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Abstract. Nowadays, many critical systems can be characterized as
hybrid ones, combining continuous and discrete behaviours that are
closely related. Changes in the continuous dynamics are usually fired
by internal or external discrete events. Due to their inherent complex-
ity, it is a crucial but not trivial task to ensure that these systems sat-
isfy some desirable properties. An approach to analyze them consists of
the combination of model-based testing and run-time verification tech-
niques. In this paper, we present an interval logic to specify proper-
ties of event-driven hybrid systems and an automatic transformation of
the logic formulae into networks of finite-state machines. Currently, we
use Promela/Spin to implement the network of finite-state machines,
and analyze non-functional properties of mobile applications. We use the
TRIANGLE testbed, which implements a controllable network environ-
ment for testing, to obtain the application traces and monitor network
parameters.

1 Introduction

In the last years, the improvement of sensor technology has led to the devel-
opment of different software systems that monitor some physical magnitudes
to control many everyday tasks. Water resource management systems [8], or
aeronautics [9] are some examples of this type of systems. As it is well known,
hybrid systems are composed of the so-called discrete and continuous compo-
nents, which are strongly interrelated. Usually, the role of the discrete part is
to control the continuous one, modifying its behaviour when necessary accord-
ing to some system conditions. The continuous component may follow complex
dynamics, which are usually represented by differential equations. The verifica-
tion of critical properties on these systems is crucial since they may carry out
critical tasks that affect the health of people or with a great economic impact. In
the literature, hybrid automata constitute the best known mechanism to model
hybrid systems. For example, tools like Uppaal [2] focus on the verification by
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model checking of some hybrid automata subclasses (timed automata). However,
not all hybrid systems can be easily represented as hybrid automata, not only
because of their complex dynamics but also because of their interaction with
an unpredictable environment. For this reason, in the last decades, other com-
putational hybrid models have appeared such as extended hybrid systems [4] in
which the hybrid systems are parameterized to incorporate the influence of the
environment, or sampled-data control systems [12] in which the continuous and
discrete components alternate their execution using a fixed time duration.

Fig. 1. Approach for testing event-driven hybrid systems

In a previous work [6], we proposed a framework to test event-driven hybrid
systems using a combination of model-based testing (to automatically generate
test cases) and runtime verification (to check the traces obtained against the
desirable properties). The framework, shown in Fig. 1, was implemented in the
context of the TRIANGLE project to analyze non-functional properties on traces
produced by the execution of mobile applications. In this work, we implemented
an ad-hoc trace monitoring system that was able to analyze some non-functional
properties of interest.

In this paper, we concentrate on the trace analysis using runtime verifica-
tion. In particular, we propose an event-driven linear temporal logic (eLTL) that
allows us to extend the set of non-functional properties that can be specified and
analyzed in the framework described above. The motivation for the definition
of the new logic is twofold. On the one hand, we need a logic in which prop-
erties on monitored magnitudes are evaluated on time intervals determined by
internal or external events that have occurred during the execution trace. For
instance, in the context of mobile applications (apps), in a video streaming app,
the video resolution can vary depending on network parameters (e.g. radio tech-
nology, signal strength, etc.). The exact moment when the video starts playing is
a priori unknown, but during video playback, determined, for instance, by events
vstart and vstop, different network and device parameters must be monitored
to determine the suitable video resolution. On the other hand, we also need a
logic whose formulae can be transformed into monitors that act as listeners of
the trace events to dynamically evaluate the specified property. Thus, the con-
tributions of the paper are both the definition of the event-driven linear time
logic eLTL and the transformation of the logic formulae into finite-state machines
(FSM) that act as observers of the execution traces. A preliminary version of
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the logic was presented in a Spanish workshop [7]. With respect to this former
paper, the current version has been extended with a more formal presentation
of the logic, and with the implementation section which is completely new.

The paper is organized as follows. Section 2 summarizes some work related to
interval logics. Section 3 presents the syntax and semantics of the event-driven
interval logic. We also show its expressiveness with some examples and briefly
compare eLTL and LTL. Section 4 describes the transformation of each eLTL
formula into a network of FSM and proves the correctness of the transformation.
Finally, Sect. 5 gives the conclusions and future work. Appendices contain the
proof of all the results presented in the paper, along with the current Promela
implementation of the network of FSM which allows us to check the satisfaction
of eLTL formulae on traces using Spin [11].

2 Related Work

In Linear Temporal Logic (LTL) is not easy to express requirements to be held
in a bounded future. Thus, the extension of LTL with intervals seems a natural
idea to easily express these other type of properties. This is the approach fol-
lowed in [20], where the authors use events to determine the intervals on which
formulae must be evaluated, although they do not deal with real-time. The tem-
poral logic FIL is also defined with similar purposes but the formulae are written
using a graphical representation. Real-time FIL [19] is an extension of FIL that
incorporates a new predicate len(d1, d2] that bounds the length of the intervals
on which properties have to be evaluated. In other context, the duration calcu-
lus [3] (DC) was defined to verify real-time systems. In DC system states have
a duration in each time interval that can be measured taking into account the
presence of the state in the interval. DC includes modalities (temporal opera-
tors) able to express relations between intervals and states, which constitute the
basis of the logic.

The Metric Interval Logic (MITL) [1] is a real-time temporal logic that
extends LTL by using modal operators of the form ◻I , ◇I where I is an open/-
close, bounded/unbounded interval of R. MITL[a,b] [13] is a bounded version of
MITL with all temporal modalities restricted to bounded intervals of the form
[a, b]. MITL[a,b] formulae can be translated into deterministic timed automata.
More recently, MITL[a,b] was extended to Signal Temporal Logic STL [14]
including numerical predicates that allow analogue and mixed-signal proper-
ties to be specified. Lately, the MITL logic has been extended to xSTL [16]
by adding timed regular expressions to express behaviour patterns to be met by
signals.

Finally, the differential dynamic logic (dL) [18] is a specification language to
describe safety and liveness properties of hybrid systems. In dL, formulae are of
the form [α]φ or 〈α〉φ meaning that the behaviour of hybrid system α always
(eventually) is inside the region defined by φ.
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Fig. 2. Synchronization of trace π and continuous variable c using τ(π)

3 Event-Driven Systems and Logic eLTL

In this section, we introduce a general model of event-driven hybrid systems,
which is characterized by containing continuous variables whose values can be
monitored. From a very abstract perspective, the behaviour of such a system may
be given by a transition system P = 〈Σ,

−�−→, L, s0〉 where Σ is a non-enumerable
set of observable states, L is a finite set of labels, −�−→ ⊆Σ × L × Σ is the
transition relation, and s0 ∈ Σ is the initial state. Transitions labels represent
the external/internal system events or system instructions that make the system
evolve. In addition, we assume that ι ∈ L is an special label that represents the
time passing between two successive states during which no event or instruction
is executed. Thus, transitions may take place when an event arrives, when a
system discrete instruction is carried out, or when a continuous transition occur
in which the only change in the state is the passing of time.

We denote with Of (P ) the set of execution traces of finite length determined

by P . The elements of Of (P ) are traces of the form π=s0
l0�−→ s1

l1�−→ · · · ln−2�−→ sn−1

where each li ∈L is the event/instruction/ι that fired the transition. The length

of a trace π = s0
l0�−→ s1

l1�−→ · · · ln−2�−→ sn−1 is the number of its states n. Given a
trace π of length n, we define the set Obs(π) of observable states of π; that is,
Obs(π) = {s0, · · · , sn−1}. It is worth noting that although event-driven hybrid
systems have continuous variables, we assume that their values are only visible
at observable states. In addition, we assume that the time instant in which each
state occurs is given by function τ : Σ −→ R

≥0 which relates each state s with
the moment it happens τ(s) ∈ R≥0.

In the following, given a trace π of length n and t ∈ {τ(s0), · · · τ(sn−1)},
we denote with 〈π, t〉 the observable state si of the trace at time instant t.
In addition, we use function σ : {τ(s0), · · · τ(sn−1)} → Obs(π) as the inverse
function of τ , i.e., ∀0 ≥ i < n.τ(σ(ti)) = ti and σ(τ(si)) = si.

Each continuous variable c of the system is a function c : R≥0 −→ R that gives
the value of c, c(t), at each time instant t. Figure 2 shows the relation between
the states in a trace, the time instants where they occur and the corresponding
values of continuous variable c at these instants. By abuse of notation, in the
figure and in the rest of the section, we use τ(π) to denote set {τ(s0), · · · τ(sn−1)}.

We have decided to define the behaviour of event-driven hybrid systems by
means of the simple notion of transition systems on purpose. The definition is



Trace Analysis Using an Event-Driven Interval Temporal Logic 181

highly general in the sense that it is able to capture the behaviour of hybrid event-
driven systems described by hybrid automata or other formalisms. Transitions
correspond to changes of the system variables producing observable states in the
traces that can be the result of the system that accepts an event or executes
an instruction, or the result of an internal evolution ι where time passing is the
only change in the trace. Anyway, the number of observable states in each trace
is finite. In practice, in our current implementation, the time instants and the
value of continuous variables in traces is recorded in log files, although other
time models could also be managed by the logic presented below.

3.1 Syntax and Semantics of eLTL

We consider two types of state formulae to be analyzed on states of Σ. On
the one hand, we have those that can be evaluated on single states as used in
propositional linear temporal logic LTL, for instance. On the other hand, we
assume that events of L are also state formulae that can be checked on states.
Thus, let F be the set of all state formulae to be evaluated on elements of Σ. As
usual, we suppose that state formulae may be constructed by combining state
formulae and Boolean operators. Relation ⊢⊆Σ × F associates each state with
the state formulae it satisfies, that is, given s ∈ Σ, and p ∈ F , s ⊢ p iff the state
s satisfies the state formula p. In the following, given π ∈ Of (P ), ti ∈ τ(π) and
p ∈ F , we write 〈π, ti〉 ⊢ p iff σ(ti) ⊢ p. When li ∈ L is an event occurred at state

si that evolves to si+1 in trace π = s0
l0�−→ s1

l1�−→ · · · ln−2�−→ sn−1, we assume that
state si+1 records the fact that li has just occurred and, in consequence, we have
that si+1 ⊢ li, or equivalently, 〈π, ti+1〉 ⊢ li. Other logics such as HML [10] or
ACTL [5] focus on actions versus state formulae. We have decided to keep them
at the same level to allow the use of both in the logic.

In order to analyze the behaviour of continuous variables, it is useful to
observe them not only in a given time instant, but also during time intervals
to know, for example, whether their values hold inside some expected limits or
whether they never exceed a given threshold. To this end, we use intervals of
states (inside the traces) to determine the periods of time during which continu-
ous variables should be observed. Our proposal is inspired in the interval calculus
introduced by [3], where the domain of interval logic is the set of time intervals
I defined as {[t1, t2]|t1, t2 ∈R≥0, t1 ≤ t2}. Considering this, we define the so-called
interval formulae as functions of the type φ : I → {true, false} to represent
the formulae that describe the expected behaviour of continuous variables on
time intervals. For instance, assume that c : R≥0 → R is a continuous variable
of our system. Given a constant K ∈ R≥0, function φc : I → {true, false} given
as φc([t1, t2]) = |c(t2) − c(t1)| <K defines an interval formula that is true on an
interval [t1, t2] iff the absolute value of difference between c in the interval end-
points t1 and t2 is less than K. Let us denote with Φ the set of interval formulae.
We assume that Φ contains the special interval formula True : I → {true, false}
that returns true for all positive real intervals, that is, ∀I ∈ I.True(I) = true.

In the following, given two state formulae p, q ∈ F , we use expressions of the
form [p, q], that we call event intervals, to delimit intervals of states in traces.
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Intuitively, given a trace π = s0
l0�−→ s1

l1�−→ · · · ln−2�−→ sn−1, [p, q] represents time
intervals [ti, tj ] with ti, tj ∈ τ(π) such that 〈π, ti〉 ⊢ p and 〈π, tj〉 ⊢ q; that is,
si ⊢ p and sj ⊢ q. We also consider simple state formulae p to denote states in π
satisfying p. Now, we formally define relation ⊩ that relates event intervals with
intervals of states in traces.

Definition 1. Given a trace π ∈Of (P ), two state formulae p, q ∈F and two time
instants tp, tq ∈ τ(π) such as tp < tq, we say that the time interval [tp, tq] satisfies
the event interval [p, q], and we denote it as π ↓ [tp, tq] ⊩ [p, q], iff the following
four conditions hold: (1) 〈π, tp〉⊢p; (2) ∀tj ∈(tp, tq)∩τ(π), 〈π, tj〉⊬q; (3) 〈π, tq〉⊢q;
and (4) there exists no interval [t′p, tq] ≠ [tp, tq], verifying conditions 1–3 of this
definition, such that [tp, tq] ⊂ [t′p, tq].

That is, π ↓ [tp, tq]⊩ [p, q] iff σ(tp)=sp satisfies p and σ(tq)=sq is the first state
following sp that satisfies q. In addition, the fourth condition ensures that the
interval of states from sp until sq is maximal in the sense that it is not possible to
find a larger interval ending at sq satisfying the previous conditions. This notion
of maximality guarantees that the evaluation of interval formulae starts at the
state when event p first occurs, although it could continue being true in some
following states. In the previous definition, the time instants tp and tq must be
different elements of τ(π), that is, [tp, tq] cannot be a point.

Example 1. The following trace (π) tries to clarify Definition 1. Given
p, q ∈ F , and assuming that τ(si) = ti for all states, we have that π ↓
[tp, tq] ⊩ [p, q], but π ↓ [tr, tq] ⊮ [p, q], since condition (4) does not hold.
¬p

s0

p

sp

¬q p ∧ ¬q

sr

¬q q

sq sn

[p, q]

Definition 2 [eLTL formulae]. Given p, q ∈ F , and φ ∈ Φ, the formulae of eLTL
logic are recursively constructed as follows:

ψ ::= φ | ¬ψ | ψ1 ∨ ψ2 | ψ1U[p,q]ψ2 | ψ1Upψ2

The rest of the temporal operators are accordingly defined as:
◇[p,q]ψ ≡ True U[p,q]ψ, ◻[p,q]ψ ≡ ¬(◇[p,q] ¬ ψ),
◇pψ ≡ True Upψ, ◻pψ ≡ ¬(◇p ¬ ψ)

The following definition gives the semantics of eLTL formulae given above.
Given a trace π ∈ Of (P ), and ti, tf ∈ τ(π) with ti ≤ tf , we use 〈π, ti, tf 〉 to
represent the subtrace of π from state si = σ(ti) to state sf = σ(tf ).
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Definition 3 (Semantics of eLTL formulae). Given p, q ∈ F , φ ∈ Φ, and the
eLTL formulae ψ,ψ1, ψ2, the satisfaction relation ⊧ is defined as follows:

〈π, ti, tf 〉 |= φ iff φ([ti, tf ]) (3.1)
〈π, ti, tf 〉 |= ¬ψ iff 〈π, ti, tf 〉≠ |= ψ (3.2)
〈π, ti, tf 〉 |= ψ1 ∨ ψ2 iff 〈π, ti, tf 〉 |= ψ1 or 〈π, ti, tf 〉 |= ψ2 (3.3)
〈π, ti, tf 〉 |= ψ1U[p,q]ψ2 iff ∃I = [tp, tq] ⊆ [ti, tf ] such that π ↓ [tp, tq] (3.4)

[p, q]and〈π, ti, tp〉 |= ψ1, 〈π, tp, tq〉 |= ψ2

〈π, ti, tf 〉 |= ψ1Upψ2 iff ∃tp. ti ≤ tp ≤ tf and 〈π, ti, tp〉 |= ψ1, 〈π, tp, tp〉 |= ψ2

(3.5)

The semantics given by ⊧ is similar to that of LTL, except that ⊧ manages
interval formulae instead of state formulae. For instance, case 3.1 states that the
subtrace 〈π, ti, tf 〉 of π satisfies an interval formula φ iff φ([ti, tf ]) holds. Case 3.4
establishes that U[p,q] holds on the subtrace 〈π, ti, tf 〉 iff there exists an interval
[tp, tq] ⊂ [ti, tf ] such that ψ1 and ψ2 hold on [ti, tp] and [tp, tq], respectively.
Case 3.5 is similar except for the interval in which ψ2 has to be true is [tp, tp],
which represents the time instant tp.

Proposition 1. The semantics of operators ◻[p,q],◇[p,q],◻p and ◇p, given in
Definition 2, is the following:

〈π, ti, tf 〉 |= ◇[p,q]ψ iff ∃I = [tp, tq] ⊆ [ti, tf ], such that π ↓ [tp, tq] ⊩ [p, q] (3.6)
and〈π, tp, tq〉 |= ψ

〈π, ti, tf 〉 |= ◻[p,q]ψ iff ∀I = [tp, tq] ⊆ [ti, tf ], if π ↓ [tp, tq] ⊩ [p, q] then (3.7)
〈π, tp, tq〉 |= ψ

〈π, ti, tf 〉 |= ◇pψ iff ∃tp ∈ [ti, tf ] such that 〈π, tp〉 ⊢ p (3.8)
and 〈π, tp, tp〉 |= ψ

〈π, ti, tf 〉 |= ◻pψ iff ∀tp ∈ [ti, tf ] if 〈π, tp〉 ⊢ p then 〈π, tp, tp〉 |= ψ (3.9)

3.2 Examples

We now give some examples to show the use of the logic. In [6,17], we proposed a
model-based testing approach to test mobile applications (apps) under different
network scenarios. We automatically generated app user flows, that is, differ-
ent interactions of the user with the app, using model-based testing techniques.
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Then, we executed these app user flows in the TRIANGLE testbed, which pro-
vides a controlled mobile network environment, to obtain measurements and
execution traces in order to evaluate the performance of the apps.

In this section, we make use of eLTL to describe desirable properties regard-
ing to the values of continuous variables of the ExoPlayer app, a video streaming
mobile app that implements different adaptive video streaming protocols. Using
the current implementation of the eLTL operators, and with the execution traces
provided by the evaluation presented in [17], we can determine if the execution
traces of ExoPlayer satisfy the properties. The execution traces of the app con-
tain the following events: the start of video playback (stt), the load of the first
complete picture (fp), the end of the video playback (stp), and the changes in
the video resolution (low, high). In addition, the TRIANGLE testbed measures
every second (approximately) the amount and rate of transmitted and received
data, as well as different parameters of the network (e.g. signal strength and
signal quality) and the device (e.g. RAM, CPU and radio technology).

Property 1: We can write the property “during video playback, the first picture
must be loaded at least once in all network conditions” which may be specified
using the formula ◻[stt,stp] ◇fp True. The following trace satisfies this property,
where the expressions over each state represent the state formulae it holds.

¬stt

s0

stt

sstt

¬stp ∧ fp

sfp

¬stp stp

sstp

stt

s′
stt

¬stp ∧ fp

s′
fp

stp

s′
stp

sn−1

Property 2: We can also specify the property “during video playback, if the
video resolution is high, the average received data rate is greater than 5 Mbps,
and if the video resolution is low the average data rate is below 1Mbps.” The
video resolution is high in the time interval between h and l events. Similarly,
the video resolution is low between the events l and h. The eLTL formula is

◻[stt,stp](◻[high,low]φ1 ∧ ◻[low,high]φ2)

where φ1 and φ2 are defined as: φ1([ti, tf ]) = RxRate(ti, tf ) ≥ 5Mbps and
φ2([ti, tf ]) =RxRate(ti, tf ) ≤ 1Mbps.

This formula uses function RxRate(ti, tf ) that accesses to the file of the
trace and workouts the average in the corresponding time interval. In the current
implementation on Spin, it is calculated using Promela embedded C code.

Property 3: The eLTL formula for property “during video playback, if the video
resolution changes from High to Low, the peak signal strength (rssi) is less than
−45 dBm” can be written as:

◻[stt,stp] (◻[high,low]φ), where φ([ti, tf ]) =

⎧
⎪⎨

⎪⎩

true if ∃t ∈ [ti, tf ],
maxRSSI(t) ≤−45 dBm

false otherwise
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Using this formula with different thresholds for the peak rssi, we can deter-
mine whether the adaptive protocols take into consideration the signal strength
in the terminal to make a decision and change the video resolution.

Other Examples. In the health field, eLTL can also be useful. For instance,
patients with type 1 diabetics should be monitored to assure that their glucose
levels are always inside safe limits. Related to this problem, we could describe
different properties of interest. Given the interval formula ψK([t1, t2])=t2−t1≥K
with K ∈ R, and events sleep, awake, run, end, break, endBreak, drink and
over 70 that denote when the patient goes to sleep, awakes, starts running, stops
running, drinks and his/her glucose level is over 70 mg/l:

– Property “while sleeping, the glucose level is never below 70 mg/l” can be
expressed as ◻[sleep,awake] ◻true over 70. Observe that in this property over70
acts as a simple interval formulae that holds on each state inside [sleep, awake]
iff the glucose level is over 70.

– Property “if the patient is running more than 60 min, he/she has to make a
stop of more than 5 min to drink” can be written as

◻[run,end](ψ60 → (◇[break,endBreak](ψ5 ∧ ◇drinkTrue)))

3.3 Comparison with LTL

In this section, we briefly compare the expressiveness of logics LTL and eLTL.
One important difference between both logics is that LTL is evaluated on infi-
nite traces while, on the contrary, eLTL deals with finite traces. This makes
some LTL properties hard to specify in eLTL. In addition, eLTL is thought to
analyze extra-functional properties on traces, that is, properties that refer to
the behaviour of certain magnitudes in subtraces (as in the examples presented
above), which cannot easily be expressed in LTL. The context where eLTL for-
mulae are checked is determined by the event intervals [p, q] associated to the
modal operators. However, this context is implicit in LTL since formulae are eval-
uated on the whole infinite trace. In conclusion, we can say that although both
logic have similarities, they are different regarding expressiveness. The following
table shows some usual patterns of LTL formulae with its corresponding eLTL
versions. The inverse transformation is not so easy. For instance, eLTL formula
◻[a,b] ◇p True, which forces that p occurs between each pair of a and b events,
is hard to write in LTL. In the table, we use interval formulae φp (p ∈F) defined
as φp([ti, tf ]) = σ(ti) ⊢ p. In addition, a, b, q ∈ F are events used to delimit finite
subtraces.
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LTL eLTL Comments

◇p ◇pTrue In both cases, p has to be true eventually, but in eLTL,

p must be true inside of the finite trace.

◻p ◻trueφp in both cases, p has to be always true, but in eLTL

It is limited to the states of the finite trace.

◻ ◇ p ◻[a,b] ◇p True In LTL, p has to be true infinitely often. In eLTL, p has to

Occur always inside the subtraces determined by [a, b].

◇ ◻ p ◇[a,b] ◻true φp The LTL formula says that p has to be always true

from some unspecified state. The eLTL says the same,

but limited by the extreme states of the finite trace [a, b].

p Uq (◻trueφp)UqTrue In this case, the LTL formula is clearly easier to write,

since eLTL is thought to evaluate magnitudes on subtraces.

(◇p)Uq (◇pTrue)UqTrue the LTL formula could be true even if p occur after p in

the trace. However, in the eLTL version, p has to occur before p.

4 Implementation

In this section, we describe the translation of eLTL formulae into a network
of state machines M that check the satisfiability of the property on execution
traces. As described in Sect. 3, formulae are evaluated against time bounded
traces π that execute in time intervals of the form [ti, tf ]. Formulae can include
nested temporal operators whose evaluation can be restricted to subintervals.
The implementation described below assumes that traces are analyzed offline,
i.e., given a particular trace, for each state, we have stored the time instant when
it occurred and the set of state formulae of F which it satisfies. In consequence,
we can use the trace to build a simple state machine T that runs concurrently
with the network of machines M. T sends to M events to start and finalize the
analysis, and also the events included in the formula which are of interest for
the correct execution of the network.

Fig. 3. Example of a network of state machines

We use an example to intuitively explain how the network of machines M
is constructed. Assume we want to evaluate 〈π, ti, tf 〉 ⊧◇[p,q] ◻[r,s] φ. The outer
operator ◇[p,q] must find the different time intervals [tp, tq] ⊆ [ti, tf ], delimited
by events p and q, to check if there exists at least one satisfying the sub-formula
◻[r,s]φ. Similarly, given one of the time intervals [tp, tq], the inner operator ◻[r,s]
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has to find all time intervals [tr, ts] ⊆ [tp, tq], determined by events r and s, to
check whether φ holds in all of them.

The network M is composed of the parallel composition of finite-state
machines, each one monitoring a different sub-formula. The network is hier-
archized, that is, each state machine communicates through channels with the
trace T being analysed and with the state machine of the formula in which it
is nested. The state machine of the outer eLTL temporal operator starts and
ends the evaluation, reporting the analysis result to T . Each state machine has
a unique identifier id which allows it to access the different input/output chan-
nels. Thus, channel cm[id] is a synchronous channel through which the state
machine id is started and stopped. Channel rd[id] is used by machine id to
send the result of its evaluation. Finally, ev[id] is an asynchronous channel
through which each state machine receives from T the events in which it is
interested along with the time instant they have occurred ([te,e]).

Figure 3 gives an intuition about how the network of state machines of the
example is constructed. The network of the example is composed by three state
machines M0‖M1‖M2. M0 is the highest level state machine that monitors
operator ◇[p,q]. Thus, it should receive from T events p and q each time they
occur in the trace. Similarly, M1 monitors ◻[r,s], and it should be informed
when events r or s occur. Finally, M2 is devoted to checking φ. It is worth
noting that all machines are initially active, although they are blocked until the
reception of the start message STT. Machine A0 is started when T begins its
execution. Each machine id receives the start and stop messages STT and STP
though channel cm[id]. Events arrive to machine id via channel ev[id] and
it returns the result of its evaluation (true or false) using channel rd[id]. In
the example, when M0 receives event p, it sends a STT message to the nested
machine M1. Similarly, when M1 receives event r, it sends message STT to M2.
Each time M1 receives event s sends STP to M2.When M2 receives STP, it ends
its execution, evaluates the interval formula and sends the result through channel
rd[2]. Similarly, when M0 receives event q via channel ev[0], it sends STP to
M1. When a machine receives STP, it tries to finish its execution immediately.
But, before stopping, it has to process all the events stored in its ev channel
since they could have occurred before the STP were sent. To know this, each
message contains a timestamp with the time instant when the event took place.
This is needed since events and STP are sent via different channels. Thus, it is
possible for a machine to read STP before reading a previous event in the trace.

Finite-State Machine Templates. We now show finite-state machines tem-
plates that implement eLTL operators. In these machines, id refers to the state
machine being implemented, and c1, c2 are, respectively, the identifiers of the
state machines of the first and the second nested operators, if they exist. All
machines described below follow the same pattern. First, each machine starts
after receiving message STT, and initiates its sub-machines, if necessary. Then, it
continues processing the input events in which it is interested. These events are
directly sent from the instrumented trace T that is being monitored. When the
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initstart wait end

send

cm id ? ti, STT cm id ? tf , STP

ϕ
φ

ti,
tfrd id !ϕ

Fig. 4. State machine of an interval formulae

machine receives STP, it returns the result of its evaluation via channel rd. To
simplify the diagrams, we have used sometimes guarded transitions of the form
G|Action. When guard G is a message reception via a synchronous channel, it
is executable iff it is possible to read the message and, as a side effect, the mes-
sage is extracted from the channel. Due to lack of space, we have not included
operator Up since its machine is a simplified version of that of U[p,q].

Interval formula (φ): Figure 4 shows the state machine for an interval formula
φ without eLTL operators. An interval formula is evaluated on a time interval
[ti, tf ] that is communicated to the process via the channel cm[id] with mes-
sages [ti,STT] and [tf ,STP]. After detecting the interval end, the state machine
evaluates the expression φ([ti, tf ]) and sends the result to the parent machine
through rd[id].

Fig. 5. State machine of the not operator

Negation (¬ψ): Figure 5 shows the negation operator. The state machine syn-
chronizes with the machine of its nested formula (ψ) as soon as it receives the
STT and STP commands. Observe that, in this case, to simplify the diagram, we
have used guarded transitions. When the nested machine finishes, the machine
negates the result and returns it through the rd channel.
Or (ψ1 ∨ψ2): Figure 6 shows the state machine of the or operator. This machine
checks if any of the two sub-formulae ψ1 and ψ2 holds on the same interval [ti, tf ]
over which the or operator is being evaluated. Similarly to the NOT machine, this
machine waits the successive reception of the STT and STP messages and resends
them to the machines of its sub-formulae to start and stop them.
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Fig. 6. State machine for or operator

Fig. 7. State machine for until operator
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Until (ψ1U[p,q]ψ2): Figure 7 shows the state machine template of the until oper-
ator. As can be observed, it is much more complex than the previous templates.
Assuming that the whole formula is evaluated on interval [ti, tf ], the first sub-
formula ψ1 must be true on an interval [ti, tp] (tp being a time instant when
event p has occurred), and the second one ψ2 must be true on the time inter-
val [tp, tq] (tq being the time instant when event q has first occurred after p).
The machine id starts accepting the message STT from its parent and, then, it
resends the message to the state machine of ψ1. In state wait p, the machine is
waiting for the p event to occur or for the STP message to arrive. If p arrives at
a correct time instant (after ti), the machine sends STP to machine c1 and waits
for its result in state wait c1. If ψ1 is not valid in the interval [ti, tp], machine
id records false in variable res1 and waits in state wait q the following event
q, then it transits to wait p and restarts machine c1. This is because machine
id has found that formula does not hold on a time interval determined by the
occurrence of p and q and, in consequence, it starts searching for the following
interval given by [p, q] in the trace. Otherwise, if ψ1 holds on [ti, tp], machine
sends STT to machine c2 and waits for its result in state wait c2. In this state,
machine id behaves in a similar way as in state wait p. If c2 returns false, it
restarts again machine c1 and goes back to state wait p to search for the follow-
ing time interval determined by events p and q. Conversely, if c2 returns true,
machine id waits for message STP to send its result. Note that it only sends true
if event q has occurred before the end of the interval tf . Otherwise, the machine
returns false, since ψ2 could not be evaluated in time. Observe that in states
wait p and wait q, message STP is only accepted when the event channel is
empty (emp(ev[id])). This is to prioritize reading events p and q before STP
and simplify the implementation.

Theorem 1. Let f be an eLTL formula, and Mid the network of state machines
implementing f , then given a finite trace 〈π, ti, tf 〉, 〈π, ti, tf 〉 ⊧ f if and only if
Mid finishes its execution by sending true via channel rd[id] (rd[id] ! true).

5 Conclusions

In this paper, we have presented an event-driven interval logic (eLTL) suitable
for describing properties in terms of time intervals determined by trace events.
We have transformed each eLTL formula into network of finite state machines to
evaluate it using runtime verification procedures, and have proved the correctness
of the transformation. We have constructed a prototype implementation of these
machines in Promela to be executed on Spin.

Our final goal is to apply the approach to analyze execution traces of real
systems against extra-functional properties, such as evaluating the performance
of mobile apps in different network scenarios [17]. Currently, the transformation
from eLTL formula into Promela code, and the transformation of the traces
are manually done, although the automatic transformation will be carried out in
the near future. We also plan to use the approach in other domains such as the
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EuWireless project [15]. This project is designing an architecture to dynamically
create network slices to run experiments. In this context, it is of great impor-
tance to monitor the different network slices and the underlying infrastructure
to ensure safety (e.g. isolation of slices) and extra-functional properties related
to performance and quality of service.
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