements such as the SXDH assumption.
The other one consists of assumptions that are involved with bilateral group
elements such as the DLIN assumption used in [1], which is sometimes called
the XDLIN assumption. In our paper, we utilize the latter type.
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Definition 2.3 (Dj,k-MDDH Assumption). For j > k, let Dj,k be a matrix
distribution over Z

j×k
p that outputs full rank matrix with overwhelming probabil-

ity. We can assume that, wlog, the first k rows of a matrix A chosen from Dj,k

form an invertible matrix. We consider the following distribution:

G ← GBG(1λ), A ← Dk, v ← Z
k
p, t0 := Av, t1 ← Z

j
p,

Pβ := (G, [A]1,2, [tβ ]1,2).

We say that the bilateral Dj,k-MDDH assumption holds with respect to GBG if,
for any PPT adversary A,

Adv
Dj,k-MDDH
A,bi (λ) := |Pr[1 ← A(P0)] − Pr[1 ← A(P1)]| ≤ negl(λ).

We denote Dk+1,k by Dk. Let Uj,k be a uniform distribution over full rank
matrices in Z

j×k
p . Then, the following relations hold with tight reductions;

Dk-MDDH ⇒ Uk-MDDH ⇒ Uj,k-MDDH.

For an appropriate distribution Dk, the Dk-MDDH assumption generically
holds in k-linear groups [14]. Thus, in asymmetric bilinear groups, we can utilize
the bilateral Dk-MDDH assumption for k ≥ 2.

Matrix Notation. For a matrix A ∈ Dk, we define a matrix A∗ and vectors a1

and a∗
1 as follows. Vector a1 is a k + 1 dimensional vector whose last entry is 1

and the others are 0. Then, it is not hard to see that A := (A||a1) forms a basis
of Z

k+1
p because the first k rows of a matrix A chosen from Dk form an invertible

matrix. A∗ and a∗
1 are the matrix that consists of the left k columns of (A

�
)−1

and the vector that consists of right one column of (A
�

)−1, respectively. Note
that we have A�A∗ = Ik, A�a∗

1 = 0, and A∗A� + a∗
1a

�
1 = Ik+1. We use a

similar notation for a matrix B ∈ GLk+η(Zp) where η ∈ N. B and bi denote a
matrix consists of the first k columns of B and a vector consists of the k + i-th
column of B, respectively. Similarly, B∗, b∗

i denote a matrix consists of the first
k columns of (B

�
)−1 and a vector consists of the k + i-th column of (B

�
)−1,

respectively. For the convenience, we denote (b1||b2) by B12, and this notation
is applied to other cases similarly.

2.3 Attribute-Based Encryption

Definition 2.4 (Attribute-Based Encryption). An attribute-based encryp-
tion (ABE) scheme for relation R : X × Y → {0, 1} consists of four algorithms,
where X and Y are an attribute universe and predicate universe, respectively.

Setup(1λ): It takes a security parameter 1λ and outputs a public key pk and a
master secret key msk. pk specifies a message space M.

Enc(pk, x,m): It takes pk, an attribute x ∈ X and a message m ∈ M and outputs
a ciphertext ctx.

KeyGen(pk,msk, y): It takes pk,msk, and a predicate y ∈ Y and outputs a secret
key sky.

Dec(pk, ctx, sky): It takes pk, ctx and sky and outputs a message m′ or ⊥.
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Correctness. An ABE scheme is correct if it satisfies the following condition.
For all λ ∈ N, x ∈ X , y ∈ Y such that R(x, y) = 1, and m ∈ M, we have

Pr

⎡

⎢

⎢

⎣
m = m′

(pk,msk) ← Setup(1λ)
ctx ← Enc(pk, x,m)
sky ← KeyGen(pk,msk, y)
m′ := Dec(pk, ctx, sky)

⎤

⎥

⎥

⎦
= 1.

Security. An ABE scheme is adaptively secure if it satisfies the following con-
dition. That is, the advantage of A defined as follows is negligible in λ for all
stateful PPT adversary A:

AdvABEA (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎢

⎣

β = β′

β ← {0, 1}
(pk,msk) ← Setup(1λ)
(x∗,m0,m1) ← AKeyGen(pk,msk,·)(pk)
ctx∗ ← Enc(pk, x∗,mβ)
β′ ← AKeyGen(pk,msk,·)(ctx∗)

⎤

⎥

⎥

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where {yi}i∈[qsk] on which A queries KeyGen must satisfy R(x∗, yi) = 0.

A relation for ABE that we consider in our paper is expressed by a non-
monotone Boolean formula over the equivalence relation in Zp. More specifically,
each input of the Boolean formula is decided by whether certain components
in an attribute and predicate are equal. Then, the relation is decided by the
output of the formula. Our relation is very close to that formulated by Okamoto
and Takashima in [27], though their scheme has one-use restriction on labels in
policies. One caveat is that we can use only a non-monotone Boolean formula
for a predicate in our scheme, whereas the relation by Okamoto and Takashima
allows us to use a more powerful non-monotone span program for a predicate.
In the following, we consider only non-monotone Boolean formulae where NOT
gates exist only on input wires.

Definition 2.5 (Relation R). Relations RKP and RCP for our KP and CP-
ABE schemes, respectively, are defined as follows. Let R : X × Y → {0, 1} be a
relation defined as follows:

– X =
⋃

i∈N
Z

i
p × Φi, where Φi consists of all injective functions such that

φ : [i] → {0, 1}∗.
– Y =

⋃

i∈N
Z

i
p × Fi × Ψi × Ti, where Fi consists of all monotone Boolean

formulae whose input lengths are i, and Ψi and Ti consist of all functions
such that ψ : [i] → {0, 1}∗ and t : [i] → {0, 1}, respectively.

– For x = (x ∈ Z
m
p , φ) and y = (y ∈ Z

n
p , f, ψ, t), we define b =

(b1, . . . , bn) ∈ {0, 1}n as bi :=

{

t(i) � true(xφ−1(ψ(i)) = yi) ψ(i) ⊆ Im(φ)
0 ψ(i) �⊆ Im(φ)

,

where � denotes xnor. Then, R(x, y) = 1 ⇔ f(b) = 1.
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Then, RKP : XKP × YKP → {0, 1} is defined as XKP := X , YKP := Y, and
RKP(x, y) = R(x, y), whereas RCP : XCP × YCP → {0, 1} is defined as XCP := Y,
YCP := X , and RCP(x, y) = R(y, x).

For X , each element of x ∈ Z
m
p corresponds to a value for some label, and

φ specifies which label each element of x is associated with. For instance, when
we consider an attribute (Age:22, Hobby:tennis), x = (x, φ) can be set as x :=
(22,H1(tennis)), φ(1) := Age, and φ(2) := Hobby where H1 : {0, 1}∗ → Zp is
a collision resistant hash function.

For Y, each element of y ∈ Z
n
p corresponds to the value for each input

wire of f , and ψ specifies which label each input wire of f is associated with.
Additionally, t specifies whether each input wire connects to a NOT gate. For
instance, let us consider a predicate (Age:25 AND Hobby:NOT baseball). Then,
y = (y, f, ψ, t) can be set as y := (25,H1(baseball)), f is a formula with a single
AND gate, ψ(1) := Age and ψ(2) := Hobby, and t(1) = 1 and t(2) = 0.

Definition 2.6 (Linear Secret Sharing Scheme). A linear secret sharing
scheme (LSSS) for a function class F consists of two algorithms Share and Rec.

Share(f,k): It takes a function f ∈ F where f : {0, 1}n → {0, 1} and a vector
k ∈ Z

�
p. Then, outputs shares k1, . . . ,kn ∈ Z

�
p.

Rec(f, x, {ki}xi=1): It takes f : {0, 1}n → {0, 1}, a bit string x := (x1, . . . , xn) ∈
{0, 1}n and shares {ki}xi=1. Then, outputs a vector k′ or ⊥.

In particular, Rec computes a linear function on shares to reconstruct a secret;
k =
∑

xi=1 aiki where each ai is determined by f . A LSSS has two properties.

Correctness: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 1,

Pr[Rec(f, x, {ki}xi=1) = k | k1, . . . ,kn ← Share(f,k)] = 1.

Security: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 0, and k1, . . . ,kn ←
Share(f,k), shares {ki}xi=1 have no information about k.

2.4 Piecewise Guessing Framework

Here, we briefly recall the piecewise guessing framework by Kowalczyk and Wee
[21], which is based on the framework by Jafargholi et al. [18]. The framework
helps us to prove adaptive security of cryptographic schemes that are selectively
secure.

Definition 2.7 (Interactive Game). An interactive game G is a game
between an adversary A and a challenger C. In the game, A and C send mes-
sages interactively, and the messages sent by C depend on the game G. After the
interaction, A outputs β ∈ {0, 1}. We denotes the output of A in G by 〈A,G〉.
Let z ∈ {0, 1}R be a part of messages supposed to be sent by A in the game. In
the adaptive game G, A can send z at arbitrary points as long as it follows a
rule of the game. We define the selective variant of G, denoted by ̂G, to be the
same as G except that A has to declare z that will be sent in the game, at the
beginning of the interaction.
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Suppose we want to show that adaptive games G0 and G1 are computationally
indistinguishable, i.e.,

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ negl(λ).

Then, we consider a series of selective hybrids ̂Hh0 , . . . , ̂HhL such that

̂G0 = ̂Hh0 ≈c
̂Hh1 ≈c, . . . ,≈c

̂HhL = ̂G1,

where h0, . . . , hL : {0, 1}R → {0, 1}R′
for some R′ � R, and ̂Hhι is an interactive

game in which C’s messages depend on u := hι(z). Additionally, h0 and hL

need to be constant functions. Note that C can generate messages depending
on u because z is declared at the beginning of the interaction. Next, we define
variants of ̂Hhι , namely, ̂Hhι

0 and ̂Hhι
1 as follows. In ̂Hhι

β for β ∈ {0, 1}, A has to
declare hι−1+β(z) and hι+β(z) instead of z at the beginning of the game. Then,
C interacts with A setting u := hι(z) in both ̂Hhι

0 and ̂Hhι
1 . In other words, ̂Hhι

β

is the same as ̂Hhι except that only partial information of z is declared by A.
Now we are ready to state the adaptive security lemma.

Lemma 2.1 (Adaptive Security Lemma [21]). Let G0 and G1 be adaptive
interactive games and {̂Hhi}0≤i≤L be selective hybrids defined above. Suppose
they satisfy the two properties:

– G0 = Hh0 and G1 = HhL , where Hh0 and HhL are the same as ̂Hh0 and ̂HhL ,
respectively, except that A does not declare z at the beginning. Note that C’s
messages can be correctly defined because h0 and hL are constant functions.

– For all PPT adversary A and all ι ∈ L, we have

|Pr[〈A, ̂H
hι−1
1 〉 = 1] − Pr[〈A, ̂Hhι

0 〉 = 1]| ≤ ε.

Then, we have

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ 22R′
Lε.

2.5 Pebbling Strategy for Boolean Formula

A pebbling strategy is used for a guide of how to construct a series of hybrids
in the piecewise guessing framework.

Definition 2.8 (Pebbling Game). A player of the pebbling game is given a
monotone Boolean formula f : {0, 1}n → {0, 1} and input b = (b1, . . . , bn) ∈
{0, 1}n such that f(b) = 0. The goal of the game is to reach the state where a
pebble is placed on only the output gate (the gate with the output wire), starting
from the state with no pebbles on the Boolean formula f , following a pebbling
rule. The rule is defined as follows.

1. We can place or remove a pebble on input wire i whose input corresponds to
0, i.e., bi = 0.
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2. We can place or remove a pebble on an AND gate if at least one of its incoming
wires comes from a gate or input wire with a pebble on it.

3. We can place or remove a pebble on an OR gate if both of its incoming wires
come from a gate or input wire with a pebble on it, respectively.

4. We can pass the turn, which allows us to increase the total number of steps
in the game without changing the pebbling strategy.

Definition 2.9 (Pebbling Record). A pebbling record R := (r0, . . . , rL) ∈
({0, 1}R′

)L is a list of all pebbling configuration that a player took from the start
to the goal in the pebbling game. R′-bit string rι specifies the configuration at the
ι-th step in the play. Thus, r0 specifies the state with no pebbles and rL specifies
the state with one pebble on the output gate. It also means that the player takes
L steps to reach the goal, and all pebbling configurations that the player took can
be specified by an R′-bit string.

The following lemma says that, for any monotone Boolean formula and input,
there exists a pebbling strategy where all pebbling configurations can be specified
with a “short” bit string.

Lemma 2.2 (Pebbling Lemma [21]). Let f : {0, 1}n → {0, 1} be any mono-
tone Boolean formula with a depth d ≤ B, and b ∈ {0, 1}n be any bit string
such that f(b) = 0. Then, there exists a deterministic algorithm PebRec(f, b)
that takes f and b and outputs a record R consisting of 8B strings whose lengths
are 3B bits.

3 Our KP-ABE Scheme

First, we describe a linear secret sharing scheme that we use in our schemes as
a building block.

3.1 Linear Secret Sharing for Boolean Formulae

Our secret sharing scheme for monotone Boolean formulae is described in Fig. 1,
which is essentially the same as the scheme in [22, Appendix G]. Note that it
works similarly if all vectors in Fig. 1 are group elements. Let f be a formula and
b = (b1, . . . , bn) be a bit string such that f(b) = 1. Then, for reconstruction, it is
not difficult to see that there exists a set S ⊆ {i | bi = 1} such that

∑

i∈S σi = k.
Clearly, the number of shares for formula f corresponds to the number of its

input wires. The secret sharing scheme employed by Kowalczyk and Wee is dif-
ferent from ours [20], where the number of shares corresponds to the summation
of the numbers of input wires and gates in f . We show that we can utilize their
framework even if we replace the secret sharing scheme to ours.

We use the following lemma on the secret sharing scheme in the security
proof of our scheme.
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Share(f,k)
Input: A monotone Boolean formula f = (n, w, v, G) and a secret k ∈ Z

�
p.

1. Set a vector σout := k on the output wire.
2. For each AND gate g with incoming wires a, b and an outgoing wire c where a

vector σc is set on c, choose ug ← Z
�
p and set σa := σc − ug and σb := ug on a

and b, respectively.
3. For each OR gate g with incoming wires a, b and an outgoing wire c where a

vector σc is set on c, set σa := σc and σb := σc on a and b, respectively.
4. Output shares σ1, . . . , σn, which are set on the input wires 1, . . . , n.

Fig. 1. Our linear secret sharing scheme for Boolean formulae.

Lemma 3.1. Let Share be the algorithm defined in Fig. 1. For all �, n ∈ N,
monotone Boolean formulae f = (n,w, v,G), k,a ∈ Z

�
p, and μ ∈ Zp, we define

the following distribution.

k1, . . . ,kn ← Share(f,k + μa), k′
1, . . . ,k

′
n ← Share(f,k),

σ1, . . . , σn ← Share(f, μ).

Then, the two distributions are identical:

{k1, . . . ,kn} and {k′
1 + σ1a, . . . ,k′

n + σna}.

The proof of Lemma 3.1 is presented in the full version.

3.2 Construction

For generality, we describe our scheme using a matrix distribution Dk. When we
instantiate our scheme from asymmetric pairings, we typically choose the k-Lin
family Lk with k = 2. In this case, we can set matrices as

A =

⎛

⎝

a1 0
0 a2

1 1

⎞

⎠ , A∗ =

⎛

⎝

1
a1

0
0 1

a2

0 0

⎞

⎠ , a∗
1 =

⎛

⎝

− 1
a1

− 1
a2

1

⎞

⎠ ,

where a1, a2 ← Zp. Let H : {0, 1}∗ → G
(k+1)×k
1 × G

(k+1)×k
1 be a hash function

modeled as a random oracle. Let FK : {0, 1}∗ → Z
k+1
p × Z

k+1
p be a PRF with a

secret key K. Let Kλ be a key space of the PRF. Let Share be the LSSS described
in Fig. 1. Note that we can instantiate H from a hash function H ′ : {0, 1}∗ → G1

by generating each output group element of H with H ′. More precisely, each
output group element of H(i) is defined by H ′(i||$||j), where $ is a special
symbol and j ∈ [2k(k + 1)] specifies the location of the matrices. The symbol $
can be expressed by encoding, e.g., 0 → 00, 1 → 11, and $ → 01. Our scheme
for RKP is described as follows.
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Setup(1λ): It takes a security parameter 1λ and outputs pk and msk as follows.

G ← GBG(1λ), A ← Dk, B ← Z
(k+1)×k
p , k ← Z

k+1
p , K ← Kλ,

pk := (G, [A]2, [A�k]T ), msk := (A∗,a∗
1,B,k,K).

Enc(pk, x,M): It takes pk, an attribute x = (x ∈ Z
m
p , φ), and a message M ∈ GT

and outputs ctx as follows.

s ← Z
k
p, ([Uφ(i),0]1, [Uφ(i),1]1) := H(φ(i)),

c1 := [As]2, c2,i := [(xiUφ(i),0 + Uφ(i),1)s]1, c3 := [s�A�k]T M,

ctx := (x, c1, {c2,i}i∈[m], c3).

KeyGen(pk,msk, y): It takes pk, msk, and a predicate y = (y ∈ Z
n
p , f, ψ, t) and

outputs sky as follows. Let π : [n] → N be a function such that π(i) := |{j |
ψ(j) = ψ(i), j ≤ i}|. Let d be the maximum number of multi-use of labels in
f , i.e., d := maxi∈[n] π(i).

r1, . . . , rd ← Z
k
p, k1,j := [Brj ]2, k1, . . . ,kn ← Share(f,k) ∈ Z

k+1
p ,

([Uψ(i),0]1, [Uψ(i),1]1) := H(ψ(i)), (uψ(i),0,uψ(i),1) := FK(ψ(i)),
If t(i) = 1:

k2,i := [ki + A∗(yiU�
ψ(i),0 + U�

ψ(i),1)Brπ(i) + a∗
1(yiu�

ψ(i),0 + u�
ψ(i),1)Brπ(i)]1,

If t(i) = 0:

k2,i := (k2,i,1, k2,i,2) :=

(

[−ki + A∗U�
ψ(i),0Brπ(i) + a∗

1u
�
ψ(i),0Brπ(i)]1,

[yiki + A∗U�
ψ(i),1Brπ(i) + a∗

1u
�
ψ(i),1Brπ(i)]1

)

sky := (y, {k1,j}j∈[d], {k2,i}i∈[n]).

Dec(pk, ctx, sky): It takes pk, ctx, and sky. It computes b ∈ {0, 1}n from x and
y as in Definition 2.5. If f(b) = 0, it outputs ⊥. Otherwise, computes a set
S ⊆ {i | bi = 1} such that k =

∑

i∈S ki. Let S1 := S ∩ {i | t(i) = 1} and
S0 := S ∩ {i | t(i) = 0}. Then outputs M ′ as follows.

D1,j := e

⎛

⎜

⎜

⎝

∑

π(i)=j
i∈S1

k2,i +
∑

π(i)=j
i∈S0

1
yi − xφ−1(ψ(i))

(xφ−1(ψ(i))k2,i,1 + k2,i,2), c1

⎞

⎟

⎟

⎠

�

D2,j := e

⎛

⎜

⎜

⎝

∑

π(i)=j
i∈S1

c2,φ−1(ψ(i)) +
∑

π(i)=j
i∈S0

1
yi − xφ−1(ψ(i))

c2,φ−1(ψ(i)), k1,j

⎞

⎟

⎟

⎠

M ′ := c3/
∏

j∈[d]

(D1,j/D2,j).
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Correctness: For honestly generated ctx and sky such that R(x, y) = 1,

D1,j=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

π(i)=j
i∈S1

(
s�A�ki + s�(yiU

�
ψ(i),0 + U�

ψ(i),1)Brj

)

+
∑

π(i)=j
i∈S0

(

s�A�ki+
1

yi−xφ−1(ψ(i))

s�(xφ−1(ψ(i))U
�
ψ(i),0+U�

ψ(i),1)Brj

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

D2,j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

π(i)=j
i∈S1

(
s�(xφ−1(ψ(i))U

�
ψ(i),0 + U�

ψ(i),1)Brj

)

+
∑

π(i)=j
i∈S0

(
1

yi − xφ−1(ψ(i))

s�(xφ−1(ψ(i))U
�
ψ(i),0 + U�

ψ(i),1)Brj

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

.

In the above, we use the relations A�A∗ = Ik and A�a∗
1 = 0. Because

xφ−1(ψ(i)) = yi for i ∈ S1, we have
∏

j∈[d](D1,j/D2,j) = [s�A�∑
j∈[d]

∑

i∈S
π(i)=j

ki]T = [s�A�k]T . Thus, M ′ = M .

3.3 Security

Theorem 3.1. Let B be the maximum depth of formulae on which A queries
KeyGen. Let qsk be the maximum number of A’s queries to KeyGen. Then, our
scheme is adaptively secure as long as B = O(log λ). More precisely, for any
PPT adversary A, there exist PPT algorithms B1 and B2 such that

AdvABEA (λ)≤AdvPRFB1
(λ)+(29B+2qsk+1)(AdvDk-MDDH

B2,bi (λ)+2−Ω(λ)).

Proof Overview. We prove Theorem 3.1 following the standard dual system
methodology. To do so, we first replace the PRF with a random function. Then,
our scheme basically follows the construction on the dual system group from
prime-order groups in [12]. Concretely, we can rewrite c2,i and k2,i in the chal-
lenge ciphertext and secret keys as

c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)As]1,

k2,i := [ki + (yiWψ(i),0 + Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(

[−ki + Wψ(i),0Brπ(i)]1,
[yiki + Wψ(i),1Brπ(i)]1

)

if t(i) = 0,

where Wi,b ∈ Z
(k+1)×(k+1)
p . Next, we change the challenge ciphertext into a

semi-functional form, where As is replaced with a vector c ← Z
k+1
p . That is, the

elements in a ciphertext are

c1 = [c]2, c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)c]1, c3 = [c�k]T M.
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The indistinguishability directly follows from the Dk-MDDH assumption. After
that, we gradually change the secret keys into a semi-functional form, where ki

is a share of secret k+μa∗
1 instead of k for μ ← Zp. To prove each indistinguisha-

bility, we utilize the KW technique [21]. In the final hybrid, we can argue that
c�k in the challenge ciphertext is statistically close to a uniform randomness.

Proof. We consider a series of hybrids H0, H1, H2, and H3,ι for i ∈ {0, . . . , qsk},
where H0 is the real game and H3,qsk is the final game. In the following, we denote
the event β = β′ in hybrid H by 〈A,H〉win, where β is a random bit chosen by
the challenger, and β′ is the output of A. Note that we have

|Pr[〈A,H0〉win] − 1/2| = AdvABEA (λ). (1)

H1. We define H1 as the same as H0 except replacing PRF FK in KeyGen with
a random function R : {0, 1}∗ → Z

k+1
p × Z

k+1
p . From the definition of PRFs, we

have

|Pr[〈A,H0〉win] − Pr[〈A,H1〉win]| ≤ AdvPRFB (λ). (2)

H2. Next, we define H2. We change the behavior of random oracle H and ran-
dom function R. Consider another random oracle H ′ : {0, 1}∗ → Z

(k+1)×(k+1)
p ×

Z
(k+1)×(k+1)
p that only the challenger can access. We denote the first and sec-

ond elements of H ′(i) by Wi,0 and Wi,1, respectively. In H2, H(i) outputs
([W�

i,0A]1, [W�
i,1A]1), and R(i) outputs (W�

i,0a1,W�
i,1a1). Then, we have

Pr[〈A,H1〉win] = Pr[〈A,H2〉win]. (3)

It is not difficult to confirm that the above equality holds because A = (A||a1)
is a regular matrix, and thus W�

i,bA is randomly distributed in Z
(k+1)×(k+1)
p

for A. By this conceptual change, we can rewrite c2,i and k2,i in the challenge
ciphertext and secret keys as follows:

c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)As]1,

k2,i := [ki + (yiWψ(i),0 + Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(

[−ki + Wψ(i),0Brπ(i)]1,
[yiki + Wψ(i),1Brπ(i)]1

)

if t(i) = 0

In the above, we use the relations A∗A� + a∗
1a

�
1 = Ik+1.

H3,ι. To describe H3,ι, we define some distributions on ciphertexts and secret
keys as follows. Concretely, we define two types of ciphertexts and secret keys,
namely, normal and semi-functional. A normal ciphertext is one generated as in
H2. That is,

c1 = [As]2, c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)As]1, c3 = [s�A�k]T M.
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A semi-functional ciphertext is the same as the normal one except that As is
replaced with c ← Z

k+1
p . That is,

c1 = [c]2, c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)c]1, c3 = [c�k]T M.

Similarly, a normal secret key is one generated as in H2. That is,

k1,j = [Brj ]2,
k2,i := [ki + (yiWψ(i),0 + Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(

[−ki + Wψ(i),0Brπ(i)]1,
[yiki + Wψ(i),1Brπ(i)]1

)

if t(i) = 0

(4)

Especially, k1, . . . ,kn in k2,i is outputs of Share(f,k). On the other hand, in a
semi-functional secret key, k1, . . . ,kn in k2,i is outputs of Share(f,k+μa∗

1) where
μ ← Zp. Then, H3,ι is the same as H2 except that the challenge ciphertext and
the first ι keys that A is given are semi-functional.

Lemma 3.2

|Pr[〈A,H2〉win] − Pr[〈A,H3,0〉win]| ≤ AdvDk-MDDH
B,bi (λ). (5)

Proof. To show this, we describe B, which is given an instance of the Dk-MDDH
problem (G, [A]1,2, [tβ ]1,2). Let H ′ : {0, 1}∗ → Z

(k+1)×(k+1)
p × Z

(k+1)×(k+1)
p be a

random oracle simulated by B that A cannot access.

1. B generates B and k by itself.
2. B computes pk = (G, [A]2, e([A]1, [k]2)) and gives it to A.
3. For query H(i), B answers with ([W�

i,0A]1, [W�
i,1A]1), where (Wi,0,Wi,1) is

an output of H ′(i).
4. For query KeyGen(pk,msk, y), B computes sky as in Eq. (4). Note that B can

generate sk without the random function R because it does not contain terms
related to A any more.

5. For the challenge query with the attribute x∗ = (x, φ), B flip the coin δ ←
{0, 1} and generates ctx∗ as

c1 = [tβ ]2, c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)tβ ]1, c3 = e([tβ ]1, [k]2)Mδ.

6. B outputs true(δ = δ′), where δ′ is an output of A.

The case β = 0 corresponds to H2 and the case β = 1 corresponds to H3,0. ��
In the next lemma, we prove the indistinguishability between H3,ι−1 and

H3,ι. That is, all PPT adversaries cannot distinguish whether the ι-th secret key
is normal or semi-functional. To prove this one-secret-key indistinguishability,
we introduce core 1-ABE game G1-ABE

β where β ∈ {0, 1} such that G1-ABE
0 and

G1-ABE
1 are computationally indistinguishable. Roughly speaking, the core 1-

ABE game is designed so that we can construct a distinguisher between G1-ABE
0

and G1-ABE
1 if there exists an adversary that can distinguish H3,ι−1 and H3,ι.
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It is convenient for us to parametrize the core 1-ABE game by η ∈ {1, 2}
because we also use it in the security proof of our CP-ABE scheme. We use the
game with η = 1 in the security proof of our KP-ABE scheme, and that with
η = 2 in the security proof of our CP-ABE scheme.

Definition 3.1 (Core 1-ABE). For η ∈ {1, 2} and β ∈ {0, 1}, we define
G1-ABE

η,β as Fig. 2. In G1-ABE
η,β , A can query OX and OF only once whereas A

can query OR polynomially many times. All queries can be done adaptively.
Furthermore, x ∈ X and y ∈ Y on which A queries OX and OF must satisfy
R(x, y) = 0. X and Y are defined in Definition 2.5. Note that the difference
between G1-ABE

η,0 and G1-ABE
η,1 lies in the input of Share in OF . We define the

advantage of A against G1-ABE
η,β as follows:

Adv1-ABEA,η (λ) := |Pr[〈A,G1-ABE
η,0 〉 = 1] − Pr[〈A,G1-ABE

η,1 〉 = 1]|.

We defer the proof of the indistinguishability between the two games to
Sect. 4.

Lemma 3.3. For ι ∈ [qsk], we have

|Pr[〈A,H3,ι−1〉win] − Pr[〈A,H3,ι〉win]| ≤ Adv1-ABEB,1 (λ). (6)

Proof. We consider an adversary B against G1-ABE
1,β where η = 1. We describe

B’s behavior.

1. B is given (G,A, [B]1,2, d,W) from the 1-ABE game.
2. B sets k := Wd and gives pk = (G, [A]2, [A�k]T ) to A.
3. For query H(i), B makes a query OR(i) and answers with ([W�

i,0A]1,
[W�

i,1A]1).
4. For the challenge query with an attribute x∗, B flips the coin δ ← {0, 1}.

Then, B obtains (A0, {Ai}i∈[m]) as the reply of OX(x∗). B returns ctx∗ as

ctx∗ :=
(

[A0]2, {[Ai]1}i∈[m], [A�
0 k]T Mδ

)

.

5. For the �-th query KeyGen(pk,msk, y), where � < ι and y = (y, f, ψ, t), B
computes sky as in Eq. (4) by setting k1, . . . ,kn ← Share(f,k + μa∗

1) with a
fresh randomness μ ← Zp.

6. For the �-th query KeyGen(pk,msk, y), where � = ι and y = (y, f, ψ, t), B
obtains (P0, {Pi}i∈[n]) as the reply of OF (y). Then, B returns sky as

sky := (P0, {Pi}i∈[n]).

7. For the �-th query KeyGen(pk,msk, y), where � > ι and y = (y, f, ψ, t), B
computes sky as in Eq. (4) by setting k1, . . . ,kn ← Share(f,k).

8. B outputs true(δ = δ′), where δ′ is an output of A.
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G1-ABE
η,β

G ← GBG(1λ), μ′ ← Zp, A ← Dk, B ← Z
(k+η)×(k+η)
p

d ← Z
k+η
p , W ← Z

(k+1)×(k+η)
p , L := ∅

param :=

{
(G,A, [B]1,2,d,W) η = 1
(G,A, [B]1,2,d,W,b∗

2) η = 2
β′ ← AOX (·),OF (·),OR(·)(param)
OX(·)
Input: x = (x ∈ Z

m
p , φ) ∈ X

A0 := c ← Z
k+1
p

For i ∈ [m]:
If (φ(i), ∗, ∗) �∈ L:

Wφ(i),0,Wφ(i),1 ← Z
(k+1)×(k+η)
p

L := L ∪ (φ(i),Wφ(i),0,Wφ(i),1)
Ai := (xiW�

φ(i),0 +W�
φ(i),1)c

Output (A0, {Ai}i∈[m])
OF (·)
Input: y = (y ∈ Z

n
p , f, ψ, t) ∈ Y

k1, . . . ,kn ← Share(f,Wd), σ1, . . . , σn ← Share(f, βμ′)
π(i) := |{j | ψ(j) = ψ(i), j ≤ i}|
d := maxi∈[n] π(i)
r1, . . . , rd ← Z

k
p

vi := Bri

P0 := ([v1]2, . . . , [vd]2)
For i ∈ [n]:

If (ψ(i), ∗, ∗) �∈ L:
Wψ(i),0,Wψ(i),1 ← Z

(k+1)×(k+η)
p

L := L ∪ (ψ(i),Wψ(i),0,Wψ(i),1)
If t(i) = 1 :

Pi := [ki + σia∗
1 + (yiWψ(i),0 +Wψ(i),1)Brπ(i)]1

If t(i) = 0 :
Pi := [−(ki + σia∗

1) +Wψ(i),0Brπ(i)]1, [yi(ki + σia∗
1) +Wψ(i),1Brπ(i)]1

)
Output (P0, {Pi}i∈[n])
OR(·)
Input: i ∈ {0, 1}∗

If (i, ∗, ∗) �∈ L:
Wi,0,Wi,1 ← Z

(k+1)×(k+η)
p , L := L ∪ (i,Wi,0,Wi,1)

Output ([W�
i,0A]1, [W�

i,1A]1, [Wi,0B]1, [Wi,1B]1)

Fig. 2. Core 1-ABE game.

From Lemma 3.1, the term ki +σia∗
1 in the reply of OF is identically distributed

with the i-th output of Share(k+βμa∗
1). Thus, if the oracles are those in G1-ABE

1,0 ,
A’s view corresponds to H3,ι−1, and otherwise, it corresponds to H3,ι. ��

Lemma 3.4

|Pr[〈A,H3,qsk〉win] − 1/2| ≤ 2−Ω(λ). (7)
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Proof. Because (A∗||a∗
1) forms a basis, redefining k as k := A∗z + za∗

1 where
z ← Z

k
p and z ← Zp does not change its distribution. Recall that the information

on k that A obtains throughout the game is A�k in pk, Share(f,k+μa∗
1) in sky,

and c�k in ctx∗ . However, A�k does not contain the information on z because
A�a∗

1 = 0. Similarly, each k + μa∗
1 also does not contain the information on z

because it is masked by fresh randomness μ. Thus, zc�a∗
1 is randomly distributed

in Zp for A, and so is c�k, unless c�a∗
1 = 0. Since c is randomly chosen from

Z
k+1
p , c�a∗

1 = 0 with a probability 2−Ω(λ). If it is not the case, ctx∗ does not
have information on β, and the lemma holds. ��

Thanks to Eqs. (1) to (3) and (5) to (7) and Lemma 4.1, Theorem 3.1 holds. ��
4 Adaptive Security for Core Component

In this section, we prove the indistinguishability between G1-ABE
η,0 and G1-ABE

η,1

defined in Definition 3.1. This is formally stated in the following lemma.

Lemma 4.1 (Core 1-ABE Security). Let B be the maximum depth of for-
mula f for all choice of f by A. For any PPT adversary A and η ∈ {1, 2}, there
exists a PPT algorithm B such that

Adv1-ABEA,η (λ) ≤ 29B+2(AdvDk-MDDH
B,bi (λ) + 2−Ω(λ)).

Proof. We prove Lemma 4.1 by extending the KW technique [21]. We omit the
variable η from the notation of hybrid games for conciseness, but all hybrids
are parametrized by η. Following the piecewise guessing framework, we define
a series of selective hybrids ̂Hh0 to ̂HhL , where L = 8B , and two intermediate
games G1-ABE

M0 and G1-ABE
M1 , which satisfy

– ̂G1-ABE
0 = ̂Hh0 ≈c, . . . ,≈c

̂HhL = ̂G1-ABE
M0

– G1-ABE
M0 = G1-ABE

M1 .

Let z := (x, y) ∈ {0, 1}R on which A queries OX and OF , respectively. Let b ∈
{0, 1}n be a string computed from z following Definition 2.5. Note that f(b) = 0
because the game imposes the condition R(x, y) = 0 on A. Let R be the pebbling
record generated as R = (r1, . . . , rL) = PebRec(f, b) as defined in Lemma 2.2.
Then, we define hι : {0, 1}R → {0, 1}3B as hι(z) := rι. Note that h0 and hL

are constant functions because they specify the pebbling configurations where
no pebbles on it and a pebble is placed on only the output gate, respectively.

The hybrids and intermediate games only differ in the Share algorithm in OF

as follows. That is, ̂Hhι is the same as ̂G1-ABE
0 except that Share(f, 0) is replaced

with S̃hare(f, 0, hι(z)), which is described in Fig. 3. G1-ABE
M0 is the same as HhL ,

and G1-ABE
M1 is the same as G1-ABE

M0 except that S̃hare(f, 0, hL(z)) is replaced with
S̃hare(f, μ, hL(z)).

We prove that

– G1-ABE
0 ≈c G1-ABE

M0 ,
– G1-ABE

M0 = G1-ABE
M1 ,

– G1-ABE
M1 ≈c G1-ABE

1 .

First, we prove item 2, then prove item 1. We omit the proof of item 3 because
it is almost the same as that of item 1. Then, we are done.
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S̃hare(f,k, u)
Input: f = (n, w, v, G) with a depth B, k ∈ Z

�
p, and u ∈ {0, 1}3B

1. Set a vector σout := k on the output wire.
2. Interpret u as a pebbling configuration on f .
3. For each gate g with a pebble that has incoming wires a, b and an outgoing wire

c where a vector σc is set on c, choose ug,1,ug,2 ← Z
�
p and set σa := ug,1 and

σb := ug,2 on a and b, respectively.
4. For each AND gate g with no pebble that has incoming wires a, b and an outgoing

wire c where a vector σc is set on c, choose ug ← Z
�
p and set σa := σc − ug and

σb := ug on a and b, respectively.
5. For each OR gate g with no pebble that has incoming wires a, b and an outgoing

wire c where a vector σc is set on c, set σa := σc and σb := σc on a and b,
respectively.

6. For each input wire i with a pebble, replace σi with a random vector ui ← Z
k
p.

7. Output shares σ1, . . . , σn, which are set on the input wires 1, . . . , n.

Fig. 3. Description of S̃hare.

G1-ABE
M0 = G1-ABE

M1 . Recall that the difference between the two games lies in the

input of S̃hare, namely, (f, 0, hL(z)) or (f, μ, hL(z)). First, we note that u =
hL(z) is a constant that specifies the pebbling configuration on f where a pebble
is placed on only the output gate. In this case, it is not difficult to see that the
output of S̃hare is independent of the second argument of the input. This is
because the values set on the two incoming wires of the output gate are chosen
independently of σout when a pebble is placed on the output gate (see item 3 in
Fig. 3). Then, the values to be set on the rest of wires are computed based on
these values set on the incoming wires of the output gate. Thus, the output of
S̃hare is identically distributed in both games, and the claim holds.

G1-ABE
0 ≈c G1-ABE

M0 . Following Lemma 2.1, we prove the two properties:

1. G1-ABE
0 = Hh0 and HhL = G1-ABE

M0 ,
2. ̂Hhι−1

1 ≈c
̂Hhι
0 for ι ∈ [L].

where ̂Hhi

β for β ∈ {0, 1} is defined in Sect. 2.4. For item 1, the latter holds
because we defined G1-ABE

M0 in such a way. To show the former, we need to confirm
that the output of Share(f, 0) and S̃hare(f, 0, h0(z)) is identically distributed.
Recall that h0 is a constant function that specifies the pebbling configuration
where no pebbles on it. In this case, no gates correspond to item 3 or 6 in Fig. 3,
and the remaining procedures are exactly the same as Share(f, 0). Thus, the
former also holds.

The remaining thing is to prove ̂Hhι−1
1 ≈c

̂Hhι
0 . Formally, we show that, for

any PPT adversary A, there exists a PPT adversary B such that

|Pr[〈A, ̂H
hι−1
1 〉=1]− Pr[〈A, ̂Hhι

0 〉=1]|≤2AdvDk-MDDH
B,bi (λ)+2−Ω(λ).
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To show this, we additionally consider three intermediate selective hybrids ̂Hhι−1
1,1

to ̂Hhι−1
1,3 .

In the following, we denote the pebbling configuration on f that is specified
by a bit string u by C(f, u). Let u0 and u1 be the committed values by A,
which correspond to hι−1(z) and hι(z) for z chosen by A. Then, C(f, u0) and
C(f, u1) are adjacent pebbling configurations for some input b ∈ {0, 1}n for f .
In other words, there exists b such that u0 and u1 correspond to rι−1 and rι

where (r0, . . . , rL) = PebRec(f, b). Thus, C(f, u0) can be changed to C(f, u1) in
one step following the rule defined in Definition 2.8. Recall that the difference
between ̂Hhι−1

1 and ̂Hhι
0 is the input of S̃hare. That is, the input is (f, 0, u0) in

̂H
hι−1
1 and (f, 0, u1) in ̂Hhι

0 . Thus, in case of u0 = u1, ̂H
hι−1
1 and ̂Hhι

0 are clearly
identical. In the following, we consider the case of u0 �= u1.

Let an object O be either a gate g or an input wire i∗, in which the difference
between C(f, u0) and C(f, u1) lies. We consider only the case where a pebble is
placed on g or i∗, since the case where a pebble is removed is just the reverse
of the former case. Intermediate hybrids ̂Hhι−1

1,1 to ̂Hhι−1
1,3 are different from ̂Hhι−1

1

only in OF as shown in Fig. 4. That is, when O is a gate, ̂Hhι−1
1,1 to ̂Hhι−1

1,3 are the
same as ̂Hhι−1

1 . When O is an input wire, these hybrids are defined as follows:

– ̂Hhι−1
1,1 is the same as ̂Hhι−1

1 except that vπ(i∗) ← span(B, b1),
– ̂Hhι−1

1,2 is the same as ̂Hhι−1
1,1 except that random value u is added to σi∗ ,

– ̂Hhι−1
1,3 is the same as ̂Hhι−1

1,2 except that vπ(i∗) := Brπ(i∗) for rπ(i∗) ← Z
k
p.

Thanks to Lemmas 4.2 to 4.5 and observations so far, Lemma 4.1 holds. ��

Lemma 4.2. |Pr[〈A, ̂H
hι−1
1 〉 = 1] − Pr[〈A, ̂H

hι−1
1,1 〉 = 1]| ≤ AdvDk-MDDH

B,bi (λ).

Lemma 4.3. |Pr[〈A, ̂H
hι−1
1,1 〉 = 1] − Pr[〈A, ̂H

hι−1
1,2 〉 = 1] ≤ 2−Ω(λ).

Lemma 4.4. |Pr[〈A, ̂H
hι−1
1,2 〉 = 1] − Pr[〈A, ̂H

hι−1
1,3 〉 = 1]| ≤ AdvDk-MDDH

B,bi (λ).

Lemma 4.5. Pr[〈A, ̂H
hι−1
1,3 〉 = 1] = Pr[〈A, ̂Hhι

0 〉 = 1].

We present the proof of Lemmas 4.2, 4.3 and 4.5 in the full version. We omit
the proof of Lemma 4.4 because the proof of this lemma is almost the same as
that of Lemma 4.2.

5 Implementation and Evaluation

We implement our KP-ABE and CP-ABE schemes and measure the benchmarks
of our schemes on an ordinary personal computer (PC) and two smartphones,
Apple iPhone XR and Google Pixel 3. The details of our implementation are
described in the full version.
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H
hι−1
1 , H

hι−1
1,1 , H

hι−1
1,2 , H

hι−1
1,3

OF (·)
Input: y = (y ∈ Z

n
p , f, ψ, t) ∈ Y

k1, . . . ,kn ← Share(f,Wd), σ1, . . . , σn ← Share(f, 0, u0)
π(i) := |{j | ψ(j) = ψ(i), j ≤ i}|
d := maxi∈[n] π(i)
r1, . . . , rd ← Z

k
p

vi := Bri for i ∈ [d]

vi := Bri for i ∈ [d]\π(i∗), vπ(i∗) ← span(B,b1)

P0 := ([v1]2, . . . , [vd]2)
For i ∈ [n]:

If (ψ(i), ∗, ∗) L:
Wψ(i),0,Wψ(i),1 ← Z

(k+1)×(k+η)
p

L := L ∪ (ψ(i),Wψ(i),0,Wψ(i),1)
If i = i∗

u ← Zp, σi := σi + u

If t(i) = 1 :
Pi := [ki + σia∗

1 + (yiWψ(i),0 +Wψ(i),1)vπ(i)]1
If t(i) = 0 :

Pi := [−(ki + σia∗
1) +Wψ(i),0vπ(i)]1, [yi(ki + σia∗

1) +Wψ(i),1vπ(i)]1
Output (P0, {Pi}i∈[n])

Fig. 4. Description of OF in hybrids.

(a) Enc (b) KeyGen (c) Dec

Fig. 5. Benchmarks of our KP-ABE on PC.

(a) Enc (b) KeyGen (c) Dec

Fig. 6. Benchmarks of our CP-ABE on PC.
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(a) Enc (b) KeyGen (c) Dec

Fig. 7. Comparison of KP-ABE between ours and OT12 on PC.

(a) Enc (b) KeyGen (c) Dec

Fig. 8. Comparison of CP-ABE between ours and OT12 on PC.

The efficiency of KeyGen and Dec in KP-ABE (resp. Enc and Dec in CP-ABE)
is affected by formula f used in a secret key (resp. a ciphertext). More concretely,
in KeyGen of our KP-ABE and Enc of our CP-ABE, the numbers of exponenti-
ation in G1 and G2 increase proportionally to those of negation and multi-use,
respectively. On the other hand, the number of hashing decreases proportionally
to that of multi-use. In Dec, the numbers of exponentiation and pairings increase
proportionally to the numbers of negation and multi-use, respectively.

To clarify the effects of these factors, we consider the four types of formulae.

1. no negations and multi-uses (no neg. & no mult.):
i.e., (Label-1:v1 AND Label-2:v2 AND . . . ),

2. all negations and no multi-uses (all neg. & no mult.):
i.e., (Label-1:NOT v1 AND Label-2:NOT v2 AND . . . ),

3. no negations and all multi-uses (no neg. & all mult.):
i.e., (Label-1:v1 AND Label-1:v1 AND . . . ),

4. all negations and multi-uses (all neg. & all mult.):
i.e., (Label-1:NOT v1 AND Label-1:NOT v2 AND . . . ).

We present the benchmarks on the PC in Figs. 5 and 6 and smartphones
in the full version. The figures show the benchmarks with respect to a formula
or attribute set with 1, 10, 20, . . . , 100 attributes for each case listed above. Enc
in KP-ABE and KeyGen in CP-ABE are not affected by the types of formula,
and we measure the benchmark for encryption/key generation with attributes
Label-1:v1, . . . , Label-n:vn.

In all cases, our KP-ABE (resp. CP-ABE) scheme takes about 0.4 to 0.7s
(resp. 0.4 to 0.9s) for encryption and key generation on the PC to handle 100
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attributes. Our schemes allow very fast decryption for a monotone formula with-
out multi-use (item 1), and they take only about 0.02s (KP & CP) for a formula
with 100 attributes. We can assume that our schemes allow similarly fast decryp-
tion also for a formula in which the ratio of negation and multi-use is small. Even
in the slowest case (item 4), it takes about 0.5 (KP) or 0.7s (CP) for decryption.

Because of small computational resource compared with the PC, the smart-
phones take more time for each algorithm. The benchmarks show that running
times on iPhone XR are relatively close to those on the PC, and they are approx-
imately 1.5 times slower. Google Pixel 3 takes further more time and its running
times are 3 to 3.5 times as slow as those on the PC.

Effects of Negation and Multi-use. The benchmarks for KeyGen in KP-ABE
and Enc in CP-ABE show that both negation and multi-use slow the running
time down. It is reasonable that negation slows the running time down because
it increases the number of exponentiation in G1. In contrast, multi-use decreases
the number of hashing to G1 whereas it increases that of exponentiation in G2.
The benchmarks show that the former effect is smaller than the latter in our
implementation. However, multi-use can shorten the running time in a platform
where exponentiation in G2 is more efficient or hashing to G1 is less efficient.

In Dec, both negation and multi-use extend the running time, and the effect
of multi-use is larger. This is since the number of negation affects that of expo-
nentiation in G1 while the number of multi-use affects that of heavier pairings.

Comparison with OT12. We also implement KP and CP schemes by Okamoto
and Takashima in [27] (OT12), which are the only schemes that support OT
negation and unboundedness, and thus whose functionalities are the closest to
our schemes among known ABE schemes. The comparison between our schemes
and OT12 on PC is presented in Figs. 7 and 8, which shows that our schemes
achieve significant speedups in every algorithm. We compare them in the one-use
restriction of labels (no multi-use), which corresponds to item 1 and item 2 in
the four cases, since OT12 does not support multi-use of labels. Hence, the blue
and gray lines in Fig. 5 are the same as those in Fig. 7 up to scale (similarly in
Figs. 6 and 8). In contrast to our schemes, negation hardly affects the efficiency
in OT12. Note that although we can utilize a bounded number of multi-use of
labels by preparing multiple nominal labels for each single label in OT12, this
significantly affects the efficiency. For example, when we set the bound as 10,
this slows down Enc in KP-ABE or KeyGen in CP-ABE by 10 times.

CCA Security. In practice, the chosen ciphertext attack (CCA) security is
a de facto standard and desirable security requirement. The Fujisaki-Okamoto
conversion [15] is not suitable for our case because it requires the decryption
algorithm to run the encryption algorithm, which causes a significant efficiency
loss. However, our schemes can be efficiently converted to CCA secure ones via
Boneh-Katz conversion [10] in a similar manner to [26].
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Abstract. Inner product functional encryption (IPFE) [1] is a popular
primitive which enables inner product computations on encrypted data.
In IPFE, the ciphertext is associated with a vector x, the secret key is asso-
ciated with a vector y and decryption reveals the inner product 〈x, y〉.
Previously, it was known how to achieve adaptive indistinguishability
(IND) based security for IPFE from the DDH, DCR and LWE assumptions
[8]. However, in the stronger simulation (SIM) based security game, it
was only known how to support a restricted adversary that makes all its
key requests either before or after seeing the challenge ciphertext, but
not both. In more detail, Wee [46] showed that the DDH-based scheme
of Agrawal et al. (Crypto 2016) achieves semi-adaptive simulation-based
security, where the adversary must make all its key requests after see-
ing the challenge ciphertext. On the other hand, O’Neill showed that all
IND-secure IPFE schemes (which may be based on DDH, DCR and LWE)
satisfy SIM based security in the restricted model where the adversary
makes all its key requests before seeing the challenge ciphertext.

In this work, we resolve the question of SIM-based security for IPFE
by showing that variants of the IPFE constructions by Agrawal et al.,
based on DDH, Paillier and LWE, satisfy the strongest possible adaptive
SIM-based security where the adversary can make an unbounded num-
ber of key requests both before and after seeing the (single) challenge
ciphertext. This establishes optimal security of the IPFE schemes, under
all hardness assumptions on which it can (presently) be based.

Keywords: Functional encryption · Inner-products · Simulation-based
security · Standard assumptions

1 Introduction

Functional Encryption (FE) [15,37] is a modern cryptographic paradigm that
allows fine-grained access to encrypted data, unlike traditional public-key encryp-
tion, where decryption offers all-or-nothing access to data. In FE, a secret key
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skf corresponds to function f , and ciphertext ct(x) corresponds to some input
x from the domain of f . Given a function key skf and a ciphertext ct(x), a user
can run the decryption algorithm to learn f(x). Security of FE guarantees that
beyond f(x), nothing about x is revealed.

Functional encryption has been studied extensively, yielding a plethora of con-
structions that achieve various tradeoffs between generality, security and hard-
ness assumptions. Assuming the existence of the powerful multilinear maps [22]
or indistinguishability obfuscation [23], FE can be constructed for all polynomial
sized circuits achieving the strongest possible definition of security [23,24]. How-
ever, from standard assumptions, which is the focus of this work, constructions
are only known for restricted classes of functionalities or achieving restricted
notions of security. We discuss each of these aspects next.

On the Definition of Security. In the papers that introduced functional encryp-
tion [15,37], the authors discussed the subtleties involved in formulating the
right definition of security for FE. Traditionally, an “indistinguishability” (IND)
style definition had been used for constructing various special cases of functional
encryption, which roughly requires that no efficient adversary that has oracle
access to the key generation algorithm should be able to distinguish between
encryptions of two messages x0 and x1. However, [15] showed that this notion
was too weak for functional encryption in some cases. Specifically, they gave an
FE construction that could be proved secure with respect to the IND security
requirement, but was intuitively insecure.

[15,37] proposed the study of simulation-based (SIM) security which asks that
the view of the adversary be simulated by a simulator that is given access to pairs
(fi, fi(x�)) where fi are the functions for which the adversary requests keys, and
x� is the challenge message. SIM security captured the intuition that nothing
about x� be revealed except for the function output value, and ruled out the
insecure scheme that IND security could not. However, it was soon shown that
for general functionalities, SIM-based security is impossible to achieve [7,15].

Additionally, other restricted notions of security have also been studied, that
limit either (i) the number of key requests – bounded collusion FE [26], (ii) the
“type” of key requests – one sided FE or “predicate encryption” where the adver-
sary may only request keys for functions f such that f(x�) = 0 [10,28], or (iii)
that allow for part of the input vector to be public – public index or “attribute-
based encryption” [6,14,28,29,31]. While these restricted notions are meaningful
for different applications, it remains desirable to obtain security in an unre-
stricted security game, if only for specialized functionalities.

Restricting the Functionality. Aside from different security notions, construc-
tions of FE also vary in the functionality they support. Many special cases of
FE have been studied before and since its formalization as an abstract primitive
[15,37] – identity-based encryption (IBE) [13,42] fuzzy identity-based encryption
[5,41] attribute-based encryption (ABE) [27,29,31] predicate encryption (PE)
[28,30,31], bounded-key functional encryption [25,26]. However, excepting [30],
the security of all these schemes was restricted in one of the three ways discussed
above.
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Abdalla, Bourse, De Caro and Pointcheval [1] introduced the primitive of
inner product functional encryption (IPFE). In IPFE the ciphertext is associated
with a vector x, the secret key is associated with a vector y and decryption
reveals 〈x,y〉. Since its introduction, IPFE has been studied extensively [1,8,11,
12,17,19,43,44] due to its feasibility under well-established assumptions [1,8],
its natural applications [1] and extensions [2,3,18,21], its use as a building block
for more advanced functionalities [3,4,9,32,33], and the fact that it admits an
unrestricted security definition (more on this below).

Security of IPFE. Abdalla et al. [1] constructed practical schemes for IPFE under
well studied hardness assumptions like the Decisional Diffie-Hellman (DDH) and
Learning With Errors (LWE). Their constructions achieved security in a game
which did not place any restriction on the number or type of key requests, nor
necessitated making any part of the input public. Given the paucity of schemes
that achieve these features, this was good news.

However, despite its positive features, the security game considered by [1]
had shortcomings – their constructions were only proven to be selectively secure
in the IND model, which means that the adversary has to announce the chal-
lenge messages before it even sees the public key of the scheme. This result
was improved by Agrawal, Libert and Stehlé [8] who constructed adaptive AD-
IND functional encryption for the same inner product functionality, under DDH,
LWE and also from Paillier’s Decision Composite Residuosity (DCR). Thus, the
result of [8] established optimal security of IPFE in the IND-based game, from
all hardness assumptions on which it can (presently) be based.

In the domain of SIM-based security for IPFE, much less is known. On one
hand, O’Neill [37] showed that for IPFE,1 IND security implies SIM security in
a model where the adversary is restricted to making all its key queries before it
sees the challenge ciphertext. On the other hand, Wee [46] recently proved that
the DDH-based FE scheme from [8] achieves simulation-based security in a model
where the adversary is restricted to making all its key queries after it sees the
challenge ciphertext, in the so-called semi-adaptive game. Datta et al. [20] subse-
quently extended Wee’s ideas so as to prove simulation-security against adaptive
adversaries in predicate encryption schemes [30] based on bilinear maps [34–36].
In the IPFE setting, known proofs of SIM security break down in the natural
adaptive model where the adversary is allowed to make key queries adaptively,
both before and after seeing the challenge ciphertext. Moreover, Wee’s result is
not generic and only applies to the DDH-based construction of [8] as well as in
specific pairing-based constructions of predicate encryption.

For a functionality as basic as IPFE, this state of affairs is quite dissatisfying.
Specifically, the following fundamental question remains to be answered:

Is it possible to achieve the strongest notion of security, namely AD-SIM
security for IPFE, which permits the adversary an unbounded number of key
requests before and after seeing the (single) challenge ciphertext? Moreover, can

1 Or, more generally, the class of preimage sampleable functinalities of which inner
product is a special case.
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we achieve AD-SIM security from all the assumptions on which IPFE can be based,
namely DDH (in groups without a bilinear map), DCR and LWE?

In the present work, we resolve this question in the affirmative.

Our Results. In this work, we prove adaptive simulation-security (AD-SIM) for
an unbounded number of key queries and a single challenge ciphertext, for IPFE
schemes, based on the DDH, DCR and LWE assumptions. We place no restrictions
on when the adversary may query for keys with respect to the challenge cipher-
text. Thus, our security game achieves the “best of” both security games consid-
ered by Wee [46] and O’Neill [37], where the former permits post-challenge key
requests but not pre, and the latter permits pre-challenge key requests but not
post. By providing constructions under all assumptions on which IPFE schemes
may presently be based, we improve a result by Wee [46], which achieved semi-
adaptive SIM based security for DDH-based IPFE.

In more detail, we prove that the DDH based scheme of Agrawal et al. [8]
(unmodified) achieves AD-SIM rather than just AD-IND security. Next, we show
how to modify the DCR based scheme of [8] so that it satisfies AD-SIM security.
Finally, we construct a new scheme for IPFE mod p based on LWE which leverages
the LWE scheme of [8] (almost) generically to achieve AD-SIM security. Note that
the impossibility from [15] rules out AD-SIM for many challenge messages, but
our proofs work for a single challenge message (as does [46]). Moreover, [7] shows
that AD-SIM security for one challenge message is impossible for all circuits, but
this does not contradict our results since our proofs apply for a restricted class
of functionality. Since our schemes achieve the strongest possible SIM security
notion for IPFE under all assumptions on which it can currently be based, we
finally settle the question of optimal security for IPFE.

Technical Overview. Next, we provide a technical overview of our constructions
in turn.

DDH-Based IPFE: The DDH-based IPFE scheme of Agrawal et al. [8] was shown
to provide indistinguishability-based security against adaptive adversaries (or
AD-IND security for short). Later on, Abdalla et al. [3] proved it simulation-
secure against selective adversaries. Wee [46] subsequently gave a proof of semi-
adaptive simulation-based security for the same construction. Here, we show that
the scheme can actually be proved simulation-secure against adaptive adversaries
without any modification.

In Wee’s proof [46], the simulator can create a dummy challenge ciphertext as
an encryption of the all-zeroes vector. In the semi-adaptive setting, the simulated
challenge ciphertext does not have to be consistent with pre-challenge queries
because functional key queries are only allowed after the challenge phase. For a
post-challenge key query y ∈ Z

�
q, the simulator has to respond with a key that

decrypts the dummy ciphertext to the value zy = fy (x�) = 〈y,x�〉 supplied by
the oracle. To do this, it can embed the value zy = 〈x�,y〉 in the modified secret
key which is obtained as an appropriate shift of the actual secret key. Namely,
if the master public key is gs · ht ∈ G

� and the master secret key consists of
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(s, t) ∈R Z
�
q × Z

�
q, the real functional secret key for y ∈ Z

�
q is comprised of

(sy , ty ) = (〈s,y〉, 〈t,y〉). In order to “program” zy = 〈x�,y〉 in the simulated
post-challenge keys, the simulator can define

s′
y := 〈s,y〉 + α · zy mod q t′y := 〈t,y〉 + β · zy mod q,

for carefully chosen coefficients α, β ∈ Zq. From the adversary’s view, this is
equivalent to changing the master secret key into s′ = s + α · x� mod q and
t′ = t+β ·x� mod q, which is consistent with the master public key and responses
to key queries for all vectors y. Using a careful analysis, it was shown [46] that,
under the DDH assumption, the simulation is indistinguishable from the real
experiment, even if the message x� is adaptively chosen after seeing the public
parameters, but before making any key query.

In order to prove simulation-based security for adaptive adversaries, we use
the same approach as [46], but we modify the generation of the simulated cipher-
text. Now, the dummy ciphertext should not only decrypt to the values dictated
by the oracle under post-challenge keys, but it also needs to be consistent with
responses to pre-challenge queries. To achieve this, our simulator answers pre-
challenge key queries by running the real functional key generation algorithm.
For each key query y ∈ Z

�
q, it replies with (sy , ty ) = (〈s,y〉, 〈t,y〉). In the chal-

lenge phase, the simulator has to create a ciphertext that is compatible with all
the pre-challenge queries without having access to the challenge message x� ∈ Z

�
q.

For this purpose, it encrypts an arbitrary dummy message x̄ that satisfies the
relations 〈x̄,y〉 = 〈x�,y〉 mod q, for any pre-challenge query y ∈ Z

�
q. Our obser-

vation is that, although the DDH-based scheme of [8] encrypts vectors x ∈ Z
�

with small entries (because functional secret keys only make it possible to recover
the inner product 〈x,y〉 when it lives in a polynomial-size interval), the dummy
message does not have to be small. This implies that, given the function evalua-
tion {zy = fy (x�) = 〈x�,y〉}y corresponding to all pre-challenge queries y, the
simulator can easily compute a compatible dummy message using linear algebra
over Zq. Once the simulator is committed to the challenge ciphertext, it has to
“program” the post-challenge functional keys in such a way that they decrypt
the dummy ciphertext to the real function evaluations zy = fy (x�) = 〈x�,y〉.
Given a post-challenge query y ∈ Z

�
q and the corresponding function evaluation

zy = 〈x�,y〉, the value zy is embedded in the simulated functional key in such
a way that the difference zy − 〈x̄,y〉 between zy and the function evaluation
fy (x̄) serves as a shift of the real actual key: namely, the simulator returns
sky = (s′

y , t′y ), where

s′
y := 〈s,y〉 + α · (zy − 〈x̄,y〉) mod q (1.1)

t′
y := 〈t,y〉 + β · (zy − 〈x̄,y〉) mod q.

By exploiting the linearity properties of the scheme, the shift terms α·(zy −〈x̄,y〉)
and β ·(zy −〈x̄,y〉) ensure that sky = (s′

y , t′y ) will decrypt the dummy ciphertext
to the oracle-supplied zy . As in [46], we can prove that this shift of post-challenge
keys is equivalent to a shift of the master secret key from the adversary’s view:
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namely, msk = (s, t) is traded for msk′ = (s′, t′), where s′ = s + α · (x� − x̄)
and t′ = t + β · (x� − x̄). By applying complexity leveraging argument in a
statistical setting (as previously done in, e.g., [11,45,46]), we can prove that
the two master secret keys of (s′, t′) and (s, t) are identically distributed in the
adversary’s view, even if the adversary chooses x� adaptively, after having seen
the public parameters and responses to pre-challenge queries.

DCR-Based IPFE: The above ideas can be adapted to the Composite Residuos-
ity assumption (DCR) [38] so as to prove simulation-based security in (a variant
of) the Paillier-based construction of Agrawal et al. [8]. One difficulty is that
functional secret keys sy = 〈s,y〉 have to be computed over the integers since
the group order is hidden. When we want to prove that the simulation is indistin-
guishable from the real experiment, this makes it harder to create simulated func-
tional secret keys s′

y := 〈s,y〉+α·(zy −〈x̄,y〉) that are statistically indistinguish-
able from the real keys sy := 〈s,y〉. In particular, since the functional secret keys
are computed over Z, the simulator cannot easily compute a small-norm dummy
message x̄ which is consistent with responses to pre-challenge queries (indeed,
it does not have a short basis for the lattice induced by these queries). However,
the simulator can still use the pre-challenge queries to compute a dummy mes-
sage x̄ ∈ Z

� with large entries. Although x̄ ∈ Z
� does not fit in Z

�
N , we can still

encrypt x̄ mod N and obtain a simulated ciphertext which is compatible with
responses to pre-challenge queries. When it comes to simulating post-challenge
keys, we can have the simulator compute s′

y := 〈s,y〉 + α · (zy − 〈x̄,y〉) and
argue that, from the adversary’s view, this is equivalent to trading the master
secret key s ∈ Z

� for s′ := s + α · (x� − x̄). By computing an upper bound for
‖x� − x̄‖∞, we can increase the magnitude of the master secret key s ∈ Z

� so as
to make sure that the statistical distance between s ∈ Z

� and s′ ∈ Z
� negligible.

This is actually possible by sampling the entries of the master secret key s ∈ Z
�

from a large interval, so that its bitlength becomes O(�3 · λ3/polylog(λ)) if � is
the dimension of encrypted vectors.

LWE-Based IPFE mod p: We now outline our adaptation of the LWE-based
construction for IPFE [8] to achieve adaptive SIM-based security. We focus on
the construction of IPFE modulo a prime p, [8, Sec 4.2], where the ciphertext
contains a vector x ∈ Z

�
p, the key contains a vector y ∈ Z

�
p and decryption

reveals 〈x,y〉 mod p. Our construction is generic except that it requires the
underlying scheme IPFE to satisfy the property that functional keys for vectors
that are linearly dependent on previously queried vectors may be computed as
the linear combination of previously returned keys. In more detail, say that the
adversary queries vectors y1, . . . ,yk ∈ Z

�
p and then submits a query y such that

y =
∑

j∈[k]kj · yj (mod p), for some kj ∈ Zp. Then, the secret key sky ∈ Z
m

can be computed as sky =
∑

j∈[k]kj · skyj
∈ Z

m. This property is satisfied by the
LWE-based construction that evaluates inner products over Zp in [8, Sec 4.2].

Since secret keys of linearly dependent vectors are computed as linear com-
binations of previously returned keys2, it suffices to consider an adversary that

2 As in [8], this results in a stateful key generator.
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only requests for �−1 linearly independent keys. Let us refer to the key requests
made in the pre-challenge phase as ypre and those in the post-challenge phase as
ypost.

To begin, we set L = 2� and instantiate the adaptive IND secure IPFE of [8,
Sec 4.2] with message length L. Given a message vector x ∈ Z

�
p, we extend it to

x̂ ∈ Z
L
p to make one slot corresponding to each independent key queried up to

� − 1 keys. The simulated challenge ciphertext c∗ encrypts the extended vector
̂̄x = (x̄,−r1, . . . ,−r�−1, 1) for a dummy message x̄, where {ri ← Zp}i∈[�−1]

are chosen uniformly at random, while simulating the setup phase of the real
protocol.

Pre-challenge keys for vectors ypre ∈ Z
�
p are handled as in the real scheme. In

more detail, for the ith independent pre-challenge key ypre
i the underlying IPFE

scheme is used to compute keys for the vector (ypre
i , ei, ri), where ei ∈ Z

�−1
p

is the i-th canonical vector and {ri ← Zp}i∈[�−1] are as above. The challenge
ciphertext is handled by computing a message x̄ that is consistent with only the
keys associated with the pre-challenge vectors ypre. For handling post-challenge
queries, let Δi = 〈x� − x̄,ypost

i 〉 be the difference in decryption using the
i-th post-challenge key corresponding to a linearly independent vector ypost

i . To
compensate this difference, we extend the vector ypost

i to (ypost
i , ei,Δi+ri). Note

that the randomizer ri in the i-th slot of the extended message vector hides Δi

in the i-th post-challenge key.
For post challenge keys, the decryption outputs

〈x̄,ypost
i 〉 + 〈−ri, 1〉 + 〈1,Δi + ri〉 = 〈x̄,ypost

i 〉 + Δi = 〈x�,ypost
i 〉

as desired. It is easy to verify that this also works if a post-challenge vector ypost

is a linear combination of possibly any arbitrary subset of pre-challenge and
post-challenge keys queried so far. As for pre-challenge queries, the simulated
keys properly decrypt the simulated ciphertext since the ri simply get cancelled
(i.e., Δi = 0). Also, note that the simulated keys work for any honestly generated
ciphertext since this contains 0 in the extended slots and do not “activate” the
extended slots in the keys. For the detailed proof, please see Sect. 5.

DCR-Based IPFE mod N : In the description of our construction from LWE, we
assumed that the modulus p is prime. However, the same technique can also
be applied to the Paillier-based construction of [8, Section 5.2], which evaluates
inner products over ZN . As a result, it provides a simulation-secure IPFE with
stateful key generation for inner products over ZN , whereas our scheme in Sect. 4
is stateless but computes inner products over Z. When we switch to composite
moduli N = pq, we need to take into account that ZN is not a field when the
simulator has to solve a linear system over ZN in order to compute a dummy
message. Fortunately, inversion over ZN is always possible with overwhelming
probability when factoring N is hard.
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2 Preliminaries

In this section we define the preliminaries that we require in this work.

Notation . We begin by defining the notation that we will use throughout the
paper. We use bold letters to denote vectors and the notation [1, n] or [n] or
{1, . . . , n} interchangeably to denote the set of first n positive integers. We denote
by U([n]) the uniform distribution over the set [n] and u ←↩ D or u ← D
interchageably to sample an element u from distribution D. Concatenation is
denoted by the symbol ‖ or | interchangeably. We say a function f(n) is negligible,
denoted by negl(n), if it is O(n−c) for all c > 0. We say an event occurs with
overwhelming probability if its probability is 1 − negl(n).

2.1 Useful Lemmas

We will rely on a few simple but useful lemmas, which are stated hereunder.

Lemma 1. Let M,m be positive integers, M = m · q + r with 0 ≤ r < m.
The statistical distance between the distributions (U(ZM ) mod m) and U(Zm) is
bounded by Δ(U(ZM ) mod m,U(Zm)) ≤ r

M .

Proof. Let M = mq + r, with 0 ≤ r < m. Observe that for i ∈ Zm we can
compute the number of integers of the form i + jm, smaller than M − 1, by
�M−1−i

m 	+1 which is also equal to �q+ r−1−i
m 	+1. So the probability of getting

i ∈ Zm by sampling from U(ZM ) mod m is equal to q+1
M if i < r or equal to q

M
if i ≥ r. So the statistical distance that we want to evaluate is equal to:

Δ =
1
2

⎛

⎝
∑

i<r

∣
∣
∣
∣
q + 1
M

− 1
m

∣
∣
∣
∣ +

∑

i≥r

∣
∣
∣
∣

q

M
− 1

m

∣
∣
∣
∣

⎞

⎠ =
r(m − r)

Mm
≤ r

M
.

��
Lemma 2. Let a, b, c ∈ Z such that b > a. We have Δ

(
U[a,b], Uc+[a,b]

) ≤ |c|
b−a ,

where U[α,β] is the uniform distribution on [α, β] ∩ Z.

Lemma 3. For any A ∈ R
m×n, let α := maxi,j |ai,j |. Then, we have the inequal-

ity det(AA�) ≤ (n · α2)m.

Proof. Since AA� ∈ R
m×m is positive definite, we know that it has positive

eigenvalues λ1, λ2, . . . , λm ≥ 0. By the mean inequality, we have m
√

λ1λ2 · · · λm ≤
λ1+···+λm

m . This can be interpreted as det(AA�) ≤
(

TrAA�
m

)m

and the right
hand side term can be bounded by (nα2)m. ��
Lemma 4. Let Y ∈ Z

k×� be a full rank matrix such that maxi,j |yij | ≤ Y .
There exists an efficient algorithm that finds a basis {x1,x2, . . . ,x�−k} ⊂ Z

� of
the lattice Y⊥ := {x ∈ Z

� : Y · x = 0} such that

‖xj‖∞ ≤ (
√

kY )k , j ∈ {1, . . . , � − k}.



42 S. Agrawal et al.

Proof. We assume w.l.o.g. that Y = [A|B], for a full rank matrix A ∈ Z
k×k

and for some B ∈ Z
k×(�−k) such that maxi,j |ai,j | ≤ Y and maxi,j |bi,j | ≤ Y . If

x = (z1, . . . , zk, λ1, . . . , λ�−k)� satisfies Y · x = 0, Cramer’s rule implies

zi =
−1

detA

�−k∑

j=1

λj · detAij ,

where the matrix Aij ∈ Z
k×k is obtained by replacing the i-th column of A by

the j-th column of B. By choosing (λ1, λ2, . . . , λ�−k) ∈ Z
�−k from the set

{detA · (1, 0, . . . , 0),detA · (0, 1, . . . , 0), . . . ,detA · (0, 0, . . . , 1)},

we obtain the desired basis. Concretely, for every j ∈ {1, 2, . . . , �−k}, we define

xj = (−detA1j ,−detA2j , . . . ,−detAkj , ej · detA) ∈ Z
�.

By using Lemma 3 we get the bounds on the size of each basis vector xj . ��
Corollary 1. Let a full rank Y ∈ Z

k×� such that |yij | ≤ Y and z ∈ Z
k. If there

exists a solution x0 ∈ Z
� to the system Y · x0 = z, then there exists an efficient

algorithm that computes a solution x ∈ Z
� such that ‖x‖∞ ≤ (� − k) · (√kY )k.

Proof. By Lemma 4, we can efficiently find a basis {x1, . . . ,x�−k} of the lattice
Y⊥ such that ‖xj‖∞ ≤ (

√
kY )k. Reducing the solution x0 modulo this basis, we

obtain x := x0 mod Y⊥ such that ‖x‖∞ ≤ ∑�−k
k=1 ‖xj‖∞ ≤ (� − k) · (√kY )k. ��

2.2 Functional Encryption

Definition 1. A Functional Encryption (FE) scheme over a class of
functions F = {f : X → Z} consists of the PPT algorithms
(Setup,KeyGen,Encrypt,Decrypt):

Setup(1λ,F) : Outputs a public key mpk and a master secret key msk.

Keygen(msk, f) : Given the master secret key and a functionality f ∈ F , the
algorithm outputs a secret key skf .

Encrypt(mpk,x) : On input the public key and a message x ∈ X from the mes-
sage space, the algorithm outputs a ciphertext c.

Decrypt(mpk, skf , c) : Given a ciphertext and a secret key corresponding to some
functionality f ∈ F , the algorithm outputs z ∈ Z.

Correctness: We require that for (mpk,msk) ← Setup(1λ,F), for all x ∈ X , all
f ∈ F , c ← Encrypt(mpk,x) and skf ← Keygen(msk, f), with overwhelming
probability, we have Decrypt(mpk, skf , c) = f(x).

In some cases, we will also give a state st as input to algorithm Keygen, so
that a stateful authority may reply to key queries in a way that depends on the
queries that have been made so far. In that situation, algorithm Keygen may
additionally update state st.
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2.3 Security

Next, we define security of functional encryption. Security comes in two flavours
– indistinguishability-based and simulation-based – we define each in turn.

Indistinguishability-based security. We first define the weaker notion of
indistinguishability-based security [15]. In this notion, one asks that no efficient
adversary be able to differentiate encryptions of x0 and x1 without obtaining
secret keys skf such that f(x0) �= f(x1).

Definition 2 (Indistinguishability-based security). A functional encryp-
tion scheme FE = (Setup,Keygen,Encrypt,Decrypt) provides semantic security
under chosen-plaintext attacks (or IND-CPA security) if no PPT adversary has
non-negligible advantage in the following game, where q1 ≤ q ∈ poly(λ):

1. The challenger runs (mpk,msk) ← Setup(1λ) and the master public key mpk
is given to the adversary A.

2. The adversary adaptively makes secret key queries to the challenger.
At each query, adversary A chooses a function f ∈ F and obtains
skf ← Keygen(msk, f).

3. Adversary A chooses distinct messages x0,x1 subject to the restriction that,
if {fi}q1

i=1 denotes the set of secret key queries made by A at Stage 2, it holds
that fi(x0) = fi(x1) for each i ∈ {1, . . . , q1}. Then, the challenger flips a
fair coin β ←↩ {0, 1} and computes c� ← Encrypt(mpk,xβ) which is sent as a
challenge to A.

4. Adversary A makes further secret key queries for arbitrary functions f ∈ F .
However, it is required that f(x0) = f(x1) at each query f ∈ {fq1+1, . . . , fq}.

5. Adversary A eventually outputs a bit β′ ←↩ {0, 1} and wins if β′ = β.

The adversary’s advantage is defined to be AdvA(λ) := |Pr[β′ = β]−1/2|, where
the probability is taken over all coin tosses.

Definition 2 captures adaptive security in that the adversary is allowed to
choose the messages x0,x1 at Stage 3.

As pointed out in [15], indistinguishability-based security is not fully satis-
factory in general as it may fail to rule out constructions that are intuitively
insecure. They argue that, whenever it is possible at all, one should prefer a
stronger notion of simulation-based security. We recall this notion hereunder.

Simulation-based security: For a FE scheme defined as above, a PPT
adversary A = (A1, A2) and a PPT simulator Sim = (Setup�,KeyGen�

0,
Encrypt�,KeyGen�

1), consider the following experiments:
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ExpRealFE,A(1λ)

1. (mpk,msk) ← Setup(1λ,F)
2. (x�, st) ← A

Keygen(msk,·)
1 (mpk)

3. c ← Encrypt(mpk,x�)
4. α ← A

KeyGen(msk,·)
2 (mpk, c, st)

ExpIdealFE,A(1λ)

1. (mpk�,msk�) ← Setup�(1λ,F)
2. (x�, st) ← A

Keygen�
0(msk�,·)

1 (mpk�)
Let V = {(fi, fi(x�), skfi

)}k
i=1

3. (c�, st′) ← Encrypt�(mpk�,msk�,V, 1|x�|)
4. α ← A

KeyGen�
1(msk�,st′,·)

2 (mpk�, c�, st)

In the Ideal experiment above, the {fi ∈ F}k
i=1 are the functionalities for

which the adversary requests their corresponding keys, {skfi
}k

i=1. An FE scheme
achieves adaptive simulation-based (AD-SIM) security if there exists a PPT
simulator Sim such that, for any PPT adversary A, the Real and the Ideal exper-
iments are computationally indistinguishable.

We stress that we consider simulators that run in polynomial time. For the
knowledgeable reader, it was shown by Boneh, Sahai and Waters [15] that AD-
SIM-security is impossible to achieve for many challenge messages. While [15]
provided the lower bound for the IBE functionality, the same argument easily
extends to IPFE. Thus, as in [46], our security game must also be restricted to a
single challenge ciphertext. Note that AD-SIM for a single ciphertext implies AD-
IND for a single ciphertext, which in turn implies AD-IND for many ciphertexts
[26]. Hence, AD-SIM for a single ciphertext is still the strongest definition of
security for IPFE.

2.4 Hardness Assumptions

Our first scheme relies on the standard Decision Diffie-Hellman DDH assumption
in ordinary (i.e., non-pairing-friendly) cyclic groups.

Definition 3. In a cyclic group G of prime order p, the Decision
Diffie-Hellman Problem (DDH) in G, is to distinguish the distributions
(g, ga, gb, gab) and (g, ga, gb, gc), with a, b, c ←↩ Zp. The Decision Diffie-
Hellman assumption is the intractability of DDH for any PPT algorithm D.

Our second scheme relies on Paillier’s composite residuosity assumption.

Definition 4 ([38]). Let p, q be prime numbers and N = pq. The Decision
Composite Residuosity (DCR) assumption states that the following two dis-
tributions are computationally indistinguishable:

{
tN0 mod N2 | t0 ← U(Z�

N )
} c≈ {t | t ← U(Z�

N2)}

Our third construction builds on the Learning-With-Errors (LWE) problem,
which is known to be at least as hard as certain standard lattice problems in the
worst case [16,40].
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Definition 5. Let q, α,m be functions of a parameter n. For a secret s ∈ Z
n
q ,

the distribution Aq,α,s over Z
n
q × Zq is obtained by sampling a ←↩ Zn

q and an
e ←↩ DZ,αq, and returning (a, 〈a, s〉 + e) ∈ Z

n+1
q . The Learning With Errors

(LWE) problem LWEq,α,m is as follows: For s ←↩ Zn
q , the goal is to distinguish

between the distributions:

D0(s) := U(Zm×(n+1)
q ) and D1(s) := (Aq,α,s)m.

We say that a PPT algorithm A solves LWEq,α if it distinguishes D0(s) and D1(s)
with non-negligible advantage (over the random coins of A and the randomness
of the samples), with non-negligible probability over the randomness of s.

3 Adaptive Simulation-Based Security from DDH

In this section, we first recall the IPFE scheme of [8]. Abdalla et al. [3] pre-
viously showed that this construction provides simulation-based security for
selective adversaries. In [46], Wee gave a proof of simulation-based security for
semi-adaptive adversaries. We provide a proof that handles adaptive adversaries
without any modification in the original scheme.

Setup(1λ, 1�): Choose a cyclic group G of prime order q > 2λ with generators
g, h ←↩ U(G). Then, for each i ∈ {1, . . . , �}, sample si, ti ←↩ U(Zq) and
compute hi = gsi · hti . Define msk := {si, ti}�

i=1 and

mpk :=
(
G, g, h, {hi}�

i=1

)
.

Keygen(msk,y): To generate a key for the vector y = (y1, . . . , y�) ∈ Z
�
q, compute

sky = (sy , ty ) = (
∑�

i=1 si · yi,
∑�

i=1 ti · yi) = (〈s,y〉, 〈t,y〉).
Encrypt(mpk,x): To encrypt a vector x = (x1, . . . , x�) ∈ Z

�
q, sample r ←↩ Zq

and compute

C = gr, D = hr, {Ei = gxi · hr
i }�

i=1.

Return Cx = (C,D,E1, . . . , E�).
Decrypt(mpk, sky , Cx): Given sky = (sy , ty ), compute

Ey = (
�∏

i=1

Eyi

i )/(Csy · Dty ).

Then, compute and output logg(Ey ).

Correctness. Note that
∏�

i=1 Eyi

i = g〈x,y〉·gr〈s,y〉·hr〈t,y〉 = g〈x,y〉·Csy ·Dty , which
implies Ey = g〈x,y〉. The decryption algorithm can thus recover 〈x,y〉 mod q by
solving a discrete logarithm instance in a small interval, by restricting messages
and keys so as to have |〈x,y〉| ≤ L, for some polynomially bounded L = poly(λ).
In this case, the inner product 〈x,y〉 can be recovered in Õ(L1/2) time using [39].
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Theorem 1. The scheme provides simulation-based security against adaptive
adversaries under the DDH assumption.

Proof. To prove the result, we first describe a PPT simulator before showing
that, under the DDH assumption, the adversary cannot distinguish the ideal
experiment from the real experiment.

In both experiments, we know that the adversary A can obtain private keys
for up to � − 1 linearly independent vectors. We assume w.l.o.g. that A makes
private keys queries for exactly � − 1 = �0 + �1 independent vectors, which we
denote by y1, . . . ,y�−1 ∈ Z

�
q. Among these vectors, we denote by y1, . . . ,y�0

the vectors queried by A before the challenge phase while y�0+1, . . . ,y�0+�1
stand for the post-challenge private key queries. In the challenge phase, we
denote by x� = (x�

1, . . . , x
�
� ) ∈ Z

�
q the message chosen by A. The simulator

(Setup�,Keygen�
0,Encrypt

�,Keygen�
1) proceeds in the following way.

Setup�(1λ, 1�): This algorithm is identical to Setup except that ω = logg(h) is
included in the master secret key. It outputs

mpk� :=
(
G, g, h, {hi}�

i=1

)
.

and msk� = (ω, s, t).
Keygen�

0(msk�,y): This algorithm is used to answer private key queries before
the challenge phase and proceeds exactly like Keygen in the real scheme.

Encrypt�(mpk�,msk�,V, {1|x�
i |}�

i=1): This algorithm takes as input mpk�,msk�,
the lengths {1|x�

i |}�
i=1 of all coordinates of x� and a set

V =
{

{yj , zj = 〈x�,yj〉, skyj
}�0

j=1

}

containing all pre-challenge independent queries {yj}�0
j=1, the returned keys

and the corresponding linear function evaluations {zj = 〈x�,yj〉}�0
j=1 for the

challenge message x�. The challenge ciphertext (C�,D�, E�
1 , . . . , E�

� ) is simu-
lated as follows.
1. Letting zpre = (z1, . . . , z�0)

� ∈ Z
�0
q , compute an arbitrary x̄ ∈ Z

�
q such

that Ypre · x̄ = zpre mod q, where

Ypre =

⎡

⎢
⎣

y�
1
...

y�
�0

⎤

⎥
⎦ ∈ Z

�0×�
q .

Note that x̄ = (x̄1, . . . , x̄�)� does not have to be small and can be obtained
via Gaussian elimination.

2. Compute the ciphertext by sampling r, r′ ←↩ U(Zq) uniformly and com-
puting (C�,D�) = (gr, hr′

) as well as

E�
i = gx̄i · C�si · D�ti ∀i ∈ [�].
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Output the simulated ciphertext (C�,D�, E�
1 , . . . , E�

� ) together with the state
information st′ = (x̄, r, r′).

Keygen�
1(msk�,y, z = 〈x�,y〉, st′): On input of msk� = (ω, s, t), a post-challenge

query y ∈ Z
�
q, the evaluation z = 〈x�,y〉 of the linear function fy (x�) on the

message x� and the state information st′ = (x̄, r, r′) ∈ Z
�
q ×Z

2
q, this algorithm

computes

t′y = 〈t,y〉 + 1
ω · (r′ − r)

· (〈x̄,y〉 − z) mod q. (3.1)

s′
y = 〈s,y〉 − 1

(r′ − r)
· (〈x̄,y〉 − z) mod q.

and returns sky = (s′
y , t′y ).

Observe that the ciphertext (C�,D�, E�
1 , . . . , E�

� ) produced by Encrypt� is
distributed in such a way that (C�,D�) = (gr, gω·(r+(r′−r))) and

(E�
1 , . . . , E�

� ) = gx̄+ω·(r′−r)·t · (h1, . . . , h�)r,

so that, for any y = (y1, . . . , y�)� ∈ Z
�
q, we have

�∏

i=1

E�
i

yi = g〈x̄,y〉+ω·(r′−r)·〈t,y〉 · (g〈s,y〉 · h〈t,y〉)r,

which implies

�∏

i=1

E�
i

yi/(C�s′
y · D�t′

y ) = gz.

This shows that decrypting the simulated ciphertext (C�,D�, E�
1 , . . . , E�

� ) using
the simulated key sky = (s′

y , t′y ) yields z = 〈x�,y〉, as required.
We now proceed to show that the simulation is computationally indistinguish-

able from the real experiment under the DDH assumption.
The proof uses a sequence of games that begins with a game in which the

challenger interacts with the adversary as in real experiment and ends with a
game where the challenger interacts with the adversary as in the ideal experiment.
For Gamei and Gamej we denote by Advij(A) the advantage of a PPT algorithm
A in distinguishing between Gamei and Gamej . Formally the challenger C flips
a coin b ←↩ {0, 1}. If b = 0 it interacts with the adversary as in Gamei, else it
interacts as in Gamej . At the end of the interaction A will have to make its guess
b′ ∈ {0, 1}. We define Advij(A) :=

∣
∣Pr[b′ = b] − 1

2

∣
∣.

Game0: In this game the challenger interacts with the adversary as in the real
experiment.

Game1: We modify the generation of the ciphertext C�
x = (C�,D�, E�

1 , . . . , E�
� ).

Namely, the experiment B first computes

C� = gr and D� = hr, (3.2)
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for a randomly sampled r ←↩ Zq. Then, it uses msk := {si, ti}�
i=1 to compute

E�
i = gx�

i · C�si · D�ti . (3.3)

It can be observed that C�
x = (C�,D�, E�

1 , . . . , E�
� ) has the same distribution

as in Game 0. We hence have Adv01(A) = 0.
Game2: We modify again the generation of C�

x = (C�,D�, E�
1 , . . . , E�

� ). Namely,
instead of computing the pair (C�,D�) as in (3.2), the experiment samples
r, r′ ←↩ U(Zq) and sets

C� = gr and D� = hr′
.

The ciphertext components (E�
1 , . . . , E�

� ) are still computed as per (3.3).
Under the DDH assumption, this modification should not significantly affect
A’s view and we have Adv12(A) ≤ AdvDDH

B (1λ).
Game3: In this game, the challenger runs exactly the ideal experiment with the

adversary. Lemma5 shows that Adv23(A) = 0.

Combining the above, we find

|Pr[1 ← ExpReal
A (1λ)] − Pr[1 ← ExpIdeal

A (1λ)]| ≤ AdvDDH
B (1λ),

as claimed. ��
Lemma 5. The advantage of an adversary A in distinguishing between Game2
and Game3 is 0.

Proof. To prove the result, we define the following two variants of these games.

Game′
2: This game is identical to Game2 except that, at the outset of the game,

the challenger chooses a random vector Δx ←↩ U(Z�
q). It interacts with A as

in Game2 until the challenge phase, at which point it samples an arbitrary
vector x̄ ∈ Z

�
q satisfying Ypre · x̄ = Ypre · x� mod q, where Ypre ∈ Z

�0×�
q

is the matrix whose rows are the first �0 independent key queries. At this
point, the challenger checks whether Δx = x̄ − x� mod q (we call Guess this
event). If not, it aborts the interaction with A and replaces A’s output with 0.
Otherwise, it proceeds like Game2 and outputs whatever A outputs. Since Δx
is drawn uniformly and independently of A’s view, we have Pr[Guess] = 1/q�.

Game′
3: This game is like Game3, except that, at the very beginning of the game,

the challenger chooses a random Δx ←↩ U(Z�
q). It proceeds like Game3 until

the challenge phase, at which point it samples an arbitrary x̄ ∈ Z
�
q satifying

Ypre · x̄ = zpre mod q. Then, it checks whether Δx = x̄ − x� mod q (we call
Guess this event). If not, it aborts and replaces A’s output with 0. Otherwise,
it proceeds identically to Game3 and outputs the same result as A.

Now, we claim that Game′
2 and Game′

3 are identical. To see this, we first note
that, conditionally on ¬Guess, both games output 0. If Guess occurs, we observe
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that Game′
3 is identical to Game′

2 when the master secret key is replaced by
(s′, t′) ∈ Z

�
q × Z

�
q, where

t′i = ti +
1

ω · (r′ − r)
· Δx

= ti +
1

ω · (r′ − r)
· (x̄i − x�

i ) mod q ∀i ∈ [�]

s′
i = si − 1

r′ − r
· Δx

= si − 1
r′ − r

· (x̄i − x�
i ) mod q.

Indeed, (s′, t′) has the same distribution as (s, t) conditionally on mpk. By con-
struction, we also have 〈s′,y〉 = 〈s,y〉 and 〈t′,y〉 = 〈t,y〉 in all pre-challenge
queries y ∈ Z

�
q. Moreover, we have

gx̄+ω·(r′−r)·t · (h1, . . . , h�)r = gx�+ω·(r′−r)·t′ · (h1, . . . , h�)r.

Finally, answering post-challenge queries y ∈ Z
�
q using (s′, t′) gives exactly the

distribution (3.1). This implies that the games are indeed identical, therefore
Adv′

23 = 0.
To conclude, notice that any adversary A that can distinguish between Game2

and Game3 can be used to distinguish between Game′
2 and Game′

3, with a loss
factor of q� in the advantage:

Adv′
23 =

1
q�

· Adv23(A)

This holds since the probability that A outputs the correct bit b′ when distin-
guishing between Game′

2 and Game′
3 is equal to:

Pr[b′ = b] = Pr[b′ = b|Guess] · Pr[Guess] + Pr[b′ = b|Guess] · Pr[Guess]

which is equivalent to:

Pr[b′ = b] − 1
2
=

(

Pr[b′ = b|Guess] − 1
2

)

· Pr[Guess]

By considering the equality in absolute value, we get the desired relation between
the advantages. ��

While efficient and based on a standard assumption, the scheme of [8] is
restricted to the evaluation of inner products confined in a small interval. In
the next section, we show that our proof can be adapted to the Paillier-based
constructions of [8,11], which make it possible to evaluate inner products over
exponentially large intervals.
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4 Adaptive Simulation-Based Security for Inner Products
over Z from DCR

This section shows that a variant of the Paillier-based IPFE scheme of Agrawal
et al. [8] can also be proved simulation-secure for adaptive adversaries. Like the
first DCR-based construction of [8], it evaluates inner products over the integers.
Our variant differs from [8] in that master secret keys are no longer sampled from
a Gaussian distribution but are rather sampled uniformly in a large interval.

In [11], Benhamouda et al. also considered secret keys sampled from a uniform
distribution over an interval. Their motivation was to obtain indistinguishability-
based security under chosen-ciphertext attacks for adaptive adversaries. Our goal
differs from theirs in that we do not consider chosen-ciphertext attacks but rather
focus on achieving simulation-based security. To this end, we have to sample
master secret keys from a significantly larger interval.

The reason why we need larger master secret keys is that, in the challenge
phase, our simulator has to sample a dummy message x̄ ∈ Z

� that should satisfy
an equation of the form Ypre · x̄ = zpre ∈ Z

k, for some given Ypre ∈ Z
k×�

and zpre ∈ Z
k, in order to be consistent with responses zpre = (z1, . . . , zk) to

all pre-challenge queries. For lack of a short basis for the lattice Y⊥
pre := {x ∈

Z
� : Ypre · x = 0}, our simulator can only sample a dummy message x̄ ∈ Z

�

with large entries. At each post-challenge query y ∈ Z
�, the simulator has to

“program” the returned functional secret key in such a way that it decrypts the
simulated ciphertext to the value z = 〈x�,y〉 dictated by the oracle. For this
purpose, the “programmed” key sk′

y must consist of the sum (over Z) of the real
key sky = 〈s,y〉 and a multiple of the difference z − 〈x̄,y〉 between the function
evaluation fy (x̄) = 〈x̄,y〉 and the oracle value z = 〈x�,y〉. Since z − 〈x̄,y〉 may
be large over Z, we need to sample the entries of s ∈ Z

� from a sufficiently wide
interval so as to “drown” the statistical discrepancy between the distributions of
the master secret s ∈ Z

� and its shifted variant s′ = s+γ ·(x�−x̄) ∈ Z
� for which

sk′
y = 〈s′,y〉. Since RSA moduli should asymptotically contain λ3/polylog(λ)

bits to resist factorization attacks, we need to sample each entry of s ∈ Z
� from

an interval of cardinality O(2�2·λ3/polylog(λ)). Despite somewhat large secret keys,
the scheme remains computationally efficient as only one exponentiation with a
large exponent sky suffices to decrypt. We see it as an interesting open problem
to obtain shorter keys while retaining simulation-based security.

Setup(1λ, 1�,X, Y ): Choose safe primes p = 2p′ + 1 and q = 2q′ + 1 with p′,
q′ also primes, such that �XY < N/2, where N = pq. Sample g′ ← U(Z∗

N2)
and set g := g′2N mod N2. Next for each i ∈ [�] sample si ← U([−S, S] ∩
Z), where S = 2λ+�−1 · X̄�−1 · �N2 and X̄ := X + � · (√�Y )� and then
compute hi = gsi mod N2. Define msk := s = (s1, . . . , s�)� ∈ Z

� and mpk :=(
N, g, {hi}�

i=1,X, Y
)
.

Keygen(msk,y): To generate a secret key from the vector y ∈ [−Y, Y ]� using
msk = s = (s1, . . . , s�)�, compute sky := 〈s,y〉 = ∑�

i=1 si · yi ∈ Z.
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Encrypt(mpk,x): Given the public key mpk, to encrypt a message x ∈ [−X,X]�,
sample r ← U({0, 1, . . . , N/4}) and compute

c0 = gr mod N2, ci = (1 + xiN) · hr
i mod N2 ∀i ∈ [�]

and output c = (c0, {ci}�
i=1) ∈ (

Z
∗
N2

)�+1.
Decrypt(mpk, sky , c): On input of a functional decryption key sky and a cipher-

text c = (c0, c1, . . . , c�), compute

cy = c
−sky

0 ·
�∏

i=1

cyi

i mod N2

Then output log1+N (cy ) =
cy −1 mod N2

N .

Correctness: Suppose that we want to decrypt c = {ci}�
i=0 using sky = 〈s,y〉.

Observe that we have the following equalities modulo N2:

�∏

i=1

cyi

i =
�∏

i=1

(1 + xiN)yi · gr·siyi = (1 + N)〈x,y〉 · gr·〈s,y〉 = (1 + N)〈x,y〉 · c
〈s,y〉
0 ,

so that cy = (1 + N)〈x,y〉 mod N2. Recall that (1 + N)〈x,y〉 = 1 + 〈x,y〉 · N
mod N2, so that computing discrete logarithms in the subgroup generated by
1 + N is easy. This enables the computation of 〈x,y〉 mod N . By the choice of
parameters we have |〈x,y〉| ≤ � · ‖x‖∞‖y‖∞ ≤ � · X · Y < N/2, so we actually
recover 〈x,y〉 computed over Z.

Theorem 2. Under the DCR assumption, the above construction achieves adap-
tive simulation-based security.

Proof. To prove the theorem we first describe the PPT simulator and show that
under the DCR assumption the real experiment is indistinguishable from the
ideal experiment. The simulator proceeds as follows.

Setup�(1λ, 1�,X, Y ): This algorithm chooses safe primes p = 2p′ + 1 and q =
2q′ +1 such that �XY < N/2, and sets N = pq. It samples g′ ← U(Z∗

N2) and
sets g := g′2N mod N2. Next, for each i ∈ [�], it samples si ← U([−S, S]∩Z),
where S = 2λ+�−1 · X̄�−1 · �N2 and X̄ := X + � · (√�Y )�, and computes
hi = gsi mod N2. It defines the master secret key msk� = (s, p, q), where
s = (s1, . . . , s�)�, and the master public key mpk� =

(
N, g, {hi}�

i=1,X, Y
)
.

Keygen�
0(msk�,y): This algorithm is used to generate all the pre-challenge func-

tional decryption queries. To generate a secret key for y ∈ [−Y, Y ]�, it com-
putes and outputs sky := 〈s,y〉 = ∑�

i=1 si · yi ∈ Z.
Encrypt�(mpk�,msk�, {(y1, z1), (y2, z2), . . . , (yk, zk)}): Given mpk�, msk� and

all the pre-challenge pairs (yj , zj) ∈ [−Y, Y ]� × Z, where zj = 〈x�,yj〉 ∈ Z

and x� is the challenge message, it first computes a dummy message x̄ ∈ Z
�

such that 〈x̄,yj〉 = zj for all j ∈ [k] by applying Corollary 1. Note that
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‖x̄‖∞ ≤ (� − k) · (√kY )k ≤ � · (√�Y )�. Next, it samples a ← U(Z∗
N ) and

b ← U(ZN ′), where N ′ = p′q′, and computes

c�
0 = (1 + aN) · gb mod N2, c�

i = (1 + x̄iN) · (c�
0)

si mod N2 ∀i ∈ [�].

It outputs the simulated ciphertext c� =
(
c�
0, {c�

i }�
i=1

) ∈ (
Z

∗
N2

)�+1 together
with the state information st := (x̄, a,N ′).

Keygen�
1(msk�, (y, z = 〈y,x�〉), st): This algorithm handles post-challenge key

queries as follows. Upon receiving a pair (y, z = 〈x�,y〉), it first computes
u, v ∈ Z such that uN + vN ′ = 1 and γ := (a−1 mod N) · vN ′ mod NN ′

then computes and outputs

sk′
y := 〈s,y〉 − γ · (z − 〈x̄,y〉) ∈ Z.

In order to prove that the real experiment is computationally indistinguish-
able from the ideal experiment, we use a sequence of games. We denote by
Advij(A) the advantage of an adversary A in distinguishing between Gamei and
Gamej . More precisely, a challenger C flips a coin b ← {0, 1}. If b = 0 the chal-
lenger interacts with the adversary A as in Gamei while, if b = 1, it interacts as
in Gamej . At the end of the interaction, A outputs b′ ∈ {0, 1}. The advantage is
defined as Advij(A) :=

∣
∣Pr[b′ = b] − 1

2

∣
∣.

Game0: This is the real game in which the challenger generates the parameters
and interacts with the adversary as in the real experiment.

Game1: This game is exactly as the previous one except that the challenge
ciphertext is computed as follows: r ← U({0, 1, . . . , N/4}) is sampled and

c�
0 = gr mod N2, c�

i = (1 + x�
i N) · (c�

0)
si mod N2, for i ∈ [�]

This is possible since the challenger knows the secret key msk =
({si}�

i=1

)
.

Notice that Game0 is identical to Game1. So, Adv01(A) = 0.
Game2: In this game, we modify the computation of c�

0. In the challenge
phase, the challenger samples r ← U(ZN ′), where N ′ = p′q′, and com-
putes c�

0 := gr mod N2. By Lemma1, the statistical distance between
U({0, 1, 2, . . . , N/4}) mod N ′ and U(ZN ′) is < 1

p + 1
q , which is negligible.

Hence, Game1 and Game2 are statistically indistinguishable. More precisely,
we have Adv12(A) < 1/p + 1/q.

Game3: The game is like Game2, except that c�
0 is generated by sampling

t ←↩ U(Z∗
N2) and computing c�

0 := t2 mod N2. Under the DCR assumption,
Game2 and Game3 are computationally indistinguishable. Indeed, in Game2,
as long as g has order N ′, the distribution {gr | r ←↩ U(ZN ′)} is the uniform
distribution in the subgroup of 2N -th residues. The DCR assumption implies
that the latter distribution computationally indistinguishable from the distri-
bution {t2 mod N2 | t ←↩ U(Z∗

N2)}. Since a random 2N -th residue g generates
the entire subgroup of 2N -th residues with probability ϕ(N ′)

N ′ = 1− 1
p′ − 1

q′ + 1
N ′ ,

we obtain (

1 − 1
p′ − 1

q′ +
1

N ′

)

· Adv23(A) ≤ AdvDCR(B).
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Game4: In this game, we sample a ← U(Z∗
N ) and b ← U(ZN ′) and compute

c�
0 := (1 + aN) · gb mod N2. Observe that {t2 mod N2 | t ←↩ U(Z∗

N2)} is the
same as the distribution {(1+αN) ·gβ mod N2 | α ←↩ U(ZN ), β ←↩ U(ZN ′)}.
Therefore the statistical distance between the view of the adversary in Game3
and Game4 is bounded by Δ(a, α) < 1

p + 1
q . So, these games are statistically

indistinguishable and Adv34(A) < 1/p + 1/q.
Game5: This is the ideal experiment where the adversary interacts with the

simulator. Lemma6 shows that Game5 and Game4 are statistically indistin-
guishable, which yields the stated result.

Putting the above altogether, we obtain that a PPT adversary A that can
distinguish between the real and the ideal experiment implies an efficient DCR
distinguisher B such that

AdvReal-Ideal(A) = |Pr[1 ← ExpReal
A (1λ)] − Pr[1 ← ExpIdeal

A (1λ)]|

≤ N ′

ϕ(N ′)
· AdvDCR

B (1λ) +
2
p
+

2
q
+ 2−λ.

��
Lemma 6. The advantage of any distinguisher between Game4 and Game5 is
statistically negligible and Adv45(A) ≤ 2−λ.

Proof. In order to prove the claim, we simultaneously define Game′
4 and Game′

5

as follows. For each k ∈ {4, 5}, define Game′
k identically to Gamek except that,

at the outset of the game, the challenger samples Δx ←↩ U([−X̄, X̄]�), where
X̄ = X + � · (√�Y )�. Before generating the challenge ciphertext, the challenger
uses Corollary 1 to compute x̄ ∈ Z

� such that Ypre · x̄ = Ypre · x�, where Ypre is
the matrix obtained by stacking up the (linearly independent) transposed vectors
y� occurring in pre-challenge queries. If Δx = x� − x̄ (we call this event Guess),
the challenger proceeds as in Gamek. Otherwise, the challenger aborts the game
and replaces A’s output b′ by a random bit. We claim that any adversary A
that can distinguish between Game4 and Game5 with advantage Adv45(A) can
be used to distinguish between Game′

4 and Game′
5 with advantage

Adv′
45(A) =

1
(2X̄)�

· Adv45(A). (4.1)

Indeed, the probability that A outputs the correct bit b′ when distinguishing
between Game′

4 and Game′
5 is equal to

Pr[b′ = b] = Pr[b′ = b|Guess] · Pr[Guess] + Pr[b′ = b|Guess] · Pr[Guess]
which is equivalent to

Pr[b′ = b] − 1
2
=

(

Pr[b′ = b|Guess] − 1
2

)

· Pr[Guess]

By considering the equality in absolute value, we obtain (4.1).
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Next, we claim that Adv′
45(A) ≤ (2X̄)−� · 2−λ, which implies that Game4

and Game5 are indistinguishable. To see this, observe that, when Guess occurs,
Game′

5 is identical to a modification of Game′
4 where the master secret key has

been replaced by

s′
i = si − γ · Δxi ∈ Z, ∀i ∈ [�]

where γ = (a−1 mod N) · vN ′ mod NN ′ is determined by the Bézout coefficient
v for which uN + vN ′ = 1 (and thus vN ′ = 1 mod N) and the element a ∈ Z

∗
N

which used to compute c�
0 = (1 + aN) · gb mod N2 in the challenge ciphertext.

(Note that a and v can be chosen by the challenger at the beginning of the game,
so that we can define a game where the challenger uses {s′

i}i instead of {si}i).
With this new master secret key s′ = (s′

1, . . . , s
′
�), we have gsi = gs′

i mod N2

for all i ∈ [�] and 〈s,y〉 = 〈s′,y〉 for all pre-challenge queries y ∈ Z
�. We thus

obtain

Adv′
45(A) ≤ Δ(s′, s) ≤ (2X̄)−� · 2−λ,

where the last inequality follows from the fact that

Δ(s′, s) ≤
�∑

i=1

Δ(s′
i, si)

Lemma 2≤ � · ‖γ · Δx‖∞
2S

≤ NN ′ · X̄

2λ+� · X̄�−1 · N2
≤ (2X̄)−� · 2−λ.

��
The above DCR-based construction is stateless and evaluates inner products

over Z. In Sect. 5, we describe a generic construction of simulation-secure IPFE
with stateful key generation, which allows evaluating inner products modulo a
prime or a composite. This generic construction can be instantiated under the
DCR and LWE assumptions.

5 Adaptive Simulation-Based Security for Inner Products
Mod P from LWE

In this section we construct an adaptively simulation secure FE scheme
(AdSimIPFE) for inner products modulo some prime p. In more detail, the mes-
sages and keys are chosen from Z

�
p and the inner product is computed over Zp.

We denote our scheme by AdSimIPFE = (Setup,Keygen,Encrypt,Decrypt).
Our construction is based on the scheme of Agrawal et al. [8] for inner products
modulo a prime p satisfying adaptive indistinguishability from LWE. We denote
this scheme by IPFE = (IPFE.Setup, IPFE.Keygen, IPFE.Encrypt, IPFE.Decrypt),
and require it to support messages and keys of length L = 2�.

Our construction is generic except that it requires the underlying scheme
IPFE to satisfy the property that functional keys for vectors that are linearly
dependent on previously queried vectors may be computed as the linear com-
bination of previously returned keys. In more detail, say that sky ∈ Z

m.3

3 The precise ring in which sky lives is not important. We choose this to be Z for
concreteness and compatibility with [8].



Adaptive Simulation Security for Inner Product Functional Encryption 55

Say that the adversary queries vectors y1, . . . ,yk ∈ Z
�
p and then submits a

query y such that y =
∑

j∈[k]kj · yj (mod p),∀kj ∈ Zp. Then, the secret key
sky is computed as sky =

∑
j∈[k]kj · skyj

∈ Z
m. This property is satisfied by the

LWE-based construction that evaluates inner products over Zp in [8, Sec 4.2].
In the description hereunder, we assume that the modulus p is prime. How-

ever, the construction can also be applied to the Paillier-based construction of
[8, Section 5.2], which evaluates inner products over ZN . As a result, it provides
a simulation-secure IPFE with stateful key generation for inner products over
ZN , whereas our scheme in Sect. 4 is stateless but computes inner products over
Z. When we switch to composite moduli N = pq, we need to take into account
that ZN is not a field when the simulator has to solve a linear system over ZN

in order to compute a dummy message. Fortunately, inversion over ZN is always
possible with overwhelming probability when factoring N is hard.

5.1 Construction

Below, we provide our construction of AdSimIPFE.

Setup(1λ, 1�, p): Given the security parameter λ, the supported message and key
lengths � and a prime integer p, do the following:
1. Set L = 2� and obtain (IPFE.mpk, IPFE.msk) ← IPFE.Setup(1λ, 1L, p).
2. Output (mpk,msk) := (IPFE.mpk, IPFE.msk).

Keygen(msk,y, st): Given the msk, a vector y = (y1, . . . , y�)� ∈ Z
�
p to obtain a

key and an internal state st, do the following:
1. Parse the master secret key as msk = IPFE.msk.
2. The internal state st contains tuples

(
ŷj ,yj , skyj

, rj

)
for some j ∈ [�−1]

corresponding to (a subset of the) key queries made so far. If no queries
have been made before y, st is empty.

3. If |st|= i−1 for i ∈ [�−1] and y =
∑i−1

j=1 kj·yj (mod p) for some kj ∈ Zp,
j ∈ [i − 1], set ŷ =

∑i−1
j=1 kj · ŷj(mod p) and compute the secret key as

IPFE.skŷ ← IPFE.Keygen(IPFE.msk, ŷ). Set sky := IPFE.skŷ .
4. Else, if |st| = i − 1 for some i ∈ [� − 1], set yi = y. Then, construct

the extended vector ŷi = (yi, ei, ri) ∈ Z
L
p , where ei ∈ Z

�−1
p is the i-

th canonical vector and ri ← Zp is chosen uniformly at random. Next,
compute a secret key IPFE.skŷ i

← IPFE.Keygen(IPFE.msk, ŷi) and set
sky := IPFE.skŷ i

. Update the internal state as st ← st∪{(ŷi,yi, sky i
, ri)}.

5. Output the secret key sky .
Encrypt(mpk,x): Given the mpk and a message x = (x1, . . . , x�) ∈ Z

�
p to encrypt,

do the following:
1. Parse the master public key as mpk = IPFE.mpk.
2. Construct the extended vector x̂ = (x,0, 0) ∈ Z

L
p , where 0 ∈ Z

�−1
p is the

all-zeroes vector.
3. Compute a ciphertext IPFE.ct ← IPFE.Encrypt(IPFE.mpk, x̂).
4. Output the ciphertext c := IPFE.ct.
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Decrypt(mpk, sky , c): Given mpk, a secret key sky and a ciphertext c, do the
following:
1. Parse the secret key as sky = IPFE.skŷ and the ciphertext as c = IPFE.ct.
2. Compute and output z = IPFE.Decrypt(IPFE.skŷ , IPFE.ct).

Correctness. The correctness of AdSimIPFE is implied by the correctness of the
underlying IPFE scheme as follows. For a message vector x and the i-th linearly
independent vector y ∈ Z

�
p, let x̂ = (x,0, 0), ŷ = (y, ei, ri) ∈ Z

L
p . When y ∈ Z

�
p

is linearly dependent on the previously queried vectors {yj ∈ Z
�
p}j∈[i−1] for some

i ∈ [� − 1], we have ŷ =
∑i−1

j=1 kj · ŷj (mod p) =
∑i−1

j=1 kj · (
yj , ej , rj

)
(mod p).

The Decrypt algorithm takes mpk, sky = IPFE.skŷ and c = IPFE.ct as input,
where we have the following.

IPFE.skŷ ← IPFE.Keygen(IPFE.msk, ŷ)
IPFE.ct ← IPFE.Encrypt(IPFE.mpk, x̂)

Hence, the correctness of IPFE decryption algorithm forces the output to be
IPFE.Decrypt(IPFE.skŷ , IPFE.ct) = 〈x̂, ŷ〉 = 〈(x,0, 0), (y, ei, ri)〉 = 〈x,y〉 ∈ Zp

as desired.

Efficiency. The efficiency of AdSimIPFE is inherited from the efficiency of the
underlying IPFE scheme. The ciphertext and secret key sizes grow proportionally
to L = 2� = O(�).

5.2 Proof of Security for AdSimIPFE

Theorem 3. The AdSimIPFE scheme achieves adaptive simulation based secu-
rity, as long as the underlying IPFE scheme satisfies full adaptive indistinguisha-
bility based security.

Proof. We assume w.l.o.g. that A makes secret key queries for linearly inde-
pendent vectors only. In particular, we assume that A issues secret key queries
for Qpre independent vectors in the pre-challenge phase, which we denote by
ypre
1 , . . . ,ypre

Qpre
∈ Z

�
p while the i-th vector for the post-challenge independent

secret key query is denoted as ypost
i ∈ Z

�
p such that i ∈ [� − 1] \ [Qpre]. Note

that this simplification implies that there are no repetition in the key queries.
We denote by x� =(x�

1, . . . , x
�
� ) ∈ Z

�
p the message chosen by A in the challenge

phase.

The Simulator: To simulate the real world scheme, the simulator uses the fol-
lowing tuple of PPT algorithms: (Setup�,Keygen�

0,Encrypt
�,Keygen�

1). Note that
Keygen�

0 and Keygen�
1 denote the simulated key generation algorithms to answer

secret key queries in the pre-challenge and post-challenge phases respectively.
The simulator then proceeds as follows.
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Setup�(1λ, 1�, p): This algorithm is identical to Setup except that the simulator
also samples ri ← Zp for all i ∈ [�−1] and maintains the internal state as the
set of tuples st� = {(·, ·, ·, ri)}i∈[�−1]. In particular, it outputs the key pair as
(mpk�,msk�) := (IPFE.mpk, IPFE.msk) while keeping st� to itself.

Keygen�
0(msk�,ypre, st�): This algorithm runs almost identical to Keygen. In

particular, on input a pre-challenge vector ypre, it does the following:
1. The internal state st� contains tuples

(
ŷpre

j ,ypre
j , sky pre

j
, rj

)
for some j ∈

[� − 1] corresponding to (a subset of the) key queries made so far. If no
query has been made before ypre, st� is empty.

2. If |st| = i − 1 for some i ∈ [� − 1], set ypre
i = ypre. Then, construct the

extended vector ŷpre
i = (ypre

i , ei, ri) ∈ Z
L
p . Next, compute a secret key

IPFE.skŷ pre
i

← IPFE.Keygen(IPFE.msk, ŷpre
i ) and set sky pre

i
:= IPFE.skŷ pre

i
.

Update the internal state as st� ←
(
st�∪{

(ŷpre
i ,ypre

i , sky pre
i

, ri)
}) \

{
(·, ·, ·, ri)

}
.

3. Output the simulated secret key as sky pre
i

.
Encrypt�(mpk�,msk�,V, {1|x�

i |}�
i=1, st

�): This algorithm takes mpk� = IPFE.mpk,
msk�, the lengths {1|x�

i |}i∈[�] of all coordinates of the challenge message x�

as input, the internal state st� and a set

V =
{(

ypre
j , zprej = 〈x�,ypre

j 〉, sky pre
j

)

j∈[Qpre]

}

containing all pre-challenge independent queries {ypre
j }j∈[Qpre], the returned

keys and the corresponding linear function evaluations {zprej =
〈x�,ypre

j 〉}j∈[Qpre] for the challenge message x�. The challenge ciphertext c� is
simulated as follows.
1. Letting zpre = (zpre1 , . . . , zpreQpre

)� ∈ Z
Qpre
p , it computes an arbitrary solution

x̄ = (x̄1, . . . , x̄�)� ∈ Z
�
p of the system Ypre · x̄ = zpre (mod p), where

Ypre =
[
ypre
1 || . . . ||ypre

Qpre

]� ∈ Z
Qpre×�
p .

Note that x̄ can be obtained via Gaussian elimination over Zp.
2. Construct the extended message vector ̂̄x = (x̄,−r, 1) ∈ Z

L
p , where r =

(r1, . . . , r�−1) ∈ Z
�−1
p .4

3. Compute a ciphertext IPFE.ct ← IPFE.Encrypt(IPFE.mpk, ̂̄x).
4. Output the simulated ciphertext c∗ := IPFE.ct.

Keygen�
1(msk�,ypost

i , zposti , st�): On input a post-challenge vector ypost
i ∈ Z

�
p,

where i ∈ {Qpre+1, . . . , �−1}, the linear function evaluation zposti = 〈x�,ypost
i 〉

for the challenge message x� ∈ Z
�
p and internal state st�, it does the following:

1. The internal state st� now contains Qpre tuples of the form(
ŷpre

j ,ypre
j , sky pre

j
, rj

)
and tuples of the form

(
ŷpost

k ,ypost
k , sky post

k
, rk

)
for

4For readability, we denote −r =(−r1, . . . , −r�−1) = r′ ∈ Z
�−1
p such that r + r′ =

0 mod p.
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some k ∈ [� − 1] \ [Qpre] corresponding to (a subset of the) post-
challenge key queries made so far. If i = Qpre + 1, then st� ={(

ŷpre
j ,ypre

j , sky pre
j

, rj

)

j∈[Qpre]
, (·, ·, ·, rk)k∈[�−1]\[Qpre]

}
.

2. Construct the extended vector ŷpost
i = (ypost

i , ei,Δi + ri), where
ei ∈ Z

�−1
p is the i-th canonical vector, and Δi = zposti − 〈x̄,ypost

i 〉.
Next, compute a secret key IPFE.skŷ post

i
← IPFE.Keygen(IPFE.msk, ŷpost

i )
and set sky post

i
:= IPFE.skŷ post

i
. Update the internal state as st� ←

(
st� ∪

{(
ŷpost

i ,ypost
i , sky post

i
, ri

) })
\ {

(·, ·, ·, ri)
}
.

3. Output the simulated secret key as sky post
i

.

The Hybrids. We now prove that the simulation is computationally indistin-
guishable from the real experiment assuming full indistinguishability of IPFE.
The proof proceeds via a sequence of games (Game0,Game1,Game2,Game3).
Game0 describes the interaction between the challenger and the adversary as in
real experiment ExpReal

AdSimIPFE,A(1λ) while Game3 describes the same as in the
ideal experiment ExpIdeal

AdSimIPFE,A(1λ).
In the following, let Ei denote the event that A wins in Gamei. To prove

the result, we will show that Pr[E0] = Pr[E1] = Pr[E2] and |Pr[E2] − Pr[E3]| ≤
negl(λ), which implies |Pr[E0] − Pr[E3]| ≤ negl(λ).

Game0: In this game the challenger interacts with the adversary as in the real
experiment.

Game1: In this game the setup phase is modified as follows. Beside computing
(mpk,msk) as in the real experiment, the challenger now also precomputes
ri ← Zp,∀i ∈ [� − 1] for answering at most � − 1 linearly independent key
queries as well as the challenge ciphertext query. It maintains an internal
state st� = {(·, ·, ·, ri)}i∈[�−1].

Game2: In this game the challenger changes the way the post-challenge keys are
generated. It generates the pre-challenge keys as in Game1 with the precom-
puted randomness in st�. It also generates the challenge ciphertext as before.
As for post-challenge queries, they are answered as follows.
1. The challenger first computes x̄ ∈ Z

�
p that is consistent with the Qpre key

vectors it encountered in the pre-challenge phase. In particular, letting
zpre = (zpre1 , . . . , zpreQpre

)� ∈ Z
Qpre
p corresponding to the function evaluations

{zprej }j∈[Qpre] on pre-challenge keys, it computes x̄ ∈ Z
�
p such that

Ypre · x̄ = zpre(mod p), where Ypre =
[
ypre
1 || . . . ||ypre

Qpre

]� ∈ Z
Qpre×�
p .

2. For all i ∈ [� − 1] \ [Qpre], the i-th post-challenge vector ypost
i is now

extended as ŷpost
i = (ypost

i , ei,Δi + ri), where Δi = zposti − 〈x̄,ypost
i 〉.

3. The secret key is computed as IPFE.skŷ post
i

← IPFE.Keygen(IPFE.

msk, ŷpost
i ).
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4. The internal state is updated as

st� ←
(
st� ∪

{ (
ŷpost

i ,ypost
i , sky post

i
, ri

)})
\ {

(·, ·, ·, ri)
}
.

Game3: In this game the challenger computes everything as before in Game2
except that the challenge ciphertext is modified as follows. Instead of encrypt-
ing the extended message x̂� = (x�,0, 0), the challenger now encrypts
̂̄x = (x̄,−r, 1) to compute c� := IPFE.ct ← IPFE.Encrypt(IPFE.mpk, ̂̄x).

We now prove the following lemmas in order to complete the proof.

Lemma 7. We have Pr[E0] = Pr[E1].

Proof. The change introduced here is only conceptual, where for all i ∈ [� − 1],
the randomness ri ∈ Zp are precomputed in the setup phase. Thus, the lemma
follows trivially. ��
Lemma 8. We have Pr[E1] = Pr[E2].

Proof. We note that Game2 only differs from Game1 in the treatment of post-
challenge queries. Specifically, the simulator B simulates A’s view in the two
games as follows.

1. On input (1λ, 1�, p) from A, B sets L = 2� and computes IPFE.Setup(1λ, 1L, p)
to obtain (IPFE.mpk, IPFE.msk). It sets (mpk,msk) = (IPFE.mpk, IPFE.msk),
computes ri ← Zp, for all i ∈ [� − 1] to maintain its internal state as st� =
{(·, ·, ·, ri)}i∈[�−1]. Finally, it sends mpk to A.

2. When A requests a pre-challenge key for ypre
i , B first computes the extended

vector ŷpre
i = (ypre

i , ei, ri) ∈ Z
L
p , where ei ∈ Z

�−1
p is the i-th canon-

ical vector. Using msk = IPFE.msk, it then obtains a secret key for
ŷpre

i as IPFE.skŷ pre
i

← IPFE.Keygen(IPFE.msk, ŷpre
i ). B then updates st� ←

(
st� ∪ {

(ŷpre
i ,ypre

i , sky pre
i

, ri)
})

\{
(·, ·, ·, ri)

}
, sets sky pre

i
= IPFE.skŷ pre

i
and sends

sky pre
i

to A.
3. When A requests a challenge ciphertext for a message x� ∈ Z

�
p, B first

computes an extended message x̂� = (x�,0, 0) ∈ Z
L
p , where 0 ∈ Z

�−1
p is

the all-zero vector. Using mpk = IPFE.mpk, it then obtains a ciphertext as
IPFE.ct ← IPFE.Encrypt(IPFE.mpk, x̂�), sets c� = IPFE.ct and sends c� to A.

4. In the post-challenge phase, when A queries a key for a vector ypost
i ∈ Z

�
p,

with i ∈ [� − 1] \ [Qpre], for which the corresponding function evaluation is
zposti = 〈x�,ypost

i 〉, the challenger B responds as follows:
– To simulate A’s view in Game1, B computes the extended vector ŷpost

i =
(ypost

i , ei, ri).
– To simulate A’s view in Game2, B first computes x̄ ∈ Z

�
p as described

in Game2 such that x̄ is consistent the Qpre pre-challenge key vectors. It
then extends the vector ypost

i as ŷpost
i = (ypost

i , ei,Δi + ri), where Δi =
〈x� − x̄,ypost

i 〉.



60 S. Agrawal et al.

Using msk = IPFE.msk, B obtains a secret key for ŷpost
i as IPFE.skŷ post

i
←

IPFE.Keygen(IPFE.msk, ŷpost
i ) and sets sky post

i
= IPFE.skŷ post

i
. It then updates

its internal state as st� ←
(
st� ∪ {

(ŷpost
i ,ypost

i , sky post
i

, ri)
})

\ {
(·, ·, ·, ri)

}
and

sends sky post
i

to A.

Recall that the only change between the two games is the way post-challenge
keys are generated. In particular, the last co-ordinate of the i-th post-challenge
key vector is set to ri in Game1 while it is set to (ri +Δi) in Game2. Note that
each ri is chosen uniformly in Zp in the setup phase and is unique for each post
challenge key query i ∈ [� − 1] \ [Qpre]. Hence, the computation ri + Δi being
done modulo p, it follows that the two distributions {ri | ri ← Zp}i∈[�−1]\[Qpre]

and {ri + Δi | ri ← Zp,Δi ∈ Zp}i∈[�−1]\[Qpre] are perfectly indistinguishable.
Further, any post-challenge key sky post in Game2 always correctly decrypts

any honestly generated ciphertext because such a ciphertext contains 0 ∈ Z
�
p in

its extended slots, which nullifies the extended slots of the keys. The two games
are thus perfectly indistinguishable, which implies Pr[E1] = Pr[E2]. ��
Lemma 9. We have |Pr[E2] − Pr[E3]| ≤ negl(λ).

Proof. Let us assume that |Pr[E2] − Pr[E3]| is non-negligible. We then construct
an adversary B that breaks the indistinguishability-based security of the under-
lying IPFE scheme as follows:

1. On input (1λ, 1�, p) from A, B sets L = 2� and relays (1λ, 1L, p) to the IPFE
challenger. Upon receiving IPFE.mpk, it sets mpk� = IPFE.mpk and randomly
chooses ri ← Zp for all i ∈ [� − 1] to maintain the internal state as st� =
{(·, ·, ·, ri)}i∈[�−1]. It sends mpk� to A.

2. When A requests a pre-challenge key for ypre
i , B computes the extended vector

ŷpre
i = (ypre

i , ei, ri) ∈ Z
L
p , where ei ∈ Z

�−1
p is the i-th canonical vector. It then

queries the IPFE challenger with ŷpre
i for a secret key and receives IPFE.skŷ pre

i
.

Then, B updates st� ←
(
st� ∪ {

(ŷpre
i ,ypre

i , sky pre
i

, ri)
})

\ {
(·, ·, ·, ri)

}
, sets

sky pre
i

= IPFE.skŷ pre
i

and sends sky pre
i

to A.
3. When A requests a challenge ciphertext, B sets zpre = (zpre1 , . . . , zpreQpre

)� ∈
Z

Qpre
p and then computes an arbitrary solution x̄ = (x̄1, . . . , x̄�)� ∈ Z

�
p of the

linear system Ypre · x̄ = zpre(mod p), where

Ypre =
[
ypre
1 || . . . ||ypre

Qpre

]� ∈ Z
Qpre×�
p .

Next, it constructs the extended message vector ̂̄x = (x̄,−r, 1) ∈ Z
L
p , where

r = (r1, . . . , r�−1) ∈ Z
�−1
p to output x0 = (x�,0, 0) ∈ Z

L
p and x1 = ̂̄x as

the pair of challenge messages to the IPFE challenger. The latter returns a
challenge ciphertext IPFE.ct and B sets c� = IPFE.ct, which is returned to A.

4. When A requests for a post-challenge key for ypost
i ∈ Z

�
p, i ∈ [� − 1] \ [Qpre]

with its corresponding function evaluation zposti , B computes Δi = zposti −
〈x̄,ypost

i 〉 and the extended vector ŷpost
i = (ypost

i , ei,Δi + ri). It then queries
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the IPFE challenger with ŷpost
i for a secret key and receives IPFE.skŷ post

i
. Then,

B updates

st� ←
(
st� ∪

{ (
ŷpost

i ,ypost
i , sky post

i
, ri

)})
\ {

(·, ·, ·, ri)
}
,

sets sky post
i

= IPFE.skŷ post
i

and sends sky post
i

to A.
5. B outputs the same bit as A.

Note that the ciphertext c� encodes the message x0 = (x�,0, 0) ∈ Z
L
p in Game2

and x1= ̂̄x = (x̄,−r, 1)∈ Z
L
p in Game3. The message x̄ in both games is com-

puted maintaining the consistency with all the pre-challenge keys {sky pre
i

}i∈[Qpre].
Thus, upon decryption of c�, it yields 〈x0, ŷ

pre
i 〉 = 〈x�,ypre

i 〉 = zpre (mod p) in
Game2 as well as 〈x1, ŷ

pre
i 〉 = 〈x̄,ypre

i 〉 + 〈−r, ei〉 + ri = zpre (mod p) in Game3
as required. Further, note that in both games, for each i ∈ [�−1]\ [Qpre], the i-th
post-challenge key sky post

i
is a secret key for the vector ŷpost

i = (ypost
i , ei,Δi + ri),

where

Δi = zposti − 〈x̄,ypost
i 〉,

which implies Δi + 〈x̄,ypost
i 〉 = zposti . Hence, upon decrypting c�, we have

〈x0, ŷ
post
i 〉 = 〈x�,ypost

i 〉 + 〈0, ei〉 + 0 · (Δi + ri) = zposti (mod p),

in Game2, and

〈x1, ŷ
post
i 〉 = 〈x̄,ypost

i 〉 + 〈−r, ei〉 + 1 · (Δi + ri) = zposti (mod p)

in Game3, as required. This proves that B is an admissible IPFE adversary in the
indistinguishability-based security game. If the IPFE challenger returned a chal-
lenge ciphertext for the vector x0, A’s view is as in Game2. Otherwise, A’s view is
the same as in Game3. Consequently, B breaks the adaptive indistinguishability-
based security of the scheme if A can distinguish between the two games with
noticeable advantage. ��
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Abstract. In the standard setting of functional encryption (FE), we
assume both the Central Authority (CA) and the encryptors to run their
respective algorithms faithfully. Badrinarayanan et al. [ASIACRYPT
2016] proposed the concept of verifiable FE, which essentially guarantees
that dishonest encryptors and authorities, even when colluding together,
are not able to generate ciphertexts and tokens that give “inconsistent”
results. They also provide a compiler turning any perfectly correct FE
into a verifiable FE, but do not give efficient constructions.

In this paper we improve on this situation by considering Inner-
Product Encryption (IPE), which is a special case of functional encryp-
tion and a primitive that has attracted wide interest from both prac-
titioners and researchers in the last decade. Specifically, we construct
the first efficient verifiable IPE (VIPE) scheme according to the inner-
product functionality of Katz, Sahai and Waters [EUROCRYPT 2008].
To instantiate the general construction of Badrinarayanan et al. we need
to solve several additional challenges. In particular, we construct the first
efficient perfectly correct IPE scheme. Our VIPE satisfies unconditional
verifiability, whereas its privacy relies on the DLin assumption.

Keywords: Inner-product encryption · Verifiability · Functional
commitments

1 Introduction

Functional encryption (FE) is a new encryption paradigm that was first pro-
posed by Sahai and Waters [23] and formalized by Boneh, Sahai and Waters [7].
Informally, in an FE system, a decryption key allows a user to learn a func-
tion of the original message. More specifically, in a FE scheme for functionality
F : K ×M → CT , defined over key space K, message space M and output space
CT , for every key k ∈ K, the owner of the master secret key MSK associated with
master public key MPK can generate a token Tokk that allows the computation
of F (k,m) from a ciphertext of x computed under the master public key MPK.
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A notable special case of FE is that of inner product encryption (IPE). In IPE
[8,18,19,21,22] the message is a pair (m,x), with m ∈ M, the payloadmessage and
x is an attribute vector in the set Σ and the token is associated with a vector v ∈ Σ.
The functionality is F (v, (m,x)) = fv (x,m) which returns m if 〈x,v〉 = 0 (i.e,.
the two vectors are orthogonal) or ⊥ otherwise. IPE is a generalization of Identity-
Based Encryption [6,9,24] and Anonymous Identity-Based Encryption [1,5], and
has been the subject of extensive studies in the last decade.

In FE and IPE, the encryptors and the Central Authority (CA) that gener-
ate the tokens are assumed to be honest. Indeed, as noticed by Badrinarayanan
et al. in presence of any dishonest party (that is, either the party that gener-
ates the token or the party who encrypts the message), the decryption outputs
may be inconsistent and this raises serious issues in practical applications (e.g.,
auditing). For instance, a dishonest authority might be able to generate a faulty
token Tokv for a vector v such that Tokv enables the owner to decrypt a cipher-
text for a vector x that is not orthogonal to v. Or a dishonest encryptor might
generate a faulty ciphertext that decrypts to an incorrect result with an hon-
estly computed token. These issues are particularly severe in the applications to
functional commitments that we will see later.

Verifiable Inner Product Encryption (VIPE) overcomes those limitations by
adding strong verifiability guarantees to IPE. VIPE is a special case of Verifiable
Functional Encryption (VFE), firstly proposed by Badrinarayanan et al. [2] for
general functionalities. Informally speaking, in VIPE there are public verifica-
tion algorithms to verify that the output of the setup, encryption and token
generation algorithms are computed honestly. Intuitively, if the master public
key MPK and a ciphertext CT pass a public verification test, it means there
exists some message m and a unique vector x – up to parallelism – such that
for all vectors v, if a token Tokv for v is accepted by the verification algorithm
then the following holds:

∀v : Dec(Tokv ,CT) = fv (x,m)

The main component we employ for constructing a VIPE scheme is an IPE
scheme. However, it is worth mentioning that most IPE schemes cannot be made
verifiable following the general compiler of Badrinarayanan et al. because this
compiler requires the IPE scheme to have perfect correctness. We will later
discuss in depth why this property is crucial in constructing VIPE.

1.1 Our Results and Applications

Our Contribution. In this paper we construct an efficient VIPE scheme from
bilinear maps. Towards this goal, we build a perfectly correct IPE scheme that
may be of independent interest. To our knowledge, all IPE schemes known in
literature do not satisfy perfect correctness. Our perfectly correct IPE scheme is
based on standard assumptions over bilinear groups.

We assume the reader to be familiar with the construction of Badrinarayanan
et al. [2] that transforms a generic perfectly correct FE scheme to a VFE scheme for
the same functionality. They employ four duplicates of the underlying FE scheme
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adding NIWI proofs for verifiabilty with trapdoor statements to ensure privacy.
We will use this transform explicitly in Sect. 4. This transform, for the case of the
inner-product functionality of [18], requires a perfectly correct IPE scheme and
non-interactive witness-indistinguishable (NIWI) proofs for the relations we will
define in Sect. 5. Therefore, constructing an efficient VIPE scheme boils down to
building an efficient perfectly correct IPE scheme and efficient NIWI proofs for
specific relations. The rest of the paper is devoted to achieving these goals.

Motivating Applications. IPE has numerous applications, including Anony-
mous Identity-Based Encryption [5], Hidden-Vector Encryption [8], and pred-
icate encryption schemes supporting polynomial evaluation [18]. As shown by
Badrinarayanan et al. [2], making FE schemes verifiable enables more powerful
applications. As an example, in this section we show that VIPE can be used to
construct what we call polynomial commitment scheme which corresponds to a
functional commitment of Badrinarayanan et al. for the polynomial evaluation
predicate. The same construction can easily be adapted to construct functional
commitments for the inner-product predicate.

Perfectly Binding Polynomial Commitments. Using a polynomial commitment
scheme (see also [17]), Alice may publish a commitment to a polynomial poly(x)
with coefficients in Zp. If later Bob wants to know poly(m) for some value m,
that is the evaluation of the polynomial at some point, he sends m to Alice
who replies with the claimed evaluation y and a proof that y = poly(m). The
proof guarantees that the claimed evaluation is consistent with the committed
polynomial. We require the scheme to be perfectly binding.

We construct a polynomial commitment scheme for polynomials of degree
at most d from a VIPE scheme for vectors of dimension d + 2 in the following
way. Let VIP = 〈VIP.SetUp,VIP.TokGen,VIP.Enc,VIP.Dec〉 be a VIPE scheme.
We define the following algorithms:

• Commitment Phase: To commit to a polynomial poly(x) = adx
d+ad−1x

d−1+
. . . + a1x + a0 ∈ Zp[X], run VIP.SetUp(1λ, d + 2) to generate (MPK,MSK),
compute the attribute x := (ad, ad−1, . . . , a1, a0, 1) ∈ Z

d+2
p and ciphertext

CT → VIP.Enc(MPK,x), and output the commitment := (MPK,CT).
• Opening phase: In this phase, a party requests a query (m, y) to check if

the commitment corresponds to a polynomial poly such that poly(m) =
y. The Committer runs the token-generator algorithm of VIP for vector
v := (md,md−1, . . . , m, 1,−y) and sends Tokv as the opening. Note that
〈x,v〉 = adm

d + ad−1m
d−1 + . . . + a1m + a0 − y = poly(m) − y, therefore

VIP.Dec(CT,Tokv ) = 0 iff poly(m) = y.

It is straightforward to see that the above algorithms form a functional commit-
ment (in the sense of [2]) for the polynomial evaluation predicate. We refer the
reader to [2] for more details on functional commitments.

1.2 Technical Overview

To instantiate the transform of Badrinarayanan et al. we need to build an IPE
scheme with perfect correctness. Our starting point to construct a perfectly
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correct IPE scheme is the IPE scheme of Park [22] which only enjoys statistical
correctness. The reason for choosing this IPE is that it is conceptually simple and
its security is based on standard assumptions over bilinear groups. However, to
make the Park’s scheme compatible with the Badrinarayanan et al.’s transform
we need to solve several technical challenges, in particular:

i. The master public key needs to be verifiable.
ii. The scheme has to satisfy perfect correctness.

This requires substantial modification of all main algorithms: setup, token gen-
eration, encryption and decryption.

Verification of Algorithm Outputs. A VIPE scheme requires public verification
algorithms that can verify the outputs of the setup, encryption and token genera-
tion algorithms, in particular check whether these algorithms were run honestly.
In more detail, if any string (master public key, ciphertext or token) passes the
corresponding verification algorithm, it means it was a proper output of the cor-
responding algorithm (setup, encryption or token generation). Each party who
runs the setup, encryption or token generation algorithm needs to provide a proof
that it executed the algorithm honestly without revealing harmful information
about the secret parameters or the randomness used in the algorithm.

Usually non-interactive Zero-Knowledge (NIZK) proofs are used in this con-
text. Unfortunately, NIZK proofs cannot used for verifiable FE as they rely
on a trusted CRS (Common Reference String) or random oracles and we aim
at perfect verifiability which has to hold despite any collusion and computing
power. The transform of Badrinarayanan et al. solves the issue by employing
NIWI-proofs in a clever way.

Following the transform of [2], our VIPE consists of four instances of an IPE
scheme. In the VIPE’s encryption algorithm we first run the IPE’s encryption
algorithm four times to generate four ciphertexts and then we prove that all these
four ciphertexts are the encryption of the same message or that some other trap-
door predicate is satisfied (the latter is needed for message indistinguishability
and will be detailed later).

For the sake of argument, let us assume the VIPE scheme consists only
of two (instead of four) parallel perfectly correct IPE scheme instantiations IP

and ÎP. The master public key of the Park’s scheme [22] contains a component
Λ = e(g, g′) in which g is public but g′ needs to be kept secret. An honestly
computed ciphertext CT in IP includes ct1 = g−s and ct7 = Λ−s · m among
its components (we here ignore the other components). We first provide proof
that CT (resp. ĈT in ÎP) is well-formed. Then we need to prove that the two
ciphertexts are both encryptions of the same message M (i.e., m = ˆm = M).
We reduce the problem to proving that the following property holds:

ct7
ĉt7

=
e(g, g′)−s · m

e(ĝ, ĝ′)−ŝ · m̂
=

e(ĉt1, ĝ′)
e(ct1, g′)

=
e(ĝŝ, ĝ′)
e(gs, g′)

However, since g′ and ĝ′ are not public, the party who runs the encryption
algorithm would be unable to prove this property. We solve this issue in the
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following way: We add to the master public key of IP two elements g1, g2 (and
ĝ1, ĝ2 for ÎP) satisfying Λ = e(g, g′) = e(g1, g2), Λ̂ = e(ĝ, ĝ′) = e(ĝ1, ĝ2). Then,
we add the following equations for the new secret variables X3 = gs

1, X̂3 = ĝŝ
1:

ct−1
7 · ĉt7 = e(X3, g2) · e(X̂3, ĝ2)−1, e(g,X3) = e(ct1, g1),e(ĝ, X̂3) = e(ĉt1, ĝ1)

It is easy to see that these equations are satisfied iff m = m̂, and now they can
be proven by the encryptor. Having modified Park’s scheme, we thus have to
prove that the modified scheme is IND-secure. This is done in Sect. 3.1 in which
we reduce the IND-Security of the scheme to the Decision Linear assumption.

Achieving Perfect Correctness. For the Badrinarayanan et al.’s transform to
work, it is crucial that the underlying IPE scheme have perfect correctness. If the
IPE scheme had a negligible probability of decryption error rather than perfect
correctness, then dishonest parties might collude with each other so that invalid
results would be accepted by the verification algorithms. Contrast this with the
aforementioned functional commitments. In the latter primitive, the committer
is the same party who generates the ciphertext (the commitment) and the token
(the decommitment) and thus might profit from a negligible space of decryp-
tion error to prove false assertions on its committed value. To our knowledge,
all IPE schemes1 known in the literature have a negligible probability of error
which makes cheating possible and so not directly usable to construct verifiable
functional encryption and functional commitments for the IPE functionality.

In more detail, in most pairing-based IPE schemes the encryption and decryp-
tion algorithms work as follows:

Enc(MPK,x,m) → CT, Dec(Tokv ,CT) → m∗ = m · (r)〈x,v〉,

in which r is some random value that depends on the randomness used by the
token generator and encryption algorithms. Thus, even in case of honest parties,
there is a negligible probability that r = 1 and so, even if 〈x,v〉 �= 0, the
decryption algorithm may output a valid message m instead of ⊥.

In case of dishonest parties, it may happen that two parties (the encryptor
and the token generator) collude with each other to create randomness such
that r equals 1. In this case, the parties would be able to provide valid proofs
of the fact that they followed the protocol correctly and invalid results would
pass the verification algorithms. A similar problem also appears in the context
of MPC in the head [16], where the soundness of the ZK protocol built from
MPC strongly relies on the perfect correctness of the underlying MPC. To cope
with statistical correctness in MPC in the head, a coin tossing protocol can be
employed, while in a completely non-interactive scenario like ours this is more
challenging. Hence, to obtain a VIPE scheme it is crucial to construct an IPE
scheme satisfying perfect correctness.

Recall that the decryption algorithm in the IPE scheme of Park [22] works
as follows:

Dec(Tokv ,CT = Enc(x,m)) −→ m∗ = m · e(g, h)(λ1s3+λ2s4)〈x,v〉

1 Recall that we refer to the IPE functionality of Katz, Sahai and Waters [18].
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in which λ1, λ2 are random values used in the token generation algorithm and
s3, s4 are random values used in the encryption algorithm. To decide whether
to accept the output of the decryption or not, the first attempt would be the
following. Generate two ciphertexts ct, ct′ with two independent random values
{si}, {s′

i}, decrypt both ct and ct′ to get M and M ′ and if M = M ′ accept the
result, or output ⊥ otherwise. In more detail:

M = m · e(h, g)(λ1s3+s4λ2)〈x,v〉,M ′ = m · e(h, g)(λ1s′
3+s′

4λ2)〈x,v〉

However, in case 〈x,v〉 �= 0 there is non-zero probability for which:

λ1s3 + s4λ2 = λ1s
′
3 + λ2s

′
4 �= 0 ⇒ M = M ′ �= m

To avoid this issue, we choose the random values in such a way that the above
equality can never occur. To do so, in the encryption algorithm we choose non-
zero random values s1, . . . , s4 and s′

1, . . . , s
′
4 such that s3 �= s′

3, and s4 = s′
4. In

this case, we have:

λ1s3 + s4λ2 = λ1s
′
3 + λ2s4 ⇒ λ1(s3 − s′

3) = 0 ⇒ (λ1 = 0) ∨ (s3 = s′
3)

Based on the way λ1, s3, s
′
3 have been chosen, neither (λ1 = 0) nor (s3 = s′

3)
may happen, hence the decryption algorithm outputs m if and only if 〈x,v〉 = 0.
The resulting IPE scheme satisfies perfect correctness as wished and we prove
that it is still selectively indistinguishability-secure under the DLin Assumption.
When constructing a VIPE scheme from such IPE scheme, these additional con-
straints in the encryption and token generation procedures will correspond to
more constraints in the proofs of correct encryption and token generation.

Furthermore, an additional challenge we will have to address is that some of
the proofs in the Badrinarayanan et al. transform are for relations that consist
of a generalized form of disjunction and thus standard techniques to implement
disjunctions for GS proofs cannot be directly applied, see Sect. 5.1.

1.3 Related Work and Comparison

Verifiable functional encryption has been introduced by Badrinarayanan et al.
[2], who provide a construction for general functionalities.

Recently, [3] introduced a new FE scheme that supports an extension of
the inner-product functionality. The scheme is perfectly correct assuming the
message space to be short. However, notice that when employing the scheme in
order to construct an IPE scheme (according to the functionality of Katz, Sahai
and Waters [18]) the perfect correctness is lost. In essence, the IPE constructed
from the scheme in [3] would encrypt some additional random value r so that
the decryption would return the value m + r · 〈x,v〉. In this way, if the vectors
x and v are orthogonal then the payload message m is obtained, otherwise a
random value is returned.

As corollary of our VIPE, we obtain functional commitments (in the sense
of [2]) for the polynomial evaluation and inner-product predicate. A similar form
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of commitments has been proposed by Libert et al. [20] but differs from ours
in different aspects. In the Libert et al.’s scheme, the decommitter reveals the
evaluations of the inner-product of the committed vector with any vector of
its choice, whereas in ours just the binary value of the inner-product predicate
(i.e whether the two vectors are orthogonal or not) is leaked. Our functional
commitments are perfectly binding rather than computational binding as in
Libert et al. Moreover, ours are not based on any trust assumption, whereas
in [20] the generator of the public-key can completely break the binding property.

Tang and Ji [26] constructed an Attribute-based Encryption scheme that
enjoys a weaker form of verifiability limited to the secret keys.

Roadmap. In Sect. 2 we provide the building blocks and the basic terminology
used in this paper. In Sect. 3 we construct our perfectly correct IPE scheme
and prove its security based on the Decisional Bilinear Diffie-Hellman and DLin
assumptions. In Sect. 4 we define VIPE and present one candidate construction
built on perfectly correct IPE and the NIWI proofs of Sect. 5.

2 Preliminaries

Notation. Throughout the paper, we use λ ∈ N as a security parameter. For any
integer n > 0, we denote by [n] the set {1, . . . , n}. PPT stands for probabilistic
polynomial time algorithm and negl(λ) denotes a negligible function in λ.

2.1 Building Blocks

Definition 1 (Bilinear group [6]). A bilinear group consists of a pair of
groups G and GT of prime order p with a map e : G × G → GT satisfying:

1. Bilinearity: for all a, b ∈ Z, e(ga, gb) = e(g, g)ab for any g ∈ G.
2. Non-degeneracy: e(g, g) �= 1GT

for any g ∈ G.
3. Efficiency: there exists an efficient algorithm to compute the map.

Definition 2 (NIWI). A non-interactive witness indistinguishable proof sys-
tem (NIWI) is a pair of PPT algorithms 〈P,V〉 for a NP-relation RL satisfying
the following properties:

1. Completeness: for all (x,w) ∈ RL,Pr [ V(x, π) = 1 | π ←− P(x,w) ] = 1.
2. Perfect soundness: for every x /∈ L and π ∈ {0, 1}∗, Pr [V(x, π) = 1 ] = 0.
3. Witness indistinguishability: for any sequence {(xn, w1,n, w2,n)}n∈N, which

xn ∈ {0, 1}n, w1,n, w2,n ∈ RL(xn), the following holds:
n ∈ N : {π1,n| π1,n ← P(xn, w1,n)}n ≈c {π2,n| π2,n ← P(xn, w2,n)}n.

Groth and Sahai (GS) [14] provide NIWI systems for the satisfiability of what
they call “Pairing Products Equations” that can be used to instantiate the
relations needed in our VIPE construction (cf. Construction 7). Using the tech-
niques of [13], such proofs may be made perfectly sound.
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IPE Scheme: For any n > 0, let Σn be a set of vectors of length n defined over
some field and let M be a message space. For any vector v ∈ Σn, the function
fv : Σn × M → M ∪ {⊥} is

fv (x,m) =

{
m If 〈x,v〉 = 0
⊥ If 〈x,v〉 �= 0

.

Both M, n and the field size can depend on the security parameter λ but for
simplicity hereafter we will skip this detail. IPE can be seen as a FE scheme for
the previous functionality. More concretely, an IPE scheme is defined as follows.

Definition 3 (IPE Scheme). An IPE scheme IP for a message space M and
for a family of sets Σ = {Σn}n>0 consisting of sets of vectors of length n over
some field is a tuple of four PPT algorithms IP = {IP.SetUp, IP.TokGen, IP.Enc,
IP.Dec} with the following syntax and satisfying the correctness property below.

• IP.SetUp(1λ, n) −→ (MPK,MSK): the setup algorithm, on input the security
parameter λ and the vector length n, generates master public key MPK and
master secret key MSK for that parameter.

• IP.TokGen(MPK,MSK,v) −→ Tokv : on input master keys and vector v ∈ Σn,
the token generation algorithm generates the token Tokv .

• IP.Enc(MPK,−→x ,m) −→ CT: the encryption algorithm encrypts message m ∈
M and vector x ∈ Σn under the master public key.

• IP.Dec(MPK,Tokv ,CT) −→ m′ ∈ M ∪ {⊥}.
• Perfect correctness: IP is perfectly correct if for all λ, n > 0,x,v ∈ Σn and

all m ∈ M the following holds:

Pr

⎡
⎣ IP.Dec(MPK,Tokv ,CT)

= fv (x,m) |
(MPK,MSK) ←− IP.SetUp(1λ, n),
Tokv ←− IP.TokGen(MPK,MSK,v),
CT ←− IP.Enc(MPK,x,m)

⎤
⎦ = 1

Security. To model security we adopt the indistinguishability-based (IND)
notion of security [8], in particular selective security [4]. Boneh, Sahai, and
Waters [7] showed deficiencies of this notion in general and impossibility results
for the more general notion of simulation-based security; see also [7,10,11,15]
for general techniques to overcome the known impossibility results in different
settings. Nonetheless, to our knowledge no practical attacks are known for nat-
ural schemes. Selective security is sufficient for CCA-security [4] and for our
application of verifiable polynomial commitments of Sect. 1.1.

The selectively indistinguishability-based notion of security for an IPE
scheme over the vector space Σ and message space M is formalized by means
of the game INDA,C,λ,n in Fig. 1, between an adversary A and a challenger C
(defined in the game) parameterized by security parameter λ and dimension n.
The advantage of A in this game is AdvIP,λ,n(A) =

∣∣∣Pr
[
INDA,IP,λ,n = 1

]
− 1

2

∣∣∣.
Definition 4. An IPE scheme IP is selectively-indistinguishable secure (IND-
Secure) if for all n > 0 and all PPT adversaries A, AdvIP,λ,n(A) is a negligible
function of λ.
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– Selective Challenge Phase. A(1λ, n) −→ x0,x1 ∈ Σn. Then A sends these
two vectors to the challenger.

– Setup Phase. The challenger C generates the pair (MSK,MPK) by invoking
the setup algorithm on input (1λ, n). Then C sends MPK to A.

– Query Phase 1. A asks for the token for a vector vi ∈ Σn.
– Challenge Phase. A sends to the challenger two messages m0, m1 ∈ M of

the same length.
– C flips a coin to generate random bit b and send CT = Enc(MPK,xb, mb).
– Query Phase 2. Query Phase 2: same as Query Phase 1.
– Output Phase. A outputs a bit b′.
– Winning Condition. A wins the game if b′ = b and the following condition is

met. It is required that if m0 �= m1, 〈x0,vi〉, 〈x1,vi〉 �= 0 for all the vectors vi

queried in both query phase 1 and 2, or 〈vi,x0〉 = 0 iff 〈vi,x1〉 = 0 otherwise.
If the winning condition is satisfied the output of the game is 1 or 0 otherwise.

Fig. 1. Security Game INDA,IP,λ,n

2.2 Hardness Assumptions

We conjecture that the following problems hold relative to some bilinear group
generator GroupGen(1λ) → (p,G,GT , e) that takes security parameter λ as input
and outputs λ-bit prime p, the descriptions of two groups G and GT of order p
and a bilinear map e : G × G → GT .

Assumption 1. The Decisional Bilinear Diffie-Hellman assumption (DBDH)
in bilinear groups (p,G,GT , e) states the hardness for PPT adversaries of solving
the following problem. On input (g, gα, gβ , gγ , Z) ∈ G

4 × GT , decide whether
Z = e(g, gαβγ) or Z is a random element in GT .

Assumption 2. The Decisional Linear assumption (DLin) in a bilinear group
(p,G,GT , e) states the hardness for PPT adversaries of solving the following
problem. On input (g, gα, gβ , gατ , gβη, Z) ∈ G

6, decide whether Z = gη+τ or a
random element in G.

In this paper we use the following equivalent formulation of DLin given
in [22]: on input (g, gα, gβ , gτ , gαη, Z) ∈ G

6 decide whether Z = gβ(η+τ) or
a random element.

Note that DLin is stronger than DBDH. In the rest of this paper we assume
the existence of a bilinear group generator GroupGen such that DLin (and thus
DBDH) holds relative to it.

3 Our Perfectly Correct Inner-Product Encryption

In this section we construct our perfectly correct IPE, the key ingredient for
building verifiable inner-product encryption (see Sect. 4).
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Let GroupGen(1λ) −→ (p,G,GT , e) be a bilinear group generator, and
n ∈ N be the vector length. We construct a perfectly correct IPE scheme
IP = 〈IP.SetUp, IP.Enc, IP.TokGen, IP.Dec〉 for the set Z

n
p of vectors of length

n over Zp and for message space M = GT .

Construction 1 [Our perfectly correct IPE scheme IP]

– IP.SetUp(1λ, n) −→ (MSK,MPK):
For security parameter λ, i ∈ [n] and b ∈ [2], compute what follows:
1. Run GroupGen(1λ) (cf. Sect. 2.2) to generate a tuple 〈p,G,GT , e〉.
2. Pick g, g′ ← G and δ1, θ1, δ2, θ2, w1,i, t1,i, fb,i, hb,i, k ← Z

∗
p.

3. Pick Ω ← Zp and compute {w2,i, t2,i}i∈[n] such that:

Ω = δ1w2,i − δ2w1,i = θ1t2,i − θ2t1,i.

4. For i ∈ [n], b[2] set:

Wb,i = gwb,i , Fb,i = gfb,i , K1 = gk, Ub = gδb , h = gΩ,

Tb,i = gtb,i , Hb,i = ghb,i , K2 = g′ 1
k , Vb = gθb , Λ = e(g, g′).

5. Set:

MPK =[(p,G,Gt, e), (g, h, {Wb,i, Fb,i, Tb,i,Hb,i, Ub, Vb}b∈[2],i∈[n],

K1,K2, Λ) ∈ G
8n+8 × GT ],

MSK =({wb,i, fb,i, tb,i, hb,i, δb, θb}b∈[2],i∈[n], g
′) ∈ Z

8n+4
p × G.

6. Return (MPK,MSK).
– IP.Enc(MPK,x,m) −→ CT:

1. For x = (x1, . . . , xn) ∈ Z
n
p and a message m ∈ GT , pick random elements

s1, . . . s4, s
′
1, . . . , s

′
3 ← Z

∗
p such that s3 �= s′

3 and compute what follows:

ct1 = gs2 , ct2 = hs1 ,⎧⎨
⎩
ct3,i = W s1

1,i · F s2
1,i · Uxis3

1 , ct4,i = W s1
2,i · F s2

2,i · Uxis3
2

ct5,i = T s1
1,i · Hs2

1,i · V xis4
1 , ct6,i = T s1

2,i · Hs2
2,i · V xis4

2

⎫⎬
⎭

i∈[n]

,

ct7 = e(gs3 , gs4), ct8 = Λ−s2 · m.

ct′1 = gs′
2 , ct′2 = hs′

1 ,⎧⎪⎨
⎪⎩
ct′3,i = W

s′
1

1,i · F
s′
2

1,i · U
xis

′
3

1 , ct′4,i = W
s′
1

2,i · F
s′
2

2,i · U
xis

′
3

2

ct′5,i = T
s′
1

1,i · H
s′
2

1,i · V xis4
1 , ct′6,i = T

s′
1

2,i · H
s′
2

2,i · V xis4
2

⎫⎪⎬
⎪⎭

i∈[n]

,

ct′7 = e(gs′
3 , gs4), ct′8 = Λ−s′

2 · m.

2. Set:

ct = (ct1, ct2,
{
ct3,i , ct4,i

ct5,i , ct6,i

}
, ct7, ct8) ,

ct′ = (ct′1, ct
′
2,

{
ct′3,i , ct′4,i

ct′5,i , ct′6,i

}
, ct′7, ct

′
8).
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3. Output CT = (ct, ct′).
– IP.TokGen(MSK,v) −→ Tokv :

1. Pick λ1, λ2 ← Z
∗
p and for any i ∈ [n] pick {ri}, {Φi} ← Z

∗
p.

2. Set Tokv = (KA,KB ,

{
K3,i , K4,i

K5,i , K6,i

}
i∈[n]

) as follows and return Tokv .

KA = g′.
n∏

i=1

K
−f1,i
3,i · K

−f2,i
4,i · K

−h1,i
5,i · K

−h2,i
6,i , KB =

n∏
i=1

g−(ri+Φi).

K3,i = g−δ2ri · gλ1viw2,i , K4,i = gδ1ri · g−λ1viw1,i .

K5,i = g−θ2Φi · gλ2vit2,i , K6,i = gθ1Φi · g−λ2vit1,i .

– IP.Dec(CT,Tokv ):
Let CT = (ct, ct′), such that ct = (ct1, ct2, {ct3,i, ct4,i, ct5,i, ct6,i}, ct7, ct8),
ct′ = (ct′1, ct

′
2, {ct′3,i, ct

′
4,i, ct

′
5,i, ct

′
6,i}, ct7, ct8)

1. If ct7 = ct′7 output ⊥ and stop, otherwise go to the next step.
2. Compute:

Υ = ct8 · e(ct1,KA) · e(ct2,KB)·
n∏

i=1

e(ct3,i,K3,i) · e(ct4,i,K4,i) · e(ct5,i,K5,i) · e(ct6,i,K6,i).

Υ ′ = ct′8 · e(ct′1,KA) · e(ct′2,KB)·
n∏

i=1

e(ct′3,i,K3,i) · e(ct′4,i,K4,i) · e(ct′5,i,K5,i) · e(ct′6,i,K6,i).

3. If Υ = Υ ′ output Υ otherwise output ⊥.

Perfect Correctness: We now show that an honestly generated ciphertext
decrypts correctly with probability 1. Since F−s2

1,i · ct3,i = W s1
1,i · Us3xi

1 , we get

e(F−s2
1,i · ct3,i,K3,i) = e(g, g)s1λ1viw1,iw2,i−s3xiδ1δ2 · e(g, g)−s1riδ2w1,i+s3λ1viδ1w2,i

e(F−s2
2,i · ct4,i,K4,i) = e(g, g)−s1λ1viw1,iw2,i+s3xiδ1δ2 · e(g, g)s1riδ1w2,i−s3λ1viδ2w1,i

We then get

e(F−s2
1,i · ct3,i,K3,i) · e(F−s2

2,i · ct4,i,K4,i) =(
e(gs1 , gri) · e(gxis3 , gλ1vi)

)δ1w2,i−δ2w1,i

=

e(hs1 , gri) · e(hs3λ1 , gxivi) = e(ct2, gri) · e(hλ1s3 , gxivi)

The same computation gives us

e(H−s2
1,i · ct5,i,K5,i) · e(H−s2

2,i · ct6,i,K6,i) = e(ct2, gΦi) · e(hλ2s4 , gxivi)
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As a conclusion we have the following:

e(ct1,KA) ·
n∏

i=1

e(ct3,i,K3,i) · e(ct4,i,K4,i) · e(ct5,i,K5,i) · e(ct6,i,K6,i) =

= Λs2

n∏
i=1

e(F−s2
1,i ,K3,i)e(F−s2

1,i ,K4,i) · e(H−s2
1,i ,K5,i) · e(H−s2

1,i ,K6,i) =

= Λs2 · e(ct2,K−1
B ) · e(h, g)(λ1s3+λ2s4)〈x,v〉

Plugging this into the decryption algorithm we get

Υ = m · e(h, g)(λ1s3+λ2s4)〈x,v〉, Υ ′ = m · e(h, g)(λ1s′
3+s4λ2)〈x,v〉

First note that it cannot happen that ct7 �= ct′7 for honestly generated cipher-
texts. Clearly, 〈x,v〉 = 0 ⇒ (Υ = Υ ′ = m). All we need to check is thus that
if 〈x,v〉 �= 0, we get output ⊥. We could only get a wrong output if it happens
that Υ = Υ ′, but this is impossible since it implies (using λ1 �= 0, s3 �= s′

3)

e(h, g)(λ1s3−λ1s′
3)〈x,v〉 = 1GT

⇒ λ1(s3 − s′
3)〈x,v〉 ≡p 0 ⇒ 〈x,v〉 ≡p 0.

3.1 Security Reduction to DLin and DBDH

In this section we prove our IPE scheme is IND-Secure under the standard com-
putational assumptions.

Theorem 1. The IPE scheme IP of Construction 1 is IND-Secure if the DBDH
and DLin assumptions hold relative to GroupGen.

To prove the theorem we define a series of hybrid experiments H0, . . . ,H12 in
which H0 corresponds to the real experiment with challenge bit b = 0 and H12

corresponds to the real experiment with challenge bit b = 1, and we show that
they are computationally indistinguishable. We provide the full proof of Theo-
rem 1 in the full version of this paper [25].

• Hybrid H0: this hybrid is identical to the real game with challenge bit b = 0.
Precisely, the ciphertext is computed for message m0 and vector x as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V xis4

b }b∈[2],i∈[n], e(gs3 , gs4),

Λ−s2 · m0)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V xis4
b }b∈[2],i∈[n], e(gs′

3 , gs4),

Λ−s′
2 · m0)
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• Hybrid H1: this hybrid is identical to the previous hybrid except that
instead of e(g, g)s3s4 , e(g, g)s′

3s4 , the ciphertext contains two random elements
R1, R

′
1 ← GT . Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1{W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V xis4

b }b∈[2],i∈[n], R1 ,

Λ−s2 · m0)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V xis4
b }b∈[2],i∈[n], R′

1 ,

Λ−s′
2 · m0)

• Hybrid H2: this hybrid is identical to the previous hybrid except that instead
of Λ−s2 ·m0, Λ

−s′
2 ·m0, the ciphertext contains two random elements R,R′ ←

GT . Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V xis4

b }b∈[2],i∈[n], R1, R )

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V xis4
b }b∈[2],i∈[n], R

′
1, R′ )

• Hybrid H3: this hybrid is identical to the previous hybrid except that instead
of T s1

b,i ·H
s2
b,i ·V

xis4
b , T

s′
1

b,i ·H
s′
2

b,i ·V
xis4
b , the ciphertext contains T s1

b,i ·H
s2
b,i, T

s′
1

b,i ·H
s′
2

b,i.
Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H4: this hybrid is identical to the previous hybrid except that instead
of T s1

b,i ·H
s2
b,i, T

s′
1

b,i ·H
s′
2

b,i, the ciphertext contains T s1
b,i ·H

s2
b,i ·V

yis4
b , T

s′
1

b,i ·H
s′
2

b,i ·V
yis4
b .

Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V yis4
b }b∈[2],i∈[n], R

′
1, R

′)

• Hybrid H5: CT6 = (ct, ct′), This hybrid is identical to the previous hybrid
except that the power of Vb in ct is s4 and its power in ct′ is s′

4. Precisely,
the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
xis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H6: this hybrid is identical to the previous hybrid except that s3 = s′
3.

Precisely:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uxis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , { W
s′
1

b,i · F
s′
2

b,i · Uxis3
b , T

s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)
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• Hybrid H7: This hybrid is identical to the previous hybrid except we replace
s3 with 0.

ct = (gs2 , hs1 , { W s1
b,i · F s2

b,i , T s1
b,i · Hs2

b,i · V yis4
b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , { W
s′
1

b,i · F
s′
2

b,i , T
s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H8: This hybrid is identical to the previous hybrid except that instead
of W s1

b,i · F s2
b,i ,W

s′
1

b,i · F s′
2

b,i , we set W s1
b,i · F s2

b,i · Uyis3
b ,W

s′
1

b,i · F s′
2

b,i · Uyis3
b . Precisely:

ct = (gs2 , hs1 , { W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , { W
s′
1

b,i · F
s′
2

b,i · Uyis3
b , T

s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H9: this hybrid is identical to the previous hybrid except that instead
of W s1

b,i · F s2
b,i ,W

s′
1

b,i · F s′
2

b,i , we set W s1
b,i · F s2

b,i · Uyis3
b ,W

s′
1

b,i · F s′
2

b,i · Uyis
′
3

b . Precisely:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , { W
s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V
yis

′
4

b }b∈[2],i∈[n], R
′
1, R

′)

• Hybrid H10: this hybrid is identical to the previous hybrid except that
instead of W s1

b,i · F s2
b,i ,W

s′
1

b,i · F
s′
2

b,i , we set W s1
b,i · F s2

b,i · Uyis3
b ,W

s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b .
Precisely:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, R)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V yis4
b }b∈[2],i∈[n], R

′
1, R

′)

• Hybrid H11: this hybrid is identical to the previous hybrid except that
instead of choosing R,R′ ← GT , we set R = Λ−s2 · m1, R

′ = Λ−s′
2 · m1.

Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], R1, Λ−s2 · m1 )

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V yis4
b }b∈[2],i∈[n], R

′
1, Λ−s′

2 · m1 )

• Hybrid H12: this hybrid is identical to the previous hybrid except that
instead of R1, R

′
1, we set e(gs3 , gs4), e(gs′

3 , gs4), which is identical to the real
game with challenge bit b = 1, in particular for message m1 and vector y.
Precisely, the ciphertext is computed as follows:

ct = (gs2 , hs1 , {W s1
b,i · F s2

b,i · Uyis3
b , T s1

b,i · Hs2
b,i · V yis4

b }b∈[2],i∈[n], e(gs3 , gs4) ,

Λ−s2 · m1)

ct′ = (gs′
2 , hs′

1 , {W
s′
1

b,i · F
s′
2

b,i · U
yis

′
3

b , T
s′
1

b,i · H
s′
2

b,i · V yis4
b }b∈[2],i∈[n], e(gs′

3 , gs4) ,

Λ−s′
2 · m1)
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Proposition 2. If the DLin assumption holds relative to GroupGen, then H0 is
computationally indistinguishable from H1.

Proof. Let us assume there exists a PPT adversary A which distinguishes
between H0 and H1 with non-negligible advantage. We describe a simulator B
which uses A, on input (g,A = gα, B = gβ , C = gτ ,D = gαη, Z) ∈ G

6, output
1 if Z = gβ(η+τ) and 0 if Z is a random element in G. B interacts with A as
follows:

SetUp Phase. The adversary A sends to the simulator, B, two vectors x,y ∈
Z

n
p . The simulator picks g′ ← G and Ω̃, k, δ̃b, θb, {w1,i, t̃1,i, fb,i, hb,i}i∈[n],b∈[2] ←

Zp, compute {w2,i, t̃2,i}i∈[n] such that for each i, Ω̃ = δ̃1w2,i − δ̃2w1,i = θ1t̃2,i −
θ2t̃1,i. Compute the master public key components as follows and returns it:

{Wb,i = gwb,i , Fb,i = gfb,i}b∈[2],i∈[n], {Ub = Aδ̃b}b∈[2], h = AΩ̃ , Λ = e(g, g′).

{Tb,i = At̃b,i ,Hb,i = ghb,i}b∈[2],i∈[n], {Vb = gθb}b∈[2],K1 = gk, K2 = g′ 1
k .

By doing so, B implicitly sets δb = αδ̃b, tb,i = αt̃b,i for b ∈ [2], i ∈ [n] and Ω = αΩ̃,
which shows that each element of the master public key is independently and
uniformly distributed in Zp. Also notice that for each i ∈ [n], we have: δ1w2,i −
δ2w1,i = αδ̃1w2,i − αδ̃2w1,i = θ1αt̃2,i − θ2αt̃1,i = θ1t2,i − θ2t1,i = αΩ̃ = Ω. hence
the output has the same structure as the output of the real setup algorithm.

Token Query Phase. All the secret parameters except {δb, tb,i}b∈[2],i∈[n], Ω
are known by B. When A asks for a query for a vector v, B picks
λ1, λ̃2, {r̃i, Φi}i∈[n] ← Z

�
p. In generating Tokv , the simulator implicitly sets

λ2 = αλ̃2, ri = αr̃i which are independently and uniformly distributed in Z
�
p.

Token elements are set as follows:

K3,i = A−δ̃2ri · gλ1viw2,ixi = (by the above settings) = g−δ2ri · gviw2,iλ1 .

K5,i = g−θ2φi · Aλ2vi t̃2,ixi = (by the above settings) = g−θ2φi · gλ2vit2,ixi .

Similarly, K4,i = Aδ̃1ri · g−λ1viw1,ixi ,K6,i = gθ1ri · A−λ2vi t̃1,ixi .

KB =
n∏

i=1

A−rig−Φi =
n∏

i=1

g−(αr̃i+Φi) =
n∏

i=1

g−(ri+Φi).

B knows {fb,i, hb,i}b∈[2],i∈[n], hence it can compute KA.

Generating the Challenge Ciphertext. A sends message m0 to B. To gener-
ate a challenge ciphertext, B picks s1, s2, s

′
1, s

′
2, s̃3, s̃4, s̃3′ ← Z

�
p such that s̃3 �= s̃′

3.
B implicitly sets s3 = ηs̃3, s4 = βs̃4 and computes the ciphertext as follows:
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ct1 = gs2 , ct′1 = gs′
2 , ct2 = hs1 , ct′2 = hs′

1 .

ct3,i = W s1
1,i · F s2

1,i · Dδ̃1s̃3xi , ct′3,i = W
s′
1

1,i · F
s′
2

1,i · Dδ̃1xis̃
′
3 .

ct4,i = W s1
2,i · F s2

2,i · Dδ̃2s̃3xi , ct′4,i = W
s′
1

2,i · F
s′
2

2,i · Dδ̃2xis̃
′
3 .

ct5,i = T s1
1,i · Hs2

1,i · Bθ1s̃4xi , ct′5,i = T
s′
1

1,i · H
s′
2

1,i · Bθ1s̃4xi .

ct6,i = T s1
2,i · Hs2

2,i · Bθ2s̃4xi , ct′6,i = T
s′
1

2,i · H
s′
2

2,i · Bθ2s̃4xi .

ct7 = ( e(Z,g)
e(B,C) )

s̃3s̃4 , , ct′7 = ( e(Z,g)
e(B,C) )

s̃3′ s̃4 ,

ct8 = e(g, g′)−s2 · m0 , ct′8 = e(g, g′)−s′
2 · m0

Since Dδ̃bxis̃3 = gαδ̃bηs̃3xi = Uxis3
b , Bθbs̃4xi = V βs̃4xi

1 = V s4xi

b , for each i ∈ [n]
the values ct3,i, ct

′
3,i, . . . , ct6,i, ct

′
6,i are computed properly.

Analysing the Game: Let us analyze the two events, Z = gβ(τ+η) or Z ← G:

• Z = gβ(τ+η) ⇒ e(Z, g)
e(B,C)

=
e(gβ(τ+η), g)
e(gβ , gτ )

=
e(gβ , gτ ) · e(gβ , gη)

e(gβ , gτ )
= e(gη, gβ)

⇒ ct7 = (
e(Z, g)
e(B,C)

)s̃3s̃4 = e(gηs̃3 , gβs̃4) = e(gs3 , gs4), ct′7 = e(gs′
3 , gs4)

⇒ A interacting with H0.

• Z ← G ⇒ ct7, ct
′
7 random elements in GT ⇒ A interacting with H1. ��

Proposition 3. If the DBDH assumption holds relative to GroupGen, then H1

is computationally indistinguishable from H2.

Proposition 4. If the DLin assumption holds relative to GroupGen, then H2 is
computationally indistinguishable from H3.

Proposition 5. If the DLin assumption holds relative to GroupGen, then H3 is
computationally indistinguishable from H4.

The Propositions 3, 4, 5 are proved in the full version [25].

Proposition 6. If the DLin assumption holds relative to GroupGen, then H4 is
computationally indistinguishable from H5.

Proof. The simulator takes as input (g,A = gα, B = gβ , C = gτ ,D = gαη, Z
?=

gβ(η+τ)) and by interacting with the adversary A, distinguish between the two

cases Z = gβ(η+τ) and Z
$←− G, a random element of the group.

SetUp and Token Query Phase. B runs as in the SetUp phase and token
query phase in Proposition 5.
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Generating the Challenge Ciphertext. B chooses random elements s̃1, s̃2, s̃3,
s̃4, s̃

′
1, s̃

′
2, s̃

′
3, k ← Z

�
p and computes the challenge ciphertext as follows:

• ct1 = C · gs̃2 = gτ+s̃2 ⇒ s2 = τ + s̃2, • ct′1 = Ck · gs̃2′ = gkτ+s̃′
2 ⇒ s′

2 = kτ + s̃2

• ct2 = DΩ̃ · AΩ̃s̃1 = (gαΩ̃)(η+s̃1) = hη+s̃1 ⇒ s1 = η + s̃1

• ct′2 = DkΩ̃ · AΩ̃s̃′
1 = (gαΩ̃)(kη+s̃′

1) = hkη+s̃′
1 ⇒ s′

1 = kη + s̃′
1

• ct3,i = W s̃1
1,i · F s̃2

1,i · U s̃3xi
1 · Dw̃1,i · Cf1,i = W s̃1

1,i · F s̃2+τ
1,i · U s̃3xi

1 · gηαw̃1,i · F τ
1,i =

= W s̃1
1,i · F s̃2+τ

1,i · U s̃3xi
1 · gη(w1,i−βδ1xi) = W s̃1+η

1,i · F s̃2+τ
1,i · U

(s̃3−ηβ)xi

1

⇒ s3 = −ηβ + s̃3

• ct4,i = W s̃1
2,i · F s̃2

2,i · U s̃3xi
2 · Dw̃2,i · Cf2,i , ( similar computation as ct3,i)

• ct′3,i = W
s̃′
1

1,i · F
s̃′
2

1,i · U
s̃′
3xi

1 · Dkw̃1,i · Ckf1,i = W
s̃′
1

1,i · F
s̃′
2

1,i · U
s̃′
3xi

1 · gkηαw̃1,i · F kτ
1,i

= W
s̃′
1

1,i · F
s̃′
2+kτ

1,i · U
s̃′
3xi

1 · gkη(w1,i−βδ1xi) = W
s̃′
1+kη

1,i · F
s̃′
2+kτ

1,i · U
(s̃′

3−kηβ)xi

1

⇒ s′
3 = −kηβ + s̃′

3

• ct′4,i = W
s̃′
1

2,i · F
s̃′
2

2,i · U
s̃′
3xi

2 · Dkw̃2,i · Ckf2,i , ( similar computation as ct′3,i)

• ct5,i = T s̃1
1,i · Dt̃1,i · H s̃2

1,i · C h̃1,i · Zθ1yi · gs̃4θ1yi

• ct′5,i = T
s̃′
1

1,i · Dkt̃1,i · H
s̃′
2

1,i · Ckh̃1,i · Zkθ1yi · gs̃4θ1yi

• ct6,i = T s̃1
2,i · Dt̃2,i · H s̃2

2,i · C h̃2,i · Zθ2yi · gs̃4θ2yi

• ct′6,i = T
s̃′
1

2,i · Dkt̃2,i · H
s̃′
2

2,i · Ckh̃2,i · Zkθ2yi · gs̃4θ2yi

Analysis of the Game: First, notice that:

Dt̃1,i = gηαt̃1,i = gη(t1,i−βθ1yi) = T η
1,i · g−βηθ1yi ,Dkt̃1,i = T kη

1,i · g−kβηθ1yi

C h̃1,i = gτ(h1,i−βθ1yi) = Hτ
1,i · g−βτθ1yi , Ckh̃1,i = Hkτ

1,i · g−kβτθ1yi ⇒

ct5,i = T s̃1
1,i · Dt̃1,i · H s̃2

1,i · C h̃1,i · (Z · gs̃4)θ1yi

= T η+s̃1
1,i · Hτ+s̃2

1,i · (g−β(τ+η) · Z · gs̃4)θ1yi

= T s1
1,i · Hs2

1,i · (g(−β(τ+η)) · Z · gs̃4)θ1yi

ct′5,i = T
s′
1

1,i · H
s′
2

1,i · (g(−kβ(τ+η)) · Zk · gs̃4)θ1yi

If Z = gβ(η+τ) ⇒
{

g−β(τ+η) · Z · gs̃4 = gs̃4 ⇒ ct5,i = T s1
1,i · Hs2

1,i · Us4yi

1

g(−kβ(τ+η)) · Zk · gs̃4 = gs̃4 ⇒ ct5,i = T
s′
1

1,i · H
s′
2

1,i · Us4yi

1

⇒ The adversary interacts with hybrid H4

If Z = gr ⇒
{

g−β(τ+η) · Z · gs̃4 = gr+s̃4 ⇒ ct5,i = T s1
1,i · Hs2

1,i · Us4yi

1

g(−kβ(τ+η)) · Zk · gs̃4 = gkr+s̃4 ⇒ ct5,i = T
s′
1

1,i · H
s′
2

1,i · U
s′
4yi

1

⇒ The adversary interacts with hybrid H5. ��
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4 Verifiable Inner-Product Encryption

Firstly, we present a formal definition of a VIPE scheme. Essentially, VIPE
is similar to IPE except that it is endowed with extra verification algorithms
VrfyCT,VrfyTok and VrfyMPK.

Definition 5. A verifiable inner product encryption scheme for a message space
M and for a family Σ = {Σn}n>0 of vectors over some field is a tuple of PPT
algorithms (here called VIP) VIP = {VIP.SetUp,VIP.TokGen,VIP.Enc,VIP.Dec,
VIP.VrfyMPK,VIP.VrfyCT,VIP.VrfyTok} with the syntax and properties below:

– VIP.SetUp(1λ, n) → (MPK,MSK): as for IPE.
– VIP.TokGen(MPK,MSK,v) −→ Tokv : as for IPE.
– VIP.Enc(MPK,−→x ,m) → CT: as for IPE.
– VIP.Dec(MPK,Tokv ,CT) → m ∈ M ∪ {⊥}: as for IPE.
– VIP.VrfyMPK(MPK) → {0, 1}: this is a deterministic algorithm that outputs

1 if MPK was correctly generated, or outputs 0 otherwise.
– VIP.VrfyCT(MPK,CT) → {0, 1}: this is a deterministic algorithm that outputs

1 if CT was correctly generated using the master public key on input some m
in the message space M and a vector x, or outputs 0 otherwise.

– VIP.VrfyTok(MPK,v,Tokv ) −→ {0, 1}: this is a deterministic algorithm that
outputs 1 if Tokv was correctly generated using the master secret key on input
vector v, or outputs 0 otherwise.

– Perfect correctness: as for IPE.
– Verifiability: VIP is verifiable if for all MPK ∈ {0, 1}∗, all CT ∈ {0, 1}∗, there

exists n > 0, (x,m) ∈ Σn × M such that for all v ∈ Σn and Tokv ∈ {0, 1}∗,
the following holds:⎛
⎝VIP.VrfyMPK(MPK) = 1 ∧

VIP.VrfyCT(MPK,CT) = 1 ∧
VIP.VrfyTok(MPK,v,Tokv ) = 1

⎞
⎠ ⇒ Pr

[
VIP.Dec(MPK,Tokv ,CT)
= fv (x,m)

]
= 1

Intuitively verifiability states that each ciphertext (possibly with a maliciously
generated public key) should be associated with a unique message (x,m) and
decryption for a function fv using any possibly maliciously generated token Tokv
should result in fv (x,m) for the unique message associated with the ciphertext [2].

4.1 Our Construction

Our VIPE is based on a perfectly correct IPE (cf. our IPE scheme of Construc-
tion 1), a perfectly binding commitment scheme such as the commitment scheme
proposed in [13] and NIWI proofs for some specific relations that will be detailed
below.

Let n ∈ N be the vector length and λ the security parameter. Let IP be a
perfectly correct IPE scheme, Com be a perfectly binding commitment scheme
and NIWImpk = 〈Pmpk,Vmpk〉, NIWIenc = 〈Penc,Venc〉 and NIWItok = 〈P tok,V tok〉
be NIWI proofs systems for, resp., the relations Ŗmpk, Ŗenc and Ŗtok, that are
essentially instantiations of analogous relations in [2]. The construction of these
NIWI systems is provided in Sect. 5.
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• Ŗmpk
IP (

x︷︸︸︷
mpk,

w︷ ︸︸ ︷
(msk, rmpk)) = TRUE ⇐⇒ (mpk,msk) = IP.SetUp(1λ, n; rmpk)

• Ŗtok
IP

( x︷ ︸︸ ︷
(mpk, t,v),

w︷ ︸︸ ︷
(msk, rmpk, rtoken)

)
= TRUE

⇐⇒
(

(mpk, (msk, rmpk)) ∈ Ŗmpk
IP ∧

t = IP.TokGen(MSK,v; rtok)

)

• Ŗk,ct
IP

( x︷ ︸︸ ︷(
(ct1,mpk1), . . . , (ctk,mpkk)

)
,

w︷ ︸︸ ︷(
x,m, renc1 , . . . , renck

) )
= TRUE, k ∈ [4]

⇐⇒ ∀i ∈ [k] cti = IP.Enc(mpki,x,m; renci )
• Ŗenc(x,w) = TRUE ⇐⇒ Penc

1 (x,w) ∨ Penc
2 (x,w), with

Penc
1

(
({ci}i∈[4], {ai}i∈[4], z0, z1), (m,x, {renci }i∈[4], i1, i2, r

com
0 , rcom1 )

)
= TRUE

⇐⇒
((

(c1, a1), . . . , (c4, a4)
)
, (x,m, {renci }i∈[4])

)
∈ Ŗ4,ct

IP

Penc
2

(
({ci}i∈[4], {ai}i∈[4], z0, z1), (m,x, {renci }i∈[4], i1, i2, r

com
0 , rcom1 )

)
= TRUE

⇐⇒
(

i1, i2 ∈ [4] ∧ (i1 �= i2) ∧
((

(ci1 , ai1), (ci2 , ai2)) , (x,m, renci )
)

∈ Ŗ2,ct
IP

∧ z0 = Com({ci}i∈[4]; rcom0 ) ∧ z1 = Com(0; rcom1 )

)

• Ŗtok(x,w) = TRUE ⇐⇒ Ptok
1 (x,w) ∨ Ptok

2 (x,w), with, where

Ptok
1

(
(v, {ti}i∈[4], {ai}i∈[4], z0, z1),

({bi}i∈[4], {rmpk
i }i∈[4], {rtoki }i∈[4], i1, i2, i3, r

com
0 , rcom1 )

)
= TRUE

⇐⇒

⎛
⎝ ∀i ∈ [4] :

(
(ai, (bi, r

mpk
i )

)
∈ Ŗmpk∧(

(ai, ti,vi), (bi, r
mpk
i , rtoki ))

)
∈ Ŗtok

IP

∧ z1 = Com(1; rcom1 )

⎞
⎠ , and

Ptok
2

(
(v, {ti}i∈[4], {ai}i∈[4], z0, z1),(

{bi}i∈[4], {rmpk
i }i∈[4], {rtoki }i∈[4], i1, i2, i3, r

com
0 , rcom1

))
= TRUE

⇐⇒

⎛
⎜⎜⎜⎜⎜⎝

i1, i2, i3 ∈ [4] ∧ (i1 �= i2) ∧ (i1 �= i3) ∧ (i2 �= i3)
∀j ∈ [3] :

(
aij , (bij , r

mpk
ij

)
)

∈ Ŗmpk∧( (
aij , tij ,vij

)
,
(
bij , r

mpk
ij

, rtokij
)
)

∈ Ŗtok
IP

∧ z0 = Com({ci}i∈[4]; rcom1 )∧
∃m ∈ M ∀i ∈ [4] IP.Dec(ci, ti) = fv (m)

⎞
⎟⎟⎟⎟⎟⎠

Construction 7 [Our VIPE VIP]

• VIP.SetUp(1λ, n) → (MPK,MSK):
1. For i ∈ [4], run IP.SetUp(1λ, n) to generate (MPKi,MSKi).
2. Run the commitment algorithm to generate Z0 = Com(0; rcom0 ) and

Z1 = Com(1; rcom1 ).
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3. Output VIP.MPK = ({MPKi}i∈[4],Z0,Z1),VIP.MSK = ({MSKi}i∈[4],
rcom0 , rcom1 ).

• VIP.Enc(MPK,m,x) → CT:
1. For i ∈ [4], run the encryption algorithm to compute CTi = IP.Enc

(MPK,m,x; renci ).
2. Set x = ({CTi}i∈[4], {MPKi}i∈[4],Z0,Z1), w = (m,x, {renci }i∈[4], 0, 0,

0|u0|, 0|u1|), and run Penc(x,w) to generate πct for relation Ŗenc(x,w).
Note that Penc

1 (x,w) = TRUE.
3. Output ciphertext CT = ({CTi}i∈[4], πct).

• VIP.TokGen(MPK,MSK, fv ):
1. For i ∈ [4], run IP.TokGen(MSK,v; rtoki ) to generate Toki

v .
2. x = (v, {Toki

v}i∈[4], {MPKi}i∈[4],Z0,Z1), w = ({MSKi}i∈[4], {rtoki }i∈[4],

0, 0, 0, 0|rcom0 |, |rcom1 |) run P tok to generate πtok to prove Ŗtok(x,w) =
TRUE. Note that Ptok

1 (x,w) = TRUE
3. Output token Tokv = ({Toki

v}i∈[4], πtok).
• VIP.Dec(MPK, fv ,Tokv ,CT):

1. Run the verification algorithms Vmpk,Venc,V tok on input the corre-
sponding pairs of statement and proof (the proof for the verification
of the master public key is set to the empty string). If some verifica-
tion algorithms fails, then stop and output ⊥ or go to the next step
otherwise.

2. For all i ∈ [4], compute m(i) = IP.Dec(Tok(i)v ,CTi) and output the
following:{
If ∃i1, i2, i3 ∈ [4] s.t. m = m(i1) = m(i2) = m(i3) ⇒ Output m.

If � ∃i1, i2, i3 ∈ [4] s.t. m(i1) = m(i2) = m(i3) ⇒ Output ⊥ .

• VIP.VrfyMPK(MPK): run Vmpk(MPK, ε) and output its result.
• VIP.VrfyCT

(
({CTi}i∈[4], {MPKi}i∈[4],Z0,Z1), πct)

)
:

run Venc
(
({CTi}i∈[4], {MPKi}i∈[4],Z0,Z1), πct

)
and output its result.

• VIP.VrfyTok
(
(v, {Toki

v}i∈[4], {MPKi}i∈[4],Z0,Z1), πtok

)
:

run V tok
(
(v, {Toki

v}i∈[4], {MPKi}i∈[4],Z0,Z1), πtok

)
and output its result.

Correctness of VIP follows from perfect correctness of IP. IND-Security and
Verifiability of VIP follows as corollary (following Theorem2) from the verifia-
bility and IND-Security of the construction of [2] for general functions.

Theorem 2. If IP is a perfectly correct IND-Secure IP scheme for message space
M and for the set Zn

p of vectors of length n over Zp, and NIWImpk,NIWIct,NIWItok

are NIWI systems resp. for the relations Ŗmpk, Ŗenc, Ŗtok and Com is a non-
interactive perfectly binding and computationally hiding commitment scheme,
then VIP is an IND-Secure VIPE scheme for the class of inner product function-
ality over M and Z

n
p .
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5 NIWI Proofs and Verification Algorithms

In this section we present the proof systems that we used in our VIP scheme, to
prove membership of relations Ŗmpk, Ŗtok and Ŗenc. For each of our relations2, we
need to define a system of equations such that satisfiability of that system and
the membership in the relation are equivalent. Then, the GS generic prover and
verifier algorithms, NIWIGS = 〈PGS,VGS〉, can be used for such equations. In this
section, for each of our relations of Sect. 4, we will either define a corresponding
system of equations or we will show how to implement directly (without using
GS proofs).

Definition 6 (Pairing Product System of Equations). Consider a bilinear
map e : G × G → GT . The following system of equation with k equations over
m variables Xi ∈ G, i ∈ [m] and constants B

(t)
i ∈ G, τ (t) ∈ GT and γ

(t)
ij ∈ Zp for

i ∈ [m], t ∈ [k] is called a pairing product system of equations over (G,GT , e):

E :

⎧⎪⎨
⎪⎩
∏m

i=1 e(Xi, B
(1)
i ) ·

∏m
i=1

∏m
j=1 e(Xi,Xj)γ

(1)
ij = τ (1)

. . .∏m
i=1 e(Xi, B

(k)
i ) ·

∏m
i=1

∏m
j=1 e(Xi,Xj)γ

(k)
ij = τ (k)

(1)

(g1, g2, . . . , gm) ∈ G
m is a solution for the equation E iff

(
E[(g1, . . . , gm)] = TRUE

)
=

⎧⎪⎨
⎪⎩
∏m

i=1 e(gi, B
(1)
i ) ·

∏m
i=1

∏m
j=1 e(gi, gj)γ

(1)
ij = τ (1)

. . .∏m
i=1 e(gi, B

(k)
i ) ·

∏m
i=1

∏m
j=1 e(gi, gj)γ

(k)
ij = τ (k)

We define the following relation for pairing product system of equations:

ŖE = {(x,w)| x = E, w = (g1, . . . , gm) : E[(g1, . . . , gm)] = TRUE}

Throughout the paper, we denote by NIWIGS = 〈PGS,VGS〉 a Groth-Sahai [14]
NIWI-proof system. Precisely:

• PGS(x = E, w = (g1, . . . , gm)) → πE • VGS(x, πE) →
{

1 : If (x,w) ∈ ŖE

0 : Otherwise

5.1 How to Handle Generalized or Statements

Some of our relations of Sect. 4 consist of a generalized form of disjunction (OR)
of two predicates, let us say P1 and P2. Suppose that we have equivalent systems

2 Actually, we will implement some or part of them not directly using GS proofs.
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of equations for each of the two predicate, that is a system of equations E1 (resp.
E2) representing predicate P1 (resp. P2). Consider the following relation:

ŖOR ={(x,w)| x = (E1,E2), w = (idx, w1, w2) : idx ∈ {1, 2} ∧
(Eidx, widx) ∈ ŖE ∧ w ¯idx ∈ G

3},

where ¯idx means {1, 2}/{idx}.
Notice that the relation is not exactly a disjunction of pairing product equa-

tions because we need to make sure that the statement that holds is the one
selected by the index in the witness, so we cannot use the technique of Groth [12]
and we will follow a different approach.

By hypothesis PGS takes as input a system of equations E as statement and
a solution (g1, . . . , gm) as witness and provides a NIWI-proof of membership of
(E, w) ∈ ŖE. Therefore, to use NIWIGS to generate a NIWI-proof for relation ŖOR,
we need to define a third system of equation EOR with the following properties:

1. EOR ≈ ŖOR. With this notation, we mean that there exist two efficiently com-
putable functions f and g such that:

∃w = (idx, w1, w2)
(
x = (E1,E2), w

)
∈ ŖOR ⇔ ∃w̃

(
EOR = f(x), w̃

)
∈ ŖE.(

x,w
)

∈ ŖOR ⇒
(
f(x), g(x,w)

)
∈ ŖOR.

The latter properties guarantee that a proof for relation ŖOR computed using
NIWIGS satisfies completeness and soundness. For WI to hold, we need the
following property.

2. The function f is efficiently invertible.

Now we show how to construct the system of equations EOR with the aforemen-
tioned properties. Consider two systems of pairing product equations E1 and E2

- same structure as in 1. For simplicity, we assume the equations are over two
variables (the general case is straightforward).

E1 : e(X1, a1) · e(X2, a2) = τ1 ,E2 : e(Y1, b1) · e(Y2, b2) = τ2

We define the new system of equations EOR with 4 new variables Z11,Z12,
Z21,Z22 as follows:

EOR :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e(X1, a1) · e(X2, a2) · e(Z11,Z12) = τ1

e(Y1, b1) · e(Y2, b2) · e(Z21,Z22) = τ2

e(Z11,Z22) = 1
e(Z11, g) · e(Zidx, g) = e(g, g)
e(Z22, g) · e(Zidx, g) = e(g2, g)

Analysis of the Equations: Consider (Zidx ←↩ gidx,X1 ←↩ g1,X2 ←↩ g2,Y1 ←↩
g3,Y2 ←↩ g4,Z11 ←↩ g11, . . . ,Z22 ←↩ g22) as a solution for EOR. So, there exist
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values idx, z11, z22 ∈ Zp such that gidx = gidx, g11 = gz11 , g22 = gz22 and for t ∈ [k]
there exist values αt such that τt = e(g, αt).

• e(Z11, g) · e(Zidx, g) = e(g, g) ⇒ e(gz11+idx−1, g) = 1
⇒ z11 = 1 − idx and similarly z22 = 2 − idx.

• e(Z11,Z22) = 1 ⇒ (z11 = 0 ∨ z22 = 0)
• z11 = 0 ∧ z11 = 1 − idx ⇒ e(X1 ←↩ g1, a1) · e(X2 ←↩ g2, a2) = τ1

⇒ (E1[g1, g2] = TRUE ∧ idx = 1)
• Similarly, z22 = 0 ∧ z22 = 2 − idx

⇒ e(Z21,Z22) = 1 ⇒ (E2[g3, g4] = TRUE ∧ idx = 2)

The above facts imply that:

EOR[(gidx, g1, . . . , g4, g11, . . . , g22)] = TRUE ⇒(
(E1[g1, g2, α1] = TRUE ∧ idx = 1

)
∨
(
E2[g3, g4, α2] = TRUE ∧ idx = 2)

)
,

as it was to show. It is also easy to see that the previous transformation is
efficiently invertible.

For the other direction, suppose w.l.o.g that w1 = (g1, g2, α1) is a solution
to x = E1 (the other case is symmetrical and we omit it), namely (x,w1) ∈ R’¸ .
Suppose also that w2 = (g3, g4, α2) ∈ G

3 is an arbitrary triple of elements of G.
Therefore (1, w1, w2) is a witness to (E1,E2) with respect to relation ŖOR. Then,
setting (Zidx ←↩ g1,X1 ←↩ g1,X2 ←↩ g2,Y1 ←↩ g0,Y2 ←↩ g0,Z11 ←↩ g0,Z12 ←↩
g1,Z21 ←↩ α2,Z22 ←↩ g1), we have that:

EOR[(gidx, g1, . . . , g4, g11, . . . , g22)] = TRUE.

(Notice that we implicitly defined a transformation g as needed.)

5.2 OR Proof in the General Case

If the number of pairing products (m) in each of the two equations is greater
than 1, such as:

E1 :

{
e(X1, a1) · e(X2, a2) = τ1

e(X1, a
′
1) · e(X2, a

′
2) = τ ′

1

, E2 :

{
e(Y1, b1) · e(Y2, b2) = τ2

e(Y1, b
′
1) · e(Y2, a

′
2) = τ ′

2

then EOR can be defined as:

EOR :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(X1, a1) · e(X1, a2) · e(Z11,Z12) = τ1

e(X1, a
′
1) · e(X2, a

′
2) · e(Z11,Z13) = τ ′

1

e(Y1, b1) · e(Y2, b2) · e(Z21,Z22) = τ2

e(Y1, b
′
1) · e(Y2, b

′
2) · e(Z23,Z22) = τ ′

2

e(Z11,Z22) = 1
e(Z11, g) · e(Zidx, g) = e(g, g)
e(Z22, g) · e(Zidx, g) = e(g2, g)

We omit further details.
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Notations: For the rest of this section, let us fix n ∈ N as dimension of the
vector space and let i ∈ [n], b ∈ [2]. Note we can efficiently check whether a
string is a valid group element. We recall what follows.

mpk = (g, h, {Wb,i, Fb,i, Tb,i,Hb,i, Ub, Vb},K1,K2, Λ) ∈ G
4n+8 × GT

msk = ({wb,i, fb,i, tb,i, hb,i, δb, θb}, Ω, k) ∈ Z
4n+6
p

tok = (KA,KB , {K3,i,K4,i,K5,i,K6,i}i) ∈ G
4n+2

ct =
(
(ct1, ct2,

{
ct3,i , ct4,i

ct5,i , ct6,i

}
, ct7, ct8),

(ct′1, ct
′
2,

{
ct′3,i , ct′4,i

ct′5,i , ct′6,i

}
, ct′7, ct

′
8)
)

∈ G
8n+6 × G

2
T

5.3 Master Public Key Verification

Let x = mpk. Since g and e(g, g) are generators for the groups G and GT of
prime order p, we can represent all components of x as a power of either g or
e(g, g). That is, there exist Ω, k′, {wb,i, fb,i, tb,i, hb,i}, {δb, θb, kb} for i ∈ [n] and
b ∈ [2], in Zp such that: h = gΩ , Λ = e(g, g)k′

,Wb,i = gwb,i , Fb,i = gfb,i , Tb,i =
gtb,i ,Hb,i = ghb,i , Ub = gδb , Vb = gθb ,Kb = gkb . The following holds:

e(g, h) = e(U1,W2,i) · e(U2,W1,i)−1 = e(V1, T2,i) · e(V2, T1,i)−1 ⇒
e(g, gΩ) = e(gδ1 , gw2,i) · e(gδ2 , g−w1,i) = e(gθ1 , gt2,i) · e(gθ2 , g−t1,i)
⇒ Ω = δ1w2,i − δ2w1,i = θ1t2,i − θ2t1,i.

e(K1,K2) = e(gk1 , gk2) = Λ = e(g, gk′
) ⇒ k′ = k1k2

By defining g′ = gk′
,K1 = gk1 ,K2 = gk2 , it follows that:

Λ = e(K1,K2),K1 = gk,K2 = g′ 1
k

Hence, we have the verification algorithm in Fig. 2 for master public key.

Input: mpk, Output: 1 if mpk is a well-generated master public key for IP
scheme and 0 otherwise

(1) If Λ �= e(K1, K2). output 0 otherwise go to the next step

(2) For i = 1 to n do :

(i.a) If e(U1, W2,i) · e(U2, W1,i)−1 �= e(h, g) output 0 else go to the next step

(i.b) If e(V1 , T2,i) · e(V2 , T1,i)−1 �= e(h, g) output 0 else go to the next step

(3) Output 1.

Fig. 2. Master public key verification algorithm. (membership in relation Ŗmpk
IP )
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5.4 Token Verification Algorithms

As it was defined in Sect. 4, there are two relations for tokens, Ŗtok
IP and Ŗtok.

The algorithm in Fig. 3 verifies membership in relation Ŗtok
IP .

Input: MPK,v = (v1, . . . , vn) �= 0, tok
Output: 1 if tok is a well-generated token for IP scheme and 0 otherwise

1. If v = 0 output 0 else let i∗ be an index such that vi∗ �= 0
2. Compute Λ∗

1 = e(K3,i, U1) · e(K4,i, U2) and Λ∗
2 = e(K5,i, V1) · e(K6,i, V2)

3. If Λ∗
1 = 1GT OR Λ∗

2 = 1GT output ⊥
4. For i = 1 to n do:

(a) If
(
e(K3,i, U1) · e(K4,i, U2)

)vi∗ �= (Λ∗
1)vi output 0

(b) If
(
e(K5,i, V1) · e(K6,i, V2)

)vi∗ �= (Λ∗
2)vi output 0

5. If Λ
∏n

i=1 e(K3,i, F1,i)−1 · e(K4,i, F2,i)−1 · e(K5,i, H1,i)−1e(K6,i, H2,i)−1 �=
e(KA, g) output 0.

6. If
∏n

i=1 e(K3,i, W1,i) · e(K4,i, W2,i) · e(K5,i, T1,i) · e(K6,i, T2,i) �= e(h, KB)−1

output 0.
7. Output 1.

Fig. 3. First token verification algorithm. (membership in relation Ŗtok
IP )

Correctness of the algorithm: For simplicity let’s assume v1 �= 0 and i∗ = 1.

• Λ∗
1, Λ

∗
2 ∈ GT ⇒ ∃λ1, λ2 ∈ Zp s.t. Λ∗

1 = e(g, h)λ1v1 , Λ∗
2 = e(g, h)λ2v1

• ∀i ∈ [n] ∃ri, r
′
i ∈ Zp s.t. K3,i = g−δ2ri · gλ1viw2,i ,K4,i = gδ1r′

i · g−λ1viw1,i

⇒e(K3,i, U1) · e(K4,i, U2) = e(g−δ2ri · gλ1viw2,i , gδ1) · e(gδ1r′
i · g−λ1viw1,i , gδ2) =

e(g, g)δ1δ2(r
′
i−ri) · e(g, h)λ1vi =

⇒
(
e(K3,i, U1) · e(K4,i, U2)

)v1

= e(g, g)v1δ1δ2(r
′
i−ri) · e(g, h)λ1v1vi

– Step 3: Λ∗
1 �= 1GT

, Λ∗
2 �= 1GT

⇒ λ1 �= 0, λ2 �= 0

– Step 4.a: If
(
e(K3,i, U1) · e(K4,i, U2)

)v1

= (Λ∗
1)

vi ⇒ e(g, g)v1δ1δ2(r
′
i−ri) ·

e(h, g)λ1v1vi = e(g, h)λ1v1vi ⇒ e(g, g)v1δ1δ2(r
′
i−ri) = 1GT

⇒ ∀i ∈ [n] : ri =
r′
i ⇒ K3,i = g−δ2ri · gλ1viw2,i ,K4,i = gδ1ri · g−λ1viw1,i And similar compu-

tations show that the equality in step (4.b) holds for all i ∈ [n]. Then we
conclude that there exists φi ∈ Zp such that: K5,i = g−θ2φi · gλ2vit2,i ,K6,i =
gθ1φi · g−λ2vit1,i .
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– Step 5

KA = g′
n∏

i=1

K
−f1,i
3,i K

−f2,i
4,i K

−h1,i
5,i K

−h2,i
6,i

⇐⇒ e(KA, g) = e(g′
n∏

i=1

K
−f1,i
3,i K

−f2,i
4,i K

−h1,i
5,i K

−h2,i
6,i , g)

⇐⇒ e(KA, g) = Λ ·
n∏

i=1

e(K3,i, F1,i)−1.e(K4,i, F2,i)−1.e(K5,i,H1,i)−1

e(K6,i,H2,i)−1.

– Step 6

n∏
i=1

e(K3,i,W1,i) · e(K4,i,W2,i) · e(K5,i, T1,i) · e(K6,i, T2,i) = e(h,KB)−1

=
n∏

i=1

e(gri(δ1w2,i−δ2w1,i), g) · e(gφi(θ1t2,i−θ2t1,i), g) = e(h,KB)−1

=
n∏

i=1

e(g, h)ri+φi = e(h,KB)−1 ⇒ KB =
n∏

i=1

g−(ri+φi)

The second relation is a disjunction of two predicates, Ŗtok(x,w) = P tok
1 ∨ P tok

2 .
The proof of membership for this relation can be implemented using the equa-
tions for the token verification algorithm for relation Ŗtok

IP Fig. 3 and assuming
to have pairing product equations corresponding to the commitments in the two
aforementioned predicates. We skip further details.

5.5 NIWIenc = 〈Penc,Venc〉: NIWI-Proof for Encryption Algorithm

For the relation Ŗct
IP, we first provide a proof of satisfiability for a system of

equations related to a single ciphertext, that is k = 1, and we will later extend it
to the case of two ciphertexts, that is k = 2. For k > 2, the algorithm is similar
to the case k = 2.

Let x = (mpk, ct). We define the following variables for i ∈ [n]:

S1 = gs1 ,S3 = gs3 ,S4 = gs4 ,Xi = gxi ,S ′
1 = gs′

1 ,S ′
3 = gs′

3 ,U1 = Us3
1 ,

U2 = Us3
2 ,V1 = V s4

1 ,V2 = V s4
2 ,U ′

1 = U
s′
3

1 ,U ′
2 = U

s′
3

2 ,K1 = Ks2
1 ,K′

1 = K
s′
2

1

We have the following Equations related to component ct2(ct′2):

e(ct2, g) = e(hs1 , g) = e(h, gs1) = e(h,S1),
(
e(ct′2, g) = e(h,S ′

1)
)
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and related equation to ct3,i for i ∈ [n]: (Same computation results the same
equations for ctj,i, ct

′
j,i for j = 3, 4, 5, 6)

e(ct3,i, g) = e(W s1
1,i, g) · e(F s2

1,i, g) · e(Us3xi
1 , g)

= e(W1,i, g
s1) · e(F1,i, g

s2) · e(Us3
1 , gxi)

= e(W1,i,S1) · e(F1,i, ct1) · e(U1,Xi)

⇒e(ct3,i, g) · e(F1,i, ct1)−1 = e(W1,i,S1) · e(U1,Xi)

The equations show that the exponent of Us3
b and V s4

b in ct3,i, ct4,i, ct5,i, ct6,i

are xi. So we have the following equation:

e(U1, U2) · e(U−1
1 ,U2) = e(Us3 , U2) · e(U−1

1 , Us3
2 ) = e(U1, U2)s3−s3 = 1GT

e(V1, V2) · e(V −1
1 ,V2) = e(V s4 , V2) · e(V −1

1 , V s4
2 ) = e(V1, V2)s4−s4 = 1GT

The equation related to ct7 = e(gs3 , gs4) is the following:

ct7 = e(gs3 , gs4) = e(S3,S4), ct′7 = e(gs′
3 , gs4) = e(S ′

3,S4)

To prove s3 �= s′
3, we just need to check whether ct7 �= ct′7 or not.

ct7 �= ct′7 ⇒ e(gs3 , gs4) �= e(gs′
3 , gs4) ⇒ s3 �= s′

3.

The equation related to ct8, ct
′
8 is the following:

ct8 = Λ−s2 · m, ct′8 = Λ−s′
2 · m ⇒ ct−1

8 · ct′8 = Λs2 · m−1Λ−s′
2 · m = Λs2−s′

2

⇒ct−1
8 · ct′8 = e(K1,K2)s2−s′

2 = e(K1,K
s2
2 ) · e(K−1

1 ,K
s′
2

2 ) =

e(K1,K2) · e(K−1
1 ,K′

1)

And to prove that ct1 = gs2 and ct8 = λ−s2 · m, we add the following equation:

e(ct1,K1) = e(g,K1), e(ct′1,K1) = e(g,K′
1)

So we have the following system of equations for one single ciphertext.

Ect :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(ct2, g) = e(h,S1), e(ct′2, g) = e(h,S ′
1)

e(ĉt2, ĝ) = e(ĥ, Ŝ1), e(ĉt
′
2, ĝ) = e(ĥ, Ŝ ′

1)
e(ct3,i, g) · e(F1,i, ct1)−1 = e(W1,i,S1) · e(U1,Xi)
e(ct′3,i, g) · e(F1,i, ct

′
1)

−1 = e(W1,i,S ′
1) · e(U ′

1,Xi)
e(ct4,i, g) · e(F2,i, ct1)−1 = e(W2,i,S1) · e(U2,Xi)
e(ct′4,i, g) · e(F2,i, ct

′
1)

−1 = e(W2,i,S ′
1) · e(U ′

2,Xi)
e(ct5,i, g) · e(H1,i, ct2)−1 = e(T1,i,S1) · e(V1,Xi)
e(ct′5,i, g) · e(H1,i, ct

′
2)

−1 = e(T1,i,S ′
1) · e(V1,Xi)

e(ct6,i, g) · e(H2,i, ct2)−1 = e(T2,i,S1) · e(V2,Xi)
e(ct′6,i, g) · e(H2,i, ct

′
2)

−1 = e(T2,i,S ′
1) · e(V2,Xi)

ct7 = e(S3,S4), ct′7 = e(S ′
3,S4), ĉt7 = e(Ŝ3, Ŝ4), ĉt

′
7 = e(Ŝ ′

3, Ŝ4)
ct−1

8 · ct′8 = e(K1,K2) · e(K−1
1 ,K′

1), ĉt
−1
8 · ĉt′8 = e(K̂1, K̂2) · e(K̂−1

1 , K̂′
1)

e(ct1,K1) = e(g,K1), e(ct′1,K1) = e(g,K′
1)
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Now we need to provide a proof that two ciphertexts ct, ĉt are the encryption of
a single message m and a single attribute x:

Xi = gxi , X̂i = ĝxi ⇒ e(Xi, ĝ) = e(g, X̂i) ⇒ e(Xi, ĝ) · e(g, X̂i)−1 = 1GT

Notice that ct8, ct
′
8 are the only components of the ciphertext which are related

to the message, m, so we have:(
ct8 = Λ−s2m, ĉt8 = Λ̂−ŝ2m

)
⇒ ct8ĉt

−1
8 = Λ−s2 · Λ̂ŝ2 =

e(Ks2
1 ,K−1

2 ) · e(K̂ ŝ2
1 , K̂2) == e(K1,K

−1
2 ) · e(K̂1, K̂2) = e(K−1

1 ,K2) · e(K̂1, K̂2)

So the prover has to provide a proof for the following system of equations:

Ect−ĉt :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ct8ĉt

−1
8 = e(K1,K

−1
2 , ) · e(K̂1, K̂2)

ct8ĉt
−1
8 = e(K−1

1 ,K2) · e(K̂1, K̂2)
e(g,K1) = e(ct1,K1) , e(ĝ, K̂1) = e(ĉt1, K̂1)
e(Xi, ĝ) · e(g, X̂i)−1 = 1GT

Summing up, to provide the NIWI-proof system for encryption algorithm the
prover uses Groth-Sahai proof-system for the system of equations, ECT = Ect ∧
Ect−ĉt.

6 Conclusion

Our main contribution is the first efficient verifiable (attribute-hiding) IPE
scheme from bilinear groups. The privacy of our scheme is based on the standard
DLIN assumption whereas its verifiability is unconditional. Towards this goal,
we also constructed the first perfectly correct inner product encryption scheme
for plaintexts of arbitrary length. Our VIPE scheme is selectively secure only;
we leave as an interesting open problem the construction of a fully secure one.
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Fund (FNR) for funding this reserach. In particular N. Soroush and V. Iovino were sup-
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Abstract. We give the first public-key functional encryption that sup-
ports the generation of functional decryption keys for degree-2 polyno-
mials, with succinct ciphertexts, whose semi-adaptive simulation-based
security is proven under standard assumptions. At the heart of our new
paradigm lies a so-called partially function-hiding functional encryption
scheme for inner products, which admits public-key instances, and that is
sufficient to build functional encryption for degree-2 polynomials. Doing
so, we improve upon prior works, such as the constructions from Lin
(CRYPTO 17) or Ananth Sahai (EUROCRYPT 17), both of which rely
on function-hiding inner product FE, that can only exist in the private-
key setting. The simplicity of our construction yields the most efficient
FE for quadratic functions from standard assumptions (even those satis-
fying a weaker security notion). The interest of our methodology is that
the FE for quadratic functions that builds upon any partially function-
hiding FE for inner products inherits the security properties of the latter.
In particular, we build a partially function-hiding FE for inner products
that enjoys simulation security, in the semi-adaptive setting, where the
challenge sent from the adversary can be chosen adaptively after see-
ing the public key (but before corrupting functional decryption keys).
This is in contrast from prior public-key FE for quadratic functions from
Baltico et al. (CRYPTO 17), which only achieved an indistinguishability-
based, selective security. As a bonus, we show that we can obtain security
against Chosen-Ciphertext Attacks straightforwardly. Even though this
is the de facto security notion for encryption, this was not achieved by
prior functional encryption schemes for quadratic functions, where the
generic Fujisaki Okamoto transformation (CRYPTO 99) does not apply.
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1 Introduction

Functional Encryption [O’N10,BSW11](in short: FE) is a general paradigm where
restricted decryption keys are generated, that let users learn specific functions of
the encrypted data. Namely, each decryption key skf is associated with a func-
tion f , and the decryption of an encrypted message x with skf recovers f(x), and
nothing else. The scheme must be resistant to any collusion of decryption keys
skf for different functions f : such group of keys should not learn anything more
than the information leaked by each key skf , individually. This security property
makes FE schemes both hard to build and extremely useful, provided the class of
function they handle is large. In fact, it has been shown [BV15,AJ15] that general
purpose functional encryption gives a construction of Indinstiguishability Obfus-
cation [BGI+01,GGG+14] (in short: iO) for all circuits, a powerful object that
has been remarkably successful at providing an all-purpose tool for solving crypto-
graphic problems [SW14]. Surprisingly, even FE for smaller classes of functions are
powerful. Recently, [LT17] has shown that succinct FE supporting degree-3 func-
tions is sufficient to build iO, togetherwith additional assumptions on the existence
of special kind of pseudo-random generators1. However, there is no construction
of such FE schemes from standard, well understood assumptions. All known con-
structions rely on either multilinear maps, or iO itself. Can we build FE for rich
classes of functions from standard assumptions?

Beyond the case of predicate encryption [BW07,KSW08,GVW15], little is
known about standard-based FE constructions. [ABDP15] gave the first con-
struction of FE for inner products, where the encryption of a vector x ∈ Z

n,
together with a decryption key associated with vector y ∈ Z

n, yields the inner
product of x and y. That is, their scheme can generate decryption keys that
compute a weighted sum on encrypted data. They prove selective security, a
useful but artificial security notion where the adversary has to commit to its chal-
lenge ciphertext beforehand. Later, [ALS16] gave constructions with full security
(aka adaptive security, where the adversary can request decryption keys and the
challenge ciphertext adaptively). Both constructions use standard assumptions
(DDH, LWE, DCR). Note that inner products already capture constant depth
circuits, by simply expressing circuits as polynomials, and encrypting all the
monomials (of constant degree). However, for most applications, and in partic-
ular to obtain iO, one needs to recursively apply the FE scheme to itself. This
bootstrapping requires the ciphertexts to be succinct, that is, their size should
only depend on the underlying message, and not on the function to be evaluated.
Following this quest for succinct FE for richer classes of functions, [BCFG17]
(concurrently [AS17,Lin17] in the private-key setting), gave the first construction
of succinct FE that supports the evaluation of quadratic functions on ciphertexts.
All of these constructions are proven secure under an indistinguishability-based
security definition, which is cumbersome to use, and is too weak to meaningful
security for some functionality. Moreover, all these schemes either achieve only
selective security, or assume the generic group model.

1 Namely, the existence of pseudo-random generators of block-wise locality 3.
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Our Contributions. We build the first simulation-secure FE in the semi-
adaptive setting, whose security relies on a standard assumption, that supports
a functionality beyond inner products, or predicate encryption. In our scheme,
ciphertexts are associated with two vectors x ∈ Z

n and y ∈ Z
m, and decryption

keys are associated with a matrix F ∈ Z
n×m. The decryption of a ciphertext ctx,y

with a decryption key skF recovers x�Fy ∈ Z. The ciphertext size is O(n + m)
group elements, and security relies on pairings (DLIN) (Fig. 1).

Fig. 1. Quadratic FE. Here, {AD, SAD, SEL}-{IND, SIM} stands for {adaptive, semi-
adaptive, selective}-{indistinguishability, simulation} security. GGM stands for Generic
Group Model .

To build our quadratic FE, we deploy a new paradigm that uses at its core a
so-called partially function-hiding inner-product FE, where decryption keys par-
tially hide their underlying function (in the case of inner product, their under-
lying vector). This approach allows us to obtain public-key FE, as opposed to
prior work [AS17,Lin17] relying on full-fledged function-hiding inner-product
FE, which is inherently private-key.

We then build a partially function-hiding inner-product FE with simula-
tion security. This security notion implies its indistinguishability-based counter-
part, and drastically simplifies the proof compared to previous works relying on
indistinguishability-secure inner-product FE (for instance [Lin17]). This simplic-
ity is illustrated by short ciphertexts and keys (see Fig. 2). We obtain simulation
security in the semi-adaptive setting, where an adversary is restricted to choose
its challenge before querying any secret keys. This is the best we can hope for: a
simple extension of [BSW11,AGVW13] shows that adaptively simulation secure
partially function-hiding inner-product FE are impossible to achieve from stan-
dard assumptions (note this impossibility result doesn’t apply to schemes proved
in the generic group model, such as the inner-product FE from [KLM+18]).
As shown in [BSW11], indistiguishability-based security is inadequate for some
functionality. For instance, if a ciphertext encrypts the seed of a PRG, and
each functional decryption key is associated with one position of the output of
the PRG, simulation-based security ensure that only the output of the PRG is
revealed, whereas indistinguishability-based security is essentially useless, since
it only proves that an encryption of a seed is computationally indistinguishable
from an encryption of seed’ if PRG(seed) = PRG(seed’). This example is relevant
in the context of quadratic FE, since our construction is expressive enough to
evaluate the output of a PRG (see Remark 1). This indicates that simulation
security is qualitatively stronger than its indistinguisahbility-based counterpart.
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Fig. 2. Efficiency comparison between public-key quadratic FE, where cipher-
text encrypt (x,y) ∈ Z

n × Z
m and decryption keys are associated with F ∈ Z

n×m.
{AD, SAD, SEL}-{IND, SIM} stands for {adaptive, semi-adaptive, selective}-
{indistinguishability, simulation} security. GGM stands for Generic Group Model.
SXDH stands for Symmetric eXternal Diffie Hellman, 3-PDDH stands for 3-Party Deci-
sional Diffie Hellman, DLIN stands for Decisional LINear, both of which are standards
assumptions in pairing groups.

Another benefit of our new approach is that many properties of the under-
lying partially function-hiding inner-product FE can be lifted to the overall
quadratic FE. This is case of the semi-adaptive simulation-based security, but we
also show that if the partially function-hiding inner-product FE is secure against
Chosen-Ciphertext Attacks (CCA-security), then so is the resulting quadratic
FE. CCA-security is the de facto security notion for encryption, as it captures
active or man-in-the-middle attacks, as opposed to CPA security. However, pre-
vious quadratic FE only prove CPA security. Note that generic transformation,
such as Fujisaki Okamoto transform [FO99], cannot be applied here, since it
relies on hybrid encryption, which is incompatible with functional encryption,
which permits selective computation on encrypted data, as opposed to the all-
or-nothing access provided by typical encryption. The CHK transform [CHK04]
has been extended in [GPSW06] to obtain CCA-security for Attribute-Based
Encryption (ABE) with some delegatability property. This property has been
relaxed in [YAHK11]. However, these techniques only apply to ABE, where a
decryption secret key recovers the encrypted plaintext entirely, or not at all,
which is different in nature from the Functional Encryption we are studying
here, where only partial information about the plaintext is recovered. The only
generic transformation that seems to apply in our case is the dual encryption
methodology from [NY90], which has the disadvantage of doubling the size of
ciphertexts, and relying on (simulation-sound) non-interactive zero knowledge
proofs. [BBL17] avoids using the Naor Yung paradigm, and builds the first CCA-
secure FE (beyond the case of ABE), which handles inner product, and is based
on efficient hash-proof systems. Their security proof crucially relies on structural
(linearly homomorphic) properties of hash proofs system, which is tailored to
FE for inner products. Indeed, none of these techniques seem to be applicable to
existing quadratic FE, such as [BCFG17]. Our construction strikes by its simplic-
ity: it suffices to build a CCA-secure partially function-hiding inner-product FE,
which can be simply obtained by adding an Quasi-Adaptive Non-Interactive Zero
Knowledge argument for the simple language of DDH tuples, without doubling
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the size of the ciphertext as required by Naor Yung dual encryption methodology.
Instantiating these with arguments from [KW15] only adds 2 group elements in
the ciphertexts, and requires no extra assumption. Surely, this is made easy by
the use of pairings, which are not used by [BBL17]. In fact, we do not consider
CCA-security to be the main technical contribution of this paper, but rather an
illustration of the interest of building quadratic FE from inner-product FE, as
is done in our new paradigm.

Technical Overview

Quadratic FE. Our quadratic FE uses a pairing group G1 × G2 → GT , where
the encryption of x,y contains an encryption Enc1(x; r) of x under random-
ness r, that consists of elements in G1, and an encryption Enc2(y; s) of y
under randomness s, which consists of elements in G2. Thanks to the pairing
e : G1 × G2 → GT , we can compute the product of Enc1(x, r) and Enc2(y, s) to
obtain the output x�Fy in the group GT , masked by some extra terms, that
can be expressed as the inner product of a vector that only depends on the input
x,y, and the randomness r, s used by the encryption, together with another vec-
tor which only depends on the secret key of these encryptions, and the matrix F.
Both vectors have a dimension that is linear in the dimension of the vectors x
and y. Thus, as in [AS17,Lin17], we can use an inner-product FE to compute the
masking term. Such inner-product FE needs to be function-hiding, since reveal-
ing the secret key would compromise the security of the encryptions Enc1 and
Enc2. However, function-hiding FE is an inherently private-key primitive, since
a public encryption would allow to recover the function underlying each decryp-
tion key, simply by encrypting well-chosen vectors and decrypting them using
the decryption key. To obtain a public key quadratic FE, we make the crucial
observation that the underlying function-hiding FE for inner products is only
used for vectors that lie in some specific subspace. Thus, we create, and make
public, a restricted encryption key that can only generate ciphertexts for these
vectors, while still providing some meaningful function-hiding. In particular, we
obtain a public-key inner-product FE where decryption keys partially hide their
underlying vector, which turns out to be sufficient for the security proof of the
quadratic FE. Roughly speaking, the security of the inner-product FE proves
that only the masking terms are revealed, along with some partial information
on the secret keys that do not compromise security of the encryptions Enc1,
Enc2. Thus, we obtain security of the quadratic FE using the security of the
latter encryptions.

Partially Function-Hiding Inner-Product FE. We now highlight the construction
of our new public-key, partially function-hiding inner-product FE. Our starting
point is the FE for inner products from [ALS16], where decrypting an encryption
Enc(x) of a vector x with a decryption key KeyGen(y) associated with vector y
yields the inner product x�y. Their scheme is not function-hiding since y is part
of the decryption key generated by KeyGen(y). As in [Lin17, Section 6.3], we use
the fact that the decryption computes the inner product of Enc(x) and KeyGen(y)
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to obtain x�y. Namely, we replace the vector y in each decryption key by an
ALS encryption of y, and x in each ciphertext is replaced by an ALS decryption
key for x (see Fig. 3). Function-Hiding (hiding y) follows from the security of
the inner ALS FE, whereas security (hiding x) follows from the security of the
outter ALS FE. [Lin17] uses a similar approach, where the entire decryption key
is encrypted using an outter inner-product FE (see Fig. 3), and the underlying
inner-product FE [ABDP15] are only selective indistinguishability secure.

Fig. 3. Function-Hiding FE for inner products. In the leftmost column (resp. right-
most column) (Encout,KeyGenout) and (Encin,KeyGenin) are two independent instances
of [ALS16] (resp. [ABDP15]) FE for inner products.

To make our scheme public-key, we publish a restricted secret key for the
inner layer FE that lets KeyGenin(x) run on vectors x that lie in some subspace.
To be of use in our quadratic FE scheme, our function-hiding FE needs to be
simulation secure (this is stronger than the classical indistinguishability based
security for FE). We prove simulation security using the simulation security of
[ALS16], which was proved in [AGRW17,Wee17] in the selective setting.

CCA-Security. As a bonus, we show that we can easily obtain CCA-security
for our partially function-hiding inner-product FE, and that security prop-
erty is transferred to the overall quadratic FE. We use Quasi-Adaptive Non-
Interactive arguments for the simple language of DDH tuples, which must fulfill
one-time simulation-soundness, in order to boost the security of our partially
function-hiding FE for inner products to handle Chosen Ciphertext Attacks.
This QANIZK argument can be instantiated with [KW15, Section 3.3], which
only adds two group elements in the ciphertexts (this is the case k = 1 in their
paper) and rely on the Kernel assumption, implied by SXDH (this is competitive
with Fiat Shamir NIZKs, and does not rely on the random oracle model). Recall
that prior constructions fail to obtain CCA-security even in the random oracle
model, since the Fujisaki Okamoto transform, which relies on hybrid encryption
(that is incompatible with functional encryption, where only a partial informa-
tion on the plaintext is recovered during decryption), is of no help here.

Conclusion, and Perspective. Summarizing, we exhibit a new paradigm to
build quadratic FE from partially function-hiding FE for inner products, a newly
introduced primitive that bypasses impossibility results of public-key function-
hiding FE. This gives stronger, desirable security guarantees that were previ-
ously not achieved. Moreover, its simplicity is appealing, not only because it
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gives constructions that outperform previous standard-based schemes in terms
of ciphertext size, but also because it transfers properties from inner-product
FE to quadratic FE. An important exception is adaptive security. Even though
there are adaptively-secure inner-product FE (in fact we claim, without proof,
that our semi-adaptive partially function-hiding FE for inner products can be
extended to the adaptive, indistinguishability-based setting, up to doubling the
size of the ciphertexts, as done in [LV16]), our quadratic FE fails at achieving
adaptive security. Despite this shortcomings, we are optimistic this new app-
roach will shed light on the largely unexplored domain of building functional
encryption for richer functionalities from standard assumptions.

Road-Map. The rest of this paper is organized as follows. After giving some
relevant technical preliminaries in Sect. 2, we define partially function-hiding
public-key FE for inner products, and generically use it to build a quadratic FE,
in Sect. 3. Then, in Sect. 4, we give concrete instances of such partially function-
hiding FE for inner products, using standard assumptions on pairing groups.

2 Preliminaries

2.1 Notations

For any set S, we denote by a ←R S a uniformly random element a in S. PPT
stands for Probabilistic Polynomial Time. For any PPT algorithm A, we denote
by x ← A a random output from A. We use ≈c to denote computational indis-
tinguishability, and ≡ to denote equality between distributions.

2.2 Pairing Groups

Let PGGen be a PPT algorithm that on input the security parameter 1λ, returns
a description PG = (G1, G2, GT , p, P1, P2, e) where for all s ∈ {1, 2, T}, Gs is an
additive cyclic group of order p for a 2λ-bit prime p. G1 and G2 are generated by
P1 and P2 respectively, and e : G1 × G2 → GT is an efficiently computable (non-
degenerate) bilinear map. Define PT := e(P1, P2), which is a generator of GT ,
of order p. We use implicit representation of group elements. For s ∈ {1, 2, T}
and a ∈ Zp, define [a]s = a · Ps ∈ Gs as the implicit representation of a in Gs.
More generally, for a matrix A = (aij) ∈ Z

n×m
p we define [A]s as the implicit

representation of A in Gs:

[A]s :=

⎛
⎝

a11 · Ps ... a1m · Ps

an1 · Ps ... anm · Ps

⎞
⎠ ∈ G

n×m
s .

Given [a]1 and [b]2, one can efficiently compute [a · b]T using the pairing e.
For matrices A and B of matching dimensions, define e([A]1, [B]2) := [AB]T .
For any matrix A,B ∈ Z

n×m
p , any group s ∈ {1, 2, T}, we denote by

[A]s + [B]s = [A + B]s.
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For any prime p, we define the following distributions. The DDH distri-
bution over Z

2
p: a ←R Zp, outputs a :=

(
1
a

)
. The DLIN distribution over Z

3×2
p :

a, b ←R Zp, outputs A :=

⎛
⎝

a 0
0 b
1 1

⎞
⎠.

Definition 1 (DDH assumption). For any adversary A, any group
s ∈ {1, 2, T} and any security parameter λ, let

AdvDDH
Gs,A(λ) := |Pr[1 ← A(PG, [a]s, [ar]s)] − Pr[1 ← A(PG, [a]s, [u]s)]|,

where the probabilities are taken over PG ←R GGen(1λ, d), a ←R DDH,
r ←R Zp, u ←R Z

2
p, and the random coins of A. We say DDH holds in Gs if for

all PPT adversaries A, AdvDDH
Gs,A(λ) is a negligible function of λ.

Definition 2 (SXDH assumption). For any security parameter λ and any
pairing group PG = (G1, G2, GT , p, P1, P2, e) ←R PGGen(1λ), we say SXDH
holds in PG if DDH holds in G1 and G2.

Definition 3 (bilateral DLIN). For any adversary A, any security parameter
λ, let

AdvDLIN
A (λ) := |Pr[1 ← A

(
PG, {[A]s, [Ar]s, }s∈{1,2}

)

− Pr[1 ← A
(
PG, {[A]s, [u]s}s∈{1,2}

)
]|,

with where the probabilities are taken over PG ←R GGen(1λ, d), A ←R DLIN,
r ←R Z

2
p, u ←R Z

3
p, and the random coins of A. We say bilateral DLIN holds

relative to PG if for all PPT adversaries A, AdvDLIN
A (λ) is a negligible function

of λ.

2.3 Functional Encryption

A functional encryption scheme for a functionality F : X → Z is a tuple of PPT
algorithms:

– Setup(1λ,F): on input the security paramter λ, the functionality F , returns
a public key pk (which is implicitly an input of all other algorithms), and a
master secret key msk.

– Enc(x ∈ X ): returns ctx, an encryption of x.
– KeyGen(msk, f ∈ F): returns skf , a decryption key for f .
– Dec(ctx, skf ): deterministic algorithm that returns a value in Z, or ⊥ if it

fails.

An FE scheme is said to be private-key if Enc requires msk as additional
input, otherwise, it is public-key.
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Correctness. For any security paramter λ, any functionality F : X → Z, any
x ∈ X , and f ∈ F , Pr[Dec(ctx, skf ) = f(x)] = 1, where the probability is taken
over (pk,msk) ← Setup(1λ,F), ctx ← Enc(x), skf ← KeyGen(msk, f).

Security. We recall the notion of simulation security, which implies its
indistinguishability counterpart. Both notions were originally introduced in
[BSW11,O’N10]. We work in the semi-adaptive setting, where the adversary
sends its challenge x before querying any secret keys, but after receiving the
public key. Semi-adaptive security has been introduced in [CW14] in the con-
text of Attribute-Based Encryption, and subsequently studied in [GKW16]. It
implies traditional selective security (where the adversary sends x before seeing
the public key and querying secret keys), and is implied by the full-fledged adap-
tive security (where the adversary can query secret keys before sending its chal-
lenge x). We give both Chosen-Plaintext Attack (CPA) and Chosen-Ciphertext
Attack variants of simulation security.

Definition 4 (Simulation CPA security). For any FE scheme FE for func-
tionality F , any security parameter λ, any PPT simulator S := (S̃etup, Ẽnc,
K̃eyGen), and any PPT stateful adversary A, we define the following two exper-
iments.

RealCPA-FEA (1λ):
(pk,msk) ← Setup(1λ,F)
x� ← A(1λ, pk)
ct� ← Enc(x�)
α ← AOKeyGen(·)(ct�)

IdealCPA-FEA,S (1λ):

(p̃k, m̃sk) ← S̃etup(1λ,F)
x� ← A(1λ, p̃k)
ct� ← Ẽnc(m̃sk)
α ← AOKeyGen(·)(ct�)

In the real experiment, the key generation oracle OKeyGen, when given as
input f ∈ F , returns KeyGen(msk, f). In the ideal experiment, the key gener-
ation oracle OKeyGen, when given as input f ∈ F , computes f(x�), and returns
K̃eyGen(m̃sk, f, f(x�)).

We say an FE scheme is CPA-SIM secure if there exists a PPT simulator
S := (S̃etup, Ẽnc, K̃eyGen) such that for all PPT adversaries A, we have:

AdvCPA-SIM
FE,A (λ) := |Pr[1 ← RealCPA-FEA (1λ)] − Pr[1 ← IdealCPA-FEA,S (1λ)]| = negl(λ).

Definition 5 (Simulation CCA security). For any FE scheme FE for
functionality F , any security parameter λ, any PPT simulator S := (S̃etup,
Ẽnc, K̃eyGen, D̃ec), and any PPT stateful adversary A, we define the following
two experiments.

RealCCA-FEA (1λ):
(pk,msk) ← Setup(1λ,F)
x� ← A(1λ, pk)
ct� ← Enc(x)
α ← AOKeyGen(·),ODec(·,·)(ct�)

IdealCCA-FEA,S (1λ):

(p̃k, m̃sk) ← S̃etup(1λ,F)
x� ← A(1λ, p̃k)
ct� ← Ẽnc(m̃sk)
α ← AOKeyGen(·),ODec(·,·)(ct�)
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In the real experiment, the oracle OKeyGen, when given as input f ∈ F , returns
KeyGen(msk, f); the oracle ODec, given as input a ciphertext ct different from the
challenge ciphertext ct� and a function f ∈ F , computes skf ← KeyGen(msk, f),
and returns Dec(ct, skf ). If ODec is queried on an input that contains the chal-
lenge ciphertext ct�, it returns ⊥.

In the ideal experiment, the oracle OKeyGen, when given as input f ∈ F , com-
putes f(x�), and returns K̃eyGen(m̃sk, f, f(x�)). The oracle ODec, when given as
input a ciphertext ct different from the challenge ciphertext ct� and a function
f ∈ F , returns D̃ec(m̃sk, f, ct). If ODec is queried on an input that contains the
challenge ciphertext ct�, it returns ⊥.

We say an FE scheme is CCA-SIM secure if there exists a PPT simulator
S := (S̃etup, Ẽnc, K̃eyGen, D̃ec) such that for all PPT adversaries A, we have:

AdvCCA-SIM
FE,A (λ) := |Pr[1 ← RealCCA-FEA (1λ)] − Pr[1 ← IdealCCA-FEA,S (1λ)]| = negl(λ).

2.4 Quasi-Adaptive Non-Interactive Zero-Knowledge

This part is taken almost verbatim from [KW15]. Quasi-Adaptive NIZK (QA-
NIZK) proofs are NIZK proofs where the common reference string (CRS) is
allowed to depend on the specific language for which proofs have to be generated
[JR13]. The CRS is generated in a specific way and contains a fixed part par,
produced by an algorithm Genpar, and a language-dependent part crs. However,
for the zero-knowledge property there should exist a single simulator for the
entire class of languages.

For public parameters par produced by Genpar, let Dpar be a probability distri-
bution over a collection of relations R = {Rρ} parametrized by a string ρ with
an associated language Lρ = {y : ∃x s.t. Rρ(y, x) = 1}. We now recall the tag
definition of QANIZK for Dpar, in its tag-based variant.

Definition 6 (QANIZK Argument). A Quasi-adaptive Non-Interactive
Zero Knowledge Argument (QANIZK) Π for a language distribution Dpar con-
sists of five PPT algorithms Π = (Genpar,Gencrs,Prove,Sim,Ver):

– Genpar(1λ): returns the public parameters par.
– Gencrs(par, ρ): returns a common reference string crs, and a trapdoor trap. We

assume that crs implicitly contains par and ρ, and that it defines a tag space
T .

– Prove(crs, τ, x, y): on input the crs, a tag τ ∈ T , a witness x and a statement
y, it returns a proof π.

– Ver(crs, τ, y, π): on input crs, a tag τ ∈ T , a statement y, and a proof π, it
returns 1 or 0, where 1 means that π is a valid proof of y ∈ Lρ, with respect
to tag τ .

– Sim(crs, trap, τ, y): returns a proof π for some y ∈ Y (not necessarily in Lρ).
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We require that the algorithms satisfy the following properties:

Perfect completeness. For all λ, all par output by Genpar(λ), all ρ output by
Dpar, all (x, y) with Rρ(y, x) = 1, all τ ∈ T , we have:

Pr[Ver(crs, τ, y, π) = 1|(crs, trap) ←R Gencrs(par, ρ); π ←R Prove(crs, τ, x, y)] = 1.

Pr

[
Ver(crs, τ, y, π) = 1

∣∣∣∣ (crs, trap) ←R Gencrs(par, ρ)
π ←R Prove(crs, τ, x, y)

]
= 1.

Perfect zero-knowledge. For all λ, all par output by Genpar(λ), all ρ output
by Dpar, all (crs, trap) output by Gencrs(par, ρ), all (x, y) with Rρ(y, x) = 1, all
tags τ ∈ T , the distributions

Prove(crs, τ, x, y) and Sim(crs, trap, τ, y)

are the same (where the coin tosses are taken over Prove,Sim).
Simulation Soundness. For all PPT adversaries A and any QANIZK argu-

ment Π the following advantage

AdvΠ
A(λ) := Pr

⎡
⎣Ver(crs, τ�, y�, π�) = 1

∧y� /∈ Lρ ∧ τ� /∈ Tsim

∣∣∣∣∣∣
par ←R Genpar(λ), ρ ←R Dpar

(crs, trap) ←R Gencrs(par, ρ)
(y�, τ�, π�) ← ASimO(·,·)(crs)

⎤
⎦

is negligible, where SimO(τ, y) returns π := Sim(crs, trap, τ, y) and sets
Tsim := Tsim ∪ {τ}, where Tsim is initially empty.

One-time Simulation Soundness. For any PPT adversary A and QANIZK
argument Π, we define AdvOT-Π

A (λ) as AdvΠ
A(λ), except the adversary can

only make one query to the oracle SimO.

3 Quadratic FE from Inner-Product FE

In this section we build a functional encryption scheme for bounded-norm quad-
ratic functions, namely, for the functionality Fquad,B : [0, B]n × [0, B]m →
[0, n · m · B3], X := [0, B]n × [0, B]m, Z := [0, n · m · B3], such that each
F ∈ Fquad,B is represented by a matrix in [0, B]n×m, and for all (x,y) ∈
[0, B]n × [0, B]m, the output of the function is x�Fy ∈ [0, n · m · B3]. We con-
sider B,n,m all polynomials in the security parameter.

Our quadratic FE is built from a so-called partially function-hiding inner
product FE. After giving an overview of the quadratic FE, we define partially
function-hiding inner-product FE in Sect. 3.1, and we use it build a simulation-
secure quadratic FE in Sect. 3.2, based on the DLIN assumption in a type-3
pairing group e : G1 × G2 → GT .
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Overview of the Quadratic FE. To encrypt the pair of vectors x and y, we
provide an encryption of x which contains group elements from G1, and an
encryption of y, which contains group elements from G2. Equipped with a
pairing e : G1 × G2 → GT , we multiply these encryptions to obtain the desired
value in GT . A natural starting point is to use the ElGamal encryption
[ElG84]. That is, the ciphertext ctx,y includes the encryption of x ∈ Z

n in
G1: ctx = (c1 := [r]1, c2 := [x + ar]1) with randomness r ←R Zp, public key
[a]1 ∈ G

n
1 and secret key a ∈ Z

n
p ; and an ElGamal encryption of y ∈ Z

m in
G2: cty = (c3 := [s]2, c4 := [y + bs]2), with randomness s ←R Zp, public key
[b]2 ∈ G

m
2 , and secret key b ∈ Z

m
p . Decryption computes the product c�

2 Fc4,
using the pairing, to recover:

[x�Fy + (ar)�Fy + x�Fbs + (ar)�Fbs)︸ ︷︷ ︸
extra terms

]T ,

where the output [x�Fy]T is masked by extra terms, which can be expressed as

the inner product between

⎛
⎝

r · y
s · x
r · s

⎞
⎠ and

⎛
⎝

F�a
Fb

a�Fb

⎞
⎠.

Note that the first vector only contains elements known to the encryptor
(the randomness used by the encryption and the input vectors x and y), while
the second vector only contains elements known to the decryption key generator
(the master secret key msk = (a,b), and the input F to the key generation
algorithm). Besides, the dimension of both vectors are linear in n + m. Thus, to
compute these extra terms (without compromising succinctness), we use an FE

for inner products IPFE.Enc, IPFE.KeyGen, and we add IPFE.Enc

⎛
⎝

r · y
s · x
r · s

⎞
⎠ to the

ciphertext ctx,y, and we define skF = IPFE.KeyGen

⎛
⎝

F�a
Fb

a�Fb

⎞
⎠. This underlying

inner-product FE needs to be function-hiding, since revealing the vector input
to IPFE.KeyGen, which contains the master secret key msk = (a,b), would be
fatal for the security of the ElGamal encryptions. However, function-hiding FE
is an inherently private-key primitive, since a public encryption would allow to
recover y from the decryption key sky, simply by encrypting sufficiently many
well-chosen vectors x and decrypting them using sky.

To obtain a public-key quadratic FE, we use an encryption scheme that has
more structure than ElGamal, namely, Damg̊ard ElGamal [Dam92]. This gives
the possibility to relax the function-hiding property required from the inner-
product FE, and bypass the impossibility result for public-key function-hiding
FE.

Namely, the ciphertext ctx,y contains a Damg̊ard ElGamal encryption
in G1: ctx = (c1 := [ar]1, c2 := [x + Uar]1) with randomness r ←R Zp, public
key ([a]1 ∈ G

2
1, [Ua]1 ∈ G

n
1 ), and secret key U ∈ Z

n×2
p ; and a Damg̊ard ElGa-

mal encryption of y ∈ Z
m in G2: cty = (c3 := [bs]2, c4 := [y + Vbs]2), with
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randomness s ←R Zp, public key ([b]2 ∈ G2, [Vb]2 ∈ G
m
2 ), and secret key

V ∈ Z
m×2
p . Decryption computes the product c�

2 Fc4, using the pairing, to
recover:

[x�Fy + (ar)�(U�F)(y + Vbs) + x�(FV)(bs)︸ ︷︷ ︸
extra terms

]T ,

where the output [x�Fy]T is masked by extra terms, which can be expressed as

the inner product between
(
ar ⊗ (y + Vbs)

x ⊗ bs

)
and

(
vect(U�F)
vect(FV)

)
, where for any

vector x ∈ Z
n
p , y ∈ Z

m
p , and matrix M ∈ Z

n×m
p , we denote by vect(M) ∈ Z

nm
p

the vector such that the inner product of x ⊗ y with vect(M) is x�My.
As before, the first vector only contains elements known to the encryptor (the

randomness used by the encryption, the input vectors x and y, and the public
keys), while the second vector only contains elements known to the decryption
key generator (the master secret key msk = (U,V), and the input F to the key
generation algorithm). Besides, the dimension of both vectors are linear in n+m.

As before, to compute these extra terms, we use an FE for inner products

IPFE.Enc, IPFE.KeyGen, and we add IPFE.Enc

(
ar ⊗ (y + Vbs)

x ⊗ bs

)
to the cipher-

text ctx,y, and we define skF = IPFE.KeyGen

(
vect(U�F)
vect(FV)

)
.

Now, we make the crucial observation that the underlying function-hiding
FE for inner products is only used for vectors that lie in some specific subspace,
strictly included in the whole space, namely, vectors (column) spanned by the

matrix: M :=
(
a ⊗ (Idm|Vb) 0

0 Idn ⊗ b

)
, where Idn (resp. Idm) denotes the

identity matrix of dimension n (resp. m). Thus, we create, and make public, a
restricted key that can only generate ciphertexts for these vectors, while still
providing some meaningful function-hiding. Namely, we prove that only M�y
leaks from a decryption key sky (in addition to what is supposed to leak by
correctness of the scheme), which turns out to be sufficient for the security proof
of the overall quadratic FE. [Lin17] also builds quadratic FE from function-
hiding FE for inner products, but it uses [ABDP15] encryption of x and y in
the ciphertext, and it requires a full-fledged function-hiding FE, which can only
be private-key.

3.1 Partially Function-Hiding Inner-Product FE

A partially function-hiding functional encryption for inner products is defined
with respect to a pairing group PG := (G1, G2, P1, P2, e) ← PGGen(1λ), a full
rank matrix M ∈ Z

n×m
p , with n > m, and such that M�M ∈ Z

m×m
p is invertible;

and a tag space T . It consists of the following PPT algorithms:

– Setup(1λ,PG, [M]1): returns the public key pk (implicitly input of all other
algorithms), and the master secret key msk. We assume pk contains a descrip-
tion of [M]1 and T .
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– Enc(t ∈ Z
m
p , τ ∈ T ): returns a ciphertext ctMt, associated with vector

Mt ∈ Z
n
p and tag τ .

– Enc′(msk, [x]1 ∈ G
n
1 , τ ∈ T ): returns a ciphertext ctx, associated with vector

x ∈ Z
n
p and tag τ .

– KeyGen(msk,y ∈ Z
n
p ): returns a decryption key sky.

– Dec(τ, ctx, sky): deterministic algorithm that returns a value in GT , or ⊥ if it
fails.

Note that Enc is public key, and can only encrypt vectors in the span
of [M]1, while Enc′ needs the msk, but can encrypt any vector [x]1 ∈ G

n
1 .

Another crucial difference is that Enc′ works on vector of group elements,
while Enc needs to get the exponents as input. We require these two encryp-
tion algorithms agree on the their common input space, namely: for all t ∈ Z

m
p

and τ ∈ T , Enc(t, τ) is identically distributed from Enc′(msk, [Mt]1, τ), where
(pk,msk) ← Setup(1λ,PG, [M]1).

To build quadratic FE in Sect. 3, we require a tag-free partially function-
hiding inner-product FE (which corresponds to the case T := {ε}). The latter
can be obtained generically from any tag-based partially function-hiding inner-
product FE, using one-time signature.

Correctness. For all t ∈ Z
m
p , y ∈ Z

n
p , τ ∈ T , Pr[Dec(τ, ctMt, sky) = [(Mt)�

y]T ] = 1, where the probability is taken over (pk,msk) ← Setup(1λ,PG, [M]1),
ctMt ← Enc(t, τ), sky ← KeyGen(msk,y).

Security. We define simulation security for partially function-hiding inner-
product FE, which captures the fact that the only information that leaks from a
ciphertext ctx and keys sky is x�y, and some partial information on y, namely,
M(M�M)−1M�y. We give both CPA and CCA variant of security notions.

Definition 7 (partially function-hiding, CPA Simulation security). For
any inner-product FE scheme FE, any PPT simulator S := (S̃etup, Ẽnc, K̃eyGen),
and any PPT stateful adversary A, we define the following two experiments.

RealCPA-FEA (1λ):
(pk,msk) ← Setup(1λ,PG, [M]1)
(τ�,x) ← A(1λ, pk)
ct� ← Enc′(msk, [x]1, τ�)
α ← AOKeyGen(·)(ct�)

IdealCPA-FEA,S (1λ):

(p̃k, m̃sk) ← S̃etup(1λ,PG, [M]1)
(τ�,x) ← A(1λ, p̃k)
ct� ← Ẽnc(m̃sk, τ�)
α ← AOKeyGen(·)(ct�)

In the real experiment, the key generation oracle OKeyGen, when given as input
y ∈ Z

n
p , returns KeyGen(msk,y). In the ideal experiment, when OKeyGen is

given as input y ∈ Z
n
p , it computes x�y, ỹ := M(M�M)−1M�y, and returns

K̃eyGen(m̃sk,x�y, ỹ).
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We say an FE scheme is partially function-hiding simulation-secure if there
exists a PPT simulator S := (S̃etup, Ẽnc, K̃eyGen) such that for all PPT adver-
saries A, we have:

AdvCPA-PFH-SIM
FE,A (λ) := | Pr[1 ← RealCPA-FEA (1λ)] − Pr[1 ← IdealCPA-FEA,S (1λ)]| = negl(λ).

Definition 8 (partially function-hiding, CCA Simulation security).
For any inner-product FE scheme FE, any PPT simulator S := (S̃etup, Ẽnc,
K̃eyGen, D̃ec), and any PPT stateful adversary A, we define the following two
experiments.

RealCCA-FEA (1λ):
(pk,msk) ← Setup(1λ,PG, [M]1)
(τ�,x) ← A(1λ, pk)
ct� ← Enc′(msk, [x]1, τ�)
α ← AOKeyGen(·),ODec(·,·,·)(ct�)

IdealCCA-FEA,S (1λ):

(p̃k, m̃sk) ← S̃etup(1λ,PG, [M]1)
(τ�,x) ← A(1λ, p̃k)
ct� ← Ẽnc(m̃sk, τ�)
α ← AOKeyGen(·),ODec(·,·,·)(ct�)

In the real experiment, OKeyGen(y ∈ Z
n
p ) returns KeyGen(msk,y). The oracle

ODec(τ, ct,y) returns ⊥ if τ = τ�; otherwise, it computes sky ← KeyGen(msk,y),
and returns Dec(τ, ct, sky).

In the ideal experiment, OKeyGen(y ∈ Z
n
p ) computes x�y, ỹ := M(M�M)−1

M�y, and returns K̃eyGen(m̃sk,x�y, ỹ). The oracle ODec(τ, ct,y) returns
⊥ if τ �= τ�; otherwise, it computes ỹ := M(M�M)−1M�y, and returns
D̃ec(τ, ct, ỹ).

We say an FE scheme is CCA partially function-hiding, simulation secure
if there exists a PPT simulator S := (S̃etup, Ẽnc, K̃eyGen, D̃ec) such that for all
PPT adversaries A, we have:

AdvCCA-PFH-SIM
FE,A (λ) := | Pr[1 ← RealCCA-FEA (1λ)] − Pr[1 ← IdealCCA-FEA,S (1λ)]| = negl(λ).

3.2 Quadratic FE from Partially Function-Hiding Inner-Product FE

We describe our quadratic FE in Fig. 4, for the functionality Fquad,B . Its security
relies on the security of the underlying partially function-hiding inner-product
FE, the bilateral DLIN assumption, and the DDH assumption in G1.

Correctness. By correctness of the underlying inner-product FE, we have:

d =
(

r ⊗
(
y
s

)
x ⊗ s

)�
M�

(
vect(U�F)
vect(FV)

)

=
(
ar ⊗ cty
x ⊗ Bs

)� (
vect(U�F)
vect(FV)

)

= (Uar)�Fcty + x�FVBs,
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Fig. 4. Quadratic FE: Quad. Here, IPFE := (SetupIPFE,EncIPFE,Enc
′
IPFE,KeyGenIPFE,

DecIPFE) is a (tag-free) partially function-hiding inner-product FE, as defined in
Sect. 3.1.

which corresponds exactly to the extra terms obtained when computing ct�xFcty,
that is, we have: ct�xFcty = x�Fy + d. Finally, Dec computes the discrete log
of [x�Fy]T , which is efficient since the output x�Fy is bounded by n · m · B3,
which is a polynomial in the security parameter.

Theorem 1 (Simulation security of the quadratic FE). The quadratic
FE from Fig. 4 for the functionality is simulation CPA (resp. CCA) secure if the
underlying inner-product FE is partially function-hiding CPA (resp. CCA) simu-
lation secure, assuming the bilateral DLIN assumption and the DDH assumption
in G1.

Namely, for any PPT adversary A, there exist PPT adversaries B1, B2, and
B3 such that:

AdvCPA-SIM
Quad,A ≤ AdvDDH

G1,B1
(λ) + AdvDLIN

PG,B2
(λ) + AdvCPA-PFH-SIM

IPFE,B3
(λ) +

4
p
.

Besides, for any PPT adversary A′, there exist PPT adversaries B′
1, B′

2, and
B′
3 such that:

AdvCCA-SIM
Quad,A′ ≤ AdvDDH

G1,B′
1
(λ) + AdvDLIN

PG,B′
2
(λ) + AdvCCA-PFH-SIM

IPFE,B′
3

(λ) +
4
p
.
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Proof. We prove the second part of the theorem, that is, CCA security. The
CPA security proof is a straightforward simplification, hence omitted. Let A
be a PPT adversary against the CCA security of Quad. We use a sequence of
hybrid games Gamei for i ∈ {1, 2, 3, 4}, defined in Fig. 5, and we denote the
advantage εi := Pr[1 ← Gamei(A, 1λ)]. We show that these games are compu-
tationally indistinguishable: RealCCA-Quad

A (1λ) ≡ Game1 ≈c Game2 ≈c Game3 ≈c

Game4 ≈s IdealCCA-Quad
A,S (1λ), for the PPT simulator S := (S̃etup, Ẽnc, K̃eyGen,

D̃ec) defined in Fig. 6.

Game1: is as RealCCA-Quad
A (1λ), except the encryption algorithm Enc′ is used

instead of Enc. Since these algorithms are identically distributed on input vectors
in the span on [M]1, this does not change the advantage of A:

Pr[1 ← RealCCA-Quad
A (1λ)] = ε1.

Game2: we use the DDH assumption in G1 to switch the distribution of the
vector [ar]1 in the challenge ciphertext to uniformly random over G

2
1. Namely,

we build a PPT adversary B1 against the DDH assumption such that

ε2 − ε1 ≤ AdvDDH
G1,B1

(λ).

Upon receiving the DDH challenge (PG, [a]1, [c]1), B1 samples U ←R Z
n×2
p ,

V ←R Z
m×3
p , B ← DLIN, computes [M]1 as defined in Fig. 4, and runs

(pkIPFE,mskIPFE) ← SetupIPFE(1λ,PG, [M]1), tanks to which it can simulate the
public key pk for A, and answer its queries to OKeyGen and ODec. When A sub-
mits its challenge (x,y), B1 samples s ←R Z

2
p, computes [ctx]1 := [x + Uc]1,

[cty]2 := [y + VBs]2, [z]1 :=
[
c ⊗ cty
x ⊗ Bs

]

1

and returns the challenge ciphertext

([ctx]1, [cty]2,Enc′
IPFE(mskIPFE, [z]1)) to A. When [c]1 is a real DDH challenge,

that is, of the form [c]1 := [ar]1 for some r ←R Zp, B1 simulates Game1, whereas
it simulates Game2 when [c]1 is uniformly random over G

2
1.

Game3: we use the bilateral DLIN assumption to switch the distribution of the
vector [Bs]2 to uniformly random over G

3
2. Namely, we build a PPT adversary

B2 such
ε3 − ε2 ≤ AdvDLIN

PG,B2
(λ).

Upon receiving the DLIN challenge (PG, {[B]s, [t]s}s∈{1,2}), B2 samples
U ←R Z

n×2
p , V ←R Z

m×3
p , a ←R DDH, computes [M]1 as defined in Fig. 4, and

runs (pkIPFE,mskIPFE) ← SetupIPFE(1λ,PG, [M]1), tanks to which it can simulate
the public key pk for A, and answer its queries to OKeyGen and ODec. When A
submits its challenge (x,y), B samples c ←R Z

2
p, computes [ctx]1 := [x + Uc]1,

[cty]2 := [y + Vt]2, [z]1 :=
[
c ⊗ (y + Vt)

x ⊗ t

]

1

and returns the challenge ciphertext

([ctx]1, [cty]2,Enc′
IPFE(mskIPFE, [z]1)) to A. When {[t]s}s∈{1,2} is a real DLIN chal-

lenge, that is, of the form [t]s := [Bs]s for some s ←R Z
2
p, B2 simulates Game2,

whereas it simulates Game3 when [t]s is uniformly random over G
2
s.
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Fig. 5. Games for the security proof of the quadratic FE from Fig. 4. In each procedure,
the components inside a solid (dotted, gray) frame are only present in the games

marked by a solid (dotted, gray) frame. (S̃etupIPFE, ẼncIPFE, K̃eyGenIPFE, D̃ecIPFE) is a
PPT simulator for the partially function-hiding SEL-SIM secure inner-product FE:
IPFE.
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Fig. 6. PPT simulator for the security proof of the quadratic FE from Fig. 4. Here,

(S̃etupIPFE, ẼncIPFE, K̃eyGenIPFE, D̃ecIPFE) is a PPT simulator for the partially function-
hiding, simulation secure inner-product FE, IPFE, used in the quadratic FE.

Game4: we use the simulator (S̃etupIPFE, ẼncIPFE, K̃eyGenIPFE, D̃ecIPFE) of IPFE, as
described in Fig. 5. Namely, there exists a PPT adversary B3 such that

ε4 − ε3 ≤ AdvCCA-PFH-SIM
IPFE,B3

(λ).

Adversary B3 samples a ←R DDH, B ←R DLIN, U ←R Z
n×2
p , V ←R Z

m×3
p , and

simulates A’s view straightforwardly, using the fact that for all x ∈ Z
n
p , y ∈ Z

m
p ,

F ∈ Z
n×m
p , c ∈ Z

2
p, t ∈ Z

3
p, we have:

(
c ⊗ cty
x ⊗ t

)� (
vect(U�F)
vect(FV)

)
= ct�xFcty − x�Fy,

where ctx = x + Uc, and cty = y + Vt.

IdealCCA-Quad
A,S (1λ): is as Game4, except that ctx and cty in the challenge ciphertext

are uniformly distributed. We show that these two games are statistically close.
Namely, we show that the vectors Uc and Vt are statistically close to uniformly
random over Z

2
p and Z

3
p, respectively.

To prove so, we use the following basis of Z
2
p and Z

3
p: (a|a⊥) and (B|b⊥)

with a ←R DDH, B ←R DLIN, and a⊥ ∈ Z
2
p, b

⊥ ∈ Z
3
p are such that a�a⊥ = 0
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and B�b⊥ = 0. Such basis exist assuming a and B are both full rank, which
happens with probability at least 1 − 2

p over the choice of a ←R DDH and
B ←R DLIN. We have: U� := au�

0 + a⊥u�
1 , and V� := BV0 + b⊥v�

1 , with
u0,u1 ←R Z

n
p , V0 ←R Z

2×m
p , and v1 ←R Z

m
p . We will show that u1 and v1 only

appear in the adversary view as (c�a⊥)u1 in ctx, and as (t�b⊥)v1 in cty. Since
we have ctx = x + u0(c�a) + u1(c�a⊥) and cty = y + V�

0 (B�t) + v1(t�b⊥),
when c�a⊥ �= 0, and t�b⊥ �= 0, the vectors ctx and cty are uniformly random
over Z

2
p and Z

3
p, respectively. With probability 1− 2

p over the choice of c ←R Z
2
p

and t ←R Z
3
p, we have c�a⊥ �= 0, and t�b⊥ �= 0, which proves

ε4 ≤ Pr
[
1 ← IdealCCA-Quad

A (1λ)
]

+
4
p
.

We now show that u1 and v1 only appear in ctx and cty, as indicated
above. In the public key, we have a�U� = a�(au�

0 + a⊥u�
1 ) = (a�a)u�

0 , and
B�V� = B�(BV0 + b⊥v�

1 ) = (B�B)v�
0 . The information needed to simulate

OKeyGen and ODec is contained in F, ctx, cty, x�Fy, M, and

M�
(

vect((au�
0 + a⊥u�

1 )F)
vect(F(BV0 + b⊥v�

1 )�)

)
= M�

(
vect(au�

0 F)
vect(FBV0)

)
,

where the equality holds by definition of M. That is, the only information about
u1 and v1 is contained in ctx, cty, which concludes the proof. ��

4 Partially-Hiding Inner Product FE

In this section we build a partially-hiding, simulation-secure inner-product FE
scheme, as defined in Sect. 3.1, based on the SXDH assumption. Together with
the generic construction from Sect. 3, this gives the quadratic FE advertised in
Sect. 1, Fig. 2.

Overview of the Partially-Hiding Inner-Product FE. We now highlight the con-
struction of our new partially-hiding public-key FE for inner products. Our start-
ing point is the FE for inner products from [ALS16], described in Fig. 7. It is not
function-hiding since y is part of the decryption keys generated by KeyGen. As
in [Lin17, Section 6.3], we use the fact that the decryption computes the inner
product of Enc(x) and KeyGen(y) to obtain [x�y] ∈ G. Namely, we replace the
vector y in each decryption key by an ALS encryption of y, and x in each cipher-
text is replaced by an ALS decryption key for x (see Fig. 3). Function-Hiding
(hiding y) follows from the security of the inner ALS FE, whereas security (hid-
ing x) follows from the security of the outter ALS FE. Note that we use the fact
that the KeyGen algorithm from [ALS16] FE can act on vectors in G2, and the
multiplications can be computed using the pairing e : G1 × G2 → GT to recover
the inner product of x and y in GT .



A New Paradigm for Public-Key Functional Encryption 115

Fig. 7. FE for inner products, from [ALS16].

To make our scheme public-key, we need to publish a restricted secret key
for the inner layer FE that lets KeyGenin(x) run on vectors x spanned by the
matrix M described in Sect. 3 (recall that M is a full rank, n times m matrix,
with n > m). If we denote the master secret key of the inner layer FE by
msk := U ∈ Z

d×2
p , the restricted key would simply be U�M.

We prove simulation security, which is necessary to be of use in our quadratic
FE scheme, and which is stronger than the classical indistinguishability based
security for FE. To do so, we use the simulation security of [ALS16], which was
proven in [AGRW17,Wee17]. We obtain simulation security in the semi-adaptive
setting, where the adversary sends its challenge before querying any secret keys,
but after receiving the public key. This is the best we can hope for, since a
straightforward adaptation of the results from [BSW11,AGVW13] show that
simulation security is impossible in the adaptive setting (where the adversary
can query secret keys before sending its challenge ciphertext).

[Lin17] also builds function-hiding FE from a two layered FE encryption, but
uses [ABDP15] instead of [ALS16], and only obtains indistinguishability security,
in the private key setting (see Fig. 3).

Our partially-hiding, simulation-secure inner-product FE is described
in Fig. 8.

Correctness. For all t ∈ Z
m
p and y ∈ Z

n
p , we have:

⎛
⎝

ar(
−V�Mt

Mt

)
+ Uar

⎞
⎠

�
⎛
⎜⎜⎝

−U�
(

bs
y + Vbs

)

(
bs

y + Vbs

)

⎞
⎟⎟⎠ =

(
−V�Mt

Mt

)� (
bs

y + Vbs

)

= (Mt)�y.

The first equality uses the correctness of the outer ALS encryption, while the
second equality uses the correctness of the inner ALS encryption. We conclude
using the completeness of the QANIZK argument.

Remark 1 (Large inputs). First, we observe that the encryption algorithm of our
partially function-hiding inner product FE can take as input arbitrary vectors
x ∈ Z

n
p , as opposed to x ∈ [0, B]n for a polynomially bounded B. The decryption
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Fig. 8. Simulation-secure, partially function-hiding inner-product FE. The compo-
nents highlighted in gray are only present in the CCA secure scheme. Here, we use
a QANIZK argument Π := (Genpar,Gencrs,Prove, Sim,Ver), where par = PG, a pairing
group PG = (G1, G2, GT , p, P1, P2, e). Given ρ := [a]1, the language Lρ is defined as
Lρ =

{
[c]1 ∈ G

2
1 : ∃r ∈ Zp s.t.c = ar

}
.

is in two step: first Declarge(Enc(x),KeyGen(msk,y)) for arbitrary vectors x ∈ Z
n
p

and y ∈ Z
n
p , recovers [x�y]T . The second step solves the discrete logarithm to

recover x�y. The second step is only efficient for polynomially bounded output,
whereas the first step handles arbitrary large inputs.

The second observation we make is that for all y ∈ Z
n
p , KeyGen(msk,y) out-

puts a vector or group elements [d]2 ∈ G
�
2, for some dimension 	. The algorithm

K̃eyGen from the simulator of our scheme described in Fig. 8, when given as input
m̃sk, ỹ, and x�y, first computes d ∈ Z

�
p, and then returns [d]2 as the functional
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decryption key for y. Moreover, it is a linear function in its input ỹ and x�y.
Thus, we can run K̃eyGen(m̃sk, [ỹ]2, [x�y]2) to get the functional decryption key
[d]2. Otherwise stated, we achieved a slightly stronger simulation security than
in Definition 7, since the simulator only requires to know the value [ỹ]2 and
x�y]2 in G2, as opposed to the values ỹ and x�y over Zp.

Consequently, the quadratic FE from Sect. 3 that builds upon our partially
function-hiding inner product FE inherits the same properties. Therefore, it can
be use to encrypt random vectors u ∈ Z

n
p , and v ∈ Z

m
p . Each functional decryp-

tion key corresponds to a pair of indices (i, j) ∈ [n] × [m], and the decryption
outputs [uivj ]T . Simulation security ensures that the adversary view can be sim-
ulated from [uivj ]2 only, which are pseudorandom by the DDH assumption in G2.
This allows users to evaluate outputs of a PRG over GT , which is unachievable
with an indistinguishability-based quadratic FE.

Theorem 2 (Security). The inner-product FE described in Fig. 8 is partially-
hiding, CPA simulation-secure, assuming the SXDH assumption. Moreover, if
the QANIZK argument Π is one-time simulation sound, then the FE is CCA
simulation-secure. Namely, for any PPT adversary A, there exist PPT adver-
saries B1 and B2 such that:

AdvCPA-PFH-SIM
IPFE,A (λ) ≤ AdvDDH

G1,B1
(λ) + 2Qsk · AdvDDH

G2,B2
(λ) +

1 + Qsk

p
,

where Qsk denotes the number of queries to OKeyGen. Moreover, for any PPT
adversary A′, there exist PPT adversaries B′

1, B′
2 and B′

3 such that:

AdvCCA-PFH-SIM
IPFE,A (λ) ≤ AdvDDH

G1,B′
1
(λ) + 2(Qsk + QDec) · AdvDDH

G2,B′
2
(λ)

+ QDec · AdvOT-Π
B′

2
(λ) +

1 + Qsk + QDec

p
,

where Qsk denotes the number of queries to OKeyGen, and QDec denotes the number
of queries to ODec.

The proof of Theorem 2 is given in the full version of this paper.
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Abstract. Identity-based encryption (IBE) is a generalization of public-
key encryption (PKE) by allowing encryptions to be made to user
identities. In this work, we seek to obtain IBE schemes that achieve
key-dependent-message (KDM) security with respect to messages that
depend on the master secret key. Previous KDM-secure schemes only
achieved KDM security in simpler settings, in which messages may only
depend on user secret keys.

An important motivation behind studying master-KDM security is
the application of this notion in obtaining generic constructions of KDM-
CCA secure PKE, a primitive notoriously difficult to realize.

We give the first IBE that achieves master-KDM security from stan-
dard assumptions in pairing groups. Our construction is modular and
combines techniques from KDM-secure PKE based from hash-proof sys-
tems, together with IBE that admits a tight security proof in the multi-
challenge setting, which happens to be unexpectedly relevant in the con-
text of KDM security. In fact, to the best of our knowledge, this is the
first setting where techniques developed in the context of realizing tightly
secure cryptosystems have led to a new feasibility result.

As a byproduct, our KDM-secure IBE, and thus the resulting KDM-
CCA-secure PKE both enjoy a tight security reduction, independent of
the number of challenge ciphertexts, which was not achieved before.
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1 Introduction

Key-dependent-message (KDM) security is a strengthening of the classical notion
of semantic security, by allowing the adversary to obtain encryptions of messages
that depend on the secret key. Originally introduced in [BRS03] in the setting
of public/private key encryption, KDM security has since found applications in
such contexts as fully-homomorphic encryption [Gen09], function secret shar-
ing [BGI16], and more recently in obtaining CCA-secure PKE and designated-
verifier non-interactive zero knowledge (NIZK) [KMT19,LQR+19].

For a function class F , an encryption scheme is F-KDM secure if no adversary
can distinguish between encryptions of f(sk), where f ∈ F and sk is the secret
key, and encryptions of fixed messages. We know how to obtain KDM-secure
encryption for arbitrarily-large classes of functions from various specific assump-
tions. These results are achieved by first realizing KDM security for a ‘minimal’
class of functions, e.g., affine functions [BHHO08,ACPS09,BG10,BLSV18], and
then expanding the function family using KDM-amplification theorems [BHHI10,
App11].

KDM Security for Identity-Based Encryption (IBE). Alperin-Sheriff and
Peikert [AP12] introduced notions of KDM security in the setting of IBE, under
which one may securely encrypt functions of user secret keys (as opposed to
the master secret key). In more detail, these notions (that we call user-KDM
security) extend the semantic-security notion of IBE by allowing the adversary,
who has specified a challenge identity id, to ask for encryptions of functions of
skid, the user-specific secret key for id, under id itself. They showed how to build
user-KDM secure IBE schemes from the learning with errors (LWE) assumption.

KDM Security for Master Secret Keys. In this work, we seek to real-
ize stronger notions of KDM-security for IBE where the adversary may obtain
ciphertexts encrypting functions of the master secret key, as opposed to user
secret keys. In more detail, we would like the system to retain security even if
the adversary obtains encryptions of functions of the master secret key made
with respect to “uncorrupted identities.” We call this notion master-KDM
security (Definition 3).

Why Should We Care About Master-KDM Secure IBE? Theoretically
speaking, we believe that the notion of master-KDM security for IBE is more
natural than the user-KDM notion, as it implies KDM-CCA security for public-
key encryption, via the transformation of [CHK04]. In other words, just as IBE
implies CCA2 security, master-KDM security implies KDM CCA2 security. In
contrast, the weaker user-KDM security does not seem to imply KDM-CCA
security.

Generically and simultaneously realizing both KDM security and CCA2 secu-
rity for public-key encryption has been beset with challenges; thus, also pointing
to the challenge in realizing master-KDM IBE. One reason that makes this com-
bination challenging is the fact that KDM-secure PKE schemes typically come
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with KDM-oblivious algorithms, which allow one to sample KDM ciphertexts—
without knowledge of the secret key—in such a way that such oblivious cipher-
texts will even fool a real decryptor who is in possession of the secret key. This
obliviousness property is exactly the intuition behind KDM security: that real
KDM ciphertexts may be simulated by publicly samplable ciphertexts. On the
other hand, this KDM-obliviousness property is exactly what destroys CCA secu-
rity: an adversary may query the decryption oracle on such oblivious ciphertexts
to retrieve the secret key.

Previous works showed how to get around the above obstacle against KDM-
CCA2 PKE by using NIZK along with CPA-KDM secure PKE [CCS09], or more
directly from pairing-based assumptions [Hof13], or by using the specific prop-
erties of hash-proof systems, and hence from DDH, QR and DCR [KT18]. Very
recently, the work of [KM19] shows the equivalence of KDM-CPA and KDM-
CCA PKE schemes, via non-blackbox constructions that make use of designated-
verifier NIZK and garbled circuits. However, it is not yet clear whether the more
challenging notion of master-KDM secure IBE is at all realizable in the stan-
dard model, and if so from what assumptions. In particular, by trying to build
this latter notion from a variety of assumptions, we will have an overarching
approach for obtaining KDM-CCA secure PKE.

In summary, in addition to being interesting in its own right, master-KDM
secure IBE offers a pathway to realizing new KDM-CCA public-key encryption
schemes.

Prior Work on Master-KDM Secure IBE. The observation that master-
KDM security for IBE suffices for KDM-CCA secure PKE was first made
by [GHV12], who gave constructions of bounded-master-KDM secure IBE from
pairing assumptions. Their constructions, however, only achieve bounded-KDM
in the sense that (a) the number of KDM queries should be bounded before-
hand, meaning that the sizes of various IBE parameters do grow with this fixed
number; and (b) the set of identities against which KDM encryption are allowed
should also be chosen beforehand, and not adaptively.

1.1 Our Contributions and Open Problems

In this work, we show constructions of IBE systems satisfying master-KDM
security with respect to affine functions from standard assumptions in bilinear
groups. Our construction does not suffer from any of the limitations of [GHV12],
which resulted in bounded master-KDM secure IBE. As a special case, our KDM
notion allows us to encrypt the bits as well as the negations of the bits of the
master secret key. As shown in [BHHI10,App11], KDM security with respect
to affine functions is sufficient for obtaining KDM security with respect to any
a-priori bounded function family.

At a high level, our construction is obtained via a modular combination
of the KDM-secure public-key encryption from [BHHO08] and a tightly-secure
IBE inspired by prior works [CW13,HKS15,AHY15,GDCC16]. This connection
between tight security and KDM-security is novel to this work and made explicit
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by abstract definitions that we put forth to capture the modular nature of our
construction. Namely, we define a set of properties that our IBE and an abstract
underlying public-key encryption must satisfy to obtain KDM security. These
properties are naturally fulfilled by prior schemes relying on the standard dual
system encryption proof paradigm, introduced by [Wat09] in the context of fully-
secure IBE; and by KDM-secure encryption schemes such as [BHHO08,BG10,
BGK11] that all rely on hash-proof systems, as unified in [Wee16]. Our IBE is
an instance of this new abstract framework with a combination of tightly-secure
IBE and the KDM-secure PKE from [BHHO08]. As a byproduct, our IBE also
achieves tight security. Namely, the security loss is independent of the number of
challenge ciphertexts, but is only a small constant times the security parameter.
In fact, to the best of our knowledge, this is the first setting where techniques
developed in the context of realizing tightly secure cryptosystems have led to
new feasibility results.

Moreover, our IBE scheme implies KDM-CCA2 secure public-key encryption
scheme. One of the benefits of our approach is that we are able to build on the
techniques realized in the context of IBE and leverage them in the context of
realizing KDM-CCA2 secure schemes. For example, this gives the first tightly
secure KDM-CCA2 secure public-key encryption scheme. We give more details
on our construction in Sect. 1.2.

Open Problems. The main open problem that arises from our work is
to build master-KDM secure IBE from other assumptions such as DDH, or
factoring-based assumptions. One possible approach toward this is to inves-
tigate what properties will allow us to prove the DDH-based IBE schemes
of [DG17b,DG17a,BLSV18] KDM-secure, and whether those properties are real-
izable under standard assumptions.

1.2 General Overview of Our Construction

Modular Construction of IBE from Public-Key Encryption. We start
with the observation that most pairing-based IBE schemes are built upon tra-
ditional PKE schemes in the following way. The public key of the IBE is the
public key of the underlying PKE, plus some extra components that are gener-
ated from the latter and some independently generated parameters params. The
master secret key of the IBE is simply the secret key of the underlying PKE.
The IBE encryption algorithm outputs a ciphertext ct0, which is an encryption
of the plaintext m under the underlying PKE, and extra components that are
generated from ct0, the identity id, and the parameters params (Fig. 1).

Put simply, it is possible to generate the public key and a ciphertext of
the IBE from an existing public key and ciphertext of the underlying public-
key encryption, which is not attribute-based, simply by sampling independent
parameters params, and running the algorithms Expandpk and Expandct. The key
generation algorithm of the IBE uses as input the master secret key, which is
the secret key of the underlying public-key encryption, and the public key of
the IBE.
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(PKE.pk,PKE.sk) ← PKE.Setup(1λ)

IBE.msk := PKE.sk

IBE.pk := (pk0, pk1)
with pk0 := PKE.pk, pk1 := Expandpk(pk0, params)

IBE.Enc(m, id) := (ct0, ct1)
with ct0 := PKE.Enc(PKE.pk, m), ct1 := Expandct(params, ct0, id).

Fig. 1. Modular IBE. Here, (PKE.Setup,PKE.Enc,PKE.Dec) is a public-key encryption,
and params are parameters that are generated independently.

KDM-Secure IBE. For modular IBE, we can hope to achieve KDM-security
by replacing the underlying PKE used in existing schemes with a KDM-secure
PKE. This approach actually works for what we call modular IBE schemes
(Definition 4) whose security proof follows the dual system encryption paradigm,
originally put forth in [Wat09], in the simplified security model where the adver-
sary gets to see only one challenge ciphertext. Note that in the standard IND-
CPA security game, one challenge ciphertext is equivalent to many challenge
ciphertexts, using a standard hybrid argument (this is valid for any public-key
encryption). However, this argument fails for KDM security, since the plaintexts
depend on the secret key. We describe the construction based on the dual system
methodology, which is instructive despite the fact that its security only handles
one challenge ciphertext. Next, we explain how to modify this first attempt and
get KDM security with many challenge ciphertexts.

1.3 First Attempt: Dual System Encryption

Dual System Encryption. For schemes using the dual system encryption
paradigm, the security proof makes use of the fact that the master secret key
of the IBE consists of two independent components: IBE.msk = PKE.sk :=
(mskN,mskSF), typically referred to as normal and semi-functional components,
respectively. The corresponding public key PKE.pk (and thus, honestly generated
ciphertexts) only depends on the normal component mskN. The security proof
consists of a sequence of hybrid games, where the first transition switches the
distribution of the challenge ciphertext to a semi-functional distribution, where
the ciphertext now also depends on the component mskSF. In the next step of the
security proof, the distribution of the functional secret keys is changed so that
they do not depend on the semi-functional component mskSF. This change of
distribution should not be noticeable to the adversary, which implies that these
semi-functional keys still correctly decrypt honestly generated ciphertext. How-
ever, they fail to decrypt the challenge ciphertext, which means the simulator
can leverage the adversary’s ability to break semantic security on the challenge
ciphertext. At this point, the security relies on a statistical argument: the com-
ponent mskSF, which only appears in the challenge ciphertext, is used to mask
the plaintext (Fig. 2).
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Fig. 2. The dual system encryption proof paradigm. The leftmost table depicts the
sequence of hybrid games used in the security proof, starting with the original IND-
CPA security game, and the rightmost table illustrates when decryption succeeds,
depending on whether the ciphertexts and keys are normal (N) or semi-functional
(SF). We denote by ct here the challenge ciphertext, and by sk the user secret keys
generated in the security game.

Making IBE KDM-Secure, for One Challenge Ciphertext. As in prior
works [BHHO08,BG10,BGK11], we consider KDM-security for the class of affine
functions, where the message space is a group G of order p, generated by g, and
the secret key is of the form msk := (g1, . . . , g�) ∈ G

�, an encoding of an �-bit
string. The adversary can choose an affine combination (w1, . . . , w�) ∈ Z

�
p and

M ∈ G, and obtain an encryption of the message
∏

i∈[�] g
wi
i ·M . For convenience,

we use bracket notations, where for any exponent a ∈ Zp, we denote by [a] := ga.
With this notation, we can write msk := [k] ∈ G

�, and the adversary gets an
encryption of [k�w + m]. For simplicity, we focus on the single instance case,
where only one public key, secret key pair is generated, and we consider the
simplified security model where the adversary gets to see only one challenge
ciphertext. We will see how to remove that restriction later, thereby allowing
the adversary to obtain multiple challenge ciphertexts for many identities and
affine combinations of its choice.

We take a modular IBE where the underlying PKE is compatible with the
dual system encryption methodology, that is, a PKE whose ciphertext can be
turned to a semi-functional distribution, even given the secret key. Thus, the
secret key can be used to simulate the user secret keys queried by the adversary
during the security proof, as well as the challenge ciphertext, whose underly-
ing plaintext may depend on the secret key. Then, user secret keys of the IBE
are turned to semi-functional, following the standard dual system encryption
paradigm, except that this must be done with encryption of key-dependent mes-
sages. At this point, user secret keys can be generated only knowing the normal
component of the secret key mskN, as opposed to the full master secret key.
Finally, we rely on the KDM security of the underlying PKE, which must hold
even if the value mskN is revealed to the adversary. This value permits to sim-
ulate semi-functional keys. This is achieved using a statistical argument which
only involves mskSF (and not mskN). Indeed, since the value mskSF only shows
up in the challenge ciphertext, it can be used to hide the plaintext, and conclude
the security proof. As it turns out, most existing KDM-secure encryption, such
as [BHHO08,BG10,BGK11] can be shown to satisfy these additional properties
(and in fact, as noted in [Wee16], all PKE based on hash-proof systems).
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We show a concrete exposition of this technique by combining the modular
IBE from [CGW15] and the KDM-secure PKE from [BHHO08], both of which
rely on prime-order groups, and thus are compatible. This construction gives
some insight and prepares for the IBE satisfying full-fledged KDM security, where
the adversary gets to see many challenge ciphertexts, that we present later.

Chen et al. Identity-Based Encryption. We illustrate the dual system
encryption methodology with the IBE from [CGW15]. We use a pairing group
e : G1 × G2 → GT , where G1, G2, GT are all cyclic groups of prime order p,
generated respectively by g1, g2, and e(g1, g2), where e is a non-degenerate
bilinear map, that is, for all a, b ∈ Zp, e(ga

1 , gb
2) = e(g1, g2)ab. We use bracket

notations, where for all exponents a ∈ Zp and all groups s ∈ {1, 2, T}, we
denote by [a]s the group element ga

s . We generalize this notation for any matrix

A =

⎛

⎜
⎝

a1,1 . . . a1,n

. . .
am,1 . . . am,n

⎞

⎟
⎠ ∈ Z

m×n
p , that is, we denote by [A]s the matrix of group

elements

⎛

⎜
⎝

g
a1,1
s . . . g

a1,n
s

. . .
g

am,1
s . . . g

am,n
s

⎞

⎟
⎠ ∈ G

m×n
s .

The IBE from [CGW15] is a modular IBE that uses the following underly-
ing public-key encryption, which is essentially Damg̊ard El-Gamal encryption
[Dam92], with message space GT .

– PKE.Setup(1λ): a,k ←R Z
2
p, return pk := ([a]1, [a�k]T ), and sk := k.

– PKE.Enc(pk,M ∈ GT ): r ←R Zp, return ([ar]1, [ar�k]T · M).
– PKE.Dec(pk, ct,k): parse ct := ([c]1 ∈ G

2
1, [c

′]T ∈ GT ), and return
[c′]T /e([c�k]1, [1]2).

The rest of the IBE parameters are computed as follows. Note that the iden-
tity space is Zp.

– params := (W0,W1), where W0,W1 ←R Z
2×2
p .

– Expandpk(pk0): given pk0 := ([a]1, [a�k]T ), samples b ←R Z
2
p, and returns

pk1 := ([W0a]1, [W1a]1, [W�
0 b]2, [W�

1 b]2).
– Expandct(params, ct0, id ∈ Zp): given ct0 := ([c]1, [c′]T ), returns ct1 := [(W0 +

idW1)c]1.
– KeyGen(msk, pk, id ∈ Zp): samples s ←R Zp, and returns skid := ([bs]2, [k +

(W0 + idW1)�bs]2).
– Dec(mpk, ct, skid): parse ct := (ct0, ct1) with ct0 := ([c]1, [c′]T ), ct1 := [c1]1,

skid := ([d]2, [d′]2) and return [c′]T · e([c1]�1 , [d]2)/e([c]�1 , [d′]2).

We know there is an orthogonal vector a⊥ ∈ Z
2
p, such that a⊥ �= 0, and

a�a⊥ = 0. Assuming a ←R Z
2
p is different from the zero vector a �= 0, which

happens with all but negligible probability over the choice of a ←R Z
2
p, we have

that (a|a⊥) is a basis of Z
2
p, and we can write k := mskN + mskSF, where mskN,
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the normal component, is of the form k0 · a with k0 ←R Zp, and mskSF, the
semi-functional component, is of the form k1 · a⊥ with k1 ←R Zp. That is, mskN
(resp. mskSF) is the projection of the vector k onto the vector a (resp. onto a⊥).
This way, the public key only depends on mskN, since it only contains [a�k]T ,
and a�a⊥ = 0.

The semi-functional distribution of ciphertexts is illustrated in Fig. 3. We can
change the distribution of the challenge ciphertext using the DDH assumption
in G1, which says that ([a]1, [ar]1) is computationally indistinguishable from
([a]1, [u]1), where a,u ←R Z

2
p, and r ← Zp. Otherwise stated, DDH is a subgroup

membership problem, which states that it is hard to distinguish a vector of group
elements that is proportional to [a], from a uniformly random vector over G1. The
consequence is that the semi-functional ciphertext depends on the component
mskSF, since the vector [u]1 that is part of the ciphertext (see Fig. 3) is not
orthogonal to a⊥ (with all but negligible probability), unlike a.

Normal: Semi-functional:
ct0 := ([ar], [ar�k]T · M) ct0 := ([u], [u�k]T · M)

Fig. 3. Normal and semi-functional distributions for the challenge ciphertext. Here,
a,k,u ←R Z

2
p, and r ←R Zp. The rest of the ciphertext is computed from ct0 using

Expandct and params.

Then, in [CGW15], the distribution of all the user secret keys generated
in the security game is changed, so that they depend on mskN, but are inde-
pendent of mskSF. Namely, all the keys are switched from KeyGen(k, pk, id) to
KeyGen(mskN, pk, id). Finally, we can use the component mskSF as a one-time
pad to mask the plaintext in the challenge ciphertext.

We observe that if we trade the underlying public-key encryption used here,
namely Damg̊ard ElGamal [Dam92], for the KDM-secure public-key encryption
from [BHHO08], we obtain an overall IBE that enjoys KDM-security. Roughly
speaking, the dual system encryption is compatible with the proof techniques
used in [BHHO08].

Boneh et al. KDM-Secure Public-Key Encryption. We now recall the
public-key encryption from [BHHO08], which is KDM-secure for the class of
affine functions. For simplicity, we focus on the single instance case, where only
one public key, secret key pair is generated.

It is a modification of the Damg̊arg ElGamal encryption scheme where the
key space is changed to G

�
T instead of Z

2
p, so that affine combinations of the

secret key [k]T ∈ G
�
T belong to the message space. To preserve correctness of

the encryption scheme, the authors of [BHHO08] choose a secret key [k]T where
the discrete logarithm k can be obtained efficiently, and decryption can pro-
ceed as for the Damg̊ard ElGamal encryption scheme. Namely, k ←R {0, 1}�.
To have enough entropy in the secret key, it is necessary to take a dimension
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� = Θ(log p). The dimension of the vector [a]1 which is part of the public key
is modified accordingly. The security proof follows a similar pattern as outlined
previously: the ciphertexts are switched to semi-functional, using a computa-
tional assumption that holds even when the secret key is revealed. Then the
plaintexts are made independent of the key, using a perfect statistical argument.
Finally, mskSF, the semi-functional component of k, is used to mask the plain-
text, using a statistical argument. Namely, we use the Left Over Hash Lemma
[ILL89] with entropy source mskSF. An overview is given Fig. 4.

Hybrid game: challenge ct: explanation

KDM security game [ar]1, [k�ar]T · [k�w + m]T
the adversary chooses an affine
combination w ∈ Z

�
p, [m] ∈ G

Game 1 [u]1, [k�u]T · [k�w + m]T
ct is switched to semi-functional

using DDH in G1

Game 2 [u − w]1, [k�u]T · [m]T
statistical change, the encrypted
plaintext is not key-dependent

Game 3 [u − w]1, [k�u]T LOHL, with seed u ←R Z
�
p

Fig. 4. KDM security proof of [BHHO08]. Here, [a]1 ←R G
�
1 is part of pk, and the

secret key is [k]T with k ←R {0, 1}�, � = Θ(log p), and w ∈ Z
�
p, [m] ∈ G are chosen

by the adversary. The randomness r ←R Zp, u ←R Z
�
p is sampled upon creation of the

challenge ciphertext. LHOL stands for Left Over Hash Lemma [ILL89].

Combining Boneh et al. PKE with Chen et al. IBE. We change the IBE
from [CGW15], which uses as an underlying PKE Damg̊ard ElGamal encryption
scheme, to a similar modular IBE which uses the Boneh et al. KDM-secure
PKE instead. Namely, we have: a ←R Z

�
p, and k ←R {0, 1}� for � = Θ(log p),

pk := ([a]1, [k�a]T ), and sk := [k]T . The parameters are modified accordingly:
params := (W0,W1) where W0,W1 ←R Z

2×�
p .

This way, we can prove KDM security of the IBE simply by following the
first steps of the KDM security proof of [BHHO08]: the challenge ciphertext
is switched to semi-functional, then the functional keys are switched to semi-
functional; the plaintext is made independent of the master secret key, using
a hash proof system style statistical argument; finally we use the Left Over
Hash lemma with entropy source mskSF to mask the plaintext in the challenge
ciphertext. The security proof is illustrated in Fig. 5.

Dual System Encryption, in More Details. The proof of Chen et al. IBE
(and more generally, of any scheme using the dual system encryption methodol-
ogy) crucially relies on the fact that there is only one challenge ciphertext. Recall
that this is equivalent to many challenge ciphertexts for IND-CPA public-key
IBE, however, this doesn’t hold for KDM-secure IBE.
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Game: challenge c0: skid explanation

Game 0 [ar]1, [k�ar]T · [k�w + m]T KeyGen(mpk, [k]T , id)
the adversary chooses
an affine combination

w ∈ Z
�
p, [m] ∈ G

Game 1 [u]1, [k�u]T · [k�w + m]T KeyGen(mpk, [k]T , id)
ct is switched to

semi-functional using
DDH in G1

Game 2 [u]1, [k�u]T · [k�w + m]T KeyGen(mpk, [mskN]T , pk, id)
skid are switched
to semi-functional

Game 3 [u − w]1, [k�u]T · [m]T KeyGen(mpk, [mskN]T , pk, id)
statistical change,

the encrypted plaintext is
not key-dependent

Game 4 [u − w]1, [k�u]T KeyGen(mpk, [mskN]T , pk, id)

LOHL, with seed
u ←R Z

�
p

and entropy source
mskSF

Fig. 5. KDM security proof of the IBE. Here, [a]1 ←R G
�
1 is part of mpk, and the

secret key is [k]T with k ←R {0, 1}�, � = Θ(log p), and w ∈ Z
�
p, [m] ∈ G are chosen

by the adversary. The randomness r ←R Zp, u ←R Z
�
p is sampled upon creation of the

challenge ciphertext. Recall that msk := [k]T , k := mskN + mskSF, where mskN, and
mskSF are the projections of k onto a and A⊥, respectively.

Indeed, to switch the functional keys to semi-functional, the proof uses an
underlying statistical argument that is only valid in the presence of one chal-
lenge ciphertext. Namely, the distribution of each functional key is switched to a
pseudo distribution, one by one. Doing so releases some entropy from the parame-
ters params in the pseudo functional key, while that entropy remains hidden from
all others keys, and from the public key, but not from the challenge ciphertext.
At this point, the security relies on the fact the identity of the pseudo key and
semi-functional ciphertext don’t match, using a statistical one-time argument.
This argument fails for many semi-functional ciphertexts, the presence of which
is unavoidable in the KDM security proof.

More concretely, the pseudo keys in Chen et al. IBE are of the form:
([v]2, [k + (W0 + idW1)�v]2), for a uniformly random [v]2 ←R G2, instead
of [v]2 := [bs]2 with s ←R Zp in normal keys. This releases entropy from
W0,W1 ←R Z

�×2
p that is not revealed from the public key which only con-

tains ([W0a]1, [W1a]1, [W�
0 b]2, [W�

1 b]2). Namely, the component from these
matrices that is orthogonal to a and b can be used to perform a statistical one-
time argument with the semi-functional challenge ciphertext, which contains:
([u]1, [(W0 + id�W1)u]1) for [u]1 ←R G

�
1. This essentially uses the fact that the

map id → W0 + idW1 is a pairwise independent hash function, aka 2-universal
hash function. This argument fails when there are several challenge ciphertexts,
each of which associated with a different identity.
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1.4 Final Attempt: Handling Many Challenge Ciphertexts

To prove KDM security, we need to consider many challenge ciphertexts simul-
taneously. Ultimately, in the security proof, we use the entropy from the semi-
functional component mskSF of the master secret key to hide the plaintexts
in all the challenge ciphertexts. Since there number of challenge ciphertexts is
unbounded, this will require a computational argument, as opposed to the sta-
tistical argument used previously, in the single challenge ciphertext setting. To
that end, we first need to make the user secret keys and the plaintexts in the
challenge ciphertexts independent from mskSF. As explained previously, to do so,
we make use of the fact that the plaintext in semi-functional challenge cipher-
texts can be made independent from the master secret key, statistically (this is
the transition from game 2 to game 3 in Fig. 5). Thus, to make the plaintext
independent from msk in all challenge ciphertexts, we need to switch them to
semi-functional distribution all at the same time. More details are provided in
Sect. 2.1.

Traditional dual system encryption, as explained previously, is incapable of
handling many semi-functional challenge ciphertext at once. Instead, we adapt
techniques from [HKS15,AHY15,GDCC16] that build IBE where the security
proof can handle many challenge ciphertexts at once. These techniques, which
builds upon [CW13,BKP14,CGW15], were developed for a whole different pur-
pose than KDM security, namely, they were used to obtain IBE that are secure in
the multi-challenge setting, where the security loss is independent of the number
of challenge ciphertexts. These tight security reductions yield shorter concrete
parameters for a given security level.

2 Preliminaries

2.1 Pairing Groups

Let GGen be a PPT algorithm that on input the security parameter 1λ, returns
a description PG = (G1, G2, GT , p, P1, P2, e) where for all s ∈ {1, 2, T}, Gs is
a cyclic group of order p for a 2λ-bit prime p. G1 and G2 are generated by P1

and P2 respectively, and e : G1 × G2 → GT is an efficiently computable (non-
degenerate) bilinear map. Define PT := e(P1, P2), which is a generator of GT ,
of order p. We use implicit representation of group elements. For s ∈ {1, 2, T}
and a ∈ Zp, define [a]s = a · Ps ∈ Gs as the implicit representation of a in Gs.
More generally, for a matrix A = (aij) ∈ Z

n×m
p we define [A]s as the implicit

representation of A in Gs:

[A]s :=

⎛

⎝
a11 · Ps ... a1m · Ps

an1 · Ps ... anm · Ps

⎞

⎠ ∈ G
n×m
s .

Given [a]1 and [b]2, one can efficiently compute [a · b]T using the pairing e. For
matrices A and B of matching dimensions, define e([A]1, [B]2) := [AB]T . For
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any matrix A,B ∈ Z
n×m
p , any group s ∈ {1, 2, T}, we denote by [A]s + [B]s =

[A + B]s.
For any prime p, we define the following distributions. The DDH distribution

over Z
2
p: a ←R Zp, output a :=

(
1
a

)
.

Definition 1 (DDH assumption). For any adversary A, any group s ∈
{1, 2, T} and any security parameter λ, let

AdvDDH
Gs,A(λ) := |Pr[1 ← A(PG, [a]s, [ar]s)] − Pr[1 ← A(PG, [a]s, [u]s)]|,

where the probabilities are taken over PG ←R GGen(1λ, d), a ←R DDH, r ←R Zp,
u ←R Z

2
p, and the random coins of A. We say DDH holds in Gs if for all PPT

adversaries A, AdvDDH
Gs,A(λ) is a negligible function of λ.

Definition 2 (SXDH assumption). For a pairing group PG = (G1, G2,
GT , p, P1, P2, e) ←R GGen(1λ), we say SXDH holds in PG if DDH holds in G1

and G2.

We define the (�,Q)-fold DDH assumption below. Note that the DDH
assumption corresponds to the (1, 1)-fold DDH assumption.

Lemma 1 (Random self reducibility of DDH). For any �,Q ≥ 1, any
PPT adversary A, we define:

Adv�,Q-DDH
Gs,A (λ) := |Pr[1 ← A(PG, [a]s, {[ri]s, [ari]s}i∈[Q])]

− Pr[1 ← A(PG, [a]s, {[ri]s, [ui]s}i∈[Q])]|,

where the probabilities are taken over PG ←R GGen(1λ, d), a ←R Z
�
p, ri ←R Zp,

ui ←R Z
�
p for all i ∈ [Q], and the random coins of A.

There exists a PPT adversary B such that

Adv�,Q-DDH
Gs,A (λ) ≤ AdvDDH

Gs,B(λ).

2.2 Entropy Extraction

We give a particular case of the left over hash lemma, that is tailored to our
purpose.

Lemma 2 (Leftover hash lemma [ILL89]). Let p be a 2λ-bit prime, and
� := 4�log2(p)	. The following distribution are within 2−λ statistical distance:

(a,b,u,k�a,k�b,k�u) and (a,b,u,k�a,k�b, r),

where a,b,u ←R Z
�
p, k ←R {0, 1}�, and r ←R Zp.
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2.3 Identity Based Encryption

An Identity Based Encryption for identity space I and message space M is a
tuple of PPT algorithms:

– Setup(1λ): on input the security parameter λ, returns a master public key
mpk which defines an identity space I, and a master secret key msk.

– Enc(mpk, id ∈ I,m ∈ M): returns a ciphertext ct.
– KeyGen(mpk,msk, id ∈ I): returns skid, a user secret key for identity id.
– Dec(mpk, ct, sk): deterministic algorithm that returns a message, or a special

symbol ⊥ if it fails.

Correctness. For any security parameter λ, any id ∈ I, any message m,
Pr[Dec(mpk, ct, skid) = m] = 1, where the probability is taken over (mpk,msk) ←
Setup(1λ), ct ← Enc(mpk, id,m), skid ← KeyGen(mpk,msk, id).

Remark 1 (Public-key encryption (PKE)). Note that a public-key encryption is
a special case of IBE with identity space I := {ε}. Of course, the interesting
case of IBE is when I is of exponential size in the security parameter.

Definition 3 (Master-KDM security). An IBE scheme IBE for identity
space I and message space M is said to be KDM-secure for the class of (effi-
ciently computable) functions F if for all PPT adversaries A, the following
advantage is a negligible function of the security parameter λ:

AdvKDM
IBE,A(λ) := 2 ·

∣
∣
∣
∣
∣
∣
1/2 − Pr

⎡

⎣b′ = b

∣
∣
∣
∣
∣
∣

b ←R {0, 1}
(mpk,msk) ← Setup(1λ)

b′ ← AOEnc(·,·),OKeyGen(·)(mpk)

⎤

⎦

∣
∣
∣
∣
∣
∣
,

where the oracle OEnc(id, f), on input an identity id ∈ I and a function f ∈ F ,
computes y := f(msk) ∈ M, returns Enc(mpk, id, f(msk)) if b = 0, and computes
a uniformly random message M ←R M, and returns Enc(mpk, id,M) if b = 1;
the oracle OKeyGen(id), on input an identity id ∈ I, returns KeyGen(mpk,msk, id).
We require that the identities queried by the adversary to the oracle OEnc(·, ·) are
different from the identities queried to OKeyGen(·). This is in order to avoid trivial
attacks, where the adversary can win the game simply using the correctness of
the scheme.

In this paper, as in prior works [BG10,BGK11], we consider the class of affine
functions, that is, we consider IBE where the message space is a group G of order
p, and msk := [k] ∈ G

� for some integer �. The adversary is allowed to query
encryption of affine functions on msk, that is, encryption of messages of the form
[k�w + γ], for w ∈ Z

�
p, [γ] ∈ G of its choice. In [App11,BHHI10], the authors

showed that this can be boosted to KDM-security with respect to the class of
circuits of a-priori bounded size.

The work of Alperin-Sheriff and Peikert [AP12] gives KDM-secure IBE
schemes that only support KDM messages that depend on user secret keys.
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Also, the work of Galindo et al. [GHV12] only achieved a restricted version of
master-KDM security, on in which (a) the number of KDM queries is bounded
and (b) the oracle OKeyGen may only be called on identities that were fixed at
the beginning of the game.

3 KDM-Secure IBE from Pairings

In this section we give our construction of KDM-secure IBE from pairing assump-
tions. To make our construction modular, we first introduce an intermediate
primitive (which we call modular IBE), and show that any modular IBE with
some specific properties is already KDM secure. We then show how to realize
the notion of modular IBE with those required properties.

3.1 Ingredients of Our Construction

We first start with the definition of modular IBE. Informally, we call an IBE
scheme modular if it is built upon a PKE scheme in the sense we define below.

Definition 4 (Modular IBE). We say an IBE (Setup,Enc,KeyGen,Dec)
for identity space I is modular if there exists a PKE (PKE.Setup,PKE.Enc,
PKE.Dec), and PPT algorithms SampParams, Expandpk and Expandct such that:

1. Setup(1λ): (pk, sk) ← PKE.Setup(1λ), params ← SampParams(pk, I), pk′ ←
Expandpk(params, pk), mpk := (pk, pk′, I), msk := sk, returns (mpk,msk).

2. For all identities id ∈ I and all messages m, the following are identically
distributed:

ct ← Enc(mpk, id,m),

and

(ct0, ct1) where ct0 ← PKE.Enc(pk,m), ct1 ← Expandct(pk, params, ct0, id).

In both distributions, we have (pk, sk) ← PKE.Setup(1λ), params ←
SampParams(pk, I), pk′ ← Expandpk(params, pk), and mpk := (pk, pk′, I).

The definition implies that there are two ways to compute the encryption of a
message m under identity id: either using Enc on input mpk, id and m; or using
the underlying PKE encryption algorithm on input pk and message m, and using
the Expandct algorithm that takes as input the PKE ciphertext, pk, and id. These
two ways are identically distributed.

We will now define the properties that need to be fulfilled by our IBE and
its underlying PKE in order to achieve KDM security. Recall that we denote by
IBE := (Setup,Enc,KeyGen,Dec) the modular IBE, with underlying pke PKE :=
(PKE.Setup,PKE.Enc,PKE.Enc) whose message space is a group G of order p,
and whose secret key is of the form sk := [k] ∈ G

� for some � ∈ N. We can write
k := mskN +mskSF ∈ Z

�
p, where mskN is the normal component of sk, and mskSF

is the semi-functional component of sk.
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Property 1 (semi-functional encryption). There exists a PPT algorithm Ẽnc
that takes as input pk, sk,M and returns a ciphertext. For all PPT adversaries
A, the following advantage is a negligible function of the security parameter λ:

AdvSF-ctPKE,A(λ) := 2 ·
∣
∣
∣
∣
∣
∣
1/2 − Pr

⎡

⎣b′ = b

∣
∣
∣
∣
∣
∣

b ←R {0, 1}
(pk, sk) ← PKE.Setup(1λ)

b′ ← AOEnc(·)(pk, sk)

⎤

⎦

∣
∣
∣
∣
∣
∣
,

where the oracle OEnc(M), on input a message M ∈ G, outputs PKE.Enc(pk,M)
if b = 0, or Ẽnc(pk, sk,M) if b = 1. Note that the message M can depend on sk
since the latter is given to A.

Property 2 (semi-functional keys). There exists a PPT algorithm K̃eyGen that
takes as input pk,mskN where sk = [mskN + mskSF] and (pk, sk) is generated by
Setup(1λ), together with an identity, and outputs a user secret key. We require
that for all PPT adversaries A, the following advantage is a negligible function
of λ:

AdvSF-skIBE,A(λ) := 2 ·

∣
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1/2 − Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′ = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b ←R {0, 1}
(pk, sk) ← Setup(1λ)

params ← SampParams(pk, I)
pk′ ← Expandpk(params, pk)
mpk := (pk, pk′, I),msk := sk

b′ ← AOEnc(·,·),OKeyGen
(b)(·)(mpk)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where the oracle OEnc(id, (w, [m])), on input an identity id ∈ I, a vector
w ∈ Z

�
p, and a message [m] ∈ G, computes ct0 ← Ẽnc(pk, sk, [k�w + m]),

ct1 ← Expandct(pk, params, ct0, id) an returns (ct0, ct1). The oracle OKeyGen
(b)(id),

on input an identity id ∈ I, returns KeyGen(mpk,msk, id) if b = 0 or
KeyGen(mpk, [mskN], id) if b = 1. Recall that msk := [mskN + mskSF]. We require
that the identities queried by A to OEnc are distinct to the identities it queries
to OKeyGen.

Property 3 (KDM security). For all PPT adversaries A, the following advantage
is a negligible function of the security parameter λ:

AdvKDM
PKE,A(λ) := 2 ·

∣
∣
∣
∣
∣
∣
1/2 − Pr

⎡

⎣b′ = b

∣
∣
∣
∣
∣
∣

b ←R {0, 1}
(pk, sk) ← Setup(1λ),

b′ ← AOEnc(·)(pk, [mskN]T )

⎤

⎦

∣
∣
∣
∣
∣
∣
,

where the oracle OEnc(w, [m]), on input a vector w ∈ Z
�
p and a message [m] ∈ G,

outputs Ẽnc(pk, sk, [w�k + m]) if b = 0, or Ẽnc(pk, sk, [r]) for a fresh random
r ←R Zp if b = 1. Recall that sk := [k], with k := mskN + mskSF.
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3.2 KDM-Secure IBE Construction

We now give our theorem statement for KDM-secure IBE.

Theorem 1 (KDM-security). Any modular IBE that satisfies properties 1 to
3 is KDM-secure for the class of affine functions.

Proof. The proof goes through a hybrid argument, starting with game G0, which
is the KDM security experiment from Definition 3. Let A be a PPT adversary.
For any game G, we denote by AdvA(G) the advantage of A in the game G.

Game G0. This is the KDM security experiment for the class of affine functions.
The message space is a group G of order p, the master secret key is of the form
[k] ∈ G

�, and the adversary gets access to encryption of affine combinations of
the form [k�w + m], for w ∈ Z

�
p, [m] ∈ G of its choice. Namely, the adversary

A first receives mpk. Then it can adaptively query OEnc(id, (w, [m])), to receive
Enc(mpk, id, [k�w + m]) if b = 0, Enc(mpk, id, [r]) for a fresh [r] ←R G if b = 1.
Upon querying OKeyGen(id), A receives KeyGen(mpk,msk, id).

Game G1. We change the challenge ciphertexts to semi-functional. That is, in
game G0, OEnc(id, (w, [m])) computes [m0] := [k�w + m], [m1] ←R G, ct0 :=
PKE.Enc(pk, [mb]); whereas ct0 := Ẽnc(pk, sk, [mb]) in game G1, where Ẽnc is the
PPT algorithm that generates semi-functional ciphertexts (see Property 1). The
rest of the challenge ciphertext is computed as ct1 := Expandct(pk, params, ct0, id)
in both games. We show there exists a PPT adversary B0 such that:

|AdvA(G0) − AdvA(G1)| ≤ AdvSF-ctPKE,B0
(λ),

which is negligible by Property 1. The reduction B0 receives (pk, sk := [k] ∈ G
�)

from its own experiment, samples b ←R {0, 1}, params ← SampParams(pk, I),
computes pk′ ← Expandpk(params, pk), and returns mpk := (pk, pk′, I) to A. B0

can simulate the oracle OKeyGen straightforwardly using sk and mpk. To simulate
OEnc(id, (w, [m])), it computes [m0] := [k�w+ m], [m1] ←R G, and uses its own
encryption oracle on input the message [mb] to obtain a challenge ciphertext ct0.
Then it computes ct1 ← Expandct(pk, params, ct0, id), and returns the challenge
ciphertext (ct0, ct1). If A’s guess b′ is such that b′ = b and identities queried
by A to its encryption oracle are distinct from the identities queried to its key
generation oracle, then B0 returns 1. Otherwise, it returns 0.

Game G2. We change the user secret keys to semi-functional. That is, in
game G1, OKeyGen(id) returns KeyGen(mpk,msk, id), whereas it returns KeyGen
(mpk, [mskN]T , id) in game G2. Recall that msk := [k]T , and k := mskN +mskSF.

We show there exists a PPT adversary B1 such that:

|AdvA(G1) − AdvA(G2)| ≤ AdvSF-skIBE,B1
(λ),
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which is negligible by Property 2. The reduction B1 receives mpk from its own
experiment, which it forwards to A, and simulates the oracles to A straightfor-
wardly using its own oracles. Here, we make use of the fact that the the identities
queried by A to its encryption oracle OEnc must be distinct to the identities it
queries to its key generation oracle OKeyGen, since this condition must also be
fulfilled in the security game from Property 2.

Game G3. We use the KDM security of the underlying PKE to change
the challenge ciphertexts to encryptions of random message [r] ←R G. That
is, OEnc(id, (w, [m])) computes [m0] := [w�k + m], [m1] ←R G, ct0 :=
Ẽnc(pk, sk, [mb]) in game G3, whereas it computes Ẽnc(pk, sk, [r]) for a fresh ran-
dom r ←R Zp in game G3. The rest of the challenge ciphertext is computed as
ct1 := Expandct(pk, params, ct0, id) in both games. It is clear that the challenge
ciphertexts do not depend on the random bit b ←R {0, 1} chosen by the experi-
ment in game G3, since the plaintexts are random, regardless of the value of b.
Thus, we have:

AdvA(G3) = 0.

Now, we show there exists a PPT adversary B3 such that:

|AdvA(G3) − AdvA(G3)| ≤ AdvKDM
PKE,B3

(λ),

which is negligible by Property 3. The reduction B3 receives (pk, [mskN]T ) from
its own experiment, samples b ←R {0, 1}, params ← SampParams(pk, I), com-
putes pk′ ← Expandpk(params, pk), and returns mpk := (pk, pk′, I) to A. When
A queries OKeyGen(id), B3 returns KeyGen(mpk, [mskN]T , id). When A queries
OEnc(id, (w, [m])), B3 computes [m0] := [m], [m1] ←R G, and queries its own
encryption oracle on input (w, [mb]) to obtain a challenge ciphertext ct0. Then,
B3 computes ct1 ← Expandct(pk, params, ct0, id) and returns the challenge cipher-
text (ct0, ct1) to A. If A’s guess b′ is such that b′ = b and identities queried by
A to its encryption oracle are distinct from the identities queried to its key
generation oracle, then B0 returns 1. Otherwise, it returns 0.

Overall, we have:

AdvKDM
IBE,A(λ) ≤ AdvSF-ctPKE,B0

(λ) + AdvSF-skIBE,B1
(λ) + AdvKDM

PKE,B3
(λ).

��

3.3 Concrete Instantiations

We instantiate the framework presented in the previous section with a modular
IBE inspired from [CW13], and the KDM-secure PKE from [BHHO08]. Both of
them rely on prime-order groups, which make them compatible. In Fig. 6, we
give a description of the [BHHO08] when adapted to fit pairing groups, and in
Fig. 7, we show how to extent it in a modular way to obtain a KDM-secure IBE.
A concrete description of our IBE is given in Fig. 8.

We now proceed to prove the required properties from our concrete instanti-
ation of the modular framework presented in the previous section.
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PKE.Setup(1λ):

PG := (G1,G2,GT , p, P1, P2, e) ← GGen(1λ), � := 4�log2(p)�, a ←R Z
�
p,

k ←R {0, 1}�, return pk := (PG, [a]1, [k�a]1) and sk := [k]T .

PKE.Enc(pk, [m]T ∈ GT ):

r ←R Zp, return ([ar]1, [k�ar]T + [m]T )

PKE.Dec(pk, sk, ct):

Recover k ∈ {0, 1}� from sk := [k] ∈ G
�
T .

Parse ct := ([c0]1, [c1]T ), return [c1]T − e([k�c0]1, [1]2).

Ẽnc(sk, pk, [m]T ∈ GT ):

u ←R Z
�
p, return ([u]1, [k�u]T + [m]T )

Fig. 6. KDM-secure public-key encryption from [BHHO08].

Property 1 (semi-functional encryption). The difference between normal
and semi-functional ciphertexts is that the vector [ar]1, with r ←R Zp that
is part of each challenge ciphertext is switched to a uniformly random vector
over G

�
1, using the (�,Q)-fold DDH assumption, where Q denotes the number

of encryption queries. By Lemma 1, this assumption is implied by the DDH
assumption. Upon receiving a (�,Q)-DDH challenge ([a]1, {[zi]1}i∈[Q]), where
either [zi]1 = [ari]1 for ri ←R Zp, or [zi]1 ←R G

�
1, the reduction samples k ←R

{0, 1}�, and returns pk := ([a]1, [k�a]T ) and sk := [k]T to A. On the i’th query
OEnc([m]T ∈ GT ), the reduction answers with ([zi]1, [k�zi]T +[m]T ), for i ∈ [Q].

Property 2, semi-functional keys. The proof goes through a sequence of
hybrid games, defined in Fig. 9. Let A be a PPT adversary. For each game G,
we denote by AdvA(G) the advantage of A if game G. We start with game G0,
which is the security game defined in Property 2.

Game G1: We change the vector [u]1 ←R G
�
1 used in each challenge ciphertext

to [a0r], for r ←R Zp, and a0 ←R Z
�
p, independent of a used in the public key,

using the (�,Q)-fold DDH assumption in G1, where Q denotes the number of
queries to OEnc. By Lemma 1, this is implied by the DDH assumption. We build
a PPT adversary B0 such that:

|AdvA(G0) − AdvA(G1)| ≤ Adv�,Q-DDH
G1,B0

(λ).

Upon receiving a (�,Q)-DDH challenge ([a0]1, {[zi]1}i∈[Q], B0 samples b ←R

{0, 1}, a ←R Z
�
p, k ←R {0, 1}�, and for all i ∈ [λ], b ∈ {0, 1}: Wi,b ←R

Z
2×�
p , thanks to which it can compute mpk and simulate OKeyGen to A as

described in Fig. 9. On the i’th query of A to OEnc(id,w, [m]T ), B0 returns
([zi]1, [Widzi]1, [k�zi + k�w + m]T ), where Wid :=

∑
i∈[λ] Wi,idi .
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SampParams(pk):

For all i ∈ [λ], b ∈ {0, 1}, Wi,b ←R Z
2×�
p . b ←R DDH. Return

params := b, {Wi,b}i∈[λ],b∈{0,1}
)
.

Expandpk(params, pk):

Parse pk := (PG, [a]1, [k�a]1).
Return pk′ := [b]2, {[Wi,ba]1, [W�

i,bb]2}i∈[λ],b∈{0,1}
)

Expandct(pk, params, ct0, id ∈ {0, 1}λ):
Parse ct0 := ([c]1, [c′]T ), return ct1 :=

∑
i∈[λ][Wi,idic]1.

Fig. 7. KDM-secure modular IBE, for the identity space {0, 1}λ. We denote by idi the
i’th bit of id ∈ {0, 1}�. It builds upon the PKE from Fig. 6.

Game G2: We change the vector [d]2 in each user secret key from [bs]2 for
s ←R Zp to uniformly random over G

2
2, using the DDH assumption in G2. We

build a PPT adversary B1 such that:

|AdvA(G1) − AdvA(G2)| ≤ Adv1,Qsk-DDH
G1,B1

(λ),

where Qsk denotes the number of queries to OKeyGen.
Upon receiving a 1, Qsk-fold DDH challenge ([b]2, {[zi]2}i∈[Qsk]), B1 samples

b ←R {0, 1}, a,a0 ←R Z
�
p, k ←R {0, 1}�, and for all i ∈ [λ], b ∈ {0, 1}: Wi,b ←R

Z
2×�
p , thanks to which it can compute mpk and simulate OEnc to A as described

in Fig. 9. On the i’th query of A to OKeyGen(id), B0 returns ([zi]2, [kb +Widzi]2),
where Wid :=

∑
i∈[λ] Wi,idi , k0 := k and k1 := k�a

‖a‖2
2
.

Game G3: We change the way Wid is computed, as described in Fig. 9. In
Lemma 3, we show that there exists a PPT adversary B2 such that:

|AdvA(G2) − AdvA(G3)| ≤ 3λ · AdvDDH
G2,B2

(λ) +
2λQsk

p
,

where Qsk denotes the number of queries to OKeyGen.

Game G4: We change the distribution of the user secret keys as described in
Fig. 9.

First, we use the fact that the following distributions are statistically 1/p-
close:

d ←R Z
2
p and γ · d, with γ ←R Zp,d ←R Z

2
p.

Thus, we can write the output of OKeyGen(id) as

([γ · d]2, [kb +
∑

j∈[λ]

W�
j,idj (γ · d) + A⊥γ · RF(id) · (b⊥)�d]2),
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Setup(1λ):

PG := (G1,G2,GT , p, P1, P2, e) ← GGen(1λ), � := 4�log2(p)�, a ←R Z
�
p,

b ←R DDH, k ←R {0, 1}�. For all i ∈ [λ], b ∈ {0, 1}, Wi,b ←R Z
2×�
p .

Return mpk := (PG, [a]1, [b]2, {[Wi,ba]1, [W�
i,bb]2}i∈[λ],b∈{0,1}, [k�a]T ) and

msk := [k]T

Enc(mpk, id ∈ {0, 1}λ, [m]T ∈ GT ):

r ←R Zp, return: ct := ([ar]1, [
∑

i∈[λ] Wi,idiar]1, [k�ar]T + [m]T )

KeyGen(msk, id ∈ {0, 1}λ):

Recover k from [k]T , s ←R Zp, return skid := ([bs]2, [k +
∑

i∈[λ] W
�
i,idi

bs]2).

Dec(mpk, ct, skid):

Parse ct := ([c]1, [c′]1, [c′′]T ) ∈ G
�
1×G

2
1×GT and skid := ([d]2, [d′]2) ∈ G

2
2×G

�
2.

Return [c′′]T − e([c]�1 , [d′]2) + e([c′]�1 , [d]2).

Fig. 8. Concrete description of our KDM-secure IBE.

with fresh d ←R Z
2
p and γ ←R Zp. Using the DDH assumption in G2, for

any identity id queried to OKeyGen (and therefore, not queried to OEnc), we can
switch ([γ]2, [RF(id)]2, [γ · RF(id)]2) to ([γ]2, [RF(id)]2, [t]2), where γ ←R Zp and
t ←R Z

�−1
p . Note that we make crucial use of the fact the value RF(id) for an

identity id queried to OKeyGen only appears in the output of OKeyGen(id), since this
identity must not be queried to OEnc by A. This means the output of OKeyGen(id)
becomes:

([γ · d]2, [kb +
∑

j∈[λ]

W�
j,idj (γ · d) + A⊥t · (b⊥)�d]2),

where γ ←R Zp, d ←R Z
2
p and t ←R Z

�−1
p are sampled freshly upon generation

of each user secret key.
Finally, we switch back γ · d to d, for d ←R Z

2
p, γ ←R Zp, which are 1/p

statistically close, such that OKeyGen(id) becomes:

([d]2, [kb +
∑

j∈[λ]

W�
j,idjd + A⊥t · (b⊥)�d]2),

which exactly as in game G4. We have successfully transitioned from game G3

to G4; overall we have a PPT adversary B4 such that:

|AdvA(G3) − AdvA(G4)| ≤ AdvDDH
G2,B4

(λ) +
2Qsk

p
,

where Qsk denotes the number of queries to OKeyGen.
Now, we show that:

AdvA(G4) ≤ Qsk

p
.
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This is due to the fact that in game G4, the semi-functional component of msk
is statistically hidden in the generated user secret keys.

Indeed, OKeyGen(id) outputs ([d]2, [kb +
∑

j∈[λ] W
�
j,idj

d + A⊥t · (b⊥)�d]2),
where d ←R Z

2
p, and t ←R Z

�−1
p are sampled freshly for each generated user

secret key. Using the basis (a|A⊥) of Z
�
p, we can write k := a ·mskN+A⊥ ·mskSF,

where mskN ∈ Zp and mskSF ∈ Z
�−1
p denotes the normal and semi-functional

components of k, respectively. The component mskSF is completely hidden by
the random vector t ←R Z

�−1
p . Namely, conditioned on the fact that d�b⊥ �= 0,

which holds with probability 1/p over the choice of d ←R Z
2
p, the output of

OKeyGen(id) is identically distributed to:

([d]2, [a · mskN +
∑

j∈[λ]

W�
j,idjd + A⊥t · (b⊥)�d]2),

where mskN := k�a
‖a‖2

2
. At this point, the output is independent of the random bit

b ←R {0, 1} picked by the experiment. ��
Lemma 3 (From game G2 to game G3). There exists a PPT adversary B2

such that:

|AdvA(G2) − AdvA(G3)| ≤ 3λ · AdvDDH
B2

(λ) +
2λQsk

p
,

where Qsk denotes the number of queries to OKeyGen.

Proof. The proof goes over a series of hybrid games defined in Fig. 10. We pro-
gressively increase the entropy in the matrices Wid, originally set as Wid :=∑

j∈[λ] Wj,idj in game G2, up to Wid := (
∑

j∈[λ] Wj,idj )+ (A⊥RF(id))� in game
G3, where RF is a random function, computed on the fly by the experiment.
Namely, in game G2.i, we have Wid := (

∑
j∈[λ] Wj,idj ) + (A⊥RFi(id))�, where

RFi is a random function that only depends on the first i’th bits on its input. It
is clear that G2.λ is the same as G3. We prove that G2 is statistically close to G2.0

(note that RF0 is a constant function, that ignores its input), and we show that
for all i ∈ [λ], Gi−1 is computationally indistinguishable from Gi, in a way that
is reminiscent to the security proof from [GHKW16]. One difference here is that
the vector k is not uniformly random over Zp, which adds technical difficulties.

Game G2.0. This game is as G1, except the matrix Wid is switched from Wid :=
∑

j∈[λ] Wj,idj to Wid :=
∑

j∈[λ] Wj,idj + b⊥(A⊥RF0(id))� , where RF0(id) is
a random vector in Z

�−1
p , independent of id (the extra term is highlighted in

gray to better see the difference between G2 and G2.0). This does change the
distribution of the game, since (W1,0,W1,1) is identically distributed to (W1,0+
b⊥(A⊥RF0(id))�,W1,1 + b⊥(A⊥RF0(id))�). Note that these extra terms don’t
appear in the public key, since a�A⊥ = 0 and b�b⊥ = 0. Thus, we have:

AdvA(G1) = AdvA(G2.0).
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Game G0, G1, G2, G3,G4 :

b ←R {0, 1}, PG ← GGen(1λ), � := 4�log2(p)�, a ←R Z
�
p, a0 ←R Z

�
p ,

A⊥ ←R Z
�×(�−1)
p s.t. a�A⊥ = 0 , b ←R DDH, b⊥ ←R Z

2
p s.t. b�b⊥ = 0 ,

k ←R {0, 1}�. For all i ∈ [λ], b ∈ {0, 1}, Wi,b ←R Z
2×�
p .

mpk := (PG, [a]1, {[Wi,ba]1, [W�
i,bb]2}i∈[λ],b∈{0,1}, [k�a]T )

b′ ←R AOEnc(·,·),OKeyGen
(b)(·)(mpk)

Return 1 if b′ = b and identities queried to OEnc are distinct from identities
queried to OKeyGen.
Return 0 otherwise.

OEnc(id ∈ {0, 1}λ,w ∈ Z
�
p, [m]T ∈ GT ): G0, G1, G2, G3, G4

u ←R Z
�
p, [c]1 := [u]1, r ←R Zp, [c]1 := [a0r]1

Wid :=
∑

i∈[λ] Wi,idi + b⊥(A⊥RF(id))�

ct := ([c]1, [Widc]1, [k�c]T + [k�w + m]T )

OKeyGen
(b)(id ∈ {0, 1}λ): G0, G1, G2, G3 , G4

s ←R Zp, [d]2 := [bs]2, [d]2 ←R G
2
2 , k0 := k, k1 := k�a

‖a‖2
2

· a, t ←R Z
�−1
p

Wid :=
∑

i∈[λ] Wi,idi + b⊥(A⊥RF(id))� + b⊥(A⊥t)�

Return skid := ([d]2, [kb + W�
idd]2).

Fig. 9. Games for the proof of Property 2. In each procedure, the components inside
a solid (dotted, gray) frame are only present in the games marked by a solid (dotted,
gray) frame. Here, RF : {0, 1}λ → Z

�−1
p denotes a random function that is computed

on the fly.

Games G2.i−1.1, for all i ∈ [λ+1]. This game is as G2.i−1, except the vector [c]1
output OEnc(id,w, [m]T ) is switched from [a0r]1 to [aidir]1, with r ←R Zp, where
idi denotes the i’th bit of id, and a0,a1 ←R Z

�
p are two independent random

vectors. We use the DDH assumption in G1, to first switch [a0r]1 to uniformly
random over G

2
1 when necessary, that is, when idi = 1; then we use the DDH

assumption again to switch the uniformly random vector to [a1r]1 with r ←R Zp.
Overall we have a PPT adversary Bi such that:

|AdvA(G2.i−1) − AdvA(G2.i−1.1)| ≤ 2 · AdvDDH
G1,Bi

(λ).

Games G2.i−1.2, for all i ∈ [λ + 1]. See the description in Fig. 10.
As in the security proof of the CCA-secure pke from [GHKW16], we use a

basis (A⊥
0 |A⊥

1 ) ∈ Z
�−1
p of A⊥ where a�

0 A
⊥
0 = a�

1 A
⊥
1 = 0, where both a0 and

a1 are uniformly random vectors from Z
�
p, sampled independently.
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Namely, we sample A⊥
0 ←R Z

�×�/2
p and A⊥

1 ←R Z
�×(�/2−1)
p such that

(A⊥
0 |A⊥

1 ) ∈ Z
�−1
p is full rank, and a�A⊥

0 = a�
0 A

⊥
0 = a�A⊥

1 = a�
1 A

⊥
1 = 0.

Using this basis, we can decompose A⊥RFi−1(id) := A⊥
0 RF

(0)
i−1(id)+A⊥

1 RF
(1)
i−1

(id), where RF(0)
i−1 : {0, 1}λ → Z

�/2
p and RF

(1)
i−1 : {0, 1}λ → Z

�/2−1
p are independent

random functions that only read the first i − 1’th bits of their inputs.
We define

RF
(0)
i (id) :=

{
RF

(0)
i−1(id) + R̃F

(0)

i−1(id) if idi = 0
RF

(0)
i−1(id) if idi = 1

,

and

RF
(1)
i (id) :=

{
RF

(1)
i−1(id) if idi = 0

RF
(1)
i−1(id) + R̃F

(1)

i−1(id) if idi = 1
,

where R̃F
(0)

i−1 : {0, 1}λ → Z
�/2
p and R̃F

(1)

i−1 : {0, 1}λ → Z
�/2−1
p are random func-

tions that only read the first i − 1’th bits of their inputs, that are indepen-
dent of RF

(0)
i−1 and RF

(1)
i−1. Note that the random functions RF

(0)
i and RF

(1)
i

now depend on the first i’th bits of their inputs: we added a dependency on
the i’th bit. Thus, writing A⊥RFi(id) := A⊥

0 RF
(0)
i (id) + A⊥

1 RF
(1)
i (id), we have

A⊥RFi(id) = A⊥RFi−1(id) + A⊥
idi
R̃F

(idi)

i−1 (id) . The game G2.i−1.2 is the same as

G2.i−1.1, except the latter uses Wid := (
∑

j∈[λ] Wj,idj ) + b⊥(A⊥RFi−1(id))�,

and the former uses Wid + A⊥
idi
R̃F

(idi)

i−1 (id) .
Note that this change doesn’t appear in the challenge ciphertexts, since

OEnc(id,w, [m]T ) outputs:

ct : = ([aidir]1, [(Wid + b⊥(A⊥
idi R̃F

(idi)

i−1 (id))�aidir]1, [k
�aidir + k�w + m]T )

= ([aidir]1, [(Widaidir]1, [k
�aidir + k�w + m]T ),

since a�
0 A

⊥
0 = a�

1 A
⊥
1 = 0. Thus, the output of the oracle OEnc is identically

distributed in G2.i−1.1 and G2.i−1.2. We now turn our attention to the output of
OKeyGen.

First, we use the fact that the following are identically distributed:

d ←R Z
2
p and R̂Fi−1(id) · d, with d ←R Z

2
p,

where R̂Fi−1 : {0, 1}λ → Zp is a random function that only reads the first i−1’th
bits of its input. That is, OKeyGen(id) uses a random vector [R̂Fi−1(id) ·d]2 instead
of [d]2 ←R G

2
2.
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Then, we use the fact that following distributions are within statistical dis-
tance 1/p:

(Wi,0,Wi,1) and (Wi,0 + b⊥(A⊥
0 u0)�,Wi,1 + b⊥(A⊥

1 u1)�),

where Wi,0,Wi,1 ←R Z
2×�
p , u0 ←R Z

�/2
p , u1 ←R Z

�/2−1
p .

Thus, we can re-write the output of OKeyGen(id) as:

([d · R̂Fi−1(id)]2, [kb + W�
id R̂Fi−1(id) · d + A⊥

idiuidi · R̂Fi−1(id)(b⊥)�d]2).

Note that the vectors u0 and u1 do not appear in the public key or the challenge
ciphertexts, since a�

0 A
⊥
0 = a�

1 A
⊥
1 = 0.

At this point, we use the DDH assumption in G2 to switch

([R̂Fi−1(id)]2, [uidi · R̂Fi−1(id)]2)

to
([R̂Fi−1(id)]2, [R̃F

(idi)

i−1 (id)]2).

The output of OKeyGen(id) becomes:

([d · R̂Fi−1(id)]2, [kb + W�
id R̂Fi−1(id) · d + A⊥

idi R̃F
(idi)

i−1 (id)(b⊥)�d]2).

Finally, we reverse the statistical change from [R̂Fi−1(id) ·d]2 to [d]2 in each
user secret key, so that the output of OKeyGen(id) becomes:

([d]2, [kb + (
∑

j∈[λ]

Wj,idj )d + (A⊥RFi−1(id) + A⊥
idi R̃F

(idi)

i−1 (id))(b⊥)�d]2) =

([d]2, [kb + (
∑

j∈[λ]

Wj,idj )d + (A⊥RFi(id)(b⊥)�d]2),

exactly as in game G2.i−1.2. Putting everything together, we obtain a PPT adver-
sary B′

i such that:

|AdvA(G2.i−1.1) − AdvA(G2.i−1.2)| ≤ AdvDDH
G2,B′

i
(λ) +

2Qsk

p
,

where Qsk denotes the number of queries to OKeyGen.
Summing up for all i ∈ [λ], we obtain a PPT adversary B2 such that:

|AdvA(G2) − AdvA(G3)| ≤ 3λ · AdvDDH
B2

(λ) +
2λQsk

p
.

��

Property 3 (KDM security). First, as in the security proof of [BHHO08],
we use the fact that the output of Ẽnc(pk, sk, [k�w]T + [m]T ), which is of the



Master-Key KDM-Secure IBE from Pairings 147

Games G2.i−1, G2.i−1.1, G2.i−1.2 for i ∈ [λ + 1]:

b ←R {0, 1}, PG ← GGen(1λ), � := 4�log2(p)�, a ←R Z
�
p, a0 ←R Z

�
p,

a1 ←R Z
�
p , A⊥ ←R Z

�×(�−1)
p s.t. a�A⊥ = 0, b ←R DDH, b⊥ ←R Z

2
p s.t.

b�b⊥ = 0, k ←R {0, 1}�.
For all i ∈ [λ], b ∈ {0, 1}, Wi,b ←R Z

2×�
p . mpk :=

(PG, [a]1, {[Wi,ba]1, [W�
i,bb]2}i∈[λ],b∈{0,1}, [k�a]T )

b′ ←R AOEnc(·,·),OKeyGen(·)(mpk)
Return 1 if b′ = b and identities queried to OEnc are distinct from identities
queried to OKeyGen.

OEnc(id ∈ {0, 1}�,w ∈ Z
�
p, [m]T ∈ GT ):

r ←R Zp, [c]1 := [a0r]1, [c]1 := [aidir]1

Wid := (
∑

j∈[λ] Wj,idj ) + b⊥(A⊥RFi−1(id))�

Wid := (
∑

j∈[λ] Wj,idj ) + b⊥(A⊥RFi(id))�

ct := ([c]1, [Widc]1, [k�c + k�w + m]T )

OKeyGen(id ∈ {0, 1}λ):

k0 := k, k1 := k�a
‖a‖2

2
· a

Wid := (
∑

j∈[λ] Wj,idj ) + b⊥(A⊥RFi−1(id))�

Wid := (
∑

j∈[λ] Wj,idj ) + b⊥(A⊥RFi(id))�

d ←R Z
2
p, return skid := ([d]2, [kb + W�

idd]2).

Fig. 10. Games for the proof of Lemma 3. In each procedure, the components inside a
solid (dotted) frame are only present in the games marked by a solid (dotted) frame.
Here, for all i ∈ [λ], RFi : {0, 1}λ → Z

�−1
p denotes a random function that only reads

the first i’th bits of its input, and that is computed on the fly.

form ([u]1, [k�(u + w)]T + [m]T with [u]1 ←R G
�
1, is identically distributed to

([u−w]1, [k�u]T +[m]T ). That is, we can remove the dependence of the message
on the key k via a statistical argument. At this point, the proof in [BHHO08]
relies on the DDH assumption on [a]1. Namely, the ciphertexts are switched back
to normal (as opposed to semi-functional), then a hybrid argument goes over each
ciphertext one by one, switching it to semi-functional and using a statistical
argument (the Left Over Hash lemma to extract the entropy from k ←R {0, 1}�

and masks the plaintext). However, we cannot use DDH on [a]1, since the normal
component of the master secret key is of the form mskN := k�a

‖a‖2
2

· a. This value
is necessary to generate the user secret keys (see Property 2), and it is not clear
how to generate [mskN]T from [a]1, which prevents to use DDH with respect to
[a]1. Instead, we switch the challenge ciphertexts from ([u−w]1, [k�u]T +[m]T )
to ([bs−w]1, [k�bs]T +[m]T , for s ←R Zp, which relies on the DDH assumption
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with respect to a public vector [b]1 ←R G
�
1 that is independent of a. The rest of

the proof is similar to that [BHHO08]. It is given in Lemma 4.

Lemma 4 (Property 3, KDM security). The PKE from Fig. 6 satisfies
Property 3. Namely, for any PPT adversary A, the advantage AdvKDM

PKE,A(λ) is a
negligible function of λ.

Proof. The proof goes over a series of hybrid games, where for each game G,
we denote by AdvA(G) the advantage of PPT adversary A in game G. We start
with G0, which is the security game defined in Property 3. In that game, A
receives pk := (PG, [a]1, [k�a]T ) and [mskN]T . Recall that msk := [k]T , with
k := mskN + mskSF, where mskN and mskSF are the projections of k onto a
and A⊥, respectively; a ←R Z

�
p, and A⊥ ←R Z

�×(�−1)
p such that a�A⊥ = 0.

For any w ∈ Z
�
p, [m]T ∈ GT , the oracle OEnc(w, [m]T ) sets [m0]T := [m]T ,

[m1]T ←R GT , and returns Ẽnc(sk, pk, [k�w]T + [mb]T ), where b ←R {0, 1} is
chosen by the experiment.

Game G1. We switch the challenge ciphertexts from Ẽnc(sk, pk, [k�w]T +
[mb]T ) := ([u]1, [k�u]T + [k�w + mb]T ) with [u]1 ←R G

�
1 in game G0 to

([u − w]1, [k�u]T + [mb]T ) in game G1. Doing so, we remove the dependence
of the encrypted messages on k. We show that the two games are identically
distributed, so

AdvA(G0) = AdvA(G1).

We use the fact that for any w ∈ Zp, the following distributions are identical:

u and u − w,

where u ←R Z
�
p. The leftmost distribution corresponds to the game G0, whereas

the rightmost distribution corresponds to the game G1.

Game G2. We switch the challenge ciphertexts to ([bs −w]1, [k�bs]T + [mb]T )
where s ←R Zp, and b ←R Z

�
p, independent of a used in the public key and in

mskN. Namely, we build a PPT adversary B such that:

|AdvA(G1) − AdvA(G2)| ≤ Adv�,Q-DDH
G1,B (λ).

By Lemma 1, the latter advantage is negligible by the DDH assumption in G1.
Upon receiving an (�,Q)-fold DDH challenge ([b]1, {[zi]1}i∈[Q]), B samples

b ←R {0, 1}, a ←R Z
�
p, k ←R {0, 1}�, sets pk := ([a]1, [k�a]T ), mskN := k�a

‖a‖2
2

·
a, and returns (pk,mskN) to A. On the i’th query OEnc(w, [m]T ), B computes
[m0]T := [m]T , [m1]T ←R GT , and returns ([zi − w]1, [k�zi + mb]T ) to A.

Game G3. We switch the challenge ciphertexts to ([bs − w]1, [γs]T + [mb]T )
where s ←R Zp, and b ←R Z

�
p, γ ←R Zp independent of a used in the public
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key and in mskN. We show that the games G2 and G3 are statistically close,
using the left over hash lemma [ILL89] recalled in Lemma 2, which implies
that (a,b,k�a,k�b) is statistically close (within statistical distance 2−λ) from
(a,b,k�a, γ), where γ ←R Zp. The first distribution corresponds to the distri-
bution of the game G2, whereas the second distribution corresponds to the game
G3. Note that pk and mskN can be computed from (a,k�a). Thus, we have

|AdvA(G2) − AdvA(G3)| ≤ 2−λ.

Game G4. We change all the messages in the challenge ciphertexts to uni-
formly random, regardless of the random bit b ←R {0, 1}. Namely, in game G4,
OEnc(w, [m]T ), returns ([bs]1, [r]T ), where [r]T ←R GT and s ←R Zp are sampled
freshly for each query to OEnc. Clearly:

AdvA(G4) = 0.

To prove that game G4 is computationally indistinguishable from G3, we use the
DDH assumption in G1 to switch ([s]1, [γs]T ) to ([s]1, [r]T ). Namely, we build a
PPT adversary B3 such that:

|AdvA(G3) − AdvA(G4)| ≤ Adv1,QEnc-DDH
G1,B3

(λ),

where QEnc denotes the number of queries to OEnc.
Upon receiving a 1, QEnc-fold DDH challenge {[si]1, [zi]1}i∈[QEnc]), B3 samples

b ←R {0, 1}, a,b ←R Z
�
p, k ←R {0, 1}�, thanks to which it can compute mpk,

mskN, which it forwards to A. On the i’th query of A to OEnc(id,w, [m]T ), B3

sets [m0]T := [m]T , [m1]T ←R GT , and returns ([bsi]1, [zi]T +[mb]T ) to A. When
[zi]1 is of the form [γsi]1, B3 simulates the game G3, whereas it simulates the
game G4 when [zi]1 ←R G1. ��
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Abstract. We construct the first hierarchical identity-based encryption
(HIBE) scheme with tight adaptive security in the multi-challenge setting,
where adversaries are allowed to ask for ciphertexts for multiple adap-
tively chosen identities. Technically, we develop a novel technique that
can tightly introduce randomness into user secret keys for hierarchical
identities in the multi-challenge setting, which cannot be easily achieved
by the existing techniques for tightly multi-challenge secure IBE.

In contrast to the previous constructions, the security of our scheme
is independent of the number of user secret key queries and that of chal-
lenge ciphertext queries. We prove the tight security of our scheme based
on the Matrix Decisional Diffie-Hellman Assumption, which is an abstrac-
tion of standard and simple decisional Diffie-Hellman assumptions, such
as the k-Linear and SXDH assumptions.

Finally, we also extend our ideas to achieve tight chosen-ciphertext
security and anonymity, respectively. These security notions for HIBE
have not been tightly achieved in the multi-challenge setting before.

Keywords: Hierarchical identity-based encryption · Tight security ·
Multi-challenge security · Chosen-ciphertext security · Anonymity

1 Introduction

Tight Reductions. In public-key cryptography, most of the schemes are con-
structed with reduction-based security proofs. A security reduction efficiently
maps an adversary A against the security of a scheme with success probability
εA to a solver B that breaks the hardness of a suitable computational problem
with success probability εB. We call the quotient � := εA/εB the security loss of
a reduction, which can be viewed as a quantitative measurement of the distance
between the security of the scheme and the hardness of the problem. Ideally,
we want (1) the underlying problem to be standard and well-established, (2) the
security notion to be realistic, and (3) the security of the scheme to be as close to
the hardness of the problem as possible, namely, � to be as close to 1 as possible.
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We consider a reduction tight if � is a small constant and the running time
of B is approximately the same as that of A. Many existing works [8,11–13]
consider a notion of tightness called “almost tight security”. Different to the
(full) tightness, almost tight security allows the security loss � to be a small
polynomial, which is usually a linear function of the security parameter, but still
independent of the size of A. We do not distinguish these two notions, but we
are precise about the security loss in our comparison tables and security proofs.

Tight reductions are not only theoretically interesting but also beneficial in
practice. A tight reduction enables us to give universal key-length recommenda-
tions that are independent of the size of an application and shorter than the non-
tight ones. This is, in particular, useful in the setting where the envisioned size of an
application cannot be reasonably bounded a priori. As a result of that, many recent
works have been pursuing efficient tightly secure cryptographic schemes, includ-
ing digital signature [13,21,26], public-key encryption [11,12,20], identity-based
encryption [5,8] schemes, and authenticated key exchange protocols [15].

HIBE meets Tight Security. In this paper, we focus on hierarchical identity-
based encryption (HIBE) schemes [14,24]. In an L-level HIBE, an identity is a
vector of maximal L identities. It is considered to be more difficult to construct
HIBE than IBE and PKE since an HIBE scheme provides more functionalities.
For instance, an L-level HIBE scheme allows a user at level α < L to delegate a
secret key for its descendants at level α′ > α.

Constructing tightly secure HIBE appears to be much more challenging. The
first tightly secure IBE from standard assumptions was constructed in 2013 [8],
while the first tightly secure HIBE was just proposed very recently [28]. We believe
that it is not a coincidence. Firstly, Lewko and Waters [32] showed the potential
difficulty of constructing tightly secure HIBE. More precisely, they proved that
there is a (relatively) large class of HIBE schemes that cannot be tightly proven
secure. Secondly, Blazy, Kiltz, and Pan (BKP) [5] made the first attempt to bypass
the aforementioned impossibility result. Unfortunately, it has been found that the
BKPproof strategy is insufficient for the tight adaptive security ofHIBE (cf. [6] and
Appendix A of [29]). Adaptive security allows an adversary A to adaptively choose
a challenge identity id� after it sees the master public key and asks for polynomial
many user secret keys for identities chosen by A.

Very recently, Langrehr and Pan (LP) proposed the first tightly secure HIBE
based on standard assumptions. Their proof strategy improves the one of BKP
in the sense that the LP strategy can tightly introduce (suitable) randomness
in user secret keys for identities with flexible lengths. Inherently, the LP proof
strategy seems to only work tightly in the single-challenge setting, where an
adversary is restricted to ask for a ciphertext for at most one challenge identity.

From Single- to Multi-Challenge Security. In the real world, an adver-
sary can learn ciphertexts of multiple challenge identities. This is captured by
the more realistic multi-challenge security. We note that single-challenge secu-
rity implies multi-challenge security via a straightforward, but non-tight reduc-
tion. This is mainly the reason why the security of many (H)IBE schemes
(e.g. [5,28,30,31,35]) is analyzed in this simple single-challenge setting.
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However, this straightforward “single- to multi-challenge” reduction loses a rela-
tively large polynomial factor. Namely, if an adversary makes Qc many queries
for challenge ciphertexts, then the overall security loses a factor of Qc. This
defeats the purpose of establishing tight reductions for the overall scheme in a
more realistic setting.

Our Goal: HIBE with Tight Multi-Challenge Security. We aim at
constructing tightly secure HIBE schemes in the more realistic multi-challenge
setting. We note that there exist several techniques in constructing tightly multi-
challenge secure IBE schemes (for instance [17,18,22,23]) in composite- or prime-
order pairing groups. However, as already observed by the LP paper, these tech-
niques cannot be easily used in the HIBE setting. Thus, to achieve our goal, it
requires us to develop a new technique for tight multi-challenge security that is
useful for HIBE schemes.

1.1 Our Contribution

We construct the first tightly chosen-plaintext secure HIBE schemes in the multi-
challenge setting. The main novelty of this paper is a new randomization tech-
nique that enables us to randomize user secret keys for hierarchical identities in
the multi-challenge setting. We highlight that our technique improves the exist-
ing techniques [17,18,22,23] for tightly multi-challenge secure IBE schemes in
the sense that ours can handle randomization for identities with flexible lengths.
We postpone the detailed comparison of these techniques in Sect. 1.3.

Following the “MAC-to-(H)IBE” framework [5,28], we capture our core tech-
nique with the notion of affine MACs with levels (which was firstly proposed
in [28]) in the multi-challenge setting. By using prime-order pairings and the
Matrix Decisional Diffie-Hellman (MDDH) assumption [10], we compile any of
these MAC schemes to an HIBE tightly in the multi-challenge setting. We have
two main constructions of the affine MACs, MAC1 and MAC2, and they give us
two HIBE with different advantages and disadvantages, respectively: Consider-
ing identity space ID := ({0, 1}n)≤L, our first scheme has constant amount of
group elements in the ciphertext, but O(nL) many elements in the user secret
key; and our second scheme has shorter user secret key that contains O(L) many
elements, but its ciphertext contains O(L) many elements. Both schemes have
security loss O(n · L2) and independent of the numbers of challenge ciphertext
queries and user secret key queries. Table 1 compares our schemes with the exist-
ing HIBE schemes in prime-order pairing groups.

We extend our main results in the following directions by using known
techniques:

Anonymity. Additionally, the first construction of our MACs, MAC1, has tight
anonymity. By using the anonymity-preserving transformation of [5], we con-
struct the first tightly secure, anonymous HIBE scheme in the multi-challenge
setting. An (H)IBE scheme is anonymous if its challenge ciphertexts hide the cor-
responding identities. An application of anonymous HIBE is PKE with keyword
search [1].
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Table 1. Comparison of HIBEs in prime-order pairing groups with adaptive security
in the standard model based on static assumptions. The highlighted rows are from this
paper. The schemes with H in the superscript are obtained by hashing the identities
as described in the full version of [28].
The hierarchical identity space is ({0, 1}n)≤L, and γ is the bit length of the range
of a collision-resistant hash function. ‘|mpk|,’ ‘|usk|,’ and ‘|C|’ stand for the size of the
master public key, a user secret key and a ciphertext, respectively. We count the number
of group elements in G1,G2, and GT . For a scheme that works in symmetric pairing
groups, we write G(:= G1 = G2). The schemes that work in asymmetric pairing groups
can be instantiated with SXDH = 1-LIN. In the ‘|usk|’ and ‘|C|’ columns p stands for
the hierarchy depth of the identity vector. In bounded HIBEs, L denotes the maximum
hierarchy depth. In the security loss, Qe denotes the number of user secret key queries
by the adversary. The last but one column indicates whether the adversary is allowed
to query multiple challenge ciphertexts (✓) or just one (✗). The last column shows the
underlying security assumption.

We note that it was unknown how to construct a tightly adaptively secure
anonymous HIBE scheme even in the single-challenge setting.

Chosen-Ciphertext Security. We note that ciphertexts of our HIBE
schemes have compatible structure to use Quasi-Adaptive Non-Interactive Zero-
Knowledge (QANIZK) argument for linear subspace systems [2,22,25,27]. Sim-
ilar to [22], we upgrade our schemes to chosen-ciphertext security by using any
tightly unbounded simulation-sound QANIZK scheme. These schemes are the
first tightly chosen-ciphertext secure HIBE schemes in the multi-challenge set-
ting. Combining with the technique in the first extension, we also construct a
tightly chosen-ciphertext secure and anonymous HIBE.
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More (Minor) Extensions. Additionally, our schemes have tight multi-
instance security. In the multi-instance setting, an adversary can get multiple
instances of the HIBE scheme. It is trivial that our HIBE schemes are tightly
secure in this setting, since, given an instance of our HIBE, it can be easily
rerandomized to get multiple instances from it.

In the full version of [28], they use a collision-resistant hash function to further
improve the security loss and master public key size of their schemes. Here we
can also do the same improvement.

These two extensions are rather minor and we skip the technical details here,
but include them in Table 1 for a more complete comparison of different HIBE
schemes.

1.2 Technical Details

We give an overview of our main technique in achieving tight adaptive security
for HIBE in the multi-challenge setting. Here we restrict ourselves to chosen-
plaintext security.

Starting Point: The BKP Framework. To set up the stage of our dis-
cussion, we recall the BKP framework [5], which transforms an algebraic MAC
scheme to an IBE scheme in prime-order pairing groups. The algebraic MAC
is called affine MAC, due to its affine structure. Their framework is an abstrac-
tion of the Chen-Wee (CW) IBE [8] and can also be viewed as an extension of
the “MAC-to-Signature” framework by Bellare and Goldwasser (BG) [4] in the
IBE context. In particular, the BKP framework can be viewed as a fine-grained
reverse of the Naor transformation [7] on the BG signature scheme.

We give some informal ideas about how an affine MAC can be turned into
an IBE. The master public key of an IBE, pk := Com(skMAC), is a commitment
of the MAC secret key, skMAC. A user secret key usk[id] of an identity id consists
of a BG signature, namely, a MAC tag τid on the message id and a NIZK proof
of the validity of τid w.r.t. the secret key committed in pk. The observation of
BKP is that one can implement these commitments and NIZK proofs with the
(tuned) Groth-Sahai proof system [19].

Due to the fact that the BKP MAC has affine structures, the NIZK verifi-
cation involves only linear equations and can be randomized. Indeed, the BKP
IBE ciphertext Cid can be viewed as a randomized linear combination of pk w.r.t.
id. Implicitly, the decryption algorithm is a randomized NIZK verification of the
validity of τid (from usk[id]): If τid is valid, then the ciphertext Cid can be correctly
decrypted.

Obstacles in Achieving our Goal with BKP. The BKP framework has a
nice property that the security of the IBE scheme can be tightly reduced to the
security of the MAC scheme. Thus, we can only focus on constructing tightly
secure MAC, which is more fundamental. In particular, the BKP framework has
a tightly secure MAC scheme MACNR in the single-challenge setting under a
standard assumption. MACNR is implicitly in the CW IBE and borrows some
idea from the Naor-Reingold PRF [33]. However, MACNR has limitations that
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(a) it can only be used to handle at most one IBE challenge ciphertext, and
(b) it cannot provide tight adaptive security for HIBE.

We recall MACNR and give more technical discussion about these two limitations.
Let G2 := 〈P2〉 be an additive prime-order group. We use the implicit nota-

tion [x]2 := xP2 as in [10]. MACNR chooses B ∈ Z
(k+1)×k
q according to the

underlying assumption. B always has rank k and, for simplicity, we assume that
the first k rows of B, denoted by B, forms a full-rank square matrix. For message
space M := {0, 1}n, which is the same as the identity space of the resulting IBE,
its secret key is chosen uniformly at random and has the form of

skMAC :=
(
(xi,b)1≤i≤n,b∈{0,1}, x

′
0

)
∈ (

Z
k·2
q

)n × Zq.

Its MAC tag τ := ([t]2, [u]2) contains a random vector [t]2 and a message-
dependent value [u]2 in the form of

t = Bs ∈ Z
k
q for random s ∈ Z

k
q

u =
∑

i
x�

i,mi
t+ x′

0 ∈ Zq. (1)

Based on the MDDH assumption, MACNR is tightly pseudorandom against
chosen-message attacks (PR-CMA security), which is a decisional variant of the
standard existential unforgeability against chosen-message attacks (EUF-CMA
security) for MAC schemes [9]. Essentially, the PR-CMA security of MACNR shows
that [u]2 is pseudorandom.

To understand the intuition of the BKP proof strategy, we consider the stan-
dard EUF-CMA security, where an adversary A can ask for polynomial many
MAC tags τm := ([tm]2, [um]2) on messages m of its adaptive choice and submit
a forgery τ� := ([t�]2, [u�]2) for one single verification. The MAC tag query is
corresponding to the IBE user secret key query, and the verification query is
related to the IBE challenge ciphertext query.

The overall proof strategy of MACNR is to gradually randomize all the u values
in answering A’s tag queries. During this process, the reduction must be able to
compute u� =

∑
i x

�
i,m�

i
t� + x′

0 for a fresh m�, which is the main difficulty in the
proof. To solve it, the BKP argument conceptually replace x′

0 with a constant
random function RF0(ε). Then, by using the MDDH assumption, it develops a
random function RFi+1 : {0, 1}i+1 → Zq from another random function RFi : {0,
1}i → Zq on-the-fly for some integer 0 ≤ i < n. After n recursions, a random
function RF : {0, 1}n → Zq is developed and thus the security loss of MACNR is
O(n). More precisely, in each step, the reduction guesses the (i+1)-th bit of m�

as b� ∈ {0, 1} and defines the function RFi+1 as:

RFi+1(m|i+1) :=

{
RFi(m|i) (if mi+1 = b�)
RFi(m|i) + Rm|i (if mi+1 = 1 − b�)

, (2)

where m|i is the first i bits of m and Rm|i is a random value from Zq chosen
for m|i. Alternatively, the BKP strategy can be viewed as gradually injecting
randomness directly into x′

0, during developing the random function above.
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There are two important observations of this strategy, which lead to Limita-
tions (a) and (b) above. These observations are in the proof step from Hybrid i
(using RFi) to Hybrid (i + 1) (using RFi+1):

Reason for Limitation (a): In this step, the reduction embeds a MDDH prob-
lem instance in [xi+1,1−b� ]2 and chooses the other xj,b in Zq. Thus, xi+1,1−b�

in Zq is unknown to the reduction during this step, but xi+1,b� is known in
Zq for verifying the forgery on a single m�. However, this strategy cannot
work tightly if there is more than one verification queries, which is required
in the multi-challenge setting. For instance, after guessing b�, the reduction
fails to answer two verification queries for challenge messages, 0n and 1n,
respectively.

Reason for Limitation (b): RFi+1 defined via Eq. (2) is a random function for
message spaces with fixed length based on the crucial fact that the outputs
of RFi+1 and RFi are not revealed at the same time. However, for hierarchical
identity spaces, ID := ({0, 1}n)≤L, it is not the case anymore.
As a concrete example, we consider the transition from Hybrids n to (n+ 1).
Via Eq. (2), RFn(m) = RFn+1(m||b�) and adversaries can learn this by asking
MAC tags for m and m||b�||m′ (where m′ ∈ {0, 1}n−1). Thus, the tags for
these two message are not independent and we cannot continue the hybrid
argument.

In order to solve our task, we need to develop new techniques to overcome
both limitations described above. Our approach essentially has two main steps:
In the first step, we target at tight multi-challenge security, and, at the same time,
we are looking ahead and making it suitable for handling hierarchical identities;
and, in the second step, we upgrade the technique developed in the first step to
the HIBE setting.

Step 1: New Strategy for Tight Multi-Challenge Security. We call
this randomization strategy subspace randomization, since it first increases the
dimension of t in the tag so that there exist subspaces, and our crucial ran-
domization happens in some of these subspaces. This subspace randomization
is compatible with the independent randomization of Langrehr and Pan [28]
and, thus, it gets extended in Step 2 to randomize MAC tags for messages with
flexible length, namely, hierarchical identities.

Our starting point of achieving tight multi-challenge security is to design a
new randomization strategy that does not depend on any bit of m�. To implement
this strategy, our first attempt is to choose the random vector t in the MAC tag
from a larger vector space Z

2k
q . Accordingly, we choose xj,b values in skMAC from

Z
2k
q and compute ([t]2, [u]2) in the MAC tag as

t $← Z
2k
q

u =
∑

i
x�

i,mi
t+ x′

0 ∈ Zq. (3)

Our proof strategy is rather algebraic and make use of some simple facts
about the vector space Z

2k
q . We choose two random matrices B0,B1

$← Z
2k×k
q
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and B⊥
0 ,B⊥

1 ∈ Z
2k×k
q are the corresponding non-zero kernel matrices, respec-

tively. Namely,
B�

0 · B⊥
0 = B�

1 B
⊥
1 = 0 ∈ Z

k×k
q (4)

(B0 | B1) is a basis of Z2k
q . Span(B0) := {v ∈ Zq | ∃w ∈ Z

k
q s.t. v = B0 ·w} is a

linear subspace of Z2k
q and it is the same for Span(B1).

We note that in the value u the information of the secret xj,b values is only
projected to t. When we answer a tag query on message m, we can switch t to
a suitable subspace (either Span(B0) or Span(B1)) by the MDDH assumption.
After the switch, some information about xj,b values is perfectly hidden, and we
can use it to gradually randomize the u values. Choosing t from the suitable
subspace depends on the corresponding bit of m, but independent of the guess
of m�.

More precisely, in our Hybrid i, for a tag query on m, our um has the form

um :=
( ∑

j
x�

j,mj
+ OFi(m|i)(B⊥

0 )
� + ZFi(m|i)(B⊥

1 )
�

︸ ︷︷ ︸
=:RFi(m|i)

)
tm + x′

0,

where OFi,ZFi : {0, 1}i → Z
1×k
q are two independent random functions. Since

(B⊥
0 | B⊥

1 )
� ∈ Z

2k×2k
q is full-rank with overwhelming probability, we can view(

OFi(m|i) | ZFi(m|i)
)
(B⊥

0 | B⊥
1 )

� as a random function RFi : {0, 1}i → Z
1×2k
q .

In the transition to Hybrid (i + 1), we do the following two sub-steps:

– Step 1.1 (using MDDH): If mi+1 = 0, then we choose tm from Span(B0),
otherwise, from Span(B1).

– Step 1.2 (information-theoretic argument): For all tag queries with mi+1 = 0,
we increase the entropy in OFi and develop OFi+1. By Eq. (4), this change is
perfectly hidden from the adversary A. Similarly, we also develop ZFi+1 from
ZFi.

Now we can introduce RFi+1 and, after n of these recursions, we can have RFn

to randomize all the tags.
The only thing left is to handle multiple verification queries. To this end,

in our scheme, we choose random Xj,b ∈ Z
k×2k
q . Compared with x�

j,b ∈ Z
2k
q ,

our new Xj,b has more rows such that we can embed the MDDH challenge to
randomize multiple verification queries as well. We do not always know all the
whole Xj,b values over Zq. However, different to the BKP or CW strategy, we
multiply the unknown part in Xj,b with the suitable kernel matrix, either B⊥

0

or B⊥
1 . This is done implicitly. Since, in all the tag queries, tm has already been

chosen in the correct subspace, the unknown part will not appear, and we can
simulate the tag queries. When we answer the verification queries, this unknown
part will “react with” these queries and randomize them, which will later be the
challenge ciphertext queries of the resulting IBE.

To sum up the discussion above, our strategy increases the dimension of
x�

j,b ∈ Z
1×k
q to Xj,b ∈ Z

k×2k
q in such a way that we have enough entropy from

the row vectors to randomize tag queries and, combining it with the entropy from
the column vectors, we can handle the verification queries at the same time.
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We capture all the above discussion formally by presenting an affine MAC
in Sect. 3.1, which can be used to construct a tightly multi-challenge secure IBE.
We are not claiming any efficiency improvement with this IBE, but technical
achievement, instead, since it has roughly the same efficiency as its counterparts
from [17,18,22]. However, our techniques involved in this IBE scheme improves
those in [17,18,22] in the sense that ours can be extended to randomize user
secret keys for hierarchical identities, while those in [17,18,22] cannot.

Step 2: Upgrade to Hierarchical Identities. For the random function RFi

developed via the strategy above, an important observation is that its output is
only projected in t during the hybrid argument. This gives us “room” to upgrade
the subspace randomization to handle hierarchical identities: By controlling the
choice of t, we can make sure that the outputs of RFi and RFi+1 will not appear
at the same time via the value u.

The strategy in this step is motivated by the work of Langrehr and Pan
[28], where their core technique is to isolate the randomization for messages
at different levels (which will be identities at different levels in the HIBE). To
implement this, we add a “layer” to t by choosing t from Z

3k
q . Similar to Step

1, we exploit some properties of the linear space Z
3k
q . We choose two random

matrices B0,B1
$← Z

3k×k
q and decompose Z

3k
q into Span(B | B0 | B1). The span

of B⊥ is decomposed into that of B∗
0 ∈ Z

3k×k
q and B∗

1 ∈ Z
3k×k
q . An overview of

the orthogonal relations between all these matrices is given in Fig. 1.

Fig. 1. Solid lines mean orthogonal: B�B∗
0 = B�

1 B
∗
0 = 0 = B�B∗

1 = B�
0 B

∗
1 ∈ Z

k×k
q .

The intuition of our technique is that we develop a random function in
Span(B⊥), which is orthogonal to Span(B). Thus, it is easy to isolate the ran-
domization for messages at level α(≤ L)1 from that at other levels by choosing
tm from Span(B) for m ∈ ({0, 1}n)α

′
and α′ 	= α. The randomization with a level

α is done similar to Step 1. In particular, (B0,B∗
1) functions similar to (B0,B⊥

0 )
in Step 1, and the same for (B1,B∗

0) vs. (B1,B⊥
1 ).

We only present our intuitions here and refer Sect. 3.2 and the full version
for the actual constructions and formal proofs.

1.3 More on Related Works

As we discussed before, there are different techniques [3,17,18,22,23] to achieve
tight multi-challenge security for IBE schemes. Schemes in [18,22] are based on
1 For message space with flexible length M := ({0, 1}n)≤L, a message at level α means
m ∈ ({0, 1}n)α.
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the BKP framework and close to ours, while the other schemes are either using
composite-order pairings [23] or based on stronger, non-standard assumptions
[3,17]. We suppose the proof strategy in the work of Hofheinz, Jia, and Pan
(HJP) [22] cannot be easily extended to randomize MAC tags for hierarchical
identities, since their technique develops the random function RFi in the full
space Zq and directly introduce randomness into x′

0. Inherently, in the HIBE
setting, this strategy has the same limitation as BKP, namely, the outputs of
RFi and RFi+1 are both leaked when identities have different lengths. The work
of Gong et al. [18] has the same issue as well. This limitation explains why some
proof steps of LP HIBE schemes cannot be done in the multi-challenge setting,
even with the HJP technique.

1.4 Open Problems

As mentioned before and observed in Table 1, the tighter security loss of our
schemes is O(γk), but with relatively larger ciphertext. We leave further improv-
ing the security loss with compact ciphertext as an open problem.

Another interesting direction is to make our schemes more efficient. A main
disadvantage of our schemes is that they require relatively large master public
keys. More precisely, ignoring the small constant k, mpk contains either O(αL2)
or O(γL) group elements, because of the use of the LP technique [28]. An inter-
esting open problem is to construct a tightly secure HIBE with shorter master
public keys, probably first in the single-challenge setting. A similar interesting
open problem is to shorten the size of either user secret keys or ciphertexts to
have a more efficient, tightly secure HIBE scheme in the multi-challenge setting.

1.5 Roadmap

We recall useful definitions in Sect. 2. Section 3 proposes affine MACs that can be
used to construct tightly multi-challenge secure IBE and HIBE, respectively. It
presents our core techniques as described above in a detailed and formal manner.
Section 4 gives a transformation to HIBE, similar to the BKP framework. Its
security proof is in the full version. For completeness of our claims, in the full
version, we constructs an anonymous HIBE and a CCA-secure HIBE tightly in
the multi-challenge setting. Furthermore, concrete instantiations of our schemes
can be found in the full version as well.

2 Preliminaries

Notations. We use x
$← S to denote the process of sampling an element x

from S uniformly at random if S is a set and to denote the process of running
S with its internal randomness and assign the output to x if S is an algorithm.
The expression a

?= b stands for comparing a and b on equality and returning
the result in Boolean value. For positive integers k, η ∈ N+ and a matrix A ∈
Z
(k+η)×k
q , we denote the upper square matrix of A by A ∈ Z

k×k
q and the lower
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η rows of A by A ∈ Z
η×k
q . Similarly, for a column vector v ∈ Z

k+η
q , we denote

the upper k elements by v ∈ Z
k
q and the lower η elements of v by v ∈ Z

η
q . We

use A−� as shorthand for
(
A−1

)�. For a matrix A ∈ Z
n×m
q , we use Span(A) :={

Av | v ∈ Z
m
q

}
to denote the linear span of A and A⊥ denotes an arbitrary

matrix with Span
(
A⊥)

=
{
v | A�v = 0

}
.

For a set S and n ∈ N+, Sn denotes the set of all n-tuples with components
in S. For a string m ∈ Σn, mi denotes the i-th component of m (1 ≤ i ≤ n) and
m|i denotes the prefix of length i of m. Furthermore for a p-tuple of bit strings
m ∈ ({0, 1}n)p, we use �m� to denote the string m1|| . . . ||mp. Thus for 1 ≤ i ≤ np,
�m�i denotes the i-th bit of m1|| . . . ||mp and �m�|i denotes the i-bit-long prefix
of m1|| . . . ||mp.

All algorithms in this paper are probabilistic polynomial-time unless we state
otherwise. If A is an algorithm, then we write a

$← A(b) to denote the random
variable outputted by A on input b.

Games. Following [5], we use code-based games to define and prove security. A
game G contains procedures Init and Finalize, and some additional procedures
P1, . . . ,Pn, which are defined in pseudo-code. Initially all variables in a game are
undefined (denoted by ⊥), all sets are empty (denote by ∅), and all partial maps
(denoted by f : A ��� B) are totally undefined. An adversary A is executed in
game G (denote by GA) if it first calls Init, obtaining its output. Next, it may
make arbitrary queries to Pi (according to their specification), again obtaining
their output. Finally, it makes one single call to Finalize(·) and stops. We use
GA ⇒ d to denote that G outputs d after interacting with A, and d is the output
of Finalize.

T (A) denotes the running time of A.

2.1 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial-time (PPT) algorithm that on input 1λ

returns a description G := (G1,G2,GT , q, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q. The group
elements P1 and P2 are generators of G1 and G2, respectively. The function e :
G1×G2 → GT is an efficient computable (non-degenerated) bilinear map. Define
PT := e(P1, P2), which is a generator in GT . In this paper, we only consider Type
III pairings, where G1 	= G2 and there is no efficient homomorphism between
them. All constructions in this paper can be easily instantiated with Type I
pairings by setting G1 = G2 and defining the dimension k to be greater than 1.

We use the implicit representation of group elements as in [10]. For s ∈ {1,
2, T} and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation of a in
Gs. Similarly, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the implicit rep-

resentation of A in Gs. Span(A) := {Ar|r ∈ Z
m
q } ⊂ Z

n
q denotes the linear span

of A, and similarly Span([A]s) := {[Ar]s|r ∈ Z
m
q } ⊂ G

n
s . Note that it is efficient

to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions. We
define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.
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Next we recall the definition of the matrix Diffie-Hellman (MDDH) and
related assumptions [10].

Definition 1 (Matrix Distribution). Let k, � ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
q of full rank k in polynomial

time.

Without loss of generality, we assume the first k rows of A $← D�,k form an
invertible matrix. The D�,k-matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A $← D�,k, w $← Z

k
q and

u $← Z
�
q.

Definition 2 (D�,k-matrix Diffie-Hellman Assumption). Let D�,k be a
matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-matrix Diffie-Hellman
(D�,k-MDDH) assumption holds relative to PGGen in group Gs if for all PPT
adversaries A, it holds that

Advmddh
D�,k,PGGen,s(A) := |Pr[A(PG, [A]s, [Aw]s) = 1] − Pr[A(PG, [A]s, [u]s) = 1]|

is negligible where the probability is taken over PG $← PGGen(1λ), A $← D�,k,

w $← Z
k
q and u $← Z

�
q.

The uniform distribution is a particular matrix distribution that deserves
special attention, as an adversary breaking the U�,k assumption can also distin-
guish between real MDDH tuples and random tuples for all other possible matrix
distributions. For uniform distributions, they stated in [11] that Uk-MDDH and
U�,k-MDDH assumptions are equivalent.

Definition 3 (Uniform Distribution). Let k, � ∈ N+ with � > k. We call U�,k

a uniform distribution if it outputs uniformly random matrices in Z
�×k
q of rank

k in polynomial time. Let Uk := Uk+1,k.

Lemma 1 (U�,k-MDDH ⇔ Uk-MDDH [11]). Let �, k ∈ N+ with � > k. An
U�,k-MDDH instance is as hard as an Uk-MDDH instance. More precisely, for
each adversary A there exists an adversary B and vice versa with

Advmddh
U�,k,PGGen,s(A) = Advmddh

Uk,PGGen,s(B)

and T (A) ≈ T (B).
Proof. An U�,k-MDDH instance (PG, [A]s, [v]s) can be transformed into an
Uk-MDDH by picking uniformly random a full-rank matrix T ∈ Z

(k+1)×�
q and

returning (PG, [TA]s, [Tv]s).
For the other direction one picks uniformly random a full-rank matrix T′ ∈

Z
�×(k+1)
q to turn the Uk-MDDH instance (PG, [A]s, [v]s) into an U�,k-MDDH

instance (PG, [T′A]s, [T′v]s). ��
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Lemma 2 (D�,k-MDDH ⇒ Uk-MDDH [10]). Let �, k ∈ N+ with � > k and let
D�,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an
D�,k instance. More precisely, for each adversary A there exists an adversary B
with

Advmddh
Uk,PGGen,s(A) ≤ Advmddh

D�,k,PGGen,s(B)
and T (A) ≈ T (B).

For Q ∈ N+, W $← Z
k×Q
q ,U $← Z

�×Q
q , consider the Q-fold D�,k-MDDH prob-

lem which is distinguishing the distributions (PG, [A], [AW]) and (PG, [A], [U]).
That is, the Q-fold D�,k-MDDH problem contains Q independent instances of the
D�,k-MDDH problem (with the same A but different wi). By a hybrid argument,
one can show that the two problems are equivalent, where the reduction loses a
factor Q. The following lemma gives a tight reduction.

Lemma 3 (Random Self-reducibility [10]). For � > k and any matrix dis-
tribution D�,k, the D�,k-MDDH assumption is random self-reducible. In particu-
lar, for any Q ∈ N+ and any adversary A there exists an adversary B with

(� − k)Advmddh
D�,k,PGGen,s(A) +

1
q − 1

≥ AdvQ-mddh
D�,k,PGGen,s(B) :=

|Pr[B(PG, [A], [AW] ⇒ 1)] − Pr[B(PG, [A], [U] ⇒ 1)]|,

where PG $← PGGen
(
1λ

)
, A $← D�,k, W

$← Z
k×Q
q , U $← Z

(k+1)×Q
q , and T (B) ≈

T (A) + Q · poly(λ), where poly is a polynomial independent of A.

To reduce the Q-fold U�,k-MDDH assumption to the Uk-MDDH assumption we
have to apply Lemma 3 to get from Q-fold U�,k-MDDH to standard U�,k-MDDH
and then Lemma 1 to get from U�,k-MDDH to Uk-MDDH. Thus for every adver-
sary A there exists an adversary B with

AdvQ-mddh
U�,k,PGGen,s(A) ≤ (� − k)Advmddh

Uk,PGGen,s(B) +
1

q − 1
.

The following Lemma is often helpful with the uniform matrix distribution.

Lemma 4.

Pr
[
rank(A) = k | A $← Z

k×k
q

]
≥ 1 − 1

q − 1

A proof can be found in the full version.

2.2 Pseudorandom Functions

For the IBE construction we need pseudorandom functions (PRFs).

Definition 4 (Pseudorandom Function). A family of pseudorandom func-
tions is a tuple F := (GenPRF,PRF) of polynomial-time algorithms with:
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– K $← GenPRF
(
1λ

)
is a probabilistic algorithm that gets the security parameter

1λ and returns a (private) key K.
– PRF is a deterministic algorithm that gets a key K and an input X ∈ D and

outputs PRFK(X) ∈ R, where D is the domain set and R is the finite range
set.

The security notion for pseudorandom functions is pseudorandomness.

Definition 5 (Pseudorandomness). A family of pseudorandom functions
F := (GenPRF,PRF) is pseudorandom if for all PPT adversaries A,

AdvprF (A) :=
∣∣∣Pr

[
APRFK(·) ⇒ 1 | K $← GenPRF

(
1λ

)] − Pr
[
ARF(·) ⇒ 1

]∣∣∣

is negligible in λ. The notion Af(·) means A has oracle access to the function f
and RF : D → R is random function (i.e. a function that maps every input to a
uniform random value from R).

2.3 Affine MACs

The HIBEs in this paper are constructed in the BKP framework: The HIBEs are
obtained from a Message Authentication Code with suitable algebraic structures
(affine MAC with levels). The main work is to achieve tight security in the multi-
challenge setting for the MACs.

To achieve this, we need to generalize the structure of the affine MAC with
levels slightly and allow that X can be a matrix (instead of a vector) and x′ can
be a vector (instead of only a scalar value). Please note that in the definition
in this paper, X is transposed compared to the original affine MAC with levels
definition.

Definition 6 (Affine MAC with Levels). An affine MAC with levels MAC
consists of three PPT algorithms (GenMAC,Tag,VerMAC) with the following
properties:

– GenMAC(G2, q, P2) gets a description of a prime-order group (G2, q, P2) and
returns a secret key skMAC :=

(
B, (Xl,i,j)1≤l≤�(p),1≤i≤L,1≤j≤�′(l,i),x

′
)

where

B ∈ Z
n×n′
q , Xl,i,j ∈ Z

η×n
q for l ∈ {1, . . . ,�(L)}, i ∈ {1, . . . ,L}, and j ∈

{0, . . . ,�′(l, i)} and x′ ∈ Z
η
q .

– Tag
(
skMAC,m ∈ Sp≤L

)
returns a tag τ :=

(
([tl]2)1≤l≤�(p), [u]2

)
where

tl := Bsl for sl
$← Z

n′
q (1 ≤ l ≤ �(p))

u :=
�(p)∑
l=1

⎛
⎝

p∑
i=1

�′(l,i)∑
j=1

fl,i,j

(
m|i

)
Xl,i,j

⎞
⎠tl + x′. (5)

– VerMAC

(
skMAC,m, τ =

(
([tl]2)1≤l≤�(p), [u]2

))
checks, whether Eq. (5) holds.
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Fig. 2. Games mPR-CMAreal and mPR-CMArand for defining mPR-CMA security for
affine MACs.

The messages of MAC have the form m = (m1, . . . ,mp) where p ≤ L and mi ∈ S.
After the transformation to an HIBE, S will be the base set of the identity space
and L will be the maximum number of levels. The functions fl,i,j : Si → Zq must
be public, efficiently computable functions. The parameters � : {1, . . . ,p} → N+,
n, n′, η ∈ N+ and �′ : {1, . . . ,p} × {1, . . . ,L} → N+ (1 ≤ i ≤ L) are arbitrary,
scheme-depending parameters. The function � must be monotonous increasing.

A delegatable affine MAC is an affine MAC with levels with �(p) = 1 and an
affine MAC is a delegatable affine MAC with L = 1. We can use affine MACs
with levels to build HIBEs, delegatable affine MACs to build anonymous HIBEs
and affine MACs to build anonymous IBEs.

Security. To build anonymous IBE, we need an affine MAC that satisfies multi-
challenge pseudorandomness against chosen message attacks (mPR-CMA) secu-
rity. The security notion is defined by the games in Fig. 2.

We require multi-challenge hierarchical pseudorandomness against chosen-
message attacks (mHPR-CMA) for affine MACs with levels to obtain
mIND-HID-CPA and mIND-HID-CCA secure HIBEs. The security notion is defined
by the games in Fig. 3.

Definition 7 (mXPR-CMA Security). An affine MAC (with levels) MAC is
mXPR-CMA-secure for X ∈ {ε,H} in G2 if for all PPT adversaries A the
function

Advmxpr-cma
MAC,G2

(A) :=
∣∣∣Pr

[
mXPR-CMAA

real ⇒ 1
]

− Pr
[
mXPR-CMAA

rand ⇒ 1
]∣∣∣

is negligible.
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Fig. 3. Games mHPR-CMAreal and mHPR-CMArand for defining mHPR-CMA security
for affine MACs with levels.

3 Delegatable Affine MACs with Tight Multi-challenge
Security

3.1 Warm-Up: IBE

First, we present the technique to handle multiple challenge queries in the IBE
setting (L = 1). The MAC is given in Fig. 4. This affine MAC has identity
space S = {0, 1}α (for arbitrary α ∈ N+) and uses n = 2k, n′ = k, η = k
and �′ = α. To match the formal definition, Xj,b should be renamed to X2j−b

and f2j−b(m) :=
(
mj

?= b
)
. The MAC looks very similar to the one in [22] and

achieves the same security and very similar efficiency, however the security proof
is quite different. A comparison of the resulting IBE with other tightly secure
IBEs can be found in Table 2.

As in [22], we need to ensure that the adversary can only query one tag per
message. The key generator can ensure this by making the tags deterministic.
He can achieve this by storing the generated tags for duplicated queries (stateful
scheme) or by generating the randomness with a pseudorandom function. We
have done the later in our presentation. The affine MACs with levels we present
later solve this by having rerandomizable tags. Of course, they can be used as
affine MAC as well by setting L = 1, but this comes at the cost of being slightly
less efficient.
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Table 2. Comparison of IBEs in prime-order pairing groups with tight adaptive
IND-ID-CPA-security in the standard model based on static assumptions. The schemes
in the last two rows can also be made IND-ID-CCA secure. The second column indi-
cates whether an IBE is anonymous (✓) or not (✗). The identity space is {0, 1}n. ‘|mpk|,’
‘|usk|,’ and ‘|C|’ stand for the size of the master public key, the user secret key and a
ciphertext, respectively. We count the number of group elements in G1,G2, and GT .
For a scheme that works in symmetric pairing groups, we write G(:= G1 = G2). The
last but one column indicates whether the adversary is allowed to query multiple chal-
lenge ciphertexts (✓) or just one (✗). The last column shows the underlying security
assumption.

Fig. 4. The new multi-challenge tightly secure affine MAC MACmc.
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Theorem 1 (Security of MACmc). MACmc is tightly mPR-CMA secure in G2

under the Uk-MDDH assumption for G1, the Uk-MDDH assumption for G2 and
the pseudorandomness of F := (GenPRF,PRF). More precisely, for all adversaries
A there exists adversaries B1, B2 and B3 with

Advmpr-cma
MACmc

(A) ≤ 8kαAdvmddh
Uk,PGGen,2(B1) + (kα + 2k + 1)Advmddh

Uk,PGGen,1(B2)

+ 2AdvprF (B3) +
(Qc + 10)α + 4

q − 1
+

2Qe

q2k

and T (B1) ≈ T (B2) ≈ T (B3) ≈ T (A) + (Qe + Qc) · poly(λ), where Qe resp. Qc

denotes the number of Eval resp. Chal queries of A and poly is a polynomial
independent of A.

Proof. The proof uses a hybrid argument with the hybrids G0, G1, G2,ĵ,0 for ĵ ∈
{0, . . . ,α}, G2,ĵ,1−G2,ĵ,3 for ĵ ∈ {0, . . . ,α − 1} and finally G3–G5. They are given
in Table 3. They make use of the random functions RF : S → Z

2k
q , RF′ : S → Z

k
q ,

RFĵ : {0, 1}ĵ → Z
k×2k
q , ZFĵ : {0, 1}ĵ → Z

k×k
q and OFĵ : {0, 1}ĵ → Z

k×k
q for

ĵ ∈ {1, . . . ,α} and R̃F : S → Z
k
q .

Lemma 5 (G0 � G1). For all adversaries A there exists an adversary B with
∣∣Pr[GA

0 ⇒ 1
]
= Pr

[
GA
1 ⇒ 1

]∣∣ ≤ AdvprFB
and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).

Proof. The value t for in the Eval oracle is chosen randomly in game G1 instead
of pseudorandom in game G0. This leads to a straight forward reduction to the
pseudorandomness of F := (GenPRF,PRF). ��
Lemma 6 (G1 � G2,0,0).

Pr
[
GA
1 ⇒ 1

]
= Pr

[
GA
2,0,0 ⇒ 1

]

Proof. In game G1 replace X1,b with X1,b +RF0(ε) for b ∈ {0, 1} to obtain game
G2,0,0. ��
Lemma 7 (G2,ĵ,0 � G2,ĵ,1). For ĵ < α and all adversaries A there exists an
adversary B with

∣∣Pr[GA
2,ĵ,0 ⇒ 1

] − Pr
[
GA
2,ĵ,1 ⇒ 1

]∣∣ ≤ 2kAdvmddh
Uk,PGGen,2(B) +

2
q − 1

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).
A proof can be found in the full version.

Lemma 8 (G2,ĵ,1 � G2,ĵ,2). For all adversaries A there exists an adversary B
with

∣∣Pr[GA
2,ĵ,1 ⇒ 1

] − Pr
[
GA
2,ĵ,2 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) +

Qc + 2
q − 1

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).
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Fig. 5. Hybrids for the security proof of MACmc.

Proof. First of all, we replace the term RFĵ

(
m|ĵ

)
in G2,ĵ,1 with ZFĵ

(
m|ĵ

)(
B⊥

1

)�+

OFĵ

(
m|ĵ

)(
B⊥

0

)�. This does not change the distribution, since B⊥
1 ,B⊥

0 is a basis
of Z2k

q . To show this, we assume
(
B⊥

1 |B⊥
0

)
does not have full rank. Since both
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Table 3. Summary of the hybrids of Fig. 5. Non-duplicated Eval queries draw
(pseudo-)randomly t from the set described by the second column and add the ran-
domness ru(m)t to u or choose u uniform random. The Chal queries add the term
rh0(m

�)�h to h0 or choose h0 uniform random. The column “Transition” displays how
we can switch to this hybrid from the previous one. The background color indicates
repeated transitions.

B⊥
1 and B⊥

0 have rank k, there is a non-zero vector v ∈ Span
(
B⊥

1

) ∩ Span
(
B⊥

0

)
such that (B0|B1)v = 0, which contradicts the fact that B0,B1 is a basis of
Z
2k
q .

Define

ZFĵ+1

(
m|ĵ+1

)
:=

{
ZFĵ

(
m|ĵ

)
if mĵ+1 = 0

ZFĵ

(
m|ĵ

)
+ ZF′

ĵ

(
m|ĵ

)
if mĵ+1 = 1

,

where ZF′
ĵ : {0, 1}ĵ → Z

1×k
q is another independent random function. Since ZFĵ

does not appear in game G2,ĵ,2 anymore, ZFĵ+1 is a random function.
Let

(
[D]1, [f1]1, . . . ,[fkQc

]1
)

be a (kQc)-fold U2k,k-MDDH challenge and define
Fc :=

(
f(c−1)k+1| . . . |fck

)
to get Qc 2k × k matrices, whose column vectors are

uniformly random chosen from either Span(D) or Z
2k
q . Then the reduction in

Fig. 6 can be used to bound the difference between G2,ĵ,1 and G2,ĵ,2.
Eval queries are distributed identically in game G2,ĵ,1 and G2,ĵ,2: If mĵ+1 = 0,

they are the same by the definition of ZFĵ+1. If mĵ+1 = 1, t ∈ Span(B0) and thus
the term ZFĵ

(
m|ĵ

)(
B⊥

1

)� resp. ZFĵ+1

(
m|ĵ+1

)(
B⊥

1

)� cancels out in this query.
Note that ZF′

ĵ is not evaluated in Eval queries.
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Fig. 6. Reduction for the transition from G2,ĵ,1 to G2,ĵ,2 to the kQc-fold U2k,kMDDH
challenge ([D]1, [F1]1, . . . , [FQc ]1).

Assume that D is invertible. This happens with probability at least (1 −
1/(q − 1)). For Chal queries we write Fc =:

(
DWc

DWc+Rc

)
where Wc is uniform

random in Z
k×k
q and Rc is 0 ∈ Z

k×k
q or uniform random in Z

k×k
q . In the following

we will assume that Wc has full rank. This happens with probability at least
(1 − 1/(q − 1)).

The value h is uniform random in Z
k
q , since h′ is uniformly random and Fc

is an invertible k × k matrix, since D and Wc are invertible.
If m�

ĵ+1 = 0 the Chal queries are distributed identically in G2,ĵ,1 and G2,ĵ,2.
If m�

ĵ+1 = 1 The reduction computes h0 as

h0 :=

⎛
⎝

α∑
j=1

J�
j,m�

j
+ F

(
m�

|ĵ
)
⎞
⎠h+B⊥

1 Fch′

=

⎛
⎝

α∑
j=1

J�
j,m�

j
+ F

(
m�

|ĵ
)
⎞
⎠h+B⊥

1 DD
−1

Fch′ +B⊥
1 Rch′
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=

⎛
⎝

α∑
j=1

X�
j,m�

j
+ F

(
m�

|ĵ
)
⎞
⎠h+B⊥

1 RcFc
−1

h

with
F
(
m�

|ĵ
)
:= B⊥

1 ZFĵ

(
m�

|ĵ
)�

+B⊥
0 OFĵ

(
m�

|ĵ
)�

.

If Rc = 0, the reduction is simulating G2,ĵ,1. If Rc is uniformly random, we
implicitly set ZF′

ĵ

(
m|ĵ

)
:= RcFc

−1
and are simulating game G2,ĵ,2. ��

Lemma 9 (G2,ĵ,2 � G2,ĵ,3). For all adversaries A there exists an adversary B
with

∣∣Pr[GA
2,ĵ,2 ⇒ 1

] − Pr
[
GA
2,ĵ,3 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) +

Qc + 2
q − 1

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).
Proof. We define

OFĵ+1

(
m|ĵ+1

)
:=

{
OFĵ

(
m|ĵ

)
+ OF′

ĵ

(
m|ĵ

)
if mĵ+1 = 0

OFĵ

(
m|ĵ

)
if mĵ+1 = 1

,

where OF′
ĵ : {0, 1}ĵ → Z

1×k
q is another independent random function. Since OFĵ

in not used in game G2,ĵ,3, OFĵ+1 is a random function.
The argument that the games G2,ĵ,2 and G2,ĵ,3 are computationally indistin-

guishable under an MDDH assumption in G1 is the same as in Lemma 8, just
with the roles of 0 and 1 swapped. ��
Lemma 10 (Optimization: G2,ĵ,1 � G2,ĵ,3). For all adversaries A there exists
an adversary B with

∣∣Pr[GA
2,ĵ,1 ⇒ 1

] − Pr
[
GA
2,ĵ,3 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) +

Qc + 2
q − 1

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).
Proof. We can do the reduction of Lemmata 8 and 9 in one step using only
one MDDH challenge in G1. This combined reduction embeds the challenge in
both Xĵ+1,1 as Xĵ+1,1 := Jĵ+1,1 + B⊥

1 DD
−1

and Xĵ+1,0 as Xĵ+1,0 := Jĵ+1,0 +
B⊥

0 DD
−1

and picks in each Chal query on m� c as the index of the first Chal
query on a message with prefix m�

|ĵ+1. ��
Lemma 11 (G2,ĵ,3 � G2,ĵ+1,0). For all adversaries A there exists an adversary
B with

∣∣Pr[GA
2,ĵ,3 ⇒ 1

] − Pr
[
GA
2,ĵ+1,0 ⇒ 1

]∣∣ ≤ 2kAdvmddh
Uk,PGGen,2(B) +

2
q − 1

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).
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Proof. In G2,ĵ,3 we replace the term ZFĵ+1

(
m|ĵ+1

)(
B⊥

1

)�+OFĵ+1

(
m|ĵ+1

)(
B⊥

0

)�

with RFĵ+1

(
m|ĵ+1

)
. This does not change the distribution, since B⊥

1 ,B⊥
0 is a

basis of Z2k
q .

The remaining transition is the reverse of Lemma 7. ��
Lemma 12 (G2,α,0 � G3). For all adversaries A there exists an adversary B
with ∣∣Pr[GA

2,α,0 ⇒ 1] − Pr[GA
3 ⇒ 1]

∣∣ ≤ Qe

q2k

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).
Proof. Assume Qe ∩ Qc = ∅; otherwise, the adversary has lost the game regard-
less of her output. Furthermore assume, that t 	= 0 ∈ Z

2k
q . This happens with

probability at least (1 − 1/q2k).
In each Eval query the value RFα(m)t is then distributed like a fresh random

vector from Z
k
q the first time a tag for m is queried. We can ignore duplicated

queries for m since they will be answered with the same tag. ��
Lemma 13 (G3 � G4). For all adversaries A there exists an adversary B with

∣∣Pr[GA
3 ⇒ 1] − Pr[GA

4 ⇒ 1]
∣∣ ≤ 2kAdvmddh

Uk,PGGen,1
(B) + 2

q − 1

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).
Proof. We pick a Qc fold U3k,k-MDDH challenge

(
[D]1, [f1]1, . . . ,[fQc

]1
)

and use
the reduction given in Fig. 7.

Fig. 7. Reduction for the transition from G3 to G4 to the Qc-fold U3k,k-MDDH challenge(
[D]1, [f1]1, . . . ,[fQc ]1

)
.
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Assume that D is invertible. This happens with probability at least (1 −
1/(q − 1)). Write fc =:

(
Dwc

Dwc+rc

)
where wc is uniform random in Z

k
q and rc is

0 ∈ Z
2k
q or uniform random in Z

2k
q . Then h := fc is a uniform random vector in

Z
k
q , since D has full rank and wc is uniformly random.

The value h0 is calculated as

h0 :=

⎛
⎝

α∑
j=1

J�
j,m�

j
+B⊥

1 RFα(m�)�
⎞
⎠h+ fc

=

⎛
⎝

α∑
j=1

J�
j,m�

j
+B⊥

1 RFα(m�)�
⎞
⎠h+DD

−1
fc + rc

=

⎛
⎝

α∑
j=1

X�
j,m�

j
+B⊥

1 RFα(m�)�
⎞
⎠h+ rc.

If rc = 0, we are simulating game G3. If rc is uniform random, then h0 is uniform
random and we are simulating game G4. ��
Lemma 14 (G4 � G5). For all adversaries A there exists an adversary B with

∣∣Pr[GA
4 ⇒ 1] − Pr[GA

5 ⇒ 1]
∣∣ ≤ 2kAdvmddh

Uk,PGGen,1
(B) + 2

q − 1

and T (B) ≈ T (A) + (Qe + Qc) · poly(λ).
Proof. We pick a Qc fold Uk-MDDH challenge

(
[D]1, [f1]1, . . . ,[fQc

]1
)

and use the
reduction given in Fig. 8.

Fig. 8. Reduction for the transition from G4 to G5 to the Qc-fold Uk-MDDH challenge(
[D]1, [f1]1, . . . ,[fQc ]1

)
.
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Assume that D is invertible. This happens with probability at least (1 −
1/(q − 1)). Write fc =:

(
Dwc

Dwc+rc

)
where wc is uniform random in Z

k
q and rc is

0 or uniform random in Zq. Then, just like in the previous Lemma, h := fc is a
uniform random vector in Z

k
q , since D has full rank and wc is uniformly random.

The value h1 is calculated as

h1 := (j′)�h+ fc = (j′)�h+DD
−1

fc + rc = (x′)�h+ rc.

If rc = 0, we are simulating game G4. If rc is uniform random, then h1 is uniform
random and we are simulating game G5. ��

Summary. To prove Theorem 1, we combine Lemmata 5–14 to change h0 and
h1 from real to random and then apply Lemmata 12–5 in reverse order to undo
all changes to the Eval oracle to get to the mPR-CMArand game. The Lemmata 8
and 9 resp. Lemma 10 get information theoretic arguments then. ��

3.2 Tight Multi-challenge Security for the First LP MAC

Here we show how tight multi-challenge security can be obtained for the first
HIBE from [28]. The MAC, given in Fig. 9, only differs in the parameter η,
that is k here. Furthermore this MAC has identity space base set S = {0, 1}α

(for arbitrary α ∈ N+) and uses n = 3k, n′ = k, �(p) = 1 (thus also satisfies
the delegatable, affine MAC notion) and �′(l, i) = 2iα. To match the formal
definition, Xi,j,b should be renamed to Xi,2j−b and fi,2j−b(m) :=

(�
m|i

�
j

?= b
)
.

In the single-challenge setting, all of these transitions are information-theoretic
secure, but in the multi-challenge setting we need a MDDH-assumption in G1 to
proof them.

Theorem 2 (Security of MAC1). MAC1 is tightly mHPR-CMA secure under
the Uk-MDDH assumption for G1 and G2. More precisely, for all adversaries A
there exist adversaries B1 and B2 with

Advmhpr-cma
MAC1,PGGen(A) ≤ (

8k(α + 1)L + 8kαL2
)
Advmddh

Uk,PGGen,2(B1)

+
(
1 + k(α + 4)L + kαL2

)
Advmddh

Uk,PGGen,1(B2)

+
10 + 2Qc + (Qc + 6)α

(
L2 + L

)
q − 1

+
2Qe

q2k

and T (B1) ≈ T (B2) ≈ T (A)+(Qe + Qc) ·poly(λ), where Qe resp. Qc denotes the
number of Eval resp. Chal queries of A and poly is a polynomial independent
of A.
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Fig. 9. The new multi-challenge tightly secure delegatable affine MAC MAC1.

The proof can be found in the full version. A summary of the hybrids can be
found in Table 4.

3.3 Tight Multi-challenge Security for the Second LP MAC

The second MAC of [28] can be made tightly secure in a similar way to the first
MAC. Details can be found in the full version.

4 Transformation to HIBE

Any mHPR-CMA affine MAC with levels can be tightly transformed to an
hierarchical identity-based key encapsulation mechanism (HIBKEM) under the
Dk+η,k-MDDH assumption in G1 with the transformation given in Fig. 10. The
transformation follows the same idea as [5]. A security proof can be found in the
full version. With a QANIZK for linear subspaces we can use the idea of [22] to
obtain an IND-HID-CCA-secure HIBE. Details can be found in the full version.
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Fig. 10. The transformation HIBKEMCPA of an affine MAC with levels to an HIBKEM.
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Table 4. Summary of the hybrids for the security proof of Theorem 2. Non-duplicated
Eval queries (with p = ı̂) draw t from the set described by the second column and add
the randomness ru(m)t to u or choose u uniform random. The Chal queries add the
term rh0(m

�)�h to h0 (if m� has length ≥ ı̂). The column “Transition” displays how
we can switch to this hybrid from the previous one. The background colors indicate
repeated transitions.
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Abstract. We consider the problem of removing subexponential reduc-
tions to indistinguishability obfuscation (iO) in the context of obfuscat-
ing probabilistic programs. Specifically, we show how to apply complexity
absorption (Zhandry Crypto 2016) to the recent notion of probabilistic
indistinguishability obfuscation (piO, Canetti et al. TCC 2015). As a
result, we obtain a variant of piO which allows to obfuscate a large class
of probabilistic programs, from polynomially secure indistinguishability
obfuscation and extremely lossy functions. Particularly, our piO variant
is able to obfuscate circuits with specific input domains regardless of
the performed computation. We then revisit several (direct or indirect)
applications of piO, and obtain

– a fully homomorphic encryption scheme (without circular security
assumptions),

– a multi-key fully homomorphic encryption scheme with threshold
decryption,

– an encryption scheme secureunder arbitrarykey-dependentmessages,
– a spooky encryption scheme for all circuits,
– a function secret sharing scheme with additive reconstruction for all

circuits,
all from polynomially secure iO, extremely lossy functions, and, depend-
ing on the scheme, also other (but polynomial and comparatively mild)
assumptions. All of these assumptions are implied by polynomially secure
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1 Introduction

Obfuscation. Code obfuscation has been formalized already in the early 2000s as
a cryptographic building block, by Hada [42] and Barak et al. [5], along with a
number of early positive [23,45,47,56,61] and negative [5,38,61] results. However,
prior to the candidate obfuscation scheme of Garg et al. [31], only relatively few
positive results on obfuscation were known.

The first candidate obfuscator from [31] changed things. Their work iden-
tified indistinguishability obfuscation (iO, cf. [5,39]) as an achievable and use-
ful general notion of obfuscation: it presented a candidate indistinguishability
obfuscator, along with a first highly non-trivial application. Since then, a vast
number of applications have been proposed, ranging from functional [31], deni-
able [59], and fully homomorphic [25] encryption, over multi-party computation
(e.g., [30]), to separation results (e.g., [46]). In the process, powerful techniques
like “puncturing” [59] have been discovered, which have found applications even
beyond obfuscation (e.g., in multi-party computation [8,36], instantiating the
Fiat-Shamir paradigm [24], and verifiable random functions [9,40]). Besides, the
notion of iO itself has been refined, and related to other notions of obfusca-
tion [2,10,11,20,25,50], and various different constructions of obfuscators have
been presented [3,4,13,53,54,57,63].

Subexponential Assumptions. It is currently hard to find a cryptographic prim-
itive that can not be constructed from iO (in combination with another mild
assumption such as the existence of one-way functions). However, some of the
known iO-based constructions come only with subexponential reductions to iO.
For instance, the only known iO-based constructions of fully homomorphic
encryption [25], spooky encryption [27], and graded encoding schemes [29] suffer
from reductions with a subexponential loss.

Hence, while iO has generally been recognized as an extremely powerful prim-
itive (even to the extent being called a “central hub” for cryptography [59]), it is
not at all clear if this also holds for polynomially secure iO. Indeed, it is conceiv-
able that only polynomially secure iO exists, in which case much of iO’s power
stands in question.

More generally, subexponential reductions (in particular to iO) are undesir-
able. Namely, the security of existing iO constructions is still not well-understood,
and in particular current state-of-the-art constructions of iO schemes (such as
[4,53,54]) already require subexponential computational assumptions themselves.
Hence, assuming subexponential iO is a particularly risky bet. This suspicion is
confirmed in part by [58], who separate polynomial and subexponential security
for virtual black-box obfuscation.

Removing subexponential assumptions in general and from iO-based con-
structions in particular has already explicitly been considered in [35,52] and
[33,34,55] respectively. These works offer general techniques and ideas to turn
subexponential reductions into polynomial ones. For instance, [34,55] offer ways
to replace (subexponential) iO-based constructions with (polynomial) construc-
tions based on functional encryption. Of course, this requires a special structure
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of the primitive to be implemented, and is demonstrated for several primitives,
including non-interactive key exchange and short signature schemes.

Our Contribution. In this work, we are also concerned with substituting subex-
ponential with polynomial reductions in iO-based constructions. Unlike [34,55],
however, we do not follow the approach of using functional encryption directly
in place of iO, but instead will employ extremely lossy functions (ELFs) [62] to
“absorb” subexponential complexity.1

We will implement a variant of probabilistic indistinguishability obfuscation
(piO, introduced in [25]) using polynomially secure iO (and ELFs). piO schemes
can be used to obfuscate probabilistic (i.e., randomized) programs, and are cur-
rently the only way to obtain, e.g., fully homomorphic encryption (FHE) schemes
without circular security assumptions [25]. However, the only previous construc-
tion of piO schemes required subexponentially secure iO [25]. Hence, our con-
struction yields the first FHE scheme from polynomially secure iO (and ELFs).
Similarly, we can turn the assumption of subexponentially secure iO into polyno-
mially secure iO (plus ELFs) in the construction of spooky encryption from [27].

Both FHE and spooky encryption are quite powerful primitives, and we
obtain several “spin-off results” by revisiting their implications. For instance,
when instantiating the piO-based FHE construction of [25] with our piO scheme
and a suitable public-key encryption scheme, we obtain a fully key-dependent
message (KDM) secure public-key encryption scheme from (polynomially secure)
iO and the exponentially secure DDH assumption (and no further assumptions).
Under the same assumptions, we obtain multi-key FHE with threshold decryp-
tion and function secret sharing schemes from the spooky encryption construc-
tion from [27].

On the Plausibility of ELFs. One could argue that we trade one exponential
assumption for another, and it is not clear that assuming polynomial iO and
exponential DDH is any better than assuming only subexponential iO in the first
place. Seconding Zhandry [62] here, we think that exponential DDH is a realistic
assumption that is far more popular, better-investigated, and arguably more
plausible than subexponential iO. Much of the currently deployed cryptography
relies on (in fact a strong variant of) exponential DDH, because parameters are
almost always chosen according to the best known attacks.

On the Number of Assumptions. Another natural observation is that iO for
general circuits is already an exponential family of assumptions in itself (one
for each obfuscated circuit). It might seem that this lets the challenge of relying
on polynomially secure iO instead of subexponentially secure iO appear less
appealing. We make two comments on that.

1 That means that our final schemes depend on ELFs, which are currently only known
to be instantiable from exponential assumptions. However, we stress that ELFs can
be built from exponential variants of very standard assumptions, such as the deci-
sional Diffie-Hellman (DDH) assumption..
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– First, being an exponential family of assumptions and assuming resistance
against subexponential adversaries are orthogonal issues. Many cryptographic
assumptions have several dimensions of strengths, and relaxing the assump-
tion in any of these dimensions is desirable.2 In this work, we make progress in
one important dimension. By replacing subexponential iO by polynomial iO
plus exponential DDH, we effectively trade an exponential number of subexpo-
nential hardness assumptions in exchange for a single (plausible, well-studied)
exponential hardness assumption (plus an exponential family of polynomial
hardness assumptions).

– Second, iO being an exponential family of assumptions can be considered
an artificial consequence of working on the general notion of iO for arbitrary
circuits. When using iO in concrete constructions (e.g. in all the constructions
described in this paper), one almost never needs to assume iO for all circuits.
It usually suffices to assume iO for a constant number of specific circuits
(namely those being obfuscated in the construction and the analysis). Hence,
iO is a small number of assumptions when used for building a cryptographic
primitive.

1.1 Technical Overview

The piO Construction of Canetti et al. To describe our ideas, it will be helpful to
briefly review the work of Canetti et al. [25]. In a nutshell, they define the notion
of piO as a way to obfuscate probabilistic programs, and show how to use piO
to implement the first FHE scheme without any circular security assumption.
Intuitively, where the notion of iO captures that the obfuscation iO(P ) of a
deterministic program P does not leak anything beyond the functionality of P ,
piO captures the same for probabilistic programs P .3

They also show how to implement piO with an indistinguishability obfuscator
iO and a pseudorandom function (PRF) F . Namely, in order to obfuscate a
probabilistic program P , Canetti et al. obfuscate the deterministic program P ′

that, on input x, runs P (x) with random coins r = F (K,x). Here, K is a PRF
key hardcoded into P ′. The security proof uses “puncturing” techniques [59] and
a hybrid argument over all possible P -inputs x. More specifically, for each P -
input x, separate reductions to the security of iO and F show that the execution
of P ′(x) is secure.4

This proof strategy is very general and does not need to make any specific
assumptions about the structure of P . (In fact, this strategy can be viewed

2 For example, if a protocol relies on the subexponential hardness of LWE with expo-
nential modulus-to-noise ratio, it would be desirable to achieve the same while rely-
ing only on polynomially secure LWE, even if the modulus-to-noise ratio remains
exponential.

3 This is of course an oversimplification. Also, [25] define several types of piO security
that provide a tradeoff between security and achievability.

4 Again, we are not very specific about the form of desired or assumed security. How-
ever, we believe that for this exposition, these specifics do not matter.
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as a specific form of “complexity leveraging”, technically similar to the conver-
sion of selective security into adaptive security, e.g., [16].) However, the price to
pay is a reduction loss which is linear in the size of the input domain (which
usually is exponentially large). In particular, even after scaling security parame-
ters suitably, Canetti et al. still require subexponentially secure iO and PRFs.

More on Previous Works to Remove Subexponentiality. There are a number of
known ways to deal with subexponential reduction losses due to complexity lever-
aging (or related techniques). For instance, various semi-generic (pre-iO) tech-
niques seek to achieve adaptive security (for different primitives) by establishing
an algebraic or combinatorial structure on the used inputs [17,44,49,60], and
can sometimes be adapted to the iO setting [48]. But like the already-mentioned,
somewhat more general approaches [34,55], these works make specific assump-
tions about the structure of the involved computations.

A somewhat more general approach (that works for more general classes of
programs) was outlined by Zhandry [62], who introduces the notion of “extremely
lossy functions” (ELFs). Intuitively, an ELF is an injective function G that can be
switched into an “extremely lossy mode”, in which its range is polynomially small.
Such an ELF can sometimes be used to “preprocess” inputs in a cryptographic
scheme, with the following benefit: a security reduction can switch the ELF
to extremely lossy mode, so that only a polynomial number of (preprocessed)
inputs G(x) need to be considered. This simplifies a potential hybrid argument
over all (preprocessed) inputs G(x), and can lead to a polynomial (instead of a
subexponential) reduction.

However, trying to apply this strategy to the construction and reduction of
Canetti et al. (as sketched above) directly fails. Namely, in their application,
inputs will be inputs x to an arbitrary (probabilistic) program P ; preprocessing
them with an ELF will destroy their structure, and it is not clear how to run P
on ELF-preprocessed inputs G(x). Indeed, applying ELFs to realize piO requires
fundamentally different techniques.

Main Idea: piO with Sparsifiable Inputs. Instead, we will restrict ourselves to
programs P that take as input an element x from a small number of (arbitrary
but efficiently samplable) distributions. In other words, all possible inputs x
need to be in the range of one of a small number of efficient samplers Si. As
an example, for i ∈ {0, 1}, sampler Si could sample ciphertexts C that encrypt
plaintext i. Moreover, we require that all inputs to a program P to be obfuscated
are at some point actually sampled from some Si according to a certain process.

Obfuscating a given probabilistic program P (that takes as inputs one or
more x as above) now consists of two steps:

1. First, we encode all inputs x, in the sense that we compile Si to attach a
“certificate” aux to x. This certificate aux guarantees that x has really been
sampled using Si. Furthermore, the compiled sampler Si uses preprocessed
random coins of the form G(r) (instead of r) for an ELF G. (When G is
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in injective mode, this does not affect the distribution of sampled x.) The
certificate aux additionally guarantees this choice of random coins.5

2. Second, we produce the actual obfuctation of the probabilistic program P
as follows. We use an indistinguishability obfuscator iO to obfuscate the fol-
lowing (deterministic) variant P ′ of P : on inputs x1, . . . , x� with certificates
aux1, . . . , aux�, P ′ first checks the certificates auxi and aborts if one of them
is invalid. Next, P ′ runs P (x1, . . . , x�), with random coins F (K, (xi)�i=1) for
a PRF F and a hardcoded PRF key K. Finally, P ′ outputs P ’s output.

Maybe the most important property of this setup is that now the sets of inputs xi

are “sparsifiable” in the following sense. If we set G to extremely lossy mode, then
only a polynomial number of different random coins r can occur. Hence, each Si

will output one of only a small number of possible samples (e.g., encryptions C
generated with random coins from a small set). In that sense, the set of possible
inputs xi to P has been “sparsified”, and a hybrid argument over all possible
inputs as in [25] is possible with polynomial loss.

We stress that our technique of applying ELFs fundamentally differs from
[62]. In [62], the constructed primitive itself ensures that G is applied on all
inputs. When approaching the challenge of constructing piO, however, the input
to the primitive must externally be sampled using random coins that are pre-
processed with G. This process is not under the control of the primitive and
therefore requires a mechanism certifying that inputs are generated according
to this specific process. We implement this mechanism using the combination of
compiling the sampler for the input distribution into a “certifying sampler” (step
1) and restricting correctness of the obfuscated program (step 2).

Surprisingly, our piO scheme achieves the notion of “dynamic-input piO” [25],
a very strong variant of piO security. On a high level, dynamic-input piO guaran-
tees indistinguishability between obfuscations of probabilistic programs as long
as their output distributions on adversarially chosen inputs are indistinguishable.
This constitutes a very strong requirement and, in fact, implies differing-inputs
obfuscation [2,5], a notion for which strong impossibility results exist [7,32]. How-
ever, our obfuscator produces circuits which are only required to work on inputs
certifiably generated according to a specific process. Hence, our piO scheme
enjoys a restricted form of correctness. This enables us to circumvent the impos-
sibility results [7,32].

Applications. One obvious question is of course how restrictive our assumption
on input domains really is. We show that our assumptions apply to two existing
piO-based constructions, with a number of interesting consequences.

First, we revisit the piO-based construction of fully homomorphic encryption
from [25]. Here, piO is used to obfuscate the FHE evaluation algorithm that
takes two ciphertexts (say, of two bit plaintexts b0 and b1) as input, and outputs
a ciphertext of the NAND of the two plaintexts (i.e., b0∧b1). If we set Sb to
be a sampler that samples an encryption of b, this setting perfectly fits our
scheme. Hence, we obtain first a leveled homomorphic encryption (LHE) scheme,
5 Looking ahead, this “certificate” will be implemented using a NIZK in our construction.
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and from this an FHE scheme using the high-level strategy from [25]. Hence,
putting this together with our piO construction, we obtain an FHE scheme from
polynomially secure iO and an ELF (and no further assumptions).

We note that the above FHE scheme is also fully key-dependent message
(KDM, see [14]) secure when implemented with a suitable basic public-key
encryption scheme (such as the DDH-based scheme of [18]). In that case, the
FHE is secure even when an encryption of its own secret key Csk = Enc(pk, sk) is
public. However, such an encryption Csk can be transformed into an encryption
Enc(pk, f(sk)) of an arbitrary function of sk thanks to the fully homomorphic
properties of the FHE scheme. This leads to a conceptually very simple fully
KDM-secure encryption scheme from polynomial assumptions (and ELFs). (We
stress that we do not claim novelty for this observation. The connection between
FHE and KDM security has already been observed in [6] and [27] have observed
that the FHE construction of Canetti et al. preserves interesting properties of
the underlying encryption scheme. However, [27] do not explicitly mention KDM
security, and we find these consequences interesting enough to point out.)

As our second application, we consider spooky encryption (with CRS) intro-
duced by Dodis et al. [27]. Intuitively, a spooky encryption scheme features a
particular type of homomorphism in a multi-key, multi-ciphertext setting. More
precisely, given ciphertexts {ci = Enc(pki, xi)}i, a spooky encryption scheme
allows to produce ciphertexts {c′

i}i with yi = Dec(ski, c
′
i) such that certain so-

called “spooky” relations between between the xi’s and the yi’s hold. An impor-
tant subclass of spooky relations allows to ensure that the yi’s are random subject
to

∑
i yi = f(x1, . . . , xn), for any polynomial-time computable function f . Dodis

et al. show that spooky encryption implies (among other things) function secret
sharing, and they give a piO-based instantiation of spooky encryption (without
the need of a CRS). At the heart of their construction is an obfuscated public
“spooky evaluation” algorithm with a hardcoded decryption key. Since this algo-
rithm also takes ciphertexts (and a public key) as input, its input domain can
be sparsified much like in the FHE case.

In contrast to the FHE application, however, the spooky encryption applica-
tion contains more technical subtleties. In particular, some inputs to the “spooky
evaluation” algorithm may depend on other inputs, and hence sparsifying inputs
needs to proceed in a certain order. The main difficulty here is to find a suitably
flexible definition of sparsification; we omit the details in this overview. We note
that our results of course also yield all applications of spooky encryption, only
from polynomially secure iO (and ELFs). In particular, we obtain a simple pro-
tocol for function secret sharing for all functions (with additive reconstruction)
from these assumptions [21].

We believe that our new notion of obfuscation will prove useful in other
applications; for example, it would likely allow to improve the recent result of [26],
which constructed CCA1-secure FHE from subexponentially secure iO.

Follow-Up Work. In the recent work [28], Döttling and Nishimaki define the
notion universal proxy re-encryption (UPRE). UPRE schemes allow a proxy
to convert any ciphertext under any public key of any existing PKE scheme
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into a ciphertext under any public key of any possibly different existing PKE
scheme. [28] instantiate UPRE based on probabilistic IO due to [25]. UPRE for
all PKE schemes (including non re-randomizable ones) requires dynamic-input
pIO, which implies differing-inputs obfuscation. However, [28] observe that our
notion of doubly-probabilistic IO suffices which yields an instantiation of UPRE
for all PKE schemes based on polynomial IO and exponential DDH.

Organization. In Sect. 2, we introduce our notations and recall standard pre-
liminaries. Section 3 formally introduces our new variant of piO, called dpiO.
Section 4 shows how to instantiate dpiO using polynomially secure iO and ELFs.
Eventually, in Sect. 5 and the full version [1] we revisit the construction of leveled
homomorphic encryption from [25], using dpiO instead of piO. In the full version
[1], we revisit the construction of spooky encryption from [27] using dpiO and
analyze our new construction.

2 Preliminaries

Notations. Throughout this paper, λ denotes the security parameter. For a
natural number n ∈ N, [n] denotes the set {1, . . . , n}. A probabilistic polynomial
time algorithm (PPT, also denoted efficient algorithm) runs in time polynomial
in the (implicit) security parameter λ. A positive function f is negligible if for
any polynomial p there exists a bound B > 0 such that, for any integer k ≥ B,
f(k) ≤ 1/|p(k)|. An event depending on λ occurs with overwhelming probability
when its probability is at least 1 − negl(λ) for a negligible function negl. Given
a finite set S, the notation x

$← S means a uniformly random assignment of an
element of S to the variable x. The notation AO indicates that the algorithm
A is given oracle access to O. Let C = {Cλ}λ≥0 be a family of sets of (possibly
randomized) circuits, where Cλ contains circuits of size poly(λ). A circuit sampler
for C is a distribution ensemble D = {Dλ}λ≥0, such that Dλ ranges over triples
(C0, C1, z) with (C0, C1) ∈ C2

λ of identical size and taking inputs of the same
length, and z ∈ {0, 1}poly(λ). A class of samplers S is a set of circuit samplers
for C.

2.1 Indistinguishability Obfuscation for General Samplers

Indistinguishability obfuscation (iO) for general samplers was introduced in [25].
This notion generalizes the classical notion of iO introduced in [5]. Informally, an
iO scheme for a sampler D allows to obfuscate circuits sampled with D so that,
given a sample (C0, C1) from D, iO(C0) ≈ iO(C1). The standard notion of iO
is recovered by considering samplers over functionally equivalent deterministic
circuits of the same size. Stronger notions of obfuscation, denoted piO, can be
defined for samplers over probabilistic circuits, satisfying various indistinguisha-
bility notions. We recall below the general definition of [25] of piO for a class
of samplers (using a different notion of correctness defined in [27]). The original
correctness definition states that an efficient adversary given oracle access to
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either the original circuit or the obfuscation (with the restriction that no input
can be queried twice), can not tell the difference.

Definition 1 (piO for a Class of Samplers [25,27]). A uniform PPT
machine piO is an indistinguishability obfuscator for a class of samplers S over
a family C = {Cλ}λ≥0 of possibly randomized circuits if it satisfies the following
conditions:

Correctness. For every security parameter λ, every circuit C ∈ Cλ, and
every input x, the distributions of C(x) over the random coins of C and of
piO(1λ, C)(x) over the random coins of the obfuscator are identical.

μ-Indistinguishability. For every sampler D = {Dλ}λ≥0 ∈ S, and for every
non-uniform PPT machine A, it holds that

|Pr[(C0, C1, z)
$← Dλ : A(C0, C1, piO(1λ, C0), z) = 1]

−Pr[(C0, C1, z)
$← Dλ : A(C0, C1, piO(1λ, C1), z) = 1]| ≤ μ(λ).

We remark that the construction of piO from [25] satisfies this notion of cor-
rectness if instantiated with a perfect puncturable PRF, see Definition 4. Note
that this does not extend to multiple evaluations of the obfuscated circuit. Fur-
ther, note that this notion of correctness implies that the obfuscated circuit
respects the support of the original circuit.

To recover the standard notion of iO, we introduce the class Seq of samplers
for functionally equivalent (possibly randomized) circuits, i.e., samplers over
triplets (C0, C1, z) such that |C0| = |C1|, and for any input x and random coin
r, C0(x; r) = C1(x; r). The standard iO notion is obtained by considering piO
over the subclass Sdet ⊂ Seq of samplers for deterministic functionally equiva-
lent circuits. We denote by AdviO(A) the advantage of a PPT adversary A in
distinguishing between the obfuscation of functionaly equivalent deterministic
circuits.

The work of [25] introduced four types of samplers over probabilistic circuits,
which define four corresponding variants of piO: dynamic-input piO, worst-case
piO, memoryless worst-case piO, and X-Ind piO. Informally, a dynamic-input
sampler is required to output (possibly randomized) circuits C0, C1 such that
the output of these circuits on a dynamically chosen input is computationally
indistinguishable. The corresponding notion, dynamic-input piO, is the strongest
notion defined in [25] and a randomized equivalent of the notion of differing-
input obfuscation. Therefore, it inherits the implausibility results of differing-
input obfuscation for general circuits [7,32]. On the other hand, [25] shows that
the weaker notion X-Ind piO can be realized from subexponentially secure iO
(and subexponentially secure one-way functions). Below, we recall the notion of
dynamic-input samplers and dynamic-input piO from [25].

2.2 Dynamic-Input Samplers

Definition 2 (Dynamic-Input Indistinguishable Samplers [25]). The
class Sd-Ind of dynamic-input samplers for a circuit family C contains all
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circuits samplers D = {Dλ}λ∈N for C with the following properties: for every non-
uniform PPT A = (A1,A2), the advantage Advd-Ind(A) := Pr[Exp-d-IndA(λ) =
1] − 1

2 of A in the experiment Exp-d-Ind represented in Fig. 1 is negligible.

Fig. 1. Experiment Exp-d-Ind for the indistinguishability property of dynamic-input
samplers.

Definition 3 (dynamic-input piO). A uniform PPT machine is a dynamic-
input piO scheme if it is a piO for the class of dynamic-input samplers Sd-Ind

over C that includes all randomized circuits.

Note that the class Seq of samplers for functionally equivalent circuits that
we defined previously, is a subclass of Sd-Ind: any sampler for triples (C0, C1, z)
where C0 and C1 are functionally equivalent is trivially a dynamic-input sampler.

2.3 Puncturable Pseudorandom Function

A pseudorandom function (PRF) originally introduced in [37] is a tuple of PPT
algorithms F = (F.KeyGen,F.Eval). Let K denote the key space, X denote the
domain, and Y denote the range. The key generation algorithm F.KeyGen on
input of 1λ, outputs a random key from K and the evaluation algorithm F.Eval
on input of a key K and x ∈ X , evaluates the function F : K × X → Y. The
core property of PRFs is that, on a random choice of key K, no probabilistic
polynomial-time adversary should be able to distinguish F (K, ·) from a truly
random function, when given black-box access to it. Puncturable PRFs (pPRFs)
have the additional property that some keys can be generated punctured at
some point, so that they allow to evaluate the PRF at all points except for
the punctured point. As observed in [19,22,51], it is possible to construct such
punctured keys for the original construction from [37], which can be based on
any one-way functions [43].

Definition 4 (Puncturable Pseudorandom Function [19,22,51]). A punc-
turable pseudorandom function (pPRF) with punctured key space Kp is a triple
of PPT algorithms (F.KeyGen,F.Punct,F.Eval) such that

– F.KeyGen(1λ) outputs a random key K ∈ K,
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– F.Punct(K,x), on input K ∈ K, x ∈ X , outputs a punctured key K{x} ∈ Kp,
– F.Eval(K ′, x′), on input a key K ′ (punctured or not), and a point x′, outputs

an evaluation of the PRF.

We require F to meet the following conditions:

Functionality Preserved Under Puncturing. For all λ ∈ N, for all x ∈ X ,

Pr[K $← F.KeyGen(1λ),K{x} $← F.Punct(K,x) :
∀x′ ∈ X \ {x} : F.Eval(K,x′) = F.Eval(K{x}, x′)] = 1.

Pseudorandom at Punctured Points. For all PPT adversaries A,

Advs-cPRF(A) := Pr[Exp-s-pPRFA(λ) = 1] − 1
2

is negligible, where Exp-s-cPRF is represented Fig. 2.

We call a pPRF F perfect, if the distribution {F.Eval(K,x) | K
$← F.KeyGen(1λ)}

is identical to the uniform distribution over Y, for all inputs x ∈ X .6

Definition 4 corresponds to a selective security notion for puncturable pseu-
dorandom functions; adaptive security can also be considered, but will not be
required in our work. For ease of notation we often write F (·, ·) instead of
F.Eval(·, ·).

Fig. 2. Selective security game for puncturable pseudorandom functions.

2.4 Extremely Lossy Function

In this section we present extremely lossy functions (ELFs) introduced in [62].
ELFs are an extremely powerful primitive for complexity absorption allowing
to replace subexponential or even exponential security assumptions with poly-
nomial ones. Informally, an ELF is a function that can be generated in two

6 Given any pPRF F′, we can build a perfect pPRF F by sampling two keys K1
$←

F′.KeyGen(1λ) and K2
$← Y in the key generation algorithm and defining the evalu-

ation algorithm to output F′.Eval(K1, x)⊕ K2 on input of x, see [27].
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different modes: an injective mode and an extremely lossy mode. In injective
mode, the range of the ELF has exponential size whereas the range comprises
only polynomially many elements in extremely lossy mode.

Definition 5 (Extremely Lossy Function [62]). An extremely lossy function
ELF is an algorithm ELF.Gen which, on input (M, r), where M is an integer and
r ∈ [M ], outputs the description of a function G : [M ] → [N ] such that

– G can be computed in time poly(logM)
– If r = M , G is injective with overwhelming probability (in logM) over the

randomness of ELF.Gen(M,M);
– For any r ∈ [M ], |G([M ])| < r with overwhelming probability (in logM) over

the randomness of ELF.Gen(M, r);
– Indistinguishability: For any large enough M , any polynomial P , and any

inverse polynomial function δ, there exists a polynomial Q such that for any
adversary A running in time at most P (logM) and any r ∈ [Q(logM),M ],
the advantage of A in distinguishing ELF.Gen(M,M) from ELF.Gen(M, r) is
bounded by δ(logM).

In addition, we will consider extremely lossy functions satisfying strong reg-
ularity, as defined below.

Definition 6 (Strong regularity). An ELF is strongly regular if for any (poly-
nomial) r, the distribution {x

$← [M ] : G(x)} is statistically close to uniform over
G([M ]), with overwhelming probability over the choice of G

$← ELF.Gen(M, r).

We note that, if an ELF is strongly regular, it is possible to efficiently enu-
merate its image: the set of values obtained by evaluating an ELF on λr log r
random inputs, where r is a bound on the size of its image, contains the entire
image of the ELF with overwhelming probability.

Instantiating ELFs. A construction of strongly regular extremely lossy func-
tion is given in [62]. It can be based on the exponential hardness of the decision
Diffie-Hellman assumption (or any of its variants, such as the decision linear
assumption), which we denote eDDH. The eDDH assumption for a group genera-
tor GroupGen (which generates a tuple (G, p, g) where G is a group, p is its order,
and g is a generator of G) states that there exists a polynomial q such that for
any time bound t and probability ε, denoting κ ← log q(t, 1/ε), any adversary A
running in time at most t has advantage at most ε in distinguishing the following
distributions:

{(G, p, g) $← GroupGen(1κ), (a, b, c) $← Z
3
p : (G, g, ga, gb, gc)},

{(G, p, g) $← GroupGen(1κ), (a, b) $← Z
2
p : (G, g, ga, gb, gab)}.

As noted in [62], groups based on elliptic curves are plausible candidates for
groups where this assumption holds: in practical instantiations of DDH over ellip-
tic curves, the size of the group is chosen assuming that the best attack takes
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time O(
√

p), hence disproving eDDH (which amounts to showing that there is an
attack which takes time less than pc for any constant c) would have considerable
practical implications. Furthermore, relying on some form of exponential hard-
ness assumption seems necessary, as a construction from polynomial hardness
only would have surprising complexity-theoretic implications. More precisely,
given access to only some super-logarithmic amount of non-determinism (i.e.
ω(log logM) bits, where [M ] is the domain of the ELF), it is easy to distinguish
between injective and lossy mode of the ELF. This is due to the fact that in lossy
mode, the codomain of G has only polynomial size which means that the restric-
tion of G to the set D = [2ω(log log M)] (having super-polynomial cardinality) is
guaranteed to have a collision (which is not the case in injective mode), and
using only ω(log logM) bits of non-determinism this collision can be guessed.

2.5 Non-interactive Zero-Knowledge Proof System

A non-interactive zero-knowledge (NIZK) proof system for a language L with
witness relation R enables to prove in a non-interactive manner that some state-
ments are in L without leaking information about corresponding witnesses. NIZK
proof systems were originally introduced in [15].

Definition 7 (Non-interactive zero-knowledge proof system [41]). A
non-interactive zero-knowledge (NIZK) proof system for a language L ∈ NP
(with witness relation R) is a tuple of PPT algorithms NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) such that NIZK.Setup is a common reference string
generation algorithm, NIZK.Prove is a proving algorithm NIZK.Verify is a (deter-
ministic) verification algorithm.

– NIZK.Setup(1λ) outputs a common reference string crs.
– NIZK.Prove(crs, x, w), on input crs, a statement x and a witness w, outputs a

proof π.
– NIZK.Verify(crs, x, π), on input crs, a statement x and a proof π, outputs either
1 or 0.

We require NIZK to meet the following properties:

Perfect Completeness. For every (x,w) ∈ R, we have that

Pr[crs $← NIZK.Setup(1λ), π
$←NIZK.Prove(crs, x, w) :
NIZK.Verify(crs, x, π) = 1] = 1.

Statistical Soundness. For every x �∈ L with |x| = λ and every (possibly

unbounded) adversary A, we have that

Pr[crs $← NIZK.Setup(1λ), π $← A(crs, x) : NIZK.Verify(crs, x, π) = 1] < 2−λ.
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Computational Zero-Knowledge. There exists a PPT algorithm Sim =
(Sim0,Sim1) such that for every PPT adversary A,

AdvZK(A) := |Pr
[
crs

$← NIZK.Setup(1λ) : ANIZK.Prove(crs,·,·)(crs) = 1
]

− Pr
[
(crs, τ) $← Sim0(1λ) : ASim′

1(crs,τ,·,·)(crs) = 1
]
|

is negligible in λ, where Sim′
1(crs, τ, x, w) returns Sim′

1(crs, τ, x) only if
(x,w) ∈ R.

For simplicity in the analysis we use a NIZK proof system that satis-
fies the following property: with overwhelming probability over the coins of
NIZK.Setup(1λ), there does not exist any pair (x, π) such that x /∈ L and
NIZK.Verify(crs, x, π) = 1. We call a NIZK that satisfies this property almost
perfectly sound. We note that there is a simple folklore method which allows
to construct an almost perfectly sound NIZK proof system starting from any
statistically sound NIZK proof system. Consider a 2−λ-statistically sound NIZK
proof system, for statements x ∈ {0, 1}n, for some polynomial n = n(λ). Using
parallel repetitions, the soundness of the proof system can be amplified to
2−λ−n.7 Then, it necessarily holds that for all possible crs except a 2−λ frac-
tion of them, there does not exist any pair (x, π) where x /∈ L and π is an
accepting proof. To realize this, let Ecrs

x denote the event that there exists a
proof π such that NIZK.Verify(crs, x, π) = 1. Then, by a union bound argument,
Prcrs[∃x ∈ {0, 1}n \ L : Ecrs

x ] ≤
∑

x∈{0,1}n\L Prcrs[Ecrs
x ] ≤ 2n · 2−λ−n. Hence, the

NIZK proof system obtained via parallel repetitions is almost perfectly sound.
In [12] Bitansky et al. showed that statistically sound NIZK proof systems

can be obtained from polynomially secure indistinguishability obfuscation in
conjunction with polynomially secure one-way functions.

3 Indistinguishability Obfuscation of Probabilistic
Circuits over Distributions of Inputs

We first define the notion of a sampler with input. A sampler with input is a
family of PPT algorithms which, on input x, sample from some distribution Dx.
This notion is convenient to capture the fact that, in many scenarios, the inputs
to an obfuscated (probabilistic) circuit are sampled from some distribution Dx,
where x is some private input of a player.

Definition 8 (Sampler with Input). We say that SI = {SIλ}λ∈N is a family
of samplers with input, with input domain I = {Iλ}λ∈N, if for any λ ∈ N, SIλ

is a set of probabilistic algorithms running in polynomial time (in 1λ) with input
domain Iλ such that for any S ∈ SIλ, and x ∈ Iλ, S(x) samples from {0, 1}λ.

7 That is, for any statement x �∈ L, the probability Prcrs[∃π : NIZK.Verify(crs, x, π) =
1] ≤ 2−λ−n.
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3.1 Doubly-Probabilistic Indistinguishability Obfuscation

Below, we define a variant of indistinguishability obfuscation, that takes into
account the fact that in many applications, obfuscated (probabilistic) circuits
might only have to be evaluated on inputs coming from specific distributions.
This is formalized by defining an encoding procedure for a sampler with input,
which additionally produces auxiliary material that an obfuscated circuit can
use to verify that its inputs were produced correctly, and by restricting the
correctness of the obfuscated circuit to only hold for such well-formed inputs.
We also refer to this auxiliary material as “certificate”.

However, this approach faces two issues. First, the inputs to an obfuscated
circuit might not be sampled “all at once” from a single distribution; rather, they
can come from different and independent sources. We capture this behavior by
defining 	-source obfuscation, to account for the fact that different inputs might
have been sampled independently. Second, when inputs are sampled by differ-
ent parties, there might still be interdependencies which must be accounted for.
For example, a party might sample an input (e.g. a public key of an encryption
scheme), pass it to a second party, who then samples a second input from a distri-
bution that is parametrized by the first input (e.g. a ciphertext under that public
key). We handle this possibility by ordering the 	 inputs to the obfuscated circuit,
and by considering a stateful sampler with input S: when S is used to generate
the i’th sample yi, it receives in addition to its input a state stf(y1, . . . , yi−1),
where stf is some fixed efficiently computable state function (which depends on
the particular application), and the yj are outputs sampled by the first i − 1
sources. The state function captures the fact that a particular application might
define an arbitrary communication pattern, and specifies which samples a party
should have access to when generating his sample.

Additionally, we admit the possibility that a sampler produces some addi-
tional correlated output, that will not serve as input to an obfuscated circuit.
Hence, there is no need to “certify” this input using the auxiliary information,
and we call this output unauthenticated output. Continuing the use case from
above, given a sampler producing some public key, the unauthenticated part of
that sampler’s output could be a corresponding secret key.

Definition 9 (Doubly-Probabilistic Indistinguishability Obfuscation
(dpiO)). Let 	 be an integer. Let {stfλ : ({0, 1}λ ∪ {⊥})�−1 → Tλ}λ∈N be a
family of efficiently computable functions. Let SI = {SIλ}λ∈N be a family of
samplers with inputs, with input domain {Tλ × I}λ∈N. Let C = {Cλ}λ∈N be a
family of (probabilistic) circuits, and let CS be a class of circuit samplers over
C. An 	-source dpiO scheme for (stf,SI, C,CS) is a triple of PPT algorithms
(Setup,Encode,Obfuscate) such that

– Setup(1λ), on input the security parameter (in unary), outputs public param-
eters pp;

– Encode(pp, S), on input the public parameters pp, and a sampler with input
S ∈ SIλ, outputs an encoded sampler S′;
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– Obfuscate(pp, S, C), on input public parameters pp, a sampler with input S ∈
SIλ, and a circuit C ∈ C�λ, outputs a circuit C ′ of size poly(λ, |C|). We call
C ′ an obfuscation of C with respect to S.

We further assume that the outputs of S on any input (state, x) is of the form
(y; y′) (looking ahead, we will call y the authenticated output, and y′ the unau-
thenticated output). The scheme should satisfy the three properties given below.

Informally, the first security requirement ensures that, on any (adversarially
chosen) input x, state state, and sampler with input S, the sampler S′ obtained
by encoding S outputs samples of the form (y, aux; y′) where (y; y′) is distributed
as an output of S(state, x), and aux does not leak any non-trivial information
about the inputs. This is formalized by requiring the existence of a simulator
that can simulate aux given only y.

Definition 10 (Simulatability of Encodings). An 	-source dpiO scheme
for (stf,SI, C,CS) satisfies simulatability of encodings if for any large enough
λ and any (stateful) PPT adversary A, there exists a PPT simulator Sim =
(Sim0,Sim1) such that the advantage of A in distinguishing the experiments
Exp0-enc and Exp1-enc represented on Fig. 3 is negligible. We denote by Advenc(A)
the advantage of A in this experiment.

Fig. 3. Experiments Exp0-encA (1λ) and Exp1-encA (1λ) for the simulatability of encodings
in an �-source dpiO. The PPT algorithm A can interact polynomially many times with
either Oenc

0 [pp] or Oenc
1 [pp, trap]. A wins the experiment when it outputs b′ = b in

Expb-enc
A (1λ)

We now introduce the restricted correctness requirement. Intuitively, it states
the following: in an honest scenario, the inputs (y1, . . . , y�) should be constructed
using the sampler with input S. The restricted correctness property guarantees
that if the inputs have indeed been constructed “according to S”, then the obfus-
cated circuit will behave correctly, and its output distribution (taken over the
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coins of the obfuscator) will be (statistically) indistinguishable from the out-
put distribution of the circuit C (taken over its internal random coins). Note
that this statistical indistinguishability does not extend to multiple evaluations.
Additionally, when evaluated on such inputs, the obfuscated circuit respects the
support of the original circuit.

To make this definition meaningful, we need a way to let the obfuscated
circuit verify that the inputs are well-formed. Note that we do not want to ensure
that they were generated through S with uniformly random coins, but only that
they were generated through S with some random coins (and some input). To
make this verification possible, we let the parties generate their input using
the encoded sampler S′ instead. This encoded sampler should correctly sample
as S, but it will in addition produce auxiliary information which can be used
by the obfuscated program to verify that the inputs were honestly constructed
(more formally, for a given y, that there exists an input x, coins r, and an
unauthenticated part y′ such that (y; y′) = S(x; r)).

A small technicality is that we must allow the sampler with input to depend
on state information, to capture the possible interdependencies between the
inputs. This means that the auxiliary information will have to certify that an
input was generated correctly, with respect to some state that the obfuscated
circuit might not have access too (which would prevent it from verifying the
certificate). However, this issue disappears by restricting the interdependencies
to only involve a state computed from the previous samples (as opposed to more
complex interdependencies which would involve, for example, the coins used to
produce these samples). In this case, the obfuscated circuit can check the cer-
tificates in an incremental way: it first checks that y1 was correctly constructed
with respect to the state stλ(⊥, . . . ,⊥), then it checks that y2 was correctly
constructed with respect to the state stλ(y1,⊥, . . . ,⊥), and so on.

Definition 11 (Statistical Restricted Correctness). An 	-source dpiO
scheme for (stf,SI, C,CS) satisfies restricted correctness if for any large enough
λ ∈ N, any S ∈ SIλ, (x1, . . . , x�) ∈ I�

λ, and C ∈ C�λ, the advantage of any

Fig. 4. Experiments Exp0-rcorrA (1λ) and Exp1-rcorrA (1λ) for the restricted correctness prop-
erty an �-source dpiO. A wins the experiment when it outputs b′ = b in Expb-rcorr

A (1λ)

when b
$← {0, 1}.
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(possibly unbounded) adversary A in distinguishing the experiments Exp0-rcorr

and Exp1-rcorr represented on Fig. 4 is negligible. We denote by Advrcorr(A) the
advantage of A in this experiment. Additionally, we require that the encoded
sampler and the obfuscated circuit respect the support of the original sampler
and the original circuit, respectively. That is for all pp ← Setup(1λ) and all
S′ ← Encode(pp, S) and all C ′ ← Obfuscate(pp, S, C), we have that for all inputs
(state, x), S′(state, x) ∈ Supp(S(state, x)) and for all (y1, aux1, . . . , y�, aux�) pro-
duced as in Exp0-rcorr, C ′(y1, aux1, . . . , y�, aux�) ∈ Supp(C(y1, . . . , y�)).

We now introduce the indistinguishability notion. It is close in spirit to
the standard indistinguishability notion for obfuscation of probabilistic circuits
of [25]. However, in our scenario, the security notion must account for the fact
that a set of public parameters pp is generated in a setup phase; the indistin-
guishability property of obfuscated circuits must therefore hold when (polyno-
mially) many circuits are obfuscated with respect to a single string of public
parameters. This suggests an oracle-based security notion.

Definition 12 (Indistinguishability with Respect to CS). An 	-source
dpiO scheme for (stf,SI, C,CS) satisfies indistinguishability with respect toCS
if for every circuit sampler D = {Dλ}λ∈N ∈ CS, for any large enough λ, the
advantage of any PPT adversary A in distinguishing the experiments Exp0-ind

and Exp1-ind represented on Fig. 5 is negligible. We denote by Advind(A) the advan-
tage of A in this experiment.

Fig. 5. Experiment Expb-ind
A (1λ) for the indistinguishability with respect to CS in an

�-source dpiO. The PPT algorithm A can interact polynomially many times with
Oind

b [pp, Dλ]. The oracle Oind
b [pp, Dλ] is stateful and has (pp, Dλ) hardcoded in its

description. A wins the experiment when it outputs b′ = b in Expb-ind
A (1λ) when

b
$← {0, 1}.

4 Construction

In this section, we will construct an 	-source dpiO scheme (for any constant 	), for
samplers with input over an input domain I of polynomial size8, and dynamic-
input indistinguishable circuit-samplers. Our construction relies on polynomially-
secure indistinguishability obfuscation, a perfect puncturable pseudorandom
function, an almost perfectly sound non-interactive zero-knowledge proof sys-
tem, and an extremely lossy function.
8 We note that the output domain of such samplers can be of exponential size.
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4.1 Overview

We start by providing a high-level overview of our construction. The Setup
procedure generates parameters for the ELF and for the NIZK proof sys-
tem. To encode a sampler with input S, we define the encoded sampler S′

as follows: on input (state, x; r), S′ computes (y; y′) $← S(state, x;G(r)) and
aux

$← NIZK.Prove(y, LG,S
state, (y′, x, r)), and outputs (y, aux; y′). Here, G is the

ELF defined by the public parameters, and the language LG,S
state contains all val-

ues y for which there exists (y′, x, r) such that (y; y′) = S(state, x,G(r)). We
call valid input a value y ∈ LG,S

state. Note that when G is in injective mode, LG,S
state

will in general be a trivial language. The simulatability of the encodings directly
follows from the injectivity of G, and the zero-knowledge property of the proof
system.

We construct the Obfuscate algorithm for a circuit C as follows (we assume a
single source in this overview for simplicity). It first samples a pPRF key K for
the pPRF F. Then, it returns an obfuscation of the following circuit: on input
(y, aux), run NIZK.Verify on aux to check that y is a valid input (and output ⊥
otherwise). Set r ← F (K, y), and output C(y; r). Restricted correctness follows
from the correctness of the NIZK scheme. For indistinguishability between obfus-
cations of two dynamic-input indistinguishable circuits (C0, C1), we follow the
standard puncturing strategy of [25]: we proceed through a sequence of hybrids,
with successive modifications of the obfuscated circuit. For every possible input
y, we construct a sequence of hybrids where the outputs C0(y; r) are gradually
replaced by C1(y; r). Each replacement relies on the security of the iO scheme,
the PRF security, and the dynamic-input indistinguishability of C0 and C1.

The main issue of this approach is that the number of possible inputs y
(hence the number of hybrids) is exponential – indeed, this is the reason why
the piO scheme of [25] requires subexponentially secure primitives (iO and PRF).
To get around this issue, we first switch G to an appropriate extremely lossy
mode, that the adversary cannot distinguish from the injective mode. Now, the
soundness of the NIZK proof system ensures that all valid inputs y are of the
form S(state, x;G(r)) for some (x, r) (omitting y′ for simplicity). For a given
state, the quantity of such values is bounded by the size of the range of G (which
is polynomial), times the size of the input domain I. Therefore, in all applications
where the inputs to the obfuscated circuit are sampled using private inputs from
a small domain, we can base security on polynomially secure iO.

4.2 Construction

For our construction, we employ a perfectly sound NIZK proof system for the
following (parametrized) language

LG,S
state := {y | ∃(y′, x, r) : (y; y′) = S(state, x;G(r))}.

Let 	 ∈ N be a constant, let {stfλ : ({0, 1}λ ∪ {⊥})�−1 → Tλ}λ be a family of
efficiently computable state functions, and let C = {Cλ}λ be a family of (ran-
domized) circuits with random space {0, 1}M (where M = M(λ) is polynomial).
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Fig. 6. Construction of �-source dpIO scheme dpiO = (Setup,Encode,Obfuscate).

Let SI be a family of samplers with input domain I of polynomial size. Further,
let Sd-Ind be the class of dynamic-input indistinguishable samplers (over C).

Theorem 13. If ELF is a strongly regular extremely lossy function, iO is a
perfectly correct polynomially secure IO scheme, F is a polynomially secure
perfect puncturable PRF, and NIZK is a perfectly sound polynomially zero-
knowledge NIZK proof system for the family of languages {LG,S

state}state,G,S, then
dpiO = (Setup,Encode,Obfuscate) defined in Fig. 6 is an 	-source dpIO scheme
for (stf,SI, C,Sd-Ind).

As noted in Sect. 2.5, almost perfectly correct NIZKs can be constructed
from polynomially-secure indistinguishability obfuscation and extremely lossy
functions. ELFs also imply the existence of one-way functions, hence of perfect
puncturable PRFs [37,43]. Therefore, we get as corollary:

Corollary 14. Assuming polynomially-secure indistinguishability obfuscation
and extremely lossy functions, there exists (for any constant 	) an 	-source
doubly-probabilistic indistinguishability obfuscation scheme for the class of dy-
namic-input circuit-samplers, and input-samplers with a polynomial size input
domain.
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Proof (of Theorem 13). We prove that dpiO as defined in Fig. 6 satisfies sim-
ulatability of encodings (cf. Definition 10), statistical restricted correctness (cf.
Definition 11), and indistinguishability (cf. Definition 12).

Simulatability of Encodings. We prove that there exists a PPT simula-
tor Sim = (Sim0,Sim1) such that for every PPT adversary A, the advantage
Advenc(A) is negligible. By the zero-knowledge property of NIZK, there exists a
simulator (NIZK.Sim0,NIZK.Sim1). We construct a simulator Sim = (Sim0,Sim1)
as follows:

– Sim0 produces the CRS using (crs, τ) $← NIZK.Sim0(1λ), samples the parame-
ters of the ELF G in injective mode, and outputs pp := (crs, G) together with
trap := τ .

– Sim1 on input (pp, trap), a sampler S, a state state, and a value y sam-
pled via (y; y′) $← S(state, x), Sim1 produces a simulated proof via π

$←
NIZK.Sim1(crs, τ, (G,S, state, y)) and outputs aux := π.

Let A be a PPT adversary on the simulatability property of dpiO. We prove
indistinguishability between the real and the simulated distribution via a series
of hybrids starting from the simulated game Exp1-encA (1λ).

Game G0: This game is identical to Exp1-encA (1λ). We remark that in this game,
the tuple (y; y′) is produced using the adversarially chosen sampler S on input of
the adversarially chosen state state and input x supplied with true randomness.

Game G1: This game is identical to G0 except for the fact that for each query
(S, state, x), the sampler S is supplied with randomness G(r) for uniform r
(instead of true randomness). Due to the strong regularity of G and by a stan-
dard hybrid argument over all queries, the statistical distance between G0 and
G1 is negligible.

Game G2: This game is the same as G1 with the difference that crs is pro-
duced honestly using NIZK.Setup(1λ). Additionally, for each adversarial query
(S, state, x), the proof π is produced honestly by NIZK.Prove(crs, (G,S, state, y),
(y′, x, r)), where G(r) are the random coins supplied to the sampler S. The view
of A in game G2 is distributed exactly as in the real game Exp0-encA (1λ).

We construct a PPT adversary B on the zero-knowledge property of NIZK.
Given a CRS crs, B samples an ELF G in injective mode and invokes A on
input of pp := (crs, G). Each time A queries its oracle on (S, state, x), B draws
random coins r and invokes the sampler S on input of (state, x) with random
coins G(r) to obtain (y; y′). In order to produce π, B calls its prove oracle on
input (G,S, state, y) with witness (y′, x, r). Therefore, if B is supplied with an
honest CRS and honestly generated proofs, B perfectly simulates G2 for A, else
B perfectly simulates G1. Hence, |Pr[out2 = 1]−Pr[out3 = 1]| ≤ AdvZK(B). This
concludes the proof.
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Restricted Correctness. Let S ∈ SIλ be an arbitrary sampler with input, let
y1, . . . , y� be arbitrary values from the input domain Iλ, and let C be a circuit
from the family C�λ. To prove the correctness of dpiO, we proceed over a series
of hybrids.

Game G0: This game is the ideal game Exp1-rcorrA (1λ). As the sampler S is called
using true randomness whereas in Exp0-rcorrA (1λ) samples are generated using G(r),
where r is truly random, we need an intermediate hybrid.

Game G1: This game is identical to G0 with the difference that each call of the
sampler S is supplied with G(r) as randomness (where r is sampled uniformly
for each call). Due to the strong regularity of G, and by a hybrid argument over
all calls of S, the statistical distance between G0 and G1 is negligible.

Game G2: This game is the real game Exp0-rcorrA (1λ).
We now argue that the view of A in game G1 is distributed identically

to its view in G2. G2 samples public parameters pp via Setup(1λ) and S′ an
encoded sampler via S′ ← Encode(pp, S). Further, (yj , auxj) are sampled as
statej ← stf(y1, . . . , yj−1,⊥, . . . ,⊥) and (yj , auxj , y

′
j)

$← S′(statej , xj), for j ∈ [	].
Let Λ be the obfuscation Λ

$← Obfuscate(pp, S, C) of the circuit C with respect to
sampler S. Due to the perfect correctness of iO, Λ has the same functionality as
C̄[stf, (crs, G), S, C,K], where K is a freshly generated key for the PRF F. Hence,
by the perfect completeness of NIZK, on input of ((y1, aux1), . . . , (y�, aux�)), Λ
evaluates the circuit C on input of (y1, . . . , y�) with random coins F (K, (y1,
. . . , y�)). Therefore, the view of A in the games G1 and G2 only differs in
the fact that G1 supplies C with true random coins whereas G2 supplies C
with F (K, (y1, . . . , y�)) as randomness. As F is a perfect PRF, the distribution
{F (K, (y1, . . . , y�)) |K $← F.KeyGen(1λ)} is identical to the uniform distribution
over the image of F . Therefore, the view of A in G1 and G2 is distributed
identically.

By construction, all S′ ← Encode(pp, S) respect the support of S. Further-
more, by construction, perfect completeness of NIZK and perfect correctness of
iO, for all C ′ ← Obfuscate(pp, S, C) and all (y1, aux1, . . . , y�, aux�) produced as
in Exp0-rcorr, C ′(y1, aux1, . . . , y�, aux�) ∈ Supp(C(y1, . . . , y�)).

Security. Let D ∈ Sd-Ind be an arbitrary dynamic-input indistinguishable circuit
sampler over C. To prove that dpiO satisfies indistinguishability (Definition 12),
we proceed over a series of hybrids. Toward contradiction, assume that there
is a PPT adversary A distinguishing Exp0-indA (1λ) from Exp1-indA (1λ) with non-
negligible advantage ε over the random guess after making a polynomial number
Q of queries to the oracle.

Game G0. In this game, the challenger samples b
$← {0, 1}, and sets up the

experiment Expb-ind
A (1λ). More precisely, A has access to the public parameters

pp and an oracle Oind
b [pp,Dλ], that on input of a sampler with input S, draws a
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sample (C0, C1, z) from D and outputs (C0, C1, z) together with an obfuscation
Obfuscate(pp, S, Cb). A outputs a guess b′ and the challenger returns 1 if b′ = b.
By assumption, Pr[out0 = 1] = ε.

Game G1. In this game, the challenger samples G as G
$← ELF.Gen(M, t), where

t is a polynomial such that any PPT algorithm of circuit size s has advantage at
most ε/2 in distinguishing ELF.Gen(M,M) from ELF.Gen(M, t). The advantage
of A in this game is therefore lower bounded by ε/2: Pr[out1 = 1] ≥ ε/2.

Game G′
1. This game proceeds exactly as G1, except that after sampling b

$←
{0, 1}, the challenger always sets up the experiment Exp1-indA (1λ). The challenger
still returns 1 iff b′ = b.

By using a standard hybrid argument over the oracle queries, we prove that
|Pr[out1 = 1] − Pr[out′1 = 1]| ≤ Q · negl(λ), where Q is a polynomial in λ.

Game G1.q This game is identical to G1 except for the fact that the first q
oracle queries are answered using an obfuscation Λq of C1 instead of Cb. Hence,
Pr[out1.0 = 1] = Pr[out1 = 1] and Pr[out1.Q = 1] = Pr[out′1 = 1], where Q is the
number of adversarial oracle queries.

As |Pr[out1 = 1] − Pr[out′1 = 1]| ≤
∑Q

q=1|Pr[out1.q = 1] − Pr[out1.q+1 = 1]|,
it suffices to upper bound the distinguishing gap between G1.q and G1.q+1.

We observe that due to the (almost) perfect soundness of NIZK, the obfus-
cated circuit in the q-th oracle answer simulates the randomized computation of
the circuit Cq,0 only on well-formed inputs, i.e. on outputs of Sq using random
coins from the range of G. As ELF is in extremely lossy mode, this set of well-
formed inputs is extremely sparsified. Therefore, by the strong regularity of ELF,
we can enumerate over all possible outputs at all input positions j ∈ [	]. Let Bq,j

be the set of all well-formed inputs for input position j:

Bq,j := {Sq(stf(y1, . . . , yj−1), x;G(r)) |
x ∈ Iλ, r ∈ {0, 1}M , yk ∈ Bk for k ∈ [j − 1]}.

The set Bq,j contains at most |I| · tj−1 elements. Further, let γq,1 < · · · < γq,t̄

be the ordered enumeration of all 	-tuples in Bq :=
∏�

j=1 Bq,j .9 Hence, the total
number of well-formed inputs t̄ =

∏�
j=1|Bq,j | ≤ (|I| · t�−1)� ≤ |I|� · t(�

2) is
polynomial in λ (given that 	 is a constant, and |I| and t are polynomial).

Towards proving indistinguishability between G1.q and G1.q+1, we conduct
a hybrid argument over all well-formed inputs for the obfuscation Λq and grad-
ually replace the evaluation of circuit Cq,b with Cq,1. From here on, our proof
strategy is similar to the one employed in [25]. However, we only need to consider
polynomially many hybrids (as we assume |I| to be polynomial), hence we only
lose a polynomial factor to the underlying assumptions.

9 We remark that the values of each set Bj can be computed efficiently by evaluating
S on all possible inputs from I × (

∏j−1
k=1 Bj) and all possible images in the range

of G. Furthermore, it is possible to enumerate the image of G in polynomial time
because G is strongly regular.
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Game G1.q.i. In game G1.q.i the oracle answers the q-th query using an obfus-
cation of the circuit

C̄ ′[stf, (crs, G), Sq, Cq,b, Cq,1,Kq, γq,i]

that is defined in Fig. 7 using iO.

Fig. 7. Definition of the circuit C̄′.

The circuits C̄[stf, (crs, G), Sq, Cq,b,Kq] and C̄ ′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq,
γq,1] are functionally equivalent (on input x = ((y1, aux1), . . . , (y�, aux�)), both
return Cq,b(y1, . . . , y�) with randomness F (Kq, (y1, . . . , y�))). Hence, this game
hop is justified by the indistinguishability property of iO, more formally there
exists a PPT adversary B such that |Pr[out1.q = 1]−Pr[out1.q.1] = 1| ≤ AdviO(B).

We aim to reduce the game hop from Gb
1.q.i to Gb

1.q.i+1 to the dynamic-input
indistinguishability of the circuit sampler Dλ. For this purpose, we first need to
supply Cq,b with true randomness. Hence, we define an other series of hybrids
between G1.q.i and G1.q.i+1.

Game G1.q.i.1. This game is identical to G1.q.i except for the fact that we use
a punctured PRF key Kq{γq,i} $← F.Punct(Kq, γq,i) and obfuscate the circuit

C̄ ′′[stf, (crs, G), Cq,0, Cq,1,Kq{γq,i}, Y := Cq,b(γq,i;F (Kq, γq,i)), γq,i]

defined in Fig. 8 using iO.
As F preserves the functionality under punctured keys, the circuits C̄ ′[stf,

(crs, G), Sq, Cq,0, Cq,1,Kq, γq,i] and C̄ ′′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq{γq,i}, Y :=
Cq,b(γq,i;F (Kq, γq,i)), γq,i] are functionally equivalent. Hence, there exists a PPT
adversary B such that |Pr[out1.q.i = 1] − Pr[out1.q.i.1 = 1]| ≤ AdviO(B).

We note that the view of A in game G1.q.i.1 does not depend on the PRF
key K. This enables to exploit the selective security of F.
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Fig. 8. Definition of the circuit C̄′′.

Game G1.q.i.2. In this game we replace the randomness F (Kq, (γq,i)) by true
randomness, i.e. we produce Y as follows: Y := Cq,b(γq,i;R). This game hop
is justified by the selective PRF property, more formally |Pr[out1.q.i.1 = 1] −
Pr[out1.q.i.2 = 1]| ≤ Advs-cPRF(B) for some PPT adversary B.

Game G1.q.i.3. Game G1.q.i.3 is the same as G1.q.i.2 except for the fact that Y is
produced using the circuit Cq,1, i.e. Y := Cq,1(γq,i;R). This game hop is justified
by the fact that the circuit sampler Dλ is a dynamic-input indistinguishable
sampler.

Game G1.q.i.4. This game is the same as G1.q.i.3 with the difference that we
again use pseudorandom coins to compute Y , i.e. Y := Cq,1(γq,i;F (Kq, γq,i)). For
every PPT adversary A there exists a PPT adversary B such that |Pr[out1.q.i.3 =
1] − Pr[out1.q.i.4 = 1]| ≤ Advs-cPRF(B).

As the pPRF F preserves functionality under punctured keys, the two circuits
C̄ ′′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq{γq,i}, Y := Cq,1(γq,i;F (Kq, γq,i)), γq,i] and C̄ ′[
stf, (crs, G), Sq, Cq,0, Cq,1,Kq, γq,i+1] are functionally equivalent. Therefore, we
have that |Pr[out1.q.i.4 = 1] − Pr[out1.q.i+1 = 1]| ≤ AdviO(B).

Summing up, the advantage to distinguish G1 and G1.Q is bounded by
|I|� · t�

2 · negl(λ). As 	 is constant and |I|, t are polynomial, this quantity is
negligible. As the circuit obfuscated in G1.Q is now functionally equivalent to
the circuit obfuscated in G1

1, the game hop to G′
1 is justified by the indistin-

guishability property of iO. More formally there exists a PPT adversary B such
that |Pr[out1.Q = 1]−Pr[out′1] = 1| ≤ AdviOB (λ). This implies that the advantage
of A in game G′

1 is lower bounded by ε/2 − negl(λ), which is non-negligible.
However, the view of A in G′

1 is perfectly independent of b, hence its advan-
tage in this game cannot be non-zero; therefore, we reach a contradiction, which
concludes the proof. ��

4.3 Extension

We sketch a straightforward extension of our above construction. It follows eas-
ily by inspection that the same proof strategy would work even if the 	 sources,
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which sample inputs accorded to an encoding of a sampler S with respect to
public parameters pp, are not required anymore to use the same public parame-
ters. The 	 sources could even each use different public parameters (pp1, . . . , pp�).
The modified proof for this scenario would proceed by first switching the ELFs
in (pp1, . . . , pp�) to an extremely-lossy mode, through a sequence of 	 hybrids.
Each extremely-lossy mode is chosen so that A as advantage at most ε/2	 in
distinguishing it from the injective mode. By a union bound, A has therefore
advantage at most ε/2 in distinguishing the all-injective modes from the all-lossy
modes. Then, enumerating over all possible valid inputs to an obfuscated circuit
takes polynomial time as before, as each input of a source comes from a set
of polynomial size. Therefore, the exact same sequence of hybrids proves secu-
rity, with a polynomial loss in the underlying primitives. To adapt the security
properties of our definition of dpiO to this multi-parameter setting, it suffices to
let all experiments initially sample and send to the adversary 	 public param-
eters (pp1, . . . , pp�) instead of one. In the simulatability of encodings definition
(resp. in the indistinguishability definition), the adversary is allowed to specify
under which public parameters it wants to receive a (real or simulated) sample
(y, aux; y′) (resp. under which public parameters it wants Cb to be obfuscated in
the indistinguishability experiment).

It can prove convenient to simplify the construction in some applications
to allow different sources to use different public parameters. Let us illustrate
the syntax we adopt on an example: if (Setup,Encode,Obfuscate) is a 5-source
dpiO scheme, we denote by Obfuscate(pp1[1 − 3], pp2[4, 5], , S, C) an obfuscation
of a circuit C, whose first three inputs should be sampled with respect to pp1,
and whose last two inputs should be sampled with respect to pp2. We will also
sometimes slightly abuse our notation, noting that an 	-source dpiO scheme
directly implies an i-source dpiO scheme for i ≤ 	, and allow an 	-source scheme
to obfuscate a circuit C that takes i < 	 inputs.

5 Leveled Homomorphic Encryption

In this section we show that our notion of dpIO from Sect. 3 can be applied
to construct leveled homomorphic encryption in a similar way as in [25]. This
construction leads to a transformation which operates on an encryption scheme
E, satisfying IND-CPA security (and possibly other security properties, e.g.,
KDM security), and produces a leveled homomorphic encryption scheme that
retains the security properties of E. We recall the definition of IND-CPA secure
encryption schemes in the full version [1].

Let stfλ be the trivial state function, i.e. stf : (y1, y2) �→ ⊥ for each (y1, y2) ∈
({0, 1}λ ∪ {⊥})2. Let E = (E.KeyGen, E.Enc, E.Dec) be an IND-CPA-secure
public-key encryption scheme. Let the class SI contain all samplers Spk that
on input of a state state and an input x ∈ I := {0, 1}, produce an encryption
y := E.Enc(pk, x) and y′ := ⊥ ignoring state, where pk is a public key in the
range of E.KeyGen(1λ). Let C be the class of polynomially sized randomized
circuits and let Sd-Ind be the class of dynamic-input indistinguishable samplers
over C.
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Theorem 15. Let (Setup,Encode,Obfuscate) be a 2-source dpiO scheme for (stf,
SI, C,Sd-Ind) and let E be an IND-CPA secure public-key encryption scheme.
Then, LHE as defined in Fig. 9 is an IND-CPA secure LHE scheme.

The proof strategy is similar as in [25].Here we provide an informal sketch
of the proof and refer the reader to the full version [1] for the full proof. On a
high level, we want to reduce the security of LHE to the security of the underly-
ing encryption scheme E. However, the evaluation key ek contains information
(even though obfuscated) on the secret keys of each level. For the purpose of
invoking the security of E on the challenge ciphertext, we need to remove this
dependency on sk0. Therefore, we gradually (starting from level L) replace the
obfuscations of the circuits C with an obfuscation of trapdoor circuits tC that
simply output samples produced by the encoded sampler S′ on input of 0 (hence,
not needing any information on decryption keys). These two circuits only differ
in the fact that they sample from the same encoded sampler S′ using (possibly)
different inputs. Due to the simulatability of encodings and the IND-CPA secu-
rity of E, the two circuits are dynamic-input indistinguishable. Hence, by the
indistinguishability property of dpiO for Sd-Ind, an honest evaluation key and an
evaluation key consisting only of trapdoor circuits are indistinguishable.

Fig. 9. Description of the LHE scheme LHE. The circuit C is defined in Fig. 10.

Fig. 10. Definition of the circuits C and tC.
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Given these modifications, the challenge ciphertext c∗ consists of an encryp-
tion of a bit b under pk0 accompanied by some auxiliary information produced
by the corresponding encoded sampler. This auxiliary information might leak
information on the bit b and thereby prevents to directly employ the IND-CPA
security of E. However, as dpiO satisfies simulatability of encodings, this auxil-
iary information can be simulated without knowledge of b and, hence, contains
no information about b. Therefore, by the IND-CPA security of E, LHE is IND-
CPA secure. Given our construction of dpiO from Sect. 4, we obtain the following
corollary:

Corollary 16. Assuming polynomially secure indistinguishability obfuscation
and extremely lossy functions, there exists a leveled homomorphic encryption
scheme.

Note that IND-CPA secure cryptosystems, as required in our construction,
can be constructed from (polynomially secure) IO and one-way function (the lat-
ter being implied by ELFs). Previously, constructions of LHE were only known
from the learning with error assumption, or from subexponentially secure indistin-
guishability obfuscation (together with lossy encryption, which can be based e.g.
on DDH). Using the generic transformation from leveled homomorphic encryp-
tion to fully homomorphic encryption from [25], we also get:

Corollary 17. Assuming slightly-superpolynomially secure indistinguishability
obfuscation and extremely lossy functions, there exists a fully homomorphic
encryption scheme.

Due to space limitations we state here two corollaries concerning FHE and
KDM security and refer the reader to the full version [1] for a detailed discussion.

Corollary 18. Assuming polynomially-secure indistinguishability obfuscation
and extremely lossy functions, there exists a fully homomorphic encryption
scheme.

Corollary 19. Assuming polynomially-secure indistinguishability obfuscation
and eDDH, there exists a fully KDM-secure encryption scheme.

Acknowledgments. We would like to thank the anonymous reviewers for many help-
ful comments.
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Abstract. We introduce the notion of Witness Maps as a cryptographic
notion of a proof system. A Unique Witness Map (UWM) deterministi-
cally maps all witnesses for an NP statement to a single representative
witness, resulting in a computationally sound, deterministic-prover, non-
interactive witness independent proof system. A relaxation of UWM,
called Compact Witness Map (CWM), maps all the witnesses to a
small number of witnesses, resulting in a “lossy” deterministic-prover,
non-interactive proof-system. We also define a Dual Mode Witness Map
(DMWM) which adds an “extractable” mode to a CWM.

Our main construction is a DMWM for all NP relations, assum-
ing sub-exponentially secure indistinguishability obfuscation (iO), along
with standard cryptographic assumptions. The DMWM construction
relies on a CWM and a new primitive called Cumulative All-Lossy-But-
One Trapdoor Functions (C-ALBO-TDF), both of which are in turn
instantiated based on iO and other primitives. Our instantiation of a
CWM is in fact a UWM; in turn, we show that a UWM implies Witness
Encryption. Along the way to constructing UWM and C-ALBO-TDF,
we also construct, from standard assumptions, Puncturable Digital Sig-
natures and a new primitive called Cumulative Lossy Trapdoor Functions
(C-LTDF). The former improves up on a construction of Bellare et al.
(Eurocrypt 2016), who relied on sub-exponentially secure iO and sub-
exponentially secure OWF.

As an application of our constructions, we show how to use a DMWM
to construct the first leakage and tamper-resilient signatures with a deter-
ministic signer, thereby solving a decade old open problem posed by
Katz and Vaikunthanathan (Asiacrypt 2009), by Boyle, Segev and Wichs
(Eurocrypt 2011), as well as by Faonio and Venturi (Asiacrypt 2016). Our
construction achieves the optimal leakage rate of 1 − o(1).
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1 Introduction

A foundational innovation of theoretical computer science has been the general-
ization of the notion of what a proof is. Interactive proofs, zero-knowledge proofs
and probabilistically checkable proofs are all critical to the current theory – and
practice – of computer science. In this work, we introduce and explore yet another
notion of a proof, against the backdrop of recent advances in cryptography.

A conventional proof of a statement that can be verified by an efficient pro-
gram is called a witness for the statement. Goldwasser, Micali and Rackoff, in
their seminal work on interactive proofs [26], introduced the fascinating concept
of zero-knowledge proof protocols which reveal no “knowledge” about the wit-
ness to a verifier, yet can soundly convince her of the existence of a witness. The
notion of knowledge was formalized using simulators. An important direction
of subsequent investigation has been to develop more rudimentary models of
proofs, which when realized, offer powerful cryptographic applications. In par-
ticular, Blum, Feldman and Micali [4] introduced the notion of non-interactive
zero-knowledge proofs (NIZK), wherein they reverted to the conventional notion
of a proof being just a single message that the prover can send to the veri-
fier, but allowed a “trusted setup” in the form of a common reference string,
with respect to which the proof would be verified. Feige and Shamir [21] defined
witness indistinguishability as a simpler notion of hiding information about the
witness.

The central object we investigate in this paper – called a Witness Map – is
an even more rudimentary notion of a proof, wherein a proof is simply an
alternate representation of a witness, verified using an alternate relation.

The prover and the verifier are required to be efficient and deterministic, and the
proof system is required to be computationally sound. A common reference string
is used to generate and verify the proofs. Instead of zero-knowledge property, we
require a “lossiness” property. Specifically, in a Compact Witness Map (CWM),
each statement has a small number of proofs that its witnesses could map to,
with an important special case being that of a Unique Witness Map (UWM).

One may wonder if it is possible to hide the witness to any extent at all, when
the prover is deterministic. But we show that if indistinguishability obfuscation
(iO) and one-way functions exist, then UWMs do exist. On the other hand, we
show that the existence of UWMs imply the existence of Witness Encryption
(WE). Hence UWM could be viewed as the newest member of “obfustopia,” and
arguably the one with the simplest definition.1

We extend the scope of witness maps further to define the notion of a Dual
Mode Witness Map (DMWM). In a DMWM, a proof either allows the original

1 We present a brief formulation (omitting some formalism) here. A UWM for an NP
language L is specified by a distribution over polynomial time verifiable relations RK,
such that (1) for every x ∈ L, there is a canonical witness w∗

K,x with (x,w∗
K,x) ∈ RK,

which can be efficiently computed from any witness w for x ∈ L, and (2) it is
computationally infeasible to find a pair (x,w∗) ∈ RK such that x �∈ L.
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witness to be extracted (using a trapdoor) or it is lossy. Which mode a proof
falls into depends on whether or not the “tag” used for constructing the proof
equals a hidden tag used to derive the mapping key. In defining the lossy mode,
we introduce a strong form of lossiness – called cumulative lossiness – which
bounds the total amount of information about a witness that can be revealed by
all the proofs using all the lossy tags. We also show how to construct a DMWM
for any NP relation using a CWM and a new notion of lossy trapdoor functions
(which may be of independent interest).

We show that DMWMs can be readily used to solve an open problem in
the area of leakage-resilient cryptography, namely, that of constructing a leak-
age and tamper resilient signature scheme (where all the data and randomness
used by the signer are open to leakage and tampering). A crucial aspect of our
construction that helps in achieving this is that signing algorithm in our scheme
is deterministic, a property it inherits from the prover in a DMWM. We also
extend our results to a continuous leakage and tampering model.

We expand on each of these contributions in greater detail below.

1.1 Witness Maps

We introduce a new primitive called a compact/unique witness map (CWM/
UWM). Informally, CWM/UWM deterministically maps all possible valid wit-
nesses for some NP statement to a much smaller number of representative wit-
nesses, resulting in loss of information regarding the original witness. Neverthe-
less, the mapping should preserve the functionality of the witnesses, namely that
the representative witnesses should be efficiently verifiable and (computationally)
guarantee the soundness of the statement. A particularly strong form of CWM is a
Unique Witness Map (UWM), in which all the possible witnesses for a statement
are mapped to a single representative witness. In other words, in a UWM the rep-
resentative witness only depends on the statement being proved, but not which of
the original witnesses was used to prove it.2 While we require the CWM/UWM to
be deterministic, it can depend on some public common reference string (CRS). A
UWM is essentially equivalent to a non-interactive witness indistinguishable argu-
ment (in the CRS model) with a deterministic prover and a deterministic verifier.

Defining CWM/UWM. In more detail, a CWM consists of three algorithms
(setup,map, check). The setup algorithm generates a CRS K. The deterministic
algorithm map(K, x, w) takes as input a statement x and a witness w and maps it
to a representative witness w∗. The algorithm check(K, x, w∗) takes as input the
statement x and the representative witness w∗ and outputs 1 if it verifies and 0
otherwise. We require the standard completeness property (if w is good witness
for x then check(K,map(K, x, w)) = 1) and computational soundness (if x is false
then it’s computationally hard to produce w∗ such that check(K, x, w∗) = 1).

2 Note that uniqueness is a property of the map/prover, but we do not require uniqueness
for the verifier; for any given statement, there may be many representative witnesses
that the verifier would accept, but the map/prover always produces a unique one.



Witness Maps and Applications 223

Lastly, we require that for any true statement x the set of possible representa-
tive witnesses {w∗ = map(K, x, w) : w witness for x} is small, and potentially
much smaller than the set of all original witnesses w for x. In a UWM, the
set of representative witnesses needs to be of size 1, meaning there is a unique
representative witness for each x in the language.

Constructing UWM. We give a simple construction of a UWM from iO and a
punctured digital signature (PDS) scheme (see below), by leveraging the frame-
work of Sahai and Waters [41] previously used to construct NIZKs. Our construc-
tion could be seen as implementing “deterministic witness signatures,” wherein
the signing key is a valid witness to a statement. We remark that a notion of wit-
ness signatures exists in the literature [28], building on the notion of “Signatures
of Knowledge” [12]; however, these are incomparable to our UWM construction,
as they allow randomized provers, but demand extractability of the witness (and
in the case of Signatures of Knowledge, simulatability as well).

Puncturable Digital Signatures (PDS). As part of our UWM construction,
we rely on Puncturable Digital Signatures (PDS). This primitive allows us to cre-
ate a punctured signing key that cannot be used to sign some specified message
m but otherwise correctly produces signatures for all other messages m′ �= m.
We improve upon the construction of PDS by Bellare et al. [3], who relied on
sub-exponentially secure Indistinguishability Obfuscation andsub-exponentially
secure one-way functions (OWF). Our construction shows that PDS is equiva-
lent to OWF.

Implications of UWM. We show that UWMs are a powerful primitive and,
in particular, imply witness encryption (WE) [23]. However, we do not know of
any such implication for CWMs in general, especially if the image size of the
map can be (slightly) super-polynomial.

Dual-Mode Witness Maps. We also introduce a generalization of com-
pact/unique witness maps (CWM/UWM) that we call dual-mode witness maps
(DMWM). In a DMWM the map and check algorithms take as input an addi-
tional tag or branch parameter b. Furthermore the setup algorithm also takes as
input a special “injective branch” b∗ which is used to generate the CRS along
with a trapdoor td. If b = b∗ then the map is injective and the original witness
w can be extracted from the representative witness w∗ output by the map using
the trapdoor td. On the other hand, the maps for all b �= b∗ is cumulatively
lossy – i.e., even taken together, they do not reveal much information about the
original witness. The identity of the injective branch b∗ is hidden by the CRS.

Our definition of the cumulative lossiness property for DMWM is motivated
by its application to leakage and tamper resilient signatures (see below). But it is
in itself a property that can be applied more broadly. In particular, we introduce
the following primitives and employ them in our construction of DMWMs (in
combination with CWMs).

Cumulatively Lossy Trapdoor Functions. We introduce new variants of
lossy trapdoor functions (LTDFs) [38], which we call cumulatively lossy trapdoor
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functions (C-LTDFs). Recall that, in an LTDF, a function f can be sampled
to either be injective (and the sampling algorithm also generates an inversion
trapdoor) or lossy (the image of f is substantially smaller than the input domain)
and the two modes should be indistinguishable. For C-LTDFs, we further require
that arbitrarily many lossy functions taken together are jointly lossy. In other
words, if we sample arbitrarily many independent lossy functions fi then their
concatenation (f1, . . . , f�)(x) = (f1(x), . . . , f�(x)) is also lossy. We can construct
C-LTDFs from DDH or LWE.

We also define cumulatively all-lossy-but-one trapdoor functions (C-ALBO-
TDFs). This is a collection of functions f(b, ·) parametrized by a branch index b.
We can sample f with a special injective branch b∗ such that f(b∗, ·) is injective
(and we have the corresponding inversion trapdoor) but f(b, ·) is lossy for all
b �= b∗. We should not be able to distinguish which branch is the injective
one. Furthermore, the lossy branches b �= b∗ are cumulatively lossy. Previous
constructions of LTDFs with branches [38] only achieved the opposite notion of
“all-but-one lossy”, where there is one lossy branch and all the other branches
are injective. To the best of our knowledge, constructing ALBO-LTDFs (even
without the cumulative loss requirement) was previously open. We show how to
boost C-LTDFs to get C-ALBO-LTDFs via iO.

1.2 Application: Leakage and Tamper Resilient Signatures

A digital signature scheme is one of the most fundamental cryptographic primi-
tives and is used as an important building block in many cryptographic protocols
and applications. Signature schemes are used ubiquitously in practice, in a vari-
ety of settings and applications. In particular, signing keys are often embedded
in smart cards and devices operated by untrusted users. Such settings admit
powerful “physical attacks” exploiting numerous side-channels for leaking (e.g.
power analysis, timing measurements, microwave attacks [31,32]) and tamper-
ing (see for instance [6,40]). This has led to several works over the last decade
that addressed security of cryptographic primitives – and in particular of digital
signature schemes – that are leakage and/or tamper resistant [9,14,19,29,33]. In
this work, we address an important question that this body of work has raised
again and again:

Is there a leakage and tamper resilient (LTR) signature scheme?
Is there one with a deterministic signing algorithm?

The significance of this question lies in the fact that it appears harder to protect
against an adversary who can target the randomness used in the scheme. When
the randomness is open to attacks, current state of the art can protect only
against leakage attacks [9,13,17], and not against tampering attacks (as explic-
itly posed in [19]). Note that if the adversary can obtain signatures produced
using arbitrarily tampered randomness, it can set the randomness to a constant
(say, all 0s) and therefore effectively make the signing algorithm deterministic.
Therefore, a natural solution is to entirely eliminate attacks on the randomness
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by constructing a LTR signature scheme with a deterministic signing algorithm.
Indeed, this is the approach taken in [13], but unfortunately their solution does
not offer security against tampering of the secret key.

LTR Signature Results. Our main contribution is the construction of a leak-
age and tamper resilient (LTR) signature scheme with a deterministic signing
algorithm. We focus on the bounded leakage and tampering model of Damg̊ard
et al. [14]. In this model, the adversary can get some bounded amount of leakage
on the secret key and can also tamper with the secret key some bounded num-
ber of times; these bounds can be made arbitrarily large but have to be chosen
a-priori. We strengthen the model so that only publicly known, fixed components
of the scheme (namely, the code and public parameters) are fully protected. In
particular, any randomness used during computation is subject to leakage and
tampering. The key-generation phase is also subject to leakage (but is protected
from tampering). Note that tamperability of the signing randomness invalidates
prior results [14,19], and motivates the need for finding a deterministic solution.
A recent work of Chen et al. [13] constructs a deterministic leakage-resilient
(but not tamper-resilient) signature scheme from iO and puncturable primi-
tives. However, as we argue later, this construction does not generalize to the
setting of tampering.

Our schemes achieve a leakage rate of 1 − o(1), where the leakage rate is
defined as the ratio of the amount of leakage to the size of the secret signing
key. The scheme natively only achieves selective security, where the message to
be forged is chosen by the adversary at the very beginning of the attack game.
Adaptive security follows via complexity leveraging. We present our construction
using generic primitives discussed below. While current instantiations of these
primitives rely on indistinguishability obfuscation (iO) and either DDH or LWE,
there is hope that our template can also be instantiated under weaker assump-
tions in the future. Our construction combines ideas from leakage-resilience [9]
and tamper-resilience [19], but replaces various ingredients with our new building
blocks to facilitate a deterministic solution.

We also discuss how to extend our results to the continuous leakage and tam-
pering model. In this model, the key is periodically refreshed and the adversary
is only bounded in the amount of leakage and tampering that can be performed
in each time period, but can continuously attack the system for arbitrarily many
time periods. However, in this model, we inherently cannot allow tampering of
the randomness used to perform the refreshes.

Along the way toward our main result for LTR Signatures, we introduce
several new cryptographic primitives and constructions, which may be of inde-
pendent interest and which we now proceed to describe.

Construction Outline. We construct deterministic leakage and tamper resilient
signatures directly from dual-mode witness maps (DMWM) and a leakage-resilient
one-way function (which, as we shall see, can be based on general one-way func-
tions). As mentioned above, we construct DMWMs by combining a compact wit-
ness map (CWM) for NP, with a C-ALBO-LTDF, constructing other primitives
like PDS and C-LTDF along the way. While current instantiations of CWMs and
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C-ALBO-LTDFs rely on strong assumptions (i.e., iO and either DDH or LWE),
this does not appear inherent and there is hope that future work can find alternate
instantiations based on weaker assumptions. In particular, while UWMs imply a
strongprimitive (namely,WitnessEncryption), the same is not known forDMWM,
CWM or C-ALBO-LTDF.

1.2.1 Related Work on Leakage and Tamper-Resilient Signatures
Various notions of leakage-resilient signatures (LRS) have been studied for about
a decade now. Alwen, Dodis and Wichs [1] and Katz and Vaikuntanathan [29]
gave initial constructions of LRS schemes in the bounded leakage model, where
the leakage is allowed to happen from the entire memory of the device. The
construction of [1] was in the random oracle (RO) model. [29] gave a standard
model construction, which had a deterministic signing scheme as well, but which
allowed only a logarithmic number of signature queries, and the total leakage
allowed degraded with number of queries. Meanwhile, Faust, Kiltz, Pietrzak and
Rothblum [20] gave a construction of a stateful LRS scheme in the “Only Compu-
tation Leaks” model of Micali and Reyzin [35]. The first full-fledged construction
of fully leakage-resilient (FLR) signatures – which allowed bounded leakage from
the randomness used for key-generation and signing – were proposed indepen-
dently by Boyle et al. [9] and Malkin et al. [33]. Faonio et al. [17] also gave a
construction of FLR signatures in the bounded retrieval model, where the secret
key (and the leakage from it) may be larger than the size of a signature. In this
setting, standard existential unforgeability is impossible to achieve, since the
adversary can simply leak a forgery. Hence the authors only demand a graceful
degradation of security to hold. Yuen et al. [42] constructed a FLR signature
scheme in the selective auxiliary input leakage model, where it is assumed that
the leakage is a computationally hard-to-invert function. The recent work of
Chen et al. [13] gave an FLR signature scheme with a deterministic signing
algorithm, and achieved selective unforgeability, relying on iO.

Tamper resilience was addressed in [14,19]. The question of fully leakage
and tamper resilient signatures (i.e., allowing leakage from and tampering of
randomness as well as secret key) was explicitly posed as an open problem in
[19]. The continual memory leakage (CML) model has been studied in [10,15,33].

Comparison with the Work of [13]. Recently, Chen et al. [13] constructed a
deterministic leakage-resilient (but not tamper-resilient) signature scheme in the
bounded leakage model. An important limitation of their construction is that
it does not appear amenable to a leakage-to-tamper reduction, which relies on
being able to bound the amount of information revealed by a signature using
the tampered signing key, given the verification key. (Their signing key sk is
a ciphertext of a symmetric-key encryption scheme and the verification key vk
comprises of two obfuscated programs).

Comparison with the Work of [18]. Predictable argument of knowledge
(PAoK) [18] are 2-round public-coin argument systems where the answer of
the prover can be predicted, given the private randomness of the verifier (thus
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necessitating the prover to be deterministic). They insist on knowledge soundness
from PAoK and show that a PAoK for general NP relations is equivalent to
extractable witness encryption. In contrast, DMWM are non-interactive.

1.3 Technical Overview

1.3.1 Compact Witness Maps
We now sketch the main idea behind the construction of our unique witness map
(UWM) scheme, which is the strongest form of compact witness maps (CWMs).
Our construction essentially follows the same (abstracted out) approach of Sahai
and Waters NIZKs [41]. The setup of the UWM generates a (public) CRS K.
The CRS K in our construction embeds the description of an obfuscated pro-
gram P , with the signing key of the Puncturable Digital Signature (PDS) scheme
hard-coded in it. The obfuscated program P functions as follows: the input to
the program P is a statement-witness pair, say (stmnt, w) belonging to under-
lying NP relation R� (we consider statements of size at most �). The program
simply checks if R�(stmnt, w) = 1, and signs the statement stmnt using the sign-
ing key sk to obtain a signature on stmnt. While generating the mapping, the
mapping algorithm uwm.map(K, stmnt, w) runs the obfuscated program P with
input (stmnt, w) to obtain a signature σstmnt on stmnt using sk. The represen-
tative witness w∗ is just the signature σstmnt. The verification of the mapping is
done by simply verifying the signature σstmnt (using the verification algorithm of
the PDS scheme).

For proving security of the UWM scheme, we consider the notion of selec-
tive soundness3, where the adversary announces the statement stmnt∗ on
which it tries to break the soundness (i.e, produce a representative witness
w∗corresponding to it) of the UWM scheme, before receiving the key K. In
the hybrid, we change the obfuscated program by puncturing the signing key sk
at the statement stmnt∗. The consistency property of the PDS scheme ensures
that the signatures output by the punctured key skstmnt∗ (punctured at stmnt∗)
produces the same output as the signatures generated by the original signing key
sk. If the adversary could produce a witness w∗ (which is nothing but a signa-
ture) corresponding to the false statement stmnt∗, this means it has managed to
successfully output a forgery for the PDS scheme. Also note that, our mapping
satisfies uniqueness, since (x,w) is deterministically mapped to the signature on
x, independent of w.

Construction of PDS. To instantiate the UWMs described above, it remains
to construct a Puncturable Digital Signature (PDS) scheme. The work of Sahai
and Waters [41] implicitly constructs one using iO as a part of their construction
of NIZKs, and Bellare et al. [3] makes this explicit. We show a simple construction
from one-way functions. The main idea is to rely on tree-based signatures, where
3 The size of the statements supported by UWM scheme is bounded (looking ahead,

this will indeed be the case in our FLTR signature scheme). Hence, we can achieve
adaptive soundness via a standard complexity leveraging argument, albeit incurring
a sub-exponential loss in the security parameter.
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every node of the tree is associated with a fresh verification/signing key of a
standard (one-time) signature and a PRG seed; the seed of the parent node
is used to generate the values (the verification/signing key and the seed) of
each of the two children nodes. The verification key of the scheme corresponds
to that of the root note and the signing key corresponds to the (signing key,
seed) of the root. Each message traces out a path in the tree from a root to a
leaf and the signature corresponds to a “certificate chain” consisting of signed
verification keys along that path together with a signature of the message under
the leaf’s key. Note that the intermediate values in the tree are generated on
the fly and the entire tree (which is of exponential size) is never stored all at
once. Puncturing the signing key is analogous to puncturing the GGM PRF
[7,8,24,30]. In particular, we remove all of the values along one path from the
root to a particular leaf for the specified message on which we are puncturing,
and instead give out the values of (signing key, seed) for each sibling along that
path; this is sufficient to generate signatures for every other message aside from
the punctured one.

UWMs Imply Witness Encryption. Lastly, we show that UWMs are a
powerful cryptographic primitive and in fact imply witness encryption (WE)
[23]. In a WE scheme, it is possible to encrypt a message m under an NP
statement x such that, if the statement is true, then the ciphertext can be
decrypted using any witness w for x. However, if x is a false statement, then the
ciphertext should computationally hide the encrypted message. To construct a
WE scheme from a UWM the encryption algorithm chooses a random seed z for
a pseudorandom generator G and sets y = G(z). It then uses a UWM to get a
representative witness w∗ for the statement x̂ stating that “either x is true or y
is pseudorandom”, using z as the witness. It uses the Goldreich-Levin hardcore
bit of w∗ to blind the message m and outputs the blinded value along with y.
The decryption algorithm uses the UWM to map the witness w for x into the
unique witness w∗ for the statement x̂. It then computes the hardcore bit of
w∗ and uses it to recover the message. Intuitively, if an adversary can break
WE security, then it can distinguish encryptions of 0 and 1 with non-negligible
probability even if x is a false statement. This means that, using Goldreich-
Levin decoding, it can compute the correct value w∗ given y with non-negligible
probability. Furthermore this value w∗ is a valid representative witness for the
statement x̂. Since the adversary cannot break the PRG, it must also compute
a valid representative witness for x̂ if we switch y to false. But this contradicts
the soundness of UWM.

1.3.2 Leakage and Tamper Resilient Signatures
We now give an overview of our leakage and tamper resilient (LTR) signature
construction. The construction proceeds in 3 steps. First, we construct LTR sig-
natures from dual-mode witness maps (DMWMs). Second, we construct DWMs
from cummulatively all-lossy-but-one tradoor functions (C-ALBO-TDFs) and
compact witness maps (CWMs). Thirdly, we construct C-ALBO-TDFS from
DDH and LWE and iO.
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LTR Signatures from DMWMs. Recall that DMWM is essentially a witness
map that takes as input a branch index b. The CRS is also generated with an
injective branch b∗ and a trapdoor td. If the map uses the branch b = b∗ then
it is injective and the original witness can be extracted using the trapdoor.
Otherwise the map reveals very little information about the original witness.
The two modes are computationally indistinguishable from each other.

Our signature scheme has the following form: The signing key is a random
string x, and the verification key is y = H(x), where H is a sufficiently com-
pressing, second pre-image resistant hash function. To sign a message m, we set
the branch for the DMWM to be the message m, and construct a representative
witness w∗ for the statement: ∃x, y = H(x) using x as the original witness. Note
that the signing procedure is deterministic. The verifier checks the representative
witness using the DMWM scheme.

To argue selective security, we can set up the CRS of the DMWM so that the
injective branch b∗ is exactly the message that the adversary will forge the sig-
nature on. It remains indistinguishable to the adversary that this happened and
hence the probability of forging does not change. However, now we can extract
a pre-image x′ such that H(x′) = y from the adversary’s forgery. Moreover,
since all the other signatures obtained by the adversary are all lossy, it would
be information-theoretically hard to recover the original pre-image x. This holds
even given some bounded additional leakage about the secret key x. It also holds
even if x is tampered and then used to produce a signature since this still only
provides bounded leakage on x. Therefore we recover a second pre-image x′ �= x
which contradicts the second pre-image resistance of H.

We also adapt our results to the continuous leakage and tampering (CLT)
model. We do so by essentially taking the same construction, but using a
“entropy-bounded” or “noisy” continuous-leakage-resilient (CLR) one-way rela-
tion [15] in place of the second pre-image resistant hash (which can be thought of
as a leakage-resilient one-way function). We achieve security as long as the adver-
sary cannot tamper the randomness of the refresh procedure, and this restriction
is inherent.

DMWMs from CWMs via C-ALBO-TDFs. We now discuss how to con-
struct dual-mode witness maps (DMWMs) from compact witness maps (CWMs).
Recall that DMWM has branches in one of two modes: injective and lossy. On
the other hand a CWM does not have any branches and is always lossy. To con-
vert a CWM into DMWM we add a “cumulatively all-lossy-but-one trapdoor
functions (C-ALBO-TDFs)”. This is a family of functions f(b, )̇ parametrized
by tags/branches b such that, for one special branch b∗ the function f(b∗, ·) is
injective and efficiently invertible using a trapdoor, but for all other b �= b∗ the
functions f(b, ·) are cumulatively lossy. The CRS of the DMWM will consist of
the public key of the C-ALBO-TDF with the special injective branch b∗ as well
as a CRS of CWM scheme. To compute a proof for a statement y with witness
w under a tag b, the prover computes z = f(b, w) and then uses the CWM to
prove that z was computed correctly using a valid witness w for the statement y.
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Construction of C-ALBO-TDFs. Finally, we discuss how to construct cumu-
lative all-lossy-but-one trapdoor functions (C-ALBO-LTDFs). We start with
a simpler primitive of C-LTDFs which can be used to sample a function fek

described by a public key ek. The key ek can be sampled indistinguishably in
either lossy or injective mode (with a trapdoor). We require that the combination
of arbitrarily many different lossy functions is cumulatively lossy.

We construct C-LTDFs by adapting a construction of LTDFs from DDH due
to [38]. In that construction, the key ek is given by a matrix of group elements
gM where g is a generator of the group of order q and M ∈ Z

n×n
q is a matrix

of exponents. For x ∈ {0, 1}n the function is defined as fek(x) = gM ·x . If M
is invertible than this function is injective and can be inverted with knowledge
of M−1. If M is low rank (e.g., rank 1) then this function is lossy. The two
modes are indistinguishable by DDH. However, if we choose many different lossy
functions by choosing random rank 1 matrices each time then the scheme is not
cumulatively lossy; in fact n random lossy function taken together are injective!
To get a cumulative lossy scheme, we fix some public parameters gA where
A ∈ Z

n×n
q is a random rank 1 matrix. We then choose each fresh lossy key

ek by choosing a random R ∈ Z
n×n
q and setting ek = gRA . Injective keys ek

are still chosen as gM for a random M , which is invertible with overwhelming
probability. It’s easy to show that lossy and injective keys are indistinguishable
even given the public parameters. Now if we apply many different lossy functions
on the same input x we only reveal Ax, which loses information about x.

The above construction can also be extended to rely on the d-Linear assump-
tion for larger d instead of DDH. We also provide an analogous construction
under LWE by adapting an LTDF of [2], which relies on the “lossy mode” of
LWE from [25].

We then show how to bootstrap C-LTDFs to get C-ALBO-LTDFS via iO.
The idea is to obfuscate a program that, on input a branch b, applies a pseu-
dorandom function to b to sample a fresh lossy key of a C-LTDF, except for a
special branch b∗ on which it outputs a (hard-coded) injective C-LTDF key. By
relying on standard puncturing techniques, we show that this yields a C-ALBO-
LTDF.

2 Puncturable Digital Signature Schemes

A puncturable digital signature (PDS) scheme [3] is a digital signature scheme
with the additional facility to “puncture” the signing key at some arbitrary
message, say, m∗. The resulting punctured signing key allows one to sign all
messages except m∗. A PDS is said to be consistent, if a secret signing key sk
and all possible punctured signing keys ̂skm∗ derived from sk, for every unpunc-
tured message, produce the same signature, deterministically. In this paper, we
shall consider only PDS schemes that are consistent, and hence shall omit that
qualifier in the sequel.
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The security requirement of a PDS scheme is that the (standard) existential
unforgeability should hold for the punctured message m∗. Following Bellare et al.
[3], we focus on selective unforgeability, wherein the adversary must specify the
message m∗ at which the signing key needs to be punctured ahead of time, i.e.,
before receiving the public parameters and the verification key. It then receives
the punctured signing key ̂skm∗ (punctured at m∗) and the verification key of
the PDS, and the goal of the adversary is produce a forgery on m∗. A formal
definition is provided in the full version of our paper [11].

Below, we summarize the construction of our PDS scheme, and refer to the
full version [11] for the formal details of the scheme. Our construction of the
PDS relies on the sole assumption that one-way functions exist.

The construction follows the paradigm of extending one-time signatures
into full-fledged signatures using a tree of pseudorandomly generated key pairs
[27,34,37]. Each message in the message space is associated with a leaf in this tree,
and the key pair at that leaf is used to exclusively sign that message. The signature
on a message will also certify the leaf’s verification key using a “certificate chain”
that follows the path from root to leaf in the tree. Our scheme will rely on a punc-
tured PRF to generate this tree. The signing key punctured at a message m∗ will
include a punctured PRF key, punctured at all the points in the path from root to
the leaf corresponding to m∗; also it will include a small set of certificates that, for
every message m �= m∗, can be used to certify the verification key for the first node
that is in the path from the root to the leaf corresponding to m, but not in the path
from the root to the leaf corresponding to m∗. Compared to the certificate chains
used in the standard signature construction, it is important in our case to verifi-
ably tie the verification keys to specific nodes in the tree, because otherwise the
signer with a punctured signing key can use keys for one leaf to sign the message
associated with another leaf.

3 Witness Maps

In this section we formally define the new primitives called Compact Witness
Maps and Dual Mode Witness Maps.

Recall that R ⊆ {0, 1}∗ × {0, 1}∗ is said to be an NP relation if membership
in it can be computed in time polynomial in the length of the first input.

Given an NP relation R, we define the NP language LR := {x | ∃w, (x,w) ∈
R}. When referring to (x,w) ∈ R, where R is a given NP relation, x is called the
statement and w the witness. It will be convenient for us to consider NP relations
parametrized with their input length: Below we let R� := R ∩ {0, 1}� × {0, 1}∗.
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Definition 1 (Compact Witness Map (CWM)). For α ≥ 0, an α-CWM
for an NP relation R is a triple cwm = (setup,map, check) where setup is a
PPT algorithm and the other two are deterministic polynomial time algorithms
such that:

• setup(κ, �) outputs a string K of length polynomial in the security parameter
κ and �.

• Completeness: For any polynomial �, ∀(x,w) ∈ R�(κ), ∀K ← setup(κ, �(κ)),

check(K, x,map(K, x, w)) = 1.

• Lossiness: For any polynomial �, ∀K ← setup(κ, �(κ)), ∀x ∈ {0, 1}�(κ),

|{map(K, x, w) | (x,w) ∈ R�(κ)}| ≤ 2α.

• Soundess: For any polynomial � and any PPT adversary A, Advcwm
A (κ) defined

below is negligible:

Pr
K←setup(κ,�(κ))

[A(K) → (x∗, w∗), check(K, x∗, w∗) = 1, x∗ �∈ LR ].

A 0-CWM is called a Unique Witness Map (UWM).

The above definition has perfect security in the sense that the completeness
and lossiness conditions hold for every possible K that cwm.setup can output
with positive probability. A statistical version, where this needs to hold with
all but negligible probability over the choice of K will suffice for all our appli-
cations. But for simplicity, we shall use the perfect version above. It is useful
to consider a variant of the definition with a selective soundness guarantee, in
which the adversary is required to generate x∗ first (given κ, �) before it gets K.
For some applications (e.g., construction of a witness encryption scheme from a
UWM) this level of soundness suffices. It also provides an intermediate target
for constructions, as one can convert a selectively sound CWM to a standard
CWM by relying on complexity leveraging (as we shall do in our construction
in Sect. 3.1).

Definition 2 (Dual Mode Witness Maps (DMWM)). An α-DMWM with
tag space T for an NP relation R is a tuple dmwm = (setup,map, check, extract)
where setup is a PPT algorithm and the others are deterministic polynomial time
algorithms such that:

• setup(κ, �, tag) outputs (K, td), where κ is a security parameter, �(κ) is a
polynomial, and tag ∈ T , K and td are strings of length polynomial in κ.
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• Completeness: ∀tag, tag′ ∈ T for all polynomials �, ∀(x,w) ∈ R�(κ), ∀K ←
setup(κ, �(κ), tag),

check(K, tag′, x,map(K, tag′, x, w)) = 1.

• Hidden Tag: For any PPT adversary A, Advdmwm-hide
A (κ) defined below is

negligible:

∣

∣ Pr
[

A(κ, �) → (tag0, tag1, st), b ← {0, 1},

(K, td) ← setup(κ, �(κ), tagb),A(K, st) → b′, b = b′] − 1
2

∣

∣.

• Extraction: For any polynomial �, for any PPT adversary A, Advdmwm
A (κ)

defined below is negligible:

Advdmwm
A (κ) := Pr[A(κ, �) → (tag, st), (K, td) ← setup(κ, �(κ), tag),

A(K, st) → (x∗, w∗), check(K, tag, x∗, w∗) = 1,
(x∗, extract(td, x, w∗)) �∈ R�(κ)]

• Cumulative Lossiness: ∀tag, �, ∀K ← setup(κ, �, tag), ∀x ∈ LR�
, there

exist (inefficient) functions compressK,x : {0, 1}∗ → SK,x and expandK,x :
SK,x × {0, 1}∗ → {0, 1}∗ such that |SK,x| ≤ 2α(κ), and for all tag′ �= tag,
map(K, tag′, x, w) = expandK,x(compressK,x(w), tag′).

3.1 Unique Witness Maps

In this section, we present a construction of 0-CWM or an UWM.

3.1.1 A UWM for Any NP Relation
Now we present the construction of our UWM system uwm for any NP relation
R (see Fig. 1). The main building blocks of our construction are a punctured
digital signature (PDS) scheme pds and an iO scheme (denoted as iO).

Theorem 1. Let iO be a (polynomially) secure indistinguishability obfuscator
for circuits and pds be a (polynomially) secure consistent puncturable digital
signature scheme. Then uwm defined in Fig. 1 is a UWM for the NP relation
R satisfying selective soundness.
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Let pds = (keygen, sign, ver, pkeygen, psign) be a secure punctured digital signature
scheme and iO be a secure indistinguishability obfuscator for circuits.

1. uwm.setup(�, κ): Generate (sk, vk) ← pds.keygen(�, κ). Then create an obfuscated
program P ← iO(EndorseR�

sk ), where the program EndorseR�
sk is as shown below.

Output K = (vk, P ).
2. uwm.map(K, x, w) : Parse K as (vk, P ). Output w∗ ← P (x, w).
3. uwm.check(K, x, w∗) : Parse K as (vk, P ). Output pds.ver(vk, x, w∗).

Program EndorseR�
sk ((x, w))

Constant: Signing key sk

Input Domain: (x, w) ∈ {0, 1}� ×
{0, 1}�′

if (x, w) ∈ R� then

output pds.sign(sk, x)

else

output ⊥

Program pEndorseR�
̂skx∗

((x, w))
Constant:

Punctured signing key ŝkx∗

Input Domain: (x, w) ∈ {0, 1}� ×
{0, 1}�′

if (x, w) ∈ R� and x �= x∗ then

output pds.psign(ŝkx∗ , x)
else

output ⊥

Fig. 1. The UWM for an NP relation R. The program pEndorseR�
̂skx∗

is used only in the

proof.

Proof. Firstly, we note that uwm satisfies perfect completeness (assuming iO
and pds are perfectly correct). Also, it satisfies uniqueness, since (x,w) is deter-
ministically mapped to the signature on x, independent of w. Below, we shall
prove that the scheme is sound as well.

Consider an adversary A in the definition of Advuwm
A (κ). Note that A outputs

a point x∗ first. We consider a hybrid experiment where, after A outputs x∗, K is
derived from a modified uwm.setup: The modified uwm.setup is only different in
that instead of using EndorseR�

sk , the program pEndorseR�

̂skx∗
(also shown in Fig. 1)

is used, where ̂skx∗ ← pds.pkeygen(sk, x∗).
We claim that the advantage A has in the modified experiment can only be

negligibly more than that in the original experiment. For this consider, a coupled
execution of the two experiments, with A’s random tape being the same in the
two executions. Then it is enough to upper bound the difference of probabilities
of the condition uwm.check(K, x∗, w∗) = 1 ∧ x∗ �∈ LR�

holding in the modified
experiment and in the original experiment. Fix a choice of randomness that max-
imizes this difference, δ. We shall describe a (non-uniform) adversary AiO, which
internally runs the coupled experiment with this choice of randomness for A. Let
x∗ be the output of A with this choice. Note that for δ > 0, we need x∗ �∈ LR�

.
For such x∗, observe that EndorseR�

sk and pEndorseR�

̂skx∗
are functionally equivalent

programs (for all sk). This is because, if (x,w) ∈ R�, then x �= x∗ and the con-
sistency of the PDS scheme guarantees that pds.sign(sk, x) = pds.sign(̂skx∗ , x).
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So AiO can output the pair of programs EndorseR�

sk and pEndorseR�

̂skx∗
. It receives

back an obfuscated program P and carries out the rest of the UWM security
game with A using P . If P ← iO(EndorseR�

sk ), then this game is exactly the
original game, and otherwise it is the modified game. Hence, AiO distinguishes
between these two cases with advantage δ. Hence, by the security of iO, δ is neg-
ligible; this in turn shows that the advantage A has in the modified experiment
is only negligibly far from that in the original experiment.

Next, we argue that in the modified selective soundness experiment A has
negligible advantage. Note that in the modified experiment, A outputs a string
x∗ ∈ {0, 1}�, gets back (vk, P ), where (vk, sk) ← pds.keygen(�, κ), and P is
generated from the punctured secret-key ̂skx∗ , outputs a purported signature
w∗, and wins if pds.ver(vk, x∗, w∗) = 1. By the security of pds, the probability
of A winning is at most AdvpdsA (κ), which is negligible. �

Remark 1. In the above proof, we only show selective soundness of uwm. We
note that, one can transform a selectively sound UWM to an adaptively sound
one using complexity leveraging, when appropriate. This can be done by choos-
ing pds to be 2-(�+κ)-secure punctured digital signature scheme and iO to be
2-(�+κ)-secure indistinguishability obfuscator for circuits respectively (i.e., the
advantages AdvpdsA (κ1) ≤ 2-(�+κ) and AdviO

Samp,D(κ2) ≤ 2-(�+κ), where κ1 and κ2

are the security parameters for pds and iO respectively, and κ is the security
parameter for uwm). One can set κ1 and κ2 to be large enough to satisfy this.

3.1.2 Implication to Witness Encryption
In this section, we show that UWM implies Witness encryption (WE). Due to
space constraints, we only present a high level idea behind the construction and
refer the reader to our full version [11] for the detailed description.

Intuition Behind the Construction. In a WE scheme, it is possible to encrypt a
message m under an NP statement x such that, if the statement is true, then
the ciphertext can be decrypted using any witness w for x. However, if x is a
false statement, then the ciphertext should computationally hide the encrypted
message. We show a construction of WE for an arbitrary NP language L starting
from an UWM for the language LOR = L∨L′, where L′ is another NP language
whose YES instances are indistinguishable from NO instances. To WE encrypt
a bit m ∈ {0, 1} with respect to an NP statement x ∈ L, we sample an YES
instance from the NP language L′. We do so by sampling a pseudo-random
string y = G(z), such that z serves as a valid witness corresponding to the string
y. We then consider the language LOR = L ∨ L′ which consists of instances x̂
of the form “either x ∈ L ∨ y is pseudorandom”. We use the UWM to derive
a representative witness w∗ for a statement corresponding to this augmented
NP language (using witness z) and then derive the Goldreich-Levin hardcore
bit of w∗ to be used as a one-time pad to encrypt the bit m. The decryptor can
derive the same representative witness w∗ using his witness for x ∈ L (which is
also a valid witness for LOR) and therefore decrypt. Intuitively, if an adversary
can break WE security, then it can distinguish encryptions of 0 and 1 with
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non-negligible probability even if x is a false statement. This means that, using
Goldreich-Levin decoding, it can compute the correct value w∗ given y with non-
negligible probability. Furthermore this value w∗ is a valid representative witness
for the statement x̂. At this point, we switch the YES instance of L′ to a NO
instance (this can be done by sampling a random y, instead of a pseudorandom
y), without affecting the advantage of the adversary much. Hence, it must also
compute a valid representative witness for x̂ if we switch y to false. But this
contradicts the soundness of UWM. We remark that, for this reduction it suffices
even if the UWM is only selectively sound.

3.2 New Kinds of Lossy Trapdoor Functions

3.2.1 Cumulative Lossy Trapdoor Functions
Here we introduce the notion of “cumulative” lossy trapdoor functions
(C-LTDF). A (standard) lossy trapdoor function (LTDF) f can be sampled
in one of two indistinguishable modes – injective or lossy. In the injective mode,
the function f can be efficiently inverted with the knowledge of a trapdoor;
whereas in the lossy mode the function statistically loses a lot of information
about its input. We say that a function f with domain {0, 1}n is (n, k)-lossy if
its image size is at most 2n−k. Then, mapping a random x to f(x) loses at least
k bits of information about x.

Now, consider the information about x revealed by (f1(x), · · · , fm(x)), where
f1, · · · , fm are m independently sampled functions from an (n, k)-lossy function
family. According to the current definitions and constructions of LTDFs, up to
m(n−k) bits could be revealed about x; if m ≥ n/(n−k), x could be completely
determined by these values.

This is where C-LTDF differs from an LTDF. In a C-LTDF, the amount of
information about x that (f1(x), · · · , fm(x)) reveals is bounded by a cumulative
loss parameter α, irrespective of how large m is. Here the lossy functions fi can
all be sampled independently, but using the same public parameters. The formal
definition follows.

Definition 3 (C-LTDF). Let κ ∈ N be the security parameter, and �, α : N →
N. A (�, α)-cumulative lossy trapdoor function family (C-LTDF) is a tuple of
(probabilistic) polynomial time algorithms (setup, sampleinj, sampleloss, eval, invert)
(the last two being deterministic), having properties as follows:

• Parameter Generation. The setup algorithm setup(κ) outputs a public
parameter pp.

• Sampling: Injective mode. The algorithm sampleinj(κ, pp) outputs the
tuple (ek, tk) such that invert(tk, eval(ek, x)) = x for all x ∈ {0, 1}�(κ) (i.e.,
eval(ek, ·) computes an injective function fek(·) and invert(tk, ·) computes
f−1
ek (·)).

• Sampling: Lossy mode. For all pp in the support of setup(κ) there exists
an (inefficient) function compresspp : {0, 1}�(κ) → Rpp with range |Rpp| ≤
2�(κ)−α(κ), and for all ek in the support of sampleloss(κ, pp) there exists an
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(inefficient) function expandek(·) such that the following holds: for all x ∈
{0, 1}�(κ) we have eval(ek, x) = expandek(compresspp(x)).

• Indistinguishability of modes. The ensembles {(pp, ek) : pp ←
setup(κ), (ek, tk) ← sampleinj(κ, pp)}κ∈N and {(pp, ek) : pp ← setup(κ), ek ←
sampleloss(κ, pp)}κ∈N are computationally indistinguishable.

3.2.1.1 C-LTDF from the d-Linear Assumption
Due to space constraints, we present the construction of C-LTDF from the d-
linear assumption, and refer the reader to our full version [11] for the construction
from LWE.

The d-linear assumption [5] is a generalization of the Decision Diffie-Hellman
(DDH) assumption. For our construction, we will actually need Matrix d-Linear
assumption, which is implied by the d-Linear assumption, as shown by Naor and
Segev [36]. Due to space constraints, we only specify the d-Linear assumption
here, and refer the reader to our full version [11] for the definition of Matrix
d-Linear assumption.

Definition 4 (d-Linear assumption [5]). Let d ≥ 1 be an integer, and
GroupGen be as above. We say that the d-linear assumption holds for GroupGen
if the following two distributions are computationally indistinguishable:

{(g,G, p, {gi, g
ri
i }d

i=1, h, h
∑d

i=1 ri) : (g,G, p) ← GroupGen; gi, h
$←− G; ri

$←− Zp},

{(g,G, p, {gi, g
ri
i }d

i=1, h, hr) : (g,G, p) ← GroupGen; gi, h
$←− G; ri, r

$←− Zp},

Before specifying the assumption, we will need some additional notations as
follows.

Additional Notation. Let GroupGen be a PPT algorithm that takes as input the
security parameter κ and outputs the a triplet (G, p, g) where G is a group of
prime order p generated by g ∈ G. We denote by Rki(Fa×b

p ) the set of all a × b
matrices over the field Fp of rank i. For a vector x = (x1, · · · xn) ∈ F

n
p , we

define gx to be the column vector (gx1 , · · · , gxn) ∈ G
n. If M = (mij) is a n × n

matrix over Fp, we denote by gM the n × n matrix over G given by (gmij ).
Given any matrix M = (mij) ∈ F

n×n
p and a column vector y = (y1, · · · yn) ∈

G
n, we define by yM =

(

∏n
j=1 y

m1j

j , · · · ,
∏n

j=1 y
mnj

j

)

∈ G
n. For any matrix

R = (rij) ∈ G
n×n and a column vector z = (z1, · · · , zn) ∈ F

n
p , we define

by Rz =
(

∏n
j=1 r

zj

1j , · · · ,
∏n

j=1 r
zj

nj

)

∈ G
n. This naturally generalizes for two

matrices as well. In other words, for two matrices R ∈ G
n×n and Z ∈ F

n×n
p , we

denote by RZ = (Rz1 , · · · , Rzn ) ∈ G
n×n, where each Rzi (i ∈ [n]) is a column

vector in G
n (as defined above) and for all i, zi denotes the ith column of the

matrix Z.

The Construction. Let d ≥ 1 be a positive integer. Define the tuple c-ltdf =
(setup, sampleinj, sampleloss, eval, invert) as follows:
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1. setup(κ) : On input the security parameter κ, do the following:
• Run GroupGen(κ) to obtain the tuple (G, p, g).

• Sample a random matrix M
$←− Rkd(Zn×n

p ) and let S = gM ∈ G
n×n.

• Set the public parameter pp = (G, p, g, S).

2. sampleinj(κ, pp) : On input pp, chooses a random matrix M1
$←− Rkn(Zn×n

p )
and computes S1 = gM1 ∈ G

n×n. Set the function index as ek = S1 and the
associated trapdoor as tk = (g,M1).

3. sampleloss(κ, pp) : On input pp, chooses a random matrix M1
$←− Rkd(Zn×n

p )
and computes S1 = SM1 ∈ G

n×n. Set the function index as ek = S1.
4. eval(ek,x) : On input a function index ek and an input vector x ∈ {0, 1}n,

compute the function fek(x) = Sx
1 ∈ G

n.
5. invert(ek, tk,y) : Given a function index ek = S1, the trapdoor tk = (g,M1)

and a vector y ∈ G
n, do the following:

• Compute (z1, · · · , zn) = yM−1
1 .

• Let xi = logg(zi) for i = 1, · · · , n.
• Output the vector x = (x1, · · · , xn).

Theorem 2. Suppose the d-Linear assumption holds for GroupGen. Let pmax(κ)
be an upper bound on the order of the group generated by GroupGen(κ). Then
c-ltdf is an (n, (1 − ε)n))-cumulative lossy trapdoor function family, provided
ε > d log2 pmax(κ)/n(κ).

Due to space constraints, we present the proof in our full version [11].

3.2.2 Cumulative All-Lossy-But-One Trapdoor Functions
For our construction of dual mode witness maps (DMWM), we will need a
richer abstraction, which we call cumulative all-lossy-but-one trapdoor functions
(C-ALBO-TDF). These functions are associated with an additional branch
space B = {Bκ}κ∈N. For a C-ALBO-TDF, almost all the branches are lossy,
except for one branch which is injective. This notion of C-ALBO-TDF is actu-
ally contrary to the notion of All-But-One Lossy TDF (ABO-LTDF) defined by
Peikert and Waters [39]. ABO-LTDFs are also associated with many branches,
all but one of which are injective. Also, note that, we do not need any additional
public parameters in the definition C-ALBO-TDF, and we require that the
residual leakages of different lossy functions are “correlated” via the public key
(which is shared by different functions). Now, we formally define C-ALBO-TDF
and state its properties as below:

Definition 5 (C-ALBO-TDF). Let κ ∈ N be the security parameter and
�, α : N → N be functions. Also, let B = {Bκ}κ∈N be a collection of sets whose ele-
ments represent the branches. An (�, α)-cumulative all-lossy-but-one lossy trap-
door function family (C-ALBO-TDF) with branch collection B is given by a tuple
of (probabilistic) polynomial time algorithms (samplec-albo, evalc-albo, invertc-albo)
(the last two being deterministic), as follows:
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• Sampling a trapdoor function with given injective branch. For any
branch b∗ ∈ B, samplec-albo(κ, b∗) outputs the tuple (ek, tk), where ek is the
function index and tk is its associated trapdoor.

• (Injective branch). For the branch b∗, invertc-albo(tk, b∗, evalc-albo(ek,
b∗, x)) = x for all x ∈ {0, 1}�(κ) (i.e., evalc-albo(ek, b∗, ·) computes an injec-
tive function gek,b∗(·) over the domain {0, 1}�(κ), and invertc-albo(tk, b∗, ·)
computes g−1

ek,b∗(·)).
• (α-Cumulative Lossy branches). For all ek there exists an (inef-

ficient) function compressek : {0, 1}�(κ) → Rek with range |Rek| ≤
2�(κ)−α(κ), and for all ek, b there exists a function expandek,b(·) such
that the following holds. For all b∗ ∈ B, all ek is in the support of
samplec-albo(κ, b∗), all b �= b∗ and all x ∈ {0, 1}�(κ), we have

evalc-albo(ek, b, x) = expandek,b(compressek(x)).

• Hidden injective branch. ∀ b∗
0, b

∗
1 ∈ B, the ensembles {ek0 : (ek0, tk0) ←

samplec-albo(κ, b∗
0)}κ∈N and {ek1 : (ek1, tk1) ← samplec-albo(κ, b∗

1)}κ∈N are
computationally indistinguishable.

3.2.3 C-ALBO-TDF from iO and C-LTDF
In this section, we present our construction of cumulative all-lossy-but-one
LTDF (C-ALBO-LTDF). We show a generic transformation from C-LTDF to
C-ALBO-TDF using iO. The main idea of our construction is as follows: We
obfuscate a program that has the public parameters pp of C-LTDF hardwired
in it and internally it runs either sampleinj or sampleloss depending on the branch
b. In other words, on input a branch b, it applies a pseudorandom function to
b to sample a fresh lossy branch, except for the special branch b∗ on which it
outputs a hard-coded injective C-LTDF key. Due to space constraints, we refer
to the full version of our paper [11] for the detailed construction.

Theorem 3. Let c-ltdf be a collection of (�, α)-cumulative LTDF, iO be an
indistinguishability obfuscator for circuits, F be a secure puncturable PRF with
input space B. Then the construction c-albo-tdf sketched above is a collection
of (�, α)-cumulative all-lossy-but-one trapdoor functions.

The detailed proof of this theorem is given in full version [11].

3.3 Construction of Dual Mode Witness Maps

In this section, we present a construction of dual mode witness maps (DMWM)
for any NP relation R� (see Fig. 2). The main building blocks of our construction
are an appropriately lossy compact witness map (CWM) and a cumulatively all-
lossy-but-one trapdoor function (C-ALBO-TDF).

Intuition Behind the Construction. The CRS of DMWM will consist of the func-
tion index ek of C-ALBO-TDF sampled using the special injective tag tag∗
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(we require that the tag space of DMWM is same as the branch space of
C-ALBO-TDF) as well as a CRS of CWM. To compute a proof for a statement
x with witness w under a tag tag, the prover computes Y = evalc-albo(ek, tag, w)
and then uses the CWM to prove that Y was computed correctly using a valid
witness w for the statement x. The completeness and soundness of DMWM fol-
lows directly from the completeness and soundness guarantees of CWM. The
cumulative lossiness of dmwm follows from the cumulative lossiness of CWM
and C-ALBO-TDF.

(a) Let c-albo-tdf = (samplec-albo, evalc-albo, invertc-albo) be collection of (�, (� − α′))-
c-albo-tdf, with branch space B.

(b) Let cwm = (cwm.setup,cwm.map,cwm.check) be a α-cwm (please refer to Sec-
tion 3) for the following language:

L := x, ek, tag, Y
)
: ∃ w s.t. Y = evalc-albo(ek, tag, w) ∧ (x, w) ∈ R�

}

We construct dmwm = (dmwm.setup,dmwm.map,dmwm.check,dmwm.extract) with
tag space T = B for the NP relation R� as follows:

1. dmwm.setup(κ, �, tag) : Here tag ∈ T . Run cwm.setup(κ, �) to output a string K′

of length polynomial in the security parameter κ. Also, run samplec-albo(κ, tag) to
output the tuple (ek, tk). Set K = (K′, ek) and the trapdoor td = tk.

2. dmwm.map(K, tag′, x, w): Here tag′ ∈ T . Parse K as K = (K′, ek), and do the
following:

• Compute Y = evalc-albo(ek, tag′, w), and
• Compute w∗

cwm = cwm.map(K′, (x, ek, tag′, Y ), w).

Output the representative witness w∗ = (Y, w∗
cwm).

3. dmwm.check(K, tag′, x, w∗): Parse K = (K′, ek) and w∗ = (Y, w∗
cwm). Output

cwm.check(K′, (x, ek, tag′, Y ), w∗
cwm).

4. dmwm.extract(td, x, w∗): Parse w∗ = (Y, w∗
cwm). Output invertc-albo(td, tag, Y ),

where (ek, tk) ← samplec-albo(κ, tag) was generated as part of setup using the
same tag tag.

Fig. 2. Construction of dmwm for an NP relation R�.

Theorem 4. Let α, α′ ≥ 0, and α′′ = (α + α′). Let cwm be a (selectively)
sound α-CWM for the NP language L, c-albo-tdf let a collection of (�, (�−α′))-
cumulative all-lossy-but-one LTDF with branch space B. Then the construction
dmwm defined in Fig. 2 is α′′-DMWM with tag space T = B for the NP rela-
tion R�.

The detailed proof of this theorem is given in full version of our paper [11].
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4 Fully Leakage and Tamper-Resilient Signature Scheme

A signature scheme with setup sig is a tuple of PPT algorithms sig =
(setup, keygen, sign, verify). The setup algorithm takes as input the security
parameter κ, and outputs a set of public parameters pub, which is taken as an
implicit input (along with κ) by all the other algorithms. We denote the message
space (implicitly parametrized by κ) as M. We shall require perfect correctness:
For all pub ← sig.setup(κ), any key pair (ssk, vk) produced by sig.keygen and
all messages m ∈ M, we require sig.verify(vk, (m, sig.sign(ssk,m))) = 1.

We define fully-leakage and tamper-resilient (FLTR) signature security, in
the bounded leakage and tampering model. Before defining the model formally,
we provide an informal description here. In this model, first the challenger sets
up the public parameters pub, and also generates a key-pair (ssk, vk). Then,
vk is given to the adversary, and as in the case of standard signature security
experiment, the adversary is given access to a signing oracle and it attempts
to produce a valid signature on a message which it has not queried. But in
addition, the adversary has access to a leakage oracle and a tampering oracle, as
described below. Leakage and tampering act on st, which consists of the signing
key ssk and all the randomness used by the signing algorithm thus far. Note that
here, for definitional purposes, we allow sig.sign to be randomized, though in
our construction it will be deterministic.

Leakage: The adversary can adaptively query the leakage oracle with any effi-
ciently computable functions f and will receive f(st) in return (subject to bounds
below).

Tampering: The adversary can adaptively query the tampering oracle with effi-
ciently computable functions T , and on each such query, the tampering oracle
will generate a signing key and randomness for signature: (˜ssk, r̃) = T (st). Subse-
quently, the adversary can adaptively query each signing oracle sig.sign(˜ssk, ·, r̃),
any number of times (subject to bounds below).

Bounds on Queries: The total output length of all the leakage functions ever
queried to the leakage oracle is bounded by λ(κ). For tampering, there is an
upper bound t(κ) on the total number of tampering functions queried by the
adversary. However, the adversary may ask an unbounded number of untampered
or tampered signing queries to the signing oracle. We shall denote an FLTR
signature scheme with security subject to these bounds as (λ, t)-FLTR signature
scheme.

4.1 Security Model for FLTR Signatures

Definition 6 ((λ, t)-FLTR security). We say that a signature scheme sig =
(sig.setup, sig.keygen, sig.sign, sig.verify) is (λ, t)-fully-leakage and tamper-
resilient (FLTR) if for all PPT adversaries/forgers F there exists a negligible
function negl : N → {0, 1} such that Pr

[

Success
(λ,t)-FLTR
Π,F (κ)

]

≤ negl(κ), where
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the event Success
(λ,t)-FLTR
Π,F (κ) is defined via the following experiment between a

challenger C and the forger F :

1. Initially, the challenger C computes pub ← sig.setup(κ) and (ssk, vk) ←
sig.keygen(κ, pub), and sets st = ssk.

2. The forger on receiving pub and vk, can adaptively query the following oracles
as defined below:

• Signing queries: The signing oracle sig.sign∗
ssk(·) receives as input a

message mi ∈ M. The challenger C then samples ri ← R, and computes
σi ←sig.sign(ssk,m, ri). It appends ri to st and outputs σi.

• Leakage queries: The leakage oracle receives as input (the descrip-
tion of) an efficiently computable function fj : {0, 1}∗ → {0, 1}λj , and
responds with fj(st).

• Tampering queries: When the forger F (adaptively) submits the
ith tampering query Ti, the challenger computes (˜sski, r̃i) = Ti(st).
Subsequently, F can adaptively query the tampered-signing oracle
sig.sign(˜sski, ·, r̃i) using messages in M. We call these as “tampered sign-
ing queries”.

3. Eventually, F outputs a message-signature pair (m∗, σ∗) as the purported
forgery.

Success
(λ,t)-FLTR
Π,F (κ) denotes the event in which the following happens:

• The signature σ∗ verifies with respect to the original verification key vk, i.e.,
sig.verify(vk, (m∗, σ∗)) = 1.

• m∗ was never queried as input to the signing or tampered signing oracle by
the forger F .

• The output length of all the leakage functions
∑

j λj is at most λ(κ).
• The number of tampering queries made by F is at most t(κ).

We also consider a selective variant of the above definition, where the mes-
sage m∗ (on which the forgery is to be produced) is declared by the adversary
before receiving the public parameters pub and the verification key vk. We call
this selectively unforgeable (λ, t)-FLTR signature scheme. We shall focus on this
model in our construction (see Sect. 4.2) and note that one can convert a selec-
tively unforgeable (λ, t)-FLTR signature scheme to an adaptively secure one by
relying on complexity leveraging, when appropriate.

4.2 Construction of Our FLTR Signature Scheme

In this section, we present our construction of FLTR signature scheme. In Fig. 3,
we present this construction.
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1. Let spr = (spr.gen, spr.eval) be a family of SPR functions from {0, 1}d(κ) to
{0, 1}m(κ), where m(κ) � d(κ).

2. Let dmwm = (dmwm.setup,dmwm.map,dmwm.check,dmwm.extract) be a κ-lossy
dual-mode witness map (DMWM) (refer to Definition 2) with tag space T = M for
the following language:

L := s, y
)
: ∃ x s.t. y = spr.evals(x)

)}

Define the signature scheme sig = (sig.setup, sig.keygen, sig.sign, sig.verify) as follows:

1. sig.setup(κ): On input κ, sample s ← spr.gen(κ). It then samples a random tag
tag ∈ T , computes (K, td) ← dmwm.setup(κ, �, tag), and discards the trapdoor tk.
Set pub := (s,K).

2. sig.keygen(κ, pub): On input the public parameters pub, it samples x ← {0, 1}d(κ)

uniformly at random, and compute y = spr.evals(x). Output the signing key ssk = x,
and the verification key vk = y.

3. sig.sign(ssk, m): On input a message m, do the following:

• Set the tag tag of dmwm to be tag = m.
• Re-compute the value y = spr.evals(x).
• Generate a representative witness w∗ ← dmwm.map K, tag, (s, y), x

)
, where (s, y)

is the statement and x is the corresponding witness.
• Output the signature σ = w∗.

4. sig.verify(vk, (m, σ)): Parse the signature σ as σ = w∗. It then sets tag = m and runs
dmwm.check K, tag, (s, y), w∗)

to check if the mapping verifies correctly. It outputs
1 if and only if the above verification evaluates to 1.

Fig. 3. Construction of FLTR Signature Scheme sig

Theorem 5. Let λ(κ), t(κ), d(κ) and m(κ) be parameters. Let spr be a second
pre-image resistant function mapping d(κ) bits to m(κ) bits, and dmwm be a
κ-lossy DMWM with tag space T = M (where M is the message space of sig).
Then the above construction sig is a

(

λ(κ), t(κ)
)

-FLTR signature scheme, as
long as the parameters satisfy:

0 ≤ λ(κ) ≤ d(κ) − κ
(

t(κ) + 1)
)

− m(κ) − ω(log κ).

Hence, the relative leakage rate is λ(κ)
d(κ) ≈ 1 − κ(t(κ)+1)−m(κ)−ω(log κ)

d(κ) = 1 − o(1),
for an appropriate choice of

(

κ(t(κ) + 1) − m(κ) − ω(log κ)
)

= o(d(κ)). The
tampering rate ρ(κ) is ρ(κ) = t(κ)

d(κ) = O(1/κ).

Due to space constraints, we present the proof of Theorem 5 in the full version
of our paper [11].

Extension to Continuous Leakage and Tampering. Our construction can
be readily extended to a model of continuous leakage and tampering, with peri-
odic (tamper-proof) key updates. To this end, first we note that we can replace
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the SPR function family used in our construction with a ‘entropy-bounded” or
“noisy” leakage-resilient one-way relations (LR-OWR) [9,16]. Then, we show
that the only modification required to upgrade our LTR signature construction
to the setting of continuous leakage and tampering is to further replace the noisy
LR-OWR above with its continuous leakage analogue, which we call noisy con-
tinuous LR-OWR (CLR-OWR), as defined by Dodis et al. [15]. Our construction
bypasses the impossibility result of [22] by allowing the signing key to periodi-
cally update in between leakage and tampering queries. We refer the reader to
the full version [11] for further details.
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N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 456–468. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7 37

18. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable arguments of knowledge. In:
Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 121–150. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 6

19. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage
and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10031, pp. 877–907. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53887-6 32

20. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11799-2 21

21. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, pp. 416–426 (1990)

22. Fujisaki, E., Xagawa, K.: Public-key cryptosystems resilient to continuous tam-
pering and leakage of arbitrary functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 908–938. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 33

23. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC, pp. 467–476 (2013)

24. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of ran-
dom functions (extended abstract). In: Blakley, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-39568-7 22

25. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Proceedings of the Innovations in Computer
Science - ICS 2010, Tsinghua University, Beijing, China, 5–7 January 2010, pp.
230–240 (2010)

https://eprint.iacr.org/2020/090
https://eprint.iacr.org/2020/090
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-030-03329-3_20
https://doi.org/10.1007/978-3-030-03329-3_20
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-662-47672-7_37
https://doi.org/10.1007/978-3-662-54365-8_6
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-642-11799-2_21
https://doi.org/10.1007/978-3-662-53887-6_33
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/3-540-39568-7_22


246 S. Chakraborty et al.

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC, pp. 291–304. ACM (1985)

27. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

28. Goyal, V., Jain, A., Khurana, D.: Non-malleable multi-prover interactive proofs and
witness signatures. Technical report, Cryptology ePrint Archive, Report 2015/1095
(2015)

29. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 41

30. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM CCS, pp. 669–684. ACM (2013)

31. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

32. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

33. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 89–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 7

34. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

35. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

36. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 2

37. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC, pp. 33–43. ACM (1989)

38. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196 (2008)

39. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

40. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 7

41. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484. ACM (2014)

42. Yuen, T.H., Yiu, S.M., Hui, L.C.K.: Fully leakage-resilient signatures with auxiliary
inputs. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp.
294–307. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-
3 22

https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-642-31448-3_22
https://doi.org/10.1007/978-3-642-31448-3_22


Encryption Schemes



Memory-Tight Reductions for Practical
Key Encapsulation Mechanisms

Rishiraj Bhattacharyya(B)

NISER, HBNI, Bhubaneswar, India
rishiraj.bhattacharyya@gmail.com

Abstract. The efficiency of a black-box reduction is an important goal
of modern cryptography. Traditionally, the time complexity and the suc-
cess probability were considered as the main aspects of efficiency mea-
surements. In CRYPTO 2017, Auerbach et al. introduced the notion of
memory-tightness in cryptographic reductions and showed a memory-
tight reduction of the existential unforgeability of the RSA-FDH signa-
ture scheme. Unfortunately, their techniques do not extend directly to
the reductions involving intricate RO-programming. The problem seems
to be inherent as all the other existing results on memory-tightness are
lower bounds and impossibility results. In fact, Auerbach et al. conjec-
tured that a memory-tight reduction for IND-CCA security of Hashed-
ElGamal KEM is impossible.

– We refute the above conjecture. Using a simple RO simulation tech-
nique, we provide memory-tight reductions of IND-CCA security of
the Cramer-Shoup and the ECIES version of Hashed-ElGamal KEM.

– We prove memory-tight reductions for different variants of Fujisaki-
Okamoto Transformation. We analyze the modular transformations
introduced by Hofheinz, Hövermanns and Kiltz (TCC 2017). In addi-
tion to the constructions involving implicit rejection, we present a
memory-tight reduction for the IND-CCA security of the transfor-
mation QFO⊥

m . Our techniques can withstand correctness-errors, and
applicable to several lattice-based KEM candidates.

Keywords: Memory-tight reduction · Hashed-ElGamal · FO
transformation

1 Introduction

Memory Efficiency of Black-Box Reductions. Black-box reduction is an
imperative tool in modern cryptography. The security of any scheme S is typ-
ically argued by an algorithm R. Given an adversary, AS against S, R with
black-box access to A is shown to solve some underlying hard problem P. The
efficiency of a black-box reduction is measured by the resources R uses, typi-
cally in terms of A. Traditionally the reductions aimed at optimizing the time
complexity and/or the success probability [4,5,11]. However, Auerbach et al.
[3] observed that some reductions which are tight in success probability and
c© International Association for Cryptologic Research 2020
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time complexity, require a large amount of memory. If the underlying problem
is memory sensitive (easier to solve with larger memory), then a memory loose
reduction does not rule out the existence of an efficient adversary. They noted
further that many of the standard assumptions including LPN, SVP, Discrete
Logarithm Problem in prime fields, factoring are memory sensitive. Hence it is
imperative to find memory-efficient reductions when the security is based on the
hardness of these problems.

Unfortunately, most of the existing results on memory-tight reductions are
lower bounds. In [3], authors ruled out memory-tight, restricted black-box reduc-
tions for the security of multi-signatures from unique signatures, and multicolli-
sion resistance from collision resistance. In [21], Wang et al. showed lower bounds
for a larger class of black-box reductions including the security of public-key
encryption and signature schemes in the multi-user setting. In [14], Demay et al.
considered the indifferentiability notion in the memory restricted setting, and
proved the impossibility of domain extension of hash functions (even by one bit).

On the other hand, to the best of our knowledge, the only positive result
so far is the memory-efficient reduction for RSA FDH in the Random Ora-
cle model [3]. The authors introduced new techniques for the random oracle
model and showed, using pseudo-random functions and the power of rewinding
the adversary once, one can prove a memory-tight reduction of the existential
unforgeability of RSA-FDH from RSA assumption. Their technique seems to
be generally applicable for hash and sign paradigm, where the domain of the
underlying trapdoor permutation enjoys some form of homomorphism (required
for applying Coron’s technique [12]).

Key Encapsulation Mechanisms. A Key Encapsulation Mechanism (KEM)
is a fundamental primitive to construct efficient public-key cryptosystem.
Research in KEM design has been rejuvenated in the last few years due
to the ongoing effort to standardize post-quantum cryptographic algorithms.
While constructions of IND-CCA secure KEM in the “classical” setting have
been known for years (see [15] for a comprehensive treatment), the reductions
were non-tight, and required perfect correctness from the underlying public-key
encryption scheme. There are numerous recent works on KEM in the quan-
tum setting [10,16,17,19,20]. However, not much progress has been made in the
classical setting until the work of Hofheinz, Hövermanns and Kiltz [16]. HHK
revisited the KEM version of Fujisaki Okamoto transformations and presented a
modular analysis of multiple variants. Their results, notably include, tight reduc-
tion (traditional sense) even when underlying public-key encryption scheme has
some correctness error.

1.1 Our Contributions

In this paper, we present memory-efficient reductions of the IND-CCA security
of hashed-ElGamal and other variants of Fujisaki-Okamoto transformations.

Memory-Tight Reduction for Hashed-ElGamal. Our starting point is the
following conjecture of Auerbach et al. [3].
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Conjecture 1 [3]. Memory-tight Reduction for Hashed-ElGamal does not exist.

In this paper, we refute the above conjecture. We introduce a simple “map-
then-prf” technique to simulate the random oracle in a memory-efficient way.
Our technique programs the Random Oracle non-adaptively, avoiding the need
to tabulate the Random Oracle queries. We consider two versions of Hashed-
ElGamal KEM, ECIES [1,2] and HEG [13]. We summarize these results in the
following two informal theorems.

Theorem 2 (Informal). Let G be a prime-order cyclic group. Let F :
{0, 1}λ+1 × G × G → K be a prf. There exists a memory-tight reduction, in
the random oracle model, of the IND-CCA security of HEG over G and K from
the gap-Diffie-Hellman problem over G.

Theorem 3 (Informal). Let G,GT be prime-order cyclic groups and ê : G ×
G → GT be a bilinear map. Let F : {0, 1}λ × GT → K be a prf. There exists a
memory-tight reduction, in the random oracle model, of the IND-CCA security
of ECIES over G and K from the Computational-Diffie-Hellman problem over G.

Memory-Tight Reduction for Variants of Fujisaki-Okamoto Transfor-
mations. Fujisaki-Okamoto transformation and other related KEM construc-
tions have gained particular importance in recent years for their applications in
constructing post-quantum KEM schemes. In particular, the modular analysis
in [16] has been applied widely in constructing lattice-based candidates. In this
paper, we prove memory-tight reduction for three variants of Fujisaki-Okamoto
transformations (described in Table 1).

We revisit the analysis in [16] and show techniques for memory-tight reduc-
tions for all the modules, even withstanding the correctness errors. We summa-
rize the results below.

– Transformations U�⊥,U�⊥
m,U⊥,U⊥

m. In [16], the authors presented four
closely related modules to construct an IND-CCA secure KEM from a public-
key encryption scheme PKE. The security requirement from PKE depends on
the specific variant of U. In this paper, we show new RO simulation tech-
niques for all the four variants to convert corresponding the reductions in [16]
into memory-tight ones.

– Preprocessing Module T . In [16], the transformation T was presented as
the preprocessing module to convert (with a tight reduction) an IND-CPA
secure public-key encryption scheme PKE to a deterministic OW-PCVA
secure public-key encryption scheme. We observe that the RO simulation
technique of Auerbach et al. [3], is sufficient for a memory-tight reduction for
OW-PCA security of T [PKE]. When applied with the new reductions for U�⊥

and U�⊥, this gives a memory-tight reduction for the IND-CCA security of
KEM�⊥ and KEM�⊥

m respectively.
– A new intermediate module V . The modules with explicit reject, (namely

U⊥
m and U⊥) require security relative to a ciphertext verification oracle. Unfor-

tunately, our technique only proves OW-PCA security of T . To bridge the gap,
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we present a transformation V to convert a OW-PCA deterministic public-
key encryption scheme to a OW-PCVA deterministic public-key encryption
scheme via a memory-efficient reduction. When applied with T and U⊥

m, we
get a memory efficient reduction (in the classical setting) for the scheme
QKEM⊥

m of [16] (Table 4 in [15]).

Table 1. Considered variants of Fujisaki-Okamoto transformations. PKE =
(Keygen, Enc, Dec) is an IND-CPA secure public-key encryption scheme. In the column
Decap, s is a random string, sk′ = sk||s.

Constructions Encap(pk) Decap(sk′, c)

KEM�⊥ =

U �⊥
[
T [PKE, G], H

] m
$←− M

c = Enc(pk, m, G(m))

K = H(m, c)

m′ = Dec(sk, c)

if m′ �=⊥ ∧c = Enc(pk, m′, G(m′)) then

K = H(m′, c)

else K = H(s, c)

KEM�⊥
m =

U �⊥
m

[
T [PKE, G], H

] m
$←− M

c = Enc(pk, m, G(m))

K = H(m)

m′ = Dec(sk, c)

if m′ �=⊥ ∧c = Enc(pk, m′, G(m′)) then

K = H(m′)
else K = H(s, c)

QKEM⊥
m =

U⊥
m

[
V

[
T [PKE, G], H′

]
, H

] m
$←− M

c1 = Enc(pk, m, G(m))

c2 = H′(m) c = c1||c2
K = H(m)

Parse c = c1||c2, m′ = Dec(sk, c1)

if m′ �=⊥ ∧c1 = Enc(pk, m′, G(m′)) ∧ c2 =

H′(m′)
K = H(m′)

else K =⊥

Other Implications. Besides memory efficiency, we found two additional impli-
cations of our work. This result refutes the folklore idea that the additional hash
present in the QKEM⊥

m transformation is redundant in the classical setting [15–
17]. The second implication is that V composed with T gives a OW-PCVA
secure encryption scheme from an IND-CPA secure encryption scheme without
the γ-spread requirement of [16].

1.2 Overview of Our Techniques

Challenges with Existing Technique. The memory-efficient technique to
simulate an RO in [3] (and later suggested in [8] in the context of KEM) is to
evaluate a PRF on the input. However, in the IND-CCA security reduction for
key encapsulation mechanisms, the reduction often needs to adaptively program
the output of the RO. Evaluating the prf directly on the query input does not
provide the required programming capability.

For example, consider the basic construction of a Key Encapsulation Mecha-
nism from a deterministic public-key encryption scheme PKE = (Gen, Enc, Dec).
The public-key, secret-key of the KEM would be a key pair (pk, sk) ← Gen. An
encapsulation involves choosing a random message m, and computing

c = Enc(pk,m), k = H(m, c).

The output of the encapsulation is (c, k). A traditional security proof assuming
H to be a random oracle would be to maintain a table containing the queries and
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corresponding responses of H queries. Whenever the adversary makes a decap-
sulation query on ĉ, the reduction will check the table whether it contains an
entry (m̂, ĉ, ĥ) such that Enc(pk, m̂) returns ĉ. If such an entry exists, the answer
tothe decapsulation query would be ĥ. Otherwise the reduction would return a
randomly sampled element ĥ′, and save (−, ĉ, ĥ′) in the list. The first entry will
be filled up when, in a future hash query, the adversary submits (m̂, ĉ) where
ĉ = Enc(pk, m̂).

Now consider a memory-efficient reduction where simulation of H is performed
using a prf F (k, .). A hash query on (m̂, ĉ) is returned with F (k, m̂, ĉ). The
problem arises when simulating the decapsulation query ĉ. As the entries are no
longer saved in a table, the reduction cannot find the required m̂ to complete the
prf evaluation! One may attempt to solve the issue by answering the hash query
with F (k, ĉ). In that case, the decapsulation queries can be answered. However,
two hash queries with the same ĉ but different m̂ would result in a collision!
Hence, this idea fails as well.

Core of our Idea: “injectively map and prf”. Our method originates from
the following observation. Let us call (m̂, ĉ) a good pair if ĉ = Enc(pk, m̂). In the
IND-CCA security game, the answer to a decapsulation query ĉ needs to match
with the response of a hash query (m̂, ĉ) only when (m̂, ĉ) is a good pair. When
answering hash queries on a good pair (m̂, ĉ), we can “program” the output to
be F (k,m0, ĉ) (m0 being any fixed message). For pairs which are not good, we
can query an independent prf F ′(k, m̂, ĉ) to compute the responses. Answer to
a decapsulation query on (a valid ciphertext) ĉ will simply be F (k,m0, ĉ). The
idea can be generalized as “Apply an appropriate injective function φ on the
input, and then apply the prf”. As the composition of an injective function with
a prf results into a prf, we can use the arguments of [3]. This basic technique
can readily be applied to the Cramer-Shoup version of Hashed-ElGamal, as well
as the modules U �⊥, and U⊥.

Technique for U�⊥
m,U⊥

m. In these cases, the hash function is evaluated only on
m. Thus, the above idea is not applicable directly. However, as PKE is deter-
ministic, the reduction can still construct a good pair by simply computing
ĉ = Enc(pk, m̂), and respond a hash query on m̂ by F (k, ĉ). We no longer need
to use the independent prf F ′, as the hash query only contains the message.

Interestingly, the technique works even if PKE has amall correctness errors.
Although, Enc(pk, .) is no longer injective, finding a collision in the output of
Enc(pk, .) implies finding a correctness error. Conditioned on no collision in the
output of Enc(pk, .), the argument of [3] goes through. However, one needs to be
careful here, as pointed out in [8]. In some definition of deterministic encryption,
it is easy to come up with a scheme where a ciphertext decrypts to a message
which in turn encrypts to a different ciphertext. To solve the issue, we require
that for every message m̂ there exists a single ciphertext ĉ that decrypts to m̂.
Our definition of deterministic encryption is carefully considered to maintain
this property. Moreover, the schemes generated by the transformation T of [16]
satisfies the definition.
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Technique for ECIES. In the case of ECIES, we have a group G of prime
order q with a generator g ∈ G. A public-key is a random element X with
the corresponding secret-key x such that X = gx. The encapsulation involves
choosing a random y

$←− Zq and computing

Y = gy Z = Y x k = H(Z)

The output of the encapsulation is (Y, k). While ECIES is analogous to U �⊥
m, we

cannot find Y from Z! Hence, we cannot “map to ciphertext space” and apply F .
Fortunately, the “map-then-prf” technique is not limited to mapping to the

ciphertext space. We note, when ECIES is implemented using a pairing friendly
curve, there exists a bilinear map ê : G × G → GT for some GT . Moreover,
by the bilinear property, ê(gx, gy) = ê(g, gxy). We simulate the random oracle
using F (k, ê(g, .)). The decapsulation oracle can maintain consistency by using
F (k, ê(X, .)).

2 Notations and Preliminaries

If S is a set |S| denotes the size of S. x
$←− S denotes the process of choosing

x uniformly at random from S. [n] denotes the set of first n natural numbers.
Composition of two functions is denoted by ◦. If F̂ = F ◦φ, then F̂ (x) = F (φ(x)).

Algorithms and Security Games. The algorithms and complexities consid-
ered in the papers are in the RAM model. The algorithms have access to memory
and constant number of registers, each having size of one word. For a determin-
istic (resp. probabilistic) algorithm A, y = A(x) (resp y

$←− A(x)) denotes y is
the (resp. uniformly sampled) output of A on input x. AO denotes that A has
access to O as an oracle. The oracles in this paper may be stateful ; stO denotes
the state of the RAM O. As followed in [3], A with oracle access to O cannot
access stO.

Security Games. The results are proven in the framework of code based games
of [6]. A game G consists an algorithm consists of a main oracle, and zero or more
stateful oracles O1, O2, · · · , On. If a game G is implemented using a function f ,
we write G[f ] to denote the game.

Complexity Measures. In this paper, we consider the following three com-
plexity measures of an algorithm.

Success Probability. The success probability of an algorithm A in game G

is defined by SuccA,G
def
= Prob[GA = 1].

Time Complexity. The time complexity of an algorithm A, denoted by
Timeλ(A), is the number of computation steps performed by A in the worst
case over all possible input of size λ. When A plays a security game G, the time
complexity of the game, denoted by LocalTimeλ(GA), is the time complexity of
A plus the number of queries A makes to the oracle.1

1 In [3], authors defined the local time of the game only by the number of computations
of A. In this paper we explicitly include the number of queries made to the oracle.
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Memory Complexity. Following [3,21], we define the memory complexity of
an algorithm A to be the size of the code plus the worst-case number of registers
used in memory at any step in computation, over all possible input of size λ and
random coins. LocalMemλ(GA) denotes the memory complexity of A (not the
oracles) in the security game G.

Reductions and Efficiency. We follow the definition of black-box reductions
proposed in [18]. A cryptographic primitive P is a family of efficiently computable
functions f : {0, 1}∗ → {0, 1}∗. Security of P is described using a game G. An
adversary A is said to P-break f with probability ε, if

SuccA,G[f ] = ε.

We follow the following definition of a cryptographic reduction.

Definition 1. Let P,Q be cryptographic primitives and GP and GQ be the cor-
responding security games respectively. A reduction from P to Q is a pair of
algorithms C, R such that

– Cf ∈ Q for all f ∈ P
– For all f ∈ P, for all adversary A that Q-breaks Cf , the algorithm RA

P-breaks f .

Memory-Tight Reductions. Following [3,21], we define memory-tight reduc-
tions as follows.

Definition 2. A Cryptographic reduction (C, R) from P to Q is called memory-
tight, if for all f ∈ P,

SuccA,GQ[Cf ] ≈SuccRA,GP [f ]

LocalTimeλ(RA) ≈LocalTimeλ(A)

LocalMemλ(RA) ≈LocalMemλ(A)

Hardness Assumptions. The security proofs of Hashed-ElGamal variants are
reduced from the Computational Diffie-Hellman and gap-Diffie-Hellman assump-
tion. Consider the CDH game described in Fig. 1.

Game CDH(q, g,G)

1 : x
$←− Z

∗
q

2 : y
$←− Z

∗
q

3 : z ← A(gx, gy)

4 : if z = gxy return 1

5 : else return 0

Oracle DDH(X,Y, Z)

1 : if ∃y such that Y = gy and Z = Xy

2 : return 1

3 : else

4 : return 0

Fig. 1. CDH game and gap-DH game. In gap-DH game, A has oracle access to DDH(·, ·, ·)
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Definition 3 (gap-Diffie-Hellman Assumption). Let q be a prime. Let G = 〈g〉
be a cyclic group of order q. The (t, μ, ε) gap-Diffie-Hellman (gap-DH) assump-
tion states that for all adversary A that runs in times t and uses μ bites of
memory,

SuccADDH,CDH ≤ ε

The Computational Diffie-Hellman assumption is defined in the same way, except
the condition that A has no access to the DDH oracle.

Key Encapsulation Mechanism. A key encapsulation mechanism KEM con-
sists of three algorithms; Gen, Encap, Decap. The key generation algorithm Gen
takes a security parameter 1λ as input and outputs a public key pk and a
secret key sk. The encapsulation algorithm Encap, on input pk, outputs a key-
ciphertext pair (c,K), where K ∈ K for some non-empty set K. c is said to be
the encapsulation of K. The deterministic decapsulation algorithm Decap takes
an encapsulation c as input along with sk, and outputs a key K ∈ K. A PKE is
called δ-correct if

Prob[Decap(sk, c) 
= K|(pk, sk) ← Gen; (c,K) ← Encap(pk)] ≤ δ

IND-CCA security of a Key Encapsulation Mechanism. We recall the
IND-CCA security game for a Key Encapsulation Mechanism in Fig. 2. The
IND-CCA advantage of an adversary A against PKE is defined as

AdvIND-CCA
A,KEM

def
=

∣
∣
∣
∣
SuccA,IND-CCA − 1

2

∣
∣
∣
∣
.

Game IND-CCA

1 : (pk, sk) ← Gen(1λ)

2 : b
$←− {0, 1}

3 : (c∗,K∗
0 ) ← Encap(pk)

4 : K∗
1

$←− K
5 : b′ ← ADecap(c∗,K∗

b )

6 : if b = b′ return 1

7 : else return 0

Oracle Decap(c)

1 : if c = c∗return ⊥
2 : K ← Decap(sk, c)

3 : return K

Fig. 2. IND-CCA game for KEM

Game COR

1 : (pk, sk) ← Gen(1λ)

2 : m ← A(pk, sk)

3 : c ← Enc(pk,m)

4 : if m �= Dec(sk, c) return 1

5 : else return 0

Fig. 3. Correctness game for PKE
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Public-Key Encryption. A public-key encryption scheme consists of three
algorithms, PKE = (Gen, Enc, Dec). There are three sets associated with PKE,
the message space M, the randomness space R, and the ciphertext space C. The
key generation algorithm takes the security parameter as input and outputs a
public-key, secret-key pair (pk, sk). The encryption algorithm takes the public
key pk, and a message m ∈ M as input, samples a random string r

$←− R, and
outputs a ciphertext.c ← Enc(pk,m, r). The decryption algorithm Dec, on input
sk and a ciphertext c, outputs a message m = Dec(sk, c) ∈ M or a special
symbol ⊥ /∈ M. We say, c is an invalid ciphertext, if Dec(sk, c) =⊥.

Deterministic Public Key Encryption. We call a public-key encryption
scheme PKE deterministic, if the algorithm Enc is deterministic and for every
message m ∈ M, there exists a unique c ∈ C such that Dec(sk, c) = m. We write
c ← Enc(pk,m) for deterministic encryption.

Correctness. Following [16], we define the correctness of a public-key encryp-
tion scheme by the security game COR in Fig. 3.

Definition 4. Let δ : N → [0, 1] be an increasing function. Consider the game
COR in Fig. 3. A public-key encryption scheme PKE is called δ-correct, if for all
adversary A with running time bounded by t,

SuccA,COR[PKE] ≤ δ(t)

where the probability is taken over the randomness of Gen and A. Moreover, we
say PKE is strongly δ correct, if ∀ t, δ(t) ≤ δ.

Game OW-PCVA

1 : (pk, sk) ← Gen(1λ)

2 : m
$←− M

3 : c ← Enc(pk,m)

4 : m′ ← APCO,CVO(pk, c)

5 : if m′ = Dec(sk, c) return 1

6 : else return 0

Procedure PCO(m, c)

1 : if m = Dec(sk, c) return 1

2 : else return 0

Procedure CVO(c)

1 : m ← Dec(sk, c)

2 : if m ∈ M return 1

3 : else return 0

Fig. 4. Game OW-PCVA. In the game OW-PCA (resp. OW-VA), A has oracle access
to only PCO (resp. CVO).

Security. Following [16], we define three security games for a public-key encryp-
tion scheme, OW-PCA, OW-VA, and OW-PCVA in Fig. 4. In OW-PCA game,
the adversary has oracle access to PCO. In the OW-VA game, the adversary has
oracle access to CVO. In OW-PCVA game, the adversary has oracle access to
both PCO and CVO. For ATK ∈ {PCA,VA,PCVA}, we define the corresponding
advantages of an adversary A against PKE as

AdvOW-ATK
A,PKE

def
= Prob[OW-ATK[PKE]A = 1]
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Random Oracles. An (idealized) function F : {0, 1}δ → {0, 1}ρ is said to be
a Random Oracle, if for all x ∈ {0, 1}δ, the output F(x) is independently and
uniformly distributed over {0, 1}ρ.

Pseudo-random Functions

Definition 5. Let F : {0, 1}λ × {0, 1}δ → {0, 1}ρ be a deterministic algorithm
and let A be an algorithm. The prf advantage of A is defined as

Advprf
A,F

def
= |Succ(RealA) − Succ(RandomA)|.

F is said to implement a family of (t, d, ε)-pseudo-random functions if for all
adversary A that runs in time t and uses memory d,

Advprf
A,F ≤ ε

Simulating Random Oracle Using PRF. If a game G is defined in the
random oracle model, then one procedure of the game defines the random oracle
H : {0, 1}δ → {0, 1}ρ. The standard technique to implement the random oracle
procedure is via lazy sampling. However, the lazy sampling technique requires
O(qh · λ) additional memory where qh is the number of H queries made by the
adversary. In [3], the authors formalized the technique, originally suggested in
[7], of simulating the Random Oracle using a prf. Let G[H] be a game where H
is a random oracle used in G. Let G[F ] be the same game where the random
oracle is implemented using a prf F . Specifically, the oracle H is implemented
using F (k, .) for a randomly sampled key k (Fig. 6).

Game Real

Procedure main

1 : k
$←− {0, 1}λ

2 : b ← AOF

3 : if b = 0

4 : return 1

5 : else

6 : return 0

7 : endif

Procedure OF (x)

1 : return F (k, x)

Game Random

Procedure main

1 : b ← AOF

2 : if b = 0

3 : return 1

4 : else

5 : return 0

6 : endif

Procedure OF (x)

1 : y
$←− {0, 1}ρ

2 : return y

Fig. 5. PRF security game

RO simulation by
lazy sampling
Procedure main

Procedure H(x)

1 : if H(x) =⊥
2 : H(x) $←− {0, 1}ρ

3 : endif

4 : return H(x)

RO simulation using PRF
Procedure main

1 : k
$←− {0, 1}κ

Procedure H(x)

1 : return F (k, x)

Fig. 6. Memory efficient simulation of
Random Oracle
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Lemma 1 (RO simulation using prf [3]). For all adversary A against G
making at most qh queries to the random oracle, there exists a BF against F in
the prf game such that

∣
∣SuccAH,G[H] − SuccAH,G[F ]

∣
∣ ≤ Advprf

BF ,F

Moreover, it holds that

LocalTime(BF ) = LocalTime(A) + LocalTime(G) + qh

LocalMem(BF ) = LocalMem(A) + LocalMem(G)

3 Memory-Tight Reductions for Hashed-ElGamal

3.1 Cramer-Shoup Variant

Procedure Gen(1λ)

1 : (q, g,G) ← DH(1λ)

2 : x
$←− Z

∗
q

3 : pk = (g, gx)

4 : sk = x

5 : return (pk, sk)

Procedure Encap(pk)

1 : (g, h) = pk

2 : y
$←− Z

∗
q

3 : Y = gy

4 : Z = hy

5 : K = H(Y,Z)

6 : return (Y,K)

Procedure Decap(sk, Y )

1 : x = sk

2 : Z = Y x

3 : K = H(Y, Z)

4 : return K

Fig. 7. HEG: Cramer-Shoup Version of Hashed-ElGamal KEM. H : G × G → K is a
cryptographic hash function

In this section we present a memory-tight reduction of Cramer-Shoup version
of hashed-ElGamal Key Encapsulation mechanism [13]. We describe the scheme
in Fig. 7. G is a cyclic group of prime order q. Let H : G × G → K be a hash
function. Our main result in this section is the following theorem.

Theorem 4. Let q be a prime and G be any gap group of order q. Let DDH be
the Decisional Diffie Hellman oracle on G. Let DH be the Diffie Hellman instance
generation algorithm over G. Let F : {0, 1}λ × {0, 1} ×G×G → K be a prf. Let
Π be the HEG KEM scheme over G and K, with security parameter λ.

Let A be any adversary in the IND-CCA game of Π. Suppose A makes qH

hash queries and qD decapsulation queries. Then, in the random oracle model,
there exists an adversary BDH in the gap-DH game, and an adversary BF such
that

AdvIND-CCA
A,Π ≤ Advgap-DH

BDH ,G + Advprf
BF ,F
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Moreover, it holds that

LocalTime(BDH) ≈LocalTime(A) + (qH + qD) · LocalTime(F ) + qH

LocalMem(BDH) ≈LocalMem(A) + LocalMem(F ) + 7λ + 1
LocalTime(BF ) ≈LocalTime(A) + LocalTime(DH) + (qH + qD)
LocalMem(BF ) ≈LocalMem(A) + LocalMem(DH) + 11λ + 2

Before proving the Theorem4, we construct a prf F̂ : {0, 1}λ ×G×G → K that
we shall use in the proof.

Construction of F̂ . Let DDH be the decisional Diffie-Hellman oracle such that
DDH(X,Y,Z) = 1, if (X,Y,Z) is a valid Diffie-Hellman tuple.

Construction 5. Let G be a group of prime order q and let g be a generator
of G. Fix X ∈ G. Let F : {0, 1}λ × {0, 1} × G × G → K. We define F̂X :
{0, 1}λ × G × G → K as follows

F̂X(k, Y, Z) =
{

F (k, 0, Y, Z) if DDH(X,Y,Z) = 0
F (k, 1, Y, g) if DDH(X,Y,Z) = 1

In order to use the map then prf technique, we need the following lemma.

Lemma 2. If F is a prf, then F̂X is a prf. Moreover, for every adversary BF̂

against F̂X , there exists a BF against F such that,

Advprf
BF ,F = Advprf

BF̂ ,F̂

LocalTime(BF ) = LocalTime(BF̂ ) + q

LocalMem(BF ) = LocalMem(BF̂ ) + 2λ.

where q is the number of queries made by BF̂ .

Proof. Fix X ∈ G. Note that for every Y ∈ G, there exists a unique Z ∈ G such
that DDH(X,Y,Z) = 1. We define ψX : G × G → {0, 1} × G × G as

ψX(Y,Z) =
{

(0, Y, Z) if DDH(X,Y,Z) = 0
(1, Y, 0λ) if DDH(X,Y,Z) = 1

It is easy to verify that ψX is an injective function. Moreover, F̂X = F ◦ ψX .
Let O be the oracle of BF . BF chooses x ∈ Z

∗
q , set X = gx and invokes BF̂ .

For every query (Y,Z) of BF̂ , BF checks whether Y x = Z, computes ψX(Y,Z)
accordingly and queries O. The response of the oracle is passed to BF̂ . When BF̂

outputs a bit b, BF outputs b. This perfectly simulates the prf game of F̂X .
We assume the computation time of ψX is constant. In order to simulate the

prf game of F̂X , BF needs to compute ψX for q many times. Moreover, BF needs
store x and a temporary variable for passing the values. The lemma follows. �
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The Reduction. Theorem 4 is proven via a sequence of games. Formal descrip-
tion of the games are given in Figs. 8 and 9.

G0 G1

1 : (pk, sk) ← Gen(1λ)

2 : Parse pk = (g,X)

3 : Parse sk = x

4 : y∗ $←− Z
∗
q

5 : b
$←− {0, 1}

6 : Y ∗ = gy∗

7 : Z∗ = Y ∗x

8 : K∗
0 = H(Y ∗, Z∗) K∗

0
$←− K

9 : K∗
1

$←− K
10 : b∗ ← ADecap,H(pk, Y ∗,K∗

b )

11 : if b = b∗return 1

12 : else return 0

13 : endif

Procedure H(Y,Z) in G0

1 : if H(Y,Z) is undefined

2 : H(Y,Z) $←− K
3 : endif

4 : return H(Y,Z)

Procedure Decap(Y ) in G0,G1

1 : if Y = Y ∗return ⊥
2 : Z = Y x

3 : K = H(Y,Z)

4 : return K

Procedure H(Y,Z) in G1

1 : if Z = Y x ∧ Y = Y ∗

2 : return K∗
0

3 : else

4 : if H(Y,Z) is undefined

5 : H(Y,Z) $←− K
6 : endif

7 : return H(Y,Z)

8 : endif

Fig. 8. The games G0 and G1. In game G1, Line 9 in replaced by the boxed statement

Game G0. The game G0 is the original IND-CCA game.

AdvIND-CCA
A,Π

def
=

∣
∣
∣
∣
Prob[GA

0 = 1] − 1
2

∣
∣
∣
∣
.

Game G1: We predefine K∗
0 = H(Y ∗, Z∗) by sampling a random element from the

keyspace K. Y ∗ is the challenge ciphertext sent in the KEM game and Z∗ = Y ∗x.
The hash oracle is modified to return K∗

0 for the input (Y ∗, Z∗). As K∗
0 is still

uniformly chosen at random, and the hash oracle output is consistent, there is
no change in the distribution of adversary’s view.

Prob[GA
0 = 1] = Prob[GA

1 = 1]

Game G2. In this game the oracles H and Decap are changed. We replace the
random oracle by a prf F̂X : {0, 1}λ ×G×G → K. By Lemma 1, there exists an
adversary BF̂ such that

∣
∣Prob[GA

1 = 1] − Prob[GA
2 = 1]

∣
∣ ≤ Advprf

BF̂ ,F̂X

Game G3. We rewrite the prf evaluation of F̂X using a prf F as defined in
Construction 5. In the procedure Decap of the game G2, Step 2 (Z = Y x) ensures
that F̂X(k, Y, Z) in that procedure always evaluates to F (k, 1, Y, g). As the view
of the adversary remains unchanged,

Prob[GA
2 = 1] = Prob[GA

3 = 1]
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Game G4: In this game, we set a flag Flag and abort on the event that A queries
H on (Y ∗, Z∗) where Y ∗ is the challenge in the KEM game and (X,Y ∗, Z∗) is a
valid diffie hellman tuple. By the fundamental lemma of game playing proofs

∣
∣Prob[GA

3 = 1] − Prob[GA
4 = 1]

∣
∣ ≤ Prob[Flag = 1].

In the game G4, the adversary A is unable to compute H(Y ∗, Z∗) using either
the hash oracle or the decapsulation oracle. The decapsulation oracle outputs
⊥ whenever the input Y is equal to Y ∗. The hash oracle aborts for the input
(Y ∗, Z∗). This implies that the bit b is independent from the adversary’s view.
Hence

Prob[GA
3 ] =

1
2
.

To bound Prob[Flag = 1], we construct an algorithm BDH against the
gap-DH security of G. BDH simulates game G4 for A.

gap-DH Adversary BDH . Formal code of BDH is given in Fig. 10. BDH simu-
lates G4. In order to execute line 1 of the game G4, BDH uses the DDH oracle.
By the definition of gap-DH game, X and Y ∗ are uniformly and independently
distributed. Hence the simulation of G4 is perfect. Flag = 1 implies that A
queried H(Y,Z) where Y = Y ∗ and DDH(X,Y ∗, Z) = 1. BDH returns that Z and
wins the gap-DH game. Hence,

Prob[Flag = 1] = Advgap-DH
BDH ,G

Collecting the probabilities, we get

AdvIND-CCA
A,Π ≤ Advgap-DH

BDH ,G + Advprf

BF̂ ,F̂

Efficiency of BDH . BDH runs A, queries DDH oracle for qH many times, com-
putes the prf F for (qH + qD) many times. O(poly(λ)) is the cost of other
operations in G4.

LocalTime(BDH) ≈LocalTime(A) + (qH + qD)LocalTime(F ) + qH

The last qH term in the right-hand side of the above equation is to denote the
number of queries made to the DDH oracle.

Memory Efficiency of BDH . BDH needs to save the code of A, and F . In
addition, counting the registers in G4,

LocalMem(BDH) ≈LocalMem(A) + LocalMem(F ) + 7λ + 1

So far, we have proven that there exist adversaries BDH and BF̂

AdvIND-CCA
A,Π ≤ Advgap-DH

BDH ,G + Advprf

BF̂ ,F̂
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G2

1 : (pk, sk) ← Gen(1λ)

2 : Parse pk = (g,X)

3 : Parse sk = x

4 : k
$←− {0, 1}λ

5 : y∗ $←− Z
∗
q

6 : b
$←− {0, 1}

7 : Y ∗ = gy∗

8 : Z∗ = Y ∗x

9 : K∗
0

$←− K
10 : K∗

1
$←− K

11 : b∗ ← ADecap,H(pk, Y ∗,K∗
b )

12 : if b = b∗return 1

13 : else return 0

14 : endif

Procedure H(Y, Z)

1 : if Z = Y x ∧ Y = Y ∗

2 : return K∗
0

3 : else

4 : K = F̂X(k, Y, Z)

5 : return K

6 : endif

Procedure Decap(Y )

1 : if Y = Y ∗return ⊥
2 : Z = Y x

3 : K = F̂X(k, Y, Z)

4 : return K

G3

1 : (pk, sk) ← Gen(1λ)

2 : Parse pk = (g,X)

3 : Parse sk = x

4 : k
$←− {0, 1}λ

5 : y∗ $←− Z
∗
q

6 : b
$←− {0, 1}

7 : Y ∗ = gy∗

8 : Z∗ = Y ∗x

9 : K∗
0

$←− K
10 : K∗

1
$←− K

11 : b∗ ← ADecap,H(pk, Y ∗,K∗
b )

12 : if b = b∗return 1

13 : else return 0

14 : endif

Procedure H(Y, Z)

1 : if Z = Y x

2 : if Y = Y ∗

3 : return K∗
0

4 : else

5 : K = F (k, 1, Y, g)

6 : endif

7 : else

8 : K = F (k, 0, Y, Z)

9 : endif

10 : return K

Procedure Decap(Y )

1 : if Y = Y ∗return ⊥
2 : Z = Y x

3 : K = F (k, 1, Y, g)

4 : return K

G4

1 : (pk, sk) ← Gen(1λ)

2 : Parse pk = (g,X)

3 : Parse sk = x

4 : k
$←− {0, 1}λ

5 : y∗ $←− Z
∗
q

6 : b
$←− {0, 1}

7 : Y ∗ = gy∗

8 : Z∗ = Y ∗x

9 : K∗
0

$←− K
10 : K∗

1
$←− K

11 : b∗ ← ADecap,H(pk, Y ∗,K∗
b )

12 : if b = b∗return 1

13 : else return 0

14 : endif

Procedure H(Y, Z)

1 : if Z = Y x

2 : if Y = Y ∗

3 : Flag=1

4 : Abort

5 : endif

6 : K = F (k, 1, Y, g)

7 : else

8 : K = F (k, 0, Y, Z)

9 : endif

10 : return K

Procedure Decap(Y )

1 : if Y = Y ∗return ⊥
2 : -

3 : K = F (k, 1, Y, g)

4 : return K

Fig. 9. IND-CCA game of HEG: highlighted statements are the modifications from the
previous game

Applying Lemma 2, we get the adversary BF such that

Advprf

BF̂ ,F̂
= Advprf

BF ,F

Hence, there exist adversaries BDH and BF such that

AdvIND-CCA
A,Π ≤ Advgap-DH

BDH ,G + Advprf
BF ,F

The following lemma finds the efficiency of BF
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Algorithm BDH(g,X, Y ∗)

1 : Set pk = (g,X)

2 : k
$←− {0, 1}λ

3 : K∗ $←− K
4 : b∗ ← ADecap,H(pk, Y ∗,K∗)

5 : output ⊥ .

Procedure Decap(Y )

1 : if Y = Y ∗return ⊥
2 : K = F (k, 1, Y, g)

3 : return K

Procedure H(Y,Z)

1 : if DDH(X,Y, Z) = 1

2 : if Y = Y ∗

3 : Flag = 1

4 : Output Z

5 : else

6 : K = F (k, 1, Y, g)

7 : endif

8 : else

9 : K = F (k, 0, Y, Z)

10 : endif

11 : return K

Fig. 10. Diffie Hellman adversary BDH

Lemma 3

LocalTime(BF ) ≈LocalTime(A) + LocalTime(DH) + 2(qH + qD)
LocalMem(BF ) ≈LocalMem(A) + LocalMem(DH) + 11λ + 2

3.2 ECIES

Let G = 〈g〉 be a cyclic group of prime order q, equipped with a pairing ê :
G × G → GT . Let H : G → K be a hash function. In this section, we present
a memory tight reduction of the underlying Key Encapsulation Mechanism of
ECIES from the Computational Diffie-Hellman assumption over G. We describe
the ECIES KEM scheme in Fig. 11. Our main result in this section is the following
theorem.

Procedure Gen(1λ)

1 : (q, g,G) ← DH(1λ)

2 : x
$←− Z

∗
p

3 : pk = (g, gx)

4 : sk = x

5 : return (pk, sk)

Procedure Encap(pk)

1 : (g,X) = pk

2 : y
$←− Z

∗
p

3 : Y = gy

4 : Z = Xy

5 : K = H(Z)

6 : return (Y,K)

Procedure Decap(sk, Y )

1 : x = sk

2 : Z = Y x

3 : K = H(Z)

4 : return K

Fig. 11. ECIES KEM. H : {0, 1}λ × G → K is a cryptographic hash function
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Theorem 6 Let q be a prime and G be a group of order q equipped with a pairing
ê : G × G → GT . Let DH be the Diffie Hellman instance generation algorithm
over G. Let F : {0, 1}λ × GT → K be a prf. Let Π̂ be the ECIES-KEM scheme
over G and K, with security parameter λ.

Let A be an adversary in the IND-CCA game of Π̂. Suppose A makes qh hash
queries and qD decapsulation queries. Then, in the random oracle model, there
exists an adversary BDH in the CDH game, and an adversary BF such that

AdvIND-CCA
A,Π̂

≤ AdvCDH
BDH ,G + Advprf

BF ,F

Moreover, it holds that

LocalTime(BDH) ≈LocalTime(A) + (qH + qD)LocalTime(F )
+ (qD + 3qH)LocalTime(ê)

LocalMem(BDH) ≈LocalMem(A) + LocalMem(F ) + 7λ + 1
LocalTime(BF ) ≈LocalTime(A) + LocalTime(DH) + (qH + qD)

(qH + qD)LocalTime(ê)
LocalMem(BF ) ≈LocalMem(A) + LocalMem(DH) + 12λ + 2

The reduction to prove Theorem6 is almost the same as in the previous
section. The only difference is in the construction of the intermediate prf F̂
and the reduced CDH-adversary BDH . As the details are almost same to the
reduction of HEG, we only describe F̂ and BDH here. The reader is referred to
the full version of the paper [9] for the rest of the reduction.

Construction 7 (Construction of F̂ ). Let G be a group of prime order q
and let g be a generator of G. Let ê : G × G → GT be a bilinear map. Let
F : {0, 1}λ × GT → K. We define F̂ : {0, 1}λ × G → K as follows

F̂ (k, Z) = F (k, ê(g, Z))

Lemma 4. If F is a prf, then F̂ is a prf. Moreover, for every adversary BF̂

against F̂ , there exists a BF against F such that,

Advprf
BF ,F = Advprf

BF̂ ,F̂

LocalTime(BF ) = LocalTime(BF̂ ) + q · LocalTime(ê)
LocalMem(BF ) = LocalMem(BF̂ ) + 2λ.

where q is the number of queries made by BF̂ to its oracle.

Description of BDH : The Adversary to Game CDH. Formal code of BDH

is given in Fig. 12. BDH gets (g,X, Y ∗) as input, where X,Y ∗ are distributed
uniformly over G. Flag = 1 implies that A queried H(Z) where (X,Y ∗, Z) is
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Algorithm BDH((g,X, Y ∗))

1 : Set pk = (g,X)

2 : k
$←− {0, 1}λ

3 : K∗ $←− K
4 : b∗ ← ADecap,H(pk, Y ∗,K∗)

5 : output ⊥ .

Procedure Decap(Y )

1 : if Y = Y ∗return ⊥
2 : K = F (k, ê(X,Y ))

3 : return K

Procedure H(Z)

1 : if ê(g, Z) = ê(X,Y ∗)

2 : Flag = 1

3 : Output Z

4 : else

5 : K = F (k, ê(g, Z))

6 : return K

7 : endif

Fig. 12. Diffie Hellman adversary BDH

a valid Diffie Hellman tuple. If Flag is set for some query made by A, BDH

returns that corresponding Z and wins the CDH game.

Efficiency of BDH . BDH runs A, computes the pairing ê(., .) oracle for qD+3qH

many times, computes the prf F for (qH + qD) many times. As the rest of the
steps in the algorithm takes O(poly(λ)) time,

LocalTime(BDH) ≈LocalTime(A) + (qH + qD)LocalTime(F )
+ (qD + 3qH)LocalTime(ê)

Memory Efficiency of BDH . BDH needs to save the code of A, ê, and F .

Counting the registers, we get

LocalMem(BDH) =LocalMem(A) + LocalMem(F ) + 7λ + 1

4 Transformation V : OW-PCA PKE to OW-PCVA PKE

In this section, we introduce a transformation V to construct OW-PCVA secure
deterministic PKE from a OW-PCA secure PKE. Our main result is a memory-
tight reduction of V . The main application of V will be in Sect. 5, where we shall
use V to get a memory-tight reductions of the IND-CCA security of QKEM⊥

and QKEM⊥
m.

4.1 The Transformation

We start with a deterministic δ-correct OW-PCA secure public key encryption
scheme, PKE = (Gen, Enc, Dec). Let M = {0, 1}n be the message space, and C be



Memory-Tight Reductions for Practical Key Encapsulation Mechanisms 267

Procedure Enc1(pk,m)

1 : c1 = Enc(pk,m)

2 : c2 = H
′(m)

3 : c = c1||c2
4 : return c

Procedure Dec1(sk, c)

1 : Parse c = (c1, c2)

2 : m′ = Dec(sk, c1)

3 : if m′ =⊥ ∨ H
′(m′) �= c2 ∨ Enc(pk,m′) �= c1

4 : return ⊥
5 : else return m′

Fig. 13. OW-PCVA secure encryption scheme PKE1 = V [PKE]

the ciphertext space. Let H′ : M → {0, 1}η be a hash function. The transformed
scheme is described as PKE1 = (Gen, Enc1, Dec1).
Our main result of this section is the following theorem.

Theorem 8. Let PKE = (Gen, Enc, Dec) be a deterministic δ correct OW-PCA
secure public key encryption scheme. Let M be the message space, and C be the
ciphertext space of PKE. Let PKE1 be the transformed public encryption scheme.
Let F ′ : {0, 1}λ ×C → {0, 1}η be a prf. Let A be any adversary in the OW-PCVA
game of PKE1. Suppose A makes qh′ queries to H′. Let qP denote the number of
plaintext checking queries and qV denote the number of validity checking queries
made by A.

PKE1 is δ-correct. Moreover, in the random oracle model, there exists an
adversary B in the OW-PCA game of PKE1, and an adversary BF ′ in the prf
game of F ′, such that

AdvOW-PCVA
A,PKE1

≤ AdvOW-PCA
B,PKE + 2 · Advprf

BF ′ ,F ′ +
qV

2η
+ 2δ(1 + qh′ + qP + qV )

Moreover it holds that

LocalTime(B) ≈LocalTime(A) + qh′LocalTime(Enc)

+ (1 + qh′ + qV + qP )LocalTime(F ′) + qP

LocalMem(B) ≈LocalMem(A) + LocalMem(F ′)
+ LocalMem(Enc) + 8λ

LocalTime(BF ′ ) ≈LocalTime(A) + LocalTime(Gen) + (qV + qP )LocalTime(Dec)

+ (1 + qV + qP + qh′ )(1 + 2 · LocalTime(Enc))

LocalMem(BF ′ ) ≈LocalMem(A) + LocalMem(Gen) + +LocalMem(Enc)

+ LocalMem(Dec) + 11λ + 1

Similar to previous section, we first construct a prf F̂ .

4.2 Construction of F̂

Construction 9. Fix a public key pk of PKE. Let F ′ : {0, 1}λ × C → {0, 1}η.
We define F̂ as

F̂ (k,m) = F ′(k, Enc(pk,m))
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In order to use the map then prf technique, we need the following lemma.

Lemma 5. Fix pk. For every prf-adversary BF̂ against F̂ , there exists a BF ′

against F ′ such that,

Advprf

BF̂ ,F̂
≤ Advprf

BF ′ ,F ′ + δ(q)

LocalTime(BF ′) = LocalTime(BF̂ ) + q · LocalTime(Enc)
LocalMem(BF ′) = LocalMem(BF̂ ) + 3λ.

where q is the number of queries made by BF̂ .

The main difference in Lemma 5 with the ones in the previous section is the
decryption error of PKE. In other words, we can not claim that Enc(pk, .) is an
injective function. However, if BF̂ can query with messages m1,m2 such that
Enc(pk,m1) = Enc(pk,m2), implying a decryption error for either m1 or m2.

Proof. First, we prove that if F ′ is a prf, then F̂ is a prf. Let O be the oracle of
BF ′ . BF ′ runs Gen to receive pk, sk, and invokes BF̂ . For every query m of BF̂ ,
BF ′ , computes c = Enc(pk,m), and checks whether m = Dec(sk, c). If the check
fails BF ′ aborts. If the check succeeds, BF ′ queries O(c), and the response of the
oracle is passed to BF̂ . When BF̂ outputs a bit b, BF outputs b.

If BF ′ aborts on input m, then correctness error occurs in Dec(sk, Enc
(pk,m)). By assumption, probability of this event is bounded by δ(q). Con-
ditioned on that BF ′ does not abort, the output of Enc(pk,m) are unique for all
m queried by BF̂ . In that case, BF ′ perfectly simulates the prf game of F̂ . When
O is a random function, the simulation implements a random function. When O
is implemented by F ′, BF ′ implements F̂ . Thus we get,

SuccBF̂ ,prf[F̂ ] = SuccBF ′ ,prf[F ′] + Prob[BF ′ aborts] ≤ SuccBF ′ ,prf[F ′] + δ(q)

=⇒ Advprf

BF̂ ,F̂
≤ Advprf

BF ′ ,F ′ + δ(q)

In order to simulate the prf game of F̂ , BF needs to run Enc for q many
times. Moreover, BF needs store pk, sk and a temporary variable for passing the
values. The lemma follows.

4.3 Proof of Theorem 8

It is obvious that the correctness holds. We prove rest of Theorem8 via a
sequence of games. Formal description of the games are given in the Figs. 14
and 15.
Game G0. G0 is the OW-PCVA security game of PKE1.

AdvOW-PCVA
A,PKE1

= Prob[GA
0 = 1]
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G0, G1-G7

1 : (pk, sk) $←− Gen

2 : m∗ $←− M
3 : k′ $←− {0, 1}λ

4 : c2 = H
′(m∗)

5 : c1 = Enc(pk,m∗)

6 : c∗ = (c1, c2)

7 : m ← APCO,CVO,H′
(pk, c∗)

8 : if m∗ = m return 1

9 : else return 0

Game G0

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = H

′(m′)

5 : c′ = c′
1||c′

2

6 : if m′ = m and c′ = c

7 : return 1

8 : else

9 : return 0

Procedure H′(m)

1 : if H
′(m) is undefined

2 : H
′(m) $←− M

3 : endif

4 : return H
′(m)

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = H

′(m′)

5 : c′ = c′
1||c′

2

6 : if m′ ∈ M and c′ = c

7 : return 1

8 : else

9 : return 0

Fig. 14. The main function of games G0 − G7. The boxed statement is not executed
in G0. Right hand side figure describes the oracles in G0

Game G1. In this game, we replace H′ by prf F̂ . By Lemma 1, there exists
adversary, BF̂ such that

∣
∣
∣Prob[GA

1 = 1] − Prob[Gf
0 = 1]

∣
∣
∣ ≤ Advprf

BF̂ ,F̂
(1)

Game G2. In this game, we modify the PCO(m, c = (c1, c2)) oracle simulation.
Instead of the decryption, m′ = Dec(sk, c1), and equality check m = m′, we
only check whether, c1 = Enc(pk,m). Notice, the condition c2 = F̂ (k′,m)
remains unchanged. Conditioned on correctness error does not happen, c′

1 =
c1 = Enc(pk,m) implies that m′ = Dec(sk, c′

1) = m. Hence, this change does not
affect the transcript distribution until correctness error occurs in PKE.

∣
∣Prob[GA

1 = 1] − Prob[GA
2 = 1]

∣
∣ ≤ δ(qP )

Game G3. In this game we replace F̂ as defined. The change is syntactical and
does not change the distribution of any output.

Prob[GA
2 = 1] = Prob[GA

3 = 1]

Game G4. In this game, we change how the oracles PCO and CVO responds.
For a PCO(m, c) query, we no longer encrypt m to compute c′

2. Instead, we run
the plaintext checking oracle PCO, provided for PKE, to check correctness of
(m, c1). If c1 is indeed a valid ciphertext of m, then by deterministic property
of PKE, F ′(k, Enc(pk,m)) is equal to F ′(k, c1). Hence we only check whether
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Game G1

Procedure H′(m)

1 : h′ = F̂ (k′,m)

2 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = F̂ (k′,m′)

5 : c′ = c′
1||c′

2

6 : if m′ = m and c′ = c

7 : return 1

8 : else

9 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = F̂ (k′,m′)

5 : c′ = c′
1||c′

2

6 : if m′ ∈ M and c′ = c

7 : return 1

8 : else

9 : return 0

Game G2

Procedure H′(m)

1 : h′ = F̂ (k′,m)

2 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : c′

2 = F̂ (k′,m)

3 : if c′
2 = c2 ∧ Enc(pk,m) = c1

4 : return 1

5 : else

6 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = F̂ (k′,m′)

5 : c′ = c′
1||c′

2

6 : if m′ ∈ M and c′ = c

7 : return 1

8 : else

9 : return 0

Game G3

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : c′

1 = Enc(pk,m)

3 : c′
2 = F ′(k′, c′

1)

4 : if c′
2 = c2 ∧ c′

1 = c1

5 : return 1

6 : else

7 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = F ′(k′, c′

1)

5 : c′ = c′
1||c′

2

6 : if m′ ∈ M and c′ = c

7 : return 1

8 : else

9 : return 0

Fig. 15. The oracles in G1,G2,G3

F ′(k, c1) = c2. The change in PCO is syntactical, and does not change output
distribution of the oracle.

Similarly, in CVO, we change the computation of c′
2, which is now computed

as F (k′, c1). If c1 = c′
1, then the change is syntactical and has no effect in the

check in Step 5. If c1 
= c′
1, the condition in Step 5 rejects irrespective of the

value of c′
2. Hence, this change does not change the output distribution of the

oracles as well.

Prob[GA
3 = 1] = Prob[GA

4 = 1]

Game G5. We change the description of the oracle CVO(c). We raise a flag Bad,
if c′

2 = c2 but c1 is not a valid ciphertext of PKE, i.e m′ /∈ M or c1 
= Enc(pk,m′)
where m′ = Dec(c1). However, we do not change the output of the oracle. CVO(c)
still return 0 when Bad is set.

Prob[GA
4 = 1] = Prob[GA

5 = 1]
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Game G4

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if PCO(m, c1) = 1

3 : c′
2 = F ′(k′, c1)

4 : if c′
2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = F ′(k′, c1)

5 : if c′
2 = c2 ∧ m′ ∈ M ∧ c′

1 = c1

6 : return 1

7 : else

8 : return 0

Game G5 G6

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if PCO(m, c1) = 1

3 : c′
2 = F ′(k′, c1)

4 : if c′
2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = F ′(k′, c1)

5 : if c′
2 = c2

6 : if m′ /∈ M or c′
1 �= c1

7 : Bad = 1

8 : return 0 return 1

9 : else

10 : return 1

11 : endif

12 : else

13 : return 0

Game G7

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if PCO(m, c1) = 1

3 : c′
2 = F ′(k′, c1)

4 : if c′
2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : c′

2 = F ′(k′, c1)

3 : if c′
2 = c2

4 : return 1

5 : else

6 : return 0

Fig. 16. The oracles in G4,G5,G6,G7. PCO is the plaintext checking oracle for PKE.

Game G6. In game G6, CVO(c) returns 1, when Bad is set. Rest of the games
remain unchanged. By the fundamental lemma of game playing proofs,

∣
∣Prob[GA

5 = 1] − Prob[GA
6 = 1]

∣
∣ ≤ Prob[Bad]

Note, in the game G6, the oracle CVO returns 1, if and only if c2 = F ′(k′, c1).
Game G7. We rewrite the description of CVO(c). We no longer run Dec and Enc.
The oracle CVO(c) parses c as c1||c2, and returns 1 if c2 = F ′(k′, c1) and returns
0 otherwise. Rest of the game remain unchanged. As the output distribution of
all the procedures in G7 is same as that in G6.

Prob[GA
6 = 1] = Prob[GA

7 = 1]
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Bounding Prob[GA
7 = 1]. In Fig. 17, we construct an adversary B against

OW-PCA security of PKE. B receives (pk, c∗), invokes A(pk, c∗) and perfectly
simulates the game G7 for A. When A returns a message m, B returns m.

Prob[GA
7 = 1] = AdvOW-PCA

B,PKE

Algorithm BPCO(.)(pk, c)

1 : k′ $←− {0, 1}λ

2 : c2 = F ′(k′, c′)

3 : c∗ = c||c2
4 : m ← APCO(.),CVO(.),H′

(pk, c∗)

5 : return m

Procedure CVO(c)

1 : Parse c = c1||c2
2 : c′

2 = F ′(k′, c1)

3 : if c′
2 = c2

4 : return 1

5 : else

6 : return 0

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if PCO(m, c1) = 1

3 : c′
2 = F ′(k′, c1)

4 : if c′
2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Fig. 17. OW-PCA adversary B

Efficiency of B. Algorithm B runs A, queries PCO for qP many times, runs Enc
for qh′ many times, and computes F ′ for (1 + qh′ + qV + qP ) many times. Rest
of the steps take O(poly(λ)) time.

LocalTime(B) =LocalTime(A) + qh′LocalTime(Enc)
+ (1 + qh′ + qV + qP )LocalTime(F ′) + O(poly(λ)) + qP

The last qP term in the right hand side denotes the number of queries made to
PCO.

Memory Efficiency of B. B needs to save the code of A, Enc, and F ′. In
addition, there are following λ size registers, c∗, c1, c2, k

′,m, c, c′
2, h

′.

LocalMem(B) =LocalMem(A) + LocalMem(F ′)
+ LocalMem(Enc) + 8λ

Bounding Prob[Bad]. To bound Prob[Bad], we construct a prf adversary B(1)
F ′

against F ′. Recall that Bad occurs when for a CVO(c) query, we get

c′
2 = c2 and (m′ /∈ M or c′

1 
= c1)

where c = c1||c2, m′ = Dec(sk, c1), c′
1 = Enc(pk,m′), and c′

2 = F ′(k′, c1).
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Case m′ ∈ M and c′
1 
= c1. In this case correctness error occurs in PKE.

Probability of this event is bounded by δ(qV ).
Case m′ /∈ M. In this case, for an invalid ciphertext c1 in PKE, A can
produce a c2 such that c2 = F ′(k′, c1). As A has no direct access to F ′(k′, .)
evaluation, and c1 is an invalid ciphertext, there is no H ′(m) or PCO(m, c)
query in the transcript for which F ′(k′, c1) was evaluated. Notice that, in
PCO(m, c) evaluates F ′(k′, c1) only when PCO(m, c1) = 1, which can not occur
here. So, Bad = 1 implies that A can “guess” the output of F ′(k′, c1) for
some c1 ∈ C. For random function this can happen with probability qV

2η . If
Bad happens in significantly more probability in G5, that can be used to
break the prf security of F ′.

Formal description of B(1)
F ′ is given in Fig. 18. B(1)

F ′ perfectly simulates game G5

with the help of its oracle OF ′ . If A ever submits a CVO(c) query for which Bad

occurs, B(1)
F ′ outputs 1 and halts. If no such query is made, then at the end of the

simulation, B(1)
F ′ outputs 0. If OF ′ is a random function, then for a fixed CVO(c)

query, Prob[B(1)
F ′ = 1] is at most 1

2η . Taking union bound over all the CVO(c)
queries made by A, when OF ′ is a random function, Prob[B(1)

F ′ = 1] is at most
qV

2η . When OF ′ is the prf F ′, Prob[B(1)
F ′ = 1] is exactly Prob[Bad] in G5.

B(1)

F ′

1 : (pk, sk) $←− Gen

2 : m∗ $←− M
3 : c2 = OF ′(m∗)

4 : c1 = Enc(pk,m∗)

5 : c∗ = (c1, c2)

6 : Bad = 0

7 : m ← APCO,CVO,H′
(pk, c∗)

8 : if Bad = 1

9 : Output 1

10 : else

11 : Output 0

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = OF ′(c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if Enc(pk,m) = c1

3 : c′
2 = OF ′(c1)

4 : if c′
2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′
1 = Enc(pk,m′)

4 : c′
2 = OF ′(c1)

5 : if c′
2 = c2

6 : if m′ /∈ M or c′
1 �= c1

7 : Bad = 1

8 : return 0

9 : else

10 : return 1

11 : endif

12 : else

13 : return 0

Fig. 18. The PRF adversary B(1)

F ′

Advprf

B(1)
F ′ ,F ′ ≥

∣
∣
∣Prob[Bad] − qV

2η
− δ(qV )

∣
∣
∣

=⇒ Prob[Bad] ≤ Advprf

B(1)
F ′ ,F ′ +

qV

2η
+ δ(qV )
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Efficiency of B(1)
F ′ . B(1)

F ′ runs A once, algorithm Gen once, algorithm Enc for
(1 + qh′ + qP + qV ) times, and Dec for qV times. Additionally B(1)

F ′ queries the
oracle OF ′ for (1 + qh′ + qP + qV ) times.

LocalTime(B(1)
F ′ ) ≈LocalTime(A) + LocalTime(Gen) + qV · LocalTime(Dec)

+ (1 + qh′ + qP + qV )(1 + LocalTime(Enc))

B(1)
F ′ needs to save the code of A, Gen, Enc, and Dec. In addition, it needs to save

eight λ size and a flag of a single bit. registers.

LocalMem(B(1)
F ′ ) ≈LocalMem(A) + LocalMem(Gen) + LocalMem(Enc)

+ LocalMem(Dec) + 8λ + 1

Finishing the Proof of Theorem 8. Collecting the probabilities of the games,
we have proven so far, there exist adversaries B,BF̂ , and B(1)

F ′ , such that

AdvOW-PCVA
A,PKE1

≤ AdvOW-PCA
B,PKE + Advprf

BF̂ ,F̂
+ Advprf

B(1)
F ′ ,F ′ +

qV

2η
+ δ(qV ) + δ(qp)

Applying Lemma 5, we get a B(2)
F ′ such that,

AdvOW-PCVA
A,PKE1

≤AdvOW-PCA
B,PKE + Advprf

B(2)
F ′ ,F ′ + Advprf

B(1)
F ′ ,F ′ +

qV

2η

+ δ(qV ) + δ(qp) + δ(1 + qh′ + qP + qV )

Efficiency of B(2)
F ′ is bounded using following lemma.

Lemma 6

LocalTime(B(2)
F ′ ) ≈LocalTime(A) + LocalTime(Gen) + (qV + qP )LocalTime(Dec)

+ (2 + 2qV + 2qP + qh′ )LocalTime(Enc) + (1 + qh′ + qP + qV )

LocalMem(B(2)
F ′ ) ≈LocalMem(A) + LocalMem(Gen) + LocalMem(Enc)

+ LocalMem(Dec) + 11λ

Merging B(1)
F ′ and B(2)

F ′ into one adversary BF ′ , and taking upper bound of their
efficiencies, we get Theorem 8.

5 Memory-Tight Reductions for Fujisaki-Okamoto
Transformation and Variants

In this section, we prove memory-tight reduction of the IND-CCA security of four
different variants of the Fujisaki-Okamoto transformation, following the modular
approach of [16]. Before describing the exact transformations we consider, first
we recall the modules introduces in [16].
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5.1 Brief Overview of Modules from [16]

We recall the modules in the top-down fashion. First we describe the transforma-
tions from a public key encryption scheme to a key encapsulation mechanisms.

Table 2. Variants of transformation U. In the column Decap, s is a random string,
sk′ = sk||s, and m = Dec1(sk, c).

Transformations & security implications Encap(pk) Decap(sk′, c)

U�⊥(OW-PCA ⇒ IND-CCA) (c = Enc1(pk, m), K = H(m, c))
m

$←−M
H(m, c) if m �=⊥
H(s, c) if m =⊥

U�⊥
m(det + OW-CPA ⇒ IND-CCA) (c = Enc1(pk, m), K = H(m))

m
$←−M

H(m) if m �=⊥
H(s, c) if m =⊥

U⊥(OW-PCVA ⇒ IND-CCA) (c = Enc1(pk, m), K = H(m, c))
m

$←−M
H(m, c) if m �=⊥
⊥ if m =⊥

U⊥
m(det + OW-VA ⇒ IND-CCA) (c = Enc1(pk, m), K = H(m))

m
$←−M

H(m) if m �=⊥
⊥ if m =⊥

Outer Modules: U�⊥, U�⊥
m, U⊥, U⊥

m. Let PKE1 = (Gen1, Enc1, Dec1) be a public
key encryption scheme with the message space M and let H : M → K be a hash
function. Table 2 describes the variants of module U to construct a KEM using
PKE1 and H. The transformations yield KEM of two categories. Transformations
U�⊥ and U�⊥

m are in the category of implicit rejection, as the decapsulation algo-
rithms in these transformations do not output ⊥, when queried with an invalid
ciphertext. Transformation U⊥, U⊥

m are in the category of explicit rejection,
implying that the decapsulation algorithms, given any invalid ciphertext, indeed
output ⊥.

Inner Module: T. Let PKE = (Gen, Enc, Dec) be an IND-CPA secure public key
encryption scheme. Let M = {0, 1}n be the message space, C be the ciphertext
space, and R be the randomness space. Let G : M → R be a hash function.
The transformation T results in a deterministic public key encryption scheme
PKE = T [PKE, G]. Formal description of T is given in Fig. 19.

Procedure Enc(pk,m)

1 : c = Enc(pk,m; G(m))

2 : return c

Procedure Dec(sk, c)

1 : m′ = Dec(sk, c)

2 : if m′ =⊥ ∨ Enc(pk,m′; G(m′)) �= c

3 : return ⊥
4 : else return m′

Fig. 19. Encryption scheme PKE = T [PKE]
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5.2 Considered Variants and the Reductions

We consider three other variants of FO transformations. The variants and their
modular decomposition are listed in Table 3. For each transformation we start
with an IND-CPA secure public key encryption PKE. We prove memory-tight
reduction for each of the modules next.

Table 3. Variants of FO transformations and their modular breakup

Category Transformation Modular decomposition

Implicit rejection KEM �⊥ U�⊥ [
T [PKE, G], H

]

KEM �⊥
m U�⊥

m[T [PKE, G], H]]

Explicit Rejection QKEM⊥
m U⊥

m[V [T [PKE, G], H′], H]

Memory-Tight Reduction for T : IND-CPA ⇒ OW-PCA.

Theorem 10 Let A be any adversary in the OW-PCA game of PKE. Suppose
A makes qg queries to G. Let qp denote the number of plaintext checking queries
made by A. Then, in the random oracle model, there exists adversaries B in the
IND-CPA game against PKE, and BF in the prf game, such that

AdvOW-PCA
A,PKE ≤ 3 · AdvIND-CPA

B,PKE
+ Advprf

BF ,F +
2qg + 1

|M| + δ(qp + qg)

LocalTime(B) ≈LocalTime(A) + (qg + qp)LocalTime(F )
LocalMem(B) ≈LocalMem(A) + LocalMem(F )

The proof of the above theorem follows exactly from the proof of analogous
Theorem 3.2 of [16] and using the random oracle simulation by a prf F . Moreover,
from [16], we get that, if PKE is strongly δ correct, then PKE is δ(qg +qp) correct
where δ(x) = xδ.

Memory-Tight Reduction for V : OW-PCA ⇒ OW-PCVA. It follows from
Theorem 8.

Memory-Tight Reduction for Variants of U . Table 2 lists four variants of
U with different security implications. The memory-efficient reductions of these
implications are in principle same as the proofs presented in [16]. The only
difference is in the simulation of the Random Oracle H. In Table 4, we write the
precise functions to be used to simulate the random oracles in the reductions.
We assume the message space of the underlying encryption scheme to be {0, 1}μ.
PCO(m, c) returns 1 if c decrypts to m. CVO(c) returns 0 if c decrypts to ⊥.
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Table 4. Random oracle simulation for U �⊥, U �⊥
m, U⊥, U⊥

m. We assume M = {0, 1}μ is
the message space of the underlying encryption scheme

Transformation Key Derivation RO simulation in Hash Query RO Simulation in Decap query

U�⊥ K = H(m, c) if PCO(m, c) = 1

K = F (k, 0, 0μ, c)

else

K = F (k, 1, m, c)

K = F (k, 0, 0μ, c)

U⊥ K = H(m, c) if PCO(m, c) = 1

K = F (k, 0, 0μ, c)

else

K = F (k, 1, m, c)

if CVO(c) = 0

K =⊥else

K = F (k, 0, 0μ, c)

U�⊥
m K = H(m) K = F (k, Enc1(pk, m)) K = F (k, c)

U⊥
m K = H(m) K = F (k, Enc1(pk, m)) if CVO(c) = 0

K =⊥
else

K = F (k, c)
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Abstract. We show new partial and full instantiation results under
chosen-ciphertext security for the widely implemented and standardized
RSA-OAEP encryption scheme of Bellare and Rogaway (EUROCRYPT
1994) and two variants. Prior work on such instantiations either showed
negative results or settled for “passive” security notions like IND-CPA.
More precisely, recall that RSA-OAEP adds redundancy and random-
ness to a message before composing two rounds of an underlying Feistel
transform, whose round functions are modeled as random oracles (ROs),
with RSA. Our main results are:

– Either of the two oracles (while still modeling the other as a RO)
can be instantiated in RSA-OAEP under IND-CCA2 using mild
standard-model assumptions on the round functions and generaliza-
tions of algebraic properties of RSA shown by Barthe, Pointcheval,
and Báguelin (CCS 2012). The algebraic properties are only shown to
hold at practical parameters for small encryption exponent (e = 3),
but we argue they have value for larger e as well.

– Both oracles can be instantiated simultaneously for two variants of
RSA-OAEP, called “t-clear” and “s-clear” RSA-OAEP. For this we
use extractability-style assumptions in the sense of Canetti and Dak-
douk (TCC 2010) on the round functions, as well as novel yet plau-
sible “XOR-type” assumptions on RSA. While admittedly strong,
such assumptions may nevertheless be necessary at this point to
make positive progress.

In particular, our full instantiations evade impossibility results of Shoup
(J. Cryptology 2002), Kiltz and Pietrzak (EUROCRYPT 2009), and
Bitansky et al. (STOC 2014). Moreover, our results for s-clear RSA-
OAEP yield the most efficient RSA-based encryption scheme proven
IND-CCA2 in the standard model (using bold assumptions on crypto-
graphic hashing) to date.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-45374-9 10) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12110, pp. 279–308, 2020.
https://doi.org/10.1007/978-3-030-45374-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45374-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-45374-9_10
https://doi.org/10.1007/978-3-030-45374-9_10
https://doi.org/10.1007/978-3-030-45374-9_10


280 N. Cao et al.

1 Introduction

In this paper, we show new partial and full instantiations under chosen-ciphertext
attack (CCA) for the RSA-OAEP encryption scheme [10] and some variants.
This helps explain why the scheme, which so far has only been shown to have
such security in the random oracle (RO) model, has stood up to cryptanalysis
despite the existence of “uninstantiable” RO model schemes and other negative
results. It also leads to the fastest CCA-secure RSA-based public-key encryption
scheme in the standard model (where one assumes standard-model properties of
cryptographic hash functions) to date. We now discuss some background and
motivation before an overview of our results.

1.1 Background and Motivation

In the random oracle (RO) model of Bellare and Rogaway [9], every algorithm
has oracle access to the same truly random functions. This model has been enor-
mously enabling in the design of practical protocols for various goals; examples
include public-key encryption [9,10,43], digital signatures [9,11], and identity-
based encryption [21]. When a RO model scheme is implemented, one “instanti-
ates” the oracles, that is, replaces their invocations with invocations of functions
with publicly-available code. Thus, there are many possible “instantiations” of a
protocol, depending on the choice of the latter. To obtain a practical instantia-
tion, it was suggested by [9] to build these functions from cryptographic hashing
in an appropriate way. We call this the canonical instantiation. The RO model
thesis of [9] is that if a protocol is secure in the RO model then its canonical
instantiation remains secure in the standard (RO devoid) sense.

Unfortunately, the RO model thesis has been refuted in a strong sense, start-
ing with the work of Canetti et al. [28]. These works show that there exist RO
model schemes for which any instantiation, let alone the canonical one, yields a
scheme that can be broken efficiently in the standard model. However, the con-
sensus of the community is that such schemes always seem contrived or artificial
in some way. Indeed, RO model schemes that have been standardized have stood
up to decades of cryptanalysis. If the RO model thesis is false, what explains this?
This leads to what may be called the practical RO model thesis: For a “practi-
cal” scheme proven secure in the RO model scheme, its canonical instantiation
remains secure in the standard model. However, from a scientific standpoint
this thesis is unsatisfactory because it lacks a definition of “practical”.1 This
shortcoming is the starting point for our work.

1.2 Our Thesis

Candidate Differentiating Properties. It seems problematic to try to
define practicality in the above sense. Instead, we propose some candidate prop-
erties that we conjecture to differentiate schemes to which the RO model thesis
applies from those to which it does not. Here are some such properties, some of
which are inspired by our work described below:
1 Here we do not mean “practical” in the sense of efficient enough to use in practice,

but rather “does not do anything contrived.”.
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1. There exist standard-model properties of the constituent functions that
together suffice to prove security of the scheme, ideally as well as realiza-
tions of such functions under standard assumptions.

2. Each individual constituent function can be separately instantiated as above,
while possibly modeling the others as ROs.

3. Variants of the scheme that fall under the same framework satisfy one of the
above properties.

4. There exist constructions of standard-model hash functions that allow to
prove security of the scheme when replacing the ROs, ideally these construc-
tions being under standard assumptions.

The Revised Thesis. Our revised RO model thesis is that a scheme satisfy-
ing one of the above properties is such that the canonical instantiation yields
a secure scheme in the standard model, where we relax the notion of instanti-
ation to allow stronger assumptions on non-RO constituent functions. That is,
“constituent functions” refers not only to those modeled as ROs but possibly
other functions associated with the scheme, like RSA. Thus, one may search for
novel assumptions on RSA, for example. Indeed, if one looks at the question of
why some RSA-based RO scheme is secure in practice, it could very well have
to do with properties of RSA (which has a lot of algebraic structure) beyond
mere one-wayness. We have seen the same strategy used to explain security of
schemes, without transitioning between the RO and standard models, for exam-
ple with Chaum’s blind signature scheme [7] and Damg̊ard’s ElGamal [33]. It was
also advocated by Pandey et al. [54] to resolve some long-standing theoretical
questions.

It is also worth mentioning that there are impossibility results in the standard
model for RSA-OAEP [49] and RSA-FDH, RSA-PSS [35,36]. However, these
are black-box impossibility results that demonstrate that a proof treating the
functions as black-boxes cannot suffice. As in other areas of cryptography [2]
this motivates looking at non-blackbox assumptions.

1.3 Discussion of the Properties and Our Goals

Our Focus: RSA-OAEP. We focus our study on whether the RO model thesis
applies to a very influential scheme, namely RSA-OAEP [10]. Roughly, RSA-
OAEP is defined as follows. RSA-OAEP encrypts a message as f(s‖t) where f
is the RSA function, where for functions G and H (originally modeled as ROs)
we have s = G(r)⊕m‖0ζ for randomness r ∈ {0, 1}ρ and message m ∈ {0, 1}μ,
t = H(s)⊕r. (We denote s = s1‖s2.) Thus, we would like to examine whether
RSA-OAEP satisfies the properties listed above.

The First Property. Here we seek standard model properties of RSA, G, and
H that suffice to prove IND-CCA. For this property, we mentioned that ideally
we would also have theoretical realizations of such functions under standard
assumptions. We make it clear that we do not advocate using these theoretical
realizations in practice, but they would show that the goal is not impossible to
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achieve. The importance of this is illustrated by the fact that the most general
forms of assumptions such as correlation intractability (CI) [28] and universal
computational extraction (UCE) [5,23] have been shown (likely) impossible. (But
special cases of CI and UCE which suffice for the schemes considered remain
plausible [5,23,25].) Unfortunately, we do not know how to achieve the first
property for RSA-OAEP, even without such theoretical realizations.

The Second Property. The second property asks for so-called “partial instan-
tiations” for each one of G or H, while still modeling the other as a RO. Partial
instantiations are valuable because ROs are used in different ways in a scheme,
and instantiating one of them isolates a property it relies on. Moreover, we ask
that every oracle can be (separately) instantiated. This has provable implications
in practice as well, as now an attacker would need to exploit weakness in the
interaction between these functions in order to break the scheme in the standard
model. In our eyes this makes a standard model attack much less plausible. We
show that RSA-OAEP satisfies this property under suitable assumptions.

The Third Property. The third property is more subjective than the others,
as it hinges on what constitutes a scheme falling under the same framework. The
aim is to capture the scheme designers’ intent or their general approach. Again,
the idea is not to use the modified schemes in practice necessarily (although
one certainly could if the efficiency penalty is acceptable), but to validate the
framework more than simply proving the original scheme is secure in the RO
model. An upshot is that this approach can indeed lead to variants of the scheme
that offer better security with similar efficiency. We show the third property holds
for RSA-OAEP, and in fact our results for one of our variants, namely s-clear
RSA-OAEP, leads to the most efficient IND-CCA secure scheme in the standard
model, albeit under bold assumptions on cryptographic hashing.

The Fourth Property. Note that this property differs from the first in that
it does not require giving higher-level properties that the hash functions should
satisfy in order to make the scheme secure. Thus, it does not really give insight
into what properties hash functions used in the canonical instantiation should
satisfy to do this. Still, existence of such hash functions refutes uninstantiability
of the scheme, showing that the job of the hash functions in making the scheme
secure is at least plausible. As with the first property, we leave it as an open
problem to show this for RSA-OAEP. We note that this property has been shown
for other RO model schemes in, e.g, [46,61].

We proceed to describe our approach and results in more detail.

1.4 Using PA + IND-CPA

Using PA + IND-CPA. A common thread running through our analyses is
the use of plaintext awareness (PA) [4,8,10]. PA captures the intuition that an
adversary who produces a ciphertext must “know” the corresponding plaintext.
It is not itself a notion of privacy, but, at a high level, combined with IND-CPA it
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implies IND-CCA. We use this approach to obtain modularity in proofs, isolate
assumptions needed, and make overall analyses more tractable. Moreover, while
it seems that PA necessitates using knowledge assumptions, this is somewhat
inherent anyway due to black-box impossibility results discussed below.

Flavors and Implications. PA comes in various flavors: PA-RO [4], and PA0,
PA1, and PA2 [8]. PA-RO refers to a notion in the RO model, while PA0, PA1,
and PA2 refer to standard model notions that differ in what extent the adver-
sary can query its decryption or encryption oracles. (In particular, in PA2 the
adversary can query for encryptions of unknown plaintexts.) Similarly, IND-
CCA comes in flavors [4,56]: IND-CCA0, IND-CCA1, and IND-CCA2. We use
that [4,8] show that IND-CPA + PA-RO implies IND-CCA2 in the RO model,
IND-CPA + PA0 implies IND-CCA1 with one decryption query, IND-CPA +
PA1 implies IND-CCA1, and IND-CPA + PA2 implies IND-CCA2.

1.5 Partial Instantiation Results

High-level Approach. We first give partial instantiation results of RSA-
OAEP under IND-CCA2. Such results have been sought after in prior work [17,
18,24] but have proven negative results or settled for weaker security notions.
The heroes for us here are new generalizations of the notions of “second-
input extractability” (SIE) and “common-input extractability” (CIE) proven
by Barthe et al. [3] to hold for small-exponent RSA (e = 3). SIE says that
an RSA image point can be inverted given a sufficiently-long (depending on e)
part of the preimage, whereas CIE says that two RSA images can be inverted
if the preimages share a common part. They were used by [3] where the “part”
is the least-significant bits to analyze a no-redundancy, one-round version of
RSA-OAEP in the RO model. The assumptions are proven via Coppersmith’s
algorithm to find small roots of a univariate polynomial modulo N [30].

We show that generalized versions where the “part” refers to some of the
middle or most-significant bits, rather than least-significant bits, is useful for
analyzing RSA-OAEP more generally. We show these versions also hold for small-
exponent RSA, but based on the bivariate Coppersmith algorithm [15,30,31].
Moreover, despite the similarity of assumptions, our proof strategies in the par-
tial instantiations are somewhat different than that of Barthe et al. [3]. Another
interesting point is that while (generalized) SIE and CIE hold for e = 3, we
argue they have practical value for larger e as well. Namely, while e > 3 would
require an impractical “part” length using Coppersmith’s technique, they could
possibly hold for practical parameters via other (in particular, non-blackbox)
techniques. At least, we do not see how to refute that, which could lend insight
into why there is no IND-CCA2 attack on the scheme for general e.2

2 Moreover, we conjecture this is different from the case of “lossiness” [48,55] as shown
for RSA and used to analyze IND-CPA security of RSA-OAEP in [48]. Namely, to
get sufficient lossiness it seems to inherently require large e, since the only way to
make RSA parameters lossy is to have e|φ(N).
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Results and Intuition. Namely, we show partial instantiations of both oracles
G,H under very mild assumptions on the round functions—roughly, that G is a
pseudorandom generator and H is a hardcore function for RSA, respectively—in
both cases assuming RSA is SIE and CIE. We first prove IND-CPA security in
these cases. Interestingly, the instantiation of G under IND-CPA uses that RSA
is SIE while the instantiation of H does not, the intuition being that in the latter
case we assume H is a hardcore function so its output masks r ∈ {0, 1}ρ used in
the challenge ciphertext unconditionally. Now for PA-RO, in both cases we use
SIE and CIE, but wrt. different bits of the input. In the case of instantiating G,
it is wrt. the redundancy bits s2. Intuitively, for a decryption query there are
two cases. Firstly, that it has a different r-part than the challenge and therefore
this must have been queried to the RO, in which case the SIE extractor works.
Secondly, that it has the same r-part as the challenge, but it therefore shares
s2, in which case the CIE extractor works. In the case of instantiating H, there
are again two cases for an encryption query depending on whether it shares the
same s-part of the challenge or not; thus the assumption is wrt. the whole s-part.

1.6 Full Instantiation Results

High-level Approach. We next give full instantiation results for two variants
of RSA-OAEP, called t-clear and s-clear RSA-OAEP. Prior results on t-clear
RSA-OAEP [18] showed only partial instantiations or relatively weak security
notions, and s-clear RSA-OAEP was only considered indirectly by Shoup [59]
for negative results. In t-clear RSA-OAEP, a message is encrypted as f(s1)‖s2‖t
where f is the RSA function s1‖s2 = G(r)⊕m‖0ζ for randomness r ∈ {0, 1}ρ and
message m ∈ {0, 1}μ, t = H(s1‖s2)⊕r. Here we divide s into s1‖s2, where s2 ∈
{0, 1}ζ , so the name “t-clear” while consistent with prior work [18], is somewhat
of a misnomer. On the other hand, in s-clear RSA OAEP a message is encrypted
as s‖f(t). One of the heroes for us here is a hierarchy of “extractability” notions
we define and assume for the round functions, called EXT-RO, EXT0, EXT1,
EXT2, roughly paralleling PA-RO, PA0, PA1, PA2 respectively, and generalizing
prior work [12,26,27,34], although we mention that [34] already has our EXT1
definition. Besides this parallel, our generalizations consider adversaries that
output only part of an image point or an image point along with part of a
pre-image. These are bold assumptions to make on (functions constructed out
of) cryptographic hash functions, but, as discussed above, we believe studying
their implications is justified. In the case of s-clear, another hero is a family
of new “XOR-type” assumptions we introduce, and give intuitive justifications
for in light of the multiplicative structure of RSA. Again, we view part of our
contribution as putting forth novel assumptions that the research community
can analyze (say in the generic ring model) in the future.

We make several remarks about our results, particularly how they avoid
known impossibility results, before detailing them:

– Extractability is a non-blackbox assumption (saying for every adversary there
exists a non-blackbox “extractor”) so we avoid the impossibility result of
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Kiltz and Pietrzak [49]3. That is, the fact we use extractable hash functions
(extractability being an intuitive property used in the original RO model
proof) is somewhat unavoidable.

– While extractability of H would prima facie be false, we use it only in a
plausible way for a cryptographic hash function. Namely, the adversary also
outputs part of the preimage. Extractability assumptions we use on G, even
where the adversary outputs only part of an image point, remain plausible as
it is an expanding function with a sparse range (usually constructed something
like G(x) = (H(0‖x)‖H(1‖x), . . .).

– For extractability we use only bounded key-independent auxiliary input (basi-
cally, the keys for the other functions in the scheme), so we avoid the impos-
sibility result of Bitansky et al. [14]. Moreover, the key-dependent auxiliary
information is just one image query (at least in the proof of IND-CCA2).

– Our “XOR-type” assumptions on RSA avoid a negative result of Shoup [59],
showing that there is an attack if the general trapdoor permutation is “XOR-
malleable”.4

– We typically use the various forms of extractability in combination with (at
least) collision-resistance, so that the extractor returns the “right” preimage.
The collision-resistant construction of [52] based on knowledge assumptions,
albeit where the adversary outputs the entire image point, is on the lowest
level of our hierarchy (EXT0); furthermore, it is not known to work when the
adversary outputs part of the image point. Any theoretical constructions for
higher levels (EXT1, EXT2) are similarly open. We hope these are targeted
in future work.

Results and Intuition for t-clear. Our results for t-clear RSA-OAEP are
weaker than those for s-clear RSA-OAEP. First, for t-clear we prove IND-CPA
for high-entropy, public key independent messages, under mild assumptions on
the round functions, namely that H is a hardcore function for RSA and G is a
pseudorandom generator. Intuitively, the high-entropy requirement comes from
the fact that the adversary attacking H needs to know r to prepare its challenge
ciphertext, so the randomness of the input to H needs to come from m. (We could
avoid it using the stronger assumption of UCE as per the result of [5], which
could be viewed as a hedge.) Furthermore, m needs to be public-key independent
so as to not bias the output. Then we can prove PA0 based on forms of EXT0
for G and H, the intuition being that the plaintext extractor first extracts from
the part G(r) that is left in clear by the redundancy to get r and then runs the
extractor for H on t⊕r from which it can compute m, with the above part of
the pre-image to get s. Note that when running the extractor here and below
we have to be careful that the constructed extractor uses the same coins as the

3 As acknowledged by the authors there was a bug in the proceedings version of this
paper, but this has been fixed for the full version [50].

4 In more detail, note that for s-clear the “overall” TDP (including the part output in
the clear) is not partial one-way [39] so their security proof does not apply. In fact,
Shoup [59] considers the scheme in his proof that RSA-OAEP is not IND-CCA2-
secure for general one-way TDPs, exhibiting the above-mentioned attack.
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starting one for consistency (otherwise we won’t end up with the right extractor).
We can also prove PA1, although we have to make an extractability assumption
directly on the padding scheme.5 Interestingly, even this approach does not work
for PA2, which we leave completely open for t-clear (cf. Remark 14).

Results and Intuition for s-clear. We find s-clear is much more friendly
to a full instantiation by making novel but plausible assumptions on RSA. One
is XOR-nonmalleability (XOR-NM), saying that from F(x) it is hard to find
some F(x′) and z such that z = x⊕x′. Another is XOR-indistinguishability
(XOR-IND), saying for random x and adversarially-chosen z one cannot tell
F(x) from F(x⊕z) given “hint” G(x). In our results, G is a PRG, which we show
also implies G is a HCF for F . So, the notion can be viewed as an extension of
the classical notion of HCF. In fact, we use XOR-IND just to show IND-CPA.
The intuition is that it allows breaking the dependency of s in the input to
OAEP with the input to RSA. The proofs of PA0 and PA1 are very similar,
and showcase one reason s-clear is much more friendly to a full instantiation,
namely it heavily depends on the extractability of G. That is, if G is suitably
extractable, the plaintext extractor can simply recover r and then compute the
plaintext as s⊕G(r). For PA2, one has to be careful as when the adversary makes
an encryption query, the plaintext extractor should call the image oracle for G,
where in addition to G(x) for random x it receives the hint of RSA on x. We
show that if RSA is XOR-IND then this implies the adversary can get the whole
ciphertext as a hint to simulate the encryption oracle. Then we also have the
worry about the adversary querying “mauled” ciphertexts to the extract oracle.
Intuitively, if the r-part is the same then it cannot run the extractor for G, but
we show this violates XOR-NM of RSA. On the other hand, if the s-part is the
same then we cannot break XOR-NM but this creates a collision for G.

1.7 Discussion and Perspective

Wesummarize and compare our results to priorwork inFig. 1.Note thatweget a lot
of mileage from assuming the trapdoor permutation is specifically RSA, whereas
prior work, which has mostly shown negative results CCA-style security notions,
went for a general approach. We also highlight that while our assumptions on both
RSA and the round functions for our full instantiability results are expectedly
stronger than what we need for partial instantiations, they still compare favorably
to prior work. In particular, while our assumption of EXT2 for G in our s-clear
result is already “PA2-flavored,” prior work [18, Definition 3.3] made CCA-style
assumptions on the round functions even to obtain relatively weak notions of non-
malleability. It can also be viewed as a strengthening of “adaptive” (CCA-style)
security notions on one-way functions [47,54].6 Plus, it is not clear how to get an
IND-CCA2 encryption scheme from EXT2 functions in a simpler way.

5 At a very high level, we can prove EXT0 of G, H implies EXT0 for the padding
scheme, but we do not know how to do this for EXT1 because of an “extractor
blow-up” problem.

6 These works do not precisely match our setting as [54] consider keyless functions
and [47] consider functions with a trapdoor.
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Scheme Assumptions on OAEP Assumptions on F Security Size Ref

RSA-OAEP G : PRG and H : RO OW, SIE and CIE IND-CCA2 n Section 3

RSA-OAEP G : RO and H : PHCF OW, SIE and CIE IND-CCA2 n Section 3

RSA-OAEP G : t-wise independent Lossy TDP IND-CPA n [48]

RSA-OAEP G,H : UCE OW IND-CPA-KI n [5]

RSA-OAEP G : PRG, EXT0 and NCR OW $IND-CCA0-KI 3n + 3k Full version

t-clear H : HCF, EXT0 and CR

RSA-OAEP OAEP : EXT1 and NCR OW $IND-CCA1-KI 3n + 3k Full version

t-clear G : PRG and H : HCF

RSA-OAEP G : PRG and NCR OW IND-CCA2 n + k [18]
t-clear H : RO

RSA-OAEP G : RO OW IND-CCA2 n + k [18]
t-clear H : NM PRG with hint

RSA-OAEP G : PRG and NCR OW $NM-CPA n + k [18]
t-clear H : NM PRG with hint

RSA-OAEP G : PRG, EXT1 and NCR XOR-IND0 IND-CCA1 2n + k + µ Section 6

s-clear

RSA-OAEP G : PRG, EXT2 and NCR XOR-IND1,2 IND-CCA2 2n + k + µ Section 6

s-clear H : CR and XOR-NM0

Fig. 1. Instantiability results for RSA-OAEP, where n is modulus length, k is security
param and μ is message length. Typically n = 2048, k = 128 and μ = 128.

1.8 Related Work

RO Model Results. Results about security of F-OAEP for an abstract TDP F
with applications to RSA-OAEP in the RO model were shown in [10,39,59]. Ulti-
mately, these works showed RSA-OAEP is IND-CCA2 secure in the RO model
assuming only one-wayness of RSA, but with a loose security reduction. Inter-
estingly, Shoup [59] considers s-clear RSA-OAEP indirectly in a negative result
about RSA-OAEP with a general one-way TDP. Security of t-clear RSA-OAEP
(under the name “RSA-OAEP++”) has been analyzed in the RO model by
Boldyreva, Imai and Kobara [19], who show tight security in the multi-challenge
setting.

Partial Instantiation Results. Canetti [24] conjectured that his notion of
perfect one-wayness sufficed to instantiate one of the two oracles in F-OAEP.
This was disproved in general by Boldyreva and Fischlin [17], but their results
do not contradict ours because they use a contrived TDP F . Subsequently,
Boldyreva and Fischlin [18] gave partial instantiations for t-clear F-OAEP under
stronger assumptions on the round functions.

Full Instantiation Results. Brown [22] and Paillier and Villar [53] showed
negative results for proving RSA-OAEP is IND-CCA secure in restricted mod-
els, and Kiltz and Pietrzak [49] showed a general black-box impossibility result.
As mentioned above, their results do not contradict ours because we use
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non-blackbox assumptions. Moving to weaker notions, Kiltz et al. [47] show
IND-CPA security of RSA-OAEP using lossiness [55], while Bellare, Hoang,
and Keelveedhi [5] show RSA-OAEP is IND-CPA secure for public-key inde-
pendent messages assuming the round functions meet their notion of universal
computational extraction. Boldyreva and Fischlin [18] show a weak form of non-
malleability for t-clear F-OAEP, again using very strong assumptions on the
round functions. Lewko et al. [51] show IND-CPA security of the RSA PKCS
v1.5 scheme, with the bounds later being corrected and improved by Smith and
Zhang [60].

Candidate Instantiability Assumptions. General notions for function fam-
ilies geared toward instantiating ROs that have been proposed include corre-
lation intractability [25,28], extractable hash functions [12,14,26,27], perfect
one-wayness [24,29,37], seed incompressibility [42], non-malleability [1,16], and
universal computational extraction (UCE) [5,6,23].

1.9 Organization

In Sect. 2, we give the preliminaries. In Sect. 3, we formalize the algebraic prop-
erties of RSA we use and our partial instantiation results for RSA-OAEP. In
Sect. 4, we give a new hierarchy of extractable functions. In Sect. 5, we abstract
out some properties of the OAEP padding scheme we use. Then, in Sect. 6 we
give novel “XOR-type” assumptions on RSA and combine them with the above
to give our full instantiation result s-clear RSA-OAEP. Due to space constraints,
our results for t-clear RSA-OAEP are deferred to the supplementary materials.
We also defer all detailed proofs to the supplementary materials.

2 Preliminaries and Some Generalizations

2.1 Notation and Conventions

For a probabilistic algorithm A, by y ←$ A(x) we mean that A is executed on input
x and the output is assigned to y. We sometimes use y ← A(x; r) to make A’s ran-
dom coins explicit. We denote by Pr

[
A(x) = y : x ←$ X

]
the probability that

A outputs y on input x when x is sampled according to X. We denote by [A(x)]
the set of possible outputs of A when run on input x. The security parameter is
denoted k ∈ N. Unless otherwise specified, all algorithms must run in probabilis-
tic polynomial-time (PPT) in k, and an algorithm’s running-time includes that of
any overlying experiment as well as the size of its code. Integer parameters often
implicitly depend on k. The length of a string s is denoted |s|. We denote by s|ji
the i-th least significant bits (LSB) to j-th least significant bits of s (including i-th
and j-th bits), where 1 ≤ i ≤ j ≤ |s|. For convenience, we denote by s|� = s|�1 the
� least significant bits of s and s|� = s||s|

|s|−� the � most significant bits (MSB) of s,
for 1 ≤ � ≤ |s| . We write PX for the distribution of random variable X and PX(x)
for the probability that X puts on value x, i.e. PX(x) = Pr[X =x]. We denote by
U� the uniform distribution on {0, 1}�. We write US for the uniform distribution
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Game PA-ROA,Ext
PKE (k)

b ←$ {0, 1} ; i ← 1 ; j ← 1
(pk , sk) ←$ Kg(1k)
b′ ←$ ARO(·,1),Enc(pk,·),D(sk,·)(pk)
Return (b = b′)

Procedure RO(x, i)
If H[x] = ⊥ then H[x] ←$ {0, 1}�

If i = 1 then
x[j] ← x ; h[j] ← H[x] ; j ← j + 1

Return H[x]

Procedure Enc(pk , M)
m ←$ M(1k, pk)
c ←$ EncRO(·,2)(pk , m)
c[i] ← c ; i ← i + 1
Return c

Procedure D(sk , c)
If c ∈ c then return ⊥
m0 ← Dec(sk , c)
m1 ←$ ExtRO(·,3)(x,h, c, c, pk)
Return mb

Fig. 2. Game to define PA-RO security.

on the set S. Vectors are denoted in boldface, for example x. If x is a vector then
|x| denotes the number of components of x and x[i] denotes its i-th component, for
1 ≤ i ≤ |x|. For convenience, we extend algorithmic notation to operate on each
vector of inputs component-wise. For example, if A is an algorithm and x,y are
vectors then z ←$ A(x,y) denotes that z[i] ←$ A(x[i],y[i]) for all 1 ≤ i ≤ |x|. Let
X be random variables taking values on a common finite domain. The min-entropy
of a random variable X is H∞(X) = − log(maxx Pr [X = x ]).

2.2 Public-Key Encryption and Its Security

Public-key Encryption. A public-key encryption scheme PKE with message
space Msg is a tuple of algorithms (Kg,Enc,Dec). The key-generation algorithm
Kg on input 1k outputs a public key pk and matching secret key sk . The encryp-
tion algorithm Enc on inputs pk and a message m ∈ Msg(1k) outputs a cipher-
text c. The deterministic decryption algorithm Dec on inputs sk and ciphertext
c outputs a message m or ⊥. We require that for all (pk , sk) ∈ [Kg(1k)] and all
m ∈ Msg(1k), Dec(sk , (Enc(pk ,m)) = m with probability 1.

PA-RO Security. We first define plaintext-awareness in the RO model follow-
ing [4], which builds on the definition in [10] and is strictly stronger than IND-
CCA2 security in general. Let PKE = (Kg,Enc,Dec) be a public key encryption
scheme and let M be a PPT algorithm that takes as inputs 1k and a public key
pk , and outputs a message m ∈ Msg(1k). To adversary A and extractor Ext, we
associate the experiment in Fig. 2 for every k ∈ N. We say that PKE is PA-RO
secure if for every PPT adversary A there exists an extractor Ext such that

Advpa-ro
PKE,A,Ext(k) = 2 · Pr

[
PA-ROA,Ext

PKE (k) ⇒ 1
]

− 1.

is negligible in k.

Remark 1. Our definition of plaintext awareness in the random oracle model
differs from the definition given in [4] in the following way. In our definition,
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Game PAIA,Ext
PKE (k)

(pk , sk) ←$ Kg(1k)
b ←$ {0, 1} ; i ← 1 ; c ← ε

r ←$ Coins(k) ; st ← (pk , r)
b′ ← AD(sk,·),O(pk ; r)
Return (b = b′)

Procedure D(sk , c)
If c ∈ c then return ⊥
m0 ← Dec(sk , c)
(m1, st) ←$ Ext(st, c, c)
Return mb

Procedure Enc(pk , M)
m ←$ M(1k, pk)
c ←$ Enc(pk , m)
c[i] ← c ; i ← i + 1
Return c

Fig. 3. Games to define PAI security.

we are giving the extractor access to the random oracle. We observe that the
analogous result of [4, Theorem 4.2] that IND-CPA and PA-RO together imply
IND-CCA2 still holds for our modified definition, since in the proof the IND-CPA
adversary could query its own random oracle to answer to the random oracle
queries of the extractor.

We now turn to definitions of plaintext awareness in the standard model,
following [8].

PA Security. Let PKE = (Kg,Enc,Dec) be a public key encryption scheme.
For PAI ∈ {PA0,PA1,PA2}, we associate the experiment in Fig. 3 to adversary
A and extractor Ext, for every k ∈ N. Define the PAI advantage of A

Advpai
PKE,A,Ext(k) = 2 · Pr

[
PAIA,Ext

PKE (k) ⇒ 1
]

− 1.

If PAI = PA1, then O = ε. PA0 is defined similarly to PA1, except A is only
allowed to make a single decryption query. If PAI = PA2, then O = Enc. We
say that PKE is PAI secure if for every PPT adversary A with coin space Coins
there exists an extractor Ext such that, Advpai

PKE,A,Ext(k) is negligible in k.

Remark 2. Our PA2 definition comes from [8]. We give PA2 adversary extra
access to encryption oracle. This models the ability that IND-CCA2 adversary
obtains ciphertext without knowing the randomness.

2.3 Trapdoor Permutations and Their Security

Trapdoor permutations. A trapdoor permutation family with domain TDom
is a tuple of algorithms F = (Kg,Eval, Inv) that work as follows. Algorithm Kg
on input a unary encoding of the security parameter 1k outputs a pair (f, f−1),
where f : TDom(k) → TDom(k). Algorithm Eval on inputs a function f and
x ∈ TDom(k) outputs y ∈ TDom(k). We often write f(x) instead of Eval(f, x).
Algorithm Inv on inputs a function f−1 and y ∈ TDom(k) outputs x ∈ TDom(k).
We often write f−1(y) instead of Inv(f−1, y). We require that for any (f, f−1) ∈
[Kg(1k)] and any x ∈ TDom(k), f−1(f(x)) = x. We call F an n-bit trapdoor
permutation family if TDom = {0, 1}n. We will think of the RSA trapdoor
permutation family [57] n-bit for simplicity, although its domain is Z

∗
N for an

n-bit integer N . Additionally, for convenience we define the following. For an
ν-bit trapdoor permutation family and � ∈ N, we define F|� = (Kg|�,Eval|�, Inv|�)
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as the (ν + �)-bit trapdoor permutation families such that for all k ∈ N, all
(f |�, f−1|�) ∈ [Kg|�(1k)], and all x ∈ {0, 1}ν+�, we have f(x)|� = f(x|n−�)‖x|�,
and analogously for F|�.

2.4 Function Families and Associated Security Notions

Function Families. A function family with domain F.Dom and range F.Rng
is a tuple of algorithms F = (KF , F ) that work as follows. Algorithm KF on
input a unary encoding of the security parameter 1k outputs a key KF . Deter-
ministic algorithm F on inputs KF and x ∈ F.Dom(k) outputs y ∈ F.Rng(k).
We alternatively write F as a function F : KF × F.Dom → F.Rng. We call F an
�-injective function if for all distinct x1, x2 ∈ F.Dom(k) and KF ∈ [KF (1k)], we
have F (KF , x1)|� 
= F (KF , x2)|�.
Near-Collision Resistance. Let H : KH × HDom → HRng be a function
family. For m ∈ N suppose HRng = {0, 1}m. For 1 ≤ � ≤ m we say H is near-
collision resistant with respect to �-least significant bits of the outputs (NCR�)
if for any PPT adversary A:

Advn-cr�
H,A (k) = Pr

KH ←$ KH(1k)

[
(x1, x2) ← A(KH)
x1, x2 ∈ HDom(k)

∧ H(KH , x1)|� = H(KH , x2)|�
x1 �= x2

]

is negligible in k. We note that our definition differs slightly from [18] as both
x1, x2 are adversarially chosen. In terms of feasibility, the same construction
based on one-way permutations given in [18] works in our case as well. Simi-
larly, we define NCR� where the adversary tries to find collision on the �-most
significant bits of the output.

Partial Hardcore Functions. For convenience, we also generalize the notion
of hardcore function in the following way. Let F = (Kg,Eval, Inv) be n-bit trap-
door permutation family. Let H : KH × {0, 1}n−� → HRng be a function family,
for some � < n. To attacker A, we associate the experiment in Fig. 4 for every
k ∈ N. We say that H is a �-partial hardcore function for the trapdoor permu-
tation family F if for every PPT adversary A,

Advphcf
F,H,A(k) = 2 · Pr

[
PHCF-DISTA

F,H(k) ⇒ 1
] − 1.

is negligible in k. Note if (f(x), x|n−�) is a one-way function of x, then H is
a �-partial hardcore function for F when H is a computational randomness
extractor [32]. This is plausible for the case that F is RSA when n − � is small
enough that Coppersmith’s techniques do not apply. This means n − � ≤ n(e −
1)/e − log 1/ε such that N ε ≥ 2k for security parameter k.

2.5 The OAEP Framework

OAEP Padding Scheme. We recall the OAEP padding scheme [10]. Let
message length μ, randomness length ρ, and redundancy length ζ be inte-
ger parameters, and ν = μ + ρ + ζ. Let G : KG × {0, 1}ρ → {0, 1}μ+ζ and
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Game PHCF-DISTA
F,H(k)

b ←$ {0, 1} ; KH ←$ KH(1k) ; (f, f−1) ←$ Kg(1k)
x ←$ {0, 1}n ; h0 ← H(KH , x|�) ; h1 ←$ HRng(k)
b′ ←$ A(KH , f, f(x), x|n−�, hb)
Return (b = b′)

Fig. 4. Games to define PHCF-DIST security.

Algorithm OAEP(KG,KH )(m‖r)
s ← (m‖0ζ)⊕G(KG, r)
t ← r⊕H(KH , s)
x ← s‖t

Return x

Algorithm OAEP−1
(KG,KH )(x)

s‖t ← x ; r ← t⊕H(KH , s)
m′ ← s⊕G(KG, r)
If m′|ζ = 0ζ return m′|μ
Else return ⊥

Fig. 5. OAEP padding scheme OAEP[G, H].

H : KH ×{0, 1}μ+ζ → {0, 1}ρ be function families. The associated OAEP padding
scheme is a triple of algorithms OAEP[G,H] = (KOAEP,OAEP,OAEP−1) defined
as follows. On input 1k, KOAEP returns (KG,KH) where KG ←$ KG(1k) and
KH ←$ KH(1k), and OAEP,OAEP−1 are as defined in Fig. 5.

OAEP Encryption Scheme and Variants. Slightly abusing notation, we
denote by OAEP[G,H,F ] the OAEP-based encryption scheme F-OAEP with
n = ν. We also consider two other OAEP-based encryption schemes, called t-
clear and s-clear F-OAEP, and denoted OAEPt-clear[G,H,F|ζ+ρ] and OAEPs-clear
[G,H,F|μ+ζ ]. Here n = μ and n = ρ, respectively. We often write OAEPt-clear
and OAEPs-clear instead of OAEPt-clear[G,H,F|ζ+ρ] and OAEPs-clear[G,H,F|μ+ζ ].
We typically think of F as RSA, and all our results apply to this case under
suitable assumptions. Note that, following prior work, despite its name t-clear
F-OAEP we actually apply F to only the μ most significant bits of the output
of the underlying padding scheme, leaving the redundancy part of s in the clear
as well.

3 Partial Instantiation Results for RSA-OAEP

In this section, we give partial instantiations of either G or H for RSA-OAEP
under IND-CCA2. Our results use only mild standard model properties of G
or H. We also use (generalizations of) algebraic properties of RSA proven by
Barthe et al. [3] for small enough e. For example, using a 2048-bit modulus and
encrypting a 128-bit AES key, our results hold for e = 3. They might be true for
larger e; at least, they cannot be disproved. Note that our results first necessitate
a separate proof of IND-CPA—the standard model IND-CPA results of Kiltz
et al. [48] and Bellare et al. [5] are not suitable, the first requiring large e and
the second holding only for public-key independent messages.
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3.1 Algebraic Properties of RSA

We first give generalizations of algebraic properties of RSA from Barthe et al. [3]
that we use, and their parameters. They used these assumptions to analyze
security of a zero-redudancy one-round version of RSA-OAEP. We show that
generalizations are useful for analyzing security of full RSA-OAEP.

Second-input Extractability. Let F = (Kg,Eval, Inv) be a trapdoor permu-
tation family with domain {0, 1}n. For 1 ≤ i ≤ j ≤ n, we say F is (i, j)-second-
input-extractable (BB (i, j)-SIE) if there exists an efficient extractor E such that
for every k ∈ N, every f ∈ [Kg(1k)], and every x ∈ {0, 1}n, extractor E on inputs
f, f(x), x|ji+1 outputs x. We often write ζ-SIE instead of (n − ζ, n)-SIE.

Common-input Extractability. Let F = (Kg,Eval, Inv) be a trapdoor per-
mutation family with domain {0, 1}n. For 1 ≤ i ≤ j ≤ n, we say F is (i, j)-
common-input-extractable if there exists an efficient extractor E such that for
every k ∈ N, every f ∈ [Kg(1k)], and every x1, x2 ∈ TDom(k), extractor E on
inputs f, f(x1), f(x2) outputs (x1, x2) if x1|ji+1 = x2|ji+1. We often write ζ-CIE
instead of (n − ζ, n)-CIE.

Comparison to Barthe et al. Compared to [3], we generalize the notions of
SIE and CIE to consider arbitrary runs of consecutive bits. That is, [3] only
considers the most significant bits; i.e., ζ-SIE and ζ-CIE in our notation.

Parameters. Barthe et al. [3] show via the univariate Coppersmith algorithm
[30] that RSA is ζ-SIE and ζ-CIE for sufficiently large ζ. Specifically, they show
RSA is ζ1-SIE for ζ1 > n(e − 1)/e, and ζ2-CIE for ζ2 > n(e2 − 1)/e2. We show
that a generalization to runs of arbitrary consecutive bits using the bivariate
Coppersmith algorithm [15,30,31]. Specifically, we show that RSA is (i, j)-SIE
for (j − i) > n(e − 1)/e, and (i, j)-CIE for (j − i) > n(e2 − 1)/e2, Due to space
constraints, this is shown in the full version. Note that in our partial instantiation
results for RSA-OAEP, j − i refers to the length of the redundancy ζ.

3.2 Main Results

Main Results. We now give our main results, namely partial instantiations for
RSA-OAEP of either oracle G or H. These results refer to IND-CCA2 security
for simplicity, whereas we actually prove PA-RO + IND-CPA.

Theorem 3. Let n, μ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ →
{0, 1}μ+ζ be a pseudorandom generator and H : {0, 1}μ+ζ → {0, 1}ρ be a
RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = μ + ζ + ρ. Suppose F is one-way, (μ + ζ)-second input and (μ + ζ)-common
input extractable. Then OAEP[G,H,F ] is IND-CCA2 secure. In particular, for
any adversary A, there is an adversary D and an inverter I such that

Advind-cca2
OAEP[G,H,F ],A(k) ≤ 2 · Advowf

F,I(k) + 10 · Advprg
G,D(k) +

2p

2μ+ζ
+

4q

2ζ
.
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where q is the total number of the decryption queries and p is the total number
of RO queries made by A. Furthermore, the running time of D and I are about
that of A plus the time to run SIE and CIE extractors.

Theorem 4. Let n, μ, ζ, ρ be integer parameters. Let H : KH × {0, 1}μ+ζ →
{0, 1}ρ be a hash function family and G : {0, 1}ρ → {0, 1}μ+ζ be a RO. Let F be
a family of trapdoor permutations with domain {0, 1}n, where n = μ+ζ+ρ. Sup-
pose F is (ρ, ρ + ζ)-second input and (ρ, ρ + ζ)-common input extractable. Sup-
pose further H is a (μ+ ζ)-partial hardcore function for F . Then OAEP[G,H,F ]
is IND-CCA2. In particular, for any adversary A = (A1, A2), there exists an
adversary B such that

Advind-cca2
OAEP[G,H,F ],A(k) ≤ 2 · Advphcf

F,H,B(k) +
2p

2ρ
+

4q

2ζ
.

where q the total number of the decryption queries and p is the total number of
RO queries made by A. Furthermore, the running time of B is about that of A
plus the time to run SIE and CIE extractors.

The proofs of both theorems follow from below.

Parameters for RSA-OAEP. We discuss when our results support RSA-
OAEP encryption of an AES key of appropriate length, based on Subsect. 3.1.
The main requirement is encryption exponent e = 3. In this case, with length
2048 bits we can use randomness and message length 128 bits, and for modulus
length 4096 we can use randomness length 256. The choice that e = 3 is some-
times used in practice but it is an interesting open problem to extend our results
to other common choices such as e = 216 + 1. In particular, it may be possible
that SIE and CIE hold in this case for the same parameters. Interestingly, we
have a “flipped” situation vs. [48] who show IND-CPA security of RSA-OAEP
in the standard model using large exponent RSA. We hope future work will help
reconcile these differences.

3.3 Partial Instantiation of G

We first show how to instantiate G when modeling H as a RO. In particular, we
show OAEP[G,H,F ] is IND-CPA + PA-RO when G is a pseudorandom generator
and F is one-way, (μ + ζ)-SIE and (μ + ζ)-CIE.
IND-CPA Result. Under IND-CPA, we show a tight reduction when G is a
pseudorandom generator and F is one-way and (μ + ζ)-SIE. Alternatively, we
give result where F is only partial one-way, but the reduction is lossy (due to
space constraints, this is shown in the full version). Note that it is shown in [38]
that one-wayness of RSA implies partial one-wayness, but the reduction is even
more lossy, while SIE and CIE unconditionally hold for appropriate parameters.

Theorem 5. Let n, μ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ →
{0, 1}μ+ζ be a pseudorandom generator and H : {0, 1}μ+ζ → {0, 1}ρ be a
RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
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n = μ+ ζ +ρ. Suppose F is one-way and (μ+ ζ)-second input extractable. Then
OAEP[G,H,F ] is IND-CPA. In particular, for any adversary A = (A1, A2), there
are an adversary D and an inverter I such that

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 · Advowf

F,I(k) + 6 · Advprg
G,D(k) +

2q

2μ+ζ
.

where q is the total number of RO queries made by A. Furthermore, the running
time of D is about that of A and the running time of I is about that of A plus
the time to run SIE extractor.

Proof Idea. Let c = f(s‖t) be the challenge ciphertext. Note that, it is unlikely
that A queries value s to H since one could use SIE extractor to invert challenge
c knowing s. Thus, value t looks random to A. Moreover, we know G is PRG,
then value s looks random. Therefore, challenge c looks random to A.

PA-RO Result. We show RSA-OAEP is PA-RO when modeling H as a RO
if G is a pseudorandom generator and F is both second-input extractable and
common-input extractable.

Theorem 6. Let n, μ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ →
{0, 1}μ+ζ be a pseudorandom generator and H : {0, 1}μ+ζ → {0, 1}ρ be a
RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = μ + ζ + ρ. Suppose F is (μ + ζ)-second input and (μ + ζ)-common input
extractable. Then OAEP[G,H,F ] is PA-RO secure. In particular, for any adver-
sary A, there exists an adversary D and an extractor Ext such that

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2 · Advprg

G,D(k) +
2q

2ζ
.

where q is the total number of the extraction queries made by A. Furthermore,
the running time of D is about that of A and the running time of Ext is about
that of SIE and CIE extractors.

Proof Idea. Let c = f(s‖t) be the extract query made by A. If there is a prior
query s to H, then one could use SIE or CIE extractor to extract message m.
Otherwise the challenge c is invalid whp, since the ζ-lsb of G(KG, r) and s are
not equal on random r whp, when G is PRG.

3.4 Partial Instantiation of H

Now, we instantiate the hash function H when modeling only G as a RO. In
particular, we show OAEP[G,H,F ] is IND-CPA + PA-RO when H is a special
type of hardcore function and F is one-way, second-input and common-input
extractable. Note that Boneh [20] previously showed a simplified RSA-OAEP
with one Feistel round G is IND-CCA2 secure and Barthe et al. [3] showed such
a scheme does not even need redundancy, but these proof do not translate to
the case of H as a cryptographic hash function.
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IND-CPA Result. Under IND-CPA, we show a tight reduction when H is a
(μ + ζ)-partial hardcore function for F . In particular, it is plausible for H as
a computational randomness extractor [32] and that F is RSA in the common
setting ρ = k (e.g., ρ = 128 for modulus length n = 2048), since Coppersmith’s
technique fails.

Theorem 7. Let n, μ, ζ, ρ be integer parameters. Let H : KH × {0, 1}μ+ζ →
{0, 1}ρ be a hash function family and G : {0, 1}ρ → {0, 1}μ+ζ be a RO. Let F
be a family of trapdoor permutations with domain {0, 1}n, where n = μ+ ζ + ρ.
Suppose H is a (μ + ζ)-partial hardcore function for F . Then OAEP[G,H,F ]
is IND-CPA. In particular, for any adversary A = (A1, A2), there exists an
adversary B such that

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 · Advphcf

F,H,B(k) +
2q

2ρ
,

where q is the total number of RO queries made by A. The running time of B
is about that of A.

Proof Idea. Let c = f(s‖t) be the challenge ciphertext. Note that, it is unlikely
that A queries r to G, since one can build an adversary B attacking H. Moreover,
if A does not query r to G, value s looks random and A won’t be able to obtain
any information about b.

PA-RO Result. We show another partial instantiation result modeling only G
as a RO. Namely, we show RSA-OAEP is PA-RO if F is second-input extractable,
and common-input extractable. Note that this does not require any assumption
on H.

Theorem 8. Let n, μ, ζ, ρ be integer parameters. Let H : {0, 1}μ+ζ → {0, 1}ρ

be a hash function family and G : KG × {0, 1}ρ → {0, 1}μ+ζ be a RO. Let F be
a family of trapdoor permutations with domain {0, 1}n, where n = μ + ζ + ρ.
Suppose F is (ρ, ρ + ζ)-second input and (ρ, ρ + ζ)-common input extractable.
Then OAEP[G,H,F ] is PA-RO secure. In particular, for any adversary A, there
exists an extractor Ext such that,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2q

2ζ
.

where q is the total number of the extract queries made by A. The running time
of Ext is about that of SIE and CIE extractors.

Proof Idea. Let c = f(s‖t) be the extract query made by A. If there is a prior
query r to G, then one with knowledge of G(r)|ζ could use SIE or CIE extractor
to extract message m. Otherwise, the challenge c is invalid whp, since the ζ-lsb
of G(H(KH , s)⊕t) and s are not equal whp.
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4 A Hierarchy of Extractability Notions

Intuitively, extractability of a function formalizes the idea that an adversary
that produces a point in the image must “know” a corresponding preimage,
as there being a non-blackbox extractor that produces one. Previous work on
extractability starting with [26,27] considers a “one-shot” adversary. Inspired by
the related notion of plaintext awareness for encryption schemes [4,8], we define
a hierarchy of extractability notions called EXT0, EXT1, EXT2, and EXT-RO,
which will in particular be useful for our full instantiation results. Even our
notion of EXT0 generalizes prior work, as explained below.

EXT Functions. Let η, ζ, μ be integer parameters. Let H : KH × HDom →
HRng be a hash function family. For EXTI ∈ {EXT0,EXT1,EXT2}, we asso-
ciate the experiment in Fig. 6 to an adversary A and extractor Ext, for every
k ∈ N. For any key independent auxiliary input z ∈ {0, 1}η, we define

Adv
(η,μ)-extiζ
H,F,A,Ext,z(k)

= Pr
KH ←$ KH(1k)

r ←$ Coins(k)

[
(x,y) ← EXTIA,E,z

H,F (KH , r)

∃i, ∃x : H(KH , x)|ζ = y[i] ∧ x[i]|μ = x|μ ∧ H(KH ,x[i])|ζ �= y[i]

]

We define the EXTI advantage of A to be Adv(η,μ)-extiζ
H,F,A,Ext (k) = maxz∈{0,1}η

Adv(η,μ)-extiζ
H,F,A,Ext,z(k). If EXTI = EXT1, then O = ε. Note that, in EXT1 definition,

adversary A have only access to extract oracle E . EXT0 is defined similarly to
EXT1, except A is only allowed to make a single extract query. If EXTI = EXT2,
then O = I, where I is an image oracle. We say H is (η, μ)-EXTIζ if for any
PPT adversary A with coin space Coins, there exists a stateful extractor E such
that Adv(η,μ)-extiζ

H,F,A,Ext (k) is negligible in k.
Similarly, we define the analogous notion (η, μ)-EXTIζ where the adversary

outputs the ζ most significant bits of the image point. We often write η-EXTIζ
and η-EXTIζ instead of (η, 0)-EXTIζ and (η, 0)-EXTIζ , respectively. We also
often write (η, μ)-EXTI instead of (η, μ)-EXTIζ when ζ = log |HRng|.

Game EXTIA,E,z
H,F (KH , r)

i ← 1 ; j ← 1 ; st ← ε

x ← ε ; y ← ε ; h ← ε

h1 ← ε ; w ← ε

(f, f−1) ←$ Kg(1k)
Run AE(·,·),O(KH , f, z; r)
Return (x,y)

Procedure E(x2, y)
If y ∈ h1 then return ⊥
(st, x1) ← Ext(st, KH , f, z,h,w, x2, y; r)
x[i] ← x1‖x2 ; y[i] ← y ; i ← i + 1
Return x1

Procedure I(1k)
v ←$ HDom(k) ; h ← H(KH , v)
h[j] ← h ; w[j] ← f(v) ; h1[j] ← h|ζ ; j ← j + 1
Return (h, f(v))

Fig. 6. Game to define EXTI security.
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We generalized the notion of extractable functions in two ways. First, the
extractor should work when the adversary outputs ζ least significant bits of an
image point and μ bits of a preimage, given η bits of auxiliary information. Pre-
vious work considered ζ = log |HRng| and μ = 0. Next, we give a definition of
“many-times” extractability. We note that a central open problem in the theory
of extractable functions to construct a “many-times” extractable function from
a “one-time” extractable function, see e.g. [41]; the obvious approach suffers an
extractor “blow-up” issue. For practical purposes, we simply formalize and assume
this property for an appropriate construction from cryptographic hashing.

In the EXT2 notion, we extend the definition of EXT1 and give the adversary
access to an oracle I that outputs the function evaluation of a random point from
its domain along with an uninvertible hint about the corresponding preimage
(We also consider EXT2 notion without a hint, where the uninvertable hint
is an empty function). The adversary is not allowed to query any such point
to the extract oracle E . In other words, this is a form of extractability with key
dependent auxiliary information that parallels PA2 for encryption schemes. Note
that we avoid the impossibility result of [13] since in all of our EXT definitions,
we consider only bounded independent auxiliary information.

EXT-RO Functions. Finally, we give a notion of extractability in the RO
model, inspired by PA-RO for encryption schemes. In particular, here the adver-
sary has access to an oracle F to which it queries a sampling algorithm, the
oracle returning the image of a point in the domain sampled accordingly. More-
over, instead of the adversary’s random coins the extractor gets a transcript of its
RO queries and responses, but not those made by F . Due to space constraints,
we refer to the full version for the complete definition.

Plausibility. We typically use EXT notions in tandem with other properties
such as collision-resistance. In terms of feasibility, there are several constructions
proposed for EXT0 with ζ = log |HRng| and μ = 0 and collision-resistance in [52]
based on knowledge assumptions. (In the weaker case of EXT0 with only one-
wayness, which does not suffice for us, the notion is actually achievable for these
parameters under standard assumptions [13].) However, for our generalizations
and notions of EXT1, EXT2, we are not aware of any constructions in the
standard model. Despite the fact that they are difficult to judge, it may be a
reality that as a community we need to move to such assumptions in order to
make progress on some difficult problems. A similar strategy was used for very
different goals by Pandey et al. [54]. It would be interesting for future work to
explore relations between our assumptions and theirs.

5 Results for Padding Schemes and OAEP

We abstract properties of the OAEP padding scheme and prove them based on
corresponding notions for the round functions. Namely, we study near-collision
resistance, EXT0ζ+ρ, EXT1μ+ζ and (ζ + ρ)-EXT-RO. In particular, note that
while the OAEP padding scheme is invertible these notions are non-trivial
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because we consider adversaries that only produce part of the output. Prov-
ing the other notions, EXT1ζ+ρ, EXT2μ+ζ and EXT2ζ+ρ, in the standard model
based on assumptions on the round functions remains open. However, they could
be justified as assumptions by the fact that OAEP is (ζ +ρ)-EXT-RO, similarly
to showing a RO is UCE [5, Section 6.1]. Due to space constraints, these are
shown in the full version.

6 Full Instantiation Results for s-Clear RSA-OAEP

In this section, we give full instantiation results for s-clear RSA-OAEP. Note
that we are the first to consider this variant. We show that s-clear is IND-CCA2
if G is a pseudorandom generator, near-collision resistant, and “many-times”
extractable with dependent auxiliary information, H is collision-resistant, and
F meets novel “XOR-nonmalleability” and “XOR-indistinguishability” notions
that seem plausible for RSA. Also note that we avoid the several impossibility
results here. First, we avoid the impossibility result of [58] by using XOR-non-
malleability of F . Second, we avoid the impossibility result of [13] since the
dependent auxiliary information is bounded.

6.1 XOR Assumptions on Trapdoor Permutations and RSA

Here, we give classes of novel assumptions on RSA (and trapdoor permutations
in general), which are stronger than one-wayness and needed for RSA-OAEP
s-clear.

XOR-IND. Our first class of assumptions speaks to the fact that addition or
XOR operations “break up” the multiplicative structure of RSA. Indeed, in a
related context of arithmetic progressions on ZN we have seen formal evidence
of this [51,60]. It is interesting for future work to give formal evidence in our
case as well. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with
domain TDom. Let G : KG × TDom → GRng be a function family. For ATK ∈
{IND0, IND1, IND2}, we associate the experiment in Fig. 7, for every k ∈ N.
Define the xor-atk advantage of A against F with the hint function family G

Advxor-atk
F,G,A (k) = 2 · Pr

[
XOR-ATKA

F,G(k) ⇒ 1
] − 1.

If atk = ind0, then O = ε. We say that F is XOR-IND0 with respect to hint
function family G if for every PPT attacker A, Advxor-ind0

F,G,A (k) is negligible in k.
Similarly, if atk = ind1, then O = C, where C is a relation checker oracle that
on input y1, y2 and ω outputs 1, if ω = f−1(y1)⊕f−1(y2), otherwise outputs 0.
Similarly, if atk = ind2, then O = V�, where V� is an �-bit image verifier oracle
that on input y outputs 1, if there exists x such that y = G(KG, x)|�, otherwise
outputs 0. Note that A is not allowed to query for the challenge to V. We say
that F is XOR-IND1 (resp. XOR-IND2�) with respect to hint function family G
if for every PPT attacker A, Advxor-ind1

F,G,A (k) (resp. Advxor-ind2�

F,G,A (k)) is negligible
in k.
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Game XOR-ATKA
F,G(k)

b ←$ {0, 1} ; (f, f−1) ← Kg(1k)
KG ← KG(1k) ; x ←$ TDom(k)
(state, z) ←$ A1(f, KG, G(KG, x))
y0 ← f(x) ; y1 ← f(x⊕z)
b′ ←$ AO

2 (state, yb)
Return (b = b′)

Fig. 7. Games to define XOR-ATK security.

Observe that the hint is crucial, as otherwise the assumption would trivially
hold. In our results, G is a PRG. In this case, we show that G is also a HCF
function for F . In other words, the assumption in our use-case can be viewed an
extension of the classical notion of HCF—G is “robust” not in the sense of [40],
but in the sense that the view of the adversary is also indistinguishable given F
applied to either the real input or related one. Note that not all hardcore func-
tions have this property, even when F is partial one-way. For example, consider a
hardcore function G that reveals first bit of its input x. Then if a partial one-way
function F also reveals the first bit of x, XOR-indistinguishability clearly does
not hold.

Theorem 9. Let F be a family of one-way trapdoor permutations with domain
TDom. Suppose G : KG ×TDom → GRng is a pseudorandom generator and F is
XOR-IND0 with respect to hint function family G. Then G is a hardcore function
for F on the uniform distribution. In particular, for any adversary A, there are
adversaries B,C such that

Advhcf
F,G,U,A(k) ≤ 2 · Advxor-ind0

F,G,B (k) + 2 · Advprg
G,C(k).

XOR-NM0. Our second class of assumptions speak to the fact that RSA is
non-malleable wrt. XOR. Intuitively, if RSA was XOR malleable, then since it
is multiplicatively homomorphic it would be (something like) fully homomor-
phic, which is unlikely. (Although we do not claim the exact formulation of our
definitions imply a formal definition of fully homomorphic.) A similar argument
was made by Hofheinz for a non-malleability assumption on the Paillier trapdoor
permutation (which is additively homomorphic) wrt. multiplication [Assumption
4.2][44]. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain
TDom. To attacker A, we associate the experiment in Fig. 8 for every k ∈ N. We
say that F is XOR-NM0 if for every PPT attacker A,

Advxor-nm0
F,A (k) = Pr

[
XOR-NM0A

F (k) ⇒ 1
]
.

is negligible in k.
XOR-NM1. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with
domain TDom. Let G : KG × TDom → GRng be a hash function family.
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Game XOR-NM0A
F (k)

(f, f−1) ← Kg(1k)
x ←$ TDom(k)
(ω, y′) ←$ A(f, f(x))
x′ ← f−1(y′)
If (ω = x⊕x′) ∧ (ω �= 0)

Return 1
Else return 0

Game XOR-NM1A
F,G(k)

(f, f−1) ← Kg(1k) ; KG ← KG(1k)
x ←$ TDom(k) ; z ← G(KG, x)
(α, st) ←$ A1(f, KG, z)
(ω, y′) ←$ A2(st, f(x⊕α))
x′ ← f−1(y′)
If (ω⊕α = x⊕x′)∧ (ω �= 0) then return 1
Else return 0

Fig. 8. Games to define XOR-NM security.

To attacker A, we associate the experiment in Fig. 8 for every k ∈ N. We say
that F is XOR-NM1 with respect to G if for every PPT attacker A,

Advxor-nm1
F,G,A (k) = Pr

[
XOR-NM1A

F,G(k) ⇒ 1
]
.

is negligible in k.

Relations Between Definitions. Interestingly, we show XOR-NM0 and
XOR-IND1 together imply XOR-NM1.

Theorem 10. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with
domain TDom. Let G : KG × TDom → GRng be a function family. Suppose F
is XOR-NM0 and XOR-IND1 with respect to G. Then, F is XOR-NM1 with
respect to G. In particular, for any adversary A, there are adversaries B,C such
that

Advxor-nm1
F,G,A (k) ≤ Advxor-nm0

F,G,B (k) + 2 · Advxor-ind1
F,G,C (k).

Discussion. We caution that these are new assumptions and must be treated
with care, although they have some intuitive appeal as discussed where they
are introduced. It would be interesting for future work to establish theoretical
constructions meeting them or show that RSA meets them under more well-
studied assumptions.

6.2 Main Results

After establishing its security in the RO model, we show that s-clear RSA-
OAEP is IND-CCA1 and IND-CCA2 under respective suitable assumptions. As
in Sect. 3 we actually prove corresponding notions of IND-CPA + PA, yielding
stronger results. The results in Section follow from those below.

IND-CCA2 Result in RO Model. First, note that the partial one-wayness
result of [39] does not apply to this variant, and in fact the negative result of [59]
does apply, demonstrating that one-wayness of the trapdoor permutation is not
enough for the scheme to achieve IND-CCA2 security even in the RO model. We
show that XOR-nonmalleability is sufficient.
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Theorem 11. Let μ, ζ, ρ be integer parameters. Let F be a XOR-NM0 family of
one-way trapdoor permutations with domain {0, 1}ρ. Suppose G : KG×{0, 1}ρ →
{0, 1}μ+ζ is a RO and H : KH × {0, 1}μ+ζ → {0, 1}ρ is collision-resistant. Then
OAEPs-clear[G,H,F|μ+ζ ] is IND-CCA2 secure in the random oracle model. In
particular, for any adversary A, there are adversaries B,C such that

Advind-cca2
OAEPs-clear,A(k) ≤ 2q

2ρ
+

4p

2ζ
+ 2 · Advcr

H,C(k) + 4 · Advxor-nm0
F,B (k).

where p is the number of decryption-oracle queries of A and q is the total number
of random-oracle queries of A and M. Adversary B and C makes at most q
random-oracle queries.

IND-CCA1 Result. To prove IND-CCA1, we use EXT1 and near-collision
resistance of the overall OAEP padding scheme (which follows from assumptions
on the round functions as per Sect. 5), as well as the assumption that G is a
pseudorandom generator and F is XOR-IND (as defined in Sect. 6.1).

Theorem 12. Let η, μ, ζ, ρ be integer parameters. Let F be a family of trapdoor
permutations with domain {0, 1}μ, and let η = |[Kg(1k)]|. Let G : KG×{0, 1}ρ →
{0, 1}μ+ζ and H : KH × {0, 1}μ+ζ → {0, 1}ρ be function families. Suppose G
is a pseudorandom generator, and let F is XOR-IND0 with respect to hint
function G (as defined in Sect. 6.1). Also suppose OAEP[G,H] is η-EXT1μ+ζ and
NCRμ+ζ . Then OAEPs-clear[G,H,F|μ+ζ ] is IND-CCA1 secure. In particular, for
any adversary A that makes q decryption queries, there exist adversaries C,D,E,
and EXT1 adversary B that makes q extract queries such that for all extractors
Ext,

Advind-cca1
OAEPs-clear,A(k) ≤ 2 · Advη-ext1μ+ζ

OAEP[G,H],B,Ext(k) + 2 · Advn-crμ+ζ

OAEP[G,H],C(k)

+ 6 · Advxor-ind0
F,G,D (k) + 4 · Advprg

G,E(k).

IND-CCA2 Result. To prove IND-CCA2, we use EXT2 and near-collision
resistance of G, as well as the assumptions that G is a pseudorandom generator,
H is collision-resistant and F is XOR-IND and XOR-NM (as defined in Sect. 6.1).
Note that, EXT2 adversary only makes one image query. Thus, the dependent
auxiliary information is bounded by the size of the image.

Theorem 13. Let η, μ, ζ, ρ be integer parameters. Let F be a family of trapdoor
permutations with domain {0, 1}μ and η = |[Kg(1k)]|+ |[KH(1k)]|. Let G : KG ×
{0, 1}ρ → {0, 1}μ+ζ and H : KH × {0, 1}μ+ζ → {0, 1}ρ be function families.
Suppose G is PRG, NCRζ , EXT2ζ and η-EXT2ζ with respect to F , and H is
collision-resistant. Suppose F is XOR-NM0, XOR-IND1 and XOR-IND2ζ with
respect to G. Then OAEPs-clear[G,H,F|μ+ζ ] is IND-CCA2 secure. In particular,
for any adversary A that makes q decryption queries, there exists adversaries
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CH , CG,D1,D2,D3, E, and adversary B1, B2 that makes q extract queries such
that for all extractors Ext1,Ext2,

Advind-cca2
OAEPs-clear,A(k) ≤ 6 · Adv

η-ext2ζ

G,F,B1,Ext1
(k) + 18 · Adv

xor-ind2ζ

F,G,D1
(k)

+ 10 · Adv
n-crζ

G,CG
(k) + 4 · Advcr

H,CH
(k) + 4 · Advxor-nm0

F,G,D3 (k)

+ 14 · Advxor-ind1
F,G,D2 (k) + 16 · Advprg

G,E(k) + 24 · Adv
ext2ζ

G,B2,Ext2
(k)

Efficiency. The ciphertext length is 2n+k+μ where n is the length of the RSA
modulus, k is the security parameter, and μ is the message length. For example,
if n = 2048, k = 128, and we encrypt an AES key with μ = 128 (i.e., we use
RSA-OAEP as a key encapsulation mechanism, which is typical in practice then
the ciphertext length is 4352). It is interesting to compare this with the standard
model IND-CCA2 secure key encapsulation mechanism of Kiltz et al. [45]. They
describe their scheme based on modular squaring (factoring), but it is straightfor-
ward to derive a scheme based on RSA with large hardcore function and a cryp-
tographic hash function being target collision-resistant, which results in the most
efficient prior standard-model RSA-based encryption scheme we are aware of. It
performs one “small” exponentiation wrt. e and one “full” exponentiation mod-
ulo N , so is much more computationally expensive than our scheme. Thus, one
could arguably say ours is the most computationally efficient RSA-based encryp-
tion scheme under “plausible standard-model assumptions” (where one takes the
liberty of making bold assumptions on cryptographic hash functions) to date. On
the other hand, the scheme of [45] has ciphertext length only 2n.

Remark 14. It is worth mentioning why we are able to get IND-CCA2 (i.e.,
adaptive) security for s-clear RSA-OAEP but not t-clear. The point is that, in
the t-clear setting, it is not even clear how to define EXT2 of OAEP in a useful
way. Since OAEP is invertible, the image oracle should output only part of the
image point. But then it is not clear how the EXT2 adversary against OAEP can
simulate the encryption oracle for the PA2 adversary against t-clear RSA-OAEP.
On the other hand, for EXT2 of G, the image oracle can output the full image
point since G is not invertible. This then allows proving that s-clear RSA-OAEP
is PA2 directly (without using monolithic assumptions on the padding scheme
not known to follow from assumptions on the round functions).

6.3 IND-CPA, PA0 and PA1 Result

We show that s-clear RSA-OAEP is IND-CPA secure under suitable assump-
tions. Then, we show either PA0, PA1 and PA2 security depending on the
strength of assumptions on G,H and F . Interestingly, even our IND-CPA result
uses an XOR-based assumption on the trapdoor permutation. We also give a
full instantiation result for s-clear RSA-OAEP and show that it is PA0 and
PA1 under suitable assumptions. We show that s-clear RSA-OAEP “inherits”
the extractability of the underlying padding transform, in the form of PA1 and
EXT1, as long as the latter is also near-collision resistant. Here we state the
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result for an abstract padding scheme rather than specifically for OAEP. Note
that results for OAEP then follow from the round functions as per Sect. 5. Due
to space constraints, these are shown in the full version.

6.4 PA2 Result

We give a full instantiation result for s-clear RSA-OAEP and show that it is
PA2 under stronger assumptions on G,H and F . We note that we can reduce
assumptions as per Theorem 10.

Theorem 15. Let η, μ, ζ, ρ be integer parameters. Let F be a family of trap-
door permutations with domain {0, 1}ρ. Let G : KG × {0, 1}ρ → {0, 1}μ+ζ and
H : KH × {0, 1}μ+ζ → {0, 1}ρ be hash function families. Let η = |[Kg(1k)]| +
|[KH(1k)]|. Suppose G is PRG, NCRζ , EXT2ζ and η-EXT2ζ with respect to
F and H is collision-resistant. Suppose F is XOR-NM1 and XOR-IND2ζ with
respect to G. Then OAEPs-clear[G,H,F|μ+ζ ] is PA2 secure. In particular, for any
adversary A that makes at most q decryption queries and p encryption queries,
there are extractor Ext, adversaries BF , BG, BH , C,D, adversary AG, CG that
makes at most q extract queries and p image queries such that for all extractors
ExtG,Ext′G

Advpa2
OAEPs-clear,A,Ext(k) ≤ 3 · Advη-ext2ζ

G,F,AG,ExtG
(k) + 9p · Advxor-ind2ζ

F,G,C (k)

+ 6p · Advprg
G,D(k) + 12p · Advext2ζ

G,CG,Ext′G
(k)

+ 5 · Advn-crζ

G,BG
(k) + 2 · Advcr

H,BH
(k) + 2p · Advxor-nm1

F,G,BF
(k)

Proof Idea. Let c = (s, y) be the random ciphertext that A obtains from it’s
encryption oracle. Let c′ = (s′, y′) be the extract query made by A. Note that if
s|ζ 
= s′|ζ then we use ExtG on input s|ζ to recover r and then m. Note that if
s|ζ = s′|ζ then there is 2 cases. First, if y = y′ then we can find collision on H.
Next, if y 
= y′ then we can build an XOR-NM adversary. Note that, there are two
obstacles in the proof. First, EXT2 adversary need to simulate the encryption
oracle for PA2 adversary using its image oracle. Moreover, PA2 adversary may
query for the key-dependent messages to the encryption oracle. We were able to
enable EXT2 adversary to simulate the encryption oracle assuming G is PRG
and EXT2.
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1. Baecher, P., Fischlin, M., Schröder, D.: Expedient non-malleability notions for
hash functions. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 268–283.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 18

https://doi.org/10.1007/978-3-642-19074-2_18


Toward RSA-OAEP Without Random Oracles 305

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS,
Las Vegas, NV, USA, 14–17 October 2001, pp. 106–115. IEEE Computer Society
Press (2001)

3. Barthe, G., Pointcheval, D., Zanella Béguelin, S.: Verified security of redundancy-
free encryption from RABIN and RSA. In: Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security, CCS 2012, pp. 724–735. ACM,
New York (2012)

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

5. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 23

6. Bellare, M., Hoang, V.T., Keelveedhi, S.: Cryptography from compression func-
tions: the UCE bridge to the ROM. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 169–187. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44371-2 10

7. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

8. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 4

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, Fairfax, Virginia, USA, 3–5
November 1993, pp. 62–73. ACM Press (1993)

10. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

11. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

12. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012, 8–10 January 2012, Cambridge, MA, USA, pp.
326–349. ACM (2012)

13. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, New York, NY, USA,
31 May–3 June 2014, pp. 505–514. ACM Press (2014)

14. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. SIAM J. Comput. 45(5), 1910–1952 (2016)
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Abstract. We revisit the method of designing public-key puncturable
encryption schemes and present a generic conversion by leveraging the
techniques of distributed key-distribution and revocable encryption. In
particular, we first introduce a refined version of identity-based revo-
cable encryption, named key-homomorphic identity-based revocable key
encapsulation mechanism with extended correctness. Then, we propose a
generic construction of puncturable key encapsulation mechanism from
the former by merging the idea of distributed key-distribution. Compared
to the state-of-the-art, our generic construction supports unbounded
number of punctures and multiple tags per message, thus achieving
more fine-grained revocation of decryption capability. Further, it does
not rely on random oracles, not suffer from non-negligible correctness
error, and results in a variety of efficient schemes with distinct features.
More precisely, we obtain the first scheme with very compact cipher-
texts in the standard model, and the first scheme with support for
both unbounded size of tags per ciphertext and unbounded punctures as
well as constant-time puncture operation. Moreover, we get a compara-
ble scheme proven secure under the standard DBDH assumption, which
enjoys both faster encryption and decryption than previous works based
on the same assumption, especially when the number of tags associated
with the ciphertext is large.

Keywords: Functional encryption · Puncturable encryption · Forward
security

1 Introduction

Public Key Encryption (PKE) is a critical cryptographic tool for protecting
the confidentiality of messages transmitted over insecure communication chan-
nels, which has been widely employed in practice such as messaging services.
It is commonly agreed that the standard security for PKE is indistinguishabil-
ity against chosen-ciphertext attack (IND-CCA) that is guaranteed under the
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perfect secrecy of secret keys. However, as more and more cryptographic appli-
cations are performed on poorly protected mobile devices, the threat of key
compromise to attackers through virus or physical access becomes more and
more acute nowadays, and thus will lead to the lost of the security guarantees.

To deal with such kind of threat, numerous methods have been introduced,
including key-insulated cryptography [22], threshold cryptography [21], proactive
cryptography [36] and forward security [11,27]. As a promising approach, forward
security has been considered in a variety of cryptographic primitives, since the
initial introduction in the context of key exchange protocol [27] in 1989. However,
the first forward secure PKE (FS-PKE) was proposed by Canetti et al. [11] in
2003. In general, a forward secure PKE scheme is usually equipped with an
efficient update algorithm, by which the current secret key can be altered so
that it cannot be used to recover past messages. In other words, the decryption
capability for previous ciphertexts is revoked by updating the secret key.

Motivated by the problem that existing forward secure PKE schemes cannot
support fine-grained revocation of decryption capability (e.g., removing decryp-
tion capability for any individual ciphertext or all ciphertexts sent during a
special period), Green and Miers [26] introduced a new form of PKE—Public-
key Puncturable Encryption (PPE)—for achieving forward secure asynchronous
messaging. In general, this primitive supports multiple tags per message (or
ciphertext), which may contain a unique message identifier (e.g., GUID) and
some additional metadata (e.g., the sender identity). This feature endows the
recipient with the ability of not only revoking individual ciphertext but also the
entire classes of ciphertexts (e.g., all ciphertext from the same sender), so it can
achieve forward security at a fine-grained level.

Briefly, PPE can be seen as a form of tag-based encryption [31] added with
an efficient key-update algorithm called Puncture algorithm. In particular, this
algorithm takes as input the current secret key SK and a tag t and outputs
a new (punctured) secret key SK ′ that can decrypt all ciphertexts except for
those encrypted under tag t. By this procedure, the secret key can be punctured
repeatedly and sequentially on many distinct tags, thus revoking the decryption
capability for the ciphertexts encrypted under (any of) these tags. Based on
the Key-Policy Attribute-Based Encryption (KP-ABE) scheme [35], Green and
Miers proposed the first concrete PPE scheme1 in the random oracle model. Fur-
ther to reduce the decryption cost of PPE scheme alone, they put forward a new
variant of FS-PKE scheme, named Puncturable Forward Secure PKE (PFSE),
by combining their PPE scheme with a variant of Canetti et al. FS-PKE scheme
[11]. Subsequently, Günther et al. in [28] introduced the key encapsulation version
of PFSE (PFSKEM) and proposed a generic constriction of PFSKEM from any
one-time signature and hierarchical identity-based key encapsulation (HIBKEM)
scheme [8] with special properties. In this work, we are more interested in PPE
itself. Recently, it has been employed widely to achieve other cryptographic
goals, such as constructing forward secure 0-RTT protocols [19], backward

1 The proposed PPE scheme supports an arbitrary number of punctures, and the
decryption cost is linear in the number of punctures.
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private searchable encryption [10], forward secure proxy re-encryption [20], and
public-key watermarking schemes [15]. This demonstrates that PPE is a useful
and valuable cryptographic tool.

However, the existing PPE schemes suffer from different shortcomings. In
more details, the instantiations from [12,15] are given on the basis of indistin-
guishability obfuscation, which are more feasibility results than practical solu-
tions. The state-of-the-art construction is from Derler et al. [18,19], in which
they introduced a relaxed variant of PPE termed Bloom Filter Encryption
(BFE). Specifically, their basic construction from Identity-Based Encryption
(IBE) [9] features both efficient puncture and decryption procedure, but has
a large ciphertext expansion. Moreover, they presented two generic construc-
tions from Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [7] and
Identity-Based Broadcast Encryption (IBBE) [17] under the same framework,
thus achieving different tradeoffs between (public) key size and ciphertext size.
For example, the design from IBBE allows us to obtain the BFE schemes with
compact ciphertexts. Due to relying heavily on Bloom filter [33], however, BFE is
subject to non-negligible correctness error. As argued in [15], this does not affect
the application of BFE to designing efficient forward-secure 0-RTT protocols, but
may limit its deployment in the scenarios requiring negligible correctness error.
In addition, BFE schemes only support a pre-determined number of punctures,
due to the inherent properties of Bloom filters, and a unique tag per ciphertext.
This makes it less fine-grained than the PPE scheme in [26], as for example it
cannot support the revocation of all ciphertexts from a single sender. In contrast,
the scheme by Green and Miers avoids these drawbacks, but still suffers from
some others, such as (1) the number of tags per ciphertext is bounded by some
pre-determined parameter d ∈ N at the setup, (2) the size of both public key
and ciphertext are linear in the pre-determined integer d, and (3) the security is
achieved in the random oracle model.

As great effort has been made to improve the performance, security and/or
functionality of attribute-based encryption (e.g., [1,2,4,14,24,34,38]) during the
past decade, it is also significant to design puncturable encryption with nice fea-
tures like unbounded tags (or attributes) per message. As emphasized in [34], it
is highly desirable in practice to make the parameters for secret key and encryp-
tion unbounded by the public parameters fixed at setup, otherwise the public
parameter size should be very huge and the scheme will be less flexible. This
feature is also important for PPE applications. For example, in asynchronous
messaging the decryption capability of metadata (possibly containing a huge
number of attributes) encrypted with such scheme can be flexibly revoked by
puncturing secret key on any type of attribute.

Based on previous discussions and the systemized work of [19], the natural
questions include:

1. How to design efficient PPE schemes with as many desired features as pos-
sible (e.g., negligible correctness error, unbounded punctures and compact
ciphertext)?

2. Is it possible to generically construct PPE with negligible correctness errors
from other cryptographic primitives?
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In this work, we make affirmative progress to above questions by leveraging
the idea of distributed key-distribution and the revocation encryption technique.
In particular, we propose a generic construction of puncturable key encapsulation
mechanism by embedding the distributed key-distribution technique to a key
encapsulation version of revocation encryption system, and thus obtain a variety
of concrete PPE schemes featuring distinct characteristics. The high-level idea
is described below, and the main contributions are summarized in Sect. 1.2.

1.1 Technical Overview

In a PPE scheme, the secret key is punctured gradually; the punctured secret
key is updated as a new tag (to be punctured) arrives. The functionality of PPE
requires that the ciphertext can be decrypted only if no tag attached to the
ciphertext has been punctured. Our idea is inspired by the design of symmetric
puncturable encryption [37] and the distributed symmetric key-distribution [16,
23,32], so we concentrate on the key encapsulation version of PPE in this work.
To support unbounded punctures, the intuition is to distribute an (encapsulated)
symmetric key in a similar way as in [26]. Basically, the idea is to produce
a share of the encryption/encapsulated key on-the-fly and to reconstruct this
key from all shares for completing the decryption. Similar to [37], one share
corresponds to one master secret key and each master key is used to puncture
a unique tag. In this framework, the crucial point is to make sure that the
share (indirectly) associated with tag t cannot be recovered once t belongs to
the tag list T of the ciphertext, which implies that the encapsulated key cannot
be reconstructed if some tag of the ciphertext is punctured. In other words,
it is desired that the share of the encryption key with respect to t cannot be
recovered if t ∈ T . We observe that it resembles revocation system [30] and
can be achieved by leveraging this well-studied cryptographic tool, in which the
ciphertext under revocation list T cannot be decrypted whenever user t is revoked
(i.e., t ∈ T ). Following this way, we realize the puncture procedure by invoking
the key generation algorithm of the revocation system. In particular, each time
a new tag t is to be punctured, a random value mskt is chosen for generating a
corresponding secret key skt and subtracted from the master secret key msk (of
the revocation system). Finally, the remaining part “msk−

∑
t skt” is (implicitly)

used to produce a secret key sk0 for a distinguished tag t0, which is excluded in
all punctures and the tag list of each ciphertext. To that end, we further refine
the revocation system and introduce the concept of key-homomorphic revocation
system with extended correctness that is crucial for our construction (including
computing sk0) and the security proof. For more details, please refer to Sects. 2.3
and 3.

1.2 Our Contributions

In this work, we present a modular way of constructing puncturable encryp-
tion inspired by the idea of distributed key-distributions. In particular,
we first introduce a variant of identity-based revocation system, named
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Table 1. Comparison of public-key puncturable encryption schemes

Schemes Public key size Secret
key size

Ciphertext
overhead

Punctured
key size

Unbounded

Punctures Ciphertext tags

(|G|, |GT |, H) |G| (|G|, λ-bit) |G| (Y/N, #) (Y/N, #)

[26] (O(n), 1, 1) 3 (O(n̂), 0) 3 · (i + 1) (Y, –) (N, n)

[19]IBE (1, 0, k) m (1, k) O(m) (N, d) (N, 1)

[18]IBBE (O(k), 1, O(k)) m (2, 1) O(m) (N, d) (N, 1)

Sect. 4.1 (O(n), 1, 0) O(n) (2, 0) O(n)·(i+1) (Y, –) (N, n)

Sect. 4.2 (O(n), 1, 0) 3 (O(n), 0) 3 · (i + 1) (Y, –) (N, n)

Sect. 4.3 (5, 1, 0) 3 (O(n̂), 0) 3 · (i + 1) (Y, –) (Y, –)

Sect. 4.4 (O(n), 2, 0) O(n) (6, 0) O(n)·(i+1) (Y, –) (N, n)

| · |: the bit-length of a group element, e.g., |G|; H: a hash function; λ: a security parameter;
n̂: the number of tags attached to ciphertext; n: the upper-bound of n̂ (i.e., |T | ≤ n); d: the
upper-bound on # of allowed punctures; i = # of tags associated with the current punctured
key; m = −d · ln p/(ln 2)2 is the length of Bloom filter with false positive probability p [19].

Table 2. Comparison of public-key puncturable encryption schemes

Schemes Puncture Encryption Decryption� Standard
model

Negligible
corr. error

Assumption

(H, exp) (pair, expT , exp) (pair, exp)

[26] (1, O(n)) (0, 1, O(n̂n)) (3, O(n̂)) · (i + 1) × √
DBDH

[19]IBE (k, 0) (k, k, 1) (1, 0) × × BCDH

[18]IBBE (k, 0) (0, 1, O(k)) (2, 2) × × GDDHE

Sect. 4.1 (0, O(n)) (0, 1, O(n̂)) (2, O(n̂)) · (i + 1)
√ √

q-DBDHE

Sect. 4.2 (0, O(n)) (0, 1, O(n)) (2, O(n)) · (i + 1)
√ √

DBDH

Sect. 4.3 (0, O(1)) (0, 1, O(n̂)) (3, O(n̂)) · (i + 1)
√ √

q-MEBDH

Sect. 4.4 (0, O(n)) (0, 2, O(n̂)) (6, O(n̂)) · (i + 1)
√ √

DLIN

�: decryption is done by a secret key punctured on i tags; n̂: the number # of tags attached
to ciphertext; n: the upper-bound of n̂ (i.e., |T | ≤ n); k = − log2 p is the # of H’s for a
Bloom filter with false positive probability p [19].

key-homomorphic identity-based revocable key encapsulation mechanism (KH-
IRKEM) with extended correctness, and then propose a generic construction of
puncturable key encapsulation mechanism (PKEM) from any such kind of KH-
IRKEM scheme. Compared to the generic conversion of [19], our construction
satisfies the standard correctness definition (i.e., negligible correctness error),
enjoys more fine-grained revocation of decryption capability, and supports an
unbounded number of punctures. Since the security and performance of our
modular construction depends only on the underlying IRKEM scheme, our
PKEM scheme can achieve the same level security as IRKEM without induc-
ing additional security assumptions or computation redundancy. Based on the
extensively-studied identity-based revocation systems, we also give four PKEM
instantiations with distinct advantages, which are summarized as follows:

– Our first construction is the first PPE scheme that enjoys compact cipher-
texts. Precisely, the ciphertext overhead consists of only two group elements.
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Moreover, it has a faster encryption and decryption procedure (exactly
decryption requires 33% less pairing computation) than the scheme by Green
and Miers [26], and can be proven selectively secure in the standard model.

– Our second scheme has a comparable storage cost with [26]. Both schemes
can be proven secure under the standard assumption—DBDH assumption,
but our scheme enjoys more efficient encryption and decryption, especially
when the number of tags encrypted is large. In more details, our encryption
algorithm is independent of the number n̂ of tags encrypted and the decryp-
tion requires 33% less pairing computation.

– Our third construction is proven secure under a stronger assumption, but fea-
tures compact public key and fast puncture procedure, both of which depend
not on the maximum number n of tags allowed per ciphertext. Moreover, it
is the first scheme that has no constraint on the number of tags attached to
ciphertext. It also enjoys a faster encryption algorithm compared to [26].

– As the first construction, our last scheme also features short ciphertexts,
exactly consisting of six group elements. In contrast, it has a slightly slower
encryption and decryption procedure, but can be proven adaptively secure
based on the standard DLIN assumption, rather than a “q-type” one.

For more details on the comparison with previous works, please refer to
Tables 1 and 2 as well as the analysis given in Sect. 5.

2 Background

In this section, we give the notations used in this work and recollect the syn-
tax and security of the relevant cryptographic primitives, such as public-key
puncturable encryption and identity-based revocation system.

Notations. Security parameter is denoted by λ. For a finite set S, we let s
$←− S

be the operation of sampling s uniformly at random from S. If S is a distribution,
it denotes the operation of sampling s according to S. We write a ← A(·) to
denote the process of running algorithm A(·) and assigning the result to a. If A(·)
is randomized, we use A(x; r) to denote the unique output of A(·) taking as input
x and randomness r. In addition, we denote by bold uppercase A (resp. lowercase
x) a matrix (resp. vector). Unless stated otherwise, all vectors are column vectors
and row vectors are written as xT. For two vectors x = (x1, x2, . . . , xn) ∈ Z

n
p and

y = (y1, y2, . . . , yn) ∈ Z
n
p , we denote their inner product as 〈x,y〉 =

∑n
i=1 xiyi.

For a matrix A = [ai,j ] ∈ Z
m×n
p and a group element g ∈ G, we write gA to

denote the matrix [gai,j ] ∈ G
m×n. Also, we use [a, b] to denote the set {a, a +

1, . . . , b − 1, b} for integers b > a ≥ 0.

2.1 Bilinear Maps

We briefly review the relevant facts about bilinear maps. Let (G1,G2,GT ) be
multiplicative cyclic groups of prime order p, and g, h be generators of G1 and G2

respectively. An efficiently computable mapping e : G1 × G2 → GT is a bilinear
map if it satisfies the following properties:
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1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: for g ∈ G1, h ∈ G2, e(g, h) �= 1GT

whenever g, h �= 1G.

For matrices A,B ∈ Z
m×n
p , we let e(gA, hB) = e(g, h)A

TB hereafter.

2.2 Puncturable Key-Encapsulation Mechanism

As mentioned in [19], a full-blown public-key puncturable encryption scheme
can be generically converted from any puncturable key-encapsulation mechanism
(PKEM), so next we only present the syntax and security of PKEM. Following
the definition given in [19], a PKEM scheme with key space K and tag space T
generally consists of four polynomial time algorithms (KeyGen, Enc, Punc, Dec)
with the specifications below:

– KeyGen(1λ, n) takes as input a security parameter λ and a maximum number
n of tags allowed for each ciphertext, and outputs a public and secret key
pair (PK,SK). Note that n ∈ N ∪ {∞} and “∞” means the number of tags
per ciphertext is unbounded.

– Enc(PK, T ) takes as input a public key PK and a set of tags T such that
|T | ≤ n, and outputs an encapsulated key K and a ciphertext CT .

– Punc(SKi−1, t) takes as input a secret key SKi−1 and a tag t, where SK0 =
SK, and outputs a new secret key SKi that can decrypt what SKi−1 can
except for those encrypted under tag t.

– Dec(SKi, CT, T ) takes as input a secret key SKi and a ciphertext CT gen-
erated under a list of tags T , and outputs the encapsulated key K or ⊥ (the
latter indicates the decapsulation fails).

Definition 1 (Correctness). For all λ ∈ N, n ∈ N ∪ {∞}, and T ⊆ T such
that |T | ≤ n, let (PK,SK) ← KeyGen(1λ, n) and (K,CT ) ← Enc(PK, T ),
then we have that Dec(SK, CT, T ) = K. Moreover, for any � times of invoking
SKi ← Punc(SKi−1, t

′) such that t′ /∈ T , it holds that

Pr[Dec(SK�, CT, T ) = ⊥] ≤ negl(λ),

where the probability is taken over the random coins of all algorithms.

Remark 1. Our syntax is slightly different from [19]. In particular, our encryp-
tion algorithm also takes as input a list of tags T instead of only PK. Thus,
our puncture algorithm is operated on tag t rather than ciphertext CT . In this
way, many ciphertexts under the same tag t (e.g., all ciphertexts from the same
sender) can be revoked by executing the puncture algorithm once. In fact, our
PKEM is more similar to the key encapsulation version of public-key punc-
turable encryption initialized by Green and Miers [26], which enjoys fine-grained
revocation of decryption capability.

The security of PKEM is adapted from that of PPE in [26]. It is defined via
an IND-PUN-ATK game, which incorporates both CPA and CCA variants. The
game is played between a challenger and an adversary as follows.
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Setup: On input a security parameter λ and a maximum number n of tags
allowed per ciphertext, the challenger runs (PK,SK) ← KeyGen(1λ, n). Then
it returns PK and initializes two empty sets P, C and a counter i = 0.

Phase 1: The adversary adaptively issues the following queries
– Puncture(t′): On input a tag t′, the challenger increments counter i,

computes SKi ← Punc(SKi−1, t
′) and adds t′ to P.

– Corrupt(): The first time the adversary issues this query, the challenger
returns the most recent secret key SKi and sets C ← P. For subsequent
queries, directly returns ⊥.

– Decrypt(CT, T ): On input a ciphertext CT and the associated tags T ,
the challenger returns K ← Dec(SKi, CT, T ) if ATK = CCA, otherwise
returns ⊥.

Challenge: On input challenge tags T ∗ ⊆ T , the challenger directly rejects if the
adversary has previously issued a Corrupt query and T ∗ ∩C = ∅. Otherwise,
it picks b

$←− {0, 1},K1
$←− K and computes (K0, CT ∗) ← Enc(PK, T ∗). At

last, it returns (Kb, CT ∗) to the adversary.
Phase 2: This phase is the same as Phase 1 except for the following restrictions

– Corrupt(): Returns ⊥ if T ∗ ∩ P = ∅.
– Decrypt(CT, T ): Returns ⊥ if (CT, T ) = (CT ∗, T ∗).

Guess: The adversary outputs a guess b′ and wins the game if b′ = b.

Definition 2 (Adaptive Security). A PKEM scheme PKEM = (KeyGen,Enc,
Punc,Dec) is IND-PUN-ATK secure for ATK ∈ {CPA, CCA} if for all proba-
bilistic polynomial time (PPT) adversary A, the advantage of A winning in the
IND-PUN-ATK game is

AdvIND-PUN-ATK
A,PKEM (λ) =

∣
∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣
∣ ≤ negl(λ),

where negl(λ) is a negligible function of λ.

We also define a weak security named selective security by an IND-sPUN-
ATK game. It is similar to the above game except that the adversary is required
to submit the challenge tag list T ∗ ⊆ T before the setup phase.

Definition 3 (Selective Security). A PKEM scheme PKEM = (KeyGen,Enc,
Punc,Dec) is IND-sPUN-ATK secure for ATK ∈ {CPA, CCA} if for all PPT
adversary A, the advantage of A winning in the IND-sPUN-ATK game is

AdvIND-sPUN-ATK
A,PKEM (λ) =

∣
∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣
∣ ≤ negl(λ).

2.3 Key-Homomorphic Identity-Based Revocation Mechanism

In this part, we first recall the syntax and security of identity-based revocation
scheme, and then introduce a new concept—key-homomorphic identity-based
revocable key encapsulation mechanism (KH-IRKEM)—for our application.
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In fact, we do not need a full-blown revocation encryption scheme. Instead,
an identity-based revocable key encapsulation mechanism (IRKEM) is sufficient
for our application, where an encapsulated key can be recovered by a receiver if
and only if s/he is not revoked during the encapsulation phase.

More formally, an IRKEM scheme with master secret key space MSK, pri-
vate key space SK, encapsulated key space K and identity space ID is comprised
of a tuple of polynomial time algorithms (Params, MKGen, KeyExt, Enc, Dec):

– Params(1λ, n) takes as input a security parameter λ and a maximum number
n of revoked users, and outputs system parameters pp that is (implicitly)
taken as an additional input of the rest algorithms. Note that n ∈ N ∪ {∞},
and “∞” indicates the number of revoked users is unbounded.

– MKGen(pp) takes as input public parameters pp and outputs a master public
key mpk and a master secret key msk.

– KeyExt(msk, id) takes as input a master secret key msk and an identity id,
outputs a private key skid for the identity id. When this algorithm is ran-
domized, the associated random coin space is assumed to be R.

– Enc(mpk,R) takes as input a master public key mpk and a list R of revoked
users, where |R| ≤ n, and outputs a symmetric key k and a ciphertext ct, such
that any user with private key skid for id /∈ R can recover the encapsulated
key k.

– Dec(skid, id, ct, R) takes as input a private key skid for an identity id and a
ciphertext ct associated with the revocation list R, and outputs an encapsu-
lated key k if id /∈ R and ⊥ otherwise.

Definition 4 (Correctness). For all λ ∈ N, n ∈ N ∪ {∞}, R ⊆ ID such
that |R| ≤ n, let pp ← Params(1λ, n), (mpk,msk) ← MKGen(pp), (k, ct) ←
Enc(mpk,R), and skid ← KeyExt(msk, id) for id /∈ R, it holds that

Pr[Dec(skid, id, ct, R) = k] ≥ 1 − negl(λ),

where the probability is taken over the randomness of the associated algorithms.

Remark 2. Similar to the definition of IBE in [5,6], we add a parameter gen-
eration algorithm to the specification of IRKEM, in order to make the public
parameters explicitly distinct from the master public key. This implies that the
parameters may not depend on the master secret key, although the master public
key might. In this work, the parameters may include the description of groups,
group generators and the like. For simplicity, we additionally assume that, as in
[6], the master secret key is randomly drawn from MSK and the master public
key is derived deterministically/probabilistically from it.

The security of IRKEM is defined by an IND-RL-ATK game, which incor-
porates both CPA and CCA variants. The game is played between a challenger
and an adversary, which is described as follows.

Setup: On input a security parameter λ and a maximum number n of revoked
users, the challenger generates pp ← Params(1λ, d) and (mpk,msk) ←
MKGen(pp), then returns pp, mpk and initializes an empty set Q.
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Phase 1: The adversary can adaptively issue the following queries
– Key Extract(id): On input an identity id, the challenger returns a cor-

responding private key skid ← KeyExt(msk, id) and adds id to Q.
– Decrypt(id, ct, R): On input an identity id, a ciphertext ct and the

associated revocation list R, the challenger computes skid and returns
k ← Dec(skid, id, ct, R) if ATK = CCA, otherwise returns ⊥.

Challenge: On input a list of revoked identities R∗ ⊆ ID, the challenger directly
rejects if Q \ R∗ �= ∅. Otherwise, it picks b

$←− {0, 1}, k1
$←− K and computes

(k0, ct∗) ← Enc(mpk,R∗). Finally, it sends (kb, ct
∗) back to the adversary.

Phase 2: This is the same as Phase 1 except with below restrictions
– Key Extract(id): Returns ⊥ if id /∈ R∗.
– Decrypt(id, ct, R): Returns ⊥ if (ct, R) = (ct∗, R∗).

Guess: The adversary outputs a guess b′ and wins the game if b′ = b.

Definition 5 (Adaptive Security). An IRKEM scheme Σ = (Params,
MKGen, KeyExt,Enc,Dec) is IND-RL-ATK secure for ATK ∈ {CPA,CCA} if
for all λ ∈ N and PPT adversary A, the advantage of A winning in the IND-
RL-ATK game is

AdvIND-RL-ATK
IRKEM,A (λ) =

∣
∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣
∣ ≤ negl(λ).

Similar to the selective security of PKEM, we also define a selective security
for IRKEM by an IND-sRL-ATK game.

Definition 6 (Selective Security). An IRKEM scheme Σ = (Params,
MKGen, KeyExt,Enc,Dec) is IND-sRL-ATK secure for ATK ∈ {CPA,CCA} if
for all λ ∈ N and PPT adversary A, the advantage of A winning in the IND-
sRL-ATK game is

AdvIND-sRL-ATK
IRKEM,A (λ) =

∣
∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣
∣ ≤ negl(λ).

Next we introduce the additional properties of IRKEM, desired for our
applications. The first is called Extended Correctness. Informally, this prop-
erty ensures that a legally encapsulated key can be computed correctly in an
alternative way. It is formalized in Definition 7. To formally define this property,
we will write the random coin explicitly in the encapsulation algorithm.

Definition 7 (Extended Correctness). For all λ ∈ N, n ∈ N ∪ {∞}, Ri ⊆
ID such that |Ri| ≤ n, any pp ← Params(1λ, n), (mpki,mski) ← MKGen(pp),
(ki, cti) = Enc(mpki, Ri; si), and ski ← KeyExt(mski, idi) for i ∈ {1, 2}, we
let (k̂, ĉt) = Enc(mpk1, R2; s2). Then an IRKEM scheme Σ is called extended
correct if for id1 /∈ R2 it satisfies that

Pr[Dec(sk1, id1, ct2, R2) = k̂] ≥ 1 − negl(λ).
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We note that the encapsulated key k̂ can be correctly recovered by k̂ ←
Dec(sk1, id1, ĉt, R2) in terms of the standard correctness (cf. Definition 4). Here,
it is further required that k̂ can be obtained by “decapsulating” other ciphertexts
generated under the same revocation list and random coins. Alternatively, this
property means decapsulating a ciphertext with a mismatched private key can
produce a legitimate encapsulated key. Thus we are able to compute a legally
encapsulated key in a different way than by running the encapsulation algorithm.

Hereafter, when the correctness is mentioned, it refers to both the regular
and the extended correctness, unless stated otherwise. Now we continue to define
the second property—key-homomorphism, which is critical for distributing the
encapsulated key. More specifically, this property should hold with respect to
both the encapsulated key and the private key, as formalized below.

Definition 8 (Key-Homomorphism). Let Σ = (Params, MKGen, KeyExt,
Enc, Dec) be an IRKEM scheme. We assume that the randomness space R
(associated with KeyExt(·) if it is randomized) and key spaces MSK,SK and K
form four groups (R, ∗), (MSK,+), (SK,⊗) and (K,�). Moreover, we assume
that the encapsulated key is in the form of f(msk, s), where s ∈ S is the ran-
dom coin consumed in the encapsulation algorithm, i.e.,

(
k = f(msk, s), ct

)
=

Enc(mpk,R; s). Then the IRKEM scheme Σ is called key-homomorphic if it
satisfies the above correctness, and fulfills the following conditions for all id ∈
ID,msk,msk′ ∈ MSK, r, r′ ∈ R and s ∈ S:

1. KeyExt(msk, id; r) ⊗ KeyExt(msk′, id; r′) = KeyExt(msk + msk′, id; r ∗ r′),
2. f(msk, s) � f(msk′, s) = f(msk + msk′, s).

This property plays an important role in our work, which reflects in both the
construction and the security analysis. We remark that if an IRKEM Σ is correct
in the sense of Definition 7 and secure (either selectively or adaptively), then
f(msk, s) associated with the second property of Definition 8 should depend on
msk non-trivially. Otherwise, if f(msk, s) = f ′(s) is independent of msk and Σ
is extended correct, then an adversary can break the security of Σ as follows.
After receiving the master public key mpk2 and the challenge ciphertext ct2 and
encapsulated key k2, she generates a new (msk1,mpk1), chooses an id1 /∈ R2

and computes sk1 ← KeyExt(msk1, id1). Then she can recover k2 = k̂ by using
the extended correctness property and break the security easily. Examples of
such schemes can be derived from transferring the lattice-based NIPEs (the first
two constructions) of [29] to IRKEMs by changing the encryption/decryption
functions to encapsulation/decapsulation functions similar to Subsects. 4.1, 4.2
and 4.3. It is then easy to see that f(msk, s) is independent of msk. This implies
that the derived IRKEMs are not extended correct as they are proven to be
secure in [29].

In the following, we first propose a generic construction of PKEM from any
KH-IRKEM scheme with extended correctness, and then present several instan-
tiations with distinct features.
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3 Construction of PKEM from KH-IRKEM

In this section, we present a generic construction of PKEM from any KH-
IRKEM scheme with extended correctness, as defined before. Let Σ =
(IR.Params, IR.MKGen, IR.KeyExt, IR.Enc, IR.Dec) be a KH-IRKEM scheme with
identity space ID, then a PKEM scheme Π = (KeyGen,Punc,Enc,Dec) with tag
space T = ID is constructed from Σ as follows.

– KeyGen(1λ, n): On input a parameter λ and an index n ∈ N ∪ {∞}, it first
generates pp ← IR.Params(1λ, n) and (mpk,msk) ← IR.MKGen(pp). Then
it selects a distinguished tag t0 ∈ T , which will never be punctured and
encrypted later, and produces sk0 ← IR.KeyExt(msk, t0). Finally, it outputs
the public and secret key pair

(PK,SK) =
(
(pp,mpk), (sk0, t0)

)
.

– Punc(SKi−1, ti): On input a punctured secret key SKi−1 =
(
(sk0, t0), . . . ,

(ski−1, ti−1)
)

for tags {t�}i−1
�=1 and a tag ti ∈ T \ {t0}, where SK0 = SK, it

randomly chooses mski ∈ MSK2 and produces a new puncture secret key
SKi for {t�}i

�=1 as below:
1. Computes sk′

0 = sk0 ⊗ IR.KeyExt(−mski, t0) and ski ← IR.KeyExt
(mski, ti), where sk0 in SKi−1 is updated to sk′

0.
2. Sets SKi =

(
(sk′

0, t0), (sk1, t1), . . . , (ski−1, ti−1), (ski, ti)
)
, where skj for

all j ∈ [1, i − 1] remains identical to SKi−1.
– Enc(PK, T ): On input public key PK = (pp,mpk) and a list of tags T such

that |T | ≤ n and T ⊆ T \ {t0}, it computes
(
f(msk, s), ct

)
= IR.Enc(mpk, T ; s)

and outputs (K,CT ) = (f(msk, s), ct) along with T .
– Dec(SKi, CT, T ): On input a punctured secret key SKi =

(
(sk0, t0), . . . ,

(ski, ti)
)

and a ciphertext CT along with tags T , it returns ⊥ if there exists
j ∈ [1, i] such that tj ∈ T . Otherwise, it recovers the encapsulated key as:
1. Computes kj = IR.Dec(skj , tj , CT, T ) for all j ∈ [0, i].

2. Calculates K ′ =
i⊙

j=0

kj and outputs K ′.

The correctness follows from the (extended) correctness of the underlying
KH-IRKEM scheme and its key-homomorphic properties. To be more precise, we
assume that (K,CT ) = IR.Enc(mpk, T ; s) and skj ← IR.KeyExt(mskj , tj) such
that tj /∈ T for all j ∈ [1, i]. The key-homomorphic property of IR.KeyExt(·, ·)
indicates the current key component sk0 (of SKi) is in the form of
IR.KeyExt(msk −

∑i
j=1 mskj , t0). Then we have that

2 Recall that the master secret key is assumed to be randomly drawn from MSK, as
remarked in Sect. 2.3.
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– k0 = IR.Dec(sk0, t0, CT, T ) = f(msk −
∑i

j=1 mskj , s), and
– kj = IR.Dec(skj , tj , CT, T ) = f(mskj , s) for all j ∈ [1, i],

where the second equalities derive from the extended correctness of KH-IRKEM
scheme Σ. Finally, the key-homomorphism of f(·, ·) yields that

K ′ = f
(
msk −

i∑

j=1

mskj , s
)

�
i⊙

j=1

f(mskj , s) = f(msk, s).

We remark that the ciphertext CT taken in decapsulation process is gener-
ated under mpk, while the private keys skj are computed from new master secret
keys mskj rather than msk. In this case, the standard correctness is insufficient,
and hence the extended correctness is crucial for the correctness of our PKEM.

3.1 Security Analysis

We first show that the proposed PKEM scheme is IND-sPUN-CPA secure if the
underlying IRKEM scheme is IND-sRL-CPA secure. Then we further discuss its
adaptive security based on the adaptive security of the KH-IRKEM scheme.

Theorem 1. The proposed generic construction PKEM is IND-sPUN-CPA
secure, if the underlying IRKEM scheme is key-homomorphic and IND-sRL-
CPA secure. More precisely, for any PPT adversary A against the security of
our PKEM scheme, it holds that

AdvIND-sPUN-CPA
PKEM,A (λ) = AdvIND-sRL-CPA

IRKEM,B (λ),

where B is some PPT algorithm against the security of the IRKEM scheme.

Proof. The proof is conducted through a sequence of games that starts with
the real IND-sPUN-CPA game and ends with a game in which the adversary
has a negligible advantage. Moreover, each two successive games are shown to
be (computationally) indistinguishable. Hereafter, we let Wini denote the event
that the adversary A wins in game Gi. For sake of clarity, we assume that A
makes at most q puncture queries, say {t1, t2, . . . , tq}, and at least one of them,
say ti for some i ∈ [1, q], belongs to the set of challenge tags T ∗. It is also assumed
that, without loss of generality, the corrupt query is made after all q punctures.
Then the current punctured secret key is sent back to A directly.

Game G0: It is the real game played between a challenger and an adversary
A, as described in Sect. 2.2. In more details, A first submits a set of challenge
tags T ∗ such that |T ∗| ≤ n. After that, the challenger chooses a distinguished
tag t0 ∈ T and runs pp ← IR.Params(1λ, n), (mpk,msk) ← IR.MKGen(pp) and
sk0 ← IR.KeyExt(msk, t0) to produce the public and secret key pair (PK,SK) =(
(pp,mpk), (sk0, t0)

)
. In addition, it initializes an empty set P for keeping track

of puncture queries. Then it returns PK to the adversary A, and answers the
puncture queries and the challenge query as follows:
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– Puncture(ti): The challenger chooses mski
$←− MSK, computes ski ←

IR.KeyExt(mski, ti) and updates the first component sk0 of SKi−1 as sk0 =
sk0 ⊗ IR.KeyExt(−mski, t0). Then it sets SKi =

(
(sk0, t0), . . . , (ski−1, ti−1),

(ski, ti)
)
, where SK0 = SK, and records ti to P. Finally, it returns SKq =(

(sk0, t0), (sk1, t1), . . . , (skq, tq)
)

to A after all q puncture queries.
– Challenge: On input the challenge T ∗ ⊆ T \ {t0}3, the challenger com-

putes (K∗
0 , CT ∗) ← IR.Enc(mpk, T ∗) and randomly chooses K∗

1
$←− K. Then

it selects b
$←− {0, 1} and outputs (K∗

b , CT ∗).

Eventually, the adversary A outputs a guess b′, and wins the game if b′ = b. We
get from the security definition of PKEM (cf. Definition 2) that

AdvIND-sPUN-CPA
PKEM,A (λ) =

∣
∣
∣
∣Pr[Win0] − 1

2

∣
∣
∣
∣ .

Game G1: This game is identical to G0, except that the master secret keys
msk1,msk2, . . . ,mskq ∈ MSK are sampled beforehand instead of on-the-fly
and used straightforwardly to simulate the puncture queries. In particular, all
queries are answered as follows:

– Puncture(ti): The challenger computes ski ← IR.KeyExt(mski, ti) and
updates the first component of SKi−1 as sk0 = sk0 ⊗ IR.KeyExt(−mski, t0),
by directly using mski chosen before. After that, it sets SKi =

(
(sk0, t0), . . . ,

(ski−1, ti−1), (ski, ti)
)

and adds ti to P. Finally, it returns SKq =
(
(sk0, t0),

(sk1, t1), . . . , (skq, tq)
)

to A after all q puncture queries.
– Challenge: On input the challenge T ∗ ⊆ T \ {t0}, the challenger computes

(K∗
0 , CT ∗) ← IR.Enc(mpk, T ∗) and randomly picks K∗

1
$←− K. Then it outputs

(K∗
b , CT ∗) where b is chosen uniform randomly from {0, 1}.

At last, the adversary A outputs her guess b′. It can be seen from the above
that the way of sampling the master secret keys does not change the view of the
adversary. Therefore, it holds that

Pr[Win1] = Pr[Win0].

Game G2: It is the same as above game except that the component sk0 of the
finally corrupted secret key SKq is generated in a different way. Briefly, sk0 here
is generated in a direct manner rather than by sequential updates (i.e., sk0 =
sk0 ⊗ IR.KeyExt(−mski, t0)). More specifically, after receiving challenge tags T ∗

the challenger runs pp ← IR.Params(1λ, n) and (mpk,msk) ← IR.MKGen(pp),
and picks in advance msk1,msk2, . . . ,mskq ∈ MSK that will be used to answer
the puncture queries issued by A later. Then it sets msk0 = msk −

∑q
i=1 mski

and computes sk0 ← IR.KeyExt(msk0, t0) for the distinguished tag t0 ∈ T .
After that, it returns PK = (pp,mpk) and simulates the puncture queries and
challenge query as below:
3 We always assume that T ∗ ∩ P �= ∅, otherwise it will be rejected according to the

security definition.
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– Puncture(ti): The challenger uses mski (chosen above) to compute ski ←
IR.KeyExt(mski, ti) for the i-th puncture query ti, and records ti to P. After
receiving all q puncture queries from A, it returns SKq =

(
(sk0, t0), . . . ,

(skq, tq)
)
. Recall that sk0 is generated at the beginning.

– Challenge: On input the challenge T ∗ issued by A, the challenger computes
(K∗

0 , CT ∗) ← IR.Enc(mpk, T ∗) and chooses K∗
1

$←− K. Then it chooses a ran-
dom bit b ∈ {0, 1} and returns (K∗

b , CT ∗).

Finally, A outputs her guess b′. Clearly, the distribution of this game is
identical to G1, so we have

Pr[Win2] = Pr[Win1].

Game G3: In this game, we assume that, without loss of generality, the j-th
puncture query tj is the first tag belonging to the set T ∗ of challenge tags.
Notice that, there exists at least one puncture query contained in T ∗ in terms of
the security definition of PKEM (cf. Definition 2), and it is easy to find the index
j given T ∗. Then the difference of this game from G2 is the way of generating
sk0 and skj (associated with tj).

In particular, the challenger in this game runs pp ← IR.Params(1λ, n) and
(mpk,msk) ← IR.MKGen(pp), chooses msk0, . . . ,mskj−1, mskj+1, . . . ,mskq ∈
MSK uniformly at random, and sets mskj = msk−

∑q
i=0, �=j mski. Then it uses

msk0 to compute sk0 ← IR.KeyExt(msk0, t0) for the distinguished tag t0 ∈ T
and uses mski to compute ski ← IR.KeyExt(mski, ti) for the i-th puncture query
ti, where i ∈ [1, q]. As for the challenge query, it is simulated in the same way
as before.

It is not difficult to see A’s views in G2 and G3 are identical, as
they rely essentially on the identical distributions (msk,msk0 = msk −∑q

i=1 mski,msk1, . . . , mskq) and (msk,msk0, . . . ,mskj−1,mskj = msk −∑q
i=1, �=j mski,mskj+1, . . . ,mskq), respectively. Therefore, we get that

Pr[Win3] = Pr[Win2].

Now, what remains to do is to show the advantage of A winning in G3 is
negligible in λ. It is formally stated as the following lemma.

Lemma 1. Provided that the underlying IRKEM scheme Σ is IND-sRL-CPA
secure and key-homomorphic, then the advantage of A winning in G3 is negligible
in λ. That is, ∣

∣
∣
∣Pr[Win3] − 1

2

∣
∣
∣
∣ = AdvIND-sRL-CPA

IRKEM,B (λ),

where B is some PPT algorithm against the security of the IRKEM scheme.

Proof (of Lemma 1). Suppose for sake of contradiction that there is an efficient
adversary A winning in G3 with non-negligible advantage, then we can find an
efficient algorithm B that succeeds to break the IND-sRL-CPA security of the
underlying IRKEM scheme Σ as follows.
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After receiving the set T ∗ of challenge tags from A, B(1λ) sets it as his
own challenge and submits T ∗ to the challenger of the IRKEM scheme. Then
B returns to A the response pp and mpk, such that pp ← IR.Params(1λ, n)
and (mpk,msk) ← IR.MKGen(pp). After that, B chooses uniformly at random
msk0, . . . , mskj−1,mskj+1, . . . ,mskq from MSK, and uses msk0 to compute
sk0 ← IR.KeyExt(msk0, t0) for the distinguished tag t0 ∈ T chosen by himself.
Then B proceeds to simulate the puncture queries and the challenge query as
follows:

– Puncture(ti): For the i-th puncture query ti, B directly uses mski cho-
sen above to generate ski ← IR.KeyExt(mski, ti) if i �= j. Otherwise, B
forwards tj ∈ T ∗ to the key extraction oracle of the IRKEM scheme and
gets the corresponding private key sk′

j . Then B computes skj = sk′
j ⊗

IR.KeyExt(−
∑q

i=0, �=j mski, tj). In addition, B adds ti to P. Once finishing the
simulation of all q puncture queries, B returns SKq =

(
(sk0, t0), (sk1, t1), . . . ,

(skq, tq)
)

to A.
– Challenge: B gets the response (to the challenge T ∗) from the challenger

of the IRKEM scheme. In particular, the response is (K∗
b , CT ∗), such that

(K∗
0 , CT ∗) ← IR.Enc(mpk, T ∗), K∗

1
$←− K, and b

$←− {0, 1}. Then B outputs
(K∗

b , CT ∗) to the adversary A.

At last, B outputs what A outputs. From the above, we can see that B
perfectly simulates G3, hence we have

AdvIND-sRL-CPA
IRKEM,B (λ) =

∣
∣
∣
∣Pr[B(1λ,View) = b] − 1

2

∣
∣
∣
∣ =

∣
∣
∣
∣Pr[Win3] − 1

2

∣
∣
∣
∣ ,

where View is the view of B in the IRKEM game that consists of pp,mpk, sk′
j

and (K∗
b , CT ∗).

Putting all above equations together, we get the advantage of any PPT adver-
sary A against our PKEM scheme

AdvIND-sPUN-CPA
PKEM,A (λ) =

∣
∣
∣
∣Pr[Win3] − 1

2

∣
∣
∣
∣ = AdvIND-sRL-CPA

IRKEM,B (λ).

Theorem 2. The proposed generic construction PKEM is IND-PUN-CPA
secure, if the underlying IRKEM scheme is key-homomorphic and IND-RL-CPA
secure. More precisely, for any PPT adversary A against the security of our
PKEM scheme, it holds that

AdvIND-PUN-CPA
PKEM,A (λ) ≤ q · AdvIND-RL-CPA

IRKEM,B (λ),

where q is the maximum number of puncture queries issued by A and B is some
PPT algorithm against the security of the IRKEM scheme.

Proof (Sketch). To show the adaptive security of our PKEM scheme, we only
need to guess which puncture query is belonging to the set of challenge tags T ∗

in the previous proof. The probability of guessing it correctly is at least 1/q,
assuming that the upper-bound on the number of puncture queries issued by A
is q. For the detailed proof, please refer to the full version.
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4 Instantiations of KH-IRKEM

In this section, we present several concrete IRKEM schemes derived from existing
Identity-Based Revocation (IBR) schemes or Non-zero Inner Product Encryp-
tion (NIPE) schemes, and show that they satisfy the desired properties for our
purpose. Particularly, the design of IRKEM schemes from the NIPE schemes
follows the Embedding Lemma (see Proposition 1 in [3]), and thus the security
of the IRKEM schemes can be reduced to the NIPE schemes. Then by applying
our generic construction in Sect. 3, we obtain the first PKEM schemes that not
only support unbounded number of punctures, but also features constant-size
ciphertext, short public keys, or unbounded number of tags per ciphertext.

4.1 KH-IRKEM with Compact Ciphertexts

The first IRKEM scheme is derived from the NIPE scheme in [38], which is
proven secure under the n-DBDHE assumption below.

q-DBDHE Assumption. Let (G,GT ) be cyclic groups of prime order p with
a symmetric bilinear pairing e : G × G → GT . The q-Decision Bilinear Diffie-
Hellman Exponent (n-DBDHE) problem is, given

(
g, ga, g(a

2), . . . , g(a
q), g(a

q+2), . . . , g(a
2q), h, T

)

where a
$←− Zp, g, h

$←− G and T ∈ GT , to decide if T = e(g, h)aq+1
or if T is

randomly chosen from GT .

Description. This scheme consists of five polynomial-time algorithms (Params,
MKGen, KeyExt,Enc,Dec) with the following specifications:

– Params(1λ, n): The algorithm takes a security parameter λ and an integer
n ∈ N, and generates a pair of bilinear groups (G,GT ) of prime order p > 2λ

with bilinear map e. Then it randomly chooses β, b1, . . . , bn ∈ Zp and g ∈ G,
and computes h = gβ and hi = gbi for all i ∈ [1, n]. Finally, it outputs the
public parameters

pp =
(
(G,GT , e), g, h, {hi}i∈[1,n]

)
.

– MKGen(pp): Given the public parameters pp, it chooses α ∈ Zp uniformly at
random, and then computes and outputs the master secret key and master
public key pair

(msk,mpk) =
(
α, e(g, g)α

)
.

– KeyExt(msk, id): Given a master secret key msk = α and an identity id ∈
Zp, this algorithm first defines a vector xid = (x1, . . . , xn) ∈ Z

n
p such that

xi = idi−1 for all i ∈ [1, n], then it chooses r
$←− Zp and outputs the private

key skid = (d1, d2, k1, . . . , kn) ∈ G
n+2 as

d1 = gαhr
1, d2 = gr, k1 = hr, ki =

(
h−xi
1 hi

)r for ∀i ∈ [2, n].
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– Enc(mpk,R): Given a master public key mpk and a revocation list R = {id1,
id2, . . . , idm} such that m < n, the algorithm generates the encapsulated key
k ∈ GT and ciphertext ct = (c1, c2) ∈ G

2 as follows:
1. Define a vector yR = (y1, . . . , yn), where {yi}i∈[1,m+1] are the coefficients

of the polynomial fR(z) =
∏

idj∈R(z − idj) =
m+1∑

i=1

yi · zi−1, and all other

coordinates {yi}i∈[m+2,n] are set to 0 if m + 1 < n.

2. Choose s
$←− Zp, then compute k = e(g, g)αs, c1 = gs and c2 =

(
h

n∏

i=1

hyi

i

)s, and finally output (k, ct).

– Dec(skid, id, ct, R): Given a private key skid for an identity id and a ciphertext
ct = (c1, c2) under the revocation set R, this algorithm returns ⊥ if id ∈ R.
Otherwise, it recovers the encapsulated key k by conducting the following
steps:
1. Define the vectors xid = (x1, . . . , xn) and yR = (y1, . . . , yn) as before.
2. Compute k̂ = k1

∏n
i=2 kyi

i and then return

k′ = e
(
c1, d1 · k̂

1
〈x id,y R〉

)
· e

(
c2, d

− 1
〈x id,y R〉

2

)
.

The regular correctness follows readily from the IBR scheme [4]. For com-
pleteness, it is analyzed in details as follows. First, we know from the definitions
of xid and yR that 〈xid,yR〉 �= 0 iff id /∈ R. Then we observe that

k̂ = hr
n∏

i=2

(
h−xiyi

1 ·hyi

i

)r =
(
h

− ∑n
i=2 xiyi

1 ·(h
n∏

i=2

hyi

i )
)r =

(
h

−〈xid,yR〉
1 ·(h

n∏

i=1

hyi

i )
)r

,

so when id /∈ R we have that

k′ = e
(
c1, d1

)
·
(

e(c1,k̂)
e(c2,d2)

) 1
〈x id,y R〉

= e
(
gs, gαhr

1

)
·

⎛

⎝
e
(
g,h

−〈x id,y R〉
1 ·h

n∏

i=1
h
yi
i

)rs

e
(
h

n∏

i=1
h
yi
i ,g

)rs

⎞

⎠

1
〈x id,y R〉

= e(g, g)αs.

With regard to the extended correctness, it can be verified similarly. More
specifically, we let (msk′,mpk′) = (α′, e(g, g)α′

) be another master secret and
public key pair, and skid′ = (d′

1, d
′
2, k

′
1, . . . , k

′
n) ← KeyExt(msk′, id′) be a private

key for identity id′, such that

d′
1 = gα′

hr′
1 , d′

2 = gr′
, k′

1 = hr′
, k′

i =
(
h

−x′
i

1 hi

)r′
for ∀i ∈ [2, n],

where r′ $←− Zp and x′
i = id′i−1. Then it is easy to get via the above analysis that

Dec(skid′ , id′, ct, R) = e
(
c1, d

′
1 · k̂

1
〈x

id′ ,y R〉
)

· e
(
c2, d

′
2
− 1

〈x
id′ ,y R〉

)
= e(g, g)α′s
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conditioned on id′ /∈ R, where xid′ = (x′
1, . . . , x

′
n) and k̂ = k′

1

∏n
i=2 k′

i
yi .

Key-Homomorphism. The encapsulated key in this scheme is in the form of
f(msk, s) = e(g, g)msk·s, where s is the random coin consumed in the encryption
algorithm. Next, we show for any identity id ∈ Zp, master secret keys α, α′ ∈ Zp

and randomness r, r′, s ∈ Zp that the key-homomorphic properties with respect
to KeyExt(·) and f(·) hold:

1. From the description above, we get that

KeyExt(α, id; r) ⊗ KeyExt(α′, id; r′)
=

(
gαhr

1, g
r, hr, (h−x2

1 · h2)r, . . . , (h−xn
1 · hn)r

)

⊗
(
gα′

hr′
1 , gr′

, hr′
, (h−x2

1 h2)r′
, . . . , (h−xn

1 hn)r′)

=
(
gα+α′

hr+r′
1 , gr+r′

, hr+r′
, (h−x2

1 h2)r+r′
, . . . , (h−xn

1 hn)r+r′)

= KeyExt(α + α′, id; r + r′)

where “⊗′′ over SK = G
n+1 is the coordinate-wise multiplication over G.

2. As for f(·), it is clear that

f(α, s) � f(α′, s) = e(g, g)αs · e(g, g)α′s = e(g, g)(α+α′)s = f(α + α′, s),

where “�” is the multiplication over GT .

Security. The IRKEM scheme above is IND-sRL-CPA secure under the n-
DBDHE assumption. This follows readily from the Embedding Lemma (see
Proposition 1 in [3]) and the proof of the NIPE scheme in [38].

Now following the proposed generic construction in Sect. 3, we get the
first PKEM scheme that features both unbounded punctures and constant-size
ciphertexts, but subject to a bounded-number of tags per ciphertext.

4.2 KH-IRKEM with Compact Private Keys

The second IRKEM scheme is based on another NIPE scheme in [38] and proven
secure under the DBDH assumption, which unlike the previous one is one of the
weakest bilinear assumptions.

DBDH Assumption. Let (G,GT ) be cyclic groups of prime order p with a
symmetric bilinear pairing e : G×G → GT . The Decision Bilinear Diffie-Hellman
(DBDH) problem is, given

(
g, ga, gb, gc, T

)
where a, b, c

$←− Zp, g
$←− G and T ∈

GT , to decide if T = e(g, h)abc or if T is a random element in GT .

Description. As before, this scheme consists of five polynomial-time algorithms
(Params,MKGen,KeyExt, Enc,Dec) as below:

– Params(1λ, n): This algorithm takes a security parameter λ and an integer
n ∈ N, and generates a pair of bilinear groups (G,GT ) of prime order p >

2λ with bilinear map e and generator g
$←− G. Then it randomly chooses

β, b1, . . . , bn ∈ Zp, and computes h = gβ and hi = gbi for all i ∈ [1, n].
Finally, it outputs the public parameters

pp =
(
(G,GT , e), g, h, {hi}i∈[1,n]

)
.
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– MKGen(pp): Given the public parameters pp, it randomly chooses α ∈ Zp and
outputs the master secret key and master public key pair

(msk,mpk) =
(
α, e(g, g)α

)
.

– KeyExt(msk, id): Given a master secret key msk = α and an identity id ∈
Zp, the algorithm first defines a vector xid = (x1, . . . , xn) ∈ Z

n
p such that

xi = idi−1 for all i ∈ [1, n], then it chooses r
$←− Zp and outputs the private

key skid = (k0, k1, k2) ∈ G
3 as

k0 = gαhr, k1 =
( n∏

i=1

hxi
i

)r
, k2 = gr.

– Enc(mpk,R): Given mpk and a revocation list R = {id1, id2, . . . , idm} such
that m < n, the algorithm generates the encapsulated key k ∈ GT and
ciphertext ct =

(
c0, {ci,1}i∈[1,n]

)
∈ G

n+1 as:
1. Define a vector yR = (y1, . . . , yn), where {yi}i∈[1,m+1] are the coefficients

of the polynomial fR(z) =
∏

idj∈R(z − idj) =
m+1∑

i=1

yi · zi−1, and all other

coordinates {yi}i∈[m+2,n] are set to 0 if m + 1 < n.

2. Choose s
$←− Zp, then compute k = e(g, g)αs, c0 = gs and ci,1 =

(hyihi)s for ∀i ∈ [1, n], and finally output (k, ct).
– Dec(skid, id, ct, R): Given skid associated with id and ct =

(
c0, {ci,1}i∈[1,n]

)

associated with revocation set R, the algorithm returns ⊥ if id ∈ R. Other-
wise, it recovers the encapsulated key as follows:
1. Define the vectors xid = (x1, . . . , xn) and yR = (y1, . . . , yn) as before.
2. Compute c1 =

∏n
i=1 cxi

i,1 and then return

k′ = e
(
c0, k0 · k

1
〈x id,y R〉
1

)
· e

(
c1, k

− 1
〈x id,y R〉

2

)
.

The regular correctness is verified as follows. First, we know from the defini-
tions of xid and yR that 〈xid,yR〉 �= 0 iff id /∈ R. Then we observe that

c1 =
n∏

i=1

cxi
i,1 =

n∏

i=1

(
hxiyi · hxi

i

)s =
(
h〈xid,yR〉 ·

n∏

i=1

hxi
i

)s
,

so when id /∈ R we have that

k′ = e
(
c0, k0

)
·
(

e(c0,k1)
e(c1,k2)

) 1
〈x id,y R〉

= e
(
gs, gαhr

)
·

⎛

⎝
e
(
g,

n∏

i=1
h
xi
i

)rs

e
(
h〈x id,y R〉·

n∏

i=1
h
xi
i ,g

)rs

⎞

⎠

1
〈x id,y R〉

= e(g, g)αs.

As for the extended correctness, it can be validated in a similar way, as
analyzed for the first construction. Here, we omit the details.
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Key-Homomorphism. In this scheme, the encapsulated key is f(msk, s) =
e(g, g)msk·s as well, where s is the encryption randomness. The group operations
over e.g., MSK,SK and K are defined as before. It is clear to see for all identity
id ∈ Zp, any master secret keys α, α′ ∈ Zp and randomness r, r′, s ∈ Zp, both
the key-homomorphic properties with respect to KeyExt(·) and f(·) hold:

1. KeyExt(α, id; r) ⊗ KeyExt(α′, id; r′) = KeyExt(α + α′, id; r + r′)
2. f(α, s) � f(α′, s) = f(α + α′, s).

Security. The IRKEM scheme above is IND-sRL-CPA secure under the DBDH
assumption. This can be easily shown by following the proof of [38] and the
Embedding Lemma (cf. Proposition 1 in [3]).

Then by applying the conversion in Sect. 3, we obtain a PKEM scheme with
“compact” secret keys. Compared to the scheme [26] under the same assumption,
the communication cost is comparable, but the computation cost is better on
average, especially when the number of tags encrypted is large, e.g., n. In that
case, the number of exponentiation over G in our encryption is O(n) rather than
O(n2) as [26], and the number of pairings in decryption is d-less than [26], where
d is the number of punctures corresponding to the decryption key.

4.3 KH-IRKEM Supporting Unbounded Users

Next we give the third IRKEM scheme, in which the number of users per cipher-
text is unbounded compared to the previous ones. This scheme is derived from
the IBR scheme in [30] and proven secure under the q-MEBDH assumption.

q-MEBDH Assumption. Let (G,GT ) be cyclic groups of prime order p with
a symmetric bilinear pairing e : G × G → GT . The q-decisional cDiffie-Hellman
(q-MEBDH) problem is, given

T, g, gs, e(g, g)α

∀1 ≤ i, j ≤ q gai , gais, gaiaj , gα/a2
i

∀1 ≤ i, j, k ≤ q, i �= j gaiajs, gαaj/a2
i , gαaiaj/a2

k , gαa2
i /a2

j

where α, s, a1, . . . , aq
$←− Zp, g

$←− G and T ∈ GT , to decide if T = e(g, g)αs or if
T is a random element from GT .

Description. This scheme consists of five polynomial-time algorithms (Params,
MKGen,KeyExt,Enc,Dec), which are described as follows:

– Params(1λ): The algorithm takes a security parameter λ, and generates a tuple
of bilinear groups (G,GT ) of prime order p > 2λ with bilinear map e. Then
it randomly chooses b ∈ Zp and g, h ∈ G, and computes g1 = gb, g2 = gb2 and
h1 = hb. At last, it outputs the public parameters

pp =
(
(G,GT , e), g, g1, g2, h, h1

)
.
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– MKGen(pp): Given the public parameters pp, it randomly chooses α ∈ G and
outputs the master secret key and public key pair

(msk,mpk) =
(
α, e(g, g)α

)
.

– KeyExt(msk, id): Given a master secret key msk = α and an identity id ∈ Zp,

it chooses r
$←− Zp and outputs the private key skid = (k0, k1, k2) ∈ G

3 as

k0 = gαgr
2, k1 = (gid

1 h)r, k2 = g−r.

– Enc(mpk,R): Given mpk and a revocation list R = {id1, id2, . . . , idm}, the

algorithm selects s, s1, . . . , sm
$←− Zp such that s =

∑m
i=1 si, and generates the

encapsulated key k ∈ GT and ciphertext ct =
(
c0, {ci,1, ci,2}i∈[1,m]

)
∈ G

2m+1

as follows:

k = e(g, g)αs, c0 = gs, ci,1 = gsi
1 , ci,2 = (gidi

2 h1)si for ∀i ∈ [1,m].

– Dec(skid, id, ct, R): Given a private key skid associated with id and a cipher-
text ct =

(
c0, {ci,1, ci,2}i∈[1,m]

)
under the revoked set R = {id1, id2, . . . , idm},

this algorithm returns ⊥ if id ∈ R. Otherwise, it recovers the encapsulated
key by computing:

k′ =
e(c0, k0)

e(
m∏

i=1

c
1/(id−idi)
i,1 , k1) · e(

m∏

i=1

c
1/(id−idi)
i,2 , k2)

The regular correctness can be verified as follows. In the case of id /∈ R, we
have that

e(
m∏

i=1

c
1/(id−idi)
i,1 , k1) · e(

m∏

i=1

c
1/(id−idi)
i,2 , k2)

=
m∏

i=1

(
e(ci,1, k1) · e(ci,2, k2)

)1/(id−idi)

=
m∏

i=1

(
e(gsi , (gid

2 h1)r) · e((gidi
2 h1)si , g−r)

)1/(id−idi)

=
m∏

i=1

e(g, g2)sir,

and then we get that

k′ = e(gs, gαgr
2)/

m∏

i=1

e(g, g2)sir

= e(g, g)αs · e(g, g2)sr/e(g, g2)r·∑m
i=1 si

= e(g, g)αs.

Regarding the extended correctness, it can be analyzed as previous construc-
tions, so we omit the details here.

Key-Homomorphism. In this scheme, the encapsulated key is the same as
before, i.e., f(msk, s) = e(g, g)msk·s. The group operations are also defined simi-
larly, e.g., “⊗” over SK = G

3 is the coordinate-wise multiplication over G and �
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over K is the multiplication over GT . It is easy to verify that for any identity
id ∈ Zp, master secret keys α, α′ ∈ Zp and randomness r, r′, s ∈ Zp the following
properties hold:

1. KeyExt(α, id; r) ⊗ KeyExt(α′, id; r′) = KeyExt(α + α′, id; r + r′),
2. f(α, s) � f(α′, s) = f(α + α′, s).

Security. The IRKEM scheme presented above is IND-sRL-CPA secure under
the q-MEBDH assumption. This holds straightforwardly, as this scheme is simply
the key encapsulation version of the IBR scheme of [30].

By combining this scheme with our generic construction in Sect. 3, we obtain
the first PKEM scheme that enjoys both compact master public key and “com-
pact” punctured secret key. Here, the compactness of the latter means the key
size depends only on the number of punctures, independent of the size of revoked
set. Moreover, the number of revoked tags per ciphertext is unbounded in this
scheme.

4.4 KH-IRKEM Under DLIN Assumption

Finally, we present another IRKEM scheme featuring compact ciphertexts, which
is derived from the NIPE scheme of [13] (cf. Section A.2). In contrast to the
construction shown in Sect. 4.1, it is proven adaptively secure under the standard
DLIN assumption.

DLIN Assumption. Let (G1,G2,GT ) be cyclic groups of prime order p with a
non-degenerate bilinear pairing e : G1×G2 → GT . The Decisional Linear (DLIN)
problem is to distinguish between the distributions

(
gx1 , gx2 , gx1y1 , gx2y2 , hy1+y2

)

and
(
gx1 , gx2 , gx1y1 , gx2y2 , hz

)
, where x1, x2, y1, y2, z

$←− Zp, g
$←− G1 and h

$←− G2.

Description. Similarly, this scheme is composed of five polynomial-time algo-
rithms (Params, MKGen, KeyExt,Enc,Dec):

– Params(1λ, n): It takes as input a security parameter λ and an integer n ∈ N,
and generates cyclic groups (G1,G2,GT ) of prime order p > 2λ endowed with
a bilinear map e. Then it samples g ∈ G1, h ∈ G2, ai, bi ∈ Zp for i ∈ {1, 2},
and sets

A =

⎛

⎝
a1

a2

1 1

⎞

⎠ and B =

⎛

⎝
b1

b2
1 1

⎞

⎠ .

After that, it chooses W1, . . . ,Wn
$←− Z

3×3
p and outputs public parameters

pp =
(
(G1,G2,GT , e), g, gA, {gW

T
i A}i∈[1,n], h, hB, {hWiB}i∈[1,n]

)
.

– MKGen(pp): Given the public parameters pp, it chooses k $←− Z
3
p, and outputs

the master secret key and public key pair

(msk,mpk) =
(
k, e(g, h)A

Tk
)
.
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– KeyExt(msk, id): Given a master secret key msk = k and an identity id ∈
Zp, the algorithm defines a vector xid = (x1, . . . , xn) ∈ Z

n
p such that xi =

idi−1 for all i ∈ [1, n], chooses r
$←− Z

2
p and outputs the private key skid =

(k1, {k2,i}i∈[1,n]) ∈ (G3
2)

n+1 as

k1 = hBr , k2,i = hxi·k+WiBr for ∀i ∈ [1, n].

– Enc(mpk,R): Given a master public key mpk and a revocation list R = {id1,
id2, . . . , idm} such that m < n, the algorithm produces the encapsulated key
k ∈ GT and ciphertext ct = (c1, c2) ∈ (G3

1)
2 as:

1. Define a vector yR = (y1, . . . , yn), where {yi}i∈[1,m+1] are the coefficients

of the polynomial fR(z) =
∏

idj∈R(z − idj) =
m+1∑

i=1

yi · zi−1, and all other

coordinates {yi}i∈[m+2,n] are set to 0 if m + 1 < n.

2. Select s
$←− Z

2
p and compute

k = e(g, h)s
TATk , c1 = gAs and c2 = g(∑n

i=1 yi·WT
i )As .

– Dec(skid, id, ct, R): Given a private key skid for id and a ciphertext ct =
(c1, c2) under revocation list R, the algorithm returns ⊥ if id ∈ R. Otherwise,
it recovers the encapsulated key k as follows:
1. Define the vectors xid = (x1, . . . , xn) and yR = (y1, . . . , yn) as before.
2. Compute k2 =

∏n
i=1 k

yi

2,i and then output

k′ =
(
e(c1,k2)/e(c2,k1)

) 1
〈x id,y R〉 .

The regular correctness follows readily from the NIPE scheme of [13]. For
completeness, we present the details below. As analyzed before, it holds that
〈xid,yR〉 �= 0 iff id /∈ R. Further, we have that

k2 =
n∏

i=1

(
hxi·k+WiBr

)yi = h(
∑n

i=1 xiyi)·k+(
∑n

i=1 yi·Wi)Br ,

so when id /∈ R we get that

k′ =

(
e(gAs , h(

∑n
i=1 xiyi)·k+(

∑n
i=1 yi·Wi)Br )

e
(

g(
∑n

i=1 yi·WT
i
)As , hBr

)

) 1
〈x id,y R〉

=

(
e(gAs , h(

∑n
i=1 xiyi)·k )e(gAs , h(

∑n
i=1 yi·Wi)Br )

e
(

g(
∑n

i=1 yi·WT
i
)As , hBr

)

) 1
〈x id,y R〉

= e
(
gAs , h〈xid,yR〉·k) 1

〈x id,y R〉 = e(g, h)s
TATk .

As for the extended correctness, it can be verified as before. In particular,
we let (msk′,mpk′) = (k′, e(g, h)A

Tk′
) be another master key pair, and skid′ =

(k′
1, {k′

2,i}i∈[1,n]) ← KeyExt(msk′, id′) be a private key for id′, such that

k′
1 = hBr ′

and k′
2,i = hx′

i·k′+WiBr ′
for ∀i ∈ [1, n],
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where r′ $←− Z
2
p and x′

i = id′i−1. Then it is not difficult to obtain that

Dec(skid′ , id′, ct, R) =
(
e(c1,k′

2)/e(c2,k′
1)

) 1
〈x

id′ ,y R〉 = e(g, h)s
TATk′

conditioned on id′ /∈ R, where xid′ = (x′
1, . . . , x

′
n) and k′

2 =
∏n

i=1 k
′
2,i

yi .

Key-Homomorphism. In this scheme, the encapsulated key is in the form of
f(msk, s) = e(g, h)s

TATk , where s is the random coins of the encryption algo-
rithm. Similar to previous analysis, it is not difficult to observe that, for any
id ∈ Zp, master secret keys k,k′ ∈ Z

3
p and randomness r, r′, s ∈ Z

2
p, the follow-

ing key-homomorphic properties with respect to KeyExt(·) and f(·) hold:

1. KeyExt(k, id; r) ⊗ KeyExt(k′, id; r′) = KeyExt(k + k′, id; r + r′),
2. f(k, s) � f(k′, s) = f(k + k′, s).

Security. This IRKEM scheme is IND-RL-CPA secure under the standard
DLIN assumption. This can be argued by following the analysis of [13] and the
Embedding Lemma (cf. Proposition 1 in [3]).

Then by plugging this scheme into our generic PKEM in Sect. 3, we obtain
the first PKEM scheme with short ciphertext based on the standard assumption.
Notice that, the other NIPE scheme (with short private key) in Section A.2 of
[13] satisfies the desirable properties as well. Thus a new PKEM scheme with
short secret key can be derived similarly, and we omit the details here.

5 Efficiency Comparison

In this part, we give a comprehensive comparison of our schemes with existing
works [18,19,26], as shown in Tables 1 and 2 (cf. Sect. 1). In the comparison,
we use terms “exp” (resp. “expT ”) and “pair” to denote exponentiation in G

(resp. GT ) and bilinear pairing over G, respectively. The column “unbounded
punctures” (resp. ciphertext tags) in Table 1 refers to if unbounded punctures
(resp. tags per ciphertext) is supported. For sake of simplicity, when comparing
with the scheme of Green and Miers [26], we additionally add to their public key
an element e(g1, g2) used in their encryption, thus the pairing computation in
encryption is replaced by an exponentiation in GT . In comparison with the basic
(i.e., IBE-based) BFE scheme of [19] and the IBBE-based BFE scheme of [18],
our schemes together with the scheme by Green and Miers support unbounded
punctures and n tags per ciphertext for n > 1, rather than bounded punctures
and unique tag in [18,19], but their scheme features fast puncture and decryption
procedures. Moreover, our schemes do not suffer from non-negligible correctness
errors and can be proven secure without random oracles. We note that, to com-
pare with the generic IBBE-based BFE scheme in [18], we instantiate it with
the efficient IBBE scheme featuring constant-size ciphertexts and private keys in
[17]. In this work, our main concern is the PPE schemes with negligible correct-
ness errors, so in the following the comparison is mainly conducted with Green
and Miers’s work [26].
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Compared to the scheme of [26], our first scheme in Sect. 4.1 is based on a
stronger assumption than [26]. It has a large size of punctured secret key (linear
in the upper-bound n of tags per cipertext), but it features compact ciphertext
of which the overhead consists of only 2 group elements in G. Furthermore, it
requires much fewer exponentiation evaluations for encryption, which is reduced
from O(n̂n) to O(n̂), and 33% less pairing computation for decryption. For the
second scheme in Sect. 4.2, it also features compact4 punctured secret key as
[26]. Still, it is more efficient, especially for the case of encrypting messages
under a large number of tags. Regarding the third scheme in Sect. 4.3, it enjoys
the compact punctured secret key as well. In contrast, it also enjoys a short
public key and allows unbounded tags per ciphertext. The disadvantage lies
in that it relies on a stronger assumption q-MEBDH that appears less natural
than q-DBDHE. Finally, the fourth scheme enjoys a comparable performance
to the first one, but can achieve adaptive security under the standard DLIN
assumption instead of a “q-type” one. More details of efficiency comparison are
shown in Tables 1 and 2.

We remark that here we focus on PPE itself and conduct no comparison of
the PKEM schemes with the PFSKEM scheme in [28]. PFSKEM is inspired by
the PFSE scheme in [26], which essentially combines the ideas of PPE and FS-
PKE [11] for further reducing the decryption cost and punctured key size of PPE
that grow linearly with the number of punctures. Similarly, we can also obtain
PFSE schemes with distinct features based on the proposed PKEM schemes.

In addition, we note that the decryption complexity of our PKEM schemes is
linear to the occurrence number of puncture operations (see Table 2). As argued
in [26], however, it can be substantially mitigated like in [25] where the decryp-
tion of ABE is securely outsourced to a third party. Moreover, as the decryption
of our construction is highly parallelized, it can be further optimized.

6 Further Discussion

Following the essential idea, our generic construction of PKEM can be opti-
mized by further refining the correctness property of KH-IRKEM. To be more
precise, we can further improve the computation efficiency of both decryption
and puncture procedure by removing the use of distinguished tag t0.

In particular, the secret key SK in the optimized version is the same as
the master secret key msk of the underlying IRKEM, i.e., SK = msk such that
(mpk,msk) ← IR.MKGen(pp). In the puncture procedure, the update on sk0 (i.e.,
sk′

0 = sk0⊗IR.KeyExt(−mski, t0)) will be replaced by sequentially computing the
remaining share of msk, i.e., msk′

0 = msk0 −mski, in which case the punctured
secret key for tags {t�}i

�=1 is in the form of SKi =
(
msk′

0, (sk1, t1), . . . , (ski, ti)
)

and msk0 is the first component of SKi−1. Note that in this case SK0 = msk. For
the decryption, the shared encapsulated key k0 corresponding to tag t0 is directly

4 The compact here means the size of punctured secret key depends only on the number
of punctures.
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computed from the remaining share msk0 of msk, instead of running the decryp-
tion algorithm of IRKEM (i.e., k0 ← IR.Dec(sk0, t0, CT, T )). To this goal, it is
desired that a legally encapsulated key can be recovered correctly from msk0 and
CT along with the public parameters, as well. Therefore, the correctness prop-
erty in Definition 7 needs to be further extended to include the following con-
dition: there exists an efficiently computable key derivation function KDF, such
that k̂ = KDF(pp,msk1, ct2). Fortunately, all our instantiations satisfy this addi-
tional property. In particular, the computation of k0 ← IR.Dec(sk0, t0, CT, T ) in
the decryption will be replaced by k0 = KDF(pp,msk0, CT ) and it is exactly
e(g, gs)msk0 in our instantiations, where g is part of pp, gs is part of CT and s
is the randomness of encryption.

As the optimized version do not change the asymptotic complexity of our
PKEM schemes, we do not analyze its performance in the efficiency comparison.

7 Conclusion

We propose a generic method to construct public-key puncturable key encap-
sulation mechanism. Thus, we get the first modular way of designing the full-
blown puncturable encryption with negligible correctness errors, by combining
it with the standard decapsulation mechanism. To the end, we introduce a new
concept of identity-based revocable encryption system, called key-homomorphic
identity-based revocable key encapsulation mechanism with extended correct-
ness. Furthermore, we present several instantiations of the new concept and
obtains four concrete public-key puncturable encryption schemes with distinct
features. Specifically, we get the first public-key puncturable encryption schemes
with compact ciphertexts, and the first scheme allowing for both unbounded
punctures and unbounded size of tag set in the ciphertext. We also get an effi-
cient scheme based on the standard DBDH assumption that features both faster
encryption and decryption when the size of tag set is large, compared to Green
and Miers scheme based on the same assumption. Although we obtains some
tradeoffs between distinct aspects in this work, it is still challenging to con-
struct adaptively secure puncturable encryption scheme with e.g., both compact
ciphertext and punctured keys in the standard model.
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Abstract. The Noise protocol framework is a suite of channel estab-
lishment protocols, of which each individual protocol ensures various
security properties of the transmitted messages, but keeps specification,
implementation, and configuration relatively simple. Implementations of
the Noise protocols are themselves, due to the employed primitives, very
performant. Thus, despite its relative youth, Noise is already used by
large-scale deployed applications such as WhatsApp and Slack. Though
the Noise specification describes and claims the security properties of the
protocol patterns very precisely, there has been no computational proof
yet. We close this gap.

Noise uses only a limited number of cryptographic primitives which
makes it an ideal candidate for reduction-based security proofs. Due to
its patterns’ characteristics as channel establishment protocols, and the
usage of established keys within the handshake, the authenticated and
confidential channel establishment (ACCE) model (Jager et al. CRYPTO
2012) seems to perfectly fit for an analysis of Noise. However, the ACCE
model strictly divides protocols into two non-overlapping phases: the
pre-accept phase (i.e., the channel establishment) and post-accept phase
(i.e., the channel). In contrast, Noise allows the transmission of encrypted
messages as soon as any key is established (for instance, before authenti-
cation between parties has taken place), and then incrementally increases
the channel’s security guarantees. By proposing a generalization of the
original ACCE model, we capture security properties of such staged chan-
nel establishment protocols flexibly – comparably to the multi-stage key
exchange model (Fischlin and Günther CCS 2014).

We give security proofs for eight of the 15 basic Noise patterns in
the full version (EPRINT 2019/436) and exemplify them by the proof of
the XK pattern in this article.

The full version of this article is available in the IACR eprint archive as article 2019/436,
at https://eprint.iacr.org/2019/436.
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Keywords: Noise protocol framework · ACCE · Multi-stage · Channel
establishment

1 Introduction

Noise is a protocol framework introduced by Perrin [32] for establishing confiden-
tial channels between two parties in various application scenarios that bases on
a Diffie-Hellman group, a secure key derivation function (KDF), a secure hash
function, and a secure authenticated encryption with associated data scheme
(AEAD). Like TLS 1.2, Noise makes use of the derived keys during channel
establishment, which makes an analysis with respect to key indistinguishability
as in traditional key exchange models infeasible. Furthermore, to allow the trans-
mission of messages as early as possible (to avoid latency costs), protocols like
TLS 1.3 and Noise amalgamate handshake and channel (at cost of security guar-
antees for these early messages). In this work we analyze the security of patterns
from the Noise framework and, since previous modeling approaches cannot be
used under the aforementioned conditions, introduce the flexible ACCE model
to prove fine-grained security guarantees of Noise.

The Noise Framework. The Noise protocol framework is a tool box for defin-
ing simple and lightweight protocols for homogeneous environments. In this con-
text, homogeneous means that all parties in the environment agree upon the
protocol (including mechanisms for long-term key distribution, protocol version,
employed cryptographic primitives, . . . ). In contrast, TLS allows the establish-
ment of a channel in highly federated environments, in which that information
has not been agreed upon by the protocol participants. This induces highly com-
plex implementations that contain version and cipher suite negotiation as well
as legacy code. Noise can disregard these issues (which in TLS regularly lead
to security vulnerabilities, e.g., [1,31]) but still offers multiple protocol patterns
that allow a developer to choose a protocol fulfilling their application’s secu-
rity needs and considering the respective use case (long-term key distribution,
latency, . . . ).

The Noise specification defines 15 core protocol patterns for different use-
cases, which may consist of one, two, or three handshake messages (cf. Fig. 1)
– containing ephemeral and/or long-term Diffie-Hellman shares and (if a key is
already established) an AEAD ciphertext – and a channel. Each party can have
a long-term DH key pair, and potentially contributes one ephemeral DH key
share per protocol execution. The different patterns of Noise can hence be seen
as different distributions of the corresponding two to four public DH shares to
the handshake messages. The three-message patterns of Noise are novel in the
sense that classical three/four-message patterns for AKE protocols typically use
only one DH key exchange which is either static (TLS-DH) or ephemeral (signed
DH, Station-to-Station protocol, TLS 1.3, TLS-DHE, IPsec IKE, SSH) combined
with digital signatures (all of the above) or MACs (IPsec IKE Phase 2 with
forward-secrecy). Noise avoids authentication with MACs or digital signatures,
and provides entity authentication via long-term DH keys, key derivation, and
AEAD ciphertexts.
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Initiator A Responder B

“KEM-ACCE”=PKE

“ORKE-ACCE”

“AKE-ACCE”

ga, c0 = encKDF(gaB)(ga, m0)

gb, c1 = encKDF(gaB ,gab)(ga|c0|gb, m1)

c2 = encKDF(gaB ,gab)(ga|c0|gb|c1, gA)

c3 = encKDF(gaB ,gab,gAb)(ga|c0|gb|c1|c2, m3)

Fig. 1. The flexible structure of the Noise protocol framework, described conceptually
with the XK pattern (three passes) that is based on the NK pattern (two passes), which
is based on the N pattern (one pass). gA and gB denote the long-term public DH shares
of parties A and B, ga and gb denote their ephemeral shares, and enck(ad , m) is an
AEAD encryption.

As a result, Noise is for its scope even more agile than TLS, allowing tailored
protocols for multiple use-cases with various security properties. Resulting from
its efficiency and flexibility, Noise is used by largely deployed protocols such
as WhatsApp [21,33] (for client to server communication), Wiregurard [12,13],
Slack, Amazon AWS1, and is potentially an ideal candidate for protecting the
transport layer in IoT networks. Despite being distributed in applications used
regularly by billions of users, there has not been a computational proof of Noise’s
security.2

Modularity in Cryptography and Real-World. Definitions and analyses
in cryptography usually aim to be as modular as possible such that the results
are flexibly composable. In contrast, many real-world protocols are specifically
designed for one purpose such that modularity – especially regarding single com-
ponents of these protocols – is not necessary and maybe even undesired (e.g.,
due to worse performance).

For the generic (secure) composition of a key exchange protocol with a sym-
metric primitive (such as a symmetric channel), the key exchange protocol needs
to provide key indistinguishability for the established symmetric key (among
other properties; cf., Brzuska et al. [7]). However, if this symmetric key was used
by the key exchange itself, it is not indistinguishable from a random key space
element anymore (as an adversary can simply check whether the challenged key
was used). The same property needs to hold, and the same obstacle arises for
multi-stage key exchange protocols: in order to allow for generic compositions of
key exchange and symmetric protocols, the symmetric key must not be used by
the key exchange protocol itself in order to maintain modular composition.

Since many real-world protocols (such as TLS 1.2, Quic, Signal, Noise, TLS
1.3 and others) disregard modularity (in the sense that key exchange and channel
1 Both Slack and AWS use it in internal server-to-server communication.
2 Except for the single pattern that is employed in the Wireguard protocol [13,28].
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are inextricably intertwined), cryptographic analyses of these protocols chose one
out of the following three bypassing approaches: 1. pausing the protocol before
the key is internally used to prove key indistinguishability at that point (which
still prevents generic composition results as the protocol uses the key afterwards),
2. analyzing a modified version of the protocol in which key exchange and channel
are cleanly divided (which proves nothing about the actually used protocol), or
3. considering the security of the whole protocol instead of its single components
by applying the ACCE model. In this work we follow the latter approach and
– since no suitable ACCE model for staged protocols exist – propose a flexible
and generalized ACCE model.

Flexibility and Generalization for ACCE. Originally the Authenticated
and Confidential Channel Establishment (ACCE) model was developed with the
strict separation between key establishment and communication channel in mind.
The security of ACCE, however, does not require this separation, because it only
targets on the confidentiality of transmitted messages and the authentication
among communicating parties.

Hence, our consideration of ACCE primitives differs from previous
approaches that originated from notions of composition. We instead see fACCE
as a primitive that is potentially built from authenticated key exchange (AKE)
and secure channel protocols, but not necessarily cleanly separated into the “pre-
accept” phase that establishes secrets and a “post-accept” phase that securely
transmits payloadsse two phases. We directly model all communication (hand-
shake and payload transmission) via algorithms Enc and Dec which not only
capture the secure channel but also handshake operations for the channel estab-
lishment. As the bytes sent over the network do not need to be further specified,
we simply call them ciphertexts even though payload is not necessarily encrypted.
We similarly view a single dedicated session key as a legacy of instantiating
ACCE protocols via the composition of AKE and channel protocols. Since there
are ways to secure the transmission of payload data other than simply using a
symmetric key – consider asymmetric channels that use public key cryptography
– we entirely subsume session-specific information in the session state. Further-
more, we drop length-hiding property [22] since we consider it not inherent in
channel protocols.

After eliminating the boundary between handshake and channel, it is impor-
tant to note that a protocol that establishes a channel immediately (i.e., with
the first protocol message) cannot fulfill the same security guarantees as proto-
cols that take multiple round-trips before allowing the confidential transmission
of payload. This intuition can be compared to different security levels that are
achieved by key encapsulation mechanisms (KEM), one-round-key exchanges
(ORKE), and authenticated key exchanges (AKE) as depicted in Fig. 1. For
example, one message patterns (i.e., KEM-DEM constructions) are, among other
deficiencies, subject to replay attacks if not equipped with expensive key update
mechanisms such as in [19]. As a result, such attacks must be considered when
designing an appropriate security model. Our model takes these different stages
of security goals into account by adding flexibility to the ACCE notion.



Flexible Authenticated and Confidential Channel Establishment (fACCE) 345

As such we follow a similar approach as the multi-stage key exchange (MSKE)
model. However, since our syntax allows for no distinction between stages (note
that the MSKE model obtains new keys for each stage from the protocol), we
assume the considered protocols to output a stage number ς with every encryp-
tion and decryption. With ς, the protocol indicates the ‘security level’ of the
transmitted message (e.g., towards an upper layer application). In the case of an
ACCE protocol in which all security properties are reached at once, this stage
number is equivalent to distinguishing between the pre- and post-accept phase.
In case of multi-stage protocols, a security classification can be useful infor-
mation for an upper layer application that can then decide when to transmit
confidential content. Since there exists no other generic indication to differenti-
ate multiple stages based on our syntax3, it is essentially necessary for defining
security (independent of a specific protocol) that the protocol itself outputs the
stage numbers. Using these output stage numbers, one can specify for each stage
which properties need to be reached by the protocol in order to achieve security.
As a result, while one security property may not be reached in an early stage
(and thus the adversary could trivially attack communication in this stage), later
stages may reach this security property.

Further differences from the MSKE model are that we use a generic part-
nering notion (instead of protocol-dependent session identifiers), define authen-
tication flexibly (e.g., unilateral authentication does not necessarily mean server
authentication), provide a metric to meaningfully compare security statements
of differing yet similar protocols, and, due to the ACCE nature of our model,
provide valuable security statements on channels that are built using ‘internal’
symmetric keys (for which composition results of the MSKE models can natu-
rally provide no generic guarantees).4

Contributions. Our contributions can be summarized as follows:

– We generalize and flexibilize ACCE by finding its core idea and removing
remnants of historic constructions and thereby propose a model to analyze
channel establishment protocols with multiple stages, fulfilling different secu-
rity properties. Though this model is due to its flexibility rather complex, we
consider the overall generalizations useful for future analyses.

– We prove flexible ACCE security for the majority of Noise framework’s stan-
dard protocol patterns in the full version of this article [15], considering mul-
tiple fine-grained security properties of patterns. By focusing on the security
of the established channels instead of the established session keys, this allows
us to comprehend security claims of the Noise specification. Here we give an
intuition for our overall proof approach and depict the proof of pattern XK in
full details.

3 One could imagine that the round-trips in the protocol may serve as stages. However,
one can only define round-trips in a protocol execution if both session participants
can be observed (which is not the case when considering active adversaries).

4 The composition theorems by Fischlin and Günther [14,16,17] explicitly exclude
internally used keys (such that internal keys in Quic or TLS 1.3 cannot be used for
generic symmetric primitives).
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1.1 Related Work

Computational security proofs for real world protocols have a long history (e.g.,
[11,13,14,16,27,30]). As described earlier, due to the usage of the channel key
in the handshake of TLS 1.2, the ACCE model was introduced by (which was
later also used in [3,6,8,9]) as a proof of key indistinguishability was impossible
without considering a modified protocol variant. To further analyze the secu-
rity of TLS 1.2 without client authentication, Krawczyk et al. [27] and Kohlar
et al. [26] independently proposed a variant of the ACCE model.

The multi-stage key exchange (MSKE) model by Fischlin and Günther [16]
extends the Bellare-Rogaway model [2] (further extended by [14,17]) similarly
as we extend the original ACCE model (by allowing protocols to reach different
security properties at different stages during the execution). Due to the issue of
key-usage during the handshake in Noise (as in TLS 1.2 or Signal) and further
model restrictions, the multi-stage key exchange cannot be applied here.

Giesen et al. [18] extended the ACCE model to consider multiple stages dur-
ing a protocol execution to analyze TLS renegotiation. Besides its static security
definition(s) and in addition to inheriting other unnecessary remnants of the
ACCE model, all stages necessarily consist of separate handshake and channel
phases (making it unapplicable for generic multi-stage protocols). Another step
towards considering stages in ACCE was taken by Lychev et al. [29] and more
recently by Chen et al. [10]. Their QACCE and msACCE models are, however,
strongly tailored to the respectively analyzed protocols (QUIC and TLS 1.3).
Blazy et al. [4] also proposed very recently a multistage ACCE model to analyze
a ratcheting protocol. Similarly, their model strongly depends on the analyzed
protocol, pursuing a contrary strategy to ours (i.e., a specialized instead of a
generic model).

Previous to our work, Dowling and Paterson [13] examined the WireGuard
key exchange protocol [12], itself based upon a single variant of Noise called pat-
tern IKpsk2. They show that analyzing WireGuard in a key-indistinguishability-
based security framework is impossible, as the protocol relies on an encrypted
message using the established session keys to act as a key-confirmation mes-
sage. They instead modify the WireGuard key exchange protocol to morally
capture the key confirmation message,slightly and prove the modified construc-
tion secure. Recently Lipp et al. [28] confirmed the security of the WireGuard
protocol by an automated analysis with CryptoVerif. Using this tool, they were
able to produce a computational proof of security. Independently and concur-
rent to our work, Kobeissi et al. [24,25] published a framework for the formal
verification (and automatic code generation) of Noise patterns. In particular,
they formalize Noise patterns and use transition logic to create symbolic mod-
els of dynamically chosen Noise patterns to allow automatic verification using
ProVerif. This is a strong indication for Noise’s security but the approach and
the results can barely be compared with computational, reduction-based proofs
with respect to generic security models. As their verification of all base Noise
patterns is conducted automatically with respect to the security statements from
the Noise specification and we provide a reduction-based proof of security in a
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generalized, flexible computational model manually, we see these two approaches
to be complementary. We note that symbolic analyses disregard the actual rep-
resentation of algorithms’ input and output values. Thus, in symbolic analyses,
cryptographic primitives are highly idealized. Consequently, while reduction-
based proofs provide relations to well studied hardness assumptions, symbolic
analyses assume “unconditional” security of these primitives. Nevertheless, auto-
matic proofs are less error-prone and better scalable which enables Kobeissi
et al. [25] to apply their analysis of even more security properties (e.g., mul-
tiple variants of forward-secrecy) on far more Noise patterns than our manual
approach allows.

2 Preliminaries

Here we formalize the notation and provide intuitions for security assumptions
that we will utilize in our analysis of the Noise Protocol Framework. Standard
assumptions and security notions such as collision resistance for hash functions,
security of pseudo-random functions, and further variants of the PRF-Oracle-
Diffie-Hellman assumption can be found in the full version [15].

2.1 Notation

The following notation will be used throughout the paper. For q ∈ N by [q] we
denote the set {1, · · · , q}. For a function F : {0, 1}a → {0, 1}b, a describes the
input length and b describes the output length of the function. If a or b take the
“value” ∗ we say that the function is defined for inputs or outputs of arbitrary
length. Let S be a finite set and let |S| be its size. We say a value x is chosen
uniformly at random by x ←$ S. Let A be a probabilistic algorithm, we let
y ←$ A(x1, ...) denote running A on input (x1, ...) with uniformly chosen random
coins, and assigning the output to y. If A is a deterministic algorithm, then
y ← A(x1, ...) denotes that y is computed by A using (x1, ...) as input. By y ←[r]

A(x1, ...) we denote that a probabilistic algorithm A is invoked deterministically
by consuming its random coins from r (i.e., each random coin from r is used at
most once). ε is the empty string and ⊥ is a special element indicating no input
or no output.

2.2 The PRF-Oracle-Diffie-Hellman Assumption

Here we give the symmetric variant of the generic PRF-ODH assumption, intro-
duced by Dowling and Paterson [13]. Our modification additionally allows to
capture a “dual-PRF” like assumption necessary for the Noise Protocol Frame-
work. The basic PRF-ODH assumption was introduced Jager et al. [22] and
discussed in detail by Brendel et al. [5].

Definition 1 (Dual generic PRF-ODH Assumption). Let G be a cyclic group
of order q with generator g. Let PRF : G × M → K be a function from a
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pseudo-random function family that takes a group element k ∈ G and a salt
value m ∈ M as input, and outputs a value y ∈ K. We define a second PRF
family PRFd : M × G → K, by setting PRFd(m, e) = PRF(e,m). We define
a security notion, sym-lr-PRF-ODH security, which is parameterised by: l, r ∈
{n, s,m} indicating how often the adversary is allowed to query “left” and “right”
oracles (ODHu and ODHv), where n indicates that no query is allowed, s that a
single query is allowed, and m that multiple queries are allowed to the respective
oracle. Consider the following security game Gsym-lr-PRF-ODH

PRF,G,p,A between a challenger
C and adversary A.

1. The challenger C samples u, v ←$ Zp and provides g, gu, gv to the adver-
sary A.

2. If l = m, A can issue arbitrarily many queries to oracle ODHu, and if r = m
and sym = Y to the oracle ODHv. These are implemented as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G

and returns ⊥ if this is the case. Otherwise, it computes y ← PRFλ(Su, x)
and returns y.

– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G
and returns ⊥ if this is the case. Otherwise, it computes y ← PRFλ(T v, x)
and returns y.

3. Eventually, A issues a challenge query x∗. It is required that, for all queries
(S, x) to ODHu made previously, if S = gv, then x �= x∗. Likewise, it is
required that, for all queries (T, x) to ODHv made previously, if T = gu, then
x �= x∗. This is to prevent trivial wins by A. C samples a bit b ←$ {0, 1} uni-
formly at random, computes y0 = PRFλ(guv, x∗), and samples y1 ←$ {0, 1}λ

uniformly at random. The challenger returns yb to A.
4. Next, A may issue (arbitrarily interleaved) queries to oracles ODHu and

ODHv. These are handled as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G

or if (S, x) = (gv, x∗) and returns ⊥ if either holds. Otherwise, it returns
y ← PRFλ(Su, x).

– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G
or if (T, x) = (gu, x∗) and returns ⊥ if either holds. Otherwise, it returns
y ← PRFλ(T v, x).

5. At some point, A outputs a guess bit b′ ∈ {0, 1}.

We say that the adversary wins Gsym-lr-PRF-ODH
PRF,G,p,A if b′ = b and define the advantage

function

Advsym-lr-PRF-ODH
PRF,G,p,A = |2 · Pr[b′ = b] − 1|.

We define the advantage of A in breaking the dual security of PRF-ODH as:

Advd-PRF-ODH
PRF,G,p,A = max

{
Advsym-lr-PRF-ODH

PRF,G,p,A ,Advsym-lr-PRF-ODH
PRFd,G,p,A

}

Intuitively, the sym-lr-PRF-ODH assumption holds if the advantage
Advsym-lr-PRF-ODH

PRF,G,p,A of any PPT adversary A is negligible. For conciseness in the
advantage statements, we omit the d-PRF-ODH, and instead use sym-lr to spec-
ify which PRF-ODH assumption we use. Further used variants of the assumption
are in the full version [15].



Flexible Authenticated and Confidential Channel Establishment (fACCE) 349

3 The Noise Protocol Framework

The Noise Protocol Framework (hereafter referred to as “Noise”) is a specification
that describes a framework with which two party channel establishment proto-
cols can easily be instantiated for multiple purposes. The core of the framework is
represented by the definition of 15 base protocol patterns. Each of these patterns
employs only four underlying cryptographic primitives: a Diffie-Hellman group,
a hash function, a key derivation function, and an AEAD cipher. Depending
on how these cryptographic primitives are combined, the channel establishment
protocols achieve different cryptographic properties. The main properties (in
addition to confidentiality) are: 1. Authentication and integrity, 2. Key com-
promise impersonation (KCI) resistance, 3. Forward-secrecy, and 4. Resistance
against replay attacks. Another interesting security property that is achieved
by the protocols, but not explicitly claimed, is: 5. Resistance against reveals of
executions’ random coins.

The 15 patterns mainly differ in the setup in which they can be deployed.
There are patterns that do not require the initial distribution of users’ long-term
public keys (and either insist on the authentication of users by transmitting these
keys either in plaintext or encrypted, or alternatively disregard authentication
altogether), and patterns that are based on the previous distribution of users’
public keys. The out-of-band mechanism for public-key distribution is outside
the scope of the specification, but one can imagine scenarios in which these
keys are manually configured, can be acquired from a trusted third party, or are
shipped with the respective application that uses Noise.

While historic protocols strictly separated key establishment and channel,
recent specifications (such as TLS 1.3) also allow these phases to be interleaved.
This allows the early transmission of payload data but results in reduced – and
perhaps staged – levels of security for this data. The Noise specification provides
a detailed description of security properties for the data transmission in each
round-trip of the handshake and for the channel of each pattern [32].

While a key feature of Noise is the omission of a negotiation of a pattern
or the negotiation of the exact employed cryptographic algorithms (in contrast
to TLS, Noise is intended to be used in settings in which all participants are
configured equally), recent discussions on the mailing list consider negotiation
as a feature in the future5 – which we will not regard in our analysis. Also outside
the scope of our analysis, Noise allows further features such as symmetric pre-
shared keys.

Implementation Assumptions. The Noise specification provides suggestions for
some implementation details (but does not mandatorily require them). For our
analysis, we assume that the protocol implementation follows these suggestions:

– No padding is employed (i.e., the length of the plaintext message is the same
as the length of the encrypted message), and

5 https://moderncrypto.org/mail-archive/noise/2018/001495.html.

https://moderncrypto.org/mail-archive/noise/2018/001495.html


350 B. Dowling et al.

– If an algorithm is called irregularly (an initiator receives before sending once,
a party waits for ciphertext but encryption is invoked, decryption fails, . . . ),
then the respective algorithm outputs an empty state and aborts.

Furthermore, we do not consider the associated data input on sending and receiv-
ing payload after the handshake. As our syntax intentionally makes no difference
between handshake and channel, we cannot consider this additional feature of
the Noise channel, as it is not provided during the handshake. Finally, we assume
the protocols to output information on the current level of security (which we
explain in more details below).

3.1 Noise Protocol Patterns

Here we explain the details of Noise, necessary to understand the core protocols
and their properties.

A pattern is defined by the knowledge of each participant regarding the
long-term public key (or static public key) of the respective partner (before the
handshake and during the handshake). For unidirectional patterns, the single
letter of the pattern name indicates whether the initiator’s long-term public key
is not defined (N), trans(X)mitted during the handshake (X), or known by the
receiver in advance (K). It is clear that, for unidirectional patterns, the receiver’s
long-term public key needs to be known by the initiator in advance since oth-
erwise no payload can be encrypted to the receiver. In the two-letter names of
interactive patterns, the first letter indicates whether the initiator’s long-term
public key is not defined, X-mitted, or known by the responder, and the second
letter indicates the same for the responder towards the initiator. So in the XK
pattern, the initiator knows the responder’s long-term public key in advance
and the responder obtains the initiator’s long-term public key during the hand-
shake. At the top of Fig. 2 (in which we depict three example Noise patterns)
it is denoted that the initiator knows the responder’s long-term public key and
the responder knows its long-term secret key for patterns N and NK a priori. For
pattern XK, the initiator additionally knows its own key pair (of which the public
key is sent to the responder during the protocol execution).

Finally, the Noise specification distinguishes whether the long-term public
key is sent in plain or encrypted (for the former, the letter would be I instead
of X). The specification defines all pairwise letter-combinations among the three
variants N, X, K, the unidirectional patterns N, X, K, and the three variants in which
the initiator sends its long-term (Identity) DH share in plaintext (i.e., I_).

At the left margin of Fig. 1, we depict how the Noise patterns’ algorithms are
invoked for party A (matching our generic syntax, formally defined in Sect. 5).

The handshake of a Noise pattern always starts with the initialization of the
local state st (via Init()). This local state contains:

1. ρ: a boolean that indicates the session’s role (initiator/responder),
2. pattern: the pattern name,
3. (X, gX): the session owner’s long-term DH exponent and DH share

(optional),
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A: gB , only in XK: (A, gA) B: (B, gB)

Handshake
Initialization

h ← H(pattern)
ck ← h; n ← 0; ρ ← i
h ← H(h || ad); h ← H(h || gB)

Init(A, gB , i,
pattern‖ad): 1

2
st ← 3

–”–

N
Handshake

a ←$ Zp; h ← H(h || ga)
(ck , k0) ← KDF(ck , gaB , 2)
c0 ← enc(k0, n, h, m0)
h ← H(h || c0); ς ← 1

Enc(A, st , m0): 4
5
6

(st , (ga, c0), ς) ←$ 7 –”–ga, c0

NK
Handshake

b ←$ Zp; h ← H(h || gb)
(ck , k1) ← KDF(ck , gab, 2)
c1 ← enc(k1, n, h, m1)
h ← H(h || c1); ς ← 2

Dec(A, st , (gb, c1)): 8
9

10
(st , m1, ς) ←$ 11 –”– gb, c1

XK
Handshake

c2 ← enc(k1, n + 1, h, gA)
h ← H(h || c2)
(ck , k2) ← KDF(ck , gAb, 2)
c3 ← enc(k2, n, h, m2)
h ← H(h || c3); ς ← 3

Enc(A, st , m2): 12
13
14
15
16 –”–c2, c3

Channel
Initialization

(ki, kr) ← KDF(ck , ε, 2)
ni ← 0; nr ← 0

17
(st , (c2, c3), ς) ←$ 18

(kr, ki) ← KDF(ck , ε, 2)
ni ← 0; nr ← 0

Channel
C0 ← enc(ki, ni, ε, M0)
ni ← ni + 1; ς ← 4

Enc(A, st , M0): 19
(st , C0, ς) ← 20 –”–C0

Fig. 2. Fully specified N,NK and XK patterns. mi are payload messages sent during the
handshake; Mi are payload messages sent after the handshake; ad is associated data
with which the handshake is initiated; –”– denotes that the respective operations for
receipt are processed (e.g., dec(c, ..) for c←enc(..)). Handshake initialization, channel
initialization, and channel are part of all patterns. Algorithm invocations and return
values in the left column depict the interaction of party A with the protocol (showing
the protocol’s syntax defined in Sect. 5). Blue marked parts are not specified by Noise
but are required for our analysis (thus we assume them to be part of the protocol).
(Color figure online)

4. gY : the intended partner’s long-term public DH share (optional),
5. (x, gx): the session’s ephemeral DH exponent and DH share (optional),
6. gy: the peer’s ephemeral public DH share (optional),
7. ck : the chaining key,
8. h: the hash variable,
9. k or ki, kr: the encryption key(s), and

10. n or ni, nr: the nonce(s) for encryption.

These values are set, considering the pattern name, associated data ad , and a
priori known long-term public DH shares of the partners (see Fig. 2 lines 1–4).

For each encryption (via Enc) during the handshake (i.e., before all desired
security properties are reached), the following operations can be conducted:

(a) the generation of an ephemeral DH exponent and the transmission of the
respective DH public share,
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(b) the plain or encrypted transmission of a long-term DH share,
(c) the computation of a DH secret from a public DH share of the partner and

their own DH exponent.

The actual operations in the protocol for operation (a) are 1. the sampling of a
DH exponent, 2. the hashing of its public share into h, and 3. the transmission of
this public share to the partner (lines 4,8). In case (b), the sender’s long-term DH
share is encrypted under the current key k and the resulting ciphertext is hashed
into h and sent to the partner (lines 12–13).6 If (c) a DH secret is computed,
the current ck together with this DH secret are given as input to an invocation
of the KDF (lines 5,9,14).

For each encryption during the handshake in which a key k was already
computed, a ciphertext under this current key k is derived by encrypting a
payload m or (if no payload exists yet) an empty string ε.7 This ciphertext is
sent to the partner and is also hashed into h. The current value of h is associated
data for every encryption (lines 6–7,10–11,15–16).

After all handshake ciphertexts are processed, the channel is initialized with
a symmetric key for each communication direction, derived by invoking the KDF
on the current chaining key ck (lines 17–18). In one-message patterns such as N,
payload can however only be sent from initiator to receiver.

Please note that we assume the protocol to additionally output information
on the current payload transmission’s level of security (represented by integer ς;
lines 7,11,16,20). We proposed to add this feature to the Noise specification via
the mailing list (as it could be useful to upper layer protocols). In Sect. 5, we
describe why this feature is necessary for a security analysis in a generic model
and in Sect. 6 we explain how this stage counter is naturally derived for the Noise
patterns.

Flexibility in N, NK, XK. Figure 2 depicts the three Noise patterns N, NK, and XK.
As it can be seen, the XK pattern adds one further handshake ciphertext to the
NK pattern such that the initiator is authenticated, and the NK pattern adds one
handshake ciphertext to the N pattern, such that the responder is authenticated
and a bidirectional forward secure channel is established.

4 Replay Attacks, State Reveals, and Their Relation

In our model, presented in Sect. 5, we allow adversaries to reveal the secret local
states of session participants. Since this slightly raises the complexity of the
model – as it induces a more careful treatment of trivial attacks – we contex-
tualize the meaning and explain the importance of this adversarial power (in
order to justify the increased complexity), and we give an intuition for relations

6 For patterns in which the long-term DH share is sent in plaintext, this DH share is
directly hashed into h instead.

7 Note that we use the algorithm Enc generically for sending information to the session
partner. Confidentiality of payload is thereby not necessarily reached (see Sect. 5.1).
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between state reveals and replay attacks on a high level (in order support com-
prehensibility of the model). This is aimed to give some initial motivation on
how we define the model formally in the next section.

Replay Attacks in Noise. Replay attacks are an inevitable issue for early commu-
nication in many protocols – among them, many Noise patterns (e.g., patterns N,
NK, and XK, cf., Fig. 2). When assuming long-term keys of parties to be constant
(and not variable; cf., [19]), the first ciphertext in a session, sent from an initiator
instance πs

i of a party i to a responder instance πt1
j of a party j, can be replayed

to all other (responder) instances πt2
j , . . . , πtn

j of party j. As long as instances of
party j are not synchronized, they will not detect this replay attack (since the
ciphertext is valid for all of them). Hence, they will all accept and process this
ciphertext and reply with individual (valid) ciphertexts.

We observe three conditions that allow for replay attacks and that are true for
seven out of the 15 standard patterns in Noise (cf., rows in Table 1 with rt = 0):
(1) parties’ long-term keys are static, (2) first ciphertexts in sessions from initia-
tor to responder contain (confidential) payload already, and (3) there exists no
(specified) synchronization mechanism among instances of a party. As a result,
such ciphertexts in these patterns are inevitably potential subject to replay
attacks.

Importance of State Reveal. In general – independent of replay attacks – local
states of instances contain crucial session secrets. Since the primitive that we
consider in this work depicts not only the initialization of a session but the session
itself (in contrast to, e.g., authenticated key exchange), these considered local
secrets are stored and used until a session is terminated. For settings with long
session duration (e.g., IoT networks), it is reasonable to assume that adversaries
gain access to some instances’ local secrets during the session lifetime. As a
result, a realistic model should capture this adversarial power by allowing state
reveals in the security game.

If state reveals were not allowed, protocols that store valuable secrets unnec-
essarily in the local state (e.g., own or partners’ long-term secrets) would be
declared secure even though this is intuitively insecure.

State Secrets Under Replay Attacks. In the following we describe an attack
against an intuitively insecure protocol that would formally be declared “secure”
in a model without state reveal. Consequently, we argue that such models are
unsuitable for assessing security.

1. An initiator instance πs
i of party i sends the first ciphertext c0 in a session

directed to a responder instance of party j, containing an ephemeral public
encryption key pk∗, and stores the respective secret key sk∗ in its local state.
This ciphertext is not protected against replay attacks (for the reasons given
above).

2. This ciphertext c0 is forwarded to multiple responder instances πt1
j , . . . , πtn

j

of party j.
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3. Each responder instance πtl
j , l ∈ [n] encrypts its individual, independent,

confidential reply payload under pk∗ in a ciphertext c̃l. We note that this
payload is encrypted forward-securely as (sk∗, pk∗) are independent of i’s
and j’s long-term keys. Each instance πtl

j sends a replay-resistant response cl
1

back to instance πs
i , such that cl

1 contains c̃l.
4. Instance πs

i will only receive and process one reply ct∗
1 from an instance πt∗

j

and will continue a long-lived session with it. Instance πt∗
j encrypts all further

payload to πs
i under pk∗ such that sk∗ remains in πs

i ’s local state until the
session terminates.

5. All remaining involved sessions of party j will eventually terminate due to a
timeout.

6. If an attacker obtains the local state of πs
i before its session with πt∗

j termi-
nates, it will learn all confidential replies, encrypted in ciphertexts c̃1, . . . , c̃n

(in addition to the entire payload from πt∗
j ).

A model without state reveal declares all replies from instances πt1
j , . . . , πtn

j

“secure” even though their security crucially relies on the secrecy of πs
i ’s local

state. Especially since countermeasures are trivial and highly efficient8, we con-
sider this example protocol insecure. This intuition matches the initial idea of the
(key) reveal query in the Bellare-Rogaway model [2]: “Compromise of a session
key should have minimal consequences” such that it should not “leak information
about other (as yet uncompromised) session keys”. Since we abstractly consider
all local secrets of an instance combined as a generic state st , this condition
should hold accordingly for its reveal. For protocols with early communication
(allowing for replay attacks), this condition can, however, only be met as soon
as a session has exactly two participants (i.e., the session continues with exactly
one responder).

Depiction in the Model. The essence of the above attack is not that messages are
in danger due to replay attacks, but rather that secrets established during replay
attacks may affect multiple instances. This effect must be reduced by secure pro-
tocols as far and as soon as possible. In our model, stage counters rpi, rpr indi-
cate how soon initiators and responders have local states that are independent of
other instances’ secrets (see Sect. 5.3). Thereby, we define reveals of their states
harmless (for other instances) in case they are conducted after these stages are
reached. Even though this independence may not be reached immediately (due
to replay attacks in early communication), our model transparently indicates
with these counters, how soon it is reached by protocols (see Table 1).

In our proof we explicitly emphasize the game hops in which it becomes
clear that secrets are independent of others that are in revealable states of other
instances.

8 E.g., πt1
j , . . . , πtn

j encrypt individual random symmetric keys k1, . . . , kl under pk∗

and encrypt their content under these symmetric keys respectively, then πs
i can

erase sk∗ quickly such that its state is free of session-overlapping secrets.
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5 Flexible ACCE Framework

The original ACCE model [22] and our generalization focus on the definition of
authentication and confidentiality of messages, transmitted via a communication
protocol (channel establishment). However in [22], traditional security goals like
authentication and forward-secrecy are required to be reached before the actual
channel is established.

Here we first provide a generic definition of the cryptographic primitive
fACCE, then describe the standard execution environment in which its secu-
rity is analyzed, further explain how we add flexibility to the adversary model
with respect to the considered security properties, and define fACCE security.

5.1 fACCE Primitive Description

Below we define the flexible ACCE primitive. Intuitively, fACCE is a protocol
that establishes a secure channel. Both the establishment of the channel and the
transmission of payload through the channel are handled by the same algorithms.
The special ‘security level’-output ς of encryption and decryption signals which
security properties are reached by the current algorithm invocation (e.g., to a
higher level application).

Definition 2 (Flexible ACCE). A flexible ACCE protocol fACCE is a tuple of
algorithms fACCE = (KGen, Init,Enc,Dec) defined over a secret key space SK,
a public key space PK, and a state space ST . The syntax of an fACCE protocol
is as follows:

– KGen →$ (sk , pk) generates a long-term key pair where sk ∈ SK, pk ∈ PK.
– Init(sk , ppk , ρ, ad) →$ st initializes a session to begin communication, where

sk (optionally) is the caller’s long-term secret key, ppk (optionally) is the
long-term public key of the intended session partner, ρ ∈ {i, r} is the session’s
role (i.e., initiator or responder), ad is data associated with this session, and
sk ∈ SK ∪ {⊥}, ppk ∈ PK ∪ {⊥}, ad ∈ {0, 1}∗, st ∈ ST .

– Enc(sk , st ,m) →$ (st ′, c, ς) continues the protocol execution in a session and
takes message m to output new state st ′, ciphertext c, and stage ς that indi-
cates the security for the transmission via c of the input message, where
sk ∈ SK ∪ {⊥}, st , st ′ ∈ ST ,m, c ∈ {0, 1}∗, ς ∈ N.

– Dec(sk , st , c) →$ (st ′,m, ς) processes the protocol execution in a session trig-
gered by c and outputs new state st ′, message m, and stage ς that indi-
cates the security for the output message during transmission via c, where
sk ∈ SK ∪ {⊥}, st ∈ ST , st ′ ∈ ST ∪ {⊥},m, c ∈ {0, 1}∗, ς ∈ N. If st ′ = ⊥ is
output, then this denotes a rejection of this ciphertext.

We define as a convention that for output stage numbers ς = 0, no security
properties (in particular, no confidentiality) for the respectively transmitted pay-
load has yet been reached.9 Further we assume that the output stage numbers
monotonically increase during a session (which is not a restriction).
9 It is important to note that the first stage may not necessarily be 0, e.g. 0-RTT

protocols that achieve confidentiality with the first message.
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Please note that the syntax (and our security definition) leaves it to the
specific protocol how far it enforces a ping-pong communication within a ses-
sion. If the protocol only allows encryptions after decryptions, then we assume
that the protocol enforces this by aborting on invalid algorithm invocations. If
the protocol automatically responds on received ciphertexts, we assume that
the environment (in our security experiment this is depicted by the adversary)
handles this.

We define the correctness of an fACCE protocol below. Intuitively an fACCE
protocol is correct if messages, decrypted from the established channel, were
equally sent to this channel by the partner.

Definition 3 (Correctness of fACCE). An fACCE protocol is correct if, for
any two key pairs (ski, pki), (skr, pkr) output from KGen or set to (⊥,⊥) respec-
tively, their session states Init(ski, pkr, i, ad) →$ sti, Init(skr, pki, r, ad) →$ str
with ad ∈ {0, 1}∗, and message-stage-ciphertext transcripts MSC ρ,MSC ρ̄ ← ε,
it holds for all sequences of operations ((op0, ρ0,m0), . . . , (opn, ρn,mn)) (for all
0 ≤ l ≤ n with opl ∈ {e, d}, ρl ∈ {i, r},ml ∈ {0, 1}∗) that are executed as
follows:

– if opl = e, invoke Enc(skρl , stρl ,ml) →$ (stρl , cl, ς l) and update MSC ρ ←
MSC ρ‖(ml, ς l, cl), or

– if opl = d, invoke Dec(skρl , stρl , cl) →$ (stρl ,ml
∗, ς

l
∗) on (ml

◦, ς
l
◦, cl)‖MSC ρ̄

← MSC ρ̄ and update it accordingly,

that if ml
∗ �= ⊥ , then encrypted and decrypted messages and stage outputs equal

ml
∗ = ml

◦, ς
l
∗ = ς l

◦, and that stage outputs increase monotonically (∀l∗ < l with
opl = opl∗ = e and ρl∗ = ρl it holds that ς l∗ ≤ ς l

◦).

5.2 Execution Environment

Here we describe the execution environment for our fACCE security experiment.
In our model we allow the analysis of multiple security properties, and indeed
allow these properties to be reached at different points during the protocol exe-
cution. As a consequence, one can specify for each stage which properties need
to be reached by the protocol in order to achieve security. Since one security
property may not be reached in an early stage (thus the adversary could triv-
ially attack communication in this stage) and later stages may reach this security
property, we need to separate the security experiment challenges that the adver-
sary is to solve in each stage. We therefore define stage-specific challenge bits
and freshness flags (opposed to one single challenge bit and a static freshness
condition). The latter are dynamically checked and modified during the security
game. We note that due to allowing secure and insecure stages within the same
session, dependencies between messages may leak information to an attacker.

We consider a set of nP parties each (potentially) maintaining a long-term
key pair {(sk1, pk1), . . . , (sknP

, pknP
)}, (sk i, pk i) ∈ SK × PK. In addition to

the key pair, a variable corr i ∈ {0, 1} is stored for every party i ∈ [nP ] by the
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security experiment, that indicates whether sk i was exposed to the adversary
(via OCorrupt, see Sect. 5.4).

Each party can participate in up to nS sessions. We denote both the set of
variables that are specific for a session s of party i as well as the identifier of this
session as πs

i . In addition to the local variables specific to each protocol, we list
the set of per-session variables that we require for our model below. In order to
derive or modify a variable x of session π we write π.x to specify this variable.

– ρ ∈ {i, r}: The role of the session in the protocol execution (i.e., initiator or
responder).

– pid ∈ [nP ]: The session partner’s identifier.
– ad : Data associated with this session (provided as parameter at session ini-

tialization to Init).
– Te[·], Td[·] ∈ {0, 1}∗: Arrays of sent or received ciphertexts. After every invo-

cation of Enc or Dec of a session πs
i , the respective ciphertext is appended to

πs
i .Te or πs

i .Td respectively.
– st ∈ ST : All protocol-specific local variables10.
– rand ∈ {0, 1}∗: Any random coins used by πs

i ’s protocol execution.
– (b1, b2, b3, ...): A vector of challenge bits the adversary is to guess (one bit for

each stage).
– (fr1, fr2, fr3, ...): A vector of freshness flags indicating whether the security of

a stage in the session is considered to have been trivially broken by adversarial
behavior.

At the beginning of the game, for all sessions πs
i the following initial values are

set: πs
i .Te, πs

i .Td, ← ε, πs
i .fr ς∗ ← 1 for all ς∗ ∈ N, and πs

i .rand ←$ {0, 1}∗, πs
i .bς∗

←$ {0, 1} for all ς∗ ∈ N are sampled.
Furthermore a set of ciphertexts Rpl ← ∅ is maintained in the security game,

that are declared to initiate a non-fresh (replayed) session.

Partnering. In order to define security in a flexible manner, we need to define
partnering for sessions in the environment. Partnering is defined over the cipher-
texts provided to/by the adversary via the oracles that let sessions encrypt and
decrypt (OEnc,ODec). Intuitively, a session has an honest partner if everything
that the honest partner received via ODec was sent by the session via OEnc (with-
out modification) and vice versa, and at least one of the two parties received a
ciphertext at least once11. This definition considers the asynchronous nature
of the established channel, leading to a matching conversation-like partnering
definition for fACCE.

Definition 4 (Honest Partner). πt
j is an honest partner of πs

i if all initial
variables match (πs

i .pid = j, πt
j .pid = i, πs

i .ρ �= πt
j .ρ, πs

i .ad = πt
j .ad) and the

received transcripts are a prefix of the partner’s sent transcripts, respectively,
where at least one them is not empty (i.e., for a = |πt

j .Td|, b = |πs
i .Td| such that

10 See Subsect. 3.1 Noise’s state definition.
11 Note that this definition of honest partnering is symmetric (i.e., if a session πs

i has
an honest partner πt

j , then this πt
j has πs

i as an honest partner as well).
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a > 0 if πs
i .ρ = i and b > 0 if πs

i .ρ = r then ∀ 0 ≤ α < a : (πs
i .Te[α] = πt

j .Td[α])
and ∀ 0 ≤ β < b : (πs

i .Td[β] = πt
j .Te[β])). If πs

i already received ciphertexts from
πt

j, then πt
j is an honest partner of πs

i only if there exists no other honest partner
π∗ of πs

i (i.e., if b > 0 then there is no π∗ such that π∗ is an honest partner of
πs

i and π∗ �= πt
j).

Please note that after encrypting without decrypting yet, the initiator may have
multiple honest partners (if the resulting ciphertexts are forwarded to multiple
sessions). Due to the last requirement in Definition 4, our partnering notion
requires that, after decrypting once, a session must have no more than one honest
partner. Thereby partnering necessarily becomes a 1-to-1 relation as soon as the
initiator received once from the responder.

5.3 Flexible Security Notion

Our model enables us to analyze levels of authentication and confidentiality –
even for different stages within one protocol execution – and thereby to distin-
guish precisely if and when the following goals are reached: (a) Authentication
and Integrity, (b) Forward-secrecy, and (c) Resistance against replay attacks.
The extended version of this work [15] additionally considers KCI resistance and
resistance against randomness reveal.

Our security definition, therefore, is indexed by five integers, called counters,
(aui, aur, fs, rpi, rpr) that indicate from which stage the respective property
is achieved. Since properties can be established asymmetrically (e.g., a respon-
der authenticates itself to an unauthenticated initiator in the first stage), some
counters are indexed by role ρ ∈ {i, r} (for initiator and responder respec-
tively). One can think of each counter as a reference ‘rung’ on the ‘ladder’ of
stages from which on the specified security property is achieved by the respec-
tively analyzed protocol. Thus, as soon as the protocol outputs a certain stage
that equals a counter (the protocol says that it reached the indicated ‘rung’ on
the ‘ladder’), all messages that are transmitted thereafter (including the message
just encrypted or decrypted) reach the corresponding security property.12 Please
note that some security properties, such as authentication, develop their effect
in two steps (see the trivial and real attacks in the description of oracle ODec in
Sect. 5.4). We describe these counters below:

1. auρ defines the stage required for ρ to be authenticated. This means that it is
hard to break the authenticity and integrity of ciphertexts from a party with
role ρ (i.e., parties with role ρ̄ reject ciphertexts if the origin is not an honest
partner) if the stage number ς (output by Dec for the peer with ρ̄) is greater or
equal to auρ. Note that, since our partnering notion considers FIFO channels,
thereby also ciphertexts (and the order among them) are authenticated that
were sent and received before auρ was reached.

12 Thereby only protocols are considered that monotonically increase security proper-
ties during sessions.
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2. fs defines the stage from which forward-secrecy (with respect to both session
participants’ long-term secrets) is reached. It is hard, for a stage ς ≥ fs, to
break the confidentiality of ciphertexts, even if both parties were corrupted.

3. rpρ defines the stage from which a fully revealed session state of ρ cannot
be used to replay and reestablish the session. This means, for a session for
which stage ς ≥ rpρ was reached, a revealed session state must not contain
secrets that affect the communication’s security of any non-partnered sessions
(especially of other receivers). The second condition of our partnering notion
(cf., Definition 4) divides partners after replay attacks occur (i.e., marks them
unpartnered thereby). Hence, protocols must diverge session state(s) of pre-
vious partners in case of such replay attacks, if partnering is used to control
(and forbid) session state reveals. Only replayed first ciphertext(s) from an
initiator to a responder do not to divide partners according to our partnering
notion. In case of such session initiating replays, other sessions’ states must
be diverged by the protocol as soon as their stage has ς ≥ rpρ.

We remark that our partnering notion already defines session participants
unpartnered for all but one type of replay attacks: if ciphertexts, sent by an
initiator that has already received a ciphertext once, or sent by a responder,
are replayed, the respective receiver is defined to have no honest partner. In a
security game in which state reveals are defined to be harmless for unpartnered
sessions (which is the case for our model), this induces that such replay attacks
force the protocol to diverge respective receivers’ session states from their previ-
ous partners’ session states. As a consequence, only replays of ciphertexts, sent
by an initiator to (multiple) responder(s) without any reply from the latter,
must be considered harmful in our security experiment. These replay attacks
cannot be prevented if the receiver’s long-term secret is defined static (which
we do in contrast to e.g., [19]) and the initiator has never received a ciphertext.
Our definition of replay attack resistance consequently focuses on the security
damage that is caused by such replay attacks: it considers how soon the secrets,
established by a (replayed) ciphertext, are independent among the sender and
the (other) receivers of this replayed ciphertext. Hence, a session’s secrets are
recovered from a replay attack if they cannot be used to obtain information on
other sessions’ secrets.

Besides the explained prevention of replay attacks due to our partnering
notion, ciphertexts that are transmitted before a stage ς > 0 is output are (as
also explained above) authenticated as soon as authentication is reached in a
later stage. Apart from this, no security guarantees are required for ciphertexts
transmitted under ς = 0.

If a property is never reached in the specified protocol, then the respective
counter is set to ∞ (e.g., for protocol with unauthenticated initiators, aui = ∞).

5.4 Adversarial Model

In order to model active attacks in our environment, the security experiment pro-
vides theOInit,OEnc,ODec oracles to an adversary A, who can use them to control
communication among sessions, together with the oracles OCorrupt, OReveal.
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Since our security definition becomes simpler and more clear by considering
trivial attacks during the execution of the security game (not only as a separate
freshness condition evaluated after the adversary terminated), we describe the
excluded trivial attacks and rewarded real attacks inline. The considered secu-
rity properties are denoted as bullet point symbols below (in case they are not
generically applicable).

The game maintains a win flag (to indicate whether the adversary broke
authenticity or integrity of ciphertexts) and embeds challenge bits in the encryp-
tion (in order to model indistinguishability of ciphertexts). In order to win the
security game, adversary A either has to trigger win ← 1 or output the correct
challenge bit πs

i .bς of a specific session stage ς at the end of the game.

– OInit(i, s, j, ρ, ad) initializes a session πs
i (if not yet initialized) of party i to be

partnered with party j, invoking fACCE.Init(sk i, pk j , ρ, ad) →[πs
i .rand] πs

i .st
under πs

i .rand . It also sets πs
i .ρ ← ρ, πs

i .pid ← j, and πs
i .ad ← ad . This

oracle provides no return value. Finally, the freshness flags are updated by
invoking Freshfs() (see Fig. 3).

– OEnc(i, s,m0,m1) triggers the encryption of message mb for b = πs
i .bς by

invoking Enc(sk i, π
s
i .st ,mb) →[πs

i .rand] (st ′, c, ς) for an initialized πs
i if |m0| =

|m1| and for ς = 0 (i.e., confidentiality is not yet achieved) it must hold that
m0 = m1 as the challenge bit would otherwise be trivially leaked. It updates
the session specific variables πs

i .st ← st ′, returns (c, ς) to the adversary, and
appends c to πs

i .Te if c �= ⊥.
– ODec(i, s, c) triggers invocation of Dec(sk i, π

s
i .st , c) →[πs

i .rand] (st ′,m, ς) for
an initialized πs

i and returns (m, ς) if πs
i has no honest partner, or returns

ς otherwise (since challenges from the encryption oracle would otherwise be
trivially leaked). Finally c is appended to πs

i .Td if decryption succeeds.

Excluding trivial attacks:

fs: Since decryption can change the honesty of partners, the freshness flags
are updated regarding corruptions by invoking Freshfs() (see Fig. 3).

au: The consideration of trivial attacks regarding authentication are a com-
bination of the stage at which the protocol reaches authentication and
corruptions of the participants’ long-term secrets. If the received cipher-
text was not sent by a session of the intended partner (i.e., there exists
no honest partner) and
1. party i is corrupted (i.e., corr i = 1), then all following stages are

marked un-fresh (πs
i .fr ς∗ ← 0 for all ς ≤ ς∗), since this is a KCI

attack.13
2. neither party i nor the session’s intended partner are corrupted (i.e.,

corr i = corrπs
i .pid = 0) and authentication of the partner was not

reached yet (i.e., ς < auπs
i .ρ̄), then all following stages are marked

un-fresh until authentication will be reached (πs
i .fr ς∗ ← 0 for all ς ≤

13 Please note that resistance against KCI attacks is not required.
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ς∗ < auπs
i .ρ̄), since this is a (temporary) trivial impersonation of the

partner towards πs
i .14

3. only the session’s intended partner is corrupted (i.e., corrπs
i .pid =

1 �= corr i) and authentication of the partner was not reached yet or
is reached with this received ciphertext (i.e., ς ≤ auπs

i .ρ̄), then all
following stages are marked un-fresh (πs

i .fr ς∗ ← 0 for all ς ≤ ς∗),
since this is (and will continue to be) a trivial impersonation of the
partner towards πs

i .

Rewarding real attacks:

au: Similarly to detecting trivial attacks, real attacks are rewarded by con-
sidering when authentication is reached in the respective protocol execution
and if the participants’ long-term secrets are corrupted.
The adversary breaks authentication (and thereby win ← 1 is set) if the
received ciphertext was not sent by a session of the intended partner but was
successfully decrypted (i.e., there exists no honest partner and the output
state is st ′ �= ⊥), the stage is still fresh (πs

i .fr ς = 1), and
1. this is the first authenticated ciphertext (ς = auπs

i .ρ̄), and neither party i
nor the intended partner are corrupted (corr i = corrπs

i .pid = 0), or
2. this is a later authenticated ciphertext (ς > auπs

i .ρ̄) and party i is not
corrupted (corr i = 0) as this would otherwise be a KCI attack.

– OCorrupt(i) → sk i outputs the long-term secret key sk i of party i, sets
corr i ← 1, and updates the freshness flags by invoking Freshfs().

– OReveal(i, s) → πs
i .st outputs the current session state πs

i .st .

Excluding trivial attacks:

• Revealing the session-state trivially determines this session’s challenge bits,
since the state contains any used session keys15. Hence πs

i .fr ς∗ ← 0 is set for
all stages ς∗.

• Similarly, sufficient information is leaked to determine challenge bits embed-
ded in ciphertexts to and from all honest partners πt

j (and to impersonate πs
i

towards them). As such, πt
j .fr ς∗ ← 0 is set for all stages ς∗ of these honest

partners.

rp: In case the revealed secrets enable the adversary to obtain secrets of non-
partnered sessions due to a replay attack (ς < rpπs

i .ρ where ς was output
by πs

i ’s last OEnc or ODec query) then the first ciphertext in this session is
declared to induce non-fresh sessions via Rpl ← Rpl ∪{c} where c ← πs

i .Te[0]

14 If the partner authenticates later, then the protocol must ensure that this early trivial
impersonation is detected. Consequently, this attack is not treated trivial anymore
after the partner’s authentication.

15 Since we do not consider forward-secrecy within sessions, the secret session state is
considered to harm security of the whole session lifetime independent of when the
state is revealed.
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if πs
i .ρ = i or c ← πs

i .Td[0] if πs
i .ρ = r (such that all sessions starting with

this ciphertext are also marked non-fresh)16.

Freshness Regarding Corruptions and Replays. The definition of forward-secrecy,
based on counter fs, is straight forward: if either the own long-term secrets
or the intended partner’s long-term secrets were corrupted (i.e., corr i = 1 ∨
corrπs

i .pid = 1), then only stages that provide forward-secrecy are marked fresh
for the respective session (i.e., πs

i .fr ς∗ ← 0 for all ς∗ < fs). For sessions started
with a ciphertext marked in set Rpl (i.e., initiating insecure communication due
to the reveal of a replayable session), all stages are marked insecure. We formally
define these properties via function Freshfs() (see Fig. 3).

Fig. 3. Function for updating freshness flags after each oracle invocation, consider-
ing long-term secrets’ corruption (w.r.t. forward-secrecy) and full state reveals (w.r.t.
replay attacks). The freshness flags up to (and excluding) the first secure stage are
reset (e.g., for corrupted long-term keys, all stages in affected sessions are reset until
forward-secrecy is reached).

5.5 Security Definition

The notion of fACCE security is captured as a game played by an adversary
A in which the sessions are implemented as described above. At the begin-
ning of the game, nP long-term key pairs (pk i, sk i) ∀i ∈ [nP ] are generated via
fACCE.KGen and the respective public keys are provided to A as a parameter
on the invocation (i.e., the start of the game). A interacts with the game via
the queries described above and eventually terminates, potentially outputting a
tuple (i, s, ς, b′).

We can now turn to defining (in-)security of a fACCE protocol.
16 One can easily define this trivial attack more specifically depending on whether this

first ciphertext is authenticated and/or designated to a certain party. Depending
on that, the secrets established by this ciphertext would only be valid among spe-
cific session (cf. [20]). For clarity and simplicity, we generically treat the ciphertext
replayable solely.Please note that a state, revealed before the first ciphertext was
sent/received (i.e., c = ε), should not harm security of other sessions.
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Definition 5 (Advantage in Breaking Flexible ACCE). An adversary A
breaks a flexible ACCE protocol fACCE with authentication stages (aui, aur),
forward-secrecy stage fs, and replayability resistance stages (rpi, rpr), when A
terminates and outputs (i, s, ς, b′), if there either exists a session πs

i such that
πs

i .bς = b′, and πs
i .fr ς = 1 (which we subsume as event guess), or win = 1.

We define the advantage of an adversary A breaking a flexible ACCE protocol
fACCE as AdvfACCE

A = (2 · Pr[guess] − 1) + Pr[win = 1].

Intuitively, a fACCE protocol is secure if it is correct and AdvfACCE
A is negligible

for all probabilistic algorithms A running in polynomial-time.

Necessity of Holistic Model. Our definition of flexible ACCE considers multiple
security properties simultaneously (as opposed to having separate definitions for
each regarded security property). In order to reduce complexity, it could seem
useful to regard the security properties independently and then assemble the
results. In the full version [15, Appendix B] we explain why this approach would
produce more complexity, less comprehensibility, and is partially impossible.

6 Protocol Analyses

In this section, we provide an overview of our results of analyzing the Noise
Protocol framework in our new fACCE model. Our main contribution is the full
proofs of Noise Patterns N, NN, NX, NK, and X, XN, XX, XK. We focus on proving
these two protocol “families” to demonstrate how our analysis can capture the
wide variety of security properties that we show in Table 1, while also simplifying
our approach by the re-use of our proof strategies. We give a detailed look
of the proofs of Noise Pattern XK here and extend these proofs, considering
further security properties in the full model, together with the proofs for the
remaining mentioned patterns in the full version [15]. We present the analysis
of Noise Pattern XK here as it comprehensibly provides an idea of the general
proof structure and shows how Noise patterns can be built upon another. As the
handshake of XK extends NK’s handshake, which in turn extends the handshake
of N by a half round-trip respectively, each extension also results in further
security properties (see Fig. 2 and Table 1).

Generic Proof Structure. The modular design of the Noise Protocol Framework
allow us to write proofs that have a reasonably generic structure. While the
proof for each specific Noise Pattern is distinct, each proof is, on a high level,
split into two cases:

– The adversary has forged a ciphertext successfully , and sent it to a session
that does not detect the forgery (or abort the protocol run). This case may be
further split into multiple cases depending on which ciphertext in the Noise
Pattern the adversary has managed to forge.

– The adversary has guessed the challenge bit correctly when it terminates the
experiment.
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We determine which OCorrupt queries cannot have been issued such that the
attacked stage is still ‘fresh’ (as the adversary would otherwise be unsuccessful).
Thus, each case has some queries that have not been issued to the session πs

i

and its partner session (where πs
i either accepted the forged ciphertext, or the

adversary output (i, s, ς, b′)). In both cases we use a tailored PRF-ODH assump-
tion, depending on which pair of queries (targeting long-term DH shares, state
secrets, or, in the full model, ephemeral DH shares that depend on random
coins) have not been issued, to replace the appropriate Diffie-Hellman public
values and shared Diffie-Hellman secrets (using the ODH oracles to compute any
additional secrets using the DH secret keys, if necessary). Afterwards, we iter-
atively replace intermediate secrets derived during the protocol execution using
PRF assumptions on the underlying key derivation function. Finally, we use a
single (or potentially series of) AEAD assumption(s) to replace the encryptions
of ciphertexts sent to, and decryption of ciphertexts arriving at, the session πs

i .
Any adversary capable of distinguishing these changes is able to break one of the
underlying assumptions used, and depending on which case we are in, either: 1.
The adversary is unable to forge a ciphertext to the session πs

i , or 2. The adver-
sary is unable to guess the challenge bit b with non-negligible probability.

This (high-level) description effectively captures the strategy we use to prove
our statements about the Noise Patterns that we analyze.

Mapping Noise’s Security Statements to Our Model’s Counters. Here we
define the exact modeled security via the stage counters (aui, aur, fs, rpi, rpr),
(kci, kcr, eck, rli, rlr)17, used in our theorems of each proof. We also explain
how they relate to the round-trips in the protocol execution of the respective
Noise pattern (we discuss generic mapping among stage counters and round-
trips in the full version [15, Appendix C.3]). For each of the base patterns of the
Noise specification, the stage at which the respective security property is reached
is listed in Table 1. As stage numbers ς output by the Enc,Dec algorithms are
defined as integers, we assume the Noise patterns to output a counter as stage
number with every algorithm invocation, starting by 1 and always incremented
by 1 until no further security properties are reached. In the case that the ini-
tiator’s first ciphertext provides no confidentiality, the stage output is 0 (see
column rt = 0.5 in Table 1) but the reply by the responder continues with ς = 2.

The counters/round-trips for authentication and KCI resistance (auρ, kcρ)
are directly lifted from the Noise specification [32]. As the definition of the
remaining security properties deviate from the specification (or are not specified
therein), the theorems’ stage counters are defined as the first round-trips and
stages that achieve the respective goals. Regarding forward-secrecy, the Noise
specification differentiates among role dependent weak and strong variants of
long-term secrets’ corruptions. However, our consideration of forward-secrecy
focuses on the relation between corruptions of long-term secrets and the reveal
of sessions’ random coins. Consequently, the counter fs is only partially derived
from the Noise specification.

17 The latter are only relevant for the proofs in the full model.
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Resistance against replay attacks in the Noise specification only considers
the adversary’s ability to successfully let multiple sessions receive the same sent
ciphertext. However, local state variables (like an ephemeral symmetric encryp-
tion key or a DH exponent), established by a ciphertext, can be exploited by
an adversary to attack other sessions that sent or received the same (replayed)
ciphertext. Such state variables may stay in the local state even after the replay
attack “is over” (i.e., after only a unique honest partner exist). As the adversary
is allowed to reveal the local state, our definition of replay attack resistance goes
beyond others in the literature (e.g., [17]) and the Noise specification: it says
that resistance against replay attacks is reached if the local state of a session
is independent of any other session’s state (except from the respective unique
honest partner).

Table 1. Stages at which the respective security properties are reached. Stage x is
reached (and thus returned by the protocol via output ς) at round-trip RT(x) = x/2 (for
RT(x) < rt no property is reached). The right half of columns depicts the counters for
security properties that are only considered in the full model. auρ, kcρ were extracted
from Noise’s specification [32]; fs, rpρ are related to their definition in the specification
(but adapted to our model). rlρ, eck were defined purely with respect to the model.
We give proofs for the patterns marked with a ∗.

rt aui aur fs rpi rpr kci kcr eck rli rlr

N∗ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞
X∗ 0 1 ∞ ∞ ∞ ∞ ∞ ∞ 1 1 ∞
K 0 1 ∞ ∞ ∞ ∞ ∞ ∞ 1 1 ∞
NN∗ 0.5 ∞ ∞ 2 2 0 ∞ ∞ ∞ ∞ ∞
NK∗ 0 ∞ 2 2 2 2 ∞ 2 ∞ 1 ∞
NX∗ 0.5 ∞ 2 2 2 0 ∞ 2 ∞ 2 ∞
XN∗ 0.5 3 ∞ 2 2 0 3 ∞ ∞ ∞ 3

XK∗ 0 3 2 2 2 2 3 2 ∞ 1 3

XX∗ 0.5 3 2 2 2 0 3 2 ∞ 2 3

KN 0.5 3 ∞ 2 2 0 3 ∞ ∞ ∞ 2

KK 0 1 2 2 2 2 3 2 1 1 2

KX 0.5 3 2 2 2 0 3 2 ∞ 2 2

IN 0.5 3 ∞ 2 2 0 3 ∞ ∞ ∞ 2

IK 0 1 2 2 2 2 3 2 1 1 2

IX 0.5 3 2 2 2 0 3 2 ∞ 2 2

6.1 Proof of Noise Pattern XK

Theorem 1. Noise protocol XK (as in Fig. 2) is an fACCE-secure protocol with
authentication levels au = (3, 2), forward-secrecy fs = 2, and replay resis-
tance rp = (2, 2). For an adversary A against the flexible ACCE security game
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(defined in Sect. 5) one can efficiently define adversaries Bcoll against the collision
resistance of H, BPRF-ODH against the PRF-ODH assumptions ms-PRF-ODH,
sn-PRF-ODH and sym-ms-PRF-ODH with respect to group G and KDF, Baead

against the AEAD security of AEAD, and Bprf against the PRF security of KDF
with:

AdvfACCEXK,nP ,nS ,A ≤ 3 · AdvcollH,Bcoll
+ n2

P nS ·
(
AdvprfKDF,Bprf

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+AdvaeadAEAD,Baead

)
+ n2

P n2
S ·

(
AdvaeadAEAD,Baead

+ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

)

+ n2
P n2

S ·
(
max

{(
3 · AdvprfKDF,Bprf

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 4 · AdvaeadAEAD,Baead

)
,

(
2 · AdvprfKDF,Bprf

+ 3 · AdvaeadAEAD,Baead
+ Advsn-PRF-ODH

KDF,G,p,BPRF-ODH

)})
.

Proof. We give below the proof of Noise Pattern XK. We split our analysis into
three cases, depending on how the adversary can win the experiment. For the
first two cases, the adversary causes win ← 1 if the received ciphertext was not
sent by a session of the intended partner, but was successfully decrypted in an
authenticated stage by either an initiator (Case A) or a responder (Case B)
session. For Case A A cannot have issued a OCorrupt(πs

i .pid) query because
breaking authentication of a corrupted peer is a trivial attack (as aur = 2).
Similarly, for Case B A cannot have issued a OCorrupt(πs

i .pid) query as aui =
3). Next we focus on an adversary attempting to guess the challenge bit b for
any fresh session (Case C). Case C is further separated into two subcases,
depending on the combination of allowable OCorrupt queries A issues, as defined
in Sect. 5. We show that under such restrictions, A has a negligible advantage in
guessing a challenge bit b for the session πs

i . We begin with the standard fACCE
experiment defined in Sect. 5, and treat Case A.

In Case A Game 1, we define an abort event that triggers if a hash col-
lision occurs. We do so by defining an algorithm Bcoll that computes all hash
values honestly, and aborts if there exist two evaluations (in,H(in)), (în,H(în))
such that in �= în, but H(in) = H(în), outputting this pair to a hash collision
challenger if found. In the next two games (Game 2, Game 3) we guess the
index (i, s) of the session πs

i , as well as the index j of the honest partner πt
j and

abort if either A terminates and outputs (i∗, s∗, ς, b′) such that (i∗, s∗) �= (i, s),
or if A initialises πs

i such that πs
i .pid �= j. From now, the challenger playing

the fACCE game “knows” at the beginning of the experiment the index of the
session that A will target, and its intended partner j. In Game 4, we introduce
an abort event abortwin that triggers if the challenger sets win ← 1 when the
test session processes the ciphertext (gb, c1). The rest of the game hops in Case
A now bound the advantage of A in causing abortwin to occur.

Case A Game 5 requires careful consideration: Note that by Game 2,
we know at the beginning of the experiment the index of session πs

i such that
(i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know at the
beginning of the experiment the index of the intended partner πs

i .pid of the
session πs

i . Thus, we define an algorithm BPRF-ODH that initializes a ms-PRF-ODH
challenger, embeds the DH challenge keyshare gu into the long-term public-key
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of party j, embeds the DH challenge keyshare gv into the ephemeral public-
key of session πs

i , replaces the computation of ck , k0 ← KDF(ck , gaB , 2) (in the
session πs

i and its partner) with uniformly random values c̃k , k̃0, and gives pk j =
gu to the adversary with all other (honestly generated) public keys. However,
BPRF-ODH must account for all sessions t such that party j must use the private
key for computations. In the Noise Protocol XK, the long-term private keys are
used in the following ways: In sessions where the party j acts as the initiator,
they compute ck , k2 ← KDF(ck , gxu, 2). Similarly, in sessions where the party
acts as the responder, they compute ck , k0 ← KDF(ck , gxu, 2). To simulate this
computation, BPRF-ODH must instead use the ODHu oracle provided by the ms-
PRF-ODH challenger, specifically querying ODHu(ck ,X), (where X is the Diffie-
Hellman public keyshare such that the private key is unknown to the challenger)
which will output KDF(ck ,Xu). We note that aur = 2, and only after processing
(gb, c1) will πs

i output ς = 2, and so A cannot issue a OCorrupt(j) query before
πs

i processes ciphertext gb, c1. Thus we bound the probability of A distinguishing
this change by the security of the ms-PRF-ODH assumption.

In Case A Game 6 the challenger replaces the concretely computed values
ck , k1 ← KDF(c̃k, gab, 2) in πs

i and its honest partner (if one exists), with uni-
formly random values c̃k , k̃1. As by Game 5, the input c̃k is already uniformly
random and independent of the protocol execution, distinguishing this game hop
can be reduced to the prf security of the KDF. Note that due to this change, the
state of πs

i (containing only c̃k , k̃1 as secrets) is independent of other sessions
(making it useless to reveal their states; cf., counters rpi = rpr = 2).

Case A Game 7 proceeds identically to Game 6, except that the challenger
flips a bit b̄, and uses b̄ instead of πs

i .b1 when responding to OEnc or ODec

queries from A directed to sessions πs
i or πt

j when using the key k̃1. We do so
by constructing an algorithm Baead that interacts with an aead challenger, and
forwards such OEnc or ODec queries to the aead challenger. This change reduces
to the aead security of the AEAD scheme, and since k̃1 is a uniformly random
and independent value by Game 6, this replacement is sound. The additional-
data field of c1 contains h = H(H(H(H(H(H(XK_label‖ad)‖gB)‖ga)‖c0)‖gb).
By Game 1 we abort the experiment if A causes a hash-collision to occur, and
by Game 4 we abort if no honest session owned by j has output gb, c1. An
adversary capable of causing win ← 1 when πs

i processes the ciphertext gb, c1
can break the aead security of the underlying AEAD scheme, and thus A has no
advantage in causing abortwin to occur.

AdvfACCE, Case A
XK,nP ,nS ,A ≤ AdvcollH,Bcoll

+ n2
P nS ·

(
Advms-PRF-ODH

KDF,G,p,BPRF-ODH
+ AdvprfKDF,Bprf

+AdvaeadAEAD,Baead
+ Advms-PRF-ODH

KDF,G,p,BPRF-ODH

)

We can now treat Case B.
The first four games (Game 1,2,3,4) proceed similarly to Case A. That

is, we abort when a hash-collision is detected, and guess the index (i, s) of the
first session πs

i to set win ← 1. However, in Game 3, we additionally guess the
index (j, t) of the intended partner session, and abort if our guess is incorrect.
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Game 4 still introduces an abort event that occurs if win ← 1 is set in the test
session, and the rest of the game hops bound the advantage of A in causing the
abort event to occur.

Case B Game 5 again requires careful consideration: Note that by Game 2,
we know at the beginning of the experiment the index of session πs

i such that
(i, s, ς ′, b′) is output by the adversary and by Game 3, we know at the begin-
ning of the experiment the index of the honest partner session (j, t) of the session
πs

i . We take a similar approach to Game 5 of Case A. However, in this game
we replace the computation of ck , k2 ← KDF(ck, gAb, 2) with uniformly ran-
dom and independent values (c̃k, k̃2) in the test session and its honest partner.
Specifically, we define an algorithm BPRF-ODH that initialises a sym-ms-PRF-ODH
challenger, embeds the DH challenge keyshares gu into the long-term public-key
of party i, embeds the DH challenge keyshare gv into the ephemeral public-
key of session πt

j , replaces the computation of ck , k2 ← KDF(ck , gAb, 2) (in
the session πs

i and its partner) with uniformly random values c̃k , k̃2, and gives
pk i = gu to the adversary with all other (honestly generated) public keys. How-
ever, BPRF-ODH must account for all sessions s such that party i must use the
private key for computations. In the Noise Protocol XK, the long-term private
keys are used in the following ways: In sessions where the party i acts as the
initiator, they compute ck , k2 ← KDF(ck , gxu, 2). Similarly, in sessions where
the party acts as the responder, they compute ck , k0 ← KDF(ck , gxu, 2). To
simulate this computation, BPRF-ODH must instead use the ODHu oracle pro-
vided by the ms-PRF-ODH challenger, specifically querying ODHu(ck ,X), (where
X is the Diffie-Hellman public keyshare such that the private key is unknown
to the challenger) which will output KDF(ck ,Xu). However, BPRF-ODH must
account for the fact that the private key of gv (the ephemeral public-key of
πs

i ) is actually used before the computation of ck , k2. In particular, it is used
earlier in the protocol to compute ck , k0 := KDF(ck , gav), where ga may have
been contributed by A. In this case, in order to compute ck , k0, BPRF-ODH must
instead use the ODHv oracle provided by the sym-ms-PRF-ODH challenger,
specifically querying ODHv(ck , ga), which will output KDF(ck , gav). We note
that aui = 3, and only after processing (c2, c3) will πs

i output ς = 3, and so
A cannot issue a OCorrupt(i) query before πs

i processes ciphertext c2, c3. Thus
we bound the probability of A distinguishing this change by the security of the
sym-ms-PRF-ODH assumption. Note that other session states are (and were)
independent of πs

i ’s state as gA is not stored in a state, a collision with gb

would break the above game hop, and c̃k , k̃2 were randomly sampled (cf., coun-
ters rpi, rpr). Case B Game 6 proceeds identically to Game 5, except that
the challenger responds to OEnc or ODec queries directed to πs

i or πt
j outputting

ς = 3 from A (i.e. when using the key k̃2) and aborts if πs
i decrypts c2, c3 suc-

cessfully, but it was not output by an honest partner. This changes reduces to
the AEAD security of the AEAD scheme. The additional-data field of c3 contains
h = H(H(H(H(H(H(H(H(XK_label‖ad)‖gB)‖ga)‖c0)‖gb)‖c1)‖c2). By Game 1
we abort the experiment if A causes a hash-collision to occur, and by Game 4
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we abort if no honest session owned by j has output c2, c3. Now, A has no
advantage in triggering the event abortwin due to πs

i processing c2, c3.

AdvfACCE, Case B
XK,nP ,nS ,A ≤ AdvcollH,Bcoll

+ n2
P n2

S ·
(
Advsym-ms-PRF-ODH

KDF,G,p,BPRF-ODH
+ AdvaeadAEAD,Baead

)

We can now treat Case C.
We follow now-standard procedure and define an abort event to trigger when

we find a hash-collision, guess the index (i, s) of the session πs
i , and the index

(j, t) of the honest partner πt
j . By Case A and Case B, there must exist such

an honest partner for the beginning of stage ς = 3. In what follows, we assume
without loss of generality that πs

i is the initiator session. The analysis where πs
i

is the responder session follows identically, except for a change in notation.
At this point, we need to split the analysis into two sub-cases:

1. Case C.1: A has not issued a OCorrupt(j) query during the experiment. This
allows us to prove the security of all stages ciphertexts.

2. Case C.2: A has issued a OCorrupt(j) query after πs
i decrypts gb, c1 success-

fully (outputting ς = 2). Note that if A issues a OCorrupt(j), then πs
i .fr1 ← 0,

and thus A has no advantage in outputting (i, s, 1, b′). This allows us to prove
the security of ciphertexts belonging to stages ς ≥ 2. Note that if A did not
ever issue a OCorrupt(j) query, then the security analysis reverts to Case
C.1 since πs

i .fr1 = 1, and we need to capture the security of the additional
stages’ ciphertext.

In Case C.1 Game 4, we replace ck , k0 by uniformly random c̃k , k̃0 in πs
i

and its honest partner which is reduced to the ms-PRF-ODH assumption (the
challenger here acts as in Case A, Game 5). Here the session state is again
independent of other non-partnered sessions’ states. In Game 5 and Game 6,
we replace the values ck , k1 ← KDF(c̃k , gab, 2) with uniformly random values
c̃k , k̃1, and subsequently replace ck , k2 ← KDF(c̃k , gAb, 2) with uniformly ran-
dom values c̃k , k̃2 via the prf assumption on KDF. Similarly, in Game 7 we
replace ki, kr ← KDF(c̃k , ε, 2) with uniformly random values k̃i, k̃r.

In Case C.1 Game 8 the challenger flips a bit b̄ and uses b̄ instead of πs
i .b1

when responding to OEnc(i, s,m0,m1) queries from A when Enc and Dec would
output ς = 1 (i.e. when using the key k̃0 replaced in Game 4). Specifically, the
challenger constructs an algorithm Baead that interacts with an AEAD challenger
in the following way: Baead acts exactly as in Game 7 except responding to
OEnc(i, s,m0,m1) or ODec(j, t, c) queries directed to πs

i (or πt
j respectively)

when πs
i or πt

j would output ς = 1 and instead forwards the queries to the AEAD

challenger’s oracles. Since k̃0 is a uniformly random and independent value (by
Game 4), this change is sound.

Case C.1 Game 9 and Game 10 proceed identically to Game 8 but flip
and use independent challenge bits when answering queries to OEnc if key k̃1
is used in stage ς = 2 (Game 9) and when key k̃2 is used in stage ς = 3
(Game 10). These changes in A’s advantage are bound by the advantage in
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breaking the underlying aead assumption. Finally, in Game 11 keys k̃i, k̃r
(replaced in Game 7) are used in stage ς = 4. These changes in A’s advan-
tage are bound by the advantage in breaking the underlying aead assumption.
In Case C.1, Game 11, the behaviour of πs

i is independent on the test bits
πs

i .bς (where ς ≥ 1) and thus A has no advantage in guessing these challenge
bits nor in causing πs

i to set win ← 1.
We now treat Case C.2, where A potentially has issued a OCorrupt(j) query.

Since fs = 2, by Table 1 any adversary that issues a OCorrupt(j) sets πs
i .fr1 ← 0

and outputting (i, s, 1, b′) will lose A the game. Thus in Case C.2 we do not
prove the security of the first ciphertext’s payload data.

Case C.2 Game 4 requires additional care: Note that by Game 2, we know
at the beginning of the experiment the index of session πs

i such that (i, s, ς ′, b′)
is output by the adversary and by Game 3, we know at the beginning of the
experiment the index of the honest partner session (j, t) of the session πs

i . We
take a similar approach to Game 5 of Case A. However, in this game we replace
the computation of ck , k1 ← KDF(ck, gab, 2) with uniformly random and inde-
pendent values (c̃k, k̃1) in the test session and its honest partner. Specifically, we
define an algorithm BPRF-ODH that initialises a sn-PRF-ODH challenger, embeds
the DH challenge keyshares gu into the ephemeral public-key of party i (ga),
embeds the DH challenge keyshare gv into the ephemeral public-key of session
πt

j (gb), and replaces the computation of ck , k1 ← KDF(ck , gab, 2) (in the session
πs

i and its partner) with uniformly random values c̃k , k̃1. Note that BPRF-ODH can
use its internal knowledge of the long-term private keys of party i and party j to
compute (ck , k0) ← KDF(ck , guB , 2) and (ck , k2) ← KDF(ck , gAv, 2). However,
BPRF-ODH must account for A to issue OCorrupt(j) after πt

j has computed the
ciphertext (gb, c1) and instead delivering (gb′

, c′
1) to πs

i . To simulate this compu-
tation, BPRF-ODH must instead use the ODHu oracle provided by the sn-PRF-ODH
challenger, specifically querying ODHu(ck ,X), (where X is the Diffie-Hellman
public keyshare such that the private key is unknown to the challenger) which
will output KDF(ck ,Xu). Thus we bound the probability of A distinguishing
this change by the security of the sn-PRF-ODH assumption. Due to this game
hop πs

i ’s session state is independent of other non-partnered sessions’ states.
In Case C.2 Game 5 and Game 6, we replace ck , k2 ← KDF(c̃k , gAb, 2)

with uniformly random values c̃k , k̃2, and subsequently replace ki, kr ← KDF(c̃k ,

ε, 2) with uniformly random values k̃i, k̃r. Case C.2, Game 7 proceeds similarly
to Case C.1, Game 9 by encrypting mb̄ for a randomly flipped bit b̄ when Enc
and Dec would output ς = 2 (i.e. when using the key k̃1). Case C.1, Game 8
proceeds similarly to Case C.1, Game 10 by encrypting mb̄ for a randomly
flipped bit b̄ when Enc and Dec would output ς = 3 (i.e. when using the key
k̃2). Finally, Game 9 proceeds identically to Case C.1 Game 11 by encrypting
mb̄′ for another randomly flipped bit b̄′ when Enc and Dec would output ς = 4
(i.e. when using the keys k̃i, k̃r). In Case C.2, Game 9, the behaviour of πs

i is
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independent of the test bits πs
i .bς (where ς ≥ 2) and thus A has no advantage

in guessing these challenge bits nor in causing πs
i to set win ← 1. Thus:

AdvfACCE,Case C

XK,nP ,nS ,A ≤ AdvcollH,Bcoll
+ n2

P n2
S ·

(
max

{(
3 · AdvprfKDF,Bprf

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 4 · AdvaeadAEAD,Baead

)
,

(
2 · AdvprfKDF,Bprf

+ 3 · AdvaeadAEAD,Baead
+ Advsn-PRF-ODH

KDF,G,p,BPRF-ODH

)})
.

7 Discussion

The aim of our model is explicitly not to propose the next super-strong notion
of security (since all security properties can be analyzed optionally but not all
independently), but to propose a generic model- and proof-approach.

As the main reason for basing a protocol analysis on an ACCE model is
the intertwined design of the specific analyzed protocol (i.e., an atomic channel
establishment), it is surprising that all previous ACCE model definitions were
heavily influenced by the concept of composing a channel establishment protocol
cleanly from key exchange and channel. Consequently, our results systematize
and contribute to the understanding of the generic, composition-independent
primitive authenticated and confidential channel establishment.

Acknowledgments. We thank Trevor Perrin, Sebastian Lauer, Sven Schäge, Bertram
Poettering, Marc Fischlin, members of the SKECH workshop 2018, and the reviewers
for insightful comments and discussions.
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Abstract. LWE based key-exchange protocols lie at the heart of post-
quantum public-key cryptography. However, all existing protocols either
lack the non-interactive nature of Diffie-Hellman key-exchange or poly-
nomial LWE-modulus, resulting in unwanted efficiency overhead.

We study the possibility of designing non-interactive LWE-based pro-
tocols with polynomial LWE-modulus. To this end,

– We identify and formalize simple non-interactive and polynomial
LWE-modulus variants of existing protocols, where Alice and Bob
simultaneously exchange one or more (ring) LWE samples with poly-
nomial LWE-modulus and then run individual key reconciliation
functions to obtain the shared key.

– We point out central barriers and show that such non-interactive
key-exchange protocols are impossible if:
(1) the reconciliation functions first compute the inner product of

the received LWE sample with their private LWE secret. This
impossibility is information theoretic.

(2) One of the reconciliation functions does not depend on the error
of the transmitted LWE sample. This impossibility assumes hard-
ness of LWE.

– We give further evidence that progress in either direction, of giving an
LWE-based NIKE protocol or proving impossibility of one will lead to
progress on some other well-studied questions in cryptography.

Overall, our results show possibilities and challenges in designing simple
(ring) LWE-based non-interactive key exchange protocols.
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1 Introduction

In 1976, Diffie and Hellman [DH76] proposed an extremely elegant key-exchange
protocol, in which two parties, Alice and Bob, exchange respective group ele-
ments ga, gb simultaneously, where g is a generator of a publicly chosen group G
and a, b ∈ [|G|] are uniformly chosen secret elements. Alice and Bob then locally
perform a single group exponentiation in order to derive the shared key, gab.
This simple idea lies at the foundation of public key cryptography, and has been
widely used in practice throughout the years.

Two decades later, Shor [Sho94] showed that efficient quantum algorithms
could, in principle, break the Diffie-Hellman key-exchange protocol, as well as
other widely used assumptions (e.g. Factoring). Thus, with the development of
quantum computers on the horizon, the importance of designing post-quantum
secure key-exchange protocols, that can replace current standards, has been rec-
ognized. As part of this effort, the National Institute of Standards and Tech-
nology (NIST) decided to look into post-quantum cryptography standardization
and is hosting a post-quantum cryptography call of proposals [NIS]. One of the
major primitives that they seek is a key-encapsulation mechanism.

1.1 (Ring) LWE Based Key Exchange Protocols

A significant portion of the algorithms qualified to the second round of the NIST
call for proposals [SAB+17,NAB+17,LLJ+17,PAA+17,GMZB+17] is based on
the (ring) learning with errors (LWE) assumption [Reg05,LPR10]. A remarkable
feature of this assumption (and consequently of the proposals) is that its average-
case hardness is based on the worst-case hardness of lattice problems, which
themselves are conjectured to be secure against efficient quantum algorithms.

Those proposals use two routes to achieve key-exchange, one is through
public-key encryption and the other is through reconciliation. However, all of
them lack the non-interactive nature of the key-exchange protocol of Diffie-
Hellman, as explained below.

Key-Exchange Through Public-Key Encryption. In the first case, Alice
samples a secret & public-key pair and sends her public-key to Bob. Then, Bob
picks a desired shared key and sends it to Alice, encrypted under her public-key.
Finally, Alice decrypts Bob’s message to recover the shared key. While concep-
tually simple, this approach lacks some of the advantages of the Diffie-Hellman
protocol. Firstly, Bob has complete control over the shared key. Secondly, the
protocol is inherently interactive – the parties need at least two rounds of inter-
action.

Key-Exchange Through Reconciliation. The reconciliation approach was
introduced by Ding et al. [DXL12] and Peikert [Pei14] and was implemented
and improved in later works [ADPS16,BCNS14]. The most basic version of such
reconciliation-based protocols has a simple description1 (See Fig. 1): Let A be
1 For simplicity, we only describe the LWE-based variant; the ring version is obtained

by replacing A,x1,x2, e1, e2 with ring elements from some chosen polynomial ring
and using the corresponding polynomial multiplication.



376 S. Guo et al.

Alice Bob

A ∼ U(Zn×n
q )x1, e1 ∼ Xn x2, e2 ∼ Xn

bT1 = xT
1 A+ eT

1

b2 = Ax2 + e2

�xT
2 b1 · 4/q� (mod 2)

Rec1(A,x1, e1, b2) Rec2(A,x2, e2, b1)

Fig. 1. Alice and Bob simultaneously exchange LWE samples using the same public
matrix A. After receiving b2, Bob sends the second most significant bit of xT

2 b1 to
Alice. Both players then apply their respective key reconciliation functions on the
variables they have to produce a shared key.

a random public n × n matrix over Zq where q is polynomial in n and let X
be a noise distribution, then the parties act as follows: Alice randomly picks
x1,e1 from X n and sends b1 = xT

1 A + e1 to Bob, while Bob simultaneously
picks random x2,e2 from X n and sends b2 = Ax2 + e2 to Alice. After receiving
b1, Bob sends to Alice the second most significant bit of xT

2 b1, i.e., �4/q · xT
2 b1�

(mod 2). To agree on a common key, Alice and Bob first compute the inner
product of their secret and incoming message and obtain xT

1 Ax2 + xT
1 e2 and

xT
1 Ax2 +eT

1 x2 respectively. The small magnitude of Alice and Bob’s secret and
noise already allows them to achieve approximate agreement: the most significant
bit of xT

1 Ax2 + xT
1 e2 and xT

1 Ax2 + eT
1 x2 is often the same. To achieve exact

agreement, they run a simple key reconciliation procedure, where Bob sends the
second most significant bit as an additional hint.

1.2 (Ring) LWE Based Non-interactive Key Exchange?

As discussed above, Diffie-Hellman key exchange allows parties to send their mes-
sages simultaneously or communicate in a non-interactive way (e.g. by publishing
them on Alice’s and Bob’s public websites). In the contrast, current proposed
LWE-based key exchange protocols require additional interactions. Even though
the additional interaction is only a single bit (as is the case in Fig. 1), one extra
round of a practical key exchange protocol may result in significant delays when
used at a large scale (such as that of the internet). This motivates the main
question that we study in this paper:

Can we have practical (ring) LWE-based non-interactive key exchange pro-
tocols? Or are such protocols inherently interactive?

A Remark on LWE-Modulus. Throughout the paper, we focus on polyno-
mial LWE-modulus. We observe that if superpolynomial LWE-modulus is to
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be considered, LWE-based key exchange in Fig. 1 can be made non-interactive.
That’s because the most significant bits of xT

1 b2 and xT
2 b1 agree with prob-

ability 1 − Θ(nB2/q), for a noise distribution X whose support is included in
[−B,B]. If the modulus to noise rate is large (i.e. superpolynomial in the security
parameter), then the probability of disagreement of their most significant bits is
negligible, and hence the above non-interactive protocol is sufficient. However,
in the case of a polynomially bounded q, the disagreement probability is non-
negligible. Given the extremely demanding efficiency constraints on practical
implementations2, it would be highly desirable to have variants of such LWE-
based key-exchange protocol in which the disagreement probability is negligible
even in the case that q is as small as a polynomial in the security parameter.
Additionally, requiring a large modulus to noise rate affects the hardness of the
corresponding LWE assumption, since the worst-to-average case reductions trans-
late this rate to the gap in the promise lattice problems [Pei09]. Namely, LWE
with large modulus-to-noise rate is a stronger assumption (i.e. more susceptible
to polynomial-time attacks) than LWE with a smaller modulus-to-noise rate.

1.3 Our Results

In this paper, we explore the possibility of attaining (ring) LWE-based non-
interactive key exchange (NIKE) (with modulus polynomial in the security
parameter).
Our Focus. We focus on the setting where Alice and Bob only send one or a
few (ring) LWE samples to each other; similarly to the protocol in Fig. 1, but
without the last message sent from Bob to Alice.
The main motivation for studying this setting is that perhaps it is the simplest
setting which captures natural non-interactive variants of current LWE based
key exchange protocols. Therefore, impossibility results will give a theoretical
justification for current LWE based key exchange protocols. On the other hand,
possibility results will yield Diffe-Hellman like non-interactive protocols.
Moreover, NIKE in this setting is simply characterized by two efficiently com-
putable key reconciliation functions Rec1,Rec2, such that

– The outputs of Alice and Bob agree with each other with overwhelming proba-
bility, that is, Rec1(A,x1,e1, b2) = Rec2(A,x2,e2, b1) holds with overwhelm-
ing probability (recall that b1 := ATx1 + e1 and b2 := Ax2 + e2).

– The output of the protocol is pseudo-random even when conditioned on the
transcript, that is, it is hard to predict Rec1(A,x1,e1, b2) given A, b1, b2.

Natural Choices of Reconciliation Functions. Observe that in Fig. 1, Alice
and Bob achieve approximate agreement by computing xT

1 b2 and xT
2 b1, respec-

tively. These values are noisy versions of xT
1 Ax2 and their most significant bit

agrees with probability 1−Θ(nB2/q) when the support of X is in [−B,B]. Based
on this observation, one may consider the following three families of reconcilia-
tion functions (in increasing order of generality).
2 A typical size of q is ≈ 213 and there are proposals that even use q = 257 [LLJ+17].
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1. Rec1 and Rec2 are arbitrary efficient functions (not necessarily the most sig-
nificant bit) on xT

1 b2 and xT
2 b1 respectively.

2. Rec1 and Rec2 are arbitrary efficient functions on A,x1, b2 and A,x2, b1
respectively.

3. Rec1 and Rec2 are arbitrary efficient functions on A,x1,e1, b2 and
A,x2,e2, b1 respectively.

Note that the third family captures all possible reconciliation functions.
Our main results rule out the first and second families of reconciliation func-

tions even when multiple LWE samples are exchanged, and point out central
efficiency barriers for the third family.

First Result (Section 3). One natural idea to remove the interaction would be
to somehow “amplify” the agreement probability by sending more LWE samples
and generating more independent samples from the joint distribution (X,Y )
where X := xT

1 b2 and Y := xT
2 b1, then apply Rec1 and Rec2 on independent

samples from X and Y respectively.
In Theorem 1, we show that for any m, balanced Rec1,Rec2 (see Definition 1)

and non-trivial noise distribution, Rec1(Xm) = Rec2(Y m) holds with probabil-
ity at most 1 − Ω(1/q2). This implies that such reconciliation functions cannot
exist (this impossibility is information theoretic and holds even for computation-
ally inefficient reconciliation functions). Our results naturally extend to the case
of ring LWE.

Second Result (Section 4). Even though the above result captures known
constructions, it does not rule out a slightly more general case where the recon-
ciliation functions depend on A. Indeed, given X ′ := (A,X) and Y ′ := (A,Y ),
Alice and Bob can agree on an insecure random bit with probability 1 by eval-
uating a balanced function of A (while ignoring X and Y ). Of course, such
protocols are not suitable for key agreement, since the common random bit is
not pseudo-random conditioned on A.

In Theorem 3, we show that the reconciliation functions Rec1 and Rec2
have to depend on the LWE noises e1 and e2 respectively. For instance, the
above theorem excludes a more general case than family 2 where the rec-
onciliation functions are of the form Rec1(A,x1,e1, b2) = h1(A,x1, b2) and
Rec2(A,x2,e2, b1) = h2(A,x2,e2, b1). In particular, it rules out the case where
the joint distribution is (X ′,Y ′). However, in contrast to Theorem 1 which
holds unconditionally, Theorem3 assumes the hardness of the LWE problem.
Our results extend to the case of ring LWE and to a polynomial number of
samples.

Third Result (Section 5). The above two results rule out the most natu-
ral choices of key reconciliation functions based on variants of inner product,
unconditionally or under the LWE assumption. In Sect. 5.1, we show that the
existence of efficient Rec1 and Rec2, which depend on all of their inputs, cannot
be ruled out (at least as long as the existence of iO is a possibility). In par-
ticular, in Theorem 4, we show that there exists an instantiation of the NIKE
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protocol in our framework that is based on indistinguishability obfuscation (iO)
and puncturable PRFs [BZ17].

However, we identify a crucial restriction on the complexity of reconciliation
functions. In Theorem5, we show that the reconciliation functions themselves
actually have to contain cryptographic hardness, in the sense that they directly
yield weak pseudorandom functions. Therefore, the reconciliation functions have
to be at least as complex as weak pseudorandom functions and hence suffer from
the complexity limitations and attacks on weak pseudorandom functions. More-
over, this connection shows that any NIKE protocol based on hardness of LWE
with polynomial modulus, gives rise to new constructions of weak pseudoran-
dom functions based on the hardness of LWE with polynomial modulus. Such
constructions have been an open problem almost since the introduction of the
LWE assumption, and thus we view Theorem 5 as an indication that finding
appropriate reconciliation functions requires new techniques.

1.4 Discussion and Open Problems

When parties exchange only LWE samples, we rule out the most natural choices of
key reconciliation functions. Additionally, we point out that non-interactive key
reconciliation functions, unlike interactive ones, have to be as complex as weak
pseudorandom functions. Overall, our results show possibilities and challenges
in designing simple (ring) LWE-based non-interactive key exchange protocols.

An interesting open direction is to understand what happens when the mes-
sages contain extra information, apart from the LWE samples. To this end, one
would have to come up with a natural and simple form of messages (based on
LWE) and explore the possibility of basing non-interactive key exchange on it.
For instance, a natural idea is to consider LWE samples together with some leak-
age about the secrets. We remark that Theorem 5 continues to hold even if the
leakage function is pseudorandom.

2 Preliminaries

We now provide some useful notation and definitions. We denote a sample drawn
from D by x ∼ D and a sample of the uniform distribution over S by x ∼ S.

Definition 1. A function f : S → {0, 1} is called balanced respect to distribution
D if Ex∼D[f(x)] = 1/2.

Definition 2. A distribution X over Zq is B-bounded if its support is included
in [−B,B].

We formally define the class of all non-interactive key exchange protocols
that could exist. We use negl(λ) to denote any function g : R → R that satisfies
g(λ) ≤ O(n−c) for all constants c ∈ N.
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Definition 3. For a security parameter λ > 0, a non-interactive key-exchange
protocol consists of two poly(λ)-time algorithms b1 and b2 and two poly(λ)-time
computable boolean functions Rec1 and Rec2 that satisfy the conditions below
(where (r, r1, r2) is a random source where r is a source of shared randomness
and r1, r2 are private sources of randomness of the two parties)

1. Pr
r ,r1,r2

[Rec1(r, r1, b2(r, r2)) = Rec2(r, r2, b1(r, r1))] ≥ 1 − negl(λ),

2. For any probabilistic poly(λ)-time algorithm A,

Pr
r ,r1,r2

[A(r, b1(r, r1), b2(r, r2)) = Rec1(r, r1, b2(r, r2))] ≤ 1
2

+ negl(λ).

Finally, we describe the Learning-with-Errors (LWE) assumption.

Definition 4. [Reg05] The LWE assumption for integers n,m, q and noise dis-
tribution X over Zq states that,

(A, b := xTA + e) ≈c (A,u),

where A ∼ Z
n×m
q , u ∼ Z

m
q , x ∼ X n and e ∼ X m.

3 (Information Theoretic) Impossibility of Amplification
with Multiple Samples

Before stating the main Theorem of this section, we provide some definitions
and notation.

Definition 5. A distribution X over any group G (e.g. G = Zq) is symmetric
if PrX∼X [X = z] = PrX∼X [X = −z] for any z ∈ G.

Given a distribution X over Zq, let (X n)∗ be the distribution of w =
(w(1), w(2), . . . , w(n)) drawn from X n conditioned on the event that w is not
a zero-divisor, that is gcd(w(1), w(2), . . . , w(n), q) = 1.

Theorem 1. Let n, q ≥ 1 be integers and X be a symmetric distribution over
Zq such that for any a ∈ Zq \ {0}, it holds that PrX∼X [aX = 0] ≤ 9/10 and
PrX∼X [aX = q/2] ≤ 9/10. Let μX (X,Y ) be the joint distribution of

X = xT
1 Ax2 + xT

1 e2 and Y = xT
1 Ax2 + eT

1 x2,

where A ∼ U(Zn×n
q ), e1,e2 ∼ X n and x1,x2 ∼ (X n)∗. Then, for any m ≥ 1,

and any balanced functions Rec1,Rec2 : Z
m
q → {0, 1} respect to the marginal

distributions of μ⊗m
X , it holds that

Pr
(X ,Y )∼μ⊗m

X
[Rec1(X) = Rec2(Y )] ≤ 1 − Ω(1/q2).
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Our theorem also holds for the ring case with the same parameters (See
Theorem 6 in AppendixA). This theorem shows that no matter how many inde-
pendent samples are drawn and no matter what procedures are applied on those
samples, Alice and Bob can agree with each other on a random bit with proba-
bility at most 1−Ω(1/q2). Note that Alice and Bob have to marginally produce
a uniform bit as captured in the condition that Rec1 and Rec2 are balanced.

Our theorem applies to the most commonly used noise distributions. For
instance, the discrete Gaussian distribution Dσ with standard deviation σ > 10
satisfies the conditions of Theorem1. First, the discrete Gaussian is a symmetric
distribution. Second, if x ∼ Dσ, then from monotonicity of Dσ, for any a ∈
Zq \ {0}, Pr[ax = q/2] ≤ Pr[ax = 0]. Therefore, it is enough to show that for
any a ∈ Zq \ {0}, Pr[ax = 0] ≤ 9/10 which is straightforward to verify3.

Additionally, the condition of Theorem1 that for any a ∈ Zq \ {0}, Pr[aX =
0] ≤ 9/10 and Pr[aX = q/2] ≤ 9/10 is quite mild. For instance, if q > 2 is
prime, then this condition simplifies to the assumption that the support of X
is not equal to {0}. Also, for general q if the support of X is 1/10-far from a
proper subgroup or a coset of a proper subgroup of Zq, then this assumption is
satisfied.

Notice that μX (X,Y ) as defined in Theorem 1 does not correspond to the
joint distribution described in the introduction, since x1,x2 are sampled from
(X n)∗. This is without loss of generality because if w ∼ X n, then the proba-
bility that gcd(w(1), w(2), . . . , w(n), q) 
= 1 is smaller than the probability that
w(1), w(2), . . . , w(n) all belong to a proper subgroup of Zq, which is less than
(9/10)n. So, the distribution of (X,Y ) is at most O(m/(9/10)n) far from the
distribution of m samples drawn as described in the introduction. Even though
this is a very small change in the protocol, it will simplify our proof a lot, since
in this case the value xT

1 Ax2 is a uniform element in Zq
4.

Our Theorem1 shows that in this regime, it is information theoretically
impossible to agree on a common bit with probability 1 − o(1/q2). In fact,
the problem of generating common randomness by observing independent sam-
ples from two correlated distributions (or a joint distribution) is known as
“Non-interactive Agreement Distillation” in the area of information theory (See
Sect. 3.1) and the notion of maximal correlation exactly captures this problem
(upto a polynomial factor in the error). Even though we could prove our theorem
in a self-contained manner, we feel this connection provides more insight. There-
fore, in the next section we present some basic facts about maximal correlation
and then present a proof through this notion. In AppendixA, we also present a
self-contained proof of Theorem1 using Fourier analysis and extend this to the
ring LWE case (Theorem 6).

3 Note that by symmetry and monotonicity of Dσ, Pr[ax = 0] ≤ Pr[a(|x| − 1) =
0] + Pr[x = 0]. Combining with the fact that Pr[ax = 0] + Pr[a(|x| − 1) = 0] ≤ 1 for

a �= 0, and Pr[x = 0] ≤ 1/(1 + 2e−1/σ2
), we conclude that Pr[ax = 0] ≤ (1 + Pr[x =

0])/2 ≤ 9/10 for σ > 10.
4 If w = (w(1), w(2), . . . , w(n)) such that gcd(w(1), w(2), . . . , w(n), q) = 1 and u is uni-

form in Z
n
q , then wTu is also uniform in Zq.
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3.1 Maximal Correlation and Non-interactive Agreement
Distillation

The Non-interactive Agreement Distillation problem, parameterized by a joint
distribution μ(x, y) is defined as follows: Two players, Alice and Bob, observe
sequences (X1, . . . , Xm) and (Y1, . . . , Ym) respectively where {(Xi, Yi)}m

i=1 are
drawn i.i.d. from μ(x, y). Both players look at their share of randomness, apply
a function and output a bit. Their goal is to maximize the probability that their
output bits agree, while ensuring that they are marginally uniform.

Hirschfeld [Hir35] and Gebelein [Geb41] introduced the notion of maximal
correlation, which was later studied by Rényi [Rén59]. It turns out that maximal
correlation (almost tightly) captures the maximum agreement probability that
the players can get.

Definition 6 (Maximal Correlation). For a joint distribution μ over GA ×
GB, its maximal correlation ρ(μ) is defined as follows,

sup
f,g

{
E

(x,y)∼μ
[f(x) · g(y)]

∣∣∣∣ f : GA → R, EμGA
[f ] = EμGB

[g] = 0
g : GB → R, VarμGA

[f ] = VarμGB
[g] = 1

}
,

where μGA
and μGB

are the marginal distributions of μ.

In order to analytically capture maximal correlation, let us define, for any
joint distribution μ over GA × GB , the |GA| × |GB | matrix Mμ given by

Mμ(x, y) =
μ(x, y)√

μA(x)μB(y)
.

where μA and μB are the marginal distributions of μ.

Fact 2. The maximal correlation ρ(μ) is equal to the second largest singular
value of Mμ, denoted as σ2(Mμ).5

In the seminal work of [Wit75], it was shown that maximal correlation actu-
ally captures (up to a square root factor), the best agreement probability that
the players can get even with an infinite number of samples!

Lemma 1. Suppose ρ(μ) = 1 − ε, then for any m ≥ 1, f : Gm
A → {0, 1} and

g : Gm
B → {0, 1} with Eμ⊗m

X
[f ] = Eμ⊗m

Y
[g] = 1/2, it holds that

Pr
(X ,Y )∼μ⊗m

[f(X) = g(Y )] ≤ 1 − ε/2. (1)

Moreover, there exist m, f, g such that Eμ⊗m
X

[f ] = Eμ⊗m
Y

[g] = 1/2 and

Pr
(X ,Y )∼μ⊗m

[f(X) = g(Y )] ≥ 1 − arccos(ρ(μ))
π

≥ 1 −
√

2ε. (2)

5 The top singular value being 1.
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3.2 Bounding Maximal Correlation

Given Lemma 1, it suffices to upper bound the maximal correlation of μX (X,Y ).
We exploit the special form of our distribution, namely that X is distributed
uniformly in Zq and X − Y is distributed as some “noise distribution” ξ. For
such distributions, the maximal correlation is much easier to analyze. In this
section, we prove the following lemma.

Lemma 2. Let n, q ≥ 1 be integers. For a distribution X over Zq and the joint
distribution μX that satisfies the conditions of Theorem1, it holds that

ρ(μX ) ≤ 1 − Ω(1/q2).

Theorem 1 follows immediately by combining Lemmas 1 and 2. To prove
Lemma 2, we consider a more general class of joint distributions called Cayley
Distributions and characterize their maximal correlation.

Definition 7 (Cayley Distributions). A joint distribution μ over Z
k
q × Z

k
q

is said to be a Cayley distribution if there exists a “noise distribution” ξ : Zk
q →

R≥0, such that,

(i) ξ(z) = ξ(−z) for all z ∈ Z
k
q and

(ii) μ(x,y) = ξ(x−y)
qk for all x,y ∈ Z

k
q .

6

A Cayley distribution can be viewed as sampling x uniformly at random in
Z

k
q , sampling z ∼ ξ and setting y = x + z. Note that a Cayley distribution

μ is symmetric and has uniform marginals on Z
k
q , so its maximal correlation is

given by the second largest eigenvalue of Mμ (by Theorem 2 and the fact that
for symmetric matrices, singular values are same as eigenvalues). Interestingly,
the eigenvectors of Mμ can be completely characterized in a way that does not
depend on the noise distribution ξ. This makes it easy to get a handle on the
eigenvalues, which leads to the following lemma.

Lemma 3 (Maximal Correlation of Cayley Distributions [Lov75]). For
a ∈ Z

k
q , define the character χa : Zk

q → C as χa(x) = e−2πi·〈a,x〉/q. Let μ be any
Cayley distribution over Z

k
q × Z

k
q , with associated noise function ξ. Then

ρ(μ) = max
a∈Zk

q \{0k}
E

e∼ξ
[χa(e)].

We point out that Definition 7 and Lemma 3 generalize to all finite abelian
groups G. However for concreteness, we only focus on our special case of G = Z

k
q .

While this lemma is standard, we include a proof for completeness.

6 Observe that since ξ is a probability distribution over Z
k
q , it follows that μ is also a

probability distribution.
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Proof. We interpret χa as a vector in C
qk

indexed by elements in Z
k
q . It is

straightfoward to verify that χa ∈ C
qk

is an eigenvector of Mμ with corre-
sponding eigenvalue Ee∼ξ[χa(e)]. Note that since μ is a Caley distribution,
Mμ(x,y) = qk · μ(x,y). Fix any a ∈ Z

k
q . For any x ∈ Z

k
q , it holds that

(Mμχa)(x) =
∑
y∈Zk

q

Mμ(x,y) · χa(y) =
∑
y∈Zk

q

(qk · μ(x,y)) · χa(y)

=
∑
y∈Zk

q

ξ(y − x) · χa(y) =
∑
e∈Zk

q

ξ(e) · χa(x + e)

=

⎛
⎝ ∑

e∈Zk
q

ξ(e) · χa(e)

⎞
⎠ · χa(x)

= E
e∼ξ

[χa(e)] · χa(x) .

Note that the largest eigenvalue is Ee∼ξ[χa(e)] = 1 given by a = 0k because
for any e ∈ Z

k
q , χ0k(e) = 1 and |χa(e)| ≤ 1 if a 
= 0k. Hence, ρ(μ), which is the

second largest eigenvalue of Mμ, is maxa∈Zk
q\{0k} Ee∼ξ[χa(e)].

Proof (Proof of Lemma 2). Note that μX is a Cayley distribution over Zq × Zq

with associated noise distribution ξ(z) = Pr[xT
1 e2 − eT

1 x2 = z], where e1,e2
are drawn from X n and x1,x2 are drawn from (X n)∗. First, ξ(z) = ξ(−z) for
any z ∈ Zq, since xT

1 e2 and eT
1 x2 are drawn from the same distribution, and so

xT
1 e2−eT

1 x2 is distributed identically to eT
1 x2−xT

1 e2. Second, because xT
1 Ax2+

xT
1 e2 is distributed uniformly over Zq and is independent from xT

1 e2 −eT
1 x2, we

have that μX (X,Y ) = Pr[xT
1 Ax2 + xT

1 e2 = X and xT
1 e2 − eT

1 x2 = X − Y ] =
ξ(X−Y )

q .
By Lemma 3, ρ(μX ) = maxa∈Zq\{0} Ee∼ξ[χa(e)]. Fix an arbitrary a ∈ Zq\{0},

we need to show that |Ee∼ξ[χa(e)]| ≤ 1 − Ω(1/q2). This is implied by Claims 1
and 2 below.

Claim 1. |Ee∼ξ[χa(e)]| ≤ maxc∈Zn
q \{0n} |Ee∼Xn [χc(e)]|.

Proof. Note that

| E
e∼ξ

[χa(e)]| =
∣∣

E
x1,x2∼(Xn)∗

[
E

e1,e2∼Xn
[χa(xT

1 e2 − eT
1 x2)]

]∣∣
≤ E

x1,x2∼(Xn)∗

[∣∣
E

e2∼Xn
[χax1(e2)] · E

e1∼Xn
[χax2(−e1)]

∣∣]

≤ E
x1∼(Xn)∗

[∣∣
E

e2∼Xn
[χax1(e2)]

∣∣]

where the second line follows from triangle inequality and the independence of
e1 and e2, the third line is because Ee2∼Xn [χax1(e2)] and Ee1∼Xn [χax2(−e1)]
are reals of absolute value at most 1. Observe that for any fixed x1 from (X n)∗,
ax1 
= 0n so that

∣∣Ee2∼Xn [χax1(e2)]
∣∣ is at most maxc∈Zn

q \{0n} |Ee∼Xn [χc(e)]|
and the desired conclusion follows.
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Claim 2. For any c ∈ Z
n
q \ {0n}, |Ee∼Xn [χc(e)]| ≤ 1 − Ω(1/q2).

Proof. Because each coordinate of e is drawn independently from X ,

E
e∼Xn

[χc(e)] =
n∏

i=1

E
z∼X

[χci(z)].

Since X is symmetric, for any i ∈ [n], Ez∼X [χci(z)] is real with absolute value
at most 1. Therefore, it suffices to show that |Ez∼X [χci(z)]| ≤ 1 − Ω(1/q2) for
an arbitrary i ∈ [n]. Fix an i ∈ [n] such that ci 
= 0 and observe that

E
z∼X

[χci(z)] ≤ 1 − Pr
z∼X

[ciz 
= 0] · Ω

(
1
q2

)
,

because if ciz 
= 0, then the real part of χci(z) is at most cos( 2π
q ) ≤ 1 − (1/q2)7.

Similarly,

E
z∼X

[χci(z)] ≥ − 1 + Pr
z∼X

[ciz 
= q/2] · Ω

(
1
q2

)

holds because if ciz 
= q/2, then the real part of χci(z) is at least cos(π + 2π
q ) ≥

−1 + (1/q2)8. By our assumption on X , we have that Prz∼X [ciz 
= q/2] ≥ 0.1
and Prz∼X [ciz 
= 0] ≥ 0.1. Hence, |Ez∼X [χci(z)]| ≤ 1−Ω(1/q2) which concludes
the proof.

For the interested reader, we provide a more self-contained proof in
AppendixA which is equivalent to an unrolling of the above proof, but is much
more succinct because we do not use the more general statement of Lemma 1
about maximal correlation. In AppendixA, we also give an extension of the proof
to the case of Ring-LWE.

4 (Computational) Impossibility of Noise-Ignorant Key
Reconciliation Functions

Let us set up some basic notation. For distributions X ,Y over G, we use
RD2(X||Y) = Ea∼X [Prx∼X [x = a]/Pry∼Y [y = a]] to denote the powers of their
Rényi divergence [vEH14]. We use 1 + X to denote the distribution which sam-
ples x from X then outputs 1 + x. And X + X ′ is the distribution obtained as
x + x′ for x ∼ X and x′ ∼ X ′.

Theorem 3. Let n ≥ 1, q = poly(n),m = poly(n) be integers and X be a noise
distribution over Zq such that RD2(1 + X||X ) = 1 + γ. Let μX (X,Y ) be the
joint distribution of

X = (A,x1,e1, b2) and Y = (A,x2, b1),

7 Because for x ∈ [−π/2, π/2], cos(x) ≤ 1 − x2/(4π2).
8 Because for x ∈ [−π/2, π/2], cos(π + x) ≥ −1 + x2/(4π2).
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where A ∼ U(Zn×n
q ), e1,e2 ∼ X n and x1,x2 ∼ X n, b1 = xT

1 A + eT
1 and

b2 = Ax2 + e2.
Suppose that f and g are efficiently computable boolean functions that reach

key agreement with error at most ε. The domains of Rec1 and Rec2 are the
support of the marginal distributions μ⊗m

X and μ⊗m
Y respectively. Then, m inde-

pendent samples of (A, b2) can be efficiently distinguished from m independent
samples (A,u) where u ∼ U(Zn

q ) with advantage at least Ω(1/q4mγ) − O(
√

ε).

Our theorem also holds for the ring case. This theorem implies that as long
as RD2(1+X||X ) is polynomial in n and one party’s key reconciliation function
does not depend on its noise, then (ring) LWE samples (associated with error X )
are not pseudorandom. The condition of RD2(1 + X||X ) captures a large class
of noise distributions including the discrete Gaussian distribution9.

Let X ′ over Zq be the distribution that outputs 1 with probability α =√
1/mγ and outputs 0 otherwise. Let Z = U(Zq)n×n × X n × X n. Theorem 3

follows from the next two lemmas.

Lemma 4. Let {Ui}m
i=1 ∼ Z⊗m, {ui}m

i=1,∼ U(Zn
q )⊗m, {u′

i}m
i=1 ∼ U(Zn

q )⊗m

and {wi}m
i=1 ∼ (X ′n)⊗m. Then,

Pr[f({Ui,ui}m
i=1) 
= f({Ui,u

′
i}m

i=1)]

≤ Pr[f({Ui,ui}m
i=1) 
= f({Ui,ui + wi}m

i=1)] · O
(
q2

√
mγ

)
.

Lemma 5. Let bi = Aixi+ei and b′
i = Aix

′
i+e′

i, where {Ai}m
i=1 ∼ U(Zn×n

q )⊗m

and {xi}m
i=1, {ei}m

i=1, {x′
i}m

i=1, {e′
i}m

i=1 ∼ (X n)⊗m and let {yi}m
i=1 ∼ (X n)⊗2,

{wi}m
i=1 ∼ (X ′n)⊗m. It holds that

Pr[f({Ai,yi, bi}m
i=1) 
= f({Ai,yi, b

′
i}m

i=1)] ≥ 1/2 − 2ε, (3)

and
Pr[f({Ai,yi, bi + wi}m

i=1) 
= f({Ai,yi, bi}m
i=1)] ≤ O(

√
ε). (4)

We first prove Theorem 3 using Lemmas 4 and 5. In the rest of this section,
we prove Lemmas 4 and 5. Lemma 4 is based on Fourier analysis and works for
any boolean function f . Lemma 5 relies on the assumption that f, g are efficient
key reconciliation functions and g does not depend on its noise.

4.1 Proof of Theorem 3

Let f and g be key reconciliation functions satisfying the conditions of Theo-
rem 3. We wish to distinguish between m i.i.d. samples {(Ai, bi)}m

i=1 from m
i.i.d. samples {(Ai,ui)}m

i=1.

9 In particular, Bogdanov et al. [BGM+16] showed that RD2(1 + Dσ||Dσ) ≤
exp(2π(1/σ)2) is at most a constant for any discrete Gaussian distribution Dσ with
standard deviation σ ≥ 1.
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First, note that if

|Pr[f({Ai,xi,ei,ui}m
i=1) = 0] − Pr[f({Ai,xi,ei, bi}m

i=1) = 0]| ≥ α/q2,

where {xi}m
i=1, {ei}m

i=1 ∼ (X n)⊗m, there exists a polynomial time distinguisher,
since xi and ei are efficiently sampleable.

Otherwise, from Eq. (3) of Lemma 5, we have that

Pr[f({Ai,xi,ei,ui}m
i=1) 
= f({Ai,xi,ei,u

′
i}m

i=1)] ≥ 2ε + 2α/q2,

where u′
i ∼ U(Zn

q ). Combining this with Lemma 4, we get that

Pr[f({Ai,xi,ei,ui}m
i=1) 
= f{Ai,xi,ei,ui + wi}m

i=1)] ≥ Ω

(
α2

q4
+

αε

q2

)
,

where wi ∼ X ′n. But, from Eq. (4) of Lemma 5, we have that

Pr[f({Ai,xi,ei, bi}m
i=1) 
= f({Ai,xi,ei, bi + wi}m

i=1)] ≤ O(
√

ε)

Thus, we distinguish between m i.i.d. samples {(Ai,ui)}m
i=1 and {(Ai, bi)}m

i=1

by computing Pr[f({Ai,xi,ei,yi}m
i=1) 
= f({Ai,xi,ei,yi + wi}m

i=1)], where
{yi}m

i=1 are the challenge samples. This gives us an advantage of Ω(α2/q4) −
O(

√
ε).

4.2 Proof of Lemma 4

Let Re(z) denote the real part of any z ∈ C. We fix {Ui}m
i=1 and for any u =

{ui}m
i=1 ∈ (Zn

q )⊗m, let F (u) = (−1)f({(Ui,ui)}m
i=1), then

Pr [f({(Ui,ui + wi)}m
i=1) 
= f({(Ui,ui)}m

i=1))] =
1 − E[F (u)F (u + w)]

2
,

where u ∼ U(Zn
q )⊗m,w ∼ (X ′n)⊗m and w = {wi}m

i=1.
For any c ∈ (Zn

q )m, let F̂ (c) = Eu∼U(Zn
q )

⊗m [F (u)χc(−u)]. Note that for

any u ∈ (Zn
q )m, F (u) =

∑
c∈(Zn

q )
m F̂ (c)χc(u). Finally, because F is real,

E[F (u)F (u + w)] = E[F (u)F (u + w)].

E[F (u)F (u + w)]

=
∣∣∣F̂ (0nm)

∣∣∣2 +
∑

c∈(Zn
q )

m\{0nm}

∣∣∣F̂ (c)
∣∣∣2E[χc(w)]

=
∣∣∣F̂ (0nm)

∣∣∣2 +
∑

c∈(Zn
q )

m\{0nm}

∣∣∣F̂ (c)
∣∣∣2E[Re(χc(w))]

≤
∣∣∣F̂ (0nm)

∣∣∣2 +

(
max

c∈(Zn
q )

m\{0nm}
E[Re(χc(w))]

) ⎛
⎝ ∑

c∈(Zn
q )

m\{0nm}

∣∣∣F̂ (c)
∣∣∣2

⎞
⎠

≤
∣∣∣F̂ (0nm)

∣∣∣2 +

(
max

c∈(Zn
q )

m\{0nm}
E[Re(χc(w))]

) (
1 −

∣∣∣F̂ (0nm)
∣∣∣2

)
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where the first line is by expanding F using its Fourier representation and linear-
ity of expectation, the second line is because E[F (u)F (u+w)] is real, and the last

line uses Parseval’s identity, which states that
∑

c

∣∣∣F̂ (c)
∣∣∣2 = E

[
|F (u)|2

]
= 1.

Similarly to the analysis of Claim 2, maxc∈(Zn
q )

m\{0nm} E[Re(χc(w))] ≤ 1 −
Ω(α/q2), because for any c 
= 0nm, Pr[cTw 
= 0] ≥ α and Re(χc(w)) ≤ 1 −
Ω(1/q2) whenever cTw 
= 0. Therefore,

Pr
u∼U(Zn

q )
⊗m,w∼(X ′n)m

[f({(Ui,ui + wi)}m
i=1) 
= f({(Ui,ui)}m

i=1))]

≥ Ω(α/q2)
1 −

∣∣∣F̂ (0nm)
∣∣∣2

2
.

Since Pru ,u ′∼U(Zn
q )

⊗m [f({(Ui,ui)}m
i=1) 
= f({(Ui,u

′
i)}m

i=1))] =
1−| ̂F (0nm)|2

2 ,
the lemma follows by averaging over {Ui}m

i=1.

4.3 Proof of Lemma 5

Let {yi}m
i=1 = {(x′′

i ,e′′
i )}m

i=1, b
′′
i = Aix

′′
i + e′′

i and suppose Eq. (3) is not true,
then together with the correctness condition, it holds that

Pr[g({(Ai,x
′
i, b

′′
i )}m

i=1) = f({(Ai,x
′′
i ,e′′

i , b′
i)}m

i=1)] > 1/2 + ε,

which breaks the soundness condition because an adversary can sample fresh
{x′

i}m
i=1 ∼ (X n)⊗m and compute g({(Ai,x

′
i, b

′′
i )}m

i=1).
To prove Eq. (4), we first show the following two claims

Claim.

Pr[f({(Ai,x
′′
i ,e′′

i , bi + wi)}m
i=1) 
= g({(Ai,xi, b

′′
i )}m

i=1))]

≤
√

ε · RDm
2 (X + X ′||X ).

Proof. We rely on two elementary properties of Rényi divergence: for any two dis-
tributions X and Y and any event E, (Pr[X ∈ E])2 ≤ Pr[Y ∈ E] ·RD2(X||Y ),
and for any m, RD2(Xm||Y m) = (RD2(X||Y ))m

. For any fixed choice of
{(Ai,x

′′
i ,e′′

i ,xi)}m
i=1, let E be the event that f disagrees with g. Then, by the

properties of Rényi divergence,
(
Pr[f({(Ai,x

′′
i , e′′

i , bi + wi)}m
i=1) �= g({(Ai,xi, b

′′
i )}m

i=1)]
)2

≤ Pr[f({(Ai,x
′′
i , e′′

i , bi)}m
i=1) �= g({(Ai,xi, b

′′
i )}m

i=1)] · RD2((X + X ′)⊗m||(X )⊗m)

= Pr[f({(Ai,x
′′
i , e′′

i , bi)}m
i=1) �= g({(Ai,xi, b

′′
i )}m

i=1)] · (
RD2(X + X ′||X )

)m
.

The desired conclusion follows by averaging over {(Ai,x
′′
i ,e′′

i ,xi)}m
i=1 and

the fact that for any random variable z, (E[z])2 ≤ E[z2].

Claim. RD2(X + X ′||X ) = 1 + α2γ
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Proof. By the definition of RD2 and X ′,

RD2(X + X ′||X )

=
∑
a∈G

((1 − α) PrX∼X [X = a] + α PrX∼X [X + 1 = a])2

PrX∼X [X = a]

= (1 − α)2 + 2(1 − α)α + α2RD2(X + 1||X )

= 1 + α2(RD2(X + 1||X ) − 1).

From the correctness condition, which is

Pr[f({(Ai,x
′′
i ,e′′

i , bi)}m
i=1) 
= g({(Ai,xi, b

′′
i )}m

i=1)] ≤ ε

and the above two claims and union bound,

Pr[f({(Ai,x
′′
i ,e′′

i , bi + wi)}m
i=1) 
= f({(Ai,x

′′
i ,e′′

i , bi)}m
i=1)]

≤ ε +
√

ε(1 + α2γ)m.

The Eq. (4) follows from our choice of α =
√

1/mγ.

5 Connections to Other Cryptographic Primitives

Thus far, our results focused on specific classes of reconciliation functions show-
ing that they are not powerful enough to give NIKE in our framework. Extending
our previous results either on the positive or negative direction hits barriers. The
positive direction, which is to propose a NIKE protocol that avoids our impossi-
bility results implies cryptographic constructions still unknown from polynomial
modulus LWE. In particular, a positive result would imply direct constructions
of special structured weak pseudorandom functions from polynomial modulus
LWE. The negative direction, which is to prove a completely general impossibil-
ity result, is ruled out if iO exists.

5.1 From iO to NIKE

Even though our results show that there are many limitations in building practi-
cal NIKE from polynomial modulus LWE, assuming indistinguishability obfusca-
tion (iO) constructing NIKE is, at least theoretically, possible. Therefore, unless
there are breakthrough advancements that rule out the possibility of construc-
tion iO, showing a general impossibility of NIKE is out of range. In this section,
we sketch the iO-based construction of NIKE of Boneh and Zhandry [BZ17] and
explain why it can be implemented in our framework.

Theorem 4 ([BZ17]). Assuming a secure pseudorandom generator, a secure
punctured pseudorandom function family and a secure indistinguishability obfus-
cator, there exists a secure NIKE.
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Additionally to the matrix A, in this protocol the parties share the following
obfuscated program:

Inputs: b1, b2 ∈ X , s1, s2 ∈ S
Constants: PRF
If b1 = PRG(s1), output PRF(b1, b2).
If b2 = PRG(s2), output PRF(b1, b2).
Otherwise, output ⊥.

During the protocol, the parties exchange LWE samples b1, b2, evaluate the
obfuscated program with s1 = (x1,e1) and s2 = (x2,e2) and set as their shared
key the output of the obfuscated program. The LWE samples are computed from
a function of the form GM(x,e) = Mx + e, where M ∈ Z

n×n
q and x,e are

sampled from a noise distribution. Directly using the LWE assumptions, which
states that the output of G is indistinguishable from uniform and the fact that G
is expanding, we conclude that G is a PRG. Combining this observation with the
known constructions of punctured PRFs from any one-way function, we conclude
that there exists a NIKE protocol assuming iO and polynomial modulus LWE.

5.2 From NIKE to Weak-PRFs

In this section, we show that reconciliation functions have to be weak-
pseudorandom functions. A weak-pseudorandom function (weak-PRF) is an effi-
cient function family that is indistinguishable from a random function when we
have access only on random evaluations of the function. We focus on the case of
boolean weak-pseudorandom functions. Formally:

Definition 8. Let λ > 0 be a security parameter. An efficient function family
ensemble F = {Fλ : {0, 1}k(λ) → {0, 1}} is called weak-pseudorandom function
family if for every probabilistic polynomial-time algorithm A:

Pr
f,x

[AOf (x) = f(x)] ≤ 1/2 + negl(λ),

where f is sampled uniformly at random from Fλ and x ∼ U({0, 1}k(λ)). Every
query to the oracle O is answered with a tuple of the form (u, f(u)), where
u ∼ U({0, 1}k(λ)). We call

∣∣Prf,x[AOf (x) = f(x)] − 1/2
∣∣ the success probability

of A.

The main theorem of this section shows that the reconciliation functions have
to be sampled from a weak-PRF family.

Theorem 5. Let λ > 0 be a security parameter and let f(A,x1,e1, b2) and
g(A,x2,e2, b1) be efficient functions such that:

– Pr[f(A,x1,e1, b2) = g(A,x2,e2, b1)] ≥ 1 − negl(λ)
– For every efficient probabilistic polynomial-time algorithm D with input

(A, b1, b2):

Pr[D(A, b1, b2) = f(A,x1,e1, b2)] ≤ 1/2 + negl(λ),
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then assuming the LWE assumption, the function families F = {FA ,x1,e1 : Zn
q →

{0, 1}}, where FA ,x1,e1(·) = f(A,x1,e1, ·) and G = {GA ,x2,e2 : Zn
q → {0, 1}},

where GA ,x2,e2(·) = g(A,x2,e2, ·) are weak-PRF families.

Even though we formally prove that the reconciliation functions should be
pseudorandom with access to random evaluations of the functions, they have
to satisfy a stronger pseudorandomness property: they should remain pseudo-
random even with access to evaluations of adversarially chosen LWE samples.
Also, our result directly generalizes to the case of multiple LWE samples. In fact,
the above theorem can be extended to show that in a NIKE protocol where the
exchanged messages are indistinguishable from uniform, reconciliation functions
have to be sampled from a weak-PRF function family.

Although (weak-)PRFs are equivalent to one-way function [GGM86], the
known generic constructions are highly inefficient and unstructured. Construc-
tions of (weak-)PRFs from LWE are only known for superpolynomial modulus
[BPR12,BP14] and finding a direct construction based on polynomial modulus is
a very interesting open problem in the study of pseudorandom functions [BR17].
We emphasize that even though pseudorandomness is a necessary condition for
a reconciliation function and identifies a barrier in building NIKE from LWE,
it is definitely not sufficient. Reconciliation functions are very structured as the
computation of the common key should be allowed in at least two ways, one for
Alice and one for Bob.

Proof. We show that F is a weak-PRF family and the same analysis holds for
G. Assume that there exists a distinguisher A for F with success probability α;
we use A to break the soundness of the NIKE protocol.

From the correctness condition of NIKE,

Pr[FA ,x1,e1(b2) = g(A,x2,e2, b1)] ≥ 1 − negl(λ).

Hence, with high probability we get evaluations of FA ,x1,e1 by sampling LWE
secret and noise x2,e2 and computing g(A,x2,e2, b1). Additionally, the LWE
assumption implies that these evaluations of F are computationally indistin-
guishable from uniform evaluations, as required by the definition of weak-PRFs.
An adversary D that breaks the soundness condition of NIKE runs as follows:

– Run the distinguisher A, where instead of uniform evaluations compute eval-
uations using LWE samples and g as above.

– Use as the challenge query b2.
– Return the output of A.

Let us denote by E the event that FA ,x1,e1(b2) = g(A,x2,e2, b1), the success
probability of D is equal to

Pr[D(A, b1, b2) = FA ,x1,e1(b2)]
≥ Pr[D(A, b1, b2) = FA ,x1,e1(b2)|E ] Pr[E ]
= Pr[A(b2) = FA ,x1,e1(b2)] Pr[E ]
≥ 1/2 + α − negl(λ).
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Hence if A breaks F , then D breaks the soundness condition of NIKE.

Acknowledgements. The authors thank Martin Albrecht, Jacob Alperin-Sheriff, Leo
Ducas and anonymous reviewers for useful comments and advice.

A A Self-contained Proof of Theorem 1

In Sect. 3, we use two lemmas (Lemmas 1 and 3) in order to bound the key
agreement probability by maxc∈Zq\{0} |Ee∼ξ[χc(e)]. In this section, we give a
self-contained proof for Lemma 2 without explicitly using the notion of maximal
correlation. However, this proof is essentially an unrolling of the proof using
maximal correlation.

Claim 3. For any m ≥ 1, and balanced f, g : Zm
q → {0, 1}, it holds that

Pr[f(X) = g(Y )] ≤ 1 + maxc∈Zq\{0} |Ee∼ξ[χc(e)]|
2

where for any z ∈ Zq, ξ(z) = Pr[xT
1 e2 − eT

1 x2 = z].

Combining the above claim with the fact that maxc∈Zq\{0} |Ee∼ξ[χc(e)]| ≤
1 − Ω(1/q2) (see Claims 1 and 2), Theorem 1 follows.

Proof. Let F (x) = (−1)f(x) and G(x) = (−1)g(x). For any c ∈ Z
m
q , let F̂ (c) =

Ex∼U(Zm
q )[F (x)χc(−x)] and Ĝ(c) = Ex∼U(Zm

q )[G(x)χc(−x)]. Note that for any

x ∈ Z
m
q , F (x) =

∑
c∈Zm

q
F̂ (c)χc(x) and G(x) =

∑
c∈Zm

q
Ĝ(c)χc(x). Observe

that X is distributed uniformly and Y = X + e.

|E[F (X)G(X + e)]|

=

∣∣∣∣∣∣
∑

c∈Zm
q \{0m}

F̂ (c)Ĝ(c)E[χc(e)]

∣∣∣∣∣∣
≤

√ ∑
c∈Zm

q \{0m}
|F̂ (c)|2

∑
c �=0m

|Ĝ(c)|2 max
c �=0m

|E[χc(e)]|

≤ max
c∈Zm

q \{0m}
|E[χc(e)]|

≤ max
c∈Zq\{0}

|E[χc(ei)]|,

where e = (e1, . . . ,em). The first equality follows by linearity of expectation
and the fact that X is uniform over Z

m
q . For the next inequality, we use tri-

angle inequality and that |E[χc(e)]| is real, since ξ is symmetric. The next two
inequalities follow by Cauchy-Schwarz and Parseval’s identity, which states that∑

c

∣∣∣F̂ (c)
∣∣∣2 = E

[
|F (X)|2

]
= 1. The desired conclusion follows from the fact

that Pr[f(X) = g(Y )] = (1 + E[F (X)G(Y )])/2.



Limits on the Efficiency of (Ring) LWE Based Non-interactive Key Exchange 393

Ring-LWE Case. We get a similar result for the Ring-LWE case. Let Rq be
the ring Zq[x]/g(x) where g is a polynomial of degree n over Zq. We identify an
element in Rq by its coefficient vector in Z

n
q . We say that w is drawn from (X n)∗

if its coefficients are drawn from X n conditioned on w being a unit of Rq.

Theorem 6. Let n, q ≥ 1 be integers and Rq be as above. Assume that the
distribution X over Zq is symmetric and for any a ∈ Zq \{0}, Pr[az = 0] ≤ 9/10
and Pr[az = q/2] ≤ 9/10 and (X n)∗ as above.

Let μRLWE,X (X,Y ) be the joint distribution of

X = x1 · a · x2 + x1 · e2 and Y = x1 · a · e1 + x2 · e1,
where · is polynomial multiplication, a ∼ U(Rq), e1,e2 ∼ X n and x1,x2 ∼
(X n)∗. Then for any m ≥ 1, and any balanced functions f, g : Rm → {0, 1}
respect to the marginal distributions of μ⊗m

RLWE,X , it holds that

Pr
(Xm,Y m)∼μ⊗m

RLWE,X
[f(Xm) = g(Y m)] ≤ 1 − Ω(1/q2).

Proof. We proceed as in the LWE case by proving claims similar to Claims 1, 2
and 3. For c ∈ Rq, we define χc : Rq → C as χc(x) = e−2πi·〈c,x〉/q, where 〈c,x〉
is the inner product of the coefficient vectors of c,x over Zq. Then, the following
claims hold.

Claim 4. For any m ≥ 1 and balanced f, g : Rm
q → {0, 1}, it holds that

Pr[f(Xm) = g(Y m)] ≤ 1 + maxc∈Rq\{0n} |Ee∼ξ[χc(e)]|
2

where for any z ∈ Rq, ξ(z) = Pr[x1 · e2 − e1 · x2 = z].

Claim 5. |Ee∼ξ[χa(e)]| ≤ maxc∈Rq\{0n} |Ee∼Xn [χc(e)]|.
Claim 6. For any c ∈ Rq \ {0n}, |Ee∼Xn [χc(e)]| ≤ 1 − Ω(1/q2).

The proofs are almost identical to the corresponding proofs of Claims 3, 2
and 1 and so we omit them.
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Abstract. Password-based authenticated key exchange (PAKE) allows
two parties with a shared password to agree on a session key. In the
last decade, the design of PAKE protocols from lattice assumptions has
attracted lots of attention. However, existing solutions in the standard
model do not have appealing efficiency. In this work, we first introduce
a new PAKE framework. We then provide two realizations in the stan-
dard model, under the Learning With Errors (LWE) and Ring-LWE
assumptions, respectively. Our protocols are much more efficient than
previous proposals, thanks to three novel technical ingredients that may
be of independent interests. The first ingredient consists of two approx-
imate smooth projective hash (ASPH) functions from LWE, as well as
two ASPHs from Ring-LWE. The latter are the first ring-based construc-
tions in the literature, one of which only has a quasi-linear runtime while
its function value contains Θ(n) field elements (where n is the degree of
the polynomial defining the ring). The second ingredient is a new key
conciliation scheme that is approximately rate-optimal and that leads to
a very efficient key derivation for PAKE protocols. The third one is a
new authentication code that allows to verify a MAC with a noisy key.

1 Introduction

Key exchange is a fundamental and widely used cryptographic mechanism allow-
ing two parties to securely share a session key over a public unreliable chan-
nel. In its original form, suggested in the seminal work of Diffie and Hellman,
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key exchange does not provide authentication and security against an active
adversary who has full control of the communication channel. Authenticated key
exchange additionally allows each user to authenticate identities of others using
either Public-key Infrastructure (PKI) such as TLS/SSL and IKE, or some pre-
shared information. The pre-shared information can be either a high-entropy
cryptographic key or a low-entropy password. In practice, the latter is more
convenient for human users who have limited memory. The study of password
authenticated key exchange (PAKE) was initiated by Bellovin and Merritt [4].
A secure PAKE protocol must resist offline dictionary attacks, in which the
adversary attempts to determine the password using information from previous
executions.

Related Work. Since the pioneering work of Bellovin and Merritt [4] in 1992,
PAKE has been extensively studied. The first provably secure PAKE protocol
was suggested in [3], but its security analysis resorts to the random oracle model
(ROM). Goldreich and Lindell [13] then introduced the first construction without
ROM, based on general assumptions. A reasonably efficient protocol was put for-
ward by Katz, Ostrovsky and Yung [17], which was later abstracted by Gennaro
and Lindell [11] into a framework based on smooth projective hash (SPH) func-
tions. However, these protocols did not support mutual authentication (MA).
That is, the participant cannot make sure that the party he is interacting with,
is the right person. Of course, one can make it up with additional flows, but this
will increase the round complexity. Jiang and Gong (JG) [16] then proposed a
more efficient protocol with MA without increasing round complexity.

In this work, we are interested in PAKE protocols from lattices. The first
protocol was introduced in 2009 by Katz and Vaikuntanathan (KV) [18], whose
main ideas are as follows. Alice and Bob first send a CCA-secure ciphertext to
each other. Then, they try to compute approximate smooth projective hashing
(ASPH) values on the ciphertexts and conduct a key reconciliation to derive a
session key. Their key reconciliation mechanism consists of two steps: the first
step aims to extract a bit from the ASPH value which is slightly noisy, while the
second step is dedicated to correct the error using error-correcting code (ECC).
This mechanism is relatively inefficient as it can extract at most one bit per field
element. Furthermore, the underlying CCA-secure ciphertext (hence the ASPH)
is quite costly, as it includes ω(log n) CPA-secure ciphertexts1.

Groce and Katz (GK) [15] abstracted the JG protocol [16] into a framework
for PAKE, yielding a more efficient lattice-based protocol than KV. The idea of
the GK framework is as follows. Alice sends a CPA-secure encryption C of pass-
word π to Bob. Bob then computes an SPH value h on (π,C). Then, they con-
duct authentication via a CCA-secure encryption with randomness determined
by h. This framework can be adapted into the ASPH setting using KV’s ASPH
with their two-step key reconciliation. A realization was given by Benhamouda
et al. [5]. Canetti et al. [6] demonstrated another framework for obtaining
PAKE (without ASPH), via oblivious transfer (OT). They use OT to transfer

1 The authors actually used n CPA-secure ciphertexts.
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L′ bits for each password bit and finally achieve the authentication via the CCA-
secure encryption approach [15,16].

Zhang and Yu [28] proposed a PAKE framework from a new ASPH built on
a “splittable CCA-secure encryption”. However, their realization is in the ROM.
Another ROM-based PAKE protocol from lattices is due to Ding et al. [8]. In
this work, we only study PAKE protocols without the ROM.

Thus, all existing PAKE frameworks have certain efficiency issues, and do
not admit efficient lattice-based realizations in the standard model. Moreover, a
CCA-secure encryption seems to be an essential ingredient in them. This raises
two interesting questions: (1) From a theoretical point of view, is it possible to
achieve a secure PAKE without relying on any CCA-secure encryption or its
variant? (2) From a more practical point of view, how to design lattice-based
PAKEs in the standard model with better efficiency than previous ones? Tackling
these questions would likely require new technical insights.

Our Contributions and Techniques. In this work, we answer the above
two questions in the affirmative. Our contributions are threefold. First, we put
forward a new framework for obtaining secure PAKE protocols that does not
require any CCA-secure encryption or its variant. Second, we introduce several
new technical building blocks, that enable efficient standard-model instantiations
of our framework in general, and from lattices - in particular. Third, we explicitly
give two realizations of our framework, based on the plain Learning With Errors
(LWE) and the Ring-LWE assumptions, which enjoy security guarantees from
worst-case problems in general lattices [26] and ideal lattices [19], respectively.
Our PAKEs compare very favourably with previous lattice-based protocols in the
standard model. We also provide implementation results of the Ring-LWE-based
scheme to demonstrate its practical feasibility. To the best of our knowledge, this
is the first implementation of any lattice-based PAKE in the standard model,
and the performance is quite encouraging.

New PAKE Framework. Let us first discuss the high-level ideas of our new
PAKE framework. It relies on an ASPH, a key reconciliation scheme and a new
notion of key-fuzzy message authentication code (KF-MAC). KF-MAC allows
the verification key to be slightly different from the original authentication key.
We define a generic ASPH on top of a commitment scheme. Given secret k,
input π and a value y in the commitment space (not necessarily a commitment
to π), an ASPH function H computes the hash value H(k, π, y). If y is indeed
a commitment to π with witness τ , then H(k, π, y) can also be approximated
by an alternative function Ĥ as Ĥ(τ, α(k)), where α(k) is called the projection
key of k. The important property for ASPH is smoothness: if y is a commitment
to π′(�= π), then (H(k, π, y), α(k)) are jointly random. We describe our PAKE
framework using this generic ASPH. However, to prove the framework security,
additional properties on ASPH (which will be clarified later) are required. Our
PAKE framework is an integration of three basic processes below.

– Basic key exchange. Alice and Bob use ASPH (H1, Ĥ1, α1) to obtain close
secrets.



PAKEs: New Framework, New Techniques 399

1. Bob (initiator) first generates a commitment y (with witness τ1) to pass-
word π. He then sends y to Alice.

2. Upon receiving y, Alice samples a secret k, computes and sends a projec-
tion key α1(k) to Bob. She also computes a hash value H1(k, π, y).

3. Upon receiving α1(k), Bob computes Ĥ1(τ1, α1(k)). Note that the dis-
tance between H1(k, π, y) and Ĥ1(τ1, α1(k)) is typically small.

– Key reconciliation. This process enables Alice (with H1(k, π, y)) and Bob (with
Ĥ1(τ1, α1(k))) to agree on a secret ξ, via a one-message key reconciliation
scheme £. If no attack exists, then ξ derived by Alice and Bob will be the
same. To assure this, they need to authenticate each other.

– Authentication. This process uses another ASPH (H2, Ĥ2, α2) and a projec-
tion key V = α2(O) (with a hidden key O) as public parameters. Here Alice
and Bob will authenticate each other and derive a session key.
1. Alice deterministically computes commitment w (with witness τ2) on

password π, using randomness determined by ξ. Next, she computes KF-
MAC η0 on traffic using key Ĥ2(τ2, V ). Finally, she sends (w, η0) to Bob.

2. Bob uses ξ to repeat Alice’s procedure to verify (w, η0) and compute τ2.
Then, he uses Ĥ2(τ2, V ) to authenticate himself.

We stress that although three procedures are described separately, they can
be integrated into a 3-round protocol. The pictorial outline is given in Fig. 1 and
a more detailed version is in Fig. 2. For security, we require the commitment for
ASPH (H1, Ĥ1, α1) to have a trapdoor property: with a trapdoor (but without
witness τ1), one verifies if y is a commitment of π. We call this ASPH type-
B ASPH. We require ASPH (H2, Ĥ2, α2) to have strong smoothness: if w is a
random (i.e., honestly generated) commitment to π, then Ĥ2(τ2, V ) is random
(given w, V, π). We call this ASPH type-A ASPH.

At a high level, our main strategy for proving framework security is the
sequence of games: modify the protocol gradually so that the messages in the
final game contain no password. Firstly, we can modify the protocol so that π
in y is a dummy password. This is unnoticeable to the attacker by the commit-
ment hiding property. Then, under this revision, y normally does not contain
the correct π. If this is the case (which can be checked by the trapdoor prop-
erty of type-B ASPH), then, by smoothness of H1, H1(k, π, y) is random. This
random distribution will propagate to ξ. Thus, on the one hand, w is a random
commitment to π, and so, by the commitment hiding property, we can revise π
in w to be a dummy password. On the other hand, by strong smoothness of Ĥ2,
KF-MAC key Ĥ2(τ2, α2(O)) looks random to attacker, and hence, the traffic can
not be tampered by KF-MAC property. In fact, an attacker can not imperson-
ate Alice successfully either. Indeed, if he modifies Alice’s message only a little,
then the KF-MAC will not change and the traffic will not consistent with the
KF-MAC tag. If the attacker modifies Alice’s message too much (or even creates
a new one), (simulated) Bob will use H2(O, π,w) to verify the KF-MAC. By
smoothness of H2, he will not succeed unless w contains the password π.

After modifications, protocol messages have no password. Attacker can suc-
ceed beyond trivial attacks only by constructing y or w that contains the correct
π. So he can not succeed better than simply guessing the password.
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New Technical Building Blocks. Together with the new framework, we also
introduce three new technical ingredients that may be of independent interest.

(1) We construct a new reconciliation scheme for close secrets in Z
μ
q (in

Sect. 3.2). Our scheme can extract Θ(log q) per element in Zq and is proven
asymptotically rate-optimal. It is much more efficient than all the previous
two-step schemes [5,18,24], where at most one bit per element in Zq can be
extracted.

(2) We give an authentication code with a noisy verification key in Sect. 3.3.
(3) We provide efficient constructions of ASPHs from both plain LWE and

Ring-LWE. In each setting, we construct a type-A ASPH and a type-B
ASPH. The LWE-based schemes are as follows.

a. Type-A ASPH. For public parameters B ∈ Z
m×(n+L)
q and g ∈ Z

m
q and an

m-length error-correcting code C with k information symbols, the commitment
to π has the form w = Bt + g � C(π) + x, where � is the coordinate-wise
multiplication, t is uniformly random over Z

n+L
q and x is a discrete Gaussian

over Z
m
q . The commitment witness is (t,x). For secret key O - which is a discrete

Gaussian over Z
m×L
q , the projection key is OT B. Then, the projective hashing

is computed as H(O, π,w) = OT (w − g � C(π)), while the alternative hashing
is defined as Ĥ((t,x),OT B) = OT Bt. If w is a commitment honestly generated
as above, then the two hashing values differ by OT x (which is short as x and
O are short). For the smoothness, if w is a commitment on π′ �= π, then given
OT B, value OT (w − g � C(π)) is statistically close to uniform over Z

L
q (see

Theorem 2). For strong smoothness, it requires that given Bt + x and OT B,
value OT Bt looks random. We prove this using hidden-bits lemma in [9].

b. Type-B ASPH. Type B ASPH is similar to Type A ASPH, except it needs
to provide a trapdoor property for the commitment. This property is achieved
via the trapdoor simulation techniques in [1,18].

The ASPHs in the ring-LWE setting essentially follow the same strategy
as the LWE-based ones. However, the supporting techniques (i.e., hidden-bits
lemma, trapdoor simulation and adaptive smoothness theorem) have to be
rebuilt. This turns out to be highly non-trivial. Essentially, this is due to the
sparseness of matrix representations for ring operations. Consequently, the ran-
dom arguments for the LWE case are no longer useful. However, this rebuilding
work is worth as ring-LWE ASPHs are much more efficient than LWE-based
ones. A detailed informal description is presented in Sect. 5.

Efficient Lattice-Based Instantiations of PAKE in the Standard
Model. When putting all building blocks together, we obtain PAKE proto-
cols from plain LWE and Ring-LWE that are much more efficient than previous
lattice-based constructions in the standard model. Table 1 provides a summary
of the comparison. For simplicity, the table only counts the dominating costs.

We provide the implementation in Sect. 5.5 for our Ring-LWE-based PAKE
protocol. In this proof-of-concept implementation, the Number Theory Library
(NTL) [27] is employed without further optimization. To agree on a 16-byte
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Table 1. Comparison among lattice-based PAKEs in the standard model. Here, m =
Ω(n log n); k is the password length; L′ is the key reconciliation output length (since
the output is mostly used as a key for a symmetric-key primitive, L′ � n); the cost for
client/server is � of multiplications in Zq; Comm is the message length in Zq; λ > 3.

Scheme Client (Mult) Server(Mult) Comm assum MA q

[5]A O(kL′nm) O(kL′nm) kL′n DLWE no Ω(n3)

[5]B knm O(kL′nm) kn2 DLWE no Ω(n3)

[6] O(nmk) O(nmk) kmn DLWE yes ω(n2)

[15] 2nm O(L′nm) L′n DLWE yes poly(n)

[18] ω(L′nm logn) ω(L′nm log n) 2L′n DLWE no poly(n)

Ours nm O(L′nm/ log q) O( L′n
log n

+ n logn) DLWE yes Ω(nλ)

Ours O( L′n
log n

+ n log2 n) O(L′n log n) O( L′n
log n

+ n logn) R-DLWE yes Ω(nλ)

session key, the bandwidth from Pi to Pj is about 40 KB and 167 KB from Pj

to Pi. Generating public parameters requires about 1.31 s, while Pi’s and Pj ’s
computations cost about 0.2 s and 0.71 s, respectively. Although the efficiency is
(expectedly) not competitive with the ROM protocol from [8], our implemen-
tation demonstrates that the technical ingredients introduced in this work do
advance the state of the art of lattice-based PAKEs in the standard model and
do bring them much closer to practice. But it still needs further improvement
toward practical application. This will be our future direction.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
provide necessary background on PAKEs and lattices. The technical ideas, tech-
nical building blocks and description of our new PAKE framework are presented
in Sect. 3. Our LWE-based and Ring-LWE-based instantiations are provided in
Sects. 4 and 5, respectively.

Notations. The transposition of matrix Γ is denoted by ΓT ; [k] denotes set
{0, · · · , k − 1}. Vectors are column vectors (unless stated otherwise); vi or v[i]
denotes the ith component of v; [v]L1 denotes the sub-vector (v1, · · · , vL)T of
v. Sampling x from set S uniformly at random is denoted by x ← S; A|B
is a concatenation of A with B. negl : N → R represents a negligible func-
tion: limn→∞ negl(n)p(n) = 0 for any polynomial p(n). The statistical distance
between X1,X2 is Δ(X1,X2) := 1

2

∑
x |PX1(x) − PX2(x)|, where PX() is the

probability mass function of X. We say that X1 and X2 are statistically close
if Δ(X1,X2) is negligible. ||x|| is the Euclidean norm of x; ||x||∞ = maxi |xi| is
the �∞-norm and dist∞(·, ·) is the distance measure under �∞-norm. x mod q
denotes the residue of x ∈ Zq in [0, · · · , q) and (x)q denotes the residue of
x ∈ Zq in [−q/2, q/2). The � product is defined as (a1, · · · , an) � (b1, · · · , bn) =
(a1b1, · · · , anbn). For v ∈ R

n, Diag(v) is the diagonal matrix with vi as the
(i, i)th entry. For m1 × n1 matrix A and m2 × n2 matrix B, the tensor prod-
uct A ⊗ B is the m1m2 × n1n2 matrix (Cij) in the block format, where block
Cij = aijB for any i ∈ [m1], j ∈ [n1]. The (column) concatenation of vectors
v1, . . . ,vt is a long vector, denoted by (v1;v2; · · · ;vt).
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2 Preliminaries

2.1 Security Model of PAKE

In this section, we recall a formal model for a password-authenticated key
exchange protocol Σ. This model is mainly adopted from Bellare et al. [3] with
a minor revision in [15]. There are n parties P1, · · · , Pn in the system and any
two parties share a password. We will use the following notations.

– D: This is the password dictionary. For simplicity, we assume that passwords
are chosen uniformly from D.

– Π�i
i : This is the �i-th instance of protocol Σ executed by party Pi. The number

�i is used by Pi to distinguish these instances.
– Flowd: This is the d-th message flow in the execution of protocol Σ.
– sid�i

i : This is the session identifier of Π�i
i . It is only for the purpose of security

analysis. Intuitively, two instances jointly executing Σ should share the same
session identifier. The specification is available only if Σ is known.

– pid�i
i : This is the party, which Π�i

i is interacting with.
– sk�i

i : This is the session key derived by Π�i
i after successfully executing Σ.

Partnering. Instances Π�i
i and Π

�j

j are partnered if (1) pid�i
i = Pj and pid�j

j =

Pi; (2) sid�i
i = sid�j

j . The partnering is motivated to identify two instances that
are jointly executing protocol Σ.

Adversarial Model. To define security, we have to specify an attacker’s capa-
bilities. Essentially, we wish to capture man-in-the-middle attacks. The protocol
is secure if the adversary can not obtain anything about a session key beyond
the trivial findings. Formally, the attacks are modelled through oracles that are
maintained by a challenger as follows.

• Execute(i, �i, j, �j): When this oracle is called, it first checks whether Π�i
i

and Π
�j

j are fresh. If not, it does nothing; otherwise, a protocol execution

between Π�i
i and Π

�j

j takes place. Finally, the transcript is returned. This is
an eavesdropping attack.

• Send(d, i, �i,M): When this oracle is called, M is sent to Π�i
i as Flowd. If

d = 0 or 1, then a new instance Π�i
i is created. If d = 0, then M = “ke, pid�i

i ”
is a key exchange request message (from an upper layer program inside Pi).
In any case, Π�i

i acts according to the specification of Σ.
• Reveal(i, �i): This oracle call assumes that Π�i

i has successfully completed
with a session key sk�i

i derived. Under this, sk�i
i is returned.

• Test(i, �i): This oracle is to test the secrecy of sk�i
i . The adversary is only

allowed to query it once. Toward this, Π�i
i must have successfully completed

with sk�i
i derived. Furthermore, Π�i

i and its partnered instance (if any) should
not have been issued a Reveal query. Then, it takes b ← {0, 1}. If b = 1, then
α1 = sk�i

i is provided to adversary; otherwise, a random number α0 from the
space of the session key is provided. The adversary then tries to output a
guess bit b′ of b. He is announced for success if b′ = b.
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Correctness. If two partnered instances both accept, they derive the same key.

Adversarial Success. Having specified the adversarial behaviour, we now
define its success. This consists of authentication and secrecy.

� Mutual authentication. We first define the semi-partnering [15]: instances
Π�i

i and Π
�j

j are semi-partnered if they are partnered, or, the following condi-

tions hold: (1) sid�i
i and sid

�j

j agree except possibly for the final message flow

in Σ; (2) pid�i
i = Pj and pid�j

j = Pi. This relaxed partnering is defined to
rule out the possible trivial attack where an attacker forwards all the mes-
sages except the final one. An attacker breaks mutual authentication if some
Π�i

i with pid�i
i = Pj has successfully completed the execution of Σ with a

session key derived while there does not exist a semi-partnered instance Π
�j

j .

� Secrecy. An adversary succeeds if b′ = b.

We use random variable Succ to denote either of the above two success events.
Define the advantage of adversary A as Adv(A):= 2Pr[Succ] − 1.

Definition 1. A password authenticated key exchange protocol Σ is secure if
it is correct and for any PPT adversary A that makes Send queries at most Qs

times, it holds that Adv(A) ≤ Qs

|D| + negl(n).

2.2 Lattices and Hard Random Lattices

We now give a brief background on lattices. Let B = {b1, · · · ,bn} ⊂ C
m

consist of n linearly independent vectors. An m-dimensional lattice with basis
B is defined as L(B) = {∑n

i=1 aibi | ai ∈ Z}. For lattice Λ, the Euclidean
norm of its shortest non-zero vector is denoted by λ1(Λ). If we use the �∞-
norm, it is denoted by λ∞

1 (Λ). The dual lattice of Λ ⊆ C
m is defined as

Λ∨ = {y : 〈x, ȳ〉 =
∑

i xiyi ∈ Z,∀x ∈ Λ}, where ȳ is the complex conjugate
of y.

For s > 0 and x ∈ R
m, Gaussian function with parameter s is ρs(x) =

exp(−π||x||2
s2 ). The discrete Gaussian distribution over lattice Λ ⊆ R

m with
parameter s is defined as DΛ,s(x) = ρs(x)

ρs(Λ) ,∀x ∈ Λ.

For m ≥ 2, let H = {x ∈ C
φ(m) : xi = x̄m−i,∀i ∈ Z

∗
m}, where xi in x ∈ H is

indexed by i ∈ Z
∗
m and φ(m) is the Euler function. We are interested in lattice

Λ ⊆ H. It is an inner product space over R, isomorphic to R
φ(m); see [20] for

details. Hence, DΛ,s(x) with Λ ⊂ H can be defined in exactly the same way as
Λ ⊆ R

n. Micciancio and Regev [22] defined a quantity smoothing parameter.

Definition 2. For a lattice Λ and ε > 0, the smoothing parameter ηε(Λ) is the
smallest s so that ρ1/s(Λ∨\{0}) ≤ ε.

Usually, ηε(Λ) is desired to be small. Then, the following result is useful.

Lemma 1. [25] For an m-dimensional lattice Λ, ηε(Λ) ≤
√

log(2m/(1+1/ε))/π

λ∞
1 (Λ∨) .



404 S. Jiang et al.

The following bounds are taken from [22, Lemma 4.4] and [2, Lemma 2.4].

Lemma 2. For s ≥ ω(
√

log m) and any v ∈ R
m and any t > 0, if e ← DZm,s,

then P (||e|| > s
√

m) ≤ O(2−m) and P (|vT e| > st||v||) ≤ 2e−πt2 .

Hard Random Lattices. For integers q,m, n and A ∈ Z
m×n
q of rank n, let

Λ⊥(A) = {e ∈ Z
m | eT A = 0 mod q} and Λ(A) = {y ∈ Z

m | y = As
mod q, s ∈ Z

n}. It is easy to verify that Λ⊥(A) = q · (Λ(A))∨ and Λ(A) =
q · (

Λ⊥(A)
)∨. Here is a useful lemma on Λ⊥(A).

Lemma 3. [12] If rows of A ∈ Z
m×n
q generate Z

1×n
q and r ≥ ηε(Λ⊥(A)), then

for e ← DZm,r, Δ(eT A,U) ≤ 2ε, where U is uniformly random in Z
1×n
q .

3 A New PAKE Framework

3.1 Intuition

We now introduce the ideas for our PAKE framework. We need three notions: key
reconciliation, key-fuzzy message authentication code (KF-MAC), and approxi-
mate smooth projective hash (ASPH). Key reconciliation is a standard notion. It
allows two parties with similar secrets to agree on an identical secret. The notion
of KF-MAC is new. It works like a normal MAC for the MAC generation and
verification. But it also allows a receiver with a slightly noisy key to (in)validate
the MAC.

We define a generic ASPH on the top of a commitment scheme. Given secret
k, input π and a value y in the commitment space (but not necessarily a com-
mitment to π), an ASPH function H computes the hash value H(k, π, y). If y is
indeed a commitment of π with witness τ , then H(k, π, y) can also be approx-
imated by an alternative function Ĥ as Ĥ(τ, α(k)), where α(k) is called the
projection key of k. The important property for generic ASPH is smoothness: if
y is a commitment of π′(�= π), then (H(k, π, y), α(k)) are jointly random. Based
on a generic ASPH, we define two types of strengthened ASPHs. Type-A ASPH
is a generic ASPH with a strong smoothness: if w is a random commitment of
π with witness τ2, then Ĥ2(τ2, α2(O)) appears to be random (given (w,α2(O))).
Type-B ASPH is a generic ASPH with trapdoor property: with a trapdoor
(but without a witness), one can check whether y is a commitment of π.

Our PAKE framework proceeds as follows. Assume that (H1, Ĥ1, α1) is a
type-B ASPH and (H2, Ĥ2, α2) is a type-A ASPH.

a. approximate key establishment. Initiator Bob generates commitment y (and
its witness τ1) on password π. He then sends y to Alice (responder). Alice
then samples a secret key k, computes and sends the projection key α1(k)
to Bob. At this moment, Bob and Alice can compute two close secrets: Bob
computes Ĥ1(τ1, α(k)) and Alice computes H1(k, π, y).

b. key reconciliation. Alice (with H1(k, π, y)) and Bob (with Ĥ1(τ1, α(k))) exe-
cutes a one-message key reconciliation scheme £ to agree on a common secret
ξ. This one-message σ is sent by Alice.
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c. authentication with ξ. Alice authenticates herself. To do this, she generates
a commitment w (and its witness τ2) on π but with randomness determined
by ξ. She then generates a KF-MAC on traffic using secret key H2(τ2, V ),
where V is a projection key (a public parameter). She then sends w and the
KF-MAC to Bob. Bob has ξ and will repeat Alice’s procedure to verify the
authentication. He also authenticates himself using H2(τ2, V ).

d. key derivation. If the authentication above succeeds, they both derive the
session key sk using ξ.

Although the framework has several stages, some messages can be combined.
It turns out that the overall protocol has only 3 flows (see Fig. 1), where comi is
the commitment w.r.t. Hi.

Fig. 1. Outline of our PAKE framework

We now outline the security. The idea is to iteratively modify the protocol
so that messages in the final protocol variant do not contain password π at all.

First, if w|α1(k)|σ is attacker-generated, we modify the protocol so that Bob
verifies KF-MACs using key H2(O, π,w) (instead of Ĥ2(τ2, V )). This is consis-
tent as the original verification guarantees that Ĥ2(τ2, V ) and H2(O, π,w) are
close and so the two MAC verifications give the same result. Under the change,
the attacker can succeed only if w contains π; otherwise, by smoothness of H2,
H2(O, π,w) is random to him and so the KF-MAC will be rejected.

Then, we modify the protocol so that π in y is a dummy password. This is
unnoticeable to the attacker by the commitment hiding property.

Under the above revision, y normally does not contain the correct π. If
this is the case (which can be checked by the trapdoor property of com1),
then, by smoothness, H1(k, π, y) (further ξ) is random. Thus, w is a random
commitment of π. Then, by strong smoothness, KF-MAC key Ĥ2(τ2, α2(O))
looks random to attacker. So we can modify π in w to a dummy password and
Ĥ2(τ2, α2(O)) to be a random key. At this moment, a skillful attacker can not
modify Alice’s message to fool Bob unless w contains π. Indeed, if he modifies the
message too much, then (simulated) Bob will regard it as an attacker-generated
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message. As said above, he will fail. If he only changes a little, then (simulated)
Bob will use the same key of Alice to verify and reject KF-MAC. Our authenti-
cation approach is different from the previous CCA-encryption approach [15,16],
where the non-malleability is used to refute a modification attack.

After modifications above, protocol messages have no password and attacker
can only succeed by producing y or w that contains π (beyond trivial success).
Thus, he cannot succeed better than simply guessing the password.

3.2 Key Reconciliation

Key reconciliation is a mechanism that allows two parties with close secrets to
share a common secret. We consider a special scenario of this problem.

Alice has a secret d uniformly random over set S and Bob has a secret d′ with
Dist(d, d′) ≤ δ for a measure Dist : S × S → R

+ and threshold δ ∈ R
+. Then,

they jointly execute a protocol Π (called key reconciliation protocol). In the end,
they output a value ξ ∈ Ξ. The correctness requires that for any d, d′ with
Dist(d′, d) ≤ δ, Alice and Bob will agree on ξ. Protocol Π is passively secure
with respect to (S,Ξ, δ) if the correctness holds and H(ξ|trans) = H(ξ) = log |Ξ|,
where trans is the transcript of Π and H() is the (conditional) entropy function.
If Π is a one-message protocol (from Alice to Bob), it is called one-message key
reconciliation protocol.

Trivially, H(ξ|trans) = H(ξ) implies that ξ and trans are independent (i.e.,
Pξ,trans = PξPtrans), where PX is the distribution of X.

Lemma 4. Let Π be a passively secure key reconciliation that has d for Alice’s
input, trans for the transcript and ξ for the common secret. Take trans1 ← Ptrans

and ξ1 ← Pξ and d1 ← Pd|(trans,ξ)(·|trans1, ξ1). Then, Pd,trans,ξ = Pd1,trans1,ξ1 .

Proof. By definition of (trans1, ξ1), Ptrans1,ξ1 = Ptrans1Pξ1 = PtransPξ, which
equals Ptrans,ξ, as trans and ξ are independent. Thus, for any feasible (a, b, c),
Pd1,trans1,ξ1(a, b, c) = Pd1|(trans1,ξ1)(a|b, c) ·Ptrans1,ξ1(b, c). This is Pd|(trans,ξ)(a|b, c) ·
Ptrans1,ξ1(b, c) = Pd|(trans,ξ)(a|b, c) · Ptrans,ξ(b, c) = Pd,trans,ξ(a, b, c). Since a, b, c are
arbitrary, Pd,trans,ξ = Pd1,trans1,ξ1 . ��

A New Key Reconciliation Scheme. For close secrets over Zq, we show how
to share a random binary sequence. We start with an example for q = 401.
Let d′, d ∈ Z401 with d uniformly random in Z401 and |(d′ − d)401| ≤ 8. Alice
has secret d and Bob has d′. They want to agree on a secret ξ. Toward this, a
crucial observation is as follows. For any integer f ∈ [0, 2	log 401
) with a binary
representation a7a6a501a2a1a0, we have f + d′ − d mod 401 = f + (d′ − d)401 ∈
[0, 256), which has a binary representation a7a6a5a

′
4a

′
3a

′
2a

′
1a

′
0, as 8 ≤ 01a2a1a0 <

16 and −8 ≤ (d′ − d)401 ≤ 8. Then, Alice and Bob can reconciliate as follows.
Alice samples a random f ∈ [0, 256) of a binary form a7a6a501a2a1a0. Next,

she evaluates σ = f + d mod 401 and sends it to Bob.
Upon receiving σ, Bob computes σ − d′ mod 401 = f + d − d′ mod 401. As

seen above, this number has a binary form a7a6a5a
′
4a

′
3a

′
2a

′
1a

′
0. So both Alice and

Bob can define the common secret as ξ = a7a6a5.
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This shared key is confidential (given σ) as d is uniformly random in Z401

and hence f in σ is masked by a one-time pad d ∈ Z401.
The above example can be easily generalized to general parameters. Assume

that Alice has a secret d ← Zq and Bob has a secret d′ ∈ Zq with |(d′ − d)q| < δ
for some integer δ ≤ q/32. They want to agree on a common secret ξ. Our scheme
works as follows. Let t = �log q� and b = �log δ�.
Alice: 1. Alice defines ab = 1 and ab+1 = 0. For 0 ≤ j ≤ t − 1 but j �= b, b + 1,

she takes aj ← {0, 1} and lets f = at−1 · · · a1a0 (an integer in a binary
representation). She defines ξ = (at−1, · · · , ab+2)T .
2. Alice sends σ = (f + d) mod q to Bob and sets the shared secret as ξ.

Bob: Upon σ, Bob uses d′ to compute ξ as the binary form of � (σ−d′) mod q
2b+2 �.

Finally, he sets the shared secret as ξ.

This protocol can be generalized. If Alice has secret d ← Z
μ
q and Bob has

d′ ∈ Z
μ
q s.t. |(di −d′

i)q| ≤ δ for i ∈ [μ], they can run it in parallel with input di, d
′
i

for each i to generate a vector ξ. We use £ to denote this scheme, use (σ, ξ) ←
£alice(d) to denote Alice’s computation and ξ ← £bob(σ,d′) to denote Bob’s
computation, where σi, ξi are the message and common secret w.r.t. (di, d

′
i).

Lemma 5. Alice and Bob obtain the same ξ with ξ uniformly random over
{0, 1}(t−b−2)μ and independent of σ. Also, entropy H(ξ) = H(ξ|σ) ≥ μ log q

16δ .

Proof. Let fi be the sample of f in the ith copy of the basic protocol. Notice that
σ = f + d mod q and f is independent of d. Hence, d is the one-time pad for f
in σ. Thus, f is independent of σ. Also, ξ is independent of σ as it is determined
by f . Further, ξ is uniformly random as every bit aij of fi for j �= b, b + 1
is uniformly random. Consider the correctness now. It suffices to consider the
basic protocol. Since b = �log δ� and f has ab = 1 and ab+1 = 0, it follows that
f ±h for any 0 ≤ h ≤ 2b has a binary representation at−1 · · · ab+2a

′
b+1a

′
b · · · a′

1a
′
0.

This especially implies (f ± h) mod q = f ± h, as 0 < f ± h < 2t ≤ q. Thus,
� f±h

2b+2 � = at−1 · · · ab+2. Since |(d−d′)q| ≤ δ ≤ 2b, it follows that (σ−d′) mod q =
f+(d−d′)q, which has a binary representation at−1 · · · ab+2a

′
b+1a

′
b · · · a′

1a
′
0. Thus,

� (σ−d′) mod q
2b+2 � = at−1 · · · ab+2. Finally, since 2t−b−2 = 2	log q
−�log δ�−2 ≥ q

16δ , ξ
has an entropy at least log q

16δ bits. ��
Next lemma reflects the strength of our scheme. A proof is in the full version.

Lemma 6. Let d be a random variable over Z
μ
q , and let e be uniformly random

over {−δ, · · · , δ}μ. Define d′ = d + e mod q. Let Π be any protocol between
Alice with input d and Bob with input d′, following which they derive a shared
ξ. Assume the interaction transcript between Alice and Bob be trans. Then,
H(ξ|trans) ≤ H(d) − μ log(2δ + 1), where H is the entropy function.

Remark. Since d is uniformly random over Z
μ
q , any key reconciliation protocol

in our setting must satisfy H(ξ|trans) ≤ μ log q
2δ+1 . In comparison with this

bound, our ξ loses entropy at most log(16δ)− log(2δ+1) ≤ 3 bits per coordinate.
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Define extraction bit rate to be H(ξ)
μ log q . The ratio of the extraction rate between

our scheme and any rate-optimal scheme is lower bounded by log q
16δ

log q
2δ+1

→ 1
when δ = o(q) and hence it is asymptotically optimal. Further, our rate is
asymptotically 1 − logq δ, which is a constant for δ in our concrete PAKEs.

3.3 Authentication Code for Close Secrets

Message authentication code (MAC) is a keyed function FK : M → V such that
without K no one can compute FK(M) for any M . For simplicity, we assume
that a normal verification of MAC η is simply to check η

?= FK(M). Now we
introduce a new notion of δ-key-fuzzy MAC, where if a verifier’s secret key gets
a little noisy, then he can still verify the MAC. He can accept a normal MAC
while he also rejects a forged MAC. This notion is motivated by the approximate
MAC [7], where the MAC is valid even if the input message gets a little noisy.

Definition 3. A keyed deterministic function FK : M → V with key space K is
a δ-KeyFuzzy MAC (or simply, δ-KF MAC), if there exists a keyed function ΦK′ :
V → {0, 1} (called a fuzzy verification function) so that ΦK′(FK(M),M) = 1 for
any K ′ ∈ K with D(K ′,K) ≤ δ, where D : K × K → R is a distance measure.

In this definition, we only say that a fuzzy verification function (FVF) with
an approximate key can accept a MAC. For it to be useful, it needs to reject a
forged MAC. This is formalized as follows in terms of one-time security.

Definition 4. Let FK : M → V be a δ-KF MAC with key space K, distance
measure D, and FVF ΦK′ . We say that FK is (1, δ, ε)-KF secure if no PPT
attacker A, after seeing any (M,FK(M)), can compute MAC η of M ′ �= M s.t.

P
[
ΦK′(η,M ′) = 1 for some K ′ ∈ K with D(K ′,K) ≤ δ

] ≥ ε + negl(n).

A New (1, δ, ε)-KF Authentication Code. We now construct a (1, δ, ε)-KF
authentication code. Our scheme will use an error-correcting code with a large
distance. For a constant prime p, a [N, k, d]p-code is an error-correcting code over
Zp with a codeword length N , minimal Hamming distance d and k information
symbols. The following lemma gives a random code with a large Hamming dis-
tance (see a proof in the full paper). A random code usually is not practical as
its decoding is inefficient. However, our work does not need decoding.

Lemma 7. Let d ≤ N . Let H ← Z
(N−k)×N
p and C ⊆ Z

N
p be a k-dimensional

subspace with H as its parity-check matrix (i.e., Hx = 0 for any x ∈ C). Then,
C is a [N, k, d]p-code, except for a probability N · pd+k−N−2 · 2N .
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Now we are ready to give our (1, δ, ε)-KF authentication code.

Construction. Our new fuzzy MAC scheme is as follows. Let p be a constant
prime less than q, and L ∈ N with p | L and H : {0, 1}∗ → Z

k2
p is a collision-

resistant hashing. Let secret d = (d0, · · · , dL−1)T ← Z
L
q and message space

M = {0, 1}∗. Assume that Cmac : Z
k2
p → Z

L/p
p is a [L/p, k2, θmacL/p]p-code for a

constant θmac ∈ (0, 1). The authentication function Fd(M) of M is to first com-
pute codeword a = Cmac(H(M)) and then define Fd(M) = (t0, · · · , tL/p−1)T ,
where ti = dpi+ai

for i = 0, · · · , L/p − 1. The normal verification of (M, t) is

to check t ?= Fd(M). The fuzzy verification Φd′(t,M) with ||(d′ − d)q||∞ ≤ δ,
computes t′ = Fd′(M) and then outputs 1 if and only if ||(t − t′)q||∞ ≤ δ.

The security idea of this scheme is that the codewords for M and M ′ with
M �= M ′, have a large Hamming distance (as H is collision-resistant). Hence,
given the MAC of M , the MAC of M ′ has at least θmacL/p coordinates that are
uniformly random in Zq. It is hard to guess them correctly with a small error.

Lemma 8. Our scheme is a (1, δ, (4δ
q )

θmacL
p )-KF MAC for δ < q

4 , θmac ∈ (0, 1).

Proof. Correctness holds obviously. Consider the authentication. Assume
attacker A forges a pair (M∗, t∗) after seeing (M, t) for M∗ �= M , where t =
Fd(M). As H is collision-resistant, a∗ = Cmac(H(M∗)) and a = Cmac(H(M))
have a Hamming distance at least θmacL/p. Let A = {i | ai �= a∗

i , i ∈ [L/p]}
and η = Fd(M∗). Then, ηi for any i ∈ A is independent of (M, t). Since
t∗ is computed from A’s view (M, t), it follows that ηi for i ∈ A is inde-
pendent of t∗ as well. Let η′ = Fd′(M∗) and so ||(η′ − η)q||∞ ≤ δ. Then,
P [|(t∗i − η′

i)q| ≤ δ : i ∈ A] ≤ P [|(t∗i − ηi)q| ≤ 2δ : i ∈ A] ≤ ( 4δ
q )|A|, given (M, t).

Hence, P [Φd′(t∗,M∗) = 1 | (M, t)] ≤ (4δ/q)θmacL/p. ��

3.4 Approximate Smooth Projective Hashings

We define two types of approximate smooth projective hashings (ASPH). Both
of them are based on a generic ASPH below revised from [18].

Approximate Smooth Projective Hashing (Generic). We start with the
definition of a general commitment.

Definition 5. Commitment scheme Π is a tuple (gen, com, ver) with domain D.

– gen(1n). Upon 1n, it generates a public-key e.
– come(m). Upon public-key e and m ∈ D, it executes (τ, y) ← come(m) to

generate commitment y and witness τ ∈ {0, 1}∗. Also we use come(m;Υ ) to
denote the execution with randomness Υ .

– vere(τ,m, y). To decommit y, sender sends (m, τ) to receiver who then verifies
it via algorithm vere and finally outputs 0 (for reject) or 1 (for accept).
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A commitment scheme Π = (gen, com, ver) is secure if it satisfies the correct-
ness, computational hiding property, and unconditional binding property.

For a commitment scheme Π = (gen, com, ver) with domain D, we define two
NP-languages L and L∗. Let Y be the set of all possible commitment y and
X = D×Y. For e ← gen(1n), define L = {(m, y) ∈ X | ∃τ s.t. vere(τ,m, y) = 1};
define L∗ via an algorithm ver∗: L∗ = {(m, y) ∈ X | ∃τ s.t. ver∗e(τ,m, y) = 1},
where ver∗ is chosen so that L∗ has two properties:

1. L ⊆ L∗.
2. For any y ∈ Y, there exists at most one m ∈ D so that (m, y) ∈ L∗.

The approximate smooth projective hashing (generic) is described by Π, ver∗

and efficient functions: α : K → U,H : K × X → S and Ĥ : {0, 1}∗ × U → S,
where K is the key space with distribution D(K), k ← D(K) is the secret key and
α(k) is the projection key. A generic ASPH with parameter δ (or generic δ-ASPH
for short) is a tuple H = (Π, ver∗,H, Ĥ, α) with the following properties.

Correctness. For (m, y) ∈ L with witness τ and k←D(K) (where D(K) is the
key distribution), P (Dist[H(k,m, y), Ĥ(τ, α(k))] ≤ δ) = 1−negl(n), where Dist :
S × S → R

+ is a distance measure and the probability is over choices of k.

Adaptive Smoothness. Given m ∈ D and an arbitrary function f : U → Y,
let k ← D(K) and y = f(α(k)). If (m, y) ∈ X\L∗, then (α(k),H(k,m, y)) is
statistically close to uniform over U × S.

Based on generic δ-ASPH, we define two types of ASPHs, each of which has a
strengthened property over a generic ASPH.

Approximate Smooth Projective Hashing (Type A). Type A δ-ASPH (or
δ-ASPHA for short) is a generic δ-ASPH with a strong smoothness below.

Strong Smoothness. Given m ∈ D, let (τ, y) ← come(m), k ← D(K) and U ← S.
Then, (α(k), y, Ĥ(τ, α(k))) and (α(k), y, U) are indistinguishable.

The smoothness is concerned with the randomness of H(·) while the strong
smoothness is concerned with the randomness of Ĥ(·). In general, the former
does not imply the latter. It is not hard to find ASPH with the least significant
bit of Ĥ(·) could always be zero while H has the smoothness.

Approximate Smooth Projective Hashing (Type B). The type-B δ-ASPH
is a generic δ-ASPH (Π,H, Ĥ, α), except Π = (gen, com, ver) has a trapdoor
property below.

– There exists algorithm sim(1n) that generates a public-key e and a trapdoor
trap. Further, there exists an efficient algorithm trapVer so that for any (m, y),
trapVere(trap,m, y) = 1 if and only if (m, y) ∈ L. Also, there exists an effi-
cient algorithm trapVer∗ so that for any (m, y), trapVer∗e(trap,m, y) = 1 if
and only if (m, y) ∈ L∗. In addition, e ← gen(1n) and e from sim(1n) are
indistinguishable.



PAKEs: New Framework, New Techniques 411

Our trapdoor differs from a trapdoor commitment, where the latter opens
a commitment to any message while our trapdoor is only used to check the
membership of L and L∗ without a witness. Especially, it cannot recover or
equivocate a commitment. For convenience, we also include sim into Π and call
it a commitment with trapdoor simulation (or trapSim commitment for short).

Remark. Even if a generic ASPH is revised from [18], their ASPH (also [28])
is defined on a public-key encryption. Adaptive smoothness was introduced in
[28]. But strong smoothness and trapdoor property are new here.

3.5 Our PAKE Framework

We will use the following parameters, notations and functions.

– D is the password dictionary; G : Ξ → {0, 1}∗ is a pseudorandom generator.
– H1 = (Π1, ver

∗
1,H1, Ĥ1, α1) is a δ-ASPHB and H2 = (Π2, ver

∗
2,H2, Ĥ2, α2) is

a δ-ASPHA, where Π1 = (gen1, com1, ver1, sim1) and Π2 = (gen2, com2, ver2).
Also, Hi (i = 1, 2) is associated with Di,Ki, Si, Ui,Xi,Li and L∗

i s.t. D � Di.
– Let ei ← geni(1n) for i = 1, 2 and V = α2(O) for O ← D(K2).
– FK : {0, 1}∗ → V is (1, δ, ε)-KF MAC with key space S2 and fuzzy verification

function ΦK′ .
– £ is a one-message reconciliation scheme for Alice and Bob, w.r.t, (S1, Ξ, δ).

Alice uses her secret d to compute (σ, ξ) ← £alice(d) and sends σ to Bob; Bob
uses his secret d′ to compute ξ = £bob(σ, d′); ξ ∈ Ξ is the shared secret.

Initially, a trustee prepares parameters {ei|ver∗i |Πi|Hi|Ĥi|αi}2
i=1|V |F |£. If Pi

and Pj wish to establish a key, they interact as follows (see Fig. 2). For simplicity,
comb,eb

(resp. verb,eb
) for b = 1, 2 is denoted by comb (resp. verb).

Fig. 2. Our PAKE framework
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1. Pi samples (τ1, y)←com1(πij) and sends y|Pi to Pj .
2. Upon receiving y|Pi, Pj samples k ← D(K1) and derives U = α1(k) and

(σ, ξ) ← £alice(H1(k, πij , y)). Then, she derives Υ |sk = G(ξ) and com-
putes (τ2, w) = com2(πij ;Υ ). Next, she computes ω = w|y|U |σ|i|j and
η0 = FĤ2(τ2,V ) (ω|0) . Finally, she sends w|U |σ|η0|Pj to Pi.

3. Upon receiving w|U |σ|η0|Pj , Pi computes ξ = £bob(σ, Ĥ1(τ1, U)), Υ|sk =

G(ξ), ω = w|y|U |σ|i|j and (τ2, w
′) = com2(πij ;Υ ). Then, he checks w

?= w′,

η0
?= FĤ2(τ2,V ) (ω|0), ver2(τ2, πij , w) ?= 1. If any of them fails, he rejects;

otherwise, he sends η1 = FĤ2(τ2,V )(ω|1) to Pj and sets session key sk.

4. Upon receiving η1, Pj checks η1
?= FĤ2(τ2,V )(ω|1). If yes, she sets session key

sk; otherwise, she rejects.

3.6 Correctness

Let sid�i
i = sid

�j

j = Pi|Pj |y|U |σ. If Pi and Pj share the same sid, then y is
generated by Pi while (U, σ) is generated by Pj . Hence, (σ, y, U) has the specified
distribution: (τ1, y) ← com1(πij) and U = α1(k) for k ← D(K1). They will
derive the same sk. Indeed, the correctness of com1 implies (πij , y) ∈ L1. The
correctness of ASPHB implies that Dist[H1(k, πij , y), Ĥ1(τ, α1(k))] ≤ δ. So the
correctness of £ implies Pi and Pj computes the same ξ. Since Υ |sk is determined
by ξ and the definition of PAKE correctness assumes that both Pi and Pj accept,
they both conclude with the same sk.

3.7 Security

We now state our security theorem. The main ideas have been presented at the
beginning of this section and proof details will appear in the full paper.

Theorem 1. Let £ be a secure one-message key reconciliation w.r.t. (S1, Ξ, δ),
G : Ξ → {0, 1}∗ be a pseudorandom generator, and (F,Φ) be (1, δ, ε)-KF MAC
with key space S2, domain M and negligible ε. Let H1 = (Π1, ver

∗
1,H1, Ĥ1, α1)

be a δ-ASPHB on a secure trapSim-commitment Π1 = (gen1, com1, ver1, sim1),
H2 = (Π2, ver

∗
2,H2, Ĥ2, α2) be a δ-ASPHA on a secure commitment Π2 =

(gen2, com2, ver2). Then, our framework is secure.

4 LWE-Based Instantiation

4.1 The Learning with Errors Assumption

We next recall the Learning With Errors (LWE) assumption due to Regev [26].
For a vector s ∈ Z

n
q and distribution χ over Zq, define distribution As,χ with

m samples as follows. It chooses a matrix A ← Z
m×n
q , takes x ← χm, and

outputs (A,As + x). The decisional LWE assumption DLWEq,χ,m,n states that
(A,As + x) is pseudorandom when s is uniformly random over Z

n
q .
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For s ∈ R
+, let Ψs be the Gaussian distribution of zero mean and standard

deviation s/
√

2π. Regev [26] proved that DLWE is hard when χ = Ψs with
s > 2

√
n. Usually, it is more convenient to work with χ = DZm,s. Gordon

et al. [14, Lemma 2] showed that the hardness of DLWEq,Ψs,m,n implies the
hardness of DLWEq,D

Zm,
√

2s,m,n when s = ω(
√

log n). For convenience, later we
denote DLWEq,DZm,s,m,n assumption by DLWEq,s,m,n.

4.2 Supporting Properties from LWE

Hidden-Bits Lemma from LWE. The hidden-bits lemma states that given a LWE
tuple (A,As +x), some linear function on s is confidential. This result is essen-
tially a corollary of [9, Lemma C.6]. We now present it without a proof.

Lemma 9. Let L ≤ n and UL be the uniformly random variable over Z
L
q .

Let C ∈ Z
L×(n+L)
q be an arbitrary but fixed matrix with rank L. Then,

(A,As + x,Cs) and (A,As + x,UL) are indistinguishable under DLWEq,β,m,n

assumption, where A ← Z
m×(n+L)
q , s ← Z

n+L
q , x ← DZm,β.

Trapdoor Generation for LWE. The next lemma is adapted from [18, Lemma 3].

Lemma 10. Let m ≥ 6n log q and n log q = o(q1−α) for constant α ∈ (0, 1).
Then, there is an efficient algorithm GenTrap(1n, 1m, q) that outputs A ∈ Z

m×n
q

and a trapdoor T ∈ Z
m×m such that ||T|| ≤ O(n log q) and A is statistically close

to uniform over Z
m×n
q . Further, there exists a PPT algorithm BD(T, ·) that takes

z ∈ Z
m
q as input and does the following: if z = As + x with ||x||∞ ≤ � qα−2

4 �,
then output (t,x); if z cannot be expressed in this form, then output ⊥.

We require m ≥ 6n log q (using [1, Theorem 3.2] with ||T|| ≤ O(n log q)),
while m ≥ n log2 q in [18] (using [1, Theorem 3.1]). However, their proof only
requires ||T|| · q1−α−2

4 < q/2. We satisfy this as ||T|| ≤ O(n log q) = o(qα).

Adaptive Smoothness from LWE. The adaptive smoothness below states that for
almost every A ∈ Z

m×n′
q and h ∈ Z

m
q , ET (A,v − u � h) are close to uniform

for all but one codeword u in a m-length code C, where E is discrete Gaussian
and v is adaptively chosen (after given ET A). The idea is to employ a similar
result ([28, Lemma 19]) of [12, Lemma 8.3], under which we essentially only need
to show that mins∈Z

n+1
q −{0} ||(A,v − u � h)s||∞ is large for all but one u ∈ C.

Let s = (s1, · · · , sn′+1). Notice that Lemma 11 below implies this is true when
minimizing with sn′+1 �= 0, while case sn′+1 = 0 (i.e., mins′∈Zn

q −{0} ||As′||∞ is
large for most of A) is well known. The proof detail is given in the full paper.

Theorem 2. For θ ∈ (0, 1), let s ≥ q1− θ
3 · ω(

√
log m) and C be a [m, k, θm]p-

code with p < q. Take A ← Z
m×n′
q ,h ← Z

m
q . Then, with probability 1 −

2−mqn′−(1− θ
3 )m − |C|22−2mq2n′+2−θm/3 (over A,h), the following is true for

E ← (DZm,s)μ and v = f(ET A) with an arbitrary function f : Z
μ×n′
q → Z

m
q .

1. min
s∈Z

n′+1
q −{0} ||(A,v − u � h)s||∞ ≥ � qθ/3−2

4 � for all but one u in C;
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2. ET [A,v − u � h] is close to uniform in Z
μ×(n′+1)
q for all but the exceptional

u in item 1.

The following lemma presents a core technique in this paper.

Lemma 11. Let B ∈ Z
m×ν
q , χ ∈ N and C ∈ Z

m×m
q be arbitrary but fixed matri-

ces with C invertible. Take h ← Z
m
q . Let w be any random variable (maybe

computed from h,B) over Z
m
q . Assume C is a [m, k′, θm]p-code for a constant

θ ∈ (0, 1) and p < q. Then, with probability at least 1−|C|2q2ν+2(4χ2q−θ)m (over
choices of h), there is at most one u ∈ C that kC(w − h � u) = Bs + x holds
for some (k, s,x) ∈ Z

∗
q × Z

ν
q × Z

m
q with ||x||∞ < χ.

Proof. For any distinct u1,u2 ∈ C, let zi = C(w − h � ui), i = 1, 2. Then,
∀y1,y2 ∈ Z

m
q and k1, k2 ∈ Z

∗
q , we have

P (k1z1 = k1y1 ∧ k2z2 = k2y2) = P (z1 = y1 ∧ z2 = y2)

=P (z1 = y1 ∧ (u1 − u2) � h = δ), where δ = C−1(y1 − y2)
≤P ((u1 − u2) � h = δ)
≤P ((u1i − u2i)hi = δi,∀i ∈ A) (where A = {i | u1i �= u2i, i ∈ [m]}) (1)

≤q−θm (as |A| ≥ θm and hi is uniformly random. )

Let Z ⊆ Z
m be the cube of radius χ−1 (centered at 0), and S def

= ∪s∈Zν
q
(Bs+

Z) ∩ Z
m mod q. Obviously, kz = Bs+x for ||x||∞ < χ is equivalent to kz ∈ S.

Hence, P (k1z1 ∈ S ∧ k2z2 ∈ S) ≤ |S|2 · q−θm = q2ν(4χ2q−θ)m. Since (k1, k2)
has at most q2 choices and (u1,u2) has at most |C|2 choices, the bound follows.
Finally, the probability bound is obtained only over choices of h, as Eq. (1) only
depends on the coins of h and the final result is a union bound on Eq. (1). ��
Remark. The adaptiveness of v in Theorem 2 is important. In our PAKE, ET A
is known to attacker. Hence, he can choose v based on it.

4.3 ASPHs from LWE

We will construct ASPHA and ASPHB with the following common parameters.

– n is the security parameter; prime modulus q = nλ for a constant λ > 3
θ with

θ ∈ (0, 1−1/ log p) and p a constant prime less than q; k = o(n); δ1 = 6n log n;
r1 = 3n1/2; r2 = q1− θ

3 log n; δ = qα (for 1 − θ
3 + 1

λ < α < 1);

4.3.1 Construction of δ-ASPHA

Let L ≤ n, 7(n+L)
θ ≤ m ≤ Θ(n). Take g ← Z

m
q , B ← Z

m×(n+L)
q . Let C be a

[m, k, θm]p-code, constructed from Lemma 7 with negligible failure probability
mp(−1+θ+1/ log p−o(1))m.

The Commitment Scheme. The commitment key is (B,g). To commit π ∈
Z

k
p, take z ← (DZ,r1)

m and t ← Z
n+L
q . The commitment is w = Bt+z+g�C(π)
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with witness τ = (t, z). The decommitment is (π, τ). Define ver(τ, π,w) = 1 if
and only if w = Bt + z + g � C(π) and ||z|| ≤ δ1. From ver, language L is
generically defined. Define L∗ so that (π,w) ∈ L∗ if ||(B,w − g � C(π))s||∞ <

� qθ/3−2
4 � for some s ∈ Z

n+L+1
q − {0}.

Lemma 12. Our commitment is secure under DLWEq,r1,m,n assumption.

Proof. Consider correctness first. Let w = Bt+g � C(π) + z be a commitment
of π with z ← DZm,r1 . Then, correctness holds if ||z|| ≤ δ1, which is true except
for probability O(2−m), by Lemma 2 (noticing r1

√
m = Θ(n) = o(δ1)). Hiding

property directly follows from DLWEq,r1,m,n assumption. The binding property
follows from the properties of L∗ (to be verified soon): L ⊆ L∗ and for any
w ∈ Z

m
q , there is only one π so that (π,w) ∈ L∗. ��

Description of δ-ASPHA. We verify the required properties for L∗.

1. L ⊆ L∗. This is obvious as || · ||∞ ≤ || · || and δ1 = o(qθ/3) using λθ/3 > 1.
2. For any w ∈ Z

m
q ,there is at most one π ∈ Z

k
p with (π,w) ∈ L∗. This directly

follows from Theorem 2(1) (with n′ = n+L), where the exception probability
is O(q(−1/3+o(1))n) (negligible!).

We define H and Ĥ. For secret O ← (DZ,r2)
m×L, let the projection key

V = OT B. Let H(O, π,w) = OT (w − g � C(π)). If (π,w) ∈ L with witness
τ = (t, z), let Ĥ(τ,V) = Vt.

Correctness. Assume the closeness uses the || · ||∞ metric. Let (π,w) ∈ L. Then,
w = Bt + g � C(π) + z with ||z|| ≤ δ1. For O ← (DZ,r2)

m×L, we have ||Vt −
OT (w − g � C(π))||∞ = maxi |oT

i z| ≤ δ1r2 log n = o(δ) (except for a negligible
probability by Lemma2), where oi is the ith column of O.

Adaptive Smoothness. For (π,w) �∈ L∗, C(π) is not the exceptional u in

Theorem 2 and hence OT (B,w−g�C(π)) is close to uniform over Z
L×(n+L+1)
q .

Further, under our setup (n′ = n + L,m ≥ 7(n+L)
θ , k = o(n)), the exceptional

probability for Theorem2 is O(q−(1/3+o(1))n) (negligible).

Strong Smoothness. We need to show that (OT B,Bt + z,OT Bt) is indistin-
guishable from (OT B,Bt + z,U), where (z, t,O,U) ← (DZ,r1)

m × Z
n+L
q ×

(DZ,r2)
m×L ×Z

L
q . This follows from Lemma 9, as OT B is close to uniform (well-

known and also implied by Theorem2) and hence has a rank < L only negligibly.

4.3.2 Construction of δ-ASPHB

δ-ASPHB is identical to δ-ASPHA, except that we need a trapdoor property
while strong smoothness is no longer needed. Even though, we still need to
validate claims adapted from δ-ASPHA under our new parameter choices. This
is shown below in the security item. The trapdoor property is from Lemma10.

Let μ ∈ N,m = 6n log n. Take h ← Z
m
q ,A ← Z

m×n
q . C is a [m, k, θm]p-code

(from Lemma 7 with a negligible failure probability mp(−1+θ+1/ log p−o(1))m).
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trapSim-commitment Scheme. The commitment key is (A,h). The com-
mitment to π ∈ Z

k
p is y = As+x+h�C(π) for x ← (DZ,r1)

m and s ← Z
m
q with

witness τ = (s,x). Further, ver,L, and L∗ are defined the same as in δ-ASPHA

via equation y = As+x+h�C(π). The trapdoor simulation is to apply Lemma10
to generate A with trapdoor T ∈ Z

m×m, by setting α = θ/3 and noticing that
n log q = o(q1−θ/3) (as λ(1 − θ/3) ≥ 2λ/3 ≥ 2, due to λ > 3

θ ≥ 3).
For (A,T) ← TrapGen(1n), membership (π,y) ∈ L∗ can be verified as follows.

For each u ∈ Z
∗
q , try to use T to recover (s,x) so that u(y − h � C(π)) =

As+x with ||x||∞ ≤ � qθ/3−2
4 �. If it succeeds for some u, then claim (π,y) ∈ L∗;

otherwise, claim (m,y) �∈ L∗. By Lemma 10, this decision is always correct.

Description of δ-ASPHB. This is identical to δ-ASPHA. For secret E ←
Dm×μ

Z,r2
, the projection key is U = ET A. Also, let H(E, π,y) = ET (y−h�C(π)).

If (π,y) ∈ L with witness τ = (s,x), let Ĥ(τ,U) = Us.

Security. Security proofs for commitment, correctness and adaptive smoothness
are identical to δ-ASPHA. However, we need to verify that the cited results have
negligible exception probabilities under our setup. Commitment security has
used Lemma 2 to correctness. In our setting, r1

√
m = Θ(n

√
log n) = o(δ1) still

holds and so the result remains valid. The correctness has cited Lemma 2 which
requires δ1r1 log n = o(δ) and remains valid in our setting. Theorem2 is cited for
smoothness and property 2 of L∗. In our setting, it only has negligible exception
probability O(q(−θ/3+o(1))m).

4.4 LWE-Based PAKE Instantiation

Using δ-ASPHB and δ-ASPHA just obtained, together with pseudorandom gen-
erator G, KF-MAC F (in Sect. 3.3) and reconciliation £ (in Sect. 3.2), we can
realize our PAKE framework in the LWE setting (see Fig. 3). By the security
theorem of PAKE framework, we only need to make sure that each of these
mechanisms is secure in our parameter choices. This is specified as follow.

– θ ∈ (0, 1−1/ log p); q = nλ (λ > 3
θ ); p is constant prime with p < q; k = o(n);

r1 = 3n
1
2 , δ1 = 6n log n, r2 = q1− θ

3 log n, δ = qα with 1 − θ
3 + 1

λ < α < 1.
– G : {0, 1}L′ → {0, 1}∗ is a pseudorandom generator.
– password dictionary D � Z

k
p.

– Instantiate KF-MAC. Set FK as the (1, δ, ( 4δ
q )θmacL/p)-KF MAC in Sect. 3.3

with key space Z
L
q , where θmac ∈ (0, 1 − 1/ log p), L = k2p(1+β)

1−θmac−1/ log p for
constant β > 0 (where k2 = o(n) is the p-ary output length of H in FK).
/* In this setup, insecurity error (4δ

q )θmacL/p = (4qα−1)Θ(k2) (negligible);
[L/p, k2, θmacL/p]p-code in the scheme is constructed from Lemma 7 with
negligible exception probability O(p−k2βL/p). */

– Instantiate (H1, Ĥ1) with our LWE-based δ-ASPHB : Set m = 6n log n, μ =
L′ log q

16δ (L′ is the key length of G); other parameters such as δ1, δ, r2, r1 are
set as above; [m, k, θm]p-code C is from Lemma 7. Take A ← Z

m×n
q ,h ← Z

m
q .
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/* Under our setup, C fails to be constructed by Lemma 7 only with negli-
gible probability mp(−1+θ+1/ log p)m; our setup is consistent with parameter
description in δ-ASPHB and hence the resulting scheme is secure. */

– Instantiate (H2, Ĥ2) with our LWE-based δ-ASPHA: Set m1 = 7(L+n)
θ ;

δ1, δ, r2, r1, L etc set as above; [m1, k, θm1]p-code C1 is from Lemma 7. Take
B ← Z

m1×(n+L)
q and g ← Z

m1
q as public parameters for δ-ASPHA.

/* Under our setup, C1 fails to be constructed by Lemma 7 only with negli-
gible probability m1p

(−1+θ+1/ log p)m1 ; our setup is consistent with parameter
description in δ-ASPHA and hence the resulting scheme is secure. */

– Set V = OT B ∈ Z
L×(n+L)
q for O ← (DZm1 ,r2)

L as the public projection key.
– For π ∈ Z

k
p, define gπ = g � C1(π) and hπ = h � C(π).

– Instantiate £. Set £ as the reconciliation scheme in Sect. 3.2 with μ, δ and q
as above. Thus, the reconciliated key ξ has a bit-length at least μ log q

16δ = L′

(fit the key length of G).

The public parameter list for our PAKE is A|B|g|h|V|F |£|C|C1. The detailed
protocol is simply to plug the primitives above into our PAKE framework. This
is graphically shown in Fig. 3. Since primitives are secure by our parameter
clarification, our protocol is secure by Theorem1.

Fig. 3. Our Protocol LWE-PAKE: t ← Z
n+L
q and z ← DZ

m1 ,r1 are sampled with
randomness Υ where Υ |sk = G(ξ).

Efficiency. Note that gπij
and hπij

can be pre-computed and Dm
Z,r can be

sampled in Õ(m) time [23]. Thus, the cost of Pi is dominated by Bt,Us,As
and Vt which totally is about mn multiplications over Zq (as L = O(n), μ =
O(n) and m1 = o(m)); the cost of Pj is dominated by ET A,ET y′,Bt,Vt
which is μmn = O(L′mn/ log q) multiplications. The communication cost is
dominated by (U,w,y) which has O( L′n

log n + n log n) field elements. Finally, the
authentication is provided by (w, η0) with a cost dominated by Bt and Vt,
which is (m1 + L)(n + L) = O(n2) multiplications. This is more efficient than
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authentication [6,15] from CCA-secure encryption, which has a cost O(n2 log n)
[21,29] in the LWE setting. Our main saving for this comes from the fact that
δ-ASPHA doesn’t need a trapdoor simulation so it can take m1 = O(n) while
[21,29] needs this and hence the corresponding parameter is O(n log n). That is,
authentication data (w, η0) can not enable to decrypt πij and so it is different
from authentication by CCA-secure encryption.

5 Instantiation from Ring-LWE

This section will present our PAKE instantiation based on Ring-LWE. This is
important as it is more efficient than LWE-based one.

5.1 Basics of Rings, Ring-LWE and Operational Properties

5.1.1 Introduction to Algebraic Number Theory
We provide some facts from algebraic number theory (also see [20]). Let m be a
power of 2 and n = m/2.

Power Basis of Cyclotomic Field. We are interested in the mth cyclotomic
field K = Q(ζm), where ζm is the mth primitive root of unity and has the
minimal polynomial Φm(x) = xn + 1 with n = m/2. Then, K has a Q-basis
{1, ζm, ζ2

m, · · · , ζn−1
m } (called power basis, denoted by p).

Canonical Embedding. K = Q(ζm) has n embeddings σi : K → C, ∀i ∈ Z
∗
m.

The canonical embedding σ : K → C
φ(m) is σ(a) = (σi(a))i∈Z∗

m
for a ∈ K. Since

σi(a) = σ̄m−i(a), σ(a) ∈ H.

Ring of Integers and Ideals. An algebraic integer in K is an element in it
that is a root of a monic polynomial in Z[x]. The set of all integers of K is a
ring, denoted by R in this paper. For K = Q(ζm), R = Z[ζm]. Thus, the power
basis {1, ζm, · · · , ζn−1

m } is a Z-basis of R.

Chinese Remainder Basis and Its Relation with Power Basis. In this
paper, q is a prime with q = 1 mod m and ωm is the mth root of 1 in Z

∗
q . let pi =

(q, ζm − ωi
m) (i.e., the ring generated by q and ζm − ωi

m). By Chinese remainder
theorem, for each i ∈ Z

∗
m, there exists ci ∈ R so that ci = 1 mod pi and ci = 0

mod pj for any j �= i. Then, c = (cj)j∈Z∗
m

forms a basis of Rq
def
= R mod q,

called the CRT basis. Note that c2
i = ci mod qR, as c2

i = ci mod pi for each
i ∈ Z

∗
m. Hence, if a = cT v, b = cT u ∈ Rq for v,u ∈ Z

n
q , then ab = cT (v�u). Let

CRTm = (ωij
m)i∈Z∗

m,j∈[n]. Then, the power basis p and CRT basis c is connected
by pT = cT · CRTm. Thus, if a = pT v for some v ∈ Z

n
q , then a = cT · CRTmv.

Coefficient Vector Representation. For a = pT v with some v ∈ Z
n
q , we

call v the coefficient vector of a under p and denote it by a. For a ∈ R�
q, let

a = (pT v1, · · · ,pT v�)T for some vi ∈ Z
n
q . We call (v1; · · · ;v�) the coefficient

vector of a under p and denote it by a. Similarly, we can define the coefficient
vector of a and a under basis c and denote them by a

˜
and a

˜
respectively. As
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pT = cT · CRTm, we know that a
˜

= CRTm · a. For a ∈ R�
q, we have a

˜
=

(I� ⊗ CRTm)a and a = (I� ⊗ CRT−1
m )a

˜
.

5.1.2 Gaussian Samplings
Gaussian Distribution over K ⊗ R. Since m is a power of 2, the power basis
p is an orthogonal basis of H (via canonical embedding σ and [20, Lemma 2.15])
and ||ζj

m|| =
√

n, ∀j ∈ Z
∗
m. Hence, Gaussian distribution over K ⊗ R (or H via

σ) with parameter ξ can be sampled as z =
∑n−1

i=0 ζj
mrj , where r0, · · · , rn−1 is

i.i.d. Gaussian over R with parameter ξ/
√

n. Denote this distribution by Ψξ.

Discrete Gaussian over R. Since p is an orthogonal basis of R (embedded
into H), e =

∑n−1
i=0 ζj

mei with ei ← DZ,s/
√

n is according to DR,s.

5.1.3 Ring-LWE
The Learning With Errors over rings (Ring-LWE) was introduced in [19], where
the worst-case hardness result was also proven. Based on basis p, x ∈ K ⊗ R

can be represented as x =
∑

i xiζ
i
m for xi ∈ R. Also, x ∈ K/qR ⊗ R can be

represented as x =
∑

i xiζ
i
m for xi ∈ [0, q). Let T = K/qR ⊗ R.

For s ∈ Rq and distribution χ over K ⊗ R, a sample from distribution As,χ

over Rq × T consists of (a, b) with a ← Rq, e ← χ and b = as + e mod q.
Decisional ring-LWE (ring-DLWEq,χ,m) states that independent samples

from As,χ for s ← Rq and the same number of samples uniformly over Rq ×T are
indistinguishable. Denote this assumption with χ = DR,r by ring-DLWEq,r,m.

5.1.4 Matrix Representations for Operations over Rq

In this subsection, we will give some useful facts on the matrix representation
over Zq for elements, vector or matrix over Rq. For b ∈ Rq, define φ1(b) =
CRT−1

m ·diag(b
˜
), φ2(b) = CRTT

m ·diag(b
˜
) ·CRT−T

m . Generally, for D = (dij) ∈
R�×k

q and u = 1, 2, define φu(D) = (φu(dij))1≤i≤�,1≤j≤k (a block matrix with

entry (i, j) being φu(dij)). For v ∈ Z
n
q , define ‡(v) =

⎡

⎢
⎢
⎢
⎣

v0 v1 · · · vn−1

−vn−1 v0 · · · vn−2

...
...

. . .
...

−v1 −v2 · · · v0

⎤

⎥
⎥
⎥
⎦

.

The following facts about φ1, φ2, ‡ are useful.

Lemma 13. Let s ∈ Rq, e,b ∈ R�
q and D = (d(1), · · · ,d(k)) ∈ R�×k

q .

1. φ1(b) = (I� ⊗ CRT−1
m )

⎡

⎣

diag(b1
˜

)

.

.

.
diag(b�

˜

)

⎤

⎦ , φ2(b) = (I� ⊗ CRTT
m)

⎡

⎣

diag(b1
˜

)

.

.

.
diag(b�

˜

)

⎤

⎦CRT−T
m .

2. φ2(D) = (I� ⊗ CRTT
m)

⎡

⎢
⎣

diag(d11
˜

) · · · diag(d1k
˜

)
...

. . .
...

diag(d�1
˜

) · · · diag(d�k
˜

)

⎤

⎥
⎦ (Ik ⊗ CRT−T

m ).
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3. bs = φ1(b)s
˜
.

4. [eT b]T = [e]T φ2(b). Further, ((eT d(1))T , · · · , (eT d(k))T ) = [e]T · φ2(D).
5. φ2(s) = ‡(s).

Proof. Items 1 and 2 follow by definition. For item 3, notice that for s, b ∈ Rq,
bs = CRT−1

m (b
˜

� s
˜
) = φ1(b)s

˜
. Generalizing to b ∈ R�

q follows by definition of
φ1(b). For item 4, notice (bs)T = s

˜
T φT

1 (b) = sT · CRTT
mφT

1 (b) = sT φ2(b) for
s, b ∈ Rq. Thus, [eT b]T =

∑
i[eibi]T =

∑
i[ei]

T φ2(bi) = [e]T φ2(b). Generalizing
to the second part of item 4 follows by definition of φ2(D). For item 5, notice
that [bs]T = sT · ‡(b) (as xn +1 = 0 in Rq). But we know that [bs]T = sT ·φ2(b).
Since s is arbitrary in Rq, the result follows. ��

In the remaining of this section, we will present materials for ring-LWE based
PAKE instantiation. Due to the space limitation, we present it in the intuitive
level. The formal details appear in the full paper.

5.2 Supporting Properties from Ring-LWE

Regularity. We prove a regularity result: for discrete Gaussian e over R� and
uniformly random D over R�×k

q , eT D is statistically close to uniform over Rk
q

(for quite general k, �). The strategy is as follows. By Lemma 13(4), eT D is
represented by [e]T φ2(D). It suffices to show that [e]T φ2(D) is close to uniform in
Z

1×nk
q . We use Lemma 3 (with Lemma 1) to do this. This essentially only requires

to show that mins∈Zkn
q −{0} ||φ2(D)s||∞ is large, as it implies a full column rank

of φ2(D) and large λ∞
1 (Λ(φ2(D))). This requirement is shown in the full paper.

It should be noted that our regularity result with a special form of D appeared
in [20] while the case of k = 1 is in [10].

Adaptive Smoothness-I. Given a,h ← R�
q and a [�n, k, d]p-code C with large d,

we show the following holds with high probability (over a,h): let E be discrete
Gaussian over Z

�n×μ and w be adaptively chosen after given ET · φ1(a). Then,

1. mins∈Z
n+1
q −0 ||

(
φ1(a),w − hu

)
s||∞ is large for all but one u in C, where hu ∈

R�
q is defined so that hu

˜
= h

˜
� u;

2. ET
(
φ1(a),w − hu

)
is close to uniform over Z

μ×(n+1)
q for all u ∈ C but the

exceptional one in item 1, where the statistical closeness is over E.

To show item 1, it suffices to show ||φ1(a) · s′||∞ for any s′ ∈ Z
n
q − {0} is large

and the || · ||∞-distance from t(w − hu) to L(φ1(a)), ∀t ∈ Z
∗
q , is large for all

but one u in C. The former is given by a random argument and the latter is a
consequence of Lemma 11, using w − hu = (I� ⊗ CRT−1

m )(w
˜

− h
˜

� u). Item 2
follows from the adaptive version of Lemma3, using item 1.
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Adaptive Smoothness-II. In smoothness-I, we can extract μ random elements in
Zq (i.e., ET (w − hu)) from μ × n matrix ET φ1(a). In smoothness-II, we show
this extraction efficiency can be improved. Specifically, for D ← R�×k

q ,h ← R�
q

and a [�n, k′, d]p-code C with large d, we show the following holds with high
probability (over D,h). Let e be discrete Gaussian in R� and w is adaptively
chosen after given eT D.

1. mins∈Z
kn+L
q −0 ||

(
φ2(D), φ2(w − hu)L

)
s||∞ is large for all but one u in C,

where hu ∈ R�
q is defined s.t. hu

˜
= h

˜
� u and φ2(v)L is the first L columns

of φ2(v).
2. (eT D, [eT (w − hu)]L1 ) is close to uniform in Rk

q × Z
L
q for all u ∈ C but the

exceptional one in item 1, where [x]L1 is the first L components of vector x
and the statistical closeness is over e.

Here k ∈ N is arbitrary (e.g. k = 1 and later we will take k = 2). The
parameter L < n but we can achieve L = Θ(n). Consequently, we can now
extract Θ(n) elements in Zq from eT D ∈ Rk

q . The proof of item 1 is given by a
strengthened regularity. The idea of item 2 is to use Lemma 13(4) to study the
distribution of its matrix form [e]T (φ2(D), φ2(w − hu)L). This is provably close
to uniform for all but one u by item 1 and a variant of [28, Lemma 19].

Hidden-Bits Lemma from Ring-LWE. We extend LWE-based hidden-bits lemma
in Sect. 4.2 to the ring-LWE setting. It essentially says that given a redundant
ring-LWE tuple, we can extract some random bits of the secret that is confi-
dential to an attacker. Formally, for fixed α, β ∈ Rq, let L′ = |{i | (α

˜
[i], β

˜
[i]) �=

(0, 0), i ∈ [n]}|. Then, given a,b ← R�
q and as + bt + x for s, t ← Rq and x

discrete Gaussian over R�, it holds that
[

αs + βt
]L

1
is indistinguishable from

uniformly random in Z
L
q under the ring-DLWE assumption.

Trapdoor Generation from Ring-LWE. We generalize the trapdoor generation
algorithm in Z

m in [21] to the ring-LWE setting. The algorithm will generate a
random matrix D ∈ R�×ν

q together with a trapdoor R so that R can be used
to decode t from Dt + x when x is short. Ducas and Micciancio [10] obtained
the generalization for case ν = 1. We obtain the result for the general ν case.
Our algorithm is simply the ring version of [21]: D = (D0; Iν ⊗g −RT D0) for a
random matrix D0 in R

(�−kν)×ν
q and a discrete Gaussian matrix R in R(�−kν)×kν ,

where g = (1, 2, · · · , 2k−1)T and k = �log q�. To show that D is random, it
requires to show that given D0, RT D0 is statistically random. This follows by
our regularity result above. The decoding property is a trivial extension of [21].

5.3 ASPHs from Ideal Lattices

In this section, we will present our construction of ASPH from ideal lattices.
The idea is to extend the LWE-based schemes to the ring-LWE setting.
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5.3.1 Construction of δ-ASPHA

Let L ≤ n, θ ∈ (0, 1), k = o(n), � ∈ N, p constant prime. Take g ← R�
q, D =

(d1,d2) ← R�×2
q . Let C be a [�n, k, θ�n]p-code. For π ∈ Z

k
p, define gπ ∈ R�

q such
that gπ

˜
= g

˜
� C(π).

The Commitment Scheme. The commitment key is (D,g). To commit to π ∈ Z
k
p,

take t ← R2
q and z discrete Gaussian over R�. The commitment is w = Dt +

gπ + z with witness (t, z). The decommitment is (π, t, z). Let ver(t, z, π,w) = 1
if and only if w = Dt + gπ + z with ||z|| small.

Then, we define L and L∗. Let X = Z
k
p ×R�

q. Then, L is generically defined by

ver. Define L∗ = {(π,w) ∈ X | ||
(
φ2(D), φ2(w−gπ)L

)
s||∞ is small for some s ∈

Z
2n+L
q − {0}}, where φ2(v)L is the first L columns of matrix φ2(v).

Our commitment is secure: the hiding property directly follows from ring-
DLWE assumption and binding property is implied by properties of L∗:
(1) L ⊆ L∗. This is true as ||

(
φ2(D), φ2(Dt + z)L

)
s||∞ with short z is small

for some non-zero s. Indeed, via Lemma 13, one can find 2n × n matrix A s.t.
φ2(D)A = φ2(Dt). Let 1L = (1, · · · , 1)T (with L 1s), 1+

L = (1, · · · , 1, 0, · · · , 0)T

(with L 1s and (n − L) 0s). For s = (−A1+
L ;1L), ||

(
φ2(D), φ2(Dt + z)L

)
s||∞ =

||φ2(z)1+
L ||∞ ≤ ||z|| (small), where φ2(zi) = ‡(zi) (Lemma 13(5)) is used.

(2) For w ∈ R�
q, there is at most one π so that (π,w) ∈ L∗. This follows from

property 1 of adaptive smoothness-II.

Description of δ-ASPHA. For secret key o discrete Gaussian over R�, define the

projection key α(o) = oT D. For (π,w) ∈ X , let H(o, π,w) =
[
oT (w − gπ)

]L

1
.

If (π,w) ∈ L with witness τ = (t, z), then let Ĥ(τ, α(o)) =
[
oT Dt

]L

1
.

Correctness. For (π,w) ∈ L, there exists τ = (t, z) with small ||z|| s.t. w =

Dt + gπ + z. Then, H(o, π,w) − Ĥ(τ, α(o)) =
[
oT z

]L

1
=

[∑�
i=1[zi]

T ‡(oi)
]L

1
(by

Lemma 13(4)(5)), which is short by Lemma2 as o is Gaussian and ||z|| is small.

Adaptive Smoothness. Given π and any function f : R2
q → R�

q, let o discrete
Gaussian over R� and w = f(oT D). If (π,w) ∈ X\L∗, then by definition of
L∗, gπ is not the exceptional u in the result of adaptive smoothness-II. Thus,(

oT D,
[
oT (w − gu)

]L

1

)

is close to uniform in R2
q × Z

L
q .

Strong Smoothness. It suffices to show that (α(o),D,Dt + z,
[
oT Dt

]L

1
) and

(α(o),D,Dt + z,U) are indistinguishable, when o, z discrete Gaussian over R�

and (t,U) ← R2
q × Z

L
q . Let (a, b) = oT D. By regularity property, with high

probability, (a
˜
[i], b

˜
[i]) �= 0 holds for most of i’s. So strong smoothness follows

from hidden-bit lemma in Sect. 5.2.
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5.3.2 Construction of δ-ASPHB

Let μ ∈ N, θ ∈ (0, 1), k = o(n), � ∈ N, p constant prime. Take h,a ← R�
q. Let C

be a [�n, k, θ�n]p-code. For π ∈ Z
k
p, define hπ ∈ R�

q such that hπ
˜

= h
˜

� C(π).

trapSim-commitment. The commitment to π ∈ Z
k
p using public-key (a,h) is

y = as + hπ + x for s ← Rq and x discrete Gaussian over R�. Details and
language L are identical to δ-ASPHA. Further, the trapdoor simulation follows.

– sim(1n). Take h ← R�
q; use the trapdoor generation algorithm in Sect. 5.2

with ν = 1 to generate a and R so that R can decode as + x as long as ||x||
is not large. With R, membership (π,y) ∈ L can be verified, by trying to
decode (s,x) so that y = as + x + hπ.

Let X = Z
k
p ×R�

q. We define L∗ ⊆ X so that (π,y) ∈ L∗ if t(y−hπ) = as+x
for some (t, s,x) ∈ Zq × Rq × R�

q with x short and (t, s) �= (0, 0). We now verify
three required properties for L∗.

1. L ⊆ L∗. It is evident by adapting witness (s,x) for L to (1, s,x) for L∗.
2. Given y ∈ R�

q, there is at most one π with (π,y) ∈ L∗. Notice that t(y−hπ) =
as+x (via Lemma 13(3)) is equivalent to t(y − hπ) = φ1(a)s

˜
+x. By adaptive

smoothness-I, there is at most one π so that this holds with short x and non-
zero (t, s

˜
), desired.

3. For (a,R) ← sim(1n), (π,y) ∈ L∗ can be verified using R as follows. For each
t ∈ Z

∗
q , try to use R to recover (s,x) so that t(y − hπ) = as + x for short

x. If it succeeds, then claim (π,y) ∈ L∗; otherwise, claim (π,y) �∈ L∗. The
validity of this algorithm is by the decoding capability of R.

The commitment security is evident: the hiding property is by the ring-DLWE
assumption and the binding property follows from properties 1, 2 above for L∗.

Description of δ-ASPHB . We now define H and Ĥ. Take secret E discrete Gaus-
sian over Z

n�×μ and the projection key is U = α(E)=ET φ1(a). The projective
hash H(E, π,y)=ET (y − hπ). With witness τ = (s,x), define Ĥ(τ,U) = Us

˜
.

Correctness. For (π,y) ∈ L, let y = as + hπ + x with short x. Then, by
Lemma 13(3), ET (y − hπ) = ET φ1(a)s

˜
+ ET x = Us

˜
+ ET x. The correctness

follows as ||ET x||∞ is small by Lemma 2 (since E is Gaussian and x is short).

Smoothness. For any (π,y) �∈ L∗, y can not be expressed as t(y − hπ) = as + x

with short x for some (t, s) �= (0, 0). Via Lemma 13(3), ||
(
φ1(a),y − hπ

)(s

t̃

)||∞
is large for any non-zero (t, s). By adaptive smoothness-I, ET (φ1(a),y − hπ), is

close to uniform over Z
μ×(n+1)
q .

5.4 A Ring-LWE-Based Instantiation of PAKE

We now instantiate our framework from Ring-LWE. In a nutshell, we realize
the KF-MAC using the construction in Sect. 3.3 and key reconciliation scheme
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from Sect. 3.2, while instantiating H1 = (Π1, ver
∗
1,H1, Ĥ1, α1) by δ-ASPHB and

H2 = (Π2, ver
∗
2,H2, Ĥ2, α2) by δ-ASPHA, constructed in the last subsection. Our

protocol will use the following parameters, notations and functions.

– m is a power of 2; n = m
2 ; θ ∈ (0, 1); prime q; p a constant prime with p < q;

�1 = Θ(log n) and �2 = ω(1) ≤ �1; k = o(n); password dictionary D ⊆ Z
k
p.

– For i = 1, 2, let Ci be a [�in, k, θ�in]p-code from Lemma 7.
– H1 takes a,h ← R�1

q as its public-key and uses code C1.
– H2 takes g ← R�2

q ,D = (dij) ← R�2×2
q as its public-key and uses code C2.

In addition, we use v = oT D ∈ R2
q with o ← (DR,

√
nr2

)�2 as the public
projection key for the PAKE framework.

– δ1 is the bound on the noise term for the commitment in H1 and H2.
– As before, FK is the KF-MAC in Sect. 3.3 with a fuzzy verification function

ΦK′ ; G is a pseudorandom generator; £ is a reconciliation scheme for Alice
and Bob, as in Sect. 3.2.

The public parameter is a|D|v|g|h|F |£|C1|C2|q. Then, the instantiated
PAKE protocol between Pi and Pj is described in Fig. 4 (see Sect. 5.4 for details).

5.5 Implementation Results

Due to the space limitation, the efficiency details and comparison are given in
the full paper and a summary is given in Table 1. We now provide a proof-of-
concept implementation of our RLWE-PAKE scheme. The parameters are chosen
as Fig. 5(a) and the output of H is 256 bits. The implementation is done on the
platform of Intel Core i7-7700HQ CPU at 2.80 GHz with 7.7 GiB RAM running
on the Ubuntu 16.04 LTS 64-bits operation system. Our program uses C++ lan-
guage and the Number Theory Library (NTL) [27] without parallel techniques.
The computational performance is presented in Fig. 5(b). In the setup phase,
public parameters are generated. The columns of Pi and Pj denote the time cost

Fig. 4. Our Protocol RLWE-PAKE: t ← R2
q and z ← (DR,

√
nr1)

�2 are sampled with
randomness Υ , where Υ |sk = G(ξ).
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Fig. 5. Performance of RLWE-PAKE

of computations by Pi and Pj respectively. The message size and session key
size are listed in Fig. 5(c). It shows the message sizes by Pi and Pj respectively
in order to agree on a 16 bytes session key. This is a reference implementation
without optimizing. Practically, matrix multiplications can be done in parallel.
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Abstract. Constrained pseudorandom functions (C-PRFs) let the pos-
sessor of a secret key delegate the ability to evaluate the function on
certain authorized inputs, while keeping the remaining function values
pseudorandom. A constraint-hiding constrained PRF (CHC-PRF) addi-
tionally conceals the predicate that determines which inputs are autho-
rized. These primitives have a wealth of applications, including water-
marking schemes, symmetric deniable encryption, and updatable garbled
circuits.

Recent works have constructed (CH)C-PRFs from rather aggressive
parameterizations of Learning With Errors (LWE) with subexponential
modulus-noise ratios, even for relatively simple “puncturing” or NC1 cir-
cuit constraints. This corresponds to strong lattice assumptions and inef-
ficient constructions, and stands in contrast to LWE-based unconstrained
PRFs and fully homomorphic encryption schemes, which can be based
on quasi-polynomial or even (nearly) polynomial modulus-noise ratios.

In this work we considerably improve the LWE assumptions needed
for building (constraint-hiding) constrained PRFs and watermarking
schemes. In particular, for CHC-PRFs and related watermarking schemes
we improve the modulus-noise ratio to λO((d+log λ) log λ) for depth-d cir-
cuit constraints, which is merely quasi-polynomial for NC1 circuits and
closely related watermarking schemes. For (constraint-revealing) C-PRFs
for NC1 we do even better, obtaining a nearly polynomial λω(1) ratio.
These improvements are partly enabled by slightly modifying the defi-
nition of C-PRFs, in a way that is still compatible with many of their
applications. Finally, as a contribution of independent interest we build
CHC-PRFs for special constraint classes from generic, weaker assump-
tions: we obtain bit-fixing constraints based on the minimal assumption
of one-way functions, and hyperplane-membership constraints based on
key-homomorphic PRFs.
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1 Introduction

Constrained pseudorandom functions (C-PRFs), introduced concurrently and
independently by [11,12,26], are PRFs in which the holder of the secret key can
delegate constrained keys that let one evaluate the function on certain authorized
inputs, while keeping the function values on all other inputs pseudorandom.
Constrained PRFs for various constraint classes have been constructed under
different assumptions, including ones where the set of authorized inputs can be
specified by an arbitrary boolean circuit. (See below for details).

In the original conception and constructions of C-PRFs, a constrained key
can and does reveal the constraint that determines whether an input is autho-
rized. Boneh, Lewi, and Wu [10] introduced the notion of constraint-hiding con-
strained PRFs (CHC-PRFs), also known as private constrained PRFs, in which
constrained keys conceal their underlying constraints. In particular, they con-
sidered CHC-PRFs for “punctured” constraints that authorize all but a single
input. They also defined privately programmable PRFs (PP-PRFs), which allow
the constrained key to be “programmed” to output a desired value at the punc-
tured input, and showed that PP-PRFs can be used to build watermarkable
PRFs [19].

1.1 Constructions and Assumptions

By now there are many constructions of constrained PRFs and their descen-
dants, under various assumptions. The original works of [11,12,26] constructed
(constraint-revealing) punctured PRFs based on the minimal assumption that
one-way functions exist. Additionally, Boneh and Waters [11] constructed C-
PRFs for constraints represented by arbitrary polynomial-sized circuits, under
the strong assumption that cryptographic multilinear maps exist. Subsequently,
Brakerski and Vaikuntanathan [17] gave a construction based on the Learning
With Errors (LWE) assumption, but for which security holds only for a single
constrained key. More recently, Attrapadung et al. [4] built C-PRFs for NC1 con-
straints under number-theoretic assumptions, specifically, DDH and L-DDHI.

Moving now to constraint-hiding constrained PRFs, Boneh et al. [10] con-
structed them for arbitrary (polynomial-sized) constraining circuits, under the
strong assumption that indistinguishability obfuscation (iO) exists [7,35]. LWE-
based constructions soon followed, first for puncturing constraints [9], then for
NC1 circuits [18], then for all polynomial-sized circuits [15,32]. Like [17], all these
LWE-based constructions are secure only for a single constrained key. However,
this is an inherent limitation of CHC-PRFs for NC1 circuits, because security
for even two keys implies iO [18].

For privately programmable PRFs and watermarking schemes, the original
constructions from [10,19] were based on iO. Later, Kim and Wu [27] built
LWE-based watermarking schemes through a different but conceptually similar
approach related to programming PRFs. Subsequently, Peikert and Shiehian [32]
actually constructed LWE-based privately programmable PRFs.
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1.2 LWE Error Rate

An important parameter in the LWE problem, which is related to both its con-
crete hardness and its connection to lattice problems, is the error rate α, or
equivalently, the modulus-to-noise ratio q/r = 1/α, where q is the modulus and r
is the “width” of the (Gaussian) error distribution. In more detail, dimension-n
LWE with error width r ≥ 2

√
n is at least as hard as (quantumly) approxi-

mating various worst-case lattice problems to within Õ(n/α) = Õ(q
√

n) factors
on n-dimensional lattices [31,34]. Therefore, using a smaller modulus q (equiv-
alently, a larger error rate α) yields both a stronger security guarantee and a
more efficient scheme. More concretely, according to current lattice algorithms,
obtaining λ bits of security requires using a dimension n = λ · Ω̃(log(1/α)), and
representing elements of Zq requires log q = Ω̃(log(1/α)) bits. Therefore, LWE-
based cryptographic schemes using a small error rate α (i.e., large q) suffer from
large parameters and key sizes that can be cubic, or even quartic, in log(1/α).

While there are LWE-based (ordinary) PRFs where the modulus is quasi-
polynomial λpolylog(λ) [6] or even nearly polynomial λω(1) [5], the current LWE-
based constrained PRFs for punctured, NC1, and arbitrary circuit constraints all
require a subexponential exp(poly(λ)) modulus (unless the domain of the PRF
is restricted to quasi-polynomially long strings). It is instructive to compare
this state of affairs with fully homomorphic encryption (FHE) schemes, whose
underlying techniques are used in the constrained PRFs.

Without bootstrapping, state-of-the-art “leveled” FHE schemes [13,22]
require a modulus that is merely exponential in the depth of the supported cir-
cuit class of homomorphic computations. (Bootstrapping can bring the modulus
down to quasi-polynomial [13,22] or even polynomial [1,16], independent of the
depth of the supported circuits.) By contrast, for constrained PRFs the modulus
is always subexponential in λ, regardless of the circuit depth. In particular, NC1

circuits induce a subexponential modulus, instead of a quasi-polynomial one as
we might hope. This seems to be an artifact unrelated to the main construction
and proof techniques, and raises the following natural question:

Question 1. Can we construct LWE-based (constraint-hiding) constrained PRFs
with smaller-than-subexponential modulus, e.g., exponential in the depth of the
circuit class?

We also point out that all of the known LWE-based watermarkable PRFs [10,
27] (excluding [33], which is not pseudorandom to the setup authority), where
the latter is instantiated with LWE-based PP-PRFs [32], also need a subex-
ponential modulus. Roughly speaking, these constructions are essentially built
upon privately puncturable PRFs. This motivates the following question:

Question 2. Can we construct LWE-based watermarkable PRFs with a quasi-
polynomial modulus?

1.3 Our Results

In this work, our main focus is on improving the LWE assumptions needed
for constructing (single-key) constrained PRFs, including their constraint-hiding
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and privately programmable variants. As a contribution of independent interest,
we also obtain (single-key) CHC-PRFs for bit-fixing and hyperplane-membership
constraints from generic assumptions, namely, one-way functions and key-
homomorphic PRFs, respectively.

Our main insight is that by slightly modifying the correctness requirement for
constrained keys—but in a way that is still strong enough for most applications—
we can construct C-PRFs using much larger LWE error rates, and hence much
weaker assumptions and much smaller moduli and key sizes. In particular, we
answer Question 1 in the affirmative. We also demonstrate that our new notion
of correctness is sufficient for many of the applications of C-PRFs, including
watermarking schemes and updatable garbled circuits; this positively answers
Question 2 as well. We stress that the security level of our constructions scale
proportional to the inverse of the LWE error rate; however, we note that this
is a property shared by all current efficient (ordinary) lattice-based PRFs [5,6].
We now summarize our specific results.

Feasible Correctness. We first observe that satisfying a strict correctness require-
ment for constrained keys is the main reason previous LWE-based C-PRFs
needed a subexponential modulus. In a bit more detail, the prior definitions
require that, given a constrained key, it is computationally hard (or even impos-
sible) to find an authorized input where the constrained key yields a different
output than the real key. We give an alternative definition, which says that no
efficient adversary, even with oracle access to the function, can find an input x
for which there exists a constrained key that authorizes x yet yields a differ-
ent output than the real key. (However, after obtaining a constrained key, an
adversary may be able to find such an input.) We call this new notion feasible
correctness.

Feasibly Correct PP-PRFs and Watermarking PRFs from LWE with Quasi-
Polynomial Modulus. Our first construction under our new correctness notion
is a key-injective, privately programmable PRF, based on LWE with only a
quasi-polynomial modulus q = λO(log2 λ). We plug this construction into the
watermarking PRF construction of [10] and show that the resulting scheme sat-
isfies all of the watermarking requirements presented in [27] (which are stronger
than the definitions in [10]). This results in a watermarking scheme from LWE
with quasi-polynomial modulus q = λO(log2 λ), improving on the prior best of
subexponential.

Feasibly Correct CHC-PRFs from LWE with Quasi-Polynomial Modulus. We
next construct a feasibly correct CHC-PRF for arbitrary polynomial-sized cir-
cuit constraints, based on LWE with modulus q = λO((d+log λ) log λ) where d is
the depth of the supported circuit class. As an application, we instantiate the
“message-embedding” construction of watermarkable PRFs from [33], which uses
CHC-PRFs for log-depth constraints, with our feasibly correct CHC-PRF, thus
reducing the modulus size from subexponential to quasi-polynomial λO(log2 λ).
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Feasibly Correct C-PRFs from LWE with Nearly Polynomial Modulus. Using
the construction in the previous paragraph, feasibly correct CHC-PRFs for NC1

circuits require a quasi-polynomial modulus q = λO(log2 λ). Trivially, this con-
struction is also a feasibly correct C-PRF for NC1. However, we go farther by
constructing such a C-PRF from LWE with only a nearly polynomial modu-
lus q = λω(1), by building upon the branching-program techniques of [16]. As
an application, we show that we can replace regular C-PRFs with feasibly cor-
rect ones in the updatable garbled circuits construction of [2], thus reducing the
modulus size from subexponential to nearly polynomial.

Bit-Fixing and Hyperplane-Membership PRFs from Generic Assumptions. As
results of independent interest, we build CHC-PRFs for specific constraint classes
based on generic, weaker assumptions than prior constructions. We consider the
class of constraints that authorize inputs that lie in a specified hyperplane. For
such constraints we build (feasibly correct) CHC-PRFs generically from key-
homomorphic PRFs. Using the key-homomorphic PRFs of [5], we can base the
security of our construction on LWE with nearly polynomial modulus q = λω(1),
which is significantly smaller than the quasi-polynomial q = λO(log2 λ) that we
would get by näıvely using our feasibly correct CHC-PRF for NC1 circuits.

Lastly, for bit-fixing constraints, i.e., constraints that authorize strings
matching a specified pattern in {0, 1, �}∗ (where � denotes the wildcard sym-
bol), we build (fully correct) CHC-PRFs based on the minimal assumption that
one-way functions exist. Previously, bit-fixing PRFs were only known based on
LWE with subexponential modulus [15,18,32], DDH [4], or multilinear maps [11],
although the latter can securely issue more than one constrained key.

1.4 Concurrent and Independent Works

In a concurrent and independent work, Kim and Wu [28] construct watermark-
ing PRFs from LWE with quasi-polynomial (nearly polynomial) modulus. While
their security model for watermarking PRFs is an interesting strengthening of
the model in [33], however, similar to [33] their PRFs do not offer full pseudoran-
domness in the presence of the setup authority. Furthermore, to make the LWE
modulus quasi-polynomial (nearly polynomial), they have to limit the input
domain of their PRFs to polylogarithmically (nearly logarithmically) long bit-
strings. In comparison, both of our watermarking constructions support polyno-
mially long bit-strings as inputs, with one satisfying the authority pseudorandom
model of [27] and the other satisfying the [33] model.

In another concurrent work, Davidson, Katsumata, Nishimaki and
Yamada [21] construct bit-fixing PRFs from one-way functions. Their construc-
tion is very similar to what we present in Construction 6. Later, Tsabary [36]
makes an observation essentially identical to our Remark 1 and uses it to build
LWE-based adaptively secure attribute based encryption for constant-width
CNFs.
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1.5 Techniques

Achieving Feasible Correctness. We start by reviewing why the correctness def-
inition in current LWE-based C-PRFs leads to a subexponential modulus. In
these constructions, to compute the function on an input x, first a value yx ∈ Z

m
q

is computed and the final output is �yx�p. Using a constrained key for a depth-d
constraint C that authorizes x, one can obtain yx +ex where ex is a B-bounded
error vector for some B = λÕ(d). For correctness we need �yx +e�p = �yx�p, i.e.,
the coordinates of yx should not be in the border interval q

p (Z + 1
2 ) + [−B,B].

Unfortunately, to guarantee that, given a constrained key, an adversary cannot
find an input x such that yx has a coordinate in the border interval, we currently
do not know any solution other than making q subexponential. This is because
we need to rely on the hardness of the “1-dimensional SIS problem” over Zq,
as originally used in [17], or use a union bound over the subexponential PRF
domain, as in [15].

We observe that if we can make yx a pseudorandom function of x then an
alternative “feasible correctness” property can be achieved. Namely, an adversary
without a constrained key, but with oracle access to the PRF functionality, can
only produce an x for which yx has a coordinate in the border interval with
probability at most (Bp/q) · poly(λ). Setting q = Bp · λω(1) = λÕ(d) yields
feasible correctness.

Interestingly, we observe that the the notion of feasible correctness is compat-
ible with many applications of C-PRFs. Most notably, the watermarking schemes
based on C-PRFs maintain all of their requisite properties, because correctness
only requires agreement between marked and unmarked PRFs on an overwhelm-
ing fraction of inputs. More generally (and somewhat informally), as long as a
C-PRF is used in a context where it is evaluated on inputs that do not depend on
the constrained key, then feasible correctness can substitute for full correctness.

Making yx a pseudorandom function of x can be done by adding an inde-
pendent PRF value in the computation of yx. In more detail, we generate a key
κ ← PRF.KG(1λ) for an arbitrary PRF with the same input domain as our PRF
and with range Z

m
q , and output it as part of both the master secret key and the

constrained key. When evaluating the PRF on input x we compute yx as before,
then compute y′

x = yx + PRF.Eval(κ, x) and output �y′
x�p. Evaluation using

a constrained key is similar. Using an LWE-based PRF which only requires a
nearly polynomial modulus [5], we achieve feasible correctness from LWE with
modulus q = λÕ(d).

Constrained PRFs for NC1 Constraints. We now describe how we construct
feasibly correct (constraint-revealing) C-PRFs for NC1 constraints from LWE
with a nearly polynomial modulus q = λω(1). Conceptually, our construction
is similar to the one of [15], however we also use the technique from [16] of
representing computations as branching programs. For each input x we denote
by Mx the efficiently computable public binary matrix constructed as in [5].
These matrices have the property that for a uniformly random s over Zq, the
randomized procedure which, on input x, samples a sufficiently wide Gaussian
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error ex and outputs sMx+ex, is pseudorandom. Our construction also crucially
relies on the [16] procedure for homomorphically evaluating branching programs.

In our construction, a constrained key for a circuit C consists of the circuit C,
a key κ for an auxiliary PRF, and several LWE samples ai = s(Ai +Ci ·G)+ ei,
where the Cis are the individual bits of C. Evaluating the PRF at an input x is
done as follows:

– We use the “gadget homomorphisms” for branching programs with asymmet-
ric noise growth [16] to homomorphically evaluate Ux(·) on the LWE sam-
ples ai, where Ux(C) = C(x) is the branching program for a depth-universal
circuit for NC1. The result is

ax = s · Ax + C(x) · s · G + ex, (1)

where Ax does not depend on C and ex is polynomially bounded.
– Next, we multiply ax by G−1(A ·Mx), where A is a public uniformly random

matrix over Zq, to get

bx = s · Ax · G−1(A · Mx) + C(x) · s · A · Mx + e′, (2)

where e′ is also polynomially bounded.
– Finally, we define the value of the PRF at input x to be

�s · Ax · G−1(A · Mx) + PRF.Eval(κ, x)�p, (3)

and the constrained value at x to be

�bx + PRF.Eval(κ, x)�p. (4)

Because e′ is B-bounded for B = poly(λ), a nearly polynomial modulus q =
B ·λω(1) = λω(1) is sufficient for feasible correctness. To show that the C-PRF at
unauthorized inputs x (i.e., where C(x) = 1) remains pseudorandom, we have to
argue that the extra term s ·A ·Mx +e′ completely masks s ·Ax ·G−1(A ·Mx).
The high-level idea here is that, because Mx has small entries, s ·A ·Mx +e′ and
(s ·A+e′′) ·Mx +e′ are very close to each other. Then by LWE, (s ·A+e′′) and
a uniformly chosen s′ are indistinguishable. But as already noted, s′ ·Mx + e′ is
pseudorandom, as desired.

Generic CHC-PRFs for Hyperplane Membership Constraints. We give a brief
overview of our generic feasibly correct CHC-PRF construction for the class
of hyperplane membership predicates. This construction can be based on any
(noisy) key-homomorphic PRF. Here, for simplicity we only consider constraints
of dimension 1, i.e., each constraint consists of a pair (α0 ∈ Zq, α1 ∈ Zq) for
some modulus q and only authorizes inputs x ∈ Zq such that α0 + α1 · x = 0
(mod q). Generalizing for higher dimensions is straightforward. Let KHPRF be
a key-homomorphic PRF. The master secret key consists of two keys (k0, k1) for
KHPRF. To evaluate the PRF on an input x, we output KHPRF.Eval(k0, x) +
KHPRF.Eval(x · k1, x). To produce a constrained key for constraint (α0, α1), we
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first sample a KHPRF key d and then output (k0 − α0d, k1 − α1d) as the con-
strained key. It is straightforward to observe that the constrained-key (perfectly)
hides (α0, α1). The correctness and pseudorandomness property follow from the
key-homomorphism and the pseudorandomness of KHPRF. This is because

Eval(k0 − α1d, x) + Eval(x · (k1 − α1d), x) = Eval(k0, x)
+Eval(x · k1, x) − (α0 + α1 · x)Eval(d, x),

(5)

and in particular if α0 + α1 · x �= 0 (mod q) then the last term computationally
hides the true value of the PRF.

2 Preliminaries

We denote row vectors by lower-case bold letters, e.g., a. We denote matrices by
upper-case bold letters, e.g., A. The Kronecker product A ⊗ B of two matrices
(or vectors) A and B is obtained by replacing each entry ai,j of A with the block
ai,jB.

Depth-Universal Circuits. We use depth-universal circuits, i.e., universal circuits
with depth O(d) where d is the depth of the simulated circuit class. The con-
struction of Cook and Hover [20] is depth-universal and has size O(σ3 · d/ log d)
for circuits of size σ and depth d.

Learning with Errors. For a positive integer dimension n and modulus q, and
an error distribution χ over Z, the LWE distribution and decision problem are
defined as follows. For an s ∈ Z

n, the LWE distribution As,χ is sampled by
choosing a uniformly random a ← Z

n
q and an error term e ← χ, and outputting

(a, b = 〈s,a〉 + e) ∈ Z
n+1
q .

Definition 1. The decision-LWEn,q,χ problem is to distinguish, with non-
negligible advantage, between any desired (but polynomially bounded) number of
independent samples drawn from As,χ for a single s ← Z

n
q , and the same number

of uniformly random and independent samples over Z
n+1
q .

A standard instantiation of LWE is to let χ be a discrete Gaussian distribu-
tion (over Z) with parameter r = 2

√
n. A sample drawn from this distribution

has magnitude bounded by, say, r
√

n = Θ(n) except with probability at most
2−n. For this parameterization, it is known that LWE is at least as hard as quan-
tumly approximating certain “short vector” problems on n-dimensional lattices,
in the worst case, to within Õ(q

√
n) factors [31,34]. Classical reductions are also

known for different parameterizations [14,30].

3 Definitions

Here we recall prior definitions of constrained PRFs [32], then relax them to our
new notion of feasible correctness.
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Definition 2. A constrained function for a constraint class C is given by a tuple
of efficient algorithms (Setup,KeyGen,Eval,Constrain,CEval) having the following
interfaces (where the domain X , range Y, and class C may depend on the security
parameter):

– Setup(1λ), given the security parameter λ, outputs public parameters pp.
– KeyGen(pp), given the public parameters pp, outputs a master secret key msk.
– Eval(pp,msk, x), given the master secret key and an input x ∈ X , outputs

some y ∈ Y.
– Constrain(pp,msk,C), given the master secret key and a constraint C ∈ C,

outputs a constrained key skC .
– CEval(pp, skC , x), given a constrained key skC and an input x ∈ X , outputs

some y ∈ Y.

In some constructions there is no need for a Setup algorithm, in which case the
security parameter 1λ takes the place of the public parameters pp.

procedure CHCPRFRealA(1λ)
C ← A(1λ)
pp ← Setup(1λ)
msk ← KeyGen(pp)
skC ← Constrain(pp,msk,C)
skC → A
repeat

x ← A
Eval(pp,msk, x) → A

until A halts

(a) The real experiment

procedure CHCPRFIdealA,S(1λ)
C ← A(1λ)
(pp, sk) ← S(1λ)
sk → A
repeat

x ← A
if C(x) = true then

CEval(pp, sk, x) → A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 1. The real and ideal constraint-hiding constrained PRF experiments.

Definition 3. A constrained function is a constraint-hiding constrained PRF
(CHC-PRF) if there is a PPT simulator S such that, for any PPT adversary A
(that without loss of generality never repeats an Eval query),

{CHCPRFRealA(1λ)}λ∈N

c≈ {CHCPRFIdealA,S(1λ)}λ∈N, (6)

where CHCPRFReal and CHCPRFIdeal are the respective views of A in the exper-
iments defined in Fig. 1.

We now introduce an alternative (but still sufficient for applications) notion
of correctness for constrained evaluation, which we call feasible correctness. This
requires that CEval and Eval agree on any input x that the adversary outputs
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after having query access to Eval, but before obtaining a constrained key. Corre-
spondingly, in the simulation-based security definitions we limit the adversary to
query only unauthorized inputs. This is because after obtaining the constrained
key, it may be able to find inputs x on which CEval and Eval differ, which would
allow it to distinguish the real and ideal experiments. We still call this property
simulation security, where the restriction to unauthorized inputs is clear by the
context of feasible correctness.

Definition 4. A constrained function is feasibly correct if for all PPT adver-
saries A and all pp in the support of Setup we have

Pr

⎡
⎣

∃C ∈ C s.t. C(x) = true
∃skC ∈ support of Constrain(pp,msk,C) s.t.

CEval(pp, skC , x) �= Eval(pp,msk, x)

⎤
⎦ = negl(λ), (7)

where msk ← KeyGen(pp), x ← AEval(pp,msk,·)(pp), and the probability is taken
over the random coins of the KeyGen algorithm and the random coins of the
adversary A.

We recall the notion of key-homomorphic PRFs.

Definition 5. A PRF (Setup,Keygen,Eval) with domain X , finite-group key
space K, and range Z

m
p for some integer modulus p and dimension m, is noisy

key homomorphic with noise bound E if for every pp in the support of Setup,
every two keys msk1,msk2 in the support of Keygen(pp), and every x ∈ X , we
have

Eval(pp,msk1 + msk2, x) = Eval(pp,msk1, x) + Eval(pp,msk2, x) + e (8)

for some noise vector e where each entry of e has magnitude at most E.

Theorem 1 ([5]). Assuming the hardness of LWE with nearly polynomial mod-
ulus size q = λω(1), there exists a noisy key-homomorphic PRF with key space
Z

n
q , range Z

m
p for any p for which p/q = negl(λ), and noise upper bound E = 1.

4 Feasibly Correct Shift-Hiding Shiftable Functions

Recall the notion of shift-hiding shiftable functions (SHSFs) in [32] (a brief
overview is available in AppendixA). Here we give a construction of what we call
feasibly correct shift-hiding shiftable functions (FC-SHSFs) which are essentially
SHSFs which satisfy shift hiding and approximate shift correctness but instead of
border avoiding they satisfy a new notion which we call feasible border avoiding.
Interestingly, the main building block for our FC-SHSFs is a SHSF.
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4.1 Notation

Let PRF = (KG,Eval) be a PRF. We can instantiate PRF based on various
assumptions. In particular, the instantiation in [5] which is based on LWE
with a nearly polynomial modulus, incurs no additional cost to later appli-
cations of our FC-SHSF construction. Let U(H,x) = H(x) denote a depth-
universal circuit for boolean circuits H : {0, 1}� → {0, 1}k of size σ and depth
d, and let Ux(·) = U(·, x). Denote the SHSFs constructed in [32] by PSSHSF =
(Setup,KeyGen,Eval,Shift,SEval,S) and recall that in PSSHSF the noise growth
is λO(d log λ).

4.2 Construction

Here we give the tuple of algorithms (Setup,KeyGen,Eval,Shift,SEval,S) that
make up our SHSF. For security parameter λ, constraint circuit size σ, and
constraint circuit depth d the algorithms are parameterized by some dimension
n and modulus q, and m = n�lg q�.
Construction 1. Let X = {0, 1}� and Y = Z

m
q . Define:

– Setup(1λ, 1σ, 1d): Generate PSSHSF public parameters pp′ ← PSSHSF.
Setup(1λ, 1σ, 1d). Output pp := pp′.

– KeyGen(pp): Generate a PRF key κ ← PRF.KG(1λ) and PSSHSF master secret
key msk′ ← PSSHSF.KeyGen(1λ). Output (κ,msk′).

– Eval(pp,msk, x ∈ {0, 1}�): output

PRF.Eval(κ, x) + PSSHSF.Eval(pp′,msk′, x) (9)

– Shift(pp,msk,H): for a shift function H : {0, 1}� → Z
m
q whose binary decom-

position H ′ : {0, 1}� → {0, 1}k can be implemented by a circuit of size σ,
compute sk′

H ← SHSF.Shift(pp′,msk′,H). Output

skH = (κ, sk′
H). (10)

– SEval(pp, skH , x): On input skH = (κ, sk′
H) and x ∈ {0, 1}�, output

PRF.Eval(κ, x) + PSSHSF.SEval(pp′, sk′
H , x) (11)

– S(1λ, 1σ, 1d): Sample a PRF key κ ← PRF.KG(1λ), a simulated PSSHSF key
(pp′, sk′) ← PSSHSF.Sim(1λ, 1σ), and output pp = (pp′) and sk = (κ, sk′).

4.3 Properties

We now state the main properties of our construction that we will use in subse-
quent sections.

The following two lemmas follow directly from the shift-hiding and approx-
imate shift correctness properties of PSSHSF. So, we omit the proofs of these
lemmas.
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procedure RealKeyA(1λ, 1σ, 1d)
H ← A(1λ, 1σ, 1d)
pp ← Setup(1λ, 1σ, 1d)
msk ← KeyGen(pp)
sk ← Shift(pp,msk,H)
(pp, sk) → A

(a) The real shifted key generation ex-
periment

procedure IdealKeyA(1λ, 1σ, 1d)
H ← A(1λ, 1σ, 1d)
(pp, sk) ← S(1λ, 1σ, 1d)
(pp, sk) → A

(b) The random key generation experi-
ment

Fig. 2. The real and random shifted key generation experiments.

Lemma 1 (Shift Hiding). Assuming the hardness of LWEn−1,q,χ, for any
PPT A, any σ = σ(λ) = poly(λ) and any d,

{RealKeyA(1λ, 1σ, 1d)}λ∈N

c≈ {IdealKeyA(1λ, 1σ, 1d)}λ∈N, (12)

where RealKey and IdealKey are the respective views of A in the experiments
defined in Fig. 2.

Lemma 2 (Approximate Shift Correctness). For any shift function
H : {0, 1}� → Z

m
q whose binary decomposition H ′ : {0, 1}� → {0, 1}k can be

represented by a boolean circuit of size σ and depth d, and any x ∈ {0, 1}�,
pp ← Setup(1λ, 1σ, 1d), msk ← KeyGen(pp) and skH ← Shift(pp,msk,H), we
have

SEval(pp, skH , x) ≈ Eval(pp,msk, x) + H(x) (13)

where the approximation hides some λO(d log λ)-bounded error vector.

Lemma 3 (Feasible Border Avoiding). If PRF is a pseudorandom function,
then for any polynomial-time adversary A, i ∈ [m], σ = poly(λ), d ∈ N, large
enough B = λO(d log λ) ∈ N, primes p and q such that q = p · B · λω(1), pp in the
support of Setup(1λ, 1σ, 1d), and β ∈ Zq, we have

Pr
msk←KeyGen(pp)

[
Eval(pp,msk,AEval(pp,msk,·)(pp))i ∈
q
p (Z + 1

2 ) + [β − B, β + B]
]

≤ negl(λ).
(14)

The following is an immediate consequence of Lemma 2.

Corollary 1. Fix the same notation as in Lemma 2. Let c ∈ Z
m
q be a fixed

vector. If for all i ∈ [m] we have

Eval(pp, sk, x)i /∈ q
p (Z + 1

2 ) + [ci − B, ci + B], (15)

then
�SEval(pp, sk, x) − H(x) − c�p = �Eval(pp,msk, x) − c�p. (16)
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5 Feasibly Correct Privately Programmable PRFs

In this section we formally define feasibly correct privately programmable PRFs
(PP-PRFs) and give a construction based on our feasibly correct shiftable PRFs
from Sect. 4. Our construction satisfies an additional key-injectivity property
which would later be useful in watermarking constructions.

5.1 Definitions

We start by giving a variety of definitions related to “programmable functions”
and privately programmable PRFs.

Definition 6. A programmable function is a tuple (Setup,KeyGen,Eval,
Program,PEval) of efficient algorithms having the following interfaces (where
the domain X and range Y may depend on the security parameter):

– Setup(1λ), given the security parameter λ outputs public parameters pp.
– KeyGen(pp), given the public parameters pp, outputs a master secret key msk.
– Eval(pp,msk, x), given the master secret key and an input x ∈ X , outputs

some y ∈ Y.
– Program(pp,msk, (x∗, y∗)), given the master secret key msk and

(x∗, y∗) ∈ X × Y, outputs a programmed key skP .
– PEval(pp, skP , x), given a programmed key skP and an input x ∈ X , outputs

some y ∈ Y.

Definition 7. A programmable function is statistically programmable if for all
λ ∈ N and all pairs (x∗, y∗) ∈ X × Y we have

Pr
pp←Setup(1λ)

msk←KeyGen(pp)
sk(x∗,y∗)←Program(pp,msk,(x∗,y∗))

[PEval(pp, sk(x∗,y∗), x
∗) �= y∗] = negl(λ). (17)

Definition 8. A programmable function is feasibly correct if for all PPT adver-
saries A and all pp in the support of Setup we have

Pr

⎡
⎣

∃(x∗, y∗) ∈ X\{x} × Y
∃sk(x∗,y∗) ∈ support of Program(pp,msk, (x∗, y∗)) s.t.

PEval(pp, sk(x∗,y∗), x) �= Eval(pp,msk, x)

⎤
⎦ = negl(λ), (18)

where msk ← KeyGen(pp), x ← AEval(pp,msk,·)(pp), and the probability is taken
over the random coins of the KeyGen algorithm and the random coins of the
adversary A.

Definition 9 (Key-Injectivity). A programmable function is key-injective if

Pr
pp←Setup(1λ)

[∃ distinct msk1,msk2 ∈ support of KeyGen, x ∈ {0, 1}� :
Eval(pp,msk1, x) = Eval(pp,msk2, x)

]

≤ negl(λ).
(19)
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procedure RealPPRFA(1λ)
(x∗, y∗) ← A(1λ)
pp ← Setup(1λ)
msk ← KeyGen(pp)
sk(x∗,y∗) ← Program(pp,msk, (x∗, y∗))
(pp, sk(x∗,y∗)) → A
Eval(pp,msk, x∗) → A

(a) The real experiment

procedure IdealPPRFA,S(1λ)
(x∗, y∗) ← A(1λ)
(pp, sk(x∗,y∗)) ← S(1λ, (x∗, y∗))
(pp, sk(x∗,y∗)) → A
y ← Y; y → A
(b) The ideal experiment

Fig. 3. The real and ideal experiments

Definition 10. A programmable function is simulation secure if there is a PPT
simulator S such that for any PPT adversary A,

{RealPPRFA(1λ)}λ∈N

c≈ {IdealPPRFA,S(1λ)}λ∈N, (20)

where RealPPRF and IdealPPRF are the respective views of A in the procedures
defined in Fig. 3.

procedure RealPPRFPrivacyA(1λ)
x∗ ← A(1λ)
y∗ ← Y
pp ← Setup(1λ)
msk ← KeyGen(pp)
sk ← Program(pp,msk, (x∗, y∗))
(pp, sk) → A
(a) The real experiment

procedure
IdealPPRFPrivacyA,S(1λ)

x∗ ← A(1λ)
(pp, sk) ← S(1λ)
(pp, sk) → A
(b) The ideal experiment

Fig. 4. The real and ideal privacy experiments

Definition 11. A programmable function is privately programmable if there is
a PPT simulator S such that for any PPT adversary A,

{RealPPRFPrivacyA(1λ)}λ∈N

c≈ {IdealPPRFPrivacyA(1λ)}λ∈N, (21)

where RealPPRFPrivacy and IdealPPRFPrivacy are the respective views of A in
the procedures defined in Fig. 4.

Definition 12. A programmable function is a feasibly correct privately pro-
grammable PRF if it is statistically programmable, simulation secure, privately
programmable, and feasibly correct.

LWE-Based PRGs with Weak Seeds. In this construction we will need an LWE-
based PRG G : Zn

q → {0, 1}n1 with the following property:
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{G(s), s · A + e,A : s, e ← χn;A ← Z
n×m
q } c≈

{r,a,A : r ← {0, 1}n1 ;a ← Z
m
q ;A ← Z

n×m
q }.

(22)

Such PRGs can be built when q is superpolynomial by combining the techniques
in [6] and [3].

5.2 Construction of Feasibly Correct Privately Programmable
PRFs

In this section we construct a feasibly correct privately programmable PRF
from our shiftable function of Sect. 4. We first define the auxiliary function
that the construction will use. For (x∗,w) ∈ {0, 1}� × Z

m
q define the function

H(x∗,w) : {0, 1}� → Z
m
q as

H(x∗,w)(x) =

{
w if x = x∗,
0 otherwise.

(23)

Notice that H(x∗,w) has circuit size upper bounded by some σ′ = poly(n, log q)
and depth at most d′ = O(log q).

Construction 2. Our feasibly correct privately programmable PRF with input
space X = {0, 1}� and output space Y = Z

m
p where p = poly(λ), uses the FC-

SHSF from Sect. 4 with parameters n = Õ(λ),B = λO(log2 λ), q = p · B · λω(1) =
p · λO(log2 λ), and is defined as follows:

– Setup(1λ): First generate pp′ ← SHSF.Setup(1λ, 1σ′
, 1d′

) then choose a uni-
formly random matrix A ∈ Z

n×m
q , a uniformly random vector r ← Z

m
p , and

output pp := (pp′, r,A) we implicitly assume that pp contains the public
parameters for a PRG with weak seeds which satisfies Eq. 22.

– KeyGen(pp): Sample s ← χn, sample msk′ ← SHSF.KeyGen(pp′;G(s)).
Finally, output msk := (s,msk′).

– Eval(pp,msk = (s,msk′), x ∈ {0, 1}�): Compute yx = s · A + SHSF.Eval(pp,
msk′, x) and output r + �yx�p.

– Program(pp,msk, (x∗,y∗)): Given (x∗,y∗) ∈ {0, 1}� ×Z
m
p , compute w as fol-

lows: choose y′ ← Z
m
q uniformly at random conditioned on �y′�p = (y∗ − r),

let a ← s · A + e where e ← χm, and set

w = y′ − SHSF.Eval(pp,msk′, x∗) − a (24)

Compute sk′
(x∗,y∗) ← SHSF.Shift(pp,msk′,H(x∗,w)). Output sk(x∗,y∗) :=

(a, sk′
(x∗,y∗)) .

– PEval(pp, sk(x∗,y∗) = (a, sk′
(x∗,y∗)), x): output r + �a + SHSF.SEval(pp,

sk′
(x∗,y∗), x)�p.

The proof of the following theorem is deferred to the full version of this paper.

Theorem 2. If LWEn−1,q,χ is hard and PRF is a pseudorandom function, Con-
struction 2 is a key-injective, feasibly correct privately programmable PRF.
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5.3 Application

In the full version of this paper we show that by instantiating the watermarking
scheme of [10] with Construction 2 PP-PRFs, we get a watermarking construc-
tion from LWE with quasi-polynomial modulus q = λO(log2 λ). This watermark-
ing scheme satisfies all the definitions in [27] and in particular it is authority
pseudorandom.

6 Feasibly Correct Constraint-Hiding Constrained PRFs

Definition 13. A constrained function is a feasibly correct constraint-hiding
constrained PRF if it satisfies Definition 4, and there is a PPT simulator S
such that, for any PPT adversary A that never queries its Eval oracle on an
input x for which C(x) = true (and without loss of generality never repeats an
Eval query),

{CHCPRFRealA(1λ)}λ∈N

c≈ {CHCPRFIdealA,S(1λ)}λ∈N, (25)

where CHCPRFReal and CHCPRFIdeal are the respective views of A in the exper-
iments defined in Fig. 1.

6.1 Construction

We now describe our construction of a feasibly correct CHC-PRF for domain
X = {0, 1}� and range Y = Z

m
p , which handles constraining circuits of size σ

and depth d. It uses the following components:

– A pseudorandom function AuxPRF = (AuxPRF.KG,AuxPRF.Eval) having
domain {0, 1}� and range Z

m
q , with key space {0, 1}κ.

– The feasibly correct shift hiding shiftable function
SHSF = (Setup,KeyGen,Eval,Shift,SEval,Sim) from Sect. 4, which has param-
eters q,B that appear in the analysis below.

For a boolean circuit C of size at most σ and depth upper-bound d and some
k ∈ {0, 1}κ define the function HC,k : {0, 1}� → Z

m
q as

HC,k(x) = C(x) · AuxPRF.Eval(k, x)

=

{
AuxPRF.Eval(k, x) if U(C, x) = 1
0 otherwise.

(26)

Notice that the size of (the binary decomposition of) HC,k is upper bounded by

σ′ = σ + s + poly(n, log q), (27)

where s is the circuit size of (the binary decomposition of) AuxPRF.Eval(k, ·).
And the depth of HC,k is upper-bounded by

d′ = d + δ + O(log q), (28)
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where δ is the circuit depth of AuxPRF.Eval(k, ·). By instantiating AuxPRF with
a log-depth PRF [5,6], we can set n = Õ(λ), B = λO((d+log λ) log λ), and q =
p · B · λω(1) = λO((d+log λ) log λ).

Construction 3. Our feasibly correct CHC-PRF with domain X = {0, 1}� and
range Y = Z

m
p is defined as follows:

– Setup(1λ, 1σ, 1d): output pp ← SHSF.Setup(1λ, 1σ′
, 1d′

) where σ′ and d′ are
defined as in Eqs. (27) and (28) respectively.

– KeyGen(pp): output msk ← SHSF.KeyGen(pp).
– Eval(pp,msk, x ∈ {0, 1}�): compute yx = SHSF.Eval(pp,msk, x) and output

�yx�p.
– Constrain(pp,msk,C): on input a circuit C of size at most σ and depth

at most d, sample a PRF key k ← AuxPRF.KG(1λ) and output skC ←
SHSF.Shift(pp,msk,HC,k).

– CEval(pp, skC , x): on input a constrained key skC and x ∈ {0, 1}�, output
�SHSF.SEval(pp, skC , x)�p.

6.2 Security Proof

In the full version of this paper we present the security proof of Construction 3.

Theorem 3. Assuming that LWEn−1,q,χ is hard and PRF is a pseudorandom
function, Construction 3 is a feasibly correct CHC-PRF.

6.3 Applications

Watermarking in the alternative model of [33] from LWE with quasi-polynomial
modulus Recently, [33] introduced an alternative model for watermarkable PRFs.
In their model, the marking algorithm is public and roughly speaking, in their
unremovability and correctness definition, the adversary also has access to
an extraction oracle. Despite these advantages over the model considered in
Sect. 5.3, their model only guarantees pseudorandomness for adversaries that
don’t have the master secret key, i.e., they are not authority pseudorandom.

In their work, they present two constructions for their models. The first con-
struction can be instantiated based solely on LWE with polynomial modulus but
it does not support embedding messages in marked keys. The second construc-
tion does support embedding messages but needs private constrained PRFs for a
circuit class consisting of an arbitrary PRF. As a consequence, instantiating the
second construction with state of the art lattice-based CHC-PRFs needs LWE
with subexponential modulus.

We observe that the message embedding scheme constructed in [33] can be
instantiated with a feasibly correct CHC-PRF instead of a regular CHC-PRF.
In more detail, in the security games of this scheme, the CHC-PRF is never
evaluated on points that depend on the actual description of the constrained
key. Indeed, in the correctness game, the challenge CHC-PRF constrained key
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is not given to the adversary and instead oracle access to Eval (and CEval) is
provided. In the unremovability game, the oracles provided to the adversary
evaluate the CHC-PRF using the challenge constrained key on points which
don’t depend on the constrained key, i.e., on points that can be sampled before
any constrained key is generated. In all these scenarios feasible correctness would
suffice to establish the security requirements.

Now, if we use the feasibly correct CHC-PRF constructed in Sect. 6.1, the
underlying LWE assumption would have modulus size λO(d log λ) where d is the
depth of the constraint circuit. If we use the log-depth LWE-based PRFs with
modulus size O(λlog λ) constructed in [5,6] as our constraint circuits then, the
message embedding scheme in [33] can be instantiated based solely on LWE with
a quasi-polynomial modulus q = O(λlog2 λ).

Symmetric Deniable Encryption. Boneh, Lewi and Wu [10] showed that privately
puncturable PRFs can be used to build a relaxed notion of symmetric deniable
encryption. In more detail, their relaxed definition says that given a cipher-
text encrypting an arbitrary plaintext it is possible to produce a fake secret
key which decrypts the ciphertext to a random message but doesn’t change the
decryption of the rest of the ciphertexts. Using the current privately punctured
PRFs [9,15,18,32], the deniable encryption scheme in [10] would have security
based on the hardness of LWE with subexponential modulus. We observe that
the construction in [10] evaluates CHC-PRFs only on random points. Conse-
quently, in this application, we can replace CHC-PRFs with our feasibly correct
CHC-PRFs. In particular, instantiating the [10] symmetric deniable encryption
constriction with Construction 3 would give us a deniable symmetric encryption
scheme based on LWE with quasi-polynomial modulus q = λO(log2 λ).

7 Feasibly Correct C-PRFs for NC1 from LWE with
Nearly Polynomial Modulus

7.1 Definitions

First, we recall the definition of C-PRFs and then we define feasibly correct C-
PRFs. Compared to the constraint-hiding variant discussed in Sect. 6, feasibly
correct C-PRFs are weaker in the sense that they do not necessarily hide the
constraint.

Definition 14. A constrained function is a constrained PRF (C-PRF) if there
is a PPT simulator S such that, for any PPT adversary A (that without loss of
generality never repeats an Eval query),

{CPRFRealA(1λ)}λ∈N

c≈ {CPRFIdealA,S(1λ)}λ∈N, (29)

where CPRFReal and CPRFIdeal are the respective views of A in the experiments
defined in Fig. 5.
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procedure CPRFRealA(1λ)
C ← A(1λ)
pp ← Setup(1λ)
msk ← KeyGen(pp)
skC ← Constrain(pp,msk,C)
(pp, skC) → A
repeat

x ← A
Eval(pp,msk, x) → A

until A halts

(a) The real experiment

procedure CPRFIdealA,S(1λ)
C ← A(1λ)
(pp, skC) ← S(1λ, C)
(pp, skC) → A
repeat

x ← A
if C(x) = true then

CEval(pp, skC , x) → A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 5. The real and ideal constrained PRF experiments.

Definition 15. A constrained function is a feasibly correct constrained PRF
if it satisfies Definition 4, and there is a PPT simulator S such that, for any
PPT adversary A that never queries its Eval oracle on an input x for which
C(x) = true (and without loss of generality never repeats an Eval query),

{CPRFRealA(1λ)}λ∈N

c≈ {CPRFIdealA,S(1λ)}λ∈N, (30)

where CPRFReal and CPRFIdeal are the respective views of A in the experiments
defined in Fig. 5.

7.2 Notation

Let U(H,x) = H(x) denote a depth-universal circuit. We define BPU,x to be
the width 5 permutation branching program that on input a boolean circuit
H : {0, 1}� → {0, 1} of depth d and size σ, computes U(H,x) = H(x). Observe
that BPU,x has length O(4d). Let χ′ be a gaussian distribution with a nearly
polynomial radius nω(1).

Gadgets and Homomorphisms. Here we recall “gadgets” [29] over Zq and several
of their homomorphic properties, some of which were implicit in [22], and which
were developed and exploited further in [8,16,23–25]. For an integer modulus q,
the gadget (or powers-of-two) vector over Zq is defined as

g = (1, 2, 4, . . . , 2�lg q�−1) ∈ Z
�lg q�
q . (31)

The gadget matrix is defined as Gn = In ⊗ g ∈ Z
n×m
q , where m = n�lg q�.

There is an efficiently computable function G−1
n : Zn×m

q → {0, 1}m×m with the
following property:

∀A ∈ Z
n×m
q : Gn · G−1

n (A) = A. (32)

We often drop the subscript n when it is clear from context. We use algorithm
BranchEval which has the following properties.
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– BranchEval(BP, x,A), given a width 5 permutation branching program
BP : {0, 1}� → {0, 1} of length L, an x ∈ {0, 1}�, and some A ∈ Z

n×(�+1)m
q ,

outputs an integral matrix RBP,x ∈ Z
(�+1)m×m with poly(m)-bounded entries

for which
(A + (1, x) ⊗ G) · RBP,x = ABP + BP(x) · G, (33)

where ABP ∈ Z
n×m
q depends only on A and BP (and not on x).

Theorem 4 (Adapted From [5,15]). Assuming the hardness of LWEn,q,χ,
there is a pair of polynomial time algorithms BPPRF = (Setup,Eval) with the
following interface

– Setup(1λ): outputs public parameters pp.
– Eval(pp, x): on input x ∈ {0, 1}� outputs a matrix Mx ∈ {0, 1}m×m. This

algorithm is deterministic.

having the following property: the randomized functionality defined below,

– P(pp, s, x): P is a randomized functionality that on input pp in the range of
Setup, s ∈ Z

m
q and x ∈ {0, 1}�, first samples e ← (χ′)m and then outputs

s · Eval(pp, x) + e ∈ Z
m
q .

is pseudorandom. In other words, for any PPT adversary A we have

| Pr
pp←Setup(1λ)

s←Z
n
q

[AP (pp,s,·)(pp) = 1] − Pr
pp←Setup(1λ)

[AU(·)(pp) = 1]| = negl(λ), (34)

where U : {0, 1}� → Z
m
q is a uniformly random function.

7.3 Construction

For security parameter λ, circuit depth d, the following construction is
parametrized by some n = Õ(λ) and q = p · B · nω(1) where B = nω(1) is
an upper bound on the absolute value of the samples drawn from χ′, and
m = n�log q� = poly(n). Setting p = poly(n) or even p = nω(1) makes
q = nω(1) = λω(1). Let PRF = {KG,Eval} be a PRF with input domain Z

n
q

and output range Z
m
q .

Construction 4. Let X = {0, 1}� and Y = Z
m
q . Define:

– Setup(1λ, 1σ, 1d): First sample public parameters pp′ ← BPPRF.Setup(1λ) for
BPPRF. Next, sample uniformly random and independent matrices A0 ∈
Z

n×m
q , A ∈ Z

n×(σ+1)m
q . Finally, output pp = (pp′,A0,A).

(The n-by-m chunks of A will correspond to the σ bits of a circuit).
– KeyGen(pp): Generate a PRF key κ ← PRF.KG(1λ). Sample s ← Z

n
q and set

and output the master secret key msk = (κ, s).
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– Eval(pp,msk, x ∈ {0, 1}�): compute

R0 = BranchEval(BPU,x, 0σ+1,A) ∈ Z
(σ+1)m×m (35)

and let

Ax = (A + (1, 0z) ⊗ G) · R0 − BPU,x(0σ+1) · G ∈ Z
n×m
q . (36)

(Observe that by Equation (33), Ax = ABP for the branching program BP =
BPU,x, and does not depend on the “dummy” ciphertext 0σ+1.)
Next, let

Bx = Ax · G−1(A0 · BPPRF.Eval(pp′, x)). (37)

Finally, output
�PRF.Eval(κ, x) + s · Bx�p (38)

– Constrain(pp,msk,C): for a circuit C : {0, 1}� → {0, 1} of depth d and size σ,
let

a = s(A + (1, C) ⊗ G) + e (39)

where e is an error vector whose entries are sampled independently from χ.
Output

skC = (κ,a, C). (40)

– CEval(pp, skC , x): On input skC = (κ,a, C) and x ∈ {0, 1}�, compute

Rx = BranchEval(BPU,x, C,A) (41)
ax = a · Rx. (42)

(By Equation (33), we have ax ≈ s(Ax +BPU,x(C) ·G), where we recall that
BPU,x(C) = C(x).)
Next, compute

bx = ax · G−1(A0 · BPPRF.Eval(pp′, x)) (43)

Finally, output
�PRF.Eval(κ, x) + bx�p. (44)

We defer the proof of the following theorem to the full version of this paper.

Theorem 5. If LWEn,q,χ is hard and PRF is a pseudorandom function, Con-
struction 4 is a feasibly correct constrained PRF.

7.4 Application

Updatable Garbled Circuits from LWE with Superpolynomial Modulus. Ananth,
Cohen and Jain [2] used C-PRFs to build a cryptographic scheme that they call
“updatable garbled circuits (UGC)”. Specifically, they showed that a C-PRF
which
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– has range Zp for a superpolynomially large p,
– supports point-function predicates as constraints,
– is noisy constrained key-homomorphic, i.e., for any two keys msk1 and msk2

and their respective constrained keys skC1 and skC2 and for any input x such
that C1(x) = C2(x) = 0, CEval(skC1 , x1) + CEval(skC2 , x2) = Eval(msk1 +
msk2, x) + e where e is bounded by some small constant,

– and has a KeyGen algorithm which simply outputs a random key from the
key space,

can be used as a building block for UGCs. For their construction, they used
the [17] C-PRF which satisfies all of the aforementioned properties. Since the C-
PRF construction in [17] needs LWE with subexponential modulus, the security
of [17] UGC construction also relies on hardness of LWE with subexponenial
modulus.

We argue that in the UGC construction of [2], we can replace the [17] C-PRF
with Construction 4. For this, we first notice that if we instantiate Construction 4
using [5] PRFs as the PRF (that is added before rounding) then, the resulting
scheme is a noisy constrained key-homomorphic PRF. Furthermore, this instan-
tiation has a KeyGen algorithm which samples a uniform key from its key space.
Additionally, we notice that point-function predicates are in NC1.

The last and most crucial observation is that, the UGC in [2] evaluates the
C-PRF only on uniformly random inputs, both in the construction and the
security definitions and games. Therefore, feasible correctness of the underlying
C-PRF is enough for this UGC construction. So, we can instantiate the UGC
using Construction 4. This will result in a UGC construction whose security is
based on hardness of LWE with just nearly polynomial modulus q = λω(1).

8 Constraint-Hiding PRFs for Hyperplane-Membership
Predicates

In this section we construct constraint-hiding constrained PRFs for hyperplane-
membership predicates, based solely on (approximate) key-homomorphic PRFs.

8.1 Construction

Construction 5. Let KHPRF = (Setup,Eval) be a noisy key-homomorphic
pseudorandom function having key space K (which is a finite group, with
keys chosen uniformly at random), domain X = {−D, . . . ,D}� for some D,
range Y = Z

m
q , and homomorphism error bound E.

Our constrained PRF has domain X and can be constrained to membership
predicates for hyperplanes

Hα = {x ∈ X : α0 + α1x1 + · · · + a�x� = 0},

where α = (α0, α1, . . . , α�) ∈ {−A, . . . , A}�+1. Define B = (�+1)(AD+1)E and
let p = q/(B · λω(1)) be a divisor of q.
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– Setup(1λ): output pp ← KHPRF.Setup(1λ).
– KeyGen(pp): sample KHPRF keys ki ← K for i = 0, . . . , � and output msk :=

{ki}i=0,...,�.
– Eval(pp,msk, x): on input msk = {ki} and x ∈ X = {−D, . . . , D}�, output

�yx�p where

yx = KHPRF.Eval(pp, k0, x) +
∑
i∈[�]

KHPRF.Eval(pp, xiki, x). (45)

– Constrain(pp,msk,Hα ): on input msk = {ki} and hyperplane Hα where α =
(α0, α1, . . . , α�) ∈ {−A, . . . , A}�+1, first choose a KHPRF key d ← K and then
for each i = 0, . . . , � + 1 define bi := ki − αid. Output skHα

:= {bi}i=0,...,�.
– CEval(pp, skH , x): on input skH = {bi} and x ∈ X , output �yx�p where

yx = KHPRF.Eval(pp, b0, x) +
∑
i∈[�]

KHPRF.Eval(pp, xibi, x). (46)

8.2 Security Proof

Theorem 6. If KHPRF is a noisy key-homomorphic pseudorandom function,
and the smallest prime divisor of q is bigger than (�+1)AD, then Construction 5
is a feasibly correct and simulation-secure CHC-PRF for hyperplane-membership
constraints.

Proof. This follows from Theorems 7 and 8.

Theorem 7. If KHPRF is a noisy key-homomorphic pseudorandom function,
then Construction 5 is feasibly correct.

Proof. Let msk = {ki} be a master secret key, let skHα
= {bi = ki − αid} be

a constrained secret key for a hyperplane Hα , and let x ∈ X be an arbitrary
input. Let yx, y′

x be the “unrounded” values computed in Eqs. (45) and (46),
respectively. If x ∈ Hα , i.e., α0 +

∑
i∈[�] αixi = 0, then

y′
x = KHPRF.Eval(pp, b0, x) +

∑
i∈�

KHPRF.Eval(pp, xibi, x) (47)

= KHPRF.Eval(pp, k0, x) +
∑
i∈[�]

KHPRF.Eval(pp, xiki, x) (48)

− (α0 +
∑
i∈[�]

αixi)KHPRF.Eval(pp, d, x) + e (49)

= KHPRF.Eval(pp, k0, x) +
∑
i∈[�]

KHPRF.Eval(pp, xiki, x) + e (50)

= yx + e, (51)

where the second equality is by key homomorphism, and e is an error vector
whose entries have magnitudes at most B. Therefore, �y′

x�p = �yx�p (i.e., Eval
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and CEval agree on x) unless some entry of yx is in q
p (Z + 1

2 ) + [−B,B]. We
next show that the probability of this event, for x output by any PPT algorithm
AEval(pp,msk,·), is negligible (over the choice of msk and A’s randomness). This
follows straightforwardly from the pseudorandomness of KHPRF, and specifically
the KHPRF.Eval(pp, k0, x) term from Eq. (45).

Formally, we construct an adversary A′ against the pseudorandomness of
KHPRF, which has access to an oracle O and runs as follows:

– given public parameters pp, choose k1, . . . , k� ← K;
– whenever A makes a query x̄, respond with ȳ = O(x)+

∑
i∈[�] KHPRF.Eval(pp,

x̄iki, x̄)
– when A finally outputs an x, accept if any of the entries of y = O(x) +∑

i∈[�] KHPRF.Eval(pp, xiki, x) belong to q
p (Z+ 1

2 )+[−B,B], otherwise reject.

Clearly, if O is a uniformly random function, then all of the ȳ and y are uniformly
random, so by a union bound (which is needed because x might be one of the
previously queried x̄) A′ accepts with probability at most 2Bpm · poly(λ)/q =
negl(λ). On the other hand, if O is KHPRF.Eval(pp, k0, ·) (for some k0 ← K)
then A′ perfectly simulates the feasible correctness experiment, so the probability
that A wins the feasible correctness game is at most the probability that A′

accepts. By the pseudorandomness of KHPRF, the latter is negligible, as desired.

Theorem 8. Under the hypotheses of Theorem6, Construction 5 is simulation
secure for the class of hyperplane-membership constraints.

Proof. We need to build a simulator for adversaries that only submit unautho-
rized queries. The simulator S(1λ, 1�) for Construction 5, samples KHPRF keys
bi ← K for i = 0, . . . , � and outputs {bi}i=0,...,�. Now let A be any polynomial-
time adversary. To show that S satisfies Definition 3 we define a sequence of
hybrid experiments and show that they are indistinguishable. Before defining
the experiments in detail, we first define a particular “bad” event in all but one
of them.

Definition 16. In each of the following hybrid experiments except H0, each
query x is answered as �yx�p for some yx that is computed in a certain way.
Define Borderline to be the event that at least one such yx has some coordinate
in q

p (Z + 1
2 ) + [−B,B].

Hybrid H0: This is the ideal experiment IdealA,S .
Hybrid H1: This is the same as H0, except that on every (unauthorized) query x

(i.e., where α0 +
∑

i∈[�] αixi �= 0), instead of returning a uniformly random
value from Z

m
p , we choose yx ← Z

m
q and output �yx�p.

Hybrid H2: This is the same as H1, except that we abort the experiment if
Borderline happens.

Hybrid H3: This is the same as H2, except that we initially choose a KHPRF key
d ← K and change how (unauthorized) queries x are handled. Specifically,
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for any query x we answer �yx�p where

yx = KHPRF.Eval(pp, b0, x) +
∑
i∈[�]

KHPRF.Eval(pp, xibi, x)

+ (α0 +
∑
i∈[�]

αixi)KHPRF.Eval(pp,d, x).
(52)

Hybrid H4: This is the same as H3, except that (pp, sk) are generated as in the
real experiment. Specifically, we sample msk := {ki ← K}0≤i≤�, d ← K, and
set bi := ki − αid for 0 ≤ i ≤ �.

Hybrid H5: This is the same as H4, except that we answer all (unauthorized)
evaluation queries as in the Eval algorithm, i.e., we output �yx�p where

yx = KHPRF.Eval(pp, k0, x) +
∑
i∈[�]

KHPRF.Eval(pp, xiki, x). (53)

Hybrid H6: This is the same as H5, except that we no longer abort when
Borderline happens. Observe that this is exactly the real experiment RealA.

We now prove that adjacent pairs of hybrid experiments are indistinguishable.

Claim. Experiments H0 and H1 are identical.

Proof. This follows immediately from the fact that p divides q.

Claim. Experiments H1 and H2 are statistically indistinguishable, in particular
in H1 the event Borderline happens with negligible probability.

Proof. This immediately follows by the fact that yx is chosen uniformly at ran-
dom from Z

m
q and q

pB = nω(1).

Claim. Assuming KHPRF is a noisy key-homomorphic PRF and the prime divi-
sors of q are bigger than (� + 1)AD, H2

c≈ H3.

Proof. We need to show that in H3, yx is indistinguishable from uniform.
Since KHPRF.Eval(pp,d, x) is pseudorandom, all we need to prove is that
α0+

∑
i∈[�] αixi is invertible in Zq. To see this recall that all queries are unautho-

rized and therefore α0 +
∑�

i=1 αixi �= 0. On the other hand |α0 +
∑

i∈[�] αixi| <

(� + 1)AD. This proves that α0 +
∑

i∈[�] αixi is invertible in Zq.

Claim. Experiments H3 and H4 are identical.

Proof. This follows from the fact that in both H3 and H4, the bis and d have
the same distribution, i.e., they are uniform elements in K.

Claim. Assuming KHPRF is a noisy key-homomorphic PRF, H4 and H5 are
identical.
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Proof. We need to show that all (unauthorized) queries are answered identically
in H4 and H5. Let yx and y′

x be the unrounded answers to a query x in hybrids
H4 and H5 respectively. We need to show �yx�p = �y′

x�p. Since KHPRF is a noisy
key-homomorphic PRF we have

yx = KHPRF.Eval(pp, b0, x) +
∑
i∈[�]

KHPRF.Eval(pp, xibi, x)

+ (α0 +
∑
i∈[�]

αixi)KHPRF.Eval(pp,d, x) (54)

= KHPRF.Eval(pp, k0 − α0d, x) +
∑
i∈[�]

KHPRF.Eval(pp, xiki − αixid, x) (55)

+ (α0 +
∑
i∈[�]

αixi)KHPRF.Eval(pp,d, x) (56)

= KHPRF.Eval(pp, k0, x) +
∑
i∈[�]

KHPRF.Eval(pp, xiki, x) + e (57)

= y′
x + e, (58)

where e is a vector with entries not bigger than (� + 1)(AD + 1)E ≤ B. Since
we abort when Borderline happens, the claim follows.

Claim. Assuming KHPRF is a noisy key-homomorphic PRF and the prime divi-
sors of q are bigger than (� + 1)AD, H5

s≈ H6.

Proof. By previous claims, Borderline happens with negligible probability in H5.

This completes the proof of Theorem 8.

9 Bit Fixing PRFs from Minimal Assumptions

The class of bit-fixing constraints for input space X = {0, 1}� is the set of
constraints C = {Cv : v ∈ {0, 1, �}�} where Cv(x) = true if and only if xi = vi

for all i ∈ [�] such that vi �= �. In other words, x must match v at every position,
where � is a “wildcard” that both 0 and 1 match.

Here we construct a constraint-hiding, bit-fixing PRF (for a single
constrained-key query) from the minimal assumption that PRFs exist. Let
PRF = (PRF.KG,PRF.Eval) be a pseudorandom function having key space K,
domain X = {0, 1}�, and range Y, which we assume to be a finite (additive)
group.

Construction 6. Our bit-fixing PRF with domain X = {0, 1}� and range Y is
defined as follows:

– KeyGen(1λ): sample PRF keys mskb
i ← PRF.KG(1λ) for i ∈ [�] and b ∈ {0, 1},

and output msk := {mskb
i }.

– Eval(1λ,msk, x ∈ {0, 1}�): output
∑

i∈[�] PRF.Eval(mskxi
i , x).
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– Constrain(1λ,msk, v ∈ {0, 1, �}): define and output
skv = {skb

i }i∈[�],b∈{0,1}, defined as follows:
• if vi = b or vi = � then let skb

i := mskb
i ,

• otherwise (i.e., vi = 1 − b), let skb
i ← PRF.KG(1λ) be a freshly sampled

key for PRF.
– CEval(1λ, skv = {skb

i }, x): output
∑

i∈[�] PRF.Eval(skxi
i , x).

In words, the constrained key for pattern v ∈ {0, 1, �}� contains exactly those
msk components mskb

i for which b “matches” vi, with fresh PRF keys taking the
place of the other msk components. In particular, it is easy to see that this
ensures correct constrained evaluation on authorized inputs. Also observe that
the constrained key alone hides the pattern vector perfectly, i.e., the distribution
of skv is the same for all v.

9.1 Security Proof

Theorem 9. If PRF is a pseudorandom function, then Construction 6 is a
constraint-hiding bit-fixing PRF according to Definition 3.

Proof. The simulator S(1λ) for Construction 6 simply samples PRF keys rb
i ←

PRF.KG(1λ) for i ∈ [�], b ∈ {0, 1} and outputs {rb
i }. Now let A be any polynomial-

time adversary. To show that S satisfies Definition 3 we define a sequence of
hybrid experiments and show that they are indistinguishable.

Hybrid H0: This is the real experiment RealA (see Fig. 1).
Hybrid H1: This is the same as H0 except that on every authorized query x (i.e.,

where x matches the pattern v output by A) we answer it by CEval(pp, skC , x).
Hybrid H2: This is the same as H1 except that on every unauthorized query x

(i.e., where x does not match the pattern v output by A) we answer with a
uniformly random element in Y.

Hybrid H3: This is the same as the ideal experiment IdealA,S .

We now show that adjacent pairs of hybrid experiments are indistinguishable.
First, it follows immediately that experiments H0 and H1 are identical, due to
the way skC is constructed.

Claim. If PRF is a pseudorandom function, then H1
c≈ H2.

Proof. Let H1,0 = H1 and define hybrid H1,i for i ∈ [�] as follows: it is the same
as H1 except that for every query x which does not match the pattern v in one
of the first i positions, we answer with a uniformly random element in Y.

Clearly H1,� = H2. We show that for every i ∈ [�], H1,i−1
c≈ H1,i. Notice

that if vi = � then the two experiments are identical. So assume that vi = b ∈
{0, 1}. Let A be an adversary attempting to distinguish between H1,i−1 and
H1,i. We build an efficient adversary A′ against the security of PRF, which has
access to an oracle O that is either a uniformly random function U : {0, 1}� →
Y or PRF.Eval(sk, ·) for sk ← PRF.KG(1λ). A′ interacts with A in the same
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way as H1,i−1, except that it does not sample msk1−b
i , and on queries x for

which i is the smallest index where x disagrees with the pattern v, it replies
with

∑
j∈[�]\{i} PRF.Eval(msk

xj

j , x) + O(x). Observe that if O is U then A’s
view is identical to H1,i, otherwise the view is identical to H1,i−1. Therefore, the
advantage of A in distinguishing H1,i−1 from H1,i is identical to the advantage
of A′ in attacking PRF, which by assumption is negligible, as desired.

Finally, we claim that experiments H2 and H3 are identical. This is because in
both experiments the constrained key has the same distribution, i.e., it consists
of 2� independent keys for PRF.

Remark 1. We observe that any constraint-hiding bit-fixing PRF can be boot-
strapped to support k-CNF formulas as constraints, where k is a constant. For
input domain {0, 1}�, the construction is as follows:

– we generate parameters for a bit-fixing PRF with input length (2� + 1)k,
– to evaluate on an input x ∈ {0, 1}�, first, we convert x to x′ ∈ {0, 1}(2�+1)k

where the individual bits of x′ are the result of evaluating all possible k-
variable disjunctions involving the literals
F, x1, x̄1, · · · , x�, x̄� in some specified order, then, we evaluate the bit-fixing
PRF on x′ and output the result,

– to generate a constrained-key for a k-CNF formula φ having t ≤ (2� + 1)k

clauses, we generate a constrained key in the bit-fixing PRF for a pattern v
where in v the positions corresponding to the clauses in φ are fixed to 1 and
the rest of the positions are wildcard.

A Shift Hiding Shiftable Functions and Their Properties

Here we review the interface and relevant properties of shift-hiding shiftable
functions introduced in [32]. For security parameter λ and constraint circuit
size σ, shift-hiding shiftable functions are a tuple of algorithms parameterized
by some n = poly(λ, σ) and q = λpoly(λ,σ), with m = n�lg q� = poly(λ, σ). These
algorithms have the following interface.

– Setup(1λ, 1σ, 1d): On input security parameter λ, shift circuit size σ, and shift
circuit depth d, output public parameter pp.

– KeyGen(pp): Output the master secret key msk = s.
– Eval(pp,msk, x): On input an � bit string x, output y ∈ Z

m
q .

– Shift(pp,msk,H): On input a shift function H : {0, 1}� → Z
m
q , output a

shifted key skH .
– SEval(pp, skH , x): On input a shifted key skH and input value x ∈ {0, 1}�,

output y ∈ Z
m
q .

– S(1λ, 1σ, 1d): On input security parameter λ, shift circuit size σ, and shift
depth d, output simulated public parameters pp and simulated shifted key sk.

We use the following two properties of the shift-hiding shiftable functions
construction of [32].
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Property 1 (Shift Hiding). Assuming the hardness of LWEn−1,q,χ and CPA secu-
rity of the GSW [22] encryption scheme, for any PPT A, any σ = σ(λ) = poly(λ),
and any d = d(λ) = poly(λ)

{RealKeyA(1λ, 1σ, 1d)}λ∈N

c≈ {IdealKeyA(1λ, 1σ, 1d)}λ∈N, (59)

where RealKey and IdealKey are the respective views of A in the experiments
defined in Fig. 2.

Property 2 (Approximate Shift Correctness). For any shift function H : {0, 1}�

→ Z
m
q whose binary decomposition H ′ : {0, 1}� → {0, 1}k can be represented by a

boolean circuit of size σ and depth d, and any x ∈ {0, 1}�, pp ← Setup(1λ, 1σ, 1d),
msk ← KeyGen(pp) and skH ← Shift(pp,msk,H), we have

SEval(pp, skH , x) ≈ Eval(pp,msk, x) + H(x) (60)

where the approximation hides some λO(d log λ)-bounded error vector.
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2 TÜV Rheinland i-sec GmbH, Hallbergmoos, Germany
kaispapers@gmail.com

3 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. Chameleon-hash functions, introduced by Krawczyk and
Rabin at NDSS 2000, are trapdoor collision-resistant hash-functions
parametrized by a public key. If the corresponding secret key is known,
arbitrary collisions for the hash function can be efficiently found.
Chameleon-hash functions have prominent applications in the design of
cryptographic primitives, such as lifting non-adaptively secure signatures
to adaptively secure ones. Recently, this primitive also received a lot of
attention as a building block in more complex cryptographic applications
ranging from editable blockchains to advanced signature and encryption
schemes.

We observe that in latter applications various different notions of
collision-resistance are used, and it is not always clear if the respective
notion does really cover what seems intuitively required by the appli-
cation. Therefore, we revisit existing collision-resistance notions in the
literature, study their relations, and—using the example of the recent
redactable blockchain proposals—discuss which practical impact differ-
ent notions of collision-resistance might have. Moreover, we provide a
stronger, and arguably more desirable, notion of collision-resistance than
what is known from the literature. Finally, we present a surprisingly
simple and efficient black-box construction of chameleon-hash functions
achieving this strong notion.

1 Introduction

A chameleon-hash function (CH) is a trapdoor collision-resistant hash-function
parameterized by a public key. If the corresponding secret key is known, arbi-
trary collisions for the hash function, i.e., distinct messages m �= m′ yielding the
same hash value h, can be efficiently found. Over the years, they have proven to
be a very useful tool in theory, as well as practice. Exemplary, CHs are used to
construct on/offline signatures [17,26,42], and to generically lift non-adaptively
secure signature schemes to adaptively secure ones (cf. [42]), see e.g., Hohen-
berger and Waters [35]. If CHs are tightly-secure, they are used to generically
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construct tightly-secure signatures [12]. Likewise, CHs are used to generically
construct strong one-time signatures as shown by Mohassel [39], inspired by a
concrete construction from Pedersen commitments by Groth [30]. Zhang [46]
shows how to construct IND-CCA secure public-key encryption from tag-based
encryption (TBE) or identity-based encryption (IBE) and CHs. Bellare and Ris-
tov made the interesting discovery that chameleon-hashes and Σ-protocols, i.e.,
three round public-coin honest-verifier zero-knowledge proofs of knowledge, are
equivalent [10,11]. CHs are also used to construct sanitizable signatures [3,14,15],
i.e., signatures where a designated entity can modify certain parts of a signed
message without invalidating the respective signature under controlled condi-
tions. Furthermore, CHs have been used by Steinfeld et al. [44] to extend Schnorr
and RSA signatures to the universal designated-verifier setting [43]. Also, dif-
ferent flavors of chameleon-hashing such as (hierarchical) identity-based [5,7] or
policy-based chameleon-hash functions [21,41] have been studied.

In a more applied setting, CHs have shown to be valuable to construct
integrity measurement and remote attestation mechanisms (denoted chameleon
attestation) [2], and are used in vehicular ad-hoc networks (VANETs) [33] or
handover authentication in mobile networks [18]. More recently, CHs have been
used as a means to rewrite blocks in blockchains by replacing the hash function to
chain blocks and/or to hash transactions by chameleon-hashes [4,21], to which we
come back in Sect. 5. This brief discussion already shows that chameleon-hashes
are used in a wide spectrum of different applications requiring different strength
of the respective chameleon-hash. Consequently, authors often introduce some
ad-hoc notion of collision-resistance for their applications, or even ignore that
applications might require a stronger notion. Subsequently, we briefly discuss
the different notions which are most commonly found in the literature.

Formalizing Chameleon-Hashes. The concept of chameleon-hashing dates
back to the notion of trapdoor commitments introduced by Brassard et al. [13],
and was firstly coined chameleon-hashing by Krawczyk and Rabin [37] with an
instantiation based on the well-known trapdoor-commitment scheme by Peder-
sen [40]. Later, Ateniese and de Medeiros in [6] observed that the initial collision-
resistance notion (which we denote W-CollRes) is rather weak (it does not give
the adversary access to any collisions), and, more importantly, it is also satis-
fied by chameleon-hashes suffering from a key-exposure problem. Namely, when
seeing a single collision for some hash h, it allows to publicly extract the secret
trapdoor. Thus, any further guarantees are lost. While this is a desirable prop-
erty for the initial use in chameleon signatures [37], and is also sufficient for
the lifting compiler to adaptively secure signatures [42] (as no collision is ever
revealed), it is too weak for many other applications. The key-exposure freeness
definition in [6] is for the specific case of public-coin chameleon-hashing (where
verifying the chameleon-hash is essentially re-computing it). To address this,
Ateniese et al. [4] introduced a related notion called enhanced collision-resistance
(which we denote E-CollRes) for the generalized case of secret-coin chameleon-
hashing (which is the setting that we also consider). The latter notion allows the
adversary to see collisions, but it is not allowed to see any collision for the target
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hash, i.e., the hash corresponding to the collision it computes. Hence, once a
single collision for a hash h is seen, an adversary can find arbitrary collisions
for that particular hash h. Recently, Khalili et al. [36] have pointed out issues
regarding the practicality of the concrete random-oracle model instantiation1,
proposed by Ateniese et al. in [4], and propose alternative constructions in the
standard model. In another work Camenisch et al. [15] proposed an alternative
collision-resistance notion which allows the adversary to see arbitrary collisions
also for the target hash, but not for the target message, i.e., the message used
in the collision output by the adversary has never been queried. In other words,
once a collision for a message m is seen, an adversary is allowed to find arbitrary
other hashes h′ with the queried messages. Arguably, this notion seems more
realistic as it is better compatible with practical applications (e.g., one can often
make the messages unique by appending a tag/nonce), and thus we denote it as
standard collision-resistance (or S-CollRes).

Motivation and Contribution. The previous discussion already illustrates
that there are many different collision-resistance notions. While this does not
necessarily point to an issue, we observe that it is not always clear whether the
respective notion does really cover what is required by the respective application.
Moreover, it is not clear if the last notion discussed above (S-CollRes) is already
the most desirable notion, or, if even stronger notions are achievable, and do have
practical relevance. Motivated by these observations, we provide the following
contributions:

Relations among Properties. We discuss the different security notions of
chameleon-hashes, and rigorously study relations among them. Most impor-
tantly, we, for the first time, clarify the picture of existing collision-resistance
notions by showing implications, and separations, (cf. Fig. 1 for an overview). In
the course of showing separations, we also provide a construction of a chameleon-
hash satisfying the E-CollRes notion, which clearly demonstrates weaknesses of
this notion.

F-CollRes S-CollRes W-CollRes

E-CollRes

+

\ \

\\ \

Fig. 1. Relations between CH collision-resistance properties

1 The requirement for an invertible encoding into the group introduces an enormous
efficiency penalty, and thus their instantiation is incomplete. Moreover, it is possible
that their schemes do meet our stronger definition of full collision-resistance, but we
neither prove nor disprove this statement here.
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Stronger Notion. We find that the strongest existing collision-resistance notions,
i.e., E-CollRes and S-CollRes (which are incomparable), might still be too weak
for practical applications, see, e.g., Sect. 5. In particular, even if S-CollRes is
satisfied, the hash values might still be malleable leaving space for potential real-
world attacks. Consequently, we propose a stronger notion coined full collision-
resistance (or F-CollRes for short), which enforces that the adversary cannot
(except with negligible probability) output any new collisions and covers what
one intuitively expects from collision-resistance.

Black-Box Construction. We present a simple black-box construction of a
chameleon-hash function satisfying this strong F-CollRes notion. Considering
the complexity of existing constructions in [4,36] which only achieve the weaker
notion of E-CollRes, this is somewhat surprising. To recall, the construction from
Ateniese et al. [4] starts from a public-coin chameleon-hash function that sat-
isfies W-CollRes, uses an IND-CPA secure encryption scheme to encrypt the
randomness of the chameleon-hash and then uses a true-simulation extractable
(tSE) NIZK [25], which is in turn based on a NIZK and an IND-CCA secure
public-key encryption scheme, to prove that the ciphertext is an encryption
of the randomness. The constructions from Khalili et al. [36], which avoid the
aforementioned issues with [4], are based on another new public-coin chameleon-
hash function that satisfies W-CollRes and then either uses Groth-Sahai NIZK
proofs [32] and the IND-CCA secure Cramer-Shoup encryption scheme [20] or a
succinct non-interactive argument of knowledge (SNARK). Both constructions
in [36] basically follow the generic template in [4]. In contrast, our black-box
construction of a F-CollRes chameleon-hash is constructed from perfectly correct
(multi-challenge) IND-CPA secure encryption, e.g., ElGamal encryption, and a
simulation-sound extractable non-interactive zero-knowledge proof (SSE-NIZK),
e.g., applying the compiler of Faust et al. [27] to a Fiat-Shamir transformed Σ-
protocol. The basic idea is that the chameleon-hash is the encryption c of the
message m and the randomness of the chameleon-hash is a NIZK proof s.t.
either c correctly encrypts m under the pk of CH or one knows the secret key
sk corresponding to pk. Interestingly, already a perfectly-binding commitment
(without any hiding) is sufficient to achieve the F-CollRes notion, but instead a
multi-challenge IND-CPA secure encryption scheme as a perfectly-binding com-
mitment is used to additionally achieve the indistinguishability property of the
CH, i.e., that fresh and adapted hashes are indistinguishable, a notion that is
considered standard for chameleon-hashes.

Applications. We discuss how our stronger notion allows to strengthen the secu-
rity of existing applications and in particular will discuss what problems may be
caused by different notions of collision-resistance within recent applications to
redactable blockchains [4,21]. Here, either the hash function to chain blocks in a
blockchain or the hash functions to aggregate transactions within single blocks
(usually by means of a Merkle-tree) are replaced by a chameleon-hash function.
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2 Preliminaries

Notation. With λ ∈ N we denote our security parameter. All algorithms implic-
itly take 1λ as an additional input. We write a ←r A(x) if the output of a
probabilistic algorithm A with input x is assigned to a and use a ← A(x) if A
is deterministic. An algorithm is efficient, if it runs in probabilistic polynomial
time (PPT) in the length of its input. All algorithms are PPT, if not explicitly
mentioned otherwise. If we want to make the random coins used by an algorithm
A explicit, we use the notation a ←r A(x; ξ). We write (a; ξ) ←r A(x), if we
need to access the random coins ξ internally drawn by A. Most algorithms may
return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. Returning out-
put ends execution of an algorithm or an oracle. To make the presentation in the
security proofs more compact, we occasionally use (a,⊥) ←r A(x) to indicate
that the second output is either ignored or not returned by A. If S is a finite
set, we write a ←r S to denote that a is chosen uniformly at random from S.
M denotes a message space of a scheme, and we generally assume that M is
derivable from the scheme’s public parameters or its public key. For a list we
require that there is an injective, and efficiently reversible, encoding, that maps
the list to {0, 1}∗. A function ν : N → R≥0 is negligible, if it vanishes faster than
every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0.

2.1 Building Blocks

We now present the building blocks we require. These include key-verifiable
multi-challenge IND-CPA (mcIND-CPA) secure public-key encryption schemes
Ω, digital signature schemes Σ, and non-interactive zero-knowledge proofs Π.

Public-Key Encryption Schemes. Subsequently, we define public-key
encryption schemes.

Definition 1 (Public-Key Encryption Scheme). A public-key encryption
scheme Ω consists of five algorithms {PGΩ,KGΩ,Enc,Dec,KVfΩ}, such that:

PGΩ. The algorithm PGΩ outputs the public parameters of the scheme:

ppΩ ←r PGΩ(1λ).

It is assumed that ppΩ is an implicit input to all other algorithms.
KGΩ. The algorithm KGΩ outputs the key pair, on input ppΩ:

(skΩ, pkΩ) ←r KGΩ(ppΩ).

Enc. The algorithm Enc gets as input the public key pkΩ, and a message m ∈
M to encrypt. It outputs a ciphertext c:

c ←r Enc(pkΩ,m).
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Expmc-IND-CPA
A,Ω (λ):

ppΩ ←r PGΩ(1λ)
(skΩ, pkΩ) ←r KGΩ(ppΩ)
b ←r {0, 1}
a ←r AEnc′(pkΩ,·,·,b)(pkΩ)

where Enc′ on input pkΩ, m0, m1, b:
If m0 /∈ M ∨ m1 /∈ M ∨ |m0| �= |m1|:

c ← ⊥
Else:

c ←r Enc(pkΩ, mb)
return c

return 1, if a = b
return 0

Fig. 2. Multi-challenge IND-CPA security

Dec. The deterministic algorithm Dec outputs a message m ∈ M ∪ {⊥} on
input skΩ, and a ciphertext c:

m ← Dec(skΩ, c).

KVfΩ. The deterministic algorithm KVfΩ decides whether a given public key pkΩ

corresponds to a given secret key skΩ:

d ← KVfΩ(pkΩ, skΩ).

Definition 2 (Correctness). A public key encryption scheme Ω is called cor-
rect, if for all security parameters λ ∈ N, for all ppΩ ←r PGΩ(1λ), for all
(skΩ, pkΩ) ←r KGΩ(ppΩ), for all m ∈ M, for all c ←r Enc(pkΩ,m), we have that
m = Dec(skΩ, c) and that for all skΩ

′ we have that KVfΩ(pkΩ, skΩ
′) = 1 =⇒

m = Dec(skΩ
′, c).

Definition 3 (Multi-Challenge IND-CPA Security). A public-key
encryption scheme Ω is multi-challenge IND-CPA secure (mcIND-CPA), if for
any PPT adversary A there exists a negligible function ν such that:

∣
∣
∣Pr

[

ExpmcIND-CPA
A,Ω (λ) = 1

]

− 1/2
∣
∣
∣ ≤ ν(λ).

The corresponding experiment is depicted in Fig. 2.

Bellare et al. have shown, via a hybrid argument, that mcIND-CPA is equiv-
alent to standard, i.e., “single-message”, IND-CPA [8]. We opted for using
mcIND-CPA, because it allows writing our proofs down more compactly, improv-
ing readability.

Digital Signature Schemes. Subsequently, we define signature schemes.

Definition 4 (Digital Signatures). A digital signature scheme Σ consists of
four algorithms {PGΣ,KGΣ,SgnΣ,VrfΣ} such that:
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PGΣ. The algorithm PGΣ outputs the public parameters

ppΣ ←r PGΣ(1λ).

We assume that ppΣ contains 1λ and is implicit input to all other algo-
rithms.

KGΣ. The algorithm KGΣ outputs the public and private key of the signer, where
λ is the security parameter:

(skΣ, pkΣ) ←r KGΣ(ppΣ).

SgnΣ. The algorithm SgnΣ gets as input the secret key skΣ and the message
m ∈ M to sign. It outputs a signature:

σ ←r SgnΣ(skΣ,m).

VrfΣ. The deterministic algorithm VrfΣ outputs a decision bit d ∈ {0, 1}, indi-
cating if the signature σ is valid, w.r.t. pkΣ and m:

d ← VrfΣ(pkΣ,m, σ).

Definition 5 (Correctness). A digital signature scheme Σ is called correct, if
for all security parameters λ ∈ N, for all ppΣ ←r PGΣ(1λ), for all (skΣ, pkΣ) ←r

KGΣ(ppΣ), for all m ∈ M, VrfΣ(pkΣ,m,SgnΣ(skΣ,m)) = 1 is true.

We require existential unforgeability under adaptively chosen message attacks
(eUNF-CMA security). In a nutshell, unforgeability requires that an adversary
A cannot (except with negligible probability) come up with a signature for a
message m∗ for which the adversary did not see any signature before, even if
the adversary A is allowed to adaptively query for signatures on messages of its
own choice.

ExpeUNF-CMA
A,Σ (λ)

ppΣ ←r PGΣ(1λ)
(skΣ, pkΣ) ←r KGΣ(ppΣ)
Q ← ∅
(m∗, σ∗) ←r ASgn′

Σ(skΣ,·)(pkΣ)
where Sgn′

Σ on input skΣ and m:
σ ←r SgnΣ(skΣ, m)
set Q ← Q ∪ {m}
return σ

return 1, if VrfΣ(pkΣ, m∗, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Fig. 3. Unforgeability
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Definition 6 (Unforgeability). We say a digital signature scheme Σ scheme
is unforgeable, if for every PPT adversary A, there exists a negligible function
ν such that:

Pr
[

ExpeUNF-CMA
A,Σ (λ) = 1

]

≤ ν(λ).

The corresponding experiment is depicted in Fig. 3.

For Construction 1, we require that the size of signatures is independent of the
size of the signed messages.

Non-interactive Proof Systems. Let L be an NP-language with associated
witness relation R, i.e., such that L = {x | ∃w : R(x,w) = 1}. A non-interactive
proof system allows to prove membership of some statement x in the language
L. More formally, such a system is defined as follows.

Definition 7 (Non-interactive Proof System). A non-interactive proof sys-
tem Π for language L consists of three algorithms {PGΠ,PrfΠ,VfyΠ}, such that:

PGΠ. The algorithm PGΠ outputs public parameters of the scheme, where λ is
the security parameter:

crsΠ ←r PGΠ(1λ).

PrfΠ. The algorithm PrfΠ outputs the proof π, on input of the CRS crsΠ, state-
ment x to be proven, and the corresponding witness w:

π ←r PrfΠ(crsΠ, x, w).

VfyΠ. The deterministic algorithm VfyΠ verifies the proof π by outputting a bit
d ∈ {0, 1}, w.r.t. to some CRS crsΠ and some statement x:

d ← VfyΠ(crsΠ, x, π).

Definition 8 (Correctness). A non-interactive proof system is called correct,
if for all λ ∈ N, for all crsΠ ←r PGΠ(1λ), for all x ∈ L, for all w such that
R(x,w) = 1, for all π ←r PrfΠ(crsΠ, x, w), it holds that VfyΠ(crsΠ, x, π) = 1.

In the context of (zero-knowledge) proof-systems, correctness is sometimes also
referred to as completeness. In addition, we require two standard security notions
for zero-knowledge proofs of knowledge: zero-knowledge and simulation-sound
extractability. We define them analogously to the definitions given in [22].

Informally speaking, zero-knowledge says that the receiver of the proof π
does not learn anything except the validity of the statement.

Definition 9 (Zero-Knowledge). A non-interactive proof system Π for lan-
guage L is zero-knowledge, if for any PPT adversary A, there exists an PPT
simulator SIM = (SIM1,SIM2) such that there exist negligible functions ν1 and
ν2 such that
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ExpZero-Knowledge
A,Π,SIM (λ)

(crsΠ, τ) ←r SIM1(1λ)
b ←r {0, 1}
b∗ ←r APb(·,·)(crsΠ)

where P0 on input x, w:
return π ←r PrfΠ(crsΠ, x, w), if R(x, w) = 1
return ⊥

and P1 on input x, w:
return π ←r SIM2(crsΠ, τ, x), if R(x, w) = 1
return ⊥

return 1, if b∗ = b
return 0

Fig. 4. Zero-Knowledge

∣
∣
∣
∣
Pr

[

crsΠ ←r PGΠ(1λ) : A(crsΠ) = 1] −

Pr
[

(crsΠ, τ) ←r SIM1(1λ) : A(crsΠ) = 1
]
∣
∣
∣
∣
≤ ν1(λ),

and that ∣
∣
∣Pr

[

ExpZero-Knowledge
A,Π,SIM (λ) = 1

]

− 1/2
∣
∣
∣ ≤ ν2(λ),

where the corresponding experiment is depicted in Fig. 4.

Simulation-sound extractability says that every adversary who is able to come
up with a proof π∗ for a statement must know the witness, even when seeing sim-
ulated proofs for adaptively chosen statements potentially not in L. Clearly, this
implies that the proofs output by a simulation-sound extractable proof-systems
are non-malleable. Note that the definition of simulation-sound extractability
of [30] is stronger than ours in the sense that the adversary also gets the trap-
door ζ as input. However, in our context this weaker notion (previously also used
e.g. in [1,25]) suffices.

ExpSimSoundExt
A,Π,E (λ)

(crsΠ, τ, ζ) ←r E1(1λ)
Q ← ∅
(x∗, π∗) ←r ASIM(·)(crsΠ)

where SIM on input x:
obtain π ←r SIM2(crsΠ, τ, x)
Q ← Q ∪ {(x, π)}
return π

w∗ ←r E2(crsΠ, ζ, x∗, π∗)
return 1, if VfyΠ(x

∗, π∗) = 1 ∧ R(x∗, w∗) = 0 ∧ (x∗, π∗) /∈ Q
return 0

Fig. 5. Simulation sound extractability
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Definition 10 (Simulation-Sound Extractability). A zero-knowledge non-
interactive proof system Π for language L is said to be simulation-sound
extractable, if for any PPT adversary A, there exists a PPT extractor E =
(E1, E2), such that
∣
∣
∣
∣
Pr

[

(crsΠ, τ) ←r SIM1(1λ) : A(crsΠ, τ) = 1] −

Pr
[

(crsΠ, τ, ζ) ←r E1(1λ) : A(crsΠ, τ) = 1
]
∣
∣
∣
∣
= 0,

and that there exist a negligible function ν so that

Pr
[

ExpSimSoundExt
A,Π,E (λ)

]

= 1 ≤ ν(λ),

where the corresponding experiment is depicted in Fig. 5.

3 Chameleon-Hashes, Revisited

In this section we present the formal framework for chameleon-hashes, their
security properties with a special focus on the collision-resistance notion and
then show relations and separations between the security properties.

3.1 Framework

We now present the framework for chameleon-hashes. We rely on the most recent
comprehensive framework by Camenisch et al. [15], which is, in turn, based upon
work done by Ateniese et al. and Brzuska et al. [4,14].

Definition 11. A chameleon-hash CH is a tuple of five PPT algorithms
(CHPG,CHKG,CHash,CHCheck,CHAdapt), such that:

CHPG. The algorithm CHPG, on input a security parameter λ outputs public
parameters of the scheme:

ppch ←r CHPG(1λ).

We assume that ppch is implicit input to all other algorithms.
CHKG. The algorithm CHKG, on input the public parameters ppch outputs the

private and public keys of the scheme:

(skch, pkch) ←r CHKG(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a message
m to hash. It outputs a hash h, and some randomness r:2

(h, r) ←r CHash(pkch,m).
2 We note that the randomness r is also sometimes called “check value” [4].
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CHCheck. The deterministic algorithm CHCheck gets as input the public key
pkch, a message m, randomness r, and a hash h. It outputs a bit
d ∈ {0, 1}, indicating whether the hash h is valid:

d ← CHCheck(pkch,m, r, h).

CHAdapt. The algorithm CHAdapt on input of a secret key skch, the message m,
new message m′, randomness r, and hash h outputs new randomness
r′:

r′ ←r CHAdapt(skch,m,m′, r, h).

Definition 12 (Correctness). A chameleon-hash is called correct, if for all
security parameters λ ∈ N, for all ppch ←r CHPG(1λ), for all (skch, pkch) ←r

CHKG(ppch), for all m ∈ M, for all (h, r) ←r CHash(pkch,m), for all
m′ ∈ M, we have for all r′ ←r CHAdapt(skch,m,m′, r, h), that 1 =
CHCheck(pkch,m, r, h) = CHCheck(pkch,m

′, r′, h).

3.2 Indistinguishability

Indistinguishability requires that the randomness r does not reveal if it was
obtained through CHash or CHAdapt. Upon setup, a challenger generates a key
pair (skch, pkch) for CH (along with some public parameters), and draws a bit
b ←r {0, 1}. The challenger initializes the adversary with the pkch and gives the
adversary access to a HashOrAdapt oracle, which allows the adversary to submit
two messages m, m′. Depending on the bit b, the challenger then either hashes
m′ directly (b = 0), of first hashes m, and then adapts m to m′ (b = 1). The
resulting hash/randomness pair (h, r) (or (h′, r′′) resp.) is the oracle’s output to
the adversary. The adversary’s objective is to guess the bit b. Note that all keys
are generated honestly and the adversary gets access to a collision-finding oracle
CHAdapt for arbitrary hashes, meaning that the adversary may also input hashes
generated by the HashOrAdapt-oracle. We stress that there may be scenarios
where indistinguishability is not required or even hindering.

Definition 13 (Indistinguishability). A chameleon-hash CH is indistinguish-
able, if for any PPT adversary A there exists a negligible function ν such that

∣
∣
∣Pr[ExpInd

A,CH(λ) = 1] − 1/2
∣
∣
∣ ≤ ν(λ),

where the corresponding experiment is depicted in Fig. 6.

Samelin and Slamanig recently introduced full indistinguishability [41], which,
in turn, generalizes the notion of strong indistinguishability by Derler et al [21].
In their notion, the adversary is even allowed to generate the keys which are
used for hashing and adapting (in the strong version, the adversary only knows
all keys, but cannot generate them).

We do neither consider full nor strong indistinguishability as fundamental for
chameleon-hashes, but examine these notions to achieve a more complete picture
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ExpInd
A,CH(λ)

ppch ←r CHPG(1λ)
(skch, pkch) ←r CHKG(ppch)
b ←r {0, 1}
a ←r AHashOrAdapt(skch,·,·,b),CHAdapt(skch,pkch,·,·,·)(pkch)

where HashOrAdapt on input skch, m, m′, b:
(h, r) ← CHash(pkch, m

′)
(h′, r′) ← CHash(pkch, m)
r′′ ← CHAdapt(skch, m, m′, r′, h′)
If r = ⊥ ∨ r′′ = ⊥, return ⊥
if b = 0:

return (h, r)
if b = 1:

return (h′, r′′)
return 1, if a = b
return 0

Fig. 6. CH Indistinguishability

of the relations. The formal definitions of full and strong indistinguishability are
given in the full version of this paper, where we also prove that full indistin-
guishability is strictly stronger than strong indistinguishability, which, in turn,
is strictly stronger than indistinguishability.

3.3 Collision-Resistance

In this section we revisit existing collision-resistance notions, introduce a stronger
and more desirable notion of collision-resistance dubbed full collision-resistance
(or F-CollRes for short) and discuss how these notions differ. The main idea
behind collision-resistance in general is to argue that an adversary that has
no access to the secret key skch cannot find any collisions, i.e,. pairs (m, r) and
(m′, r′) and hash value h s.t. CHCheck(pkch,m, r, h) = CHCheck(pkch,m

′, r′, h) =
1. In the weakest case, the adversary has no access to any other collisions, whereas
in stronger notions the adversary is explicitly allowed to obtain collisions for arbi-
trary hashes via a CHAdapt′ oracle (we indicate these by using boxes).
We present all the different notions in Fig. 7, where we indicate the differences
in the winning conditions by using boxes. In all the experiments the
challenger generates a key pair (skch, pkch) honestly (along with some public
parameters) and the adversary is then initialized with pkch. We now discuss the
differences of the single collision resistance notions, where in the weakest case
the adversary has no access to an CHAdapt′ oracle (which allows the adversary
to adaptively ask for collisions with messages and hashes of its own choice), but
in all other cases the adversary does. To vertically align the experiments, we
insert boxes for lines which are missing in one experiment but are
present in the other.
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ExpW-CollRes
A,CH (λ)

ppch ←r CHPG(1λ)
(skch, pkch) ←r CHKG(ppch)

(m∗, r∗, m′∗, r′∗, h∗) ←r A(pkch)

return 1, if CHCheck(pkch, m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch, m
′∗, r′∗, h∗) = 1 ∧

m∗ �= m′∗

return 0

ExpE-CollRes
A,CH (λ)

ppch ←r CHPG(1λ)
(skch, pkch) ←r CHKG(ppch)
Q ← ∅
(m∗, r∗, m′∗, r′∗, h∗) ←r A CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch, m, m′, r, h:
return ⊥, if CHCheck(pkch, m, r, h) �= 1
r′ ←r CHAdapt(skch, m, m′, r, h)
If r′ = ⊥, return ⊥
Q ← Q ∪ {h}
return r′

return 1, if CHCheck(pkch, m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch, m
′∗, r′∗, h∗) = 1 ∧

m∗ �= m′∗ ∧ h∗ /∈ Q
return 0

ExpS-CollRes
A,CH (λ)

ppch ←r CHPG(1λ)
(skch, pkch) ←r CHKG(ppch)
Q ← ∅
(m∗, r∗, m′∗, r′∗, h∗) ←r A CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch, m, m′, r, h:
return ⊥, if CHCheck(pkch, m, r, h) �= 1
r′ ←r CHAdapt(skch, m, m′, r, h)
If r′ = ⊥, return ⊥
Q ← Q ∪ {m, m′}
return r′

return 1, if CHCheck(pkch, m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch, m
′∗, r′∗, h∗) = 1 ∧

m∗ �= m′∗ ∧ m∗ /∈ Q
return 0

ExpF-CollRes
A,CH (λ)

ppch ←r CHPG(1λ)
(skch, pkch) ←r CHKG(ppch)
Q ← ∅
(m∗, r∗, m′∗, r′∗, h∗) ←r A CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch, m, m′, r, h:
return ⊥, if CHCheck(pkch, m, r, h) �= 1
r′ ←r CHAdapt(skch, m, m′, r, h)
If r′ = ⊥, return ⊥
Q ← Q ∪ {(h, m), (h, m′)}
return r′

return 1, if CHCheck(pkch, m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch, m
′∗, r′∗, h∗) = 1 ∧

m∗ �= m′∗ ∧ (h∗, m∗) /∈ Q
return 0

Fig. 7. The ExpX-CollRes
A,CH experiment with X ∈ {W, E, S, F}.

Weak Collision-Resistance (W-CollRes) [37]. The adversary A wins, if it can
come up with a collision for the given public key.

Enhanced Collision-Resistance (E-CollRes) [4]. The adversary gets access to
a collision-finding oracle CHAdapt′, which outputs a collision for adversarially
chosen hashes, but also keeps track of each queried hash h using the list Q.
The adversary wins, if it comes up with a collision for the given public key
for an adversarially chosen hash h∗ never input to CHAdapt′.

Standard Collision-Resistance (S-CollRes) [15]. The adversary gets access to
a collision-finding oracle CHAdapt′, which outputs a collision for the adver-
sarially chosen hash, but also keeps track of each of the queried messages m
and m′, using the list Q. The adversary wins, if it comes up with a collision
for the given public key for an adversarially chosen h∗ for which the message
m∗ output by the adversary was never queried to the collision-finding oracle.
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Full Collision-Resistance (F-CollRes). The adversary gets access to a collision-
finding oracle CHAdapt′, which outputs a collision for the adversarially chosen
hash, but also keeps track of each of the queried hash/message pair (h,m)
and (h,m′), using the list Q. The adversary wins, if it comes up with a
hash/message pair (h∗,m∗), for the given public key, never queried to or
output from the collision-finding oracle.3

Now, we formally define security with respect to all the collision-resistance
notions.

Definition 14 (X Collision-Resistance). A chameleon-hash CH offers X
collision-resistance with X ∈ {W,E,S,F}, if for any PPT adversary A there
exists a negligible function ν such that

Pr[ExpX-CollRes
A,CH (λ) = 1] ≤ ν(λ),

where the corresponding experiment is depicted in Fig. 7.

Discussion of the Notions. W-CollRes is the notion introduced in the first
work on chameleon-hashes by Krawczyk and Rabin [37] and essentially repre-
sents the binding notion of a trapdoor-commitment scheme. Note that due to
not giving access to a collision-finding oracle it gives no guarantees whatsoever
if the adversary sees a single collision for any hash computed for the given pub-
lic key.4 The E-CollRes notion has been introduced by Ateniese et al. [4] and
we note that there exists a definition in the setting of public-coin chameleon
hashes, i.e., where the CHCheck algorithm simply re-runs the CHash, which is
called key-exposure freeness [6,16]. It captures requirements similar to the ones
captured by E-CollRes, but it is not directly comparable as we are considering the
more general secret-coin setting. We note that the E-CollRes notion allows the
adversary to come up with arbitrary collisions for hashes it has seen a collision
for. The S-CollRes notion has been introduced by Camenisch et al. [15], and it
captures all of the intuitive requirements of real-world applications of chameleon-
hashes. Yet, it still allows the hash itself to be malleable which might still be
problematic in certain applications. Finally, our new F-CollRes notion enforces
that the adversary cannot (except with negligible probability) output any new
collisions and seems to be the most desirable notion for collision-resistance.

3.4 Uniqueness

Camenisch et al. [15] defined a property called uniqueness. Uniqueness requires
that for each hash/message pair, exactly one randomness can be found, even if
the adversary A controls all values, but the public parameters.5

3 In the case (h′∗, m′∗) is the new hash/message pair, simply switch names.
4 A slightly stronger notion has been proposed by Zhang in [46] where the adversary

sees a hash on a random message and is then given a single collision on a message of
its choice. We do not cover this notion here as it seems to be tailored to the specific
applications in [46] and all notions stronger than W-CollRes considered here cover
more general cases.

5 Lifting this definition to also cover those parameters is straightforward.
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ExpUniqueness
A,CH (λ)

ppch ←r CHPG(1λ)
(pk∗, m∗, r∗, r′∗, h∗) ←r A(ppch)
return 1, if CHCheck(pk∗, m∗, r∗, h∗) = CHCheck(pk∗, m∗, r′∗, h∗) = 1 ∧ r∗ �= r′∗

return 0

Fig. 8. Uniqueness

Definition 15 (Uniqueness). A chameleon-hash CH is unique, if for any PPT
adversary A there exists a negligible function ν such that

Pr[ExpUniqueness
A,CH (λ) = 1] ≤ ν(λ).

The corresponding experiment is depicted in Fig. 8.

We do not consider uniqueness as a fundamental property, as there are only
very few applications requiring this notion [15,41]. However, to obtain a more
complete picture with respect to the relations of the security properties, we also
investigate uniqueness.

3.5 Relationships Between Properties

Below we show relations and separations between the security properties of
chameleon-hashes.

Collision-Resistance Properties. We start by analyzing how the various
collision-resistance notions are related.

Theorem 1. Standard collision-resistance is strictly stronger than weak coll-
ision-resistance.

Proof. We first prove that standard collision-resistance implies weak collision-
resistance and then give a counterexample showing that the other direction of
the implication does not hold.

S-CollRes =⇒ W-CollRes: Assume A to be an adversary who breaks weak
collision-resistance. We now construct an adversary B which breaks standard
collision-resistance. In particular, B proceeds as follows. It receives ppch and
pkch from its own challenger, and uses both to initialize A. Whenever A
outputs a winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns that tuple to its own
challenger. As the collision-finding oracle was never queried, that tuple also
makes B win the standard collision-resistance game with the same probability
A wins the weak collision-resistance game.

W-CollRes �=⇒ S-CollRes: The CH by Krawczyk and Rabin [37] provides a coun-
terexample: it is weakly collision-resistant, but does not offer standard colli-
sion-resistance. Observe that it is possible to trivially extract the secret key
from a collision. That collision is obtained from the collision-finding oracle in
the standard collision-resistance game (cf. the full version of this paper). �
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Theorem 2. Enhanced collision-resistance is strictly stronger than weak coll-
ision-resistance.

Proof. The proof is identical to the one of Theorem 1. �
Theorem 3. Full collision-resistance is strictly stronger than standard coll-
ision-resistance.

Proof. We first prove that full collision-resistance implies standard collision-
resistance and then give a counterexample showing that the other direction of
the implication does not hold.

F-CollRes =⇒ S-CollRes: Assume A to be an adversary who breaks stan-
dard collision-resistance. Now we construct an adversary B which breaks full
collision-resistance. In particular, B proceeds as follows. It receives ppch and
pkch from its own challenger, and uses both to initialize A. All queries to the
collision-finding oracle are relayed to B’s own oracle. Whenever A outputs a
winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns that tuple to its own challenger.
As m∗ �= m′∗ must be true, and m∗ was never queried to A’s collision-finding
oracle, this also means that (h∗,m∗) was never queried to B’s oracle, thus
meeting the winning condition.

S-CollRes �=⇒ F-CollRes: The scheme by Camenisch et al. [15] provides a
counterexample: it offers standard collision-resistance, but does not offer full
collision-resistance. In particular, their construction is re-randomizable (cf.
the full version of this paper). In more detail, to show that this construc-
tion is not fully collision-resistant, consider the following strategy: Receive
pkch = (N,H) and ppch = e. Compute (h, r) ←r CHash(pkch,m), with m
random. Then, ask for an adaption (h, r,m) to (h, r′,m′), for some random
m′ �= m. Then, compute h∗ ← h2e mod N , r∗

1 ← 2r mod N , and r∗
2 ← 2r′

mod N . Because no collision for h∗ was computed, this construction cannot
be fully collision-resistant. Note, this works, as H(m)(2r)e ≡ h2e (mod N)
for any input. Also note that the attack above also breaks enhanced collision-
resistance (we will later use this to derive a corollary). �

Theorem 4. Full collision-resistance is strictly stronger than enhanced coll-
ision-resistance.

Before we provide the proof of Theorem4, we provide a novel construction of
a chameleon-hash satisfying the E-CollRes notion that is used to separate the
notions F-CollRes and E-CollRes.

Construction. Our CH presented below provides E-CollRes, but allows to effi-
ciently find arbitrary collisions for a given hash, once a single collision was seen.
However, it is not possible to find collisions for any other hash. The main idea
is to encrypt a message m using a mcIND-CPA secure encryption scheme Ω and
use the ciphertext as the hash. The randomness r of the chameleon-hash is the
public key pkΩ

′ of a freshly sampled key-pair (skΩ
′, pkΩ

′) of Ω, the encryption c′

of a signature σ under pkΩ
′ and a SSE NIZK π for the following language:
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L := {(pkΩ, pkΣ, h,m) | ∃ (σ, ξ) :
h = Enc(pkΩ,m; ξ) ∨ VrfΣ(pkΣ, h, σ) = 1}.

(1)

Informally, this language requires the prover to show that it either knows the
randomness ξ attesting that h is a well-formed encryption of m, or a valid
signature σ for h. The basic idea of the construction is that when computing
a hash, the witness ξ is used. The randomness includes an encryption of the
signature (initially one on 0) under the public key pkΩ

′. Note that the trick is
that for adaption one computes a signature σ for h, uses σ as a witness, and
includes an encryption of σ under pkΩ

′ in the randomness. Clearly, now seeing
a single collision allows to compute arbitrary collisions for the hash h.

This CH can be instantiated by instantiating Σ as structure-preserving signa-
tures (SPS) in type-III bilinear groups (assuming SXDH), e.g., Groth’s SPS [31].
Thus, Ω can be ElGamal [29] in one of the base-groups. The algorithm KVfΩ is
simply checking whether gskΩ = gx = pkΩ, while for Π, a suitable instantiation
is a Fiat-Shamir transformed Σ-protocol in the random-oracle model [28], which
also works very well with ElGamal encryption and Groth’s signature scheme.

We defer the proof of Construction 1 to the full version of this paper. We are
now ready to present the proof of Theorem4.

Proof. We first prove that full collision-resistance implies enhanced collision-
resistance and then give a counterexample showing that the other direction of
the implication does not hold.

F-CollRes =⇒ E-CollRes: Assume A to be an adversary who breaks the enhanced
collision-resistance. We can then construct an adversary B which breaks the
full collision-resistance. In particular, B proceeds as follows. It receives ppch

and pkch from its own challenger, and uses both to initialize A. All queries
to the collision-finding oracle are relayed to B’s own oracle. Whenever A
outputs a winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns that tuple to its own
challenger. As m∗ �= m′∗ must be true, and h∗ was never queried to A’s
collision-finding oracle, this also means that (h∗,m∗) was never queried to
B’s oracle, thus meeting the winning condition.

E-CollRes �=⇒ F-CollRes: The scheme presented in Construction 1 gives a coun-
terexample: it allows finding arbitrarily many collisions for a given hash h,
if it sees a single one, but for no other h′ �= h. In more detail, to show
that this construction is not fully collision-resistant, consider the following
strategy. Receive pkch = (pkΩ, pkΣ) and ppch = (ppΩ, crsΠ, ppΣ). Compute
(h, r) ←r CHash(pkch,m), with m random. Also store the secret key skΩ

′.
Then, ask for an adaption (h, r,m) to (h, r′,m′), where r′ = (π, c′′, pkΩ

′), for
some random m′. Then, compute σ ← Dec(skΩ

′, c′′). Then arbitrary collisions
for h are generated by executing CHAdapt in a similar way the owner of pkch

does for finding collisions, due to the knowledge of σ for h. Because such
collisions can only be generated for already seen collisions w.r.t. h, enhanced
collision-resistance holds, but full collision-resistance does not. Also note that
standard collision-resistance does not hold for Construction 1 for the same
reason (we will later use this to derive a corollary). �
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CHPG(1λ) : Fix a public-key encryption scheme Ω and a compatible NIZK proof system

for language L in (1). Return ppch = (ppΩ, ppΣ, crsΠ), where

ppΩ ←r PGΩ(1
λ), ppΣ ←r PGΣ(1

λ), and crsΠ ←r PGΠ(1
λ).

CHKG(ppch) : Return (skch, pkch) = ((skΩ, skΣ), (ppch, pkΩ, pkΣ, σ0)), where

(skΩ, pkΩ) ←r KGΩ(ppΩ), (skΣ, pkΣ) ←r KGΣ(ppΣ), and σ0 ←r SgnΣ(skΣ, 0).

0 is considered some special invalid hash value for CH.

CHash(pkch, m) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and return (h, r) = (c, (π, c′, pkΩ
′)),

where

(c; ξ) ←r Enc(pkΩ, m), (skΩ
′, pkΩ

′) ←r KGΩ(ppΩ), c
′ ←r Enc(pkΩ

′, σ0), and

π ←r PrfΠ(crsΠ, (pkΩ, pkΣ, c, m), (⊥, ξ))

CHCheck(pkch, m, r, h) : Parse pkch as ((ppΩ, crsΠ), pkΩ) and r as (π, c′, pkΩ
′), and return

1 if the following holds, and 0 otherwise:

m ∈ M ∧ VfyΠ(crsΠ, (pkΩ, pkΣ, h, m), π) = 1.

CHAdapt(skch, m, m′, r, h) : Parse skch as skΩ. Verify that m′ ∈ M, CHCheck(pkch, m,

r, h) = 1, and return ⊥ if not. Otherwise, return r′ = (π′, c′′, pkΩ
′), where

σ ←r SgnΣ(skΣ, h), c′′ ←r Enc(pkΩ
′, σ), and

π′ ←r PrfΠ(crsΠ, (pkΩ, pkΣ, h, m′), (σ, ⊥)).

Construction 1. Enhanced Collision-Resistant Chameleon-Hash

Theorem 5. Enhanced collision-resistance and standard collision-resistance
together imply full collision-resistance.

Proof. The theorem above is proven using a sequence of games.

Game 0: The original full collision-resistance game.
Game 1: As Game 0, we abort, if the adversary A outputs (m∗, r∗,m′∗, r′∗, h∗)

such that the winning conditions are met, but h∗ was never queried to the
collision-finding oracle.

Transition - Game 0 → Game 1: If this is the case, we build an adversary
B which breaks the enhanced collision-resistance of the underlying scheme.
Namely, B receives pkch and uses it to initialize A. Every adaption query by A
is answered by B using its own oracle. Once A outputs (m∗, r∗,m′∗, r′∗, h∗),
B returns (m∗, r∗,m′∗, r′∗, h∗) to its own challenger. As h∗ was never seen, B
wins its own game. |Pr[S0] − Pr[S1]| ≤ νenh-collres(λ) follows.

Game 2: As Game 1, we abort, if the adversary A outputs (m∗, r∗,m′∗, r′∗, h∗)
such that the winning conditions are met, but m∗ was never queried to the
collision-finding oracle.

Transition - Game 1 → Game 2: If this is the case, we build an adversary
B which breaks the standard collision-resistance of the underlying scheme.
Namely, B receives pkch and uses it to initialize A. Every adaption query by
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A is answered by B using its own oracle. Once A outputs (m∗, r∗,m′∗, r′∗, h∗),
B returns (m∗, r∗,m′∗, r′∗, h∗) to its own challenger. As m∗ was never seen,
B wins its own game. |Pr[S1] − Pr[S2]| ≤ νst-collres(λ) follows.

In Game 2, the adversary can no longer win the full collision-resistance game.
This proves the theorem. �
The corollary below follows from the constructions used in the proofs of The-
orems 3 and 4, which provide standard collision-resistance but not enhanced
collision-resistance, and vice versa.

Corollary 1. Standard collision-resistance and enhanced collision-resistance
are independent.

Additional Separations. We now prove some additional separations. We note
that indistinguishability is strictly weaker than full indistinguishability (as for-
mally shown in the full version of this paper).

Theorem 6. Even full indistinguishability and uniqueness together do not imply
weak collision-resistance.

Proof. Assume the following contrived construction of a chameleon-hash: CHPG′

(1λ) := ∅, CHKG′(ppch) := ∅, CHash′(pkch,m) := (∅, ∅), CHCheck′(pkch,m,
r, h) := if h = ∅ ∧ pkch = ∅ ∧ r = ∅ then 1 else 0, CHAdapt′(skch,m,m′, r, h) :=
if CHCheck′(pkch,m, r, h) = 1 then ∅ else ⊥. Clearly, this construction is fully
indistinguishable and unique. Finding collisions, however, is a trivial task. �
Theorem 7. Even full collision-resistance and uniqueness together do not imply
indistinguishability.

Proof. Assume CH := (CHPG,CHKG,CHash,CHCheck,CHAdapt) to be a
fully collision-resistant, unique, and fully indistinguishable chameleon-hash.
Let CH′ := (CHPG′,CHKG′,CHash′,CHCheck′,CHAdapt′) be a chameleon-
hash which internally uses CH but appends m to the hash. CH′ is
defined as: CHPG′(1λ) := CHPG(1λ), CHKG′(ppch) := CHKG(ppch),
CHash′(pkch,m) := ((h,m), r) where (h, r) ←r CHash(pkch, (m,m)), and
also CHCheck′(pkch,m, r, h) := CHCheck(pkch, (m, m̂), r, h′) where h′ =
(h, m̂), and CHAdapt′(skch,m,m′, r, h′) := (CHAdapt(skch, (m, m̂), (m′, m̂), r′, h))
where h′ = (h, m̂). Clearly, CH′ is still fully collision-resistant and unique,
but looking at the appended messages allows deciding whether an adaption has
occurred. �
Theorem 8. Even full collision-resistance and full indistinguishability together
do not imply uniqueness.

Proof. Assume CH := (CHPG,CHKG,CHash,CHCheck,CHAdapt) to be a
fully collision-resistant, unique, and fully indistinguishable chameleon-hash.
Let CH′ := (CHPG′,CHKG′,CHash′,CHCheck′,CHAdapt′) be a chameleon-
hash which internally uses CH but appends a random bit to each r.
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In particular let CH′ be defined as follows: CHPG′(1λ) := CHPG(1λ),
CHKG′(ppch) := CHKG(ppch), CHash′(pkch,m) := (h, (r, 0)) where (h, r) ←r

CHash(pkch,m), CHCheck′(pkch,m, r, h) := CHCheck(pkch,m, r′, h) where r =
(r′, ·), CHAdapt′(skch,m,m′, r′, h) := (CHAdapt(skch,m,m′, r′, h), 0) where r =
(r′, ·). Clearly, CH′ is still fully collision-resistant and fully indistinguishable, but
changing the bit in the randomness r is trivial, breaking uniqueness trivially. �

4 Fully Collision-Resistant Chameleon-Hashes

We are now ready to present our black-box construction of fully collision-resistant
chameleon-hashes.

4.1 Construction

The main idea of our construction is to encrypt a message m using an mcIND-
CPA secure encryption scheme and use the ciphertext as the hash, i.e., it is
very close to our “contrived” construction providing enhanced collision-resistance
given in Construction 1. However, it has some important, and subtle, differences.

Namely, the randomness r is a SSE NIZK attesting membership of a tuple
containing the public key used for encryption, the hash, as well as the hashed
message in the following NP-language:

L := {(pkΩ, h,m) | ∃ (skΩ, ξ) : h = Enc(pkΩ,m; ξ) ∨ KVfΩ(pkΩ, skΩ) = 1}. (2)

Informally, this language requires the prover to demonstrate that it either knows
the randomness ξ attesting that h is a well-formed encryption of m under the
CH key pkΩ, or it knows a secret key skΩ corresponding to pkΩ, instead of
encrypting a signature and proving the verification relation. Our construction
of a fully collision-resistant CH is presented as Construction 2. We note that
compared to Ateniese et al. [4] we cannot use true-simulation extractable NIZKs
(tSE-NIZKs) [25] and need SSE NIZKs.

4.2 Security

Subsequently, we prove the security of our CH in Construction 2.

Theorem 9. If Ω is correct and Π is complete, then CH in Construction 2 is
correct.

Correctness follows from inspection and the (perfect) correctness of the used
primitives.

Theorem 10. If Ω is mcIND-CPA secure, and Π is zero-knowledge, then CH
in Construction 2 is indistinguishable.

In the proof, we use frameboxes and � to highlight the changes we make in
the algorithms throughout a sequence of games (and we only show the changes).
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CHPG(1λ) : Fix a public-key encryption scheme Ω and a compatible NIZK proof
system for language L in (2). Return ppch = (ppΩ, crsΠ), where

ppΩ ←r PGΩ(1λ), and crsΠ ←r PGΠ(1λ).

CHKG(ppch) : Return (skch, pkch) = (skΩ, (ppch, pkΩ)), where

(skΩ, pkΩ) ←r KGΩ(ppΩ).

CHash(pkch, m) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and return (h, r) = (c, π), where

(c; ξ) ←r Enc(pkΩ, m), and π ←r PrfΠ(crsΠ, (pkΩ, h, m), (⊥, ξ)).

CHCheck(pkch, m, r, h) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and r as π. Return 1, if
the following holds, and 0 otherwise:

m ∈ M ∧ VfyΠ(crsΠ, (pkΩ, h, m), π) = 1.

CHAdapt(skch, m, m′, r, h) : Parse skch as skΩ. Verify whether m′ ∈ M, and

CHCheck(pkch, m, r, h) = 1. Return ⊥, if not. Otherwise, return r′ = π′, where

π′ ←r PrfΠ(crsΠ, (pkΩ, h, m′), (skΩ, ⊥)).

Construction 2. Our Construction of a Fully Collision-Resistant CH

Proof. To prove indistinguishability, we use a sequence of games:

Game 0: The original indistinguishability game.
Game 1: As Game 0, but we modify the algorithms CHPG, CHash, and CHAdapt

used inside the game:

CHPG′(1λ) :

crsΠ ←r PGΠ(1
λ
) � (crsΠ, τ) ←r SIM1(1

λ) .

CHash′(pkch, m) :

π ←r PrfΠ(crsΠ, (pkΩ, h, m), (⊥, ξ)) � π ←r SIM2(crsΠ, τ, (pkΩ, h, m))

CHAdapt′(skch, m, m′, r, h) :

π
′ ←r PrfΠ(crsΠ, (pkΩ, h, m

′
), (skΩ, ⊥)) � π′ ←r SIM2(crsΠ, τ, (pkΩ, h, m′)).

Transition - Game 0 → Game 1: We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on a
zero-knowledge challenger Czk, either produces the distribution in Game 0 or
Game 1, respectively. In particular, assume that we use the following changes:
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CHPG′′(1λ) :

(crsΠ, τ) ←r SIM1(1
λ
) � crsΠ ←r Czk .

CHash′′(pkch, m) :

π ←r SIM2(crsΠ, τ, (pkΩ, h, m)) � π ←r Czk.Pb((pkΩ, h, m), (⊥, ξ)) .

CHAdapt′′(skch, m, m′, r, h) :

π
′ ←r SIM2(crsΠ, τ, (pkΩ, h, m

′
)) � π′ ←r Czk.Pb((pkΩ, h, m′), (skΩ, ⊥)) .

Clearly, if the challenger’s internal bit is 0 we simulate the distribution in
Game 0, whereas we simulate the distribution in Game 1 otherwise. We have
that |Pr[S0] − Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHash algorithm as follows:

CHash′′′(pkch, m) :

(c; ξ) ←r Enc(pkΩ, m) � (c; ξ) ←r Enc(pkΩ, 0) .

Transition - Game 1 → Game 2: We bound the probability for an adversary
to distinguish between two consecutive games by introducing a hybrid game
which uses a multi-challenge IND-CPA challenger to interpolate between two
consecutive games.

CHKG(ppch)
′′ : Return (⊥, pkch) = (⊥, (ppch, pkΩ)), where

(skΩ, pkΩ) ←r KGΩ(ppΩ) � pkΩ ←r Cmc-cpa .

CHash′′′′(pkch, m) :

(c; ξ) ←r Enc(pkΩ, 0) � (c;⊥) ←r Cmc-cpa.Enc′(m, 0) .

Now, depending on the challenger’s bit, we either simulate Game 1 or Game
2. Thus we have that |Pr[S1] − Pr[S2i

]| ≤ νmc-cpa(λ)

Now, the indistinguishability game is independent of the bit b, proving indis-
tinguishability. �
Theorem 11. If Ω is perfectly correct and mcIND-CPA secure, and Π is zero-
knowledge as well as simulation-sound extractable, then CH in Construction 2 is
fully collision-resistant.

Proof. To prove full collision-resistance, we use a sequence of games.

Game 0: The original full collision-resistance game.
Game 1: As Game 0, but we modify the CHPG and the CHAdapt algorithm as

follows:
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CHPG′(1λ) :

crsΠ ←r PGΠ(1
λ
) � (crsΠ, τ) ←r SIM1(1

λ) .

CHAdapt′(skch, m, m′, r, h) :

π
′ ←r PrfΠ(crsΠ, (pkΩ, h, m

′
), (skΩ, ⊥)) � π′ ←r SIM2(crsΠ, τ, (pkΩ, h, m′)).

Transition - Game 0 → Game 1: We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on
a zero-knowledge challenger Czk, either produces the distribution in Game 0
or Game 1, respectively.

CHPG′′(1λ) :

(crsΠ, τ) ←r SIM1(1
λ
) � crsΠ ←r Czk .

CHAdapt′′(skch, m, m′, r, h) :

π
′ ←r SIM2(crsΠ, τ, (pkΩ, h, m

′
)) � π′ ←r Czk.Pb((pkΩ, h, m′), skΩ) .

Clearly, if the challenger’s internal bit is 0 we simulate the distribution in
Game 0, whereas we simulate the distribution in Game 1 otherwise. We have
that |Pr[S0] − Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHPG algorithm as follows:

CHPG′′′(1λ) :

(crsΠ, τ) ←r SIM1(1
λ
) � (crsΠ, τ, ζ) ←r E1(1

λ) .

Transition - Game 1 → Game 2: Under simulation-sound extractability, Game
1 and Game 2 are indistinguishable. That is, |Pr[S1] − Pr[S2]| = 0.

Game 3: As Game 2, but we keep a list Q of all tuples (h, r,m) previously
submitted to the collision-finding oracle which are accepted by the CHCheck
algorithm, where h was never submitted to the collision-finding oracle before.

Transition - Game 2 → Game 3: This change is conceptual, i.e., |Pr[S2] −
Pr[S3]| = 0.

Game 4: As Game 3, but for every valid collision (m∗, r∗,m′∗, r′∗, h∗) output by
the adversary we observe that either (m∗, r∗) or (m′∗, r′∗) must be a “fresh”
collision, i.e., one that was never output by the collision-finding oracle. We
assume, without loss of generality, that (m′∗, r′∗) is the “fresh” collision. We
run (sk′, ξ′) ←r E2(crsΠ, ζ, (pkΩ, h∗,m′∗), r′∗) and abort if the extraction fails.
We call this event E1.

Transition - Game 3 → Game 4: Game 3 and Game 4 proceed identically, unless
E1 occurs. Assume, towards contradiction, that event E1 occurs with non-
negligible probability. We now construct an adversary B which breaks the
simulation-sound extractability property of the NIZK proof system with non-
negligible probability. We engage with a simulation-sound extractability chal-
lenger Csse and modify the algorithms as follows:
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CHPG′′′′(1λ) :

(crsΠ, τ, ζ) ←r E1(1
λ
) � crsΠ ←r Csse .

CHAdapt′′′(skch, m, m′, r, h) :

π
′ ←r SIM2(crsΠ, τ, (pkΩ, h, m

′
)) � π′ ←r Csse.SIM(pkΩ, h, m′) .

In the end we output ((pkΩ, h∗,m′∗), r′∗) to the challenger. This shows that
we have |Pr[S3] − Pr[S4]| ≤ νsse(λ).

Game 5: As Game 4, but we observe that if (m∗, r∗) does not correspond to a
fresh collision for h∗ in the above sense, then we will have an entry (h∗, r,m) ∈
Q where (m, r) is a “fresh” collision, i.e., one computed by the adversary.
We run the extractor for the fresh collision, i.e., either obtain (sk′′, ξ′′) ←r

E2(crsΠ, ζ, (pkΩ, h∗,m∗), r∗) or (sk′′, ξ′′) ←r E2(crsΠ, ζ, (pkΩ, h∗,m), r), respec-
tively. In case the extraction fails, we abort. We call the abort event E2.

Transition - Game 4 → Game 5: Analogously to the transition between Game
3 and Game 4, we argue that Game 4 and Game 5 proceed identically unless
E2 occurs which is why we do not restate the reduction to simulation-sound
extractability here. We have that |Pr[S4] − Pr[S5]| ≤ νsse(λ).

Reduction to mcIND-CPA: We are now ready to construct an adversary B
which breaks the mcIND-CPA security of the underlying Ω. Our adversary
B proceeds as follows. It receives ppΩ and pkΩ from its own challenger. It
embeds them straightforwardly as ppch and pkch to initialize A. Now we know
that we have extracted two witnesses (sk, ξ) as well as (sk′′, ξ′′) where one
attests membership of (pkΩ, h∗,m′∗) in L and one attests membership of
(pkΩ, h∗,m′′) for some m′′ �= m′∗ in L. By the perfect correctness of the
encryption scheme, we know that at most one of them can be consistent with
the ciphertext contained in h∗, which implies that either sk or sk′′ will be the
key for the underlying encryption scheme (which of them we figure out by
using KVfΩ). With knowledge of the key, B trivially breaks the mcIND-CPA
security of the underlying Ω by randomly sending two distinct messages to its
own challenger (for encryption), simply decrypting the returned ciphertext,
and answering with the correct bit. We have that Pr[S5] ≤ νmc-cpa(λ). This
concludes the proof. �

4.3 Concrete Instantiation

A suitable instantiation for Ω is ElGamal [29]. The algorithm KVfΩ is simply
checking whether gskΩ = gx = pkΩ. Note that for Π we only need to extract
a bounded number of times (i.e., twice). To this end one may use Fiat-Shamir
transformed Σ-protocols for DLOG relations in the random-oracle model [28]
when additionally applying the compiler by Faust et al. [27]. In particular, Faust
et al. show that such proofs are simulation-sound extractable when additionally
including the statement x upon hashing in the challenge computation and if
the Σ-protocol provides a property called quasi-unique responses. The latter is
straightforward for the statements which need to be proven in our context. See,
e.g., [23], for a detailed discussion of this transformation.
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For the sake of completeness and to demonstrate how efficiently our approach
can be instantiated, we provide this concrete instantiation as Construction 3.
Therefore, let (G, g, q) ←r GGen(1λ) be an instance generator which returns a
prime-order, and multiplicatively written, group G where the DDH problem is
hard, along with a generator g such that 〈g〉 = G. Note that an SSE NIZK for
the required L in (3) can easily be obtained as an equality proof of two discrete
logarithms together with an or composition of a proof of a discrete logarithm [19]
of Fiat-Shamir transformed Σ-protocols discussed above.

L := {(y, h,m) | ∃ (x, ξ) : h = (gξ,m · yξ) ∨ y = gx}. (3)

4.4 Comparison

Subsequently, in Table 1 we compare existing constructions of chameleon-hashes
providing the W-CollRes, E-CollRes and S-CollRes notions with instantiations of
our approach (in the random oracle and standard model) providing the stronger
F-CollRes notion. Here E denotes an exponentiation in the respective algebraic
structure, “?” denotes that it is unclear how efficient this can be realized due to
requirement of an invertible onto mapping into the used group (cf. the discussion
in [36]). SM and RO denote the standard and the random oracle model respec-
tively. Furthermore, DDH, SXDH, PKoE, and OM-RSA denote the decisional

CHPG(1λ) : Outputs the public parameters (G, g, q, H), where ppch = (G, g, q) ←r

GGen(1λ) and a hash-function H : {0, 1}∗ → Zq (which we assume to behave
like a random oracle and to be implicitly available to all algorithms below).

CHKG(ppch) : Return (skch, pkch) = (x, y), where x ←r Zq and y ← gx.

CHash(pkch, m) : Parse pkch as y, choose (ξ, k1, e2, s2) ←r Z
4
q, set u1,1 ← gk1 ,

u1,2 ← yk1 , u2 ← gs2 · y−e2 , e ← H((y, h, m), (u1,1, u1,2, u2)) and e1 ← e −
e2 mod q. Then compute s1 ← k1+e1ξ mod q and finally, return (h, r) = (c, π),
where

c ← (c1, c2) = (gξ, m · yξ) , and π ← (e1, e2, s1, s2).

CHCheck(pkch, m, r, h) : Parse pkch as y and r as (e1, e2, s1, s2), and h as (c1, c2).
Return 1 if the following holds, and 0 otherwise:

m ∈ G ∧ e1 + e2 = H((y, h, m), (gs1 · c−e1
1 , ys1 · (c2/m)−e1 , gs2 · y−e2)).

CHAdapt(skch, m, m′, r, h) : Parse skch as x, and h as (c1, c2). Verify whether

m′ ∈ G, and CHCheck(pkch, m, r, h) = 1. Return ⊥ if not. Otherwise, choose
(k2, e1, s1) ←r Z

3
q, set u1,1 ← gs1 · c−e1

1 , u1,2 ← ys1 · (c2/m′)−e1 , u2 ← gk2 ,
e ← H((y, h, m′), (u1,1, u1,2, u2)), and e2 ← e − e1 mod q. Finally compute
s2 ← k2 + e2x mod q, and return r′ = π′, where

π′ ← (e1, e2, s1, s2).

Construction 3. Concrete instantiation of a Fully Collision-Resistant CH
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Diffie-Hellman, the symmetric DDH, the power knowledge of exponent [34], and
the one-more RSA inversion [9] assumptions. We also stress that for construc-
tions relying on SXDH, for typical instantiations of type-III bilinear groups, we
have that |G2| = 2(|G1|−1)+1 (where | · | denotes the size of the representation
of a group element). Regarding our construction in the standard model, e.g.,
using SSE NIZKs based on Groth-Sahai NIZKs, one can use the compiler in [22]
to efficiently achieve simulation-sound extractability. We, however, note that a
naive instantiation of our template in the standard model would still require to
include bit-wise proofs of the parts of the witness which are in Zq, which would,
all in all, require a number of group elements in the order of 1k − 2k (a very
rough estimate; thus we also omit the remaining costs which is indicated by “−”
in Table 1). It seems that switching to a variant of ElGamal in the target group
(and maybe some other tweaks) would help to work around the requirement of
having bit-wise proofs. Optimizing this instantiation is not in the scope of this
work and therefore we only give our rough estimates in the table. Finally, we note
that we omit comparing our scheme given in Construction 1 as it is contrived
and its sole purpose is to prove a separation result.

5 Application: Redactable Blockchains

While one of the major goals of blockchains is their immutability and in particu-
lar their use as an immutable append-only log, recently, starting with the work of
Ateniense et al. [4], there has been an increasing interest in blockchains that allow
some controlled after-the-fact modification of their content. This is motivated by
illegal content that was shown to be included into the Bitcoin blockchain [38],
which represents a significant challenge for law enforcement agencies [45], as well
as legislations like the European General Data Protection Regulation (GDPR)

Table 1. Comparison of different chameleon-hash functions. | · |bit refers to the bit size
of the respective value which is currently believed to provide 128 bit security. We use
256bit elliptic curves for standard known order groups (|G| = 257, |Zq| = 256), 3072bit
RSA modulus for the RSA setting (|ZN | = 3072), and 381bit BLS12 curves for the
SXDH setting (|G1| = 382, |G2| = 763, |Zq| = 256).

Scheme CR |h| |h|bit |r| |r|bit CHash CHAdapt Ass. Model

[37] W 1G 256 1Zq 256 2EG 0EG DLOG SM

[4] (1) E 1G 256 12G+7Zq 4876 17EG ? DDH ROM

[4] (2) E 1G1 382 6G1+13G2 12211 51EG1 ? SXDH SM

[36] (1) E 1G1 382 9G1+4G2 6490 25EG1 1EZq SXDH SM

[36] (2) E 1G1 382 3G1 1164 6EG1 1EZq PKoE SM

[15] S 1ZN 3072 1ZN 3072 1EZN 1EZN OM-RSA ROM

Ours F 2G 514 4Zq 1024 6EG 5EG DDH ROM

Ours F 2G1 764 ≈1–2k G1/2 - - - SXDH SM
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and the associated “right to be forgotten”. Solutions to this problem may either
be for the permissioned- or permissionless-blockchain setting and cryptographic
in nature [4,21,41] or non-cryptographic, where in the latter case it is based on
the consensus layer of the blockchain [24].

We are considering the former and focus on block-level rewriting (change
entire blocks) of blockchains instead of transaction-level rewriting (change single
transactions within a block) in a permissionless setting (such as Bitcoin), as
this illustrates the problem with much wider implications. In the following we
are using the notation used in [4], and describe a block as triple of the form
B = 〈s, x, ctr〉, where s ∈ {0, 1}λ, x ∈ {0, 1}∗ and ctr ∈ N and a block is
valid if

validblockD
q (B) := (H(ctr, G(s, x)) < D) ∧ (ctr < q) = 1.

Here, H : {0, 1}∗ → {0, 1}2λ and G : {0, 1}∗ → {0, 1}2λ are collision-resistant
hash functions, and the parameters D ∈ N and q ∈ N are the difficulty level of
the block and the maximum number of hash queries that a user is allowed to
make in any given round of the protocol, respectively. The chaining of blocks is
now done by requiring that when attaching a (valid) block B′ = 〈s′, x′, ctr’〉
we have that s′ = H(ctr, G(s, x)). Now to make blocks redactable, one changes
the description of blocks to B = 〈s, x, ctr, (h, r)〉 where the new component is a
chameleon-hash (h, r) and the validation predicate changes to

validblockD
q (B) :=(H(ctr, h) < D) ∧ CHCheck(pkch, (s, x), r, h) = 1 ∧

(ctr < q) = 1.

Chaining is now done by requiring that when attaching a (valid) block B′ =
〈s′, x′, ctr’〉 we have that s′ = H(ctr, h). Observe that now computing a col-
lision in the chameleon-hash gives very much power as it basically allows to
rewrite the entire history of the blockchain.

Ateniese et al. in [4] discuss different ways to control this power to actually
compute collisions (i.e., run CHAdapt) where 1) either skch may be available to
some fully trusted single party only, or 2) skch is generated using a multi-party
computation (MPC) protocol and CHAdapt is also performed in a distributed
way by some set of parties. We will discuss the implications of different collision-
resistance notions to this setting, which is independent of which of these two
approaches is going to be used.

We recall that Ateniese et al. [4], who introduced this application, rely on
E-CollRes and Derler et al. in more recent work in [21] rely on S-CollRes. Now,
note that in such a permissionless setting as discussed above, where everybody
is allowed to participate, it is reasonable to assume that an adversary sees the
collisions computed for any blocks over some time in the system (as they will be
broadcasted). Now let us discuss the single notions:

Weak Collision-Resistance (W-CollRes). A chameleon-hash providing this
notion of collision-resistance provides absolutely no guarantees, as after seeing
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a single collision all guarantees are lost. A prime example is the Pedersen CH
due to Krawczyk and Rabin [37] (cf. the full version of this paper), where
a single seen collision exposes the secret key skch to everybody. Clearly, this
has significant consequences in the above scenario as then everybody can
arbitrarily alter the blockchain.

Enhanced Collision-Resistance (E-CollRes). Recall that an adversary when
attacking some hash h∗ must have never input h∗ to CHAdapt′. Now, this
means that if an adversary targets a specific hash and then happens to see a
collision for this hash (for some reason), suddenly all guarantees are lost and
arbitrary collisions could be computed. Note that our construction in Sect. 3.5
clearly demonstrates potential problems with CHs only satisfying this notion.
This still represents a significant problem with this application.

Standard Collision-Resistance (S-CollRes). Recall, that an adversary is only
restricted to not query message m∗ (which is associated to the computed
collision h∗) was never queried to the collision-finding oracle. While this still
might be problematic in the redactable blockchain setting, messages can very
likely be made unique by perpending a large enough random tag/nonce (note
that in this could easily be done in the block format of e.g., the Bitcoin block
structure). So, this notion seems suitable if the aforementioned constrained
may, under certain circumstances, be guaranteed to be met, but is far away
from being ideal.

Full Collision-Resistance (F-CollRes). We recall that, here, only the collision
(h∗,m∗) was not generated by the collision-finding oracle, but there is no
other restriction whatsoever. Consequently, this collision-resistance notion
seems the “right” notion as no issues on higher levels need to be considered
and very strong guarantees are already provided by the notion itself.
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Abstract. In this work we present a new interactive Zero-Knowledge
Argument of knowledge for general arithmetic circuits. Our protocol is
based on the “MPC-in-the-head”-paradigm of Ishai et al. (STOC 2009)
and follows the recent “MPC-in-the-head with Preprocessing” as pro-
posed by Katz, Kolesnikov and Wang (ACM CCS 2018). However, in
contrast to Katz et al. who used the “cut-and-choose” approach for
pre-processing, we show how to incorporate the well-known “sacrific-
ing” paradigm into “MPC-in-the-head”, which reduces the proof size
when working over arithmetic circuits. Our argument system uses only
lightweight symmetric-key primitives and utilizes a simplified version of
the so-called SPDZ-protocol.

Based on specific properties of our protocol we then show how it can be
used to construct an efficient Zero-Knowledge Argument of Knowledge
for instances of the Short Integer Solution (SIS) problem. We present
different protocols that are tailored to specific uses of SIS, while utilizing
the advantages of our scheme. In particular, we present a variant of our
argument system that allows the parties to sample the circuit “on the
fly”, which may be of independent interest.

We furthermore implemented our Zero-Knowledge argument for SIS
and show that using our protocols it is possible to run a complete inter-
active proof, even for general SIS instances which result in a circuit with
>106 gates, in less than 0.5 s.

1 Introduction

Zero-Knowledge Arguments of Knowledge (ZKAoK) are interactive protocols
that allow a computationally bounded prover to convince a verifier that he
knows a witness for a certain statement, without revealing any further infor-
mation about the witness. Since their introduction in the 80’s [GMR89] these
protocols have been important building blocks for applications in cryptography.
While solutions for very specific languages have been plentiful, many applications
c© International Association for Cryptologic Research 2020
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require the use of arbitrary (algebraic) circuits in order to prove complex rela-
tionships. For example, proving that two homomorphic commitments contain
the same committed message is generally an easy task, while proving knowl-
edge of a preimage of a SHA-256 hash requires more generic solutions. Recent
years saw a variety of different techniques which aim at providing such ZKAoK
(see [PHGR16,GMO16,AHIV17,BBHR19,WTS+18,BCR+19] to just name a
few), varying in terms of argument size, prover/verification time, interaction
and assumptions. While many of these systems perform very well with large
witnesses and circuit sizes, none of them are a one-size-fits-all solution.

As an example, consider the so-called Short Integer Solution (SIS) problem.
Here, a verifier has a matrix A and a vector t while the prover wants to prove
knowledge of a secret s such that t = As mod q and ||s||∞ ≤ β. SIS and related
problems are crucial building blocks for post-quantum lattice-based cryptogra-
phy and constructing efficient ZKAoK with a small communication complexity
and low prover’s running time has long been a problem: the soundness error of
current special-purpose protocols is constant, meaning that the arguments have
to be repeated many times to actually be convincing to a verifier. A particular,
non-standard approach has been suggested by Bendlin & Damg̊ard [BD10], who
were the first to examine arguments of knowledge for SIS using generic proof
systems. They observed that for certain argument schemes, the function that is
computed to validate a SIS instance has both a very low multiplication depth and
low total number of multiplications, if the secret s is a binary vector. However,
many general ZKAoK systems only provide asymptotic efficiency, meaning that
they require the circuit to be big before their strengths play out [BBC+18]. More-
over, many of these approaches achieve sub-linear communication complexity at
the cost of high prover’s running time [AHIV17,PHGR16]. Other approaches
are insecure to post-quantum attacks [WTS+18,MBKM19,BCC+16,PHGR16]
or rely on knowledge assumptions that are poorly understood.

1.1 ‘MPC-in-the-Head’ and Preprocessing

The “MPC-in-the-head” paradigm is a general technique which is used in our
construction. Before outlining our contributions, we first describe this paradigm.

MPC or Secure Multiparty Computation describes a type of interactive protocol
which allows to securely compute functions on secret data. No information is
leaked beyond the output of the function with correctness even in the presence
of dishonest participants.

MPC-in-the-head was introduced by Ishai et al. [IKOS07] as a technique to
construct generic zero-knowledge proofs from MPC protocols. Here, the state-
ment to be proven is rewritten into a circuit C, which outputs y if and only if its
input w is a correct witness for the statement to be proven. The prover simulates
all parties of an MPC protocol as well as their interaction in his head. These
parties obtain a secret-sharing of the witness w as their input, run a protocol to
evaluate C and send the outputs to the verifier. Moreover, the prover commits
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to the inputs as well as randomness and exchanged messages of each party sep-
arately, and opens a verifier-chosen subset of these commitments to the verifier.
The verifier then checks if these parties were simulated correctly by the prover
and that the messages and the outputs are consistent. On a very high level, this
is a proof of the statement if the MPC scheme is robust against active attacks,
and it is zero-knowledge due to the privacy of it.

Preprocessing is a widely used optimization of practical MPC schemes. Here,
each party begins the actual protocol with shares of correlated randomness,
which is itself independent of the inputs of the protocol. This correlated ran-
domness is then used to speed up the actual computation, and due to its inde-
pendence of the inputs it can be computed ahead of time. To the best of our
knowledge, the first MPC-in-the-head scheme that uses preprocessing was intro-
duced in [KKW18].

1.2 Our Contributions

In this work, we construct a new practically efficient ZKAoK for arithmetic
circuits together with a multitude of techniques and apply these to construct
interactive arguments for SIS. Our scheme is based on the “MPC-in-the-head”
approach and uses only symmetric-key primitives. It has an argument size that
only depends on non-linear gates of the circuit C and low prover running time.
We implemented our construction and report on its practicality. In more details:

‘MPC-in-the-Head’ with Preprocessing. We first generalize the idea of [KKW18]
to work over arithmetic circuits using a variant of the SPDZ MPC protocol
[DPSZ12,LN17] and provide a formal proof of security to their “cut-and-choose”
preprocessing heuristic. Then, we present a new construction where we replace
the “cut-and-choose” mechanism with a “sacrificing”-based approach. While
both approaches have similar cost per MPC instance, our “sacrificing”-based
approach yields a smaller cheating probability, which means that the number of
MPC instances simulated in the proof can be significantly smaller, thus reducing
the overall communication footprint. Our scheme is highly flexible in its choice
of parameters. In particular, by changing the number of parties in the underly-
ing MPC protocol, one can alternate between achieving low communication and
low running time. Our construction only requires efficient standard symmetric
primitives, and thus is plausibly post-quantum secure even in the non-interactive
case [DFMS19]. The two constructions can be found in Sect. 3.

Application to SIS. The MPC scheme which we use in our construction allows
to perform additions and multiplications with public values “for free”, meaning
those do not have an impact on the size of the argument. In the SIS prob-
lem the verification of the input of the prover consists of computing a product
with a public matrix A and a proof that the secret s contains bounded values,
so the first part comes essentially for free. We initially tweak the approach of
[BD10] and only allow s to consist of bits, which allows for a very fast argu-
ment of size using one square gate per element of s. Then, we show how to
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handle more general distributions of s and introduce some specific optimiza-
tions to reduce communication and computation. In particular, we show how
to adapt advanced techniques such as rejection sampling into the MPC-in-the-
head framework, which yields a circuit with only linear gates. This is described
in Sect. 5.

Experimental Results. We implemented our zero-knowledge protocol for the
Binary SIS problem (i.e., where the secret s is a vector of bits) and ran extensive
experiments with various sets of parameters – both for the SIS problem and for
the simulated MPC protocol. For a 61-bit field and a matrix A of size 1024×4096
(which suffices for many applications such as encryption or commitments), we are
able to run our argument in 1.2 s for 40-bits of statistical security when working
with a single thread. When utilizing 32 threads, this reduces to only 250 ms. This
shows that general lattice-based ZK arguments (which do not rely on structured
lattices) are practical and can be used in real-world applications. To the best of
our knowledge, we are also the first to implement ZK arguments for general SIS.
The results and all the details can be found in Sect. 6.

Sampling Circuits on the Fly. A major source of optimizations to our application
is the fact that our “MPC-in-the-head” protocol allows the prover and the verifier
to negotiate the circuit C during the protocol, under certain circumstances. This
fact is used by us to construct circuits “on the fly” with fewer non-linear gates,
which helps to reduce the argument size. Thus, as an additional contribution
of this work, we provide formal definitions for an argument system where the
circuit is sampled jointly by the prover and the verifier during the execution and
show how to incorporate this into our protocols. This is described in Sect. 4.

Full Version. Due to space limitations, most proofs are deferred to the full
version of this work [BN19] which can be found on eprint.

2 Preliminaries

Unless stated otherwise, operations in this work are carried out over the field
F = Fq for an odd prime q. Fq-elements are identified by the interval [−(q −
1)/2, (q−1)/2]. B denotes the set {0, 1} while [n] stands for {1, . . . , n}. We use λ
as the computational and κ as the statistical security parameters, and generally
assume that q ≈ poly(λ, κ). We use bold lower-case letters such as s to denote
a vector and bold upper-case letters like A for matrices. We let s[i] denote the
ith component of the vector s.

2.1 Programming Model

Our notation for the circuits that we use in this paper will be similar to [BHR12].
The circuit C = (nin, nout, nC , L,R, F ) is defined over F, and each wire w will
hold a value from F or ⊥ initially. C has nin input wires, nout output wires and
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nC ≥ nin +nout wires in total. We define I = {1, . . . , nin},W = {1, . . . , nC} and
O = {nC − nout + 1, . . . , nC}. The circuit has ngates = nC − nin gates in total
and we define the set G = {nin + 1, . . . , nC}.

We define functions L : G → W, R : G → W ∪ {⊥} such that L(x) < x as
well as L(x) < R(x) < x if R(x) �= ⊥ (i.e., the function L(x) returns the index
of the left input wire of the gate whereas the function R(x) returns the index
of the right input wire if it exists). The function F : G × F × (F ∪ {⊥}) → F

determines the function which is computed by each gate.
The algorithm eval(C,x) with x ∈ F

nin is defined as follows:

1. For i ∈ [nin] set wi ← x[i].
2. For each g ∈ G set l ← L(g), r ← R(g) and then wg ← F (g, l, r).
3. Output y = (wnC−nout+1, . . . , wnC

)�.

We further restrict F to compute certain functions only: (i) Add: On input
x1, x2 output x1 + x2, (ii) Mult: On input x1, x2 output x1 × x2, (iii) CAdd:
On input x and for the hard-wired a output x+ a, (iv) CMult: On input x and
for the hard-wired a output x × a; and (v) Square: On input x output x2. We
say that C(x) = y if eval(C,x) returns the value y ∈ F

nout . We denote by nmul

and nsq the number of multiplication and square gates in the circuit.

2.2 Zero-Knowledge Arguments of Knowledge

Let TM be an abbreviation for Turing Machines. An iTM is defined to be an
interactive TM, i.e. a Turing Machine with a special communication tape and a
PPT TM is a probabilistic polynomial-time TM. Let LR ⊆ B

∗ be an NP language
and R be its related NP-relation for circuits over F. Thus (x = (C,y),w) ∈ R
iff (C,y) ∈ LR and eval(C,w) = y. We write Rx = {w | (x,w) ∈ R} for the
set of witnesses for a fixed x.

HonestVerifierZeroKnowledgeArgument ofKnowledge (HVZKAoK).
Assume (P,V) is a pair of PPT iTMs and let ξ : B

∗ → [0, 1] be a function. We
say that (P,V) is a zero-knowledge argument of knowledge for the relation R with
knowledge error ξ if the following properties hold:

Completeness: If P and V follow the protocol on input x ∈ LR and private
input w ∈ Rx to P, then V always outputs 1.

Knowledge Soundness: There exists a probabilistic algorithm E called the
knowledge extractor, such that for every interactive prover P̂ and every x ∈ LR,
the algorithm E satisfies the following condition: let δ(x) the probability that
V accepts on input x after interacting with P̂. If δ(x) > ξ(x), then upon input
x ∈ LR and oracle access to P̂, the algorithm E outputs a vector w ∈ Rx in
expected number of steps bounded by O( 1

δ(x)−ξ(x) ).

Honest Verifier Zero-Knowledge: Let viewP
V (x,w) be a random variable

describing the random challenge of V and the messages V receives from P with
input w during the joint computation on common input x. Then, there exists a
PPT simulator S, such that for all x ∈ LR,w ∈ Rx: S(x) ≈c viewP

V (x,w).
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This definition suffices, since public-coin protocols like the protocols we consider
in this work, which satisfy the above properties, can be easily transformed to
protocols which are zero-knowledge in general by having the verifier commit to
its challenges at the beginning of the protocol. As is well known, it is possible
to obtain a non-interactive zero-knowledge argument of knowledge (NIZKAoK)
from any HVZKAoK via the Fiat-Shamir transformation [FS86].

2.3 Commitments and Collision-Resistant Hash Functions

We use Commitments and Collision-Resistant Hash Functions (CRHF) as build-
ings blocks in our constructions and thus introduce them now briefly. A com-
mitment scheme allows one party to commit to a message m by sending a com-
mitment value which satisfies the following two properties: (i) Hiding: the com-
mitment reveals nothing about m.; and (ii) Binding: it is (computationally)
infeasible for the committing party to open a committed message m to differ-
ent message m′ �= m. In this work, we assume that the commitment scheme is
instantiated using a cryptographic hash function such as e.g. SHA-256, which
we model as a Random Oracle1 for the purpose of giving a proof of security.

A Collision-Resistant Hash Function (CRHF) is an efficiently computable
function H for which it is “hard” to find x, x′ such that H(x) = H(x′). Usually,
CRHFs are used to compress a long message into a short digest and thus for
almost all messages a collision exists. CRHFs require that a collision is hard to
find for any PPT algorithm.

2.4 The Short Integer Solution Problem

We will now formalize the SIS problem, which was already informally introduced
in the introduction. Fq is the base field of the argument system. At the same
time, the characteristic q will also be the modulus of the SIS instance which is
defined over Zq. To define the Short Integer Solution problem, let n,m ∈ N be
such that n � m. We naturally embed Zq into Z by identifying each mod q-
number with an element from the interval [− q−1

2 , q−1
2 ] ⊂ Z. We thereby let

||s||∞ be the ∞-norm of the embedding of s ∈ Z
m
q into the module Z

m. Define
Sm

β ⊂ Z
m
q as the subset of m-element vectors with �∞-norm ≤ β.

Definition 1 (Short Integer Solution (SIS)). Let m,n, q be as above and
β ∈ N. Given A ∈ Z

n×m
q and t ∈ Z

n
q , the (inhomogeneous) SIS-problem is to

find s ∈ Z
m
q such that t = As mod q and s ∈ Sm

β .

We collect such (A, s, t) that fulfill Definition 1 in an NP-relation

Rm,n,q,β
SIS = {(x,w) = ((A, t), s) | s ∈ Sm

β ∧ A ∈ F
n×m
q ∧ t = As}.

1 This is to obtain the smallest possible argument size while avoiding attacks such as
[DN19]. A generalization of our scheme without this assumption can be obtained by
generating the randomness for commitments independent of the message.
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In practice, one often encounters proofs that do not show exactly that s ∈ Sm
β

even though the prover has such a value as witness. Instead, they guarantee that
the bound might be a bit bigger, by a factor at most ω which usually is called
slack. We have that Rm,n,q,β

SIS ⊆ Rm,n,q,ω·β
SIS if ω ≥ 1, so any honest prover will

still make the verifier accept if it proves Rm,n,q,ω·β
SIS instead. For simplicity, we

also consider an instance of SIS where s is binary.

Definition 2 (Binary-SIS). Let m,n, q be defined as above. Given A ∈ Z
n×m
q

and t ∈ Z
n
q , the (inhomogeneous) Binary SIS-problem is to find s ∈ B

m such
that t = As mod q.

This Binary-SIS problem is not uncommon and e.g. [BD10,KTX08] used it. Its
relation Rm,n,q

B−SIS can be defined similarly as Rm,n,q,β
SIS .

3 Honest Verifier Arguments of Knowledge
for Arithmetic Circuits

In this section, we introduce our honest verifier zero-knowledge argument of
knowledge (HVZKAoK) protocols for satisfiability of arithmetic circuits. We
begin by describing the underlying MPC protocol to securely compute an arith-
metic circuit. Then, we present two HVZKAoKs based on the MPC protocol
- one that relies on the “cut–and–choose” paradigm and one that uses “sacri-
ficing”. While the first is a direct extension of a recent work of [KKW18], the
second one is completely new to the best of our knowledge.

3.1 The MPC Protocol

Our MPC protocol is a simplified version of the SPDZ2 protocol [DPSZ12]. Let N
denote the number of parties and let P1, . . . , PN denote the parties participating
in the protocol.

Secret Sharing Scheme. Let [[x]] denote an additive sharing of x, i.e. a sharing of
x consists of random x1, . . . , xN ∈ Fq such that x =

∑
i∈[N ] xi, where Pi holds

xi. We define the following operations on shares:

open([[x]]): To reveal the secret x each party broadcasts its share xi. Upon
receiving xj from each Pj , Pi sets x =

∑
j∈[N ] xj .

[[x]]+ [[y]]: Given two shares xi and yi of x and y, each party Pi defines xi + yi

as its share of the result.
σ + [[x]]: Given a sharing [[x]] and a public constant σ, P1 defines x1 + σ as its
new share while other parties’ shares remain the same.
σ · [[x]]: Given a sharing [[x]] and a public constant σ, each party Pi defines
σ · xi as its share of the product.

2 It works like SPDZ in the sense that it considers dishonest majority, uses an addi-
tive secret sharing and multiplication triples, but without the information-theoretic
MAC.
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Multiplications. We say that ([[a]], [[b]], [[c]]) is a random multiplication triple if a
and b are random and c = a · b. To multiply [[x]] and [[y]] using a preprocessed
random triple ([[a]], [[b]], [[c]]), the parties do the following:

1. The parties compute [[α]] = [[x]] − [[a]] and [[β]] = [[y]] − [[b]].
2. The parties run open([[α]]) and open([[β]]) to obtain α and β.
3. Each party computes [[z]] = [[c]] − α · [[b]] − β · [[a]] + α · β.

The above is a well-known [Bea91] technique and works because

[[z]] = [[c]] − α · [[b]] − β · [[a]] + α · β

= [[ab]] − (x − a) · [[b]] − (y − b) · [[a]] + (x − a) · (y − b)
= [[xy]]

Squaring. We say that ([[b]], [[d]]) is a random square if b is random and d = b2.
To compute [[x2]] given [[x]] using a preprocessed ([[b]], [[d]]), the parties do the
following:

1. The parties compute [[α]] = [[x]] − [[b]].
2. The parties run open([[α]]) to obtain α.
3. Each party computes [[z]] = α · ([[x]] + [[b]]) + [[d]].

Note that the above holds since

[[z]] = α · ([[x]] + [[b]]) + [[d]] = (x − b) · ([[x]] + [[b]]) + [[b2]]
= [[x2 − b2 + b2]] = [[x2]].

The Protocol. The above building blocks can easily be combined to securely
run eval(·) on a circuit C: after the inputs are secret-shared using [[·]], the
parties apply G as defined in Sect. 2.1 consecutively to the shares. That is, addi-
tion gates and multiplication/addition by-a-public-constant gates are computed
locally, whereas multiplication and square gates are computed using the above
sub-protocols.

Security. For our purpose of using a MPC protocol to establish our zero-
knowledge argument, the used protocol only needs to be secure in the presence
of a semi-honest adversary. Furthermore, it suffices for the protocol to be secure
in the client-server broadcast model, i.e., when the parties who run the proto-
col (the servers) do not hold input and do not see the final output, but rather
receive shares of the inputs from the clients, perform the computation by only
local computation as well as sending broadcast messages to each other, and then
send the output shares back to the clients.

Formally, let Ftr and Fsq be ideal functionalities that provide the parties
with random multiplication triples and squares. We define view

Ftr,Fsq

I,π (C) to be
the view of a subset of parties I during the execution of a protocol π on the
circuit C, in the (Ftr,Fsq)-hybrid model and in the client-server model. The
view consists of the input shares, the correlated randomness they receive from
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the functionalities and the messages they obtain from the other parties while
evaluating C. The security of π is stated in Theorem 1, which is proven in the
full version.

Theorem 1. Let C be an arithmetic circuit over the field F and let π be the
protocol described above. Then, for every subset of parties I ⊂ {P1, . . . , PN}
with |I| ≤ N − 1, there exists a probabilistic polynomial-time algorithm S such
that {S(I, C)}≡{viewFtr,Fsq

I,π (C)}.

3.2 HVZKAoK Protocol Using Cut and Choose

We now explain our first HVZKAoK protocol Πc&c, which is based on the MPC
protocol from Sect. 3.1, and which relies on the cut–and–choose technique to gen-
erate correct random multiplication triples and squares. The formal description
appears in the full version.

The idea behind the protocol is that the prover P proves its knowledge of w
such that C(w) = y by simulating a secure N -party computation of the circuit
over an additive sharing of w, using the MPC protocol described above. Since P
knows the input and thus the values on each wire of the circuit, it can simulate
the execution “in the head”. Since our MPC protocol uses random triples and
squares supplied by the ideal functionalities Ftr and Fsq, the prover P needs to
play their role as well. Clearly, P may try to cheat in the simulated computation,
aiming to cause the verifier V to accept false statements. This is prevented by
having V challenging P in two ways. First, after P has committed to M sets of
random triples and squares, V randomly selects τ of them, which are then opened
to it. The remaining M − τ sets of the pre-processed data are used to support
M − τ circuit computations - each with different randomness. The prover P
performs these computations and commits to the views of the parties, to be then
challenged for the second time by V. In this second challenge, the verifier chooses
a random subset of N −1 parties in each execution, whose views are opened and
tested for consistency. If these two tests pass successfully and the output of the
circuit is y, then V outputs acc. Observe that V cannot learn any information
about the witness w during the protocol: the opened pre-processing executions
reveal only random data which is thrown away afterwards, and the N − 1 views
that are opened do not reveal anything since the MPC protocol is resilient to
N − 1 semi-honest parties. In more details, in Round 1, P commits to M pre-
processing executions. A major source of saving here is using pseudo-randomness
instead of pure randomness. Specifically, P chooses a seed sde for each execution
e, from which it derives the seeds sde,i for each party Pi. These seeds are used
to generate all the random shares held by Pi throughout the computation. Now,
if execution e is selected to be tested by V in Round 2, then P can just send sde

to V, thereby saving communication. For the M − τ preprocessings which are
used in the on-line execution in Round 3, P cannot send the master seed but
rather will have to send N − 1 seeds of the N − 1 parties chosen to be opened
by V in Round 4. Thereby the data of one of the parties is kept secret. Observe,
however, that not all the data held by the parties is random. In particular, when
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generating a multiplication triple [[ae,k]], [[be,k]], [[ce,k]] (e is the execution index
and k is the index of the gate for which this triple is consumed), one can use
the seeds of the parties to generate the sharing of ae,k and be,k, but once these
are fixed, so is ce,k = ae,k · be,k. Therefore, when generating the sharing of ce,k,
it is necessary to “fix” the initial sharing derived from the random seeds. To
obtain this, the prover also commits to the offset Δe,k for each execution e and
multiplication gate gk, which is added to the initial random sharing [[ce,k]]. The
same applies when generating random squares. Similarly, when the sharings of
the inputs are generated in Round 3, P can use the seeds of the parties to derive
their shares, and then adjust this initial sharing by adding the offset (denoted
by φe,k) to obtain a correct sharing of the given input. Thus, P must commit to
the offset on each input wire as well. To further reduce communication, we hash
all the commitments together and send only the hash value to V.

Cheating Error (Soundness). We compute the probability that V outputs acc
when C(w) �= y. Let c be the number of pre-processing emulations where P
cheats (i.e., by generating incorrect squares or multiplication triples). Since τ
emulations out of M are opened and tested by the verifier, we have that this

step is passed without the cheating being detected with probability (M−c
τ )

(M
τ ) . After

this step, M −τ circuit computations are being simulated by the prover. In order
to make the output of the protocol be y, P must cheat (i.e., deviate from the
specification of the MPC protocol) in M − τ − c emulations. Since N − 1 views
are being opened in each such emulation, P clearly will not sabotage the view of
more than one party. Thus, the probability that this is not detected is 1

NM−τ−c .
The overall success cheating probability is therefore

ξc&c(M,N, τ) = max
0≤c≤M−τ

{ (
M−c

τ

)

(
M
τ

) · NM−τ−c

}

Formal Proof. As mentioned before, the above protocol has appeared already
in [KKW18] (for Boolean circuits, but extending it to Arithmetic circuits is
straightforward). However, there it was described as an optimization to their
baseline protocol and so was not formally proven. In the full version we there-
fore provide a proof that the described protocol Πc&c is an honest verifier zero-
knowledge argument of knowledge.

Theorem 2. Let H be a collision-resistant hash function and let com be the Ran-
dom Oracle-based commitment scheme. Then, the protocol Πc&c is an HVZKAoK
with knowledge error (soundness) ξc&c(M,N, τ).

3.3 HVZKAoK Protocol Using Imperfect Preprocessing
and Sacrificing

We now present our second HVZKAoK protocol Πsac. In this protocol, we rely
on a method where one “sacrifices” random multiplication triples and squares
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in order to verify the correctness of multiplication and square operations. The
idea of this protocol is that P does not simulate the execution of a protocol
to compute multiplication and square gates, but rather simulates an execution
of a protocol to verify that the shares on the output wires of these gates are
correctly defined. This means that now P will first define and commit to sharings
of the values on each wire of the circuit and then will simulate an execution of
a verification protocol for multiplication and square gates (recall that for other
gates the computation is local and thus no verification is required). We begin by
describing the verification methods used in our protocol.

Verification of a Multiplication Triple Using Another. This procedure is remi-
niscent to the recent work of [LN17]. Given a random triple ([[a]], [[b]], [[c]]), it is
possible to verify the correctness of a triple ([[x]], [[y]], [[z]]), i.e., that z = x · y,
without revealing any information on either of the triples, in the following way:

1. The parties generate a random ε ∈ F.
2. The parties locally set [[α]] = ε[[x]] + [[a]], [[β]] = [[y]] + [[b]].
3. The parties run open([[α]]) and open([[β]]) to obtain α and β.
4. The parties locally set [[v]] = ε[[z]] − [[c]] + α · [[b]] + β · [[a]] − α · β.
5. The parties run open([[v]]) to obtain v and accept iff v = 0.

Observe that if both triples are correct multiplication triples (i.e., z = xy
and c = ab) then the parties will always accept since

v = ε · z − c + α · b + β · a − α · β

= ε · xy − ab + (ε · x + a)b + (y + b)a − (ε · x + a)(y + b) = 0

In contrast, if one (or both) of the triples are incorrect, then the parties will
accept with probability at most 1/|F| as shown in Lemma 1 whose proof appears
in the full version.

Lemma 1. If ([[a]], [[b]], [[c]]) or ([[x]], [[y]], [[z]]) is an incorrect multiplication triple
then the parties output acc in the sub-protocol above with probability 1

|F| .

Verification of a Square Pair Using Another. Similarly, one can use a random
square ([[b]], [[d]]) to verify the correctness of a given square ([[x]], [[z]]) as follows:

1. The parties generate a random ε ∈ F.
2. The parties locally compute [[α]] = [[x]] − ε[[b]].
3. The parties run open([[α]]) to obtain α.
4. Each party locally computes [[v]] = [[z]] − α · ([[x]] + ε[[b]]) − ε2[[d]].
5. The parties run open([[v]]) to obtain v and accept iff v = 0.

As before, if the squares are correct, i.e., z = x2 and d = b2, then the parties
will accept, since

v = z − α · (x + ε · b) − ε2 · d

= x2 − (x − ε · b) · (x + ε · b) − ε2 · b2

= x2 − x2 + ε2b2 − ε2b2 = 0
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In contrast, if one of the random squares (or both) is incorrect, then the
parties will accept with probability 2

|F| . This is shown in Lemma 2, which is
proven in the full version.

Lemma 2. If ([[x]], [[z]]) or ([[b]], [[d]]) is an incorrect square, then the parties out-
put acc in the above protocol with probability 2

|F| .

The Protocol. Our AoK protocol is formally described in Figs. 1a and 1b. In
this protocol, the prover P first commits in Round 1 to sharings of the values
on each wire of the circuit and to sharings of random multiplication triples and
squares for M independent executions. As in the previous protocol, we save
communication by deriving all the random shares from a single seed. Then, in
Round 2, V challenges P by choosing the randomness required for the verification
procedure, i.e., an ε value for each multiplication and square gate. Upon receiving
the challenge from V, P simulates M executions of the verification protocol in
Round 3 and commits to the view of the parties in each execution. Then, in
Round 4, V picks its second challenge by choosing, for each execution, N − 1
parties whose view will be opened and tested. In Round 5, P sends to V the seeds
from which the randomness of the N −1 parties was derived and all the messages
sent to these parties from the remaining party Pīe

. As in Πc&c, for values that
are fixed, i.e., inputs, multiplications and squares, P sends also an offset (which
was committed in the first round) to “fix” the sharing to the correct value. As
before, we further reduce the communication cost by hashing the commitments
together and sending only the hash value. Finally, V accepts if and only if all
commitments are correct, the view of each party was computed correctly, the
verification procedures conclude with the parties holding a sharing of 0 for each
multiplication/square gate and the output of the circuit is y.

Cheating Probability (Soundness). We compute the probability that V outputs
acc when C(w) �= y. Observe that all the M executions are independent of each
other. When considering a single instance, P can cheat in either computing the
view of one of the parties or cheat by changing the shares on the output wire of
a multiplication/square gate. In the former case, it will succeed with probability
1
N whereas in the latter case it will succeed with probability 1

|F| or 2
|F| (note that

if there are gates of both types in the circuit, it will be more beneficial for P
to cheat in square gates since 2

|F| > 1
|F| ). Furthermore, the best strategy for the

prover is to first cheat in multiplication/square gates and then if it didn’t receive
the desired challenge that will cause the verification process to end successfully,
it can manipulate one of the parties’ view. Thus, if there are square gates in the
circuit, then the overall cheating probability is

ξsac(M,N) =
(

2
|F| +

(

1 − 2
|F|

)

· 1
N

)M

=
(

2N + |F| − 2
|F| · N

)M

.
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Similarly, if there are multiplication gates in the circuit (and no square gates),
then the cheating probability is

ξsac(M,N) =
(

1
|F| +

(

1 − 1
|F|

)

· 1
N

)M

=
(

N + |F| − 1
|F| · N

)M

.

It can be seen that the impact of |F| on the cheating probability in practice is
not important, as the 1/N -term will dominate the expression since N � |F|.

In the full version we will give the full proof of the following.

Theorem 3. Let H be a collision-resistant hash function and let com be the Ran-
dom Oracle-based commitment scheme. Then the protocol Πsac is a HVZKAoK
with knowledge error (soundness) ξsac(M,N).

3.4 Optimizations

The following optimizations can directly be made to our protocols:

1. The prover is required to send N − 1 seeds for each execution e that was not
chosen to be opened. Each of these seeds is used to generate the randomness
of one party throughout the execution. As in [KKW18], we can reduce the
number of seeds that are sent from N − 1 to log N by using a binary tree.

2. We can reduce communication by verifying the correctness of the circuit’s
output in a batched manner, i.e., take a random linear combination of all
outputs, where the randomness is chosen (as an additional challenge) by V.
Then, only the shares of this linear combination result are sent to V.

3. Each multiplication in Πsac is being verified separately. In order to save com-
munication it is possible to batch-verify of them by opening a random linear
combination of all [[v]]-sharings.

3.5 Computation and Communication Cost

By inspecting both Πsac and Πc&c one sees that for each multiplication gate
O(M · N) multiplications in F must be computed. In practice, their runtime
dominates those of the additions in F which can be optimized by carrying out
multiple F-additions over the integers before applying a modular reduction. For
large enough F we have that ξsac(M,N) ≈ (1/N)M , and so for statistical security
parameter κ we have M ·log N = κ which means that we will approximately have
to perform O(κ ·(N/ log N) · |C|) multiplications both at proving and verification
time, but only over the field over which C is actually defined.

Next, we estimate both the practical and asymptotic communication cost
of the Πsac protocol3. Denote by |hash|, |sd| and |com| the length in bits of the
hash values, seeds and commitments. The communication cost of messages sent
from P to V in each round is: (i) Round 1: |hash|; (ii) Round 3: |hash|; and

3 The analysis for Πc&c is described in the full version.
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Let H be a CRHF and com be the Random Oracle-based commitment scheme.
Inputs: Both P and V hold y ∈ F

nout , a description C over F and parameters
M, N ; P additionally holds w ∈ F

nin such that C(w) = y.

Round 1:
1. P chooses a salt salt ← B

λ and does the following for each e ∈ [M ]:
(a) Initialize empty strings ste, {ste,i}i∈[N ].
(b) Choose seeds sde, {sde,i}i∈[N ] and set ste,i ← sde,i for i ∈ [N ].
(c) Prepare the pre-processing data:

– For each multiplication gate gk ∈ G:
i. For each i ∈ [N ], use sde,i to generate ae,k,i, be,k,i, ce,k,i. These shares de-

fine the random sharings [[ae,k]], [[be,k]] and [[ce,k]], where ae,k =
∑N

i=1 ae,k,i,
be,k =

∑N
i=1 be,k,i and ce,k =

∑N
i=1 ce,k,i.

ii. Set Δe,k = ae,k · be,k − ce,k and ste ← ste ‖ Δe,k.
iii. Define the random triple for gk to be ([[ae,k]], [[be,k]], [[ce,k]] + Δe,k).
– For each square gate gk ∈ G:
i. For each i ∈ [N ] use sde,i to generate be,k,i and de,k,i. These shares define

the random sharings [[be,k]] and [[de,k]], where be,k =
∑N

i=1 be,k,i and de,k =∑N
i=1 de,k,i.

ii. Set Δe,k = (be,k)2 − de,k and ste ← ste ‖ Δe,k.
iii. Define the random square for gk to be ([[be,k]], [[de,k]] + Δe,k).

(d) Choose a random sharing of the inputs:
i. For each i ∈ [N ], use sde,i to generate we,1,i, . . . , we,nin,i. These shares define

the random sharings [[we,1]], . . . , [[we,nin ]], where we,k =
∑N

i=1 we,k,i.
ii. For each input wire k ∈ I set φe,k = wk − ∑N−1

i=1 we,k,i and ste ← ste ‖ φe,k.
The sharing on this wire then is [[we,k]] + φe,k.

(e) Simulate the computation of C gate-by-gate in topological order:
– For each linear gate, compute the parties’ output shares via the local oper-

ation described in Section 3.1.
– For each multiplication gate gk ∈ G with [[xk]], [[yk]] as inputs:
i. For each i ∈ [N ], use sde,i to generate ze,k,i which define the random sharing

[[ze,k]] where ze,k =
∑N

i=1 ze,k,i.
ii. Set: ϕe,k = xk · yk − ∑N

i=1 ze,k,i and ste ← ste ‖ ϕe,k.
The sharing on the output wire is defined to be [[ze,k]] + ϕe,k.

– For each square gate gk ∈ G with sharing [[xk]] on its input wire:
i. For each i ∈ [N ] use sde,i to generate ze,k,i. These shares define the random

sharing [[ze,k]] where ze,k =
∑N

i=1 ze,k,i.
ii. Set: ϕe,k = (xk)2 − ∑N

i=1 ze,k,i and ste ← ste ‖ ϕe,k.
The sharing on the output wire is defined to be [[ze,k]] + ϕe,k.

(f) Use sde to generate re ∈ B
λ and compute Γe = com(ste, re, salt).

(g) For each i ∈ [N ] use sde,i to generate re,i ∈ B
λ and then compute Γe,i =

com(ste,i, re,i, salt). Then set he = H(Γe ‖ Γe,1 ‖ · · · ‖ Γe,N ).
2. Compute hΓ = H(h1 ‖ · · · ‖ hM ) and send it to V.

Fig. 1a. The “Sacrificing” based argument Πsac (Part 1)
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Round 2: V chooses sdι and for each e ∈ [M ] uses sdι to generate random coeffi-
cients εe,k for each multiplication/square gate gk. V then sends sdι to P.

Round 3: P performs the following steps:
1. Choose a random seed sdE . Use sdι to generate random εe,k as V would do.
2. For each e ∈ [M ]:
(a) Initialize an empty string viewe.
(b) For each multiplication gate gk (in topological order) simulate the verification

procedure described in the text using εe,k. In addition, set: viewe ← viewe ‖
αe,k,1 ‖ · · · ‖ αe,k,N ‖ βe,k,1 ‖ · · · ‖ βe,k,N .

(c) For each square gate gk (in topological order) simulate the verification proce-
dure described in the text using εe,k. In addition, sets viewe ← viewe ‖ αe,k,1 ‖
· · · ‖ αe,k,N .

(d) Let ve,k,i be the sharing held by party Pi at the end of the verification proce-
dure of gate gk. Then, for each i ∈ [N ] set: viewe ← viewe ‖ ve,k,1 ‖ · · · ‖ ve,k,N .

(e) Let oe,1,i, . . . , oe,nout,i be the shares on the output wires of C held by Pi. Then,
for output wire k ∈ O set: viewe ← viewe ‖ oe,k,1 ‖ · · · ‖ oe,k,N .

3. Generate ge ∈ {0, 1}λ from sdE and set Πe = com(viewe, ge, salt).
4. Compute hπ = H(Π1 ‖ · · · ‖ ΠM ) and send it to V.

Round 4: For each e ∈ [M ]: V sends a random īe ∈ [N ] to P.

Round 5: For each e ∈ [M ]:
Let Ie = [N ] \ {̄ie}. Then, P sends the following to V: salt, sdE , sde, {sde,i}i∈Ie ,
Γe,̄ie , {φe,k}nin

k=1 , the tuple Δe,k, ϕe,k, αe,k,̄ie , βe,k,̄ie , ve,k,̄ie

)
for each multiplica-

tion or square gate gk, and oe,1,̄ie , . . . , oe,nout ,̄ie .

Output: V outputs acc iff all the following checks succeed:
1. For each e ∈ [M ], V uses {sde,i}i∈Ie and the tuple received for each multipli-

cation and square gate to compute the shares of the parties in Ie on each wire
and their shares of each random triple and square. Then, it uses sde to compute
Γe and uses {sde,i}i∈Ie to compute {Γe,i}i∈Ie as an honest prover would do.
Then, using Γe,̄ie received from P, the verifier V computes he.
Then, V checks that hΓ = H(h1 ‖ · · · ‖ hM ).

2. For each e ∈ [M ], V computes viewe by going gate-by-gate in topological order
and simulating the verification procedure using the tuple received from P for
each multiplication and square gate, and using {oe,k,̄ie}nout

k=1. Then, it computes
Πe as a honest prover would do. Finally, V checks that hπ = H(Π1 ‖ · · · ‖ΠM ).

3. For each e ∈ [M ] and multiplication/square gate gk, V checks if
∑N

i=1 ve,k,i = 0.
4. For each e ∈ [M ], for each k ∈ O, V checks that

∑N
i=1 oe,k,i = yk.

Fig. 1b. The “Sacrificing” based argument Πsac (Part 2)

(iii) Round 5: |sd|+M ·(|sd|+log N · |sd| +|com|+4 log2(|F|) ·nmul + 3 log2(|F|) ·
nsq + log2(|F|) + log2(|F|) · nin + log2(|F|).

Let base(hash, sd, com,M,N) = 2 · |hash|+ |sd| · (2+M log N)+ |com| ·M for
which we only write base when the context is clear. We obtain that the overall
amount of bits sent from P’s side is base+log2(|F|) ·M(4nmul +3nsq +nin +2).



510 C. Baum and A. Nof

Asymptotically, by setting |hash| = |sd| = |com| = O(λ), log2(|F|) = O(log(λ))
and M,N as above we get that the communication cost of P is O(log(λ) · κ ·
(|C|/ log(N))).

4 Sampling Circuits on the Fly

At the end of the previous section we briefly mentioned an optimization where
V checks output correctness by looking only at a linear combination of the out-
puts instead of checking each output separately. In particular, this is done by
having V choosing random coefficients which will be used to compute the lin-
ear combination after P fixes the inputs and (correlated) randomness of the
simulated parties. This process can also be viewed as an interaction where the
parties determine the final circuit’s structure during the execution, as here the
challenge chosen by V adds a layer on top of the initial circuit which consists
of ‘multiplication-by-a-constant’ and addition gates. This idea, which we call
“sampling the circuit on the fly” will be also used in some of the optimizations
suggested for the application presented in Sect. 5. We therefore now formally
establish this idea, so that security of optimizations of this kind can be derived
easily without the need to re-prove security of the whole ZKAoK each time.

Although in the above example only V chooses the circuit that will be eval-
uated, we consider a broader definition where both P,V sample the circuit
together. The sampling process must begin only after P has committed and
fixed the witness and randomness that will be used. This means that from this
point on any form of cheating is possible only during the simulation of the MPC
protocol to compute the sampled circuit, as the witness cannot be tailored any-
more to the actually chosen circuit. We remark that although the circuit will
be jointly sampled by both parties, we restrict the sampling done by V to be
independent of the messages of P and to not require him to keep a secret state
so that the overall protocol stays public-coin. P, in contrast, will be allowed to
make his choice depending on the witness that it committed or on other mes-
sages. At the same time, the choice of P should neither allow him to break the
soundness nor the zero-knowledge property.

In this section, we first provide a formal definition for the notion of circuit
sampling. Then, we show how to incorporate it into our argument system and
finally explain (as an example) how the output linear combination optimization
described above is an instantiation of the general notion and how it fits into the
framework. We want to mention that, independently, Badetscher et al. [BJM19]
introduced a similar concept but in an unrelated context.

4.1 Definition of Circuit Sampling

First, we define the notion of circuit sampling for an NP relation.

Definition 3. (R-circuit Sampler). Let R be an NP relation and SP , SV
be two non-empty sets that can be described with a string of polynomial
length (in the security parameter λ). We say that Sample = (ExtWitness,
Response,SampCircuit) is an R-circuit sampler for (x,w) ∈ R if
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ExtWitness is a PPT algorithm which on input (x,w) outputs an extended
witness ŵ.
Response is a PPT algorithm which on input (x,w, ŵ, τV) outputs τP .
SampCircuit is a deterministic polynomial-time algorithm which on input
(x, τV , τP) outputs a circuit C as well as a description of a set Y .

Furthermore, we require that membership in Y can be decided in polynomial
time. We next define a security game which follows the way we embed these
algorithms into our protocols. Consider the following game, which we denote by
GameR,P ((x,w), SP , SV , λ), executed with P:

1. P outputs ŵ.
2. Choose a random τV ← SV and hand it to P.
3. P outputs τP ∈ SP .
4. Compute (C, Y ) ← SampCircuit(x, τP , τV).
5. Output 1 iff C(ŵ) ∈ Y .

To understand the game, observe that Step 1 emulates the commitment to
the witness, made by P in the first step of our protocols, in Step 2 a challenge
is chosen which is followed by the configuration chosen by P in Step 3. Once all
the input for SampCircuit is gathered, (C, Y ) are being determined, and P wins
if computing the circuit C on ŵ yields a valid output. In the above definition
there is no validation ensuring that τP used in the game is valid. This can be
done by SampCircuit outputting Y = ∅ for an invalid τP .

We have three requirements from the circuit sampler. First, an obvious
requirement is that if P uses the correct w and chooses τP honestly, then the
output of the game should be 1 (except for a negligible probability).

Definition 4. (Correct R-circuit Sampler). Let Sample be an R-circuit
sampler. If when P on input (x,w) ∈ R computes ŵ ← ExtWitness(x,w) and
τP ← Response(x,w, ŵ, τV), with probability negligibly close to 1 it holds that
GameR,P ((x,w), SP , SV , λ) = 1 then we say that Sample is correct.

We furthermore require soundness. Similarly to the standard definition of it,
here if P wins in the above game with probability > α, then a correct witness
for R can be extracted.

Definition 5. (α-sound R-circuit Sampler). Let Sample be an R-circuit
sampler. If given Pr[GameR,P ((x,w), SP , SV , λ) = 1] > α (where the distribution
is over τV ∈ SV), there exists a deterministic polynomial-time extractor E(ŵ)
which outputs (x,w′) ∈ R then we say that Sample is α-sound.

The definition may look similar to knowledge soundness as defined in Sect. 2.2,
but there are crucial differences: E runs on ŵ in polynomial time and with
probability 1. This is because extracting some w′ from ŵ is an “easy” task (as
we will see in all our circuit sampling uses) and so the only question is whether
w′ is valid for R or not. The definition thus says that if P wins with probability
higher than α, then it must have used the correct witness w to compute ŵ which
can be obtained.
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Finally, we also need to ensure that the additional interaction does not leak
any information about w. This is formalized in the standard way of requiring the
existence of a simulator who can output an indistinguishable transcript without
knowing w. Clearly, the message τP should not reveal any information about
ŵ to an outsider. However, we additionally need simulatability of C(ŵ): the
sampled circuit may enforce the relation R in different ways than a static circuit
would do, which could potentially leak information.

Definition 6. (Simulatable R-circuit Sampler). Let (x,w) ∈ R and Sample
be an R-circuit sampler. Then we say that Sample is simulatable if there exists
a PPT algorithm S such that

{(τP , C(ŵ)) ← P(x,w, τV)} ≈s {(τP , C(ŵ)) ← S(x, τV)}

where P acts honestly as in Definition 4.

4.2 Circuit Sampling and Our ZKAoK

We now include the above approach into our second protocol Πsac. The modified
protocol Πsamp

sac works as follows, where we highlight the additional steps:

Round 1: For each e ∈ [M ] (i.e. each MPC instance), P computes ŵe ←
ExtWitness(x,w). Then, it chooses the randomness used for the execution e (i.e.,
the seeds used to derive all randomness as well as the salt). Finally, P commits
to the extended witness and the randomness and sends it to V.

Round 2: For each e ∈ [M ], V samples τV,e as in Step 2 of the above game. It
then sends τV,1, . . . , τV,M to P.

Round 3: P locally computes τP,e ← Response(x,w, ŵe, τV,e) for each e ∈ [M ]
as well as (Ce, Ye) ← SampCircuit(x, τP,e, τV,e). It uses Ce in MPC protocol
instance e and sends the remaining first round messages together with τP,e

to V.

Round 4–Round 7: Run rounds 2–5 as in the regular protocol.

Output: Upon receiving the last message, for each e ∈ [M ] V recomputes
(Ce, Ye) ← SampCircuit(x, τP,e, τV,e), verifies the MPC transcripts for the indi-
vidual Ce and then tests that each output lies in Ye.

The following Lemma, whose proof appears in the full version, shows that
Πsamp

sac is an HVZKAoK.

Lemma 3. Let Sample be a correct, α-sound and simulatable R-circuit sampler
for the NP-relation R. Then Πsamp

sac is a statistically complete HVZKAoK for R

with knowledge error (α + (1 − α) · ξsac(1, N))M .
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To prove the lemma, the main change compared to the proof of Πsac is that
here the circuits are not identical throughout all instances. Fortunately, it turns
out that this assumption can be relaxed without hurting the runtime of the
extractor E . Completeness and the zero-knowledge property, on the other hand,
follow directly from the original proof.

Impact on the Argument Size and Runtime. As one can see from the
above description, adding Circuit Sampling to the protocol Πsac adds another
two rounds of communication. In terms of argument size, we essentially split
Round 1 into two different parts and make two commitments instead of one
which commit to preprocessed data and evaluation, but now separately. The
extra cost is to send two extra commitments (thus base increases by 2 · |com|),
which is negligible in comparison to the rest of the argument.

Furthermore, it is possible to cut away the extra two rounds of communica-
tion by running the simulation C in Round 3 only, at the expense of introducing
more communication. This can be done by switching from the verification-based
approach of Πsac to the standard forward circuit evaluation of π where we check
the triples/squares while we use them, which is possible because now evaluation
is fully deterministic. This allows to perform evaluation and checking in one
round in parallel. We leave a detailed analysis as future work.

4.3 Output Correctness as a Circuit Sampler

We now revisit the (briefly sketched) idea of output compression in the context
of circuit sampling. Here V chooses random coefficients that are used to compute
the linear combination of the outputs, so that only one value is eventually opened
by the resulting circuit instead of nout.

We first define the three algorithms of the circuit sampler for this optimiza-
tion: ExtWitness receives ((C,y),w) as an input and returns the extended wit-
ness ŵ, which in this case is just w. Response receives as an input the tuple
((C,y),w, ŵ, τV), but note that in this optimization, the verifier’s challenge
τV fully defines the circuit and thus the output of Response is just 1. Finally,
SampCircuit receives ((C,y), τV , τP) as its input and returns the circuit C ′ and
the set Y defined in the following way: The circuit C ′ consists of the original
circuit C and the following layers which are added on top of it: (i) subtraction
gates for subtracting each value on an output wire y′[k] by the expected public
value y[k]; (ii) ‘multiplication-by-a-constant’ gates for each result of the previ-
ous layer, where the constants are defined by τV ; and (iii) addition gates for
summing the results of the previous layer. The set Y consists of one value only.
We summarize the construction in Fig. 2.

The three algorithms defined above satisfy the properties of the Circuit Sam-
pler. Correctness is straightforward. Soundness of the sampler is 1

|F| , since if w

is incorrect, then C(w) ∈ Y with probability 1
|F| because the random coefficients

are uniform (see Lemma 1). Simulation follows since both τP and Y are fixed.
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Let C = (nin, nout, nC , L, R, F ) be a circuit over F.

ExtWitness: On input (x = (C,y),w)) ∈ R set ŵ := w.

SampCircuit: On input τV = (γ) ∈ F
nout output the circuit C′ doing the following:

1. Compute y′ = C(ŵ) where y′ ∈ F
nout and y1 =

∑nout

i=1 γ[i] · (y′[i] − y[i]).
2. Output y1.
Furthermore output the set Y = {(0)}.

Response: Output 1.

Fig. 2. Batching the output check as a circuit sampler.

5 Proving Knowledge of SIS Instances

The protocols from Sect. 3 are asymptotically less communication-efficient than
previous argument systems such as [AHIV17,BBC+18] as can be seen in the
analysis. However, they have advantages when the circuit size is not too big or
when there are many linear gates in the circuit, because the communication is
dominated by the number of non-linear operations in the circuit C and has very
small circuit-independent cost. In this section, we exploit this fact to implement
communication-efficient arguments of knowledge for different versions of the so-
called Short-Integer Solution (SIS) problem.

The section is organized as follows. We begin by presenting an interactive
argument for binary secrets which does not allow any slack, which is the same
as in [BD10]. The approach can be simply generalized to secrets from a larger
interval, but only at the expense of vastly increasing the communication. Then,
we introduce some optimizations that allow us to reduce the communication for
the suggested arguments and then further squeeze down their size by introducing
a slack factor. Throughout the section, for each approach that we present, we
will mention what is the resulting size of the argument, based on the analysis of
Πsamp

sac (which is the same as that of Πsac).

5.1 The Baseline Proof for SIS

We start by presenting an argument for the Binary SIS problem as introduced
in Sect. 2.4. The reason behind that is because general range proofs are hard
using a circuit over F = Fq whereas they are very simple for binary values.
Moreover, the protocol we design for this problem will serve as a starting point
for constructions supporting secrets from larger intervals.

There are two main tasks that the protocol has to achieve, which is to show
that the secret s is a binary vector and the correctness of the product t = As. The
matrix multiplication uses a publicly known matrix, and since linear operations
are free in our used MPC scheme computing t can be done without increasing
the proof size. What remains to show is that the witness consists of bits. This
test is easy to perform because s[i] ∈ {0, 1} is equivalent to s[i]2 − s[i] = 0. We
can therefore let the circuit C compute the square of each element of s and then
perform a linear test. The obtained circuit is described in Fig. 3.
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Witness: w = (s[1], . . . , s[m]) ∈ F
m

Computation:
1. ∀i ∈ [m] compute ri ← s[i]2

2. ∀j ∈ [n] compute yj ← ∑
i∈[m] aj,is[i]

3. ∀i ∈ [m] compute yi+n ← ri − s[i]

ŷ:tuptuO ← (y1, . . . , ym+n)

Fig. 3. A circuit representation of Rm,n,q
B−SIS ; The circuit contains m square gates, has m

inputs and m + n outputs.

For ease of notation we let ai,j ∈ F be the element in the ith row and the
jth column of A. The circuit can be evaluated using one of the protocols from
Sect. 3, with V testing that the circuit’s output ŷ equals (t[1], . . . , t[n], 0, · · · , 0).
This yields a highly efficient protocol, as there are only m non-linear gates in
the circuit that require communication, and all of them are square gates. Using
the cost analysis from Sect. 3.5, we conclude that the total communication by
P is base + log q · M(4m + 2) bits. It is immediate to extend the construction
from Fig. 3 to full SIS instances (which we do in the full version) by taking
the bit-decomposition of each input. There we show that, for secrets s of ∞-
norm ≤ β we will have to expand the witness to contain (�log2(β)� + 2) · m
elements and we furthermore have to evaluate as many square gates. P then
sends base + log q · M(4m · (�log2(β)� + 2) + 2) bits in the argument.

5.2 Amortizing Bit Tests

We now discuss an optimization which aims at reducing the argument size for the
Binary SIS problem by reducing the number of non-linear gates in the circuit.
Recall that in Fig. 3, we defined a circuit for this problem that has m square
gates. Each of the gates was used to verify that one of m inputs is a bit. We now
show how the number of square gates can be reduced to 1, at the cost of adding
elements to the witness. This reduces the overall communication since adding an
element to the witness increases the size of the argument per MPC instance by
one field element, whereas evaluating a square gate requires sending at least two
field elements (secret-shared random square, messages during evaluation of the
gate etc.). The optimization uses circuit sampling where only V has a challenge
and so only V is actually sampling the circuit alone.

Assume that we want to check if m input sharings s[1], . . . , s[m] indeed are
bits, and let |F| � 2m. We can implicitly define the polynomial D(X) ∈ F[X]
of degree at most m − 1 such that ∀i ∈ [m] : D(i) = s[i]. Furthermore, we know
that there exists a polynomial B(X) = D(X) · D(X) of degree at most 2m − 2
such that ∀i ∈ F : D(i)2 = B(i). We thus can say that ∀i ∈ [m] : s[i] ∈ B if and
only if ∀i ∈ [m] : B(i) = D(i).

This allows us to construct a new circuit-sampling procedure. Instead of
testing all s[i] separately for being bits, we let the prover P secret-share the
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predetermined B(X) as part of the witness. Here, by our above observation
that ∀i ∈ [m] : B(i) = D(i) it is only necessary to share the points B(m +
1), . . . , B(2m − 1) (in addition to sharing all s[i]). Then, using the fact that
Lagrange-interpolation requires only linear operations (so it is entirely local in
the underlying MPC scheme) we let V send a challenge x ∈ F that is the point at
which we will evaluate D,B and test that B(x) − D(x)2 = 0. By the Schwartz-
Zippel-Lemma, we then must have identity of D(X)2 and B(X) except with
probability 2m−2

|F| . In the full version we formalize the above intuition which we
show yields a circuit sampler:

Theorem 4. The aforementioned approach yields a perfectly correct, 2m−2
|F| -

sound and perfectly simulatable circuit sampler for the relation Rm,n,q
B−SIS.

Applying this optimization and using Πsamp
sac , we obtain that the total com-

munication is base+log q ·M(2m+4) bits which is approximately log q ·M(3m)
bits smaller than the baseline approach.

5.3 Trading Argument Size for Slack

So far we have considered only arguments for SIS-instances where the gap
between the norm of correct witnesses and the norm that the argument guar-
antees is small: if we start with ((A,y), s) ∈ Rm,n,q,β

SIS (i.e., ||s||∞ ≤ β) then the
soundness guarantee is that a witness s′ with ((A,y), s′) ∈ Rm,n,q,ωβ

SIS could be
extracted (i.e., ||s||∞ ≤ ωβ) where ω is a small constant. However, the argument
size depends on M ·m · log2(q) · log2(β) as we have to perform non-linear compu-
tations for the bit-decomposition of each input s[i]. The goal of this subsection
is to give an approximate argument of size for the s[i] without having to resort
to bit-decomposition for each s[i]. This would allow for a smaller number of
square- or multiplication-gates as well as a more compact witness. On the other
hand, the arguments will have a larger slack ω which will now also depend on
the number of inputs m.

To achieve a more compact argument, we will ask the prover to show that
random linear combinations of elements from s are small. For this we use a
Lemma from [BL17] who showed that random linear combinations mod q of
elements from s are with certain probability not much smaller than ||s||∞:

Lemma 4. For all s ∈ F
k
q it holds that

Pr
c←Bk

[

|〈c, s〉| <
||s||∞

2

]

≤ 1
2

& Pr
C←B�×k

[

||C · s||∞ <
||s||∞

2

]

≤ 2−�.

Proof. See [BL17, Lemma 2.3 & Corollary 2.4].

The above Lemma only talks about the chance of detecting a vector of high
norm by seeing one large element in the result of the product with a random
binary matrix. In the full version we extend it to the case where we always see
that lots such large elements in the product C · s. This is summed up as follows:
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Corollary 1. Let κ, r ∈ N
+, s ∈ F

k
q , β = ||s||∞ and define

Sβ
κ = {h ∈ F

r·κ
q | ∃T ⊆ [r · κ] ∧ |T | > κ ∧ ∀i ∈ T : |h[i]| ≥ 1

2 · β}. If r ≥ 5 then

Pr
C←B(r·κ)×k

[
C · s �∈ Sβ

κ

] ≤ 2−κ.

The above statements can directly be implemented in our argument system by
the means of circuit sampling. Unfortunately, this results in a new problem,
which is that we cannot output the product of s with a random binary matrix
to V without necessarily leaking information about s.

We resolve this problem using circuit sampling on the side of the prover
and give two different solutions. The first idea is that P can compute u = Cs
and output u+ “small” where “small” is a value of small norm. To achieve good
soundness guarantees we let “small” only be polynomially bigger than ||u||∞ and
use Rejection Sampling to hide the information from the product. Alternatively,
we can allow P to prove knowledge of the bit decomposition of each value of
u = Cs. We now describe both ideas in more detail.

1st Approach: Rejection Sampling. In this solution, we let the prover P add
additional random elements x1, x2, . . . to the witness, which are supposed to be
small. The verifier V will then, as part of his challenge in the circuit sampling,
ask P to open a subset of x1, x2, . . . to show that most of the remaining ones are
indeed of small size. P will then open sums of each u[i] with some xj , subject
to the constraint that this does not leak information about s. V later tests that
each such u[i] + xj is of bounded norm.

As part of rejection sampling a prover aborts whenever the argument would
leak information. But our goal is that the argument is complete with overwhelm-
ing probability. To achieve this, we use an idea which is inspired by the “imper-
fect proof” of [BDLN16]. There, the authors gave a protocol that showed how
to prove knowledge of � − κ out of � SIS instances using cut-and-choose and
rejection sampling. Their approach aborts only with negligible probability and
turns out to be compatible with our application. The circuit sampler, on a high
level, works as follows:

1. P will sample x1, . . . , x16κ uniformly at random from [−π ·m ·β, π ·m ·β] ⊂ F

and commit them as part of ŵ.
2. V with probability 1/2 puts each xi into a set E. It samples a random matrix

C ∈ B
5κ×m and sends E,C as challenges to P.

3. P now sets up a circuit C as follows:
(a) C will output {xe}e∈E . V checks that xe ∈ [−π · m · β, π · m · β].
(b) Compute u = Cs in the circuit. P will go through u[1], . . . ,u[5 · κ], take

the first unused e ∈ E and test if u[i]+xe ∈ [−(π−1) ·m ·β, (π−1) ·m ·β].
If so, then it makes C output vi = u[i] + xe, otherwise it removes e from
E and repeats this procedure with the next-largest e′ ∈ E. V checks that
vi ∈ [−(π − 1) · m · β, (π − 1) · m · β].

We present the full sampler in the full version, together with a proof of the
following Theorem.
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Theorem 5. The aforementioned approach yields a statistically correct, α-
sound and perfectly simulatable circuit sampler for the relation Rm,n,q,4πm·β

SIS

where α = max{1/|F|, 2−κ}.
A drawback of this approach is the rather big slack of 4π · m. This slack is

caused by two reasons. First, there is an inherent increase of m due to the use
of Lemma 4. In addition, using Rejection Sampling means that we lose another
factor π = 100. One could decrease the constant by using a discrete Gaussian
distribution for the xi as in [Lyu12], but we opted for presenting the above idea
due to its simplicity. On the positive side, there are no non-linear gates in the
sampled circuit and P will only have to add 16 · κ more values to the witness,
independently of β. The sampled circuit will output � + 5κ + 1 elements of F,
which in expectancy is around 13κ + 1 (since each of the 16κ random samples
is opened with probability 1/2).

Summing up, the communication of the argument (excluding τP) when using
Πsamp

sac is base + log2 q · M(m + 29κ + 1) bits.

2nd Approach: The Power of Random Bits. The previous solution has the
disadvantage of having a comparably high slack of 4πm. On the other hand, it
does not use any non-linear gates. We will now show how to decrease the slack
to be essentially m by reintroducing one square gate and adding computational
work. To reduce the slack, we will again rely on Lemma 4. But instead of per-
forming rejection sampling on the output, we perform a range proof for each
element of the matrix product u = Cs. The problem that arises is that C is
only chosen at runtime, while the committed witness must be independent of
the actual values in C. At the same time, we must construct the argument in
such a way that the circuit C will not reveal any information about the product
except for bounds on each value.

We resolve this problem as follows: if the witness has ||s||∞ ≤ β, then since
C ∈ B

κ×m it must hold that ||Cs||∞ ≤ m · β. Thus, letting r be the smallest
integer such that m · β < 2r, it suffices for the prover to show that u[i] ∈
[−2r, 2r −1] (which can be done using bit decomposition as in the generalization
of Sect. 5.1). To show the inclusion P can add random bits xi

0, . . . , x
i
r to the

witness. Then, once the challenge is received from V and u is known to P, it
can compute the bit decomposition u[i] + 2r =

∑r
j=0 2jhi

j for each i ∈ [κ] and
tell V for each j ∈ {0, . . . , r} if it should use xi

j or 1 − xi
j to represent hi

j . As
all xj

i are chosen randomly, this yields a simulatable circuit. The only issue that
remains is for P to prove that each xj

i is indeed a bit. For this task, we use the
method presented in Sect. 5.2, which uses polynomial evaluation and requires a
single non-linear gate. We describe the full circuit sampler in the full version,
together with a proof of the following Theorem.

Theorem 6. Assume that (q−1)/2 > 4mβ. The aforementioned approach yields
a perfectly correct, α-sound and perfectly simulatable circuit sampler for the rela-
tion Rm,n,q,2m·β+4

SIS where α = max{ 2(r+1)κ−1
|F| , 2−κ} and r is the smallest integer

such that m · β ≤ 2r − 1.
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Table 1. Parameters used in the experiments for Πc&c and argument size per parameter
set as a function of ρ = m · log2 |F|.

N Cut-and-Choose

ξ ≤ 2−40 ξ ≤ 2−80

M τ Comm. of P (in KB) M τ Comm. of P (in KB)

2 75 34 31 + 0.123 · ρ 145 63 61.1 + 0.246 · ρ

4 55 32 22.4 + 0.069 · ρ 105 57 44.8 + 0.144 · ρ

8 55 38 20.7 + 0.051 · ρ 95 57 42 + 0.114 · ρ

16 45 26 23.4 + 0.057 · ρ 95 63 41.5 + 0.096 · ρ

32 45 28 23.8 + 0.051 · ρ 85 47 50.4 + 0.114 · ρ

64 45 28 26 + 0.051 · ρ 85 49 53 + 0.108 · ρ

The circuit we obtain has m + κ(r + 1) inputs, one square gate and κ + 2
outputs. Then the total communication of this argument when using Πsamp

sac is
base + log2 q · M(m + κ(r + 2) + 5) bits.

6 Evaluation and Experimental Results

We ran extensive experiments to measure the performance of our two proto-
cols for the Binary-SIS problem. As setup we used Amazon C5.9xlarge instances
using two servers with Intel Platinum 8000 series processors (Skylake-SP) which
have clock speed up to 3.4 GHZ, 36 virtual cores per server (utilized based on
the experiment setup) and 72 Gb RAM. The network bandwidth between the
nodes is 10 Gpbs. For our implementation we used only the baseline construction
for the Binary-SIS problem presented in Sect. 5.1. Nevertheless, this includes the
three general optimizations described in Sect. 3.4. Hash functions as well as com-
mitments were implemented using SHA-256. Generation of pseudo-randomness
from a seed was done using AES in counter-mode where the seed is the AES
key. Thus, |hash| = |com| = 256 bits and |sd| = 128 bits.

We used five sets of parameters for our experiments: (i) log2 |F| = 15, n = 256
and m = 1024; (ii) log2 |F| = 15, n = 256 and m = 4096; (iii) log2 |F| = 31,
n = 512 and m = 2048; (iv) log2 |F| = 59, n = 1024 and m = 4096; and (v)
log2 |F| = 61, n = 1024 and m = 4096.

The first parameter set reflects SIS-based constructions that do not need any
additional functionality. For example, they can be used to instantiate [KTX08]
with a binary secret. The second parameter set is then used to study the impact
of using a much larger message in the commitment scheme, which also shows how
the matrix size impacts the runtimes. The third set would be a typical example
for SIS-based constructions such as somewhat homomorphic commitments and
allows to prove that a committed message is small. An example for an application
would be the commitment scheme of [BDL+18]. The last two sets are used for
applications such as somewhat homomorphic encryption schemes like [BGV14].
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Table 2. Parameters used in the experiments for Πsac and argument size per parameter
set as a function of ρ = m · log2 |F|.

N Sacrificing

ξ ≤ 2−40 ξ ≤ 2−80

M Comm. of P (in KB) M Comm. of P (in KB)

2 40 26.2 + 0.16 · ρ 80 51.8 + 0.32 · ρ

4 20 16 + 0.08 · ρ 40 31.3 + 0.16 · ρ

8 14 13.2 + 0.056 · ρ 27 24.8 + 0.108 · ρ

16 10 10.9 + 0.04 · ρ 20 21.2 + 0.08 · ρ

32 8 9.9 + 0.032 · ρ 16 19.1 + 0.064 · ρ

64 7 9.6 + 0.028 · ρ 14 18.6 + 0.056 · ρ

Table 3. Best running times in MSec for different sets of SIS parameters, κ = 40.

log2 |F| n m Cut-and-Choose Sacrificing

N M τ Time N M Time

15 256 1024 2 75 34 73.2 4 20 59.4

15 256 4096 2 75 34 295.8 4 20 252.6

31 512 2048 2 75 34 252.3 4 20 217.5

59 1024 4096 2 75 34 1010.4 2 40 1075.1

61 1024 4096 2 75 34 1204.6 2 40 1228.8

We ran experiments for 40 and 80 bits of statistical security κ. For the param-
eter N , i.e. the number of parties in the underlying MPC protocol, we used the
values 2, 4, 8, 16, 32 and 64. Then, given the desired level of security and N we
searched for the parameters for each protocol that minimized the overall cost.

In Πc&c, there are two parameters to define: M (number of pre-processing
executions) and τ (number of pre-processing executions to open). To obtain
these, we wrote a script that finds the minimal M and τ such that ξ(M,N, τ) ≤
2−40 or 2−80. In Πsac, we observe that for our choices of |F| and N , it holds that
3N+|F|−3

N ·|F| ≈ 1
N and so it suffices to choose M such that ξ(M,N) ≈ 1

NM ≤ 2−40

or 2−80.
We summarize the parameters used in our experiments in Tables 1, 2. In

addition, for each set of parameters we give the size of the argument in Kbits
as a formula of the SIS problem parameters ρ = m · log2 |F|. Observe that as
the number of parties N grows, the number of MPC instances in Πsac becomes
much smaller than the number required in Πc&c, which is translated to smaller
proof size. This implies that our new ‘sacrificing’-based approach outperforms
the ‘cut–and–choose’-based method for arithmetic circuits over large fields.
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Running Times. In Table 3 we present the running times (in Msec.) of the two
protocols for 40 bits of security respectively. The results for 80-bit of security
are presented in the full version. For each set of parameters for the SIS problem
we report only the best running times achieved together with the MPC protocol
parameters which lead to the result. As the number of non-linear gates in this
circuit is small, it is not surprising that both schemes achieve similar results.
Observe that small numbers of parties in the MPC protocol lead to faster running
times, in contrast to proof size which is getting smaller when the number of
parties is increased.

It is worth noting that a major source of improvement we discovered was to
postpone the modular reduction in the matrix multiplication to the end. That is,
when the prover/verifier multiply a row in the matrix A with a vector of shares
of s (which is eventually what the computed circuit does), it is highly beneficial
to do the reduction modulo q only at the end of the matrix multiplication. This
simple optimization alone yields an improvement of approximately 33%.

Using Multi-threads. The above results were obtained using a single thread. As
computation time is the bottleneck, we examined what happens when working
with multiple threads which seems to be a straightforward optimization. This
experiment was run for the “toughest” instance of the SIS problem, with log |F| =
61, n = 1024 and m = 4096 and with the MPC protocol parameters who yielded
the best running time in Table 3. The full results appear in the full version.
As we discovered, using two threads already cut the running time by half and
using 20 threads speeds-up the runtime by more than 80%. As a consequence, we
obtain a ZKAoK that runs in less than 0.5 s even for the of SIS instance with
the largest parameters. This is orders of magnitude faster than any previous
implementation for arithmetic circuits of the same size.

Faster Matrix Products and Structured Lattices. In this work we solely focus on
unstructured matrices A for SIS. By micro-benchmarking the results, we observe
that as the size of the matrix A grows, the time spent on computing the matrix
multiplication becomes dominant. In particular, for the large instances, matrix
multiplication takes >85% of the overall local computation time. As we use only
textbook matrix multiplication, this leaves plenty of room for improvement.
Furthermore, on the verifier side it is possible to batch the matrix multiplica-
tions together as only verification is needed. Another direction would be to use
structured matrices i.e. structured lattices, which opens the door for FFT-like
algorithms.

7 Related Work

The landscape for (lattice-based) ZK arguments has drastically changed dur-
ing the past years. We will now describe how our protocol compares with other
state-of-the-art arguments of knowledge in terms of communication, computa-
tion time, accuracy of the proof and the cryptographic assumptions. As most of
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existing work focuses only on minimizing the proof size, we can only estimate in
many cases what will be the running time compared to ours. For this section,
we used N = 16 parties in underlying MPC protocol for our scheme and set
M accordingly to achieve the desired soundness. We stress that it is possible to
further increase the number of parties in the underlying MPC and reduce the
proof size even more, but at the cost of increasing also the running time.

Protocols for exact SIS. We subsume all protocols that prove the exact solu-
tion here. These are either based on Stern-type arguments [LNSW13], direct
applications of MPC-in-the-head/IOP [AHIV17,BCR+19] or special-purpose
protocols [BLS19,Beu19,YAZ+19]. Though STARKs [BBHR19] fall into the sec-
ond category, we do not consider those as related work as they are rather tailored
to computations with looping components. While [LNSW13] is a specific tech-
nique tailored to problems such as SIS, [AHIV17,BCR+19] require an arithmetic
circuit (similar to us) for the verification of the statement. The comparison in
term of proof size to these works is presented in Table 4.

Table 4. Proof sizes for Binary-SIS and 5-bit secrets, small constant slack, κ = 40.

|F| ≈ 232

Binary
|F| ≈ 232

β = 15
|F| ≈ 261

Binary
|F| ≈ 261

β = 15

Stern [Ste96] 971KB 7285 KB 3703KB 27775 KB

Ligero [AHIV17] 45KB 55 KB 55KB 80 KB

Ours, baseline 357KB 2138 KB 1359KB 8148 KB

Ours, amortized 179KB 1069 KB 680KB 4075 KB

We did not include proof sizes for the Aurora protocol [BCR+19], as the
authors there did not provide a general expression for the proof size, but rather
experimental results for the binary field F2192 . Nevertheless, we expect them to
be comparable to the sizes reported for [AHIV17]. We note that the prover run-
ning time according to their experiments is ≈200 s, and so is expected to be at
least one order of magnitude bigger than in our protocols. The same applies to
Ligero [AHIV17], which requires extensive FFT computations for large polyno-
mials, which cause the prover’s running time to be much higher than ours. We
thus conclude that these approaches, which achieve sun-linear communication,
outperform our approach in the non-interactive setting. However, in the inter-
active setting- for example, when used as a building block in a larger interactive
protocol (that use e.g. lattice-based commitments) with strong runtime require-
ments then our computationally efficient prover is advantageous. Concurrently
to this work, the works of [BLS19,Beu19,YAZ+19] have improved upon the
state of the art of ZKAoK for lattice-based primitives. While it can be expected
that their solutions have the same or better communication complexity than our
approach for exact SIS, it is still unclear what is their computational cost, as
none of these works provides an implementation. Furthermore, in comparison to
their work our protocols can be used to prove arbitrary statements.
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Protocols for SIS with Slack. Here, we compare with the argument system
from the signature scheme of [Lyu12] (see Table 5).

We compare the proof size of [Lyu12] with our baseline protocol and with the
two solutions described in Sect. 5.3. We see that in particular the 2nd protocol of
Sect. 5.3 improves upon [Lyu12] for all three considered cases. This is particularly
true in the cases where the gap between β and |F| is small, as our proof size
increases as |F| grows whereas the size of [Lyu12] depends on the bound β but
not on |F| when optimized correctly. At the same time, increasing β seems not to
substantially change the communication complexity of either of our two proofs,
whereas it has a direct impact on [Lyu12].

Table 5. Proof sizes for non-constant slack with log2(|F|) = 32 and κ = 40.

Protocol Slack Binary SIS SIS with β = 15

Sigma-protocol [Lyu12] 288m 184 KB 223 KB

Ours, Approach 1 (κ = 8) 400m 100 KB 100 KB

Ours, Approach 2 (κ = 8) <3 m 96 KB 97 KB

Ours, Exact 1 179 KB 1069 KB

Other Approaches. Recently, del Pino et al. [dPLS19] showed how to obtain
a ZK argument for our problem setting. While they have a drastically smaller
proof size (in the order of 1.5 KB), their construction relies on the DLog assump-
tion and is therefore not post-quantum secure. Moreover, their computational
efficiency relies on using structured lattices, which we do not need. The same
applies to Hyrax [WTS+18], Sonic [MBKM19] or Libra [XZZ+19], who rely on
the DLog-assumption. Older ZK-SNARKs such as [PHGR16,BSCTV14] would
offer low argument size and verification time but in addition to large keys and
a high prover runtime also rely on very strong assumptions. Similarly, the work
of [BCC+16] is also in the DLog setting. Its lattice-based variant [BBC+18] is so
far not implemented, may have large hidden constants and itself uses ZKAoKs
for SIS as building blocks.
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Abstract. We propose an improvement for the inner product argument
of Bootle et al. (EUROCRYPT’16). The new argument replaces the
unstructured common reference string (the commitment key) by a struc-
tured one. We give two instantiations of this argument, for two different
distributions of the CRS. In the designated verifier setting, this structure
can be used to reduce verification from linear to logarithmic in the circuit
size. The argument can be compiled to the publicly verifiable setting in
asymmetric bilinear groups. The new common reference string can easily
be updateable. The argument can be directly used to improve verification
of Bulletproofs range proofs (IEEE SP’18). On the other hand, to use the
improved argument to prove circuit satisfiability with logarithmic veri-
fication, we adapt recent techniques from Sonic (ACM CCS’19) to work
with the new common reference string. The resulting argument is secure
under standard assumptions (in the Random Oracle Model), in contrast
with Sonic and recent works that improve its efficiency (Plonk, Marlin,
AuroraLight), which, apart from the Random Oracle Model, need either
the Algebraic Group Model or Knowledge Type assumptions.

Keywords: Zero Knowledge · Inner product · SNARKS · Range
Proofs · Updateable

1 Introduction

Zero-Knowledge proofs have been an important primitive in the theory of cryp-
tography since their introduction three decades ago. The classical applications
of zero-knowledge proofs are numerous, including for example identification
schemes, electronic voting, verifiable outsourced computation, or CCA secure
public-key encryption. The common denominator of all of these is that zk-proofs
are used to prove simple statements, like “this ciphertext is well-formed” or “I
know a valid signature key”. Although it was known that every NP statement
could be proved in zero-knowledge [23], the cost of such general proofs was
prohibitive and more sophisticated applications of zk-proofs were completely
impractical.
c© International Association for Cryptologic Research 2020
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https://doi.org/10.1007/978-3-030-45374-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45374-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-45374-9_18


528 V. Daza et al.

This situation has changed radically in the last few years with the intro-
duction of pairing-based zk-SNARKs [25]. The key element of these arguments
is that they are succinct, in fact, they are constant size, i.e. independent of
the witness size and thus, very fast to verify. This is extremely powerful: in
particular, a prover can show that it has executed correctly some large compu-
tation (expressed as a huge circuit) and a verifier will be convinced after doing
only very few checks (e.g. computing 3 pairings in [26]). Besides their scientific
interest, SNARKs have opened the door to new real-world privacy-preserving
applications. Cryptocurrencies like Zcash [6] or Ethereum [36] are two of the
most popular examples so far.

However, even the most efficient instantiations of pairing-based SNARKs
[26,28] have a few drawbacks. On the efficiency side, the main ones are long
common reference string and costly prover computation. On the security side,
they are based on very strong hardness assumptions, and the setup is assumed
to be trusted.

Recently, there are significant research efforts to propose alternatives which
overcome some of these drawbacks following several dimensions. For instance,
numerous works study how to reduce the trust in the common reference string,
exploring weaker models such as subversion resistant SNARKs [1,4,17], update-
able common reference strings [27] or transparent setup [5]. Although SNARKs
are unbeatable in some facets, different tradeoffs are compelling depending on
the application scenario.

One of the most celebrated alternatives to SNARKs are the arguments of
knowledge for Arithmetic Circuit Satisfiability of Bootle et al. [10] (and Bul-
letproofs, the improvement thereof by Bünz et al. [12]). Their dependence on
weaker assumptions (the DLOG assumption and the Random Oracle if one
wants to remove interaction via Fiat-Shamir), the absence of a trusted setup
and the logarithmic size of the proofs are some of its most attractive features.
Unfortunately, verification time scales linearly, even when batching techniques
are used. The motivation of this paper is to improve the cost of the verifier in
the aforementioned works, while keeping most of its advantages.

1.1 Related Work

In [10], Bootle et al. proposed an interactive zero-knowledge argument at the
heart of which lies a recursive argument for an inner product relation of com-
mitted values. The argument has very interesting properties, most notably it is
transparent. The communication complexity is Oλ(log |C|)1 and the verification
cost is (Oλ(|C|)) which is the main drawback of the scheme, since verifying is
asymptotically as costly as evaluating the circuit. Prover complexity is asymp-
totically optimal (Oλ(|C|)) but it heavily uses expensive public-key operations.
Bünz et al. in [12] improved the concrete efficiency of the aforementioned proto-
col by a constant factor.

1 As explained in Sect. 2, Oλ(·) hides linear factors that depend on the security param-
eter λ.
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The Muggle-proofs based [37–40] proof systems build on the delegation
scheme of Goldwasser, Kalai, and Rothblum [24]. These are very efficient schemes
for low depth computation, whose verification and communication complexity
depend on d log W , where d is the circuit depth, and W its width plus some
communication overhead depending on the specific instantiation. Hyrax [37] is
a DLOG-based transparent instantiation with an additional cost of Oλ(|w|

1
i )

for some i that can be fine-tuned. Recently, Libra [38] utilized and improved
techniques from [14] to achieve an asymptotically optimal prover complexity and
minimize public key operations. All these schemes need either a per-circuit setup
or work for log-space uniform computations. Since they are inherently interactive
they rely on the Fiat-Shamir transform to yield non interactive arguments.

Probabilistically Checkable Proofs (PCP) based constructions [5,7] originate
from the works of Kilian [31] and Micali [33], and are based on Interactive Oracle
Proofs [8] which generalize the classical PCP proofs in the interactive setting.
They are based on symmetric primitives which results in transparent, plausibly
post-quantum secure constructions. The main drawback is that they are still
concretely inefficient, especially as far as prover complexity is concerned. In the
same family, [2,22,30] build on the MPC-in-the-head paradigm [29] and share
similar properties. The most efficient one is Ligero [2] which, while having good
concrete efficiency, has communication complexity Oλ(

√
|C|) which can be bad

for moderately large computations.
The line of work of Linear PCP constructions [16,21,26,35] that originates

from the seminal work of Gennaro et al. [21] and abstracted in [9], are the most
efficient when considering verification time and communication. Their proof size
is constant and the verification cost is Oλ(|x|) where x is the public input. Note
that this is optimal since the verifier has to, at least, read the statement to be
proven. The main drawback is that they need a trusted setup.

To achieve a middle ground between efficiency and trust, Groth et al. [27]
defined the Updateable model. In this model, everyone can non-interactively
update the setup parameters. As long as one update is honest, soundness is
guaranteed. The authors also presented a scheme which is updateable, but it
has a universal common reference string of size quadratic in the maximal size of
all supported circuits (although from the global setup a linear, circuit-specific
string can be derived). Maller et al. presented Sonic [32], which improved this to
a linear CRS by exploiting the reduction of [10]. Several works [15,19,20] have
tried to improve the efficiency of Sonic concretely. However, all of these, including
Sonic, are secure either in the Algebraic Group Model, or under knowledge type
assumptions (apart from the Random Oracle Model). Recently, [13] uses the
techniques of the aforementioned results to construct a SNARK sound in groups
of unknown order. When instantiated in class groups it achieves a transparent
setup and asymptotically improves over STARKS [5] by a logarithmic factor.

1.2 Our Contribution

We construct a public-coin Argument of Knowledge in the Universal Updateable
Model based on the work of Bootle et al. [10]. The verification complexity is
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Oλ(|x| + log |C|) and communication complexity is Oλ(log |C|) where |x| is the
public input size. The prover is linear in |C| but, as in [10], it needs to perform
a lot of public-key operations. The two constructions are secure, respectively,
under one assumption which reduces to asymmetric DLOG and another one to
asymmetric q-DLOG. They can be made non-interactive with the Fiat-Shamir
heuristic. Updating and verifying updates need time Oλ(|C|), and communication
complexity is Oλ(log |C|) (which can be reduced to Oλ(log log |C|)) and Oλ(1),
respectively.

As far as we know, all recently proposed efficient and fully-succinct update-
able schemes [15,20,32] rely on the Algebraic Group Model [18] or other Knowl-
edge Type assumptions apart from the Random Oracle Model, while in our case
the Random Oracle Model and a standard assumption is enough. However, the
aforementioned schemes have a better communication complexity (Oλ(1)) and,
while asymptotically the verifier has the same complexity (Oλ(log |C|)), in their
case it works mainly on the field while ours works in the group, which is less
efficient. Also, while the prover complexity in [15,20,32] is quasi-linear in |C| and
ours is linear, theirs works mainly in the field. We report some concrete numbers
in Table 1 for the overhead of each scheme (we do not include concrete numbers
for other schemes in communication and verification since they are constant
while ours are logarithmic in |C|).

Finally, we observe that the major overhead in the general proof system is
the delegation of (public) computation regarding the circuit structure and so,
for fixed languages that may be of interest, we can use the same techniques to
achieve better efficiency. We demonstrate that by applying this in range proofs
improving on [12]. The main overhead compared to it is that we move to bilinear
groups instead of standard ones, but we exponentially reduce the verification
complexity.

1.3 Our Techniques

Distribution Parameterized Vector Commitments. We revisit the use of
vector commitment schemes in zero-knowledge proof systems when working in
groups: instead of using the classical Pedersen commitment key which is uni-
formly sampled, we add some limited structure which simultaneously allows
more efficient representation of the key and efficient updateability. When com-
bined with the properties of bilinear groups, only a compressed version of it is
enough to allow a verifier to perform verification tasks exponentially faster.

In particular we propose two instantiations:

– The commitment key consisting of group encodings of all monomials of a
secret x, i.e., [1], [x], [x2], . . . , [xn−1].

– The commitment key consisting of group encodings of all multilinear mono-
mials of a secret x1, . . . , xν i.e. [1], [x1], [x2], [x1x2], . . . , [x1x2 · · · xν ].

The structure of both commitment keys allows to non-interactively update
the parameters and thus nullifying the trapdoors x or x1, . . . , xn. We take advan-
tage of this structure in bilinear groups to create compressed versions of these
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Table 1. Comparison of the updateable SNARKSs in terms of the most expensive
operations (exponentiations and pairings). n is the number of multiplication gates, a
is the number of addition gates, m is the number of wires in the circuit and M is a
parameter, which determines the processed circuit’s fan-in and fan-out upper bound,
and can be fine-tuned to balance the computations of the prover and verifier. n′ is the
size of the processed circuit which in the worst case is upper bounded by n + 2m

M−1
.

Sonic empirically assumes n′ = 3n for M = 3 in its reported numbers rather than a
worst case analysis. P refers to pairing operations and E1 to G1 exponentiations. We
omit constant factors. Our prover is essentially only performing multi-exponentiations
and we consider we need k G1 exponentiations to do a k-multi-exponentiation, but
we note that they can be implemented with o(k) exponentiations, see e.g. [10]. In
the assumptions columns KT refers to Knowledge Type assumptions, AGM to the
Algebraic Group Model and A-DLOG, q-A-DLOG to variants of DLOG and q-DLOG
in the asymmetric group setting. All schemes are interactive and can be turned to
non-interactive in the Random Oracle model.

|CRS| P V π Assumptions

Sonic [32] 36n G1 273n E1 Oλ(1) Oλ(1) AGM

Marlin [15] 6m G1 21m E1 Oλ(1) Oλ(1) AGM or KT

Plonk [19] n + a G1 9(n + a) E1 Oλ(1) Oλ(1) AGM

This work n′
G1(P) (22 + 10M)n′ E1 12 log n′ E1 12 log n′

G1 A-DLOG or

log n′
G2(V) 8 log n′ P 4 log n′

F q-A-DLOG

keys of size only log n. For various languages, this allows the verifier to verify
statements with the help of the prover without reading the whole commitment
key. This leads to exponentially faster verification of proofs with minimal over-
head for the prover, at the price of moving to bilinear instead of plain DLOG
groups.

Inner Program Argument with Logarithmic Verifier. Using these tech-
niques, we modify the inner product protocol of Bootle et al. [10] for proving
that for given commitments c1 = Com(a), c2 = Com(b) and z ∈ F, it holds that
a�b = z. More specifically, we note that the overhead of the verifier in [10] is
computing a new commitment key in each of the log n rounds of the protocol,
where n is the vector dimension. This key depends on the previous key and the
verifiers’ challenges. Instead of doing that, we only give the verifier the com-
pressed key (which is logarithmic in n) and have the prover convince the verifier
that the reduced statement is w.r.t. a new key which is the correct one.

Universally Updateable NIZK AoK. Having this powerful tool allows us
to aggregate linear and quadratic constraints and thus prove general statements.
We follow the techniques of [10] to reduce a statement about a circuit w.r.t. a
public input to an inner product one (which need not be zero knowledge) and we
can then use the improved inner product argument. More concretely, the prover
convinces the verifier that [α], [β] are commitments to a,b such that a�b = z.
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The former vector depends on the witness and the latter on the circuit structure,
is public, and both depend on a random challenge issued by the verifier.

However, computing [β] given universal parameters that work for any cir-
cuit (of bounded size) requires Oλ(|C|) time making verification linear in the
computation size. To overcome this, we delegate this computation to the prover
who gives a succinct proof for the correct computation of [β]. To achieve that, we
assume a specific structure for the circuit (basically that the gates have bounded
fan-in and fan-out) and apply techniques similar to [32] adapted to our setting.
These conditions can be imposed by pre-processing the circuit appropriately
without asymptotically increasing the circuit size.

We note that when we have a fixed statement, we can make things much
more efficient. The blueprint of the construction remains the same and we can
appropriately fine-tune the parameter generation to avoid the delegation of com-
putation of [β] thus achieving a concretely more efficient verifier. We show how
this can be applied in Range Proofs, and reduce exponentially the verification
complexity of the similar construction of [12].

2 Preliminaries

2.1 Notations

We write x ← S to denote uniformly sampling from S and assigning to x. When
A is an algorithm we denote with y ← A(x) the assignment of the output of
A with input x to y, where we uniformly sample randomness from A if it is
probabilistic. We write A(x; r) to explicitly refer to the randomness of A when
needed. We notate with Oλ(·) asymptotic complexity that hides linear factors
that depend on the security parameter λ.

We denote vectors with boldface letters. If v is a vector, we denote with
normal font its components, that is vi is its i-th component. We denote en ∈
F

n the n-th element of the canonical basis. The symbol ◦ is used for denoting
pairwise product, that is a ◦ b = (a1 · b1, . . . , an · bn).

Groups are written in additive notation and its elements are written
implicitly: if we fix a generator g ∈ G, we denote with [r] the group ele-
ment rg. We extend this notation to vectors of group elements by denoting
[r] = ([r1], . . . , [rn]). In the bilinear group setting, given some fixed generators
g1, g2, gT = e(g1, g2), we use subscripts to specify the group. In this notation,
e([r]1, [s]2) = [rs]T .

Let G be a group of order q and r = (r1, . . . , rn) ∈ Z
n
q ,a = (a1, . . . , an) ∈ Z

n
q .

We denote [a�r] =
∑n

i=1 ai[ri], that is, [a�r] is a Vector Pedersen commitment
of a w.r.t. to commitment key [r]. Given a vector r = (r1, . . . , rn), for even
n, we denote r 1

2
= (r1, . . . , rn/2) and r 2

2
= (rn/2+1, . . . , rn). We denote xn =

(1, x, . . . , xn−1). Finally, let x1, . . . , xν ∈ Z
n
q . We denote as x the vector that

is constructed recursively by setting x ← (1), {x ← (x, xix)}i∈[ν]. Basically,
xn contains all the monomials of x up to degree n − 1, and x contains all the
multilinear monomials where a “canonical” ordering has been imposed by its
recursive definition.



Updateable Inner Product Argument 533

2.2 (Zero Knowledge) Arguments

Interactive (Zero Knowledge) Arguments of Knowledge. We present the
definitions and the relevant results we need for (Zero Knowledge) Arguments of
Knowledge (ZKAoK). We follow the presentation of [10].

Let L ∈ NP be a language and RL the corresponding relation for L. A
ZKAoK allows a prover to convince a verifier of knowledge of a witness w cer-
tifying membership of a public x in L that is (x,w) ∈ RL. The zero knowledge
property guarantees that the verifier learns nothing about the witness w apart
from the fact that the prover knows such a witness.

Our final goal is a non-interactive argument, but we work in the interac-
tive setting and then use standard techniques for transforming the interactive
arguments to non-interactive.

Denote with 〈P(x,w),V(x)〉 the transcript of an execution of P and V with
respective inputs x,w and x. Let viewV〈P(x,w),V(x)〉 (viewP〈P(x,w),V(x)〉)
be the views of V (P) in a protocol execution (i.e. the input, randomness and
all incoming messages), and finally let outV〈P(x,w),V(x)〉 be the final verdict
of the verifier (accept or reject).

Definition 1. The pair 〈P,V〉 is a Zero Knowledge Argument of Knowledge if it
is public coin, it has perfect completeness, statistical witness extended emulation
and perfect honest verifier zero Knowledge as defined next.

Definition 2. The pair 〈P,V〉 has Perfect Completeness if for all (x,w) ∈ RL
it holds that Pr [outV〈P(x,w),V(x)〉 = 1] = 1.

Definition 3. The pair 〈P,V〉 has Statistical Witness Extended Emulation if
for all deterministic polynomial P∗, there exists an expected polynomial time
extractor E, such that for all (unbounded) adversaries A

∣∣∣∣
∣∣∣
Pr

[
1 ← A(tr) (x, s) ← A(1λ)∧

tr ← 〈P∗(x, s),V(x)〉

]
−

Pr

⎡

⎣
(x, s) ← A(1λ)∧

1 ← A(tr) (tr, w) ← E〈P∗(x,s),V(x)〉(u)∧
if tr is accepting then (x,w) ∈ RL

⎤

⎦

∣∣
∣∣∣∣∣
≤ negl(λ).

Definition 4. An (n1, . . . , nμ)-tree of accepting transcripts for the pair 〈P,V〉
with 2μ + 1 rounds is a tree where:

– Each node of the tree in level i is labeled with the transcript of the protocol
used up to V’s i-th message.

– Each node in the same level i is labeled with a transcript that uses fresh
(uniformly distributed and independent) randomness for the verifier’s i-th
challenges.

– Level i has ni descendants.
– The leafs are labeled with transcripts that are accepted by the verifier.
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Definition 5. The pair 〈P,V〉 has (n1, . . . , nμ)-generalized special soundness if
there exists a PPT extractor E such that given an (n1, . . . , nμ)-tree of accepting
transcripts for the pair 〈P,V〉, the extractor E outputs a valid witness for the
statement.

Definition 6. An interactive proof system 〈P,V〉 is public coin if all messages
from V to P are independent and uniformly distributed, and are uniquely defined
by the randomness of the verifier alone.

Definition 7. A public coin interactive proof system 〈P,V〉 is perfect Honest
Verifier Zero Knowledge (HVZK) if there exists a PPT simulator S, such that
for all PPT A, it holds that

Pr
[
1 ← A(tr) (x,w, r) ← A(1λ) ∧ tr ← 〈P∗(x,w),V(x; r)〉 ∧ (x,w) ∈ RL

]
=

Pr
[
1 ← A(tr) (x,w, r) ← A(1λ) ∧ tr ← S(x, r) ∧ (x,w) ∈ RL

]
.

Theorem 1. Let 〈P,V〉 be a 2μ + 1 round, public coin, interactive proof sys-
tem with (n1, . . . , nμ)-generalized special soundness and

∏μ
i=1 ni = O(λc) for a

constant c. Then 〈P,V〉 has witness extended emulation.

The proof of the theorem is given in [10].

Updateable Non-interactive (Zero Knowledge) Arguments of Knowl-
edge. Informally, a non-interactive argument system in the common reference
string model is a ZK argument with two rounds where the first is a setup round
to create parameters that can be reused in many proofs. The most efficient con-
structions for general NP statements (e.g. Groth [26]) need a very expensive
and inefficient trusted setup. To deal with this, Groth et al. [27] introduced the
notion of an Updateable Setup where users can non-interactively update the
parameters in a way that gives us the following guarantee: if an honest update
takes place, then no PPT adversary can break soundness. We follow the model
of Groth et al. [27], who show that for updateability it suffices to prove that an
argument is secure in the following model.

– The adversary creates setup parameters.
– An honest update on these parameters takes place.
– The adversary updates the parameters.
– Circuit specific parameters are derived publicly for a circuit C.
– Knowledge soundness is challenged w.r.t. these parameters.

We emphasize that the circuit-specific setup is done publicly: no secret is
involved in it. Anyone can take the universal parameters, and deterministically
compute the circuit-specific CRS. We present the definition of Updateable Non-
Interactive (Zero Knowledge) Arguments of Knowledge.

Definition 8. An Updateable Non-Interactive (Zero Knowledge) Argument of
Knowledge is a tuple of algorithms (USetup, Update, VrfySetup, VrfyUpdate,
CircuitSetup, Prove, Vrfy) where
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– σ ← USetup(1λ, n): USetup takes as input the security parameter λ and an
upper bound on the derived circuit size n, and outputs a universal CRS σ.

– (σ′, πσ′) ← Update(σ): Update takes as input a universal CRS σ, and produces
a new universal CRS σ′ along with a proof of correct update πσ′ .

– 0/1 ← VrfySetup(σ, 1λ, n): VrfySetup takes as input a universal CRS σ, the
security parameter λ and n and outputs a bit indicating the correctness of the
structure of the universal CRS.

– 0/1 ← VrfyUpdate(σ′, σ, πσ′): VrfyUpdate takes as input the new and old CRS
σ′ and σ, and a proof π′

σ, and outputs a bit indicating the correctness of the
update.

– σC ← CircuitSetup(σ, C): is a deterministic algorithm that takes as input the
description of a circuit with size bounded by n, and the universal CRS and
outputs circuit specific parameters σC.

– π ← Prove(σC , x, w): takes as input the CRS σC, the public and private input
x,w, and outputs a proof π.

– 0/1 ← Vrfy(σC , x, π): takes as input the CRS σC, the public input x and a
proof π, and outputs a proof indicating its validity.

which is Perfectly Complete, Knowledge Sound and Statistically Zero Knowledge
as defined next.

Definition 9. An Updateable Non-Interactive Argument of Knowledge is Per-
fectly Complete if for all λ, n

Pr
[
VrfySetup(σ, 1λ, n) = 1 σ ← USetup(1λ, n)

]
= 1,

for all λ, n, σ

Pr
[
VrfySetup(σ′, 1λ, n) = 1 ∧ VrfySetup(σ, 1λ, n) = 1 ∧
VrfyUpdate(σ, σ′, πσ′) = 1 (σ′, πσ′) ← Update(σ)

]
= 1

and for all λ, n, σ, C, x, w where C encodes a circuit of size bounded by n and
RC(x,w) = 1

Pr

⎡

⎣
VrfySetup(σ, 1λ, n) = 1 ∧

Vrfy(σC , x, π) = 1 σC ← CircuitSetup(σ, C) ∧
π ← Prove(σC , x, w)

⎤

⎦ = 1.

Definition 10. An Updateable Non-Interactive Argument of Knowledge is
Knowledge Sound if for all stateful PPT adversaries A = (A1,A2,A3), there
exists an extractor EA, such that for all λ, n, C where C is a circuit of size
bounded by n

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(σ1, st1) ← A1(1
λ, n) ∧

VrfySetup(σ1, 1
λ, n) = 1 ∧ (σ2, πσ2) ← Update(σ1) ∧

VrfyUpdate(σ3, σ2, πσ3) = 1 ∧ (σ3, πσ3 , st2) ← A2(st1, σ2, πσ2) ∧
Vrfy(σC , x, π) = 1 ∧ σC ← CircuitSetup(σ3, C) ∧

C(x, w) �= 1 (x, π) ← A3(st2, σC ; r) ∧
w ← E(σC , x; r)

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ negl(λ).
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Definition 11. An Updateable Non-Interactive Arguments of Knowledge is Sta-
tistically Zero knowledge in the Random Oracle model if there exists a pair of
PPT algorithms S1,S2, where S2 is stateful, such that for all A, and for all
circuits C of size bounded by n, where C takes as input a public value x and a
private value w then

Pr

⎡

⎢⎢⎢
⎢
⎣

b ← {0, 1} ∧
σ ← AHb(setup, 1λ, n) ∧

b’ = b VrfySetup(σ, 1λ, n) = 1 ∧
σC ← CircuitSetup(σ, C) ∧

b′ ← AHb,Ob(σC)

⎤

⎥⎥⎥
⎥
⎦

≤ 1
2

+ negl(λ)

where H is modeled as a Random Oracle and

O0(x,w) ←
{

⊥, if RC(x,w) = 0
Prove(σC , x, w), otherwise

, H0(m) ← H(m),

O1(x,w) ←
{

⊥, if RC(x,w) = 0
S1(σC , x), otherwise

, H1(m) ← S2(m).

Note that this definition considers adversarially created parameters, i.e. Sub-
version Resistant ZK [4].

From HVZK Interactive AoK to Non Interactive ZK AoK. It is well-
known that we can use the Fiat-Shamir heuristic to transform any public coin
Perfect HVZK interactive argument to a non-interactive full-fledged Statistical
Zero Knowledge argument in the Random Oracle Model.

2.3 Updateable Commitment Schemes

We define commitment schemes which have an updateability property as well.
We do this to simplify proofs in the following sections. An updateable commit-
ment will be enough to guarantee updateability of all the protocols in this work,
since all the arguments presented hold regardless of parameters unless there is
a breach in the binding property of the commitment scheme.

Definition 12. An Updateable Commitment Scheme is a tuple of algorithms
(Setup,VrfySetup,Update,VrfyUpdate,Com,Open) such that

– ck ← Setup(1λ, n) takes as input the security parameter λ and the vector
dimension n, and outputs a commitment key ck.

– (ck′, πck′) ← Update(ck): Update takes as input a commitment key ck and
produces a new commitment key ck′ and a proof of correct update πck′ .

– 0/1 ← VrfySetup(ck, 1λ, n): VrfySetup takes as input a commitment key ck,
the security parameter λ and the dimension n, and outputs a bit indicating
the correctness of the structure of the key.
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– 0/1 ← VrfyUpdate(ck′, ck, πck′): VrfyUpdate takes as input a new key ck′, an
old key ck and a proof πck′ , and outputs a bit indicating update correctness.

– (c, τ) ← Com(ck,m) takes as input the commitment key and a message m ∈
Mn, and outputs a commitment c ∈ C and an opening trapdoor τ ∈ T .

– 0/1 ← Open(ck, c,m, τ) takes as input the commitment key, the message and
the opening trapdoor and outputs a bit indicating the validity of the opening.

which is Correct, Updateable Computationally Binding and Perfectly Hiding as
defined next.

Definition 13. An Updateable Commitment Scheme is correct if for all λ, n

Pr
[
VrfySetup(ck, 1λ, n) = 1 ck ← Setup(1λ, n)

]
= 1,

for all λ, n, ck

Pr
[
VrfySetup(ck′, 1λ, n) = 1 ∧ VrfySetup(ck, 1λ, n) = 1 ∧
VrfyUpdate(ck, ck′, πck′) = 1 (ck′, πck′) ← Update(ck)

]
= 1

and for all λ, n, ck,m

Pr
[
Open(ck, c,m, τ) = 1 VrfySetup(ck, 1λ, n) = 1 ∧

(c, τ) ← Com(ck,m)

]
= 1.

Definition 14. An Updateable Commitment Scheme has the Updateable Com-
putational Binding property if for all stateful PPT A = (A1,A2,A3), and for all
λ, n

Pr

⎡
⎢⎢⎢⎢⎣

VrfySetup(ck1, 1
λ, n) = 1 ∧

(ck1, st1) ← A1(1
λ, n) ∧

VrfyUpdate(ck3, ck2, πck3) = 1 ∧
(ck2, πck2) ← Update(ck1) ∧

Open(ck3, c,m1, τ1) = 1 ∧
(ck3, πck3 , st2) ← A2(st1, ck2, πck2) ∧

Open(ck3, c,m2, τ2) = 1 ∧
(c,m1, τ1,m2, τ2) ← A3(st2)m1 �= m2

⎤
⎥⎥⎥⎥⎦

≤ negl(λ).

Definition 15. An Updateable Commitment Scheme is perfectly hiding if, for
all λ, n,m, and all ck s.t. VrfySetup(ck, 1λ, n) = 1, and all c1

Pr
[
c = c1 (c, τ) ← Com(ck,m)

]
= Pr

[
c = c1 c ← C

]
.

3 Assumptions

We present the assumptions used in this work.

Definition 16. (DLOG Assumption) The DLOG Assumption holds w.r.t. a
group generator GroupGen if for all PPT adversaries A

Pr
[
r = r′ pp ← GroupGen(1λ) ∧ r ← Zq ∧ r′ ← A(pp, [r])

]
≤ negl(λ).
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We will also consider natural extensions of the DLOG Assumption. In the n-
DLOG Assumption, the adversary receives n-powers of r, [1], [r], . . . , [rn]. In the
Asymmetric DLOG Assumption in asymmetric bilinear groups, the adversary
receives r in both groups [r]1, [r]2. Similarly, in the asymmetric n-DLOG Assump-
tion, the adversary receives the powers of r in both groups. In either case, its
goal is to compute r ∈ Zq.

The inner product argument of Bootle et al. [10] and the argument presented
in this paper are based on the generalization of the DLOG Assumption presented
next but with different vector distributions. The binding property of the vector
commitments used in these arguments trivially reduces to this assumption.

Definition 17. Let n ∈ N. We call Dn a vector distribution if it outputs in PPT
time, with overwhelming probability vectors in Z

n
q .

In this paper, Dn will typically be the distribution of the key of some perfectly
hiding commitment scheme. More specifically, we will consider the distributions:

Un : r = (1, x1, . . . , xn−1) , PWn : r =
(
1, x, . . . , xn−1

)
,

ML2ν : r = (1, x1, x2, x1 · x2, . . . , x1 · · · xν) ,

where x, xi ← Zq. The first distribution is the uniform distribution, the second is
the n-Power distribution and the last one is the multilinear monomial distribu-
tion with n = 2ν . Note that in the notation we introduced before, the power and
multilinear monomial distribution can also be written as PWn : r = xn, x ← Zq

and ML2ν : r = x,x ← Z
ν
q .

Definition 18. The Dn-Find-Rep Assumption holds with respect to GroupGen
for all polynomial time adversaries A

Pr

⎡

⎣ [a�r] = [0] ∧ a 
= 0
pp ← GroupGen(1λ) ∧

r ← Dn ∧
a ← A(pp, [r])

⎤

⎦ ≤ negl(λ).

It is well known that the Un-Find-Rep (resp. PWn-Find-Rep) Assumption
reduces to the DLOG (resp. q-DLOG) Assumption. For Multilinear Monomial
distribution, we prove a similar result in Theorem2. This assumption is inspired
by the Naor-Reingold PRF [34].

In asymmetric bilinear groups, we define the Asymmetric Dn-Find-Rep
Assumption analogously except that the adversary receives r in both source
groups G1,G2. We can prove similar reductions to asymmetric variants of the
DLOG Assumption.

Theorem 2. If there exists an adversary that runs in time t(λ) and breaks the
ML2ν -Find-Rep Assumption with probability ε(λ) with respect to a group gener-
ator BilGroupGen(1λ), then there exists an adversary that breaks the Asymmetric
Discrete Logarithm Assumption relative to BilGroupGen(1λ) in time Oλ(2ν)+t(λ)
with probability ε(λ)

ν .

The proof of the theorem is presented in the full version.
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4 Distribution Parameterized Vector Commitment

We can construct Updateable Commitment Schemes under the Dn-Find-Rep
assumptions we described. The Setup and Com are the same for all and they
basically work as in the classical Pedersen Commitment.

We describe for the asymmetric MLn,PWn distributions the algorithms
related to the update (note that for Un, i.e. the Pedersen Vector Commitment,
updateability trivially holds since the Setup is transparent). We present the MLn

case in detail and discuss which modifications are needed for the PWn setting.
For our application it is sufficient to give in G2 only the elements that define
the commitment key, and not the whole key vector, i.e. [x]2 such that r = x.
Looking ahead, in the inner product argument [x]2 will be the compressed key
the verifier has.

The update mechanism is fairly simple. To check a commitment key’s struc-
ture, simply assert the various DDH relations that are implied by the MLn

distribution, and to update, pick a vector from MLn and multiply it pairwise
with the current key. NIZK PoK are used to assert that the previous random-
ness is taken into account in the new key and to ensure that any party updating
knows its contribution to the final commitment key.

– Setup(1λ, n)
• pp ← GroupGen(1λ).
• r ← MLn.
• Output pp, [r]1, [x]2 ← ([r1]2, [r2]2, . . . , [r2i ]2, . . . , [r2ν ]2).

– VrfySetup (pp, [x]2, [r]1)
• Verify [r1]1 = [1]1.
• For 1 ≤ i ≤ ν, for 1 ≤ j ≤ 2i−1, check if e([r2i−1+j ]1, [1]2) =

e([rj ]1, [xi]2).
• If all checks succeed output 1, otherwise output 0.

– Update (pp, [x]2, [r]1)
• y ← Z

ν
q .

• Compute [r′]1 ← y ◦ [r]1, [x′]2 ← y ◦ [x]2.
• For 1 ≤ i ≤ ν, let πi ← NIZKAoK {([xi]2, [x

′
i]2), (yi) : [x′

i]2 = yi[xi]2}.
• Output (pp, [x′]2, [r′]1, π1, . . . , πν).

– VrfyUpdate (pp, [x]2, [x
′]2, [r′]1, π1, . . . , πν)

• If π1, . . . , πν are correct, output VrfySetup (pp, [x′]2, [r′]1).
– Com (pp, [r]1,m)

• Pick ρ ← Zq.
• Compute c ← [(m, ρ)�r].
• Output (c, τ) where τ ← ([r]1, ρ).

– Open (pp, [x]2,m, c, τ)
• Parse τ = ([r]1, ρ).
• Output 1 iff VrfySetup (pp, [x]2, [r]1) and c = [(m, ρ)�r].

Theorem 3. The MLn-Find-Rep Commitment scheme is Updateably Compu-
tationally Binding under the MLn-Find-Rep assumption, and the existence of a
NIZK AoK for the relation R = {(([x], [x′]), y) |[x′] = y[x]}.
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The proof of the theorem is presented in the full version.
We can use a transparent scheme such as [12] to prove that an update is

correctly performed, which will yield Oλ(log log n) proof size.
A similar construction works for the PWn distribution. In this case, we simply

need the element x encoded in G2 since this is enough to check that the key is
drawn from the PWn distribution. That is, for each i, it is enough to check that
e([ri]1, [1]2) = e([ri−1]1, [x]2). The Update and VrfyUpdate work in the same way
but now a NIZK AoK is only needed for the element [x]2.

As for concrete efficiency, the cost is dominated by the group exponentia-
tions and the pairing operations for the verifier (the NIZK AoK statements are
logarithmic in n). Setup and Update are dominated by n exponentiations in G1,
VrfySetup and VrfyUpdate by n pairing operations, and Com and Open by one
multi-exponentiation of size n in G1 which, if performed trivially needs n expo-
nentiations. Proof size amounts to log n proofs of the NIZK AoK in the MLn

case and 1 in the PWn case.

4.1 Commitments to Monomial Vectors

We will need to efficiently compute special commitments in the proof systems we
present later. Specifically, given commitment schemes under ML2ν and PW2ν we
will need to compute (non-hiding) commitments to tn and t where we know t and
t1, . . . , tν , respectively. Of course, these computations can be performed in time
linear in the vector dimension, but we want to do so in sublinear (logarithmic
in n) time. Since the univariate case reduces to the multilinear one by setting
ti = t2

i−1
, we only consider the most general case of computing t when the

keys are drawn from the ML2ν distribution. We will need this in two different
settings:

1. In the first case, let ck = (ckP , ckV) be a commitment key. A prover, holding
the whole commitment key ckP , computes the commitment to t w.r.t. ck, and
gives it to a verifier, who holds only a compressed version of it, ckV . It also
gives a small proof that the issued commitment is a commitment to t w.r.t.
ck.

2. In the second case, given a commitment to 1n w.r.t. some commitment key
ck = (ckP , ckV) (which can be precomputed once), the verifier derives a com-
mitment to t w.r.t. a new commitment key ck′ = (ck′

P , ck′
V) in logarithmic

time in n.

For the first case we use the following lemma:

Lemma 1. Let ck = (pp, [x]2, [r]1) be a commitment key where [r]1 = [x]. Then
Comck(t) =

∏ν
i=1(1 + tixi)[1]1.

Proof. We use induction on ν.

– When ν = 1, we have t = (1, t1) and x = (1, x1). We get

Comck(t) = [r1]1 + t1[r2]1 = [1]1 + t1x1[1]1 = (1 + t1x1)[1]1.
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– For ν > 1, we have [rν ]1 = (xν−1[1]1, xνxν−1[1]1) and t = (tν−1, tνtν−1) and

Comck(t) = [t�rν ]1 = [tν−1
�rν−1]1 + [tνtν−1

�
xνrν−1]1

= [tν−1
�rν−1]1 + tνxν [tν−1

�rν−1]1

= (1 + tνxν)[tν−1
�rν−1]1

= (1 + tνxν)
ν−1∏

i=1

(1 + tixi)[1]1,

where the last equality follows from the induction hypothesis. �

We take advantage of this structure by having the prover sending, for all
i ∈ {1, . . . , ν}, the elements

[τi]1 ←
i∏

j=1

(1 + tjxj)[r]1 = (1 + tixi)[τi−1]1,

where [τ0]1 = [1]1. The verifier can then use the pairing to check

e(ti[τi−1]1, [xi]2) = e([τi − τi−1]1, [1]2).

The prover needs to do log n G1 multi-exponentiations each of size 2i for
i ∈

{
1, . . . , n

2

}
, which can be implemented with n G1 exponentiations. The

verifier needs to perform log n pairing operations and 2 log n G1 exponentiations
to verify.

For the second case, we do the following: suppose the verifier is given
Comck1(1) = [1�r]1. The verifier and the prover can compute a new verifica-
tion key ck2 as follows:

(ckV
2 , ckP

2 ) = (([r]1, t−1
1 [x1]2, . . . , t−1

ν [xν ]2), (r ◦ t−1)).

Then, we have:

[1�r]1 = [(1 ◦ t)�(r ◦ t−1)]1 = [t�(r ◦ t−1)]1 = Comck2(t).

The verifier needs log n G2 exponentiations and the prover can implicitly
hold its key without computing it: when it needs to commit to m it can simply
commit to m ◦ t−1 thus saving in expensive group operations.

5 Improved Inner Product Argument

In this section, we will first provide a high-level description of the inner product
argument of [10], which has linear verification cost. Next, in Subsect. 5.2 we
briefly discuss how to reduce the verification complexity to logarithmic in the
designated verifier setting in the CRS model by changing the distribution of the
commitment keys (still under the DLOG Assumption). In asymmetric bilinear
groups, the construction can be “compiled” to achieve public verifiability, as
discussed in Subsect. 5.3.
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5.1 Inner Product Argument

We first briefly present the Inner Product Argument of [10]. The argument is a
Proof of Knowledge of the openings of two (non-hiding) Vector Pedersen Com-
mitments that satisfy an inner product relation. In [10], keys are sampled from
Un. Formally, it is a proof of knowledge for the following language LIP:

(pp,[r], [s] ∈ G
2ν

, [α], [β] ∈ G, z ∈ Zq) ∈ LIP ⇐⇒
∃a,b ∈ Z

2ν

q s.t. [α] = [a�r] ∧ [β] = [b�s] ∧ a�b = z.

The idea of the protocol is to reduce this statement to an equivalent one of
roughly half the size.

To do that, we create new commitment keys which have size half of the
original one by splitting them in half and then combining them to a new key
based on a challenge issued by the verifier. That is, the new commitment key
will be [r′] = c−1[r 1

2
] + c−2[r 2

2
], where c is the verifier’s challenge.

In order to prevent the prover from taking advantage of the split, we first
ask her to give partial commitments [α−1] = [a�

1
2
r 2

2
], [α1] = [a�

2
2
r 1

2
].

The new witness will be a′ = ca 1
2

+ c2a 2
2
. Note that both prover and verifier

can compute the commitment to this new value, for every challenge c, from the
partial commitments as follows:

[α′] = [a′�r′] = [(a 1
2
c + a 2

2
c2)�(c−1r 1

2
+ c−2r 2

2
)]

= [a�
1
2
r 1

2
] + [a�

2
2
r 2

2
] + c−1[a�

1
2
r 2

2
] + c[a�

2
2
r 1

2
]

= [α] + c−1[α−1] + c[α1].

The same procedure is done for the second commitment [β] = [b�s] with the
inverse challenge c−1.

Finally, the prover sends before seeing the challenge c the values z−1 = a�
2
2
b 1

2

and z1 = a�
1
2
b 2

2
, and based on these, the new inner product is computed as

z′ = z−1c+z+z1c
−1. The new statement becomes (pp, [r′], [s′], [α′], [β′], z′) ∈ LIP.

Straightforward calculations assert that the new witness is indeed a witness
for the new statement. The prover can now simply send the new witness a′,b′

with cost half of what it would take to send a,b.
To achieve logarithmic complexity, the prover and the verifier recursively

proceed in reducing the statement size until it is constant. The prover finally
sends the witness. Under the generalized forking lemma the protocol remains
sound.

We formally present the protocol next.

IPReduce

– Common input: σ = (pp, [r], [s]), [α], [β], z.
– P input: a,b.
– Statement: (σ, [α], [β], z) ∈ LIP.



Updateable Inner Product Argument 543

The prover and verifier proceed as follows:

– P computes

[α−1] ← [a�
1
2
r 2

2
], [β−1] ← [b�

1
2
s 2

2
], z−1 ← a�

2
2
b 1

2
,

[α1] ← [a�
2
2
r 1

2
], [β1] ← [b�

2
2
s 1

2
], z1 ← a�

1
2
b 2

2
.

– P sends [α−1], [α1], [β−1], [β1], z−1, z1 and V replies with c ← Zq.
– P computes

a′ ← a 1
2
c + a 2

2
c2, b′ ← b 1

2
c−1 + b 2

2
c−2.

– P and V compute

[r′] ← c−1[r 1
2
] + c−2[r 2

2
], [s′] ← c[s 1

2
] + c2[s 2

2
],

[α′] ← c−1[α−1] + [α] + c1[α1], [β′] ← c1[β−1] + [β] + c−1[β1],

z′ ← z−1c
1 + z + z1c

−1,

σ′ ← (pp, [r′], [s′]).

– The reduced statement is (σ′, [α′], [β′], z′) ∈ LIP, with witness a′,b′.

5.2 DV Inner Product Argument with Logarithmic Verifier

In this section we give the intuition on how to modify the above protocol with
a Dn-variant of the commitment scheme to achieve a logarithmic verifier. Full
details are only given for the public verifiable scheme, which is very similar.

The linear overhead in the verifier’s computation is computing the new key r′.
Having a structured commitment key allows to make this computation implicit
for the verifier. If r ← MLn, then r = (r 1

2
, r 2

2
) = (r 1

2
, xνr 1

2
). So, in the first

round, the key for the next round is

[r′] = c−1[r 1
2
] + c−2[r 2

2
] = (c−1 + xνc−2)[r 1

2
].

The new key is now determined by [x1], . . . , [xν−1] and the new generator (c−1+
xνc−2)[1]. Further, this transformation respects the structure of the key, which
can again be written as r′ = (r′

1
2
, xν−1r′

1
2
), so the same argument can be applied

again.
In the designated verifier case, we let the verifier know x1, . . . , xν . It does not

compute or read [r′] in each round but just checks in the last round if:

[r′] =
ν∏

i=1

(c−1
i + xν−i+1c

−2
i )[1],

where ci is the challenge at round i, and [r′] is the key in the last round (consisting
of 1 element). The same holds for the second key [s′]. Therefore, verification
requires a logarithmic number of operations.
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When r ← PWn, the verification can also be reduced to logarithmic, as the
structure of the key is very similar, namely, r = (r 1

2
, r 2

2
) = (r 1

2
, x2ν−1

r 1
2
). The

PW2ν can be seen as a special case where xi = x2i−1
.

5.3 Inner Product Argument with Logarithmic Verifier

To allow public verifiability, we work in asymmetric bilinear groups. The verifier
can no longer compute

ν∏

i=1

(c−1
i + xν−i+1c

−2
i )[1],

but it lets the prover compute the intermediate values in each round (which it
can compute without knowledge of xi), and the verifier uses the pairing as a
DDH oracle to verify this claim.

We now present the argument formally for the ML2ν distribution (for PWn

the argument is defined similarly and we omit the details). First, we define the
language of well structured commitments. We include the generator since it will
be modified in each round.

(pp,[r]1, [r]1, [x]2) ∈ LML2ν

Com ⇐⇒
[r1]1 = [r]1 ∧ ∀i ∈{1, . . . , ν} ∀j ∈

{
1, . . . , 2i−1

}
[r2i−1+j ]1 = xi[rj ]1.

The language to be proven and the reduction step are presented next.

(pp,[r]1, [s]1, [x]2, [y]2, [α]1, [β]1, z) ∈ LIP ⇐⇒
∃ [r]1, [s]1 ∈ G

2ν

,a,b ∈ Z
2ν

q s.t.

(pp, [r]1, [r]1, [x]2) ∈ LML2ν

Com ∧ (pp, [s]1, [s]1, [y]2) ∈ LML2ν

Com ∧
[α]1 = [a�r]1 ∧ [β]1 = [b�s]1 ∧ a�b = z.

PVReduce

– Common input: σ = (pp, [r]1, [s]1, [x]2, [y]2) , [α]1, [β]1, z.
– P input: σP = (pp, [r]1, [s]1),a,b.
– Statement: (σ, [α]1, [β]1, z) ∈ LIP.

The prover and the verifier proceed as follows:

– P computes

[α−1]1 ← [a�
1
2
r 2

2
]1, [β−1]1 ← [b�

1
2
s 2

2
]1, z−1 ← a�

2
2
b 1

2
,

[α1]1 ← [a�
2
2
r 1

2
]1, [β1]1 ← [b�

2
2
s 1

2
]1, z1 ← a�

1
2
b 2

2
.

– P sends [α−1]1, [α1]1, [β−1]1, [β1]1, z−1, z1 and V replies with c ← Zq
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– P computes

a′ ← a 1
2
c + a 2

2
c2, b′ ← b 1

2
c−1 + b 2

2
c−2,

[r′]1 ← c−1[r 1
2
]1 + c−2[r 2

2
]1, [s′]1 ← c[s 1

2
]1 + c2[s 2

2
]1,

[r′]1 ← [r′
1]1, [s′]1 ← [s′

1]1,

σ′
P = (pp, [r′]1, [s

′]1).

– P sends [r′]1, [s′]1.
– V checks the following pairing equations and aborts if any fail.

e([r′]1 − c−1[r]1, [1]2) = e(c−2[r]1, [xν ]2),

e([s′]1 − c[s]1, [1]2) = e(c2[s]1, [yν ]2).

– Both compute

[x′]2 ← ([xi]2)i∈{1,...,ν−1}, [y′]2 ← ([yi]2)i∈{1,...,ν−1},

[α′]1 ← c−1[α−1]1 + [α]1 + c[α1]1, [β′]1 ← c[β−1]1 + [β]1 + c−1[β1]1,

z′ = z−1c + z + z1c
−1,

σ′ =
(
pp, [r′]1, [s

′]1, [x
′]2, [y

′]2
)
.

– The reduced statement is (σ′, [α′]1, [β′]1, z′) ∈ LIP.

Theorem 4. The protocol presented is a Public Coin, Argument of Knowledge
for the relation LIP with log n round complexity, Oλ(n) prover complexity, and
Oλ(log n) communication and verification complexity under either the MLn-
Find-Rep or the PWn-Find-Rep assumptions. The argument yields a Universally
Updateable Non-Interactive AoK in the Random Oracle model. In the former case
the proof size of an update is Oλ(log n) and in the latter Oλ(1).

Proof.
Completeness: We show that each reduction round leads to a valid reduced
statement. It is enough to show that the prover and verifier compute the same
key. Then, we can argue as in the case with uniform keys.

First, note that [r′]1 = c−1[r 1
2
]1 + c−2[r 2

2
]1, which means that we “combine”

all pair of elements that have distance 2ν−1. That is, for all j ≤ 2ν−1,

[r′
j ]1 = c−1[rj ]1 + c−2[r2ν−1+j ]1.

Also, note that, by construction of the commitment keys for all i ∈ {1, . . . , ν}
and j ∈

{
1, . . . , 2i−1

}
, it holds that [r2i−1+j ]1 = xi[rj ]1, which means that

[r′]1 = [r′
1]1 = c−1[r1]1 + c−2[r2ν−1+1]1 = c−1[r]1 + c−2xν [r]1 and the verifier

always accepts the pairing test.
It remains to show that (pp, [r′]1, [r′]1, [x′]2) ∈ LCom. It is evident that [r′

1]1 =
[r′]1. We show that the various Diffie-Hellman Relations hold for the reduced
statement.
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Let i ∈ {1, . . . , ν − 1} and j ∈
{
1, . . . , 2i−1

}
. It holds that [r′

2i−1+j ]1 =
xi[r′

j ]1. Indeed,

[r′
2i−1+j ]1 = c−1[r2i−1+j ]1 + c−2[r2ν−1+2i−1+j ]1 = c−1xi[rj ]1 + xνxic

−2[rj ]1

= xi(c−1[rj ]1 + xνc−2[rj ]1) = xi[r′
j ]1.

Similar calculations show the part related to s′. We can now argue completeness
exactly as in the U2ν case.

Witness extended emulation: For witness extended emulation we need to prove
that, for each round, we can extract the witness, i.e. the commitment key and
the commitment openings w.r.t. it. We show next how to extract the commit-
ment keys. After having these, we can argue as in [10] except that we use the
corresponding Dn-Find-Rep Assumption.

Assume we get two accepting transcripts for different challenges c from the
prover. We show that given a witness for the reduced statement, we can extract
the unique valid commitment keys [r]1, [s]1.

Let [r′
b]1 = c−1

b [r 1
2
]1 + c−2

b [r 2
2
]1 be the new commitment keys for two dif-

ferent challenges c0, c1. The matrix with rows (c−1
b , c−2

b ) for b ∈ {0, 1} is invert-
ible, so we can take appropriate linear combination and extract [r 1

2
]1, [r 2

2
]1.

We show that this is the commitment key. First note that since the tran-
script is accepting, we have that for both reduced keys [r′

2i−1+j ]1 = xi[r′
j ]1

which means that [r2i−1+j ]1 = xi[rj ]1 and [r2ν−1+2i−1+j ]1 = xi[r2ν−1+j ]1 for
all i ≤ ν − 1, j ≤ 2i. In other words [r 1

2
]1 and [r 2

2
]1 are valid commit-

ment keys w.r.t. the same [x1]2, . . . , [xν−1]2. By the pairing test, we have that
[r′

b]1 = c−1
b [r]1 + c−2

b xν [r]1 = c−1
b [r 1

2 ,1]1 + c−2
b [r 2

2 ,1]1. This equation holds for
both challenges cb, so it should be the case that [r 1

2 ,1]1 = [r] and [r 2
2 ,1]1 = xν [r],

thus the extracted key should be the unique key determined by [x1]1, . . . , [xν ]1.
We argue for [s]1 in the same way. After extracting the keys the extractor works
exactly as in [10] to extract a,b.

Complexity: It is evident that the protocol needs ν rounds. In each round the
size of the witness is decreased in half, and we perform a constant number
of communication, so we have Oλ(ν) communication complexity. The prover
in round i performs Oλ(2ν+i−1) computations, so the prover complexity is
Oλ

(∑ν
i=1 2ν−i+1

)
= Oλ(2ν), while the verifier does Oλ(1) operations and there-

fore its complexity is Oλ(ν). To be more concrete, the communication complexity
is 8 log n elements in G1 and 2 log n elements in Zq. Prover complexity is domi-
nated by 4 times log n multi-exponentiations of sizes n

2i in G1 to compute the first
4 messages in each round and less than 4n G1 exponentiations to compute all the
keys. In total, 8n exponentiations in G1 with a non optimized implementation
of multi-exponentiations. �
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6 Updateable Zero Knowledge SNARK for CSAT

We could use the improved inner product argument in a black box way to improve
the verification of the zero knowledge protocol of Bootle et al. [10]. However, the
source of inefficiency of verifier in [10] is twofold: the linear time needed in veri-
fying the inner product argument, and some computation needed for the specific
circuit. The latter is inherent to universal arguments since the verifier needs to,
at least, read the circuit. The way to solve this is to add a circuit setup phase so
the verifier will need to read the circuit only once. For a universal argument, this
circuit setup should involve no secrets, that is, it should be a deterministic algo-
rithm with input the Universal CRS and the circuit description. In this section,
we give a sketch of the proof of Bootle et al. and explain where this source of
inefficiency occurs in their construction. Then, we show how to overcome this
using techniques similar to Sonic [32].

Roughly, the proof of [10] works as follows:

– P commits to its witness (a satisfying wire assignment) w.
– V issues a random challenge y.
– P computes a polynomial t(X) = qy(X)�(qy(X) ◦yn +2sy(X))+2K where

qy(X) is a vector of polynomials that depends on w and y, and sy on the
circuit structure and the challenge y. K is a value that depends on the public
input and y. The polynomial t(X) has zero constant coefficient if and only if
the circuit is satisfiable w.o.p. over the choice of y. It then sends a commit-
ment to the polynomial t(X) which has constant degree (it can commit to its
coefficients using standard Pedersen Commitments).

– V picks and sends a random challenge x to the prover. V then computes
commitments to qy(x), qy(x) ◦ yn, sy(x) and K. The first two values are
computed given a commitment to w and utilizing the homomorphic properties
of the commitment scheme, and sy is computed by the circuit description. K
is computed efficiently by the public input.

– P decommits to tx = t(x). V checks this claim and the prover and verifier
execute an inner product protocol to assert that t(x) − 2K = qy(x)�(qy(x) ◦
yn + 2sy(x)). This convinces the verifier that the polynomial t(x) has indeed
a zero constant term and that it was computed honestly, thus the verifier is
convinced about the claim.

The Verifier in [10] is linear in the circuit for three reasons:

– The inner product protocol in the last step needs linear time.
– Computing a commitment to qy(x) ◦ yn needs linear time.
– Computing a commitment to sy(x) needs linear time.

The first two problems can be addressed easily: the first by using the improved
inner product protocol, and the second by utilizing the structure of the MLn

or PWn distributions to compute the commitment in logarithmic time. For the
latter, the key homomorphic properties described in Subsect. 4.1 are utilized to
efficiently obtain a commitment to qy(x) ◦ yn from a commitment to qy(x).
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The most subtle point is computing a commitment to sy(x). This depends on
the circuit structure and the challenge y. We solve it by applying similar tech-
niques as Sonic [32]. We first preprocess the circuit to impose a specific structure
that allows to “commit” to it efficiently. Then we use an aggregated Grand Prod-
uct protocol which we introduce in the next section to delegate the computation
of sy(x) to the prover. We closely follow Sonic in the handling of this issue, but
we differ from it in the setting: in this work we delegate computation of a vector
commitment while in Sonic the prover decommits to bivariate polynomials of
specific form by utilizing a univariate polynomial commitment scheme.

We present on the full version the preprocessing for the general case which
only incurs in a constant overhead and so parameters remain optimal (i.e. linear
in the size of computation).

6.1 Description of the ZK Argument

We assume that the circuit is preprocessed (see the full version) and has n − 1
multiplication gates for n = 2ν (the last element will be used as a blinding
factor). The size of the public input and output is n′. The circuit is satisfiable
iff the following constraints hold

a ◦ b − c = 0,
{
ai + wa,i

�c = 0
}

i∈{n′+1,...,n−1} ,
{
ai + wa,i

�c − χi = 0
}

i∈{1,...,n′} ,

{
bi + wb,i

�c = 0
}

i∈{1,...,n−1} ,

where x = (χ1, . . . , χn′) is the public input and wa,i = 0 for i ∈ {1, . . . , n′}.
These equations are satisfied iff the circuit is satisfiable w.r.t. the input x.

We can aggregate these equations as follows: First, add one extra zero element
an = bn = 0 to a,b, c to make them have 2ν elements (these will be used as a
blinding factor) and two extra zero constraints an+0�c−0 = 0, bn+0�c−0 = 0
and set

pm(Y ) = (a ◦ b − c)�Yn = a�(b ◦ Yn) − c�Yn,

pa(Y ) =
n∑

i=1

(
ai +wa,i

�c
)

Y i−1 −
n′∑

i=1

χiY
i−1 = a�Yn + c�

n∑

i=1

wa,iY
i−1 −

n′∑

i=1

χiY
i−1,

pb(Y ) =
n∑

i=1

(
bi + wb,i

�c
)
Y i−1 = b�Yn + c�

n∑

i=1

wb,iY
i−1.

Now, let
p(Y ) = pm(Y ) + Y npa(Y ) + Y 2npb(Y ).

The polynomial p should be identically zero iff the circuit is satisfiable. For a
fixed y, we define wa,wb,K as follows:

wa =
n∑

i=1

wa,iy
i−1, wb =

n∑

i=1

wb,iy
i−1, K = −yn

n′
∑

i=1

χiy
i−1. (1)
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Note that these values only depend on the circuit, the input and the challenge.
We now get

p(y) = a�(b ◦ yn) + yna�yn + y2nb�yn + c�(ynwa + y2nwb − yn) + K.

We can now construct polynomials

q(X) = aX + bX−1 + cX2 + dX3,

s(X) = ynynX−1 + y2nynX + (ynwa + y2nwb − yn)X−2,

t(X) = q(X)� (q(X) ◦ yn + 2s(X)) + 2K.

Here d is some blinding factor chosen by the prover. The constant term of t(X)
equals 2p(y). The prover now can commit to the non-zero coefficients of t using
standard Pedersen Commitment and then the verifier issues a new challenge x.
The prover reveals t on this value, and the verifier needs to be convinced that the
decommitted value is equivalent to computing the value on the right side. To do
so, after agreeing on the (commitments of) vectors q(x),q(x) ◦ yn + 2s(x), they
execute an inner product protocol to assert that their inner product is t(x)−2K.
If that is the case, the verifier can be confident that the constant term of t(x)
is indeed zero, and thus the assignment satisfying. We sketch how the verifier
computes the two commitments needed for the inner product protocol.

Let ck1 be a commitment key defined in the CRS. The commitment to q(x)
w.r.t. ck1 can be computed by the homomorphic properties of the commitment
scheme and commitments to a, b, c, d w.r.t ck1, which the provers issues in the
first round.

Now, a commitment to q(x) ◦ yn + 2s(x) is needed to run the inner prod-
uct argument. A commitment to q(x) ◦ yn, can be computed by the verifier,
by deriving a new key ck2, such that, the commitment to q(x) w.r.t. ck1 is a
commitment to q(x) ◦ yn w.r.t. ck2, as described in Subsect. 4.1. It remains to
compute a commitment to s(x) w.r.t. ck2.

Note that s(x) only depends on public values and the verifier can compute
it, but would need linear time to do so. But if the verifier had commitments to
wa,wb, it could compute the commitment to s(x) succinctly. To get such com-
mitments, it delegates their computation to the prover. Assuming a preprocessed
circuit, its description is given by matrices of the form Wa =

∑M
k=1 Wa,k where

Wa,k are matrices with, at most, one non-zero value in each column and row
(respectively for b). It follows by Eq. 1 and the structure of the preprocessed
circuit matrix Wa, that the verifier needs a commitment to

wa =
n∑

i=1

wa,iy
i−1 = yn�Wa = yn�

M∑

k=1

Wa,k =
M∑

k=1

σk(yn) ◦ wa,k,

for known vectors wa,k and permutations σk.
We sketch this delegation part in the next section, and provide a full descrip-

tion for it in the full version. A detailed description for the protocol is presented
in the full version.

We state next the theorem which is the main result of our work.
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Theorem 5. There exists a Public Coin, Honest Verifier Zero Knowledge Argu-
ment of Knowledge for CSAT with O(log |C|) round complexity, Oλ(|C|) prover
complexity, and Oλ(log |C|) communication and verification complexity under
either the ML|C|-Find-Rep or the PW|C|-Find-Rep assumptions. The argument
yields a Universally Updateable NIZK AoK in the random oracle model. In the
former case the proof size of an update is Oλ(log |C|) and in the latter Oλ(1).

We note that, to achieve updateability, we rely on a NIZK AoK for proving
correctness of the updates. One can be flexible in selecting such a NIZK AoK to
fine tune efficiency measures. For example, one could combine the ML|C|-Find-
Rep scheme with [10] as the underline NIZK AoK for updateability to achieve
Oλ(log log |C|) proof size for proving correctness of an update.

7 Proof of Vector Permutation

We use techniques similar to Sonic to handle the computation regarding the
structure of the circuit. We consider only the case of the left-wires for simplicity,
i.e. the commitment to wa. The problem boils down to the following.

Let ck1 = (ckP
1 , ckV

1 ) = ([r]1, ([x1]2, . . . , [xν ]2)), be a commitment key defined
in the CRS, [ωa,1]1, . . . , [ωa,M ]1 be commitments to vectors wa,1, . . . ,wa,M w.r.t.
ck1, σa,1, . . . , σa,M be commitments to permutations w.r.t. ck1 (i.e. Comck1(va,i)
where va,i = (σa,i(1), . . . , σa,i(n))). These commitments succinctly encode the
circuit structure. Given a value y and a commitment key ck2 = (ckP

2 , ckV
2 ) =

(r ◦ y−n, ([x1y
20 ]2, . . . , [xνy2ν−1

]2)), compute with the help of the prover a com-
mitment [ωa]1 to the vector wa = wa,1 ◦σa,1(yn)+ . . .+wa,M ◦σa,M (yn) w.r.t.
ck2, where σa,i(yn) = (yσa,1(1)−1, . . . , yσa,M (n)−1).

Note that, all the commitments that do not depend on the challenge y, can
be computed once in a (deterministic) preprocessing phase, and can be reused
in multiple proofs. The goal is to allow the verifier to compute the challenge
dependent values in logarithmic time. These values are public and a linear time
verifier could compute these on its own, though sacrifying succinctness.

The main difference with Sonic is in the setting. Sonic works with permu-
tation polynomials, that is, polynomials of the form pi(X,Y ) =

∑
ajX

jY σi(j)

and the goal is to decommit to an evaluation in x, y for a polynomial p(X,Y ) =∑M
i=1 pi(X,Y ), that is, the prover wants to reveal p(x, y).
In both our work and Sonic, the heart of the protocol is a Permutation

Argument which uses a Grand Product Argument [3,11]. We reduce the Grand
Product Argument to an inner product and utilize the inner product argument
of Sect. 5, while Sonic, reduces it to verifying a value of a univariate polynomial
and utilizes a univariate polynomial commitment scheme.

We next sketch the delegation protocol, and in the following subsection we
describe how to reduce the Grand Product to an inner product.

To proceed the prover and the verifier do the following:

– The prover helps the verifier compute a commitment to y−n w.r.t. ck1, as
explained in Subsect. 4.1.
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– The prover provides values [υi]1, for 1 ≤ i ≤ M , which it claims are commit-
ments to σa,i(yn) w.r.t. ck1.

– The prover gives [ωa,i]1 and claims they are commitments to wa,i ◦ σa,i(yn)
w.r.t. ck1.

– The prover gives [ω′
a,i]1 and claims they are commitments to wa,i ◦σa,i(yn) ◦

y−n w.r.t. ck1. Equivalently, these are commitments to wa,i ◦ σa,i(yn) w.r.t.
ck2.

– The prover and the verifier aggregate and reduce all the above claims to an
inner product, which is verified by the improved inner product.

– The verifier sets [ωa]1 = [ω′
a,1]1 + . . . + [ω′

a,M ]1 as a commitment to wa.

We present a sketch for reducing a Grand Product to an inner product in the
next section. In the full version we present how we can aggregate all the above
claims, and give a description of the protocol.

7.1 Proof of Grand Product

Let ck1 = (ckP
1 , ckV

1 ) = ([r]1, ([x1]2, . . . , [xν ]2)), be a commitment key. Also, let
a1 = (a1, a2, . . . , an) and b1 = (b1, b2, . . . , bn), and [α1]1, [β1]1 be commitments
w.r.t. ck1. The claim is that

∏
ai =

∏
bi.

Let a2 = (1, a1, a1a2, . . . , a1 · · · an−1) be the vector of partial products and
a3 = a2◦a1. We similarly define b2, b3. One can easily verify that a3,n =

∏n
i=1 ai

and b3,n =
∏n

i=1 bi. To convince the verifier, the prover gives commitments [α2]1,
[α3]1, [β2]1, [β3]1 to vectors a2, a3, b2, b3 w.r.t. ck1, convince it that they have
the right form, and prove that a3,n = b3,n.

We express these requirements as a set of quadratic and linear constraints.
We use different variables Y,W for the various groups of equations for presenta-
tional convenience, but we can use just one variable Y and set W = Y k for an
appropriate k.

a3,n = b3,n,

a1 ◦ a2 = a3, b1 ◦ b2 = b3,

a2,1 = 1, b2,1 = 1,

{a2,i = a3,i−1}n
i=2, {b2,i = b3,i−1}n

i=2.

We show how to reduce these equations to an inner product. We can aggregate
the two Hadamard products by setting

p1(Y ) = a1�(a2 ◦ Yn) − a3�Yn, p2(Y ) = b1
�(b2 ◦ Yn) − b3

�Yn.

We also set

p3(Y ) = (a2,1 − 1) +
n∑

i=2

(a2,i − a3,i−1)Y
i−1 = a2

�Yn − Y a3
�(Yn − Y n−1en) − 1,

p4(Y ) = (b2,1 − 1) +
n∑

i=2

(b2,i − b3,i−1)Y
i−1 = b2

�Yn − Y b3
�(Yn − Y n−1en) − 1,

p5(Y ) = a3,n − b3,n = en
�a3 − en

�b3.
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and p(Y,W ) = p1(Y ) + Wp2(Y ) + W 2p3(Y ) + W 3p4(Y ) + W 4p5(Y ). The poly-
nomial p is identically zero if and only if the constraints are satisfied. We use
the technique of Bootle et al. to embed it in the constant term of a polynomial
(similarly to the previous section). The resulting polynomials are

q(X) = a1X + a2X−1 + wb1X2 + b2X
−2 + a3X3 + b3X

4,

s(X) = w2ynX + w3ynX2

+
(
−w2y(yn − yn−1en) + w4en − yn

)
X−3

+
(
−w3y(yn − yn−1en) − w4en − wyn

)
X−4,

t(X) = q(X)� (q(X) ◦ yn + 2s(X)) − 2w2 − 2w3.

The verifier computes a commitment to q(x) ◦ yn w.r.t. the new commitment
key-defined by the challenge y- as in the previous section. As for the commitment
of s(x) w.r.t. this new key, however, the verifier can compute it itself: it only
needs commitments to yn, and to yn−1en w.r.t. the new key. For the first, it
is given a commitment to [o]1 = [1n�r]1 with the initial key, ck1, and for the
second, the last group element of the initial commitment key [rn]1. The desired
commitments w.r.t the new key are [o]1 and [rn]1. The prover and the verifier
then proceed as in the CSAT case. Both [o]1 and [rn]1 can be precomputed once.
The detailed protocol is given in the full version.

Extending for multiple Grand Products. It is straightforward to extend these pro-
tocol to prove simultaneously M grand products. Also we can add kM quadratic
equations of the form c1◦c2 = c3 to include the remaining constraints needed to
compute the commitments needed for the CSAT case. We include the modified
system of equation in the full version.

7.2 Proof of Known Permutation

Let [r]1 be a commitment key of size n = 2ν , [α]1 = [a�r]1, [β]1 = [b�r]1 and
σ ∈ Sn be a permutation of {1, . . . , n}. The prover wants to convince the verifier
that, for all, i bi = aσ(i).

In the same spirit as [32], we use the proof system of [3,11]. The verifier
is given as input commitments to (1, . . . , n) and (σ(1), . . . , σ(n)) denoted as
[ι]1, [ιπ]1 respectively, and a commitment to 1n denoted as [o]. The idea is to
reduce this problem to whether two vectors have equal grand products.

The verifier issues two challenges t, u ∈ Zq and the prover needs to convince
the verifier that

n∏

i=1

(bi + tσi − u) =
n∏

i=1

(ai + ti − u)

Viewing these as polynomials in u, if their respective roots {bi + tσi}i∈{1,...,n}
and {ai + ti}i∈{1,...,n} are different, they will be different in a fixed u with over-
whelming probability (in a sufficiently large field). Also bi + tσi will be the σ
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permutation of ai + ti only if for all i bi = aσ(i), except with negligible probabil-
ity. Thus, proving the grand product of the commitments [β]1+t[ιπ]1−u[o]1 and
[α]1 + t[ι]1 − u[o]1 (which are efficiently computable for the verifier) are equal is
enough.

8 Range Proofs with Logarithmic Verifier

We present a new, more efficient aggregated range proof to allow a prover to con-
vince a verifier that it knows openings for perfectly hiding commitments which
all are in a range [0, 2m). This has applications in cryptocurrencies such as Mon-
ero to privatize transactions. Our approach resembles that of Bulletproofs [12].
The difference is that, in the inner product protocol of [12], the inner prod-
uct claimed is encoded in the group (i.e. a�b[r]) while in our setting the inner
product is given as an element of Zq. We thus slightly modify things to work
in our setting. We exploit two things to achieve logarithmic verification time:
the improved inner product argument, and the ability to compute structured
commitments of the form tn efficiently (either with the help of the prover or by
modifying the commitment key). We present the blueprint of the scheme. Details
for the protocol are presented in the full version.

Let [0, 2m) be the desired range and let ν be the smallest number such that
n = 2ν ≥ m. We first transform the statement to a set of linear and quadratic
constraints, and we then construct a suitable inner product statement that holds
if and only if the statement is correct w.o.p. Let [γ]1 = v[1] + ρc[r2]1 ([r2] is
used as a blinding factor for the commitment) be a hiding commitment to v.
Equivalently, we can consider this as a binding commitment to the n-dimensional
vector c = (v, ρc, 0, . . . , 0), that is, [γ]1 = [c�r]1 for a given commitment key
[r]1. The prover can compute the binary representation of v padding the end
with zeros. Denote the padded representation a. It is enough for the prover to
show that:

– a�2n = c�0n (note that we define 0n to have 1 as its first element).
– a has the first m − 1 elements equal to either 0 or 1.
– a has all the other variables equal to zero.
– c has all but the first and second elements zero.

Now let bi = ai −1 for 1 ≤ i < m, bi = 0 for i ≥ m. We express these constraints
and aggregate them as follows:

a ◦ b = 0, {ai − bi − 1 = 0}m−1
i=1 , a�2n = c�0n,

{ai = 0}n
i=m , {bi = 0}n

i=m , {ci = 0}n
i=3 .

Now let Y1 = (1, . . . , Y m−2, 0, . . . , 0) ∈ Z
n
q , Y2 = (0, . . . , 0, Y m−1, . . . , Y n−1) ∈

Z
n
q and Y3 = (0, 0, Y 2, . . . , Y n−1) ∈ Z

n
q . We define polynomials

p1(Y ) = a�(b ◦ Yn),
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p2(Y ) =
m−1∑

i=1

(ai − bi − 1)Y i−1 +
n∑

i=m

aiY
i−1 = a�Yn − b�Y1 − 1n�Y1,

p3(Y ) =
n∑

i=m

biY
i−1 = b�Y2, p4(Y ) =

n∑

i=3

ciY
i−1 = c�Y3.

The equations hold if and only if

p(Y ) = p1(Y ) + Y np2(Y ) + Y 2np3(Y ) + Y 3np4(Y ) + Y 4n(a�2n − c�0n).

is identically zero. Similarly to the CSAT case, we define for fixed y

q(X) = aX + bX−1 + cX2 + dX3,

s(X) =
(
ynyn + y4n2n

)
X−1 +

(
−yny1 + y2ny2

)
X

+
(
y3ny3 − y4n0n

)
X−2,

t(X) = q(x)�(q(x) ◦ yn + 2s(X)) − yn1n�y1.

Now the constant term of t(X) should be zero for all Y,X if the constraints
are satisfied so we proceed exactly as in the proof system of CSAT except that
now it is easier to compute the vector s(x). In particular, the verifier can effi-
ciently compute s(x), if it has commitments to 1n, (1m−1,0), 1n − (1m−1,0)
and (0, 0, 1, . . . , 1, 1). By the key homomorphic properties of the commitment
scheme these are commitments to yn,y1,y2,y3 w.r.t. the new key. The prover
and verifier can efficiently compute a commitment to the vector 2n w.r.t to the
appropriate key as described in the polynomial commitment section. Finally,
note that the inner product 1n�Y1 = 1 + y + y2 + . . . + ym−2 can be efficiently
computed by the verifier. Indeed, assuming w.l.o.g. (otherwise apply recursively)
that m − 2 + 1 = 2μ for some μ we have that 1 + y + y2 + . . . + y2μ−1

=
(1 + y20)(1 + y21) · · · (1 + y2μ−1

), and the verifier can compute this in logarith-
mic time. The full protocol is presented in the full version. We note that the
aggregation techniques similar to [12] can be applied in the above.

We state the main theorem for the Range Proof protocol.

Theorem 6. There exists a Public Coin, Honest Verifier Zero Knowledge Argu-
ment of Knowledge for the language LRP = {m, [α]1, [1]1,2, [r2]1,2, | ∃v, ρc s.t.
[α]1 = v[1]1 + ρc[r2]1 ∧ v < 2m} with log m + O(1) round complexity, Oλ(m)
prover complexity, and Oλ(log m) communication and verification complexity
under either the MLm-Find-Rep or the PWm-Find-Rep assumptions. The argu-
ment yields a Universally Updateable NIZK AoK in the Random Oracle model.
In the former case the proof size of an update is Oλ(log m) and in the latter
Oλ(1).
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Abstract. Highly efficient non-interactive zero-knowledge arguments
(NIZK) are often constructed for limited languages and it is not known
how to extend them to cover wider classes of languages in general. In this
work we initiate a study on black-box language extensions for conjunctive
and disjunctive relations, that is, building a NIZK system for L�L̂ (with
� ∈ {∧, ∨}) based on NIZK systems for languages L and L̂. While the
conjunctive extension of NIZKs is straightforward by simply executing
the given NIZKs in parallel, it is not known how disjunctive extensions
could be achieved in a black-box manner. Besides, observe that the sim-
ple conjunctive extension does not work in the case of simulation-sound
NIZKs (SS-NIZKs), as pointed out by Sahai (Sahai, FOCS 1999). Our
main contribution is an impossibility result that negates the existence
of the above extensions and implies other non-trivial separations among
NIZKs, SS-NIZKs, and labelled SS-NIZKs.

Motivated by the difficulty of such transformations, we addition-
ally present an efficient construction of signature schemes based on
unbounded simulation-sound NIZKs (USS-NIZKs) for any language
without language extensions.

1 Introduction

1.1 Background

A non-interactive zero-knowledge argument system (NIZK) [8] is a beneficial
building block for constructing a wide variety of cryptographic schemes and
protocols. Very roughly, given an NP language L for certain relation R, i.e.,
L := {x | ∃w s.t. R(x,w) = 1}, a NIZK argument system for L allows a prover
(who owns a pair x,w such that R(x,w) = 1) to convince a verifier of the fact
that x ∈ L. The communication between the two parties is unilateral and the
verifier learns no new information about possible witnesses for x, except the fact
that there exists one. (That is enforced by the presence of a simulator which,
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without any witness for x, produces an output that is indistinguishable from
the proof produced by a real prover.) A NIZK system is said to be correct if an
honest prover can always convince a verifier of a true statement. On the other
hand, the system is said to be sound if a (possibly malicious) prover cannot
convince an honest verifier of a false statement (except with negligible proba-
bility). A simulation-sound NIZK (SS-NIZK) [50] is a strengthening of NIZK
whose soundness holds even in the presence of simulated proofs on arbitrary
statements. SS-NIZKs receive much attention due to their usefulness in the
construction of public-key encryption schemes secure against adaptive chosen
message attacks [50]. Another application of SS-NIZKs is on building Threshold
Password-Authenticated Key Exchange [42]. Furthermore, they have recently
been used to build tightly secure CCA2 encryption in the multi-challenge and
multi-user setting [37] or to design tightly secure signature schemes [29].

Thanks to a considerable and prolonged effort by the community of cryptog-
raphers, there exist NIZK systems for NP-complete languages in several settings,
e.g., [8,19,25], and general constructions have been designed to strengthen them
to SS-NIZK, e.g., [17,50]. Some of these settings provide very efficient NIZK
systems: Schnorr proofs [43], Groth-Sahai proofs [27], Quasi-Adaptive NIZKs
(QA-NIZKs) [32] that are designed for particular languages. However, when
NIZK systems are used for building advanced cryptographic schemes and proto-
cols, it is frequently assumed that a convenient language is covered by the NIZK,
or that the system can be extended to support such a language. For instance, the
general transformations from NIZK to unbound SS-NIZK (USS-NIZK) in [17,29]
(see Definition 2.5) require the NIZK support a disjunctive statement combining
two instances of certain specific languages.

Given the relevance of these works, where additional assumptions are made
on the languages supported by the NIZK systems, we study black-box language
extensions of NIZKs for conjunctive and disjunctive relations. More concretely,
we consider the question of whether for some language L̂, there exists a generic
compiler that on input a NIZK system for language L, produces a NIZK system
for L � L̂, where � ∈ {∧,∨}. Many non black-box techniques for disjunctive
language extension can be found in the literature, e.g., [2,13,14,21,24,41,46],
but not much is known in the case of black-box extensions, which are a relevant
area of study due to their potential for building efficient and more advanced
cryptographic primitives. In the settings where generic NIZKs for NP are not
very efficient, using a generic transformation from a less expressive (but more
efficient) NIZK may be a better approach than going through the Karp reduction.

Due to the commodity of NIZK in cryptographic design, there are strong
demands to construct efficient NIZKs from various assumptions, but this is not
an easy task. For instance, NIZKs for NP-complete languages based on lattice-
based assumptions were known only in relaxed scenarios such as designated-
verifier NIZKs [12] and preprocessing NIZKs [36], while very efficient NIZKs
for limited lattice-related languages are known in the standard common refer-
ence string (CRS) model [5,45,48]. Very recently, Peikert and Shiehian finally
developed a NIZK for NP based on learning with errors (LWE) [44]. A natural
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question is whether such efforts have to be done every time we want to use a new
assumption. A widely useful abstraction such as black-box constructions aims to
reduce the burden of cryptographic design. Its importance is remarkable in post-
quantum cryptography, where several new assumptions such as isogeny-based
assumptions [47,51] and multi-variable problems [56] are under investigation.
Our impossibility results justify the design and study of approaches relying on
particular properties of the underlying assumptions.

Note that some black-box language extensions are straightforward, e.g., a
conjunctive extension can be achieved by computing both proofs and concate-
nating them. Others are more involved, for example, a similar approach fails
in the case of disjunctive language extension, or, as pointed out by Sahai [50],
the conjunctive extension does not work in the case of USS-NIZKs. Contrary
to the case of conjunctive extensions, generic methods for achieving disjunction
of languages in the framework of NIZKs are not known. A black-box disjunc-
tive language extension could be a great tool for building more advanced and
secure NIZK systems. Observe that NIZKs for disjunctive languages have a vast
number of applications. Among them, an important example is the framework
of electronic voting [14], where disjunction is used to argue that a vote is valid.
In general, it is very useful in any secure function evaluation scenario where a
proof of a disjunctive relation is used to guarantee that the input to each wire
is either 0 or 1. Furthermore, disjunctive relations are used as a building block
for achieving tight security (they often simplify the simulation in the security
reduction).

1.2 Our Results

Our main contribution is a series of (im)possibility results about black-box lan-
guage extensions among different types of NIZK systems. In the case of impos-
sibility, the constructions ruled out by this work correspond to what we would
normally think of as “black-box language extensions”.

• There exists no generic compiler that, given two NIZK systems for hard lan-
guages L and L̂, outputs a NIZK system for L ∨ L̂. This holds even if we are
given stronger types of NIZKs, i.e. labelled or simulation-sound, as building
blocks. This justifies existing non black-box approaches.

• It is hard to extend, in a black-box manner, a simulation-sound NIZK to cover
conjunctive and disjunctive languages, or to support labels.

• Unbound simulation-soundness is hard to obtain in a black-box manner. This
justifies that black-box constructions of simulation-sound NIZKs from stan-
dard NIZKs [50] are bounded in the number of simulations.

As it is common in all standard black-box separations, our impossibility results
do not apply when extra ingredients are available. It is indeed an interesting open
problem to understand what the minimal additional functionalities to achieve
certain constructions are.

Additionally, we provide a construction of a secure digital signature scheme
from any USS-NIZK for a hard language in NP that does not require language
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extensions. This construction is motivated by our previous impossibility results
and the observation that all constructions of signatures from USS-NIZK require
the underlying language be extended to support specific relations (see Table 1).

Figure 1 illustrates a more precise summary of our separations and contribu-
tions, which we further describe in the rest of this section.

3.1

4.4

4.1

4.2

Fig. 1. Relations between variations of NIZK. Non-labelled edges correspond to
straightforward black-box constructions. Separations labelled as (1) are implied by
Theorem 3.1 (see Corollary 1). Those labelled as (2) are implied by Theorem 4.1 and
hold in the full-verification model (see Definition 4.1).

Impossibility of Black-Box Disjunctive Extension of Various NIZKs.
As our first contribution, we show that there is no fully black-box disjunctive lan-
guage extension for NIZKs. We show this result in a stronger form by proving the
absence of reductions from a labelled USS-NIZK system (see Definition 2.3) for
L to a NIZK scheme for L∨L̂ (for any L̂). (Note that we focus on labelled USS-
NIZKs for its generality.) To explain the core idea of our argument, let us define
a legitimate crs as a crs generated with the underlying NIZK’s crs generation
algorithm. Roughly, our proof goes as follows: (i) we show that the prover algo-
rithm of the disjunctive extension cannot invoke the underlying NIZK’s prover on
legitimate crs’s (or otherwise the resulting NIZK will not be zero-knowledge);
(ii) we then argue that because all calls to the underlying prover must be on
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non-legitimate crs’s, very roughly, their trapdoor is known to the prover of the
extended NIZK and thus, soundness is compromised. In Sect. 3 we formalize the
previous intuition and rigorously consider other missing cases.

A bit more formally, we follow the oracle separation paradigm, cf., [9,23,31,
49,53] where we construct an oracle O relative to which there exists a language
L and a secure labelled USS-NIZK system L for it, but for any language L̂, there
does not exist a NIZK system M for L ∨ L̂ that is zero-knowledge and sound at
the same time. Our contribution also includes a novel approach in the construc-
tion of an adversary against simulation soundness, exploiting the simulability
of the NIZK in a reverse manner: simulating the zero-knowledge simulator with
a real prover, as we elaborate below. This technique bears similarity with the
simulatable adversary paradigm in [22] that exploits the duality of the zero-
knowledge simulator and the real prover to construct a meta-reduction [10,15].
In our approach, we let the adversary simulate the oracle so that a no-instance of
the language can look like a yes-instance with a certain witness. This can be done
by redefining the language in such a way that a no-instance and a yes-instance
are swapped (we call this instance swapping).

The way we simulate the oracle simplifies the analysis and results in elimi-
nating the use of PSPACE power from the adversary, which used to be essential
in standard approaches from the literature. We believe this new technique is of
independent interest and could be applicable to other impossibility results.

Impossibility of Black-Box Conjunctive Extension of USS-NIZK. It is
remarkable that a conjunctive language extension is hard to achieve in a black-
box way in the case of USS-NIZKs. Specifically, in Sect. 4, we show that there
is no fully black-box reduction [31,49] from a USS-NIZK system L for a hard
language L to a USS-NIZK system M for the extended language L ∧ L̂, for
any arbitrary hard language L̂. (We refer to Theorem 4.1 for a more formal
statement.) Here, a hard language is, in short, a language that constitutes a
promise problem [18,52] consisting of a pair of disjoint, efficiently sampleable,
and indistinguishable languages, L and C (see Definition 2.1). Our result also
applies to the case where the extended part of the language L̂ is trivial (i.e., in
BPP) as long as the inverse of its size is negligible in the security parameter.

A very high level view of our proof strategy is similar to the one for the
impossibility of disjunctive extensions. However, since the simulation soundness
game is interactive, when oracle queries from M.PrvSim run by the challenger
cannot be seen by the adversary, it is more difficult to collect enough information
for producing a forgery and the details of the proof differ considerably. Another
important difference from the case of disjunction is that our impossibility result
about the conjunctive extension is limited to what we introduce as the full-
verification model (Definition 4.1). Namely, every proof that is created internally
with the prover algorithm must then be verified by the verification algorithm.

Implications and More. Our two impossibility results, in combination with
a simple analysis, allow us to discover other impossibility relations (see Fig. 1).
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A remarkable one is the impossibility of fully black-box construction of USS-
NIZKs from NIZKs (Corollary 3). Such an impossibility (even in the full-
verification model) enlightens the essential difference between bounded and
unbounded simulation soundness in the context of NIZKs.

Another remarkable result is fully black-box constructions of labelled USS-
NIZKs for L from USS-NIZK for L ∧ L̂ (Theorem 4.3) or L ∨ L̂ (Theorem 4.4).
A heuristic way of attaching a label would be to involve it into a hash function
used somewhere in the proof function. While it is possible for particular types
of constructions such as those using Fiat-Shamir transformation [20], it is not
necessarily trivial in other cases such as Groth-Sahai proofs [27] and Quasi-
adaptive NIZKs [32] with structure-preserving property [4], even if the label is
left as a non-group string. Our construction can be seen as a feasibility result:
labelling is achievable in a black-box manner given USS and support for extended
(conjunctive or disjunctive) languages. If either of the properties is not provided,
labelling is not black-box achievable as shown in Fig. 1.

Construction of Signatures Without Language Extension. Motivated
by our previous results, we show that any USS-NIZK for any hard language
in NP can be used by itself without language extensions as a secure digital
signature scheme. Our construction retains almost the same computation and
space complexity and hence has a practical value. Concretely, given a USS-NIZK
for any hard language L, we construct a signature scheme that is unforgeable
against adaptive chosen message attacks. We emphasize that our result does not
require L support particular relations, which was required by related works on
building signatures from USS-NIZKs, e.g., [26,34] (see Table 1). That is a sharp
difference from previous works, because our impossible results suggest that such
specific relations in the language cannot be achieved in a black-box way. Further-
more, the only additional building block (used to create a signature scheme for
arbitrary long messages) other than USS-NIZK is an extended target-collision-
resistant function that is a “secret-key-free” primitive unlike “authenticating”
ones used in the literature. Note that, in theory, a signature scheme can be con-
structed solely from NIZK by using its common-reference generator as a one-way
function. However, the resulting scheme suffers from a significant performance
overhead [6] and, unlike ours, does not allow us to conclude that upgrading a
NIZK to an unbounded simulation sound NIZK requires the use of a signature-
like primitive.

Our general construction shares an idea with other works, e.g. [33]: the trap-
door for zero-knowledge simulation can be used as a signing-key and the simu-
lated proofs should work as signatures (because the simulation function can only
be invoked with the trapdoor), which are publicly verifiable with the crs bound to
the trapdoor. Unforgeability is argued based on the simulation soundness prop-
erty. Our result is quite general in terms of the language that the underlying
USS-NIZK must support.
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Table 1. Upper block: General transformations from NIZK to USS-NIZK. Lower block:
Constructions of various signature schemes based on non-interactive arguments. Under-
lined symbols are witnesses. OSS-NIZK stands for one-time simulation-sound NIZK.
R: relation associated to the original language. σ, σ̂: common reference strings. PRF:
pseudo-random function. PRG: pseudo-random generator. ENC: CPA-secure encryp-
tion. LRSIG: leakage-resilient signatures. TCR: target-collision-resistant function. SIG:
signature scheme. SoK: signature of knowledge.

Ref. Objective Statements proved on the underlying NIZK

[50] NIZK → OSS-NIZK R(x, ω)

[17] NIZK → USS-NIZK R(x, ω) ∨ (y=PRFs(vk) ∧ Com(s; r)=σ) ∨ (σ̂=PRG(s))

[29] NIZK → USS-NIZK R(x, ω) ∨ σ = SIGsk (vk)

[7] NIZK → SIG y = PRFs(m) ∧ Com(s; r) = σ

[34] USS-NIZK → LRSIG C = ENCpk(x||m;ω) ∧ y = TCRk(x)

[26] SE-SNARK → SoK R(x, ω) ∧ y = TCRk(m)

1.3 Related Works

There exist several works for extending NIZKs to support disjunction of instances
without reductions to NP-complete languages. In [14] Cramer et al., presented
a very useful framework to extend any sigma-protocol to handle disjunctive
relations among instances. The idea is to split a challenge into two so that one of
them can be predicted in advance for simulating the ‘no’ side of the two instances.
This idea applies to a wide range of NIZK constructions based on the Fiat-
Shamir heuristic [20], splitting a crs into two shares allows similar ideas if some
algebraic properties are available. Other works [21,41,46] follow an approach
based on Groth-Sahai proofs, which can be used to prove disjunctive statements,
e.g., [13,24]. Furthermore, Abdalla et al. [2] achieve disjunction through a smooth
projective hash proof system [16].

Many works also try to upgrade NIZK systems to achieve simulation-
soundness. Such upgrades usually require additional cryptographic primitives
or the language associated to the NIZK be extended. In Table 1 we exemplify
some of these transformations. The construction by Sahai in [50] is based on
the generation of multiple common-reference strings of the original NIZK. It is a
fully black-box construction that works for any NIZK systems and languages but
results only in bounded simulation soundness that allow preliminary bounded
number of queries. De Santis et al. built the first USS-NIZK in [17] by using
a pseudo-random function (PRF) and a commitment scheme, in combination
with a general NIZK that supports disjunction. The essential idea of this work
is to prove that certain statement is true or the PRF was computed correctly
with a secret key that was previously committed in the crs. Groth [24], fol-
lowed by other works [3,13,29], combined a signature scheme and a one-time
signature scheme with a NIZK system for satisfiability of relations over bilinear
groups. Kiltz et al. combined randomized PRFs with a QA-NIZK based on the
Matrix DH and the Kernel DH assumptions [35]. In summary, all these works
for obtaining USS are non black-box, since they require specific properties.
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Our last contribution is motivated by our impossibility results and the obser-
vation that the attempts from the literature to build signature schemes from
USS-NIZKs require the language be extended or the use of additional primitives.
For example, Bellare and Goldwasser [7] construct a signature scheme by combin-
ing a PRF and a public-key encryption scheme (as a commitment scheme) with
a standard NIZK. Another attempt in [34] combines a labelled PKE scheme [16]
with a USS-NIZK system to produce a signature scheme where messages are
embedded into a label of the encryption. Libert et al. [37,38] combined a SS-
QA-NIZK system with a signature scheme to achieve new functionalities. Groth
and Maller [26] present a general framework for constructing signature of knowl-
edge (SoK) schemes based on succinct simulation extractable non-interactive
arguments of knowledge (SE-SNARK) requiring conjunctive extension.

2 Preliminaries

2.1 Notations

For a finite set X, we write x ←X to denote that x is uniformly sampled from
set X. If we need to be explicit about random coins, r, used in the sampling,
we write x ← X(r). For n ∈ N, we denote by Un the uniform distribution over
{0, 1}n. A positive function ε : N → [0, 1] ⊆ R is called negligible if for every
polynomial p(x) ∈ R[X] there exists a constant κ0 s.t. ∀κ ≥ κ0, ε(κ) < 1/p(x).

By y ← A(x) we denote a process of computation where A takes x as input
and outputs y. By AO, we denote oracle algorithm A that interacts with oracle
O. For oracle O, we use notation y ← O(x) also to represent a pair of input
and output, (x, y), when we need to be explicit about O. Variables with brackets
[ · ] match to any value. For instance, y ← O([x]) matches to any oracle query
whose output is y and we refer to the input value by x thereafter. When the
matched value will not be referred afterwards, we use ∗ and write y ← O(∗) to
mean that there exists an input to O that results in y. We also use the wildcard
[∗ = ⊥] ← O(x) to denote that O outputs something other than ⊥ for input x.

Algorithms and oracles often implement several functions identified by an
input. By M(func, args) we mean that algorithm M works as a function specified
by func taking args as input. Dot notation M.func is used as well when inputs
are not important in the context.

2.2 Hard Language and Language Extension

We say that L is a hard language accompanied by C if L and C are efficiently
sampleable, disjoint, and hard to distinguish. Accordingly, (L, C) constitutes a
promise problem [18,52]. More formally:

Definition 2.1 (Hard Language). Let RL be an efficiently computable binary
relation. For fixed polynomials polyx and polyw, let Lκ := {x ∈ {0, 1}polyx(κ) |
∃w ∈ {0, 1}polyw(κ) : R(x,w) = 1}, and L := ∪κLκ. Let Cκ ⊆ {0, 1}polyx(κ) and
C := ∪κCκ. Given a negligible function εhd, we say L is εhd-hard (with respect to
C) if for every κ ∈ N, Lκ ∩ Cκ = ∅ and the following properties are satisfied:
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• For all κ ∈ N, there exist efficiently sampleable distributions DLκ
and DCκ

producing elements from Lκ and Cκ respectively.
• L and C are indistinguishable, w.r.t. DL = {DLκ

}κ∈N and DC = {DCκ
}κ∈N,

i.e., for every p.p.t. algorithm A and for all sufficiently large κ, it holds

|Pr [ x ← DLκ
: 1 ← A(x) ] − Pr [ x ← DCκ

: 1 ← A(x) ]| < εhd(κ).

When it is clear from the context, we will write x ← Lκ or x ← Cκ instead of
x ← DLκ

or x ← DCκ
respectively.

Definition 2.2 (Extended Language). Given two languages L and L̂, and a
logical binary operator � ∈ {∧,∨}, an extended language (denoted by L � L̂) is
defined as the union ∪κ(Lκ � L̂κ) where Lκ � L̂κ := {(x, x̂) | (x ∈ Lκ)� (x̂ ∈ L̂κ)}.
The extension is said to be non-trivial if Lκ � L̂κ ⊆ Lκ′ for any κ and κ′.

Note that, for any non-empty finite Lκ and L̂κ, we have Lκ � L̂κ ⊆ Lκ. In this
work, we only consider non-trivial language extensions. A language extension of
a NIZK (with respect to operator �) consists of, given languages L and L̂ and a
NIZK scheme L for L, build a NIZK scheme M for L � L̂.

2.3 Non-interactive Zero-Knowledge Argument System

In this section we present syntactical and security definitions for labelled NIZKs.
Fixing label � to a default, e.g. the empty string, results in the standard defini-
tions for (non-labelled) NIZKs.

Definition 2.3 (Labelled Non-interactive Argument System). A labelled
non-interactive argument system for language L associated to relation R is a
tuple of polynomial-time algorithms (Crs,Prv,Vrf) where:

• σ ← Crs(1κ) takes a security parameter and generates a crs, σ.
• π ← Prv(σ, x, �, w) takes σ, an instance x, a label �, and a witness w as input

and outputs a proof π or ⊥.
• b ← Vrf(σ, x, �, π) takes σ, an instance x, a label �, and a proof π, and outputs

either 1 or 0 representing acceptance or rejection, respectively.

For correctness, it is required that there exists a negligible function εco in κ such
that, for all sufficiently large κ, all (x,w) ∈ {0, 1}polyx(κ) × {0, 1}polyw(κ) with
R(x,w) = 1, and all � ∈ {0, 1}poly�(κ), it holds:

Pr [σ ← Crs(1κ); π ← Prv(σ, x, �, w) : 1 = Vrf(σ, x, �, π)] < εco(κ).

For soundness, it is required that there exists a negligible function ε in κ such
that, for any p.p.t. algorithm A and all sufficiently large κ:

Pr [ σ ← Crs(1κ) ; (x, �, π) ← A(σ) : x ∈ Lκ ∧ 1 = Vrf(σ, x, �, π) ] ≤ ε(κ).
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Definition 2.4 (Adaptive Zero-Knowledge). A labelled non-interactive
argument system (Crs,Prv,Vrf) is adaptive zero-knowledge if there exists a pair
of p.p.t. algorithms CrsSim and PrvSim and a negligible function εazk in κ such
that for every p.p.t. algorithm A and for every sufficiently large κ,

∣
∣
∣Pr

[

σ←Crs(1κ) : 1←AO1(·,·,·)(σ)
]

−Pr
[

(σ, τ)←CrsSim(1κ) : 1←AO0(·,·,·)(σ)
]∣
∣
∣

is lower than εazk(κ). Oracles O1, O0, on input (x, �, w) output ⊥ if R(x,w) = 0,
and otherwise, they return Prv(σ, x, �, w) and PrvSim(σ, x, �, τ) respectively.

We say it is a non-adaptive multi-theorem zero-knowledge if the above holds
when the adversary A is limited interact with O only before σ is generated.

Definition 2.5 (Unbounded Simulation Soundness). A labelled non-inte-
ractive zero-knowledge argument system Π := (Crs,Prv,Vrf,CrsSim,PrvSim) for
language L is unbounded simulation sound if there exists a negligible function εss
in κ such that, for any p.p.t. algorithm A,

AdvUSS
Π,A(κ) := Pr

[
(σ, τ) ← CrsSim(1κ)
(x, �, π) ← APrvSim(σ,·,·,τ)(σ)

: (x, �) �∈ Q ∧ x �∈ Lκ

∧ 1 = Vrf(σ, x, �, π)

]
< εss(κ)

holds, where Q is a list of queries sent to PrvSim.

A non-interactive argument system that is zero-knowledge and unbounded sim-
ulation sound is called USS-NIZK.

We next present two lemmas related to the behavior of a zero-knowledge
simulator. They state that the simulator must produce valid proofs for an over-
whelming amount of yes-instances of the language (due to the zero-knowledge
property) and valid proofs for an overwhelming amount of no-instances of the
language (due to the hardness of the language).

Definition 2.6 (Yes-instance simulation correctness). A non-interactive
argument system Π = (Crs,Prv,Vrf,CrsSim,PrvSim) for language L is yes-
instance simulation correct if, for any x ∈ Lκ and � ∈ {0, 1}poly�(κ), the proba-
bility

εyes(κ) := Pr[(σ, τ) ← CrsSim(1κ) : 0 = Vrf(σ, x,PrvSim(σ, x, �, τ))]

is negligible in κ. The NIZK system Π is perfectly yes-instance simulation correct
if εyes(κ) = 0.

Lemma 2.1. εyes(κ) ≤ εzk(κ) + εco(κ).

Definition 2.7 (No-instance simulation correctness). A non-interactive
argument system Π = (Crs,Prv,Vrf,CrsSim,PrvSim) for εhd-hard language L
accompanied by C is no-instance simulation correct if for every � ∈ {0, 1}poly�(κ),
the probability

εno(κ) := Pr[(σ, τ) ← CrsSim(1κ) ; x ← DCκ : 0 = Vrf(σ, x,PrvSim(σ, x, �, τ))]

is negligible in κ. Π is perfectly no-instance simulation correct if εno(κ) = 0.
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Observe that the yes-instance simulation correctness is universally quantified
for all x ∈ Lκ. However, the same is too restrictive in the case of no-instance
simulation correctness, because, in general, a proof simulator may not produce
valid proofs for a small set of no-instances without violating zero-knowledge.

Lemma 2.2. εno(κ) ≤ εzk(κ) + εco(κ) + εhd(κ).

We refer to the full version of this paper for a formal proof of the lemmas [1].

2.4 Fully Black-Box Constructions and Separation

We follow the framework of fully black-box constructions and separation in [31,
49]. We say that there is a fully black-box construction of primitive A based on
primitive B if, given L securely implementing B as an oracle, there exists an
oracle machine M such that ML securely implements A.

On the other hand, to show the absence of a fully black-box construction, we
use the so-called single oracle separation technique [31]. That is, there is no fully
black-box construction of primitive A based on B if there exists an oracle O and
an oracle machine L such that LO securely implements B, but any oracle machine
M such that MO implements A, is insecure. In Sect. 3, we show an oracle O such
that LO is a NIZK system for L, but any construction MO of a NIZK system for
language L ∨ L̂ is insecure (no matter what L̂ is, as long as it is hard). As we
investigate constructions that do not rely on particular structures or properties,
we treat L as a black-box as well. (Therefore, it would be more precise to denote
the language as LO but we abuse notation and use L instead).

By A ⇒ B, we mean that there exists a fully black-box construction of B
based on A. A fully black-box separation is denoted by A ⇒ B. If a separation
holds for a restricted class of black-box constructions, we denote it by A ⇒∗ B.
Though separations for restricted classes of black-box constructions can bring
insight to a particular problem, rigorously, they are weaker than fully black-box
separations, so we make it explicit.

3 Disjunctive Language Extension

We show that given a NIZK system with strong properties such as labelling and
unbound simulation soundness, it is hard to disjunctively extend the language,
even when compromising labelling or simulation soundness.

Theorem 3.1. (LBL-USS-NIZK ⇒ OR-NIZK) Let L̂ be a hard language. There
does not exist a fully black-box construction M that converts any labelled USS-
NIZK system L (for some language L), into a NIZK scheme for L ∨ L̂ that is
correct, adaptive zero-knowledge, and sound.

Given the straightforward implications among NIZK, USS-NIZK, and LBL-
USS-NIZK, Theorem 3.1 implies that no black-box disjunctive language exten-
sion is possible with respect to NIZK, USS-NIZK, or LBL-USS-NIZK.
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Corollary 1. It holds NIZK ⇒ OR-NIZK, and USS-NIZK ⇒ OR-USS-NIZK,
and LBL-USS-NIZK ⇒ LBL-OR-USS-NIZK.

In the rest of this section, we prove Theorem 3.1. For that, we first describe
an oracle used for constructing a hard language and a labelled USS-NIZK for it.

Definition 3.1 (Oracle O). Oracle Oκ is equipped with two injections Hc :
{0, 1}κ → {0, 1}2κ and Hx : {0, 1}κ+1 → {0, 1}2κ, and a permutation Hp :
{0, 1}6κ → {0, 1}6κ. Let H−1

c , H−1
x and H−1

p be their respective inverse functions
that output ⊥ for inputs having no preimages. Oracle Oκ provides three language-
related functionalities SmplYes, SmplNo, and Promise, and four NIZK-related
functionalities, Crs, Prv, PrvSim and Vrf that:

• Oκ(SmplYes, w) → x : Compute x ← Hx(1||w), and output x.
• Oκ(SmplNo, w) → x : Compute x ← Hx(0||w), and output x.
• Oκ(Promise, x) → 0/1 : Output 0 if ⊥ ← H−1

x (x). Output 1, otherwise.

• Oκ(Crs, τ) → σ : Compute σ ← Hc(τ) and output σ.
• Oκ(Prv, σ, x, �, w) → π/⊥ : Output π ← Hp(σ||x||�). (	)
• Oκ(PrvSim, σ, x, �, τ) → π/⊥ : Output π ← Hp(σ||x||�). (		)
• Oκ(Vrf, σ, x, �, π) → 0/1 : Output 1 if (σ||x||�) = H−1

p (π), else 0.

(	) Output ⊥ instead if ⊥ ← H−1
c (σ), x = Hx(1||w), or � ∈ {0, 1}2κ.

(		) Output ⊥ instead if σ = Hc(τ),⊥ ← H−1
x (x), or � ∈ {0, 1}2κ.

We denote by O an oracle consisting of a set of Oκ for all κ ∈ N. Given an
input, O defines κ based on the size of the second argument and checks if all
other arguments follow the appropriate size. On a successful check, it forwards
the input to Oκ and outputs the result, otherwise O outputs ⊥. By O we denote
the set of all possible oracles O.

A query to O is successful if the answer is not ⊥ (or not 0 in the case of
O.Vrf). We say that a common reference string σ is valid (with respect to O) if
there exists τ that satisfies σ = Hc(τ). Given σ (without τ), it is easy to assure
its validity by checking that O(Prv, σ, x, �, w) is different from ⊥, where x can be
any yes-instance and w its corresponding witness.

The oracle O can be seen as a set consisting of entries of the form (cmd, args,
output) where command cmd is one of {SmplYes,SmplNo,Promise,Crs,Prv,
PrvSim,Vrf}, args denotes inputs for each command, and output is the answer.
Inputs and outputs may include wildcards such as ∗. Then, a set S of entries of
this form is called a partial oracle as it can be seen as an oracle that accepts only
limited inputs. A partial oracle S is called consistent if there exists another set S′

such that S∪S′ forms a complete oracle in O. Otherwise S is called inconsistent.
A hybrid oracle, denoted as S := S1|S2| · · · , is an oracle that combines partial
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oracles S1, S2, . . . in such a way that, given a query of the form (cmd, args), it
first searches S1 for matching entry (cmd, args, [output ]) and returns output if it
exists. If no such entry is found in S1, it searches S2 and so forth. Note that a
hybrid oracle may not be consistent.

Let L be an oracle machine that, given O as an oracle, forwards its input
to O and outputs whatever O outputs. LO implements a hard promise problem
and a NIZK argument system for it. (Some trivial syntactical adjustments are
needed to fit to the definition of NIZK in 2.3 and 2.4.) The following lemma
holds for LO.

Lemma 3.1. With probability 1 over the choice1 of O ∈ O, LO implements a
hard promise problem (L, C) for Lκ := {x | ∃w ∈ {0, 1}κ s.t. x = Hx(1||w)} and
Cκ := {x | ∃w ∈ {0, 1}κ s.t. x = Hx(0||w)}. It also implements a non-interactive
zero-knowledge argument system for L that is perfectly correct, perfectly yes-
instance and no-instance simulation correct. Furthermore, it is adaptive zero-
knowledge and unbound simulation-sound against uniform adversaries given ora-
cle access to O a polynomial number of times.

By design of the oracle, adversaries that interact with it can only win if some
bad events occur. It is not hard to see that these events occur with negligible
probability. We refer to the full version of this paper for a formal proof [1].

We make some remarks about our design choices for O and the properties
of L. It was shown in [11,55] that a simpler witness-indistinguishable oracle
suffices to construct a simulation sound NIZK. It is however essential for their
construction that the oracle supports an NP-complete language (or a specific
disjunctive language). The NIZK implemented by the above L is deterministic
but one can make it probabilistic so that (simulated) proofs have κ-bit entropy
simply by attaching κ-bit randomness to the proof. The simulation soundness
of LO will not be directly used in our proof of impossibility. What is important
here is to see that O suffices to construct a USS-NIZK for L.

Intuition for the Impossibility. If the construction M is such that, M.Crs gen-
erates some σj by calling O.Crs and encoding them into σ̃ (we name such crs’s
legitimate), we claim that the prover algorithm M.Prv cannot use them. Oth-
erwise, the adaptive zero-knowledgeness will be compromised. That is, every
crs that used when proving a given statement, should be generated within the
prover algorithm (except for some eccentric cases that we explain later). A cru-
cial observation is that, to prove disjunction for an instance (x, x̂), it may be
the case that (x, x̂) ∈ Cκ × L̂κ and the no-instance x cannot be proven with
a legitimate crs whose trapdoor is unknown to the prover. On the other hand,
using a legitimate crs only for yes-instances contradicts the zero-knowledgeness

1 Technically, for every machine A, there exist a set of measure 0 of oracles for which
A has a significant advantage either against the hardness of the language or the
NIZK system. As it is standard after the application of the Borel-Cantelli Lemma,
given that there exist countably many machines, for a measure 1 sets of oracles in
O we can say that for all p.p.t. machines A our result holds.



Black-Box Extension of NIZK Arguments 571

of the underlying scheme (or the hardness of L), because the zero-knowledge
simulator does not know whether the given x is a yes or a no-instance.

Let us elaborate on this point. In the next, let q(κ) be a (non-constant)
polynomial in the security parameter that upper-bounds the number of queries
to O that MO performs in each invocation. Let c > 1 be a constant. Consider the
adaptive zero-knowledge game where an adversary submits disjunctive instances
(xj , x̂j) for j = 1, . . . , qc (for certain integer c) to the challenger that produces
proofs either by M.Prv (in the real world) or M.PrvSim (in the simulated world).
The adversary verifies the proofs by M.Vrf which may make verification queries
O.Vrf on the left-hand instance, xj . Consider the case where instances (xj , x̂j)
are taken from Cκ×L̂κ as pairs of (no, yes) instances, and the challenger responds
with M.Prv in the real-world. We then define (real, no, yes) as the distribution of
all crs’s (over the choice of instances and coins of M) that are given as input to
O.Vrf to verify the left-hand instances xj for j = 1, . . . , qc. We define (sim, no, yes)
similarly for the case the challenger respond with M.PrvSim in the simulated-
world. Switching yes and no according to whether xj (and x̂j , resp.) are chosen
from Lκ or Cκ (L̂κ or Ĉκ, resp.), we have

(real, no, yes)
(§)≈ (sim, no, yes)

(†)≈ (sim, yes, yes)
(‡)≈ (sim, yes, no)

(§)≈ (real, yes, no)

where ≈ denotes indistinguishability of distributions and (§) is given by the
zero-knowledge property and (†) and (‡) are given by the hardness of L and L̂
respectively. (Observe that M.PrvSim could be used to distinguish between L
and C if the indistinguishability denoted by (†) did not hold). Also, observe that
(real, no, yes) does not contain a legitimate crs, because the real prover algorithm
cannot prove on a no-instance with a legitimate crs whose trapdoor is not given.
Because legitimate crs’s can be identified (we refer to the learning-phase defined
below for more details), and given the above indistinguishability relations, the
same is true for (real, yes, no): it does not contain legitimate crs’s. Therefore,
even if a witness for xj is given, the prover must not use legitimate crs’s to prove
xj .

We then argue that a NIZK system that does not use the legitimate crs
for proving a given statement cannot be sound. We construct an adversary that
runs the prover algorithm, M.Prv, on (x∗, x̂∗) ∈ Cκ×Ĉκ and performs an instance
swapping to fool it as if x∗ was taken from Lκ. This is done by giving M.Prv
a random fake witness, w∗, for x∗ and simulating O on queries involving x∗.
Concretely, if M.Prv makes O.SmplYes queries on the fake witness w∗ (to check its
correctness), we simulate the answer by returning x∗. If O.Prv queries are made
on x∗ under a crs, σj , we replace the query with O.PrvSim using a trapdoor τj for
σj . This is possible because (as we have argued above) all crs’s used within M.Prv
must have been internally generated, so their trapdoors are known. There could
be a case where a legitimate crs is used to prove x∗. Recall that (real, yes, no)
does not include legitimate crs’s, i.e., proofs with a legitimate crs will not be
verified by M.Vrf. Yet, M.Prv may create and verify proofs with a legitimate crs
for internal use only. Therefore, the adversary must fool M.Prv by simulating
such proofs with random strings and answering accordingly to the respective
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verification queries. Once M.Prv is done, the resulting proof π̃ should pass the
final verification since all proofs πj embedded in π̃ are genuine and independent
of the fake witness.

Nevertheless, the above sketch ignores the possibility of a trivial legitimate
crs whose trapdoor is also embedded to σ̃ and available in public. Algorithm
M.Prv may use a trivial trapdoor for no-instances and a relevant witness for
yes-instances. But the witness we give to the algorithm is a fake one that does
not work properly. To handle such a case, the adversary must find the trivial
trapdoors in advance and use them for proofs. Although we do not know how
the trivial trapdoors are encoded into σ̃, they can be extracted by running M.Prv
on a number of instances and observing the trapdoors used therein. Since there
can be a bounded number of trivial legitimate crs’s embedded in σ̃, sufficiently
repeating the proofs on random instances exhausts them with high probability.

Breaking Soundness. In the following proof, we construct adversary A attacking
soundness of M (against a challenger B) and use the above observation about
the legitimate crs to lower bound the success probability of A.

[Soundness Game for OR-NIZK M]
At the beginning, oracle O is chosen from O. Then challenger B and adversary
A engage in the following procedures.

Step 1: Setup Phase.

The challenger generates a common reference string by σ̃ ← MO(Crs, 1κ).
Let Qleg be the list of legitimate crs’s and their corresponding trapdoors
(σj , τj) that have been generated in this phase, as σj ← O(Crs, τj).

Step 2: Self-learning Phase.

Given σ̃, for every i = 1, . . . , qc, adversary A uniformly samples instance
(xi, x̂i) and the corresponding witness (wi,⊥) from Lκ × Ĉκ and it computes
π̃i ← MO(Prv, σ̃, (xi, x̂i), (wi,⊥)) and bi ← MO(Vrf, σ̃, (xi, x̂i), π̃i).
Let Qtriv be the list of trivial pairs of crs and trapdoor, (σj , τj), that appeared
in a computation like [∗ = ⊥] ← O(PrvSim, σj , ∗, ∗, τj) or σj ← O(Crs, τj)
during some execution of M in this phase.

Step 3: Forgery Phase.

Sample (x∗, x̂∗) ∈ Cκ×Ĉκ as w∗ ← {0, 1}κ, x∗ ← O(SmplNo, w∗) and x̂∗ ← Ĉκ

Let x̄ := O(SmplYes, w∗) and apply instance swapping:
Let O′ be the partial oracle given by the entries (SmplYes, w∗, x∗),
(SmplNo, w∗, x̄), and (Prv, ∗, x̄, ∗, w∗,⊥). Run MO′′

(Prv, σ̃, (x∗, x̂∗), (w∗,⊥))
where O′′ is an algorithm that simulates an oracle in O as follows.
[Algorithm O′′] Initialize Qintl as an empty list.

– If a given query is defined in O′, return the output accordingly.
– Given (Crs, [τj ]), return σj ← O(Crs, τj) and record (σj , τj) to Qintl.
– Given (Prv, [σj ], x∗, [�j ], w∗) with valid σj :
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(a) if (σj , [τj ]) ∈ Qtriv ∪ Qintl:
return πj ← O(PrvSim, σj , x

∗, �j , τj) and add (Prv, σj , x
∗, �j , w

∗, πj)
to O′.

(b) else:
return πj ← {0, 1}6κ; add (Prv, σj , x

∗, �j , w
∗, πj), (Vrf, σj , x

∗, �j , πj , 1)
to O′.

– For every other query, forward it to O and return the output.
When M outputs a proof π̃∗, A outputs (x∗, x̂∗) and π̃∗ as a forgery.

Step 4: Final Verification Phase.

Challenger B outputs 1 (interpreted as the adversary wins) if x∗ ∈ Lκ, x̂∗ ∈
L̂κ and 1 ← MO(Vrf, σ̃, (x∗, x̂∗), π̃∗); otherwise, it outputs 0 (the adversary
loses).

Lemma 3.2. The above adversary A wins the simulation soundness game of MO

with non-negligible probability if M is non-adaptive multi-theorem zero-knowledge
and correct.

We will use the following lemma in the proof of Lemma 3.2. It states that if
an event happens for n successive independent attempts, the probability that it
suddenly does not happen is upper-bounded by an inverse polynomial of n. We
use this lemma to claim that, during the challenge phase, the adversary observes
all trivial σj embedded in σ̃ generated by the challenger.

Lemma 3.3 ([54, Fact 4.6.1]). Let X1, · · · Xn+1 be independent Bernoulli ran-
dom variables, where Pr[Xi = 1] = p and Pr[Xi = 0] = 1−p for i = 1, · · · , n+1,
and some p ∈ [0, 1]. Let E be the event that the first n variables are sampled at
1, and Xn+1 is sampled at 0. Then, Pr[E] ≤ 1

e·n , where e � 2.71 is the base of
the natural logarithm.

Proof (of Lemma 3.2). We analyze the probability that the forged proof passes
the verification in the above game. Let ρzk(κ) and ρco(κ) denote upper-bounds for
non-adaptive multi-theorem zero-knowledge and correctness for M as defined in
Definitions 2.3 and 2.4, respectively. We consider these parameters as universal
for all O. Let P be the probability that challenger B outputs 1 in the final
verification phase, which is taken over the choice of O and coin flips by B and A.

Our goal is to show that P is not negligible. Towards that goal, we consider
a sequence of games (where each game is identical to the precedent, except for
the mentioned details) that introduces arbitrarily small (though not necessarily
negligible) differences in the considered probability and eventually reach the
situation where B outputs 1 trivially. We denote the probability for the same
event in Game i by Pi. In the first games (Game 0 to Game 6) we exclude events
that happen only with negligible probability, simplifying the next transitions.
Under the condition that these events do not happen, O′′ simulates an oracle in
O that successfully produces a correct proof on a yes instance (of the disjunctive
relation). In the succeeding games (Game 7 to 9), we replace oracle O by O′′,
relying on the zero-knowledge property and the hardness of the languages. In the
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last Game 9, the adversary does nothing but creating a proof for a yes instance,
which must be accepted with high probability.

Game 0: The above soundness game. So P0 = P .
Game 1: For every successful query to O.PrvSim or O.Prv with respect to some
σj , query O.Crs that generates σj must have been made in advance within the
same execution of M or in the setup phase. Similarly, for every successful query
to O.Vrf for verifying a proof, a query to O.PrvSim or O.Prv that outputs the
queried proof must have been made in advance. If any of these are not the case,
the game halts.
Game 2: Modify the final verification to skip the check x∗ ∈ Lκ and x̂∗ ∈ L̂κ.
Game 3: Halt the game if A observes bi = 0 in the self-learning phase.
Game 4: The game halts if there has been a query on w∗ or x∗ or x̄ made by M
invoked in the setup and self-learning phases.
Game 5: The game halts if any of randomly assigned πj at step (b) of O′′ appear
as a result of other O.Prv or O.PrvSim queries by the end of the forgery phase.
Game 6: The game halts if, O′′ receives a query (PrvSim, [σj ], x∗, [�j ], [τj ]) that
there exists (Prv, σj , x

∗, �j , w
∗, [πj ]) in O′, and πj = π′

j = ⊥ holds for π′
j ←

O(PrvSim, σj , x
∗, �j , τj). The modification is to exclude a case where a trapdoor

τj for some σj suddenly appears for the first time in the forgery phase while σj

itself has appeared so far.

Claim 3.2. |P0−P6| < ε(κ)+qcρco(κ)+2/(eqc−1), for a negligible function ε(κ).

Proof. We include a formal proof in the full version of this paper [1].

Game 7: Replace O in the setup and self-learning phase with algorithm O′′ with
partial oracle O′ defined at the end of the forgery phase after Game 4.

Since queries defined in O′ involve x∗ or x̄, they do not appear in the setup
and forgery phase. Any queries to O′′ not defined in O′ are answered by O. Thus,
this modification does not introduce any relevant change and we have P7 = P6.
Game 8: In this game, we use O′′ instead of O also in the final verification phase.

Claim 3.3. |P8 − P7| < 7/eqc−1 + (3q2 + 2qc+2)/26κ + 2q/2κ + ε̂ind(κ) + 3ρzk(κ).

Proof. See the end of this section.

Game 9: We then modify O′′ so that it no longer uses O. Instead, it uses a random
partial oracle R such that, O′′ = O′||R is an oracle in Oκ.

Since all queries to O′′ from M.Vrf in Game 8 that answered by O are con-
sistent with the partial oracle O′, the replacement by a consistent R does not
change the distribution of the view of M.Vrf. Therefore, P9 = P8.

Now O′′ is an oracle in Oκ and in Game 8, the adversary is creating a proof
π̃∗ on a (yes,no)-instance (x∗, x̂∗) with a correct witness with respect to O′′.
Therefore, the created proof will be accepted unless except for the correctness
error. We thus have P9 > 1 − ρco(κ).
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By summing up the above differences of probabilities, we have

P > 1 − (
9/(eqc−1) + ε̂ind(κ) + 3ρzk(κ) + (qc + 1)ρco(κ) + ε(κ)

)
.

Accordingly, if M is correct, zero-knowledge, language L̂ is hard and constant c
is set so that the second term of the right-hand-side of the above inequality is
small enough, A is successful in breaking the soundness of M with non-negligible
probability in κ. ��
Proof (of Claim 3.3). The view in the verification phase changes only if M.Vrf
makes one of the following queries whose output differs in O and O′′.

• A query (PrvSim, [σj ], x∗, [�j ], [τj ]) such that for πj ← O(PrvSim, σj , x
∗, �j , τj),

there exists (Prv, σj , x
∗, �j , w

∗, [π′
j ]) in O′, with πj = π′

j .
• A query that is not in O′ but results in a πj that already appears in O′.
• A query included in O′.

We can bound (by a negligible function) the probability that the first two
types of queries from above occur, by following similar arguments as for the
transitions to Game 6 and Game 5 respectively. However, the third case requires
careful analysis. In the following, we briefly present our idea for bounding the
probability. First observe that O′ includes two types of queries: those involving
witness w∗ and those where randomly assigned proofs are verified. Informally,
the first type of query will occur with low probability because, otherwise, M.Vrf
would have a valid witness for a given instance, what contradicts zero-knowledge
or the hardness of the language. The second type of query must also occur
with low probability because, as discussed at the beginning of this section: a
legitimate non-trivial σj cannot be used to prove a given instance, or otherwise
zero-knowledgeness will be lost.

More concretely, to bound the probability of the first type of query hap-
pening, the same argument as that for Game 6 can be applied. We consider
queries done by M.Vrf instead of M.Prv in the self-learning phase and the verifi-
cation phase but the analysis remains the same. This gives us an upper-bound of
2q/(eqc). The second type of query can be can be bounded as in the transition to
Game 5, except for additional q queries made during the verification itself. We
can establish a bound of q(3q + 2qc+1)/26κ. Finally, for the third type of query,
observe that they can be splitted into: (i) queries including w∗ and (ii) queries
for verifying a randomly assigned proof. Queries of type (i), are all of the form
(SmplYes, w∗), (SmplNo, w∗), (Prv, ∗, x̄, ∗, w∗), and (Prv, ∗, x∗, ∗, w∗). Queries of
type (ii) are of the form (Vrf, ∗, x∗, ∗, [πj ]). Let AskW (respectively VerPi) denote
the event that queries of type (i) (respectively (ii)) occur.

We first bound the probability that AskW happens. Let Game 8.0 be Game 8.
Let AskW8.i denote the event that AskW happens in Game 8.i (defined below).
It is important to observe that, at this point, the view produced by O′′ with O′

is consistent, i.e., there exists a partial oracle that produces the same view, and
in the forgery phase a correct proof on a (yes, no)-instance is being created with
a correct witness with respect to the partial oracle.
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Game 8.1: Replace M.Crs in the setup phase and M.Prv in the forgery phase
respectively by M.CrsSim and M.PrvSim. Note that the trapdoor output by
M.CrsSim is given to M.PrvSim.

We can show that |Pr[AskW8.0] − Pr[AskW8.1]| < ρzk(κ) by construct-
ing a zero-knowledge distinguisher from adversary A. We then claim that
Pr[AskW8.1] ≤ q/2κ. This is justified by the fact that M.PrvSim no longer takes
w∗ as input and hence the view of M.Vrf in the final verification is independent
of w∗. Therefore, the event happens only by chance among q queries. We have
that Pr[AskW] = Pr[AskW8.0] < ρzk(κ) + q/2κ.

We now bound the probability of event VerPi. Suppose that we run an execu-
tion of MO′′

(Vrf, σ̃, x̃, π̃) on certain input and suppose that it makes a verification
query of the form (Vrf, σj , x

∗, �j , πj) to O′′. There are two options, either this
query causes event VerPi or not, depending on whether πj is a randomly assigned
proof. However, we cannot decide which one is the case, event VerPi is not observ-
able. This will be an obstacle if we try to construct an adversary against zero-
knowledgeness as we did in previous cases. Alternatively we consider an event,
VerCrs, that is observable and happens almost whenever VerPi happens. Suppose
that a query (Vrf, σj , x

∗, �j , πj) happens in the final verification phase. We would
like to see if proof πj was randomly assigned in step (b) of O′′ or not. Observe
that it is the case only if (σj , [τj ]) ∈ Qtriv ∪ Qintl. Furthermore, if σj is not an
internally generated crs, it must have been generated in the setup phase. Also,
as σj appears in the final verification, it should have appeared in a verification
during the self-learning phase as well. We define VerCrs as the event that in the
final verification, MO(Vrf, σ̃, (x∗, x̂∗), π̃∗), a query of the following form is done:
(Vrf, [σj ], x∗, [�j ], [πj ]), satisfying �j ∈ {0, 1}2κ, (σj , [τj ]) ∈ Qtriv, and σj ∈ Qnt

where Qnt is a list of all σj queried in the self-learning phase but not included in
Qtriv. This way, event VerCrs is observable based on the view in the self-learning
phase. Yet, VerCrs can differ from VerPi when a σj generated in the setup phase
appears for the first time in the final verification. However, applying Lemma 3.3,
we can upper-bound the probability for such event by q/eqc. We thus have

Pr[VerPi] ≤ Pr[VerCrs] + q/eqc.

Now, let Game 8.0′ be Game 8 and let VerCrs8.i′ denote the event that VerCrs
happens in Game 8.i′, where:

Game 8.1′: Replace M.Crs and M.Prv with M.CrsSim and M.PrvSim, respectively.
We claim that |Pr[VerCrs8.0′ ] − Pr[VerCrs8.1′ ]| < ρzk(κ) + 2q/eqc. To show this,
we construct a zero-knowledge adversary that, given σ̃, first executes the self-
learning phase, and sends (x∗, x̂∗) and (w∗,⊥) to the challenger. On receiving
π̃∗, the adversary runs MO′′

(Vrf, σ̃, (x∗, x̂∗), π̃∗) and outputs 1 if event VerCrs
happens. It outputs 0, otherwise. If the challenger is working with M.Crs and
M.Prv, the view in the final verification (up to the point when event VerCrs hap-
pens) distributes as in Game 8.0′. On the other hand, if the challenger is working
with M.CrsSim and M.PrvSim, the view in the final verification distributes as in
Game 8.1′.



Black-Box Extension of NIZK Arguments 577

In the above argument, the adversary cannot perfectly capture event VerCrs
since the lists Qtriv and Qnt that the adversary obtains from its own self-learning
and uses to capture event VerCrs can be different from the ones defined for
O′′. This issue can be handled as follows. First, regarding σj in Qtriv, it suffices
to consider those included also in Qleg. This is justified by observing that the
condition (σj , [τj ]) ∈ Qtriv ∪ Qintl is equivalent to (σj , [τj ]) ∈ (Qtriv ∩ Qleg) ∪ Qintl,
because every σj ∈ Qtriv that appeared during the final verification and is not
present in Qleg must be in Qintl. Let Q′

triv be the lists the adversary obtained. If
Q′

triv∪Qleg and Qtriv∪Qleg differ, there exists (σj , τj) ∈ Qleg that does not appear
a self-learning but does in the other self-learning. We can apply Lemma 3.3 to
upper-bound the probability of having different Qtriv and Q′

triv by q/eqc (the
same argument applies to Qnt). This results in adding 2q/eqc to the bound, as
claimed. We recall that, up to this point, (x∗, x̂∗) ∈ Lκ × Ĉκ with respect to
oracle O′.

Game 8.2′: Sample x̂∗ from L̂κ, that is, (x∗, x̂∗) is chosen from (yes,yes)-instances.
Any change in event VerCrs can be reduced to distinguishing L̂ and Ĉ. We have
|Pr[VerCrs8.1′ ] − Pr[VerCrs8.2′ ]| < ε̂ind(κ) where ε̂ind(κ) is the advantage of dis-
tinguishing L̂ and Ĉ.

Game 8.3′: Sample x∗ from Cκ. That is, (x∗, x̂∗) is chosen from (no,yes)-instances.
Due to the indistinguishability of L and C, |Pr[VerCrs8.2′ ] − Pr[VerCrs8.3′ ]| <
q/2κ. (Note that language L is implemented by oracle O).

Game 8.4′: Replace M.CrsSim and M.PrvSim by M.Crs and M.Prv, respectively.
Note that to use M.Prv, one needs a witness, which in this case is known. It is
actually (⊥, ŵ), where ŵ is a witness for x̂ (received as input).
We have |Pr[VerCrs8.3′ ] − Pr[VerCrs8.4′ ]| < ρzk(κ) + 2q/eqc.

Since w∗ is no longer given, a valid proof πj on x∗ with a legitimate non-
trivial σj that triggers event VerCrs8.4′ can be created only by chance by guessing
a relevant trapdoor or the witness, cases that have been already excluded in
previous games. Therefore, we conclude that Pr[VerCrs8.4′ ] = 0.
By summing up the above probabilities, we have

Pr[VerPi] < Pr[VerCrs] + q/eqc < ε̂ind(κ) + q/2κ + 2ρzk(κ) + 5q/eqc.

Finally, we have

|P8 − P7| < 2q/eqc + q(3q + 2qc+1)/26κ + Pr[AskW] + Pr[VerPi]

< 7/eqc−1 + (3q2 + 2qc+2)/26κ + 2q/2κ + ε̂ind(κ) + 3ρzk(κ). ��

4 Conjunctive Language Extension

In this section, we consider non-labelled NIZKs. For that purpose, we drop the
labels from the definition of O in the previous section. The internal random
function Hp is adjusted to Hp : {0, 1}4κ → {0, 1}4κ.
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We consider a class M of constructions where every M ∈ M satisfies the
constraint that, roughly, all internally generated proofs πj must be verified in
the process of verifying the resulting proof. We call such M a construction in the
full verification model. In the following, we use symbol ⇒∗ to denote separations
that hold in the full verification model.

Definition 4.1. (Class of constructions with full verification.) M := {M}
is a class of black-box constructions of NIZK with respect to O such that,
for every algorithm M ∈ M, the following condition is met: For all suffi-
ciently large κ > 0, for every O ∈ Oκ, σ̃, x̃, w̃, and query/answer pair
[πj = ⊥] ← O(Prv, [σj ], [xj ], [wj ]) observed during the execution of [π̃ = ⊥] ←
MO(Prv, σ̃, x̃, w̃), there exists a query O(Vrf, σj , xj , πj) during the execution of
MO(Vrf, σ̃, x̃, π̃).

The condition captures the idea of properly using O as a proof system because
whatever was proven internally by a prover is then verified by a verifier. Requir-
ing “every” internal proof to appear also at verification is in fact needed for
technical reasons. We construct an adversary that simulates proofs πj by look-
ing for query-answer pairs of O obtained during the challenge phase. However,
such a view is only with respect to M.Vrf executed by the adversary itself and
those with respect to M.PrvSim are not available, because they are executed by
the challenger. So if only a subset of the internal proofs are verified in M.Vrf,
the adversary cannot simulate the distribution of the internal proofs needed to
run M.PrvSim. We do not know how to prove the separation if this condition is
relaxed to, for instance, “at least one”. It carries a resemblance to the constraint
used in [23, footnote 9] to show a black-box separation of semantically secure
encryption from chosen ciphertext secure ones. Their result applies to a class of
constructions where, for every decryption query, there must exist a correspond-
ing encryption query, or no encryption query can be made during decryption
(a.k.a. the shielding model).

The following theorem can be proven by following a similar approach as the
one used in the proof of Theorem 3.1. We refer to the full version of this paper [1]
for a formal proof.

Theorem 4.1. (USS-NIZK ⇒∗ AND-USS-NIZK in the full verification model.)
Given any two hard languages L and L̂ and any USS-NIZK system L for L,
there exists no fully black-box construction of USS-NIZK scheme M in class
M for L ∧ L̂ that is non-adaptive multi-theorem zero-knowledge and unbounded
simulation sound.

4.1 Constructing AND-USS-NIZK from Labelled USS-NIZK

Contrary to the impossibility in the previous section, conjunctive language exten-
sion is possible for USS-NIZKs if they support labels. Exploiting the integrity
of labels, an easy solution could be the following: to prove an instance (x1, x2)
under a label � we can define a label for the USS-NIZK scheme �′ := x1||x2||�



Black-Box Extension of NIZK Arguments 579

and run the prover algorithm in both pairs (x1, �
′) and (x2, �

′). Such a simple
transformation works, as long as the underlying USS-NIZK can handle the longer
labels that we defined. We provide a transformation that is valid independently
of the label space of the underlying NIZK as long as it supports poly-length
labels.

For a bitstring s, let f(s) be a Merkle encoding of s [39] as defined by f(s) :=
s||tag(s), where tag(s) is a bitstring representing the bit length of s minus its
hamming weight. The length of f(s) is exactly len(s) + �log2(len(s))�. Now, let
I(s) := {i | f(s)i = 1} where f(s)i is the i-th bit of f(s). It then holds that, I(s)
is not empty for any s, and for different s, s′, I(s) ⊆ I(s′) and vice versa.

Theorem 4.2. (LBL-SS-NIZK ⇒ LBL-AND-SS-NIZK.) Given any two lan-
guages L and L̂ and two labelled USS-NIZKs for both L and L̂, there exists a
fully black-box construction of labelled USS-NIZK for language (L ∧ L̂).

Proof. Let Π1 and Π2 be two labelled USS-NIZKs for L1 and L2, respectively.
We construct a LBL-USS-NIZK, Π̃, for L1 ∧ L2 with labels of length len(�) :=
poly�(κ). Let ui be the label bit-size supported by Πi and let u = min(u1, u2). We
require u be polynomial in κ so that polynomial number of random independent
samplings from {0, 1}u produces collisions with negligible probability. Let v :=
len(x1) + len(x2) + len(�) where len(xb) (b = 1, 2) denotes the bit length of the
instances in Lb at security parameter κ. Let n := v + �log2(v)�.
• Given κ as input, Π̃.Crs runs σbi ← Πb.Crs(1κ) for b ∈ {1, 2} and i ∈ [n] and

outputs σ̃ := (σ11, σ21, . . . , σ1n, σ2n).
• Given σ̃, x̃ = (x1, x2), a label � and w̃ = (w1, w2), Π̃.Prv chooses a random

u-bitstring r ← {0, 1}u and computes πbi ← Πb.Prv(σbi, xb, r, wb) for every
i ∈ I(x̃||�). It produces π̃ by concatenating all the previous proofs with r.

• Given σ̃, x̃, � and π̃ as input, the verification algorithm Π̃.Vrf verifies the
proofs included in π̃ on the corresponding σbi, b ∈ {1, 2}, i ∈ I(x̃||�). It
accepts the proof if and only if all verifications succeed.

Simulators are constructed accordingly and zero knowledge holds immedi-
ately from Π1 and Π2. For unbound simulation soundness, suppose that, after
seeing simulated proofs π̃j for chosen label-instance pairs (x̃j , �j), an adversary
outputs a proof π̃∗ (consisting of π∗

bi and r∗) on a fresh (x̃∗, �∗). Let b∗ ∈ {1, 2}
be s.t. x∗

b∗ is a no-instance with respective language, which exists if the above
is a valid forgery for the conjunction. Now, if there exists j s.t. r∗ = rj , let i∗

be such that i∗ ∈ I(x̃∗||�∗) and i∗ ∈ I(x̃j ||�j). Otherwise, r∗ is fresh, let i∗ be
any index from I(x̃∗||�∗). Observe that (π∗

b∗i∗ , x∗
b∗ , r∗) is a forgery against Πb∗

with respect to σi∗ , if every rj is unique as expected. That is because the chosen
(x∗

b∗ , r∗) is a fresh instance-label pair and x∗
b∗ is a no-instance of the respective

language. ��

4.2 Implications and Language Preserving Reductions

We first show that a labelled USS-NIZK for L can be constructed from (non-
labelled) USS-NIZK for L ∧ L̂.
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Theorem 4.3. (AND-USS-NIZK ⇒ LBL-USS-NIZK) Given any NIZK system
for L∧L̂ that is unbounded simulation sound and adaptive zero-knowledge, there
exists a fully black-box construction of LBL-USS-NIZK for L.

Proof. Let Π := {Crs,Prv,Vrf,CrsSim,PrvSim} be a USS-NIZK for L ∧ L̂. It
is assumed that L̂ is efficiently and uniformly sampleable (with witnesses)
and includes a sufficiently large number of instances. We construct a LBL-
USS-NIZK Π̃ for L with labels len(�) := poly�(κ) as follows. Let n be n :=
len(�) + �log2(len(�)))� and function I as defined before.

• Given κ, Π̃.Crs outputs σ̃ := (σ1, . . . , σn), where σi ← Π.Crs(1κ).
• Given σ̃, instance x ∈ L, a label � and a witness w, Π̃.Prv samples a random

yes-instance x̂ ← L̂κ with corresponding witness ŵ. It then creates a proof π̃
by concatenating x̂ with all proofs Π.Prv(σi, (x, x̂), (w, ŵ)) for i ∈ I(�).

• The verification algorithm Π̃.Vrf verifies the proofs in π̃ with the corres-
ponding σi in i ∈ I(�). It accepts π̃ only if all verifications succeed.

Simulators are constructed accordingly and the zero knowledge property of Π̃
is inherited from the one by Π. For simulation soundness, consider an adversary
who produces a proof π̃∗ on a fresh (x∗, �∗), where x∗ is a no-instance of L. If a
proof on (x∗, �) was never asked by the adversary for any �, π̃∗ cannot be valid
due to the USS of Π. Otherwise, observe that if π̃∗ = (x̂∗, {π̃∗

i }i∈I(�∗)) is valid,
the USS of Π is compromised, because there must exist an index i s.t. (x∗, x̂∗)
has not been proven with respect to σi, but π̃∗

i is a valid proof for that instance.
Observe that the above reasoning requires that the probability of collisions when
sampling x̂ ← L̂κ is negligible, which is guaranteed by the assumption on L̂. ��
Corollary 2. AND-USS-NIZK ⇒ LBL-AND-USS-NIZK

If L̂ is a hard language we can reduce OR-USS-NIZK to LBL-USS-NIZK.

Theorem 4.4 (OR-USS-NIZK ⇒ LBL-USS-NIZK). Any NIZK system for L∨
L̂ for a hard language L̂ that is unbound simulation sound and adaptive zero-
knowledge, can be transformed into a LBL-USS-NIZK for L in a black-box way.

Proof (Sketch). The transformation is analogous to the one provided in the proof
of Theorem 4.3. The difference is that x̂ is chosen to be a no-instance from Ĉκ and
its witness ŵ together with x̂ is included in the proof π̃. The verifier algorithm
checks that x̂ ∈ Ĉκ using ŵ. Everything else remains unchanged. ��
Finally, the following result holds in the full verification model.

Corollary 3. (NIZK ⇒∗ USS-NIZK in the full verification model.) There does
not exist an oracle machine M such that for every language L and for every
NIZK Π for L, MΠ,L is a USS-NIZK for L.

Proof. Suppose that a USS-NIZK for L is black-box constructable from a NIZK
for L in the full verification model. Then, by applying the construction to L :=
(L′ ∧L̂′), we can construct a USS-NIZK for (L′ ∧L̂′) from a NIZK for (L′ ∧L̂′).
Since USS-NIZK implies NIZK, we could start from a USS-NIZK for L′ to
construct a USS-NIZK for (L′ ∧ L̂′), which contradicts Theorem 4.1. ��
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5 Signatures from USS-NIZK w/o Language Extension

We begin with a simple yet useful case where a USS-NIZK system Π for hard
language L is perfectly no-instance simulation correct, i.e., Π.PrvSim works for
any no-instances in C. Let H be a family of functions H := {Hκ : Kκ×Mκ → C′

κ}
that maps messages in Mκ to a subset of no-instances C′

κ ⊆ Cκ. We construct a
signature scheme Σ := (Setup,Sign, Vrf) as follows.

Σ.Setup(1κ) :
(σ, τ) ← Π.CrsSim(1κ)
K ← Kκ

pk := (σ,K)
sk := τ

return (pk, sk)

Σ.Sign(pk, sk,m) :
(σ,K) ← pk

τ ← sk

x ← Hκ(K,m)
σ ← Π.PrvSim(σ, x, τ)
returnσ

Σ.Vrf(pk,m, σ) :
(σ,K) ← pk

x ← Hκ(K,m)
b ← Π.Vrf(σ, x, σ)
return b

Since each message is mapped to a no-instance exclusively, simulation soundness
is literally translated into EUF-CMA: It is hard to find new message m∗ (new
no-instance x∗) and valid signature σ∗ (valid proof π∗) after seeing signatures
σi (simulated proofs πi) for arbitrary messages mi (arbitrary no-instances xi).
Due to space constraint, we only show a formal statement below.

Theorem 5.1. The above Σ is a EUF-CMA secure signature scheme for mes-
sage space Mκ if, Π is a perfectly no-instance simulation correct USS-NIZK
system for hard language L accompanied by C, and H is a family of efficiently
sampleable injections from Mκ to any C′

κ ⊆ Cκ.

Now we proceed to more general case. We first introduce building blocks and
establish some technical lemmas before presenting the construction.

Extended Target-Collision-Resistant Functions. A family of functions {H} is
target-collision-resistant if any p.p.t. adversary A wins in the following exper-
iment only with negligible probability, say εtcr: A chooses an input x and it is
given a random key K; A wins if it can produce a different input x′ such that
H(K,x) = H(K,x′). This notion was extended by Halevi and Krawczyk [28] in
such a way that the adversary is allowed to select a different key for the second
evaluation, i.e., the probability that the adversary comes up with a new x′ and
K ′ satisfying H(K,x) = H(K ′, x′) is upper bound by a negligible function εetcr.
Hülsing et al. [30] considered a further extension called multi-target extended
target-collision-resistant (m-eTCR) hash functions, where the above experiment
is hard even if the adversary is allowed to choose several targets. More precisely:

Definition 5.1. A family of functions H = {H : {0, 1}k(κ) × {0, 1}m(κ) →
{0, 1}h(κ)}κ∈N (for certain polynomials k,m, h in κ) is said to be εmetcr-multi-
target extended target-collision-resistant if for every p.p.t. adversary A and every
sufficiently large κ, it holds that
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Pr
[

(x̂, K̂) ← AKey(·)(1κ) :
∃(xi,Ki) ∈ Q such that x̂ = xi and

H(K̂, x̂) = H(Ki, xi)

]
< εmetcr(κ)

where Key(·) is an oracle that on input xi ∈ {0, 1}m(κ), samples Ki uniformly at
random from {0, 1}k(κ), stores the pair (xi,Ki) in Q and returns Ki.

Clearly, εmetcr ≤ q · εetcr holds for up to q queries. Though we use m-eTCR
in our construction for simplicity of the argument, the same argument holds
with standard single-target eTCR with polynomial loss in the security bound.
We also note that, according to [40], eTCR can be constructed easily from TCR
by appending the key to the output. That is, H(K,m)||K is extended target-
collision-resistant if H is target-collision-resistant.

Given a message m, we will output a no-instance by computing x = H(K,m)
for a randomly chosen K ∈ K and then returning DC(x). One could expect that
the output of eTCR functions distributes uniformly over all possible values, but
collision-resistance is not enough to guarantee such a property. (Consider an
eTCR family of functions that output bitstrings where the last bit is constantly
zero, i.e., non-uniform.) To overcome this limitation, we assume an additional
property on the m-eTCR family: εreg-regularity. Roughly, every function in the
family must be statistically close to the uniform distribution over its output.

Definition 5.2. We say a family of functions H = {H : {0, 1}k(κ) ×
{0, 1}m(κ) → {0, 1}h(κ)}κ∈N is εreg-regular if for every sufficiently large κ
and every x ∈ {0, 1}m(κ), the distribution Dx defined as Dx := (K ←
{0, 1}k(κ) ; returnH(K,x)) is statistically close to the uniform distribution over
{0, 1}h(κ). More precisely,

Δ(Dx, Uh(κ)) :=
1
2

∑
α∈{0,1}h(κ)

∣∣ Pr[Dx = α] − Pr[Uh(κ) = α]︸ ︷︷ ︸
1/2h(κ)

∣∣ < εreg(κ).

The following lemma allows us to argue that the distribution of no-instances
produced from messages is indistinguishable from yes-instances.

Lemma 5.1. Let Lκ be a εhd-hard language (with respect to Cκ) with sampling
distributions (DLκ

,DCκ
) where DCκ

: {0, 1}h(κ) → Cκ (for certain polynomial
h in κ). Let H = {H : Kκ × Mκ → {0, 1}h(κ)}κ∈N be a εmetcr-multi-target
extended target-collision-resistant function family that is εreg-regular. Consider
the distribution Dm defined as K ← Kκ ; returnDCκ

(H(K,m)). For every m ∈
Mκ and every sufficiently large κ, Δ(Dm,DCκ

) < εreg(κ).

Proof. Observe that for every pair of random variables X,Y and every function
F whose domain is the range of X and Y , it holds2 Δ(F (X), F (Y )) ≤ Δ(X,Y ).
In our case, for every m ∈ Mκ and every sufficiently large κ,

Δ(Dm, DCκ) = Δ(K ← Kκ ; returnDCκ(H(K, m)), x ← Uh(κ) ; returnDCκ(x))

≤ Δ(K ← Kκ ; returnH(K, m), Uh(κ)) < εreg(κ). ��
2 We abuse notation and write F (X) to denote the composition F ◦ X, i.e., the dis-

tribution x ← X ; returnF (x).



Black-Box Extension of NIZK Arguments 583

Fig. 2. Construction of signature scheme from SS-NIZK

We expect that distribution DCκ
is close to an injection, having small collision

probability. This implies that instances in C have a short witness.

Definition 5.3. (Collision probability). A function f : {0, 1}m(κ) →
{0, 1}n(κ) for some polynomials m,n in κ is said have εcp-collision probability
(for some function εcp in κ) if for every sufficiently large κ, it holds
∣
∣
∣

{

x ∈ {0, 1}m(κ) : ∃y ∈ {0, 1}m(κ) such that x �= y ∧ f(x) = f(y)
}∣

∣
∣ < εcp(κ) · 2m(κ).

Let (Lκ, Cκ) be a εhd-hard promise problem over efficiently sampleable dis-
tributions (DLκ

,DCκ
) where DCκ

: {0, 1}h(κ) → Cκ (for certain polynomial h
in κ) has εcp-collision probability. Let H := {Hκ : Kκ × Mκ → {0, 1}h(κ)}κ∈N

be a εmetcr-multi-target extended target-collision-resistant function family that
is εreg-regular. Let Π := (Crs,Prv,Vrf,CrsSim,PrvSim) be a simulation sound
non-interactive zero-knowledge proof system.

Figure 2 defines the signature scheme Σ := (Setup,Sign,Vrf). For correctness
we only show the bound here.

Theorem 5.2 (Correctness). The signature scheme Σ defined above is cor-
rect. Concretely, for every message m ∈ Mκ and for every sufficiently large
κ,

Pr [ (pk, sk) ← Σ.Setup(1κ) ; σ ← Σ.Sign(pk, sk,m) : 1 = Σ.Vrf(pk,m, σ) ] >

1 − εzk(κ) − εco(κ) − εhd(κ) − 2εreg(κ).

Proof. For every m ∈ Mκ,

Pr [ (pk, sk) ← Σ.Setup(1κ) ; σ ← Σ.Sign(pk, sk,m) : 1 = Σ.Vrf(pk,m, σ) ]

= Pr
[

K ← Kκ; (σ, τ) ← Π.CrsSim(1κ)
y := DCκ

(Hκ(K,m)); π ← Π.PrvSim(σ, y, τ) : 1 = Π.Vrf(σ, y, π)
]

which, by Lemma 5.1 (and for every sufficiently large κ) is greater or equal than

Pr
[

y ← DCκ
; (σ, τ) ← Π.CrsSim(1κ)
π ← Π.PrvSim(σ, y, τ) : 1 = Π.Vrf(σ, y, π)

]
− 2εreg(κ)

which, by Lemma 2.2, is greater than 1 − εzk(κ) − εco(κ) − εhd(κ) − 2εreg(κ). ��
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Theorem 5.3 (Unforgeability). The signature scheme Σ defined above is
existentially unforgeable against adaptive chosen message attacks. In particular,
for every p.p.t. adversary A against the EUF-CMA experiment of Σ that makes
at most q queries to its signing oracle, there exists a p.p.t. algorithm B such that

AdvEUF-CMA
Σ,A (κ) ≤ AdvUSS

Π,B(κ) + εmetcr(κ) + qεcp(κ) + 2qεreg(κ)

and Time(B) ≈ Time(A) + poly(κ) where poly(κ) is independent of Time(A).
(Note that factor q multiplies to statistical errors only).

Proof. For every adversary A against the signature scheme, we build an attacker
B against the simulation soundness of the underlying Π primitive. B is given
the security parameter κ and a common reference string σ and oracle access
to Π.PrvSim(σ, ·, τ), where τ is the trapdoor associated to σ. B wins the game
if it can produce a valid proof on a no-instance that was not queried to its
oracle. B sends the public key pk = (σ,Hκ,DCκ

) to A. A is allowed to ask
for valid signatures of messages of its choice. On input mi, B produces a valid
signature by sampling Ki ← Kκ, computing yi = DCκ

(Hκ(Ki,mi)) and calling
its oracle, getting πi = Π.PrvSim(σ, yi, τ). Now, B returns σi = (πi,Ki) as to
A as a signature for mi. Eventually, A will come up with a pair (m̂, σ̂) such
that m̂ = mi for every i. At this moment, B parses σ̂ as (π̂, K̂) and computes
ŷ = DCκ

(Hκ(K̂, m̂)) and returns (ŷ, π̂) as the solution for its challenge.
Note that B succeeds in simulating the EUF-CMA experiment correctly.

Some signing queries can result into invalid signatures (although only with negli-
gible probability), i.e., for some indices i, it is possible to have Π.Vrf(σ, yi, πi) =
0. But this is not a problem, since in the real EUF-CMA experiment this event
occurs with the same probability. We define the bad event, Bad ≡ ‘There exists i
such that yi = ŷ’. Note that, if Bad does not occur, then B wins if so does A. More
precisely, Pr[B wins] ≥ Pr[A wins | ¬Bad] ≥ Pr[A wins]−Pr[Bad] or equivalently,
Pr[A wins] ≤ Pr[B wins]+Pr[Bad]. Note that Pr[Bad] ≤ max

p.p.t. M
{Pr[EM ]}, where

for a fixed M , the probability of event EM is defined as

Pr
[

(σ, τ) ← Π.CrsSim(1κ)

(m̂, (K̂, π̂)) ← MSign(·)(σ, Hκ, DCκ)
:
∃(mi, Ki, πi) ∈ Q such that

DCκ(Hκ(Ki, mi)) = DCκ(Hκ(K̂, m̂))

]

where Sign(·) is an oracle that, on input mi, samples Ki ← Kκ, computes
yi = DCκ

(Hκ(Ki,mi)) and πi = Π.PrvSim(σ, yi, τ), adds (mi,Ki, πi) to Q and
outputs (πi,Ki). For every p.p.t. M , there exists a p.p.t. M̄ such that the above
probability is upper-bounded by the following (M̄ is given the trapdoor τ):

Pr
[

(σ, τ) ← Π.CrsSim(1κ)

(m̂, K̂) ← M̄Key(·)(σ, τ, H, DCκ)
:

∃(mi, Ki) ∈ Q such that

DCκ(Hκ(Ki, mi)) = DCκ(Hκ(K̂, m̂))

]

where Key(·) is an oracle that, on input mi, samples Ki ← Kκ adds (mi,Ki)
to Q and returns Ki. Note that the sampling of the (σ, τ) using Π.CrsSim
requires polynomial time, and therefore, that operation can be included inside
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the machine M̄ . Then, we have that max
p.p.t. M

{Pr[EM ]} ≤ max
p.p.t. M̄

{
Pr[ĒM̄ ]

}
where

the probability of event ĒM̄ for a fixed algorithm M̄ is defined as

Pr
[

(m̂, K̂) ← M̄Key(·)(1κ,Hκ,DCκ
) :

∃(mi, Ki) ∈ Q such that

DCκ(Hκ(Ki, mi)) = DCκ(Hκ(K̂, m̂))

]
.

Now, let Xκ be the set of inputs to DCκ
that share an image, i.e.,

Xκ = {x ∈ {0, 1}h(κ) : ∃y ∈ {0, 1}h(κ) such that x = y ∧ DCκ
(x) = DCκ

(y)}.

Since DCκ
has εcp-collision probability, we have |Xκ| ≤ εcp · 2h(κ). Now, the

probability of Bad is upper-bounded by

max
p.p.t. M̄

{
Pr

[
(m̂, K̂) ← M̄Key(·)(1κ,Hκ,DCκ

) :
∃(mi, Ki) ∈ Q such that

Hκ(Ki, mi) = Hκ(K̂, m̂)

]}
+

max
p.p.t. M̄

{
Pr

[
⊥ ← M̄Key(·)(1κ,Hκ,DCκ

) : ∃(mi, Ki) ∈ Q such that
Hκ(Ki, mi) ∈ Xκ

]}
.

The εmetcr-multi-target extended target-collision-resistance of function Hκ guar-
antees that the first summand of the above expression is upper-bounded by
εmetcr(κ). On the other hand, if machine M̄ performs q queries to its oracle
Key(·), the second summand is upper-bounded by q(2εreg(κ) + εcp(κ)), because,
thanks to the εreg-regularity of Hκ, for every m ∈ Mκ (and for sufficiently large
κ),

Pr [K ←Kκ : Hκ(K, m) ∈ Xκ ] < Pr
[

x←{0, 1}h(κ) : x ∈ Xκ

]

+ 2εreg(κ)

upper-bounded by εcp(κ)+2εreg(κ), so we apply the union bound over all q queries.
For every adversary A against the signature scheme, the described B is an

adversary against the simulation soundness of the underlying NIZK such that

AdvEUF-CMA
ΣΠ ,A (κ) ≤ AdvUSS

Π,B (κ) + εmetcr(κ) + qεcp(κ) + 2qεreg(κ). ��
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Abstract. Recently, Bellare et al. defined subversion-resistance (secu-
rity in the case the CRS creator may be malicious) for NIZK. In particu-
lar, a Sub-ZK NIZK is zero-knowledge, even in the case of subverted CRS.
We study Sub-ZK QA-NIZKs, where the CRS can depend on the lan-
guage parameter. First, we observe that subversion zero-knowledge (Sub-
ZK) in the CRS model corresponds to no-auxiliary-string non-black-box
NIZK in the Bare Public Key model, and hence, the use of non-black-
box techniques is needed to obtain Sub-ZK. Second, we give a precise
definition of Sub-ZK QA-NIZKs that are (knowledge-)sound if the lan-
guage parameter but not the CRS is subverted and zero-knowledge even
if both are subverted. Third, we prove that the most efficient known
QA-NIZK for linear subspaces by Kiltz and Wee is Sub-ZK under a new
knowledge assumption that by itself is secure in (a weaker version of)
the algebraic group model. Depending on the parameter setting, it is
(knowledge-)sound under different non-falsifiable assumptions, some of
which do not belong to the family of knowledge assumptions.

Keywords: Bare Public Key model · No-auxiliary-string zero
knowledge · Non-black-box zero knowledge · QA-NIZK ·
Subversion-security

1 Introduction

Zero-knowledge argument systems introduced by Goldwasser et al. [22] enable a
prover to convince a verifier of the veracity of a statement while leaking no addi-
tional information. Blum et al. [6] introduced non-interactive zero-knowledge
(NIZK) argument systems where the prover outputs just one message (the argu-
ment) that convinces the verifier of the truth of the statement. Unfortunately,
NIZKs are impossible in the standard model [21], and thus in all such applica-
tions, one has to rely on some trust assumption like the common reference string
(CRS) model stating that there exists a trusted third party who has created the
CRS from a correct distribution. Other, weaker, trust models include the regis-
tered public key (RPK, [3], where the authority is trusted to check that a party
knows the secret key corresponding to the public key and then store her key)
c© International Association for Cryptologic Research 2020
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model and the bare public key (BPK, [9], where the authority is only trusted to
store the public key of each party) model. However, very few NIZKs are known in
the RPK model while black-box NIZK [38] (the simulator uses adversarial algo-
rithm only by giving inputs and receiving outputs) and even auxiliary-string
non-black-box [21,42] (the simulator may use the code of the adversary, who has
access to an arbitrary auxiliary string) NIZK is impossible in the BPK model.

There has been a recent surge of the research to decrease the trust in the CRS
model due to the use of succinct non-interactive zero knowledge argument sys-
tems of knowledge (zk-SNARKs, [11,18,26,27,35,36,40]) in real-life applications
like verifiable computation and cryptocurrencies. Recently, [2,15] constructed
subversion-zero knowledge (Sub-ZK) zk-SNARKs, where the prover does not
have to trust the CRS creator. According to an impossibility result of [4], this
means that such SNARKs cannot have soundness when the CRS has been mali-
ciously generated. Abdolmaleki et al. [2] proposed the following concrete recipe
for constructing Sub-ZK zk-SNARKs: first, construct an efficient public CRS
verification algorithm CV that rejects malformed CRSs. Second, when proving
Sub-ZK, use a non-falsifiable knowledge assumption [10] to obtain an extractor
that recovers the CRS trapdoor td from a CV-accepted CRS; td is then used
by the simulator (that works when the CRS has been honestly generated) to
simulate the argument. Based on this recipe, [2,15] showed that the most effi-
cient known zk-SNARK by Groth [27] is Sub-ZK. One principal weakness of
zk-SNARKs is that zk-SNARKs for languages outside of BPP have to rely on
non-falsifiable assumptions, based on the impossibility result of [19]. However, we
are not aware of any prior result indicating whether non-falsifiable assumptions
are needed to obtain Sub-ZK.

Another important recent direction in the NIZK arena is that of quasi-
adaptive NIZKs (QA-NIZKs, [28]). In a QA-NIZK, the CRS can depend on
a language parameter �, where � can be thought of as a properly distributed
public key of some cryptosystem. One consequence of this definition is that
up to now, QA-NIZKs have been only considered in the CRS model. The depen-
dence of CRS on correctly generated � means that one can construct very effi-
cient QA-NIZKs for non-trivial languages based on standard assumptions like
KerMDH [39]. Importantly, very efficient pairing-based QA-NIZKs [1,23,28,30–
32] for the linear subspace language have been constructed in the CRS model.
A QA-NIZK argument system for linear subspaces allows the prover to convince
the verifier that a vector of group elements1 [y]1 belongs to the column space of
a fixed public matrix � = [M ]1 ∈ G

n×m
1 , i.e., y = Mx for some vector x ∈ Z

m
p .

Although QA-NIZKs for other languages are known (e.g., the language of bit-
strings [23] and the languages of shuffles [24], both requiring a quadratic-length
CRS, and a recent QA-NIZK [12] for SSP [11], that relies on non-succinct com-
mitment), research on QA-NIZKs has been mostly concentrated on designing effi-
cient QA-NIZKs for linear subspaces. Such focus is motivated because of the broad
applicability of QA-NIZKs for linear subspaces in the design of various crypto-
graphic primitives (see [28,30–32] for examples and references). In addition, [14]

1 We use pairing-based setting and the additive bracket notation of [13] (see Sect. 2).
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combined SNARKs and QA-NIZKs for linear subspaces to construct an efficient
pairing-based NIZK shuffle argument systems. This and other recent work [8,25,
37] that use QA-NIZKs to construct SNARKs shows that the study of different
properties of QA-NIZKs can be also beneficial in the world of SNARKs.

In particular, Campanelli et al. [8] proposed a toolbox called LegoSNARK
that allows building complex zk-SNARK arguments from other zk-SNARKs
given that the building blocks of the final zk-SNARK are so-called commit-
and-prove SNARKs (CP-SNARKs). A linear subspace QA-NIZK plays a crucial
role in the Campanelli et al. framework. First, it is used in a transformation
that makes commit-carrying SNARKs (CC-SNARKs), like [27], CP-SNARKs.
Second, it is used as a building block in several CP-SNARKs proposed in [8].
Thus, one interested in having Sub-ZK LegoSNARK or Sub-ZK CP-SNARKs
inevitably needs a Sub-ZK QA-NIZK for linear subspaces. Importantly, in [8,14],
one uses a QA-NIZK to prove that an element belongs to the trivial full space;
in this case, a QA-NIZK is sound by default. Instead, one has to prove that the
stronger property of knowledge-soundness holds.

The main goal of the current paper is the study and construction of
subversion-secure QA-NIZKs. According to the original security definitions of
QA-NIZKs [28], one aims for soundness (alternatively, knowledge-soundness in
applications like [8,14]) and zero-knowledge in the case when both � and the
CRS are honestly generated. In reality, it means that in the case of QA-NIZKs,
one will have one more subversion-attack vector than in the case of SNARKs:
namely, one has to consider both the case of a subverted language parameter
(the Sub-PAR case) and the case of a subverted CRS. The Sub-PAR case with
honestly generated CRS was tackled in [29] (updated full version of [28] from
September 2018) where both Sub-PAR soundness and Sub-PAR zero-knowledge
were shown to be achievable for a large family of subspace languages.2 Since the
simulator does not need access to a language parameter trapdoor td�, one does
not have to extract td� for the simulation to be possible. Moreover, in the Sub-
PAR case, the CRS is still honestly generated, which means that the simulator
has access to the CRS trapdoor td.

Translated to the language of QA-NIZKs, by the impossibility result of [4],
one cannot achieve both soundness and zero-knowledge in the case both � and
the CRS have been subverted. Therefore, in the rest of the paper, we study
the slightly more relaxed case when (knowledge-)soundness holds if only � has
been subverted and zero-knowledge holds when both � and the CRS have been
subverted. It is unclear whether one can use existing techniques to construct a
Sub-ZK version of the most efficient QA-NIZKs like Πkw by Kiltz and Wee [31]
in this case. First, � has to be modeled separately from other inputs; no such
parameter exists in the case of SNARKs. The existence of � (and the dependence
of the CRS on it) is the main reason why falsifiable QA-NIZKs are so efficient.

2 This does not contradict the impossibility result of [4] (that achieving Sub-CRS
soundness and Sub-CRS zero-knowledge at the same time is impossible for non-
trivial languages) since � plays a different role compared to CRS.
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Second, known QA-NIZKs have a very different structure compared to
SNARKs. For example, the most efficient known QA-NIZK for linear subspaces
Πkw by Kiltz and Wee [31] has a trapdoor matrix K, but [K]1 is not explic-
itly given in the CRS. This means that the knowledge assumptions of [2,15] or
knowledge-of-exponent assumptions [10] (that all rely on [α]ι being in the CRS
for each trapdoor α) cannot be directly translated to the case of (Kiltz-Wee)
QA-NIZK, and thus one seems to need quite different knowledge assumptions.

Third, another significant difference is that the soundness of efficient QA-
NIZKs like [1,28,30–32] is based on standard falsifiable assumptions like
KerMDH. Thus, intuitively, the use of non-falsifiable assumptions to prove Sub-
ZK of a (sound) QA-NIZK seems to be less justifiable than in the case of proving
Sub-ZK of zk-SNARKs since in the case of zk-SNARKs, non-falsifiable assump-
tions are needed to get soundness anyhow [19]. Moreover, while Bellare et al.
had a discussion motivating the use of knowledge assumptions to obtain Sub-
ZK, they did not have a formal proof of their necessity. Can one base Sub-ZK
QA-NIZKs on falsifiable assumptions or prove it is impossible? (Non-subversion
zero-knowledge) QA-NIZKs do not always rely on falsifiable assumptions: in the
applications of QA-NIZKs in [8,14,25,37], one proves the “membership” in the
full space that only makes sense under knowledge assumptions.

This brings us to the main questions of the current work:

(i) Are non-black-box techniques needed to prove Sub-ZK of NIZKs for lan-
guages outside of BPP?

(ii) Are (knowledge-)soundness and zero-knowledge achievable in the previously
described model, i.e., only � has been subverted in the case of soundness,
and both � and the CRS are subverted in the case of zero-knowledge? From
this point on, we assume Sub-ZK QA-NIZK works in this model.

(iii) Can one obtain Sub-ZK QA-NIZKs for linear subspaces without modifying
the existing constructions?

Our Contributions. We answer to the above main questions (with yes, yes,
and mostly yes). It turns out that achieving Sub-ZK for state-of-the-art QA-
NIZKs is considerably more complicated than for state-of-the-art SNARKs. This
follows partly from the nature of QA-NIZKs (the existence of separate � and pk)
and from the construction of the concrete QA-NIZK. In the most relevant case
(k = 1), it turns out that the most efficient existing QA-NIZK by Kiltz and
Wee [31] is Sub-ZK (in the model described above) under a (novel) knowledge
assumption given suitable algorithms that verify the correctness of both � and pk.
Hence, in this case, Sub-ZK comes almost for free: one only has to perform some
additional computations that verify the correctness of the (language parameter
and) CRS, and the proof of Sub-ZK relies on a non-falsifiable assumption.

First, we make a conceptually important observation that Sub-ZK in the
CRS model, as defined in [2,4,15], is equal to no-auxiliary-string non-black-box
zero knowledge [21] in the BPK model [9,38]. In the BPK model, the verifier
(but not the prover) has a public key; and the key authority executes the func-
tionality of an immutable bulletin board by storing the received public keys.
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A zero-knowledge argument in the BPK model is either designated-verifier (the
argument convinces only the designated verifier) when using the verifier’s own
public key or transferable (the verifier can transfer the argument to other veri-
fiers and convince them of its validity) when using the public key pk of a third
party; the latter case is essentially equivalent to the CRS model with pk being
the CRS, pk = crs. The BPK model is significantly weaker than the CRS model,
being arguably the weakest public key or parameter based trust model under
which complicated functionalities like zero-knowledge are known to exist.

This important positive connection between no-auxiliary-string non-black-
box zero knowledge and Sub-ZK was missed in the prior work on Sub-ZK; we
hope it will simplify the construction and analysis of the future Sub-ZK argument
systems. Because of that connection, we will usually use the abbreviation Sub-
ZK to denote no-auxiliary-string non-black-box zero knowledge, but we explicitly
emphasize that we are working in the BPK model.

Since three messages are needed to achieve auxiliary-string zero knowledge
in the plain model for languages outside of BPP [21], it follows that in the BPK
model, auxiliary-string non-black-box NIZK is possible only for languages in
BPP. This provides a simple proof that one can only construct non-auxiliary-
string non-black-box NIZK for languages outside of BPP and thus provides an
answer to the open question (i).

In Sect. 3, we define the security of QA-NIZK arguments in the BPK model;
for this, we strengthen the “strong” QA-NIZK security definitions from [29] (as
updated on September 2018) that consider the case of subverted � but honestly
generated pk. We allow for both � and pk to be subverted. We model the resulting
definition of persistent zero-knowledge after the Sub-ZK definition of SNARKs
in [2], allocating a special role for the language parameter �. More precisely, we
require that for any efficient malicious C that creates the language parameter
creator and the public key, there exists an efficient extractor ExtC , s.t. if C, by
using random coins r, generates a language parameter � and a public key pk
(since there is no auxiliary input, � and pk have to be generated by C) then
ExtC , given r, outputs the secret key sk corresponding to pk.

Since we allow both � and pk to be subverted, it is possible that the subverter
sets sk = td� for td� being a trapdoor for a parameter �, e.g. for Kiltz-Wee
QA-NIZK, � = [M ]1 and td� = M . As we show in Sect. 4, this can result
in pathological QA-NIZK argument systems that are persistent zero-knowledge
but not standard zero-knowledge. (This is possible since we consider an extractor
that extracts the trapdoor behind � and returns this as the secret key.) Hence, we
say that a QA-NIZK argument system is no-auxiliary-string non-black-box zero-
knowledge (i.e., Sub-ZK) iff it is both standard zero-knowledge and persistent
zero-knowledge.

As the next main contribution, we study a variant Πbpk of the most-efficient
known QA-NIZK for linear subspaces Πkw by Kiltz and Wee [31] (denoted there
as Π ′

as). Πkw is known to be perfectly zero-knowledge and computationally sound
in the CRS model under a suitable KerMDH assumption, [31] for a matrix
distribution Dk where k is a small security-assumption-related integer; k = 1 in
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the case of asymmetric pairings. In Πkw, the CRS includes a matrix [Ā]2 ∈ G
k×k
2

(assumed to be distributed according to Dk) and the argument consists of only
k group elements (thus, smaller k results in better efficiency). In the variant of
Πkw proposed in the current paper, pk of Πbpk includes a new component pkpkv

that helps to publicly check that even adversarially generated [Ā]2 in pk has
full rank k. In the case of many distributions Dk that are important in practice
(we will call such distributions efficiently verifiable), the latter verification can
be done efficiently only based on the knowledge of [Ā]2 itself and thus pkpkv

will be an empty string. Similarly to [2], we also define an efficient public-key
verification algorithm that we denote by PKV. On top of it, we also define an
efficient �-verification algorithm PARV. We emphasize that we analyze Πkw since
it is the most efficient known QA-NIZK for linear subspaces. We leave analyzing
other QA-NIZKs (that will hopefully be easier to do following our definitional
framework and analysis of Πkw) to the further work.

Since in the case of verifiable Dk, we do not modify the public-key genera-
tion and the prover (thus, essentially Πkw = Πbpk), the (non-subversion) sound-
ness of Πbpk in the BPK model follows directly from [31]. In the non-verifiable
special case Dk = U2, we add some extra elements to pk and then prove the
(non-subversion) soundness of Πbpk under the SKerMDH assumption of [23]. In
the subversion-case, when the language parameter could have been subverted,
we prove (subverted-�) soundness under KerMDHdl or SKerMDHdl assumption.
Here, if X and Y are two assumptions, XY is the interactive assumption that
X holds even if the adversary was given non-adaptive access to a Y oracle.
See [34] for a thorough treatment of XY -type assumptions. Interestingly, up to
now, the only non-falsifiable assumptions that have been used to construct effi-
cient succinct NIZKs are knowledge assumptions; the use of (seemingly more
standard) XY -type assumptions instead is one of the possibly most interesting
contributions of the current paper.

As mentioned before, knowledge-sound QA-NIZKs are also interesting in the
case when one uses them to prove the membership in the full space. We prove
that Πbpk is knowledge-sound by modifying a similar knowledge-soundness proof
from [8] that, however, was only given in the non-subversion case, and only for
k = 1. We use a SDLdl (where SDL is the symmetric discrete logarithm assump-
tion, [5]) assumption, like in the case of soundness proofs, to get knowledge-
soundness even in the subversion case. We modify the proof of [8] so that it
generalizes to arbitrary k. Moreover, knowledge-soundness will rely on both
the SDLdl and a hash-algebraic knowledge (HAK) assumption. In [37], Lipmaa
recently defined the framework of HAK assumptions to make the algebraic group
model (AGM) of Fuchsbauer et al. [16] more concrete and applicable. While in
the AGM, it is assumed that every adversary is algebraic, a HAK assumption is
defined with respect to a concrete input distribution of the adversary. I.e., a D-
HAK assumption states that if an adversary obtains an input (a vector of group
elements) distributed according to a fixed distribution D then she knows how
the group elements that she outputs depend on the input. HAK assumptions
are even weaker: they allow for the case an adversary has additionally gener-
ated high min-entropy (but not necessarily uniformly random) group elements
by using say elliptic-curve hashing.
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Since Πkw is perfectly zero-knowledge [31], we now only have to prove that
it is also persistent zero-knowledge; from this, it follows that it is Sub-ZK in
the BPK model. We prove that Πbpk is statistically persistent zero-knowledge
under either one of the two new knowledge assumptions KWKE (the Kiltz-Wee
Knowledge of Exponent assumption) and SKWKE (the strong KWKE assump-
tion)3, assuming that its whole pk is generated by the verifier or a verifier-trusted
authority—even if we are set to prove Sub-ZK that interests the prover. Intu-
itively, (S)KWKE guarantees that if an adversary A has succeeded in creating a
pk accepted by PKV then one can extract corresponding sk = K. We prove that
both assumptions hold under a hash-algebraic knowledge (HAK, [37]) assump-
tion, see Theorem 1. (Here, SKWKE also relies on a computational assumption
that depends on the matrix distribution Dk but is equal to the discrete logarithm
assumption for all standard distributions Dk.)

The proof of Theorem 1 is quite intricate. More precisely, we use a HAK
assumption to extract some outputs of A as polynomials in indeterminates cre-
ated by A. To extract an integer sk, we use the Schwartz-Zippel lemma and let
the extractor output evaluation of the polynomials at a random point. We then
use the specific form of PKV to argue that such sk is correct. In the case of
SKWKE, we evaluate the polynomials at two random points and use an addi-
tional reduction to a computational assumption, see Theorem 1.

Interestingly, under KWKE we only get the guarantee that the part pkzk

of the pk, used either by the prover or the simulator, has been correctly com-
puted. This, however, suffices to prove that Πbpk is Sub-ZK. (Thus, Sub-ZK can
be achieved even if the correctness of the whole public key cannot be verified.)
Hence, in the case Dk is efficiently verifiable, one can get Sub-ZK essentially for
free (efficiency-wise, the only added cost will be the need for a prover to verify
the correctness of the public key; this can, however, be done once per public
key). This is important since it means that in the case of efficiently verifiable
matrix distributions, we get a stronger security property (Sub-ZK) without hav-
ing to design a new, more complicated, and less efficient QA-NIZK. Arguably,
in practice, one is only interested in efficiently verifiable distributions: the case
k = 1 is the most one, and the case k = 2 is only needed in some applications
(e.g., when one wants to rely on a weaker assumption). However, in such cases,
one can usually use an efficiently verifiable distribution like L2 that corresponds
to the 2-Lin assumption. This answers to the open questions (ii–iii).

We also show that under a stronger knowledge assumption SKWKE, one
can guarantee that the whole pk has been correctly computed. However, as a
drawback, the SKWKE assumption only holds if the language parameter [M ]1
comes from a suitable hard distribution. The latter is, however, often the case
in QA-NIZK applications, where [M ]1 is a public key of a cryptographic prim-
itive like an encryption or commitment scheme. In both cases, the soundness is
guaranteed by a KerMDH assumption.

3 It is possible to achieve the same level of security using more standard BDHKE
assumption [2] by making both [M ]1 and [M ]2 public. Unfortunately, such a solution
is less efficient; our goal was to achieve maximum efficiency.
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2 Preliminaries

A random variable X has min-entropy k, H∞(X) = k, if maxx Pr[X = x] = 2−k.
Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security param-
eter. All adversaries will be stateful. For an algorithm A, let im(A) be the image
of A (the set of valid outputs of A), let RNDλ(A) denote the random tape of A
(assuming the given value of λ), and let r ←$RNDλ(A) denote the random choice
of the randomizer r from RNDλ(A). We denote by negl(λ) an arbitrary negligi-
ble function. We write a ≈λ b if |a − b| ≤ negl(λ). We follow Bellare et al. [4] by
using “cryptographic” style in security definitions where all complexity (adver-
saries, algorithms, assumptions) is uniform, but the adversary and the security
(say, soundness) is quantified over all inputs chosen by the adversary. See [4] for
a discussion.

A bilinear group generator PGen(1λ) returns (p,G1,G2,GT , ê, [1]1, [1]2),
where G1, G2, and GT are additive cyclic groups of prime order p = 2Ω(λ),
[1]1, [1]2 are generators of G1, G2, resp., and ê : G1 × G2 → GT is a non-
degenerate PPT-computable bilinear pairing. We assume the bilinear pairing to
be Type-3, i.e., that there is no efficient isomorphism from G1 to G2 or from
G2 to G1. We use the by now standard bracket notation, i.e., we write [a]ι to
denote agι where gι is a fixed generator of Gι. We denote ê([a]1, [b]2) as [a]1[b]2.
Thus, [a]1[b]2 = [ab]T . We freely use the bracket notation with matrices, e.g., if
AB = C then A[B]ι = [C]ι and [A]1[B]2 = [C]T .

In the Bare Public Key (BPK) model [9,38], parties have access to a public
file F , a polynomial-size collection of records (id, pkid), where id is a string
identifying a party (e.g., a verifier), and pkid is her alleged public key. In a typical
zero-knowledge protocol in the BPK model, a key-owning party Pid works in two
stages. In stage one (the key-generation stage), on input a security parameter 1λ

and randomizer r, Pid outputs a public key pkid and stores the corresponding
secret key skid. After that, F will include (id, pkid). In stage two, each party
has access to F , while Pid has possible access to skid (however, the latter is
not required by us). It is commonly assumed that only the verifier of a NIZK
argument system in the BPK model has a public key [38]; see also Sect. 3.

In a zero-knowledge proof or argument system, a prover convinces the veri-
fier of the veracity of a statement without leaking any side information except
that the statement is true. Here, a proof (resp., an argument) system guar-
antees soundness against an unbounded (resp., a PPT) cheating prover. The
zero-knowledge property is proven by constructing a simulator that can simulate
the view of a cheating verifier without knowing the secret information (witness)
of the prover. A non-interactive zero-knowledge proof or argument system [6]
consists of just one message by the prover.

We will only deal with no-auxiliary-string non-black-box NIZK argument
systems in the plain model, but to explain this choice, it is important to know
that there are many possibility and impossibility results about zero knowledge
in the BPK model. Goldreich and Oren [21] proved that three rounds are needed
for auxiliary-string zero knowledge in the plain model. From this, it follows that
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there exists no auxiliary-string non-black-box NIZK argument system in the BPK
model for a language L outside of BPP, see Lemma 1.

The Symmetric Discrete Logarithm (SDL) [5] assumption holds relative to
PGen, if for any PPT A, Pr

[
p ← PGen(1λ);x ←$Zp : A(p, [x]1, [x]2) = x

] ≈λ 0.
Kernel Matrix Diffie-Hellman Assumption (KerMDH) is a well-known

assumption family formally introduced in [39]. Let D�k be a probability dis-
tribution over matrices in Z

�×k
p , where � > k. Next, we define five commonly

used distributions (see [13] for references), where a, ai, aij ←$Z
∗
p: Uk (uniform),

Lk (linear), ILk (incremental linear), Ck (cascade), SCk (symmetric cascade):

Uk: A =
( a11 ... a1k

... ... ...
ak1 ... akk

ak+1,1 ... ak+1,k

)
, Lk: A =

⎛

⎝
a1 0 ... 0 0
0 a2 ... 0 0
0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 ak
1 1 ... 1 1

⎞

⎠ ,

ILk: A =

⎛

⎝
a 0 ... 0 0
0 a+1 ... 0 0
0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 a+k−1
1 1 ... 1 1

⎞

⎠ , Ck: A =

⎛

⎝
a1 0 ... 0 0
1 a2 ... 0 0
0 1 ... 0 0
... ... ... ... ...
0 0 ... 1 ak
0 0 ... 0 1

⎞

⎠ ,

SCk: A =

⎛

⎝
a 0 ... 0 0
1 a ... 0 0
0 1 ... 0 0
... ... ... ... ...
0 0 ... 1 a
0 0 ... 0 1

⎞

⎠ .

Assume that D�k outputs matrices A where the upper k × k submatrix Ā
is always invertible. I.e., D�k is robust, [28]. All the above distributions can be
made robust with minimal changes. Denote the lower (� − k) × k submatrix of
A as A. Denote Dk = Dk+1,k.

D�k-KerMDHG1 [39] holds relative to PGen, if for any PPT A,
Pr

[
p ← PGen(1λ);A ←$ D�k; [c]2 ← A(p, [A]1) : A�c = 0k ∧ c �= 0�

]
≈λ 0.

D�k-SKerMDH [23] holds relative to PGen, if for any PPT A, Pr[p ←
PGen(1λ);A ←$ D�k; ([c1]1, [c2]2) ← A(p, [A]1, [A]2) : A�(c1 − c2) = 0k ∧
c1 − c2 �= 0�] ≈λ 0. According to Lemma 1 of [23], if D�k-KerMDH holds in
generic symmetric bilinear groups then D�k-SKerMDH holds in generic asym-
metric bilinear groups. The KerMDH assumption holds also for Type-1 pairings,
where G1 = G2, but then one needs k ≥ 2, which affects efficiency.

Hash-Algebraic Knowledge Assumptions. The Algebraic Group Model
(AGM) is a new model [16] that one can use to prove the security of a cryp-
tographic assumption or protocol. Essentially, in AGM one assumes that each
PPT algorithm (including the adversaries) is algebraic in the following sense:
if the adversary A’s input includes [xι ]ι and no other elements from the group
Gι and A outputs group elements [yι ]ι, then A knows matrices N ι, such that
yι = N ιxι. Lipmaa [37] considered AGM to be as a family of algebraic knowl-
edge assumptions. He defined the AGM with hashing (AGMH), where the adver-
sary is additionally allowed to create new group elements that have high min-
entropy from the adversary’s viewpoint (and in particular, without knowing their
discrete logarithms). This takes into account the existence of efficient elliptic
curve hashing algorithms that can be used to generate such new group elements.
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Following [37], we say that a PPT algorithm A is hash-algebraic (in p) if there
exists an efficient extractor ExtA, such that for any PPT sampleable distribution
D, Advhakp,D,A(λ) :=

Pr

⎡

⎢
⎣

x = ([x1]1, [x2]2) ←$ D; r ←$RNDλ(A); ([y1]1, [y2]2) ←$ A(x; r);
(N1,N2, [q1]1, [q2]2) ← ExtA(x; r) :
(y1 �= N1(

x1
q1 ) ∨ y2 �= N2(

x2
q2 )) ∨ (∃ι, s : H∞([qιs]ι) = O(log λ))

⎤

⎥
⎦ .

A bilinear group p is hash-algebraic if every PPT algorithm A that obtains
inputs from G1/G2 and outputs elements in G1/G2 is hash-algebraic. Clearly, a
hash-algebraic adversary is less restricted than an algebraic adversary.

The requirement that A is hash-algebraic for a concrete D is a
specific (p,D,A)-hash-algebraic knowledge (HAK) assumption stating that
Advhakp,D,A(λ) ≈λ 0. In AGMH, one assumes that (p,D,A)-HAK holds for all
choices of (D,A). Alternatively, [37] calls it the p-HAK assumption. While prov-
ing the security of a concrete protocol in a fixed group p, it is sufficient to rely on
the following assumption for a single specified distribution D. A (p,D,A)-HAK
assumption states that Advhakp,D,A(λ) ≈λ 0. A (p,D)-HAK assumption states that
Advhakp,D,A(λ) ≈λ 0 for all PPT A. Analogously, the (D,A)-algebraic knowledge
(AK) assumption in p states that Advakp,D,A(λ) ≈λ 0.

Lipmaa [37] demonstrated the usefulness of the HAK assumption showing
that Damg̊ard’s original Knowledge-of-Exponent (KE, [10]) assumption is secure
under the DL and HAK assumptions. The opposite does not always hold: KE
assumption (and its generalizations) cannot be used to extract unless each input
group element [z]ι is accompanied with a “knowledge” input [xz]ι for random
x. Thus, protocols that rely on HAK assumptions can, in principle, be more
efficient than protocols that rely on KE assumptions only.

Intuitively, a security proof under the (p,D)-HAK assumption constitutes
essentially an AGMH security proof, but without one assuming that all PPT
algorithms in the group p are (hash-)algebraic. Finally, according to the anal-
ysis of [37], it is sufficient to assume that [qι]1 has high min-entropy while the
previous approach of generic model with hashing as in [2,4,7,41] assumed that
adversarially created group elements are uniformly random.

3 Defining QA-NIZK in the BPK Model

Quasi-Adaptive Non-Interactive Zero-Knowledge (QA-NIZK) argument sys-
tems [28] are quasi-adaptive in the sense that the CRS depends on a language
parameter � that has been sampled from a fixed distribution Dp. QA-NIZKs
are of great interest since they are succinct and based on standard assumptions.
Since QA-NIZKs have many applications, they have been a subject of intensive
study, [1,23,28,30–33]. The main limitation of known QA-NIZKs is that efficient
QA-NIZKs are only known for a restricted set of languages like the language of
linear subspaces (see [12,23,24] for QA-NIZKs for other languages).
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The original QA-NIZK security definitions [28] were given in the CRS model.
Jutla and Roy strengthened the definitions in the full version of their paper, [29],
allowing for the case when the language parameter is maliciously picked. We will
lift the latter definitions to the weaker BPK model. Sometimes, the only differ-
ence compared to the definitions of [29] is in notation (a CRS will be replaced
by a public key). The rest of the definitional changes are motivated by the def-
inition of Sub-ZK zk-SNARKs in [2], e.g., a QA-NIZK in the BPK model will
have a public-key verification algorithm PKV and the zero-knowledge definition
mentions a subverter and an extractor. We also define a �-verification algo-
rithm PARV. Since black-box [38] and even auxiliary-input non-black-box [21]
(see Lemma 1) NIZK in the BPK model is impossible we will give an explicit
definition of no-auxiliary-string non-black-box NIZK.

As in [4], we will implicitly assume that the system parameters p are gener-
ated deterministically from λ; in particular, the choice of p cannot be subverted.
A QA-NIZK argument system enables to prove membership in a language defined
by a relation R� = {(x,w)}, which in turn is completely determined by a param-
eter � sampled (in the honest case) from a distribution Dp. We will assume
implicitly that � contains p and thus not include p as an argument to algorithms
that also input �; recall that we assumed that p cannot be subverted. A distri-
bution Dp on L� is witness-sampleable [28] if there exists a PPT algorithm D′

p

that samples (�, td�) ∈ Rp such that � is distributed according to Dp.
The zero-knowledge simulator is usually required to be a single (non-black-

box) PPT algorithm that works for the whole collection of relations Rp =
{R�}�∈im(Dp); that is, one usually requires uniform simulation (see [28] for a dis-
cussion). Following [2], we accompany the universal simulator with an adversary-
dependent extractor. We assume Sim also works in the case when one cannot
efficiently establish whether � ∈ im(Dp). The simulator is not allowed to create
new � or pk but has to operate with one given to it as an input.

A tuple of PPT algorithms Π = (PGen,KGen,PARV,PKV,P,V,Sim) is a
no-auxiliary-string non-black-box zero knowledge (Sub-ZK) QA-NIZK argument
system in the BPK model for a set of witness-relations Rp = {R�}�∈Supp(Dp ),
if the following Items i, ii, iv and v hold. Π is a Sub-ZK QA-NIZK argument
of knowledge, if additionally Items iii holds. Here, PGen is the parameter gen-
eration algorithm, KGen is the public key generation algorithm, PARV is the
�-verification algorithm, PKV is the public-key verification algorithm, P is the
prover, V is the verifier, and Sim is the simulator.

(i) Perfect Completeness: for any λ, p ∈ im(PGen(1λ)), PPT A,

Pr

⎡

⎢
⎣

� ←$ Dp; (pk, sk) ← KGen(�); (x,w) ← A(pk);
π ← P(�, pk, x,w) : PARV(�) = 1 ∧ PKV(�, pk) = 1∧
((x,w) �∈ R� ∨ V(�, pk, x, π) = 1)

⎤

⎥
⎦ = 1 .
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(ii) Computational Quasi-Adaptive Sub-PAR Soundness: for any p ∈
im(PGen(1λ)), and stateful PPT A,

Pr

[
� ← A(p); (pk, sk) ← KGen(�); (x, π) ← A(pk) :
PARV(�) = 1 ∧ V(�, pk, x, π) = 1 ∧ ¬(∃w : R�(x,w) = 1))

]

≈λ 0 .

(iii) Computational Quasi-Adaptive Sub-PAR Knowledge-Soundness:
for every PPT stateful adversary adversary A, there exist a PPT extractor
ExtA, s.t. for all p ∈ im(PGen(1λ)),

Pr

⎡

⎢
⎣

r ←$RNDλ(A); � ← A(p; r); (pk, sk) ← KGen(�);
(x, π) ← A(pk; r);w ← ExtA(p, pk; r) : PARV(�) = 1∧
V(�, pk, x, π) = 1 ∧ R�(x,w) = 0

⎤

⎥
⎦ ≈λ 0 .

A knowledge-sound argument system is called an argument of knowledge.
(iv) Statistical Zero Knowledge: for any λ, p ∈ im(PGen(1λ)), and compu-

tationally unbounded adversary A, |εzk
0 − εzk

1 | ≈λ 0, where εzk
b :=

Pr
[
� ← Dp; (pk, sk) ← KGen(�) : AOb(·,·)(�, pk) = 1

]
.

The oracle O0(x,w) returns ⊥ (reject) if (x,w) �∈ R�, and otherwise it
returns P(�, pk, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) �∈ R�,
and otherwise it returns Sim(�, pk, sk, x).

(v) Statistical Persistent Zero Knowledge: for any PPT subverter C, there
exists a PPT extractor ExtC , s.t. for any λ, p ∈ im(PGen(1λ)), and compu-
tationally unbounded adversary A, |εzk

0 − εzk
1 | ≈λ 0, where

εzk
b := Pr

[
r ←$RNDλ(C); (�, pk, aux) ← C(p; r); sk ← ExtC(p; r) :

PARV(�) = 1 ∧ PKV(�, pk) = 1 ∧ AOb(·,·)(�, pk, aux) = 1

]

.

The oracle O0(x,w) returns ⊥ (reject) if (x,w) �∈ R�, and otherwise it
returns P(�, pk, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) �∈ R�,
and otherwise it returns Sim(�, pk, sk, x).

Π is statistically no-auxiliary-string4 non-black-box zero knowledge (Sub-ZK) if
it is both statistically zero-knowledge and statistically persistent zero-knowledge.

Knowledge-sound QA-NIZKs are useful in situations where the witness rela-
tions R� are trivial in the sense that for each x, there exists a w such that
(x,w) ∈ R�. In such cases, one must argue that the prover knows this w.
Knowledge-sound QA-NIZK argument systems have applications in shuffles [14]
and SNARKs [8,25,37].

In their definition of strong soundness for strong QA-NIZK, Jutla and
Roy [29] made the assumption that C� also returns td�. This assumption reminds
the AGM [16], where in the security proofs, the adversary is assumed to output
4 Auxiliary-string non-black-box ZK [21] means that definitions hold even if any aux ∈

{0, 1}poly(λ) is given as an additional input to A and Cpk (and ExtC).
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a part of her secret state but might be stronger depending on the definition of
Dp. Thus, one should not make such an assumption per se but prove (say, in
the AGM) that it holds. In several recent reinterpretations of AGM [37], one
has reworded AGM by requiring the existence of an extractor that returns the
secret state. In our Sub-PAR (knowledge-)soundness definition, we require that
PARV(�) = 1 (thus, � ∈ im(Dp) and a td� exists). We do not require td� can be
extracted; we only require that w can be extracted. In our security proof, the
extractor of w will first extract td� by using a DL oracle; we prove knowledge-
soundness under a non-falsifiable assumption (more precisely, under the SDLdl

assumption that states that solving SDL is intractable even if the adversary is
given non-adaptive access to a DL oracle, see Fig. 6).

More precisely, in the case of the concrete construction of Πbpk, extraction
of td� is needed since the Πkw argument system [31] (and thus also the Πbpk

argument system in Sect. 5) is only sound if Dp is witness-sampleable. In the
soundness proof in [31], one obtains td� from the honest �-creator. In the Sub-
PAR knowledge-soundness proof in Sect. 5, we extract td� from the malicious
�-creator A and then use td� to extract w. However, we use the DL oracle to
extract td� and thus will need not have to rely on witness-sampleability of Dp.

We assume that a single subverter C produces � and pk in the case of Sub-ZK,
and the extractor will get access to the code of C and its inputs and random coins.
The extractor never works with probability 1 since C can randomly sample (with
a non-zero but negligible probability) a well-formed pk. However, if it works, then
in our constructions, the simulation will be perfect. For the sake of simplicity,
we will not formalize this as perfect zero-knowledge. (One reason for this is that
differently from [2], the secret key extracted by ExtC is not unique in our case;
see discussion in Sect. 5.)

The existence of PKV is not needed in the CRS model, assuming the CRS
creator is trusted by the prover, and thus PKV was not included in the prior QA-
NIZK definitions. Since soundness is proved in the case pk is chosen correctly (by
the verifier or a trusted third party, trusted by her), V does not need to execute
PKV. However, PKV should be run by P. Similarly, the existence of PARV is not
needed in the CRS model; the algorithm PARV needs to be run both by P and
V. The simulator is only required to simulate correctly in the case PARV accepts
� and PKV accepts pk.

For Sub-ZK, we require that both standard zero-knowledge (with trusted
� and pk generators) and persistent zero-knowledge (with possibly subverted �
and pk) generators hold. The reason behind requiring both is subtle and will be
explained in Sect. 4. Very briefly, since one considers a single subverter C that
creates both � and pk, persistent zero-knowledge leaves one vulnerable against
the subverter who just sets sk ← td�. While this attack is not possible in the case
of all QA-NIZKs, as we show in Sect. 4, one can design a QA-NIZK argument
system that is persistent zero-knowledge but not standard zero-knowledge. Intu-
itively, requiring that the same simulator Sim also works without the knowledge
of td� makes it possible to avoid such pathological cases. However, it means that
persistent zero-knowledge is not a strictly stronger notion than the standard
zero-knowledge, and one requires both to obtain Sub-ZK.
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Comparison to Earlier Sub-ZK Definitions. Subversion-security was
defined by Bellare et al. [4] for the CRS model; further CRS-model subversion-
security definitions were given in [2,15]. As proven in [4], one cannot achieve
Sub-SND (soundness even if the CRS was generated maliciously) and non-
subversion zero knowledge at the same time. Thus, subsequent efforts have concen-
trated on achieving either Sub-SND and witness-indistinguishability [4], subver-
sion knowledge-soundness and witness-indistinguishability [17], or Sub-ZK (zero
knowledge in the case the CRS was generated maliciously) and soundness [2,4,15].
In the latter case, the CRS is trusted by the verifier V while (following the defini-
tions of [2]) the prover checks that the CRS is well-formed by using a publicly avail-
able algorithm. Thus, Sub-ZK in the CRS model is the same as zero-knowledge in
the BPK model: the CRS has to be trusted by (or, even chosen by) V and hence
can be equal to the public key of an entity trusted by V (or of V herself). Since
black-box NIZK [38] and even auxiliary-string non-black-box NIZK [21] in the
BPK model is impossible, one has to define no-auxiliary-string non-black-box zero
knowledge (Sub-ZK) as above. Bellare et al. [4] motivated not incorporating aux-
iliary strings to the definition of Sub-ZK by known impossibility results. We will
formalize this (folklore, see [42] for discussion) impossibility result as the following
straightforward lemma.

Lemma 1. Auxiliary-string non-black-box NIZK in the BPK model is only pos-
sible for languages in BPP.

Proof. The notions of (no-)auxiliary-string and (non-)-black-box zero-knowledge
were defined by Goldreich and Oren [21] who proved that auxiliary-string (even
non-black-box) zero-knowledge argument systems for languages outside of BPP
require at least three messages in the plain model. An auxiliary-string (non-
black-box) NIZK argument system in the BPK model can be interpreted as a
two-message auxiliary-string (non-black-box) zero-knowledge argument system
in the plain model, where the verifier creates BPK and sends it as her first
message. Thus, an auxiliary-string NIZK argument system for languages outside
of BPP would contradict the impossibility result of [21]. �

Auxiliary-input zero-knowledge is usually used to achieve sequential compo-
sition of interactive zero-knowledge protocols, [21]. Sub-ZK guarantees sequen-
tial security in the case of NIZK, see [2] for a proof. In particular, the main
result of [2,15], reformulated in our language, is that there exist computation-
ally knowledge-sound Sub-ZK zk-SNARKs for NP in the BPK model.

In the case of QA-NIZKs, one has to deal with two parameters, � (the lan-
guage parameter) and pk (the public key). As shown in [29] (updated version
from September 2018), one can achieve both soundness and zero-knowledge in
the case when � is subverted but pk is honestly chosen. In the persistent zero-
knowledge definition, we allow for subverted pk and �. Due to the impossibility
result of [4], we are not aiming to achieve Sub-SND. Thus, in the definition of
soundness, we assume that pk is honestly generated.
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Fig. 1. Kiltz-Wee QA-NIZK argument system Πkw for [y]1 = [M ]1w

Language of Linear Subspaces and Kiltz-Wee QA-NIZK. An important
application of QA-NIZK is in the case of the following language. Assume we need
to show that [y]1 ∈ colspace([M ]1), where [M ]1 is sampled from a distribution
Dp over G

n×m
1 . We assume, following [28], that (n,m) is implicitly fixed by Dp.

That is, a QA-NIZK for linear subspaces handles languages

L[M ]1 =
{
[y]1 ∈ G

n
1 : ∃w ∈ Z

m
p s.t. y = Mw

}
.

The corresponding relation is defined as R[M ]1 = {([y]1,w) ∈ G
n
1 × Z

m
p : y =

Mw}. This language is useful in many applications, [8,28]. As a typical appli-
cation, let [M ]1 = [1, sk]�1 be a public key of the Elgamal cryptosystem; then
ciphertext [y]1 ∈ L[M ]1 iff it encrypts 0. Here, [M ]1 comes from a KerMDH-hard
witness-sampleable distribution Dp.

The most efficient known QA-NIZK for linear subspaces in the CRS model
was proposed by Kiltz and Wee [31]. In particular, they proposed a QA-NIZK
Πkw that assumes that the parameter � = [M ]1 ∈ G

n×m
1 is sampled from a

witness-sampleable distribution Dp. Πkw results in the argument that consists of
k group elements, where k is the parameter (k = 1 being usually sufficient in the
case of asymmetric pairings) related to the underlying KerMDH distribution.
More precisely, given n > m, the Kiltz-Wee QA-NIZK is computationally quasi-
adaptively sound under the Dk-KerMDHG1 assumption relative to PGen, [31].
Importantly, Πkw is significantly more efficient than the Groth-Sahai NIZK for
the same language. For the sake of completeness, Fig. 1 describes the Kiltz-Wee
QA-NIZK argument system Πkw for linear subspaces in the CRS model.

Some Applications of QA-NIZK in the BPK Model. The simplest exam-
ple application is that of UC-commitments from [28], where a trusted third party
generates a commitment key � together with a QA-NIZK public key pk, and P
opens the commitments later by disclosing a QA-NIZK argument of proper com-
mitment under the commitment key �. Here, � should not be generated by P
(who could then equivocate) or by V (who could then extract the message).
However, pk can be generated by V. This allows one, securely generated �, to be
used in many applications, from UC-commitments to identity-based encryption.
In each such application, a trusted authority trusted by V (e.g., V herself) can
create her pk that takes the particularities of that application into account.

Another, arguably much more important application, is the use of Sub-
ZK QA-NIZKs in the construction of Sub-ZK SNARKs. Several recent papers



On QA-NIZK in the BPK Model 605

[8,14,25,37] have used QA-NIZKs for subspace language to construct SNARKs.
In these cases, one proves the membership in the trivial full vector space under
knowledge assumption, resulting in a statement that (say) the argument belongs
to the span of certain CRS elements only like in [37] or that two commitments
that possibly use different commitment keys commit to the same vectors like
in [14]. To obtain Sub-ZK SNARKs (under a knowledge assumption), in such
cases also the QA-NIZK has to be Sub-ZK (under a knowledge assumption).

In many other applications, it is desirable that zero-knowledge holds even if
both � and pk both are chosen by V (or by possibly different parties, neither of
which is trusted by P). The above Sub-ZK definitions cover this more realistic
scenario; in addition, they do not require V to trust �. One such application is in
the LegoSNARK framework by Campanelli et al. [8]. LegoSNARK uses QA-NIZK
for linear subspace to build Commit-and-Prove (CP) SNARKs, which can be
securely and efficiently combined together, creating a complex proof system able
to perform well even for heterogeneous instance representation. Unfortunately,
most of the modern zk-SNARKs are not CP-SNARKs. Hence [8] proposed a QA-
NIZK-based transformation that builds them using any Commit-Carrying (CC)
SNARK; the latter are much more common, e.g., the most efficient zk-SNARK
for QAP by Groth [27] is a CC-SNARK. Despite that, Campanelli et al. propose
a number of CP-SNARKs that are QA-NIZK-based.

4 Persistent Zero-Knowledge �⇒ Zero-Knowledge

Intuitively, it seems that persistent zero-knowledge follows from the standard
zero-knowledge since the set of all possible PPT subverters C also includes honest
algorithms. However, this intuition is wrong. We will next show that one can
construct pathological QA-NIZK argument systems that achieve persistent zero-
knowledge, but do not satisfy the usual definition of zero-knowledge and actually
leak some information about the witness.

Let us consider a slight variation of the subspace language where � =
([M ]1, [M ]2)5 and the statement is that [y]1 belongs to the subspace spanned
by the matrix [M ]1. Moreover, for simplicity let us take M ←$Z

2×1
p . Consider

the QA-NIZK argument system (a leaky QA-NIZK ) in Fig. 2. It has secret keys
from the same set Z

2×1
p , and thus, M can pass as a secret key. Leaky QA-

NIZK does not have a public key, the argument is simply [π]1 = [w]1, and the
verification is done by checking that [π]�1 [M ]�2 = [Mw]�1 [1]2 = [y]�1 [1]2. It is
not standard zero-knowledge since the simulator only knows [M ]1, [M ]2, and
[y]1 = [M1w,M2w]1 and outputting [w]1 breaks the following symmetric com-
putational Diffie-Hellman (CDH) assumption: given input ([1, a, b]1, [1, a, b]2) for
a ←$Z

∗
p, b ←$Zp, it is difficult to compute [ab]1. To see this, let us suppose

that the symmetric CDH challenge is [1, a, b]1, [1, a, b]2 for a ←$Z
∗
p, b ←$Zp. We

denote M1 = 1/a, w = b, M2 = M ′
2M1 = M ′

2/a where M ′
2 ←$Zp. We also reset

5 Even if � is maliciously created, one can efficiently check whether it has the correct
form. More precisely, given � = ([M ]1, [M

′]2), one can assure that M = M ′ by
checking [M ]1[1]2 = [1]1[M

′]1 and accepting only when that is the case.
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Fig. 2. A contrived leaky subspace QA-NIZK where � = ([M ]1, [M ]2)

generators of G1 and G2 to be [g]1 = [a]1 and [g]2 = [a]2. Now if such simulator
existed, we could run it with input [M1g,M2g,M1wg,M2wg]1 = [1,M ′

2, b,M
′
2b]1,

[M1g,M2g]2 = [1,M ′
2]2 and it would output [wg]1 = [ba]1; this would break the

CDH assumption.
Surprisingly, simulation is possible (under a knowledge assumption) if we try

to prove persistent zero-knowledge. We remind that the Bilinear Diffie-Hellman
Knowledge of Exponent (BDHKE) [2] assumption says that if a PPT adversary
A(p) outputs ([x]1, [x]2) on random coins r, then there exists an extractor that
extracts x with an overwhelming probability given the same random coins r.
Thus, assuming BDHKE and because ExtC is given access to the random coins
of C, ExtC can extract M and provide it to the simulator as sk. The simulator
then computes [w]1 = M−1

1 [y1]1.
We could divide C into C�, which generates �, and Cpk, which generates pk,

such that the extractor only gets random coins of Cpk. This would make it impos-
sible to extract M . However, this will not work since we cannot exclude com-
munication between C� and Cpk, e.g., C� can compute pk herself and send it to
Cpk. Cpk outputs pk without having any knowledge of sk, making extracting sk
impossible.

Because of that, we adopted a different solution: namely, we require that a
Sub-ZK QA-NIZK argument system must satisfy both standard zero-knowledge
and persistent zero-knowledge with respect to the same simulator. This solution
rules out the intuitively insecure arguments like the one in Fig. 2.

5 Construction of a QA-NIZK in the BPK Model

In this section, we will show that if the membership of [Ā]2 in Dk can be effi-
ciently verified, then a slight variant Πbpk of the Kiltz-Wee QA-NIZK Πkw for
linear subspaces [31] is secure (including Sub-ZK) in the BPK model. More pre-
cisely, we say that the distribution Dk is efficiently verifiable, if there exists an
algorithm MATV([Ā]2) that outputs 1 if Ā is invertible (recall that we assume
that the matrix distribution is robust) and well-formed with respect to Dk and
otherwise outputs 0. Clearly, the distributions D1, Lk, ILk, Ck, and SCk (for any
k) are verifiable, as can be seen in Fig. 3, while the verification whether [Ā]2 is
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Fig. 3. Auxiliary procedure MATV for Dk ∈ {Lk, ILk, Ck, SCk}.

invertible is intractable for the distribution Uk if k > 1. Indeed, if k = 2 then in
the latter case, one needs to test if a11a22 −a12a21 = 0, given only [Ā]2; the case
k > 2 is even more complicated. Nevertheless, we show that a slightly modified
version of our construction works with the distribution D2.

Recall that in the BPK model, the public key pk (corresponds to the CRS
in Πkw) belongs either to the verifier V or to a party trusted by V. One proves
computational soundness in the setting where V trusts that pk is honestly gen-
erated, i.e., that the corresponding sk is secret and pk is well-formed. Since pk
is not trusted by the prover P, one proves Sub-ZK in the case of a maliciously
generated pk. We assume that [M ]1 is sampled by a PPT subverter, and more-
over, the simulator does not know the corresponding witness M or any function
of M not efficiently computable from [M ]1.

To modify Πkw so that it would be secure in the BPK model instead of
the CRS model, the most straightforward idea is to divide pk into pkzk = [P ]1
(the part of pk that is used by P and thus intuitively needed to guarantee zero
knowledge) and pksnd = [Ā,C]2 (the part of pk is used by V and thus intuitively
needed to guarantee soundness). Thus, P (resp., V) has to be assured that pkzk

(resp., pksnd) is generated honestly. Hence, one could use pkzkP from P’s public
key and pksndV from V’s public key to create an argument. However, it is not clear
how to do this since both pksndV and pkzkP depend on the same secret K. Moreover,
in this case, both P and V have public keys while we want to have a situation,
common in the BPK model, where only V has a public key.

Instead, we assume that V’s public key pk is equal to the whole CRS and
then construct a public-key verification algorithm PKV. For PKV to be efficient
in the case Dk is not efficiently verifiable, we need to add some new elements
(collectively denoted as pkpkv) to pk. Figure 4 describes the new QA-NIZK Πbpk.
The construction of PKV will be explained in Sect. 6.

We will prove that in the BPK model, Πbpk is statistically persistent zero-
knowledge under a novel non-falsifiable assumption, computationally quasi-
adaptively Sub-PAR sound under another novel non-falsifiable assumption, and
(if M has full rank) computationally quasi-adaptively Sub-PAR knowledge-
sound under two non-falsifiable assumptions, one of which is novel. Some of
the new non-falsifiable assumptions do not belong to the family of knowledge
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Fig. 4. Sub-ZK QA-NIZK Πbpk for [y]1 = [M ]1w in the BPK model, where either (1)
Dk is efficiently verifiable or (2) Dk = U2.

assumptions, which is an interesting result by itself. We will study new assump-
tions in Sect. 6, before stating and proving the security of Πbpk in Sect. 7.

6 New Non-falsifiable Assumptions

We will next motivate and define the new assumptions. We will also prove the
security of KWKE and SKWKE under the HAK assumptions.

KWKE and SKWKE Assumptions. In the Sub-ZK proof, we will need two
different (tautological) knowledge assumptions, KWKE (Kiltz-Wee Knowledge
of Exponent), and SKWKE (Strong Kiltz-Wee Knowledge of Exponent). Simi-
larly to Sub-ZK SNARKs [2,15], the knowledge assumption is needed to equip
the simulator Sim of Πkw with the correct secret key sk = K.

The KWKE assumption guarantees that one can extract a secret key sk = K
from which one can compute pkzk = [P ]1 but not necessarily pksnd. Since pkzk

does not fix K uniquely, KWKE extracts one possible K. Since for achieving
Sub-ZK, it is not needed that pksnd can be computed from sk, KWKE is sufficient.
To argue that KWKE is a reasonable knowledge assumption, we prove that it
holds under a hash-algebraic knowledge assumption.

We also introduce a stronger knowledge assumption SKWKE that allows
extracting the unique secret key K that was used to generate the whole public
key pk. We prove that SKWKE holds under a HAK and a WKerMDH assump-
tion, given that Dk is a WKerMDH-hard distribution. (Here, WKerMDH is a
weaker variant of the well-known KerMDH distribution.) The assumption of
WKerMDH-hardness often holds in practice, e.g., when � corresponds to a ran-
domly chosen public key of a cryptosystem or a commitment scheme (see Sect. 3



On QA-NIZK in the BPK Model 609

for an example). After that, we will prove that Πbpk is Sub-ZK under either
KWKE or SKWKE; in the latter case, we additionally get a guarantee that the
public key is correctly formed.

We will now define the new knowledge assumptions needed in the Sub-ZK
proof. In KWKE, we assume that if A outputs a � accepted by PARV and a pk
accepted by PKV, then there exists an extractor ExtA who, knowing the secret
coins of A, returns a secret key K that could have been used to compute pkzk.
SKWKE will additionally guarantee that the same K was used to compute pksnd.

Definition 1. Fix k ≥ 1, n > m ≥ 1, and a distribution Dk. Let PKV be as in
Fig. 4. Then (Dp, k,Dk)-KWKEG1 (resp., (Dp, k,Dk)-SKWKEG1 ) holds relative
to PGen if for any p ∈ im(PGen(1λ)) and PPT adversary A, there exists a PPT
extractor ExtA, s.t. Adv s kwke

Dp,k,Dk,G1,PGen,A,ExtA(λ) :=

Pr

⎡

⎢
⎢
⎣

r ←$RNDλ(A); (� := [M ]1, pk) ← A(p; r);K ← ExtA(p; r) :

pk = ([Ā,C]2, [P ]1, pkpkv) ∧ PARV([M ]1) = 1∧
PKV([M ]1, pk) = 1 ∧ (P �= M�K ∨C �= KĀ )

⎤

⎥
⎥
⎦ ≈λ 0 .

Here, the boxed part is only present in the definition of SKWKE.

In Theorem 1, we also need the following “weak KerMDH” assumption.

Definition 2. D�k-WKerMDHG1 holds relative to PGen, if for any PPT A,
Pr[p ← PGen(1λ);A ←$ D�k; c ← A(p, [A]1) : A�c = 0k ∧ c �= 0�] ≈λ 0.

Clearly, D�k-WKerMDHG1 is not stronger and it is ostensibly weaker than D�k-
KerMDHG1 since computing c may be more complicated than computing [c]2.
(Although, it is easy to show that Dk-KerMDH follows from Dk-HAK and Dk-
WKerMDH.) The Discrete Logarithm (DL) assumption is a classical example of
WKerMDH (consider matrices A = ( a−1 ) for a ←$Zp). In the case of say SCk,
the non-trivial co-kernel element c has to satisfy c2 = −ac1 which enables to
recover a; thus, SCk-WKerMDH is secure under the DL assumption. Similarly,
in the case of Ck, c2 = −a1c1.

Next, we will prove that KWKE (resp., SKWKE) holds under the Dk-
HAK (resp., Dk-HAK and Dp-WKerMDH) assumption. Note that the use of
WKerMDH, and thus of SKWKE, is questionable if C� is malicious; neverthe-
less, we consider this case for the sake of completeness.

Theorem 1 (Security of KWKE and SKWKE). Assume that either Dk is
efficiently verifiable or Dk = U2. Assume k/p ≈λ 0. Then

(i) (Dp, k,Dk)-KWKEG1 holds under the Dk-HAK assumption.
(ii) assuming that Dk-HAK and Dp-WKerMDHG1 hold (thus, � = [M ]1 comes

from a WKerMDHG1-hard distribution), (Dp, k,Dk)-SKWKEG1 holds.

Proof. Assume A is a KWKE or SKWKE adversary, s.t.: given public param-
eters p and randomness r ←$RNDλ(A), A(p; r) outputs with probability εA a
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Fig. 5. Extractors ExtA(p; r) and Ext2A(p; r) in the proof of Theorem 1

language parameter � = [M ]1 and public key pk = ([Ā,C]2, [P ]1, pkpkv), such
that PKV([M ]1, pk) = 1 (in particular, det Ā �= 0 and M�C = PĀ).

(i: security of KWKE): Assume A is a KWKE adversary. Let Exthak
A be the

extractor, existence of which is guaranteed by the Dk-HAK assumption. Figure 5
depicts a candidate KWKE-extractor ExtA, where [qιi]ι for i > 0 are group
elements created by A (for which she does not know the discrete logarithm) in
Gι, and qι0 = 1. Due to the Dk-HAK assumption, Exthak

A can extract N ι and
[qι]ι, such that

[
vect(M )
vect(P )

]

1
= N1

[
1,
q1

]
1

∈ G
mn+mk
1 and

[
vect(Ā)
vect(C )

]

2
= N2[ 1

q2
]2 ∈

G
k2+nk
2 . Here, vect(B) denotes the vectorization of a matrix B. Thus, e.g.,

Āij =
∑

t≥0 Nk(i−1)+j,tq2t and Cij =
∑

t≥0 Nk(i−1)+j+k2,tq2t. Given N1 and
N2, one can efficiently compute matrices M [j], P [j], Ā[i] and C[i], such that the
polynomials M(Q1) :=

∑
j≥0 M [j]Q1j , P (Q1) :=

∑
j≥0 P [j]Q1j , Ā(Q2) :=

∑
i≥0 Ā[i]Q2i, and C(Q2) :=

∑
i≥0 C[i]Q2i satisfy [M ]1 = [M(q1)]1, [P ]1 =

[P (q1)]1, [Ā]2 = [Ā(q2)]2, and [C]2 = [C(q2)]2.
We will now show that ExtA satisfies the requirements of the extractor in the

definition of KWKE. Assume that A was successful with inputs (p; r). We exe-
cute ExtA(p; r) and obtain either K or ⊥. From (*) in PKV (i.e., M�C =
PĀ), V (Q1,Q2) := (

∑
j≥0 M [j]Q1j)� · (

∑
i≥0 C[i]Q2i) − (

∑
j≥0 P [j]Q1j) ·

(
∑

i≥0 Ā[i]Q2i) satisfies V (q1, q2) = 0. We now consider the following two cases,
V (Q1,Q2) = 0 as a polynomial and V (Q1,Q2) �= 0 but V (q1, q2) = 0.

Case 1: V (Q1,Q2) = 0m×k as a polynomial. Since Q1j and Q2i are inde-
terminates for all i, j > 0, the coefficients Vij of Q1jQ2i of V (Q1,Q2) =
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∑
i≥0,j≥0 VijQ1jQ2i must be equal to 0m×k for all i, j ≥ 0. In particular,

P [j] · Ā[i] = M [j]�C[i] , i ≥ 0, j ≥ 0 . (1)

Let Ā(Q2) =
∑

Ā[i]Q2i ∈ Z
k×k
p [Q2] be an affine multivariate matrix polyno-

mial and let the polynomial d(Q2) := det(Ā(Q2)) ∈ Zp[Q2] be its determinant.
Clearly, deg(d(Q2)) ≤ k, and Ā(Q2) is invertible iff d(Q2) �= 0 as a polynomial.
Since PKV([M ]1, pk) = 1, d(Q2) �= 0 and thus Ā(Q2) is invertible. This holds
by definition for efficiently verifiable Dk. If Dk = U2, then [a1s]1[1]2 = [1]1[a1s]2,
for s ∈ {1, 2}, and [a11]1[a22]2 �= [a12]1[a21]2 guarantee that d(Q2) �= 0.

By the Schwartz-Zippel lemma, d(y) = 0 for uniformly sampled yi ←$Zp

(and thus ExtA aborts in step (
)) with probability at most k/p. Thus, Ā(y) is
invertible with probability at least εA − k/p.

Assume now that Ā(y) is invertible. Define K(Q2) := C(Q2)Ā
−1(Q2) =

(
∑

i≥0 C[i]Q2i)(
∑

i≥0 Ā[i]Q2i)−1 ∈ Z
n×k
p (Q2). Let K := K(y). Since

Ā(y) is invertible then from Eq. (1), P [j] · Ā(y) = P [j] · (∑
i Ā[i]yi

)
=

M [j]� (
∑

i C[i]yi) = M [j]�C(y). Thus, P [j] = M [j]�K, and P (Q1) =
M(Q1)�K. Hence, with probability εExtA ≥ εA − k/p, P (Q1) =∑

j≥0 P [j]Q1j = M(Q1)�K. Thus, |εExtA − εA| ≤ k/p and the claim follows.

Case 2: V (X,Q1,Q2) �= 0 but V (x, q1, q2) = 0. Following [37], we consider
separately the “non-hashing” case (the adversary creates no random elements
[qι]ι) and the “hashing” case (the adversary creates at least one random element
that has high min-entropy).

In the non-hashing case, the verification polynomial is equal to the integer
matrix V := M [0]�C[0]−P [0]·Ā[0]. Recall that V (Q1,Q2) �= 0 but V (q1, q2) =
0. Since we are in the non-hashing case, there are no created group elements.
Thus, the adversary cannot succeed in the non-hashing since the polynomial V
is constant, and we need V = 0 and V �= 0 at the same time.

Consider now the “hashing” case when A has created at least one random
group element qk (say, in G1). Clearly, V (Q1,Q2) is a degree-1 polynomial in any
indeterminate Qk. Thus, by the Schwartz-Zippel lemma and since H∞([qιs]ι) =
ω(log λ), the probability 1/2

∑
ι,s H∞([qιs]ι) that V (q1, q2) = 0 is negligible. Hence,

the probability that an adversary, who created at least one (high min-entropy)
group element [qk]1, can make the verifier accept is negligible.

(ii: security of SKWKE): Let A be an SKWKE adversary that works in time
τ(λ) and outputs ([M ]1, pk) accepted by PKV with probability εA. To prove that
SKWKE is secure, we need to additionally show that C = KĀ. In the process,
we need to assume that Dp-WKerMDH is hard against τ(λ)-time adversaries.
The general proof works exactly as in the KWKE case, except one change that
we discuss below. (In particular, the Case 2 is exactly the same.) We omit other
details of the proof.

More precisely, the main idea is that in the proof step (i) we already estab-
lished that C(Q2) = K(Q2)Ā(Q2) as polynomials. In the current step, we need
to show that C(Q2) = KĀ(Q2) holds, that is, K(Q2) is a constant function.
To guarantee the latter, we check the value of the rational function K(Q2)
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at two positions. If the two values are different, we can break Dp-WKerMDH.
Otherwise, w.h.p., K(Q2) is a constant function.

More precisely, consider the extractor Ext2A in Fig. 5. Here, K = K(y) and
K ′ = K(y′). Let εA be the success probability of A. Analogously to the security
proof of KWKE, with probability εA −2k/p, both Ā(y) and Ā(y′) are invertible
and thus Ext2A does not return ⊥.

Assume now that Ext2A does not return ⊥. By following similar analysis as in
the case (i), P (Q1) = M(Q1)�K and P (Q1) = M(Q1)�K ′ which means that
M(Q1)�(K − K ′) = 0m×k. If K �= K ′ then ExtA has computed a non-zero
element K−K ′ in the cokernel of [M ]1 and thus broken Dp-WKerMDHG1 . Since
breaking Dp-WKerMDH is hard within τ(λ) steps, the probability εWKerMDH

that ExtA returns K − K ′ is negligible unless A has computational complexity
ω(τ(λ)). Otherwise, K = K(y) = K(y′), which means f(y) = f(y′) = 0,
where f(Q2) := C(Q2)Ā

−1(Q2) − K. Denote the (i, j)th coefficient of the
matrix f(Q2) by fij(Q2) =

∑
s Cis(Q2)Ā

−1
sj (Q2) − Kij . Note that fij(Q2) =

f ′
ij(Q2)/det(Ā(Q2)), where f ′

ij(Q2) is some polynomial of degree ≤ k.
At this point, we know that det(Ā(Q2)) �= 0. Thus, f(Q2) �= 0 iff

C(Q2) − KĀ(Q2) �= 0. From this and the Schwartz-Zippel lemma it follows
that if fij(Q2) �= 0 then Pry [fij(y) = 0] ≤ k/p. If f(Q2) �= 0 then there exists
at least one (i0, j0), s.t. fi0,j0(Q2) �= 0 and thus Pry [fi0,j0(y) = 0] ≤ k/p. Thus,
if f(Q2) �= 0 then Pry [f(y) = 0] ≤ k/p.

Hence, with probability εExt2A ≥ εA − 3k/p − εWKerMDH, C(Q2) = KĀ(Q2)
and thus P (Q1) = M(Q1)�K and C = KĀ. Thus, |εExt2A − εA| ≤ 3k/p +
εWKerMDH and the security of SKWKE follows. �

In the case of SKWKE, we extract the unique K used to compute the CRS.
Following a proof idea from [2], it is easy to show that under either the KWKE
(and thus, also the SKWKE) assumption Πbpk is Sub-ZK.

New Interactive Assumptions KerMDHdl and SKerMDHdl. Since in
the case of efficiently verifiable Dk, we essentially do not modify Πbpk (we only
define PKV), its Sub-PAR soundness almost follows from that of Πkw [31]. The
main difference is that, due to considering the subverted language parameter,
we need to change how one extracts M . Namely, in [31], the KerMDH adver-
sary B defined in the soundness reduction obtains ([M ]1,M) sampled from D′

p

(this relies on the witness-sampleability). In our proof of Sub-PAR soundness
(Theorem 2 in Sect. 7), B obtains [M ]1 ← A(p) and then uses a non-adaptive
DL oracle to extract M . This means that we prove Sub-PAR soundness under
a new interactive non-falsifiable KerMDHdl assumption; however, importantly,
we do not require witness-sampleability.

Since in some applications (e.g., in the setting of symmetric pairings), one
uses D2 = U2, we prove that if k = 2 and Dk = Uk, then Πbpk is sound under
another new interactive non-falsifiable SKerMDHdl assumption. Intuitively, in
this case, pkpkv contains additional elements, needed to efficiently check that
[Ā]2 has full rank. If Dk is efficiently verifiable then by definition, pkpkv = ε
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(empty string) is sufficient. Since for efficiency reasons, one is interested in only
small values of k, we will not consider the case of non-verifiable Dk with k > 2.

In addition, we are interested in applying the QA-NIZK in the case M has
rank n (i.e., the image of M is the full space). Since then soundness holds triv-
ially, one must prove knowledge-soundness. We show that in this case, Πbpk is
Sub-PAR knowledge-sound under two non-falsifiable assumptions: a HAK knowl-
edge assumption and the new interactive SDLdl assumption. The KerMDHdl,
SKerMDHdl, and SDLdl assumptions are XY -type interactive assumptions as
used in [20,34], where the assumption X is assumed to hold even if the adver-
sary is given non-adaptive access (i.e., before the X challenge is chosen) to an
oracle that solves the assumption Y .

The SDLdl assumption holds relative to PGen, if for any PPT A,

Pr
[
p ← PGen(1λ); st ← Adl(·)(p);x ←$Zp : A(p, st, [x]1, [x]2) = x

]
≈λ 0 .

Here, the oracle dl([y]1) returns the discrete logarithm y of [y]1.
The D�k-KerMDHdl

G1
assumption holds relative to PGen, if for any PPT A,

Pr

[
p ← PGen(1λ); st ← Adl(·)(p);A ←$ D�k; [c]2 ← A(p, st, [A]1) :

A�c = 0k ∧ c �= 0�

]

≈λ 0 .

The D�k-SKerMDHdl assumption holds relative to PGen, if for any PPT A,

Pr

[
p ← PGen(1λ); st ← Adl(·)(p); A ←$ D�k;

([c1]1, [c2]2) ← A(p, st, [A]1, [A]2) : A�(c1 − c2) = 0k ∧ c1 − c2 �= 0�

]
≈λ 0 .

Generic-model security proofs of SDLdl and SKerMDHdl are very similar to
those of SDL and KerMDH: the field elements returned by the DL oracle are
independent of the challenge and thus do not influence the rest of proof.

One could use an AK assumption instead of the SDLdl assumption. However,
the AK assumption explicitly does not allow A to create new group elements by
using elliptic-curve hashing. The SDLdl assumption allows the adversary to cre-
ate such group elements, but allows access to non-adaptive DL oracle to extract
their discrete logarithms. It is also not an expanding assumption, differently
to many knowledge assumptions (e.g., the PKE assumption [26] that underlies
many pairing-based SNARKs) that allow one to extract long “plaintext” from
a short “ciphertext”. Hence, the SDLdl assumption, while still non-falsifiable,
seems to be somewhat more realistic than an AK assumption. On the other
hand, we need to extract y and π from A’s output after the challenge is known,
adaptively. In this case, a knowledge assumption (HAK) is more realistic than
an adaptive DL oracle that one could also just use to break SDL directly.

7 Security of Πbpk

Theorem 2. Let Πbpk be the QA-NIZK argument system for linear subspaces
from Fig. 4. The following statements hold in the BPK model. Assume that Dp

is such that PARV is efficient.
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(i) Πbpk is perfectly complete and perfectly zero-knowledge.
(ii) If (Dp, k,Dk)-KWKEG1 holds relative to PGen then Πbpk is statistically per-

sistent zero-knowledge.
(iii) Assume Dk is efficiently verifiable (resp., Dk = U2). If Dk-KerMDHdl

(resp., Dk-SKerMDHdl) holds relative to PGen then Πbpk is computationally
quasi-adaptively Sub-PAR sound.

(iv) Assume M has rank n (y = Mw always has a solution), and that Dk is
robust. If SDLdl and KGen([M ]1)-HAK, for arbitrary efficiently computable
[M ]1, hold relative to PGen then Πbpk is computationally quasi-adaptively
Sub-PAR knowledge-sound.

Proof. (i: perfect completeness/perfect zero-knowledge): obvious.

(ii: persistent zero-knowledge): Let C be a subverter that computes
([M ]1, pk) so as to break the Sub-ZK property. That is, C(p; rC) outputs
([M ]1, auxpk). Let B be the adversary from Fig. 6. Note that RNDλ(B) =
RNDλ(C). Under the (Dp, k,Dk)-KWKE assumption, there exists an extractor
Ext2B, such that if PARV([M ]1) = 1 and PKV([M ]1, pk) = 1 then Ext2B(p; rC)
outputs K, such that P = M�K. We construct a trivial extractor ExtC(p; rC)
for C, as depicted in Fig. 6. Clearly, ExtC returns sk = K, such that P = M�K.

Fig. 6. The extractor and the constructed adversary B from the persistent zero-
knowledge proof of Theorem 2.

Fix concrete values of λ, p ∈ im(PGen(1λ)) and rC ∈ RNDλ(C). Let
([M ]1, pk, auxpk) ← C(p; rC), and run ExtC(p; rC) to obtain K. Fix ([y]1,w) ∈
R[M ]1 . It clearly suffices to show that if PARV([M ]1) = 1, PKV([M ]1, pk) = 1
and ([y]1,w) ∈ R[M ]1 then O0([y]1,w) = P([M ]1, pk, [y]1,w) = [P ]�1 w and
O1([y]1,w) = Sim([M ]1, pk,K, [y]1) = K�[y]1 have the same distribution.
This holds since from PKV([M ]1, pk) = 1 it follows that P = M�K and from
([y]1;w) ∈ R[M ]1 it follows that y = Mw. Thus, O0([y]1,w) = [P ]�1 w =
[K�Mw]1 = K�[y]1 = O1([y]1,w). Hence, O0 and O1 have the same distribu-
tion, and thus, Πbpk is persistent zero-knowledge under KWKE.

(iii: Dk is efficiently verifiable, Sub-PAR soundness under KerMDHdl):
follows directly from the soundness proof of Πkw in [31]. There is only one dif-
ference: If [M ]1 is not subverted (like in [31]), then one can use the witness-
sampleability of Dp to extract M , and get a reduction to the falsifiable KerMDH
assumption. In the case of Sub-PAR soundness, since the language parameter
can be subverted (and thus one cannot rely on witness-sampleability), we let
B use the DL oracle to obtain M from [M ]1 and then use it in the soundness
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Fig. 7. Adversary B in the soundness proof of Theorem 2 (reduction to SKerMDHdl)

proof of [31] to get a reduction to the non-falsifiable KerMDHdl assumption.
Importantly, in this case, witness-sampleability is not needed.

(iii: Dk = U2, Sub-PAR soundness under SKerMDHdl): In the case Dk =
U2, the proof is similar to the soundness proof of Πkw in [31]. However, since
we added [a11, a12]1 to the public key, we reduce instead to the SKerMDHdl

assumption; this complicates the proof.
Assume that A breaks the soundness of Πbpk with probability ε. We will build

an adversary B, see Fig. 7, that breaks SKerMDHdl with probability ≥ ε − 1/p.
First, B uses the DL oracle to obtain M from [M ]1; this is needed since [M ]1
could be subverted. Here, witness-sampleability is not needed. As above, when
the language parameter is generated honestly, the DL oracle is not needed, and
one instead relies on the witness-sampleability of Dp to obtain a reduction to
the falsifiable SKerMDH assumption.

Note that in Fig. 7, [Ā′]2 = [Ā]2 ∈ G
k×k
2 . Define implicitly (since we do not

know this value) K ← K ′+M⊥A′Ā−1 ∈ Z
n×k
p . Thus, [C]2 = (K ′||M⊥)[A′]2 =

[K ′Ā′ + M⊥A′]2 = [(K ′ + M⊥A′Ā−1)Ā]2 = [KĀ]2 and [P ]1 = [M�K ′]1 =
[M�(K − M⊥A′Ā−1)]1 = [M�K]1. Thus, pk′ has the same distribution as
the real public key.

With probability ε, A is successful, that is,

1. y�M⊥ �= 01×(n−m) (that is, y �∈ colspace(M)) and thus also c = ((π� −
y�K ′)|| − y�M⊥) �= 0n−m+k;
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2. y�C = π�Ā (V accepts). Thus, 01×k = π�Ā − y�C =
(
π�||0�

n−m

)
A′ −

y�
(
K ′||M⊥

)
A′ =

(
(π� − y�K ′)|| − y�M⊥

)
A′ = c�A′.

By definition, s1 − s2 = c1 + R�c2 and thus (s�
1 − s�

2 )A = (c�
1 + c�

2 R)A =
c�A′ = 01×k. Since c �= 0n−m+k and R leaks only through A′ (in the definition
of [C]2) as RA, Pr[c1 + R�c2 = 0 | RA] ≤ 1/p, where the probability is over
R ←$Z

(n−m−1)×(k+1)
p .

(Item iv: Sub-PAR knowledge-soundness): Our proof strategy is inspired
by that of [8, App. F]. However, their proof is given for honestly generated lan-
guage parameter � = [M ]1 and M is obtained by using witness-sampleability;
we modify the proof by extracting M from � by using a DL oracle. Thus, we need
to use two different types of non-falsifiable assumptions: (1) the non-adaptive
SDLdl assumption to extract M from [M ]1, and (2) knowledge (HAK) assump-
tions to extract y and π from [y]1 and [π]1; we use the fact that the verification
equation holds to be able to apply HAK. Moreover, we modify the proof of [8]
to work for an arbitrary k.

We construct the following SDLdl adversary B, that is given access to a
non-adaptive DL oracle in the query phase and then, after that, a challenge
([x]1, [x]2), returns x. First, B samples r and calls A(p; r), obtaining [M ]1. B
uses the non-adaptive DL oracle nm times, extracting the matrix M ∈ Z

n×m
p .

In the challenge phase, B obtains ([x]1, [x]2) from the challenger. After that,
B samples random K1,K2 ∈ Z

n×k
p and sets [K]ι ← [x]ιK1+[1]ιK2. B honestly

generates pk = ([P ]1, [Ā,C]2) by setting A ←$ Dk, [C]2 ← [K]2Ā = K1Ā[x]2+
K2Ā[1]2 ∈ G

n×k
2 , and [P ]1 ← M�[K]1 = M�K1[x]1 + M�K2[1]1 ∈ G

m×k
1 .

Denote P ′ = vect(P ) ∈ Z
mk
p . B sends pk to A who returns [y,π]1.

According to the KGen([M ]1)-HAK assumption for arbitrary efficiently com-
putable [M ]1, given A who on input (p, pk), where pk ∼ KGen([M ]1), out-
puts [y]1 ∈ G

n
1 and [π]1 ∈ G

k
1 , we can extract [q]1 ∈ G

nq

1 , (y1,y2,y3) and
(π1,π2,π3), such that

[y]1 =y1[1]1 + y2[P
′]1 + y3[q]1 ,

[π]1 =π1[1]1 + π2[P ′]1 + π3[q]1 ,
(2)

Note that y2 ∈ Z
n×mk
p , π2 ∈ Z

k×mk
p , y3 ∈ Z

n×nq
p , and π3 ∈ Z

k×nq
p .

We will now write K ′ = vect(K), K ′
1 = vect(K1), K ′

2 = vect(K2),
P 1 = M�K1, P 2 = M�K2, P ′

1 = vect(P 1) and P ′
2 = vect(P 2). Thus,

P = M�K = M�(xK1 + K2) = xP 1 + P 2 and P ′ = xP ′
1 + P ′

2. Recall
M ∈ Z

n×m
p , K ∈ Z

n×k
p , and P ∈ Z

m×k
p .

From the verification equation [y]�1 [C]2 = [π]�1 [Ā]2. Assuming Ā is invert-
ible, [π]1 = [K�y]1. From this and Eq. (2), π1[1]1 + π2[P ′]1 + π3[q]1 =
[K]�1 y1 + [K�y2P

′]1 + [K�y3q]1, and thus

π1[1]1+π2[xP ′
1 + P ′

2]1 + π3[q]1

=[xK1 + K2]
�
1 y1 + [(xK1 + K2)

�y2(xP ′
1 + P ′

2)]1 + [(xK1 + K2)
�y3q]1 .
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Collecting the powers of X, we get that the verification equation states that
V (x, q) = 0k, where V (X,Q) := aX2 + b(Q)X + c(Q) for

a =K�
1 y2P

′
1 ,

b(Q) =K�
1

(
y1 + y2P

′
2

)
+

(
K�

2 y2 − π2

)
P ′

1 + K�
1 y3Q ,

c(Q) =K�
2 (y1 + y2P

′
2) − (

π1 + π2P
′
2

)
+ (K�

2 y3 − π3)Q .

Since each qi has min-entropy Ω(log λ) from the adversary’s viewpoint and
V (X,Q) is a linear polynomial in each Qi, from V (x, q) = 0k it follows (by
the Schwartz-Zippel lemma) with an overwhelming probability 1 − εq that
V (x,Q) = 0 as a polynomial and thus also V (x,0) = aX2 + b(0)X + c(0) = 0,
where b := b(0) and b := b(0). In particular, in what follows, we can assume
y3 = 0 and π3 = 0.

Next, let w be any solution to y = Mw; a solution exists and can be
efficiently found since M has rank n. We already extracted M by using the
DL oracle, while y = y1 + xd + y2P

′
2, where d := y2P

′
1 ∈ Z

n
p , can be extracted

if d = 0n. Thus, if d = 0n then we can extract and return w.
To show that, w.h.p., d = 0n, consider the opposite case d �= 0n. If a �= 0k

(this can only happen if d �= 0n) then we have a quadratic equation a[x2]1 +
b[x]1 + c[1]1 = 0, with a �= 0, that B can solve for x, and thus return x.

Assume a = 0k but d �= 0n. This means d ∈ Z
n
p is a non-zero element

in the kernel of K�
1 ∈ Z

k×n
p . Since for A, K1 looks uniformly random from

Z
k×n
p , the question is now what is the maximum probability that for any d �= 0k

picked by A, K�
1 d = 0. Obviously, unless d = 0k, this probability is equal to

Pr[K1 ←$Z
k×n
p : K�

1 d = 0k] = p−k.
Hence, the probability of success εB of B is at least εw − εq − p−k, where εw

is the probability of extracting w. �
If the language parameter has been honestly generated, then one does

not need the DL oracle to extract M . Instead, as in [31], one relies on the
witness-sampleability of Dp to extract M and then finish the proof of Sub-PAR
(knowledge-)soundness. Importantly, in the subverted case, we do not have to
assume witness-sampleability.

We note SKerMDH is not secure when k = 1, [23].

Acknowledgments. We would like to thank Dario Fiore and anonymous reviewers
for useful comments. Abdolmaleki, Lipmaa, and Siim were partially supported by the
Estonian Research Council grant PRG49.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 3

https://doi.org/10.1007/978-3-662-46803-6_3


618 B. Abdolmaleki et al.

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 1

3. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195 (2004)

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 26

5. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15317-4 24

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112 (2019)

7. Brown, D.R.L.: The exact security of ECDSA. Contributions to IEEE P1363a
(2001). http://grouper.ieee.org/groups/1363/

8. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composi-
tion of succinct zero-knowledge proofs. In: ACM CCS 2019, pp. 2075–2092 (2019)

9. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: 32nd ACM STOC, pp. 235–244 (2000)

10. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

11. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28
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Abstract. Discrete Gaussian distributions over lattices are central to
lattice-based cryptography, and to the computational and mathematical
aspects of lattices more broadly. The literature contains a wealth of use-
ful theorems about the behavior of discrete Gaussians under convolutions
and related operations. Yet despite their structural similarities, most of
these theorems are formally incomparable, and their proofs tend to be
monolithic and written nearly “from scratch,” making them unnecessar-
ily hard to verify, understand, and extend.

In this work we present a modular framework for analyzing linear oper-
ations on discrete Gaussian distributions. The framework abstracts away
the particulars of Gaussians, and usually reduces proofs to the choice
of appropriate linear transformations and elementary linear algebra. To
showcase the approach, we establish several general properties of discrete
Gaussians, and show how to obtain all prior convolution theorems (along
with some new ones) as straightforward corollaries. As another applica-
tion, we describe a self-reduction for Learning With Errors (LWE) that
uses a fixed number of samples to generate an unlimited number of addi-
tional ones (having somewhat larger error). The distinguishing features
of our reduction are its simple analysis in our framework, and its exclu-
sive use of discrete Gaussians without any loss in parameters relative to
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stated constants, and we give tighter heuristics for specific distributions
that are commonly used for generating lattice trapdoors. These bounds
yield improvements in the concrete bit-security estimates for trapdoor
lattice cryptosystems.

1 Introduction

The rapid development of lattice-based cryptography in recent years has moved
the topic from a theoretical corner of cryptography to a leading candidate
for post-quantum cryptography1, while also providing advanced cryptographic
functionalities like fully homomorphic encryption [Gen09]. Further appealing
aspects of lattice-based cryptography are its innate parallelism and that its two
foundational hardness assumptions, Short Integer Solution (SIS) and Learning
With Errors (LWE), are supported by worst-case to average-case reductions
(e.g., [Ajt96,Reg05]).

A very important object in lattice cryptography, and the computational and
mathematical aspects of lattices more broadly, is a discrete Gaussian prob-
ability distribution, which (informally) is a Gaussian distribution restricted
to a particular lattice (or coset thereof). For example, the strongest worst-
case to average-case reductions [MR04,GPV08,Reg05] all rely centrally on dis-
crete Gaussians and their nice properties. In addition, much of the develop-
ment of lattice-based signature schemes, identity-based encryption, and other
cryptosystems has centered around efficiently sampling from discrete Gaussians
(see, e.g., [GPV08,Pei10,MP12,DDLL13,DLP14,MW17]), as well as the anal-
ysis of various kinds of combinations of discrete Gaussians [Pei10,BF11,MP13,
AGHS13,AR16,BPMW16,GM18,CGM19,DGPY19].

By now, the literature contains a plethora of theorems about the behavior of
discrete Gaussians in a variety of contexts, e.g., “convolution theorems” about
sums of independent or dependent discrete Gaussians. Despite the close simi-
larities between the proof approaches and techniques employed, these theorems
are frequently incomparable and are almost always proved monolithically and
nearly “from scratch.” This state of affairs makes it unnecessarily difficult to
understand the existing proofs, and to devise and prove new theorems when
the known ones are inadequate. Because of the structural similarities among so
many of the existing theorems and their proofs, a natural question is whether
there is some “master theorem” for which many others are corollaries. That is
what we aim to provide in this work.

1.1 Our Contributions

We present a modular framework for analyzing linear operations on discrete
Gaussians over lattices, and show several applications. Our main theorem, which
is the heart of the framework, is a simple, general statement about linear trans-
formations of discrete Gaussians. We establish several natural consequences of
1 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography


Improved Discrete Gaussian and Subgaussian Analysis 625

this theorem, e.g., for joint distributions of correlated discrete Gaussians. Then
we show how to combine these tools in a modular way to obtain all previ-
ous discrete Gaussian convolution theorems (and some new ones) as corollaries.
Notably—and in contrast to prior works—all the consequences of our main the-
orem follow mostly by elementary linear algebra, and do not use any additional
properties (or even the definition) of the discrete Gaussian. In other words, our
framework abstracts away the particulars of discrete Gaussians, and makes it
easier to prove and verify many useful theorems about them.

As a novel application of our framework, we describe and tightly analyze
an LWE self-reduction that, given a fixed number of LWE samples, directly
generates (up to negligible statistical distance) an unlimited number of additional
LWE samples with discrete Gaussian error (of a somewhat larger width than the
original error). The ability to generate fresh, properly distributed LWE samples
is often used in cryptosystems and security proofs (see [GPV08,ACPS09] for two
early examples), so the tightness and simplicity of the procedure is important.
The high-level idea behind prior LWE self-reductions, first outlined in [GPV08],
is that a core procedure of [Reg05] can be used to generate fresh LWE samples
with continuous Gaussian error. If desired, these samples can then be randomly
rounded to have discrete Gaussian error [Pei10], but this increases the error
width somewhat, and using continuous error to generate discrete samples seems
unnecessarily cumbersome. We instead describe a fully discrete procedure, and
use our framework to prove that it works for exactly the same parameters as the
continuous one.

As a secondary contribution, motivated by the concrete security of “trap-
door” lattice cryptosystems, we analyze the singular values of the subgaussian
matrices often used as such trapdoors [AP09,MP12]. Our analysis precisely
tracks the exact constants in traditional concentration bounds for the singular
values of a random matrix with independent, subgaussian rows [Ver12]. We also
give a tighter heuristic bound on matrices chosen with independent subgaussian
entries, supported by experimental evidence. Since the trapdoor’s maximum sin-
gular value directly influences the hardness of the underlying SIS/LWE problems
in trapdoor cryptosystems, our heuristic yields up to 10 more bits of security in
a common parameter regime, where the trapdoor’s entries are chosen indepen-
dently from {0,±1} (with one-half probability on 0, and one-quarter probability
on each of ±1).2

1.2 Technical Overview

Linear Transformations of Discrete Gaussians. It is well known that any linear
transformation of a (continuous, multivariate) Gaussian is another Gaussian.

2 Our security analysis is a simple BKZ estimate, which is not a state-of-the-art con-
crete security analysis. However, we are only interested in the change in concrete
security when changing from previous bounds to our new ones. Our point is that
the underlying SIS problem is slightly harder in this trapdoor lattice regime than
previously thought.
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The heart of our work is a similar theorem for discrete Gaussians (Theorem 1).
Note that we cannot hope to say anything about this in full generality, because
a linear transformation of a lattice Λ may not even be a lattice. However, it is
one if the kernel K of the transformation is a Λ-subspace, i.e., the lattice Λ ∩ K
spans K (equivalently, K is spanned by vectors in Λ), so we restrict our attention
to this case.

For a positive definite matrix Σ and a lattice coset Λ + c, the discrete Gaus-
sian distribution DΛ+c,

√
Σ assigns to each x in its support Λ + c a probability

proportional to exp(−π ·xtΣ−1x). We show that for an arbitrary linear transfor-
mation T, if the lattice Λ ∩ ker(T) spans ker(T) and has smoothing parameter
bounded by

√
Σ, then T applied to DΛ+c,

√
Σ behaves essentially as one might

expect from continuous Gaussians:

TDΛ+c,
√

Σ ≈ DT(Λ+c),T
√

Σ .

The key observation for the proof is that for any point in the support of these two
distributions, its probabilities under TDΛ+c,

√
Σ and DT(Λ+c),T

√
Σ differ only by

a factor proportional to the Gaussian mass of some coset of Λ ∩ K. But because
this sublattice is “smooth” by assumption, all such cosets have essentially the
same mass.

Convolutions. It is well known that the sum of two independent continuous
Gaussians having covariances Σ1, Σ2 is another Gaussian of covariance Σ. We
use our above-described Theorem 1 to prove similar statements for convolutions
of discrete Gaussians. A typical such convolution is the statistical experiment
where one samples

x1 ← DΛ1+c1,
√

Σ1
, x2 ← x1 + DΛ2+c2−x1,

√
Σ2

.

Based on the behavior of continuous Gaussians, one might expect the distri-
bution of x2 to be close to DΛ2+c2,

√
Σ , where Σ = Σ1 + Σ2. This turns out

to be the case, under certain smoothness conditions on the lattices Λ1, Λ2

relative to the Gaussian parameters
√

Σ1,
√

Σ2. This was previously shown
in [Pei10, Theorem 3.1], using a specialized analysis of the particular experi-
ment in question.

We show how to obtain the same theorem in a higher-level and modular way,
via Theorem 1. First, we show that the joint distribution of (x1,x2) is close to
a discrete Gaussian over (Λ1 + c1) × (Λ2 + c2), then we analyze the marginal
distribution of x2 by applying the linear transformation (x1,x2) �→ x2 and ana-
lyzing the intersection of Λ1×Λ2 with the kernel of the transformation. Interest-
ingly, our analysis arrives upon exactly the same hypotheses on the parameters
as [Pei10, Theorem 3.1], so nothing is lost by proceeding via this generic route.

We further demonstrate the power of this approach—i.e., viewing convolu-
tions as linear transformations of a joint distribution—by showing that it yields
all prior discrete Gaussian convolution theorems from the literature. Indeed,
we give a very general theorem on integer combinations of independent discrete
Gaussians (Theorem 4), then show that several prior convolution theorems follow
as immediate corollaries.
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LWE Self-reduction. Recall the LWE distribution (A,bt = stA + et mod q)
where the secret s ← Z

n
q and A ← Z

n×m
q are uniform and independent, and

the entries of e are chosen independently from some error distribution, usu-
ally a discrete one over Z. As described in [GPV08,ACPS09] (based on a core
technique from [Reg05]), when m ≈ n log q or more we can generate unlimited
additional LWE samples (up to small statistical distance) with the same secret s
and continuous Gaussian error, as

(a = Ax ∈ Z
n
q , b = btx + ẽ = sta + (etx + ẽ) mod q)

for discrete Gaussian x ← DZm,r and continuous Gaussian “smoothing
error” ẽ ← Dr̃, for suitable parameters r, r̃. More specifically, the error term
etx + ẽ is close to a continuous Gaussian Dt, where t2 = (r‖e‖)2 + r̃2.

We emphasize that the above procedure yields samples with continuous Gaus-
sian error. If discrete error is desired, one can then “round off” b, either näıvely
(yielding somewhat unnatural “rounded Gaussian” error), or using more sophis-
ticated randomized rounding (yielding a true discrete Gaussian [Pei10]). How-
ever, this indirect route to discrete error via a continuous intermediate step seems
cumbersome and also somewhat loose, due to the extra round-off error.

An obvious alternative approach is to directly generate samples with dis-
crete error, by choosing the “smoothing” term ẽ ← DZ,r̃ from a discrete Gaus-
sian. However, directly and tightly analyzing this alternative is surprisingly non-
trivial, and to our knowledge it has never been proven that the resulting error
is (close to) a discrete Gaussian, without incurring some loss relative to what is
known for the continuous case.3 Using the techniques developed in this paper,
we give a modular proof that this alternative approach does indeed work, for the
very same parameters as in the continuous case. As the reader may guess, we
again express the overall error distribution as a linear transformation on some
joint discrete Gaussian distribution. More specifically, the joint distribution is
that of (x, ẽ) where x is conditioned on a = Ax, and the linear transformation
is given by [et | 1] (where et is the original LWE error vector). The result then
follows from our general theorem on linear transformations of discrete Gaussians
(Theorem 1).

Analysis of Subgaussian Matrices. A distribution over R is subgaussian with
parameter s > 0 if its tails are dominated by those of a Gaussian distribution
of parameter s. More generally, a distribution X over R

n is subgaussian (with
parameter s) if its marginals 〈X ,u〉 are subgaussian (with the same parameter s)
for every unit vector u ∈ R

n. We give precise concentration bounds on the sin-
gular values of random matrices whose columns, rows, or individual entries are
independent subgaussians. We follow a standard proof strategy based on a union
bound over an ε-net (see, e.g., [Ver12]), but we precisely track all the constant
factors. For example, let R ∈ R

m×n be a matrix with independent subgaus-
sian rows. First, we reduce the analysis of R’s singular values to measuring how
3 Of course, one can view the discrete Gaussian as a randomly rounded continuous

one, but this is equivalent to the indirect, loose approach described above.
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close R is to an isometry, specifically the norm ‖RtR−In‖ = supu ‖(RtR−In)u‖
where the supremum is taken over all unit vectors u. Next, we approximate
all unit vectors by an ε-net of the unit-sphere and bound the probability that
‖Ru‖22 is too large by expressing ‖Ru‖22 as a sum of independent terms (namely,
‖Ru‖22 =

∑
i〈ri,u〉2 where ri is a row of R). Finally, we take a union bound over

the net to get a concentration bound. Lastly, we give a tighter heuristic for sub-
gaussian matrices with independent entries from commonly used distributions
in lattice-based cryptography.

1.3 Organization

The rest of the paper is organized as follows. Section 2 reviews the relevant
mathematical background. Section 3 gives our general theorem on linear trans-
formations of discrete Gaussians. Section 4 is devoted to convolutions of discrete
Gaussians: we first analyze joint distributions and linear transforms of such con-
volutions, then show how all prior convolution theorems follow as corollaries.
Section 5 gives our improved, purely discrete LWE self-reduction. Finally, Sect. 6
gives our provable and heuristic subgaussian matrix analysis; the proof of the
main subgaussianity theorem appears in the full version.

2 Preliminaries

In this section we review some basic notions and mathematical notation used
throughout the paper. Column vectors are denoted by lower-case bold letters
(a,b, etc.) and matrices by upper-case bold letters (A,B, etc.). In addition,
positive semidefinite matrices are sometimes denoted by upper-case Greek letters
like Σ. The integers and reals are respectively denoted by Z and R. All logarithms
are base two unless specified otherwise.

Probability. We use calligraphic letters like X ,Y for probability distributions,
and sometimes for random variables having such distributions. We make infor-
mal use of probability theory, without setting up formal probability spaces.
We use set-like notation to describe probability distributions: for any distri-
bution X over a set X, predicate P on X, and function f : X → Y , we write
�f(x) | x ← X , P (x)� for the probability distribution over Y obtained by sam-
pling x according to X , conditioning on P (x) being satisfied, and outputting
f(x) ∈ Y . Similarly, we write {P (x) | x ← X} to denote the event that P (x) is
satisfied when x is selected according to X , and use Pr{z ← X} as an abbrevi-
ation for X (z) = Pr{x = z | x ← X}. We write f(X ) = �f(x) | x ← X � for the
result of applying a function to a probability distribution. We let U(X) denote
the uniform distribution over a set X of finite measure.

The statistical distance between any two probability distributions X ,Y over
the same set is Δ(X ,Y) := supA|Pr{X ∈ A} − Pr{Y ∈ A}|, where A ranges over
all measurable sets. Similarly, for distributions X ,Y with the same support, their
max-log distance [MW18] is defined as
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Δml(X ,Y) := sup
A

|log Pr{X ∈ A} − log Pr{Y ∈ A}|,

or, equivalently, Δml(X ,Y) = supa|log Pr{X = a} − log Pr{Y = a}|.

Distance Notation. For any two real numbers x, y, and ε ≥ 0, we say that x
approximates y within relative error ε (written x ≈ε y) if x ∈ [1−ε, 1+ε] ·y. We
also write x

ε≈ y as an abbreviation for the symmetric relation (x ≈ε y)∧(y ≈ε x),
or, equivalently, | log x − log y| ≤ log(1 + ε) ≤ ε.

For two probability distributions X ,Y over the same set, we write X ≈ε Y
if X (z) ≈ε Y(z) for every z. Similarly, we write X ε≈ Y if X ≈ε Y and Y ≈ε X .
The following facts are easily verified:

1. If X ≈ε Y, then Y ≈ε̄ X (and therefore, X ε̄≈ Y) for ε̄ = ε/(1 − ε).
2. If X ≈ε Y and Y ≈δ Z then X ≈ε+δ+εδ Z, and similarly for

ε≈.
3. For any (possibly randomized) function f , Δ(f(X ), f(Y)) ≤ Δ(X ,Y), and

X ≈ε Y implies f(X ) ≈ε f(Y).
4. If X ≈ε Y then Δ(X ,Y) ≤ ε/2.
5. X ε≈ Y if and only if Δml(X ,Y) ≤ log(1 + ε).

Linear Algebra. For any set of vectors S ⊆ R
n, we write span(S) for the linear

span of S, i.e., the smallest linear subspace of R
n that contains S. For any

matrix T ∈ R
n×k, we write span(T) for the linear span of the columns of T,

or, equivalently, the image of T as a linear transformation. Moreover, we often
identify T with this linear transformation, treating them interchangeably. A
matrix has full column rank if its columns are linearly independent.

We write 〈x,y〉 =
∑

i xi · yi for the standard inner product of two vectors
in R

n. For any vector x ∈ R
n and a (possibly empty) set S ⊆ R

n, we write x⊥S

for the component of x orthogonal to S, i.e., the unique vector x⊥S ∈ x+span(S)
such that 〈x⊥S , s〉 = 0 for every s ∈ S.

The singular values of a matrix A ∈ R
m×n are the square roots of the first

d = min(m,n) eigenvalues of its Gram matrix AtA. We list singular values in
non-increasing order, as s1(A) ≥ s2(A) ≥ · · · ≥ sd(A) ≥ 0. The spectral norm
is ‖A‖ := supx�=0 ‖Ax‖2/‖x‖2, which equals its largest singular value s1(A).

The (Moore-Penrose) pseudoinverse of a matrix A ∈ R
n×k of full column

rank4 is A+ = (AtA)−1At, and it is the unique matrix A+ ∈ R
k×n such that

A+A = I and span((A+)t) = span(A). (If A is square, its pseudoinverse is just
its inverse A+ = A−1.) For any v ∈ span(A) we have AA+v = v, because
v = Ac for some vector c.

The tensor product (or Kronecker product) of any two matrices A = (ai,j)
and B is the matrix obtained by replacing each entry ai,j of A with the block
ai,jB. It obeys the mixed-product property (A⊗B)(C⊗D) = (AC)⊗ (BD) for
any matrices A,B,C,D with compatible dimensions.

4 The pseudoinverse can also be defined for arbitrary matrices, but the definition is
more complex, and we will not need this level of generality.
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Positive (Semi)definite Matrices. A symmetric matrix Σ = Σt is positive
semidefinite, written Σ � 0, if xtΣx ≥ 0 for all vectors x. It is positive def-
inite, written Σ � 0, if xtΣx > 0 for all nonzero x. Positive (semi)definiteness
defines a partial ordering on symmetric matrices: we write Σ � Σ′ (and Σ′ � Σ)
if Σ − Σ′ � 0 is positive semidefinite, and similarly for Σ � Σ′.5 For any two
(not necessarily positive semidefinite) matrices S,T ∈ R

n×k, we write S ≤ T if
SSt � TTt.

For any matrix A, its Gram matrix AtA is positive semidefinite. Conversely,
a matrix Σ is positive semidefinite if and only if it can be written as Σ = SSt

for some matrix S; we write S =
√

Σ, and say that S is a square root of Σ. Note
that such a square root is not unique, because, e.g., −S =

√
Σ as well. We often

just write
√

Σ to refer to some arbitrary but fixed square root of Σ. For positive
definite Σ � 0, observe that S =

√
Σ if and only if Σ−1 = (SSt)−1 = S−tS−1, so

S−t =
√

Σ−1, i.e.,
√

Σ
−t

is equivalent to
√

Σ−1, and hence
√

Σ
−1

is equivalent
to

√
Σ−1

t
.

Lattices. An n-dimensional lattice Λ is a discrete subgroup of R
n, or, equiva-

lently, the set Λ = L(B) = {Bx : x ∈ Z
k} of all integer linear combinations of

the columns of a full-column-rank basis matrix B ∈ R
n×k. The dimension k is

the rank of Λ, and the lattice is full rank if k = n. The basis B is not unique;
any B′ = BU for U ∈ Z

k×k with det(U) = ±1 is also a basis of the same lattice.
A coset of a lattice Λ ⊂ R

n is a set of the form A = Λ + a =
{v + a : v ∈ Λ} for some a ∈ R

n. The dual lattice of Λ is the lattice Λ∨ =
{x ∈ span(Λ) : 〈x, Λ〉 ⊆ Z}. If B is a basis for Λ, then B+t is a basis for Λ∨. A
Λ-subspace, also called a lattice subspace when Λ is clear from context, is the lin-
ear span of some set of lattice points, i.e., a subspace S for which S = span(Λ∩S).
A fundamental property of lattices (used in the proof that every lattice has a
basis) is that if T is a linear transformation for which ker(T) is a Λ-subspace,
then TΛ is also a lattice.6

The Gram-Schmidt orthogonalization (GSO) of a lattice basis B = {bi} is
the set B̃ = {b̃i} of vectors defined iteratively as b̃i = (bi)⊥{b1,...,bi−1}, i.e., the
component of bi orthogonal to the previous basis vectors. (Notice that the GSO
is sensitive to the ordering of the basis vectors.) We define the minimum GSO
length of a lattice as b̃l(Λ) := minB maxi ‖b̃i‖2, where the minimum is taken
over all bases B of Λ.

For any two lattices Λ1, Λ2, their tensor product Λ1 ⊗ Λ2 is the set of all
sums of vectors of the form v1 ⊗ v2 where v1 ∈ Λ1 and v2 ∈ Λ2. If B1,B2 are
respectively bases of Λ1, Λ2, then B1 ⊗ B2 is a basis of Λ1 ⊗ Λ2.

Gaussians. Let D be the Gaussian probability measure on R
k (for any k ≥ 1)

having density function defined by ρ(x) = e−π‖x‖2
, the Gaussian function with

5 Notice that it is possible for Σ � Σ′ and Σ �= Σ′, and still Σ �� Σ′.
6 Clearly, TΛ is an additive group, and it is not too difficult to show that TΛ has a

minimal nonzero element (i.e., it is discrete), so it is a lattice.
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total measure
∫
x∈Rk ρ(x) dx = 1. For any (possibly non-full-rank) matrix S ∈

R
n×k, we define the (possibly non-spherical) Gaussian distribution

DS := S · D = �Sx | x ← D�

as the image of D under S; this distribution has covariance Σ/(2π) where Σ =
SSt is positive semidefinite. Notice that DS depends only on Σ, and not on any
specific choice of the square root S.7 So, we often write D√

Σ instead of DS.
When Σ = s2I is a scalar matrix, we often write Ds (observe that D = D1).

For any Gaussian distribution DS and set A ⊆ span(S), we define DA,S as
the conditional distribution (where S−1(A) = {x : Sx ∈ A})

DA,S := [DS]A = �y | y ← DS,y ∈ A� = �Sx | x ← D,Sx ∈ A� = S · [D]S−1(A)

whenever this distribution is well-defined.8 Examples for which this is the case
include all sets A with positive measure

∫
x∈A

dx > 0, and all sets of the form
A = L + Λ + c, where L ⊆ R

n is a linear subspace and Λ + c ⊂ R
n is a lattice

coset.
For any lattice coset A = Λ + c (and taking S = I for simplicity), the distri-

bution DΛ+c is exactly the (origin-centered) discrete Gaussian distribution given
by Pr{x ← DA} := ρ(x)/

∑
y∈A ρ(y), as usually defined in lattice cryptography.

It also follows immediately from the definition that c+DΛ−c is the “c-centered”
discrete Gaussian DΛ,c that is defined and used in some works. Because of this,
there is no loss of generality in dealing solely with origin-centered Gaussians, as
we do in this work.

Lemma 1. For any A ⊆ R
n and matrices S,T representing linear functions

where T is injective on A, we have

T · DA,S = DTA,TS. (2.1)

Proof. By definition of the conditioned Gaussian and the fact that A =
T−1(TA), we have

T · DA,S = TS · [D]S−1(A) = TS · [D](TS)−1(TA) = DTA,TS. ��
We now recall the notion of the smoothing parameter [MR04] and its gener-

alization to non-spherical Gaussians [Pei10].

Definition 1. For a lattice Λ and ε ≥ 0, we say ηε(Λ) ≤ 1 if ρ(Λ∨) ≤ 1 + ε.
More generally, for any matrix S of full column rank, we write ηε(Λ) ≤ S if
Λ ⊂ span(S) and ηε(S+Λ) ≤ 1, where S+ is the pseudoinverse of S. When
S = sI is a scalar matrix, we may simply write ηε(Λ) ≤ s.
7 To see this, notice that the probability under S(D) of any vector Σx ∈ span(SSt) =

span(S) in its support is ρ({z : Sz = Σx}) = ρ(Ttx + ker(S)) = ρ(Stx) · ρ(ker(T))
because Stx is orthogonal to ker(S) = {z : Sz = 0}. Moreover, ρ(ker(S)) = 1 and
ρ(Stx) = ρ(‖Stx‖) = ρ(

√
xtΣx) depends only on Σ.

8 For any nonempty set A with zero measure, one can first define Aε = A+{x : ‖x‖ <
ε}, which has nonzero measure for any ε > 0. Then, [DS]A is defined as the limit of
[DS]Aε as ε → 0, if this limit exists.
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Observe that for a fixed lattice Λ, whether ηε(Λ) ≤ S depends only on Σ =
SSt, and not the specific choice of square root S =

√
Σ. This is because the

dual lattice (S+Λ)∨ = StΛ∨, so for any dual vector w = Stv where v ∈ Λ∨,
ρ(w) = exp(−π‖w‖2) = exp(−πvtSStv) = exp(−πvtΣv) is invariant under the
choice of S. From this analysis it is also immediate that Definition 1 is consistent
with our partial ordering of matrices (i.e., S ≤ T when SSt � TTt), and with
the original definition [MR04] of the smoothing parameter of Λ as the smallest
positive real s > 0 such that ρ(sΛ∨) ≤ 1 + ε. The following lemma also follows
immediately from the definition.

Lemma 2. For any lattice Λ, ε ≥ 0, and matrices S,T of full column rank, we
have ηε(Λ) ≤ S if and only if ηε(TΛ) ≤ TS.

The name “smoothing parameter” comes from the following fundamental
property proved in [MR04,Reg05].

Lemma 3. For any lattice Λ and ε ≥ 0 where ηε(Λ) ≤ 1, we have ρ(Λ + c) ≈ε

1/det(Λ) for any c ∈ span(Λ); equivalently, (D mod Λ) ≈ε U := U(span(Λ)/Λ).
In particular, Δ(D mod Λ,U) ≤ ε/2 and Δml(D mod Λ,U) ≤ − log(1 − ε).

The lemma is easily generalized to arbitrary vectors c not necessarily in span(Λ).

Corollary 1. For any lattice Λ and ε ≥ 0 where ηε(Λ) ≤ 1, and any vector c,
we have

ρ(Λ + c) ≈ε
ρ(c⊥Λ)
det(Λ)

.

Proof. Because c⊥Λ is orthogonal to span(Λ) and c′ = c− (c⊥Λ) ∈ span(Λ), we
have

ρ(Λ + c) = ρ(Λ + c′ + (c⊥Λ)) = ρ(c⊥Λ) · ρ(Λ + c′) ≈ε
ρ(c⊥Λ)
det(Λ)

,

where ρ(Λ + c′) ≈ε det(Λ)−1 by Lemma 3. ��
Finally, we recall the following bounds on the smoothing parameter.

Lemma 4 ([GPV08, Lemma 3.1]). For any rank-n lattice Λ and ε > 0, we
have ηε(Λ) ≤ b̃l(Λ) · √ln(2n(1 + 1/ε))/π.

Lemma 5 ([MP13, Corollary 2.7]). For any lattices Λ1, Λ2, we have

ηε′(Λ1 ⊗ Λ2) ≤ b̃l(Λ1) · ηε(Λ2),

where 1+ε′ = (1+ε)n and n is the rank of Λ1. (Note that ε′ ≈ nε for sufficiently
small ε.)
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Quotients and Groups. Lattice cryptography typically involves integer lat-
tices Λ that are periodic modulo some integer q, i.e., qZm ⊆ Λ ⊆ Z

m.
These “q-ary lattices” lattices can be equivalently viewed as subgroups of
Z

m
q = Z

m/qZm. Let A ∈ Z
n×m
q for some n ≥ 1 and define the lattice

Λ⊥
q (A) := {x ∈ Z

m : Ax = 0 mod q}. We say that A is primitive if A ·Zm = Z
n
q .

All the results in this paper apply not only to lattices, but also to arbitrary
(topologically closed) subgroups of Rn. These are groups of the form G = Λ + L
where Λ is a lattice and L is a linear subspace. When considering such groups,
one can always assume, without loss of generality, that Λ and L are mutually
orthogonal because Λ+L = (Λ⊥L)+L. Intuitively, one can think of groups Λ+L
as lattices of the form Λ + δΛL where span(ΛL) = L and δ ≈ 0. Notice that
limδ→0 ηε(Λ+ δΛL) = ηε(Λ⊥L). For simplicity, we will focus the presentation on
lattices, and leave the generalization to arbitrary groups to the reader. Results
for the continuous Gaussian distribution D are obtained as a special case by
taking the limit, for δ → 0, of δΛ, where Λ is an arbitrary lattice spanning the
support of D.

Subgaussian Distributions. Subgaussian distributions are those on R which have
tails dominated by Gaussians [Ver12]. An equivalent formulation is through a
distribution’s moment-generating function, and the definition below is commonly
used throughout lattice-based cryptography [MP12,LPR13].

Definition 2. A real random variable X is subgaussian with parameter s > 0
if for all t ∈ R,

E[e2πtX ] ≤ eπs2t2 .

From this we can derive a standard Gaussian concentration bound.

Lemma 6. A subgaussian random variable X with parameter s > 0 satisfies,
for all t > 0,

Pr{|X| ≥ t} ≤ 2 exp(−πt2/s2).

Proof. Let δ ∈ R be arbitrary. Then,

Pr{X ≥ t} = Pr{exp(2πδX) ≥ exp(2πδt)} ≤ exp(−2πδt) · E[exp(2πδX)]

≤ exp(−2πδt + πδ2s2).

This is minimized at δ = t/s2, so we have

Pr{X ≥ t} ≤ exp(−πt2/s2).

The symmetric case X ≤ −t is analogous, and the proof is completed by a union
bound. ��

A random vector x over R
n is subgaussian with parameter α if 〈x,u〉 is

subgaussian with parameter α for all unit vectors u. If each coordinate of a
random vector is subgaussian (with a common parameter) conditioned any values
of the previous coordinates, then the vector itself is subgaussian (with the same
parameter). See [LPR13, Claim 2.1] for a proof.
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3 Lattice Projections

We emphasize that the proof of Lemma 1 makes essential use of the injectivity
of T, and the lemma does not hold when T is not injective. There are two reasons
for this. Consider, for simplicity, the special case where A = Λ is a lattice and S =
I. First, the set TΛ is not necessarily a lattice, and the conditional distribution
DTΛ,T may not be well defined.9 We resolve this issue by restricting T to be a
linear transformation whose kernel is a lattice subspace P = span(P ∩Λ). Second,
even when T·DΛ is well defined, in general it does not equal the discrete Gaussian
DTΛ,T. We address this issue by showing that these distributions are statistically
close, assuming that the sublattice Λ∩P has small enough smoothing parameter.

Theorem 1. For any ε ∈ [0, 1) defining ε̄ = 2ε/(1− ε), matrix S of full column
rank, lattice coset A = Λ + a ⊂ span(S), and matrix T such that ker(T) is a
Λ-subspace and ηε(Λ ∩ ker(T)) ≤ S, we have

T · DA,S
ε̄≈ DTA,TS.

The proof of Theorem1 (given below) relies primarily on the following spe-
cialization to linear transformations that are orthogonal projections x �→ x⊥P .

Lemma 7. For any ε ∈ [0, 1), lattice coset A = Λ + a, and lattice subspace
P = span(Λ ∩ P ) such that ηε(Λ ∩ P ) ≤ 1, we have

Δml((DA)⊥P , DA⊥P
) ≤ log

1 + ε

1 − ε
,

or equivalently, (DA)⊥P

ε̄≈ DA⊥P
where ε̄ = 2ε/(1 − ε).

Proof. It is immediate that both (DA)⊥P and DA⊥P
are both well-defined dis-

tributions over A⊥P , which is a lattice coset. For any v ∈ A⊥P , let pv =
Pr{v ← (DA)⊥P } and qv = Pr{v ← DA⊥P

}. By definition, qv = ρ(v)/ρ(A⊥P ).
In order to analyze pv, let ΛP = Λ∩P , and select any w ∈ A such that w⊥P = v.
Then

pv =
ρ({x ∈ A : x⊥P = v})

ρ(A)
=

ρ(w + ΛP )
ρ(A)

≈ε
ρ(w⊥ΛP

)
ρ(A) det(ΛP )

,

where the last step follows by Corollary 1. By assumption, span(ΛP ) = P , so
w⊥ΛP

= w⊥P = v and hence

pv ≈ε
ρ(v)

ρ(A) det(ΛP )
= C · qv

9 For example, if Λ is the lattice generated by the vectors (1, 0) and (
√

2, 1), and
T(x, y) = x is the projection on the first coordinate, then TΛ = Z+

√
2Z is a count-

able but dense subset of R. In particular,
∑

x∈TΛ ρ(x) = ∞ and so the conditional
distribution DTΛ,T is not well defined.
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for some constant C = ρ(A⊥P )/(ρ(A) det(ΛP )). Summing over all v ∈ AA⊥P

gives 1 ≈ε C, or, equivalently, C ∈ [1/(1 + ε), 1/(1 − ε)]. It follows that

1 − ε

1 + ε
qv ≤ pv ≤ 1 + ε

1 − ε
· qv,

and therefore Δml((DA)⊥P ,DA⊥P
) ≤ log 1+ε

1−ε . ��
We now prove the main theorem.

Proof (of Theorem 1). The main idea is to express Λ as SΛ′ for a lattice Λ′, then
use the injectivity of TS on the subspace orthogonal to ker(TS), which contains
Λ′⊥ker(TS).

Notice that a ∈ A ⊂ span(S) and Λ = A − a ⊂ span(S). Therefore, we can
write A = SA′ for some lattice coset A′ = Λ′ + a′ with SΛ′ = Λ and Sa′ = a.
Since S is injective, by Lemma 1 we have

T · DA,S = T · DSA′,S = TS · DA′ . (3.1)

Now let P = ker(TS), so that SP = span(S) ∩ ker(T). In particular, using
Λ ⊂ span(S) and the injectivity of S, we get

Λ ∩ ker(T) = Λ ∩ span(S) ∩ ker(T) = Λ ∩ SP = SΛ′ ∩ SP = S(Λ′ ∩ P ).

Using the assumption ker(T) = span(Λ ∩ ker(T)) we also get

SP = span(S) ∩ ker(T) = span(S) ∩ span(Λ ∩ ker(T)) = span(Λ ∩ ker(T)).

It follows that SP = span(S(Λ′∩P )), and, since S is injective, P = span(Λ′∩P ).
We also have

ηε(S(Λ′ ∩ P )) = ηε(Λ ∩ ker(T)) ≤ S,

which, by definition, gives ηε(Λ′ ∩ P ) ≤ 1. So, the hypotheses of Lemma 7 are
satisfied, and

Δml((DA′)⊥P , DA′⊥P
) ≤ log

1 + ε

1 − ε
.

Applying TS to both distributions we get that

Δml(TS · (DA′)⊥P , TS · DA′⊥P
) ≤ log

1 + ε

1 − ε
.

It remains to show that these are the distributions in the theorem statement.
To this end, observe that TSx = TS(x⊥P ) for any vector x. Therefore, the first
distribution equals

TS · (DA′)⊥P = TS · DA′ = T · DSA′,S = T · DA,S.

Finally, since TS is injective on A′⊥P , we can apply Lemma 1 and see that the
second distribution is

TS · DA′⊥P
= DTSA′,TS = DTA,TS. ��
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Corollary 2 below, recently stated in [DGPY19], is a special case of Theo-
rem 1. The difference is that while Corollary 2 assumes that T is a primitive
integer matrix and A = Λ = Z

m is the integer lattice, Theorem 1 applies to
arbitrary linear transformations T and lattice cosets A = Λ + a ⊂ R

m.

Corollary 2 ([DGPY19, Lemma 3]). For any ε ∈ (0, 1/2) and T ∈ Z
n×m such

that TZ
m = Z

n and ηε(Zm ∩ ker(T)) ≤ r, we have

Δml(T · DZm,r , DZn,rT) ≤ 4ε.

4 Convolutions

This section focuses on convolutions of discrete Gaussians. The literature on
lattice-based cryptography has a multitude of convolution theorems and lemmas
for discrete Gaussians (e.g., [Reg05,Pei10,BF11,MP13]), most of which are for-
mally incomparable despite the close similarity of their statements and proofs.
In this section we show all of them can be obtained and generalized solely via
Theorem 1 and elementary linear algebra.

First, in Sect. 4.1 we analyze the joint distribution of a convolution. Then
in Sect. 4.2 we show how to obtain (and in some cases generalize) all prior dis-
crete Gaussian convolution theorems, by viewing each convolution as a linear
transformation on its joint distribution.

4.1 Joint Distributions

Here we prove several general theorems on the joint distributions of discrete
Gaussian convolutions.

Theorem 2. For any ε ∈ [0, 1), cosets A1, A2 of lattices Λ1, Λ2 (respectively),
and matrix T such that span(T) ⊆ span(Λ2) and ηε(Λ2) ≤ 1, we have

�(x1,x2) | x1 ← DA1 , x2 ← DA2+Tx1�
ε̄≈ DA,

where A = ( I
T I ) · (A1 × A2) and ε̄ = 2ε/(1 − ε).

Proof. Let P(x1,x2) = (x1, (x2)⊥Λ2
) be the orthogonal projection on the first n1

coordinates and the subspace orthogonal to Λ2, and observe that (A2)⊥Λ2
= {a}

is a singleton set for some a. For any fixed x1 ∈ A1, it is straightforward to verify
that

�(x1,x2) | x2 ← DA2+Tx1� = �x | x ← DA,P(x) = (x1,a)�.

Therefore, it is enough to show that (DA1 ,a)
ε̄≈ P(DA). Define Λ = ( I

T I ) · (Λ1 ×
Λ2) and ΛP = Λ ∩ ker(P) = {0} ⊕ Λ2. Notice that ker(P) = {0} ⊕ span(Λ2) =
span(ΛP ) (i.e., ker(P) is a Λ-subspace), and ηε(ΛP ) = ηε(Λ2) ≤ 1. Therefore,
by Theorem 1,

P(DA)
ε̄≈ DP(A) = DA1×{a} = (DA1 ,a). ��
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As a corollary, we get the following more symmetric statement, which says
essentially that if the lattices of A1 and A2 are sufficiently smooth, then a pair of
δ̄-correlated Gaussian samples over A1 and A2 can be produced in two different
ways, depending on which component is sampled first.

Corollary 3. For any ε ∈ [0, 1) and δ ∈ (0, 1] with δ′ =
√

1 − δ2, and any cosets
A1, A2 of full-rank lattices Λ1, Λ2 ⊂ R

n (respectively) where ηε(Λ1), ηε(Λ2) ≤ δ,
define the distributions

X1 = �(x1,x2) | x1 ← DA1 , x2 ← δ′x1 + DA2−δ′x1,δ�

X2 = �(x1,x2) | x2 ← DA2 , x1 ← δ′x2 + DA1−δ′x2,δ�.

Then X1
ε̄≈ DA,

√
Σ

ε̄≈ X2, where A = A1 ×A2, ε̄ = 2ε/(1− ε), and Σ = ( I δ′I
δ′I I

).

Proof. By Lemma 1, the conditional distribution of x2 given x1 in X1 is δ′x1 +
δD(A2/δ)−(δ′/δ)x1 . So, X1 can be equivalently expressed as

S · �( x1
x2 ) | x1 ← DA1 ,x2 ← D(A2/δ)−(δ′/δ)x1�, S = ( I

δ′I δI
).

Since ηε(Λ2/δ) = ηε(Λ2)/δ ≤ 1, we can apply Theorem 2 with T = −(δ′/δ)I,

and get that the first distribution satisfies X1
ε̄≈ S · DA′ , where A′ = ( I

T I )(A1 ×
(A2/δ)). Since S is injective, by Lemma 1 we have

X1
ε̄≈ S · DA′ = DSA′,S = DA,

√
Σ

where Σ = SSt = ( I δ′I
δ′I I

). By symmetry, X2
ε̄≈ DA,

√
Σ as well. ��

Corollary 3 also generalizes straightforwardly to the non-spherical case, as
follows.

Corollary 4. For any ε ∈ [0, 1), cosets A1, A2 of lattices Λ1, Λ2 (respectively),
and matrices R,S1,S2 of full column rank where A1 ⊂ span(S1), span(RS1) ⊆
span(Λ2), and ηε(Λ2) ≤ S2, we have

X := �(x1,x2) | x1 ← DA1,S1 , x2 ← Rx1 + DA2−Rx1,S2�
ε̄≈ DA,S,

where A = A1 × A2, ε̄ = 2ε/(1 − ε), and S = ( S1
RS1 S2

).

Proof. We proceed similarly to the proof of Corollary 3. For simplicity, substi-
tute x1 with S1x1 where x1 ← DS+

1 A1
. Then by Lemma 1, the vector x2 in X ,

conditioned on any value of x1, has distribution

RS1x1 + S2 · DS+
2 (A2−RS1x1)

.

So, we can express X equivalently as

S · �( x1
x2 ) | x1 ← DS+

1 A1
, x2 ← DS+

2 (A2−RS1x1)
�,
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and since ηε(S+
2 · Λ2) ≤ 1, we can apply Theorem 2 with lattice cosets A′

1 =

S+
1 A1, A

′
2 = S+

2 A2 and T = −S+
2 RS1. This yields X ε̄≈ S · DA′ = DSA′,S where

A′ = ( I 0
T I )(A′

1 × A′
2)

and hence SA′ = A, as needed. ��
The following corollary, which may be useful in cryptography, involves Gaus-

sian distributions over lattices and uniform distributions over their (finite) quo-
tient groups.

Corollary 5. Let Λ,Λ1, Λ2 be full-rank lattices where Λ ⊆ Λ1 ∩ Λ2 and ηε(Λ1),
ηε(Λ2) ≤ 1 for some ε > 0, and define the distributions

X1 = �(x1,x2) | x1 ← U(Λ1/Λ) , x2 ← x1 + DΛ2−x1 mod Λ�,

X2 = �(x1,x2) | x2 ← U(Λ2/Λ) , x1 ← x2 + DΛ1−x2 mod Λ�.

Then X1
ε̄≈ X2 where ε̄ = 4ε/(1 − ε)2.

Proof. We assume the strict inequality ηε(Λ1) < 1; the claim then follows in the
limit. Let δ′ ∈ (ηε(Λ1), 1), δ =

√
1 − δ′2, and apply Corollary 3 to A1 = (δ/δ′)Λ1

and A2 = δΛ2. Notice that the hypotheses of Corollary 3 are satisfied because
ηε(A1) = δηε(Λ1)/δ′ < δ and ηε(A2) = δηε(Λ2) ≤ δ. So, the distributions

X ′
1 = �(x1,x2) | x1 ← DA1 , x2 ← δ′x1 + DA2−δ′x1,δ�

X ′
2 = �(x1,x2) | x2 ← DA2 , x1 ← δ′x2 + DA1−δ′x2,δ�

satisfy X ′
1

ε̄≈ X ′
2. Let f : A1 × A2 → (Λ1/Λ,Λ2/Λ) be the function

f(x1,x2) = ((δ′/δ)x1 mod Λ,x2/δ mod Λ).

It is easy to check, using Lemma 1, that

f(X ′
1) = �(x1,x2) | x1 ← DΛ1,δ′/δ mod Λ , x2 ← x1 + DΛ2−x1 mod Λ�

f(X ′
2) = �(x1,x2) | x2 ← DΛ2,1/δ mod Λ , x1 ← δ′2x2 + DΛ1−δ′2x2,δ′ mod Λ�

and Xi = limδ′→1 X ′
i for i = 1, 2. Since X ′

1

ε̄≈ X ′
2 for all δ′, we have X1

ε̄≈ X2. ��

4.2 Convolutions via Linear Transformations

In this subsection we show how the preceding results can be used to easily derive
all convolution theorems from previous works, for both discrete and continuous
Gaussians. The main idea throughout is very simple: first express the statistical
experiment as a linear transformation on some joint distribution, then apply
Theorem 1. The only nontrivial step is to bound the smoothing parameter of the
intersection of the relevant lattice and the kernel of the transformation, which
is done using elementary linear algebra. The main results of the section are



Improved Discrete Gaussian and Subgaussian Analysis 639

Theorems 3 and 4; following them, we show how they imply prior convolution
theorems.

The following theorem is essentially equivalent to [Pei10, Theorem 3.1],
modulo the notion of distance between distributions. (The theorem statement
from [Pei10] uses statistical distance, but the proof actually establishes a bound
on the max-log distance, as we do here.) The main difference is in the modularity
of our proof, which proceeds solely via our general tools and linear algebra.

Theorem 3. Let ε ∈ (0, 1) define ε̄ = 2ε/(1 − ε) and ε′ = 4ε/(1 − ε)2, let
A1, A2 be cosets of full-rank lattices Λ1, Λ2 (respectively), let Σ1, Σ2 � 0 be
positive definite matrices where ηε(Λ2) ≤ √

Σ2, and let

X = �(x1,x2) | x1 ← DA1,
√

Σ1
, x2 ← x1 + DA2−x1,

√
Σ2

�.

If ηε(Λ1) ≤ √
Σ3 where Σ−1

3 = Σ−1
1 +Σ−1

2 � 0, then the marginal distribution X2

of x2 in X satisfies

X2
ε′
≈ DA2,

√
Σ1+Σ2

.

In any case (regardless of ηε(Λ1)), the distribution X x2
1 of x1 conditioned on

any x2 ∈ A2 satisfies X x2
1

ε̄≈ x′
2 + DA1−x′

2,
√

Σ3
where x′

2 = Σ1(Σ1 + Σ2)−1x2 =
Σ3Σ

−1
2 x2.

Proof. Clearly, X2 = P·X , where P =
(
0 I

)
. Because ηε(Λ2) ≤ √

Σ2, Corollary 4
implies

X ε̄≈ DA,
√

Σ and hence P · X ε̄≈ P · DA,
√

Σ ,

where A = A1 ×A2 and
√

Σ = (
√

Σ1√
Σ1

√
Σ2

). Then, Theorem 1 (whose hypotheses
we verify below) implies that

P · DA,
√

Σ

ε̄≈ DPA,P
√

Σ = DA2,
√

Σ1+Σ2
,

where the equality follows from the fact that D is insensitive to the choice of
square root, and R = P

√
Σ =

(√
Σ1

√
Σ2

)
is a square root of RRt = Σ1 + Σ2.

This proves the claim about X2.
To apply Theorem 1, for Λ = Λ1×Λ2 we require that ker(P) is a Λ-subspace,

and that ηε(Λ ∩ ker(P)) = ηε(Λ1 × {0}) ≤ √
Σ. For the former, because Λ1 is

full rank we have

ker(P) = span(Λ1) × {0} = span(Λ1 × {0}) = span(ker(P) ∩ Λ).

For the latter, by definition we need to show that ηε(Λ′) ≤ 1 where Λ′ =
√

Σ
−1 ·

(Λ1 × {0}). Because

√
Σ

−1
=

( √
Σ1

−1

−√
Σ2

−1 √
Σ2

−1

)

, we have Λ′ = S · Λ1 where S =

( √
Σ1

−1

−√
Σ2

−1

)

.
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Now StS = Σ−1
1 + Σ−1

2 = Σ−1
3 , so ‖Sv‖2 = vtStSv = ‖√Σ3

−1
v‖2 for every v.

Therefore, Λ′ = S·Λ1 is isometric to (i.e., a rotation of)
√

Σ3
−1 ·Λ1, so ηε(Λ′) ≤ 1

is equivalent to ηε(
√

Σ3
−1 · Λ1) ≤ 1, which by definition is equivalent to the

hypothesis ηε(Λ1) ≤ √
Σ3.

To prove the claim about X x2
1 for an arbitrary x2 ∈ A2, we work with DA,

√
Σ

using a different choice of the square root of Σ = ( Σ1 Σ1
Σ1 Σ1+Σ2

), namely,

√
Σ =

(√
Σ3 Σ1

√
Σ1 + Σ2

−t

√
Σ1 + Σ2

)

where
√

Σ
−1

=

(√
Σ3

−1
X√

Σ1 + Σ2
−1

)

for
√

Σ3X = −Σ1(Σ1 + Σ2)−1 = −Σ3Σ
−1
2 ; this

√
Σ is valid because

Σ3 + Σ1(Σ1 + Σ2)−1Σ1 = (Σ−1
1 + Σ−1

2 )−1 + Σ1 − Σ2(Σ1 + Σ2)−1Σ1

= Σ1 + (Σ−1
1 + Σ−1

2 )−1 − (Σ−1
1 (Σ1 + Σ2)Σ−1

2 )−1

= Σ1,

and Σ1(Σ1 + Σ2)−1 = Σ3Σ
−1
2 by a similar manipulation. Now, the distribution

DA,
√

Σ conditioned on any x2 ∈ A2 is

DA1×{x2},
√

Σ =
√

Σ ·D√
Σ

−1
(A1×{x2}) =

√
Σ · (D√

Σ3
−1

A1+Xx2
,
√

Σ1 + Σ2

−1
x2),

where the last equality follows from the fact that the second component of√
Σ

−1
(A1 ×{x2}) is fixed because

√
Σ

−1
is block upper-triangular. So, the con-

ditional distribution of x1, which is the first component of the above distribution,
is

Σ1(Σ1 + Σ2)−1x2 + DA1+
√

Σ3Xx2,
√

Σ3
= x′

2 + DA1−x′
2,

√
Σ3

.

Finally, because X ε̄≈ DA,
√

Σ , the claim on the conditional distribution X x2
1 is

established. ��
There are a number of convolution theorems in the literature that pertain

to linear combinations of Gaussian samples. We now present a theorem that,
as shown below, subsumes all of them. The proof generalizes part of the proof
of [MP13, Theorem 3.3] (stated below as Corollary 6).

Theorem 4. Let ε ∈ (0, 1), let z ∈ Z
m \ {0}, and for i = 1, . . . , m let Ai =

Λi+ai ⊂ R
n be a lattice coset and Si ∈ R

n×n be such that Λ∩ =
⋂

i Λi is full rank.
If ηε(ker(zt ⊗ In) ∩ Λ) ≤ S where Λ = Λ1 × · · · × Λm and S = diag(S1, . . . ,Sm),
then

Δml(
m∑

i=1

ziDAi,Si
, DA′,S′) ≤ log

1 + ε

1 − ε
,

where A′ =
∑m

i=1 ziAi and S′ =
√∑m

i=1 z2i SiSt
i.
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In particular, let each Si = siIn for some si > 0 where b̃l(diag(s)−1(ker(zt) ∩
Z

m))−1 ≥ ηε(Λ∩), which is implied by ((zi∗/si∗)2 + maxi�=i∗(zi/si)2)−1/2 ≥
ηε(Λ∩) where i∗ minimizes |zi∗/si∗ | �= 0. Then

Δml(
m∑

i=1

ziDAi,si
, DA′,s′) ≤ log

1 + ε′

1 − ε′ ,

where s′ =
√∑m

i=1(zisi)2 and 1 + ε′ = (1 + ε)m.

Proof. Let Z = zt ⊗In and A = A1×· · ·×Am, which is a coset of Λ, and observe
that

m∑

i=1

ziDAi,Si
= Z · DA,S.

Also notice that ZA = A′, and R = ZS is a square root of RRt =
∑m

i=1 z2i SiSt
i.

So, the first claim follows immediately by Theorem1, as long as ker(Z) is a
Λ-subspace.

To see that this is so, first observe that the lattice Z = ker(zt)∩Z
m has rank

m−1. Then the lattice Z ⊗Λ∩ has rank (m−1)n and is contained in ker(Z)∩Λ,
because for any v ∈ Z ⊆ Z

m and w ∈ Λ∩ we have Z(v ⊗ w) = (ztv) ⊗ w = 0
and (v ⊗ w) ∈ Λm

∩ ⊆ Λ. So, because ker(Z) has dimension (m − 1)n we have
ker(Z) = span(Z ⊗ Λ∩) = span(ker(Z) ∩ Λ), as desired.

For the second claim (with the first hypothesis), we need to show that
ηε′(ker(Z)∩Λ) ≤ S = diag(s)⊗ In. Because Z ⊗Λ∩ is a sublattice of ker(Z)∩Λ
of the same rank, by Lemma 5 and hypothesis, we have

ηε′(S−1(ker(Z) ∩ Λ)) ≤ ηε′((diag(s)−1 ⊗ In) · (Z ⊗ Λ∩))

≤ ηε′((diag(s)−1Z) ⊗ Λ∩)

≤ b̃l(diag(s)−1Z) · ηε(Λ∩) ≤ 1.

Finally, to see that the first hypothesis is implied by the second one, assume
without loss of generality that i∗ = 1, and observe that the vectors

(−z2
s2

,
z1
s1

, 0, . . . , 0)t, (−z3
s3

, 0,
z1
s1

, 0, . . . , 0)t, . . . , (−zm

sm
, 0, . . . , 0,

z1
s1

)t

form a full-rank subset of diag(s)−1Z, and have norms at most

r =
√

(zi∗/si∗)2 + max
i�=i∗

(zi/si)2.

Therefore, by [MG02, Lemma 7.1] we have b̃l(diag(s)−1Z)−1 ≥ 1/r ≥ ηε(Λ∩),
as required. ��
Corollary 6 ([MP13, Theorem 3.3]). Let z ∈ Z

m \{0}, and for i = 1, . . . , m =
poly(n) let Λ + ci be cosets of a full-rank n-dimensional lattice Λ and si ≥√

2‖z‖∞ · ηε(Λ) for some ε = negl(n). Then
∑m

i=1 ziDΛ+ci,si
is within negl(n)

statistical distance of DY,s, where Y = gcd(z)Λ +
∑

i zici and s =
√∑

i(zisi)2.
In particular, if gcd(z) = 1 and

∑
i zici ∈ Λ, then

∑
ziDΛ+ci,si

is within negl(n)
statistical distance of DΛ,s.
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Proof. Apply the second part of Theorem 4 with the second hypothesis, and use
the fact that (1 + negl(n))poly(n) is 1 + negl(n). ��

Theorem 4.13 from [BF11] is identical to Corollary 6, except it assumes that
all the si equal some s ≥ ‖z‖ · ηε(Λ). This also implies the second hypothesis
from the second part of Theorem 4, because ‖z‖ ≥ √

z2i∗ + maxi�=i∗ z2i .

Corollary 7 ([BF11, Lemma 4.12]). Let Λ1 + t1, Λ2 + t2 be cosets of full-rank
integer lattices, and let s1, s2 > 0 be such that (s−2

1 + s−2
2 )−1/2 ≥ ηε(Λ1 ∩ Λ2)

for some ε = negl(n). Then DΛ1+t1,s1 + DΛ2+t2,s2 is within negl(n) statistical
distance of DΛ+t,s, where Λ = Λ1 + Λ2, t = t1 + t2, and s2 = s21 + s22.

Proof. The intersection of full-rank integer lattices always has full rank. So,
apply the second part of Theorem 4 with the second hypothesis, for m = 2 and
z = (1, 1)t. ��
Corollary 8 ([Reg05, Claim 3.9]). Let ε ∈ (0, 1/2), let Λ + u ⊂ R

n be a coset
of a full-rank lattice, and let r, s > 0 be such that (r−2 +s−2)−1/2 ≥ ηε(Λ). Then
DΛ+u,r + Ds is within statistical distance 4ε of D√

r2+s2 .

Proof. The proof of Corollary 7 also works for any full-rank lattices Λ1 ⊆ Λ2.
The corollary follows by taking Λ1 = Λ and Λ2 = limd→∞ d−1Λ = R

n. ��

5 LWE Self-reduction

The LWE problem [Reg05] is one of the foundations of lattice-based
cryptography.

Definition 3 (LWE distribution). Fix some parameters n, q ∈ Z
+ and a

distribution χ over Z. The LWE distribution for a secret s ∈ Z
n
q is

Ls = �(a, sta + e mod q) | a ← U(Zn
q ), e ← X �.

Given m samples (ai, bi = stai + ei mod q) from Ls, we often group them as
(A,bt = stA + et), where the ai are the columns of A ∈ Z

n×m
q and the bi, ei

are respectively the corresponding entries of b ∈ Z
m
q , e ∈ Z

m.
While LWE was originally also defined for continuous error distributions (in

particular, the Gaussian distribution Ds), we restrict the definition to discrete
distributions (over Z), since discrete distributions are the focus of this work,
and are much more widely used in cryptography. We refer to continuous error
distributions only in informal discussion.

Definition 4 (LWE Problem). The search problem S-LWEn,q,χ,m is to
recover s given m independent samples drawn from Ls, where s ← U(Zn

q ). The
decision problem D-LWEn,q,χ,m is to distinguish m independent samples drawn
from Ls, where s ← U(Zn

q ), from m independent and uniformly random samples
from U(Zn+1

q ).
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For appropriate parameters, very similar hardness results are known for
search and decision LWEn,q,χ,m with χ ∈ {Ds, �Ds�,DZ,s}, i.e., continuous,
rounded, or discrete Gaussian error. Notably, the theoretical and empirical hard-
ness of the problem depends mainly on n log q and the “error rate” α = s/q,
and less on m. This weak dependence on m is consistent with the fact that
there is a self-reduction that, given just m = O(n log q) LWE samples from Ls

with (continuous, rounded, or discrete) Gaussian error of parameter s, gener-
ates any polynomial number of samples from a distribution statistically close
to Ls with (continuous, rounded, or discrete) Gaussian error of parameter
O(s

√
m) · ηε(Z), for arbitrary negligible ε. Such self-reductions were described

in [GPV08,ACPS09,Pei10] (the latter for discrete Gaussian error), based on the
observation that they are just special cases of Regev’s core reduction [Reg05]
from Bounded Distance Decoding (BDD) to LWE, and that LWE is an average-
case BDD variant.

The prior LWE self-reduction for discrete Gaussian error, however, contains
an unnatural layer of indirection: it first generates new LWE samples having
continuous error, then randomly rounds, which by a convolution theorem yields
discrete Gaussian error (up to negligible statistical distance). Below we instead
give a direct reduction to LWE with discrete Gaussian error, which is more
natural and slightly tighter, since it avoids the additional rounding that increases
the error width somewhat.

Theorem 5. Let A ∈ Z
n×m
q be primitive, let bt = stA + et mod q for some

e ∈ Z
m, and let r, r̃ > 0 be such that ηε(Λ⊥

q (A)) ≤ ((1/r)2 + (‖e‖/r̃)2)−1/2 ≤ r
for some negligible ε. Then the distribution

�(a = Ax, b = btx + ẽ) | x ← DZm,r , ẽ ← DZ,r̃�

is within negligible statistical distance of Ls with error χ = DZ,t where t2 =
(r‖e‖)2 + r̃2.

Theorem 5 is the core of the self-reduction. A full reduction between proper
LWE problems follows from the fact that a uniformly random matrix A ∈ Z

n×m
q

is primitive with overwhelming probability for sufficiently large m � n, and by
choosing r and r̃ appropriately. More specifically, it is known [GPV08,MP12]
that for appropriate parameters, the smoothing parameter of Λ⊥

q (A) is small
with very high probability over the choice of A. For example, [MP12, Lemma 2.4]
implies that when m ≥ Cn log q for any constant C > 1 and ε ≈ ε′, we have
ηε(Λ⊥

q (A)) ≤ 2ηε′(Z) ≤ 2
√

ln(2(1 + 1/ε′))/π except with negligible probability.
So, we may choose r = O(

√
log(1/ε′)) for some negligible ε′ and r̃ = r‖e‖ to

satisfy the conditions of Theorem 5 with high probability, and the resulting error
distribution has parameter t =

√
2r‖e‖, which can be bounded with high prob-

ability for any typical LWE error distribution. Finally, there is the subtlety that
in the actual LWE problem, the error distribution should be fixed and known,
which is not quite the case here since ‖e‖ is secret but bounded from above.
This can be handled as in [Reg05] by adding different geometrically increasing
amounts of extra error. We omit the details, which are standard.
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Proof (of Theorem 5). Because A is primitive, for any a ∈ Z
n
q there exists an

x∗ ∈ Z
m such that Ax∗ = a, and the probability that Ax = a is proportional to

ρr(x∗ +Λ⊥
q (A)). Because ηε(Λ⊥

q (A)) ≤ r, for each a this probability is the same
(up to ≈ε) by Lemma 3, and thus the distribution of Ax is within negligible
statistical distance of uniform over Z

n
q .

Next, conditioning on the event Ax = a, the conditional distribution of x is
the discrete Gaussian Dx∗+Λ⊥

q (A),r. Because b = (stA+et)x+ ẽ = sta+(etx+ ẽ),
it just remains to analyze the distribution of etx+ẽ. By Lemma 8 below with Λ =
Λ⊥

q (A) and Λ1 = Z, the distribution 〈e,Dx∗+Λ⊥
q (A),r〉 + Dr̃ is within negligible

statistical distance of DZ,t, as desired. ��
We now prove (a more general version of) the core statistical lemma needed

by Theorem 5, using Theorem 1. A similar lemma in which Λ1 is taken to be
R = limd→∞ d−1

Z can be proven using Corollary 8; this yields an LWE self-
reduction for continuous Gaussian error (as claimed in prior works).

Lemma 8. Let e ∈ R
m, Λ + x ⊂ R

m be a coset of a full-rank lattice, and
Λ1 ⊂ R be a lattice such that 〈e, Λ〉 ⊆ Λ1. Also let r, r̃, ε > 0 be such that
ηε(Λ) ≤ s := ((1/r)2 + (‖e‖/r̃)2)−1/2. Then

Δml(〈e,DΛ+x,r〉 + DΛ1,r̃ , DΛ1+〈e,x〉,t) ≤ log
1 + ε

1 − ε
,

where t2 = (r‖e‖)2 + r̃2.

Proof. First observe that

〈e,DΛ+x,r〉 + DΛ1,r̃ = [et | 1] · DΛ×Λ1+(x,0),S

where S = ( rIm
r̃
). So, by applying Theorem1 (whose hypotheses we verify

below), we get that the above distribution is within the desired ML-distance of
DΛ1+〈e,x〉,[ret|r̃], where rt = [ret | r̃] is a square root of rtr = (r‖e‖)2 + r̃2 = t2,
as desired.

To apply Theorem 1, we first need to show that

K = ker([et | 1]) = {(v,−〈e,v〉) | v ∈ R
m}

is a (Λ × Λ1)-subspace. Observe that Λ′ = K ∩ (Λ × Λ1) is exactly the set of
vectors (v, v) where v ∈ Λ and v = −〈e,v〉 ∈ Λ1, i.e., the image Λ under the
injective linear transformation T(v) = (v,−〈e,v〉). So, because Λ is full rank,
span(Λ′) = K, as needed.

Finally, we show that sT ≤ S, which by hypothesis and Lemma2 implies
that ηε(T · Λ) ≤ sT ≤ S, as desired. Equivalently, we need to show that the
matrix

R = SSt − s2TTt =
(

(r2 − s2)Im s2e
s2et r̃2 − s2e2

)

is positive semidefinite, where e = ‖e‖. If r2 = s2 then e = 0 and R is positive
semidefinite by inspection, so from now on assume that r2 > s2. Sylvester’s
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criterion says that a symmetric matrix is positive semidefinite if (and only if) all
its principal minors are nonnegative.10 First, every principal minor of R obtained
by removing the last row and column (and possibly others) is det((r2−s2)Ik) > 0
for some k. Now consider a square submatrix of R wherein the last row and
column have not been removed; such a matrix has the form

R =
(

(r2 − s2)Ik s2e
s2et r̃2 − s2e2

)

,

where e is some subvector of e, hence ‖e‖2 ≤ e2. Multiplying the last column by
r2 − s2 > 0 and then subtracting from the last column the product of the first k
columns with s2 · e, we obtain a lower-triangular matrix whose first k diagonal
entries are r2 − s2 > 0, and whose last diagonal entry is

(r̃2 − s2e2)(r2 − s2) − s4‖e‖2 ≥ r̃2r2 − r̃2s2 − e2r2s2 = 0,

where the equality follows from clearing denominators in the hypothesis (1/s)2 =
(1/r)2 + (e/r̃)2. So, every principal minor of R is nonnegative, as desired. ��

6 Subgaussian Matrices

The concrete parameters for optimized SIS- and LWE-based trapdoor cryptosys-
tems following [MP12] depend on the largest singular value of a subgaussian
random matrix with independent rows, columns, or entries, which serves as the
trapdoor. The cryptosystem designer will typically need to rely on a singular
value concentration bound to determine Gaussian parameters, set norm thresh-
olds for signatures, estimate concrete security, etc. The current literature does
not provide sufficiently precise concentration bounds for this purpose. For exam-
ple, commonly cited bounds contains non-explicit hidden constant factors, e.g.,
[Ver12, Theorem 5.39] and [Ver18, Theorems 4.4.5 and 4.6.1].

In Theorem 6 (whose proof is in the full version) we present a singular value
concentration bound with explicit constants, for random matrices having inde-
pendent subgaussian rows. We also report on experiments to determine the sin-
gular values for commonly used distributions in lattice cryptography. Through-
out this section, we use σ to denote a distribution’s standard deviation and
m > n > 0 for the dimensions of a random matrix R ∈ R

m×n following
some particular distribution. We call a random vector x ∈ R

n σ-isotropic if
E[xxt] = σ2In.

Theorem 6. Let R ∈ R
m×n be a random matrix whose rows ri are independent,

identically distributed, zero-mean, σ-isotropic, and subgaussian with parameter
s > 0. Then for any t ≥ 0, with probability at least 1 − 2e−t2 we have

σ(
√

m − C(s2/σ2)(
√

n + t)) ≤ sn(R) ≤ s1(R) ≤ σ(
√

m + C(s2/σ2)(
√

n + t)),

where C = 8e1+2/e
√

ln 9/
√

π < 38.
10 A principal minor of a matrix is the determinant of a square submatrix obtained by

removing the rows and columns having the same index set.
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X s̄1 σ(
√

m + CX (s/σ)2
√

n) observed CX Sample Var
P 71.26 71.43 .99/4π .04
U{−1, 1} 100.74 101.01 .99/2π .05
D√

2π 100.71 101.01 .99/2π .043
D

Z,
√
2π 100.77 101.01 .99/2π .06

X s̄n σ(
√

m − CX (s/σ)2
√

n) observed CX Sample Var
P 39.60 39.43 .99/4π .017
U{−1, 1} 56.00 55.76 .99/2π .043
D√

2π 55.92 55.76 .99/2π .036
D

Z,
√
2π 56.00 55.76 .99/2π .037

Fig. 1. Data from fifty random matrices of dimension 6144 × 512 for each distribution
X . The average largest and smallest singular values are respectively denoted s̄1 and s̄n,
and we recorded the sample variance for each distribution’s singular values. The third
column is the expected singular value using each distribution’s calculated CX : 1/2π,
1/2π, and 1/4π for discrete/continuous gaussians, U{−1, 1}, and P respectively.

Comparison. There are two commonly cited concentration bounds for the sin-
gular values of subgaussian matrices. The first is for a random matrix with
independent entries.

Theorem 7 ([Ver18, Theorem 4.4.5]). Let R ∈ R
m×n be a random matrix

with entries drawn independently from a subgaussian distribution with parameter
s > 0. Then, there exists some universal constant C > 0 such that for any t ≥ 0,
with probability at least 1 − 2e−t2 we have

s1(R) ≤ C · s(
√

m +
√

n + t).

The second theorem is for a random matrix with independent subgaussian and
isotropic rows.

Theorem 8 ([Ver18, Theorem 4.6.1]). Let R ∈ R
m×n be a random matrix

whose rows ai are independent, identically distributed, zero-mean, 1-isotropic,
and subgaussian with parameter s > 0. Then there is a universal constant C > 0
such that for any t ≥ 0, with probability at least 1 − 2e−t2 we have

√
m − Cs2(

√
n + t) ≤ sn(R) ≤ s1(R) ≤ √

m + Cs2(
√

n + t).

We note that the above theorem is normalized to σ = 1. Our Theorem 6
is a more explicit version of this theorem for arbitrary σ, which scales in the
appropriate way in σ, since scaling a subgaussian distribution simply scales its
parameter.

6.1 Experiments

Here we present empirical data on the singular values of random matrices with
independent entries drawn from commonly used distributions in lattice-based
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cryptography. These distributions are the continuous Gaussian, the discrete
Gaussian over Z, the uniform distribution over {−1, 1} (denoted as U{−1, 1}),
and the distribution given by choosing 0 with probability 1/2 and ±1 each with
probability 1/4, which we denote P.

First Experiment. For each distribution, we sampled fifty m-by-n (where m =
6144 by n = 512) random matrices and measured their singular values, and
assumed the singular values were approximately

s1 ≈ σ
(√

m + CX (s/σ)2
√

n
)

sn ≈ σ
(√

m − CX (s/σ)2
√

n
)

where CX is a small constant dependent on the distribution X . The results are
given in Fig. 1. We observed CX (s/σ)2 ≈ 1 for each distribution.

Continuous and Discrete Gaussians. The continuous Gaussian Dσ is subgaussian
with parameter σ since E[e2πtX ] = eπt2σ2

where X ∼ Dσ. Further, the discrete
Gaussian DZ,s is subgaussian with parameter s, [MP12, Lemma 2.8]. Assuming
that the discrete Gaussian is smooth, then one can expect the standard deviation
of DZ,s to be close to the standard deviation of the continuous Gaussian it
approximates, s/

√
2π. This implies the ratio between the subgaussian parameter

and the standard deviation of (discrete) gaussians is
√

2π. Under this assumption
on the discrete Gaussian’s standard deviation, we observed CGaussian = 1/2π.

Uniform over {−1, 1}. Here σ = 1 and E[e2πtX ] = cosh 2πt ≤ e2π2t2 , or the
subgaussian parameter is at most

√
2π. We observed CU{−1,1} = 1/2π in our

experiment.

The Distribution P. By nearly the same steps as the previous distribution, P is
subgaussian with parameter

√
2π and σ = 1/

√
2. Then, we observed CP = 1/4π.

Second Experiment. As a second experiment, we sampled U{−1, 1}32n×n and
averaged its maximum singular value over 50 samples. We varied n = 50, 100,
200, 500, 1000 and plotted the results in Fig. 2 (red squares) graphed with the
expected largest singular value (dashed blue line). We remark that we saw the
same behavior for all four distributions when we varied the dimension.

6.2 Applications

Here we show how the updated singular value estimates from the previous sub-
section impact concrete security of lattice trapdoor schemes. As an example, we
use the [MP12] trapdoor scheme with entries drawn independently from P. That
is, we consider the SIS trapdoor scheme based on A = [Ā|G − ĀR] ∈ Z

n×m
q

where R ← P(m−n log q)×n log q is a subgaussian matrix serving as the trapdoor11,
G = [In|2In| . . . |2log q−1In] is the gadget matrix, and Ā is a truly random matrix.
Further, let s > 0 be the width of the discrete Gaussian that we are sampling
over. This s > 0 scales linearly with s1(R)12. Since the singular values of R scale
11 Trapdoor inversions are independent samples of the form x ← Dy∗+Λ⊥

q (A),s.
12 See [MP12, Section 3.4] for the further details.
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Fig. 2. Here we compare the measured largest singular value with the expecta-
tion under our heurstic, with entries from the distribution X = {−1, 1}. For each
n = 50, 100, 200, 500, 1000, the experiment sampled N = 50 random 32n-by-n matri-
ces and averaged their largest singular value. The measured sample variances were
.099, .064, .050, .048, .031 for n = 50, 100, 200, 500, 1000, respectively. Also of note, the
measured constant CX approached 1/2π from below as n increased (.92/2π, .96/2π,
.97/2π, .99/2π, .99/2π for n = 50, 100, 200, 500, 1000). (Color figure online)

with σ = 1/
√

2, the concrete security of the underlying SIS problem increases
compared to assuming the largest singular value of R scales with the subgaussian
parameter, s = 1. See Fig. 3 for the difference in a commonly-used parameter
regime.

In order to estimate security, we followed [APS15,ACD+18] by estimating the
time-complexity of the BKZ algorithm [SE94] using sieving as its SVP oracle13.
BKZ is expected to return a vector of length δ2ndet(Λ)1/2n for a lattice, Λ, of
dimension 2n. Also, Minkowski’s theorem tells us a short enough lattice vector
exists when we only use 2n columns of A. In other words, breaking the trapdoor
corresponds to finding a short vector in Λ⊥

q (A2n) = {z ∈ Z
2n|A2nz = 0 ∈ Z

n
q }

where A2n is the matrix formed by the first 2n columns of A.
We found the smallest block size k achieving the needed δ satisfying s

√
m =

δ2ndet(A2n)
1
2n = δ2n√

q. Finally, we used the heuristic δ ≈ ( k
2πe (πk)1/k)

1
2(k−1) to

determine the relationship between k and δ, and we set the total time complexity
of BKZ with block-size k, dimension 2n as 8·(2n)·time(SVP) = 8·(2n)·2.292k+16.4

[Che13,APS15]14.

13 Sieving in dimension k has heuristic time-complexity 2.292k+16.4 [BDGL16].
14 We use this simplistic method to estimate security since we are interested in the

difference in concrete security. More sophisticated methods to estimate the concrete
security of lattice-based schemes can be found in [Duc18,ADH+19].
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Parameters Original Updated
n 512 512
q 224 224

s 2881 2037
m 24804 24804
Bit Sec. 124 136
δ 1.0046 1.0043
k 324 364

Fig. 3. The change in concrete security of the underlying SIS problem in MP12 when
the trapdoor is drawn from P(m−n log q)×n log q. We give the smallest BKZ block size k
achieving the δ needed to find a vector of length s

√
m in (a subspace of) the lattice

Λ⊥
q (A).
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Abstract. Achieving tight security is a fundamental task in cryptog-
raphy. While one of the most important purposes of this task is to
improve the overall efficiency of a construction (by allowing smaller secu-
rity parameters), many current lattice-based instantiations do not com-
pletely achieve the goal. Particularly, a super-polynomial modulus seems
to be necessary in all prior work for (almost) tight schemes that allow
the adversary to conduct queries, such as PRF, IBE, and Signatures. As
the super-polynomial modulus would affect the noise-to-modulus ratio
and thus increase the parameters, this might cancel out the advantages
(in efficiency) brought from the tighter analysis. To determine the full
power of tight security/analysis in lattices, it is necessary to determine
whether the super-polynomial modulus restriction is inherent.

In this work, we remove the super-polynomial modulus restriction for
many important primitives – PRF, IBE, All-but-many Lossy Trapdoor
Functions, and Signatures. The crux relies on an improvement over the
framework of Boyen and Li (Asiacrypt 16), and an almost tight reduction
from LWE to LWR, which improves prior work by Alwen et al. (Crypto
13), Bogdanov et al. (TCC 16), and Bai et al. (Asiacrypt 15). By combin-
ing these two advances, we are able to derive these almost tight schemes
under LWE with a polynomial modulus.

1 Introduction

Tight Security. The reduction framework is a powerful tool to analyze secu-
rity of a cryptographic construction by relating its security to some suitable
mathematical hard problem, such as problems of integer factoring, discrete logs,
shortest vector in lattices, and many others [19,35,46]. This framework can be
described roughly as follows: assume that there exists a (tA, εA)-adversary A
that breaks the cryptographic construction, then we can construct a (tB, εB)-
reduction algorithm B that uses A as a subroutine and solves the underlying
hard problem.1

1 We use the notation of (t, ε) to denote an algorithm that breaks a crypto system or
solves a hard problem within running time t and with advantage ε.
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To evaluate how tight the security of the cryptographic scheme is with respect
to the hardness of the underlying problem, we establish analysis of bounds in
the form: εB ≥ εA/θ and tB ≤ ktA + o(tA), and then use kθ as a measure of
tightness – the smaller this quantity is, the tighter the security can achieve. The
cryptographic scheme is considered to be (1) tight (with respect to the underlying
hard problem) if kθ = c for some constant independent of the adversary, and (2)
almost tight (with respect to the underlying hard problem) if kθ = poly(λ) for
some small polynomial of the security parameter, independent of the adversary.

Achieving tight security is a meaningful task, particularly when one can prove
the same or perhaps slightly less efficient scheme has a tight reduction than a
non-tight one. From a theoretical point of view, tightness indicates that security
of a crypto scheme is (extremely) closely related to the hardness of the underlying
hard problem, which is the optimal case we can expect from the provable security
theory. By knowing the (almost) tight relation, we would know how aggressively
we can set the security parameter, which is important for practical efficiency.

This subject has drawn a large amount of attention. For symmetric key
primitives, we know how to achieve almost tight pseudorandom functions
(PRFs) [8,26,41] with respect to various assumptions. Later on, the community
turned the focus to public-key primitives. For example, Waters [53] stated an
open problem of constructing a tightly, adaptively secure IBE scheme from stan-
dard computational hardness assumptions without random oracles. In addition
to IBE, progress has been made for various other schemes, including public-key
encryption and signature (e.g, [5,10,24,28,32,33]).

Progress in Lattices. While research in this line is active, most results were
with respect to assumptions on groups [10,24,33] or integer factorization [9,39].
For other important or post-quantum assumptions such as lattices, only a few
results are known even for almost tight security. For symmetric-key primitives,
there are only two almost tight PRFs from the learning with error assumption
(LWE) [8,41]. For public-key primitives, Boyen and Li [16] constructed the first
almost tight IBE based on LWE by using a novel application of (key) homomor-
phic evaluation of PRF. Later in subsequent work, Boyen and Li [17], and Lib-
ert et al. [41] generalized this technique to construct almost tight all-but-many
lossy trapdoor functions (ABM-LTFs) from LWE. These results are significant, as
ABM-LTFs have several important applications in constructing other primitives,
such as almost tight encryption schemes that are secure against selective opening
attacks and CCA2 attacks (SO-CCA2) [17], and almost tight encryption schemes
with multiple challenges against CCA2 attacks [41].

Despite these excellent advances, we however notice a common drawback in
all prior almost tight lattice-based results – they all require super-polynomial
moduli. It is much more favorable to build schemes with a polynomial modulus,
as this provides a better security guarantee, e.g., a better approximate factor of
worst-case lattice problems, and thus can lead to smaller parameters resulting in
better efficiency. Additionally from a theoretic point of view, it is important to
determine whether a super-polynomial modulus is inherent in achieving almost
tight security in lattice-based crypto. Therefore, we ask:

Can we achieve (almost) tight security in lattices with a polynomial modulus ?
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1.1 Our Results

In this work, we answer this question in a positive way for the following important
primitives – PRF, IBE, and ABM-LTF. In particular, we construct and prove
almost tight security of all these primitives with respect to LWE with polynomial
moduli. Some other almost tight constructions can also be obtained along this
line as we describe several examples. (1) Similar to the work of Boyen and
Li [16], our technique of IBE can be used to derive almost tight signature schemes.
Moreover, our IBE can be (almost) tightly extended to CCA2-IBE. (2) We can
achieve almost tight IND-SO-CCA2 secure encryption schemes from LWE with
a polynomial modulus q, following the framework of [17]. (3) We can achieve
almost tight encryption schemes for multiple ciphertexts against CCA2 attacks
from LWE with a polynomial modulus q, following the framework of [41]. Below
we summarize our main results.

1. We prove that the GGM-based PRF in [8] is almost tight with respect to LWE
with a polynomial modulus. This derives the first almost tight lattice-based
PRF with a polynomial modulus. The crux relies on a new route of reduc-
tion LWE → Q-LWR′ → PRF, avoiding the known non-tight approach, i.e.,
LWE → PRG → PRF.2

Moreover, our reduction LWE → Q-LWR′ has advantages over existing reduc-
tions: (1) we remove the additional number-theoretic limitation on the mod-
ulus in [4]; (2) our reduction has better running time and distinguishing
probability than those in the work [11,16]. See Sects. 1.2 and 3 for further
discussions.

2. We then construct an almost tight adaptively secure IBE from lattices with
a polynomial modulus. This improves the prior work [16] by weakening its
underlying assumption, i.e., LWE for some super-polynomial modulus. To
achieve this, we first improve the framework of [16], showing that an almost
tight PRF (even not computable in NC1) suffices for achieving almost tight
IBE with a polynomial modulus. Then the desired IBE follows by combining
our almost tight PRF (not necessarily in NC1) with the improved framework.

3. We further show that our technique in Contribution 2 can be used to achieve
an almost tight ABM-LTF and signatures from LWE with a polynomial mod-
ulus, improving the underlying assumption needed in the prior work [17,41].

1.2 Our Techniques

Pseudorandom Functions
In this work, we derive the first almost tight PRF with respect to LWE with a
polynomial modulus. To illustrate our new ideas, we first briefly review the
elegant approach by Banerjee, Peikert, and Rosen [8], who constructed the
first lattice-based PRF by introducing an intermediate problem – the learning
2 Q is the number of queries in the PRF; LWR′ is a variant of the LWR problem

originally defined in the work [8]; Q-LWR′ is a multi-secret variant of LWR′ that
includes inner products of Q secrets per sample.
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with rounding (LWR) assumption, a de-randomized version of the LWE assump-
tion [49]. In LWR, there is a secret vector s ∈ Z

n
q and the target is to distinguish

(a, �〈a, s〉	q→p) from the uniform distribution, where (a, s) $←− Z
n
q ×Z

n
q , and the

rounding function is taken as �x mod q	q→p = �x(p/q)	 mod p. Since then, the
work [15] and follow-up work [7] have built PRFs based on the LWE/LWR (or
their variants), and different reductions from LWE to LWR have been proved for
various parameters [4,6,11].

We observe that all non-GGM PRFs [7,8] cannot be proved secure under
LWE with a polynomial modulus using current techniques: (1) The synthesizer
in Naor-Reigold-based PRFs [45] need to use LWR with unbounded samples.
However, all known reductions from LWE to LWR [4,6,8,11] with polynomial
moduli require that the number of samples is bounded; (2) Other constructions
such as the direct construction [8], tree-based construction [7], and the key-
homomorphic PRF [7,15,41], require the modulus to be larger than the noise,
which grows super-polynomially as needed in their analyses.

On the other hand, the GGM-based PRFs can be proved secure under LWE
with a polynomial modulus. This is because LWR with bounded samples suffices
for the GGM analysis (see [4]), and we do know reductions from LWE to LWR
with a polynomial modulus [4,6,11]. However, the reduction loss in this approach
depends on the number of queries Q by the PRF adversary. This work shows how
to remove this dependency on Q.

Our New Idea: A New Route of Reduction
We first recall that the GGM framework [31] showed that a length-doubling PRG
implies a PRF. The proof of security can be decomposed into two steps (c.f. [37]),

i.e., PRG
(1)−−→ Q-PRG

(2)−−→ PRF, where the Q-PRG problem is to distinguish Q
independent samples of PRG from Q random strings. The second step is almost
tight, yet the loss in the first step depends on Q under currently known hybrid
proof techniques. Therefore, any route that starts with LWE → PRG will hit this
technical difficulty. To bypass this barrier, we propose a new route:

LWE
(i)−→ n-LWE

(ii)−−→ Q-LWR′ (iii)−−→ PRF,

where the Q-LWR′ problem asks to distinguish samples either from (A, �st
1 ·

A	q→p, . . . , �st
Q ·A	q→p) or from the corresponding uniform distribution, where

si ← Z
n
p for i ∈ [Q].3

The reduction loss in (i) is n by a simple hybrid argument, and thus almost
tight. The reduction loss in (iii) is k (the input length), which is almost tight. It
is worth pointing out that the n-LWE problem is also known as the multi-secret
LWE problem. As n is a system parameter that only depends on the security
parameter, sometimes this version of the LWE is used as the starting point of
the underlying hard problem, e.g. the work [17].

3 The original LWR problem [8] samples the secret uniformly at random from Z
n
q .
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We next present a new analysis of n-LWE
(ii)−−→ Q-LWR′, which can be proved

tight (for some useful settings of parameters). To achieve this, we present a
refinement of the work [4] below:

Refinement of [4]. We present a critical observation that the information-
theoretic step of [4] can be applied to the multi-secret setting. More specifically,
we take the steps as follows.

1. First, we break A ∈ Z
n×m
q into (Ā,a) ∈ Z

n×(m−1)
q × Z

n
q and switch Ā into

some lossy but indistinguishable Ã. This incurs a security loss εn-LWE.
2. Then, we prove that (Ã, �s1

t · Ã	q→p, · · · , �st
Q · Ã	q→p,a, �a · s1	q→p, · · · ,

�a · sQ	q→p) is statistically close to (Ã, �st
1 · Ã	q→p, · · · , �st

Q · Ã	q→p,a,
�u1	q→p, · · · , �uQ	q→p)) for truly random {ui}i∈[Q].

3. Next, we switch Ã back to Ā, with another security loss εn-LWE.
4. Then we repeat the above steps for each column of A.

The second step can be proved using the concept that a strong extractor
extracts randomness from a block-source. It is clear that (a, 〈a, s〉) is a strong
extractor. As we can show that s1, · · · , sQ form a block-source,4 a can extract
their randomness [52]. This step might incur a dependency on Q yet in the purely
information-theoretic manner, i.e., the dependency on Q will not affect εn-LWE in
the multiplicative way. With appropriate parameters, we can make the statistical
distance in Step 2 arbitrarily small, e.g., 2−n, and the security loss in Steps 1–3
would be 2εn-LWE + 2−n. By repeating Steps 1–3 for all columns (i.e. m), we can
obtain a reduction with loss m(2εn-LWE + 2−n), which is almost tight.

Further Improvements. Next, we present two optimizations of the above app-
roach: (1) By using a more efficient hybrid analysis, we can get rid of the depen-
dency on m in the above argument. Particularly, if the secret s has sufficient
entropy relative to m, we can extract multiple columns per hybrid, resulting in
using less hybrids and thus the overall reduction can be independent of m. (2) By
using a leftover hash lemma for general modulus q with a more careful analysis,
we can further remove the number-theoretic restrictions in [4]. This broadens
the range of parameter selections – for example, the prior analysis [4] does not
cover several useful settings, e.g., q = pe, where our improvement does.

Putting Things Together for PRF. Putting things together, we are able to
achieve: n-LWE → PRF with reduction loss k, and similarly LWE → PRF with
reduction loss kn. By applying the technique of input-domain extension by [26],
we can further reduce the loss k to ω(log κ) and achieve the on-the-fly security.
We summarize the results as follow:

Theorem 1.1 (Informal). With some polynomial modulus q, we have: (1)
n-LWE → PRF with reduction loss ω(log κ), and (2) LWE → PRF with reduction
loss n · ω(log κ).
4 More precisely, we can prove that s1, · · · , sQ have high min-entropy and form a

block-source, conditioned on �st
1 · Ã�q→p, · · · , �st

Q · Ã�q→p.
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A Note on Dimension Loss. For general moduli p, q, all known reductions
LWE → (Q-)LWR ( [4,6,11] and ours) incur a dimension loss, i.e., LWE with
dimension � implies (Q-)LWR with dimension ranging from O(�) to O(� log q). As
our almost tight result LWE → Q-LWR can achieve dimension loss of a constant
factor, in the setting of general moduli, our reduction LWE → PRF is better than
existing non-tight analyses LWE → LWR → PRF [4,6,11] in terms of security loss
and in some cases as well dimension loss.

For special moduli p, q such that p|q, the reduction LWE → LWR of Bai et al. [6]
does not incur a dimension loss, yet their reduction running time blows up signif-
icantly (at least quadratically) as the analysis goes through a decision to search
step. An alternative approach would take the LWE function fA(s,e) = A ·s+e as
a PRG, which is indeed length expanding as we do not need n log q bits of random-
ness to represent e. This approach would not incur a dimension loss nor impose
number theoretic restrictions on the modulus q. By using these two approaches,
one can get a non-tight GGM PRF with the same dimension parameter as the
underlying LWE, namely �.

In general, a non-tight PRF (with dimension �) and a tight PRF (with dimen-
sion O(�)) are incomparable as we discuss below. On one hand, if LWE is expo-
nentially hard, e.g., εLWE(�) = 2−�, the non-tight PRF only needs to scale up � to
(�+log Q) to accommodate the security loss of a factor Q. In this case, the non-
tight PRF parameter is better than the tight one. On the other hand, if LWE is
only super-polynomially hard, e.g., εLWE(�) = 2− log2(�), the non-tight PRF needs
to scale up � to e� where log e ≈ log Q/(2 log �), in order to accommodate the
security loss. As e can be an arbitrary constant depending on the adversary, the
tight PRF is better in this setting.

Almost Tight IBE and ABM-LTFs from LWE with Polynomial q
Recently, Boyen and Li [16] showed how to achieve an almost tight IBE from LWE
by proposing a novel technique that applies (key) homomorphic evaluation on
PRF. Shortly, this technique was used to achieve ABM-LTFs from LWE and thus
many of their applications [17,41]. However, their techniques inherently require a
super-polynomial modulus in achieving almost tight security. Below, we present
our new insights to remove this restriction. For simplicity of presentation, we
just focus on the setting of IBE [16] and remark that the idea can be extended
to the ABM-LTF in a similar way.

Basically, Boyen and Li [16] showed that an almost tight IBE can be con-
structed if (1) LWE is hard, (2) there exists an (almost) tight PRF that can be
evaluated in NC1. Even though their reduction is tight from LWE+PRF, there is
no known instantiation of the required PRF from LWE with a polynomial mod-
ulus. Therefore, there is no construction of pure lattice-based almost tight IBE
with a polynomial modulus. How to achieve such a PRF instantiation is a natural
and interesting open problem.
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The GGM-PRF with our new analysis still does not solve the open problem
directly, as the GGM-based construction is not known to be in NC1. Neverthe-
less, we bypass this issue by showing that the requirement on NC1 is not nec-
essary. Particularly, we improve the framework of Boyen and Li [16] by showing
that the following conditions are sufficient: (1) LWE is hard, (2) there exists an
almost tight PRF, and (3) there exists a (leveled) fully homomorphic encryption
scheme whose decryption algorithm can be computed in NC1.5 Our desired IBE
follows, as we can instantiate all the components from LWE with a polynomial
modulus – the GGM-based PRF in this work for (2), and the FHE schemes [3,22]
for (3). In summary, we achieve the following theorem:

Theorem 1.2 (Informal). Assuming LWE is hard for some polynomial modu-
lus q, there exists an almost tight adaptively secure IBE in the standard model.

Below we highlight our new ideas. We first recall the framework of Boyen
and Li [16], which can be described roughly as follows. The public key contains
matrices A and B1, . . . ,Bk. At various steps (in the proof), the matrices are
encoded as Bi = A·Ri+siG, where si is the i-th bit of a PRF key K and Ri’s are
random matrices with small norms. In the key derivation process, i.e., to derive
skid, their scheme applies the (key) homomorphic evaluation algorithm [14] on the
matrices {Bi}i∈k to compute the function PRF(K, id) for some given id, resulting
in Bid = A·Rid+PRF(K, id)G. Their IBE scheme [16] requires that ‖Rid‖ < q, as
‖Rid‖ affects the quality of the SampleRight algorithm and the noise growth. As
long as the PRF computation is in NC1 [16], then ‖Rid‖ can be upper bounded
by a polynomial, allowing the scheme to use a polynomial modulus q. On the
other hand, if the PRF is not computable in NC1, then a super-polynomial q
seems to be inherent in this approach as ‖Rid‖ would become super-polynomial.

To bypass the technical barrier, we introduce a two-step approach that inte-
grates homomorphic evaluation on leveled HE ciphertexts, key homomorphic
evaluation on the public matrices, and Gentry’s bootstrapping technique [3,29].
Given a leveled FHE (HE) that supports homomorphic computation of the PRF
and has an NC1 decryption algorithm, we add an encryption of a PRF key K,
i.e., c ← HE.Enc(K), to the public key, and encode Bi = A ·Ri + (sk)iG, where
(sk)i is the i-th bit of the decryption key of the HE scheme. Then our new key
derivation process consists of the following two steps:

1. (Homomorphic Evaluation of PRF) First run c̃ = HE.Eval(PRF(·, id), c) to
homomorphically evaluate PRF(K, id).

2. (Key Homomorphic Bootstrapping) Next run the key homomorphic eval-
uation of the decryption algorithm of HE on the matrices {Bi}i∈[k] with
the input c̃, i.e., evaluate HE.Dec(sk, c̃) homomorphically. Then we obtain
Bid = A · RDec + PRF(K, id)G.

As the decryption algorithm can be computed in NC1, we know that ‖RDec‖
can be bounded by a polynomial. Furthermore, we know that the required HE

5 Actually a homomorphic encryption that supports evaluation of the PRF in (2)
suffices.
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can be instantiated from LWE with a polynomial modulus [3,22]. Putting all
things together, we can obtain the desired IBE.

We note that our result above does not need the circular security assumption,
as we only need a leveled HE that supports computation of the PRF, which is
of a bounded depth. Moreover, in our key homomorphic bootstrapping step, the
secret key of HE is information-theoretically hidden in the matrices Bi’s. This
again does not rely on the circular security assumption.

Finally, we observe that the above two-step approach can be used to improve
the modulus used in prior ABM-LTF [17,41] and signatures [16]. Particularly, we
achieve:

Theorem 1.3 (Informal). Assuming LWE is hard for some q = poly(κ), there
exist an almost tight ABM-LTF and a signature scheme with a poly modulus.

Other Related Work. Very recently, Jager et al. [34] proposed a new frame-
work to improve the size of secret key and reduction loss of the PRFs [8,40,45], yet
their instantiations from lattices however, still require super-polynomial moduli.

2 Preliminaries

Notations. We let κ denote the security parameter. For an integer n, let [n]
denote the set {1, ..., n}. We use bold lowercase letters (e.g. a) to denote vectors
and bold capital letters (e.g. A) to denote matrices. For a positive integer q ≥ 2,
let Zq be the ring of integers modulo q. For a distribution or a set X, we write

x
$←− X to denote the operation of sampling an uniformly random x according

to X. For distribution X,Y , we let SD(X,Y ) denote their statistical distance.
We write X

s≈ Y to mean that they are statistically close, and X
c≈ Y to say

that they are computationally indistinguishable. We let negl(κ) denote the set
of all negligible function μ(κ) = κ−ω(1).

Definition 2.1 (Computational indistinguishability). We say that two
experiments H0,H1 are (t, ε)-indistinguishable with oracle access if for every dis-
tinguisher D within running time t, we have |Pr[DH0accepts]−Pr[DH1accepts]| <
ε, where the probabilities are taken over the coin tosses of H0,H1.

2.1 Learning with Error

We define the multi-secret variant of learning with error, i.e., N -LWE, and note
that the standard learning with error can be denoted as 1-LWE.

Definition 2.2 (Multi-secret Learning with Errors (LWE) Assump-
tion [49]). Let κ be the security parameter, n,m, q,N be integers (functions of
κ), and χ = χ(κ) be a distribution over Zq. The N -LWEn,m,q,χ assumption with

parameter N can be stated that for independently sampled A $←− Z
n×m
q , ui

$←− Z
m
q ,
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si
$←− Z

n
q and ei

$←− χm for i ∈ [N ], the following distributions are computation-

ally indistinguishable: (A, (st
1 · A + et

1), . . . , (s
t
N · A + et

N ))
c≈ (A,ut

1, . . . ,u
t
N ).

We say N -LWEn,m,q,χ problem is (t, ε)-hard if the two distributions above are
(t, ε)-indistinguishable.

By a simple hybrid argument, we can derive a reduction from 1-LWEn,m,q to
N -LWEn,m,q with a security loss with a multiplicative factor of N . The work [20,
47,49] showed that there exist quantum/classical reductions from some worst-
case lattice problems (GapSVP,SIVP) to the LWE problem.

2.2 Learning with Rounding

For any integer modulus q > 2, Zq denotes the quotient ring of integers modulus
q. We define a rounding function �·	p : Zq → Zp for q ≥ p ≥ 2 as

�x	q→p = �(p/q)x̄	q→p,

where x̄ ∈ Z is any integer congruent to x mod q. Furthermore, �·	q→p can be
extended component-wise to vectors and matrices over Zq. In places where the
context is clear about the modulus q, we would omit q in the notation as �·	p

for simplicity of presentation.
Similar to the multi-secret LWE, we define a multi-secret variant for the

LWR assumption, and note that the original LWR [8] can be denoted as 1-LWR.

Definition 2.3 (Multi-secret LWR). Let κ ≥ 1 be the security parameter,
n, q ≥ p ≥ 2, Q be integers (functions of κ). The Q-LWRn,m,q,p assumption

states that for independently sampled A $←− Z
n×m
q , ui

$←− Z
m
q , si

$←− Z
n
q with

i ∈ [Q], the following distributions are computationally indistinguishable:

(A, �st
1 · A	p, . . . , �st

Q · A	p)
c≈ (A, �ut

1	p, . . . , �ut
Q	p),

We say the Q-LWRn,m,q,p problem is (t, ε)-hard if the two distributions above are
(t, ε)-indistinguishable.

Below we define a variant of the LWR problem, namely, LWR′, which will be
useful for our PRF construction.

Definition 2.4 (Multi-secret LWR′). The Q-LWR′
n,m,q,p problem is the same

as Q-LWRn,m,q,p except that the secret vectors s1, . . . , sQ are sampled from Z
n
p .

2.3 Pseudorandom Function and Identity-Based Encryption

Definition 2.5 (Pseudorandom function). Let A and B be finite sets, and
let F = {Fi : A → B} be a function family, endowed with efficient sam-
pleable distribution (F , A and B are all indexed by the security parameter λ). We
say that F is a (t,Q, ε)-pseudorandom function(PRF) family if the following
two experiments are (t, ε)-indistinguishable with oracle access up to Q adaptive
queries: (1) Choose a function F ← F , and (2) Choose a uniformly random
function R : A → B.
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Definition 2.6 (Identity-Based Encryption (IBE) [13,51]). An identity-
based encryption scheme consists of four ppt algorithms (Setup,KeyGen,
Enc,Dec) defined as follows:

– Setup(1κ): Given the security parameter, it outputs a master public key mpk
and a master secret key msk.

– KeyGen(msk, id): Given the msk and an identity id ∈ {0, 1}�, it outputs the
identity secret key skid.

– Enc(mpk, id,m): Given the mpk, an identity id ∈ {0, 1}�, and a message m,
it outputs a ciphertext c.

– Dec(skid, c): Given a secret key skid for identity id and a ciphertext c, it outputs
a plaintext m.

The following correctness and security properties must be satisfied:

Correctness: For all security parameter κ, identity id ∈ {0, 1}� and message m,
the following holds: Pr[Dec(skid,Enc(mpk, id,m)) = m] = negl(κ), where skid ←
KeyGen(msk, id) and (mpk,msk) ← Setup(1κ).

Security: We define the adaptive chosen-plaintext security (IND-ID-CPA) for
IBE as below, where the adversary can adaptively make secret key queries.

Experiment (IND-ID-CPAIBE(A))

1. (mpk,msk)
$←− Setup(1κ).

2. (id∗,m0,m1)
$←− AKeyGen(msk,·)

1 (mpk) where |m0| = |m1| and for each query id by A1 to
KeyGen(msk, ·) we have that id �= id∗.

3. b
$←− {0, 1}.

4. m∗ = mb

5. c∗ $←− Enc(mpk, id∗,m∗)

6. b′ $←− AKeyGen(msk,·)
2 (mpk, c∗) where for each query id by A2 to KeyGen(msk, ·) we have

that id �= id∗.
7. Output 1 if b∗ = b′ and 0 otherwise.

Definition 2.7. For a security parameter κ, let t = t(κ), q = q(κ) and ε = ε(κ).
we say that an IBE scheme E is (t, q, ε)-IND-ID-CPA secure if for any t time
adversary A makes at most q secret key queries and the following holds:

Pr[IND-ID-CPAIBE(A) = 1] ≤ 1
2

+ ε(κ).

2.4 Lattice Backgrounds

Theorem 2.8 (Trapdoor Generation [2,43]). There is a probabilistic
polynomial-time algorithm TrapGen(1n, q,m) that for all m ≥ m0 = m0(n, q) =
O(n log q), outputs (A,TA) s.t. A ∈ Z

n×m
q is within statistical distance 2−n from

uniform and the distribution of TA is the Discrete Gaussian DZm,τ conditioned
on A · TA = 0 (mod q) and τ = O

√
n log q log n.
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Theorem 2.9 ([1]). Let q > 2,m > n. (i) If s > ‖T̃A‖·ω(
√

log(m + m1)). Then
there exists an algorithm SampleLeft taking (A ∈ Z

n×m
q ,B ∈ Z

n×m1 ,TA,u ∈
Z

n
q , s) as input, outputs a vector d ∈ Z

m+m1 distributed statistically close to
DΛu

q ([A|B]),s. (ii) If s > ‖T̃B‖ · ‖R‖ · ω(
√

log m). Then there exists an algorithm
SampleRight taking (A ∈ Z

n×k
q ,R ∈ Z

k×m,B ∈ Z
n×m,TB,u ∈ Z

n
q , s) as input,

outputs a vector d ∈ Z
m+k distributed statistically close to DΛu

q ([A|AR+B]),s.

Gadget Matrix. We recall the “gadget matrix” G defined in [43]. The “gadget
matrix” G = g ⊗ In ∈ Z

n×n�log q�
q where g = (1, 2, 4, ..., 2�log q�−1).

Lemma 2.10 ([43], Theorem 1). Let q be a prime, and n,m be integers with
m = n�log q	. There is a full-rank matrix G ∈ Z

n×m
q such that the lattice Λ⊥

q (G)
has a publicly known trapdoor matrix TG ∈ Z

n×m with ‖T̃G‖ ≤ √
5, where T̃G

is the Gram-Schmidt order orthogonalization of TG.

Lemma 2.11 ([14], Lemma 2.1). There is a deterministic algorithm, denoted
by G−1(·) : Zn×m

q → Z
m×m, that takes any matrix A ∈ Z

n×m
q as input, and

outputs the preimage G−1(A) of A such that G · G−1(A) = A (mod q) and
‖G−1(A)‖ ≤ m.

Definition 2.12 (δ-compatible algorithms [54]). We say that the determin-
istic algorithms (EvalPub,EvalTrap) are δ-compatible for a function family F = {f :
{0, 1}� → {0, 1}} if they are efficient and satisfy the following properties:

– EvalPub(f ∈ F , {Ai ∈ Z
n×m
q }i∈[�]) = Af ∈ Z

n×m.
– EvalTrap(f ∈ F ,A,x ∈ {0, 1}�, {Ri ∈ Z

m×m}i∈[�]) = Rf ∈ Z
m×m.

For any x = (x1, ..., x�) ∈ {0, 1}�, we require that the following holds:

EvalPub(f, {ARi + xiG}i∈[�]) = ARf + f(x)G (mod q),

and we have ‖Rf‖∞ ≤ δ · maxi∈[�]{‖Ri‖}.
Lemma 2.13 (Noise Rerandomization [36]). Let q, �,m be positive integers
and r a positive real satisfying r > max{ηε(Zm), ηε(Z�)}. Let b ∈ Z

m
q be arbitrary

vector and x chosen from DZm,r. Then for any V ∈ Z
m×� and positive real

σ > s1(V), there exists a PPT algorithm ReRand(V, b + x, r, σ) that outputs
b

′
= bV+x

′ ∈ Z
�
q where the statistical distance of the discrete Gaussian DZ�,2rσ

and the distribution of x
′
is within 8ε.

Fully Homomorphic Encryption. We present the syntax of (leveled fully)
homomorphic encryption. A homomorphic encryption scheme HE = (HE.
KeyGen,HE.Enc,HE.Dec,HE.Eval) is a quadruple of ppt algorithms as follows:

– HE.KeyGen(1κ). Generate an encryption key ek. a public evaluation key evk,
and a secret decryption key dk.

– HE.Enc(ek, μ). Generate a ciphertext ct.
– HE.Dec(dk, ct). Decrypt the ciphertext and output message μ.
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– HE.Eval(evk, f, {cti}). The algorithm takes evk and a function (circuit) f and
a set of ciphertexts {cti} as input, and outputs an evaluated ciphertext ctf .

Correctness and security follow by the standard definitions as [21,29]. If a
homomorphic scheme HE supports evaluation of a class of functions C, then it
is C-homomorphic. A fully homomorphic encryption supports evaluation of all
polynomial-sized circuits. Details are deferred to full version of this paper.

Next, we present an important result, saying that for most of the LWE-based
FHEs, the decryption circuits are in NC1 and can be homomorphically evaluated
with a small noise growth.

Theorem 2.14 ([3,22]). For all n, q,m, � ∈ N, and for any sequence of matri-

ces (B1, ...,B�) ∈ (Zn×m
q )� where Bi = ARi + xiG for A $←− Z

n×m
q ,Ri

$←−
{−1, 1}m×m, xi

$←− {0, 1}, the following holds. For the special decryption algo-
rithms f ∈ {0, 1}� → {0, 1} of LWE based FHE [3,22], EvalPub(f,B1, ...,B�) =
ARf + f(x)G (mod q), where x = (x1, ..., x�), and ‖Rf‖2 ≤ O(n2+ε) for
any ε ∈ (0, 1). In other word, the algorithms (EvalPub,EvalTrap) are O(n2+ε)-
compatible in this case.

3 Almost Tight Lattice-Based PRF Under Poly Moduli

In this section, we first present an (almost) tight reduction of LWE → Q-LWR′

for bounded number of samples with a polynomial modulus. This new reduction
serves as the core technique to prove the almost tight security of GGM PRF from
LWE with polynomial modulus.

3.1 LWR with a General Modulus q

To study the LWR problem with a general modulus q, we first present a useful
leftover hash lemma in a general Zq. In particular, we show that matrix multi-
plication in general Zq is a good extractor, i.e. (A, stA)

s≈ (A,u), as long as the
min-entropy of s mod p′ has sufficient entropy for every factor p′ of q.

We note that this condition for entropy is necessary as otherwise, we can
construct a simple counterexample where the output distribution of stA is far
from uniform. Consider q = 210, and s is sampled uniformly from {0, 2}n. It is
clear that s has min-entropy n and all components of s are small, but for any
vector a ∈ Z

n
q , 〈s,a〉 is an even number and thus the distribution of 〈s,a〉 over

a random a is far from uniform over Zq.
More formally, we use the following lemma to show that this entropy condi-

tion is sufficient for extraction.

Theorem 3.1 (Randomness Extraction for General q). Let z, n, k, q ∈ N

be integers and ε ∈ (0, 1) such that

k > z log q + 3(log(zq) + log(1/ε)) + 2(log q)(log log q) + 7.
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Suppose s is chosen from some distribution over Z
n
q such that H∞(s mod p) ≥ k

for any factor p of q, and A $←− Z
n×z
q , u

$←− Z
z
q are chosen independently of s

from the uniform distribution. Then we have: Δ[(A, st · A); (A,ut)] ≤ ε.

This theorem can be proved via Lemma 2.3 in [42]. We describe our alterna-
tive proof for completeness of presentation in the full version of this paper.

Next, we define a generalization of the weak learning with rounding (wLWR)
assumption (in the form of multi-secret) in general Zq. Intuitively, the wLWR
problem considers scenarios where the secret s comes from some high min-
entropy distribution (e.g., perhaps the secret is somewhat leaked) instead of
the uniform distribution.6

Definition 3.2 (Multi-secret wLWR). Let κ be the security parameter, n,m,

q ≥ p ≥ 2, γ, k,Q be integers (functions of κ). The Q-wLWR(γ,k)
n,m,q,p assumption

states: let {(si, auxi)}i∈[Q] be Q pairs of correlated random variables where (i) each
pair is sampled independently of the others, (ii) the support of each si ∈ [−γ, γ]n,
and (iii) H∞(si mod p′ | auxi) ≥ k for every prime factor p′ of q and for i ∈ [Q].
Then the distributions below are computationally indistinguishable:

({auxi}i∈[Q],A, �st
1 · A	p, . . . , �st

Q · A	p)
c≈ ({auxi}i∈[Q],A, �u1	p, . . . , �uQ	p),

where A $←− Z
n×m
q ,u1, · · · ,uQ

$←− Z
m
q are chosen randomly and independently of

{(si, auxi)}i∈[Q]. We say the Q-wLWR(γ,k)
n,m,q,p problem is (t, ε)-hard if the two distri-

butions above are (t, ε)-indistinguishable.

We remark that contrast with the previous definition by [4] for restricted
moduli, our generalized definition instead impose more condition on the secret
distribution, just as required in the randomness extraction in Theorem3.1, i.e.,
s mod p′ has sufficient entropy for every factor p′ of q. Intuitively, without this
additional condition in general Zq, �st · A	 might be far from uniform for some
s which is only guaranteed to have high min-entropy.

More formally, we establish the following main theorem to show that Q-wLWR
is at least as hard as n-LWE for a wide range of parameters.

Theorem 3.3 (Hardness of Multi-secret (w)LWR). Let k, �, n,m, p, q, γ,
Q, λ be positive integers, pmin be the smallest prime factor of q, c be an integer,
and χ be a β-bounded distribution for some real β > 0, such that q ≥ 2βγnmp.
Assume n-LWE�,m,q,χ problem is (t, ε)-hard, then we have the following:

– (High entropy secret). Q-wLWR(γ,k)
n,m,q,p is (t′, ε′)-hard, where t′ = t −

poly(κ), ε′ = 2cε + (Qc + 1) 1
2λ , if k ≥ (�m

c � + 2(log log q) + � + λ + 3
)
log q +

3 log�m
c � + 3λ + 7.

6 In prior work [4], the wLWR problem is originally defined with respect to the secret
s having sufficient min-entropy, and it is proved hard just for restricted moduli q.
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– (Uniform secret). Q-LWRn,m,q,p is (t′, ε′)-hard, where t′ = t − poly(κ), ε′ =

2cε + (Qc + 1) 1
2λ , if n ≥ 1

min{log(2γ),log(pmin)}
((

�m
c � + 2(log log q) + � + λ +

3
)

log q + 3 log�m
c � + 3λ + 7

)
.

The proof of this theorem relies on the use of a lossy matrix and randomness
extraction alternately as we described in Sect. 1.2. Due to space limit, we defer
the full proof to the supplementary material in full version of this paper.

Note that the reduction loss in Theorem 3.3 does not depend on Q in the
multiplicative way, and thus can be made tight in several parameter settings.
Furthermore, the hardness of ordinary wLWR, LWR and LWR′ in the general Zq

can be derived easily from this theorem.
As we discussed in the beginning of this section, our result in Theorem3.3

improves the prior work [4] in the following two aspects: (1) our q does not
require the additional number theoretic requirement, and (2) if the secret s has
sufficient entropy, we can further improve the security loss. The work [4] can be
thought as c = m in our case.

Using the above theorem, we can prove the problem LWR′
n,m,q,p as a special

case of the problem wLWR(γ,k)
n,m,q,p, where γ = p, and k = n (min{log p, log(pmin)}).

We note that by a simple calculation, s
$←− Zp implies H∞(s mod p′) ≥

n (min{log p, log(pmin)}) for any prime factor p′ of q. Thus we have the following
corollary.

Corollary 3.4 (Hardness of Multi-secret LWR′). Let �, n,m, p, q,Q, λ be
positive integers, pmin be the smallest prime factor of q, c be an integer, and
χ be a β-bounded distribution for some real β > 0, such that q ≥ 2βnmp2.
Assume n-LWE�,m,q,χ problem is (t, ε)-hard, then Q-LWR′

n,m,q,p is (t′, ε′)-hard,

where t′ = t − poly(κ), ε′ = 2cε + (Qc + 1) 1
2λ , if n ≥ 1

min{log p,log(pmin)}
((

�m
c � +

2(log log q) + � + λ + 3
)

log q + 3 log�m
c � + 3λ + 7

)
.

Some Useful Setting of Parameters. Our reduction of LWE → Q-LWR′ holds
for a wide range of parameters (e.g., q = pe). Here we describe one example,
which will be used in our almost tight PRF in Sect. 3.2.

Table 1. Simple example of parameter setting

Parameters Description Setting

κ Security parameter

n LWR dimension 50κ

m Number of LWR samples 2n

p Modulus of LWR κ

q Modulus of LWE p6

� LWE dimension κ

c Reduction parameter 24

λ Statistical loss parameter 2κ

β LWE error bound
√

κ
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Through combining Theorem3.3 and Corollary 3.4, together with the param-
eter setting in Table 1, we can directly achieve the following corollary

Corollary 3.5. Let κ be the security parameter, �, n,m, p, q, λ, β, c be func-
tion of κ setting above. Assume n-LWE�,m,q,χ problem is (t, ε)-hard, then Q-
LWR′

n,m,q,p is (t′, ε′)-hard for any Q = poly(κ) and sufficient large κ, where
t′ = t − poly(κ), ε′ ≤ 48ε + 24Q+1

22κ .

3.2 Lattice-Based PRF with poly Modulus

In this section, we show that the GGM-based construction [8], when instantiated
under LWR’ with parameters as Table 1, indeed achieves almost tight security.
Thus, we achieve the first almost tight LWE-based PRF with a poly modulus.

Lattice PRF via GGM. By using the (n)-LWR′ (with bounded samples) and
the GGM construction, one can derive a PRF, as shown by the work [8]. For
completeness, below we include the construction, parameters, and a theorem
that summarizes security.

Construction. For parameters n ∈ N, moduli q ≥ p ≥ 2, and input length
k ≥ 1, the family F consists of functions from {0, 1}k to Z

n
p . A function F ∈ F

is indexed by some A0,A1 ∈ Z
n×n
q and s ∈ Z

n
p , and is defined as

F (x) = Fs,{Ai}i∈{0,1}(x1, ..., xk);= �. . . ��st · Ax1	p · Ax2	p . . . · Axk
	p.

We endow F with the distribution where {Ai}i∈{0,1} and s are chosen uniformly
at random, and {Ai}i∈{0,1} can be publicly known.

Parameters. Our PRF works for a wide range of parameters. For ease of our
security proof, we use a concrete parameter setting following Table 1: Let κ be
the security parameter, we set n = 50κ, k = κ, p = κ, q = κ6.

Theorem 3.6. Let κ be security parameter, n, k, p, q be parameters setting
above, and χ be a β-bounded distribution over Zq for β =

√
κ. Assume

LWE�,2n,q,χ is (t, ε)-hard where � = κ. Then the family F constructed above
is a (t

′
, Q, ε

′
)-PRF, where t

′
= t − poly(κ), ε

′ ≤ 48knε + 1
2κ for sufficient large κ

and any Q = poly(κ).

Proof Sketch. As discussed in the introduction, the proof follows the steps

LWE
(i)−→ n-LWE

(ii)−−→ Q-LWR′ (iii)−−→ PRF. Step (i) follows from a standard hybrid
argument; Step (ii) follows from Corollary 3.4 in Sect. 3.1; Step (iii) is very sim-
ilar to the classic proof Q-PRG → PRF (see [12,31,37]). For completeness, we
present the formal arguments in full version of this paper.

We can further improve the result by applying the domain extension tech-
niques by [26], resulting in the Corollary as follows:

Corollary 3.7. Let κ be security parameter, n = 50κ, p = κ, q = κ6, k = κ, � =
κ, β =

√
κ as our setting of parameters. We have the following:
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– Assume n-LWE�,2n,q,χ is (t, ε)-hard where χ is a β-bounded distribution over
Zq. Then there exists a (t

′
, Q, ε

′
)-PRF, where t

′
= t−poly(κ), ε

′ ≤ ω(log κ)ε+
2−Ω(κ) for sufficient large κ and for any Q = poly(κ).

– Assume LWE�,2n,q,χ is (t, ε)-hard where χ is a β-bounded distribution over Zq.
Then there exists a (t

′
, Q, ε

′
)-PRF, where t

′
= t − poly(κ), ε

′ ≤ 48κω(log κ)ε
+2−Ω(κ) for sufficient large κ and any Q = poly(κ).

4 New Framework of Lattice-Based IBE with Tight
Security Under poly Modulus

In this section, we propose a novel framework that integrates key homomor-
phic evaluation on the public matrices, homomorphic evaluation on leveled HE
ciphertexts, bootstrapping, and our almost tight PRF in Sect. 3.2. By applying
this technique, we construct an almost tight adaptively secure IBE from LWE
with a polynomial modulus. Our technique can also apply to the lattice based
signature scheme resulting an almost tight security under poly modulus. Due to
the space, we put the construction in full version of this paper. We present our
IBE construction in Sect. 4.1, and then show the tight security in Sect. 4.2, finally
instantiate all the building blocks in Sect. 4.3.

4.1 IBE Construction

– Setup(1κ) The setup algorithm takes as input a security parameter κ, It does
the following:
1. Sample a random matrix A ∈ Z

n×m
q along with a trapdoor basis TA ∈

Z
m×m of lattice Λ⊥

q (A) by running TrapGen.
2. Select random matrices A0,A1 ∈ Z

n×m
q . Run HE.KeyGen algorithm of a

HE scheme (ek, evk, dk) ← HE.KeyGen . Set the random “PRF key” ele-

ments as {di}i∈[k1] where di
$←− HE.Enc(ek, 0) and set “bootstrapping

key” element as evk . Select random “PRF input” elements

c0
$←− HE.Enc(ek, 0), c1

$←− HE.Enc(ek, 1)

uniformly at random. Select random matrices {Di}i∈[k2] ∈ Z
n×m
q . Express

the decryption algorithm HE.Dec as a NAND Boolean circuit CDec .

3. Select a random vector u
$←− Z

n
q .

4. Select a secure pseudorandom function PRF : {0, 1}k1 × {0, 1}� → {0, 1},
express it as a NAND Boolean circuit CPRF with depth d = d(κ), and

select a PRF key K = s1s2...sk1

$←− {0, 1}k1 .
5. Set msk = (TA,K), and output

mpk = (A, {A0,A1}, {di}i∈[k1], {Di}i∈[k2], {c0, c1}, evk,u,PRF, CPRF).
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– KeyGen(mpk,msk, id) The key generation algorithm take mpk,msk and an
identity id = x1x2...x� ∈ {0, 1}� as input, and does the following:
1. Compute b = PRF(K, id).
2. Compute ctid = HE.Eval(evk, CPRF, ({di}i∈[k1], {cxi

}i∈[�])) .

3. Compute ACPRF,id = EvalPub(CDec, ({Di}i∈[k2], {(ctid)iG}i∈[k3])) , where

(ctid)i is the i-bit of ctid.
4. Set Fid,1−b = [A|A1−b − ACPRF,id] ∈ Z

n×2m
q .

5. Run SampleLeft to sample did from the discrete Gaussian distribution
DΛu

q (Fid,1−b),s, then Fid,1−bdid = u(mod q). Output skid = (b,did).

– Enc(mpk, id, μ) To encrypt a message μ ∈ {0, 1} with respect to an identity
id = x1x2...x� ∈ {0, 1}�:
1. Compute ctid = HE.Eval(evk, CPRF, ({di}i∈[k1], {cxi

}i∈[�])) .

2. Compute ACPRF,id = EvalPub(CDec, ({Di}i∈[k2], {(ctid)iG})) .

3. Set Fid,b = [A|Ab − ACPRF,id] ∈ Z
n×2m
q for b = 0, 1.

4. Select two random vectors s0, s1
$←− Z

n
q .

5. Select two noise scalars v0,0, v1,0 ← DZ,σLWE
and two noise vectors

v0,1,v1,1 ← DZ2m,σ, where σ is a gaussian parameter lager than σLWE.
6. Compute the ciphertext ctid = (c0,0, c0,1, c1,0, c1,1) as:

{
c0,0 = (st

0u + v0,0 + μ�q/2�) mod q

ct
0,1 = (st

0Fid,0 + vt
0,1) mod q

{
c1,0 = (st

1u + v1,0 + μ�q/2�) mod q

ct
1,1 = (st

1Fid,1 + vt
1,1) mod q

– Dec(mpk, skid, ctid) The decryption algorithm uses the key (b,did) to decrypt
(cb,0, cb,1). The decryption algorithm computes η = (cb,0−ct

b,1did) mod q. If η
is closer to 0 that ±q/2, then decryption algorithm outputs μ = 0, otherwise,
outputs μ = 1.

Correctness analysis can be verified in the same way as [16]. We omit it here due
to the space limit.

Parameter Setting. We now provide an instantiation that achieves both cor-
rectness a and security (Table 2).

– To ensure the condition of TrapGen in Theorem 2.8 and achieve the statistical
distance in Lemma 4.2, we set m = O(n log q), n ≥ κ + log k2 + 5;

– According to [3,18,21,30], there exists an HE scheme such that the decryption
circuit is in NC1, so we set L = O(log n);
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Table 2. Parameter setting of IBE scheme

Parameters Description Setting

κ Security parameter

k1 Secret key length of PRF κ

k2 The length of decryption key of HE κ

k3 Output length of HE.Eval κ

n Row dimension of public matrix ≥ 2κ + 5

m Column dimension of public matrix O(n log q)

� Length of id κ

L Depth of HE decryption circuit O(log n)

s Gaussian parameter of secret key O(n3+ε)

σLWE Gaussian parameter of LWE error O(
√

κ + log κ)

σ Gaussian parameter of noise vectors in cb,1 2σ∗ · σLWE

σ∗ Parameter of ReRand algorithm O(n2+ε)

q Modulus of LWE O(n8+ε)

– To ensure that SampleLeft in the real scheme and SampleRight in the simula-
tion game have the statistical distance within 2−(κ+2)/3Qid per Theorem 2.8
and Theorem 2.9, we need

s > ‖T̃A‖ · ω(
√

log 2m) and s > ‖T̃G‖ · ‖R‖ · ω(
√

log m),

where R = RA1−b
− RCPRF,id, and n ≥ κ + 5 + log Qid (Qid is number of

key queries). According to Theorem 2.14 and the bootstrapping computa-
tion [3], the key-homomorphic evaluation algorithm of HE decryption circuit
is O(n2+ε)-compatible for any ε ∈ (0, 1), which means that ‖RCPRF,id‖ ≤
O(n2+ε). To satisfy these conditions, we set s = O(n3+ε) and n ≥ 2κ + 5
(without loss of generality, we assume Qid < 2κ);

– To ensure Regev’s quantum reduction to LWE [49], we need σLWE > 2
√

κ;
– For ReRand algorithm to work with the statistical distance in Lemma4.3, we

need σ∗ > s1([I|R]), σLWE > max{ηε(Zm), ηε(Z�)} and σ = 2σ∗·σLWE. Accord-
ing to the property of smoothing parameters (which can be found in full ver-
sion of this paper) and Theorem2.14, we set σLWE = O(

√
κ + log κ), σ∗ =

O(n2+ε);
– To ensure the correctness of decryption, we need |cb,0 − ct

b,1did| < q/4, as a
result O(s · m · σ) < q/4. We set q = O(n8+ε) (q is not necessarily a prime).

4.2 Security

The security of the IBE scheme above can be stated by the following theorem.

Theorem 4.1. Let the parameters be chosen as above, and χ be the distri-
bution DZm,σLWE

. If the LWEn,m,q,χ problem is (tLWE, εLWE)-hard, HE scheme
is (tHE, k1, εHE)-IND secure with decryption circuit in NC1 (e.g., O(n2+ε)-
compatible), and the PRF used in the IBE is a (tPRF, Qid, εPRF)-PRF, then
the IBE scheme constructed above is (t∗, Qid, ε

∗)-adaptively secure such that
ε∗ ≤ 2(εLWE + εPRF) + 3εHE + 2−κ, and t∗ = min{TLWE, TPRF, THE} −
poly(n,m, k,Qid, log q).
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Proof. We prove the theorem by a sequence of hybrid games. Given a ppt adver-
sary A, the first game is defined as the real adaptive security game. Then we will
show that all the neighboring games are computationally/statistically indistin-
guishable. Finally we show that A has no advantage in the last game to complete
the proof.

Before we present the hybrids, we first define the following simulation algo-
rithms Sim.Setup, Sim.KeyGen and Sim.Enc, making essential modifications of
those in the work Boyen and Li [16]. We highlight the differences in boxes.

– Sim.Setup(1κ) The algorithm does the following:

1. Select a matrix A $←− Z
n×m
q . Run HE.KeyGen algorithm of a HE scheme

(ek, evk, dk) ← HE.KeyGen . Set ”bootstrapping key” element as evk .
Select random “PRF input” elements

c0
$←− HE.Enc(ek, 0) , c1

$←− HE.Enc(ek, 1)

uniformly at random. Express the decryption circuit HE.Dec as a NAND

Boolean circuit CDec and express dk as dk = (dk1, ..., dkk2) .

2. Select k2 + 2 low-norm matrices {RAb}b∈{0,1}, {RDi}i∈[k2]
$←− {0, 1}m×m .

3. Select a secure PRF : {0, 1}k1 ×{0, 1}� → {0, 1} and express it as a NAND
Boolean circuit CPRF with depth d = d(κ).

4. Select a uniformly random string K = s1s2...sk1

$←− {0, 1}k1 .
5. Set Ab = ARAb

+ bG for b = 0, 1 and Di = ARDi + dkiG for i ∈ [k2].

6. Set the random “PRF key” elements as {di}i∈[k1] where

di
$←− HE.Enc(ek, si) .

7. Set vector u
$←− Z

n
q , and publish

mpk = (A, {A0,A1}, {di}i∈[k1], {c0, c1}, {Di}i∈[k2], evk,u,PRF, CPRF) .

– Sim.KeyGen(mpk,msk, id) Upon an input identity id = x1x2...x� ∈ {0, 1}�, the
algorithm uses mpk,msk to do the following:
1. Compute ctid = HE.Eval(evk, CPRF, ({di}i∈[k1], {cxi

}i∈[�])) and

RCPRF,id = EvalTrap(CDec,A, ({dki}i∈[k2], {(ctid)i}i∈[k3]), ({RDi
}i∈[k2], {[0]i}i∈[k3])) ,

where for each i ∈ [k3], [0]i denotes 0 matrix with dimension m × m.
2. Let PRF(K, id) = b ∈ {0, 1}. Set

Fid,1−b = [A|A1−b − ACPRF,id] = [A|A(RA1−b
− RCPRF,id) + (1 − 2b)G].

3. Run SampleRight to sample did ∈ DΛu
q (Fid,1−b),s, and output skid = (b, did) .
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– Sim.Enc(mpk, id∗, μ) The algorithm takes a message μ, mpk and a challenge
identity id∗ as input, does the following:
1. Compute b = PRF(K, id∗).
2. Set Fid∗,b = [A|Ab − ACPRF,id∗ ] = [A|A(RAb

− RCPRF,id∗)]. and

Fid∗,1−b = [A|A1−b −ACPRF,id∗ ] = [A|A(RA1−b
−RCPRF,id∗) + (1 − 2b)G].

3. Select random vectors sb, s1−b
$←− Z

n
q .

4. Select noise scalars vb,0, v1−b,0 ← DZ,σLWE
, and noise vectors

v
′
b,1 ← DZm,σLWE .

5. Let R = RAb
− RCPRF,id∗ , and set σ∗ = σ/2σLWE . Then invoke the

ReRand algorithm to compute

vb,1 = ReRand([I|R], st
bA + v

′
b,1, σLWE, σ

∗) − Ft
id∗,bsb .

6. Select noise vectors v1−b,1 ← DZ2m,σ.
7. Set the challenge ciphertext ctid∗ = (cb,0, cb,1, c1−b,0, c1−b,1) as:

{
cb,0 =

(
st

bu + vb,0 + μ�q/2�) mod q

ct
b,1 =

(
st

bFid∗,b + vt
b,1

)
mod q

{
c1−b,0 =

(
st
1−bu + v1−b,0 + μ�q/2�) mod q

ct
1−b,1 =

(
st
1−bFid∗,1−b + vt

1−b,1

)
mod q

Now we present a sequence of games and prove that the neighboring games
are indistinguishable. We follow the structure of the sequence from Boyen and
Li [16], and add an additional step to incorporate the homomorphic encryption.

Game 0: This is the real adaptive security game, and all the algorithms are
the same as the real game.
Game 1: This game is the same as Game 0 except it runs Sim.Setup and
Sim.KeyGen instead of Setup and KeyGen.
Game 2: This game is the same as Game 1 except that the challenge cipher-
text is generated by Sim.Enc rather than Enc.
Game 3: This game is the same as Game 2 except that during the generation
of challenge ciphertext, it samples (cb,0, cb,1) uniformly random from Zq ×
Z
2m
q for b = PRF(K, id∗), and (c1−b,0, c1−b,1) is computed by Sim.Enc as in

Game 2.
Game 4: This game is the same as Game 3 except for b = PRF(K, id∗) it
runs Enc to generate (c1−b,0, c1−b,1) instead of using Sim.Enc.
Game 5: This game is the same as Game 4 except it runs Setup and KeyGen
to generate mpk and skid∗ .
Game 6: This game is the same as Game 5 except that for b = PRF(K, id∗),
the challenge ciphertext part (cb,0, cb,1) is generated by Enc rather than choos-
ing it randomly, and (c1−b,0, c1−b,1) is chosen randomly.
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Game 7: This game is the same as Game 6 except that it runs Sim.Setup
and Sim.KeyGen to generate mpk and skid∗ .
Game 8: This game is the same as Game 7 except that for b = PRF(K, id∗),
it computes the challenge ciphertext (cb,0, cb,1) by Sim.Enc.
Game 9: This game is the same as Game 8 except that the whole challenge
ciphertext is sampled uniformly at random. As the challenge ciphertext is
independent of the adversary A, clearly in Game 9 the adversary has no
advantage.

We let Wi be the event that γ
′

= γ at the end of the Game i, and set
the advantage’s advantage in Game i as |Pr[Wi] − 1/2|. We prove the following
lemmas, which together imply Theorem 4.1.

Lemma 4.2. Game 0 and Game 1 are (T1, εHE + 2−(κ+2))-indistinguishable,
assuming the HE scheme is (THE, εHE)-CPA secure, where T1 = THE −
poly(n, k,m,Qid, log q).

Proof. We analyze the only four differences between Game 0 and Game 1:

1. In Game 0, the matrix A is generated by TrapGen, and the matrix A is chosen
uniformly at random in Game 0. By Theorem 2.8, these two distributions of
constructing matrix A are statistically close. More precisely, the statistical
distance is within 2−(κ+2)/3 by our parameter setting.

2. In Game 0, the matrices {A0,A1} are chosen uniformly at random from
Z

n×m
q . While in Game 1, these matrices are computed as Ab = ARAb

+ bG,
for b ∈ {0, 1} for random low-norm matrices {RAb

}b∈{0,1} from {0, 1}m×m.
By Theorem 3.1, the distributions of these matrices in the two games are sta-
tistically close. More precisely, the statistical distance is within 2−(κ+1)/(3k2+
6) by our parameter setting.

3. In Game 0, the elements {di}i∈[k1] are k1 ciphertexts HE.Enc(pk, 0) and
{Di}i∈[k2] are chosen uniformly at random from Z

n×m
q . In Game 1, these

elements are the ciphertexts HE.Enc(pk, si) and {Di}i∈[k2] are the matrices
Di = ARDi

+ tiG. We show the indistinguishability of the two cases by
bybrid argument, we define a sequence of sub-hybirds:

– H0: Sample {di}i∈[k1] and {Di}i∈[k2] as in Game 0.
– H1: Generate {di}i∈[k1] as in Game 1. Set {Di}i∈[k2] as in Game 0.
– H2: Set {di}i∈[k1] and {Di}i∈[k2] as in Game 1.

We first show that the neighboring games H0 and H1 are (T
′
, εHE)-

indistinguishable by assuming that HE scheme is (THE, εHE)-secure, where
T

′
= THE − poly(n,m, k, log q). Then, we show that H1 and H2 are statisti-

cally close by Theorem 3.1.
Without loss of generality, if there exists a distinguisher D can distinguish H0

from H1 within running time TD ≤ T ′ and with advantage εD ≥ εHE, then
we construct a reduction B that breaks HE as follows:

– B chooses {Di}i∈[k2] uniformly at random from Z
n×m
q .
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– B sets m0 = (s1, ..., sk1),m1 = (0, ...0) as its challenge messages, and
forwards m0,m1 to the challenger. B gets the challenge ciphertext ct∗ =
{cti}i∈[k1] from the challenger, and sets ct∗ = {di}i∈[k1].

– B simulates the hybrid game (either H0 or H1) with {di}i∈[k1], {Di}i∈[k2]

and then outputs the outcome of D.
Clearly, if the challenger encrypts m0, then B simulates the hybrid H0,
and otherwise, the hybrid H1. Therefore, B has the same advantage as
D, i.e., εD ≥ εHE, in breaking HE, and the running time of B is within
TD + poly(n,m, k, log q) ≤ THE. This is a contradiction to the security of
HE.
The difference between H1 and H2 is the generation of the matrices {Di}i∈[k2].
By Theorem 3.1, {Di}i∈[k2] in the two cases are statistically close, and more
precisely, the statistical distance of H1 and H2 is within k2×2−(κ+2)/(3k2+6)
by our setting of parameters.

4. In both Game 0 and Game 1, the use of A0 or A1 in the key generation
algorithms is decided by b = PRF(K, id). For a private key query on id in
Game 1, let

Fid,1−b = [A|A1−b − ACPRF,id] = [A|A · (RA1−b
− RCPRF,id) + (1 − 2b)G].

Note that the trapdoor of Λ⊥
q (G) is also a trapdoor of Λ⊥

q ((1 − 2b)G). In
Game 0, did is generated by SampleLeft with the trapdoor TA. In Game 1,
did is generated by SampleRight with the trapdoor of Λ⊥

q ((1−2b)G). By The-
orem 2.9 and our setting of parameters, the statistical distance between the
distributions of a single key did in the two cases is bounded by 2−(κ+2)/3Qid.
Therefore, from a simple union bound over Qid keys, we conclude that the
secret key distributions generated in these two ways are within a statistical
distance up to 2−(κ+2)/3.

By combining the arguments above, we conclude that Game 0 and Game 1 are
(T1, εHE + 2−(κ+2))-indistinguishable, where T1 = THE − poly(n,m, k, log q). ��
Lemma 4.3. Game 1 and Game 2 are (∞, 2−(κ+2)/2)-indistinguishable.

Proof. The only difference between Game 1 and Game 2 is the way how the
challenge ciphertext is generated. Particularly, in Game 1, the challenge cipher-
text is generated by Enc, and the noise vectors are sampled from some discrete
Gaussian distributions that are independent of mpk. In Game 2 the challenge
ciphertext is generated by Sim.Enc.

By construction, Enc and Sim.Enc generate (cb,0, c1−b,0, c1−b,1) in the same
way, so the distributions of (cb,0, c1−b,0, c1−b,1) are identical for the two cases.

By the construction of cb,1 in the challenge ciphertext in Game 2,

ct
b,1 =

(
st

bFid∗,b + vt
b,1

)
mod q

=
(
st

b[A|A(RAb
− RCPRF,id∗)] + ReRand([I|R], st

bA + v
′
b,1, σLWE, σ∗)

)
mod q

=
(
st

b[A|AR] + ReRand([I|R], st
bA + v

′
b,1, σLWE, σ∗)

)
mod q.
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It is easy to see that the elements sb,A,R,vt
b,1 appearing in the ciphertext of

Game 2 have the same distributions as those in Game 1. The only difference is
the generation of vb,1. In Game 1, vb,1 is sampled from DZ2m,σ. In Game 2, vb,1

is the output of ReRand([I|R], st
bA+v

′
b,1, σLWE, σ

∗), resulting the output gaussian
parameter r = 2σLWE ·σ∗ = σ. By Lemma 2.13 and our setting of parameters, the
statistical distance between the distributions of vb,1 in the two cases is bounded
by 2−(κ+2)/2. Therefore, the statistical distance between Game 1 and Game 2
is bounded by 2−(κ+2)/2. ��
Lemma 4.4. Game 2 and Game 3 are (T3, εLWE)-indistinguishable, where
T3 = TLWE −poly(n,m, k,Qid, log q), assuming LWEn,q,χ problem is (TLWE, εLWE)-
hard.

Proof. We show this by reduction. Assume that there exists a distinguisher D
that distinguishes Game 2 from Game 3 within time TD ≤ T3 and with advan-
tage εD ≥ εLWE, then we construct a (TLWE, εLWE)-reduction B that breaks the
LWE assumption. This is a contradiction to the LWE assumption.

The reduction algorithm B leverages D to break the the LWE hardness as
follows: at the beginning, B receives the LWE challenge (A, b) ∈ Z

n×m
q × Z

m
q

and (a, b) ∈ Z
n
q × Zq, which is either from O$ or Os , where O$ is the uniformly

random distribution over Z
n×(m+1)
q × Z

m+1
q and Os is the distribution of m + 1

LWE instances with same secret s. B does as follows:

– Setup: Set A as the public matrix in mpk and a = u. Set other public param-
eters as Game 2.

– Phase 1: B answers the secret key queries as Game 2.
– Challenge: B computes the challenge ciphertext of id∗ as follows.

1. Let b = PRF(K, id∗). B sets

Fid∗,1−b = [A|A1−b − ACPRF,id]
= [A|A(RA1−b

− RCPRF,id∗) + (1 − 2b)G].

2. Let R = RAb
− RCPRF,id∗ . Then constructs (cb,0, cb,1) as
{

cb,0 = (b + μ�q/2�) mod q

ct
b,1 = (ReRand([I|R], b, σLWE, σ

∗)) mod q

3. B sets (c1−b,0, c1−b,1) the same as Game 2.
– Phase 2: B replies the secret key queries as in Game 2.
– Gauss: If D outputs “Game 2”, B decides that the challenge is from Os .

Otherwise, B decides that the challenge is from O$.

If B gets an LWE instance from the oracle Os , then the distributions of the ele-
ments cb,0, cb,1 in the challenge ciphertext are the same as in Game 2. Therefore,
B simulates Game 2 for D in this case. On the other hand, if B gets an instance
from the oracle O$, then cb,0, cb,1 are uniformly at random, which distribute as the
case ofGame 3. Thus B simulatesGame 3 in this case. As a result, the advantage
of B is the same as that of D, i.e., εD ≥ εLWE, and the running time of B is at most
= TD + poly(n,m, k,Qid, log q) ≤ TLWE. This completes the proof. ��
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Lemma 4.5. Game 3 and Game 4 are identically distributed.

Proof. It is easy to see that the ways of generating the challenge ciphertext
c1−b,0, c1−b,1, from Enc and Sim.Enc, are identical. Thus, the advantages of the
adversary in Game 3 and Game 4 are identical. ��
Lemma 4.6. Game 4 and Game 5 are (T5, εHE + 2−(κ+2))-indistinguishable,
assuming HE is (THE, εHE)-CPA secure, where T5 = THE−poly(n,m, k,Qid, log q).

Proof. The proof is the same as Lemma 4.2. ��
Lemma 4.7. Game 5 and Game 6 are (T6, 2εPRF)-indistinguishable, assum-
ing the PRF is (TPRF, εPRF)-secure, where T6 = TPRF − poly(n,m, k,Qid, log q).

Proof. Let b = PRF(K, id∗) for the challenge identity id∗. Recall that in Game 5,
the ciphertext component (cb,0, cb,1) is uniformly random and (c1−b,0, c1−b,1) is
generated by Enc. In Game 6, the ciphertext component (cb,0, cb,1) is generated
by Enc and (c1−b,0, c1−b,1) is uniformly random. We prove the indistinguishabil-
ity between Game 5 and Game 6 by three steps.

First we define Game 5
′
, which is the same as Game 5 except that it

samples b
$←− {0, 1} to generate the secret keys and challenge ciphertext instead

of computing it by PRF. We note that if the same identity is queried multiple
times, the same b will be used. Clearly, a distinguisher between Game 5

′
and

Game 5 leads to an attacker for PRF. So Game 5
′
and Game 5 are (T

′
6, εPRF)-

indistinguishable.
Second, we define Game 5

′′
, which is the same as Game 5

′
except that

for randomly sampled b for id∗, it runs Enc to produce (cb,0, cb,1) and samples
(c1−b,0, c1−b,1) uniformly at random. As b is uniformly at random, the advantages
of the adversary in Game 5

′′
and Game 5

′
are the same.

Finally, because Game 5
′′

and Game 6 are the same except that b is com-
puted via PRF, Game 5

′′
and Game 6 are (T

′
6, εPRF)-indistinguishable.

The lemma follows directly by combining arguments in these three steps. ��
Lemma 4.8. Game 6 and Game 7 are (T7, εHE + 2−(κ+2))-indistinguishable,
assuming the HE scheme is (THE, εHE)-CPA secure, where T7 = THE −
poly(n,m, k,Qid, log q).

Proof. The proof is the same as the proof of Lemma 4.2. ��
Lemma 4.9. Game 7 and Game 8 are (∞, 2−(κ+2)/2)-indistinguishable.

Proof. The proof is the same as the proof for Lemma 4.3. ��
Lemma 4.10. Game 8 and Game 9 are (T9, εLWE)-indistinguishable,
assuming LWEn,q,χ problem is (TLWE, εLWE)-hard, where T9 = TLWE −
poly(n,m, k,Qid, log q).

Proof. The proof is the same as the proof for Lemma 4.4. ��
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By combining all the lemmas above with the composition property of (compu-
tational) indistinguishability, we conclude that

|Pr[W0]−1/2| ≤
8∑

i=0

|Pr[Wi]−Pr[Wi+1]|+ |Pr[W9]−1/2| ≤ 2(εPRF +εLWE)+3εHE +2−κ,

and
t∗ = min{T1, T3, T5, T6, T7, T9} − poly(n,m, k,Qid, log q)

= min{TLWE, TPRF, THE} − poly(n,m, k,Qid, log q).

��

4.3 Instantiations of LWE-based PRF and HE

We point out that all the building blocks can be instantiated under LWE with
a polynomial modulus and almost tight analyses. For the PRF, we can use our
construction in this work (see Corollary 3.7 in Sect. 3.2). For the homomorphic
encryption, we can use the schemes [3,22] (which can be found in full version of
this paper). Putting things together, we achieve the following corollary.

Corollary 4.11. For certain n,m, q = poly(κ), χ such that LWEn,m,q,χ is (tLWE,
εLWE)-hard, there exists a (t∗, Qid, ε

∗)-adaptively secure IBE, where ε∗ ≤ κω(log κ)
εLWE + negl(κ) and t∗ = tLWE − poly(n,m,Qid, log q), for any polynomial Qid.

5 ABM-LTF with Tight Security Under poly Modulus

In this section, we present a new construction of almost tight ABM-LTF based on
LWE with a polynomial modulus. This improves the work of Libert et al. [41],
which requires a super-polynomial modulus. The crux of our improvement relies
on our new insight as we described in Sect. 4.

Let n,m, �, e, κ be integers, q = pe be a modulus such that m ≥ 2n log q and
� < n, where p is a large prime and p > κ. Let χ be a noise distribution, and
let σx, σe, γx, γe > 0 be parameters. The function evaluation sampling domain
is DE

κ = DE
x × DE

e , where DE
x (resp. DE

e ) is the set of x (resp. e) in Z
n (resp.

Z
2m) with ‖x‖ ≤ γx

√
nσx (resp. ‖e‖ ≤ γe

√
2mσe). Its inversion domain is

DD
κ = DD

x ×DD
e , where DD

x (resp. DD
e ) is the set of x (resp. e) in Z

n (resp. Z2n)
with ‖x‖ ≤ √

nσx (resp. ‖e‖ ≤ √
2mσe), and its range is R = Z

2m
q . In this case,

the function inputs are sampled from the distribution DDE
κ

= D
DE

x

Zn,σx
×D

DE
e

Z2m,σe
.

We remark that D
DE

x

Zn,σx
(resp. D

DE
e

Z2m,σe
) is obtained by restricting the distribution

DZn,σx
(resp. DZ2m,σe

) to the support of DE
x (resp. DE

e ).
Furthermore, let HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) be a leveled

fully homomorphic encryption scheme that can homomorphically evaluate PRF
presented in Sect. 4 with polynomial modulus. Let (EvalPub,EvalTrap) be a pair
of deterministic algorithms that are δ-compatible for HE.Dec. Specifically, this
δ might be 4dm3/2 or Õ(n2+ε) according to different homomorphic evaluation
algorithms according to Theorem 2.14. Furthermore, we use k3 ∈ N to denote
the output length of HE.Eval.
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Construction. Below we present our construction of ABM-LTF. Our scheme
modifies that of Libert et al. [41] in an essential way. To highlight our new
insights, we describe our modifications in the boxes.

– Key generation. ABM.Gen(1κ) does the following steps:
1. Compute and output Ā = C · B + F ∈ Z

n×m
q with B $←− U(Z�×m

q ),

C $←− U(Zn×�
q ) and F ← χn×m.

2. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}v → {0, 1}κ

with input length v ∈ N and key length k ∈ N. Choose K
$←− {0, 1}k as

an independent key for PRF. We denote by si ∈ {0, 1} the i-th bit of K.
3. RunHE.KeyGen algorithm of aHE scheme (hek, hevk, hdk) ← HE.KeyGen .

Express the decryption algorithm HE.Dec as a NAND Boolean circuit
CDec , and express its decryption key hdk as hdk = (hdk1, ..., hdkg)

where hdki ∈ {0, 1} and g ∈ N.
4. Select g low-norm matrices {RDi}i∈[g]

$←− {−1, 1}m×m.

5. Set cb
$←− HE.Enc(hek, b) for b = 0, 1.

6. Set di
$←− HE.Enc(hek, si) for i ∈ [k].

7. Set Di = Ā · RDi
+ hdkiG for i ∈ [g].

8. Output the evaluation key ek, the inversion key ik and the lossy generation
key tk, which consist of

ek =
(
PRF, CPRF, CDec, Ā, {di}i∈[k], {Di}i∈[g], c0, c1, hevk

)
,

ik =
({RDi

}i∈[g], hdk,K
)
, tk := K.

– Evaluation. ABM.Eval(ek, t,X) takes as inputs X := (x,e) ∈ DE
κ and the tag

t = (tc, ta) ∈ {0, 1}κ × {0, 1}v, and proceeds as follows.
1. For each integer j ∈ [κ], let CPRF,j : {0, 1}k × {0, 1}v → {0, 1} be the

Boolean circuit, which evaluate the j-th bit of PRF(K, ta) ∈ {0, 1}κ. Run
the homomorphic evaluation algorithm of HE to obtain

ctj = HE.Eval(hevk, CPRF,j , ({di}i∈[k], {cta[i]}i∈[�])) ,

where ta[i] denotes the i-th bit of ta for i ∈ [�]. Furthermore, run the
public evaluation algorithm to obtain

BPRF,j = EvalPub(CDec, ({Di}i∈[g], {(ctj)iG})) ,

where {(ctj)i}i∈N denotes the bit representation of ciphertext ctj .
2. Define the matrix

At =
(
Ā,

∑
j∈[κ]

(
(−1)tc[j]BPRF,j + tc[j]G

))
∈ Z

n×2m
q ,

and compute the output yt = xt · At + et ∈ Z
2m
q . Notice that after

summation for all j ∈ [κ], the coefficient of matrix G in the right half
part of At is just the hamming distance between tc and PRF(K, ta).
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– Inversion. ABM.Invert(ik, t,Y) takes as inputs the inversion key ik =(
{RDi

}i∈[g],K
)
, the tag t = (tc, ta) ∈ {0, 1}κ × {0, 1}� and Y := y ∈ R,

and proceeds:
1. Return ⊥ if tc = PRF(K, ta).
2. Otherwise, for each j ∈ [κ], run the following two algorithms:

ctid = HE.Eval(hevk, CPRF,j , ({di}i∈[k], {cta[i]}i∈[�]))

RPRF,j = EvalTrap(CDec, Ā, ({hdki}i∈[g], {(ctid)i}i∈[k3]), {RDi}i∈[g], {[0]i}i∈[k3])

and compute the matrix Rt =
∑

j∈[κ](−1)tc[j]RPRF,j ∈ Z
m×m, where for

each i ∈ [k3], [0]i denotes 0 matrix with dimension m × m.
3. Let ht denote the hamming distance between tc and PRF (K, ta). Then

Compute and set At =
(
Ā, ĀRt + htG

) ∈ Z
n×2m
q , Use the G-trapdoor

Rt of A with tag ht to solve the unique (x,e) ∈ DD
κ such that yt =

xt · A + et. This can be done by applying the LWE inversion algorithm
(which can be found in full version of this paper).

– Lossy tag generation. ABM.LTag(tk) takes as input an auxiliary tag com-
ponent ta ∈ {0, 1}� and uses tk = K to compute and output tc = PRF(K, ta) ∈
{0, 1}κ.

Below we state a theorem that summarizes what we can achieve. Due to
space limit, we present the syntax of ABM-LTF and the security analysis in full
version of this paper.

Theorem 5.1. Let κ be the security parameter, χ = DZ,β/(2
√

κ) for some
β > 4κ. Let n,m, �, e be functions of κ, q = pe be a modulus such that
m ≥ 2n log q, n = Ω(� log q) and κ < � < n, where p is a large prime and p > κ.
Let γx ≥ 3

√
m/n, γe ≥ 3, σx > Ω(n), Ω(m

√
nκδβσx) ≤ σe ≤ q/(10

√
2κδm).

Then, our new construction is an l-lossy ABM-LTF with l = Ω(n log n) based on
LWE�,2m,q,χ.
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