
The Prolog Debugger and Declarative
Programming

W�lodzimierz Drabent1,2(B)

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
drabent@ipipan.waw.pl

2 IDA, Linköping University, Linköping, Sweden

Abstract. Logic programming is a declarative programming paradigm.
Programming language Prolog makes logic programming possible, at
least to a substantial extent. However the Prolog debugger works solely
in terms of the operational semantics. So it is incompatible with declar-
ative programming. This report discusses this issue and tries to find how
the debugger may be used from the declarative point of view. The results
are rather not encouraging. Also, the box model of Byrd, used by the
debugger, is explained in terms of SLD-resolution.

Keywords: Declarative diagnosis/Algorithmic debugging · Prolog ·
Declarative programming · Program correctness · Program
completeness

1 Introduction

The idea of logic programming is that a program is a set of logic formulae,
and a computation means producing logical consequences of the program. So
it is a declarative programming paradigm. The program is not a description
of any computation, it may be rather seen as a description of a problem to
solve. Answers of a given program (the logic) may be computed under various
strategies (the control), the results depend solely on the former. This semantics
of programs, based on logic, is called declarative semantics.

Programming language Prolog is a main implementation of logic program-
ming. Its core, which may be called “pure Prolog”, is an implementation of
SLD-resolution under a fixed control. (SLD-resolution with Prolog selection rule
is called LD-resolution.) For a given program P and query Q, Prolog computes
logical consequences of P which are instances of Q. If the computation is finite
then, roughly speaking, all such consequences are computed1.

On the other hand, Prolog may be viewed without any reference to logic, as
a programming language with a specific control flow, the terms as the data, and
1 See e.g. [1] for details. We omit the issue of unification without occur-check; it

may lead to incorrect answers (i.e. not being logical consequences of the program).
Technically, by an answer of a program we mean the result of applying a (correct or
computed) answer substitution to a query.

c© Springer Nature Switzerland AG 2020
M. Gabbrielli (Ed.): LOPSTR 2019, LNCS 12042, pp. 193–208, 2020.
https://doi.org/10.1007/978-3-030-45260-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45260-5_12&domain=pdf
http://orcid.org/0000-0002-4700-7272
https://doi.org/10.1007/978-3-030-45260-5_12

194 W. Drabent

a certain kind of term matching as the main primitive operation. Such a view
is even necessary when we deal with non logical features of full Prolog, like the
built-ins dealing with input/output. Of course such operational view loses all the
advantages of declarative programming.

In the author’s opinion, Prolog makes declarative programming possible in
practice. A Prolog program treated as a set of logical clauses is a logic pro-
gram. The logic determines the answers of the program. At a lower level, the
programmer can influence the control. This can be done by setting the order of
program clauses and the order of premises within a clause (and by some addi-
tional Prolog constructs). Changing the control keeps the logic intact, and thus
the program’s answers are unchanged; the logic is separated from the control
[9]. What is changed is the way they are computed, for instance the computa-
tion may be made more efficient. In particular, an infinite computation may be
changed into a finite one.

In some cases, programs need to contain some non-logical fragments, for
instance for input-output. But the practice shows that Prolog makes possible
building programs which are to a substantial extent declarative; in other words,
a substantial part of such program is a logic program. Numerous examples are
given in the textbooks, for instance [14]. For a more formal discussion of this
issue see [6].

It should be noted that the operational, low-level approach to Prolog pro-
gramming is often overused. In such programs it is not the declarative semantics
that matters. A typical example is the red cut [14] – a programming technique
which is based on pruning the search space; the program has undesired logi-
cal consequences, which are however not computed due to the pruning. Under-
standing such program substantially depends on its operational semantics. And
understanding the operational semantics is usually more difficult than that of the
declarative semantics. In particular, examples of programs with the red cut are
known, for which certain choices of the initial query lead to unexpected results
[14, p. 202–203], [3, Chapter 4]. In seems that some Prolog textbooks over-use
such style of programming (like [2,3], at least in their earlier editions).

Debugging Tools of Prolog. We begin with a terminological comment. Often the
term “debugging” is related to locating errors in programs. However its meaning
is wider; it also includes correcting errors. So a better term for locating errors
is diagnosis. However this text still does not reject the first usage, as it is quite
common.

Despite Prolog has been designed mainly as an implementation of logic pro-
gramming, its debugging tools work solely in terms of the operational seman-
tics. So all the advantages of declarative programming are lost when it comes
to locating errors in a program. The Prolog debugger is basically a tracing
tool. It communicates with the programmer only in terms of the operational
semantics. She (the programmer) must abandon the convenient high abstraction
level of the declarative semantics and think about her program in operational
terms.

The Prolog Debugger and Declarative Programming 195

Declarative Diagnosis. In principle, it is well known how to locate errors in
logic programs declaratively, i.e. abstracting from the operational semantics (see
e.g. [4, Section 7] and the references therein). The approach is called declarative
diagnosis (and was introduced under a name algorithmic debugging by Shapiro
[13]). Two kinds of errors of the declarative semantics of a program are dealt
with: incorrectness – producing results which are wrong according to the spec-
ification, and incompleteness – not producing results which are required by the
specification. We learn about an error by encountering a symptom – a wrong
or missing answer obtained at program testing. Given a symptom, an incor-
rectness (respectively incompleteness) diagnosis algorithm semi-automatically
locates an error in the program, asking the user some queries about the
specification.

Unfortunately, declarative diagnosis was not adapted in practice. No tools
for it are included in current Prolog systems.

Intended Model Problem. A possibly main reason for lack of acceptance of declar-
ative diagnosis was discussed in [4, Section 7]. Namely, declarative diagnosis
requires that the programmer exactly knows the relations to be defined by the
program. Formally this means that the programmer knows the least Herbrand
model of the intended program. (In other words, the least Herbrand model is
the specification.) This requirement turns out to be unrealistic. For instance,
in an insertion sort program we do not know how inserting an element into an
unsorted list should be performed. This can be done in any way, as the algorithm
inserts elements only into sorted lists. Moreover, this can be done differently in
various versions of the program. See [6] for a more realistic example2. Let us call
this difficulty intended model problem.

Usually the programmer knows the intended least Herbrand model of her
program only approximately. She has an approximate specification: she knows
a certain superset Scorr and a certain subset Scompl of the intended model.
The superset tells what may be computed, and the subset – what must be
computed. Let us call the former, Scorr, the specification for correctness and
the latter, Scompl , the specification for completeness. Thus the program should
be correct with respect to the former specification and complete with respect
to the latter: Scompl ⊆ MP ⊆ Scorr (where MP is the least Herbrand model
of the program). In our example, it is irrelevant how an element is inserted
into an unsorted list; thus the specification for correctness would include all
such possible insertions (and the specification for completeness would include
none).

Now it is obvious that when diagnosing incorrectness the programmer should
use the specification for correctness instead of the intended model, and the spec-
ification for completeness should be used when diagnosing incompleteness [4].
The author believes that this approach can make declarative diagnosis useful in
practice.

2 In the main example of [6], the semantics of a particular predicate differs at various
steps of program development.

196 W. Drabent

Intended model problem was possibly first noticed by Pereira [12]. He intro-
duced the notion of inadmissible atomic queries. A formal definition is not given3.
We may suppose that ground inadmissible atoms are those from Scorr \ Scompl .
Generally, this notion is not declarative; an inadmissible atom seems to be one
that should not appear as a selected atom in an LD-tree of the program.

Naish [11] proposed a 3-valued diagnosis scheme. The third value, inadmis-
sible, is related to the search space of a diagnosis algorithm, and to its queries.
The form of queries depends on the particular algorithm, e.g. it may be an atom
together with its computed answers. So the third value is not (directly) related
to the declarative semantics of programs. It turns out that applying the scheme
to incorrectness diagnosis ([11, Section 5.1]) boils down to standard diagnosis
w.r.t. Scorr, and applying it to incompleteness diagnosis ([11, Section 5.2]) – to
the standard diagnosis w.r.t. Scompl (where Scompl is the set of correct atoms,
and Scorr is the set of correct or inadmissible ones). So introducing the 3-valued
scheme seems unnecessary (at least for incorrectness and incompleteness diag-
nosis).

This Paper. The role of this paper is to find if, how, and to which extent the
Prolog debugger can be used as a tool for declarative logic programming. We
focus on the debugger of SICStus Prolog. We omit its advanced debugging fea-
tures, which are sophisticated, but seem not easy to learn and not known by
most of programmers.

The paper is organized as follows. The next section deals with the Prolog
debugger and the information it can provide. Section 3 discusses applying the
debugger for diagnosing incorrectness and incompleteness. The last section con-
tains conclusions.

2 Prolog Debugger

In this section we present the Prolog debugger and try to find out how to use
it to obtain the information necessary from the point of view of declarative
programming. First we relate the computation model used by the debugger
to the standard operational semantics (LD-resolution). We also formalize the
information needed for incorrectness and incompleteness diagnoses. For incor-
rectness diagnosis, given an atomic answer A we need to know which clause
H ← B1, . . . , Bn have been used to obtain the answer A (A is an instance of
H), and which top-level atomic answers (instances of B1, . . . , Bn) have been
involved. For incompleteness diagnosis, the related information is which answers
have been computed for each selected instance of each body atom Bi of each
clause H ← B1, . . . , Bn resolved with a given atomic query A. In Sect. 2.2 we
describe the messages of the debugger. Section 2.3 investigates how to extract
from the debugger’s output the information of interest.
3 “a goal is admissible if it complies with the intended use of the procedure for it –

i.e. it has the correct argument types – irrespective of whether the goal succeeds or
not” (p. 6 of the extended version of [12]).

The Prolog Debugger and Declarative Programming 197

2.1 Byrd Box Model and LD-Resolution

The debugger refers to the operational semantics of Prolog in terms of a “Byrd
box model”. Roughly speaking, the model assigns four ports to each atom
selected in LD-resolution. From a programmer’s point of view such atom can
be called a procedure call. The model is usually easily understood by program-
mers. However it will be useful to relate it here to LD-resolution, and to introduce
some additional notions. In this paper, we often skip “LD-” and by “derivation”
we mean “LD-derivation” (unless stated otherwise).

Structuring LD-derivations. Let us consider a (finite or infinite) LD-derivation D
with queries Q0, Q1, Q2 . . ., the input clauses C1, C2, . . ., and the mgu’s θ1, θ2,
By a procedure call of D we mean the atom selected in a query of D. Following
[5,7], we describe a fragment of D which may be viewed as the evaluation of a
given procedure call A.

Definition 1. Consider a query Qk−1 = A,B1, . . . , Bm (m ≥ 0) in a derivation
D as above. If D contains a query Ql = (B1, . . . , Bm)θk · · · θl, k ≤ l, then the
call A (of Qk−1) succeeds in D.

In such case, by the subderivation for A (of Qk−1 in D) we mean the frag-
ment of D consisting of the queries Qi where k − 1 ≤ i ≤ l, and for k − 1 ≤ i < l
each Qi contains more than m atoms4. We call such subderivation successful.
The (computed) answer for A (of Qk−1 in D) is Aθk · · · θl.

If A (of Qk−1) does not succeed in D then the subderivation for A (of Qk−1

in D) is the fragment of D consisting of the queries Qi where k − 1 ≤ i.
By a subderivation (respectively an answer) for A of Q in an LD-tree T we

mean a subderivation (answer) for A of Q in a branch D of T .

Now we structure a subderivation D for an atom A by distinguishing in D
top-level procedure calls. Assume A is resolved with a clause H ← A1, . . . , An

in the first step of D. If then an instance of Ai becomes a procedure call, we call
it a top-level call. More precisely:

Definition 2. Consider a subderivation D for A, with first two queries
Qk−1 = A, Q′ and Qk = (A1, . . . , An, Q′)θk, where n > 0. So A1, . . . , An is
the body of the clause used in the first step of the subderivation. Let |Qk| be
the length of Qk (the number of atoms in Qk).

Consider an index j, 1 ≤ j ≤ n. If there exists in D a query of the length
|Qk| + 1 − j and Qij = (Aj , . . . , An, Q′)θk · · · θij is the first such query then we
say that Ajθk · · · θij (of Qij) is a top-level call of D, and the subderivation D′

for Ajθk · · · θij (of Qij) in D is a top-level subderivation of D.

A top-level call of a subderivation D for A will be also called a top-level call
for A.

4 Thus each such Qi is of the form A1, . . . , Ami , (B1, . . . , Bm)θk · · · θi where mi > 0.This
implies that the least l > k is taken such that Ql is of the form (B1, . . . , Bm)θk · · · θl.

198 W. Drabent

Notice that if A is resolved with a unary clause (n = 0, and D consists of two
queries) then D has no top-level subderivations. Also, if a top-level subderivation
D′ of D is successful then the last query of D′ is the first query of the next
subderivation, or it is the last query of D.

We are ready to describe what information to obtain from the debugger in
order to facilitate incorrectness and incompleteness diagnosis. First we describe
which top-level answers correspond to an answer for A; we may say that they
have been used to obtain the answer for A.

Definition 3. If subderivation D for A as in Definition 2 is successful then it has
n top-level subderivations, for atoms Ajθk · · · θij (j = 1, . . . , n). Their answers
in D are, respectively, A′

j = Ajθk · · · θij+1 (where in+1 is the index of the last
query Qin+1 = Q′θk · · · θin+1 of D). In such case, by the top-level success trace
for A (in D) we mean the sequence A′

1, . . . , A
′
n of the answers.

Top-level success traces will be employed in incorrectness diagnosis. For diag-
nosing incompleteness, we need to collect all the answers for each top-level call.

Definition 4. Consider an LD-tree T with a node Q. Let A be the first atom
of Q. By the top-level search trace (or simply top-level trace) for A (of Q in
T) we mean the set of pairs

⎧
⎪⎪⎨

⎪⎪⎩

(B, {B1, . . . , Bk})

∣
∣
∣
∣
∣
∣
∣
∣

B is the first atom of a node Q′ of T ,
Q′ occurs in a subderivation D′ for A of Q in T ,
B is a top-level call of D′,
B1, . . . , Bk are the answers for B of Q′ in T

⎫
⎪⎪⎬

⎪⎪⎭

.

2.2 Debugger Output

For the purposes of this paper, this section should provide a sufficient description
of the debugger. We focus on the debugger of SICStus. For an introduction and
further information about the Prolog debugger see e.g. the textbook [3] or the
manual http://sicstus.sics.se/.

Prolog computation can be seen as traversal of an LD-tree. The Prolog debug-
ger reports the current state of the traversal by displaying one-line items; such
an item contains a single atom augmented by other information. A procedure
call A is reported as an item

n d Call: A

and a corresponding answer A′ = Aθk · · · θi as

n d Exit: A′

Here n, d are, respectively, the unique invocation number and the current depth
of the invocation; we skip the details. What is important is that, given an Exit
item, the invocation number uniquely determines the corresponding Call item.

Note that a node in an LD-tree may be visited many times, and usually more
than one item correspond to a single visit. For instance, to the last node Ql of a

http://sicstus.sics.se/

The Prolog Debugger and Declarative Programming 199

successful subderivation for A (say that from Definition 1) there correspond, at
least, an Exit item with atom Aθk · · · θl and a Call item with atom B1θk · · · θl
(provided m > 0). Note that such a node is often the last query of more than
one successful subderivations (cf. Definition 2). In such case other Exit items
correspond to Ql. They are displayed in the order which may be described as
leaving nested procedure calls. More formally, the order of displaying the Exit
items is that of the increasing lengths of the corresponding successful subderiva-
tions. (The displayed invocation depths of these items are decreasing consecutive
natural numbers.)

An Exit item is preceded by ? when backtrack-points exist between the cor-
responding Call and the given Exit. Thus more answers are possible for (the
atom of) this Call.

At backtracking the debugger displays Redo items of the form

n d Redo: A′

Such item corresponds to an Exit item with the same numbers n, d and atom A′.
Both items correspond to the same node of the LD-tree. The Redo item appears,
speaking informally, when the answer A′ is abandoned, and the computation of
a new answer for the same query begins. SICStus usually does not display a
Redo item when the corresponding Exit item was not preceded by ?.

A Fail item
n d Fail: A

is displayed when no (further) answer is obtained for A. This means that a node
with A selected is being left (and will not be visited anymore). The numbers and
the atom in a Fail item are the same as those in the corresponding Call item.
Both the Call and Fail items correspond to the same node of the LD-tree.

We described the output of the debugger of SICStus. Commands of the
debugger will be described when necessary. The debuggers of most Prolog sys-
tems are similar. However important differences happen. For instance the debug-
ger of SWI-Prolog (http://swi-prolog.org/) does not display the invocation num-
bers. This may make difficult e.g. finding the Call item corresponding to a given
Exit item. On the other hand, the debuggers or Ciao (http://ciao-lang.org/) and
Yap (https://github.com/vscosta/yap-6.3) seem to display such numbers.

2.3 Obtaining Top-Level Traces

We are ready to describe how to obtain top-level traces using the Prolog debug-
ger. We first deal with the search trace.

Algorithm 1 (All answers). Assume that we are at a Call port; the debugger
displays

n d Call: B

We show how to obtain all the answers for B. Do repetitively the following.

1. Type s to skip the details of processing the query B and to go to the corre-
sponding Exit or Fail port.

http://swi-prolog.org/
http://ciao-lang.org/
https://github.com/vscosta/yap-6.3

200 W. Drabent

2. If the obtained port is n d Exit: B′ then B′ is a computed answer for B.
Type jr (to jump to the Redo port; n d Redo: B′ is displayed). Repeat
(step 1) to compute further answers
If the obtained port is a Fail then all the answers have been obtained. To
come back to the initial Call port, type r.

An alternative to using this algorithm is to simply run Prolog on query B
(e.g. using the “break” option of the debugger).

Algorithm 2 (Top-level trace). Assume that we are at a Call port

n d Call: A

We show a way of obtaining the top-level search trace for A. Repetitively do the
following.

1. If an item
n d Call: A or n d Redo: A′

is displayed then type enter to make one step of computation.5
2. If

n d Fail: A

is displayed then the search is completed. The trace has been obtained.
3. If

n d Exit: A′

is displayed then type jr (to jump to the Redo port of A, in order to continue
the search).

4. If
ni d+1 Call: Bi

is displayed then employ Algorithm 1 to obtain the answers for Bi. Query Bi

together with the answers is an element of the top-level trace for A.
Now we are again at the same Call:Bi item. Type s to arrive at the first
answer for Bi, (or to a Fail if there is none).

5. If
ni d+1 Exit: B′

i or ni d+1 Fail: Bi

is displayed then type enter , to make a single step.6

5 In the case of Call there are three possibilities. If the result is an item
n1 d+1 Call: B1 then B1 is an instance of the first atom of the body of the
clause used in the resolution step. Obtaining n d Exit: A′ means that a unary
clause was used and A succeeded immediately. Obtaining n d Fail: A means that
A failed immediately, as it was not unifiable with any clause head.
In the case of Redo:A′, we deal with backtracking after having obtained an answer
A′ for A. Then there is a fourth possibility: obtaining a Redo:B′

j item, where B′
j

is an answer obtained for (an instance of) an atom Bj from the body of the clause
used to obtain the answer A′.

6 After an Exit, this leads to a Call:Bi+1 item, or to an Exit:A′ item; the latter
when Bi is (an instance of) the last atom of the used clause. After a Fail, this leads
(in a simple case) to a Redo:Bi−1.
Here Bi−1, Bi, Bi+1 are instances of three consecutive atoms of the used clause.

The Prolog Debugger and Declarative Programming 201

6. If
ni d+1 Redo: B′

i

is displayed then type s to arrive at the next answer for Bi (or to a Fail if
there is none).

The algorithm outputs the same answers (Exit items) twice (by Algorithm 1
and after an s at steps 4 and 6). So all the details of the trace are displayed even
if we do not invoke Algorithm 1. But obtaining the top-level trace from such
output seems too tedious; we need to group each query with its answers (e.g. by
sorting by the invocation numbers), and remove unnecessary items. This can be
done by a shell command cut -b 2- | sort -nk 1 | egrep ’Call:|Exit:’ .

Algorithm 3 (Top-level success trace). Assume that we obtained an Exit
item containing an answer A′. The item corresponds to the last query of a
successful subderivation D for an atom A. In order to extract from the debugger
output the top-level success trace for A in D, we need that the debugger has
displayed the Call and Exit items containing the top-level calls of D and the
corresponding answers. If this is not the case then, at the n d Exit: A′ item,
type r to arrive to the corresponding Call item, n d Call: A. Then perform
Algorithm 2 until arriving again to the Exit:A′ item (all the invocations of
Algorithm 1 may be skipped).

To select a top-level success trace from the printed debugger items, do repeti-
tively the following. The trace will be constructed backwards. Initially the cur-
rent item is n d Exit: A′. Repetitively do the following:

The current item is

n d Exit: A′ or nj d+1 Call: Bj

Consider the preceding item. If the immediately preceding item is

nj′ d+1 Exit: B′
j′

then B′
j′ is obtained as an element of the success trace. Find the corre-

sponding
nj′ d+1 Call: Bj′

item, and make it the current item.
Otherwise, the preceding item is

n d Call: A or n d Redo: A′′

and all the elements of the top-level success trace for A have been found.

The construction of a top-level success trace can be made more efficient, by
re-starting the computation with A′ as the initial query. Then the search space
to obtain a success of A′ (and the corresponding top-level success trace) may be
substantially smaller than that for original atomic query from the Call item.

202 W. Drabent

3 Diagnosis

This section first discusses diagnosis of incorrectness, and then that of incom-
pleteness. In each case we first present the diagnosis itself, and then discuss how
it may be performed employing the Prolog debugger.

3.1 Diagnosing Incorrectness

A symptom of incorrectness is an incorrect answer of the program. More for-
mally, consider a program P and an Herbrand interpretation Scorr, which is our
specification for correctness. A symptom is an answer Q such that Scorr �|= Q,
where Scorr is the specification for correctness. (In other words, Q has a ground
instance Qθ such that Q �∈ Scorr.) When testing finds such a symptom, the role
of diagnosis is to find the error, this means the reason of incorrectness. An error
is a clause of the program which out of correct (w.r.t. Scorr) premises produces
an incorrect conclusion. More precisely:

Definition 5. Given a definite program P and a specification Scorr (for cor-
rectness), an incorrectness error is an instance

H ← B1, . . . , Bn (n ≥ 0)

of a clause of P such that Scorr |= Bi for all i = 1, . . . , n, but Scorr �|= H.
An incorrect clause is a clause C having an instance Cθ which is an incor-

rectness error.

In other words, C is an incorrect clause iff Scorr �|= C. In what follows, by a
correct atom we consider an atom A such that Scorr |= A (where Scorr is the
considered specification for correctness).

Note that we cannot formally establish which part of the clause is erroneous.
Easy examples can be constructed showing that an incorrect clause C can be cor-
rected in various ways; and each atom of C remains unchanged in some corrected
version of C [4, Section 7.1].

The incorrectness diagnosis algorithm is based on the notion of a proof tree,
called also implication tree.

Definition 6. Let P be a definite program and Q an atomic query. A proof tree
for P and Q is a finite tree in which the nodes are atoms, the root is Q and

if B1, . . . , Bn are the
children of a node B

then B ← B1, . . . , Bn is an
instance of a clause of P

(n ≥ 0).

Note that the leaves of a proof tree are instances of unary clauses of P .
Now diagnosing incorrectness is rather obvious. If an atom Q is a symptom

then there exists a proof tree for P , Q. The tree must contain an incorrectness
error (otherwise the root of the tree is correct, i.e. Scorr |= Q). A natural way of
searching for the error, in other words an incorrectness diagnosis algorithm, is
as follows: Begin from the root and, recursively, check the children B1, . . . , Bn

The Prolog Debugger and Declarative Programming 203

of the current node whether they are correct (formally, whether Scorr |= Bi). If
all of them are correct, the error is found; it is B ← B1, . . . , Bn (where B the
parent of B1, . . . , Bn). Otherwise take an incorrect child Bi, and continue the
search taking Bi as the current node.

Obviously, such search locates a single error. So correcting the error does not
guarantee correctness of the program.7

3.2 Prolog Debugger and Incorrectness

Now we try to find out to which extent the algorithm described above can be
mimicked by the standard Prolog debugger. Unfortunately, the debugger does
not provide a way to construct a proof tree for a given answer. We can however
employ top-level success traces to perform a search similar to that done by the
incorrectness diagnosing algorithm described in Sect. 3.1.

A Strategy for Incorrectness Errors. Here we describe how to locate incorrectness
errors using the Prolog debugger.

Algorithm 4. Assume that while tracing the program we found out an incor-
rect answer A′ (for a query A). So we are at an Exit item containing A′. Type
r to arrive to the corresponding Call item n d Call: A. Do repetitively the
following:

1. Construct the top-level success trace B′
1, . . . , B

′
m for the subderivation D (for

an atom A, where A′ is the answer for A in D), as described in Algorithm 3.
2. Check whether the atoms of the trace are correct (formally, whether Scorr |=

B′
i). If all of them are, then the search ends.

Otherwise take an item ni d+1 Exit: B′
i, in which B′

i is incorrect, and
find the corresponding Call item ni d+1 Call: B. Now repeat the search,
with A,A′ replaced by, respectively, B,B′

i, by typing a command jcni, or by
starting new tracing from query B (in some cases jcni does not lead to the
expected Call item).

The last obtained top-level success trace B′
1, . . . , B

′
m points out the incorrect

clause (Definition 5) of the program. The clause is C = H ← B1, . . . , Bm such
that the obtained answers are instances of the body atoms of C: each B′

j is an
instance of Bj , for j = 1, . . . ,m. The head H of C is unifiable with the last call
B for which the top-level success trace was built.

Obviously, the algorithm can be improved by checking the correctness of each
element B′

i of the trace as soon as it is located. (So the success trace needs to
be constructed only until an incorrect element is found.)

The approach of Algorithm 4 is rather tedious. A more natural way to locate
incorrectness errors is as follows.

7 This does not even guarantee that the symptom we began with would disappear –
there may be some other errors involved.

204 W. Drabent

Algorithm 5

1. Assume, as above, that an incorrect answer A′ was found. Begin as in Algo-
rithm 4: arrive to the Call:A that resulted in the incorrect answer, and
start constructing a top-level search trace.

2. For each obtained item ni d+1 Exit: B′ check if B′ is correct.
3. If B′ is an incorrect answer, then restart the search from B′.
4. If no incorrect answer has appeared until arriving to the incorrect answer A′

then the error is found. It is the last clause C whose head was unified with
A in the computation. (Formally, an instance of C is an incorrectness error.)
The clause may be identified, as previously, by extracting the top-level suc-
cess trace (for the subderivation that produced A′).

Comments. In Algorithms 4 and 5, it is often not necessary to know the (whole)
top-level success trace to identify the incorrect clause in the program. In many
cases, knowing the last one or two answers of the trace is sufficient. For instance,
let n′ d′ Call: B be the last call for which top-level trace was inspected. The
last item displayed by the debugger is n′ d′ Exit: B′ (where B′ is incorrect).
Assume that the previous item is nj d′+1 Exit: B′

j . Then the top-level trace of
interest is not empty, B′

j is its last atom and is an instance of the last body atom
of an erroneous clause. If the program has only one such clause, then finding the
rest of the top-level success trace is unnecessary.

The error located by the second approach (Algorithm 5) may be not the one
that caused the initial incorrect answer A′. This is because the search may go
into a branch of the LD-tree distinct from the branch in which A′ is produced.
Anyway, an actual error has been discovered in the program. This outcome is
useful, as each error in the program should be corrected.

Note that the approach is complete, in the sense that the error(s) responsible
for A′ can be found. This is due to the nondeterministic search performed by the
algorithm. The error(s) will be located under some choice of incorrect answers
in the top-level search traces.

The search may be made more efficient if, instead of tracing the original com-
putation, we re-start it with an incorrect answer as a query. The corresponding
modification (of both algorithms) is as follows. Whenever an incorrect answer B′

is identified, instead of continuing the search for the corresponding call B, one
interrupts the debugger session and begins a new one by starting Prolog with
query B′. The query will succeed with B′ (i.e. itself) as an answer, but the size
of the trace may be substantially smaller (and is never greater). Moreover, any
incorrect instance of B′ may be used instead of B′.

The Prolog debugger does not facilitate searching for the reason of incorrect-
ness. Finding a top-level success trace is tedious and not obvious. In particular,
there seems to be no way of skipping the backtracking that precedes obtain-
ing the wrong answer. The abilities of the debugger make Algorithm 5 prefer-
able; this approach in a more straightforward way uses what is offered by the
debugger.

The Prolog Debugger and Declarative Programming 205

Looking for the reason of an incorrect answer is a basic task. It is strange
that such a task is not conveniently facilitated by the available debugging tools.

3.3 Diagnosing Incompleteness

A specification for completeness is, as already stated, an Herbrand interpretation
which is the set of all required ground answers of the program. A symptom of
incompleteness is lack of some answers of the program. More formally, given a
program P and a specification Scompl , by an incompleteness symptom we may
consider a ground atom A such that Scompl |= A but P �|= A. As a symptom is
to be obtained out of an actual computation, we additionally require that the
LD-tree for A is finite. We will consider a more general notion of a symptom:

Definition 7. Consider a definite program P and a specification Scompl (for
completeness). Let A be an atomic query for which an LD-tree is finite and let
Aθ1, . . . , Aθn be the computed answers for A from the tree. If there exists an
instance Aσ ∈ Scompl such that Aσ is not an instance of any Aθi (i = 1, . . . , n)
then A,Aθ1, . . . , Aθn is an incompleteness symptom (for P w.r.t. Scompl).

We will often skip the sequence of answers, and say that A alone is the symptom.
The definition can be generalized to non-atomic queries in an obvious way.

Definition 8. Let P be a definite program, and Scompl a specification. A ground
atom A is covered by a clause C w.r.t. Scompl if there exists a ground instance
A ← B1, . . . , Bn of C (n ≥ 0) such that all the atoms B1, . . . , Bn are in Scompl .

A is covered by the program P (w.r.t. Scompl) if A is covered by some clause
C ∈ P .

Informally, A is covered by P if it can be produced by a rule from P out of some
atoms from the specification.

If there exists an incompleteness symptom for P w.r.t. Scompl then there
exists an atom p(t) ∈ Scompl uncovered by P w.r.t. Scompl [4,13]. Such an atom
locates the error in P . This is because no rule of P can produce p(t) out of atoms
required to be produced. This shows that the procedure p (the set of clauses
beginning with p) is the reason of the incompleteness and has to be modified,
to make the program complete. Note that similarly to the incorrectness case, we
cannot locate the error more precisely. Various clauses may be modified to make
p(t) covered, or a new clause may be added. An extreme case is adding to P a
fact p(t).

Incompleteness diagnosis means looking for an uncovered atom, or – more
generally – for an atom with an instance which is uncovered: Such atom localizes
the procedure of the program which is responsible for incompleteness.

Definition 9. Let P be a definite program, and Scompl a specification. An
incompleteness error (for P w.r.t. Scompl) is an atom that has an instance
which is not covered (by P w.r.t. Scompl).

206 W. Drabent

Name “incompleteness error” may seem unnatural, but we find it convenient.
A class of incompleteness diagnosis algorithms employs the following idea.

Start with an atomic query A (which is a symptom) and construct a top level
trace for it. Inspect the trace, whether it contains a symptom B. If so then
invoke the search recursively with B. Otherwise A is an incompleteness error; we
located in the program the procedure that is responsible for the incompleteness.
Such approach (see e.g. [8,12]) is sometimes called Pereira-style incompleteness
diagnosis [10].

3.4 Prolog Debugger and Incompleteness

We show how Pereira-style diagnosis may be done using the Prolog debugger.

Algorithm 6 (Incompleteness diagnosis). Begin with a symptom A. Obtain
the top-level search trace for A. In the trace, check if the atom B from a Call
item together with the answers B1, . . . , Bn from the corresponding Exit items is
an incompleteness symptom. If yes, invoke the same search starting from B. If
the answer is no for all Call items of the trace, the search is ended as we located
A as an incompleteness error.

Comments. Standard comments about incompleteness diagnosis apply here. To
decrease the search space, it is useful to start the diagnosis from a ground
instance Aθ /∈ Scompl of the symptom A (instead of A itself). The same for
each symptom B found during the search – re-start the computation and the
diagnosis from an appropriate instance of B.

Often an incorrectness error coincides with an incompleteness error – a wrong
answer is produced instead of a correct one. The programmer learns about this
when facing an incorrect answer Bi (appearing in a top-level trace). A standard
advice in such case [8,10] is to switch to incorrectness diagnosis. This is because
incorrectness diagnosis is simpler, and it locates an error down to a program
clause (not to a whole procedure, as incompleteness diagnosis does). The gain
of such switch is less obvious in our case, since the effort needed for incorrect-
ness diagnosis (Algorithm 5) may be not smaller than that for incompleteness
(Algorithm 6).

4 Conclusions

Prolog makes declarative logic programming possible – programs may be written
and reasoned about in terms of their declarative semantics, to a substantial
extent abstracting from the operational semantics. This advantage is lost when
it comes to locating errors in programs, as the Prolog debugger works solely in
terms of the operational semantics. We may say that logic programming would
not deserve to be called a declarative programming paradigm if debugging had
to be based on the operational semantics.

This paper is an attempt to study if and how the Prolog debugger can be
used for declarative programming. It presents how the debugger can be used to

The Prolog Debugger and Declarative Programming 207

perform incorrectness and incompleteness diagnosis8. Examples, missing here,
are available at http://arxiv.org/abs/2003.01422/. The debugger used is that of
SICStus; the presented approach may be difficult to apply with the debugger of
SWI-Prolog, as the latter does not display unique invocation numbers (needed
in incorrectness diagnosis, Algorithms 3 and 4).

The results are rather disappointing. Declarative diagnosis based on the Pro-
log debugger is tedious and unnatural. Rather obvious information (like the proof
tree leading to a given answer, or a top-level success trace) is impossible or dif-
ficult to obtain. Possibly, this drawback is a substantial obstacle for employing
declarative logic programming in practice.

This drawback particularly concerns incorrectness diagnosis. Additionally,
debugging of incorrectness seems more important than that of incompleteness.
This is because incompleteness is often caused by producing incorrect answers
instead of correct ones. Also, incorrectness diagnosis is more precise, as it locates
a smaller erroneous fragment of the program than incompleteness diagnosis does.
Hence the first step towards making Prolog debugging declarative is to imple-
ment a tool supporting incorrectness diagnosis. Experiments show that it is
sufficient to provide a tool for convenient browsing of a proof tree (which pro-
vides an abstraction of the part of computation responsible for the considered
incorrect answer).

The Introduction contains a discussion about how to avoid the “intended
model problem”, which is possibly the main reason why declarative diagnosis of
logic programs was abandoned. The author believes that the proposed solution
[4] can make declarative diagnosis useful in practice. What is missing are tools.

References

1. Apt, K.R.: From Logic Programming to Prolog. International Series in Computer
Science, Prentice-Hall (1997)

2. Bratko, I.: Prolog Programming for Artificial Intelligence, 4th edn. Addison-Wesley,
New York (2012)

3. Clocksin, W., Mellish, C.: Programming in Prolog: Using the ISO Standard, 5th
edn. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-55481-0

4. Drabent, W.: Correctness and completeness of logic programs. ACM Trans. Com-
put. Log. 17(3), 18:1–18:32 (2016). https://doi.org/10.1145/2898434

5. Drabent, W.: Proving completeness of logic programs with the cut. Formal Aspects
Comput. 29(1), 155–172 (2017). https://doi.org/10.1007/s00165-016-0392-0

6. Drabent, W.: Logic + control: on program construction and verification.
Theory Pract. Logic Program. 18(1), 1–29 (2018). https://doi.org/10.1017/
S1471068417000047

8 We may informally present the underlying idea of this paper in a different way: To
understand what the Prolog debugger can tell us about the declarative semantics
of the program, we need to be able to obtain the following information. 1. For a
given atomic answer A, what are the top-level answers that have lead to A? (This is
formalized as top-level success trace.) 2. For a given atomic query Q, and for each
top-level atomic query B in the computation for Q, what are all the answers for B?

http://arxiv.org/abs/2003.01422/
https://doi.org/10.1007/978-3-642-55481-0
https://doi.org/10.1145/2898434
https://doi.org/10.1007/s00165-016-0392-0
https://doi.org/10.1017/S1471068417000047
https://doi.org/10.1017/S1471068417000047

208 W. Drabent

7. Drabent, W., Ma�luszyński, J.: Inductive assertion method for logic pro-
grams. Theor. Comput. Sci. 59, 133–155 (1988). https://doi.org/10.1016/0304-
3975(88)90099-0

8. Drabent, W., Nadjm-Tehrani, S., Ma�luszyński, J.: Algorithmic debugging with
assertions. In: Abramson, H., Rogers, M.H. (eds.) Meta-Programming in Logic
Programming, pp. 501–522. The MIT Press, Cambridge (1989)

9. Kowalski, R.A.: Algorithm = logic + control. Commun. ACM 22(7), 424–436
(1979). https://doi.org/10.1145/359131.359136

10. Naish, L.: Declarative diagnosis of missing answers. New Generation Comput.
10(3), 255–286 (1992). https://doi.org/10.1007/BF03037939

11. Naish, L.: A three-valued declarative debugging scheme. In: 23rd Australasian
Computer Science Conference (ACSC 2000), pp. 166–173. IEEE Computer Society
(2000). https://doi.org/10.1109/ACSC.2000.824398

12. Pereira, L.M.: Rational debugging in logic programming. In: Shapiro, E. (ed.) ICLP
1986. LNCS, vol. 225, pp. 203–210. Springer, Heidelberg (1986). https://doi.org/
10.1007/3-540-16492-8 76. Extended version at https://userweb.fct.unl.pt/∼lmp/

13. Shapiro, E.: Algorithmic Program Debugging. The MIT Press, Cambridge (1983)
14. Sterling, L., Shapiro, E.: The Art of Prolog, 2nd edn. The MIT Press, Cambridge

(1994)

https://doi.org/10.1016/0304-3975(88)90099-0
https://doi.org/10.1016/0304-3975(88)90099-0
https://doi.org/10.1145/359131.359136
https://doi.org/10.1007/BF03037939
https://doi.org/10.1109/ACSC.2000.824398
https://doi.org/10.1007/3-540-16492-8_76
https://doi.org/10.1007/3-540-16492-8_76
https://userweb.fct.unl.pt/~lmp/

	The Prolog Debugger and Declarative Programming
	1 Introduction
	2 Prolog Debugger
	2.1 Byrd Box Model and LD-Resolution
	2.2 Debugger Output
	2.3 Obtaining Top-Level Traces

	3 Diagnosis
	3.1 Diagnosing Incorrectness
	3.2 Prolog Debugger and Incorrectness
	3.3 Diagnosing Incompleteness
	3.4 Prolog Debugger and Incompleteness

	4 Conclusions
	References

