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Abstract

The intestine interacts with a diverse commu-
nity of antigens and bacteria. To keep its 
homeostasis, the gut has evolved with a com-
plex defense system, including intestinal 
microbiota, epithelial layer and lamina pro-
pria. Various factors (e.g., nutrients) affect the 
intestinal defensive system and progression of 
intestinal diseases. This review highlights the 
current understanding about the role of amino 
acids (AAs) in protecting the intestine from 

harm. Amino acids (e.g., arginine, glutamine 
and tryptophan) are essential for the function 
of intestinal microbiota, epithelial cells, tight 
junction, goblet cells, Paneth cells and immune 
cells (e.g., macrophages, B cells and T cells). 
Through the modulation of the intestinal 
defensive system, AAs maintain the integrity 
and function of the intestinal mucosa and 
inhibit the progression of various intestinal 
diseases (e.g., intestinal infection and intesti-
nal colitis). Thus, adequate intake of functional 
AAs is crucial for intestinal and whole-body 
health in humans and other animals.
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Crs1c	 cryptdin-related sequence 1c
DAO	D-amino acid oxidase
DSS	dextran sulfate sodium
ERK	extracellular regulated protein kinases
ETEC	 enterotoxigenic Escherichia coli
FcRn	neonatal Fc receptor
GABA	 gamma-aminobutyric acid
IELs	intraepithelial lymphocytes
IFN	 interferon
IL	 interleukin
IR	 ischemia/reperfusion
MAPK	 mitogen-activated protein kinase
mTORC1	 mechanistic target of rapamy-

cin complex 1
NK	 natural killer
PI3K	phosphatidylinositol 3′ -kinase
ROS	reactive oxygen species
S6K1	 ribosomal protein S6 kinase 1
Sirt1	sirtuin-1
TEER	 transepithelial electrical resistance
TJ	 tight junction
TNF	tumor necrosis factor
ZO	 zonula occludens

8.1	 �Introduction

Interactions with pathogens and toxins are a fact 
of life for almost all animals, and this is more 
pronounced in the intestine than any other organs. 
The small intestine is responsible for nutrient 
digestion and absorption (Wu 2018). In addition, 
the gut is the home to a diverse community of 
indigenous microorganisms. Thus, both the small 
intestine and the large intestine are constantly 
exposed to various antigens from food and water, 
as well as a large number of bacteria that coexist 
in the intestinal lumen. The gastrointestinal tract 
has evolved with a sophisticated barrier defense 
system to protect against this exposure and to dis-
tinguish “self” from “foreign”. This defense sys-
tem includes indigenous commensal 
microorganisms, epithelial layer, and the lamina 
propria (Fig. 8.1). Intestinal microbiota is associ-
ated with the intestinal defensive system through 
its regulation on intestinal or systemic innate and 
adaptive immunities (Honda and Littman 2016; 

Thaiss et  al. 2016), as well as direct effects on 
pathogens via colonization resistance or competi-
tion for nutrients (Endt et al. 2010; Seekatz and 
Young 2014). The epithelial layer includes 
absorptive enterocytes, hormone-secreting 
enteroendocrine cells, mucus-secreting goblet 
cells, antimicrobial-secreting Paneth cells, 
intraepithelial lymphocytes (IELs), microfold 
cells, and dendritic cells. The lamina propria har-
bors various immune cells, such as dendritic 
cells, neutrophils, macrophages, B lympho-
cytes  (B cells), T lymphocytes  (T cells), and 
fibroblasts. Based on published studies 
(Johansson and Hansson 2016; Mukherjee and 
Hooper 2015; Pabst et  al. 2016), the intestinal 
epithelium produces and releases secretory IgA, 
antimicrobial proteins and mucins in a cell-
specific manner.

Recent years have witnessed growing interest 
in the biochemistry and physiology of amino 
acids (AAs) in mammals, such as arginine, gluta-
mine, glycine, and tryptophan (Fan et  al. 2019; 
Le Floc’h et  al. 2018; Hou and Wu 2017; Wu 
2013). Notably, dietary contents of AAs are cru-
cial for intestinal physiology, especially the intes-
tinal defensive immune (Li et al. 2007; Ren et al. 
2016a, b). The review highlights our current 
understanding of the influences of dietary AAs 
on intestinal defensive system in humans and ani-
mal models, including intestinal microbiota, cells 
in the epithelial layer and immune cells in the 
lamina propria.

8.2	 �Amino Acids and Intestinal 
Microbiota

Intestinal microbiota is present in virtually any 
metazoans, ranging from invertebrates to verte-
brates. It affects numerous physiological func-
tions of the gut (Lee and Hase 2014; Ren et al. 
2016b; Subramanian et  al. 2014; Thaiss et  al. 
2016) and is linked to the pathogenesis of various 
diseases (Anhe et al. 2014; Lee and Hase 2014; 
Louis et al. 2014; Qin et al. 2014; Thaiss et al. 
2016) through the microbiome and its metabolic 
products (Lee and Hase 2014; Ren et al. 2016d). 
Intestinal microbiota has critical roles in intesti-
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nal immune response through its regulation of 
intestinal or systemic innate and adaptive immu-
nities (Honda and Littman 2016; Thaiss et  al. 
2016), as well as by direct effects on pathogens 
via colonization resistance (Endt et  al. 2010; 
Seekatz and Young 2014). For example, infection 
by Clostridium difficile, which is the leading 
health care-associated illness, usually follows the 
disruption of the indigenous gut microbiota after 
antibiotic treatment, leading to the loss of coloni-
zation resistance against the pathogen (Britton 
and Young 2014; Seekatz and Young 2014; 
Theriot et al. 2014). A successful treatment strat-
egy for C. difficile infection is fecal microbiota 
transplantation from healthy individuals, which 
can recover the gut microbiome after transplanta-
tion (Fuentes et al. 2014; Seekatz et al. 2014).

Dietary AAs regulate the diversity, composi-
tion and metabolism of intestinal microbiota (Dai 

et al. 2011, 2015). For example, arginine decreases 
the net utilization of lysine, threonine, isoleucine, 
leucine, glycine and alanine by jejunal or ileal 
mixed bacteria (Dai et al. 2012). Arginine supple-
mentation shifts the population of microbes in the 
jejunum and ileum of mice to favor the growth of 
Bacteroidetes by decreasing the number of 
Firmicutes, but increasing the abundance of 
Bacteroidetes (Ren et  al. 2014a). Arginine also 
enhances the abundance of Lactobacillus in the 
jejunum and the abundance of Streptococcus in 
the ileum (Ren et  al. 2014a). Thus, feeding 
Lactobacillus reuteri DSM 17938 to newborn 
mice increased the concentration of beneficial 
AAs and their metabolites in the large intestine, 
while regulating gut microbiota and immune 
responses (Liu et al. 2019b). In addition, dietary 
supplementation with glutamine to mice decreases 
the abundance of Firmicutes in their jejunum and 

Fig. 8.1  The mucosal barrier defense system in the intes-
tine. This defense system includes indigenous commensal 
microorganisms, epithelial layer, and the lamina propria. 
The epithelial layer consists of absorptive enterocytes, 
hormone-secreting enteroendocrine cells, mucin-secreting 
goblet cells, antimicrobial-secreting Paneth cells, intraep-

ithelial lymphocytes (IELs), microfold cells, and dendritic 
cells. The lamina propria harbors various immune cells 
[e.g., dendritic cells (DC), neutrophils, macrophages, B 
cells, and T cells], fibroblasts, and blood vessels. 
ILC3 = group 3 innate lymphoid cell
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ileum, while increasing the abundance of 
Streptococcus and Bifidobacterium in their jeju-
num (Ren et al. 2014b). Furthermore, adding pro-
line to the diet of Huanjiang mini-pigs decreases 
the amounts of Klebsiella pneumoniae, 
Peptostreptococcus productus, Pseudomonas, and 
Veillonella spp. in distal colonic contents (Ji et al. 
2018). Likewise, dietary supplementation with 
gamma-aminobutyric acid (GABA) regulates the 
community richness and diversity of the ileal 
microbiota, as well as the abundances of the dom-
inant microbial populations in weaned piglets 
(Chen et al. 2019b). Interestingly, dietary lysine 
restriction decreases the bacterial diversity and 
increases the abundance of Actinobacteria, 
Saccharibacteria, and Synergistetes in the intes-
tine at the phylum level, as well as the abundances 
of Moraxellaceae, Halomonadaceae, 
Shewanellaceae, Corynebacteriaceae, 
Bacillaceae, Comamonadaceae, 
Microbacteriaceae, Caulobacteraceae, and 
Synergistaceae in the intestine at the family level 
(Yin et al. 2017).

The exact mechanisms whereby AAs modu-
late intestinal microbiota need further investiga-
tion. It is possible that AA supplementation or 
restriction alters the intestinal microenvironment, 
and then influences the composition and function 
of the intestinal microbiota. Notably, beneficial 
effects of AAs on gut health are associated with 
similar changes in the intestinal microbiota, but 
some AAs exert specific effects. Also, the influ-
ences of AAs on the intestinal microbiota depend 
on their supplemental dosages. For example, 
dietary supplementation with 0.5 and 1% aspar-
tate to mice reduces the ratio of Firmicutes to 
Bacteroidetes in the ileum and feces, but dietary 
supplementation with 2% aspartate increases this 
ratio in the feces (Bin et al. 2017).

Results of our recent studies indicate that argi-
nine or glutamine supplementation promotes the 
activation of intestinal innate immunity, includ-
ing expression of factors (e.g., toll-like receptors) 
and activation of signaling pathways [e.g., 
mitogen-activated protein kinase (MAPK)] asso-
ciated with intestinal innate immunity (Ren et al. 
2014a, b). Thus, dietary supplementation with 
arginine or glutamine enhances the ability of the 
host to clear infections by pathogens (e.g., por-

cine circovirus type 2 and Pasteurella multocida) 
(Chen et al. 2014; Ren et al. 2012, 2013a, b, c, d), 
especially intestinal pathogens (e.g. enterotoxi-
genic Escherichia coli) (Liu et  al. 2017a). 
However, whether arginine or glutamine pro-
motes the clearance of these pathogens in the 
host through the intestinal microbiota remains to 
be explored.

Intestinal microbiota also affects the host AA 
metabolism and, therefore, the defensive responses. 
For example, the intestinal microbiota (Clostridium 
sporogenes) uses aromatic AAs (tryptophan, phe-
nylalanine and tyrosine) as substrates to produce 
metabolites (e.g., indolepropionic acid), which in 
turn affect intestinal permeability and systemic 
immunity (Dodd et  al. 2017). The enrichment of 
the intestinal microbiota that synthesizes the 
branched-chain amino acids (BCAA), such as 
Prevotella copri and Bacteroides vulgatus, and that 
have a low capacity to take up BCAAs, are associ-
ated with high concentrations of BCAA in serum 
(Pedersen et al. 2016). Indeed, the levels of AAs in 
the ileum differ markedly between conventionally 
reared and germ-free mice, indicating that the gut 
microbiota greatly affects the metabolism of AAs 
in the ileum (Mardinoglu et al. 2015). Those AAs 
include arginine, asparagine, histidine, isoleucine, 
leucine, methionine, phenylalanine, proline, serine, 
threonine, tryptophan, tyrosine, valine and gluta-
mine (Mardinoglu et  al. 2015). It is unknown 
whether this alteration in AA metabolism is associ-
ated with the abnormities of intestinal immunity in 
germ-free mice, such as Paneth cell dysfunction 
(Zhang et  al. 2015). During enterotoxigenic 
Escherichia coli infection, hosts (i.e., piglets and 
mice) experience remarkable alterations in the 
intestinal microbiota, especially increases in the 
abundance of Lactococcus lactis subsp. (Ren et al. 
2016d). Lactococcus lactis subsp. regulates the 
host immune responses against enterotoxigenic 
Escherichia coli infection through producing 
GABA, which promotes intestinal expression of 
IL-17 to activate the mechanistic target of rapamy-
cin complex 1 (mTORC1)-ribosomal protein S6 
kinase 1 (S6K1) signaling (Fig.  8.2) (Ren et  al. 
2016d). Besides glycine and the L-isoform of AAs, 
the mouse intestine contains high levels of free 
D-AAs derived from the microbiota (Kepert et al. 
2017; Sasabe et al. 2016). Interestingly, the intesti-
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nal microbiota stimulates the release of D-amino 
acid oxidase (DAO) from intestinal epithelial cells 
(including goblet cells) into the intestinal lumen, 
resulting in the oxidative deamination of intestinal 
D-AAs to yield a potent antimicrobial product, 
H2O2, thereby protecting the mucosal surface in the 
small intestine from the cholera pathogen (Sasabe 
et al. 2016). DAO has also been shown to modify 
the composition of the microbiota and production 
of intestinal sIgA (Sasabe et al. 2016). This illus-
trates the importance of D-AAs in nutrition and 
metabolism. Collectively, there is significant cross-
talk between host AAs and the intestinal microbi-
ota, and this interplay regulates the intestinal 

defensive responses and the progression of intesti-
nal infection.

8.3	 �Amino Acids and Intestinal 
Epithelial Cells

Besides the absorption of nutrients (including 
AAs, glucose, fatty acids, and electrolytes), 
intestinal epithelial cells (generated from intesti-
nal epithelial stem cells) represent an effective 
barrier ling the gastrointestinal mucosal surface, 
and regulate the functions of intestinal immune 
cells as well as intestinal homeostatic and inflam-

Fig. 8.2  γ-Aminobutyrate (GABA) mediates intestinal 
interleukin-17 expression during infection by enterotoxi-
genic Escherichia coli (ETEC). During ETEC infection, 
the pathogen induces dysbiosis in the gut microbiota, 
increasing Lactococcus lactis subsp. The Lactococcus 
lactis subsp. produces GABA from glutamate through the 
action of glutamate decarboxylase (GAD). GABA is 
sensed by Th17 cells through GABA receptors (GABAR), 

leading to the activation of the mTOR pathway. The 
mTOR signaling promotes IL-17 expression during infec-
tion through the mTOR-S6K1-EGR2-GFI1 pathway. 
GABA transporter 2 is negatively associated with Th17 
response during intestinal infection by terminating the 
GABA signaling through the translocation of GABA from 
the extracellular to the intracellular space
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matory responses (Nowarski et  al. 2017). For 
example, the villous epithelial cells that express 
the neonatal Fc receptor (FcRn) play a role in 
binding intestinal antigens (McDole et al. 2012; 
Schulz and Pabst 2013). FcRn on villus epithelial 
cells aids in the secretion of IgG across the intes-
tinal epithelium into the lumen, and also contrib-
utes to the uptake of intestinal antigens from the 
lumen through the IgG-dependent process 
(Yoshida et al. 2004, 2006). Also, the expression 
of Ifnlr1 [the receptor for interferon (IFN)-λ] on 
intestinal epithelial cells in the small intestine 
and colon is critical for enteric IFN-λ antiviral 
activity in mice (Baldridge et  al. 2017). 
Importantly, Ifnlr1 expression in intestinal epi-
thelial cells affects the efficacy of IFN-λ in 
resolving persistent murine norovirus infection, 
and is necessary for the sterilizing innate immune 
effects of IFN-λ (Baldridge et al. 2017). Although 
p40 (a Lactobacillus rhamnosus GG-derived pro-
tein) treatment directly on B cells shows little 
effect on IgA production, p40 promotes the 
expression of a proliferation-inducing ligand 
(APRIL) in intestinal epithelial cells, resulting in 
an increase in fecal IgA levels, as well as 
IgA+B220+, IgA+CD19+, and IgA+ plasma cells in 
the lamina propria of mice (Wang et  al. 2017). 
Collectively, intestinal epithelial cells are closely 
associated with intestinal immunity responses.

It is well known that AAs, such as glutamate, 
cysteine, glutamine and glycine, promote protein 
synthesis in intestinal epithelial cells and their 
growth via various cellular signaling, such as the 
mTOR signaling (He et  al. 2016; Honda and 
Littman 2016; Wang et al. 2014a, 2016; Ye et al. 
2016), as well as nutrient metabolism, glutathione 
synthesis, and ATP production (Li et al. 2020). For 
example, arginine enhances DNA synthesis, cell-
cycle progression, and mitochondrial bioenerget-
ics in intestinal epithelial cells through mechanisms 
involving activation of the phosphatidylinositol 
3′-kinase (PI3K)-protein kinase B (Akt pathway) 
(Tan et al. 2015). Given the importance of AAs in 
these physiological processes, we surmise that 
AAs may affect intestinal defensive responses by 
regulating the expression and secretion of immune 
regulators in intestinal epithelial cells. For exam-
ple, BCAA stimulate the expression of β-defensin 

from porcine intestinal epithelial cells possibly 
through activation of the sirtuin-1(Sirt1)/extracel-
lular regulated protein kinases (ERK) signaling 
pathway (Ren et  al. 2016a). In addition, trypto-
phan inhibits the secretion of interleukin (IL)-8 in 
intestinal epithelial cells after tumor necrosis fac-
tor (TNF)-α challenge through the calcium-sens-
ing receptor (Mine and Zhang 2015). Glycine 
attenuates the production of reactive oxygen spe-
cies (ROS) in intestinal epithelial cells via promot-
ing the synthesis of glutathione and expression of 
glycine transporter 1, while reducing the activation 
of the MAPK signaling pathway (Wang et  al. 
2014a). Amino acids also regulate the function of 
intestinal epithelial cells and the intestinal immu-
nity. For example, AA starvation in intestinal epi-
thelial cells induces autophagy responses in 
intestinal epithelial cells, resulting in lower levels 
of ROS and IL-1beta as well as a reduction in the 
abundance of IL-17A-producing CD4+ T cells 
(Ravindran et  al. 2016). Collectively, epithelial 
cells are involved in intestinal immune responses, 
such as antigen recognition, IgA production, and 
the killing of pathogens. Some AAs (e.g., arginine, 
BCAA and glycine) regulate protein synthesis in 
intestinal epithelial cells, their proliferation and 
migration, as well as the generation and secretion 
of immune regulators by the cells.

8.4	 �Amino Acids 
and Intercellular Junction

Between intestinal epithelial cells, there are inter-
cellular junctions that include an apical tight 
junction (TJ), subjacent adheren junction (AJ), 
and desmosomes, controlling the movement of 
fluids and solutes in the paracellular space and 
the establishment of cell polarity (Luissint et al. 
2016; Tsukita et al. 2001). Tight junctions reside 
include claudins, TJ-associated MARVEL 
domain-containing proteins (TAMPs, including 
occludin, MARVELD2, and MARVELD3), and 
members of the cortical thymocyte marker in the 
Xenopus family, such as junctional adhesion 
molecules (Luissint et  al. 2016; Raleigh et  al. 
2010). The AJ is an ancient junctional complex 
that initiates and maintains epithelial cell-cell 

W. Ren et al.



139

contacts, while the desmosomes provides 
mechanical strength to the epithelium. The key 
transmembrane protein in the epithelial AJ is 
E-cadherin, while the desmosomes include des-
moglein and desmocollin proteins (Green and 
Simpson 2007; Ivanov and Naydenov 2013). The 
maintenance of the intestinal epithelial barrier is 
dependent on the crosstalk among TJs, AJs, and 
desmosomes (Luissint et al. 2016). A functional 
intestinal epithelium allows for selective absorp-
tion of nutrients, while restricting the passage of 
pathogens and food-borne antigens. However, 
various intestinal pathogens have been reported 
to target the intestinal epithelial barrier to induce 
disassembly and barrier defects. For example, the 
enterotoxin produced by Clostridium perfringens 
has been reported to bind claudins 3, 4, 6, 7, 8, 9, 
and 14, resulting in their internalization from the 
TJ and therefore compromising mucosal barrier 
function (Fernandez Miyakawa et  al. 2005; 
Saitoh et al. 2015; Veshnyakova et al. 2010).

Dietary AAs are important regulators of inter-
cellular function, especially the expression and 
abundance of TJs. This notion is supported results 
from both in vitro and in vivo experiments. For 
example, tryptophan enhances the abundances of 
occludin, claudin-4, zonula occludens (ZO)-1 
and 2 in intestinal porcine epithelial cells (Wang 
et al. 2015a). Similarly, glutamine decreases the 
TJ permeability, but increases the monolayer 
transepithelial electrical resistance (TEER), the 
abundances of transmembrane proteins (includ-
ing occludin, claudin-4, ZO-1, ZO-2, and ZO-3) 
through activation of the calcium/calmodulin-
dependent kinase 2 (CaMKK2)-AMP-activated 
protein kinase (AMPK) signaling (Jiao et  al. 
2015; Wang et  al. 2016). Subsequent investiga-
tions with piglets also demonstrate the positive 
influence of physiological levels of AAs on the 
expression of TJ proteins. Specifically, dietary 
supplementation with glutamine to weanling pig-
lets augments the abundances of occludin, clau-
din-1, ZO-2, and ZO-3 proteins in the jejunum 
(Wang et al. 2015b). Besides glutamine, dietary 
supplementation with putrescine or proline to 
neonatal piglets between day 1 of age and wean-
ing at 14 day of age increases the abundances of 
ZO-1, occludin, and claudin-3 proteins in the 

jejunum (Wang et  al. 2015c). Similarly, studies 
with post-weaning pigs have shown that dietary 
supplementation with 1% glutamine (Wu et  al. 
1996), 1% proline (Wu et al. 2011), or 1-2% gly-
cine (Wang et  al. 2014b) ameliorated intestinal 
atrophy and improved their growth performance, 
whereas dietary supplementation with 0.2% 
putrescine dihydrochloride improved intestinal 
integrity and decreased the incidence of diarrhea 
(Liu et al. 2019a). Note that glutamine, glycine 
and proline are highly abundant in animal-source 
proteins such as meat & bone meal, poultry by-
products, and chicken visceral digest (Wu and Li 
2020), whereas the content of glycine and proline 
is relatively low in all plant-source proteins (Hou 
et al. 2019). 

Animals are frequently exposed to stressful 
conditions  in their life times. Importantly, AAs 
are beneficial for maintaining the adequate 
expression of intestinal TJ proteins in subjects 
with various intestinal diseases, such as intestinal 
inflammation that is associated with the defect of 
TJ functions. In the dextran sulfate sodium 
(DSS)-induced colitic mouse model, which is 
similar to human ulcerative colitis, dietary sup-
plementation with arginine or glutamine increases 
the abundance of the claudin-1 protein in the 
colon (Ren et  al. 2014c). Likewise, glutamine 
administration increases the abundance of the 
ZO-1 protein in the small-intestinal mucosa of 
DSS-treated mice (Pai et al. 2014). Similarly, in 
rats with methotrexate-induced mucositis, gluta-
mine or arginine supplementation enhances the 
jejunal abundances of claudin-1, occludin and 
ZO-1 proteins through ERK and NF-κB path-
ways (Beutheu et al. 2014). In addition to intesti-
nal inflammation, AAs are also essential for the 
homeostasis of TJ proteins in other situations. 
For example, although a western-style high-fat 
diet lowers the levels of occludin and ZO-1 pro-
teins in the upper part of the mouse small intes-
tine, oral administration of arginine restores the 
abundances of occludin and ZO-1 proteins 
(Sellmann et  al. 2017a). Liang et  al. (2018) 
reported that dietary supplementation with 0.2% 
tryptophan to weanling pigs increased the abun-
dances of ZO-1 and occludin proteins in the 
colon. Furthermore, dietary supplementation 
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with 0.2% and 0.4% tryptophan to weanling pigs 
augmented the abundances of the jejunal ZO-1, 
ZO-3 and claudin proteins in a dose-dependent 
manner, whereas dietary supplementation with 
0.4% tryptophan also enhanced the abundance of 
the jejunal occludin protein (Liang et al. 2019). 
Thus, much evidence shows that intercellular 
junctions, including TJ, AJ and desmosomes, 
play a critical role in the hemostasis of the intes-
tinal epithelium. Dietary AAs are essential for the 
expression of the TJ proteins, especially in vari-
ous intestinal diseases that are characterized by 
defects in the intestinal mucosal barrier 
(Table  8.1). However, it remains unknown how 
AAs affect the location of intestinal TJ proteins 
or the homeostasis of the intestinal AJ and des-
mosomes. This remains to be an active area of 
research in AA physiology and nutrition.

8.5	 �Amino Acids and Goblet 
Cells

In addition to enterocytes, the second subtype of 
cells in the intestinal epithelium is the mucus-
producing goblet cells. Goblet cells are special-
ized secretory cells lining intestinal mucosal 
epithelia. The differentiation of goblet cells from 
intestinal epithelial stem cells is tightly regulated 
by the sterile α motif pointed domain epithelial 
specific transcription factor (Spdef), which 
responds to the downstream of both Notch and 
Wnt signaling. Spdef-null mice show a reduction 
in mature, differentiated goblet cells in the intes-
tine, whereas overexpression of Spdef in the 
intestine displays an expansion of 
Muc2-expressing goblet cells at the expense of 
other intestinal cell types (Gregorieff et al. 2009; 
Noah et al. 2010). Goblet cells have critical roles 
in maintaining intestinal homeostasis through 
secreting a variety of factors, such as mucins and 
trefoil factors (Johansson and Hansson 2016; 
McCauley and Guasch 2015). The secretion of 
these factors from goblet cells depends on vari-
ous stimuli, such as microbial factors, growth 
factors and inflammatory cytokines (Deplancke 
and Gaskins 2001; McCauley and Guasch 2015; 
Wlodarska et al. 2014), as well as the availability 

of threonine (a major AA in mucins; Wu 2018). 
These factors entrap external insults such as 
pathogens, toxins, and allergens, and prevent 
their translocation into the blood and other extra-
intestinal tissues (Johansson and Hansson 2016). 
Besides the secretory function, goblet cells have 
recently been implicated as antigen-presenting 
cells because goblet cells in the small intestine 
present intestinal luminal antigens to the underly-
ing dendritic cells so that dendritic cells can sense 
intestinal insults without a break in intestinal bar-
rier integrity (Knoop et al. 2015; McDole et al. 
2012).

Increasing evidence has shown that dietary 
AAs actively maintain the number of intestinal 
goblet cells and the expression of mucins in the 
intestine. For example, in healthy mice, dietary 
supplementation with 1.0% glutamine for 
2 weeks promotes the expression of mucin-4  in 
the jejunum (Ren et al. 2014b). Similar observa-
tion has also been reported in various models of 
intestinal diseases. For example, in rats with 
DSS-induced colitis, dietary supplementation 
with a mixture of AAs (containing L-threonine, 
L-serine, L-proline, and L-cysteine) attenuates 
reductions in the number of Muc2-containing 
goblet cells in the intestinal epithelium of the 
ulcerated area and mucin production in the colon, 
while restoring the mucin AA composition and 
mucosal content (Faure et al. 2006). Likewise, in 
rats with experimental diversion colitis, gluta-
mine supplementation increases the number of 
goblet cells in the colonic lamina propria 
(Pacheco et  al. 2012). Also, in enterotoxigenic 
Escherichia coli (ETEC) infected mice, gluta-
mine promotes the expression of mucin-2 in the 
jejunum (Xu et al. 2017), providing another line 
of evidence for a crucial role of the functional AA 
in gut integrity and function (Rhoads and Wu 
2009).

Under certain experimental conditions, some 
AAs have little effect on or even reduce the num-
ber of intestinal goblet cells. For example, gluta-
mine supplementation to weaning mice did not 
affect the number of goblet cells, or the expres-
sion of markers for goblet cells (Chen et  al. 
2018a). In male 50-day-old Wistar rats, dietary 
supplementation with 2.0% glutamine for 10 days 
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Table 8.1  Effects of amino acids on intestinal tight junction proteins

Amino acids Models Effect on TJs References
Tryptophan IPEC Tryptophan increases the protein abundances of occludin, 

claudin-4, ZO-1 and ZO-2.
Wang et al. 
(2015a)

Pigs Tryptophan supplementation enhances the mRNA levels of 
claudin-3 and ZO-1.

Liu et al. 
(2017b)

Methionine Rats Methionine restriction increases the mRNA levels of claudin-3 
and changes the posttranslational modification of occludin.

Ramalingam 
et al. (2010)

Renal 
epithelial 
cells

Methionine restriction decreases the protein abundances of 
claudin-3 and 7, but dramatically increases the abundances of 
claudin-4 and 5.

Mullin et al. 
(2009)

Glycine IPEC Glycine supplementation enhances the protein abundances of 
claudin-3, claudin-7 and ZO-3.

Li et al. (2016)

Valine Grass carp Valine deficiency decreases mRNA levels of claudin-b, 
claudin-3, occludin and ZO-1, but increases the mRNA level of 
claudin-15.

Feng et al. 
(2015b)

Phenylalanine Grass carp Phenylalanine supplementation increases the mRNA levels of 
ZO-1, occludin and claudin-c.

Feng et al. 
(2015a)

Leucine Grass carp Leucine supplementation increases the mRNA levels of 
occludin, ZO-1, claudin-b, claudin-3 and claudin-12.

Jiang et al. 
(2017b)

Isoleucine Hen Excess digestible isoleucine level does not change mRNA levels 
of claudin-1 and occludin.

Dong et al. 
(2016)

Grass carp Isoleucine deficiency down-regulates the mRNA levels of 
claudin-3, claudin-b, claudin-c, occludin and ZO-1, but 
up-regulates the mRNA level of claudin-12.

Feng et al. 
(2017)

Proline Piglet Proline increases the protein abundances of ZO-1, occludin and 
claudin-3.

Wang et al. 
(2015c)

Glutamine IPEC Glutamine increases the protein abundances of occludin, 
claudin-4, junction adhesion molecule (JAM)-A, ZO-1, ZO-2 
and ZO-3.

Wang et al. 
(2016)

Weanling 
piglet

Glutamine increases the protein abundances of occludin, 
claudin-1, ZO-2, and ZO-3.

Wang et al. 
(2015b)

Caco-2 cells Deprivation of glutamine decreases protein abundances of 
claudin-1, occludin and ZO-1.

Li et al. (2004)

Glutamate IPEC Glutamate enhances the mRNA and protein abundances of 
occludin, claudin-3, ZO-2 and ZO-3.

Jiao et al. 
(2015)

Caco-2 cells Glutamate supplementation increases the mRNA levels of ZO-1 
and occludin during MTX treatment.

Beutheu et al. 
(2013)

Carp Glutamate supplementation increases mRNA levels of ZO-1, 
occludin, claudin-2, 3 and 7 during LPS challenge.

Jiang et al. 
(2017a)

Arginine Caco-2 cells Arginine supplementation increases the mRNA levels of ZO-1 
and occludin during MTX treatment.

Beutheu et al. 
(2013)

Grass carp Arginine supplementation enhances the mRNA levels of 
occludin, claudin-3 and claudin-c.

Chen et al. 
(2019a)

Threonine Broiler 
chickens

Threonine administration increases the mRNA levels of 
claudin-3 and ZO-1 during LPS challenge.

Chen et al. 
(2018b)

Histidine Grass carp Histidine deficiency down-regulates the mRNA levels of 
claudin-b, claudin-c, claudin-3, claudin-12, claudin-15, occludin 
and ZO-1.

Jiang et al. 
(2016)

Citrulline Mice Citrulline increases the protein abundances of occludin and 
ZO-1.

Sellmann et al. 
(2017b)
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was reported to decrease the numbers of goblet 
cells in the villi and crypt of the jejunum or ileum 
(Martins et al. 2016). Similarly, glutamine supple-
mentation reduced the number of goblet cells in 
the villi and crypt of jejunum or ileum in rats with 
Walker-256 tumor (Martins et al. 2016). However, 
the provision of glutamine from the basal diet was 
not known in all these studies. In weaned piglets, 
tryptophan supplementation had little effect on 
the numbers of goblet cells in the duodenum, jeju-
num and ileum (Tossou et  al. 2016). Similarly, 
threonine supplementation did not influence the 
numbers of goblet cells in the jejunum and colon 
or the amounts of mucins in the scrapings of the 
jejunum and colon in weaning piglets (Trevisi 
et  al. 2015). The possible reasons for these dis-
crepancies include animal models, intakes of the 
AAs from the basal diets, supplemental dosages 
of the AAs, and the methods used for the analysis 
of goblet cells. Thus, the influences of AA in 
intestinal goblet cells need further investigation. It 
is interesting to determine whether specific AAs 
(e.g., glutamine, arginine and glycine) regulates 
the differentiation of intestinal goblet cells from 
intestinal epithelial stem cells.

8.6	 �Amino Acids and Paneth 
Cells

With the lineage of secretory cells from intestinal 
epithelial stem cells, Paneth cells produce antimi-
crobial peptides, which are rich in proline (Hou 
et al. 2017). Various cellular signaling pathways 
affect the differentiation of Paneth cells, such as 
Notch, PKC λ/ι and mTORC1 (Heuberger et al. 
2014; Nakanishi et al. 2016; Zhou et al. 2015). 
Unlike the enterocytes, Paneth cells reside at the 
base of the small intestinal crypts of Lieberkühn, 
where epithelial stem cells are also present.

Paneth cells secrete a wide variety of peptides 
and proteins, such as lysozyme, α-defensin pep-
tides and secretory phospholipase A2 isotype II 
(Clevers and Bevins 2013; Porter et  al. 2002; 

Salzman and Bevins 2013). Most of these pep-
tides and proteins have antimicrobial effects, 
which target microorganisms, including the resi-
dent microbiota of the small intestine and the 
intruding pathogens that can potentially penetrate 
the mucus layer to invade the crypt or other parts 
of the intestinal epithelium (Ayabe et  al. 2000; 
Bevins and Salzman 2011). Thus, Paneth cells 
help protect the gut from pathogenic microbes 
and shape the composition of the intestinal resi-
dent microbiota (Brandl et  al. 2007; Salzman 
et al. 2010; Veshnyakova et al. 2010).

Paneth cells also secrete ligands that provide 
trophic support for the adjacent epithelial stem 
cells (Sato et al. 2011). These peptides and pro-
teins are stored in the large secretory granules of 
Paneth cells and secreted into the crypt lumen via 
mechanisms mediated by KCa3.1 calcium-
activated potassium channels in response to a 
variety of stimuli, including bacterial products 
(Ayabe et al. 2000, 2002).

Dietary AAs have been reported to regulate 
the production of antimicrobial peptides by 
Paneth cells. For example, arginine supplementa-
tion upregulates the expression of cryptdins 1, 4, 
and 5, cryptdin-related sequence 1c (Crs1c), and 
RNase angiogenin 4 (Ang4) in the jejunum and 
ileum (Ren et  al. 2014a). Similarly, glutamine 
supplementation increases the mRNA levels for 
cryptdins 1, 4, and 5 in the jejunum, cryptdins 4 
in the ileum, and Reg3g in the colon (Ren et al. 
2014b). In ETEC-infected mice, arginine or glu-
tamine supplementation also promotes the 
expression of the Crs1c and Reg3g genes (Liu 
et al. 2017a). Although these results indicate the 
beneficial function of arginine or glutamine in 
Paneth cells, the underlying mechanisms are 
largely unknown. It remains to be determined 
whether other functional AAs regulate the differ-
entiation of Paneth cells or the expression of anti-
microbial peptides in the cells. Collectively, 
arginine or glutamine can modulate the synthesis 
of antimicrobial peptides in Paneth cells. 
However, the roles of other AAs in the secretion 
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of intestinal antimicrobial peptides and the dif-
ferentiation of Paneth cells remain to be explored.

8.7	 �Amino Acids and Intestinal 
Immune Cells

There are various types of immune cells in the 
intestine, including IELs, microfold cells, den-
dritic cells, macrophages, B cells, and T cells (Fig. 
8.1). The intestine has now been characterized as 
the largest lymphoid organ in humans and other 
mammals. The intricate intestinal immune sys-
tem consists of the outer epithelial layer and the 
inner lamina propria. The components of the 
outer section include IELs, the dendritic cell 
extensions and microfold cells. Intraepithelial 
lymphocytes are an important line of the first 
defense that maintains the integrity of intestinal 
epithelial cells, and dendritic cells help to deter-
mine the type of immune response as needed by 
presenting luminal antigens. In pigs, IELs 
respond well to T-cell mitogens after weaning but 
not during the preweaning period (Wu 1996). 
Microfold cells also mediate the transcytosis of 
antigens across the epithelium. The inner section 
of the intestinal defense locates below the IELs, 
and includes dendritic cells, neutrophils, macro-
phages, immunoglobulin (Ig) A-producing B 
cells, natural killer (NK) cells, NK T-cells, con-
ventional T-cells, and T-regulatory cells.

The numbers of macrophages, T cells, and B 
cells in the intestinal mucosa are greater in wean-
ling mammals (e.g., pigs) than in preweaning ones 
(Wu 1995). These immune cells initiate inflamma-
tion and injury in the gut. Available evidence shows 
that AAs are important regulators of the activation 
and function of intestinal immune cells. For exam-
ple, glutamine promotes the secretion of IgA and 
increases the abundance of IgA-producing B cells 
in the intestine (Ren et al. 2016b; Wu et al. 2016). 
Glutamine also highly shapes the polarization of 
macrophages through mechanisms, including 
glutamine-UDP-N-acetylglucosamine pathway, 
glutamine-derivedα-ketoglutarate via glutaminoly-
sis, and glutamine-dependent anerplerosis or the 
GABA shunt (Ren et al. 2019a; Xia et al. 2019). 
Dietary deficiency of AAs significantly reduces the 

number of F4/80+CD11b+ macrophages and the 
number of IL-10+F4/80+CD11b+ macrophages in 
the mouse small intestine (Ochi et al. 2016). The 
influence of dietary AAs on small-intestinal macro-
phages may depend on mTOR signaling because 
an inhibition of this signaling by rapamycin also 
reduces the number of IL-10+F4/80+CD11b+ mac-
rophages in the mouse small intestine (Ochi et al. 
2016).

Considering the importance of AAs in T cell 
fate decision (Ren et al. 2016c, 2017a, b), it is not 
surprising that AAs regulate intestinal T cell 
response. For example, during ETEC infection, 
intestinal GABA promotes the expression of 
IL-17 in the jejunum of both mice and piglets (Ren 
et  al. 2016d, 2019b). In addition to conventional 
T-cells, AAs also modulate the intestinal un-con-
ventional T-cell response. For example, in the DSS-
treated mice, glutamine administration increases 
the proportion of small-intestinal IEL γδ-T cells 
but decreases the expression of genes responsible 
for immunomodulation in IEL γδ-T cells, such as 
Ifn-γ, Tnf-α and Il-17 (Pai et al. 2014). Similarly, 
glutamine decreases the percentage of IEL γδ-T 
cells, and regulates the mRNA expression of Bcl-xl, 
Il-7 receptor and Reg3g in IEL γδ-T cells in mice 
with ischemia/reperfusion injury (Pai et al. 2015). 
Furthermore, dietary supplementation with 
L-tryptophan (0.1 g/kg body weight per day) to 
mice with DSS-induced inflammation reduced the 
abundances of macrophages and neutrophils in the 
colon and improved colonic immune responses 
partly through attenuating the activation of toll-like 
receptor 4 (TLR4)-STAT3 signaling and nucleus 
p-65 (Wang et al. 2020). Thus, dietary AAs play an 
important role in the activation and function of 
intestinal immune cells (e.g., IgA-producing B 
cells, macrophages and T cells, Table  8.2). 
However, the influences of AAs on the number and 
function of other types of intestinal immune cells, 
such as M cell, dendritic cells and neutrophils, need 
further investigation. Besides the mTOR signaling, 
whether AAs affects the fate of intestinal immune 
cells through other cellular signaling molecules 
(such as nitric oxide, kynurenine, glycine, gluta-
mate and hydroxyproline) remain to be determined 
(Hou and Wu 2018; Li and Wu 2018; Wang et al. 
2013, 2020; Wu et al. 2019b).
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Table 8.2  Effects of amino acids on intestinal immunity

Amino acids Models Effect on intestinal immunity References
Tryptophan Acetic acid-treated 

mice
Tryptophan supplementation inhibits the colonic mRNA 
expression of IL-22.

Chen et al. 
(2018a)

DSS- treated mice Tryptophan supplementation reduces the colonic mRNA 
levels of IL-6, TNF-α, IL-1β, CCL2, CXCL1 and 
CXCL2.

Islam et al. 
(2017)

Methionine Chemotherapy-
induced intestinal 
mucositis rats

Methionine supplementation increases the intestinal 
mRNA levels of IL-10.

Wu et al. 
(2019a)

Glycine Rodent postoperative 
inflammatory ileus

Glycine treatment reduces the mRNA levels of IL-6 and 
TNF-α in the rat small intestinal muscularis.

Stoffels 
et al. 
(2011)

Valine Normal grass carp Valine deficiency down-regulates mRNA levels of IL-10 
and TGF-β1, but up-regulates the mRNA levels of 
TNF-α and IL-8 in the small intestine.

Luo et al. 
(2014)

Phenylalanine Normal grass carp Phenylalanine supplementation increases the mRNA 
levels of IL-10 and TGF-β1 in the intestine.

Feng et al. 
(2015a)

Leucine LPS-treated chicken 
embryos

Leucine supplementation decreases IgA production and 
mRNA level of IL-6 in small intestine.

Liu et al. 
(2018)

Normal grass carp Leucine supplementation down-regulates the mRNA 
levels of TNF-α and IL-8 in the mid and distal intestine.

Jiang et al. 
(2015)

Serine Early-weaned piglets Serine supplementation decreases both cytokine 
secretion and mRNA levels of IL-1β, IL-6, IL-8 and 
TNF-α in the small intestine.

Zhou et al. 
(2018)

LPS-treated mice Serine treatment reduces the mRNA levels of IL-1β, 
TNF-α, IL-6, IL-8 and IL-10 in the ileum.

Zhou et al. 
(2017)

Cysteine LPS-treated piglets Cysteine supplementation down-regulates the mRNA 
levels of TNF-α, IL-6 and IL-8 in the jejunum and 
ileum.

Song et al. 
(2016)

DSS-treated piglets Cysteine supplementation reduces the colonic mRNA 
levels of TNF-α, IL-6, IL-12p40 and IL-1β.

Kim et al. 
(2009)

Asparagine LPS-treated piglets Asparagine supplementation down-regulates the 
intestinal TNF-α secretion.

Chen et al. 
(2016)

Glutamine Normal mouse Glutamine supplementation increases ileal mRNA levels 
of IL-5, IL-6, IL-13 and TGF-β.

Wu et al. 
(2016)

DSS-treated mouse Glutamine administration increases the proportion of 
small-intestinal IEL γδ-T cells but decreases the mRNA 
levels of IFN-γ, TNF-α and IL-17 in IEL γδ-T cells.

Pai et al. 
(2014)

Normal mouse Glutamine supplementation enhances mRNA levels for 
IL-1β, IL-17 and TNF-α in the ileum.

Ren et al. 
(2014b)

Soybean meal-induced 
enteritis turbot

Glutamine decreases the infiltration of leucocytes in the 
lamina propria and submucosa, as well as the mRNA 
levels of IL-8, TNF-α and TGF-β in the intestine.

Gu et al. 
(2017)

Threonine LPS-treated chicken Threonine administration reduces mRNA levels of the 
jejunal IFN- γ and ileal IL-1β.

Chen et al. 
(2018c)

IUGR weanling 
piglets

Threonine supplementation reduces the ileal mRNA 
level of TNF-α, and increases the production of Muc2 
and SIgA, as well as the density of goblet cells.

Zhang 
et al. 
(2019)

Aspartate Normal mouse Aspartate supplementation decreases the ileal mRNA 
levels of IL-17, IFN-γ and Muc2.

Bin et al. 
(2017)

Glutamate LPS-treated Jian carp Glutamate treatment suppresses the mRNA levels of 
IL-1β, IL-8 and TNF-α, but enhances the mRNA levels 
of IL-10 in the intestine.

Jiang et al. 
(2017a)

(continued)
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8.8	 �Conclusion

The intestine interacts with a diverse community 
of antigens and bacteria, and has evolved with a 
complex defense system, including the indige-
nous intestinal microbiota, epithelial layer and 
lamina propria. Dietary intakes of AAs pro-
foundly affect this defense system that involves 
not only luminal microbes but also intestinal epi-
thelial cells, TJs, globet cells, Paneth cells and 
immune cells (e.g., macrophages, B cells and T 
cells). It is imperative to explore the roles of AAs 
on the function of other components of the intes-
tinal defense system, such as tuft cells, enteroen-
docrine cells and intestinal innate lymphoid cells. 
Through modulation of the intestine immune and 
anti-inflammatory systems, AAs can control the 
progression of various intestinal diseases, such as 
intestinal infection and intestinal colitis. 
However, we eagerly await further investigations 
of the new roles of AAs in intestinal physiology 
and pathology, and more evidence about the ben-
efits of manipulating AA metabolism for mitigat-
ing intestinal diseases. In practice, adequate 
intakes of dietary AAs, particularly functional 
AAs (Wu 2010), are crucial for maintaining the 
integrity and function of the intestine and the 
whole-body in humans and other animals.
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