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11.1  The Need for Tools and Technologies

The need for tools and technologies for understanding and 
quantifying invasive species has never been greater. Rates of 
infestation vary on the species or organism being examined 
across the United States, and notable examples can be found. 
For example, from 2001 to 2003 alone, ash (Fraxinus spp.) 
mortality progressed at a rate of 12.97 km year −1 (Siegert 
et al. 2014), and cheatgrass (Bromus tectorum) is expected to 
increase dominance on 14% of Great Basin rangelands 
(Boyte et al. 2016). The magnitude and scope of problems 
that invasive species present suggest novel approaches for 
detection and management are needed, especially those that 
enable more cost-effective solutions. The advantages of 

using technologically advanced approaches and tools are 
numerous, and the quality and quantity of available informa-
tion can be significantly enhanced by their use. They can also 
play a key role in development of decision-support systems; 
they are meant to be integrated with other systems, such as 
inventory and monitoring, because often the tools are applied 
after a species of interest has been detected and a threat has 
been identified. In addition, the inventory systems mentioned 
in Chap. 10 are regularly used in calibrating and validating 
models and decision-support systems. For forested areas, 
Forest Inventory and Analysis (FIA) data are most com-
monly used (e.g., Václavík et al. 2015) given the long history 
of the program. In non-forested systems, national inventory 
datasets have not been around as long (see Chap. 10), but use 
of these data to calibrate and validate spatial models is grow-
ing. These inventory datasets include the National Resources 
Inventory (NRI) (e.g., Duniway et  al. 2012) and the 
Assessment Inventory and Monitoring program (AIM) (e.g., 
McCord et  al. 2017). Similarly, use of the Nonindigenous 
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Aquatic Species (NAS) database is growing as well (e.g., 
Evangelista et al. 2017). The consistent protocols employed 
by these programs prove valuable for developing better tools, 
but the data they afford are generally limited for some tools 
because the sampling intensity is too low.

The rapidly accelerating impact of invasive species sug-
gests that development and implementation of geospatial tools 
and technologies will need to be expanded, given the high cost 
and impracticality of wide-area in situ reconnaissance. 
Although improvements are definitely needed, with increasing 
remote sensing data availability and significant computer pro-
cessing capacity, geospatial tools and models are now suffi-
ciently useful to be applied in an operational mode.

While tools and technologies offer significant promise, 
they should not be automatically applied to all situations. 
Ground surveys provide the most fundamental data for spe-
cies management, and nearly all imagery studies suggest that 
georeferenced field data will not be replaced by technology 
anytime soon (Underwood et al. 2013). Though the need for 
consistent and comprehensive data describing the extent and 
location of invasive species has never been greater, inter-
agency collaboration toward this end continues to be defi-
cient. This is significant since the effective tools and 
technologies invariably require access to plot data for cali-
bration and validation. In turn, fieldwork can become more 
efficient through the use of tools that identify high-priority 
locations for management or those that are likely to experi-
ence new invasions or outbreaks in the future (Underwood 
et al. 2013). An accounting of these tools and technologies is 
therefore essential to aid in prioritization, to determine which 
tools merit further development, and to identify gaps where 
further research is needed.

Recently, Underwood et  al. (2013) provided excellent 
overviews of remote sensing and geospatial tools, focusing 
on more specific examples than are discussed in this chapter. 
We sought to build on their previous efforts and add some 
non-spatially explicit technologies by focusing more atten-
tion on different types of tools needed for evaluating invasive 
species. As a result, our assessment is broad and introduces 
new ideas and concepts that represent the state of the sci-
ence. This chapter provides a synthesis of tools, technolo-
gies, and techniques that are available across a number of 
disciplines, to quantify, estimate, and characterize presence, 
spread, and impacts of invasive species. Many tools and 
technologies specific to management activities (e.g., devel-
opment of new trapping methods) are covered in Chap. 7. 
Here we focus on five areas including detection and map-
ping, predicting establishment and spread, decision-support 
systems, genetic tools for restoration, and key findings, 
information needs, and opportunities. The systems presented 
are not a comprehensive list but do offer a state-of-the- 
science assessment of prominent tools and techniques.

11.2  Detection and Mapping of Species 
Occurrence or Spread

In this section, we refer to invasive species as a subject, 
which can include floral and faunal species. Some of the 
ideas, tools, and techniques can apply to both floral and fau-
nal population, but, in general, we focus our efforts on veg-
etation. Understanding and reducing the spread and impact 
of invasive species begin with detection (Lodge et al. 2006). 
Detection involves surveying, reporting, and verifying the 
presence of a non-native species. This is a critical process 
because it is the basis for initiating a rapid and timely 
response before an invasive species spreads so widely that 
eradication is no longer feasible (U.S. Department of Interior 
2016). There are many approaches used to detect invasive 
species before they become established, but the most suc-
cessful approaches are relatively inexpensive and have the 
potential for wide application. Thus, approaches like citizen 
science to detect colonization of new habitats by invasive 
species can be especially effective since they meet the crite-
ria of being inexpensive and widely applicable (Crall et al. 
2011; Delaney et al. 2008; Hawthorne et al. 2015). Citizen 
science is particularly relevant when the target species is 
conspicuous and easily identified (Darwall and Dulvy 1996), 
which is rarely the case for insects and pathogens. Yet, there 
are circumstances when those involved in citizen science 
lack the more advanced training or technology that is 
required to detect and identify invasive species (Fore et al. 
2001). The subject of citizen science is discussed in Chap. 10 
and in this chapter (including Geospatial Participatory 
Modeling). Tools for early detection included in this chapter 
include remote sensing, traditional geospatial modeling, 
analysis of inventory databases, and molecular detection 
techniques. Of these, remote sensing is probably the most 
widely used method for gathering data, repeatedly over large 
areas, at a relatively low cost.

11.2.1  Remote Sensing

A diverse suite of sensors spanning numerous temporal, spa-
tial, and spectral resolutions has been evaluated for use in 
detection strategies. However, all remote sensing systems 
have some inherent limitations that constrain their applica-
bility to specific situations, species, and temporal and spatial 
domains. Some of these limitations can be at least partially 
addressed through greater collaboration and sharing of 
resources across disciplines, organizations, and agencies. If 
image processing, data warehousing, and spectral analysis 
algorithms were partitioned among different organizations, 
great economies of scale could be realized, and this process 
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would foster greater interagency communication, data col-
lection, sharing, and cooperation.

Some species are particularly unsuited for identification 
with remote sensing instruments because they are too small, 
mobile, or simply look like non-target species. For example, 
consider a remote sensing early detection system designed to 
find new outbreaks of kudzu (Pueraria lobata). Because 
kudzu is normally a sub-canopy species, it will be practically 
impossible to identify using most remote sensing platforms. 
Likewise, detection of new outbreaks of knapweeds 
(Centaurea spp.) at low densities will be equally as difficult 
given the similarities of spectral qualities with other species. 
Successful strategies for early detection with remote sensing 
instruments exploit characteristics of a target invasive spe-
cies that are separable from background vegetation, by color, 
spectral response, phenology, or inference. Thus, for the pur-
pose of this chapter, we limit our discussion to remote sens-
ing studies, techniques, and platforms that have demonstrated 
some utility for effective early detection.

Remote sensing is only useful for detection if outbreaks 
of invasive species populations cause changes in spectral 
response from airborne or space-borne instruments (Asner 
et al. 2008a). Current remote detection and mapping of the 
ecological impacts of invasive species typically rely on the 
measurements of the disparities in spectral, structural, and 
temporal characteristics. These disparities, however, result-
ing from symptoms of invasion such as dead tree canopies 
caused by sudden oak death (caused by Phytophthora ramo-
rum), often manifest several seasons after initial infection 
(Haas et al. 2016). This delay in expression of symptoms is 
problematic for early detection regardless of the characteris-
tics of the sensors being used. In addition, detection of inva-
sive vegetation using remotely sensed data can be difficult 
because non-native plants are often obscured by, or com-
mingled with, natural vegetation, making them difficult to 
identify using relatively moderate spatial/spectral resolution 
images.

Spectral Considerations Changes in the spectral response 
of a vegetation canopy may be used to identify an invasion. 
Because such phenomena can be directly captured in the vis-
ible portion of the electromagnetic spectrum (wavelengths 
from approximately 400–700 nm), many remote sensing sys-
tems are equipped to detect the noticeable discoloration. 
Typical systems that have proven effective to detect foliage- 
level spectral variation include those that employ coarse- 
spatial resolution for broad-scale detection, for example, 
1-km MODIS (Moderate Resolution Imaging 
Spectroradiometer) (Coops et  al. 2009) and 30-m Landsat 
(Skakun et al. 2003), and high-spatial resolution for monitor-
ing fine-scale patchy distributions of tree mortality, for 
example, aerial photography (Kelly and Meentemeyer 2002) 
and 2.5-m QuickBird (Wulder et al. 2008). Limiting detec-

tion strategies to only visible bands is problematic if, for 
example, an affected forest remains at the pre-visual green 
mortality stage, where tree foliage contains slightly reduced 
chlorophylls and water content. To address this challenge, 
researchers seek to discover a stronger relationship between 
plant physiological stress and spectral reflectance from the 
near infrared (wavelengths from approximately 700–
1300  nm) and the short wave infrared (wavelengths from 
approximately 1300–2500  nm) spectral ranges (Knipling 
1970; Laurent et al. 2005). Most of today’s remote sensors 
have the capacity to record near infrared radiation, while the 
short wave infrared bands are often available from the sen-
sors with medium to coarse spatial resolution (e.g., Thematic 
Mapper (TM) and Landsat 8 Operational Land Imager 
(OLI)).

At times, however, more narrow spectral channels offered 
on hyperspectral platforms offer improved identification of 
the subtle spectral discrepancies between healthy and dam-
aged vegetation. Fine spectral resolution data acquired 
through hyperspectral imaging provide a viable solution by 
using dozens to hundreds of narrow and contiguous spectral 
bands. Successful applications of hyperspectral sensors have 
primarily emerged since 2000 (e.g., Asner et al. 2008b; Chen 
et al. 2015; Cheng et al. 2010; Coops et al. 2003; McNeil 
et  al. 2007; Noujdina and Ustin 2008; Pu et  al. 2008). 
Unfortunately, the majority of the applications have been 
limited to relatively small areas because hyperspectral sen-
sors, to date, are mostly mounted on airborne platforms, such 
as NASA’s AVIRIS (Airborne Visible/Infrared Imaging 
Spectrometer), Canada’s CASI (Compact Airborne 
Spectrographic Imager), and Australia’s HyMap (hyperspec-
tral mapper). A few space-borne hyperspectral systems (e.g., 
NASA’s Hyperion) are available; however, their applications 
have been restricted due to limited spatial coverage and high 
spectral noise. NASA’s next generation HyspIRI 
(Hyperspectral Infrared Imager) is expected to deliver con-
sistent, global coverage imagery using contiguous 10-nm 
spectral bands from the visible, short wave infrared to the 
thermal infrared spectral range.

Spatial Resolution Considerations Satellite technology has 
been used to study issues of environmental concern over 
large geographical areas (Rose et al. 2015), but high-spatial 
resolution satellite and airborne imagery, such as sub-meter 
aerial photos, are more suitable for detecting fine-scale dis-
turbances, where the infested native species are within small, 
discrete patches (Meddens et al. 2011). Applying high spa-
tial resolution data can be advantageous for capturing spatial 
details for monitoring plant structural dynamics; however, 
limited data availability, high acquisition costs, and reduced 
processing efficiency often become major obstacles in real- 
world applications.

11 Tools and Technologies for Quantifying Spread and Impacts of Invasive Species
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Despite these issues, perhaps the most straightforward 
approach for detecting invasive species is using visual 
inspection of high spatial resolution images. Using this sim-
ple technique, it is possible to pinpoint certain species based 
on their unique spatial patterns, phenological characteristics 
(Huang and Asner 2009), or color of inflorescence. Species 
with colorful, diagnostic flowers, such as leafy spurge 
(Euphorbia esula) and saltcedar (Tamarix chinensis), have 
been identified using visible wavelengths (400–700 nm) in 
aerial photographs taken during the flowering seasons 
(Everitt et al. 1995, 1996). The USDA National Agriculture 
Imagery Program (NAIP) has archived color (RGB) and 
color infrared (CIR) aerial photographs with resolutions 
ranging from a few centimeters (in the case of aerial videog-
raphy) to ~2 m. Each State has its own acquisition schedule 
and choice of imagery, but the timing of data acquisition is 
crucial because the data may only be useful if collected when 
the targeted non-native plant is distinct from its background 
and neighboring areas (e.g., flowering).

Techniques and sensors also exist that enable exploitation 
of unique spatial patterns. For example, 4-m multispectral 
IKONOS imagery has been used to identify Melaleuca 
(Melaleuca quinquenervia) in South Florida because the 
spatial pattern of Melaleuca is highly aggregated (Huang and 
Asner 2009). However, even with such a diagnostic spatial 
pattern, 4-m spatial resolution was insufficient to identify 
this tree at lower densities (Fuller 2005). Likewise, smaller 
statured species, such as grasses and forbs, often require 
even higher resolution imagery, again exemplifying the need 
to design specific protocols for each target species. For 
example, QuickBird (2.4 m), another multispectral satellite 
system, has been used to estimate (accuracy assessment 
≥65%) the presence of multiple non-native plants including 
purple loosestrife (Lythrum salicaria), common reed 

(Phragmites australis), and water chestnut (Trapa natans) in 
the Hudson River National Estuarine Research Reserve 
(Laba et  al. 2008), and to delineate (accuracy assessment 
≥86%) giant cane (Arundo donax) in Texas (Everitt et  al. 
2005). Again, despite success with relatively high resolution 
from satellite platforms, some situations require still greater 
resolution necessitating use of aerial platforms.

Very-high-resolution imagery taken from light aircraft or 
unmanned aerial vehicles (UAVs) can be used to find and 
even measure invasive species that blend in with other vege-
tation. While not yet practical for regional mapping, it has 
been used effectively for finding invasive species, measuring 
changes in invasive species abundance over time, and under-
standing environmental correlates of invasive species suc-
cess (Blumenthal et al. 2012; Calviño-Cancela et al. 2014; 
Wan et al. 2014; Zaman et al. 2011).

Digital images taken from slow-flying lightweight aircraft 
have attained resolution (ground sample distances) of as lit-
tle as 1–2 mm per pixel (Booth and Cox 2008). The advan-
tage of such methods is that species not visible with coarser 
resolution methods can be identified and measured 
(Fig.  11.1). Herbaceous invasive species that have been 
effectively measured through visual analysis of such images 
include Dalmatian toadflax (Linaria dalmatica), leafy 
spurge, and cheatgrass (Bromus tectorum) (Blumenthal et al. 
2007; Booth et al. 2010; Mealor et al. 2012). The disadvan-
tage of using such very-high-resolution methods is that they 
currently offer narrow fields of view and thus low spatial 
coverage (17.5–48.5  m/image in the above examples). 
Consequently, they favor subsampling rather than fully map-
ping invasive species. For example, 2049 images used to 
study Dalmatian toadflax in mixed-grass prairie covered 
only 2.4% of the 4.1-km2 sampling area (Blumenthal et al. 
2007).

Fig. 11.1 Digital aerial 
image of mixed-grass prairie 
containing multiple patches of 
Dalmatian toadflax. Upper 
inset shows an individual 
toadflax plant with six stems. 
Lower inset shows a dense 
patch of toadflax. Both insets 
also contain prairie sagewort 
(Artemisia frigida Willd.), 
with lighter gray-green 
foliage

M. Reeves et al.
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For many invasive species, moderately lower resolution 
images are sufficient to distinguish them from native vegeta-
tion, facilitating complete spatial coverage. For example, 
25-cm spatial resolution visible and near-infrared images 
taken from a UAV were sufficient to identify patches of com-
mon reed (Zaman et al. 2011) across a 31-km2 area over sev-
eral hours of flight time. Similarly, 20–40-cm spatial 
resolution hyperspectral imagery has been effective for map-
ping broad Melaleuca patches across the Florida Everglades. 
Even without hyperspectral imagery, 2.4-cm ground resolu-
tion was sufficient to distinguish Brazilian pepper (Schinus 
terebinthifolius) from similar woody vegetation in Florida 
(Pearlstine et al. 2005).

As technology continues to improve, the trade-off 
between resolution and spatial coverage should be elimi-
nated. This prospect could be realized with a combination of 
improved sensors flown at greater altitudes and faster pro-
cessing and storage speeds, allowing more images to be 
taken per unit time (Anderson and Gaston 2013; Calviño- 
Cancela et al. 2014). Visual examination of images can be 
accurate and quick when determining presence/absence, 
which is often all that is needed to detect new infestations 
(Blumenthal et  al. 2007). Visual measurements of species 
cover, however, can take considerably longer; consequently, 
developing techniques for automating image processing will 
be key to measuring invasive species cover over larger areas. 
These can rely on spectral characteristics, texture, shape, and 
phenology, and sometimes involve machine learning 
(Bradley 2014; Pearlstine et al. 2005; Wan et al. 2014). Given 
images with sufficient spatial and spectral resolution, such 
methods can often achieve >95% accuracy in identifying 
invasive species (Calviño-Cancela et al. 2014; McCormick 
1999; Wan et al. 2014; Zaman et al. 2011).

Regardless of the spatial resolution, detecting invasive 
species below forest canopies, especially when forests are 
dense, is practically impossible. There is, however, promis-
ing research suggesting that by using LiDAR (light detection 
and ranging), it is possible to penetrate the forest canopy and 
characterize forest 3D structure (e.g., biomass and leaf area 
index) with no apparent sign of saturation (Zhao et al. 2011). 
Over the past two decades, LiDAR attracted considerable 
attention and is already established as one of the standard 
remote sensing tools for mapping forest biophysical param-
eters such as tree height, crown size, basal area, timber vol-
ume, and canopy fuel (Asner et  al. 2008a; Chen and Hay 
2011; Lim et al. 2003; Zhao et al. 2011). Recent studies sug-
gest that even if the structure of the native plants has yet to be 
significantly altered, LiDAR could still be used to detect 
understory invasive plant species (Singh et al. 2015). Most 
LiDAR systems are mounted on airborne platforms, and, 
currently, there is no space-borne LiDAR specifically 
designed for studying forest ecosystems; however, the 
Geoscience Laser Altimeter System (GLAS) instrument 

(footprint: 70 m in diameter; point spacing: 170 m along the 
track) onboard the NASA Ice, Cloud, and land Elevation sat-
ellite (ICESat) was utilized (data available from 2003 to 
2010) to map forest height and carbon variability at the 
regional to global scales (Saatchi et al. 2011).

Temporal Resolution Considerations In contrast to the very- 
high- resolution applications introduced above, moderate to 
low spatial resolution imagery usually covers the largest 
areas in the greatest temporal detail but at reduced spatial 
resolution. The relatively coarse spatial resolution of high 
temporal resolution imagery generally limits its early detec-
tion to invasive species that cover large, relatively homoge-
nous areas, or that delineate strong canopy differences 
between infested and non-infested sites. Typically, annual or 
bi-annual data are used because the intra-annual variability 
in native species (e.g., broadleaf trees) may also be induced 
by seasonal changes in climatic variables. To date, remotely 
sensed time-series data have been applied successfully to 
assess the impacts of invasive diseases/insects (e.g., 
Townsend et al. 2012; Wulder et al. 2008) and invasive plants 
(Bradley and Mustard 2005). It should be noted that time- 
series data are collected at different dates and are possibly 
affected by various atmospheric conditions. Thus, conduct-
ing an effective radiometric correction becomes essential for 
extracting ‘real’ changes in forests (Song et al. 2001).

Although most of the remote sensing systems offer 
repeated monitoring capability, medium- to coarse-spatial 
resolution sensors are more frequently used in time-series 
analysis owing to the short revisit intervals (e.g., MODIS: 
half a day; Landsat: 16 days); this provides flexibility to col-
lect high-quality data, especially in the cloud-prone tropical 
regions (Asner 2001). Using medium- to coarse-spatial reso-
lution sensors can further mitigate the joint effects of sensor/
sun angles and tree 3D structure, which typically cause high 
spectral variation in high spatial resolution imagery (Chen 
et al. 2011). Another solution for analyzing high-spatial res-
olution time-series data is employing Geographic Object- 
Based Image Analysis (GEOBIA), using image objects 
(groups of pixels) rather than individual pixels as the basic 
study units (Chen et al. 2012). These groups of pixels reduce 
within-class variability while maximizing between class 
variance. For example, Chen et  al. (2015) applied this 
approach to high-spatial, high-spectral MASTER (MODIS/
ASTER Airborne Simulator) airborne images for assessing 
the severity of wildfire burn in forests affected by sudden oak 
death. Additionally, the USDA Forest Service Region 1 
(Northern Region) Existing Vegetation Database (VMap) 
(www.fs.usda.gov/goto/r1/VMap) applied this approach to 
imagery from NAIP at ~1 m to detect a host of forest stand 
attributes and outbreaks of insects and disease across the 
Northern Region. Regardless of the approach used to  evaluate 
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the presence of invasive species, the timing of data acquisi-
tion (time of overpass) is one of the most critical aspects for 
consideration and can be a significant determinant in the suc-
cess of the analysis. For example, if imagery is acquired dur-
ing a senescent period, the efficacy of the analysis will be 
reduced, especially when the invasive species (e.g., leafy 
spurge) can be easily differentiated from background and 
other species when flowering. Likewise, in forested systems, 
the early-stage establishment of invasive species can influ-
ence trees’ photosynthetic capacity by altering leaf nitrogen 
content and chlorophyll pigment (Kattge et al. 2009). This 
rapid change in leaf optical properties indicates a need to 
carefully consider the timing of acquisition and repeat 
frequency.

Application on Invasive Annual Grasses Some of the most 
successful uses of high temporal resolution imagery are 
those leveraging distinct phenological cycles of cool season 
invasive annual grasses, such as cheatgrass, red brome 
(Bromus rubens), and medusahead (Taeniatherum caput- 
medusae) (Clinton et  al. 2010). These invasive grasses are 
among the most serious invasive species present in the 
Western United States. These invasive annuals displace 
native species and accelerate fire cycles. A variety of satel-
lites at different spatial, temporal, and spectral resolutions 
have been used to detect and quantify the presence of inva-
sive annual grasses.

The most common platforms for quantifying presence or 
abundance of invasive annual grasses include Landsat TM 
and ETM+ (Enhanced Thematic Mapper Plus), Advanced 

Very High Resolution Radiometer (AVHRR), and 
MODIS.  Peterson (2003) used Landsat ETM+ to quantify 
percent cover of cheatgrass over roughly 12.9 million ha in 
the Great Basin to a root mean square error (RMSE) of 9%. 
In the same region, Bradley and Mustard (2006) used time 
series of Landsat TM and ETM+ and AVHRR data to clas-
sify areas infested with cheatgrass. The interannual ampli-
fied response to rainfall was quite distinct from native shrub/
bunch grass, which enabled a 71% classification accuracy of 
detecting cheatgrass. Other examples of successfully detect-
ing invasive annual grasses include Peterson (2007) (Owyhee 
uplands; Landsat TM), Singh and Glenn (2009) (Southern 
Idaho; Landsat 7 ETM+), and Boyte et  al. (2015) (Great 
Basin and vicinity; MODIS). All these successful studies 
leverage the distinct phenological pattern via time-series 
analysis portrayed by invasive annual grasses and focus, 
most often, on the presence/absence of invasive annual 
grasses.

In terms of ecological effects and the resistance to con-
trol, it is helpful to understand the relative abundance of 
annual grasses in addition to their presence/absence. Such 
information enables both ongoing regional-scale analysis 
and management while still facilitating local patch-based 
application. The US Geological Survey (USGS) has devel-
oped two methods that detect and map invasive annual 
grasses in the Western United States. One method created a 
time series of cheatgrass percent-cover maps (Fig. 11.2) by 
keying in on dynamic phenological characteristics of cheat-
grass that differ from other vegetation types, using a fine- 
scale temporal resolution satellite product at 250-m spatial 
resolution. The other method created a snapshot of annual 

Fig. 11.2 Mean cheatgrass 
percent cover (2000–2013). 
The map represents the mean 
cheatgrass percent-cover 
value for each pixel during 
14 years. The mapping model 
was developed using 
regression-tree software 
driven by annual eMODIS 
NDVI at 250 m and 
biogeophysical data. Values 
ranged from 0 to 86 with an 
overall mean of 9%. The 
mask (white areas) hides 
2001 National Land Cover 
Database classifications other 
than shrub or grassland/
herbaceous and elevations 
higher than 2000 m

M. Reeves et al.



249

grass abundance by transforming scaled-up field data using 
multiple spectral bands from two satellite products with dif-
ferent resolutions to separate the response of invasive annual 
grasses from spectra of other vegetation types at 30-m spatial 
resolution. To improve the time series of information for 
mapping invasive annual grasses, high temporal resolution 
imagery at 250-m resolution from the enhanced Moderate 
Resolution Imaging Spectroradiometer (eMODIS) (Brown 
et al. 2015) can be used in conjunction with higher spatial 
resolution training data.

The weekly composites from the eMODIS enable charac-
terization of cheatgrass abundance by analyzing the phenol-
ogy of cheatgrass. This is because the species commences 
spring growth (increases in plant greenness are measured by 
normalized difference vegetation index (NDVI) values), sets 
seed, senesces, and dies within a period of few to several 
weeks. The eMODIS NDVI is adept at capturing cheatgrass 
green-up because the data product represents near-daily 
acquisitions of satellite images that are composited into the 
best available pixel for each 7-day period (Jenkerson et al. 
2010) (Fig. 11.3).

The USGS developed model parameters and algorithms 
using two years of data on invasive annual grasses (Nevada 
Natural Heritage Program 2015) stratified by percent-cover 
cohorts at more than 35,000 points resulting in 250-m pre-
dicted cheatgrass percent-cover time series (2000–2013). A 
substantial advantage of focusing on cheatgrass phenology 
using eMODIS NDVI and regression-tree models is that 
both an historical time series of cheatgrass percent-cover 
maps and annual near-real-time cheatgrass percent-cover 
maps can be developed. The same eMODIS data, used in 

conjunction with other data sources for detecting invasive 
annual grasses, are used for evaluating the status of current 
forest health and identifying the presence and extent of pest 
outbreaks across the United States (e.g., Chastain et  al. 
2015a).

Application on Forest Pests It’s important to distinguish 
between “pests” and invasive species as they are defined in 
this assessment. The term “pest” is used here because it is 
commonly used throughout many State and Federal govern-
ment programs, and thus cannot be easily removed from the 
discussion. A pest is an organism out of place, though it may 
not cause a disturbance. A pest can be a plant, an insect, or a 
pathogen in our context of management. Often pests are 
invasive, sometimes they are native, and often they are 
exotic, but this distinction is without value because some 
problems are native to the country but are new to certain 
areas and causing pestilence, economic, and ecological 
harm. A good example of this condition arises from the 
goldspotted oak borer (Agrilus auroguttatus), which is native 
to North America and the Pacific Southwest region of the 
United States. However, this pest is killing and weakening 
numerous tree species in southern California and Mexico.

Forest pests influence millions of hectares of both private 
and federally owned forest land. As noted in Chap. 10, forest 
health surveys are conducted annually to detect and evaluate 
the scope and impact of forest pest activity and are a major 
component of the Forest Service Forest Health Protection 
(FHP) program’s strategy to minimize the impact of both 
native and exotic invasive pests. FHP surveys for distur-

Fig. 11.3 The chart illustrates differences between eMODIS NDVI 
profiles in adjacent pixels, one estimated with moderate cheatgrass per-
cent cover and the other with very low cheatgrass percent cover. The 
spike in the profiles starting about week 9 and ending about week 14 
represents the period of short-lived cheatgrass growth. The second 

spike in the profiles starting about week 17 and ending about week 21 
could represent (1) the emergence from an extended wet period where 
high soil moisture deflated NDVI values, (2) a second wave of cheat-
grass growth, or (3) other annual species’ green-up
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bances and pests, and the Forest Service’s Forest Health 
Assessment and Applied Sciences Team (FHAAST) (for-
merly the Forest Health Technology Enterprise Team 
(FHTET)) facilitates these surveys by offering a range of 
data collection, data analysis, and forest pest information 
reporting technologies. The FHAAST is unique in that it is 
one of few operational pest detection programs that employs 
remote sensing technology in forests across the United 
States. The process model (Fig.  11.4) describes how FHP 
and its partners in all 50 States identify, survey, and report on 
forest pest activity.

Forest pests, including those considered to be invasive, 
are detected annually through a variety of means. The sur-
veys are organized around a reporting construct called a pest 
event. Pest events are characterized as annual pest activity 
for a given organism or damage-causing agent, where the 
pest activity is homogeneous in nature over a given geogra-
phy. Pest events can be quite large, sometimes covering large 
portions of entire States, or they may be multistate in nature, 
exemplified by Fig.  11.5, which depicts the proportion of 
forested area damaged by gypsy moth (Lymantria dispar) 
from 2011 to 2015. A recent lodgepole pine (Pinus contorta) 
mortality event triggered by the mountain pine beetle 
(Dendroctonus ponderosae) covered most of Colorado and 
parts of Utah and extended well into Wyoming. While that 
pest event is largely concluded, the mortality caused by 
mountain pine beetle continues to surface in the northern 

part of the lodgepole pine range. This continuing tree mortal-
ity would likely be described as a separate event. Pest events 
also often include damage caused by extreme weather events, 
where trees are killed, broken, or uprooted. Forest fires are 
not typically mapped by FHP surveys (active fire mapping at 
the national level is led by the Forest Service through the 
Monitoring Trends in Burn Severity (MTBS) program, www.
mtbs.gov), though many cooperating State partners assume 
that responsibility.

FHP and its partners issue pest reports in one of two ways. 
Often times, pest events are not specifically surveyed, and 
even though their location and intensity are known locally, 
they are not mapped with geospatial data and transmitted to 
the national office (FHAAST). FHP refers to these observa-
tions as unstructured pest reports. Frequently, pest events of 
this kind are difficult to survey or have a technological or a 
diagnostic limitation, or there is a lack of agency commit-
ment to survey based upon local need. These events are 
described with software called the pest event reporter (PER). 
This web-based tool is specifically designed to address pest 
conditions where actual geospatial data may not exist or are 
inconsistently acquired nationally.

Secondly, broad-scale impact pests achieve a level of 
importance indicating that a forest pest survey is necessary. 
These surveys are often interagency in nature and target a 
specific invasive species. Pests such as the mountain pine 
beetle or the emerald ash borer (Agrilus planipennis) are 

Fig. 11.4 FHP forest disturbance reporting process
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Fig. 11.5 Insect and Disease Survey by Subwatersheds (6th Level Hydrologic Unit Codes (HUCs)) proportion of treed area with damage from 
gypsy moth from 2011 to 2015 (Map date: June 2016)
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recent examples of pests that warranted a multiagency sur-
vey response. Mission planning is critical for these pests and 
occurs on an annual basis. Initial queues of outbreaks often 
come from the public, overview surveys, or remote sensing 
initiatives such as the Forest Disturbance Monitor (FDM) 
(Chastain et al. 2015a). At present, forest disturbance moni-
toring remotely from satellite is only intended to trigger a 
subsequent aviation or ground-based survey, where causal 
agents, intensity, and impact can be adequately estimated. 
These efforts represent the mission planning phase, which 
focuses on enabling surveys that incorporate appropriate ref-
erence data, maps, and scope of the event(s) to be surveyed.

Forest pest surveys can be conducted in multiple ways. 
Aerial Detection Surveys (ADS) make up most of the area 
evaluated annually (202,343 ha). Structured ground surveys, 
where observers are equipped with pen-based tablets and 
specialized software, are expected to increase the area where 
detection surveys are conducted and, to some degree, dis-
place aerial surveys. Surveillance using satellite remote 
sensing is also improving through programs like Operational 
Remote Sensing (ORS) (Chastain et  al. 2015b). ORS was 
expected to surveil 30 million ha in 2016 and targeted 60 mil-
lion ha in 2017. Efforts to increase the number of observa-
tions or the area surveyed have been facilitated through 
recent successes using massive parallel computer process-
ing, such as Google Earth Engine, coupled with a robust 
imagery stack of satellite data (Chastain et al. 2015b).

Pest observation data, in the form of point-, polygon-, and 
cell-based geographic features, are captured through a range 
of technologies supported by the FHAAST.  Recent efforts 
focus on Android-based tablet software, where field observa-
tions are collected and reported to FHAAST annually for cor-
rection, summation, and sharing through a variety of web 
applications (https://www.fs.fed.us/foresthealth/publications/
fhaast/index.shtml). Without additional adornment, these data 
are just geographic features and attributes which lack any 
temporal dimension or biological or socioeconomic reference 
to scope or impact. Through a process called Pest Event 
Reporting, and using web software called the Pest Event 
Reporter (https://www.fs.fed.us/foresthealth/applied-sci-
ences/mapping-reporting/data-app-development.shtml), 
these geographic features are organized into biologically 
based events at the local, regional, and national level. Pest 
outbreaks or their associated forest damage are organized into 
groups of counties based on geographic data or other non-
geographic information. These events are vetted at both the 
regional and national level by designated specialists within 
the Forest Service. In the case of invasive species, these events 
are recognized as important at the national level and are pub-
licized through a variety of web reporting applications. The 
FHP Mapping and Reporting Portal provides forest health 
information annually to internal and external partners through 
a variety of web applications. This information is increas-

ingly incorporated into local forest health reports, State forest 
health highlights, and a variety of internal reports including 
the FHP report on annual pest conditions.

11.2.2  Environmental DNA Sampling for Early 
Detection of Invasive Species

One technological advance that has the potential to be highly 
effective in the early detection of invasive species is environ-
mental DNA sampling (eDNA). Environmental DNA is the 
trace DNA in samples of water, soil, or air from shed or elim-
inated parts (or the whole) of multiple organisms (Bohmann 
et  al. 2014). Sampling eDNA has been used effectively to 
detect the presence of endangered (Goldberg et  al. 2011; 
McKelvey et  al. 2016) and invasive (Mahon et  al. 2013; 
Wilcox et  al. 2013, 2016) species at low densities. While 
most often used to detect invasive fish and amphibians, 
eDNA can also be used to detect a suite of other vertebrates 
including semi-aquatic mammals, terrestrial mammals, and 
reptiles (Padgett-Stewart et  al. 2016; Piaggio et  al. 2014; 
Rodgers and Mock 2015; Schwartz et al. 2017). Most eDNA 
protocols involve filtering water from streams, rivers, ponds, 
or oceans to collect DNA for detection of invasive species. 
However, other approaches involve sampling the soil, honey 
from beehives, carrion flies, or leeches, all of which may 
contain traces of target invasive species (reviewed in 
Bohmann et al. 2014). The key to using eDNA successfully 
is in the development of the laboratory methods that are sen-
sitive to detection of trace amounts of targeted DNA, and in 
the development of field protocols where the probability of 
detection and behavior of eDNA under different field condi-
tions is accounted for (Jane et al. 2015; Pilliod et al. 2014).

The advantages of sampling eDNA for invasives are the 
ease at which field sampling can be conducted, and improved 
sensitivity as compared to traditional sampling approaches 
used for detecting rare, invasive amphibians and fish (Dejean 
et al. 2012; Wilcox et al. 2016). Furthermore, no specialized 
expertise is required to conduct the field sampling, making it 
ideal for pairing with citizen science. The diagnosis for the 
invasive species is determined when the sample is brought 
into the molecular genetics laboratory. In the laboratory, 
quantitative polymerase chain reaction (qPCR) or droplet 
digital PCR (ddPCR) can be used to detect one or a few tar-
get species with extreme sensitivity. Wilcox et  al. (2016) 
found that samples containing an average of two DNA cop-
ies led to positive detections of target invasive species in 
72–86% of trials using qPCR. Alternatively, multiple species 
can be detected simultaneously through metabarcoding and 
related genomics approaches, which involve high- throughput 
sequencing of all DNA in the sample. Overall, the combina-
tion of sensitivity, reliability, and efficiency afforded by 
eDNA sampling enhances the potential to expand the 
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 detection and monitoring of invasive species across broad 
geographic ranges.

11.3  Predicting Occurrence and Spread

Prediction in relation to early detection and intervention, 
pathway analysis, and risk assessments is covered in Chap. 
6. This section is more focused on species occurrence and 
spread models. Predicting the potential occurrence, suitable 
habitat, and spread of invasive species encompasses both 
static and dynamic approaches. To date, static approaches to 
species distribution models are more common than dynamic 
approaches, with parameters based on expert-defined rules 
or statistical estimation of relationships between species 
occurrence and environmental variables. Logistic regression, 
for example, is commonly used to model disease occurrence 
(i.e., presence/absence) at a site (Meentemeyer et al. 2012). 
Dynamic models allow phenomena to change through time 
to represent population dynamics and fluctuating behavior of 
an epidemic. Since they are process-based, dynamic models 
have the advantage of being applicable for projecting future 
epidemics. This is a critical advantage over static models 
since the process driving the invasion (e.g., colonization, 
establishment, or spread) can be identified. Process informa-
tion is critical for management (Simberloff 2009), as 
approaches to management differ depending on the phase of 
infestation. For example, the goal of early detection and 
rapid response (EDRR) programs is to avoid colonization of 
invasive species, while the prevention of favorable condi-
tions (e.g., disturbances) interrupts the spread and domi-
nance of invasive species. Necessary precursors to forecast 
invasions at each phase are (1) the availability of field-based 
observations from which the spatial distribution can be esti-
mated and (2) the demographic data from which population 
dynamics can be inferred. Spatial distribution data can aid 
identification of other locations where the species is likely to 
thrive and become problematic. For some species, distribu-
tion data from a species’ native ranges have been collected, 
but more comprehensive data are needed from native ranges, 
including life history, genetic, and abundance. Data on 
demographic transitions, propagule to juvenile, juvenile to 
reproductive adult, and dispersal mechanisms are also essen-
tial to identify both bottlenecks and opportunities in the inva-
sion process. Moreover, integrating distributional data (from 
both native and invaded ranges) with available demographic 
data could greatly enhance the results of current modeling 
efforts (Guo et al. 2009; Ibáñez et al. 2009).

High-quality distribution data in exotic ranges (e.g., 
county-level or FIA program data for forest ecosystems in 
the United States) are needed, but corresponding distribution 
data from the native regions are equally important (Guo 
2006; Ibáñez et  al. 2009). This is based on the hypothesis 

(which has been confirmed in many cases) that species with 
large native ranges are likely to have larger ranges in exotic 
regions (Guo et al. 2006) (Fig. 11.6) and on the prediction 
that invasive species may expand their climatic ranges 
(Broennimann et al. 2007; Ibáñez et al. 2009) (Fig. 11.7).

Once a species has been introduced into a new region, 
data related to the dispersal of propagules are essential to 
assess the potential for its spread into new areas. Assessment 
of the colonization potential depends on the ability of the 
introduced species to establish without human intervention 
and to survive and initiate self-sustaining populations. 
Proliferation of the invasive species to the point where it has 
a detrimental effect on the native community is dependent on 
its growth and reproductive capacity (Ricklefs et al. 2008). 
Thus, demographic data that include a species’ reproduction, 
survival, growth, and dispersal, and its response to distur-
bances and resources, will be critical to model the invasion 
process (Foxcroft et al. 2011; Gurevitch et al. 2011).

The success of some highly invasive species can be 
attributed to the rapid changes in their genetics (“rapid evo-
lution”) after invading new habitats (Ellstrand 2009; 
Whitney and Gabler 2008). Currently, the Forest Service is 
building a database with 29 major life history/genetic trait 
categories for over 4000 introduced plant species in the 
United States. Once this work is completed, two ranking 
systems for all the species can be developed based on (1) 
current distributions and (2) traits that can indicate future 
spread (some species with invasive traits now have limited 
distribution but could spread rather quickly in the future 
with or without climate change). Albright et al. (2010) dem-
onstrate an example of this predictive capability where data 
collected abroad on the native range of tree of heaven 

Fig. 11.6 Diagram showing that native distribution can be used to pre-
dict present and future exotic distribution and spread in conjunction 
with species traits (i.e., life history and genetic elasticity). The position 
of a particular species in the graph may be determined by multiple fac-
tors as discussed in this chapter (e.g., time, rapid evolution, interspecies 
facilitation, mutualisms). (Modified from Guo (2006))
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(Ailanthus altissima) can be used to estimate potential dis-
tribution in the invaded range (Fig. 11.8).

11.3.1  Integrating Available Data into 
Forecasting Models

Integrated models are analytical approaches that link local 
demographic/genetic information with coarse-resolution 
models of environmental suitability into a predictive 
assessment of species invasion (Ibáñez et  al. 2014). 
Integrated models combine knowledge of the processes 
that take place during invasions, based mainly on life his-
tory/demographic data (e.g., genetics, reproduction, 
growth, survival, dispersal), along with available distribu-
tion data (native and/or invaded ranges). These models are 
highly flexible and easily adaptable to analyze whatever 
types of data (e.g., demographic, distributional, observa-
tional, experimental) are available. Statistical techniques 
like hierarchical/multilevel models are highly suitable for 
use in such integration (Clark and Gelfand 2006; Clark 

et al. 2010). Hierarchical models allow the combination of 
data collected at different temporal and spatial scales. 
They can also include latent processes that are not directly 
observed, for example, establishment and reproduction, 
that are then modeled as a function of the available demo-
graphic data. Another advantage of such models is that 
they can quantify the uncertainty associated with each 
model component that can then be tracked when invasion 
forecasts for different scenarios are generated. They can 
quantify the varying effects of certain variables along gra-
dients (e.g., the effect of disturbance along climatic gradi-
ents), and can identify and quantify both bottlenecks and 
windows of opportunity for invasion. These models can 
produce forecasts of potential impact of invasions at any 
particular site, from a local to regional scale, and for dif-
ferent scenarios of environmental conditions. This infor-
mation could be then employed to guide monitoring efforts 
for early detection of plant invasions. In summary, results 
from integrated models have the potential for enhancing 
model realism, explanatory insight, and predictive capabil-
ity (Ibáñez et al. 2014).

Fig. 11.7 Distribution and climate data models used to predict inva-
sion. Model 1: distribution and climate data from invaded range used to 
predict invasion in invaded range of Japanese barberry (Berberis thun-
bergii). Model 2: distribution and climate data from native range used to 

predict invasion in invaded range. Model 3: distribution and climate 
data from native and invaded ranges used to predict invasion in invaded 
range. Model 4: model ensemble and standard deviation (SD) about the 
mean
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11.4  Decision-Support Systems

A decision-support system is a program that analyzes data 
and presents results in a format that supports decision making 
for management, operations, and planning activities. Though 
these systems vary greatly in complexity, they generally uti-
lize multiple sources of data. The models underlying the data 
analyses can be developed specifically to address manage-
ment questions by involving decision makers and managers 

in their development. These tools can predict the dynamics of 
invasions, including the area invaded through time, and also 
guide selection of the management activities, monitoring, and 
treatments that are most likely to result in suitable outcomes 
(Provencher et al. 2016). Model-based decision-support sys-
tems include optimization models and simulation models. 
Optimization models are computationally difficult, usually 
require a small spatial extent, and consider minimal alterna-
tive actions from which the optimal solution is determined. 
Conversely, simulation models can be used to address larger 
areas, and can provide a comparison of a large number of 
proposed activities. Both types of models have been used to 
evaluate management activities for buffelgrass (Pennisetum 
ciliare) in southern Arizona but focused on different aspects 
of response (Büyüktahtakin et  al. 2014). The optimization 
model attempted to minimize damage over time for an 800-ha 
area, subject to budget and labor constraints, and focused on 
where to treat. The simulation models (Frid et  al. 2013a; 
Jarnevich et  al. 2015) focused on comparing allocation of 
resources between inventory and treatment activities and lev-
els of activities (resources involved).

Even when sophisticated models of biological invasions 
are available (Cunniffe et al. 2016), informing and mobiliz-
ing stakeholders to use them for making timely decisions is 
still a challenge (see Chap. 12). Participatory approaches 
(Reed 2008; Voinov and Bousquet 2010) have been designed 
to facilitate stakeholder engagement in research and manage-
ment of invasive species. Perera et  al. (2006) suggest that 
involving stakeholders (Fig. 11.9) throughout the modeling 
process maximizes information transfer, helps generate buy-
 in, and creates advocates for their inclusion in complex cir-
cumstances. This conceptual framework—known as 
participatory modeling (Voinov and Bousquet 2010)—may 
move participants from passive or didactic learning to expe-
riential learning through immersion in what Colella (2000) 
called the “computational sandbox,” that is, simulations with 
realism adequate to temporarily suspend disbelief and con-
stitute a shared experience.

A new modeling tool called Tangible Landscape 
(Fig.  11.10), which is being developed at the Center for 
Geospatial Analytics at North Carolina State University, 
gives stakeholders the ability to visualize place- and time- 
dependent management scenarios with real-time feedback 
(Petrasova et al. 2015). Using simple, tangible gestures on a 
physical, 3D representation of landscape data (Petrasova 
et  al. 2015), the tool uses simultaneous 3D laser scanning 
and liquid crystal display (LCD) projection to connect a 
computational model to a physical 3D model. Tangible 
Landscape will soon be used to help stakeholders develop 
collaborative solutions for managing sudden oak death in 
California. Although these recent efforts in invasive species 
modeling offer advantages over earlier models, at increas-
ingly larger scales of analysis, landscape heterogeneity and 
diverse patterns of ownership still present significant chal-

Fig. 11.8 Relative suitability for tree of heaven estimated by a simple 
Bayesian model based on distribution information from the United 
States and prior parameters derived from China. In the maps, point sym-
bols represent occurrence records and areas with different suitabilities 
(i.e., modeled logit values using posterior parameter estimates). Both 
suitable and unsuitable areas are divided into quartiles of relative prob-
ability (i.e., suitability). (Courtesy of Thomas P.  Albright and repro-
duced from Albright and others (2010))
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Fig. 11.9 Stakeholder 
engagement in invasive 
species research and 
management. (a) Field crew 
chemically treats the stumps 
of recently cut California bay 
laurel (Umbellularia 
californica) trees to prevent 
re-sprouting of this reservoir 
host species; (b) disease 
prevention in some areas 
involves complete removal of 
host trees located within 
15 feet of susceptible oak 
species; (c) a stakeholder 
defines a disease management 
scenario by placing 
intervention markers on the 
3D Tangible Landscape; (d) 
markers are laser scanned and 
resulting intervention areas 
provide real-time input for 
exploring simulated scenarios 
of management actions at 
particular place and time. 
(Photos courtesy of Ross 
Meentemeyer)

Fig. 11.10 Overview of the 
Tangible Landscape system. 
Photos courtesy of Ross 
Meentemeyer
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lenges. In addition, development and utilization of models is 
further complicated by the lack of consistency among orga-
nizations and agencies in their priorities, data availability, 
modeling expertise, and ecological classifications.

Although organizations have disparate ideas, programs, 
and directives for managing invasive species, there is a clear 
need to improve consistency in data collection, ecological 
classification, and modeling. The national framework for 
early detection and rapid response is a positive approach 
toward consolidating thoughts and actions among agencies 
(https://www.fws.gov/ficmnew/FICMNEW_EDRR_
FINAL.pdf). Another example of publicly accessible citizen 
science data is the Early Detection and Distribution Mapping 
System (https://www.eddmaps.org). EDDMapS is the most 
easily accessible and comprehensive spatially explicit data-
base available that describes the extent and magnitude of 
biological invasions.

Invasive species present a national challenge most effi-
ciently addressed through consolidated, all lands approaches, 

which necessitates developing more consistent databases for 
describing ecological processes. Though numerous chal-
lenges exist toward realizing this idyllic scenario, in 2013, all 
major land management agencies participated in the devel-
opment of the Interagency Ecological Site Handbook for 
Rangelands. Ecological sites provide a kind of decision- 
support and land-classification system that describes the eco-
logical potential and ecosystem dynamics of land areas 
(http://www.ars.usda.gov/Research/docs.htm?docid= 
18502). Ecological Site Descriptions provide narratives of 
each site and most often include conceptual state and transi-
tion models (STMs), which are box-and- arrow diagrams that 
depict vegetation communities (states depicted by boxes) 
and shifts between them (transitions depicted by arrows) 
(Bestelmeyer et al. 2004; Westoby et al. 1989) (Fig. 11.11). 
States can be defined based on vegetation cover types, struc-
tural stages, and ages, while transitions are processes or 
thresholds that shift the vegetation between states, including 
natural processes (e.g., dispersal, succession, fire) and 

Fig. 11.11 (a) Example of how a state and transition model from the 
Upland Gravelly Loam Ecological Site becomes digitized, and (b) acts 
as input to a simulation system such as ST-SIM. This site is highly inva-

sible (very low resistance) by cheatgrass. Note that the Reference State 
with no non-native species is unlikely on this site and is therefore omit-
ted from this example digitized model
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anthropogenic processes (e.g., herbicide spraying, grazing, 
development). These conceptual STMs can be subsequently 
digitized and converted to state and transition simulation 
models (STSM) enabling stochastic simulation of ecological 
processes including invasive species dynamics. State and 
transition simulation modeling conducted in a quantitative 
manner is an analytical framework for consolidating resource 
management issues under different scenarios (Provencher 
et  al. 2016). Additionally, using STSMs to explore the 
impacts of different assumptions can quantify uncertainty 
and help guide future research activities, identifying key 
information that is needed to answer management questions. 
For example, Jarnevich et al. (2015) developed an STSM for 
buffelgrass in Ironwood Forest National Monument, AZ, 
with the states representing cover class categories, and the 
transitions including growth (increase in abundance), detec-

tion of patches through surveys, and decrease in abundance 
associated with treatments to control buffelgrass (Fig. 11.12). 
In this buffelgrass example, Jarnevich et al. (2015) compared 
invasion over time related to the degree of management 
occurring in the monument across all lands within the own-
ership matrix included in the monument (Fig. 11.13). STSMs 
have been used to aid decisions for several invasive plant 
species by assessing whether to prioritize small or large 
patches for treatment (Frid et al. 2013b; Frid and Wilmshurst 
2009) and how to allocate resources between inventory and 
treatment activities (Frid et al. 2013a; Jarnevich et al. 2015), 
and for assessing varying amounts and types of treatment 
(Frid et  al. 2013b; Jarnevich et  al. 2015). In addition, 
Provencher et al. (2016) used STSM to investigate manage-
ment issues and uncertainty associated with exotic annual 
Bromus species.

Fig. 11.12 State and transition simulation model for buffelgrass in 
Ironwood Forest National Monument, AZ. Shown here is the concep-
tual model where each box represents the state with regards to buffel-
grass cover (uninvaded, seedbank, <5% cover, 5–50% cover, or >50% 
cover; right to left) and detection (undetected or detected; top to bot-

tom). The color-coded arrows represent different types of transitions 
including growth (invasion, establishment, spread), detection (failure 
and success), and management (treatment and maintenance failure and 
success). Solid lines represent success; dotted lines represent failure

Fig. 11.13 Simulation model 
results for 11 “what if” 
management scenarios (A to 
K) showing area invaded after 
20 simulated years on the 
y-axis and cumulative cost of 
management activities 
(varying amounts of intensive 
field surveys, vehicle- 
mounted herbicide spraying, 
backpack herbicide spraying, 
volunteer hand pulling, 
contract hand pulling, 
helicopter herbicide spraying, 
and follow-up maintenance of 
buffelgrass) over a 20-year 
period on the x-axis. (Figures 
adapted from Jarnevich and 
others (2015))
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The increase in availability of STMs associated with eco-
logical sites, combined with new spatially explicit simula-
tion models, such as those developed with the ecological 
modeling software ST-SIM (http://www.apexrms.com/), 
provides an emerging toolset capable of estimating the 
effects of management and climate on biological invasions 
across the United States (Daniel et  al. 2016). Although 
Ecological Sites are works in progress, they represent a 
potentially cost-effective framework that is applicable on an 
interagency basis for local to regional simulation of how 
invasive species respond to disturbances.

11.5  Genetic Tools to Accelerate 
Restoration and Facilitate 
Management

Advances in technology have provided a plethora of genetic- 
based tools that can be used to facilitate management of 
genetic resources and/or advance restoration efforts by accel-
erating breeding programs aimed at developing planting 
stock with resistance to invasive insects and pathogens. 
Genetic markers, pieces of DNA that can be used to distin-
guish an individual, population, or species, can facilitate 
management of genetic resources. Such markers can also be 
used to identify locations in the genome that contain genes 
for desired traits such as resistance. Breeding can be acceler-
ated by using genetic markers to select for desired traits 
instead of labor-intensive, costly, long-term classic pheno-
typing methods (evaluating traits and performance over 
time), a process known as indirect selection. Genes that have 
been identified as having a role in flowering can be used to 
accelerate breeding by inducing early flowering so that 
breeding can be done without waiting years or decades for a 
superior tree to reach sexual maturity so that it can serve as a 
parent. Genetic engineering is a tool that can introduce 
genes, such as those to induce early flowering or even those 
that would confer resistance, into a plant to produce trans-
genic trees that express these desired traits. Advances in 
technology that allow rapid sequencing of the DNA that 
incorporates the entire genome of a tree, referred to as next- 
generation sequencing or high-throughput sequencing, have 
advanced our abilities to develop genetic markers and to 
identify genes and even differences in the ways these genes 
are expressed (called transcriptomics) that may play a role in 
resistance. In this section, we provide a brief overview of 
genetic tools, their potential uses in restoration and manage-
ment, and their current limitations.

Common examples of genetic markers include SSRs 
(simple sequence repeats) and SNPs (single nucleotide poly-
morphism). These important tools can improve efficiencies 
of conventional breeding programs through a variety of 
applications, including the evaluation of genetic diversity in 

breeding populations; the confirmation and tracking of iden-
tity, parentage, and relatedness; and the assessment of pollen 
flow/contamination in seed orchards (Neale and Kremer 
2011; Porth and El-Kassaby 2014). Breeding can be a long- 
term process in forest trees, with some species requiring a 
decade or more to reach reproductive status. Technical 
advances in sequencing DNA have significantly reduced the 
costs of obtaining thousands of markers that are dispersed 
throughout the genome. The ability to achieve such dense 
genome coverage can provide information on genetic varia-
tion relevant to a desired phenotype through the development 
of indirect selection techniques, including marker assisted 
selection (MAS) and genomic selection (GS). These two 
tools can potentially streamline the conventional breeding 
process by allowing the breeder to use markers to “pre- 
select” trees at a young age, or to select parent trees directly 
from natural stands. Pre-selection will help by minimizing 
the number of trees whose phenotypes will need to be care-
fully confirmed over a range of time and environments.

Markers linked to traits for use in traditional MAS are 
identified through the development of a genetic linkage map 
which relies on analyzing patterns of segregation of markers 
from parents to progeny to identify the number of linkage 
groups and to place markers in an orderly fashion on each 
group. Markers that are closer together are more likely to be 
inherited together in the progeny. Many different genes may 
contribute to expression of the desired trait. The process of 
identifying markers associated with the region of the genome 
that contains each of these genes, called a quantitative trait 
locus (QTL), is referred to as QTL analysis. Despite the 
enormous investment in resources that have been expended 
to identify markers, very few operational breeding programs 
for either crops or trees use MAS (Isik 2014; Muranty et al. 
2014; Neale and Kremer 2011; Xu and Crouch 2008). 
Several factors have contributed to this, but often markers 
associated with QTLs are identified in studies using a rela-
tively small number of progeny, and consequently they may 
not be useful when tested in other families because the mark-
ers are not located sufficiently close to the genes responsible 
for the trait of interest (Nilausen et  al. 2016). In addition, 
traits like resistance are often complex, so it can be difficult 
to detect all the different loci involved. Development of an 
operational MAS system is more likely to be successful 
when conducted in conjunction with an existing breeding 
program that has access to carefully phenotyped progeny and 
parents.

Breeding programs that do successfully employ MAS in 
trees, for example, those associated with domesticated fruit 
and nut producing species, are typically tracking a single 
locus or a small number of loci with very large effect, 
 including major gene resistance (Ru et al. 2015; Sathuvalli 
et al. 2011). A common use of MAS in crops and fruit trees 
is pyramiding multiple major effect resistance alleles, which 
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is difficult using traditional phenotyping methods (Muranty 
et al. 2014; Ru et al. 2015). In forest tree species, a poten-
tially useful application of MAS would be for within family 
selection in dealing with rapidly evolving pathogens, such as 
white pine blister rust, and when the goal is to pyramid major 
gene resistance with quantitative resistance to increase dura-
bility of resistance (Sniezko et al. 2011).

Another type of indirect selection known as genomic 
selection (GS) does not require identification of specific 
marker-trait associations of individual QTLs. Instead, GS 
relies on phenotyping and using such a high density of mark-
ers to genotype a large enough sample of the breeding popu-
lation (called the training population) that the majority of loci 
that contribute to a quantitative trait are closely located to one 
or more markers. The effects of all markers are then estimated 
simultaneously (unlike MAS) and used to predict genomic 
breeding values in a test population without needing pheno-
typic data (Jannink et al. 2010; ReSende et al. 2012). Although 
GS is routinely used in animal breeding programs (Hayes and 
Goddard 2010), and has been used successfully in crop breed-
ing programs (Lorenzana and Bernardo 2009), the strategy 
has only been tested in forest trees in simulation studies 
(Grattapaglia and Resende 2011; Iwata et  al. 2011) and in 
preliminary trials (Resende et  al. 2012; Zapata-Valenzuela 
et al. 2013). The studies in forest trees show promise but the 
results should be interpreted with caution because studies 
were conducted in small populations; additional ‘proof of 
concept’ studies need to be performed using larger popula-
tions (Plomion et al. 2016). Successful application of GS to 
forest tree breeding will ultimately require correlating thou-
sands or even hundreds of thousands of markers with a desired 
phenotype in a sufficiently large training population in order 
to develop models to select the best performing trees in the 
breeding population. Both training and breeding populations 
need to have undergone at least some breeding and been care-
fully phenotyped for resistance, a genetic resource that likely 
will only be available in the most advanced forest tree breed-
ing programs (Isik 2014; Jannink et  al. 2010; Zapata-
Valenzuela et al. 2013). Analysis of the economic feasibility 
of incorporating GS is also needed before it will be accepted 
for widespread use in forest tree breeding programs (Plomion 
et al. 2016).

Another tool that can accelerate breeding is the use of 
genetic engineering to induce early flowering. Transgenic 
approaches to manipulate flowering have been developed in 
many woody plants and, because the effect of early flowering 
caused by the introduction of the transgene is dominant, it is 
only required in one parent and can be selected against in the 
progeny so that the final selected genotype is not transgenic 
(Van Nocker and Gardiner 2014). New technology, using a 
virus as a vector to introduce genes that control flowering, 
has been used successfully to produce early flowering apple 
and pear trees (Yamagishi et al. 2016). A simple heat treat-

ment can be used to eliminate the viral vector from resultant 
seedlings. Successful application of this technology in forest 
trees offers the potential to reduce breeding cycles from sev-
eral decades to mere months.

Although it is commonly asserted that the use of genetic 
engineering to insert a gene to develop a transgenic plant 
that conveys resistance to an insect or disease is a quicker, 
less expensive alternative to traditional breeding, this is not 
necessarily the case. It takes an estimated timeframe of 
7–24 years (average 13.1 years) to discover, develop, and 
obtain regulatory authorization to distribute seed for a crop 
plant carrying a new transgenic trait, and an average cost of 
$136  million (McDougall 2011). Despite this investment, 
resistance based on a single transgene can sometimes be 
overcome or inactivated or have unintended fitness costs 
(Finnegan and McElroy 1994; Gurr and Rushton 2005; 
Tabashnik and Carriere 2017; Tian et al. 2003). In the case 
of forest tree species, it is not possible yet to do an accurate 
cost assessment because a transgenic forest tree has not yet 
obtained authorization to be released into natural forests. 
Development and deployment of a transgenic forest tree 
will likely require a similar investment of time and money. 
In addition, once a transgenic tree is produced, it will be 
necessary to incorporate genetic diversity adequate to main-
tain the adaptive capacity to multiple stresses and environ-
ments through traditional breeding (Steiner et  al. 2016). 
Transgenic technology alone cannot replace a breeding pro-
gram, rather successful deployment of transgenics (assum-
ing regulatory approval) for restoration purposes will 
depend on the existence of a breeding program, the possible 
exception being industrial forestry plantations or horticul-
tural cultivars, where it may be appropriate to deploy mate-
rial with limited genetic diversity. The same would be true if 
the new genome editing technologies, such as CRISPR-
Cas9, were used to develop a resistant tree (Puchta 2016). 
Unlike the development of a resistant plant through trans-
genics, genome editing directly alters specific genes in the 
genome. This requires extensive basic knowledge about the 
number and function of genes involved in the trait being 
altered (i.e., susceptible altered to become resistant) that is 
not always available and can take years or even decades of 
research to acquire. Genetic engineering through transgen-
ics or genome editing is a valuable tool that can facilitate the 
study and confirmation of gene function. Once the neces-
sary basic knowledge is accumulated, development of a 
resistant tree through transgenics or genome editing may be 
possible but should only be pursued in conjunction with a 
breeding program if the ultimate goal is restoration using 
resistant planting stock.

Transcriptomics, the process of sequencing expressed 
genes to evaluate the level of gene expression, is a genomic 
tool used to study patterns of differential gene expression in 
forest trees, often with the goal of identifying candidate genes 
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involved in resistance to insects and diseases, for potential 
downstream utility in developing markers for implementation 
in breeding programs, or for use in developing transgenic 
trees with resistance (Bai et  al. 2011; Barakat et  al. 2009). 
However, a recent review article by Feder and Walser (2005) 
concluded that using transcriptomics to compare gene expres-
sion patterns in plants exposed to a stress (abiotic or biotic), 
or to identify the genes responsible for a specific phenotype 
or response to the stress, such as resistance, is rarely success-
ful. This can be explained because the measured differences 
in expression levels of genes do not accurately predict abun-
dance or activity of the resulting proteins that are produced 
from these expressed genes (Feder and Walser 2005). The 
authors recommended employing a careful cost/benefit anal-
ysis prior to employing such a strategy.

Many of the genomic tools and technologies that we have 
presented are in their infancy and have not yet been widely 
implemented; additionally, thorough review of their useful-
ness and success over the long term is not always available. 
An analysis of the benefits derived from utilizing many of 
these techniques, relative to the significant financial invest-
ment required to develop them, is lacking. Ultimately, tech-
nological advances will undoubtedly reduce the cost of many 
of these tools, and continued research will lead to improved 
rates of success, but it’s also important to remember that, 
although these technologies have the potential to accelerate 
restoration, (breeding), they are not essential for implement-
ing a successful breeding program. The vast majority of 
breeding programs (see Table 8.1 in Chap. 8) have achieved 
success without the use of genomic tools. It is of equal 
importance to note that an active breeding program is a pre-
requisite for the successful development and implementation 
of these genetic tools. Investment in both technology/tool 
development and traditional breeding programs is essential 
for providing the appropriate genetic tools that can facilitate 
the accelerated and cost-effective production of resistant 
planting stock needed to manage and restore forests impacted 
by invasive insects and diseases.

11.6  Key Findings, Information Needs, 
and Opportunities

Advances in biotechnology have produced genetic tools with 
the potential to accelerate the production of resistant plant-
ing stock for restoration. However, these tools cannot replace 
the need for traditional breeding programs, and, in fact, they 
depend upon such programs for their efficient and effective 
development and implementation or deployment. Forest 
managers and tree breeders will need to weigh public opin-
ion as well as the costs and benefits of such tools before 
adopting them. Continued technical developments may help 
decrease costs in the future.

Improvements in computational resources and model 
complexity have enhanced the ability of managers and scien-
tists to evaluate the extent and magnitude of invasive species. 
This situation is exemplified by FHP and other national sys-
tems that provide essential monitoring of forest conditions. 
In addition, these improvements have led to greater use of 
models to forecast potential future conditions. Overall avail-
ability of data and modeling is better in forested ecosystems 
relative to other ecosystems, suggesting that there is a sig-
nificant opportunity and need for improved modeling, data 
collection, and mapping in non-forested systems, including 
aquatic habitats.

The most significant gap consistently identified across the 
numerous disciplines discussed in this chapter is the relative 
paucity of spatially referenced data describing the extent and 
magnitude of invasive species, especially on non-forested 
lands. A consistent, comprehensive, easily accessible data-
base provides the underpinning for identifying new out-
breaks, calibrating and validating models, improving remote 
sensing analyses, and monitoring management effectiveness. 
US land management agencies do not currently perform con-
sistent annual inventory and monitoring of non-forested 
landscapes; however, the situation is slowly changing. For 
example, the FIA program has established protocols for non- 
forested landscapes very similar to the forested data collec-
tion, but less than 1% of the FIA plots represent non-forested 
landscapes (All Conditions Inventory). In 2011, the Bureau 
of Land Management began data collection for the 
Assessment, Inventory, and Monitoring (AIM) project. To 
date, data have been collected on about 5000 “national” and 
4000 “project” plots. National and field office–collected 
AIM plots use the same protocols and can be used to report 
the same AIM core indicators regarding terrestrial ecosys-
tems. National plots are designed, however, to yield a statis-
tically valid sample that can be used to derive inferences 
across the landscape, like FIA. The situation is considerably 
better on privately owned landscapes where the USDA 
Natural Resources Conservation Service supports and main-
tains the National Resources Inventory (USDA 2015, 
~20,000 plots), which includes non-forested plots. Non- 
forested lands of the coterminous United States occupy 
roughly 268 million ha (Reeves and Mitchell 2011), of which 
approximately 166 million ha are privately owned (USDA 
2015), indicating that there is approximately 1 plot every 
83 km2 of privately owned land that is non-forested (assum-
ing an even distribution). Given that many of these plots are 
unevenly distributed, many vegetation types and regions of 
the country are considerably unrepresented, and therefore 
many new invasions may go unnoticed. On 3 October 2016, 
the search words of “FIA invasive species” with Google 
yielded ~41,000 results. This suggests that regular, consis-
tent, and comprehensive data collection could be invaluable. 
Considering the large number of publications, reports, and 

11 Tools and Technologies for Quantifying Spread and Impacts of Invasive Species

https://doi.org/10.1007/978-3-030-45367-1_8
https://doi.org/10.1007/978-3-030-45367-1_8


262

analyses supported by FIA, it follows that a program 
designed to acquire data (or simply an expansion of existing 
programs) on the roughly 268  million ha of non-forested 
land (Reeves and Mitchell 2011) could be equally 
invaluable.

Although an improved strategy for combatting invasive 
species would include a consolidated, interagency, publicly 
available, spatially explicit database, other noteworthy gaps 
were identified during the conduct of this assessment. These 
gaps can be classified in one of three categories including 
data limitations, institutional limitations, or a combination of 
these. With respect to data limitations (data gathering, dis-
semination, and analysis), these gaps are generally summa-
rized as:

• Lack of consistency among stakeholders with image data 
processing, cataloging, and distribution

• Lack of consistency among stakeholders with data collec-
tion protocols (e.g., many habitats go unsampled each 
year) and data storage and distribution

With respect to institutional limitations, gaps are gener-
ally summarized as:

• Lack of interagency communication and cooperation
• Lack of shared vision and priorities
• Lack of consistency in data collection protocols, data 

storage, distribution, and sharing (including both georef-
erenced plot data and image data)

The existence of these gaps does not automatically sug-
gest that more programs are needed, but it does indicate that 
there is a need for greater sharing, communication, and col-
laboration. If all stakeholders and management agencies 
could define priorities nationally, and then regionally define 
strategies and tactics, this could foster more efficient data 
acquisition and analysis and ultimately enhance the control 
of invasive species.

Disclaimer Text The findings and conclusions in this publication are 
those of the authors and should not be construed to represent any offi-
cial USDA or U.S. Government determination or policy.
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